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ABSTRACT 

This paper evaluates several methods of discretisation (binning) within a k-Nearest 
Neighbour predictor. Our k-NN is constructed using binary neural networks which require 
continuous-valued data to be discretised to allow it to be mapped to the binary neural 
framework. Our approach uses discretisation coupled with robust encoding to map data sets 
onto the binary neural network. In this paper, we compare seven unsupervised discretisation 
methods for retrieval accuracy (prediction accuracy) across a range of well-known prediction 
data sets comprising time-series data. We analyse whether there is an optimal discretisation 
configuration for our k-NN. The analyses demonstrate that the configuration is data specific.  
Hence, we recommend running evaluations of a number of configurations, varying both the 
discretisation methods and the number of discretisation bins, using a test data set. This 
evaluation will pinpoint the optimum configuration for new data sets. 
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I. INTRODUCTION 
Standard k-Nearest Neighbour (k-NN) is a widely applicable data mining algorithm that 

demonstrates high recall accuracy; see Fix & Hodges (1951), Cover & Hart (1967), 
Dasarathy (1991), Wettscherek (1994), Györfi et al. (2002), Hodge & Austin (2004a), 
Bubeck & von Luxburg (2009) and Hodge (2011)  for an overview of k-nearest neighbour 
techniques. For both classification and prediction, k-NN examines those points in a particular 
data space lying “nearest” to a query point. K-NN then uses the respective classifications or 
predictions of these nearest neighbours to determine the class of the query point or to predict 
the next value in a time-series. 

The computational growth of standard k-NN is O(N2) (Dasarathy, 1991; Knorr & Ng, 
1998) with respect to the number of records N in the data set. This is because the approach 
calculates the distance to each record for every record in the data set. The computational 
complexity is also directly proportional to the dimensionality of the data d. As a result, there 
is a practical upper limit to both the number of records and the data dimensionality that may 
be processed even on modern high speed computers depending on the processor time 
available. 



 

We have previously introduced a binary neural k-NN (Weeks et al., 2003; Hodge & 
Austin 2004b; Hodge & Austin, 2005), based on the Advanced Uncertain Reasoning 
Architecture (AURA) (Austin, 1995) that speeds the identification of the k-nearest 
neighbours while maintaining the recall accuracy of a standard k-NN procedure. This allows 
the AURA k-NN to process larger data sets in the same time as a standard k-NN procedure. 
Our previous empirical evaluations showed that it is approximately four times faster (with 
respect to time) than conventional k-NN (Hodge & Austin, 2005) and the graph trend 
indicates that this speed gain will be maintained for larger data sets, computational resources 
permitting.  AURA k-NN has recently been applied to the task of traffic classification (Austin 
et al., 2010, Hodge et al., 2010; Krishnan et al., 2010a; Krishnan et al., 2010b; Krishnan et 
al., 2010c) and traffic prediction (Hodge et al., 2011). 

Our k-NN requires that real-valued (continuous) attributes are discretised (binned) to 
allow them to be mapped onto the binary neural network that underpins our method. 
Dougherty et al. (1995) provide a survey of discretisation techniques and evaluated various 
techniques in conjunction with a Naïve-Bayes and C4.5 classifier in their seminal paper. 
Skubacz and Hollman (2000) survey various discretisation methods for classification. Liu et 
al. (2002)  and Kotsiantis & Kanellopoulos (2006) provide more contemporary surveys. In 
this paper, we evaluate discretisation techniques suited to k-NN prediction using our k-NN 
predictor.  

Discretisation (also called quantisation or binning) allows discrete learning algorithms 
(such as discrete classifiers or predictors) to handle continuous attributes. It can also be used 
to speed and even improve the accuracy of other learning algorithms (Witten & Frank, 1999). 
The discretisation procedure generally consists of two steps: selecting the number of discrete 
partitions (bins) and selecting the partitions (bin boundaries). Some discretisation methods 
are able to autonomously determine the number of partitions but this number is frequently 
user-specified using either a heuristic or by evaluating a range of values using a suitable 
evaluation criterion. Selecting the discretisation partitions comprises four steps (Liu et al., 
2002)  (1) sorting the attribute values; (2) evaluating a partition boundary for splitting or 
evaluating adjacent partitions for merging; (3) using a suitable criterion to split or merge 
partitions; and finally, (4) terminating when a stopping criterion is met.  

Dougherty et al. (1995) classify discretisation techniques by three criteria: global or local; 
static or dynamic; and, supervised or unsupervised.  

Discretisation may be global or local. Global discretisation is performed independently of 
the algorithm that uses the discretised data (a filter approach) whereas local discretisation is 
performed in conjunction with the algorithm (a wrapper approach). Equi-width discretisation 
(Dougherty et al., 1995; Liu et al., 2002) which divides the attributes into b bins of equal 
width and equi-frequency discretisation (Dougherty et al.,1995; Liu et al., 2002) which 
divides the attributes into b bins each containing an equal number of data points are both 
global methods. The ID3 (Quinlan, 1986) and C4.5 (Quinlan, 1992) decision tree learners 
perform local discretisation by determining the partition boundaries as the decision tree is 
formed. The AURA k-NN requires global discretisation as the bins must be induced before 
training. 

Discretisation may be static or dynamic. Dynamic discretisation takes account of attribute 
inter-dependencies whereas static discretisation does not take them into account. Dynamic 
discretisation is performed using all attributes as a set, for example, using the k-means 
clustering algorithm on all attributes to induce the partition boundaries (Min, 2009; Joita, 



 

2010). In contrast, static discretisation is performed on the attributes individually for 
example, using a clustering algorithm such as k-means on one attribute at a time to induce the 
partition boundaries (Joita, 2010), using equi-width discretisation or using equi-frequency 
discretisation. We analyse both static and dynamic techniques in our evaluations. 

Discretisation may be supervised or unsupervised. Supervised discretisation uses class 
label information to drive the discretisation procedure whereas unsupervised discretisation 
derives the bins independently of any class labels. Holte’s 1R discretiser (Holte, 1993) is an 
error-based global supervised technique; it induces one-level decision trees (decision 
stumps). Fayyad & Irani (1993) introduced a global supervised entropy-based algorithm 
which selects the bin boundaries by recursively partitioning the attribute value range using 
top-down partitioning. Equi-width, equi-frequency and clustering using k-means (described 
later) are all unsupervised discretisation techniques. The evaluation in this paper concerns 
predicting future values of time series variables.  This necessitates unsupervised 
discretisation as no classification labels are available. Hence, we evaluate seven unsupervised 
techniques in this paper.  

The aim of the paper is: to identify the optimal discretisation technique from the 
techniques evaluated with respect to recall accuracy and recall consistency across a wide 
range of well-known data sets. We note that we only compare a standard k-NN discretiser 
with no amendments. We have not weighted attributes nor pre-selected attributes. We have 
not weighted the classification. i.e., we use simple majority voting rather than weighted 
majority voting (Wettscherek, 1994) which takes account of the distances to the nearest 
neighbours when calculating the prediction. This is to ensure consistency across the 
evaluations and to allow us to produce a definitive recall figure. 

In the remainder of this paper we provide: a detailed overview of binary neural networks 
in section II; AURA and our k-NN and discretisation method in section III; a description of 
the evaluation methodology and the results in section IV; an analysis of the results in section 
V; a detailed discussion and comparison of the methods evaluated in section VI; and the 
conclusions we have drawn from our analyses in section VII. 

II. BINARY NEURAL NETWORKS 
AURA belongs to a class of binary neural networks called Random Access Memory 

(RAM-based) networks; see Austin (1998) for a detailed compilation of RAM methods. The 
first RAM-based networks were developed by Bledsoe & Browning (1959) and Aleksander 
& Albrow (1968) for pattern recognition and led to the WISARD pattern recognition machine 
(Aleksander, Thomas & Bowden, 1984)  

   RAM-based neural networks  based on the twin tenets of matrices (usually called 
Correlation Matrix Memories (CMMs)) and pre-processing that maps the data onto the 
CMMs.  Thus, the matrices store associations between inputs Ij and outputs Oj as shown in 
figure 1. There are many methods for pre-processing. The process of discretisation (binning) 
underpins the majority of these. In training the CMM matrix elements are initialised to 0. 
Each matrix takes m inputs as a vector which addresses m rows and takes n outputs as a 
vector which addresses n columns of the matrix. The vectors are binary. Ijl is set (i.e. the ith 
bit in vector Ij is a 1) if row l is active and Ijl is clear (i.e. the lth bit in vector Ij is a 0) 
otherwise. Bit Ojk is a 1 if column k is active and 0 otherwise. During the training phase, the 
matrix weights Mlk are set if the bit representing input row Ijl and the bit representing output 
column Ojk are BOTH set (both 1). During recall, the presentation of vector Ij elicits the recall 



 

of vector Oj as vector Ij contains all of the addressing information (set bits) required to index 
and retrieve vector Oj from the matrix. 

 

FIGURE 1 Diagram of a correlation memory matrix with input vector i0, i1, i2, ..., im-1, im and 

output vector o0, o1, o2, ..., on-1, on. The input vector addresses the rows and the output vector 

addresses the columns. The CMM is trained by associating input and output vectors which set 

the elements in the CMM to 1. All CMM elements are initialised as 0. In the diagram matrix 

elements i0o1, i1on, im-2o2 and imon-1 are set. 

In RAM-based networks, training is thus a single epoch process with one training step for 
each input-output vector association preserving the network’s high speed and thus allowing 
large data sets to be processed. This simple association principle also makes RAM-based 
networks computationally simple and transparent with well understood properties. In 
contrast, most conventional neural networks used for classification such as MLP or RBF, 
(Bishop, 1995) require repeated training epochs and the resultant network is effectively a 
black box. RAM-based networks are also able to partially match records during retrieval. 
Therefore, they can rapidly match records that are close to the input but do not match exactly. 
This partial matching is a central concept for our binary k-NN described in the following 
paragraphs. 

III. AURA K-NN 
The k-NN method requires the top k matching examples (those most similar to the input) 

to be selected.  The AURA methods use a thresholding technique called L-Max (described in 
section III-B.1) that  retrieves the top k matches thus allowing the k-nearest neighbours to be 
determined. Here we have coupled this with a discretisation technique to map numeric data 
on to the binary inputs needed by the CMM. This rapid training, computational simplicity, 
network transparency, partial match capability and thresholding coupled with our 
discretisation technique make AURA ideal to use as the basis of an efficient k-NN 
implementation. The AURA C++ library provides classes and methods for the rapid partial 
matching of large data sets (Austin, 1995).  AURA techniques have demonstrated superior 
performance with respect to speed compared to conventional data indexing approaches 
(Hodge & Austin, 2001) such as hashing and inverted file lists. AURA also has a scalable 



 

architecture that can be easily mapped onto high performance computing platforms including 
parallel (Weeks, Hodge & Austin, 2002a; Weeks, Hodge & Austin, 2002b; Hodge, Jackson 
& Austin, 2011) and distributed platforms (Austin et al., 2005; Hodge, Jackson & Austin, 
2011). A more formal definition of AURA, its components and methods now follows. 

CMMs, shown in figure 1, are the building blocks for AURA systems. AURA uses binary 
and integer-valued input Ij and output Oj vectors to train records in to the CMM and recall 
sets of matching records from the CMM. For the methodology described in this paper, we use 
CMMs in the following way: 

• Train the training data set into the CMM which indexes all records in the training data 
set and allows them to be matched. AURA logically ORs the CMM with the product of the 
vector formed from the record to store and an indexing vector to produce the trained CMM 
using binary vectors. This procedure is described in detail in section III-A. The training 
records each have their classification label stored with them. 

• Apply query records to the CMM in turn and retrieve a set of the best matching records, 
i.e., the nearest neighbours. AURA uses the dot product of an integer-based vector formed 
from the query record and the trained CMM. This recall process is described in detail in 
section III-B.1. We classify the input query by taking the majority classification label from 
the set of records returned. 

A. TRAINING 

In our k-NN implementation, input vectors represent discretised records during CMM 
training and output vectors uniquely identify each record in the data set. The training process 
is given in equation 1 for CMM M and associating input vector Ij with output vector Oj. 

   ⋁ (     )      where   is logical OR       (1) 

1) DISCRETISATION:  

The CMMs in AURA require binary input vectors for training. Hence, we need to map the 
data onto binary vectors. 

For categorical attributes, we simply map each distinct attribute value Xfi where i in 
AttributeValuef onto a specific row in the CMM as given in equation 2, where the rows are 
indexed by integers ( fk) and  is a one-to-one mapping.     (           )           (2) 

The integer  fk identifies the bit to set within the CMM input vector as in equation 3 and 
thus corresponds to a row in the CMM which will be active. 

      (           )         (3) 

offsetf is a cumulative integer offset within the binary vector Ii for each attribute f where 
offsetf+1 = offsetf + numberOfBins(f) and x = y  z sets the bit at location z in the vector y to 
produce a new vector x. 



 

For real-valued attributes, we need to discretise the range of values. Our approach is to 
map the attribute values for each attribute f onto bins. Each bin maps to a unique integer  fk 
which indexes a specific row in the CMM as in equation 4. We then set the appropriate bit in 
the input vector as in equation 3.            (           )        (4) 

where i in AttributeValue(f) and | fk|   |binsfk| as each integer maps to a single and unqiue 
bin  and → is a many-to-one mapping. 

2) DISCRETISATION METHODS 

We evaluate various unsupervised discretisation methods in this paper which vary the 
procedure for selecting the subdivision of the attributes (i.e. vary the bin boundaries). The 
methods evaluated are: equi-width discretisation (or fixed-width discretisation), optimised 
equi-width discretisation, equi-frequency discretisation (also called histogram equalisation), 
k-means clustering discretisation on all attributes together and on the individual attributes and 
expectation maximisation clustering on all attributes together and on the individual attributes.  

Equi-width (EW) discretisation (Dougherty et al., 1995; Liu et al., 2002) aims to 
subdivide an attribute in to bins whose widths are distributed uniformly across the range of 
the attribute. The range of values is divided into b bins such that each bin is of equal width as 
in equation 5.      (      )     (              (       (               (  )       (5) 

Optimised equi-width (OW) discretisation (Schmidberger and Frank, 2005) optimises 
the number of bins specified for equi-width discretisation using a leave-one-out cross-
validation estimate of the log-likelihood. For each iteration of the leave-one-out cross-
validation, the log-likelihood scores the set of bin boundaries generated. This allows the best 
set of bin boundaries to be determined. Log-likelihood is given in equation 6 

Log-likelihood = ∑                     (           (6) 

In contrast, equi-frequency (EF) discretisation (Dougherty et al., 1995; Liu et al., 2002) 
used previously in AURA (Zhou, Austin & Kennedy, 1999; Weeks et al., 2003; Hodge & 
Austin, 2004b) aligns the bin boundaries so each bin contains an approximately equal number 
of records.  The range of values for each attribute is divided into b bins each containing an 
approximately equal number of records. Thus, each row in the CMM will have approximately 
the same number of bits set – one for each record whose attribute value maps to the particular 
bin that the CMM row represents. There will be a larger number of bins where the attribute 
values are clustered and relatively few bins representing the outlying values. With respect to 
each attribute, 

1) Sort all N data points into ascending order, 

2) Find the maximum number of identical points Ni and thus estimate the number of 
distinct data values in each bin Np as Np = (N - Ni)/b where b is the number of bins. 

3) Set the uppermost boundary of each bin as the next data value in the sorted order. 



 

4) Count the number of data values either side of Np which are equal, and either include 
these points in the current bin or promote them to the next bin. 

5) If the number of distinct values in the final bin Nd is greater than (Np +b) then 
increase Np by (Nd - Np)/b and rerun the partitioning process from step 2 for that attribute. 

We note that re-running the discretisation process (after step 5 above) for equi-frequency 
discretisation may increase or reduce the number of bins relative to the initial number 
specified. We vary the number of bins (b) for the discretisation techniques in our evaluation 
in section IV between 10 and 100 in steps of 10. In our empirical analysis in this paper, we 
always state the initial number of bins specified for the EF method. 

Other discretisation methods evaluated here are based on clustering (Joita, 2010). 
Clustering algorithms partition the data space by searching the data for similar examples and 
grouping them into clusters such that the intra-cluster distances are small whereas the inter-
cluster distances are as large as possible. k-means clustering (KM) introduced by 
MacQueen (1967) is one of the most popular clustering algorithms and can be used for 
discretisation. K-means firstly randomly selects a set of points called “seeds” which represent 
k cluster centres.  The algorithm traverses the entire data set assigning each data point to its 
nearest cluster centre. When all data points have been assigned to their nearest cluster centre, 
the k cluster centres are recalculated as the mean of all of the data points in the cluster.  
Assignment and recalculation are repeated until the termination criterion is met. The 
algorithm terminates when convergence is achieved i.e. no further changes occur in the 
clusters. The most common distance measure used in k-means algorithm is the Euclidean 
distance, a special case (p=2) of the Minkowski metric. We run k-means on all data to 
generate the cluster centres using dynamic discretisation (KM) (Min, 2009; Joita, 2010). We 
place the bin boundaries as half way between the cluster centres. We also run k-means on the 
individual attributes to generate the cluster centres for each attributes using static 
discretisation (KMInd). Again, the bin boundaries are the half way points between the 
cluster centres. 

Expectation-Maximisation (EM) introduced by Dempster, Laird & Rubin (1977) finds 
clusters by determining a mixture of Gaussians that fit a given data set. EM assigns a 
probability distribution to each data record which indicates the probability of it belonging to 
each of the clusters. Expectation refers to computing the probability that each data record is a 
member of each class; maximization refers to altering the parameters of each class to 
maximize those probabilities. EM can determine the number of clusters to create by cross-
validation or the number maybe specified a priori. We specify the number of clusters here. 
Similar to the k-means evaluation, we run EM on all data to generate the cluster centres using 
dynamic discretisation. We place the bin boundaries as half way between the cluster centres 
to ensure that bins do not overlap and there are no gaps between bins. We also run EM on the 
individual attributes to generate the cluster centres for each attribute using static discretisation 
(EMInd). Again, the bin boundaries are the half way points between the cluster centres. 

We use the implementations of the binning algorithms available in the WEKA Java data 
mining library (Hall et al., 2009) to determine the bin boundaries. We pass the number of 
required bins as a parameter to WEKA. All other parameter settings for the WEKA 
algorithms are at their default values.  

 

 



 

2) INPUT VECTORS:  

Once the bins and integer mappings have been determined, we need to map each record X 
onto a binary input vector Ij for the CMM. In this paper, each record is a multivariate time-
series Xt  as given in equation 7,   

Xt = {x11,x12,…,x1t-1,x1t,x21,x22,…,x2t-1,x2t,…,xf1,xf2,…,xft-1,xft}      (7) 

for time t = 1 .. T and attribute f = 1 .. F 

Each attribute Xf  maps onto a consecutive section of bits in the binary vector as in 
equations 2 and 3 for categorical attributes and equations 4 and 3 for continuous attributes. 

Each concatenated binary vector represents a record from the data set and forms an input Ij 

to the CMM. The CMM associates the input with a unique output vector OT
j during training, 

see equation 1. Each output vector is orthogonal with a single bit set corresponding to the 
record’s position in the data set, the first record has the first bit set in the output vector, the 
second and so on. In effect, each column of the CMM represents a data record. 

B. RETRIEVING THE NEAREST NEIGHBOURS 

To recall the nearest matches for a query record, we first produce an input vector for the 
CMM as in equations 2 and 3 for categorical attributes or equations 4 and 3 for continuous 
attributes to identify the input vector bits to set. This vector replicates distance-based nearest 
neighbour retrieval. The vector may then be input to the CMM. The dot product of this vector 
and the trained CMM will produce an output vector indexing the k nearest matching records 
as described in the following sections. 

For continuous attributes, we apply an integer-based parabolic kernel (Hodge & Austin, 
2005) (as in figures 2 and 3) to the input vector which is analogous to quantised Squared 
Euclidean distance (see equation 8). It uses integer-valued vectors to input to the CMM and 
thus score the columns (records). Records with a high total column score are more similar to 
the input record than records with a low column score.                    ∑ (     )              (8) 

The Parabolic kernel value for each bin (binsfk) in attribute f is given in equation 9 where 

max(b) is the maximum number of bins across all attributes, |       | calculates the offset 

(that is, the number of CMM rows between the index for the bin mapped to by the target 
attribute value binsft (   ) and the index for the bin mapped to by binsfk (   ) as in equations 

2, 3 and 4, |binsf | is the number of bins for attribute f. All kernels have the same maximum 

value (    (   ) 
 to ensure no bias across the attributes. Note: this is also the maximum score 

for matching categorical attribute values to ensure no bias across all of the attributes, 
regardless of attribute type. We scale the kernel using αf  to spread the kernel across the range 
of each attribute in turn within the CMM input vector as attributes may have differing 
number if bins so we need to ensure that the parabolas representing the attributes are not 
biased, that is, the parabolas for all attributes have the same maximum value. The parabolic 
kernel is then superimposed onto the input vector as in equation 10 and shown in figure 4.                 [(    (   )  ((|       |)    )] where     (    (    (|     |)     (9) 



 

          (                            for all bins (binsfk) in all attributes f            (10) 

 

 

FIGURE 2 The input values (shown as bars) of the CMM rows are set to emulate 

the parabola (line) which represents the Euclidean distance from the central value 

(shown as large dot on central bar). The row input values (bar graph) are thus a 

discrete approximation of squared Euclidean distance. 

 

 

FIGURE 3 Figure a) shows the smoothed parabolic kernel intersection for a two 

attribute data with scores divided into ten discrete concentric regions. Figure b) shows 

the cumulative CMM column scores (representing the summed kernel intersections) 

for the AURA k-NN for the same two attribute data set with 11 bins per attribute and 

identical parabolas to figure 2 on both input attributes. The colours (scores) in the 

squares in b) match the banded colours on a) and represent the discrete concentric 

regions of equivalent score. 

We move the kernels to match the input values unlike RBF (Bishop, 1995) where the 
kernels are fixed. The bin containing the query (target) value effectively receives the highest 
score with the score decreasing monotonically as the distance between the query value and a 

(a) (b) 



 

bin increases. If the bin of the target value is offset, i.e. not the median bin, then the Parabola 
is offset and truncated at one end as in attribute2 of figure 4 where the Parabola is centred 
near the top and truncated at the top. If all attributes have an equivalent number of bins then 
the superimposed Parabolas will be identical. However, if the number of bins varies across 
the attributes, then the width of the Parabolas varies accordingly due to αf  in equation 9 
spreading the kernel across the attribute width as shown in figure 4.  

 

FIGURE 4 Diagram showing the application of kernels to a CMM to find the 

nearest neighbours. The left hand side illustrates the generation of the retrieval input 

vector Rk by applying kernels. The dot is the bin representing the query value for each 

attribute. AURA multiplies Rk*M, using the dot product, sums each column to produce 

the summed output vector Sk and thresholds the summed output vector to produce the 

thresholded output Tk. 

For categorical attributes, we activate the single row matching the query attribute value 
and any records stored in the CMM will be activated and scored as shown in equation 11 
where Ijq sets the qth element of the integer-valued input vector Ij. Note: all other elements in 
vector Ij will be 0.     (    (   ) 

                    (11) 

1) CMM RECALL:  

To retrieve the best matching records for a particular query record (represented by integer-
valued input Ik) using Parabolic kernels, the AURA k-NN effectively calculates the dot 
product of the input vector Ik and the CMM, computing a positive integer-valued output 
vector Ok (the summed output vector) as in equation 12 and figure 4. 



 

OT k = Ik • M                    (12) 

The summed output Ok is thresholded to produce a binary output vector as in figure 4. We 
use the L-max threshold (Austin, 1995). L-Max thresholding essentially retrieves at least L 
top matches, i.e., at least L nearest neighbours. L-max thresholding sets a bit in the 
thresholded output vector for every location in the summed output vector that meets the 
criterion. For k-NN, L is set to the value of k, where k is the number of nearest neighbours 
required. 

The method can identify the k-nearest matching records by inspecting the bits set in the 
thresholded output vector. In the work here, bit0 in the output vector corresponds to the first 
record in the data, bit1 to the second record and so on. Therefore, if bit0 is set in the 
thresholded output vector then the first record is a match.  

2) PREDICTION  

To undertake prediction of the future values in the time series, we maintain a lookup table 
of values for the prediction attribute t+n time steps ahead for each historical record. The 
values are indexed by the column indexes (integers) of the CMM. After AURA recall, the set 
of best matching columns are stored in the thresholded output vector Tk. For all columns set 
to 1 in Tk, we obtain the column index. The AURA k-NN cross-references the historical 
records from this set of column indices, sums the t+n attribute values for all matching 
columns and calculates the mean value for the prediction attribute n time steps ahead.  

IV. EVALUATION 
Across all evaluations, we generate the discretisation cut point sets (binning partition) 

using the discretisation and clustering methods available in WEKA (Hall et al., 2009). These 
partition boundaries then form the boundaries to discretise the data for the AURA k-NN. 

The AURA k-NN for prediction uses the AURA C++ class library (AURA, 2012) which 
provides classes and methods for CMMs and thresholding. The AURA k-NN is absolutely 
identical for all techniques evaluated to ensure consistency. We retrieve the top ten nearest 
neighbours for all evaluations. The number of neighbours to retrieve is a trade-off.  Too few 
neighbours will cause the prediction to be affected by any erroneous values in the nearest 
neighbour set.  Too many neighbours may mask any errors retrieved by averaging them out. 
To allow a thorough evaluation of the discretisation methods, we have chosen a value that 
will mask the odd discrepancy but will not mask repeated errors.  This will allow a valid 
comparison of the discretisation methods. There is only one variation across data sets: we 
vary the time-series length according to the specifications of each dataset – the time series 
lengths used are given in Table 2 and are fixed across all evaluations of each data set. 

Therefore, the only variation that we are evaluating is the discretisation of real-valued 
attributes. 

A. DATA SETS 

We evaluate the discretisation algorithms within our AURA k-NN framework using 10 
well-known data sets from the UCR time-series data repository (UCR, 2012) and the UCI 
machine learning repositories (Frank & Asuncion, 2010). We detail the data sets below, 
indicating which attributes we used from the original data (we refer to the column number 



 

indexing from 1) and the size of the training and test splits.  We split the data sets 
chronologically by using the first X records as the training set and the final Y records as the 
test set to mimic the real-world scenario. We use all original data records where possible 
except for the Motes data where some of the later records contain large number of sensor 
errors which we omitted. For the Motes Q8 Temperature data set (Deshpande et al., 2004) we 
omit the final three columns as they contain large numbers of sensor errors.  We only select 
the attributes recommended in the paper (Costa et al., 1999) for the Power Demand data set. 

1. CalIt2: Observations from two data streams (people flow in and out of the building), 
over 15 weeks, 48 time slices per day (half hour count aggregates) (Frank & 
Asuncion, 2010). 

2. Inline Skating: Activation of three muscles, foot contact signal, three angles and 
three angular velocities of professional inline speed skater during the last thirty 
seconds of a three minute exercise on a treadmill at 3.72 m/s sampled at 1kHz 
(Mörchen, Ultsch & Hoos, 2005).  

3. pH: Simulation data of a pH neutralization process in a stirring tank (de Moor, 2012; 
McAvoy, Hsu & Lowenthal, 1972).  

4. Power Demand: short-term load forecasting of power system data provided by AEM-
Turin covering the three years (1995-1997) (Costa et al., 1999). The data attributes we 
use are transformed power load, minimum temperature (for the day) and maximum 
temperature (for the day) as recommended in the paper (Costa et al., 1999). 

5. Q8 Humidity: Sensor motes: humidity sensor measurements collecting from wireless 
sensors (Deshpande et al., 2004).  

6. Q8 Temperature: Sensor motes: temperature sensor measurements collecting from 
wireless sensors (Deshpande et al., 2004).  

7. Q8 Voltage: Sensor motes: voltage sensor measurements collecting from wireless 
sensors (Deshpande et al., 2004).  

8. Stanford: multivariate data set recorded from a patient in the sleep laboratory of the 
Beth Israel Hospital in Boston, Massachusetts. The first column is the heart rate, the 
second is the chest volume (respiration force), and the third is the blood oxygen 
concentration (measured by ear oximetry). The patient shows sleep apnoea (Weigend, 
and Gershenfeld, 1994).  

9. Steam Generation: Model of a steam generator at Abbott Power Plant in Champaign 
IL. (Pellegrinetti & Benstman, 1996).  

10. Winding: Data from a test setup of an industrial winding process (de Moor, 2012; 
Bastogne et al., 1997).  

Further details of the datasets are given in Table 1 which lists the column indices of the 
attributes from the original data set that we used (indexed 1 .. F), the column index of the 
attribute we used for t+1 prediction, how many records formed the training set and how 
many records formed the test set. 



 

TABLE 1 Table listing the attributes selected (column indexes), the attribute used 

for prediction (column index), the number of records in the  training data set and the 

number of records in the test data set for each of the ten data sets evaluated.  

Dataset Attributes Predict Train Test 
CalIt2 4,8 8 3360 1680 
Inline Skating 2-11 2 19932 9968 
pH 1-3 3 1265 736 
Power Demand 5,7,8 5 19954 9976 
Q8 Humidity 1-48 1 4332 2168 
Q8 Temperature 1-53 1 3999 2001 
Q8 Voltage 1-46 1 4867 2433 
Stanford 1-3 1 22666 11334 
Steam Generation 1-4 4 6400 3200 
Winding 1-7 7 1666 834 

 

B. EVALUATION 

For each of the ten data sets, we ran each of the seven discretisation algorithms using all 
data with each of the bin counts (10-100 inclusive in steps of 10).  We felt that a range of bins 
between 10 and 100 would provide a thorough analysis of the discretisation methods. This 
produces 10x7x10 (700) binning partition sets. Note: we use all of the data (train+test) for 
setting up the binning to ensure that no binning method is favoured by the data split.  There 
may be bias if we only use the training data for bin selection, particularly for the smaller data 
sets and particularly as the data is time-series which may contain trends. We then ran each of 
the 70 binning partition sets for each of the ten data sets through the AURA k-NN in turn to 
predict the t+1 attribute value for the selected prediction attribute for that data set. We used 
the set of attributes listed in table 1 for both the training and test data. We selected the 10 
nearest neighbours to generate the t+1 prediction for each of the records in the test set by 
averaging the t+1 value for these 10 nearest neighbours.  

The prediction accuracy is calculated as the Root Mean Square Error (RMSE) for all 
predicted t+1 values against the actual value for that time slot across all records in the test 
set. 

C. RESULTS 

Table 3 to Table 12 in the appendix list the RMSE prediction accuracies for each of the 
seven binning algorithms with between 10 and 100 bins (inclusive in steps of 10) for each of 
the ten data sets. The data are also shown graphically in Figure 5 to Figure 14 in the appendix. 
The best discretisation technique versus number of bins combination is marked in grey 
shading and bold italic in Table 3 to Table 12. We also mark the second and third best 
combinations for each data set in bold font.  This indicates whether one method is 
consistently best for each data set or whether the best method for the top three RMSE scores 
varies. We note that the optimised equi-width produced no partition boundary sets for the 
three Motes data sets (Q8 Humidity, Q8 Temperature and Q8 Voltage).  These data sets have 
missing sensor values indicated by the value 0.  We passed these data sets to ALL of the 
WEKA discretisation methods in their raw form so the 0-values were not marked as missing.  
We suspect that the 0-values prevented the optimiser working.  



 

Table 2 in section V provides an overview of these results. 

V. ANALYSIS 
Table 2 details the characteristics of the various data sets coupled with the best 

discretisation technique and the optimum number of bins for each data set.  The 
characteristics are:  

 Atts – the number of attributes in total. 
 Ints – the number of integer-valued attributes. 
 Real – the number of real-valued attributes. 
 µRange – the mean range of the attributes (sum of ranges of all attributes divided by the 

number of attributes). 
 RangeP – the range of the attribute to be predicted. 
 TSLen – the length of the time-series used for prediction 
 DM – the best discretisation method for the data set of the seven evaluated (EW, OW, EF, 

KM, EM KMInd, EMInd). 
 NumBins – the optimum number of bins for the data set. 

 
These characteristics will allow us to analyse whether there is a correlation between 

particular data set characteristics such as the number of attributes or the type of attributes and 
the best discretisation technique or optimum number of bins. 

TABLE 2 Table providing the statistics of each data set, the best discretisation 

technique for that data set and the best number of bins to use for t hat discretisation 

technique. 

 Atts Ints Real µRange RangeP TSLen DM NumBins 
CalIt2 2 2 0 58 62 24 EMInd 50 
Inline 

Skating 
10 0 10 7.87 0.16 30 EW 100 

pH 3 0 2 4.70 8.11 30 KMInd 10 
Power 

Demand 
3 1 2 94.6 214 12 OW 100 

Q8 Humidity 48 0 48 62.4 50.6 30 EMInd 70 
Q8 

Temperature 
53 0 53 49.7 28.9 30 KMInd 10 

Q8 Voltage 46 0 46 2.80 2.75 30 EW 100 
Stanford 3 2 1 33816.7 108.1 60 KMInd 10 
Steam 

Generation 
4 0 4 114.0 32.6 30 EW 40 

Winding 7 0 7 6.84 8.19 30 EW 30 
 

From Table 2, we can see that there is no single best discretisation technique nor is there a 
single best number of bins. Skubacz and Hollman (2000) concluded that there was no single 
best discretisation method for the classification task that they evaluated. We have studied the 
characteristics of the data sets listed in columns 2-7 of Table 2 and there does not appear to 
be a correlation between the data characteristics and the best discretisation technique or the 
best number of bins to use. The only obvious correlation is that, for the three data sets where 
KMind is the best discretisation method then the best number of bins is 10. However, we note 



 

that on the Q8 Humidity data set, the optimum number of bins for KMInd is 100 so we would 
not expect the optimum number of bins to always be 10. This indicates that the best approach 
is to evaluate a number of discretisation techniques coupled with varying numbers of bins for 
each data set to be predicted. 

We have also visualised the values of the individual attributes across the data sets to 
investigate whether there is a correlation between the distribution of the data and the best 
discretisation configuration.  We examined the distributions of the individual attributes rather 
than the distribution of all data together as the discretisation using individual attributes has 
lower error than discretisation using all attributes. Again, there does not appear to be a 
correlation between the discretisation configuration and the data distribution.  Three data sets 
have KMInd as the best discretisation method with 10 bins as the best number of bins. There 
is very little correlation between the data distributions of these with the two data sets (Q8 
Temperature and Stanford) having a majority of attributes with Gaussian-shaped distributions 
although the Gaussian-shapes are offset and not centred on the centre value.  The other data 
set (pH) has very different attribute distributions. Also, there are other data sets with similar 
attribute distributions to Q8 Temperature and Stanford and these other data sets had different 
discretisation configurations as the top performer. 

Equi-width discretisation is the best discretisation technique for four data sets. KMInd is 
best for three and EMInd is best for two data sets. Optimised equi-width is the best 
discretisation technique for one data set. Neither equi-frequency nor either of the two 
dynamic clustering discretisation techniques (KM or EM) is the best for any data set. For the 
data sets where equi-width is best it also tends to have the top three scores (for three of the 
four winning data sets).  For the data set where optimised equi-width is best it also has the top 
three scores.  For the data sets where EMInd and KMInd are best respectively, they do not 
have the top three scores. 

The optimum number of bins varies across the range of values with 10 and 100 both best 
for three data sets each. 30, 40, 50 and 70 are the other best bin counts for one data set each. 

VI. DISCUSSION 
The results indicate that there is no single best discretisation method or number of bins.  

This necessitates evaluating various discretisation configurations to determine the best 
method.  From the ten data sets evaluated here, there is no obvious correlation between the 
data characteristics and the best configuration neither is there an obvious correlation between 
the data distribution and the best configuration. As the number of data sets evaluated builds 
as the method is used, it may be possible to infer heuristics for determining the best 
discretisation configuration from the data characteristics.  These heuristics may not indicate a 
single best configuration but it may be possible to at least limit the configurations required 
for evaluation for a particular data set using that data set’s characteristics.  

Equi-width discretisation does not distort the bin widths so the hyper-grid formed by the 
bins in the d-dimensional data space will have hyper-cubic cells. This means that the 
Euclidean distances are preserved which may explain the highest recall consistency achieved 
by this technique. The approach may be considered distance-based and k-NN is a distance-
based predictor; it generates predictions using the k nearest stored records. However, Catlett 
(1991) noted that equi-width discretisation may be distorted by outlying attribute values 
which skew the attribute range and thus the bin widths so this may explain the lower recall 
accuracy achieved on some data sets, most notably Q8 Humidity and Q8 Temperature.  These 



 

data sets have 0-valued entries for missing sensor values, Q8 Humidity has erroneous entries 
of -276 and other smaller negative values, Q8 Temperature also has erroneous sensor 
readings of 122.153 degrees and these will have distorted the ranges. Excluding the 0-values 
and erroneous high values, Q8 Humidity ranges between approximately 18 and 60; and, Q8 
Temperature ranges between approximately 16 and 30. Hence, the range for Q8 Humidity 
rises from 18-60=42 to -276-60=336 when the sensors errors are included in the latter figures.  
The range for Q8 Temperature increases from 16-30=14 to 0-122=122 when the sensors 
errors are included in the latter figures. Q8 Voltage ranges between approximately 2.1 and 
2.7 so the 0-values will have much less effect on the ranges for this data set and equi-width is 
the top performer for Q8 Voltage data set. Also, the attributes may not be equally relevant so 
the input space might not be isotropic, and distances may not vary with equal strength in all 
directions. Thus a discretisation technique that skews the distances may perform better than 
equi-width discretisation on such data sets where no attribute weighting is used for k-NN 
retrieval as in this evaluation. 

For the Power Demand data set the optimised version of equi-width binning (OW) clearly 
outperforms the other methods. Optimised equi-width binning(OW) is also the second best 
method on the CalIt2 data set. These data sets (CalIt2 and Power Demand) are somewhat 
similar representing 30 minute and hourly readings respectively, having two and three 
attributes with similar ranges and predicting an integer-valued attribute. This indicates that it 
is important to include optimised equi-width in any discretisation evaluation as it can 
outperform the other approaches on some data sets though overall performance is erratic 
across these ten data sets. 

The static clustering discretisation methods (KMInd and EMInd) are not distorted by 
outlying attribute values unlike equi-width discretisation. The hyper-grid formed by the bins 
in the d-dimensional data space by both KMInd and EMInd will have cells with varying 
widths across each dimension. The cells will be narrower where the clusters are dense 
allowing finer-grained differentiation and the cells will be wider where the clusters are less 
dense. This allows records to be distinguished and separated. KMInd is the best method for 
three data sets and EMInd is the best for two data sets.  However, they are not as consistent as 
equi-width discretisation as they do not hold the top three accuracies for any data set. 

Dynamic clustering discretisation which uses all attributes to place the clusters and equi-
frequency discretisation do not perform best on any data set. Using all of the attributes 
together to place the cluster centres as in KM and EM methods does not produce good quality 
partition boundaries.  Optimising across all attributes can distort the bin boundaries. Better 
boundaries are generated using the attributes separately. Equi-frequency discretisation may 
be considered a density-based technique. The hyper-grid formed by the bins in the d-
dimensional data space will have cells with an equal number of records mapping to each cell 
across each dimension. The cells will be narrower allowing finer-grained differentiation 
where the records are most dense and the cells will be wider where the records are less dense; 
equi-frequency is density-based. However, it distorts the distances represented, they are not 
the Euclidean distances but density-based distances and, we posit, that this has adversely 
affected prediction accuracy. 

It may be worth including the dynamic clustering and equi-frequency discretisation 
methods in any evaluations if time limits permit.  However, if time available for evaluation is 
limited, focusing on the static discretisation techniques (KMInd and EMInd), equi-width 
(EW) and optimised equi-width (OW) is likely to be most profitable. 



 

We have shown empirically in our previous paper (Hodge & Austin, 2005) that the AURA 
k-NN is four times faster with respect to time than the standard k-NN on data sets up to 
200,000 records. We note that the evaluation in Hodge & Austin (2005) used 149 bins 
whereas we only use 10 -100 bins in this paper (see section IV). Hence, the speed gain for the 
AURA k-NN here over the standard k-NN would be higher with up to fifteen times fewer 
bins to process in the AURA k-NN here than in Hodge & Austin (2005). 

VII. CONCLUSION 
The results indicate that there is no single best discretisation method or number of bins.  

Skubacz and Hollman (2000) concluded that there was no single best discretisation method 
for the classification task that they evaluated. This demonstrates that, when using AURA k-
NN for prediction, we will need to evaluate various discretisation configurations with respect 
to both the binning method and the number of bins to determine the best discretisation 
configuration for the particular data set.   

In Hodge, Jackson & Austin (2011), we proposed optimising the data and algorithm 
settings of the AURA k-NN using, for example, genetic algorithms (Holland, 1975; 
Goldberg, 1989) or particle swarm optimisation (Kennedy and Eberhart, 1995; Kennedy and 
Eberhart, 2001) which have been used widely in the literature for optimisation problems. 
Optimising the discretisation settings would form part of this process. Within this 
optimisation process, we also proposed a meta-learner similar to Brazdil, Soares and Da 
Costa (2003). This would use AURA k-NN to store the results of the optimisations run 
previously and learn the best settings. The k-NN distance function would be based on various 
features of the dataset to allow the selection of the most similar historical settings, that is, the 
best settings to use for the current dataset. These best settings may then be used to bootstrap 
future optimisations and short-circuit the optimisation process. From the evaluations here, 
there was no obvious correlation between data features and discretisation settings.  However, 
over a larger number of data sets, correlations between data features and discretisation 
settings that may be used in the meta-learner may appear. 
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APPENDIX 
Tables listing the prediction RMSE for each discretisation method (EF, EW, OW, KM, 

KMInd, EM and EMInd) for each number of bins (10-100) for the ten data sets. The best 
RMSE is shaded grey in bold-italic font.  The second and third best are in bold font. 

TABLE 3 Table listing the prediction RMSE for the various discretisation 

configurations on the CalIt2 data set . 

CalIt2 

 EF EW OW KM KMInd EM EMInd 

10 4.924497 4.890287 4.95764 4.946287 4.922035 4.960346 4.994925 

20 4.952212 4.920293 5.039857 4.960418 4.914853 4.936898 5.042166 

30 4.996043 4.928377 5.021545 4.926668 4.985006 4.933097 4.956718 

40 4.955113 4.934718 4.966828 4.921325 4.954037 4.923158 4.928758 

50 4.966231 4.948845 4.900699 4.895965 4.937652 4.96301 4.873144 

60 4.966231 4.917732 4.890981 4.906734 4.937652 4.981531 4.873144 

70 4.966231 4.917935 4.877423 4.8975 4.937652 4.961059 4.873144 

80 4.966231 4.938334 4.959215 4.941658 4.937652 4.907745 4.873144 

90 4.966231 4.92796 4.96544 4.939677 4.937652 4.907626 4.873144 

100 4.966231 4.929061 5.013031 4.948577 4.937652 4.934471 4.873144 

 

 

FIGURE 5 Graph of the RMSE data in TABLE 3. 

CalIt2 RMSE

4.85

4.9

4.95

5

5.05

10 20 30 40 50 60 70 80 90 100

Num bins

R
M

S
E

EF

EW

OW

KM

KMInd

EM

EMInd



 

TABLE 4 Table listing the prediction RMSE for the various discretisation 

configurations on the Inline Skating data set. 

Inline Skating 

 EF EW OW KM KMInd EM EMInd 

10 0.005699 0.005264 0.005318 0.005848 0.005324 0.005688 0.005401 

20 0.005525 0.004785 0.004939 0.005869 0.005036 0.005643 0.005043 

30 0.005415 0.004715 0.004814 0.006096 0.005251 0.005851 0.004915 

40 0.005421 0.004646 0.004682 0.006285 0.005146 0.006141 0.00497 

50 0.005312 0.004633 0.004734 0.006456 0.005091 0.006188 0.004973 

60 0.005363 0.004638 0.004857 0.006368 0.005034 0.006108 0.004869 

70 0.005294 0.004644 0.004930 0.006420 0.005049 0.006227 0.004928 

80 0.005317 0.004606 0.004911 0.006290 0.005034 0.006244 0.00494 

90 0.005273 0.004617 0.004910 0.006262 0.005008 0.006182 0.004929 

100 0.005276 0.004595 0.004788 0.006336 0.005059 0.005896 0.005046 

 

 

FIGURE 6 Graph of the RMSE data in TABLE 4. 
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TABLE 5 Table listing the prediction RMSE for the various discretisation 

configurations on the pH data set. 

pH 

 EF EW OW KM KMInd EM EMInd 

10 1.172878 0.651434 1.364287 1.472774 0.577938 1.444895 0.911799 

20 1.410466 0.734924 1.906532 1.537587 1.068633 1.333453 1.334506 

30 1.65645 0.782993 1.896108 1.314685 1.378566 1.512411 1.527391 

40 1.827855 0.796493 1.972796 1.535547 1.208107 1.317581 1.170691 

50 1.885141 0.795941 2.014499 1.498622 1.590704 1.224661 2.013144 

60 1.849427 0.816428 2.048418 1.461966 1.450132 1.469338 1.817294 

70 1.851682 0.820291 2.035918 1.282719 1.433494 1.177819 1.650824 

80 1.813855 0.823881 2.045153 1.399878 1.341892 1.220095 1.718529 

90 1.888506 0.821751 2.079092 1.338068 1.540737 1.206869 1.676036 

100 1.887283 0.828481 2.126529 1.329711 1.636054 1.30012 1.744316 

 

 

FIGURE 7 Graph of the RMSE data in TABLE 5. 

pH RMSE

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

10 20 30 40 50 60 70 80 90 100

Num bins

R
M

S
E

EF

EW

OW

KM

KMInd

EM

EMInd



 

TABLE 6 Table listing the prediction RMSE for the various discretisation 

configurations on the Power Demand data set . 

Power Demand 

 EF EW OW KM KMInd EM EMInd 

10 11.91378 12.24336 12.63159 12.71695 11.19925 12.72386 11.47972 

20 10.59119 10.93452 10.90303 10.80652 10.38338 10.82566 10.89315 

30 10.52534 10.8376 10.99338 10.80449 10.55618 10.78955 10.20982 

40 10.47906 10.79125 10.4197 10.71948 10.27625 10.7651 10.45479 

50 10.52463 10.818 9.895694 10.53563 10.38274 10.54539 10.45545 

60 10.44292 10.76346 9.597229 10.55794 10.46292 10.85642 10.64175 

70 10.55007 10.7455 9.225207 10.65808 10.29918 10.70108 10.71359 

80 10.47155 10.71229 8.750793 10.51056 10.33432 10.66725 10.59385 

90 10.49693 10.75208 8.585312 10.59197 10.40026 10.5205 10.46287 

100 10.42139 10.69797 8.378631 10.54727 10.37307 10.65517 10.53053 

 

 

FIGURE 8 Graph of the RMSE data in TABLE 6. 
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TABLE 7 Table listing the prediction RMSE for the various discretisation 

configurations on the Q8 Humidity data set . 

Q8 Humidity 

 EF EW OW KM KMInd EM EMInd 

10 5.539855 5.696871 - 5.574461 5.58411 5.654277 5.496418 

20 5.485876 5.610919  5.504454 5.509741 5.482417 5.529952 

30 5.478956 5.577556  5.506319 5.497571 5.457697 5.504945 

40 5.473801 5.573197  5.49217 5.512809 5.463492 5.494317 

50 5.474619 5.554312  5.467233 5.530864 5.46082 5.498137 

60 5.47028 5.564743  5.500056 5.523913 5.476252 5.473664 

70 5.472675 5.561528  5.49733 5.519527 5.47912 5.449213 

80 5.474751 5.567025  5.48873 5.513559 5.481249 5.464963 

90 5.476791 5.56056  5.507742 5.499874 5.457313 5.456431 

100 5.47733 5.564607  5.488644 5.495294 5.465483 5.47779 

 

 

FIGURE 9 Graph of the RMSE data in TABLE 7. 
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TABLE 8 Table listing the prediction RMSE for the various discretisation 

configurations on the Q8 Temperature data set. 

Q8 Temperature 

 EF EW OW KM KMInd EM EMInd 

10 2.859895 3.287342 - 2.842124 2.76867 2.825171 2.798231 

20 2.818977 2.949413  2.810331 2.772145 2.822821 2.795002 

30 2.812592 2.911362  2.804223 2.796941 2.79583 2.803491 

40 2.812978 2.911264  2.809086 2.799589 2.821871 2.806346 

50 2.811949 2.911923  2.81496 2.786565 2.818447 2.811924 

60 2.8118 2.913309  2.811009 2.812517 2.784408 2.816255 

70 2.812411 2.916016  2.813631 2.789157 2.770904 2.806368 

80 2.812434 2.911724  2.809134 2.813404 2.787543 2.809671 

90 2.812241 2.913893  2.807965 2.816527 2.775255 2.811235 

100 2.812262 2.914636  2.81979 2.815964 2.803253 2.810602 

 

 

FIGURE 10 Graph of the RMSE data in TABLE 8. 
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TABLE 9 Table listing the prediction RMSE for the various discretisation 

configurations on the Q8 Voltage data set . 

Q8 Voltage 

 EF EW OW KM KMInd EM EMInd 

10 0.450794 0.481753 - 0.509104 0.412714 0.459833 0.415563 

20 0.455402 0.378643  0.51458 0.46287 0.519738 0.569271 

30 0.582598 0.373808  0.521669 0.497748 0.581193 0.547806 

40 0.559939 0.356845  0.572594 0.477481 0.620057 0.542968 

50 0.55408 0.346293  0.547834 0.499776 0.634712 0.490699 

60 0.583917 0.339062  0.535845 0.513607 0.616254 0.48559 

70 0.578829 0.337866  0.570717 0.55089 0.630979 0.531651 

80 0.588896 0.335987  0.551562 0.507068 0.587364 0.472054 

90 0.557773 0.336498  0.551946 0.508434 0.615647 0.496174 

100 0.558097 0.335806  0.591989 0.511198 0.624624 0.517107 

 

 

FIGURE 11 Graph of the RMSE data in TABLE 9. 
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TABLE 10 Table listing the prediction RMSE for the various discretisation 

configurations on the Stanford data set . 

Stanford 

 EF EW OW KM KMInd EM EMInd 

10 16.09229 16.92937 16.71849 16.21269 14.65761 15.96104 14.82125 

20 16.2657 16.7926 16.81843 15.76794 14.74246 16.0056 16.05704 

30 16.30286 16.82134 16.85936 16.28071 15.01656 15.94739 15.9288 

40 16.31204 16.74684 16.71774 16.20726 15.67695 16.74684 16.01587 

50 16.3224 16.7538 16.75841 15.84172 16.25412 16.67528 16.30804 

60 16.32028 16.78443 16.77114 15.71987 16.44666 15.71325 16.47258 

70 16.32764 16.79053 16.73768 15.95333 16.62443 15.82765 16.58979 

80 16.53062 16.74776 16.58009 16.06153 16.68895 16.48893 16.57137 

90 16.68649 17.12461 16.69834 15.71757 16.67616 16.52897 16.59264 

100 16.71821 17.12456 16.98707 15.56455 16.67605 16.60761 16.59462 

 

 

FIGURE 12 Graph of the RMSE data in TABLE 10. 
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TABLE 11 Table listing the prediction RMSE for the various discretisation 

configurations on the Steam Generator data set . 

Steam Generator 

 EF EW OW KM KMInd EM EMInd 

10 2.820537 2.317172 2.363179 2.893302 2.560617 2.809536 2.713328 

20 2.691419 2.312637 2.312637 2.936155 2.497025 2.750746 2.591133 

30 2.671236 2.291332 2.291698 2.920642 2.529659 2.762968 2.578568 

40 2.650103 2.289425 2.395625 2.801842 2.548329 2.757805 2.549705 

50 2.658709 2.295461 2.345279 2.804712 2.574465 2.693802 2.623495 

60 2.637555 2.293386 2.367243 2.775619 2.560677 2.745303 2.577679 

70 2.623957 2.309085 2.360193 2.728743 2.601815 2.84196 2.640309 

80 2.627001 2.301891 2.299493 2.75461 2.667130 2.886866 2.726628 

90 2.635325 2.300801 2.422864 2.750975 2.710515 2.791833 2.697327 

100 2.632024 2.305357 2.387626 2.684562 2.690951 2.844817 2.746271 

 

 

FIGURE 13 Graph of the RMSE data in TABLE 11. 
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TABLE 12 Table listing the prediction RMSE for the various discretisation 

configurations on the Winding data set . 

Winding 

 EF EW OW KM KMInd EM EMInd 

10 0.513782 0.429671 0.72545 0.545187 0.488177 0.527268 0.49026 

20 0.506447 0.433126 0.69499 0.533119 0.47947 0.520153 0.472553 

30 0.504079 0.427338 0.74488 0.529803 0.493573 0.50677 0.485893 

40 0.502287 0.430681 0.781342 0.520284 0.50276 0.512498 0.489589 

50 0.50024 0.429751 0.80811 0.518527 0.512097 0.505224 0.495685 

60 0.501338 0.43078 0.837936 0.511035 0.512185 0.505768 0.492478 

70 0.499693 0.430938 0.877855 0.507379 0.509961 0.510407 0.486573 

80 0.501224 0.432308 0.886347 0.506368 0.513724 0.507807 0.487934 

90 0.500129 0.430581 0.86298 0.50433 0.509512 0.505357 0.491668 

100 0.501811 0.431722 0.886525 0.504464 0.510039 0.499687 0.488917 

 

 

FIGURE 14 Graph of the RMSE data in TABLE 12. 
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