
This is a repository copy of Discretisation of Data in a Binary Neural k-Nearest Neighbour
Algorithm.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/89484/

Version: Published Version

Other:

Hodge, Victoria Jane orcid.org/0000-0002-2469-0224 and Austin, Jim orcid.org/0000-
0001-5762-8614 (2012) Discretisation of Data in a Binary Neural k-Nearest Neighbour
Algorithm. UNSPECIFIED, Department of Computer Science, University of York, UK.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

DISCRETISATION OF DATA IN A BINARY
NEURAL K-NEAREST NEIGHBOUR ALGORITHM

VICTORIA J. HODGE AND JIM AUSTIN

DEPT OF COMPUTER SCIENCE, UNIVERSITY OF YORK, YO10 5GH, UK,

{victoria.hodge, jim.austin}@york.ac.uk

ABSTRACT

This paper evaluates several methods of discretisation (binning) within a k-Nearest
Neighbour predictor. Our k-NN is constructed using binary neural networks which require
continuous-valued data to be discretised to allow it to be mapped to the binary neural
framework. Our approach uses discretisation coupled with robust encoding to map data sets
onto the binary neural network. In this paper, we compare seven unsupervised discretisation
methods for retrieval accuracy (prediction accuracy) across a range of well-known prediction
data sets comprising time-series data. We analyse whether there is an optimal discretisation
configuration for our k-NN. The analyses demonstrate that the configuration is data specific.
Hence, we recommend running evaluations of a number of configurations, varying both the
discretisation methods and the number of discretisation bins, using a test data set. This
evaluation will pinpoint the optimum configuration for new data sets.

KEYWORDS

k-Nearest Neighbour, binary neural network, discretisation, binning, quantisation

I. INTRODUCTION
Standard k-Nearest Neighbour (k-NN) is a widely applicable data mining algorithm that

demonstrates high recall accuracy; see Fix & Hodges (1951), Cover & Hart (1967),
Dasarathy (1991), Wettscherek (1994), Györfi et al. (2002), Hodge & Austin (2004a),
Bubeck & von Luxburg (2009) and Hodge (2011) for an overview of k-nearest neighbour
techniques. For both classification and prediction, k-NN examines those points in a particular
data space lying “nearest” to a query point. K-NN then uses the respective classifications or
predictions of these nearest neighbours to determine the class of the query point or to predict
the next value in a time-series.

The computational growth of standard k-NN is O(N2) (Dasarathy, 1991; Knorr & Ng,
1998) with respect to the number of records N in the data set. This is because the approach
calculates the distance to each record for every record in the data set. The computational
complexity is also directly proportional to the dimensionality of the data d. As a result, there
is a practical upper limit to both the number of records and the data dimensionality that may
be processed even on modern high speed computers depending on the processor time
available.

We have previously introduced a binary neural k-NN (Weeks et al., 2003; Hodge &
Austin 2004b; Hodge & Austin, 2005), based on the Advanced Uncertain Reasoning
Architecture (AURA) (Austin, 1995) that speeds the identification of the k-nearest
neighbours while maintaining the recall accuracy of a standard k-NN procedure. This allows
the AURA k-NN to process larger data sets in the same time as a standard k-NN procedure.
Our previous empirical evaluations showed that it is approximately four times faster (with
respect to time) than conventional k-NN (Hodge & Austin, 2005) and the graph trend
indicates that this speed gain will be maintained for larger data sets, computational resources
permitting. AURA k-NN has recently been applied to the task of traffic classification (Austin
et al., 2010, Hodge et al., 2010; Krishnan et al., 2010a; Krishnan et al., 2010b; Krishnan et
al., 2010c) and traffic prediction (Hodge et al., 2011).

Our k-NN requires that real-valued (continuous) attributes are discretised (binned) to
allow them to be mapped onto the binary neural network that underpins our method.
Dougherty et al. (1995) provide a survey of discretisation techniques and evaluated various
techniques in conjunction with a Naïve-Bayes and C4.5 classifier in their seminal paper.
Skubacz and Hollman (2000) survey various discretisation methods for classification. Liu et
al. (2002) and Kotsiantis & Kanellopoulos (2006) provide more contemporary surveys. In
this paper, we evaluate discretisation techniques suited to k-NN prediction using our k-NN
predictor.

Discretisation (also called quantisation or binning) allows discrete learning algorithms
(such as discrete classifiers or predictors) to handle continuous attributes. It can also be used
to speed and even improve the accuracy of other learning algorithms (Witten & Frank, 1999).
The discretisation procedure generally consists of two steps: selecting the number of discrete
partitions (bins) and selecting the partitions (bin boundaries). Some discretisation methods
are able to autonomously determine the number of partitions but this number is frequently
user-specified using either a heuristic or by evaluating a range of values using a suitable
evaluation criterion. Selecting the discretisation partitions comprises four steps (Liu et al.,
2002) (1) sorting the attribute values; (2) evaluating a partition boundary for splitting or
evaluating adjacent partitions for merging; (3) using a suitable criterion to split or merge
partitions; and finally, (4) terminating when a stopping criterion is met.

Dougherty et al. (1995) classify discretisation techniques by three criteria: global or local;
static or dynamic; and, supervised or unsupervised.

Discretisation may be global or local. Global discretisation is performed independently of
the algorithm that uses the discretised data (a filter approach) whereas local discretisation is
performed in conjunction with the algorithm (a wrapper approach). Equi-width discretisation
(Dougherty et al., 1995; Liu et al., 2002) which divides the attributes into b bins of equal
width and equi-frequency discretisation (Dougherty et al.,1995; Liu et al., 2002) which
divides the attributes into b bins each containing an equal number of data points are both
global methods. The ID3 (Quinlan, 1986) and C4.5 (Quinlan, 1992) decision tree learners
perform local discretisation by determining the partition boundaries as the decision tree is
formed. The AURA k-NN requires global discretisation as the bins must be induced before
training.

Discretisation may be static or dynamic. Dynamic discretisation takes account of attribute
inter-dependencies whereas static discretisation does not take them into account. Dynamic
discretisation is performed using all attributes as a set, for example, using the k-means
clustering algorithm on all attributes to induce the partition boundaries (Min, 2009; Joita,

2010). In contrast, static discretisation is performed on the attributes individually for
example, using a clustering algorithm such as k-means on one attribute at a time to induce the
partition boundaries (Joita, 2010), using equi-width discretisation or using equi-frequency
discretisation. We analyse both static and dynamic techniques in our evaluations.

Discretisation may be supervised or unsupervised. Supervised discretisation uses class
label information to drive the discretisation procedure whereas unsupervised discretisation
derives the bins independently of any class labels. Holte’s 1R discretiser (Holte, 1993) is an
error-based global supervised technique; it induces one-level decision trees (decision
stumps). Fayyad & Irani (1993) introduced a global supervised entropy-based algorithm
which selects the bin boundaries by recursively partitioning the attribute value range using
top-down partitioning. Equi-width, equi-frequency and clustering using k-means (described
later) are all unsupervised discretisation techniques. The evaluation in this paper concerns
predicting future values of time series variables. This necessitates unsupervised
discretisation as no classification labels are available. Hence, we evaluate seven unsupervised
techniques in this paper.

The aim of the paper is: to identify the optimal discretisation technique from the
techniques evaluated with respect to recall accuracy and recall consistency across a wide
range of well-known data sets. We note that we only compare a standard k-NN discretiser
with no amendments. We have not weighted attributes nor pre-selected attributes. We have
not weighted the classification. i.e., we use simple majority voting rather than weighted
majority voting (Wettscherek, 1994) which takes account of the distances to the nearest
neighbours when calculating the prediction. This is to ensure consistency across the
evaluations and to allow us to produce a definitive recall figure.

In the remainder of this paper we provide: a detailed overview of binary neural networks
in section II; AURA and our k-NN and discretisation method in section III; a description of
the evaluation methodology and the results in section IV; an analysis of the results in section
V; a detailed discussion and comparison of the methods evaluated in section VI; and the
conclusions we have drawn from our analyses in section VII.

II. BINARY NEURAL NETWORKS
AURA belongs to a class of binary neural networks called Random Access Memory

(RAM-based) networks; see Austin (1998) for a detailed compilation of RAM methods. The
first RAM-based networks were developed by Bledsoe & Browning (1959) and Aleksander
& Albrow (1968) for pattern recognition and led to the WISARD pattern recognition machine
(Aleksander, Thomas & Bowden, 1984)

 RAM-based neural networks based on the twin tenets of matrices (usually called
Correlation Matrix Memories (CMMs)) and pre-processing that maps the data onto the
CMMs. Thus, the matrices store associations between inputs Ij and outputs Oj as shown in
figure 1. There are many methods for pre-processing. The process of discretisation (binning)
underpins the majority of these. In training the CMM matrix elements are initialised to 0.
Each matrix takes m inputs as a vector which addresses m rows and takes n outputs as a
vector which addresses n columns of the matrix. The vectors are binary. Ijl is set (i.e. the ith
bit in vector Ij is a 1) if row l is active and Ijl is clear (i.e. the lth bit in vector Ij is a 0)
otherwise. Bit Ojk is a 1 if column k is active and 0 otherwise. During the training phase, the
matrix weights Mlk are set if the bit representing input row Ijl and the bit representing output
column Ojk are BOTH set (both 1). During recall, the presentation of vector Ij elicits the recall

of vector Oj as vector Ij contains all of the addressing information (set bits) required to index
and retrieve vector Oj from the matrix.

FIGURE 1 Diagram of a correlation memory matrix with input vector i0, i1, i2, ..., im-1, im and

output vector o0, o1, o2, ..., on-1, on. The input vector addresses the rows and the output vector

addresses the columns. The CMM is trained by associating input and output vectors which set

the elements in the CMM to 1. All CMM elements are initialised as 0. In the diagram matrix

elements i0o1, i1on, im-2o2 and imon-1 are set.

In RAM-based networks, training is thus a single epoch process with one training step for
each input-output vector association preserving the network’s high speed and thus allowing
large data sets to be processed. This simple association principle also makes RAM-based
networks computationally simple and transparent with well understood properties. In
contrast, most conventional neural networks used for classification such as MLP or RBF,
(Bishop, 1995) require repeated training epochs and the resultant network is effectively a
black box. RAM-based networks are also able to partially match records during retrieval.
Therefore, they can rapidly match records that are close to the input but do not match exactly.
This partial matching is a central concept for our binary k-NN described in the following
paragraphs.

III. AURA K-NN
The k-NN method requires the top k matching examples (those most similar to the input)

to be selected. The AURA methods use a thresholding technique called L-Max (described in
section III-B.1) that retrieves the top k matches thus allowing the k-nearest neighbours to be
determined. Here we have coupled this with a discretisation technique to map numeric data
on to the binary inputs needed by the CMM. This rapid training, computational simplicity,
network transparency, partial match capability and thresholding coupled with our
discretisation technique make AURA ideal to use as the basis of an efficient k-NN
implementation. The AURA C++ library provides classes and methods for the rapid partial
matching of large data sets (Austin, 1995). AURA techniques have demonstrated superior
performance with respect to speed compared to conventional data indexing approaches
(Hodge & Austin, 2001) such as hashing and inverted file lists. AURA also has a scalable

architecture that can be easily mapped onto high performance computing platforms including
parallel (Weeks, Hodge & Austin, 2002a; Weeks, Hodge & Austin, 2002b; Hodge, Jackson
& Austin, 2011) and distributed platforms (Austin et al., 2005; Hodge, Jackson & Austin,
2011). A more formal definition of AURA, its components and methods now follows.

CMMs, shown in figure 1, are the building blocks for AURA systems. AURA uses binary
and integer-valued input Ij and output Oj vectors to train records in to the CMM and recall
sets of matching records from the CMM. For the methodology described in this paper, we use
CMMs in the following way:

• Train the training data set into the CMM which indexes all records in the training data
set and allows them to be matched. AURA logically ORs the CMM with the product of the
vector formed from the record to store and an indexing vector to produce the trained CMM
using binary vectors. This procedure is described in detail in section III-A. The training
records each have their classification label stored with them.

• Apply query records to the CMM in turn and retrieve a set of the best matching records,
i.e., the nearest neighbours. AURA uses the dot product of an integer-based vector formed
from the query record and the trained CMM. This recall process is described in detail in
section III-B.1. We classify the input query by taking the majority classification label from
the set of records returned.

A. TRAINING

In our k-NN implementation, input vectors represent discretised records during CMM
training and output vectors uniquely identify each record in the data set. The training process
is given in equation 1 for CMM M and associating input vector Ij with output vector Oj.

 ⋁ () where is logical OR (1)

1) DISCRETISATION:

The CMMs in AURA require binary input vectors for training. Hence, we need to map the
data onto binary vectors.

For categorical attributes, we simply map each distinct attribute value Xfi where i in
AttributeValuef onto a specific row in the CMM as given in equation 2, where the rows are
indexed by integers (fk) and is a one-to-one mapping. () (2)

The integer fk identifies the bit to set within the CMM input vector as in equation 3 and
thus corresponds to a row in the CMM which will be active.

 () (3)

offsetf is a cumulative integer offset within the binary vector Ii for each attribute f where
offsetf+1 = offsetf + numberOfBins(f) and x = y z sets the bit at location z in the vector y to
produce a new vector x.

For real-valued attributes, we need to discretise the range of values. Our approach is to
map the attribute values for each attribute f onto bins. Each bin maps to a unique integer fk
which indexes a specific row in the CMM as in equation 4. We then set the appropriate bit in
the input vector as in equation 3. () (4)

where i in AttributeValue(f) and | fk| |binsfk| as each integer maps to a single and unqiue
bin and → is a many-to-one mapping.

2) DISCRETISATION METHODS

We evaluate various unsupervised discretisation methods in this paper which vary the
procedure for selecting the subdivision of the attributes (i.e. vary the bin boundaries). The
methods evaluated are: equi-width discretisation (or fixed-width discretisation), optimised
equi-width discretisation, equi-frequency discretisation (also called histogram equalisation),
k-means clustering discretisation on all attributes together and on the individual attributes and
expectation maximisation clustering on all attributes together and on the individual attributes.

Equi-width (EW) discretisation (Dougherty et al., 1995; Liu et al., 2002) aims to
subdivide an attribute in to bins whose widths are distributed uniformly across the range of
the attribute. The range of values is divided into b bins such that each bin is of equal width as
in equation 5. () (((() (5)

Optimised equi-width (OW) discretisation (Schmidberger and Frank, 2005) optimises
the number of bins specified for equi-width discretisation using a leave-one-out cross-
validation estimate of the log-likelihood. For each iteration of the leave-one-out cross-
validation, the log-likelihood scores the set of bin boundaries generated. This allows the best
set of bin boundaries to be determined. Log-likelihood is given in equation 6

Log-likelihood = ∑ ((6)

In contrast, equi-frequency (EF) discretisation (Dougherty et al., 1995; Liu et al., 2002)
used previously in AURA (Zhou, Austin & Kennedy, 1999; Weeks et al., 2003; Hodge &
Austin, 2004b) aligns the bin boundaries so each bin contains an approximately equal number
of records. The range of values for each attribute is divided into b bins each containing an
approximately equal number of records. Thus, each row in the CMM will have approximately
the same number of bits set – one for each record whose attribute value maps to the particular
bin that the CMM row represents. There will be a larger number of bins where the attribute
values are clustered and relatively few bins representing the outlying values. With respect to
each attribute,

1) Sort all N data points into ascending order,

2) Find the maximum number of identical points Ni and thus estimate the number of
distinct data values in each bin Np as Np = (N - Ni)/b where b is the number of bins.

3) Set the uppermost boundary of each bin as the next data value in the sorted order.

4) Count the number of data values either side of Np which are equal, and either include
these points in the current bin or promote them to the next bin.

5) If the number of distinct values in the final bin Nd is greater than (Np +b) then
increase Np by (Nd - Np)/b and rerun the partitioning process from step 2 for that attribute.

We note that re-running the discretisation process (after step 5 above) for equi-frequency
discretisation may increase or reduce the number of bins relative to the initial number
specified. We vary the number of bins (b) for the discretisation techniques in our evaluation
in section IV between 10 and 100 in steps of 10. In our empirical analysis in this paper, we
always state the initial number of bins specified for the EF method.

Other discretisation methods evaluated here are based on clustering (Joita, 2010).
Clustering algorithms partition the data space by searching the data for similar examples and
grouping them into clusters such that the intra-cluster distances are small whereas the inter-
cluster distances are as large as possible. k-means clustering (KM) introduced by
MacQueen (1967) is one of the most popular clustering algorithms and can be used for
discretisation. K-means firstly randomly selects a set of points called “seeds” which represent
k cluster centres. The algorithm traverses the entire data set assigning each data point to its
nearest cluster centre. When all data points have been assigned to their nearest cluster centre,
the k cluster centres are recalculated as the mean of all of the data points in the cluster.
Assignment and recalculation are repeated until the termination criterion is met. The
algorithm terminates when convergence is achieved i.e. no further changes occur in the
clusters. The most common distance measure used in k-means algorithm is the Euclidean
distance, a special case (p=2) of the Minkowski metric. We run k-means on all data to
generate the cluster centres using dynamic discretisation (KM) (Min, 2009; Joita, 2010). We
place the bin boundaries as half way between the cluster centres. We also run k-means on the
individual attributes to generate the cluster centres for each attributes using static
discretisation (KMInd). Again, the bin boundaries are the half way points between the
cluster centres.

Expectation-Maximisation (EM) introduced by Dempster, Laird & Rubin (1977) finds
clusters by determining a mixture of Gaussians that fit a given data set. EM assigns a
probability distribution to each data record which indicates the probability of it belonging to
each of the clusters. Expectation refers to computing the probability that each data record is a
member of each class; maximization refers to altering the parameters of each class to
maximize those probabilities. EM can determine the number of clusters to create by cross-
validation or the number maybe specified a priori. We specify the number of clusters here.
Similar to the k-means evaluation, we run EM on all data to generate the cluster centres using
dynamic discretisation. We place the bin boundaries as half way between the cluster centres
to ensure that bins do not overlap and there are no gaps between bins. We also run EM on the
individual attributes to generate the cluster centres for each attribute using static discretisation
(EMInd). Again, the bin boundaries are the half way points between the cluster centres.

We use the implementations of the binning algorithms available in the WEKA Java data
mining library (Hall et al., 2009) to determine the bin boundaries. We pass the number of
required bins as a parameter to WEKA. All other parameter settings for the WEKA
algorithms are at their default values.

2) INPUT VECTORS:

Once the bins and integer mappings have been determined, we need to map each record X
onto a binary input vector Ij for the CMM. In this paper, each record is a multivariate time-
series Xt as given in equation 7,

Xt = {x11,x12,…,x1t-1,x1t,x21,x22,…,x2t-1,x2t,…,xf1,xf2,…,xft-1,xft} (7)

for time t = 1 .. T and attribute f = 1 .. F

Each attribute Xf maps onto a consecutive section of bits in the binary vector as in
equations 2 and 3 for categorical attributes and equations 4 and 3 for continuous attributes.

Each concatenated binary vector represents a record from the data set and forms an input Ij

to the CMM. The CMM associates the input with a unique output vector OT
j during training,

see equation 1. Each output vector is orthogonal with a single bit set corresponding to the
record’s position in the data set, the first record has the first bit set in the output vector, the
second and so on. In effect, each column of the CMM represents a data record.

B. RETRIEVING THE NEAREST NEIGHBOURS

To recall the nearest matches for a query record, we first produce an input vector for the
CMM as in equations 2 and 3 for categorical attributes or equations 4 and 3 for continuous
attributes to identify the input vector bits to set. This vector replicates distance-based nearest
neighbour retrieval. The vector may then be input to the CMM. The dot product of this vector
and the trained CMM will produce an output vector indexing the k nearest matching records
as described in the following sections.

For continuous attributes, we apply an integer-based parabolic kernel (Hodge & Austin,
2005) (as in figures 2 and 3) to the input vector which is analogous to quantised Squared
Euclidean distance (see equation 8). It uses integer-valued vectors to input to the CMM and
thus score the columns (records). Records with a high total column score are more similar to
the input record than records with a low column score. ∑ () (8)

The Parabolic kernel value for each bin (binsfk) in attribute f is given in equation 9 where

max(b) is the maximum number of bins across all attributes, | | calculates the offset

(that is, the number of CMM rows between the index for the bin mapped to by the target
attribute value binsft () and the index for the bin mapped to by binsfk () as in equations

2, 3 and 4, |binsf | is the number of bins for attribute f. All kernels have the same maximum

value (()
 to ensure no bias across the attributes. Note: this is also the maximum score

for matching categorical attribute values to ensure no bias across all of the attributes,
regardless of attribute type. We scale the kernel using αf to spread the kernel across the range
of each attribute in turn within the CMM input vector as attributes may have differing
number if bins so we need to ensure that the parabolas representing the attributes are not
biased, that is, the parabolas for all attributes have the same maximum value. The parabolic
kernel is then superimposed onto the input vector as in equation 10 and shown in figure 4. [(() ((| |))] where (((| |) (9)

 (for all bins (binsfk) in all attributes f (10)

FIGURE 2 The input values (shown as bars) of the CMM rows are set to emulate

the parabola (line) which represents the Euclidean distance from the central value

(shown as large dot on central bar). The row input values (bar graph) are thus a

discrete approximation of squared Euclidean distance.

FIGURE 3 Figure a) shows the smoothed parabolic kernel intersection for a two

attribute data with scores divided into ten discrete concentric regions. Figure b) shows

the cumulative CMM column scores (representing the summed kernel intersections)

for the AURA k-NN for the same two attribute data set with 11 bins per attribute and

identical parabolas to figure 2 on both input attributes. The colours (scores) in the

squares in b) match the banded colours on a) and represent the discrete concentric

regions of equivalent score.

We move the kernels to match the input values unlike RBF (Bishop, 1995) where the
kernels are fixed. The bin containing the query (target) value effectively receives the highest
score with the score decreasing monotonically as the distance between the query value and a

(a) (b)

bin increases. If the bin of the target value is offset, i.e. not the median bin, then the Parabola
is offset and truncated at one end as in attribute2 of figure 4 where the Parabola is centred
near the top and truncated at the top. If all attributes have an equivalent number of bins then
the superimposed Parabolas will be identical. However, if the number of bins varies across
the attributes, then the width of the Parabolas varies accordingly due to αf in equation 9
spreading the kernel across the attribute width as shown in figure 4.

FIGURE 4 Diagram showing the application of kernels to a CMM to find the

nearest neighbours. The left hand side illustrates the generation of the retrieval input

vector Rk by applying kernels. The dot is the bin representing the query value for each

attribute. AURA multiplies Rk*M, using the dot product, sums each column to produce

the summed output vector Sk and thresholds the summed output vector to produce the

thresholded output Tk.

For categorical attributes, we activate the single row matching the query attribute value
and any records stored in the CMM will be activated and scored as shown in equation 11
where Ijq sets the qth element of the integer-valued input vector Ij. Note: all other elements in
vector Ij will be 0. (()

 (11)

1) CMM RECALL:

To retrieve the best matching records for a particular query record (represented by integer-
valued input Ik) using Parabolic kernels, the AURA k-NN effectively calculates the dot
product of the input vector Ik and the CMM, computing a positive integer-valued output
vector Ok (the summed output vector) as in equation 12 and figure 4.

OT k = Ik • M (12)

The summed output Ok is thresholded to produce a binary output vector as in figure 4. We
use the L-max threshold (Austin, 1995). L-Max thresholding essentially retrieves at least L
top matches, i.e., at least L nearest neighbours. L-max thresholding sets a bit in the
thresholded output vector for every location in the summed output vector that meets the
criterion. For k-NN, L is set to the value of k, where k is the number of nearest neighbours
required.

The method can identify the k-nearest matching records by inspecting the bits set in the
thresholded output vector. In the work here, bit0 in the output vector corresponds to the first
record in the data, bit1 to the second record and so on. Therefore, if bit0 is set in the
thresholded output vector then the first record is a match.

2) PREDICTION

To undertake prediction of the future values in the time series, we maintain a lookup table
of values for the prediction attribute t+n time steps ahead for each historical record. The
values are indexed by the column indexes (integers) of the CMM. After AURA recall, the set
of best matching columns are stored in the thresholded output vector Tk. For all columns set
to 1 in Tk, we obtain the column index. The AURA k-NN cross-references the historical
records from this set of column indices, sums the t+n attribute values for all matching
columns and calculates the mean value for the prediction attribute n time steps ahead.

IV. EVALUATION
Across all evaluations, we generate the discretisation cut point sets (binning partition)

using the discretisation and clustering methods available in WEKA (Hall et al., 2009). These
partition boundaries then form the boundaries to discretise the data for the AURA k-NN.

The AURA k-NN for prediction uses the AURA C++ class library (AURA, 2012) which
provides classes and methods for CMMs and thresholding. The AURA k-NN is absolutely
identical for all techniques evaluated to ensure consistency. We retrieve the top ten nearest
neighbours for all evaluations. The number of neighbours to retrieve is a trade-off. Too few
neighbours will cause the prediction to be affected by any erroneous values in the nearest
neighbour set. Too many neighbours may mask any errors retrieved by averaging them out.
To allow a thorough evaluation of the discretisation methods, we have chosen a value that
will mask the odd discrepancy but will not mask repeated errors. This will allow a valid
comparison of the discretisation methods. There is only one variation across data sets: we
vary the time-series length according to the specifications of each dataset – the time series
lengths used are given in Table 2 and are fixed across all evaluations of each data set.

Therefore, the only variation that we are evaluating is the discretisation of real-valued
attributes.

A. DATA SETS

We evaluate the discretisation algorithms within our AURA k-NN framework using 10
well-known data sets from the UCR time-series data repository (UCR, 2012) and the UCI
machine learning repositories (Frank & Asuncion, 2010). We detail the data sets below,
indicating which attributes we used from the original data (we refer to the column number

indexing from 1) and the size of the training and test splits. We split the data sets
chronologically by using the first X records as the training set and the final Y records as the
test set to mimic the real-world scenario. We use all original data records where possible
except for the Motes data where some of the later records contain large number of sensor
errors which we omitted. For the Motes Q8 Temperature data set (Deshpande et al., 2004) we
omit the final three columns as they contain large numbers of sensor errors. We only select
the attributes recommended in the paper (Costa et al., 1999) for the Power Demand data set.

1. CalIt2: Observations from two data streams (people flow in and out of the building),
over 15 weeks, 48 time slices per day (half hour count aggregates) (Frank &
Asuncion, 2010).

2. Inline Skating: Activation of three muscles, foot contact signal, three angles and
three angular velocities of professional inline speed skater during the last thirty
seconds of a three minute exercise on a treadmill at 3.72 m/s sampled at 1kHz
(Mörchen, Ultsch & Hoos, 2005).

3. pH: Simulation data of a pH neutralization process in a stirring tank (de Moor, 2012;
McAvoy, Hsu & Lowenthal, 1972).

4. Power Demand: short-term load forecasting of power system data provided by AEM-
Turin covering the three years (1995-1997) (Costa et al., 1999). The data attributes we
use are transformed power load, minimum temperature (for the day) and maximum
temperature (for the day) as recommended in the paper (Costa et al., 1999).

5. Q8 Humidity: Sensor motes: humidity sensor measurements collecting from wireless
sensors (Deshpande et al., 2004).

6. Q8 Temperature: Sensor motes: temperature sensor measurements collecting from
wireless sensors (Deshpande et al., 2004).

7. Q8 Voltage: Sensor motes: voltage sensor measurements collecting from wireless
sensors (Deshpande et al., 2004).

8. Stanford: multivariate data set recorded from a patient in the sleep laboratory of the
Beth Israel Hospital in Boston, Massachusetts. The first column is the heart rate, the
second is the chest volume (respiration force), and the third is the blood oxygen
concentration (measured by ear oximetry). The patient shows sleep apnoea (Weigend,
and Gershenfeld, 1994).

9. Steam Generation: Model of a steam generator at Abbott Power Plant in Champaign
IL. (Pellegrinetti & Benstman, 1996).

10. Winding: Data from a test setup of an industrial winding process (de Moor, 2012;
Bastogne et al., 1997).

Further details of the datasets are given in Table 1 which lists the column indices of the
attributes from the original data set that we used (indexed 1 .. F), the column index of the
attribute we used for t+1 prediction, how many records formed the training set and how
many records formed the test set.

TABLE 1 Table listing the attributes selected (column indexes), the attribute used

for prediction (column index), the number of records in the training data set and the

number of records in the test data set for each of the ten data sets evaluated.

Dataset Attributes Predict Train Test
CalIt2 4,8 8 3360 1680
Inline Skating 2-11 2 19932 9968
pH 1-3 3 1265 736
Power Demand 5,7,8 5 19954 9976
Q8 Humidity 1-48 1 4332 2168
Q8 Temperature 1-53 1 3999 2001
Q8 Voltage 1-46 1 4867 2433
Stanford 1-3 1 22666 11334
Steam Generation 1-4 4 6400 3200
Winding 1-7 7 1666 834

B. EVALUATION

For each of the ten data sets, we ran each of the seven discretisation algorithms using all
data with each of the bin counts (10-100 inclusive in steps of 10). We felt that a range of bins
between 10 and 100 would provide a thorough analysis of the discretisation methods. This
produces 10x7x10 (700) binning partition sets. Note: we use all of the data (train+test) for
setting up the binning to ensure that no binning method is favoured by the data split. There
may be bias if we only use the training data for bin selection, particularly for the smaller data
sets and particularly as the data is time-series which may contain trends. We then ran each of
the 70 binning partition sets for each of the ten data sets through the AURA k-NN in turn to
predict the t+1 attribute value for the selected prediction attribute for that data set. We used
the set of attributes listed in table 1 for both the training and test data. We selected the 10
nearest neighbours to generate the t+1 prediction for each of the records in the test set by
averaging the t+1 value for these 10 nearest neighbours.

The prediction accuracy is calculated as the Root Mean Square Error (RMSE) for all
predicted t+1 values against the actual value for that time slot across all records in the test
set.

C. RESULTS

Table 3 to Table 12 in the appendix list the RMSE prediction accuracies for each of the
seven binning algorithms with between 10 and 100 bins (inclusive in steps of 10) for each of
the ten data sets. The data are also shown graphically in Figure 5 to Figure 14 in the appendix.
The best discretisation technique versus number of bins combination is marked in grey
shading and bold italic in Table 3 to Table 12. We also mark the second and third best
combinations for each data set in bold font. This indicates whether one method is
consistently best for each data set or whether the best method for the top three RMSE scores
varies. We note that the optimised equi-width produced no partition boundary sets for the
three Motes data sets (Q8 Humidity, Q8 Temperature and Q8 Voltage). These data sets have
missing sensor values indicated by the value 0. We passed these data sets to ALL of the
WEKA discretisation methods in their raw form so the 0-values were not marked as missing.
We suspect that the 0-values prevented the optimiser working.

Table 2 in section V provides an overview of these results.

V. ANALYSIS
Table 2 details the characteristics of the various data sets coupled with the best

discretisation technique and the optimum number of bins for each data set. The
characteristics are:

 Atts – the number of attributes in total.
 Ints – the number of integer-valued attributes.
 Real – the number of real-valued attributes.
 µRange – the mean range of the attributes (sum of ranges of all attributes divided by the

number of attributes).
 RangeP – the range of the attribute to be predicted.
 TSLen – the length of the time-series used for prediction
 DM – the best discretisation method for the data set of the seven evaluated (EW, OW, EF,

KM, EM KMInd, EMInd).
 NumBins – the optimum number of bins for the data set.

These characteristics will allow us to analyse whether there is a correlation between

particular data set characteristics such as the number of attributes or the type of attributes and
the best discretisation technique or optimum number of bins.

TABLE 2 Table providing the statistics of each data set, the best discretisation

technique for that data set and the best number of bins to use for t hat discretisation

technique.

 Atts Ints Real µRange RangeP TSLen DM NumBins
CalIt2 2 2 0 58 62 24 EMInd 50
Inline

Skating
10 0 10 7.87 0.16 30 EW 100

pH 3 0 2 4.70 8.11 30 KMInd 10
Power

Demand
3 1 2 94.6 214 12 OW 100

Q8 Humidity 48 0 48 62.4 50.6 30 EMInd 70
Q8

Temperature
53 0 53 49.7 28.9 30 KMInd 10

Q8 Voltage 46 0 46 2.80 2.75 30 EW 100
Stanford 3 2 1 33816.7 108.1 60 KMInd 10
Steam

Generation
4 0 4 114.0 32.6 30 EW 40

Winding 7 0 7 6.84 8.19 30 EW 30

From Table 2, we can see that there is no single best discretisation technique nor is there a
single best number of bins. Skubacz and Hollman (2000) concluded that there was no single
best discretisation method for the classification task that they evaluated. We have studied the
characteristics of the data sets listed in columns 2-7 of Table 2 and there does not appear to
be a correlation between the data characteristics and the best discretisation technique or the
best number of bins to use. The only obvious correlation is that, for the three data sets where
KMind is the best discretisation method then the best number of bins is 10. However, we note

that on the Q8 Humidity data set, the optimum number of bins for KMInd is 100 so we would
not expect the optimum number of bins to always be 10. This indicates that the best approach
is to evaluate a number of discretisation techniques coupled with varying numbers of bins for
each data set to be predicted.

We have also visualised the values of the individual attributes across the data sets to
investigate whether there is a correlation between the distribution of the data and the best
discretisation configuration. We examined the distributions of the individual attributes rather
than the distribution of all data together as the discretisation using individual attributes has
lower error than discretisation using all attributes. Again, there does not appear to be a
correlation between the discretisation configuration and the data distribution. Three data sets
have KMInd as the best discretisation method with 10 bins as the best number of bins. There
is very little correlation between the data distributions of these with the two data sets (Q8
Temperature and Stanford) having a majority of attributes with Gaussian-shaped distributions
although the Gaussian-shapes are offset and not centred on the centre value. The other data
set (pH) has very different attribute distributions. Also, there are other data sets with similar
attribute distributions to Q8 Temperature and Stanford and these other data sets had different
discretisation configurations as the top performer.

Equi-width discretisation is the best discretisation technique for four data sets. KMInd is
best for three and EMInd is best for two data sets. Optimised equi-width is the best
discretisation technique for one data set. Neither equi-frequency nor either of the two
dynamic clustering discretisation techniques (KM or EM) is the best for any data set. For the
data sets where equi-width is best it also tends to have the top three scores (for three of the
four winning data sets). For the data set where optimised equi-width is best it also has the top
three scores. For the data sets where EMInd and KMInd are best respectively, they do not
have the top three scores.

The optimum number of bins varies across the range of values with 10 and 100 both best
for three data sets each. 30, 40, 50 and 70 are the other best bin counts for one data set each.

VI. DISCUSSION
The results indicate that there is no single best discretisation method or number of bins.

This necessitates evaluating various discretisation configurations to determine the best
method. From the ten data sets evaluated here, there is no obvious correlation between the
data characteristics and the best configuration neither is there an obvious correlation between
the data distribution and the best configuration. As the number of data sets evaluated builds
as the method is used, it may be possible to infer heuristics for determining the best
discretisation configuration from the data characteristics. These heuristics may not indicate a
single best configuration but it may be possible to at least limit the configurations required
for evaluation for a particular data set using that data set’s characteristics.

Equi-width discretisation does not distort the bin widths so the hyper-grid formed by the
bins in the d-dimensional data space will have hyper-cubic cells. This means that the
Euclidean distances are preserved which may explain the highest recall consistency achieved
by this technique. The approach may be considered distance-based and k-NN is a distance-
based predictor; it generates predictions using the k nearest stored records. However, Catlett
(1991) noted that equi-width discretisation may be distorted by outlying attribute values
which skew the attribute range and thus the bin widths so this may explain the lower recall
accuracy achieved on some data sets, most notably Q8 Humidity and Q8 Temperature. These

data sets have 0-valued entries for missing sensor values, Q8 Humidity has erroneous entries
of -276 and other smaller negative values, Q8 Temperature also has erroneous sensor
readings of 122.153 degrees and these will have distorted the ranges. Excluding the 0-values
and erroneous high values, Q8 Humidity ranges between approximately 18 and 60; and, Q8
Temperature ranges between approximately 16 and 30. Hence, the range for Q8 Humidity
rises from 18-60=42 to -276-60=336 when the sensors errors are included in the latter figures.
The range for Q8 Temperature increases from 16-30=14 to 0-122=122 when the sensors
errors are included in the latter figures. Q8 Voltage ranges between approximately 2.1 and
2.7 so the 0-values will have much less effect on the ranges for this data set and equi-width is
the top performer for Q8 Voltage data set. Also, the attributes may not be equally relevant so
the input space might not be isotropic, and distances may not vary with equal strength in all
directions. Thus a discretisation technique that skews the distances may perform better than
equi-width discretisation on such data sets where no attribute weighting is used for k-NN
retrieval as in this evaluation.

For the Power Demand data set the optimised version of equi-width binning (OW) clearly
outperforms the other methods. Optimised equi-width binning(OW) is also the second best
method on the CalIt2 data set. These data sets (CalIt2 and Power Demand) are somewhat
similar representing 30 minute and hourly readings respectively, having two and three
attributes with similar ranges and predicting an integer-valued attribute. This indicates that it
is important to include optimised equi-width in any discretisation evaluation as it can
outperform the other approaches on some data sets though overall performance is erratic
across these ten data sets.

The static clustering discretisation methods (KMInd and EMInd) are not distorted by
outlying attribute values unlike equi-width discretisation. The hyper-grid formed by the bins
in the d-dimensional data space by both KMInd and EMInd will have cells with varying
widths across each dimension. The cells will be narrower where the clusters are dense
allowing finer-grained differentiation and the cells will be wider where the clusters are less
dense. This allows records to be distinguished and separated. KMInd is the best method for
three data sets and EMInd is the best for two data sets. However, they are not as consistent as
equi-width discretisation as they do not hold the top three accuracies for any data set.

Dynamic clustering discretisation which uses all attributes to place the clusters and equi-
frequency discretisation do not perform best on any data set. Using all of the attributes
together to place the cluster centres as in KM and EM methods does not produce good quality
partition boundaries. Optimising across all attributes can distort the bin boundaries. Better
boundaries are generated using the attributes separately. Equi-frequency discretisation may
be considered a density-based technique. The hyper-grid formed by the bins in the d-
dimensional data space will have cells with an equal number of records mapping to each cell
across each dimension. The cells will be narrower allowing finer-grained differentiation
where the records are most dense and the cells will be wider where the records are less dense;
equi-frequency is density-based. However, it distorts the distances represented, they are not
the Euclidean distances but density-based distances and, we posit, that this has adversely
affected prediction accuracy.

It may be worth including the dynamic clustering and equi-frequency discretisation
methods in any evaluations if time limits permit. However, if time available for evaluation is
limited, focusing on the static discretisation techniques (KMInd and EMInd), equi-width
(EW) and optimised equi-width (OW) is likely to be most profitable.

We have shown empirically in our previous paper (Hodge & Austin, 2005) that the AURA
k-NN is four times faster with respect to time than the standard k-NN on data sets up to
200,000 records. We note that the evaluation in Hodge & Austin (2005) used 149 bins
whereas we only use 10 -100 bins in this paper (see section IV). Hence, the speed gain for the
AURA k-NN here over the standard k-NN would be higher with up to fifteen times fewer
bins to process in the AURA k-NN here than in Hodge & Austin (2005).

VII. CONCLUSION
The results indicate that there is no single best discretisation method or number of bins.

Skubacz and Hollman (2000) concluded that there was no single best discretisation method
for the classification task that they evaluated. This demonstrates that, when using AURA k-
NN for prediction, we will need to evaluate various discretisation configurations with respect
to both the binning method and the number of bins to determine the best discretisation
configuration for the particular data set.

In Hodge, Jackson & Austin (2011), we proposed optimising the data and algorithm
settings of the AURA k-NN using, for example, genetic algorithms (Holland, 1975;
Goldberg, 1989) or particle swarm optimisation (Kennedy and Eberhart, 1995; Kennedy and
Eberhart, 2001) which have been used widely in the literature for optimisation problems.
Optimising the discretisation settings would form part of this process. Within this
optimisation process, we also proposed a meta-learner similar to Brazdil, Soares and Da
Costa (2003). This would use AURA k-NN to store the results of the optimisations run
previously and learn the best settings. The k-NN distance function would be based on various
features of the dataset to allow the selection of the most similar historical settings, that is, the
best settings to use for the current dataset. These best settings may then be used to bootstrap
future optimisations and short-circuit the optimisation process. From the evaluations here,
there was no obvious correlation between data features and discretisation settings. However,
over a larger number of data sets, correlations between data features and discretisation
settings that may be used in the meta-learner may appear.

ACKNOWLEDGMENT

This work was supported by the CMAC (Condition Monitoring on a Cloud) project which
is funded by the UK Technology Strategy Board.

REFERENCES

Aleksander, I. and Albrow, R.1968. Pattern recognition with Adaptive Logic Elements. In IEE
Conference on Pattern Recognition, pp. 68–74.

Aleksander, I., Thomas, W. and Bowden, P. 1984. Wisard: A radical step forward in image
recognition, Sensor Review, pp. 120–124, 1984.

AURA: Advanced Uncertain Reasoning Architecture web pages, 2012.
http://www.cs.york.ac.uk/arch/neural-networks/technologies/aura (accessed 02 May 2012).

Austin, J., 1995. Distributed associative memories for high speed symbolic reasoning. In, IJCAI ’95
Working Notes of Workshop on Connectionist-Symbolic Integration: From Unified to Hybrid
Approaches, R. Sun and F. Alexandre, Eds., Montreal, Quebec, pp. 87–93.

Austin, J., 1998. RAM-Based Neural Networks, ser. Progress in Neural Processing: 9. World
Scientific Pub. Co., Singapore.

Austin, J., Brewer, G., Jackson, T. and Hodge, V.J. AURA-Alert: The use of binary associative
memories for condition monitoring applications. In, Procs 7th Int’l Conf on Condition

Monitoring and Machinery Failure Prevention Technologies: (CM 2010 and MFPT
2010), Stratford-upon-Avon, England, 22-24 June, 2010. Vol. 1: pp. 699-711.

Austin, J., Davis, R., Fletcher, M., Jackson, T., Jessop, M., Liang, B. and Pasley, A., 2005. DAME:
Searching Large Data Sets within a Grid-Enabled Engineering Application. Proceedings IEEE
- Special Issue on Grid Computing, 93(3): 496-509, ISBN 0018-9219

Bastogne, T., Noura, H., Richard, A. and Hittinger, J.M., 1997. Application of subspace methods to
the identification of a winding process. In: Proc. of the 4th European Control Conference,
Vol. 5, Brussels.

Bishop, C.M., 1995. Neural networks for pattern recognition. Oxford University Press, Oxford, UK.
Bledsoe, W. and Browning, I. 1959. Pattern recognition and Reading by Machine. In, Proceedings of

Eastern Joint Computer Conference, pp. 225–231.
Brazdil, P.B., Soares, C. and Da Costa, J.P., 2003. Ranking Learning Algorithms: Using IBL and

Meta-Learning on Accuracy and Time Results. Machine Learning, 50(3): 251-277.
Bubeck, S. and von Luxburg, U., 2009. Nearest Neighbor Clustering: A Baseline Method for

Consistent Clustering with Arbitrary Objective Functions. Journal of Machine Learning
Research, 10(10): 657-698

Catlett, J. 1991. On changing continuous attributes into ordered discrete attributes. In, European
Working Session on Learning -EWSL91. LNAI 482, Y. Kodratoff, Ed. Springer Verlag:
Berlin, pp. 164–178.

Costa, M., Pasero, E., Piglione, F. and Radasanu, D.,1999. Short term load forecasting using a
synchronously operated recurrent neural network, International Joint Conference on Neural
Networks, IJCNN '99, vol.5, pp.3478-3482.

Cover, T. and Hart, P., 1967. Nearest neighbor pattern classification. IEEE Transactions on
Information Theory 13(1): 21–27.

Dasarathy, B. (Ed.), 1991. Nearest Neighbor (NN) norms: NN pattern classification techniques. IEEE
Computer Society.

De Moor, B.L.R. (ed.), 2012. DaISy: Database for the Identification of Systems, Department of
Electrical Engineering, ESAT/SISTA, K.U.Leuven, Belgium, URL:
http://www.esat.kuleuven.ac.be/sista/daisy/, (accessed 02 May 2012).

Dempster, A P., Laird, N.M. and Rubin, D.B., 1977. Maximum likelihood from incomplete data via
the EM algorithm, Journal of the Royal Statistical Society, vol. 39, pp. 1-38.

Deshpande, A., Guestrin, C., Madden, S., Hellerstein, J.M. and Hong, W., 2004. Model-Driven Data
Acquisition in Sensor Networks. VLDB: 588-599.

Dougherty, J., Kohavi, R. and Sahami, M., 1995. Supervised and Unsupervised Discretization of
Continuous Features. In, Proceedings of the Twelfth International Conference on Machine
Learning, Tahoe City, CA, pp. 194–202.

Fayyad, U.M. and Irani, K.B.,1993. Multi-interval discretization of continuous valued attributes for
classification learning. In, Proceedings of the 13th International Joint Conference on Artificial
Intelligence, R. Bajcsy, (Ed.) Morgan Kaufmann, pp. 1022–1027.

Fix, E. and Hodges, J., 1951. Discriminatory analysis, nonparametric discrimination: Consistency
properties. Tech. Report 4, USAF School of Aviation Medicine, Randolph Field, Texas.

Frank, A. and Asuncion, A., 2010. UCI Machine Learning Repository [http://archive.ics.uci.edu/ml].
Irvine, CA: University of California, School of Information and Computer Science.

Goldberg, D.E., 1989. Genetic Algorithms in Search, Optimization and Machine Learning Addison-
Wesley Pub. Co. ISBN: 0201157675

Györfi, L., Kohler, M., Krzyzak, A. and Walk, H., 2002. A distribution free theory of nonparametric
regression, Springer Verlag, New York.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P. and Witten I.H., 2009. The WEKA
Data Mining Software: An Update; SIGKDD Explorations, Volume 11, Issue 1.

Hodge, V., 2011. Outlier and Anomaly Detection: A Survey of Outlier and Anomaly Detection
Methods. LAMBERT Academic Publishing, ISBN: 978-3-8465-4822-6.

Hodge, V., Austin, J., 2001. An Evaluation of Standard Retrieval Algorithms and a Binary Neural
Approach. Neural Networks, 14(3): 287-303, Elsevier Science.

Hodge, V. and Austin, J., 2004a. A Survey of Outlier Detection Methodologies, Artificial Intelligence
Review, vol. 22, no. 3, pp. 85–126.

Hodge, V. and Austin, J., 2004b. A High Performance k-NN Approach using Binary Neural
Networks, Neural Networks, vol. 17, no. 3, pp. 441–458.

Hodge, V. and Austin, J., 2005. A Binary Neural k-Nearest Neighbour Technique. Knowledge and
Information Systems, vol. 8, no. 3, pp. 276–292.

Hodge, V., Jackson, T. and Austin, J., 2011. Intelligent Decision Support using Pattern Matching. In,
Proceedings of the 1st International Workshop on Future Internet Applications for Traffic
Surveillance and Management (FIATS-M 2011), Sofia, Bulgaria, Oct 2011, pp. 44-54.
ISBN:978-989-8425-87-4

Hodge, V., Krishnan, R., Austin, J. and Polak, J., 2010. A computationally efficient method for online
identification of traffic incidents and network equipment failures. Presented at, Transport
Science and Technology Congress: TRANSTEC 2010, Delhi, Apr. 4-7, 2010.

Hodge, V., Krishnan, R., Jackson, T., Austin, J. and Polak, J., 2011. Short-Term Traffic Prediction
Using a Binary Neural Network. Presented at, 43rd Annual UTSG Conference, Open
University, Milton Keynes, UK, Jan. 5-7, 2011.

Holland, J.H., 1975. Adaptation in natural and artificial systems: An introductory analysis with
applications to biology, control, and artificial intelligence, University of Michigan Press.

Holte, R., 1993. Very Simple Classification Rules Perform Well on Most Commonly Used Datasets,
Machine Learning, vol. 11, pp. 63–91.

Joita, D., 2010. Unsupervised Static Discretization Methods in Data Mining, Revista Mega Byte, vol.

9.

Kennedy, J. and Eberhart, R., 1995. Particle Swarm Optimization. In, Proceedings of IEEE
International Conference on Neural Networks. IV. pp. 1942–1948.

Kennedy, J. and Eberhart, R., 2001. Swarm Intelligence. Morgan Kaufmann. ISBN 1-55860-595-9.
Knorr, E.M. and Ng, R.T., 1998. Algorithms for Mining Distance-Based Outliers in Large Datasets.

In, Proceedings of the VLDB Conference, New York, USA, pp. 392–403.
Kotsiantis, S. and Kanellopoulos, D., 2006. Discretization Techniques: A recent survey, GESTS

International Transactions on Computer Science and Engineering, Vol.32(1):47-58
Krishnan, R., Hodge, V., Austin, J. and Polak, J. (2010a). A Computationally Efficient Method for

Online Identification of Traffic Control Intervention Measures. Presented at, 42nd Annual
UTSG Conference, University of Plymouth, UK: Jan. 5-7, 2010.

Krishnan, R., Hodge, V., Austin, J., Polak, J. and Lee, T-C. (2010b). On Identifying Spatial Traffic
Patterns using Advanced Pattern Matching Techniques. In, Proceedings of Transportation
Research Board (TRB) 89th Annual Meeting, Washington, D.C., Jan. 10-14, 2010. (DVD-
ROM: Compendium of Papers).

Krishnan, R., Hodge, V., Austin, J., Polak, J., Jackson, T., Smith, M. and Lee, T-C. (2010c). Decision
Support for Traffic Management. In, Proceedings of 17th ITS World Congress: (CD-ROM),
Busan: Korea, Oct. 25-29, 2010.

Liu, H., Hussain, F., Tan, C.L. and Dash, M. 2002. Discretization: An Enabling Technique. Data
Mining and Knowledge Discovery, 6:393-423

MacQueen, J, 1967. Some methods for classification and analysis of multivariate observations. In,
Proceedings of the 5th Berkeley Symposium on Mathematics, Statistics and Probability 3 pp.
281–297.

McAvoy, T.J., Hsu E. and Lowenthal, S. 1972. Dynamics of pH in controlled stirred tank reactor, Ind.
Eng. Chem. Process Des. Develop. 11, 71-78

Min, H., 2009. A Global Discretization and Attribute Reduction Algorithm Based on K-Means
Clustering and Rough Sets Theory, Second International Symposium on Knowledge
Acquisition and Modeling, KAM '09., vol.2, pp.92-95, Nov. 30-Dec. 1.

Mörchen, F., Ultsch, A. and Hoos, O., 2005. Extracting interpretable muscle activation patterns with
Time Series Knowledge Mining. International Journal of Knowledge-Based & Intelligent
Engineering Systems.

Pellegrinetti G., and Benstman, J. 1996. Nonlinear Control Oriented Boiler Modeling - A Benchmark
Problem for Controller Design, IEEE Tran. Control Systems Tech. Vol.4 No.1.

Quinlan, J.R., 1986. Induction of Decision Trees. Machine Learning, 1: 81-106.
Quinlan, J.R., 1992. C4.5 Programs for Machine Learning, San Mateo, CA: Morgan Kaufmann.

Schmidberger, G. and Frank, E., 2005. Unsupervised discretization using tree-based density
estimation. In, Proceedings of the 9th European conference on Principles and Practice of
Knowledge Discovery in Databases (PKDD'05), Springer-Verlag, Berlin, pp. 240-251.

Skubacz, M. and Hollman, J., 2000. Quantization of Continuous Input Variables for Binary
Classification. In Proceedings of the Second International Conference on Intelligent Data
Engineering and Automated Learning, Data Mining, Financial Engineering, and Intelligent
Agents (IDEAL '00), Springer-Verlag, London, UK, pp. 42-47

UCR Time-Series Data Archive, 2012. http://www.cs.ucr.edu/~eamonn/iSAX/iSAX.html (accessed
02 May 2012)

Weeks, M., Hodge, V. and Austin, J., 2002a. A Hardware Accelerated Novel IR System. In,
Proceedings 10th Euromicro Workshop on Parallel, Distributed and Network-based
Processing (PDP-2002), Gran Canaria, Jan. 9–11. IEEE Computer Society, CA.

Weeks, M., Hodge, V. and Austin, J., 2002b. Scalability of a Distributed Neural Information Retrieval
System. Presented at, HPDC-2002, 11th IEEE International Symposium on High Performance
Distributed Computing. Edinburgh, Scotland, July 24–26.

Weeks, M., Hodge, V., O’Keefe, S., Austin, J. and Lees, K., 2003. Improved AURA k-Nearest
Neighbour Approach. In Proceedings of IWANN-2003, International Work-conference on
Artificial and Natural Neural Networks, Mahon, Menorca, Balearic Islands, Spain. June 3-6.

Weigend, A.S. and Gershenfeld, N.A., eds. 1994. Time Series Prediction: Forecasting the Future and
Understanding the Past. Reading, MA: Addison-Wesley.

Wettschereck, D. 1994. A study of distance-based machine learning algorithms, Ph.D. dissertation,
Department of Computer Science, Oregon State University, Corvallis.

Witten, I. and Frank, E., 1999. Data Mining: Practical Machine Learning Tools and Techniques with
Java Implementations. Morgan Kaufmann.

Zhou, P., Austin, J. and Kennedy, J. 1999. A High Performance k-NN Classifier Using a Binary
Correlation Matrix Memory. In, Advances in Neural Information Processing Systems, vol. 11.

APPENDIX
Tables listing the prediction RMSE for each discretisation method (EF, EW, OW, KM,

KMInd, EM and EMInd) for each number of bins (10-100) for the ten data sets. The best
RMSE is shaded grey in bold-italic font. The second and third best are in bold font.

TABLE 3 Table listing the prediction RMSE for the various discretisation

configurations on the CalIt2 data set .

CalIt2

 EF EW OW KM KMInd EM EMInd

10 4.924497 4.890287 4.95764 4.946287 4.922035 4.960346 4.994925

20 4.952212 4.920293 5.039857 4.960418 4.914853 4.936898 5.042166

30 4.996043 4.928377 5.021545 4.926668 4.985006 4.933097 4.956718

40 4.955113 4.934718 4.966828 4.921325 4.954037 4.923158 4.928758

50 4.966231 4.948845 4.900699 4.895965 4.937652 4.96301 4.873144

60 4.966231 4.917732 4.890981 4.906734 4.937652 4.981531 4.873144

70 4.966231 4.917935 4.877423 4.8975 4.937652 4.961059 4.873144

80 4.966231 4.938334 4.959215 4.941658 4.937652 4.907745 4.873144

90 4.966231 4.92796 4.96544 4.939677 4.937652 4.907626 4.873144

100 4.966231 4.929061 5.013031 4.948577 4.937652 4.934471 4.873144

FIGURE 5 Graph of the RMSE data in TABLE 3.

CalIt2 RMSE

4.85

4.9

4.95

5

5.05

10 20 30 40 50 60 70 80 90 100

Num bins

R
M

S
E

EF

EW

OW

KM

KMInd

EM

EMInd

TABLE 4 Table listing the prediction RMSE for the various discretisation

configurations on the Inline Skating data set.

Inline Skating

 EF EW OW KM KMInd EM EMInd

10 0.005699 0.005264 0.005318 0.005848 0.005324 0.005688 0.005401

20 0.005525 0.004785 0.004939 0.005869 0.005036 0.005643 0.005043

30 0.005415 0.004715 0.004814 0.006096 0.005251 0.005851 0.004915

40 0.005421 0.004646 0.004682 0.006285 0.005146 0.006141 0.00497

50 0.005312 0.004633 0.004734 0.006456 0.005091 0.006188 0.004973

60 0.005363 0.004638 0.004857 0.006368 0.005034 0.006108 0.004869

70 0.005294 0.004644 0.004930 0.006420 0.005049 0.006227 0.004928

80 0.005317 0.004606 0.004911 0.006290 0.005034 0.006244 0.00494

90 0.005273 0.004617 0.004910 0.006262 0.005008 0.006182 0.004929

100 0.005276 0.004595 0.004788 0.006336 0.005059 0.005896 0.005046

FIGURE 6 Graph of the RMSE data in TABLE 4.

Inline Skating RMSE

0.004

0.0045

0.005

0.0055

0.006

0.0065

0.007

10 20 30 40 50 60 70 80 90 100

Num bins

R
M

S
E

EF

EW

OW

KM

KMInd

EM

EMInd

TABLE 5 Table listing the prediction RMSE for the various discretisation

configurations on the pH data set.

pH

 EF EW OW KM KMInd EM EMInd

10 1.172878 0.651434 1.364287 1.472774 0.577938 1.444895 0.911799

20 1.410466 0.734924 1.906532 1.537587 1.068633 1.333453 1.334506

30 1.65645 0.782993 1.896108 1.314685 1.378566 1.512411 1.527391

40 1.827855 0.796493 1.972796 1.535547 1.208107 1.317581 1.170691

50 1.885141 0.795941 2.014499 1.498622 1.590704 1.224661 2.013144

60 1.849427 0.816428 2.048418 1.461966 1.450132 1.469338 1.817294

70 1.851682 0.820291 2.035918 1.282719 1.433494 1.177819 1.650824

80 1.813855 0.823881 2.045153 1.399878 1.341892 1.220095 1.718529

90 1.888506 0.821751 2.079092 1.338068 1.540737 1.206869 1.676036

100 1.887283 0.828481 2.126529 1.329711 1.636054 1.30012 1.744316

FIGURE 7 Graph of the RMSE data in TABLE 5.

pH RMSE

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

10 20 30 40 50 60 70 80 90 100

Num bins

R
M

S
E

EF

EW

OW

KM

KMInd

EM

EMInd

TABLE 6 Table listing the prediction RMSE for the various discretisation

configurations on the Power Demand data set .

Power Demand

 EF EW OW KM KMInd EM EMInd

10 11.91378 12.24336 12.63159 12.71695 11.19925 12.72386 11.47972

20 10.59119 10.93452 10.90303 10.80652 10.38338 10.82566 10.89315

30 10.52534 10.8376 10.99338 10.80449 10.55618 10.78955 10.20982

40 10.47906 10.79125 10.4197 10.71948 10.27625 10.7651 10.45479

50 10.52463 10.818 9.895694 10.53563 10.38274 10.54539 10.45545

60 10.44292 10.76346 9.597229 10.55794 10.46292 10.85642 10.64175

70 10.55007 10.7455 9.225207 10.65808 10.29918 10.70108 10.71359

80 10.47155 10.71229 8.750793 10.51056 10.33432 10.66725 10.59385

90 10.49693 10.75208 8.585312 10.59197 10.40026 10.5205 10.46287

100 10.42139 10.69797 8.378631 10.54727 10.37307 10.65517 10.53053

FIGURE 8 Graph of the RMSE data in TABLE 6.

Power Demand RMSE

8

9

10

11

12

13

10 20 30 40 50 60 70 80 90 100

Num bins

R
M

S
E

EF

EW

OW

KM

KMInd

EM

EMInd

TABLE 7 Table listing the prediction RMSE for the various discretisation

configurations on the Q8 Humidity data set .

Q8 Humidity

 EF EW OW KM KMInd EM EMInd

10 5.539855 5.696871 - 5.574461 5.58411 5.654277 5.496418

20 5.485876 5.610919 5.504454 5.509741 5.482417 5.529952

30 5.478956 5.577556 5.506319 5.497571 5.457697 5.504945

40 5.473801 5.573197 5.49217 5.512809 5.463492 5.494317

50 5.474619 5.554312 5.467233 5.530864 5.46082 5.498137

60 5.47028 5.564743 5.500056 5.523913 5.476252 5.473664

70 5.472675 5.561528 5.49733 5.519527 5.47912 5.449213

80 5.474751 5.567025 5.48873 5.513559 5.481249 5.464963

90 5.476791 5.56056 5.507742 5.499874 5.457313 5.456431

100 5.47733 5.564607 5.488644 5.495294 5.465483 5.47779

FIGURE 9 Graph of the RMSE data in TABLE 7.

Q8 Humidity RMSE

5.4

5.45

5.5

5.55

5.6

5.65

5.7

5.75

10 20 30 40 50 60 70 80 90 100

Num bins

R
M

S
E

EF

EW

OW

KM

KMInd

EM

EMInd

TABLE 8 Table listing the prediction RMSE for the various discretisation

configurations on the Q8 Temperature data set.

Q8 Temperature

 EF EW OW KM KMInd EM EMInd

10 2.859895 3.287342 - 2.842124 2.76867 2.825171 2.798231

20 2.818977 2.949413 2.810331 2.772145 2.822821 2.795002

30 2.812592 2.911362 2.804223 2.796941 2.79583 2.803491

40 2.812978 2.911264 2.809086 2.799589 2.821871 2.806346

50 2.811949 2.911923 2.81496 2.786565 2.818447 2.811924

60 2.8118 2.913309 2.811009 2.812517 2.784408 2.816255

70 2.812411 2.916016 2.813631 2.789157 2.770904 2.806368

80 2.812434 2.911724 2.809134 2.813404 2.787543 2.809671

90 2.812241 2.913893 2.807965 2.816527 2.775255 2.811235

100 2.812262 2.914636 2.81979 2.815964 2.803253 2.810602

FIGURE 10 Graph of the RMSE data in TABLE 8.

Q8 Temperature RMSE

2.7

2.8

2.9

3

3.1

3.2

3.3

10 20 30 40 50 60 70 80 90 100

Num bins

R
M

S
E

EF

EW

OW

KM

KMInd

EM

EMInd

TABLE 9 Table listing the prediction RMSE for the various discretisation

configurations on the Q8 Voltage data set .

Q8 Voltage

 EF EW OW KM KMInd EM EMInd

10 0.450794 0.481753 - 0.509104 0.412714 0.459833 0.415563

20 0.455402 0.378643 0.51458 0.46287 0.519738 0.569271

30 0.582598 0.373808 0.521669 0.497748 0.581193 0.547806

40 0.559939 0.356845 0.572594 0.477481 0.620057 0.542968

50 0.55408 0.346293 0.547834 0.499776 0.634712 0.490699

60 0.583917 0.339062 0.535845 0.513607 0.616254 0.48559

70 0.578829 0.337866 0.570717 0.55089 0.630979 0.531651

80 0.588896 0.335987 0.551562 0.507068 0.587364 0.472054

90 0.557773 0.336498 0.551946 0.508434 0.615647 0.496174

100 0.558097 0.335806 0.591989 0.511198 0.624624 0.517107

FIGURE 11 Graph of the RMSE data in TABLE 9.

Q8 Voltage RMSE

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

10 20 30 40 50 60 70 80 90 100

Num bins

R
M

S
E

EF

EW

OW

KM

KMInd

EM

EMInd

TABLE 10 Table listing the prediction RMSE for the various discretisation

configurations on the Stanford data set .

Stanford

 EF EW OW KM KMInd EM EMInd

10 16.09229 16.92937 16.71849 16.21269 14.65761 15.96104 14.82125

20 16.2657 16.7926 16.81843 15.76794 14.74246 16.0056 16.05704

30 16.30286 16.82134 16.85936 16.28071 15.01656 15.94739 15.9288

40 16.31204 16.74684 16.71774 16.20726 15.67695 16.74684 16.01587

50 16.3224 16.7538 16.75841 15.84172 16.25412 16.67528 16.30804

60 16.32028 16.78443 16.77114 15.71987 16.44666 15.71325 16.47258

70 16.32764 16.79053 16.73768 15.95333 16.62443 15.82765 16.58979

80 16.53062 16.74776 16.58009 16.06153 16.68895 16.48893 16.57137

90 16.68649 17.12461 16.69834 15.71757 16.67616 16.52897 16.59264

100 16.71821 17.12456 16.98707 15.56455 16.67605 16.60761 16.59462

FIGURE 12 Graph of the RMSE data in TABLE 10.

Stanford

14.5

15

15.5

16

16.5

17

17.5

10 20 30 40 50 60 70 80 90 100

Num bins

R
M

S
E

EF

EW

OW

KM

KMInd

EM

EMInd

TABLE 11 Table listing the prediction RMSE for the various discretisation

configurations on the Steam Generator data set .

Steam Generator

 EF EW OW KM KMInd EM EMInd

10 2.820537 2.317172 2.363179 2.893302 2.560617 2.809536 2.713328

20 2.691419 2.312637 2.312637 2.936155 2.497025 2.750746 2.591133

30 2.671236 2.291332 2.291698 2.920642 2.529659 2.762968 2.578568

40 2.650103 2.289425 2.395625 2.801842 2.548329 2.757805 2.549705

50 2.658709 2.295461 2.345279 2.804712 2.574465 2.693802 2.623495

60 2.637555 2.293386 2.367243 2.775619 2.560677 2.745303 2.577679

70 2.623957 2.309085 2.360193 2.728743 2.601815 2.84196 2.640309

80 2.627001 2.301891 2.299493 2.75461 2.667130 2.886866 2.726628

90 2.635325 2.300801 2.422864 2.750975 2.710515 2.791833 2.697327

100 2.632024 2.305357 2.387626 2.684562 2.690951 2.844817 2.746271

FIGURE 13 Graph of the RMSE data in TABLE 11.

Steam Generator RMSE

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

10 20 30 40 50 60 70 80 90 100

Num bins

R
M

S
E

EF

EW

OW

KM

KMInd

EM

EMInd

TABLE 12 Table listing the prediction RMSE for the various discretisation

configurations on the Winding data set .

Winding

 EF EW OW KM KMInd EM EMInd

10 0.513782 0.429671 0.72545 0.545187 0.488177 0.527268 0.49026

20 0.506447 0.433126 0.69499 0.533119 0.47947 0.520153 0.472553

30 0.504079 0.427338 0.74488 0.529803 0.493573 0.50677 0.485893

40 0.502287 0.430681 0.781342 0.520284 0.50276 0.512498 0.489589

50 0.50024 0.429751 0.80811 0.518527 0.512097 0.505224 0.495685

60 0.501338 0.43078 0.837936 0.511035 0.512185 0.505768 0.492478

70 0.499693 0.430938 0.877855 0.507379 0.509961 0.510407 0.486573

80 0.501224 0.432308 0.886347 0.506368 0.513724 0.507807 0.487934

90 0.500129 0.430581 0.86298 0.50433 0.509512 0.505357 0.491668

100 0.501811 0.431722 0.886525 0.504464 0.510039 0.499687 0.488917

FIGURE 14 Graph of the RMSE data in TABLE 12.

Winding RMSE

0.4

0.5

0.6

0.7

0.8

0.9

10 20 30 40 50 60 70 80 90 100

Num bins

R
M

S
E

EF

EW

OW

KM

KMInd

EM

EMInd

	Discretisation of Data in a Binary
	Neural k-Nearest Neighbour Algorithm
	Victoria J. Hodge and Jim Austin
	Dept of Computer Science, University of York, YO10 5GH, UK,
	{victoria.hodge, jim.austin}@york.ac.uk

	I. INTRODUCTION
	II. BINARY NEURAL NETWORKS
	III. AURA K-NN
	A. Training
	B. Retrieving the Nearest Neighbours

	IV. EVALUATION
	A. Data Sets
	B. Evaluation
	C. Results

	V. ANALYSIS
	VI. DISCUSSION
	VII. CONCLUSION
	Appendix

