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We show that the extrinsic spin Hall effect can be engineered in monolayer graphene by decoration with
small doses of adatoms, molecules, or nanoparticles originating local spin-orbit perturbations. The analysis
of the single impurity scattering problem shows that intrinsic and Rashba spin-orbit local couplings
enhance the spin Hall effect via skew scattering of charge carriers in the resonant regime. The solution of
the transport equations for a random ensemble of spin-orbit impurities reveals that giant spin Hall currents
are within the reach of the current state of the art in device fabrication. The spin Hall effect is robust with
respect to thermal fluctuations and disorder averaging.

DOI: 10.1103/PhysRevLett.112.066601 PACS numbers: 72.80.Vp, 72.25.-b, 73.20.Hb, 75.30.Hx

The spin Hall effect (SHE) [1–4], that is, the appearance
of a transverse spin current in a nonmagnetic conductor by
pure electrical control, has been predicted to occur in
materials with large spin-orbit coupling (SOC). Over the
last decade, its study has lead to an intense experimental
activity [5–9], due to its potential application in spintronics.
Recently, the SHE has been explored for replacing ferro-
magnetic metals with spin injectors in applications
[10,11], opening the door to the development of spintronic
devices without magnetic components.
The activation and control of spin-polarized currents is

both of fundamental and technological interest. The SHE
could be used for an efficient conversion of charge current
into spin-polarizedcurrents.The ratioof the spinHall current
to the steady-state charge current, commonly known as the
spinHall angleθsH,measures this efficiency and it is themost
important figureofmerit forpractical applications.Generally
speaking, the SHE in metals and semiconductors originates
from (i) extrinsic mechanisms, which are due to spin-
dependent scattering of charge carriers by impurities in the
presence of SOC [1–3], and (ii) intrinsic mechanisms,
entirely due to SOC in the electronic band structure, which
occur in the absence of any scattering process. In semi-
conductors, the spin Hall angles are in the range of 0.0001–
0.001 [5,7]. On the other hand, θsH for metals can be
considerably larger, being of the order of 0.01 for Pt [12]
and 0.1 in a recent measurement performed in Ta [11].
Since its successful isolation, graphene [13] has also

become the subject of intensive study in spintronics
[14–18]. In this material, electrons can propagate ballis-
tically and the carrier density and polarity can be controlled
by an external gate. Spin-orbit and hyperfine interactions
are extremely weak in graphene and therefore the spin
coherence length is expected to be long [19,20]. These

characteristics make graphene appealing for passive spin-
tronic applications, e.g., as a high-fidelity channel for spin-
encoded information [21]. A striking possibility is to
modify graphene for active spintronics. This may be
achieved via spin-orbit splitting of the band dispersion,
e.g., by bringing heavy metallic atoms in close contact to
graphene [22], or by locally inducing sizeable SOC
(∼10 meV) [23,24]. In Ref. [23], distortions induced by
covalently bonded impurities were predicted to produce the
desired effect, and Ref. [24] suggests local SOC enhance-
ment via tunneling of electrons in and out of a heavy atom.
Phenomenologically, random spin-orbit fields have also
been predicted to generate a nonzero θsH [25]. Moreover, it
has been proposed that, in the presence of SOC, graphene
could exhibit the quantum spin Hall effect [26].
In this Letter, we consider a monolayer of graphene

decorated by a small density of impurities generating a
spin-orbit interaction in their surroundings. We show that a
robust SHE develops through asymmetric (skew) scattering
events. Crucially, and unlike two-dimensional electron
gases (2DEGs), for which resonant enhancement of skew
scattering [27] requires resorting to fine tuning and some-
times to phenomena such as the Kondo effect [28,29], our
proposal takes advantage of graphene being an atomically
thin membrane, whose local density of states easily
resonates with several types of adatoms, molecules, or
nanoparticles. Resonant scatterers have been predicted to
play an important role in charge transport at high electronic
densities [30,31]. Here, we argue that a similar physics is
behind a huge potential of graphene for the extrinsic SHE.
The decoration with small doses of certain particles only
partially suppresses the charge carrier mobilities of gra-
phene devices, which combined with large spin diffusion
lengths and Fermi energy tunability, makes this material a
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promising candidate for spintronic integrated circuits with
SHE-based spin-polarized current activation and control.
According to our calculations, the extrinsic spin Hall

effect in graphene, as that recently reported in hydro-
genated graphene samples [32], can originate from skew
scattering alone. The latter is absent in the first Born
approximation [33] and, therefore, we compute transport
relaxation rates nonperturbatively via exact partial-wave
expansions. Our results indicate that functionalized gra-
phene can deliver spin Hall angles comparable to those
found in pure metals (θsH ∼ 0.01–0.1 [5,7,12]).
In order to investigate the extrinsic SHE and its depend-

ence on Fermi energy and temperature, we consider a
continuum model of graphene decorated with a small
concentration of impurities that locally generate SOC over
nanometer-size regions. The latter could be metallic nano-
particles inducing SOC via the proximity effect, but other
physical realizations are also possible. (In fact, adatoms in
graphene often cluster due to ripples [34] or due to a low
adsorption energy [35].)
Our starting point is the continuum-limit Hamiltonian of

graphene H0 ¼ ℏvFðτzσxpx þ σypyÞ, where p ¼ ðpx; pyÞ
is the 2D kinematic momentum operator around one of
the two inequivalent Dirac points K and K0, vF ≈ 106 m=s
is the Fermi velocity, and σ and τ denote Pauli matrices,
with σz ¼ %1 [τz ¼ %1] describing states on the AðBÞ
sublattice [at KðK0Þ]. The spin-orbit splitting in the band
structure of pristine graphene is of the order of 10 μeV and
therefore can be safely neglected [20]. The large scatterers
considered here induce sizeable local SOC of the intrinsic-
type V

ðIÞ
SO ¼ ΔIðrÞτzσzsz and/or Rashba-type V

ðRÞ
SO ¼

ΔRðrÞðτzσxsy − σysxÞ; here, s are Pauli matrices for spin
and r ¼ ðx; yÞ is the charge carrier position. The depend-
ence of VðIÞ

SO in the spin and orbital operators is the same as
the SOC in flat, pristine graphene. On the other hand, VðRÞ

SO
originates in perturbations breaking mirror symmetry about
the graphene’s plane (e.g., single-site adsorption). The
impurity potentials are assumed to be smooth on the lattice
scale and thus sublattice symmetry breaking terms (crucial
in the single adatom limit [36]) are not considered here. For
such large scatterers intervalley scattering is negligible and,
in the long wavelength limit, assuming that potentials have
radial symmetry, the scatterer is described by

VadðrÞ ¼ VSOðrÞ þ V0ðrÞ; (1)

where r ¼ jrj, and the (spin-independent) electrostatic
potential V0ðrÞ accounts for extra scalar scattering.
Thus, for r ≫ R, where R is the range of the potential
Vad, the wave function around the K point reads

jψλ;kðrÞi ¼
!

1

λ

"

eikr cos θjsiþ fssλ ðθÞ
ffiffiffiffiffiffiffiffi

−ir
p

!

1

λeiθ

"

eikrjsi

þ
fss̄λ ðθÞ
ffiffiffiffiffiffiffiffi

−ir
p

!

1

λeiθ

"

eikrjs̄i; (2)

where λ ¼ %1 indicates the carrier polarity with energy
ϵ ¼ λℏvFk, the ket js ¼ %i describes the orientation of the
spin along the z axis, perpendicular to the graphene plane
(s̄≡−s); fssλ ðθÞ and fss̄λ ðθÞ are the elastic and inelastic
(“spin-flip”) scattering amplitudes at scattered angle θ,
respectively. The latter is related to the T matrix satisfying
the Lippmann-Schwinger equation T ðϵÞ ¼ Vadþ
VadG0ðϵÞT ðϵÞ, where G0ðϵÞ is the Green’s function
G0ðϵÞ ¼ ðϵ −H0 þ λi0þÞ−1. Thus, fss

0
λ ðθÞ≡ fss

0
λ;KKðθÞ

and fss
0

λ;ττ0ðθÞ ∝ hλksτj × T ðϵÞjλps0τ0i with τ, τ0 ¼ K, K0,
k ¼ jkj ¼ jpj, and θ ¼ ∠ðk;pÞ.
Let us denote as F λðk;pÞ the 4 × 4 matrix whose

elements are fss
0

λ;ττ0ðθÞ in the spin and valley subspace.
The symmetries of the Hamiltonian HðrÞ ¼ H0 þ VadðrÞ
constrain the general form of the 4 × 4 matrix F λðk;pÞ,
which, in general, is a linear combination of the 16 matrices
sατβ where α, β ¼ 0, x, y, z (where α ¼ 0 corresponds to
the unit matrix). However, the assumption of no intervalley
scattering implies that F λðk;pÞ commutes with τz, which
means that β ¼ 0, z. Accounting for the additional sym-
metries of HðrÞ, namely time-reversal plus C∞v × fE;C2g
(whereE is the identity, andC2 is a rotation by π about the z
axis that also exchanges the valleys K and K0) leads to

F λðk;pÞ ¼ aλs0τ0 þ ðbλsz þ cλn · sÞðk̂∧p̂Þτ0; (3)

where k̂∧p̂ ¼ sin θ and n ¼ k̂ − p̂. The coefficients aλ,
bλ, cλ are complex-valued functions of k and k̂ · p̂ ¼ cos θ.
The matrix F λðk;pÞ ∝ τ0 and therefore valley indices will
be suppressed henceforth. Note that, e.g., for scatterers with
intrinsic SOC, the component of the spin perpendicular to
the graphene plane (sz) is conserved, which leads to cλ ¼ 0.
In general, when the spin-quantization axis is chosen along
the z axis, the terms proportional to cλ describe the spin-flip
scattering, whereas the term proportional to bλ is respon-
sible for the skew scattering. Equation (3) can be used to
show that the spin-flip components ∝ cλ do not contribute
to the skew scattering cross section because jfss̄λ ðθÞj2 is an
even function of θ. This result also applies to the ensemble
of scatterers studied below, for which charge carrier
transport is described by the Boltzmann equation
whose collision integral is determined by the elements of
F λðk;pÞ.
Next, we briefly explain how the spin Hall effect is

enhanced by a single scatterer through the skew scattering
mechanism, and the important role played by resonant
scattering in graphene, as well as the main differences with
a 2DEG. To this end, let us consider a scattering center
inducing (locally) an intrinsic SOC, i.e., ΔIðrÞ ≠ 0. As
noted above, this type of SOC conserves sz and therefore
cλ ¼ fss̄λ ðθÞ ¼ 0. The details of the calculation of fssλ ðθÞ
and the spin Hall angle are provided in the Supplemental
Material [37]. Here it is sufficient to realize that, owning to
the structure of the extrinsic spin-orbit coupling term
ΔIτzσzsz [ð∇V0ðrÞ × pÞ · s in a 2DEG], SOC induces
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left-right assymmetry jfssλ ðθÞj ≠ jfssλ ð−θÞj. SOC still pre-
serves time-reversal symmetry, which then favors up and
down spins to scatter symmetrically around the incident
direction, i.e., jfssλ ðθÞj ¼ jfs̄ s̄λ ð−θÞj, thus explaining the
formation of a net spin Hall current as depicted schemati-
cally in Fig. 1. Indeed, at the level of a single scattering
event, the skew cross section

Σ
s
⊥
¼

Z
2π

0

dθ sin θjfssλ ðθÞj2 (4)

is nonzero and has opposite signs for spins up and down.
Finite (nonzero) Σ

s
⊥

is the hallmark of skew scattering.
Clearly, the latter effect is absent in the first Born approxi-
mation, according to which the scattering amplitudes at
angles %θ coincide and hence Eq. (4) is identically zero.
Moreover, we found that, contrary to the case of a 2DEG,
a nonperturbative treatment of the SOC potential VSO is in
general required and that, in certain cases, the distorted
wave Born approximation, which can be successfully used
to treat SOC in the 2DEG [27,33], fails to describe Σ

s
⊥

correctly. A few examples illustrating the perturbative
treatments and a discussion of their limitations in graphene
are provided in the Supplemental Material [37].
As a measure of asymmetry in scattering events we adopt

the so-called transport skewness; for intrinsic SOC scat-
terers, the latter is defined as γ ≡ Σ

s
⊥
=Σs

∥, where Σ
s
∥ ¼R

dθð1 − cos θÞjfssλ ðθÞj2 is the transport cross section for a
carrier with spin s [for Rashba SOC see the discussion
below Eq. (7)]. Exact evaluations show (i) jγj > 0 for local
SOCs of the intrinsic type, (ii) local Rashba SOCs induce
jγj > 0 provided that electron-hole symmetry is broken by
an electrostatic term, i.e., V0 ≠ 0, and (iii) jγj is maximum
near resonances in Σ

s
∥. To illustrate these findings, we

model the SOC active impurity as a uniform disk scatterer
of radius R (see Fig. 1), according to VadðrÞ ¼
½V0 þ V

ðI=RÞ
SO 'ΘðR − rÞ, with Θð:Þ denoting the Heaviside

step function and V
ðI=RÞ
SO being intrinsic or Rashba-type

SOC with ΔI=RðrÞ≡ Δ. The different symmetries of these

terms justifies studying them separately. Furthermore, it
can be shown that interference between intrinsic and
Rashba SOC does not suppress the resonant behavior of
skewness (see the Supplemental Material [37]). In our
calculations we have taken Δ ∼ 10 meV, which is consis-
tent with ab initio calculations for metal atoms adsorbed in
graphene [24,38]. The skewness of SOC active disk
scatterers in the vicinity of a particular resonance is shown
in Fig. 2. The function γðV0Þ follows an approximately
asymmetric shape for both intrinsic and Rashba SOC. We
further note that for Rashba-only SOC the skewness
approaches zero as V0 → 0 (not shown). We also found
that γ is larger near sharp resonances, typically occurring at
large V0. It is known that small doses of certain adatoms
with large effective V0 values produce resonances near the
Fermi level of graphene [31] that might dominate charge
transport (see Ref. [39] for transport measurements in
graphene covered with hydrogen). For dilute SOC disorder,
the parameter γ can therefore be seen as a figure of merit for
the capability of generating net transverse spin currents via
skew scattering. In fact, as shown in what follows, in the
absence of other sources of impurities and at zero temper-
ature, the spin Hall angle equals γ. Crucially, the results in
Fig. 2 show that a large V0 is not a necessary condition to
obtain large skewness: although resonant impurities such as
H induce giant effective potentials V0 ∼ 100 eV (see
Ref. [31] and the references therein) and significant
SOC via lattice distortion [23,32,36], clusters leading to
VSO of tens of milli-electron-volts most likely produce V0

values below those found for chemisorbed adatoms. Large

FIG. 1 (color online). Schematic picture of extrinsic spin Hall
effect generated by transport skewness. An impurity (sphere) near
the graphene sheet causes a local spin-orbit field with range R.
The scattering of components with positive (negative) angular
momentum is enhanced (suppressed) for charge carriers with
sz ¼ 1 (sz ¼ −1), resulting in a net spin Hall current.

FIG. 2 (color online). Skew scattering induced by SOC impu-
rities close to a resonance in the cross section. (a) Skeweness
γ ¼ Σ

s
⊥
=Σs

∥ as a function of V0 for an intrinsic (Rashba)-type
SOC scatterer [solid black line (dashed blue line)]. Even larger
values of γ are found near sharper resonances occurring at larger
V0 (not shown). (b) Transport cross section versus V0. These
panels have R ¼ 4 nm, ℏvFk ¼ 0.1 eV, and Δ ¼ 25 meV.
(c) Dispersion relation inside the SOC disk scatterer. Dashed
orange lines are guidelines to the eye representing the bulk band
structure of monolayer graphene.
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SOC active scatterers could be formed by the clustering of
physisorbed transition metals inducing significant local
enhancement of SOC, such as Au or In [22,24].
After analyzing the SHE due to a single scatterer, we

next turn to the experimentally relevant situation of a dilute
random ensemble of scatterers. We focus on the spin
Hall current polarized out of the plane; see the
Supplemental Material [37] for a discussion of in-plane
polarization. Our goal is to compute the spin Hall angle
defined as θsH ¼ jsH=jx, with jx ¼

P
s¼%js · ex and jsH ¼P

s¼%sjs · ey being the expectation values of the (charge)
longitudinal and (spin) Hall currents, respectively. We
safely neglect the quantum side-jump contribution to
jsH, which is subdominant with respect to skew scattering
in the dilute regime of interest here [40]. Semiclassically,
the current is computed according to js ¼
−egv

P
kδnsðkÞvk, where vk ¼ ð1=ℏÞ∇kϵk is the band

velocity and δnsðkÞ ¼ nsðkÞ − n0ðkÞ denotes the
deviation of the spin-dependent distribution function from
its equilibrium value n0ðkÞ (gv ¼ 2 is graphene’s valley
degeneracy factor). To describe this situation, we need to
solve the Boltzmann transport equation (BTE), which for
the steady state in the presence of a uniform electric field
E ¼ Eex reads as [41]

∇knsðkÞ · ð−eEÞ ¼
X
p;s0

½ns0ðpÞ − nsðkÞ'Ws0sðp;kÞ; (5)

where Wss0ðk;k
0Þ ∝ jfss0ðθÞj2δðϵk − ϵk0Þ with θ ¼

∠ðk;k0Þ is the quantum-mechanical rate for processes
with k → k0 and s → s0. Notice that skew scattering
implies that Wss0ðk;k

0Þ ≠ Wss0ðk
0;kÞ; cf. Eq. (3). Here,

Wss0ðk;k
0Þ≡

P
R
α¼1 W

ðαÞ
ss0 ðk;k

0Þ takes into account all
disorder sources, where R ≥ 1 is the number of such
sources. In linear response, the above BTE admits the
following general solution

δnsðkÞ ¼ ∇kn
0ðkÞ · ½AsðkÞeE þ BsðkÞðẑ × eEÞ'; (6)

where n0ðkÞ is the Fermi-Dirac distribution. With these
definitions, and at zero temperature, one finds
θsH ¼ B↑ðkFÞ=A↑ðkFÞ, where kF is the Fermi momentum.
The latter expression can be evaluated in closed form:

θsHjT¼0 ¼
τ(∥ðkFÞ

τ(
⊥
ðkFÞ

¼ γ̄; (7)

where τ(−1∥ ¼
P

s0;pð1 − ss0 cos θÞWss0ðk;pÞ and τ(−1
⊥

¼P
s0;pss

0 sin θWss0ðk;pÞ. The spin Hall angle θsH equals

the weighted skewness as defined by γ̄ ¼ Σ̄
(
⊥
=Σ̄(

∥, where

Σ̄
(
∥ð⊥Þ ≡

P
αðnα=nÞΣ

(
∥ð⊥Þα ¼ ðnvFτ

(
∥ð⊥ÞÞ

−1 and n ¼
P

αnα

is the total areal density of impurities. The explicit solutions
for AsðBsÞ further contain the familiar scattering times τ∥
and τ⊥ that do not enter in the ratio Bs=As. The spin-flip

contribution to “star” rates differ from standard definitions,
e.g., τ(−1∥;flip ∼

R
dθð1þ cos θÞWss̄ðθÞ ≠ τ−1∥;flip. (For this

reason, in the calculation of the skewness of a Rashba
scatterer in Fig. 2 we have used Σ∥ → Σ

(
∥ ¼P

s0
R
dθð1 − ss0 cos θÞjfss0ðθÞj2.) This fact has been

largely unnoticed, which we believe is a consequence of
inadequate treatments of the BTE; relaxation rates found
here, on the other hand, result from the exact solution of
linearized BTEs (see the Supplemental Material [37] for
further details).
A sizeable SHE is expected in relatively clean samples

when cross sections for SOC active scatterers yield the
dominant contribution to both transport and skew cross
sections; Fig. 3 shows θsH [Eq. (7)] as a function of Fermi
energy for pristine graphene decorated with a dilute
concentration of intrinsic-type SOC scatterers (θsH induced
by Rashba-type SOC is of the same order of magnitude and
hence is not shown). The values obtained are comparable
with those found in pure metals jθsHj ∼ 0.01–0.1 [11,12]
and are robust with respect to thermal fluctuations and
disorder averaging [compare curves in Figs. 3(a) and 3(c)];
room temperature spin Hall angles of the order of 0.1 are
obtained for large scatterers with effective radius of just a
few nanometers [see Fig. 3(b)]. Statistical distribution of
scatterer sizes does not modify qualitatively this picture,
indicating that large SOC active scatterers in clean gra-
phene samples will drive the formation of robust spin Hall
currents. Finally, we verified that time-reversal symmetry
breaking by localized magnetic moments [42] sitting at the
impurities does not suppress the SHE (see the
Supplemental Material [37]). Our findings suggest that
functionalized graphene can be used to design spintronic
integrated circuits with SHE-based spin-polarized current
activation and control.
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FIG. 3 (color online). Spin Hall angle as a function of Fermi
energy for a dilute random distribution of intrinsic SOC scat-
terers. (a) θsH at zero temperature for impurities producing a local
electrostatic potential V0. (b),(c) θsH at different temperatures and
considering a random V0 potential with uniform distribution
V0 ∈ ½0;ΔV'. In all panels we have taken ΔI ¼ 25 meV.
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