
This is a repository copy of A Binary Neural Decision Table Classifier.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/89520/

Version: Submitted Version

Conference or Workshop Item:
Hodge, Victoria Jane orcid.org/0000-0002-2469-0224, O'Keefe, Simon orcid.org/0000-
0001-5957-2474 and Austin, Jim orcid.org/0000-0001-5762-8614 (2004) A Binary Neural 
Decision Table Classifier. In: Proceedings Brain Inspired Cognitive Systems 2004 (BICS 
2004), 29 Aug - 01 Sep 2004. 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



 

 

A Binary Neural Decision Table Classifier 
 

Victoria J. Hodge  Simon O’Keefe  Jim Austin 
        vicky@cs.york.ac.uk          sok@cs.york.ac.uk  austin@cs.york.ac.uk 

 

Advanced Computer Architecture Group 

Department of Computer Science 

University of York, York, YO10 5DD, UK 

 

Abstract 
In this paper, we introduce a neural network-based 

decision table algorithm.  We focus on the 

implementation details of the decision table algorithm 

when it is constructed using the neural network.  

Decision tables are simple supervised classifiers which, 

Kohavi demonstrated, can outperform state-of-the-art 

classifiers such as C4.5.  We couple this power with the 

efficiency and flexibility of a binary associative-memory 

neural network. We demonstrate how the binary 

associative-memory neural network can form the 

decision table index to map between attribute values and 

data records.  We also show how two attribute selection 

algorithms, which may be used to pre-select the 

attributes for the decision table, can easily be 

implemented within the binary associative-memory 

neural framework.  The first attribute selector uses 

mutual information between attributes and classes to 

select the attributes that classify best.  The second 

attribute selector uses a probabilistic approach to 

evaluate randomly selected attribute subsets. 

Introduction 

Supervised classifier algorithms aim to predict the class 

of an unseen data item.  They induce a hypothesis using 

the training data to map inputs onto classified outputs 

(decisions).  This hypothesis should then correctly 

classify previously unseen data items.  There is a wide 

variety of classifiers including: decision trees, neural 

networks, Bayesian classifiers, Support Vector Machines 

and k-nearest neighbour (k-NN). 

 

We have previously developed a k-NN classifier[HA04] 

using an associative memory neural network called the 

Advanced Uncertain Reasoning Architecture 

(AURA)[A95].  In this paper, we extend the approach to 

encompass a decision table supervised classifier, 

coupling the classification power of the decision table 

with the speed and storage efficiency of an associative 

memory neural network 

 

The decision table has two components: a schema and a 

body.  The schema is the set of attributes pre-selected to 

represent the data and is usually a subset of the data’s 

total attributes.  There are various approaches for 

attribute selection; we discuss two later in this paper.  

The body is essentially a table of labelled data items 

where the attributes specified by the schema form the 

rows and the decisions (classifications) form the 

columns.  Each column is mutually exclusive and 

represents an equivalence set of records as defined by 

the attributes of the schema. Kohavi [K95] uses a 

Decision Table Majority (DTM) for classification 

whereby if an unseen item exactly matches a stored 

item in the body then the decision table assigns the 

stored item’s decision to the unseen item.  However, if 

there is no exact match then the decision table assigns 

the majority class across all items to the unseen item.  

Our decision table approach implements both DTM 

and proximity-based matching as implemented in our 

k-NN classifier whereby if there is no exact match then 

the decision table assigns the class of the nearest stored 

item to the unseen item. 

RAM-based Neural Networks 

The AURA C++ library provides a range of classes and 

methods for rapid partial matching of large data sets 

[A95].  In this paper we define partial matching as the 

retrieval of those stored records that match some or all 

of the input record.  In our AURA decision table, we 

use best partial matching to retrieve the records that are 

the top matches.   

 

AURA belongs to a class of neural networks called 

Random Access Memory (RAM-based) networks.  

RAM-based networks were first developed by Bledsoe 

& Browning [BB59] and Aleksander & Albrow 

[AA68] for pattern recognition and led to the WISARD 

pattern recognition machine  [ATB84].  See also [A98] 

for a detailed compilation of RAM methods.   

 

RAMs are founded on the twin principles of matrices 

(usually called Correlation Matrix Memories (CMMs)) 

and n-tupling. Each matrix accepts m inputs as a vector 

or tuple addressing m rows and n outputs as a vector 

addressing n columns of the matrix.  During the 

training phase, the matrix weights M
lk are incremented 

if both the input row Ij
l
 and output column  Oj

k
 are set.  



 

 

Therefore, training is a single epoch process with one 

training step for each input-output association preserving 

the high speed.  During recall, the presentation of vector 

Ij elicits the recall of vector Oj as vector Ij contains all of 

the addressing information necessary to access and 

retrieve vector Oj. This training and recall makes RAMs 

computationally simple and transparent with well-

understood properties. RAMs are also able to partially 

match records during retrieval.  Therefore, they can 

rapidly match records that are close to the input but do 

not match exactly.   

AURA 

AURA has been used in an information retrieval 

system[H01], high speed rule matching 

systems[AKL95], 3-D structure matching[TA00] and 

trademark searching[AA98].  AURA techniques have 

demonstrated superior performance with respect to speed 

compared to conventional data indexing approaches 

[HA01] such as hashing and inverted file lists which may 

be used for a decision table body.  AURA trains 20 times 

faster than an inverted file list and 16 times faster than a 

hashing algorithm.  It is up to 24 times faster than the 

inverted file list for recall and up to 14 times faster than 

the hashing algorithm.  AURA techniques have 

demonstrated superior speed and accuracy compared to 

conventional neural classifiers [ZAK99].   

 

The rapid training, computational simplicity, network 

transparency and partial match capability of RAM 

networks coupled with our robust quantisation and 

encoding method to map numeric attributes from the data 

set onto binary vectors for training and recall make 

AURA ideal to use as the basis of an efficient 

implementation.  A more formal definition of AURA, its 

components and methods now follows. 

 

Correlation Matrix Memories (CMMs) are the building 

blocks for AURA systems.  AURA uses binary input I 

and output O vectors to train records in to the CMM and 

recall sets of matching records from the CMM as in 

Equation 1 and Figure 1. 

Equation 1    

ORlogicaliswhereall ∨∨ ×= T
jjj OICMM  

 
Training is a single epoch process with one training step 

for each input-output association (each Ij x O
T

j in 

Equation 1) which equates to one step for each record in 

the data set.  

 

 
Figure 1 Showing a CMM with input vector i and 

output vector o.  Four matrix locations are set 

following training i0o0, i2on-2, im-1o0 and imon. 

For the methodology described in this paper, we: 

• Train the data set into the CMM (decision 

table body CMM) which indexes all records in 

the data set and allows them to be matched.   

• Select the attributes for the schema using 

schema CMMs.  We describe two selection 

algorithms.  One uses a single CMM and the 

second algorithm uses two coupled CMMs. 

• Match and classify unseen items using the 

trained decision table.    

Data 

For the data sets:  

• Symbolic and numerical unordered attributes 

are enumerated and each separate token maps 

onto an integer (Text � Integer) which 

identifies the bit to set within the vector.  For 

example, a SEX_TYPE attribute would map 

as, (F � 0) and (M � 1).  

Kohavi’s DTM methodology is principally aimed at 

symbolic attributes but the AURA decision table can 

handle continuous numeric attributes.   

• Any real-valued or ordered numeric attributes, 

are quantised (mapped to discrete bins) and 

each individual bin maps onto an integer 

which identifies the bit to set in the input 

vector. 

A range of input values for attribute f map onto each 

bin which in turn maps to a unique integer to index the 

vector as in Equation 2.  The range of attribute values 

mapping to each bin is equal. 

Equation 2 

ffkfkfi offsetIntegerbins +→ℜ �  where 

( ))(card)(card)( fff binsIntegerFVi ≡∧∈   

In Equation 2, offsetf is a cumulative integer offset 

within the binary vector for each attribute f and 



 

 

offsetf+1 = offsetf +nBinsf, where nBinsf  is the number of 

bins for attribute f, 

card is the cardinality, 

FVf is the set of attribute values for attribute f, 

� is a many-to-one mapping and �  is a one-to-one 

mapping. 

 

This quantisation (binning) approach aims to subdivide 

the attributes uniformly across the range of each 

attribute.  The range of values is divided into b bins such 

that each bin is of equal width.  The equal widths of the 

bins prevent distortion of the inter-bin distances.  

 

Once the bins and integer mappings have been 

determined, we map the records onto binary vectors. 

Each attribute maps onto a consecutive section of bits in 

the binary vector.   

  For each record in the data set  
    For each attribute  
      Calculate bin for attribute value; 

      Set bit in vector as in Equation 2;  

Each binary vector represents a record from the data set  

Body Training 

The decision table body is an index of all contingencies 

and the decision to take for each. Input vectors represent 

quantised records and form an input Ij to the CMM 

during training. The CMM associates the input with a 

unique output vector OT
j during training that represents 

an equivalence set of records.  This produces a CMM 

where the rows represent the attributes and their 

respective values and the columns represent equivalence 

sets of records (where equivalence is determined by the 

attributes designated by the schema).  We use an array of 

linked lists to store the equivalence sets of records and a 

second array to store the counts of each class for the 

equivalence set as a histogram.  The algorithm is:  

  1) Input vector to CMM;  
  2) Threshold at value nF; 
  3)   If exact match  
  4)     Add the record to column list; 
  5)     Add class to histogram; 
  6)   Else train record as next column;  

nF  is the number of attributes.  Steps 1 and 2 are 

equivalent to testing for an exact match during body 

recall as described next.  Figure 3 shows a trained CMM 

where each row is an attribute value and each column 

represents an equivalence set. 

Body Recall 

The decision table classifies by finding the set of 

matching records.  To recall the matches for a query 

record, we firstly produce an input vector by quantising 

the target values for each attribute to identify the bins and 

thus CMM rows to activate as in Equation 2.  To retrieve 

the matching records for a particular record, AURA 

effectively calculates the dot product of the input 

vector Ik and the CMM, computing a positive integer-

valued output vector Ok (the summed output vector) as 

in Equation 3 and Figure 2 & Figure 3.  

 

Equation 3 CMMIO •= k

T

k  

 

The AURA technique thresholds the summed output 
T
k

O  to produce a binary output vector as in Figure 2 for 

exact match and Figure 3 for a partial match. 

 

 

Figure 2 Diagram showing the CMM recall for an 

exact match.  The left hand column is the input 

vector.  The dot is the value for each attribute (a 

value for an unordered attribute or a bin for an 

ordered numeric attribute).  AURA multiplies the 

input vector by the values in the matrix columns, 

using the dot product, sums each column to produce 

the summed output vector and then thresholds this 

vector at a value equivalent to the number of 

attributes in the input (6 here) to produce the 

thresholded attribute vector which indicates the 

matching column (the middle column here). 

For exact match (as in Kohavi’s DTM), we use the 

Willshaw threshold.  It sets a bit in the thresholded 

output vector for every location in the summed output 

vector that has a value higher than a threshold value. 

The threshold value is set to the number of attributes 

nF for an exact match.  If there is an exact match there 

will be a bit set in the thresholded output vector 

indicating the matching equivalence set.   It is then 

simply a case of looking up the class histogram for this 

equivalence set in the stored array and classifying the 

record by the majority class in the histogram.  If there 

are no bits set in the thresholded output vector then we 



 

 

classify the unseen record according to the majority class 

across the data set. 
            

 

Figure 3 Diagram showing the CMM recall for a 

partial match.  The left hand column is the input 

vector.  The dot is the value for each attribute (a value 

for an unordered attribute or a bin for an ordered 

numeric attribute).  AURA multiplies the input vector 

by the values in the matrix columns, using the dot 

product, sums each column to produce the summed 

output vector and then thresholds this vector at a 

value equivalent to the highest value in the vector (5 

here) to produce the thresholded attribute vector 

which indicates the matching column (the middle 

column here). 

For partial matching, we use the L-Max threshold. L-

Max thresholding essentially retrieves at least L top 

matches.  It sets a bit in the thresholded output vector for 

every location in the summed output vector that has a 

value higher than a threshold value. The AURA C++ 

library automatically sets the threshold value to the 

highest integer value that will retrieve at least L matches.  

For the AURA decision table, L is set to the value of 1.  

There will be a bit set in the thresholded output vector 

indicating the best matching equivalence set.   It is then 

simply a case of looking up the class histogram for this 

equivalence set in the stored array and classifying the 

unseen record as the majority class.  We note there may 

be more than one best matching equivalence set so the 

majority class across all best matching sets will need to 

be calculated. 

Schema Training 

In the decision table body CMM, the rows represented 

attribute values and the columns represented 

equivalence sets.  In the schema CMM used for the 

first attribute selection algorithm, the rows represent 

attribute values and the columns represent individual 

records.  For our second attribute selection algorithm, 

we use two CMMs where the first CMM indexes the 

second CMM.  In the first CMM1, the rows represent 

records and the columns represent attribute values.  In 

the second CMM2, the rows represent attribute values 

and the columns represent the records.  This second 

CMM2 is therefore identical to the CMM used for the 

first attribute selection algorithm 

 

During training for the first attribute selection 

algorithm and CMM2 of the second attribute selection 

algorithm, the input vectors Ij represent the attribute 

values in the data records.  The CMM associates the 

input with a unique output vector OT
j.  Each output 

vector is orthogonal with a single bit set corresponding 

to the record’s position in the data set, the first record 

has the first bit set in the output vector, the second and 

so on.  During training for CMM1, the records 

represent the input vectors Ij with a single bit set and 

the output vectors O
T

j represent the attribute values in 

the data records.   The CMM training process is given 

in Equation 1. 

Schema Attribute Selection 

As with Kohavi, we assume that all records are to be 

used in the body and during attribute selection.   

 

There are two fundamental approaches to attribute 

selection which are used in classification: a filter 

approach that selects the optimal set of attributes 

independently of the classifier algorithm and the 

wrapper approach that selects attributes to optimise 

classification using the algorithm.  We examine two 

filter approaches which are more flexible than wrapper 

approaches as they are not directly coupled to the 

classification algorithm.   

 

For a data set with N attributes there are O(N
M

) 

possible combinations of M attributes which is 

intractable to search exhaustively.  In the following: we 

use one filter approach (mutual information attribute 

selection) that examines attributes on an individual 

basis and another probabilistic filter approach 

(probabilistic Las Vegas algorithm) that examines 

randomly selected subsets of attributes. 

Mutual Information Attribute Selection  

Wettscherek [W94] describes a mutual information 

attribute selection algorithm which calculates the 



 

 

mutual information between class C and each attribute Fj. 

The mutual information between two attributes is “the 

reduction in uncertainty concerning the possible values 

of one attribute that is obtained when the value of the 

other attribute is determined”.  

 

For unordered attributes, nFV is the number of distinct 

attribute values (fi) for attribute Fj and nClasses the 

number of classes (C): 

Equation 4 

��
==

=•=

=∧=
•=∧==

nClasses

c i

i
nFV

i
pp

p
pI

1 j

j
ij

1

j
)fF()cC(

)fFcC(
log)fFcC()FC,(  

For ordered numeric attributes, the technique computes 

the mutual information between a discrete random 

variable (class) and a continuous random variable 

(attribute).  It estimates the probability function of the 

attributes using density estimation.  We assume attribute 

Fj has density f(x) and the joint density of C and Fj is 

f(x,y).   

Then the mutual information is: 

Equation 5 

dx
pxf

xf
xfI

nClasses

cx

��
=

=•

=
•==

1

j
)cC()(

)cC,(
log)cC,()FC,(  

Equation 5 requires an estimate of the density function 

f(x) and the joint density function f(x, C=c).  To 

approximate f(x) and f(x, C=c), we utilise the binning to 

represent the density which is analogous to the 

Trapezium Rule for using the areas of slices (trapezia) to 

represent the area under the graph for integration.  We 

use the bins to represent strips of the probability density 

function and count the number of records mapping into 

each bin to estimate the density. 

 

In AURA, for unordered data, the mutual information is 

given by Equation 6: 

Equation 6 

��
�
�
�

�

�

��
�
�
�

�

�

•

∧
•

•

∧
•= ��

==

n

nRowf

n

nClass

nRowf

BVcBVfn

n

nRowf

nRowf

BVcBVfn

n

nRowf
I

ic

i

ii

i

ii

nClasses

c

nRowsFV

i

)(

log

)(
)FC,(

11

j

 

Where nRowsFV is the number of rows in the CMM for 

attribute Fj, n is the number of records in the data set,  

nRowfi is the number of bits set in row fi of the CMM 

(the number of records with attribute value fi), BVfi is a 

binary vector (CMM row) for fi, BVc is a binary vector 

with one bit set for each record in class c,  n(BVfi∧BVc) 

is a count of the set bits when BVc is logically anded 

with BVfi and nClassc is the number of records in class 

c. 

 

In AURA, for real/discrete ordered numeric attributes, 

the mutual information is given by  Equation 7: 

Equation 7 

�
�
�
�
�

�

�

�
�
�
�
�

�

�

•

∧
•

•

∧
•= ��

==

n

nRowb

n

nClass

nRowb

BVcBVbn

n

nRowb

nRowb

BVcBVbn

n

nRowb
I

ic

i

ii

i

ii

nClasses

c

nB

i

)(

log

)(
)FC,(

11

j

 

Where nB is the number of bins in the CMM for 

attribute Fj, n is the number of records in the data set, 

nRowbi is the number of bits set in row bi of the CMM 

(the number of records that map to bin bi),  BVbi is a 

binary vector (CMM row) for fi, BVc is a binary vector 

with one bit set for each record in class c,   

n(BVfi∧BVc) is a count of the set bits when BVc is 

logically ANDed with BVbi and nClassc is the number 

of records in class c. 

 

The technique assumes independence of attributes and 

ignores missing values.  It is also the user’s prerogative 

to determine the number of attributes to select. 

Probabilistic Las Vegas Algorithm  

Liu & Setiono [LS96] introduced a probabilistic Las 

Vegas algorithm which uses random search and 

inconsistency to evaluate attribute subsets.  For each 

equivalence set of records (where the records match 

according to the attributes designated in the schema), 

consistency is defined as the number of matching 

records minus the largest number of matching records 

in any one class.  The inconsistency scores are summed 

across all equivalence sets to produce an inconsistency 

score for the particular attribute selection.   

 

The technique uses random search to select attributes 

as random search is less susceptible to local minima 

than heuristic searches such as forward search or 

backward search.  Forward search works by greedily 

adding attributes to a subset of selected attributes until 

some termination condition is met whereby adding new 

attributes to the subset does not increase the 

discriminatory power of the subset above a pre-

specified threshold value.   Backward search works by 

greedily removing attributes from an initial set of all 



 

 

attributes until some termination condition is met 

whereby removing an attribute from the subset decreases 

the discriminatory power of the subset above a pre-

specified threshold.  A poor attribute choice at the 

beginning of a forward or backward search will adversely 

effect the final selection whereas a random search will 

not rely on any initial choices. 

 

Liu and Setiono defined their algorithm as: 

1)   nF
best

 = N; 
2)   For j = 1 to MAX_TRIES 
3)     S = randomAttributeSet(seed);  

4)     nF = numberOfAttributes(S); 
5)     If(nF < nF

best
) 

6)       If(InconCheck(S,D) < γ) 
7)         S

best
 = S; nF

best
 = nF; 

8)   End for 

Where D is the dataset, N the number of attributes and γ 
the permissible inconsistency score.  Liu & Setiono 

recommend setting MAX_TRIES to 77xN
5
. 

 

Figure 4 Showing the two CMM combination we use 

for Liu & Setiono’s algorithm.  In the first CMM 

(CMM1), the records index the rows (one row per 

record) and the attribute values index the columns.  

The outputs from the CMM (matching attribute 

values) feed straight into the second CMM(CMM2),  

where the attribute values index the rows and the 

records index the columns (one column per record). 

Liu and Setiono’s algorithm may be calculated simply 

using the AURA schema CMMs.  We need to use two 

linked CMMs for the calculation as in Figure 4.  We 

rotate the schema CMM (CMM1)
 
through 90º.

 
CMM1’s 

rows index the records and CMM1’s columns index the 

attribute values.  If we feed the outputs from CMM1 (the 

activated attribute values) into CMM2 then we can 

calculate the inconsistency scores easily.  Line 6 of Liu 

and Setiono’s algorithm listed above then becomes: 

   

  Place all records in a queue Q; 
  While !empty(Q) 
    Remove R the head record from Q; 
    Activate row R in CMM1; 
    Threshold CMM1 at value 1; 
    Feed CMM1 output into CMM2; 
    Threshold CMM2 at value nF

best;
;    

    B = bits set in thresholded_vector; 
    Max = cardinality of largest class; 
    InconCheck(S,D) += B-Max; 
  End while 
 

The queue effectively holds the unprocessed records.  

By activating the head record’s row in CMM1 and 

Willshaw thresholding at value 1 (denoting all active 

columns (i.e., all attribute values in the record)), we 

can determine that record’s attribute values.  When 

these values are fed into CMM2, we effectively activate 

all records matching these values.  This approach is the 

most efficient as the CMMs store all attributes and 

their values but we only focus on those attributes under 

investigation during each iteration of the algorithm.  

An alternative approach would be to just store those 

attributes selected in the random subset each time we 

execute line 6 of Liu and Setiono’s algorithm but the 

CMMs would need to be retrained many times (up to 

77xN
5
). 

 

After thresholding CMM2 at the value nFbest (the 

number of attributes), we retrieve the equivalence set 

of matching records where equivalence is specified by 

the current attribute selection in the algorithm {S}.  It 

is then simply a matter of counting the number of 

matching records (the number of bits set in the 

thresholded output vector), calculating the number of 

these matching records in each class, identifying the 

largest class membership and subtracting the largest 

class membership from the number of records.   

 

The algorithm has now processed all of the records in 

this equivalence set so it removes these records from 

the queue.  If we repeat this process for each record at 

the head of the queue until the queue is empty, we will 

have processed all equivalence sets.  We can then 

calculate InconCheck(S,D) for this attribute selection 

and compare it with the threshold value as in line 6 of 

Liu and Setiono’s algorithm. 

 

Once we have iterated through Liu and Setiono’s 

algorithm MAX_TRIES times then we have selected 

an “optimal” attribute subset.  We have not tried all 

combinations of all attributes as this is intractable for a 

large data set.  However, we have made a sufficient 

approximation. 

 



 

 

Conclusion 

In this paper we have introduced a binary neural decision 

table classifier.  The AURA neural architecture, which 

underpins the classifier, has demonstrated superior 

training and recall speed compared to conventional 

indexing approaches such as hashing or inverted file lists 

which may be used for a decision table.  AURA trains 20 

times faster than an inverted file list and 16 times faster 

than a hashing algorithm.  It is up to 24 times faster than 

the inverted file list for recall and up to 14 times faster 

than the hashing algorithm.  In this paper, we described 

the implementation details of the technique.  Our next 

step is to evaluate the AURA decision table for speed and 

memory usage against a conventional decision table 

implementation. 

 

We have shown how two quite different attribute 

selection approaches may be implemented within the 

AURA decision table framework.  We described a 

mutual information attribute selector that examines 

attributes on an individual basis and scores them 

according to their class discrimination ability.  We also 

demonstrated a probabilistic Las Vegas algorithm which 

uses random search and inconsistency to evaluate 

attribute subsets. 

 

We feel the technique is flexible and easily extended to 

other attribute selection algorithms.  

Acknowledgement 

This work was supported by EPSRC Grant number 

GR/R55101/01. 

 

References 
 [AA68]

  Aleksander, I., & Albrow, R.C. Pattern 

recognition with Adaptive Logic Elements.  IEE 

Conference on Pattern Recognition, pp 68-74, 

1968. 
[ATB84]

 Aleksander, I., Thomas, W.V., & Bowden, P.A. 

Wisard: A radical step forward in image 

recognition.  Sensor Review, pp 120-124, 1984. 
[AA98]

  Alwis, S., & Austin, J.  A Novel Architecture for 

Trademark Image Retrieval Systems.  In, 

Electronic Workshops in Computing, 1998. 
[A95]

 Austin, J.  Distributed Associative Memories for 

High Speed Symbolic Reasoning.  In, IJCAI 

Working Notes of Workshop on Connectionist-

Symbolic Integration: From Unified to Hybrid 

Approaches, pp 87-93, 1995. 
 [A98]

    Austin, J. RAM-based Neural Networks, 

Progress in Neural Processing 9, Singapore: 

World Scientific Pub. Co., 1998. 

 
[AKL95]

 Austin, J., Kennedy, J., & Lees, K.  A Neural 

Architecture for Fast Rule Matching.  In, 

Artificial Neural Networks and Expert Systems 

Conference (ANNES’95), Dunedin, New 

Zealand, 1995. 
[BB59]

   Bledsoe, W.W., & Browning, I. Pattern 

recognition and Reading by Machine. In, 

Proceedings of Eastern Joint Computer 

Conference, pp 225-231, 1959. 
[H01]

  Hodge, V., Integrating Information Retrieval 

& Neural Networks, PhD Thesis,Department of 

Computer Science, The University of York, 

2001. 
[HA01]

  Hodge, V. &  Austin, J.  An Evaluation of 

Standard Retrieval Algorithms and a Binary 

Neural Approach. Neural Networks 14(3), pp. 

287-303, Elsevier, 2001. 
 [HA04]

  Hodge, V. &  Austin, J.  A High Performance 

k-NN Approach Using Binary Neural 

Networks. Neural Networks 17(3), pp. 441-458, 

Elsevier, 2004. 
[K95]

  Kohavi, R.. The Power of Decision Tables.  In, 

Procs of Eurpean Confernce on Machine 

Learning.  LNAI 914, Springer-Verlag, pp174-

189, 1995. 
[LS96]

  Liu, H., and Setiono, R.  A probabilistic 

approach to feature selection - A filter 

solution. In, 13th International Conference on 

Machine Learning (ICML'96),  pp. 319-327, 

1996. 
[TA00]

  Turner, A., & Austin, J. Performance 

Evaluation of a fast Chemical Structure 

Matching Method using Distributed Neural 
Relaxation.  In, 4

th
 International conference on 

Knowledge Based Intelligent Engineering 

Systems, 2000. 
[W94]

  Wettscherek, D..  A Study of Distance-Based 

Machine Learning Algorithms.  PhD Thesis, 

Dept of Comp. Sci., Oregon State University, 

1994. 
[ZAK99]

 Zhou, P., Austin, J. & Kennedy, J. A High 

Performance k-NN Classifier Using a Binary 

Correlation Matrix Memory, Advances in 

Neural Information Processing Systems, Vol. 

11, 1999. 

 

 

 


