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A basic challenge for probabilistic models of cognition is explaining how probabilistically correct solu-
tions are approximated by the limited brain, and how to explain mismatches with human behavior.
An emerging approach to solving this problem is to use the same approximation algorithms that were
been developed in computer science and statistics for working with complex probabilistic models.
Two types of approximation algorithms have been used for this purpose: sampling algorithms, such as
importance sampling and Markov chain Monte Carlo, and variational algorithms, such as mean-field
approximations and assumed density filtering. Here I briefly review this work, outlining how the algo-
rithms work, how they can explain behavioral biases, and how they might be implemented in the brain.
There are characteristic differences between how these two types of approximation are applied in brain
and behavior, which points to how they could be combined in future research.
� 2015 The Author. Published by Elsevier Inc. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Probabilistic cognition is a natural fit to the kind of problems
posed by the environment: people are faced with noisy and
ambiguous observations about the world, yet need to make good
decisions. Probabilistic models allow for uncertainty and ambigu-
ity to be dealt with appropriately, because instead of incorrectly
assuming that imperfect information is known perfectly, these
models can find the best possible action given that imperfect
information.

These models have had broad success in explaining human
data, accounting for how people are aware of their perceptual
uncertainty and combine it appropriately with prior knowledge
(Körding & Wolpert, 2004; Tassinari, Hudson, & Landy, 2006),
and explaining how people can learn to represent an ambiguous
environment in cognitive tasks (Griffiths, Steyvers, & Tenenbaum,
2007; Kemp & Tenenbaum, 2008). However despite these suc-
cesses, probabilistic models have faced skepticism from two major
sources: evidence of mismatches between human behavior and
probabilistic cognition (Tversky & Kahneman, 1978), and the inher-
ent computational complexity of these models. It just does not
seem like we as humans can do the complex calculations necessary
to arrive at the best answers, and so there must be shortcuts
involved (Anderson, 1991; Simon, 1955; Van Rooij, 2008).
Fortunately the problem of working with complex probabilistic
models in limited systems has received a lot of attention from
computer scientists and statisticians. Researchers in these fields
have developed algorithms that arrive at good solutions while min-
imizing computational and memory requirements. These algo-
rithms then provide an interesting alternative to extant
heuristics in psychology and neuroscience, and in cognitive science
using these algorithms to explain behavior has been termed
rational process models (Sanborn, Griffiths, & Navarro, 2010). The
advantage of this approach is that when these algorithms are used
in situations for which they are well-adapted, they make proba-
bilistic cognition achievable, but when they are applied to situa-
tions for which they are poorly adapted, they can explain biases
in behavior that cannot be explained by probabilistic models alone.

Computer scientists and statisticians have developed various
types of approximations for probabilistic models, such as
Laplace’s method, sampling algorithms, variational approxima-
tions, and expectation propagation (Bishop, 2006; Doucet, de
Freitas, & Gordon, 2001; Minka, 2001; Neal, 1993; Wainwright &
Jordan, 2008). Here I focus on the two types that have been applied
to approximate probabilistic cognition: sampling and variational
approximations. Sampling algorithms are stochastic, randomly
drawing samples to represent a probability distribution as a collec-
tion of points. While sampling algorithms asymptotically provide
the correct answer, they are less accurate and can show biases
for small numbers of samples. In contrast, variational algorithms
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trade stochastic sampling for deterministic optimization. These
algorithms can be very fast, but are asymptotically biased.

Researchers have used both sampling and variational algo-
rithms as approximations to probabilistic cognition in behavior
and the brain. However these investigations have tended to pro-
ceed separately, with little comparison between the work using
the two types of algorithms. Below, I describe examples of both
types of algorithms, how they can produce behavioral biases, and
how they might be implemented in the brain. A comparison of
the two types shows what each is good for, and how they could
be profitably combined in future work.
2. Sampling approximations

Sampling algorithms are useful for approximating calculations
that involve complex probability distributions because the collec-
tion of samples can simply stand in for the complex distribution
in a calculation. These approximate calculations are asymptotically
correct with an infinite number of samples, but there are generally
no guarantees for smaller numbers of samples.

While it is ideal if samples can be drawn from the distribution
directly, often this is not the case and more sophisticated methods
are required. One commonly used variety of sampling is importance
sampling, which avoids the problem of drawing samples directly
from a complex distribution by first sampling from a similar but
simpler distribution (Bishop, 2006). These samples are weighted
so that they reflect the probability of the complex distribution
and not the actual distribution from which they were drawn.
Importance sampling works well when the simpler distribution is
very similar to the complex distribution, but is inaccurate if these
distributions are very different.

A generalization of importance sampling is particle filtering
(Doucet et al., 2001). This algorithm extends importance sampling
into sequential tasks in which decisions need to be made after each
observation of data. The simplest version of particle filtering draws
samples from the prior distribution and sequentially reweights
these samples by the likelihood of the data as it is observed.
However, this version of particle filtering quickly runs into trouble
because it is likely that the weight for one sample will dominate all
of the rest, effectively yielding only a single sample. More sophis-
ticated particle filters add steps such as replacing the worst sam-
ples with better-performing samples or perturbing the samples
to provide a better overall approximation.

Another commonly used sampling algorithm is Markov chain
Monte Carlo (MCMC; Neal, 1993). MCMC starts at a particular set
of values (the initial state) for each of the random variables and
makes a series of stochastic transitions to new states. By clever
choice of the transition function, the series of states produced are
samples from the distribution of interest. The strength of MCMC
is that not as much needs to be known about the complex distribu-
tion ahead of time, but some downsides are that the initial samples
need to be discarded and that samples are autocorrelated: because
most MCMC samplers preferentially transition to nearby states,
transitions between far-apart states are slower.
2.1. Explaining behavioral biases

Importance sampling, particle filtering, and MCMC have all
been used to explain biases in human behavior. Importance sam-
pling has been formally linked to exemplar models, which are
well-supported models of memory and categorization. This link
generalizes exemplar models to new tasks and allows it to explain
behavioral biases. For example, in reproduction tasks participants’
responses are drawn toward the distribution of stimuli they have
previously been shown. The form of the assimilative effect shows
Please cite this article in press as: Sanborn, A. N. Types of approximation for pr
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deviations from what probabilistic models predict, but these devi-
ations can be explained by assuming participants use a restricted
number of samples (Shi, Griffiths, Feldman, & Sanborn, 2010).

Particle filters have been used to explain human biases in a vari-
ety of sequential tasks. Because repeated reweighting effectively
reduces the number of samples, particle filters are useful for
explaining how behavior can be more strongly influenced by early
than late observations: samples consistent with the early observa-
tions initially dominate, and for some types of particle filter this
makes it impossible to draw samples consistent with the late
observations. Particle filters have been used to explain how early
observations can dominate in categorization (Sanborn et al.,
2010), sentence processing (Levy, Reali, & Griffiths, 2009), and cau-
sal learning (Abbott & Griffiths, 2011). Particle filters have also
been used to explain individual variability around the group mean
in learning (Daw & Courville, 2008) and change point detection
(Brown & Steyvers, 2009).

MCMC has been used to explain different kinds of behavioral
biases. Samples generated by MCMC are autocorrelated, and this
property is useful for describing how judgments change slowly
over time. One application of this is to bistable perception, where
the current percept of a figure can be cast as a sample from a bimo-
dal probability distribution over interpretations, and sampling
using MCMC can explain the transition times between percepts
(Gershman, Vul, & Tenenbaum, 2012). Autocorrelation also means
that MCMC is initially influenced by its start state, which has been
used to explain how irrelevant self-generated anchors in reasoning
problems can have an effect on later answers (Lieder, Griffiths, &
Goodman, 2012).
2.2. Implementation in the brain

Proposals have been made for how each of the above sampling
algorithms could be implemented in the brain. For importance
sampling, Shi and Griffiths (2009) proposed that neural tuning
curves were proportional to the likelihood and that the number
of neurons with a particular tuning curve were proportional to
the prior. This scheme was extended to perform inference in a hier-
archical model, which the levels of the model mapped to hierarchi-
cally organized brain regions.

Lee and Mumford (2003) used a similar global organization,
proposing that at each level in the cortical hierarchy probabilistic
cognition was implemented with a particle filter. Messages were
then passed between the levels so that the top-down effects of
context and the bottom-up effects of the stimulus were both incor-
porated. More detailed neural implementation of particle filters are
given by Huang and Rao (2014) and Legenstein and Maass (2014)
using networks of spiking neurons.

Other researchers have described on how populations of neu-
rons could implement MCMC. In these implementations, the state
of the brain corresponds to a sample from a probability distribu-
tion and transitions between neural states correspond to the tran-
sitions that the MCMC algorithm makes (Fiser, Berkes, Orbán, &
Lengyel, 2010). Currently there are separate kinds of MCMC imple-
mentations for sampling from continuous variables (Hennequin,
Aitchison, & Lengyel, 2014; Moreno-Bote, Knill, & Pouget, 2011)
and sampling from discrete variables (Buesing, Bill, Nessler, &
Maass, 2011; Probst et al., 2015).
3. Variational approximations

Variational approximations are a second major type of approx-
imation in computer science and statistics, and these algorithms
trade the stochasticity of sampling for the determinism of opti-
mization. Variational algorithms work by first defining a simpler
obabilistic cognition: Sampling and variational. Brain and Cognition (2015),
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family of distributions that is easier to use. Given this simpler fam-
ily of distributions and a chosen distance measure, such as the
Kullback–Leibler divergence, the calculus of variations is used to
find the family member that most closely approximates the com-
plex distribution (Bishop, 2006).

The choice of the simpler family of distributions can be made in
different ways. One common method is to start with the complex
distribution and then assume independence between variables
that are not actually independent. This greatly reduces computa-
tional complexity. At its maximum extent, where all the variables
are assumed to be independent from one another, this is called the
mean-field approximation, while if independence is assumed
between subsets of variables this is known as a structured
mean-field approximation. A second way to define a simpler family
of distributions is to assume a particular parametric form for the
family of distributions. A common choice is to find the Gaussian
distribution that is closest to a true distribution because then only
the means and variances need to be encoded (Friston, 2008; Hinton
& Van Camp, 1993).

Variational approximations have a close connection to the con-
cept of message passing (Wainwright & Jordan, 2008). The vari-
ables in a complex distribution can be represented as nodes on a
graph and dependencies can be represented as links between the
variables. If that graph is a tree, then messages can be passed along
the links to exactly infer the probability distribution for each vari-
able. However, many times the dependencies between variables
are more complex, and in these cases mean-field or structured
mean-field approximations can be used to reduce dependencies
between variables and to produce a message passing scheme that
converges to an approximate solution. Additionally, assuming a
parametric family of distributions allows for a different simplifica-
tion of messages: instead of passing probability distributions, suf-
ficient statistics can be passed between nodes.

Like sampling algorithms, variational approximations can be
adapted to use with sequential data, an approach called assumed
density filtering. This type of updating is known to work well if
the observed data are randomly ordered but can settle in incorrect
solutions if the data are ordered in a structured way (Minka, 2001).
3.1. Explaining behavioral biases

There has been less work using variational approximations to
explain human biases than there has been using sampling algo-
rithms. One application of deterministic approximations has been
to explain puzzling effects of trial order in associative learning,
particularly the effects of highlighting (Kruschke, 1996; Medin &
Edelson, 1988) and forward and backward blocking (Shanks,
1985). There is not enough space to detail these effects here, but
they result from a structured ordering of the stimuli and in combi-
nation they have not been successfully modeled with purely prob-
abilistic models (Kruschke, 2006a).

Instead researchers have proposed variational approximations
to probabilistic models to explain these three effects. For example,
a model that interpolated between a mean-field variational
approximation and the full probabilistic model was used by Daw,
Courville, and Dayan (2008) to produce these three trial order
effects. A different approach was taken by Kruschke (2006b) who
assumed that the mind is divided into modules that are each per-
forming exact inference, but are restricted in the messages they
can pass to one another. The messages chosen in this model were
motivated by their fit to the data, but Sanborn and Silva (2013)
showed that using messages derived from a structured
mean-field approach also produced the three effects.
Please cite this article in press as: Sanborn, A. N. Types of approximation for pr
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3.2. Implementation in the brain

The most well-known implementation of a variational approx-
imation in the brain is the combination of a mean-field approxima-
tion with the assumption that each variable is Gaussian (Friston,
2008). It assumes variables reside at each level of the cortical hier-
archy and the very restricted approximation allows for simple
messages consisting of the sufficient statistics to be passed up
and down the levels of the hierarchy until convergence. This imple-
mentation is also linked to the idea of predictive coding, because
the messages passed down to the lower cortical areas are the pre-
dictions of the model, while the messages passed upwards to the
higher cortical areas are the deviations of the data from
predictions.

The variational approach was also used by Beck, Pouget, and
Heller (2012) to approximate inference in a network of neurons
using probabilistic population codes. Their approximation was less
restrictive than the one introduced by Friston (2008), as it used a
structured mean-field approximation and allowed for any expo-
nential family distribution, rather than only Gaussian distributions.
4. Discussion

Sampling and variational algorithms each have particular
strengths and weaknesses that make them appropriate for explain-
ing different behavioral biases and which require different imple-
mentations in the brain. Sampling algorithms more easily explain
variability in behavior while variational approximations more
easily produce stable biases. Sampling approaches also allow for
more possibilities for learning, because their representations are
less restricted. In terms of implementation, sampling algorithms
map to a well-coordinated stochastic system while variational
algorithms have greater flexibility in how information is propa-
gated between variables: different variational approximations
result in different message passing schemes.

While sampling and variational approximations have not often
been combined to approximate probabilistic cognition, brain and
behavior might be better explained by using both. In terms of
implementation, a natural way to combine their strengths would
be to assume that probabilistic cognition is implemented by sam-
pling algorithms in local regions, but a global variational approxi-
mation determines the message passing scheme between regions.
This scheme allows for more scope for learning within local
regions, while controlling the complexity of the overall model.
Behaviorally, it predicts stochasticity in order effects like highlight-
ing and neurally it predicts that the connectivity structure will
reflect the messages needed for the factorized approximation,
rather than the messages needed for the full distribution.

This idea is an expansion of Lee and Mumford (2003), who pro-
posed local regions used particle filters and messages were passed
between regions using a message passing scheme called loopy
belief propagation, which results from an expectation propagation
approximation similar to the variational mean-field approximation
(Minka, 2001). Instead of restricting approximations to these two
particular types, a range of both sampling and variational approx-
imations can be explored. The effects of these approximations on
models should then be compared to both behavioral biases and
what is known about brain processes to better understand how
probabilistic cognition is approximated.

Acknowledgements

This work was supported by funding from Economic and Social
Research Council grant ES/K004948/1. The author thanks the
anonymous reviewers for very helpful comments.
obabilistic cognition: Sampling and variational. Brain and Cognition (2015),

http://dx.doi.org/10.1016/j.bandc.2015.06.008


4 A.N. Sanborn / Brain and Cognition xxx (2015) xxx–xxx
References

Abbott, J. T., & Griffiths, T. L. (2011). Exploring the influence of particle filter
parameters on order effects in causal learning. In Proceedings of the 33rd annual
conference of the cognitive science society.

Anderson, J. R. (1991). The adaptive nature of human categorization. Psychological
Review, 98(3), 409–429.

Beck, J., Pouget, A., & Heller, K. A. (2012). Complex inference in neural circuits with
probabilistic population codes and topic models. In F. Pereira, C. Burges, L.
Bottou, & K. Weinberger (Eds.). Advances in neural information processing
systems (Vol. 25, pp. 3059–3067). Curran Associates, Inc.

Bishop, C. M. (2006). Pattern recognition and machine learning. New York, NY:
Springer.

Brown, S. D., & Steyvers, M. (2009). Detecting and predicting changes. Cognitive
Psychology, 58, 49–67.

Buesing, L., Bill, J., Nessler, B., & Maass, W. (2011). Neural dynamics as sampling: A
model for stochastic computation in recurrent networks of spiking neurons.
PLoS Computational Biology, 7(11), e1002211.

Daw, N. D., & Courville, A. C. (2008). The pigeon as particle filter. In J. Platt, D. Koller,
Y. Singer, & S. Roweis (Eds.). Advances in neural information processing systems
(Vol. 20, pp. 369–376). Cambridge, MA: MIT Press.

Daw, N. D., Courville, A. C., & Dayan, P. (2008). Semi-rational models of
conditioning: The case of trial order. In N. Chater & M. Oaksford (Eds.), The
probabilistic mind (pp. 431–452). Oxford, UK: Oxford University Press.

Doucet, A., de Freitas, N., & Gordon, N. (2001). Sequential Monte Carlo methods in
practice. New York: Springer.

Fiser, J., Berkes, P., Orbán, G., & Lengyel, M. (2010). Statistically optimal perception
and learning: From behavior to neural representations. Trends in Cognitive
Sciences, 14, 119–130.

Friston, K. (2008). Hierarchical models in the brain. PLoS Computational Biology,
4(11), e1000211.

Gershman, S. J., Vul, E., & Tenenbaum, J. B. (2012). Multistability and perceptual
inference. Neural Computation, 24, 1–24.

Griffiths, T. L., Steyvers, M., & Tenenbaum, J. B. (2007). Topics in semantic
representation. Psychological Review, 114(2), 211.

Hennequin, G., Aitchison, L., & Lengyel, M. (2014). Fast sampling-based inference in
balanced neuronal networks. In Z. Ghahramani, M. Welling, C. Cortes, N.
Lawrence, & K. Weinberger (Eds.). Advances in neural information processing
systems (Vol. 27, pp. 2240–2248). Curran Associates, Inc.

Hinton, G. E., & Van Camp, D. (1993). Keeping the neural networks simple by
minimizing the description length of the weights. In Proceedings of the sixth
annual conference on computational learning theory (pp. 5–13).

Huang, Y., & Rao, R. P. (2014). Neurons as Monte Carlo samplers: Bayesian inference
and learning in spiking networks. In Z. Ghahramani, M. Welling, C. Cortes, N.
Lawrence, & K. Weinberger (Eds.). Advances in neural information processing
systems (Vol. 27, pp. 1943–1951). Curran Associates, Inc.

Kemp, C., & Tenenbaum, J. B. (2008). The discovery of structural form. Proceedings of
the National Academy of Sciences, 105(31), 10687–10692.

Körding, K., & Wolpert, D. M. (2004). Bayesian integration in sensorimotor learning.
Nature, 427, 244–247.

Kruschke, J. K. (1996). Base rates in category learning. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 22, 3–26.
Please cite this article in press as: Sanborn, A. N. Types of approximation for pr
http://dx.doi.org/10.1016/j.bandc.2015.06.008
Kruschke, J. K. (2006a). Locally Bayesian learning. In R. Sun (Ed.), Proceedings of the
28th annual meeting of the cognitive science society (pp. 453–458). Erlbaum.

Kruschke, J. K. (2006b). Locally Bayesian learning with applications to retrospective
revaluation and highlighting. Psychological Review, 113, 677–699.

Lee, T. S., & Mumford, D. (2003). Hierarchical Bayesian inference in the visual cortex.
Journal of the Optical Society of America A, 20(7), 1434–1448.

Legenstein, R., & Maass, W. (2014). Ensembles of spiking neurons with noise
support optimal probabilistic inference in a dynamically changing environment.
PLoS Computational Biology, 10(10), e1003859.

Levy, R., Reali, F., & Griffiths, T. L. (2009). Modeling the effects of memory on human
online sentence processing with particle filters. In D. Koller, D. Schuurmans, Y.
Bengio & L. Bottou (Eds.), Advances in neural information processing systems (Vol.
21, pp. 937–944).

Lieder, F., Griffiths, T., & Goodman, N. (2012). Burn-in, bias, and the rationality of
anchoring. In Advances in neural information processing systems (pp. 2690–2798).

Medin, D. L., & Edelson, S. M. (1988). Problem structure and the use of base-rate
information from experience. Journal of Experimental Psychology: General, 117,
68–85.

Minka, T. (2001). A family of algorithms for approximate Bayesian inference.
Unpublished doctoral dissertation. MIT, Boston.

Moreno-Bote, R., Knill, D. C., & Pouget, A. (2011). Bayesian sampling in visual
perception. Proceedings of the National Academy of Sciences, 108(30),
12491–12496.

Neal, R. M. (1993). Probabilistic inference using Markov chain Monte Carlo methods.
Tech. rep. no. CRG-TR-93-1. Department of Computer Science, University of
Toronto.

Probst, D., Petrovici, M. A., Bytschok, I., Bill, J., Pecevski, D., Schemmel, J., et al.
(2015). Probabilistic inference in discrete spaces can be implemented into
networks of LIF neurons. Frontiers in Computational Neuroscience, 9.

Sanborn, A. N., Griffiths, T. L., & Navarro, D. J. (2010). Rational approximations to the
rational model of categorization. Psychological Review, 117, 1144–1167.

Sanborn, A. N., & Silva, R. (2013). Constraining bridges between levels of analysis: A
computational justification for locally Bayesian learning. Journal of
Mathematical Psychology.

Shanks, D. R. (1985). Forward and backward blocking in human contingency
judgment. Quarterly Journal of Experimental Psychology, 97B, 1–21.

Shi, L., & Griffiths, T. L. (2009). Neural implementation of hierarchical Bayesian
inference by importance sampling. In Advances in neural information processing
systems (pp. 1669–1677).

Shi, L., Griffiths, T. L., Feldman, N. H., & Sanborn, A. N. (2010). Exemplar models as a
mechanism for performing Bayesian inference. Psychological Bulletin and Review,
17, 443–464.

Simon, H. A. (1955). A behavioral model of rational choice. The Quarterly Journal of
Economics, 69(1), 99–118.

Tassinari, H., Hudson, T. E., & Landy, M. S. (2006). Combining priors and noisy visual
cues in a rapid pointing task. The Journal of Neuroscience, 26(40), 10154–10163.

Tversky, A., & Kahneman, D. (1978). Causal schemata in judgments under
uncertainty. In Progress in social psychology. Lawrence Erlbaum.

Van Rooij, I. (2008). The tractable cognition thesis. Cognitive Science, 32(6), 939–984.
Wainwright, M. J., & Jordan, M. I. (2008). Graphical models, exponential families,

and variational inference. Foundations and Trends� in Machine Learning, 1(1–2),
1–305.
obabilistic cognition: Sampling and variational. Brain and Cognition (2015),

http://refhub.elsevier.com/S0278-2626(15)30003-8/h0010
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0010
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0015
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0015
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0015
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0015
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0020
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0020
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0025
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0025
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0030
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0030
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0030
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0035
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0035
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0035
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0040
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0040
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0040
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0045
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0045
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0050
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0050
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0050
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0055
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0055
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0060
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0060
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0065
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0065
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0070
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0070
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0070
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0070
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0080
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0080
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0080
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0080
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0085
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0085
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0090
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0090
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0095
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0095
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0100
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0100
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0105
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0105
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0110
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0110
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0115
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0115
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0115
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0130
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0130
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0130
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0140
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0140
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0140
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0150
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0150
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0150
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0155
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0155
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0160
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0160
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0160
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0165
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0165
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0175
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0175
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0175
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0180
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0180
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0185
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0185
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0190
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0190
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0195
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0200
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0200
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0200
http://refhub.elsevier.com/S0278-2626(15)30003-8/h0200
http://dx.doi.org/10.1016/j.bandc.2015.06.008

	Types of approximation for probabilistic cognition: Sampling and variational
	1 Introduction
	2 Sampling approximations
	2.1 Explaining behavioral biases
	2.2 Implementation in the brain

	3 Variational approximations
	3.1 Explaining behavioral biases
	3.2 Implementation in the brain

	4 Discussion
	Acknowledgements
	References


