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 Eliciting Perceptual Ground Truth for Image 
Segmentation. 

Victoria Hodge, John Eakins and Jim Austin. 
Department of Computer Science, 

University of York 
York, UK 

Abstract 
In this paper, we investigate human visual perception and establish a body 

of ground truth data elicited from human visual studies.  We aim to build 

on the formative work of Ren, Eakins and Briggs who produced an initial 

ground truth database.  Human subjects were asked to draw and rank their 

perceptions of the parts of a series of figurative images.  These rankings 

were then used to score the perceptions, identify the preferred human 

breakdowns and thus allow us to induce perceptual rules for human 

decomposition of figurative images.  The results suggest that the human 

breakdowns follow well-known perceptual principles in particular the 

Gestalt laws. 

1 Introduction 
We hypothesise that perception and thus segmentation varies from person to person 

and also varies with the domain of application (context).  This subjectivity is almost 

inevitable due to culture, education, expectation, domain of application, mood, age 

etc. but there must be a core set of commonalities across human judgements that we 

aim to distil out.  There is currently no comprehensive theory of human or 

computational image and shape segmentation. 

 

Our work forms part of the PROFI (Perceptually-Relevant Retrieval of Figurative 

Images) project1.  In PROFI, we aim to develop new techniques for the retrieval of 

figurative images (i.e. abstract trademarks and logos) from large databases. The 

techniques will be based on the extraction of perceptually relevant shape features and 

the matching of these features in the target image against features in the stored 

images, thereby overcoming many of the limitations of existing methods. This project 

aims to develop and evaluate new algorithms for: 

1. Perceptual segmentation of raw images, and grouping of shape elements. 

2. Matching of geometrical patterns representing shape features. 

3. Partial matching: fitting part of one shape with part of another. 

4. Indexing shape features in huge databases of figurative images. 

5. Indexing the relative spatial layout of shape features within these images. 

In this paper we focus on task 1. 

 

Existing systems, for example trademark search systems, attempt to match a target 

against stored images such as those shown in Figs. 1-3 in one of two ways: (a) 

comparing features generated from the images as a whole, or (b) matching features 

from individual parts of the images [E01].  

                                                 
1 PROFI web page: http://www.cs.uu.nl/profi/ 
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Fig. 1  Fig. 2 Fig. 3 

 

The principal difficulty in matching by parts is the selection of parts that accurately 

reflect the image's appearance to a human observer. In Fig. 1 this is reasonably clear 

(2 triangles and a circle). But in Fig. 2, should the central bars be matched as six 

individual components, or as two groups of three? And in Fig. 3, should matching be 

based on a circle and a triangle - neither of which are actually present in the image 

itself? These are the questions which this current research aims to answer.  

 

For present purposes, therefore, we are primarily interested in clarifying two aspects 

of human segmentation behaviour: the formation of intermediate-level groupings of 

image parts; and, the generation of perceived elements not explicitly present in the 

original image.   Our hypothesis is that these will allow us to identify the most salient 

image elements for matching more accurately than has hitherto been possible.  

 

The seminal paper describing image decomposition for this aspect of the PROFI 

project is Ren et al. [REB00].  The paper evaluates how human subjects segment 

trademark images into their perceived constituent parts.  The subjects initially break 

down trademark images into a set of components in as many ways as they see fit.  

These breakdowns are then fed into the second part of the experiment where subjects 

rank the breakdowns from part 1 by their perceived likelihood.  The paper’s main 

discoveries are that humans partition trademark images into disjoint regions most 

commonly, then into overlapping or nested regions and partition into separate line 

segments or groups least commonly.  The breakdowns generated are similar to the 

breakdowns obtained by applying the Gestalt principles [W23], [K63], [K79], [G72] 

of human perceptual organisation.  The authors [REB00] posit that perceptual line 

grouping, closed-region identification, texture processing, identifying familiar shapes 

(such as triangles, squares etc.) and uncovering ‘hidden’ image features (such as 

figure-ground reversal) are areas requiring further investigation.  We aim to augment 

and complement these results in the current paper and use the results in our 

development of a computerized image retrieval system. 

 

Dyson & Box [DB97] evaluated how humans sub-divide shapes by providing 3 

palettes of symbols.  The human subjects selected the border, main shape and any 

number of other shapes that they perceived to be present in target images.  The 

subjects were permitted to select a single border, single main shape but as many other 

shapes as they saw fit.  These shape descriptions were then fed into the database 

system and any stored matches retrieved.  The conclusion to be distilled from their 

investigation is that less is more.  If the subject described a shape with too many 

‘other shapes’ then in subsequent match tests, too many results will be retrieved.  The 

granularity of human shape descriptions also varies widely, for example, line and 

triangle versus arrow.  People use different terms to describe the same object, for 

example dot vs. circle, square vs. rectangle.  We may conclude that a core set of 

shapes must be stored in the palette that may not be subdivided or subsumed by other 
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 shapes in the palette; for example, arrow may be subdivided into triangle and line, 

square is subsumed by rectangle etc.  This will prevent ambiguity and prevent over-

description. 

 

Mojsilovi� et al. [MGR02] posit that human vision is a hierarchical process where 

vision initially detects the edges in an image and breaks the image into primitives 

(lines, bars, crossings or blobs).  These primitives are then grouped by perceptual 

significance into chains, curves, clusters, regions, or are grouped into built-in 

geometric elements (circles, squares or ellipses).  The primitives are arranged further 

using clustering, connectivity, symmetry, parallelism, similarity matching  and 

“textureness” to permit figure/ground separation.  They accomplish this by firstly 

performing edge-detection followed by texture segmentation, colour segmentation 

and foreground/background separation.  This divides the image into “meaningful 

regions”.  Each region is labelled with its size, position, neighbours, boundary, 

boundary curvature, texture, elementary shape (boundary, eccentricity, moments and 

symmetry features), mean colour and colour name.  Finally, the labelled regions are 

analysed and combined.  We posit that: “the power of a system stems from the 

combination technique and method”. 

 

Biederman et al. [BSBKF99] also propose that human image recognition works on 

various levels and that an agglomerative technique is used.  The most primitive 

‘basic’ level allows images to be named, e.g. chair, elephant, and kettle.  The next 

layer up, ‘subordinate’ layer, allows, e.g., African elephants to be distinguished from 

Asian elephants.   Their analyses suggest that these two levels employ geon structure 

descriptions, i.e., the decomposition of the images into components.  These geons 

have qualitative (‘non-accidental’) properties and relations that allow images to be 

matched.  The authors determine experimentally that qualitative properties have more 

influence on object matching (whether two images are deemed similar) than 

quantitative.  This agrees with the findings of Ferguson et al. [FAG96] (described 

later) regarding Gestalt symmetry.  Only when there are large differences in 

quantitative properties are they used.  The authors [BSBKF99] go on to posit a 

hierarchical architecture for image decomposition into geons and their properties and 

relations.  The hierarchy is similar to that of Mojsilovi� et al. described above.  The 

lowest layer represents edges, the second layer: vertices, axes and blobs (all 

conjunctions of edges), the third layer: properties of geons, the fourth and fifth layers: 

relations between geons, the sixth layer: a conjunction of the geon, its properties and 

its relations to other geons and layer seven: objects within the image (conjunctions of 

geons).  The paper does not describe how to obtain the second layer which is the 

critical layer; it assumes that the vertices, axes and blobs are provided. 

 

Further support for the hypothesis of human image segmentation stems from Jain & 

Vailaya [JV98] who propose that humans use semantics during shape matching and 

that semantically similar images may be visually very different.  They posit that an 

automated method needs to extract salient features from the image and to perceptually 

group features and elements.  Jain & Vailaya’s technique struggles to find bull’s head 

shapes as some are line-based and others filled-in.  By filling in all shapes to allow 

generalisation and remove unnecessary detail they improve the technique’s recall 

accuracy.  However, they feel that this loses information from within the image 

(within the holes).  Hence, further improvements would result from using image 

segments for matching rather than a generalised outline.  This would necessitate a 
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 robust and accurate segmentation algorithm.  This could be further extended to allow 

local feature matching. 

 

Vecera, Behrmann et al. [VBF01] investigated the role of attention and image parts 

and posited that their findings unite with theories of object recognition that suggest 

that objects are decomposed into parts prior to recognition.  Baker, Olson & 

Behrmann [BOB04] investigated the role of attention and perceptual grouping and 

identified that connectedness - one of the strongest cues for visual grouping - and 

attention both affect statistical learning.  Zemel et al. [ZBMB02] posit that grouping 

principles, familiarity and task instructions all effect object attention and they provide 

empirical evidence and citations to support these.  Through empirical investigation, 

they also identified that attention benefits are achieved for newly learned unfamiliar 

objects.  They propose that recent experience determines the perception of occluded 

shapes.  A framework is desired that allows for the rapid formation of novel objects 

and permits their influence on perceptual organisation.  They note that their results tie 

in more with the Brunswick school of perception which favours the influence of 

statistically learned rules more than purely stimulus-driven Gestalt principles.  

However, these two approaches are not dichotomous and even Wertheimer posited 

that experience modulates perceptual grouping. 

 

In current computational approaches, shapes may be segmented using either the 

shape’s boundary or the shape’s interior (fill area) but rarely both compared to the 

holistic viewpoint used by humans.  Humans are posited to decompose shapes using 

Gestalt principles where symmetry, complexity, structure and deformation are all 

important along with conceptual (semantic) information.  However, humans struggle 

with orientation and tend to regard similar shapes with differing orientations as more 

dissimilar then slightly dissimilar shapes with the same orientation.  Orientation is 

less problematic for computational methods than humans.   

 

Previous work on human segmentation analyses includes Hoffman & Richards 

[HR84] whose work was based on psychophysical observations and the notion that 

concavities arise when two convex parts are joined.  They hence posit the minima rule 

for image decomposition – divide the surface into parts at loci of negative minima of 

each principal curvature along its associated family of lines of curvature. They 

subdivide shapes using only the contours and not the shapes’ interiors and the 

approach does not always produce intuitive results [R93].  Hoffman & Richards 

identify open questions such as what qualitative and metrical descriptions should be 

applied to these parts?  How are the partitioning contours to be identified for 2-D 

images?  What spatial relations need to be identified?   

 

Other authors have investigated computational methods to mimic human image 

segmentation.  Much research from the computational geometry field has focussed on 

decomposing polygons into sub-shapes from a palette of shapes (such as triangle, 

convex, spiral or star-shaped).  However, these often do not match the decompositions 

extracted from human segmentation evaluations.   

 

Work on general image decomposition has built upon the formative work of Hoffman 

& Richards [HR84] described above and includes Siddiqi & Kimia [SK95] who 

examined psychophysical and ecological factors and proposed that shapes are 

segmented using limbs and necks. A limb is “a part-line going through a pair of 
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 negative curvature minima with co-circular boundary tangents on at least one side of 

the part-line”.  A neck is “a part-line which is a local minimum of the diameter of an 

inscribed circle”.  Singh et al. [SSH99] refute this proposal by providing counter-

example images where the proposed breakdown approach would fail for both limbs 

and necks.   

 

Singh et al. [SSH99] propose a similar technique – short-cut rule - that uses minimum 

distance and skeletal axes to determine segmentation lines between boundaries where 

at least one boundary is a concave vertex.  They augment their proposal with human 

experiments on crosses (+) and L-shapes that appear to validate it.  It builds on the 

seminal approach of Hoffman & Richards [HR84] which could identify boundary 

points for cuts but not the actual cuts.  Singh et al. posit that all things being equal, 

humans prefer to use the shortest cuts to segment shapes. Their approach can also 

identify cuts that are not necessarily between the local minima points of concave 

vertices but are in fact, between the most human-oriented cut points.   

 

The shapes in the paper are all very simple with usually only a single cut point or one 

ambiguous cut point.  Rosin [R00] also criticises the technique as it relies solely on 

boundary information and uses very little global shape information.  Singh et al. 

[SSH99] also use an arbitrary choice of skeletal axis (smoothed local symmetries) 

with no justification provided.  Rosin also provides counter-example images where 

perceptually relevant cuts need not cross an axis but may on occasions follow an axis 

and where the most perceptually relevant cut is not the shortest. The approach does 

not incorporate many Gestalt principles.  Singh et al. [SSH99] propose further 

investigation regarding local symmetry, good continuity (w.r.t. boundary), 

segmentations that yield fewer segments, and for some shapes: no segmentations and 

the orientation of the whole shape.  This approach seems more generic than Siddiqi & 

Kimia [SK95] but is only demonstrated on homogeneously shaded shapes.  Gestalt 

principles are intuitively complex and do not operate in isolation. Adding a texture to 

the shapes, for example, would surely affect where a human perceived the 

segmentation lines but this is not investigated; all shapes are homogeneously shaded.   

 

Rosin [R00] evaluates various techniques such as Siddiqi & Kimia [SK95], Singh et 

al. [SSH99] and concludes that the best approach is to use convexity augmented with 

saliency factors such as good continuity of cuts with boundaries, cut length, size of 

segmented regions.  However, combining these methods is difficult.  There also needs 

to be a stopping criterion that determines when a shape has been segmented 

sufficiently and also the possibility of generating arc cuts rather than purely straight 

line cuts. 

 

Tanase & Veltkamp [TV02a, TV02b] propose a segmentation approach using 

straight-line skeletons.  The process comprises two stages: the shape is decomposed 

into non-overlapping segments using the skeletal bifurcation points.  The boundaries 

of these segments are then simplified and protrusions removed in the second stage.  

This two-stage process overcomes some of the limitations posited by Rosin [R00].  

Removing the protrusions should implement a degree of good continuity.  The 

approach also has an autonomous termination point. 

 

Carlin [C01] includes skeleton features along with geometric moments, Legendre 

moments, invariant moments, Fourier descriptors, fuzzy and symmetry descriptors 
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 and a mixed feature set in his paper assessing the relative merits of each approach for 

shape similarity matching.  The paper notes that skeleton features perform well on 

application specific criteria but are not robust to shape deformation. 

 

In the introduction we noted that in current computational approaches, shapes may be 

segmented using either the shape’s boundary or the shape’s interior (fill area) but 

rarely both compared to the holistic viewpoint used by humans.  [LC02] aim to bridge 

this gap by unifying skeletons and edge detection approaches.  The system uses very 

simple shape primitives and integrates edge detection and skeleton extraction to 

match trademarks.  Initially, it segments the image into regions using the pixel 

connectivity. For each region, the system then either performs edge detection or 

performs thinning. The authors posit that: “it is advantageous to use different methods 

under different situations”. They note that for a solid region where the shape conveys 

much visual information, edge detection is preferable to thinning as it extracts the 

contour of the region. However, for a region containing curves, thinning is preferable 

as it extracts the skeleton and “produces a better representation”. The system 

determines whether edge detection or thinning is preferable for a particular region by 

examining the distribution of the distances between each pixel of the skeleton and the 

nearest pixel of the contour.  If the distance from the skeleton to the nearest contour 

pixel is small and if this distance remains relatively constant for different skeleton 

points then the system performs thinning to extract the skeleton.  If there is a large 

variation in the distances from skeleton pixels to the nearest contour pixels, then the 

system performs edge detection.   

 

Once the system has calculated the skeleton or contour, the system traces the strokes 

by following the pixel connectivity and extracts features from each stroke which the 

system uses to classify each stroke as either: line, circle or polygon by assigning a 

confidence measure (between 0 and 1) for each type.  Trademarks are matched by 

calculating the correspondence between strokes using the spatial order and feature 

distances.  The similarity between trademarks is thus a sum of the stroke matches and 

the spatial relation similarity between them minus the cost of unmatched strokes. 

 

Humans are posited to decompose images along Gestalt principles.  There has been 

widespread investigation including human experimentation of individual Gestalt 

principles [W23], [K63], [K79] & [G72].  However, most authors have investigated 

one principle in isolation. For example, Desolneux et al. [DMM04] have theoretically 

investigated a wide range of Gestalt principles and derived formulae for many using 

the Helmholtz principle – a geometrically meaningful event is an event that, 

according to probability estimates, should not happen by chance, which therefore 

implies it is deliberate and meaningful.  They also note that multiplicity suggests that 

a Gestalt principle can only be active in an image if its application would not create a 

huge number of arrangements (segmentations).  However, they [DMM04] posit that 

the main challenge remaining is to combine several partial Gestalts (arrangements 

using one Gestalt principle) and arrive at the point where Gestaltists stopped, namely: 

identifying collaborations involving multiple partial Gestalts and resolving any 

conflicts between the collaborating Gestalts.  This is a deep problem related to neuro-

physiological binding.  Even further, rules governing the bottom-up construction of 

principles may be found. 
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 The evaluations we have found are also mainly focussed on recognition and detection 

experiments rather than how human shape decomposition is affected by the principle.  

The following focuses on figure/ground separation, symmetry and texture as these 

were outlined above and in the PROFI proposal as areas requiring further 

investigation within human segmentation experiments. We have also identified 

singularity as an area for further investigation although we have not found any 

specific papers relating to this area in the literature beyond the formative work of 

Goldmeier [G72].  Goldmeier noted that the singular values (such as symmetry, 

parallelism, horizontality, perpendicularity, recti-linearity or other regularities) which 

are most strongly realised have the most effect on similarity. He also posited that the 

similarity of two images depends on the agreement of their singular phenomena.  

With respect to singularities, he posited that  

• Two spatial directions are most pertinent: vertical and horizontal 

• Among the distinguishable features of parts of an image are those which are 

determined to some degree by the orientation to the vertical/horizontal axes.  

Some of these features are so important that the language has words for them, 

e.g., base, top etc. 

• These two principal spatial directions are not equivalent.  Vertical separates 

phenomenally equivalent domains, (the two sides), whereas horizontal 

separates phenomenally non-equivalent domains, (up. down, top-bottom). 

• Many figures when viewed as wholes, have preferred, distinguished or 

singular positions. 

 

Driver & Baylis’s [DB95] empirical analyses led them to conclude that figure/ground 

assignment results in a description of the figural part of an image (as distinct from the 

background) as a set of convex components.  The background is never sub-divided 

this way, which explains why subjects are able to distinguish the two relatively easily 

in most cases. The authors refute counter-findings by suggesting that the subjects 

were primed as to what they were looking for after a small number of trials. They go 

on to suggest that figure/ground assignment is determined agglomeratively, i.e., by 

image segmentation factors.  However, where this leads to an ambiguity, it is resolved 

top-down by the strategic allocation of attention.  Paradoxically, visual attention is 

directed not at the dividing edges between the image components but at the entire 

figure.  

 

Ferguson et al. [FAG96] has evaluated human symmetry classification.  Subjects were 

asked to classify shapes as symmetric/asymmetric.  The authors noted that humans 

classified shapes with both concavity and number of vertices differences more easily 

than just number of vertices differences and number of vertices differences more 

easily than concavity.  This qualitative versus quantitative preference agrees with the 

findings of Biederman et al. [BSBKF99] (regarding pairwise matching of images, 

e.g., when matching pairs of images of goblets or pairs of bottle images).  Symmetric 

figures were classified more accurately than asymmetric figure throughout the 

experiments.  We know from this that humans can perceive symmetry and what forms 

of asymmetry are most significant.  We know from previous work that vertical 

symmetry is more perceptually relevant than horizontal or oblique symmetry.  We 

could therefore extend this experiment by investigating the segmentation of images 

when components within the image are symmetric and when the same components are 

made asymmetric focussing on the vertical plane (qualitatively asymmetric such as 

concave or different numbers of vertices).   
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Palmer [P85] systematically investigates symmetry using: squares and diamonds; + 

and x shapes; and diagonal and horizontal/vertical configurations of these shapes in 

conjunction with textures and bounding boxes (rectangular frames).  Human subjects 

have most difficulty perceiving shapes when the symmetries of the shapes and their 

configurations or boundary frames are inconsistent, e.g. squares in diagonal 

arrangements, diamonds in horizontal/vertical arrangements, diamond frame around 

square or square frame around diamond. Textures that are inconsistent increase 

reaction times most noticeably when the texture stripes are widest.  The orientation of 

the target, the orientation of the visible context and the gravitational orientation of the 

environment all affect symmetry perception.  Again, we hypothesise that other 

perceptual factors could interact. The authors note that factors such as the relative 

contrast or spatial frequency need investigation and their effects quantifying.   

 

Payne et al. [PHS00, PS01] note that texture is more important than colour for human 

classification and that texture is easy to recognise but hard to define.  The main 

perceptually relevant factors of human texture recognition identified by researchers 

are: repetitiveness, coarseness, directionality, complexity and contrast.  IBM’s QBIC 

[QBIC] image retrieval system performs texture-based retrieval by calculating 

features of coarseness, contrast and directionality on grey-scale images (colour 

images are converted to grey-scale).  Images may then be compared using vector 

distance calculations using weighted Euclidean distance in this 3-D space. A similar 

approach used in the Photobook [Photo] system is the Wold texture model where 

textures are represented by repetitiveness, directionality and randomness.  Textures 

may then be compared using a single or linear combination of distance metrics such 

as Euclidean, Mahalanobis etc. 

 

Human texture investigations have generally focused on identifying patches of 

contrasting texture within textured backgrounds.  We have not found any experiments 

that investigate the effects of textures on shape segmentation.  We know from 

Weigle’s [WELTEH00] experiments with jittered dashes that humans can identify 

textures best that differ in orientation by more than 15 degrees.  Humans also 

recognise textures well when the background is vertical or horizontal but 

paradoxically humans do not perform well when the target (superimposed on the 

background) is vertical or horizontal.  Nothdurft has investigated the effects of texture 

form and texture spacing.  Desolneux et al. [DMM04] have investigated the perceived 

visibility of noisy squares on noisy backgrounds.  We can use these factors within our 

segmentation experiments where texture is present or we can replace homogeneous 

shading with textures obeying the above rules to investigate the affect of texture on 

human segmentation. In many of these documented experiments there are no control 

conditions.  For example, in Desolneux et al. [DMM04], subjects are asked if they can 

see a square which obviously focuses their attention.  They do not state whether there 

are any images with no squares as control samples.   

 

The papers cited above agree that humans decompose images into segments.  The 

authors generally accept that this decomposition is performed in line with the Gestalt 

principles and semantics (which closely relates to Gestalt principles such as 

familiarity and goodness) although other statistical factors such as experience, mood 

or culture may influence this.  However, these Gestalt principles and statistical factors 

are not counter-intuitive and may work in tandem.  The papers differ as to the final 
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 image units produced from their computational decomposition.  Some authors posit 

geometrically defined parts such as Hoffman & Richard’s [HR84] convex parts, 

Siddiqi & Kimia’s [SK95] necks and limbs through to Singh et al.’s [SSH99] and 

Tanase & Veltkamp’s [TV02a, TV02b] skeletons whereas others posit specific shapes 

from a set of shape primitives such as Dyson & Box’s [DB97] palette or Biederman et 

al.’s [BSBFK99] geons.  Some authors have gone on to propose overall architectures 

for image matching systems which are hierarchical and fit the decomposition 

approach but fuse their image units agglomeratively.  The architectures start from the 

most primitive elements such as edges and incrementally build increasingly more 

complex image units from the units below in the hierarchy. 

 

Our approach needs to accommodate human variance.  Image perception and hence 

decomposition varies from human to human.  We need to produce a consensus 

approach that fits most cases and scenarios but not necessarily all instance.  That is, 

we must produce the best compromise system. We need to incorporate the findings 

from research into the individual Gestalt principles and merge this with findings from 

our decomposition analyses and previous decomposition analyses such as the fact that 

qualitative differences overshadow quantitative differences when humans match 

images or that humans partition into disjoint regions primarily, overlapping regions 

secondly and separate line groups least often.  We need to use our analyses to find the 

most promising decomposition or decompositions for a broad range of images using 

Gestalt principles to drive the process for work package 3 and train the system to 

handle these.  We need to carefully analyse our representations a priori.  What 

qualitative and quantitative units should describe image parts?  What qualitative and 

quantitative relations between parts should be used?  Should we provide a set of 

image primitives or familiar shapes that all images are constructed from?  We need to 

ensure that our technique will not produce too many decompositions for a particular 

image as multiplicity implies that a Gestalt factor can only be active if it does not 

produce too many decompositions.  The decompositions we optimise should also be 

meaningful and not produce chance decompositions.  We should ultimately look to 

combine Gestalt factors within a principled methodology and permit interactions and 

conflict resolution. 

 

In the remainder of this report we detail the development and implementation of the 

experimental methodology and provide some analysis.  In the appendices we provide 

the results of the human analysis experiments as a set of images each with a list of the 

preferred breakdowns and the preference score for each breakdown. 

2 Methodology 
The experimental methodology was developed in conjunction with the Psychology 

Department at the University of York, UK who advised on methodology, ethical 

considerations and best practice and also provided general advice and guidance. 

 

The central premise for the investigations in this paper is to identify how humans 

decompose images, the degree of commonality across a range of human subjects and 

to provide a set of ground truth images.  These ground truth images may be further 

analysed to elicit statistics and preference scores regarding the decomposition 

preferences of humans: i.e., which decomposition is generally preferred for each 

image, a ranked order of decompositions for each image, how many potential 

decompositions there should be for each image.  We aim to investigate symmetry, 
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 texture, singularities and also to some extent the effect of figure/ground phenomena.  

We aim to use the results from our experimental analyses to drive the formation of an 

integrated computational system that mimics human segmentation.  We need to 

ensure that our resultant computerised technique will not produce too many 

decompositions for a particular image.  The decompositions we optimise should also 

be meaningful and not produce chance decompositions.  

 

We performed an initial pilot study to allow us to select useful images and to revise 

and improve the experimental methodology. 

 

A set of trademark and other figurative images was presented to University of York 

staff, students and their relatives and friends. Each subject received a printed booklet 

containing 17 pages: a front sheet and 16 pages with 2 images per page in 2 columns 

giving 32 images in total in each booklet.  The subjects also received a copy of the 

experiment instructions.  The subjects were requested to draw (using pen or pencil) 

their perceived decompositions of each image in turn on to the booklet and to rank 

each decomposition (1
st
, 2

nd, 
3

rd
 etc.) according to the order in which they perceived 

that decomposition. All completed booklets were anonymized and labelled with a 

subject ID number.  All subjects who completed the experiment were entered into a 

prize draw where the prizes were a £200, £50 and 5 x £10 shopping vouchers.  The 

statistics of the subjects from experiment 1 and experiment 2 are:  

• Age range   14 – 70 

• Gender   mixed 

• Nationality   mixed international 

2.1 Images 

Each image was 4.5 cm high although the size of the drawn image varied slightly 

according to the amount of white space surrounding it.  All images were monochrome 

TIFF images.  

2.1.1 Methodology 

There were three sets of 32 images.  Each set contained some images present in the 

other sets to act as controls and thus to verify that the subjects in each group are 

statistically similar.  The trademarks were in pairs (14 pairs in each set, p1 .. p14) along 

with 4 other images (i1 .. i4).  The unpaired images are supplementary control images 

(i1, i2) and buffer images (i3, i4) in case the subjects do not complete the exercise. 

The paired images were ordered p1
1
, p2

1
, p3

1
, … p14

1
, i1, i2, p1

2
, p2

2
, p3

2
, ... p14

2
, i3, i4.   

The subjects received the first image of a pair and then later, a second paired image: 

the same image but altered according to symmetry, texture or singularity principles.  

We note that it is extremely difficult to isolate Gestalt principles within the trademark 

images.  For example, altering an image along symmetrical lines will inevitably alter 

other Gestalt properties such as familiarity, continuity or perhaps grouping.  We 

attempted to provide as wide a variety of symmetry, texture or singularity alterations 

as possible.  These 3 sets of images were further divided into forward and backward 

sets giving 6 sets in total (A-Forward, A-Reverse, B-Forward, B-Reverse, C-Forward 

and C-Reverse).  The forward and reverse sets have the order of the images reversed 

to prevent order bias where the order of image presentation affects the perception:  

• Forward - p1
1
, p2

1
, p3

1
, … p14

1
, i1, i2, p1

2
, p2

2
, p3

2
, ... p14

2
, i3, i4 and then  

• Reverse - p14
2
, p13

2
, p12

2
, ... p1

2
, i1, i2, p14

1
, p13

1
, p12

1
, ... p1

1
, i3, i4.   
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 If all subjects receive p1
1 

before
 
p1

2
 then this may influence their perception of p1

2
. 

 

The images are listed in Appendix B and the sets are: 

A-Forward: images 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32.  

A-Reverse: images 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 

13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 31, 32. 

B-Forward: images 33, 2, 34, 35, 36, 11, 37, 1, 38, 39, 40, 41, 42, 43, 15, 44, 45, 46, 

47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60. 

B-Reverse: images 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47, 46, 45, 44, 15, 43, 

42, 41, 40, 39, 38, 1, 37, 11, 36, 35, 34, 2, 33, 59, 60. 

C-Forward: images 61, 62, 33, 63, 2, 36, 64, 65, 66, 10, 67, 8, 68, 11, 15, 69, 70, 71, 

72, 73, 74, 75, 76, 77, 78, 41, 79, 80, 81, 82, 83, 84. 

C-Reverse: images 82, 81, 80, 79, 41, 78, 77, 76, 75, 74, 73, 72, 71, 70, 69, 15, 11, 

68, 8, 67, 10, 66, 65, 64, 36, 2, 63, 33, 62, 61, 83, 84. 

2.1.2 Experiment 1 

Experiment 1 involved the first 28 subjects who were thus effectively a test group to 

allow fine-tuning although their results were used in the final analysis.  25 subjects 

were presented with a booklet of one set of 32 images (1 from the 6 sets described 

above) and 3 subjects were presented with 3 booklets (3 sets) (84 images in total 

when repetitions are excluded) and allowed to draw their perceptions unsupervised 

with their initial perception first and any other perceptions in the order that they 

perceived them.  The results from this study were used in the final analysis but were 

also used to improve and fine-tune the experimental instructions.  We note that some 

subjects (13 of the 28 who completed a single booklet) only drew one decomposition 

per image.  As a result, we revised the instructions of the subsequent experiment 2 as 

we felt some of them may have misunderstood the instructions.  However, we note 

from feedback from the subjects, that not everyone is able to see more than one 

breakdown per image so not all of these 13 subjects had necessarily misunderstood 

the instructions.   

2.1.3 Experiment 2 

The final analysis involved 25 staff and students drawn from across the University.  

They were invited to a series of four 1-hour sessions spread across 27
th

 June 2005 

starting at noon with the final session at 3 pm.  The sessions were supervised.  Each 

subject received one printed booklet of 32 images (1 from the 6 sets described above) 

and was invited to draw their perceptions of each image, drawing their initial 

perception first and any other perceptions in the order that they perceived them.  The 

subjects from experiments 1 and 2 were entered into a prize draw to win shopping 

vouchers. 

2.2 Overview 

Of the 6 sets of images: 10 people analysed set A-Forward, 11 people analysed set A-

Reverse, 9 people analysed set B-Forward, 8 people analysed set B-Reverse, 11 

people analysed set C-Forward and 9 people analysed set C-Reverse. 

 

The first stage of analysing the images was to collate the breakdowns drawn by the 

subjects and to note the rank.  Each image had a list of the breakdowns perceived.  
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 Each breakdown had a list of the ID of the subjects who perceived that breakdown 

and the rank they awarded it (1
st
, 2

nd
 etc.).  For each image, if two subjects had drawn 

identical or extremely similar breakdowns then the breakdowns were marked as the 

same and the subjects’ IDs and the rank they awarded the breakdown added to the list 

for that specific breakdown. Otherwise, the breakdowns were marked as two separate 

breakdowns and the subjects’ IDs and ranks added to the respective breakdowns’ lists.  

The output from this analysis is a listing of all breakdowns for each image in turn 

along with a listing of all subjects who drew that breakdown and the rank that each 

subject gave it (1
st
, 2

nd
, 3

rd
 etc.) 

2.3 Preference Scoring Mechanism 

Ren et al.  [REB00] used a slightly different experimental methodology compared to 

us.  We aggregated their two-stage process into a single stage: Ren et al. used 

volunteers to elicit the breakdowns in stage 1 and then used a second set of volunteers 

to rank the breakdowns in stage 2.  We conflated this into a single stage as we had 

difficulty recruiting volunteers at University of York due to expectations of payment 

which is the norm at the University and no funds were available within the budget.  

This conflation was in full agreement with the recommendations from the psychology 

advisors.  This also required a slightly different scoring mechanism compared to that 

used by Ren et al.. 

 

For the vast majority of the images (74 of the 84), the subjects who drew that image 

drew 1, 2 or 3 breakdowns each so we used this number of breakdowns to devise our 

scoring mechanism.  10 images had a maximum number of breakdowns of 4 or 5; 2 

subjects drew most of these 4 or 5 breakdowns per image with another 3 subjects 

drawing 4 breakdowns per image once each.  Therefore, for all images we scored 3, 2, 

1, ½ and ¼ for ranks 1 to 5 respectively.   

 

For each breakdown the scores were totalled and divided by the total of the scores 

across all breakdowns for that image.  This gives the preference score for each 

breakdown of each image.   

 

The listing is given in Appendix B where, for a selection of the 84 images (those 

images discussed in section 4), we list each breakdown drawn by two or more 

subjects coupled with the breakdown’s preference score.  The images numbers are to 

allow the authors to cross-reference the images and the images are not listed in 

numerical order but rather arranged so that image pairs are listed together.  The 

breakdowns are drawn in the order we analysed them and are not sorted in any way.  

Note that the breakdown numbers are again to allow the authors to cross-reference the 

breakdowns and are not significant although they do provide some notion of the 

number of breakdowns seen by one subject only (i.e., the omitted numbers from the 

list are the singular breakdowns).  The breakdowns seen by only one person are not 

listed as there were simply too many.  Where the individual components are difficult 

to distinguish, we have added red crosses to the diagram to allow the individual 

components or groups of components to be identified. 

3 Results  
Results from the analysis of the perceptions derived from the various sets of subjects 

indicate that the number of breakdowns drawn by the subjects varies quite widely 
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 from image to image as shown in Figure 1.  If the number of human breakdowns is 

large then the search space required for any computerised shape decomposition 

system will be large to allow an identical decomposition to be created by the 

computerised system.  The search space will also be large for a computerised system 

matching components from one image against components in other stored images due 

to the large potential search space. 

 

Histogram Showing the No. of Breakdowns per Image
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Figure 1. Graph showing the distribution of the number of breakdowns 
(seen by at least 1 subject and seen by at least 2 subjects) for each of 
the 84 images. 
  

Another factor that we would expect to affect the number of breakdowns is the 

number of degrees of freedom available within the image.  Images 1, 2, 7, 23, 33, 36 

& 72 all produced at least 17 breakdowns seen by at least one subject and each of 

these images has a large number of potential components and a large number of 

possible arrangements of components. The search space for a computerized 

decomposition system or image component matching system processing these images 

would be large. 

 

The graph in Figure 1 shows that the number of breakdowns seen by 2 or more 

subjects is much more closely grouped than the number of breakdowns perceived by 1 

or more subjects with between 2 and 11 breakdowns perceived by 2 or more people.  

The mode value is 3 and only one image had more than 8 breakdowns perceived 

(image 25). 

 

Ren at al. [REB00] had between 1 and 4 breakdowns for each image in their analyses.  

We found the unrestricted breakdown generation that we allowed the subjects coupled 

with consolidating Ren et al.’s two-stage process into a single stage allowed more 

scope for subject variation. 
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 4 Analyses 
While the limited number of results makes it impossible to perform any detailed 

quantitative analysis, qualitative analysis of individual results yields a number of 

insights which we expect to prove useful in subsequent phases of the project. In the 

following, we analyse the core set of breakdowns for each image seen by 2 or more 

subjects.  We note that there are often multiple Gestalt differences between the images 

and their analogues as it is almost impossible to alter one Gestalt rule without 

affecting others.  During our analyses, we try to focus on the main Gestalt change in 

each image though we acknowledge that this is a subjective process. 

 

From analysing the subjects’ drawings, we noted that the subjects may be focussed 

purely on eliciting the component breakdowns of each image.  We feel they may 

concentrate on the individual components and do not always see the “larger picture”.  

For example, where 6 triangles are arranged in a hexagonal shape many subjects drew 

6 triangles but not the overall hexagonal shape.  We took this hypothesis into 

consideration when analysing the breakdowns drawn by the subjects and we also feel 

that this should be taken into consideration when using the component breakdowns.  

Hence, the breakdowns should be used purely for eliciting components and the larger 

picture should be noted with regard to the overall shape arrangements. 

4.1 Singularity 

Changing the orientation of image components changes the perception.  This is 

particularly true for textures where altering the angle of the texture can change the 

figure/ground perception (see also the discussion below regarding figure/ground for 

an example). Also, familiar image components such as human figures or aircraft are 

less often perceived when distorted or not in their natural orientation although the 

reduction may only be slight. 

 

Images 8, 24 & 80 - These images were selected to study the effects of orientation on 

grouping of otherwise identical bars. The most common interpretation of all three 

images was of three groups of bars, as would be expected from the Gestalt rule of 

proximity. However, changing the orientation of the central element made a slight 

difference to the results.  Where the central bar is vertical, the propensity for three 

separate groups is reduced and the preference of grouping the bar with the similar 

oriented group is increased.  Paradoxically, for the horizontal bar, the tendency to 

three separate groups is higher and the grouping of the central horizontal bar with the 

horizontal group is reduced.  When the central bar is diagonal, the tendency is for 

three separate groups but with separated components more often perceived than for 

the horizontal or vertical central bars 

 

Images 38, 54, 63 & 73 - An illustration of the effects of changes in singularity 

comes from these two images. In image 38, by far the most popular interpretation is 

of a white shape (resembling an aircraft?) on a black background. By contrast, in 

image 54, where the white figure looks more like a cross, this interpretation, though 

still the most popular, receives much less support. Familiar images and shapes are less 

often perceived when distorted or when not in their natural orientation. 

 
Images 61 & 70 - In these images the stylised human figure is the expected 

orientation in images 61 but is oriented upside down while holding the flag in image 
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 70.  Although the recognition of the human is reduced from 61 to 70, the reduction is 

only slight. 

4.2 Familiarity  

When elements of an image are gradually removed/reorganized so as to destroy 

familiarity of the image then the human breakdowns change to be based on individual 

components rather than the entire image and tend to proximity-based grouping. 

 

Images 2, 18, 46 & 74 - These images were selected to study the effect of the gradual 

removal of elements of familiarity (the image could be interpreted as a human figure), 

symmetry and good continuation on image grouping. In fact, the most popular of the 

eight interpretations listed for image 2 was for a complete breakdown into elementary 

components, with no intermediate grouping at all. Some of the less popular 

interpretations showed grouping of the two U-shaped components (through good 

continuation?), but this did not seem to be a major effect. When the upper four 

components were tilted (image 18), the trend to complete decomposition was even 

stronger, though there was weak evidence of an intermediate grouping formed by the 

four tilted components. When the components were scrambled to remove any effect 

of symmetry or good continuation (image 46), a variety of groupings was observed, 

mostly based on proximity.  When the upper circle (effectively the head in the human 

figure interpretation) is changed to an outline rather than a solid fill then the 

perception is very similar to image 2.  However, in one breakdown (D11) the outline 

circle is perceived as a hole in the paper indicating a figure/ground variation. 

 

Images 12 & 28 - These images show that displacement of one image element 

(laterally by about 20% of the image diameter) can have a marked effect on 

perception. Image 12 was seen by most subjects either as four separate segments of a 

circle or as a circle crossed by three horizontal bars, image 28 either as four separate 

segments or three grouped and one ungrouped segment. The interpretation of three 

white bars on a black background was severely weakened; suggesting that perception 

of additional shapes through figure-ground reversal may require a regular-shaped and 

familiar background such as a circle or a square.   

 

Images 68 & 81 - These images depict a familiar chef’s head with an asymmetrical 

variant in image 68 and a symmetrical variant in image 81.  The tendency to 

subdivide into hat, face and bow tie is higher in the symmetrical and more familiar 

variant (image 81) than the less familiar image 68 where the face is less well 

recognised and more fragmented. 

4.3 Symmetry  

When symmetry is removed from an image, the human decompositions tend to 

individual components or image halves.  This is particularly true for illusory contours 

and images where axial symmetry is removed. 

 

Images 4 & 20 - These images were selected to show the effects of vertical 

displacement of part of an image. In the modified image 20, the frequency with which 

the two large bars are perceived as a single group is markedly reduced when 

compared to image 4. This can be explained through the destruction of symmetry and 

good continuation. 
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 Images 36, 49 & 75 - This set of images compares the results of linear and angular 

changes in structure on a line-based image. The most popular interpretation of image 

36 is of a series of overlapping unbranched line elements showing evidence of good 

continuation, though interpretations based on identification of letters of the alphabet 

can also be perceived. Altering the angles of the previously horizontal lines to about 

30º (preserving symmetry but reducing instances of good continuation) reverses the 

relative importance of these two types of interpretation (image 49). Vertical 

displacement of the right-hand half of the image by about 15% (image 75), by 

contrast, leads to a different interpretation (dominated by branched lines) 

predominating. It is of interest that preservation of symmetry while reducing instances 

of good continuation can result in markedly different partitioning. 

 

Images 39 & 53 - This image pairing demonstrates the effects of symmetry.  In image 

39 the hexagon is split in half horizontally but in image 53 the hexagon is split into 

1/3 & 2/3.  The lack of symmetry affects the decompositions markedly.  There is no 

analogue in the breakdowns from image 53 that matches the favoured breakdown of 

image 39.  The breakdowns of image 39 are generally more regular. 

 

There are exceptions where the removal of symmetry has little effect on the 

decompositions particularly for images that trace the outlines of shapes. 

 

Images 7 & 23 - Here, two line-based images - one symmetric, the other modified to 

remove axial symmetry - are compared. A wide variety of segmentations can be 

observed for both images - though there is interestingly no evidence that removal of 

symmetry significantly affects segmentation in this case. The results are in contrast to 

those for images 4 & 20. 

4.4 Continuity  

Reducing the continuity alters the human perceptions with a tendency to proximity 

grouping and decomposition into individual components.   

 

Images 1, 17 & 52 - These three images were selected to study the effects of small 

alterations in image structure on hidden contour perception. All consisted of six black 

circles on which the corners of a white cube were superimposed. In image 1 all were 

correctly oriented, while in image 17 three were rotated, and in image 52 two were 

rotated. The results for image 1 showed that by far the most common interpretation of 

the image was indeed six circles plus the "hidden" cube, as one would expect from the 

Gestalt rule of good continuation. Results for the other two images, on the other hand, 

were much more equivocal, suggesting that only a small perturbation of the image is 

needed to inhibit the perception of illusory contours.  

 

Images 9 & 25 - These two images show the effect of removing corners from a line-

based image. Image 9 generated 7 different perceptions common to two or more 

observers, including examples of both region- and line-based segmentations as 

defined by Ren et al. [REB00]. Image 25, in which internal corners had been 

removed, appeared to generate less consensus - 11 different interpretations were 

recorded.  

 

Images 67 & 79 - Images 67 and 79 investigate the seminal Necker cube 

phenomenon.  Image 67 produces the expected perception of a cube.  However, if we 
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 terminate the ends of the components, we interrupt the good continuity and perhaps 

familiarity and there is a tendency to decompose image 79 into individual components 

or groups of diagonally aligned components. 

 

When continuity is reduced in conjunction with symmetry removal then the 

decomposition differs from when continuity alone is removed.  An asymmetric image 

promotes the perception of good continuity whereas a symmetric variant of the image 

promotes proximity grouping. 

 

Images 43 & 58 - From the Gestalt principles, humans are posited to favour good 

continuation and grouping of similar objects.  Images 43 and 58 examine these 

principles coupled with symmetry.  The asymmetric variant (image 58) produces good 

continuity where the dots are effectively joined as a line.  In contrast, the symmetric 

variant (image 43) elicits grouped decompositions. 

4.5 Figure/ground  

If the components of an image are tilted or inverted then the figure/ground perception 

changes.  If the components are textured with stripes then the figure/ground 

perception changes from the untextured image and if the texture is strengthened with 

a darker texture then the figure/ground perception changes even more.  A uniform 

background enhances the perception of figure/ground reversal whereas familiarity of 

image components reduces the figure/ground reversal. 

 

Images 5, 21, 35 & 48 - This set of images illustrates the effect of variations in 

background on illusory contour formation. In all cases, the illusory boundary between 

striped and black areas as clearly recognized, though observers were divided on 

whether image 5 should be perceived as a black overlay on a striped background, a 

striped overlay on a black background, or two disjoint areas, one striped and one solid 

black. Interestingly, the modifications to the image (tilting and - more markedly - 

inversion) all caused fewer observers to perceive a striped background. The reasons 

for this are not immediately obvious, though it provides a useful reminder that the 

direction from which an image is viewed can significantly affect its perception.  

 

Images 6 & 22 - This pair of images helps to illustrate the conditions under which 

image components can be generated through figure-ground reversal. In image 6, the 

most common interpretation is the obvious one of four distinct triangles. In image 22, 

where they are shaded to suggest a continuous background, interpretations suggesting 

an element of figure-ground reversal are more prominent.  

 

Images 11, 27, 51 & 82 - This set of images was also selected to observe the effects 

of changing background on the generation of perceived image components through 

figure-ground reversal. Again, with unshaded image elements (image 11), the most 

common interpretation is solely of unmodified image components. Adding a striped 

texture to the three image elements and leaving their contours implicit (image 27) 

strengthened the perception of figure-ground reversal to some extent; adding a darker 

texture with explicit contours (images 51 & 82) strengthened this perception still 

more. It should be noted that even in these cases there was still significant support for 

the original partitioning into the three explicitly-drawn components. 
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 4.6 Texture/shading  

When the texture is altered the perception changes. Texture change particularly 

affects the perception of figure/ground and proximity grouping.  However, changes in 

shading are overridden by changes in continuity or symmetry, component shape and 

component positioning. 

 

Images 13 & 29 - This pair of images also illustrates the effects of shading on 

perception. The shapes, comprising interlocking "canoe" shapes differing only in their 

shading which is symmetric in 13 and asymmetric in figure 29, showed some 

differences in the way they were partitioned.  The decomposition into 4 “U” shapes is 

less favoured for the asymmetric variant and this asymmetric variant also produces 

more decompositions compared to the symmetric figure. 

 

Images 33, 45 & 72 - These images also compare the effects of changes in image 

structure and shading on perception. As observed elsewhere, replacing solid black 

areas in image 33 with stripes (image 45) appears to have only minor effects, while 

changing structure (in this case inverting the right-hand half of the image to remove 

symmetry and reduce instance of good continuation) leads to interpretations where the 

image is regarded as two separate halves. 

 

Images 37 & 51 - The observation that images consisting of overlapping circles are 

partitioned in a similar way whether or not they are filled by shading reinforces the 

principle that differences in shading are of only minor importance in partitioning.  

Although we note that the subjects generally draw the bounding-box for image 37 but 

not for the shaded image 51. 

5 Conclusion & Future Work 
Our results concur with previous investigations such as [REB00] in that image 

decomposition appears to follow a set of perceptual principles analogous to the 

Gestalt laws.   The experiments and analyses show that these Gestalt laws interact and 

possibly conflict as noted by [DMM04].  The experiments also indicate that there are 

a core set of decompositions for each image perceived by 2 or more people along with 

a set of decompositions seen only by individuals. 

 

We have identified some possibilities for additional work that would generate useful 

data.  The experimental analyses detailed in this paper are very human-oriented.  

Humans generate all the breakdowns with no recourse as to whether they are feasible 

for a computer system to generate.  Therefore, after we have used the data from these 

analyses to develop and refine our computational system, we could use the resultant 

system to generate a set of breakdowns for further images.  We can then present these 

sets of breakdowns, for each image in turn, to human subjects who can rank them 1 to 

n where n is the number of images in the set.  This will allow us to fine-tune the 

computational system further using tangible computer-generated breakdowns. 
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Appendix A - Experiment Documentation 

 

Page  23 Instructions given to subjects.  

 

Page  26   Page taken from image booklet showing 2 example images. 
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Instructions - Investigation of Image Perception

 
 

This investigation aims to understand how people see 

and interpret images and the shapes of their component 

parts.  The investigation supports a programme of 

research on Perceptually-Relevant Image Retrieval at the 

Department of Computer Science, University of York. 

 

During the investigation, you will be presented with a 

series of images.  Your task is to DRAW the shapes of 

the component parts and the shapes of natural groups of 

component that YOU perceive in each image presented.  

Two examples are given overleaf.  This process is 

subjective and as such there are no right or wrong 

answers; all answers are correct.   

 

You should attempt to draw the arrangement of shapes 

that make your initial perception first.  If you can then 

draw ANY other shape arrangements that you perceive 

in the order that you perceive them (2nd, 3rd, 4th etc.)  

 

Thank you. 
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 Example 1 
 

Given this image: 

 
 

Your perceptions of the shapes of the parts and natural 

groups of components may be: 

 

 

 
 

 

 

 
 

 

 

 
 

OR  

 

some other perception of components. 
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 Example 2 
 

Given this image: 

 
 

Your perceptions of the shapes of the parts may be: 

 

 
 

 

 
 

 

 

 
 

 

 

 
 

OR  

 

some other perception of components. 
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An Example Page From The Booklet Given to Subjects

Given Image 

 

Your Perception(s) (in order) 

of the Component Parts. 

 

Given Image 

 

Your Perception(s) (in order) 

of the Component Parts. 
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Appendix B – Experiment Results 

 

Page  27 Table Listing A Selection of the 84 Images With Their Respective 

Breakdowns Seen By 2 Or More Subjects. 

 

 

Image 1  

 Decomposition Score 

 

D1 0.448 

 

D6 0.072 

 

D3 0.064 

 

D5 0.064 

 

D2 0.056 

 

D12 0.048 

 

 

 

 



 

28 

 

 

Image 17  

 Decomposition Score 

 

D1 0.192 

 

D3 0.141 

 

D2 0.128 

 

D6 0.115 

 

D11 0.077 

 

D5 0.064 

 

D7 0.051 
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Image 52  

 Decomposition Score 

 

D3 0.259 

 

D2 0.155 

 

D5 0.103 

 

D1 0.086 
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Image 2  

 Decomposition Score 

 

D1 0.228 

 

D4 0.161 

 

D11 0.14 

 

D2 0.124 

 

D10 0.088 

 

D5 0.073 

 

D12 0.073 

 

D6 0.01 
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Image 18  

 Decomposition Score 

 

D1 0.405 

 

D4 0.214 

 

D5 0.107 

 

D2 0.095 
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Image 46  

 Decomposition Score 

 

D4 0.145 

 

D8 0.145 

 

D9 0.145 

 

D3 0.129 

 

D6 0.129 

 

D1 0.097 

 

D5 0.097 
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Image 74  

 Decomposition Score 

 

D5 0.293 

 

D3 0.122 

 

D4 0.110 

 

D7 0.098 

 

D2 0.085 

 

D10 0.077 

 

D11 0.061 

 

D6 0.045 
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Image 4  

 Decomposition Score 

 

D4 0.333 

 

D2 0.311 

 

D5 0.067 

 

D11 0.056 

 

D7 0.044 

 

D3 0.022 
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Image 20  

 Decomposition Score 

 

D1 0.564 

 

D5 0.128 

 

D2 0.09 

 

D6 0.077 
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Image 5  

 Decomposition Score 

 

D3 0.355 

 

D2 0.289 

 

D1 0.276 

 

D7 0.053 
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Image 21  

 Decomposition Score 

 

D1 0.403 

 

D2 0.338 

 

D3 0.182 
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Image 35  

 Decomposition Score 

 

D1 0.436 

 

D2 0.418 

 

D3 0.091 
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Image 48  

 Decomposition Score 

 

D2 0.527 

 

D1 0.418 

 



 

40 

  

 

Image 6  

 Decomposition Score 

 

D1 0.563 

 

D2 0.213 

 

D3 0.113 
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Image 22  

 Decomposition Score 

 

D1 0.291 

 

D4 0.291 

 

D2 0.241 
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Image 7  

 Decomposition Score 

 

D2 0.237 

 

D5 0.142 

 

D3 0.083 

 

D13 0.071 

 

D6 0.059 

 

D15 0.059 

 

D4 0.030 
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Image 23  

 Decomposition Score 

 

D6 0.205 

 

D4 0.123 

 

D1 0.082 

 

D2 0.068 

 

D16 0.068 
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Image 8  

 Decomposition Score 

 

D1 0.555 

 

D2 0.212 

 

D3 0.168 
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Image 24  

 Decomposition Score 

 

D1 0.592 

 

D2 0.268 

 

D3 0.07 
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Image 80  

 Decomposition Score 

 

D2 0.641 

 

D4 0.154 

 

D3 0.064 
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Image 9  

 Decomposition Score 

 

D1 0.297 

 

D5 0.154 

 

D3 0.110 

 

D4 0.088 

 

D8 0.066 

 

D7 0.055 

 

D2 0.044 
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Image 25  

 Decomposition Score 

 

D3 0.125 

 

D12 0.113 

 

D1 0.075 

 

D6 0.075 

 

D8 0.075 

 

D11 0.075 

 

D4 0.063 

 

D9 0.063 
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D13 0.063 

 

D7 0.05 

 

D2 0.038 
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Image 11  

 Decomposition Score 

 

D1 0.573 

 

D5 0.213 

 

D2 0.191 
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Image 27  

 Decomposition Score 

 

D3 0.25 

 

D4 0.202 

 

D2 0.19 

 

D7 0.107 

 

D9 0.071 

 

D1 0.06 
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Image 50  

 Decomposition Score 

 

D1 0.424 

 

D2 0.322 

 
 

D3 0.102 

 

D4 0.102 
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Image 82  

 Decomposition Score 

 

D1 0.466 

 

D3 0.247 

 

D4 0.096 
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Image 12  

 Decomposition Score 

 

D1 0.451 

 

D2 0.407 

 

D3 0.055 
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Image 28  

 Decomposition Score 

 

D1 0.481 

 

D2 0.346 

 

D4 0.123 
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Image 13  

 Decomposition Score 

 

D1 0.289 

 

D2 0.289 

 

D3 0.178 

 

D7 0.122 
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Image 29  

 Decomposition Score 

 

D1 0.29 

 

D2 0.183 

 

D3 0.14 

 

D6 0.129 

 

D4 0.054 

 

D5 0.043 

 

D10 0.022 
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Image 33  

 Decomposition Score 

 

D1 0.169 

 

D10 0.105 

 

D16 0.105 

 

D12 0.064 

 

D3 0.056 

 

D15 0.056 

 

D19 0.040 
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Image 45  

 Decomposition Score 

 

D3 0.316 

 

D4 0.105 

 

D1 0.088 

 

D2 0.088 

 

D9 0.088 
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Image 72  

 Decomposition Score 

 

D5 0.224 

 

D15 0.099 

 

D6 0.087 

 

D1 0.062 

 



 

61 

  

 

 

 

Image 36  

 Decomposition Score 

 

D2 0.195 

 

D7 0.140 

 

D6 0.074 

 

D3 0.056 

 

D5 0.037 

 

D15 0.037 

 

D17 0.047 
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Image 49  

 Decomposition Score 

 

D3 0.273 

 

D1 0.109 

 

D4 0.109 
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Image 75  

 Decomposition Score 

 

D1 0.353 

 

D3 0.109 

 

D2 0.068 

 

D5 0.068 

 

D12 0.061 

 

D6 0.054 
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Image 37  

 Decomposition Score 

 

D1 0.636 

 

D4 0.109 

 

D2 0.091 
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Image 51  

 Decomposition Score 

 

D1 0.529 

 

D3 0.118 

 

D5 0.118 

 

D6 0.118 
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Image 38  

 Decomposition Score 

 

D1 0.567 

 

D4 0.15 

 

D2 0.1 

 

D5 0.1 
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Image 54  

 Decomposition Score 

 

D1 0.242 

 

D8 0.113 

 

D2 0.097 

 

D4 0.097 

 

D5 0.097 

 

D6 0.081 
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Image 39  

 Decomposition Score 

 

D3 0.278 

 

D6 0.167 

 

D2 0.093 

 

D4 0.093 
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Image 53  

 Decomposition Score 

 

D2 0.23 

 

D6 0.098 

 

D7 0.098 

 

D1 0.082 
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Image 43  

 Decomposition Score 

 

D1 0.433 

 

D2 0.15 

 

D3 0.133 

 

D4 0.1 

 



 

71 

  

 

Image 58  

 Decomposition Score 

 

D1 0.656 

 

D3 0.115 
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Image 61  

 Decomposition Score 

 

D3 0.288 

 

D5 0.113 

 

D6 0.1 

 

D1 0.075 

 

D4 0.075 

 

D10 0.05 

 

D12 0.041 
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D11 0.019 
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Image 70  

 Decomposition Score 

 

D8 0.227 

 

D1 0.12 

 

D3 0.12 

 

D11 0.093 

 

D5 0.08 

 

D4 0.067 

 

D10 0.067 

 



 

75 

  

 

 

 

 

 

 

 

 

 

Image 67  

 Decomposition Score 

 

D2 0.309 

 

D1 0.176 

 

D3 0.162 

 

D5 0.103 
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Image 79  

 Decomposition Score 

 

D1 0.466 

 

D4 0.247 

 

D2 0.068 

 

D3 0.055 
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Image 68  

 Decomposition Score 

 

D1 0.293 

 

D4 0.237 

 

D5 0.12 

 

D3 0.08 

 

D9 0.08 
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Image 81  

 Decomposition Score 

 

D3 0.356 

 

D4 0.151 

 

D7 0.123 

 

D9 0.041 

 

 


