## THE UNIVERSITY OF WARWICK

## Original citation:

Nguyen, T. T., Chan, T. M. and Mottram, J. Toby (James Toby), 1958-. (2015) Lateraltorsional buckling design for pultruded FRP beams. Composite Structures . doi:10.1016/j.compstruct.2015.07.079

## Permanent WRAP url:

http://wrap.warwick.ac.uk/71002

## Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.

Copies of full items can be used for personal research or study, educational, or not-forprofit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

## Publisher's statement:

© 2015, Elsevier. Licensed under the Creative Commons Attribution-NonCommercialNoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

## A note on versions:

The version presented here may differ from the published version or, version of record, if you wish to cite this item you are advised to consult the publisher's version. Please see the 'permanent WRAP url' above for details on accessing the published version and note that access may require a subscription.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

http://wrap.warwick.ac.uk

# Lateral-torsional buckling design for pultruded FRP beams 

T.T. Nguyen ${ }^{\text {a }}$, T.M. Chan ${ }^{*, b}$, J.T. Mottram ${ }^{\text {c }}$<br>${ }^{a}$ Faculty of Transportation Engineering, Ho Chi Minh University of Transport, Ho Chi Minh, Vietnam<br>${ }^{b}$ Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong<br>${ }^{c}$ School of Engineering, University of Warwick, Coventry, CV4 7AL, United Kingdom


#### Abstract

This paper presents an investigation into the development of a design procedure for Pultruded Fibre Reinforced Polymers (PFRP) beams failing by the elastic buckling mode of Lateral-Torsional Buckling (LTB). The design procedure is based on the European design approach for uniform members in bending of structural steel. In particular, the calibration method adopts the general case 'resistance' formula in Eurocode 3 (EN 1993-1-1:2005), and follows a standard design from testing procedure given in Eurocode 0 (EN 1990:2002) when calibrating the 'design model' to determine the partial factor $\gamma_{\mathrm{M}}$ for a member instability check. The test population for calibration has 114 LTB buckling resistances using four PFRP section sizes of I and channel shapes. The non-dimensional slenderness parameter is defined using the local flange buckling strength instead of the yield strength. An imperfection factor of 0.34 and partial factor of 1.3 are shown to be appropriate for calculation of the LTB moment of resistance.


Keywords: Lateral-torsional buckling, plateau length, imperfection factor, partial factor

[^0]
## 1. INTRODUCTION

Pultruded Fibre-Reinforced Polymers (PFRP) shapes consist of thin walls of E-glass fibre reinforcement embedded in a thermoset resin based matrix. They are produced by the continuous composite material process known as 'pultrusion' [1]. Pultrusion is a cost-effective process that can be employed to produce a wide range of uniform crosssection shapes suitable for use in civil engineering strucutres [1]. Fibre reinforcement comprises of alternate layers of unidirectional rovings and a mat, the latter is usually of continuous fibres having a random distribution in the plane. The outer layers in the PFRP shape are always of mat reinforcement [1-3]. E-glass fibres provide strength and stiffness, while the matrix creates the shape and enables load transfer into the fibres. The mechanical properties of the polymeric composite material are orthotropic, with the higher strengths and stifnesses in the direction of pultrusion. Distinct advantages, such as lightweight (about $1 / 4$ th of steel), relative high tensile strength of 200 MPa to 400 MPa , corrosion resistant and electro-magnetic transparent make this emerging structural material attractive for applications benefiting from its engineering properties [1].

Although PFRP structural shapes are found in building and bridge structures, the currently lack of recognised design guidance [2] is inhibiting their wider exploitation. In this paper the authors present a complete calibration for a procedure to predict the resistance (strength) of PFRP members in bending that fail with the elastic mode of Lateral-Torsional Buckling (LTB). The experimental test results for this calibration study are reported and discussed in references [4] and [5].

## 2. LTB DESIGN FOR STEEL MEMBERS

LTB is a key instability mode of ultimate failure for flexure actions about the major-axis of open sections, which for beams could be of I, H or C shapes. It is characterised by a
coupled elastic (small displacement) deformation of lateral deflection and twist about the beam's longitudinal axis; there is no cross-sectional distortion. When designing a frame structure of PFRP shapes, a laterally unrestrained beam subject to major axis bending has to be verified for resistance against the Ultimate Limit State (ULS) failure mode of LTB [6]. This section will present the current design methodology adopted in American and Eurocode design standards for steel beams, and pave the way for the subsequent discussion towards a design procedure for equivalent PFRP members in bending using the Eurocode approach.

### 2.1 American Approach

Design standard AISC 360, giving the Specification for Structural Steel Buildings [7], follows the North American limit state approach of Load and Resistance Factor Design (LRFD). This steel standard, in Chapter F for Design of Members for Flexure states that:

$$
\begin{equation*}
M_{\mathrm{u}} \leq \phi_{\mathrm{o}} M_{\mathrm{n}} \tag{1}
\end{equation*}
$$

where $M_{\mathrm{u}}$ is the required flexural strength (or 'design moment') calculated using the LRFD load combinations; $M_{\mathrm{n}}$ is the nominal flexural strength and $\phi_{0}=0.9$ is the resistance factor for flexure (bending). Note that the resistance factor serves the same purpose as $1 / \gamma_{\mathrm{M} 1}$ in Eurocode 3 Part 1-1 [5] where $\gamma_{\mathrm{M} 1}$ is the partial factor for resistance of members to instability assessed by member checks; their values can be different because the calibration methods are not identical.

LTB strength depends on the member's lateral unsupported length, $L_{b}$, which is the abscissa axis in Fig. 1, for a plot of how $M_{\mathrm{n}}$ varies with this length. If $L_{\mathrm{b}}$ is less than, or equal to the limiting laterally unbraced length for the limit state of steel yielding, $L_{\mathrm{p}}$, no LTB check is required. When $L_{\mathrm{b}}$ lies between $L_{\mathrm{p}}$ and the limiting laterally unbraced
length, $L_{\mathrm{r}}$, for inelastic LTB, the design process must take into account the inelastic response of steel. When $\mathrm{L}_{\mathrm{b}}>L_{\mathrm{r}}, M_{\mathrm{n}}$ is equal to $M_{\mathrm{cr}}$, where $M_{\mathrm{cr}}$ is the elastic critical buckling moment for LTB failure.

There is an American pre-standard for the LRFD of PFRP structures [8] that has adopted a similar approach to what is established in AISC 360. One necessary revision is that the pre-standard has incorporated an additional time-effect factor $\lambda$ in evaluating the flexural resistance from:

$$
\begin{equation*}
M_{\mathrm{u}} \leq \lambda \phi M_{\mathrm{n}} \tag{2}
\end{equation*}
$$

$\lambda(\leq 1.0)$ takes into account the long-term response of FRP, such as from creep and the reduction in mechanical properties from exposure to aggressive environments [8]. The resistance factor $\phi$ for LTB failure is taken in the pres-standard to be 0.7 , to reflect the greater uncertainty in quantifying the 'true' behaviour and the higher target reliability factor $(\beta)$ than that deemed acceptable for steel [8].

### 2.2 Eurocode Approach

The primary design approach in Eurocode 3 Part 1-1(EN 1993-1-1:2005) [9] adopts the form of LTB curve shown in Fig. 2 when establishing resistance of laterally unrestrained uniform steel members subject to flexure about the major $y$ - $y$ axis. For the beam to pass the LTB design check of Clauses 6.3.2, its design buckling resistance moment, $M_{\mathrm{b}, \mathrm{Rd}}$, must be higher than the design bending moment about the $y-y$ axis, $M_{\mathrm{y}, \mathrm{Ed}} . M_{\mathrm{b}, \mathrm{Rd}}$ can be evaluated as follows:

$$
\begin{equation*}
M_{\mathrm{b}, \mathrm{Rd}}=\chi_{\mathrm{LT}} W_{\mathrm{y}} f_{\mathrm{y}} / \gamma_{\mathrm{M} 1} \tag{3}
\end{equation*}
$$

where $\chi_{\mathrm{LT}}$ is the reduction factor for $\mathrm{LTB}(\leq 1.0)$; $W_{\mathrm{y}}$ is the appropriate section modulus about the major axis, $f_{\mathrm{y}}$ is the yield strength and $\gamma_{\mathrm{M} 1}$ is the partial factor for resistance of members to instability and is taken as 1.0 .
$\chi_{\mathrm{Lt}}$ is derived from the solution to the Ayrton-Perry Formula (APF) [10]. For the general case, the LTB curve is defined by:

$$
\begin{equation*}
\chi_{\mathrm{LT}}=\frac{1}{\Phi_{\mathrm{LT}}+\sqrt{\Phi_{\mathrm{LT}}^{2}-\bar{\lambda}_{\mathrm{LT}}^{2}}} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\Phi_{\mathrm{LT}}=0.5\left[1+\alpha_{\mathrm{LT}}\left(\bar{\lambda}_{\mathrm{LT}}-\bar{\lambda}_{\mathrm{LT}, 0}\right)+\bar{\lambda}_{\mathrm{LT}}^{2}\right], \tag{5}
\end{equation*}
$$

To complete the curve shown in Fig.2, $\bar{\lambda}_{\mathrm{LT}, 0}$ is for the plateau length when $\chi_{\mathrm{LT}}$ is always equal to 1.0 .
$\Phi_{\text {LT }}$ can be expressed in a form of a generalized imperfection factor $\eta_{\text {LT }}$ as [10]:

$$
\begin{equation*}
\Phi_{\mathrm{LT}}=0.5\left(1+\eta_{\mathrm{LT}}+\bar{\lambda}_{\mathrm{LT}}^{2}\right) \tag{6}
\end{equation*}
$$

where the non-dimensional slenderness $\bar{\lambda}_{\mathrm{LT}}$ is given by:

$$
\begin{equation*}
\bar{\lambda}_{\mathrm{LT}}=\sqrt{\frac{W_{\mathrm{y}} f_{\mathrm{y}}}{M_{\mathrm{cr}}}} \tag{7}
\end{equation*}
$$

The imperfection factor $\alpha_{\mathrm{LT}}$ for (steel) buckling curves can be taken as $0.21,0.34,0.49$ or 0.76 for different cross-section shapes and geometric dimensions.

There is currently no Eurocode standard for the design of pultruded FRP structures. A report in 2007 by Gutiérrez et al. [11] introduces a plan for its preparation. To provide supportive information to its 'code' writers this paper proposes a generic LTB curve for uniform PFRP members in bending that is calibrated against the Eurocode framework. The key calibrations are carried out to establish the three design parameters of: (1) plateau length, $\bar{\lambda}_{\mathrm{LT}, 0}$; (2) imperfection factor, $\alpha_{\mathrm{LT}}$ and (3) partial factor, $\gamma_{\mathrm{M} 1}$ (which in this paper will be $\gamma_{\mathrm{M}}$ ).

## 3. EVALUATION OF $M_{\text {cr }}$ AND MATERIAL CHARACTERIZATION FOR PULTRUDED FRP BEAMS

### 3.1 Evaluation of $M_{\text {cr }}$

Theoretical investigations on LTB have been a subject of research for more than eight decades [12-16]. These contributions have resulted in a general closed-form expression for elastic critical buckling moment $M_{\mathrm{cr}}$ of an isotropic beam that has a symmetrical cross-section about the $y$ - $y$ axis. This expression allows for different bending moment distributions, changing end support and warping restraints, as well as different heights at which the loading is applied. It can be written as [14, 16-17]:

$$
\begin{equation*}
M_{\mathrm{cr}}=C_{1} \frac{\pi^{2} E I_{z}}{L_{\mathrm{cr}}^{2}}\left\{\left[\left(\frac{k}{k_{w}}\right)^{2} \frac{I_{\mathrm{w}}}{I_{z}}+\frac{L_{\mathrm{cr}}^{2} G I_{\mathrm{T}}}{\pi^{2} E I_{z}}+\left(C_{2} z_{g}\right)^{2}\right]^{0.5}-C_{2} z_{g}\right\} \tag{8}
\end{equation*}
$$

In Eq. (8) $L$ is the member's span; $C_{1}$ is the equivalent uniform moment factor that accounts for the shape of the bending moment distribution; $C_{2}$ is the factor to account for the vertical load height with respect to the Shear Center (SC); $z_{\mathrm{g}}$ is the height of the load from the $\mathrm{SC}\left(z_{\mathrm{g}}=0\right.$ when the load is applied at the shear center), and is positive when the load is located above and is negative when placed below; $I_{\mathrm{Z}}, I_{\mathrm{w}}$ and $I_{\mathrm{T}}$ are the second moment of area for flexure about the beam's minor axis, warping constant and torsional constant; $k$ and $k_{\mathrm{w}}$ are the effective length factors for lateral flexure and warping, respectively.

Eq. (8) is adopted in Eurocode 3 [9] to evaluate $\bar{\lambda}_{\text {LT }}$ through Eq. (7). Both the American AISC 360 [7] and FRP pre-standard [8] assume the same (safe) approximation by taking the effective length factors $k$ and $k_{\mathrm{w}}$ to be 1.0. The difference in the modelling of isotropic and orthotropic materials is related to the stress-strain relationships for elastic constants [18]. By replacing the isotropic moduli of elasticity with the orthotropic
equivalents [19] in Eq. (8) and, when required, taking account of the influence of shear deformation, an expression for $M_{\text {cr }}$ for FRP beams is established [6]. The presence of shear deformability will slightly reduce, say by $<5 \%$, the critical elastic moment of resistance for a narrow-flange PFRP beam (e.g. with flange outstand equal to half section depth). Because shearing is unlikely to reduce $M_{\text {cr }}$ by $10 \%$ it is neglected herein, and, as recommended by others [6, 18, 20-21], Eq. (8) is used for PFRP members in bending after substituting $E$ with the Longitudinal modulus of elasticity, $E_{\mathrm{L}}$, and $G$ with the in-plane shear modulus $G_{\mathrm{LT}}$ for an FRP material.

### 3.2 Material characterization

In the series of LTB tests [4-5] four PFRP shapes were used and their cross-section dimensions are defined in Fig. 3. One is an I-shape and the other three were different sized channels (labelled C1 to C3). The cross-section geometries were measured and mean values used in standard formulae to establish the geometric properties of $I_{\mathrm{Z}}, I_{\mathrm{T}}$ and $I_{\mathrm{w}}$. These are reported in Table 1of reference [5].
$E_{\mathrm{L}}$ for each of the four PFRP shapes was determined using standard tensile coupon testing in accordance with BS EN 527-1 [22] and BS EN 527-4 [23]. Full details on the material characterization work are to be found in reference [4]. The hatched areas in Fig. 3 (with labels) are for the coupon locations. For the single I-shape there were six coupons around its cross-section, while there were four coupons with the three channel shapes. Coupons were taken at three cross-sections along the length of a section. There was a total of 18 coupons for the I shape and 12 for each channel. To determine the tensile $E_{\mathrm{L}}$ two axial strain gauges were attached at mid-length and the load-strain histories were recorded using real time data acquisition [4].

Plotted in Fig. 4 is a typical stress-strain curve. BS EN 527-1 requires $E_{\mathrm{L}}$ to be determined from stresses for direct strain $\left(\varepsilon_{\mathrm{L}}\right)$ readings between $0.05 \%$ and $0.25 \% . E_{\mathrm{L}}$ can be established, via either the chord modulus between a start point (i.e. $\varepsilon_{\mathrm{L}}=0.05 \%$ ) and end point (i.e. $\varepsilon_{\mathrm{L}}=0.25 \%$ ) or the slope of the linear least-squares (best fit) line within this $\varepsilon_{\mathrm{L}}$ interval. The latter option was adopted in [4]. It is recognized that test standard BS EN 527-1 is for unreinforced plastics and was not written for tensile testing with PFRP materials. The low range of strain (up to $0.25 \%$ ) might have been specified because a nonlinear response occurs at higher $\varepsilon_{\text {LS }}$ in an unreinforced plastic. A considerably higher maximum strain could have been chosen with a PFRP material that is subjected to tension in the pultrusion direction. Different ranges of strain were examined by Nguyen [4], and it has been found that any difference in $E_{\mathrm{L}}$ is statistically insignificant. To determine the mean $E_{\mathrm{L}}$ for Eq. (8) it was decided that the $\varepsilon_{\mathrm{L}}$ range can be taken between 0.1 and $0.5 \%$.

The measurement of $G_{\mathrm{LT}}$ is more challenging [4]. The experimental problem is to have a test method with sufficient material volume in pure shear. A number of current standard test methods are found not to be satisfactory in meeting this requirement. Amongst the test methods, the more common are the: Iosipescu ASTM D5379 [24]; Vnotched rail shear test ASTM D7078 [25]; plate twist method BS EN 15310 [26]; $10^{\circ}$ off-axis tensile test. In [4] the first author compares and contrasts these four methods for the determination of $G_{\mathrm{LT}}$, and concludes that only the latter test method satisfies the material volume requirement and can be used to measure the shear strength, $\tau_{\mathrm{u}}$.

The ten-degree $\left(10^{\circ}\right)$ off-axis method was developed in references [27] and [28] to obtain $G_{\mathrm{LT}}$ and $\tau_{\mathrm{u}}$ for an FRP material having continuous aligned unidirectional fibres. A rectangular coupon is prepared such that the longitudinal axis of the unidirectional
fibres is at $10^{\circ}$ to the tensile load direction, which is parallel to the longitudinal sides of the coupon. A biaxial stress state is induced that consists of the three in-plane stresses of $\sigma_{11}$ (parallel to fibres), $\sigma_{22}$ (transverse to fibres) and $\sigma_{12}$ (shear stress). This stress state is shown in Fig. 5, where the angle $\theta$ is $10^{\circ}$. The shear stress can be expressed as [28]:

$$
\begin{equation*}
\tau_{12}=-\cos (\theta) \sin (\theta) \sigma_{x x}=0.17 \sigma_{x x} \tag{9}
\end{equation*}
$$

where $\sigma_{x x}$ is the applied tensile stress, and is load/coupon cross-sectional area.

The equivalent principal strains can be expressed, by using a transformation relationship [28], as functions of a set of three direct strains at any point. By measuring the set with a strain rosette, the shear strain $\gamma_{12}$ can be found, and $G_{\mathrm{LT}}$ is determined from $\tau_{12} / \gamma_{12}$. This test method is used in this work [4] because of its simplicity in both coupon preparation and loading, and owing to the advantage of a relatively large volume of material being subject to shearing deformation.

Because the $10^{\circ}$ off-axis test does not possess an ISO or ASTM standard there is no standard specification for coupon dimensions and preparation, test procedure and the strain ranges when determining $G_{\mathrm{LT}}$. One option can be to test in accordance with the basic requirements in Part 5 of BS EN ISO-527 [29], since this standard provides the 'test conditions for the determination of tensile properties of unidirectional FRPs'. It requires the coupon to have dimensions of 25 mm (width) by 250 mm (length) and a thickness of 2 mm . Our coupons have a nominal size of 30 mm (width) by 300 mm (length) and a nominal wall thickness of 6 mm . A high aspect ratio (i.e. length/width $=10)$ is employed to reduce the influence of any end constraint effect.

Five coupons were cut from the web of the shapes (I, C1 to C3) shown in Fig. 3. A rosette strain gauge was attached at the mid-point, as shown in Fig. 5, to measure the set of strains from which $\gamma_{12}$ can be calculated. At the same time the applied tensile force was recorded to obtain $\tau_{12}$. The range of shear strain for determination of $G_{\mathrm{LT}}$ was chosen [4] to be between $0.05 \%$ and $0.25 \%$. Fig. 6 (a) shows a typical response of $\tau_{12}$ and $\gamma_{12}$, and Fig. 6 (b) is the zoom-in plot for $\gamma_{12}$ in the strain range of 0 to $0.4 \%$. Added in part (b) is a least-squares (best fit) straight line for the strain interval from $0.05 \%$ to $0.25 \%$. The trend line's gradient is $G_{\mathrm{LT}}$ and the means from batches of five specimens for each of the four shapes are used in the $\gamma_{\mathrm{M}}$ calibration to follow.

Table 1 presents the two elastic constants and their corresponding statistical analysis for variation. Mean values (also taken as characteristic values in this paper) for $E_{\mathrm{L}}$ and $G_{\mathrm{LT}}$ are reported in columns (2) and (5) for the four shapes introduced in column (1). A batch Standard Deviation (SD) and Coefficient of Variation (CV) are reported in columns (3) and (4) for $E_{\mathrm{L}}$ and in columns (6) and (7) for $G_{\mathrm{LT}}$. It is seen that the CV ranges from 1.9 to $3.9 \%$ for the Longitudinal modulus and higher at 3.0 to $8.6 \%$ for the in-plane shear modulus.

## 4. LTB DESGIN FOR PFRP MEMBERS IN BENDING

As discussed in Section 2 the three key design parameters (see Fig. 2) that need to be established are $\bar{\lambda}_{\mathrm{LT}, 0}, \alpha_{\mathrm{LT}}$ and $\gamma_{\mathrm{M}}$. The calibration process to be reported next is based on test results using 30 beam configurations [5] for both I and C1 shapes.

### 4.1 Determination of $\bar{\lambda}_{L T, 0}$

First target is to determine the plateau length $\bar{\lambda}_{\text {LT }, 0}$. For members with slendernesses $\bar{\lambda}_{\mathrm{LT}} \leq \bar{\lambda}_{\mathrm{LT}, 0}$, only the cross-sectional resistance check is required. For $\bar{\lambda}_{\mathrm{LT}}>\bar{\lambda}_{\mathrm{LT}, 0}$, the elastic LTB mode of failure is to govern. EN 1993-1-1:2005 [9] assigns $\bar{\lambda}_{\mathrm{Lt}, 0}=0.2$ in the general case curves of Clause 6.3.2.2, and 0.4 in Clause 6.3.2.3 for the specific case curves for steel rolled sections and equivalent welded sections. It is worth noting that $\bar{\lambda}_{\mathrm{LT}, 0}$ is strongly influenced by the mode of failure of the cross-section. For steel it depends on classification of (steel) sections as explained in Section 5.5 of [9].

Because of the relatively high strength-to-stiffness ratios [18] it is observed that the cross-section mode of failure is often to be local flange buckling, rather than PFRP material rupture. The section moment of resistance for local instability will depend on geometry, material elastic constants and moment distribution. Because it further depends of the rotational stiffness at the junctions between the web and flange walls its determination by either a closed-form equation or physical testing is not straightforward [31, 32]. Trumpf [21] carried out experimental and numerical investigations with PFRP members in bending, and following their evaluation he proposed a plateau length of $\bar{\lambda}_{\mathrm{LT}, 0}=0.5$. Because $\gamma_{\mathrm{M}}$ is insensitive to the chosen value for $\bar{\lambda}_{\mathrm{LT}, 0}$, the authors have taken Trumpf's 0.5 in their calibration study.

Taking the local flange buckling mode to be the ultimate mode of failure in PFRP beams the non-dimensional slenderness $\bar{\lambda}_{\mathrm{LT}}$ of Eq. (7) is redefined by expression:

$$
\begin{equation*}
\bar{\lambda}_{\mathrm{LT}}=\sqrt{\frac{W_{\mathrm{y}} \sigma_{\mathrm{Loc}}}{M_{\mathrm{cr}}}} \tag{10}
\end{equation*}
$$

where $\sigma_{\text {Loc }}$ is the Local buckling stress at instability failure, $W_{\mathrm{y}}$ is the elastic section modulus about the $y-y$ axis, and $M_{\text {cr }}$ is given by Eq. (8). In this study $\sigma_{\mathrm{Loc}}$ was obtained
from concentrically loaded compression tests using short-column specimens. For details of this series of stud column tests consult the first author's PhD thesis [4]. From assessment of the test results it is established that $\sigma_{\text {Loc }}$ is 134 MPa for the I-shape and 100 MPa for the C 1 -shape. It is assumed that stress $\sigma_{\mathrm{Loc}}$ is constant over the area of the compression flange outstand so that the calibration procedure can neglect the presence of a stress gradient through the section's depth (h).

### 4.2. Determination of $\alpha_{L T}$

Next target is to consider how to establish the imperfection factor, $\alpha_{\mathrm{LT}}$. In the APF solution [10] that accounts for member geometric imperfections the generalized imperfection factor $\eta_{\mathrm{LT}}$ is expressed by an expression using the mid-span minor $z-z$ axis out-of-straightness imperfection $\left(v_{0}\right)$ and initial twist rotation $\left(\varphi_{0}\right)$. It is given by [10]:

$$
\begin{equation*}
\eta_{\mathrm{LT}}=v_{0} \frac{W_{y}}{W_{w}}+\varphi_{0} \frac{W_{y}}{W_{z}}-\varphi_{0} \frac{G I_{\mathrm{T}}}{M_{\mathrm{cr}}} \frac{W_{y}}{W_{w}} \tag{11}
\end{equation*}
$$

where $W_{z}$, and $W_{\mathrm{w}}$ are the elastic minor $z-z$ axis and warping sectional moduli, respectively. $W_{w}$ can be expressed in a form of:

$$
\begin{equation*}
W_{\mathrm{w}}=I_{\mathrm{w}} / \Psi_{\max } \tag{12}
\end{equation*}
$$

in which $\Psi_{\text {max }}$ is the maximum value for the cross-section's warping function. $\Psi_{\max }$ was calculated using the software ShapeBuilder [33] to be $1.79 \times 10^{3} \mathrm{~mm}^{2}$ for the I-shape and $1.91 \times 10^{3} \mathrm{~mm}^{2}$ for the C1-shape.
$v_{0}$ and $\varphi_{0}$ are assumed to satisfy the deformed shape for the first LTB mode, that is:

$$
\begin{equation*}
\frac{v_{0}}{\varphi_{0}}=\frac{M_{\mathrm{cr}}}{N_{\mathrm{cr}, \mathrm{z}}} \tag{13}
\end{equation*}
$$

where $N_{\mathrm{cr}, \mathrm{Z}}$ is the Euler buckling load for minor axis flexure of a column member having simply supported ends. By taking the measured initial $z-z$ axis out-of-straightness imperfection $\delta_{\max }$ from [4] (and in [5]) to be $v_{\mathrm{o}}, \varphi_{0}$ can be determined from Eq. (13). $\eta_{\mathrm{LT}}$ for a PFRP shape is determined by next substituting for these two geometric imperfections into Eq. (11).

Reported in Table 2 are beam properties needed to determine $\alpha_{\text {LT }}$. Columns (1) to (7) give these properties for eight sections, comprising I and C shapes at the four lengths of 1828, 2438, 2844 and 3454 mm . The chosen four lengths are for the spans $(L)$ in the programme of LTB resistance tests reported in [4] and [5]. The eight $\eta_{\text {LTS }}$ from Eq. (13) are presented in column (8), and it is seen that for the I-section $\eta_{\mathrm{LT}}$ lies in the range of 0.18 to 0.51 and for the C 1 -section the range is lower at 0.05 to 0.18 .

From Eqs. (5), (6) and (10) we have that:

$$
\begin{equation*}
\eta_{\mathrm{LT}}=\alpha_{\mathrm{LT}}\left(\bar{\lambda}_{\mathrm{LT}}-\bar{\lambda}_{\mathrm{LT}, 0}\right)=\alpha_{\mathrm{LT}}\left(\sqrt{\frac{W_{\mathrm{y}} \sigma_{\mathrm{Loc}}}{M_{\mathrm{cr}}}}-0.5\right) . \tag{14}
\end{equation*}
$$

To give the estimations of $\alpha_{\mathrm{LT}}$ reported in column (9) in Table 2 we substitute into Eq. (14) for $W_{\mathrm{y}}, M_{\mathrm{cr}}$, and $\eta_{\mathrm{LT}}$ from columns (4), (7) and (8), and take $\sigma_{\mathrm{Loc}}=134 \mathrm{MPa}$ for I beams and $\sigma_{\mathrm{Loc}}=100 \mathrm{MPa}$ for C 1 beams. It is observed that the maximum $\alpha_{\mathrm{LT}}$ is 0.26 with the I-shape and 0.11 with the C1-shape. These imperfection factors are relatively lower than for steel sections of I and C shapes, which in EN 1993-1-1:2005 [9] ranges from 0.34 to 0.76 . For this calibration study, the authors decided to take $\alpha_{\mathrm{LT}}=0.34$, because this is closest to the maximum in Table 2 of 0.26 and 0.34 is familiar to practicing engineers who are designing steel structures to Eurocode 3. An imperfection factor of 0.34 is for curve $b$ in EN 1993-1-1:2005.

### 4.3 Determination of $\gamma_{\mathrm{M} 1}$

Presented next is the standard procedure to determine the partial safety factor for instability $\gamma_{\mathrm{M} 1}$; written in herein as $\gamma_{\mathrm{M}}$. The calibration was conducted with the two separate sets of data for the I- and C-shaped members introduced in Table 2. Each set of data includes experimental resistances ( $r_{\mathrm{e}}$ ) from 30 physical tests with three-point loading. The test method and a discussion on the results are to be found in [4] and [5].

The calibration procedure follows nine steps for the Standard Procedure in D8.2.2 of Eurocode EN 1990:2002 [30].

## Step 1: Establish a 'design model'

The 'design model' is for the theoretical prediction of the resistance, $r_{\mathrm{t}}$. The chosen strength function is Eq. (3) with $\bar{\lambda}_{\text {LT }}$ defined (for PFRP members) by Eq. (10). Using EN 1990:2002 notation the expression that involves all the basic variables can be written as [30]:

$$
\begin{equation*}
r_{\mathrm{t}}=g_{\mathrm{rt}}(\underline{X})=\chi_{\mathrm{LT}}\left(I_{\mathrm{T}}, I_{\mathrm{W}}, I_{\mathrm{y}}, E_{\mathrm{L}}, G_{\mathrm{LT}}, \sigma_{\mathrm{Loc}}\right) \times M_{\mathrm{Loc}}\left(W_{y}, \sigma_{\mathrm{Loc}}\right) \tag{15}
\end{equation*}
$$

It has the seven basic variables for a PFRP member of $I_{\mathrm{T}}, I_{\mathrm{W}}, I_{\mathrm{y}}, E_{\mathrm{L}}, G_{\mathrm{LT}}, W_{\mathrm{y}}$ and $\sigma_{\mathrm{Loc}}$. It is a requirement that all variables are to be measured for each individual experiment that gives a single test result. Of the seven variables, those of $I_{\mathrm{T}}, I_{\mathrm{W}}, I_{\mathrm{y}}$, and $W_{\mathrm{y}}$ are section geometrical properties that can readily be calculated using measured geometric dimensions and standard expressions. These dimensions are given in full in [4] and reported in Table 3. When calculating a geometric property the contribution from having four fillet areas was ignored. Because $r_{\mathrm{t}}$ predictions for LTB resistance will be lower without the fillets it is a justified calibration approximation. Mechanical properties of $E_{\mathrm{L}}, G_{\mathrm{LT}}$ and $\sigma_{\mathrm{Loc}}$ were not measured for each beam tested. It therefore had to be assumed that the means reported in Table 2 do not change with beam
configuration. It is worth noting that in the calibration process with steel sections these material properties are not treated as a variable [34]. This may be due to $E$ for structural steel being statistically well-defined and consistent between different grades (such as S235 to S335 in EN 1993-1-1:2005). The situation is different with PFRP materials because their mechanical properties are not that well-known by way of copious and repetitive coupon testing. Trumpf [21] combined $E_{\mathrm{L}}$ with $I_{\mathrm{z}}$ for flexural rigidity and $G_{\mathrm{LT}}$ with $I_{\mathrm{T}}$ for shear rigidity when establishing the CV for the basic variables of $I_{\mathrm{Z}}$ and $I_{\mathrm{T}}$.
$\sigma_{\mathrm{Loc}}$ is to be taken as 134 MPa and 100 MPa for the I and C 1 group of beams. In the calibration process these $\sigma_{\mathrm{Loc}} \mathrm{S}$ are assumed to be both nominal and characteristic values. This approach is similar to that used by Sedlaeck et al. [34], in which a nominal value is specified to be the characteristic value for the steel yield stress $\left(f_{y}\right)$. In [34] the CV for $f_{\mathrm{y}}\left(V_{\mathrm{fy}}\right)$ is taken to be $7 \%$. The mean $\left(f_{\mathrm{y}, \mathrm{m}}\right)$ of $f_{\mathrm{y}}$ is then taken to be the $2.3 \%$ fractile value from:

$$
\begin{equation*}
f_{\mathrm{y}, \mathrm{~m}}=f_{\mathrm{y}} \exp \left(-1.64 V_{\mathrm{fy}}-0.5 V_{\mathrm{fy}}\right)^{-1} \tag{16}
\end{equation*}
$$

The ' $V_{\mathrm{fy}}$ ' in Eq. (16) is from the expression $\sqrt{V_{\mathrm{m}}^{2}+V_{\mathrm{G}}^{2}+V_{\mathrm{f}}^{2}}$, in which $V_{\mathrm{m}}$ is the CV for model uncertainty, $V_{\mathrm{G}}$ is the CV for geometry of the memebr and $V_{\mathrm{f}}$ is the CV for the property. An acceptable approximation for this expression can be taken to be equal to the CV for the property, which in Eq. (16) is $V_{\text {fy }}$ for property $f_{\mathrm{y}}$.

By assuming that the mean $\sigma_{\text {Loc }}$ can also be taken as the $2.3 \%$ fractile value, Eq. (16) can be readily modified for PFRP shapes. To account for the greater uncertainty, the CV of $V_{\text {oLoc }}$ is assumed to be $10 \%$, which is $3 \%$ higher than $V_{\text {fy }}$ is for structural grades of steel. By applying Eq. (16), the mean $\sigma_{\text {Locm }}$ is 166 MPa for the I-shape and 124 MPa for
the C1-shape. Assuming that Eq. (16) is also statistically acceptable for expressing the variation in moduli $E_{\mathrm{L}}$ and $G_{\mathrm{LT}}$, we can write:

$$
\begin{gather*}
E_{\mathrm{L}, \mathrm{~m}}=E_{\mathrm{L}} \exp \left(-1.64 V_{\mathrm{EL}}-0.5 V_{\mathrm{EL}}\right)^{-1}  \tag{17}\\
G_{\mathrm{LT}, \mathrm{~m}}=G_{\mathrm{LT}} \exp \left(-1.64 V_{\mathrm{GLT}}-0.5 V_{\mathrm{GLT}}\right)^{-1} . \tag{18}
\end{gather*}
$$

Reported in Table 3 are the seven basic variables in Eq. (15). Column (1) gives the beam labelling in the form of section type (I or C1), followed, after the hyphen, with beam span $L$ (e.g. 1828 mm ). Columns (2) to (5) list the measured section properties of $I_{\mathrm{T}}, I_{\mathrm{w}}, I_{\mathrm{z}}$ and $W_{\mathrm{y}}$. It is observed that their CVs for the I-shape are in the range of 0.36 to $1.2 \%$ and similar for the C1-shape at 0.76 to $1.29 \%$. For an PFRP I-section Trumpf [21] determined CVs for the same geometrical properties in range of $0.79 \%$ to $1.81 \%$. In reference [34] for the calibration of steel sections these four section properties have a specified CV, which is slightly higher at $3 \%$.

By substituting the test results from Table 1 into Eqs. (17) and (18) the population means of $E_{\mathrm{L}, \mathrm{m}}$ and $G_{\mathrm{LT}, \mathrm{m}}$ were determined, and they are reported in Table 3. Except for the basic variable $G_{\mathrm{LT}}$ having a CV of $8 \%$ for the I-shape the other basic variables for both shapes have CVs below $4 \%$.

Step 2: Compare test results ( $r_{\mathrm{e}}$ ) and theoretical predictions $\left(r_{\mathrm{t}}\right)$
The theoretical moment of resistances $r_{t, i}(i=1$ to $n$, where $n$ is number of test results) are obtained by substituting the mean variables listed in columns (2) to (8) of Table 3 into the resistance function of Eq. (15). To calculate $M_{\text {cr }}$ using Eq. (8) to obtain $\chi_{\mathrm{LT}}$ by Eq. (15) and Eq.(10), the terms $C_{1}$ and $C_{2}$ are for moment distribution, $z_{\mathrm{g}}$ for loading height and $k$ for displacement boundary conditions and $k_{\mathrm{w}}$ is assumed to be 1.0. The 114 beam configurations failing with the LTB mode [4] were loaded in three-point bending
with simply supported ends. When calculating $M_{\text {cr }}$ the justification for $C_{1}=1.344$ and $C_{2}=0.630$ with $k=k_{\mathrm{w}}=1.0$ and $C_{1}=1.107$ and $C_{2}=0.432$ with $k=0.5$ and $k_{\mathrm{w}}=1.0$ is given in Section 4.7 of [4].

The experimental moment resistances, $r_{\text {e.i }}$, are determined using:

$$
\begin{equation*}
r_{\mathrm{e}, i}=\frac{P_{\mathrm{cr}, \mathrm{e}, i} \times L}{4} \tag{19}
\end{equation*}
$$

In Eq. (19) $P_{\text {cr, }, i}$ is for the experimental LTB point loads reported in [4] (and [5]) for a beam of a single shape (I or C1) having span $L$ and loaded in three-point bending for flexure about the major $y$ - $y$ axis. The variables in a LTB test series are five spans, the two displacement end boundary conditions of EC1 (with $k=1.0$ for simply supported for flexure about minor axis) and EC2 (with $k=0.5$ for clamped supported for flexure about minor axis) and the three vertical load heights of SC ( $z_{\mathrm{g}}=0 \mathrm{~mm}$ ), Top Flange (TF for $z_{\mathrm{g}}=+h / 2$ ) and Bottom Flange ( BT for $z_{\mathrm{g}}=-h / 2$ ). $h$ is the depth of the PFRP section.

Column (1) in Table 4 is for the labelling [4] of 10 I-beam configurations. In columns (2) and (3) are the $10 r_{\mathrm{e}}$ and $10 r_{\mathrm{t}}$ results for TF loading that has the lowest elastic critical resistance moment. Equivalent results for the SC loading case are reported in columns (4) and (5) and those for the BF situation, giving the highest resistance moment, in columns (6) and (7). The equivalent $30 r_{\mathrm{e}}$ and $30 r_{\mathrm{t}}$ values for the 10 C 1 -beam configurations are reported in Table 5.

Figures 7 and 8 are plots of $r_{\mathrm{e}}$ vs. $r_{\mathrm{t}}$ created from the data given in Tables 4 and 5. In the figures the points for boundary condition EC 1 (for $k=k_{\mathrm{w}}=1.0$ in Eq. (8)) are given by the circular shaped symbol and those for EC2 (for $k=0.5$ and $k_{\mathrm{w}}=1.0$ ) have a rectangular symbol. A linear solid line for $r_{\mathrm{e}}=r_{\mathrm{t}}$ is introduced to highlight that, had the 'design model' been exact and complete, every point would exactly lie on this line. As
is normally found with real data there is a degree of scatter in Figures 7 and 8 and $r_{\mathrm{e}}$ (measured) is generally higher than $r_{\mathrm{t}}$ (theoretical).

Step 3: Calculate the mean correction factor $b_{\mathrm{m}}$

The mean correction factor, $b_{\mathrm{m}}$, can be estimated using:

$$
\begin{equation*}
b_{\mathrm{m}}=\frac{\sum r_{\mathrm{e}} r_{\mathrm{t}}}{\sum r_{\mathrm{t}}^{2}} \tag{20}
\end{equation*}
$$

with the summation over the $n$ tests for a particular beam cross-section shape. Results in Tables 4 and 5 give $b_{\mathrm{m}}=1.29$ for the I-beams and 1.27 for the C1-beams. Figures 9 and 10 are for plots of ratio $r_{\mathrm{e}} / r_{\mathrm{t}}$ against $\bar{\lambda}_{\mathrm{LT}}$ for 30 tested beams of the two shapes. It is seen that with the I-beams all the points lie above the horizontal line $r_{\mathrm{e}} / r_{\mathrm{t}}=1$, which means the expression for $r_{\mathrm{t}}$ is giving 'safe' predictions. Results from the tested C1-beams give a higher scatter, especially with the EC2 displacement boundary conditions, which gives a single point below the line $r_{\mathrm{e}} / r_{\mathrm{t}}=1$.

## Step 4: Determination of the CV for the error terms

Error term $\delta_{i}(i=1 \rightarrow n)$ for each test result, $r_{\mathrm{e}, i}$, is calculated from:

$$
\begin{equation*}
\delta_{i}=\frac{r_{e, \mathrm{i}}}{b_{\mathrm{m}} r_{t, \mathrm{i}}} \tag{21}
\end{equation*}
$$

Estimation for the CV for the error term, $V_{\delta}$, is obtained from:

$$
\begin{equation*}
V_{\delta}=\sqrt{\exp \left(s_{\Delta}^{2}\right)-1} \tag{22}
\end{equation*}
$$

where

$$
\begin{equation*}
s_{\Delta}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(\Delta_{i}-\bar{\Delta}\right)^{2} \tag{23}
\end{equation*}
$$

In Eq. (23), $\Delta_{i}=\ln \left(\delta_{i}\right)$ and $\bar{\Delta}=\frac{1}{n} \sum_{i=1}^{n} \Delta_{i}$.

Reported in Tables 6 and 7 are the error terms of $\delta_{i}$ and $\Delta_{i}$ for the two shapes. These two parameters for 10 different beam configurations are presented in columns (2) and (3) for TF loading, in columns (4) and (5) for SC and in clumns (6) and (7) for BF loading. $V_{\delta}$ is calculated on introducing the 30 tabulated error terms into Eqs. (23) and (22) and is found to be 0.101 for the I-beams and 0.112 for the C1-beams, which are both close to $10 \%$.

## Step 5: Examine the compatibility

The purpose of the fifth step is to examine the compatibility of the test results with the assumptions in the 'design model'. It is suggested that if the scatter of the $r_{\mathrm{e}, i}$ and $\mathrm{r}_{\mathrm{t}, i}$ pairs by engineering judgement is too high, it can be lowered by either adjusting the design model to accounts for the 'ignored' variables or to separate the test results into sub-groups, in which the contribution of the missing variables can be considered constant. In this investigation, all of the influencing factors have been adequately taken into consideration. It is found that the $r_{\mathrm{e}}-r_{\mathrm{t}}$ pairs for the I-beams spread evenly and so the scatter is not too high. There are data pairs from the C 1 tests that do, however, present a larger scatter. In this preliminary study it was decided not to alter the design model for the calibration of $\gamma_{\mathrm{M}}$.

Step 6: Calculate the coefficients of variation for the basic parameters

The CVs ( $V_{\mathrm{Xi}}$ ) for the seven basic parameters in the resistance function Eq. (15) are presented in Table 3. For the I-shape they are listed in the eighth row and in the sixteenth row for the C 1 shape.

Step 7: Determine the characteristic value of the resistance $r_{\mathrm{k}}$

To determine the characteristic resistance, $r_{\mathrm{k}}$, it is required that the CV for $V_{\mathrm{r}}$ be calculated from:

$$
\begin{equation*}
V_{\mathrm{r}}=\sqrt{V_{\delta}^{2}+V_{\mathrm{rt}}^{2}} . \tag{24}
\end{equation*}
$$

$V_{\mathrm{rt}}$ should be calculated using:

$$
\begin{equation*}
V_{\mathrm{rt}}=\frac{1}{g_{\mathrm{rt}}^{2}\left(\underline{X}_{\mathrm{m}}\right)} \times \sum_{i=1}^{j}\left(\frac{\partial g_{\mathrm{rt}}}{\partial X_{i}} \sigma_{i}\right)^{2} \tag{25}
\end{equation*}
$$

where $\mathrm{g}_{\mathrm{rt}}\left(\underline{X}_{\mathrm{m}}\right)$ is obtained from Eq. (15), $j$ is the number of basic parameters, $\underline{X}_{\mathrm{m}}$ is the mean of the basic parameters and $\sigma_{i}$ is the Standard Deviation (SD) of each basic parameter, as reported in Table 3.

Eq. (25) is computed using Matlab [35] for the $V_{\mathrm{rt}}$ s listed in column (2) of Tables 8 and 9. In column (1) are the label's for the 30 different beam configurations in the programme of LTB tests [4] and [5]. It is seen in Table 9 that these CVs are very small, having a maximum of $\cong 0.003$ for the I-beams in Table 8 and $\cong 0.007$ for the C1-beams. When substituting $V_{\delta}$ and $V_{\mathrm{rt}}$ into Eq. (24) for $V_{\mathrm{r}}$, the contribution of $V_{\mathrm{rt}}$ can be ignored for the I-shape since:

$$
V_{\mathrm{r}}=\sqrt{V_{\delta}^{2}+V_{\mathrm{rt}}^{2}}=\sqrt{0.101^{2}+0.003^{2}}=0.10105 \cong 0.101=V_{\delta} .
$$

Similarly, for the C1-shape we have:

$$
V_{\mathrm{r}}=\sqrt{V_{\delta}^{2}+V_{\mathrm{rt}}^{2}}=\sqrt{0.112^{2}+0.007^{2}}=0.1122 \cong 0.112=V_{\delta}
$$

It is acceptable in the calibration procedure to treat $V_{\mathrm{r}}=V_{\delta}$. A similar observation is given by Trumpf [21], who, when calibrating the design model for the LTB mode of failure, found the contribution from $V_{\mathrm{rt}}$ small enough to be ignored.

The process requires that, when the number of individual tests is limited (i.e. $n<100$ ), $r_{\mathrm{k}}$ should be determined by:

$$
\begin{equation*}
r_{\mathrm{k}}=b_{\mathrm{m}} g_{\mathrm{rt}}\left(\underline{X}_{\mathrm{m}}\right) \exp \left(-k_{\infty} \alpha_{\mathrm{rt}} \mathrm{Q}_{\mathrm{rt}}-k_{\mathrm{n}} \alpha_{\delta} Q_{\delta}-0.5 Q^{2}\right) \tag{26}
\end{equation*}
$$

with:

$$
\begin{gather*}
Q_{\mathrm{tt}}=\sigma_{\ln (\mathrm{rt})}=\sqrt{\ln \left(V_{\mathrm{rt}}^{2}+1\right)}=V_{\mathrm{tt}}  \tag{27}\\
Q_{\delta}=\sigma_{\ln (\delta)}=\sqrt{\ln \left(V_{\delta}^{2}+1\right)}  \tag{28}\\
Q=\sigma_{\ln (\mathrm{r})}=\sqrt{\ln \left(V_{\mathrm{r}}^{2}+1\right)}=Q_{\delta}  \tag{29}\\
\alpha_{\mathrm{rt}}=\frac{Q_{\mathrm{tt}}}{Q}  \tag{30}\\
\alpha_{\delta}=\frac{Q_{\delta}}{Q}=1 \tag{31}
\end{gather*}
$$

In Eq. (26) $k_{\mathrm{n}}$ is the characteristic fractile factor from Table D1 on page 79 of BS EN 1990:2002 [30] for " $V_{X}$ unknown"; $V_{X}$ is Eurocode notation for CV. For the calibration of $\chi_{\mathrm{M}}$ we have $n=30$ and $k_{\mathrm{n}}$ is 1.73 . When $n$ tends to $\infty$ we have the limiting $k_{\mathrm{n}}$, which is $k_{\infty}=1.64$.

In columns (2) to (5) of Tables 8 and 9 are the values for $Q_{\mathrm{rt}}, Q_{\delta}=Q, \alpha_{\mathrm{rt}}$ and $r_{\mathrm{k}}$ obtained using Eqs. (26) to (31).

Steps 1 to 7 are explicitly found in EN 1990:2002, whilst Steps 8 and 9 to complete the calibration procedure for $\gamma_{\mathrm{M}}$ are not assigned numbers.

Step 8: Obtain the design value of the resistance, $r_{\mathrm{d}}$

The design value of the resistance, $r_{\mathrm{d}}$, for the test population that has $<100$ test results should be calculated using:

$$
\begin{equation*}
r_{\mathrm{d}}=b_{\mathrm{m}} g_{\mathrm{rt}}\left(\underline{X}_{\mathrm{m}}\right) \exp \left(-k_{\mathrm{d}, \infty} \alpha_{\mathrm{rt}} Q_{\mathrm{rt}}-k_{\mathrm{d}, \mathrm{n}} \alpha_{\delta} Q_{\delta}-0.5 Q^{2}\right) \tag{32}
\end{equation*}
$$

In Eq. (32), the variable $k_{\mathrm{d}, \mathrm{n}}$ is the design fractile factor from Table D 2 on page 79 in BS EN 1990:2002 [30] for " $V_{\mathrm{X}}$ unknown". In this study, $k_{\mathrm{d}, \mathrm{n}}$ is 3.13 for $n=30$. Note $k_{\mathrm{d}, \infty}$ is the value for $n$ tends to $\infty$, and from Table D2 is 3.04.

Step 9: Determine the safety partial factor $\gamma_{\mathrm{M}}$
$\gamma_{\mathrm{M}}$, which accounts for material property and for model uncertainties and dimensional variations, can be determined from:

$$
\begin{equation*}
\gamma_{\mathrm{M}}=\frac{r_{\mathrm{k}}}{r_{\mathrm{d}}} \tag{33}
\end{equation*}
$$

Columns (6) and (7) in Tables 8 and 9 present $r_{\mathrm{d}}$ from Eq. (32) and $\gamma_{\mathrm{M}}$ by Eq. (33). To three significant figures it is found that $\gamma_{\mathrm{M}}$ for LTB failure lies in the narrow ranges of 1.14 to 1.18 for the I-shape and 1.16 to 1.19 for the C1-shape. Taking into account the degree of uncertainties in the seven basic variables (Table 3), and to provide for a higher reliability in design, the authors propose, for PFRP beams in bending that $\gamma_{M}$ be taken as 1.3 (for the LTB mode of failure at ultimate limit state).

### 4.4 Lateral-torsional buckling curves

Plotted as thick dashed lines in Figs. 11 and 12 are the specific LTB curves of $\chi_{\mathrm{LT}}(\leq$ 1.0) against $\lambda_{\mathrm{LT}}$ ( 0 to 4.0) for the I and C 1 shapes, having $\alpha_{\mathrm{LT}}=0.34$ and $\gamma_{\mathrm{M}}=1.3$. In the
two figures the solid line is the unfactored LTB curve with the $\chi_{\mathrm{LT}}$ axis on the left-side. $\chi_{\mathrm{LT}}$ for the factored situation is given on the right side. It is noted that, when an LTB curve is presented in a design standard, the dashed line curve would not exist. It is observed from the results given in Figs. 11 and 12 that all 30 test results for LTB failure are positioned above the factored curve. This finding ensures the design procedure is going to be safe and reliable. The results presented in these two figures provide strong evidence that an imperfection factor $\alpha_{\mathrm{LT}}=0.34$ and partial factor $\gamma_{\mathrm{M}}=1.3$ would be appropriate for the two shapes in the calibration study.

For a comparison with an independent calibration, it is noteworthy that in the American pre-standard for PFRP standard shapes [8] the resistance factor, $\phi$, for the LTB mode of failure is 0.7 . This is equivalent to $\gamma_{\mathrm{M}}=1.43$ from $\gamma_{\mathrm{M}} \cong 1 / \phi$. Trumpf applied the same Eurocode approach (EN 1990:2002) in 2006 [21] in his LTB study with PFRP I-shapes to established a mean $\gamma_{\mathrm{M} 1}\left(\underline{\cong} \gamma_{\mathrm{M}}\right)$ of 1.41 . Finding that 1.43 and 1.41 are the same, and higher than 1.3, it can be proposed that the test results and calibration assumptions used by the authors are more reliable than those available, in 2010, when $\phi$ was determined using the approach developed in [36].

To construct the generic LTB curve (with $\gamma_{\mathrm{M}}=1.3$ ) presented in Fig. 13 the authors combined 114 LTB test results. By making the assumption that $\sigma_{\mathrm{Loc}}=134 \mathrm{MPa}$ is for the ultimate failure stress that establishes $\chi_{\mathrm{LT}}=1.0$, design parameters $\bar{\lambda}_{\mathrm{LT}}$ and $\chi_{\mathrm{LT}}$ for the beam configurations of I, C1 to C3 shapes were calculated. The results in the Fig. 13 plot provide us with further evidence that the proposed design procedure can be reliable.

## 5. CONCLUSIONS

A proposed design procedure to determine the resistance of pultruded FRP thin-walled members in bending failing with the Ultimate Limit State (ULS) mode of LateralTorsional Buckling (LTB) has been formulated based on the Eurocode 3 approach for steel sections. Recommended is a plateau length for the LTB curve ( $\bar{\lambda}_{\mathrm{LT}, 0}$ ) of 0.5 and an imperfection factor $\left(\alpha_{\mathrm{LT}}\right)$ of 0.34 . The calibration procedure for the partial factor $\gamma_{\mathrm{M}}(\cong$ $\gamma_{\mathrm{MI}}$ ) follows the steps in Annex D of EN 1990:2002. It is shown that for this specific ULS mode of failue that the partial factor for members of an I-shape lies is in the narrow range of 1.14 to 1.18 and for a C-shape it is from 1.16 to 1.19 . To take account of the level of uncertainty in the measured geometries and failure load results, and in the underlying assumptions made, a $\gamma_{\mathrm{M}}$ of 1.3 for PFRP members in bending is proposed. By incorporating the 114 test results into a single LTB curve with this partial factor of resistance and by assuming a local flange buckling strength is 134 MPa for the four shapes tested it is observed that the LTB curve could be for generic design.

It is noteworthy that in an American Society of Civil Engineering pre-standard for the design of PFRP structures the resistance factor $(\phi)$ for LTB failure is 0.7 , which is equivalent to $\gamma_{\mathrm{M}}$ of 1.4. The fact that 1.4 is higher than our recommended partial factor of 1.3 shows that the LTB test results and calibration process used in this paper are likely to be more reliable than those available in 2010 when the pre-standard $\phi$ was determined.

## ACKNOWLEDGEMENTS

The authors gratefully acknowledge Dr. Heiko Trumpf (Bollinger and Grohmann, Germany) for his comments and suggestions that were important to the preparation of this paper. The first author gratefully acknowledges his scholarships from the Vietnamese International Education Development (VIED) and the School of Engineering at The University of Warwick, UK.

## REFERENCES

1. Bank LC. Composites for construction: Structural design with FRP materials. 2006, NJ, USA: John Willey \& Sons.
2. Mottram JT. Does performance based design with fibre reinforced polymer components and structures provide any new benefits and challenges. The Structural Engineer 2011;89(6):23-27.
3. Gand AK, Chan TM, Mottram JT. Civil and structural engineering applications, recent trends, research and developments on pultruded fiber reinforced polymer closed sections: a review. Front Structural Civil Eng 2013;7(3):227-244.
4. Nguyen TT. Lateral-torsional buckling resistance of pultruded fibre reinforced polymer shapes. 2014, University of Warwick.
5. Nguyen TT, Chan TM, Mottram JT. Lateral-torsional buckling resistance by testing for pultruded FRP beams under different loading and displacement boundary conditions. Composites Part B: Engineering 2014;60:306-318.
6. Mottram JT. Lateral-torsional buckling of a pultruded I-beam. Composites 1992;23(2):81-92.
7. AISC, Specification for Structural Steel Buildings, in ANSI/AISC 360. 2010, American Institute of Steel Construction: Chicago, IL, USA.
8. ASCE, Pre-standard for load and resistance factor design (LRFD) of pultruded fiber reinforced polymer (FRP) structures. 2010: Arlington, VA, USA.
9. BSI, Eurocode 3: Design of Steel Structures - Part 1-1: General Rules and Rules for Buildings, in BS EN 1993-1-1. 2005, British Standards Institution: London, UK.
10. Szalai J, Papp F. On the theoretical background of the generalization of AyrtonPerry type resistance formulas. Journal of Constructional Steel Research 2010;66(5):670-679.
11. Gutiérrez E, Dimova S, Pinto A. Purpose and justification for new design standards regarding the use of fibre-reinforced polymer composites in civil engineering. EUR 22864 EN-2007, Joint Research Centre, European Commission, 2007.
12. Timoshenko S. Theory of elastic stability. 1936, New York: McGraw-Hill
13. Flint AR. On the lateral stability of beams, in Engineering. 1948, University of Bristol.
14. Clark JW, Hill HN. Lateral Buckling of Beams. Journal of the Structural Division-ASCE 1960;86(ST7):175-196.
15. Trahair NS. Flexural-torsional buckling of structures. 1993, London, UK: CRC Press.
16. Bureau A. NCCI: Elastic critical moment for lateral torsional buckling, in SN003a-EN-EU. 2006, Access Steel
17. BSI, Eurocode 3: design of steel structures, Part 1.1 General rules for buildings, in DD ENV 1993-1-1. 1992, British Standards Institution: London, UK.
18. Kollár LP, Springer GS. Mechanics of composite structures. 2003, Cambridge: University press.
19. Allen HG, Bulson PS. Background to buckling. 1980, London: McGraw-Hill.
20. Razzaq Z, Prabhakaran R, Sirjani MM. Load and resistance factor design (LRFD) approach for reinforced-plastic channel beam buckling. Composites Part B: Engineering 1996;27(3):361-369.
21. Trumpf H. Local and global stability of plane frame works made of orthotropic FRP profiles. PhD Thesis, 2006, University of Aachen, Germany: Shaker-Verlag. (in German)
22. BSI, Plastics - Determination of tensile properties - Part 1: General principles, in BS EN ISO 527-1. 2012, British Standards Institution: London, UK.
23. BSI, Plastics - Determination of tensile properties - Part 4: Test conditions for isotropic and orthotropic fibre-reinforced plastic composites, in BS EN ISO 527-4. 1997, British Standards Institution: London, UK.
24. ASTM, Standard test method for shear properties of composite materials by the V-notched beam method, in D5379 / D5379M. 2012, ASTM International: West Conshohocken, PA, USA.
25. ASTM, Standard test method for shear properties of composite materials by Vnotched rail shear method, in D7078 / D7078M. 2012, ASTM International: West Conshohocken, PA, USA.
26. BSI, Reinforced plastics - Determination of the in-plane shear modulus by the plate twist method, in BS EN 15310. 2005, British Standards Institution: London, UK.
27. Hodgkinson J. Mechanical testing of advanced fibre composites. 2000, Cambridge, UK: Woodhead Publishing Limited.
28. Chamis CC, Sinclair JH. Ten-deg off-axis test for shear properties in fiber composites. Experimental Mechanics 1977;17(9):339-346.
29. BSI, Plastics - Determination of tensile properties - Part 5: Test conditions for unidirectional fibre-reinforced plastic composites, in BS EN ISO 527-5. 2009, British Standards Institution: London, UK.
30. BSI, Eurocode. Basis of structural design, in BS EN 1990. 2002, British Standards Institution: London, UK.
31. Kollár LP. Local buckling of fiber reinforced plastic composite structural members with open and closed cross sections. J Struct Eng 2003;129(11):15031513.
32. Mottram JT. Determination of critical load for flange buckling in concentrically loaded pultruded columns. Compos Part B: Engng 2004;35(1):35-47.
33. IES Inc, ShapeBuilder Ver 7.0. 2013: Bozeman, MT, US.
34. Sedlacek G, Ungermann D, Kuck J, Maquoi R, Janss J. 'Eurocode 3-Part 1.1, Design of Steel Structures: General Rules and Rules for Buildings, Background documentation. Chapter 5.03, Evaluation of test results with cross-sectional classes 1-3 in order to obtain strength functions and suitable model factors,' Oct. 1989.
35. Mathworks Inc, MATLAB 2013: Natick, Massachusetts, Unite States.
36. Zureick A-H, Bennett RM, Ellingwood BR. Statistical characterization of FRP composite material properties for structural design. J Struct Engrg. 2006; 132(8):1320-1327.

## Figure captions

Fig 1. Lateral unsupported length for LTB design in AISC 360 [7].

Fig. 2. LTB Buckling curves in Eurocode 3 [9].

Fig. 3. Longitudinal coupons location (unit: mm).

Fig. 4. Longitudinal tensile stress-strain relationship of a typical tensile specimen.

Fig. 5. Schematic biaxial stress field, after Chamis and Sinclair [28].

Fig. 6. Typical $\sigma_{12}$ versus $\gamma_{12}$ : (a) full response; (b) $\gamma_{12}$ from $0 \%$ to $0.4 \%$.

Fig. 7. Plot of $r_{\mathrm{e}}$ versus $r_{\mathrm{t}}$ for 30 I-beam configurations.

Fig. 8. Plot of $r_{\mathrm{e}}$ versus $r_{\mathrm{t}}$ for 30 Cl -beam configurations.

Fig. 9. $r_{\mathrm{e}} / r_{\mathrm{t}}$ versus the non-dimensional slenderness $\bar{\lambda}_{\mathrm{LT}}$ for 30 I-beam configurations.

Fig. 10. $r_{\mathrm{e}} / r_{\mathrm{t}}$ versus non-dimensional slenderness $\bar{\lambda}_{\mathrm{LT}}$ for 30 C1-beam configurations.

Fig. 11. LTB curve for I-shape members in bending with $\alpha_{\mathrm{LT}}=0.34$ and $\gamma_{\mathrm{M}}=1.3$.

Fig. 12. LTB curve for C 1 -shape members in bending with $\alpha_{\mathrm{LT}}=0.34$ and $\gamma_{\mathrm{M}}=1.3$.

Fig. 13. Generic LTB curves for PFRP structural shape members in bending.

## Table

## Table 1

Elastic constants and the corresponding statistical data.

| ${ }^{\mathbf{1}}$ Section | ${ }^{2} \boldsymbol{E}_{\mathbf{L}}(\mathbf{G P a})$ | ${ }^{3} \mathbf{C V}(\%)$ | ${ }^{4} \mathbf{S D}(\mathbf{G P a})$ | ${ }^{5} \boldsymbol{G}_{\mathbf{L T}}(\mathbf{G P a})$ | ${ }^{6} \mathbf{C V}(\%)$ | ${ }^{7} \mathbf{S D}(\mathbf{G P a})$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| I | 30.6 | 2.3 | 0.70 | 4.2 | 8.1 | 0.34 |
| C 1 | 31.6 | 3.5 | 1.10 | 4.8 | 3.0 | 0.14 |
| C 2 | 32.9 | 1.9 | 0.60 | 4.8 | 4.2 | 0.20 |
| C 3 | 29.2 | 3.9 | 1.10 | 4.2 | 8.6 | 0.36 |

## Table 2

Generalized imperfection factor $\eta_{\mathrm{LT}}$.

| ${ }^{1}$ Specimen | $\begin{gathered} { }^{2} \mathbf{v}_{0} \\ (\mathrm{~mm}) \end{gathered}$ | $\begin{gathered} { }^{3} \varphi_{0} \\ (\mathbf{r a d}) \end{gathered}$ | $\begin{gathered} { }^{4} W_{\mathrm{y}} \\ \left(\mathrm{~mm}^{3}\right) \end{gathered}$ | $\begin{gathered} { }^{5} W_{w} \\ \left(\mathrm{~mm}^{4}\right) \end{gathered}$ | $\begin{gathered} { }^{6} W_{\mathrm{z}} \\ \left(\mathrm{~mm}^{3}\right) \\ \hline \end{gathered}$ | $\begin{gathered} { }^{7} M_{\mathrm{cr}} \\ (\mathrm{kN} . \mathrm{m}) \end{gathered}$ | ${ }^{8} \boldsymbol{\eta}_{\text {LT }}$ | ${ }^{9} \alpha_{\text {LT }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I-1828 | 0.78 | 0.013 | $4.65 \times 10^{4}$ | $3.92 \times 10^{5}$ | $3.63 \times 10^{3}$ | $1.62 \times 10^{6}$ | 0.18 | 0.11 |
| I-2438 | 2.86 | 0.036 |  |  |  | $1.08 \times 10^{6}$ | 0.51 | 0.26 |
| I-2844 | 1.95 | 0.021 |  |  |  | $8.87 \times 10^{5}$ | 0.31 | 0.14 |
| I-3454 | 2.72 | 0.024 |  |  |  | $6.98 \times 10^{5}$ | 0.36 | 0.14 |
| C1-1828 | 0.27 | 0.006 |  |  |  | $1.37 \times 10^{6}$ | 0.05 | 0.04 |
| C1-2438 | 0.80 | 0.013 | $4.30 \times 10^{4}$ | $3.30 \times 10^{5}$ | $4.63 \times 10^{3}$ | $1.02 \times 10^{6}$ | 0.11 | 0.07 |
| C1-2844 | 1.55 | 0.021 |  |  |  | $8.78 \times 10^{5}$ | 0.18 | 0.11 |
| C1-3454 | 1.72 | 0.019 |  |  |  | $7.23 \times 10^{5}$ | 0.16 | 0.08 |

Table 3

Basic variables and their statistical data.

| ${ }^{1}$ Specimen | $\begin{gathered} { }^{2} \boldsymbol{I}_{\mathrm{T}} \\ \left(\mathbf{m m}^{4}\right) \end{gathered}$ | $\begin{gathered} { }^{3} I_{\mathrm{w}} \\ \left(\mathrm{~mm}^{6}\right) \end{gathered}$ | $\begin{gathered} { }^{4} I_{Z} \\ \left(\mathrm{~mm}^{4}\right) \end{gathered}$ | $\begin{gathered} { }^{5} W_{y} \\ \left(\mathrm{~mm}^{3}\right) \end{gathered}$ | $\begin{gathered} { }^{6} E_{\mathrm{L}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$ | $\underset{\left(\mathbf{N} / \mathbf{m m}^{2}\right)}{\mathbf{7} \mathbf{G}_{\mathrm{LT}}}$ | ${ }^{8} \sigma_{\text {Loc }}$ <br> ( $\mathrm{N} / \mathrm{mm}^{2}$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I-1828 | $1.71 \times 10^{4}$ | $7.03 \times 10^{8}$ | $2.18 \times 10^{5}$ | $4.95 \times 10^{4}$ |  |  |  |
| I-2438 | $1.68 \times 10^{4}$ | $7.00 \times 10^{8}$ | $2.17 \times 10^{5}$ | $4.97 \times 10^{4}$ |  |  |  |
| I-2844 | $1.73 \times 10^{4}$ | $7.05 \times 10^{8}$ | $2.19 \times 10^{5}$ | $4.99 \times 10^{4}$ | 3060 | 4200 | 134 |
| I-3454 | $1.72 \times 10^{4}$ | $7.06 \times 10^{8}$ | $2.19 \times 10^{5}$ | $4.95 \times 10^{4}$ |  |  |  |
| I-4064 | $1.68 \times 10^{4}$ | $6.99 \times 10^{8}$ | $2.16 \times 10^{5}$ | $4.97 \times 10^{4}$ |  |  |  |
| Mean | $1.70 \times 10^{4}$ | $7.03 \times 10^{8}$ | $2.18 \times 10^{5}$ | $4.97 \times 10^{4}$ | 32000 | 5000 | 166 |
| SD | 210 | $3.21 \times 10^{6}$ | $1.14 \times 10^{3}$ | 180 | 700 | 340 | 13.4 |
| CV (\%) | 1.2 | 0.46 | 0.53 | 0.36 | 2.17 | 8.09 | 10 |
| C1-1828 | $1.52 \times 10^{4}$ | $6.46 \times 10^{8}$ | $2.83 \times 10^{5}$ | $4.43 \times 10^{4}$ |  |  |  |
| C1-2438 | $1.52 \times 10^{4}$ | $6.36 \times 10^{8}$ | $2.74 \times 10^{5}$ | $4.27 \times 10^{4}$ |  |  |  |
| C1-2844 | $1.49 \times 10^{4}$ | $6.34 \times 10^{8}$ | $2.78 \times 10^{5}$ | $4.38 \times 10^{4}$ | 31600 | 4800 | 100 |
| C1-3454 | $1.52 \times 10^{4}$ | $6.43 \times 10^{8}$ | $2.76 \times 10^{5}$ | $4.27 \times 10^{4}$ |  |  |  |
| C1-4064 | $1.52 \times 10^{4}$ | $6.37 \times 10^{8}$ | $2.77 \times 10^{5}$ | $4.31 \times 10^{4}$ |  |  |  |
| Mean | $1.51 \times 10^{4}$ | $6.39 \times 10^{8}$ | $2.78 \times 10^{5}$ | $4.32 \times 10^{4}$ | 34060 | 5100 | 124 |
| SD | 140 | $4.48 \times 10^{6}$ | $3.58 \times 10^{3}$ | 530 | 1100 | 140 | 10.0 |
| CV (\%) | 0.91 | 0.76 | 1.29 | 1.24 | 3.50 | 2.91 | 10 |

## Table 4

$r_{\mathrm{e}}$ and $r_{\mathrm{t}}$ for the I-section.

| ${ }^{1}$ Specimen | TF (Top Flange) |  | SC (Shear Centre) |  | BF (Bottom Flange) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ${ }^{2} r_{\mathrm{e}}(\mathbf{k N} . \mathrm{m})$ | $\begin{aligned} & { }^{3} r_{\mathrm{t}} \\ & (\mathrm{kN} . \mathrm{m}) \end{aligned}$ | ${ }^{4} r_{\mathrm{e}}(\mathbf{k N} . \mathrm{m})$ | $\begin{aligned} & \hline{ }^{5} r_{\mathrm{t}} \\ & (\mathbf{k N} . \mathrm{m}) \\ & \hline \end{aligned}$ | $\begin{aligned} & { }^{6} r_{\mathrm{e}} \\ & (\mathbf{k N} . \mathrm{m}) \end{aligned}$ | $r_{\text {t }}(\mathbf{k N} . \mathrm{m})$ |
| I-1828_EC1 | 1.73 | 1.23 | 2.80 | 1.85 | 4.17 | 2.71 |
| I-2438_EC1 | 1.26 | 0.89 | 1.77 | 1.27 | 2.40 | 1.79 |
| I-2844_EC1 | 1.17 | 0.78 | 1.49 | 1.07 | 1.84 | 1.46 |
| I-3454_EC1 | 0.93 | 0.65 | 1.11 | 0.85 | 1.39 | 1.12 |
| I-4064_EC1 | 0.73 | 0.55 | 0.91 | 0.70 | 1.13 | 0.89 |
| I-1828_EC2 | 2.87 | 1.87 |  | 3.18 | - | 4.82 |
| I-2438_EC2 | 2.03 | 1.32 | 2.76 | 2.14 | 3.68 | 3.34 |
| I-2844_EC2 | 1.49 | 1.15 | 2.30 | 1.78 | 3.19 | 2.71 |
| I-3454_EC2 | 1.27 | 0.95 | 1.74 | 1.40 | 2.27 | 2.04 |
| I-4064_EC2 | 1.05 | 0.81 | 1.36 | 1.14 | 1.71 | 1.60 |

## Table 5

$r_{\mathrm{e}}$ and $r_{\mathrm{t}}$ for the C 1 -section.

| ${ }^{1}$ Specimen | TF (Top Flange) |  | SC (Shear Centre) |  | BF (Bottom Flange) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & { }^{2} r_{\mathrm{e}} \\ & (\mathrm{kN} . \mathrm{m}) \end{aligned}$ | $\begin{aligned} & { }^{3} r_{\mathrm{t}} \\ & (\mathbf{k N} . \mathrm{m}) \end{aligned}$ | $\begin{aligned} & { }^{4} r_{\mathrm{e}} \\ & (\mathrm{kN} . \mathrm{m}) \end{aligned}$ | $\begin{aligned} & { }^{5} r_{\mathrm{t}} \\ & (\mathbf{k N} . \mathrm{m}) \end{aligned}$ | $\begin{aligned} & { }^{6} r_{\mathrm{e}} \\ & (\mathrm{kN} . \mathrm{m}) \end{aligned}$ | $\begin{aligned} & { }^{7} r_{\mathrm{t}} \\ & (\mathbf{k N} . \mathrm{m}) \end{aligned}$ |
| C1-1828_EC1 | 1.51 | 1.27 | 2.53 | 1.96 | 3.46 | 2.84 |
| C1-2438_EC1 | 1.11 | 0.94 | 1.85 | 1.37 | 2.58 | 1.97 |
| C1-2844_EC1 | 1.03 | 0.81 | 1.39 | 1.16 | 1.88 | 1.63 |
| C1-3454_EC1 | 0.86 | 0.69 | 1.29 | 0 | 1.52 | 1.26 |
| C1-4064_EC1 | 0.66 | 0.60 | 0.81 | 0.79 | 1.13 | 1.03 |
| C1-1828_EC2 | 2.29 | 1.84 | $3.86$ | 3.06 | 5.80 | 3.99 |
| C1-2438_EC2 | 2.00 | 1.34 | 3.00 | 2.21 | 4.46 | 3.23 |
| C1-2844_EC2 | 1.33 | 1.16 | 2.48 | 1.88 | 3.05 | 2.82 |
| C1-3454_EC2 | 1.26 | 0.99 | 1.74 | 1.50 | - | 2.21 |
| C1-4064_EC2 | 1.03 | 0.87 | 1.28 | 1.26 | 1.62 | 1.80 |

## Table 6

$\delta_{i}$ and $\Delta_{i}$ for I-section.

| 1 Specimen | TF (Top Flange) |  | SC (Shear centre) |  | BF (Bottom Flange) |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | ${ }^{2} \delta_{i}$ | ${ }^{3} \Delta_{i}$ | ${ }^{4} \delta_{i}$ | ${ }^{5} \Delta_{i}$ | ${ }^{6} \delta_{i}$ | ${ }^{7} \Delta_{i}$ |
| I-1828_EC1 | 1.08 | -0.081 | 1.17 | -0.157 | 1.19 | -0.172 |
| I-2438_EC1 | 1.09 | -0.089 | 1.08 | -0.074 | 1.04 | -0.036 |
| I-2844_EC1 | 1.16 | -0.148 | 1.08 | -0.072 | 0.97 | 0.026 |
| I-3454_EC1 | 1.12 | -0.111 | 1.01 | -0.011 | 0.96 | 0.042 |
| I-4064_EC1 | 1.03 | -0.031 | 1.01 | -0.009 | 0.98 | 0.025 |
| I-1828_EC2 | 1.19 | -0.170 | - | - | - | - |
| I-2438_EC2 | 1.19 | -0.171 | 1.00 | 0.004 | 0.85 | 0.160 |
| I-2844_EC1 | 1.01 | -0.005 | 1.00 | 0.001 | 0.91 | 0.094 |
| I-3454_EC2 | 1.03 | -0.030 | 0.96 | 0.044 | 0.86 | 0.150 |
| I-4064_EC2 | 1.00 | 0.004 | 0.92 | 0.083 | 0.82 | 0.193 |

## Table 7

$\delta_{i}$ and $\Delta_{i}$ for C1-section.

| Beam | TF (Top Flange) |  | SC (Shear centre) |  | BF (Bottom Flange) |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | ${ }^{2} \delta_{i}$ | ${ }^{3} \Delta_{i}$ | ${ }^{4} \delta_{i}$ | ${ }^{5} \Delta_{i}$ | ${ }^{6} \delta_{i}$ | ${ }^{7} \Delta_{i}$ |
| C1-1828_EC1 | 0.94 | 0.065 | 1.01 | -0.013 | 0.96 | 0.045 |
| C1-2438_EC1 | 0.93 | 0.070 | 1.06 | -0.055 | 1.03 | -0.029 |
| C1-2844_EC1 | 1.00 | -0.001 | 0.95 | 0.056 | 0.91 | 0.098 |
| C1-3454_EC1 | 0.99 | 0.010 | 1.08 | -0.080 | 0.95 | 0.054 |
| C1-4064_EC1 | 0.87 | 0.140 | 0.81 | 0.206 | 0.86 | 0.148 |
| C1-1828_EC2 | 0.98 | 0.022 | 0.99 | 0.010 | 1.14 | -0.133 |
| C1-2438_EC2 | 1.17 | -0.157 | 1.06 | -0.063 | 1.09 | -0.082 |
| C1-2844_EC2 | 0.90 | 0.106 | 1.04 | -0.039 | 0.85 | 0.162 |
| C1-3454_EC2 | 1.00 | -0.002 | 0.91 | 0.098 | - | - |
| C1-4064_EC2 | 0.93 | 0.072 | 0.80 | 0.226 | 0.70 | 0.350 |

## Table 8

Calculation of partial factor $\gamma_{\mathrm{M}}$ for I-section.

| ${ }^{1}$ Specimen | ${ }^{2} Q_{\mathrm{rt}}=V_{\mathrm{rt}}$ | ${ }^{3} Q_{\delta}=Q$ | ${ }^{4} \alpha_{\mathrm{rt}}$ | ${ }^{5} r_{\mathrm{k}}$ | ${ }^{6} r_{\text {d }}$ | ${ }^{7} \gamma_{\mathrm{M}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I-1828_TF_EC1 | 0.0010 |  | 0.0095 | 1.41 | 1.22 | 1.156 |
| I-1828_SC_EC1 | 0.0007 |  | 0.0066 | 2.08 | 1.81 | 1.149 |
| I-1828_BF_EC1 | 0.0006 |  | 0.0057 | 3.05 | 2.64 | 1.155 |
| I-2438_TF_EC1 | 0.0012 |  | 0.0121 | 1.04 | 0.90 | 1.156 |
| I-2438_SC_EC1 | 0.0008 |  | 0.0080 | 1.45 | 1.26 | 1.151 |
| I-2438_BF_EC1 | 0.0006 |  | 0.0056 | 2.02 | 1.75 | 1.154 |
| I-2844_TF_EC1 | 0.0014 |  | 0.0140 | 0.89 | 0.77 | 1.156 |
| I-2844_SC_EC1 | 0.0009 |  | 0.0093 | 1.21 | 1.05 | 1.152 |
| I-2844_BF_EC1 | 0.0006 |  | 0.0063 | 1.63 | 1.41 | 1.156 |
| I-3454_TF_EC1 | 0.0015 |  | 0.0153 | 0.74 | 0.64 | 1.156 |
| I-3454_SC_EC1 | 0.0011 |  | 0.0105 | 0.96 | 0.84 | 1.143 |
| I-3454_BF_EC1 | 0.0007 |  | 0.0071 | 1.26 | 1.09 | 1.156 |
| I-4064_TF_EC1 | 0.0016 |  | 0.0156 | 0.65 | 0.55 | 1.182 |
| I-4064_SC_EC1 | 0.0011 |  | 0.0110 | 0.81 | 0.70 | 1.157 |
| I-4064_BF_EC1 | 0.0008 |  | 0.0076 | 1.02 | 0.88 | 1.159 |
| I-1828_TF_EC2 | 0.0009 |  | 0.0091 | 2.15 | 1.85 | 1.162 |
| I-1828_SC_EC2 | 0.0008 |  | 0.0075 | 3.63 | 3.14 | 1.156 |
| I-1828_BF_EC2 | 0.0026 |  | 0.0259 | 5.64 | 4.88 | 1.156 |
| I-2438_TF_EC2 | 0.0013 |  | 0.0125 | 1.54 | 1.33 | 1.158 |
| I-2438_SC_EC2 | 0.0008 |  | 0.0075 | 2.46 | 2.13 | 1.155 |
| I-2438_BF_EC2 | 0.0007 |  | 0.0074 | 3.81 | 3.30 | 1.155 |
| I-2844_TF_EC2 | 0.0015 |  | 0.0149 | 1.32 | 1.14 | 1.158 |
| I-2844_SC_EC2 | 0.0009 |  | 0.0088 | 2.02 | 1.75 | 1.154 |
| I-2844_BF_EC2 | 0.0006 |  | 0.0061 | 3.03 | 2.63 | 1.152 |
| I-3454_TF_EC2 | 0.0017 |  | 0.0166 | 1.10 | 0.95 | 1.158 |
| I-3454_SC_EC2 | 0.0010 |  | 0.0101 | 1.60 | 1.38 | 1.159 |
| I-3454_BF_EC2 | 0.0006 |  | 0.0062 | 2.29 | 1.98 | 1.157 |
| I-4064_TF_EC2 | 0.0017 |  | 0.0170 | 0.95 | 0.83 | 1.145 |
| I-4064_SC_EC2 | 0.0011 |  | 0.0107 | 1.32 | 1.14 | 1.158 |
| I-4064_BF_EC2 | 0.0007 |  | 0.0066 | 1.82 | 1.58 | 1.152 |

## Table 9

Calculation of partial factor $\gamma_{\mathrm{M}}$ for C1-section.

| ${ }^{1}$ Specimen | ${ }^{2} Q_{\mathrm{rt}}=V_{\mathrm{rt}}$ | ${ }^{3} Q_{\delta}=Q$ | ${ }^{4} \alpha_{\mathrm{rt}}$ | ${ }^{5} r_{\mathrm{k}}$ | ${ }^{6} r_{\mathrm{d}}$ | ${ }^{7} \gamma_{\mathrm{M}}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| C1-1828_TF_EC1 | 0.0006 |  | 0.0055 | 1.35 | 1.16 | 1.164 |
| C1-1828_SC_EC1 | 0.0008 |  | 0.0074 | 2.11 | 1.81 | 1.166 |
| C1-1828_BF_EC1 | 0.0023 |  | 0.0206 | 3.13 | 2.68 | 1.168 |
| C1-2438_TF_EC1 | 0.0006 |  | 0.0049 | 1.01 | 0.86 | 1.174 |
| C1-2438_SC_EC1 | 0.0007 |  | 0.0060 | 1.49 | 1.28 | 1.164 |
| C1-2438_BF_EC1 | 0.0009 |  | 0.0082 | 2.17 | 1.86 | 1.167 |
| C1-2844_TF_EC1 | 0.0005 |  | 0.0048 | 0.87 | 0.75 | 1.160 |
| C1-2844_SC_EC1 | 0.0006 |  | 0.0058 | 1.25 | 1.07 | 1.168 |
| C1-2844_BF_EC1 | 0.0009 |  | 0.0076 | 1.77 | 1.51 | 1.172 |
| C1-3454_TF_EC1 | 0.0005 |  | 0.0048 | 0.73 | 0.63 | 1.159 |
| C1-3454_SC_EC1 | 0.0006 |  | 0.0055 | 1.00 | 0.86 | 1.163 |
| C1-3454_BF_EC1 | 0.0008 |  | 0.0069 | 1.37 | 1.17 | 1.171 |
| C1-4064_TF_EC1 | 0.0005 |  | 0.0048 | 0.64 | 0.54 | 1.185 |
| C1-4064_SC_EC1 | 0.0006 |  | 0.0053 | 0.84 | 0.72 | 1.167 |
| C1-4064_BF_EC1 | 0.0007 | 0.112 | 0.0065 | 1.11 | 0.95 | 1.168 |
| C1-1828_TF_EC2 | 0.0007 |  | 0.0060 | 1.98 | 1.69 | 1.172 |
| C1-1828_SC_EC2 | 0.0034 |  | 0.0303 | 3.41 | 2.91 | 1.172 |
| C1-1828_BF_EC2 | 0.0069 |  | 0.0615 | 4.67 | 3.99 | 1.170 |
| C1-2438_TF_EC2 | 0.0006 |  | 0.0050 | 1.45 | 1.24 | 1.169 |
| C1-2438_SC_EC2 | 0.0009 | 0.0078 | 2.45 | 2.09 | 1.172 |  |
| C1-2438_BF_EC2 | 0.0047 | 0.0005 | 0.0007 |  | 0.0421 | 3.72 |






C1 section
( $120 \times 50 \times 6 \mathrm{~mm}$ )


C2 section
( $100 \times 50 \times 6 \mathrm{~mm}$ )


C3 section
$(100 \times 30 \times 6 \mathrm{~mm})$












[^0]:    * Corresponding author. Tel: +852 27666013

    Email: thuy.nguyen@hcmutrans.edu.vn (T.T.Nguyen); tak-ming.chan@ polyu.edu.hk (T.M.Chan); J.T.Mottram@awrwick.ac.uk (J.T.Mottram).

