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Abstract 

In this paper, we introduce a theoretical basis for a Hadoop-based framework for parallel and 

distributed feature selection. It is underpinned by an associative memory (binary) neural network 

which is highly amenable to parallel and distributed processing and fits with the Hadoop paradigm. 

There are many feature selectors described in the literature which all have various strengths and 

weaknesses. We present the implementation details of four feature selection algorithms constructed 

using our artificial neural network framework embedded in Hadoop MapReduce. Hadoop allows 

parallel and distributed processing so each feature selector can be processed in parallel and multiple 

feature selectors can be processed together in parallel allowing multiple feature selectors to be 

compared. We identify commonalities among the four features selectors. All can be processed in the 

framework using a single representation and the overall processing can also be greatly reduced by only 

processing the common aspects of the feature selectors once and propagating these aspects across all 

four feature selectors as necessary. This allows the best feature selector and the actual features to 

select to be identified for large and high dimensional data sets through exploiting the efficiency and 

flexibility of embedding the binary associative-memory neural network in Hadoop. 
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1 Introduction 

Frequently data contain too many features or too much noise [38] for accurate classification [10][22], 

prediction [10][15] or outlier detection [24][27] as only a subset of the features are related to the 

target concept (classification label or predicted value). Data from distributed systems may be 

intermittent and may contain duplicates as distributed systems communicate the data across a wide 

geographical area. Many machine learning algorithms are adversely affected by noise, omissions and 

superfluous features which can prevent accurate classification or prediction. Consequently, the data 

must be pre-processed by the classification or prediction algorithm itself or by a separate feature 

selection algorithm to prune these superfluous features [36][50]. For distributed systems this consists 

of pruning superfluous features either locally (at data source) or globally on an aggregated data set.  

The benefits of feature selection include reducing the data size when superfluous features are 

discarded, improving the classification/prediction accuracy of the underlying algorithm where the 

algorithm is adversely affected by noise, producing a more compact and easily understood data 

representation and reducing the execution time of the underlying algorithm due to the smaller data 

size. For distributed systems, feature selection also translates into savings of power, hardware, and 

transmission as the data size is reduced. Feature selection can also minimise false positives by 



improving the data quality and thus the accuracy of the underlying classification or prediction 

algorithm.  

In this paper, we focus on feature selection across all data for parallel and distributed classification 

systems. We aim to remove noise and reduce redundancy from the distributed network to improve 

classification accuracy. There is a wide variety of techniques proposed in the machine learning 

literature for feature selection including Correlation-based Feature Selection [17][18][20][21], Principal 

Component Analysis (PCA) [35], Information Gain [42], Gain Ratio [43], Mutual Information Selection 

[48], Chi-square Selection [39], Probabilistic Las Vegas Selection [40], Support Vector Machine Feature 

Elimination [16]. 

It is frequently not clear to the user which feature selector to use for their data and application. In their 

analysis of feature selection, Guyon and Elisseeff [15] recommend evaluating a variety of feature 

selectors. Hence, allowing the user to run a variety of feature selectors and then evaluate the feature 

sets chosen using their classification or prediction algorithm is highly desirable. Having multiple feature 

selectors available also provides the opportunity for ensemble feature selection where the results from 

a range of feature selectors are merged to generate the best set of features to use. Feature selection is 

a combinatorial problem so needs to run as efficiently as possible. We have previously developed a k-

NN classification and prediction algorithm [26][28] using an associative memory (binary) neural 

network called the Advanced Uncertain Reasoning Architecture (AURA) [3]. This multi-faceted k-NN 

motivated a unified feature selection framework exploiting the speed and storage efficiency of the 

associative memory neural network. The framework lends itself to parallel and distributed processing 

across multiple nodes. This could be processing the data at the same geographical location using a 

single machine with multiple processing cores [47] or at the same geographical location using multiple 

compute nodes (parallel search) [47] or even processing the data at multiple geographical locations 

and assimilating the results (distributed processing) [5].  

The main contributions of this paper are:  

 To augment the AURA framework for parallel and distributed processing of data in Hadoop [1] 

[45],  

 To describe four feature selectors in terms of the AURA framework. Two of the feature 

selectors have been implemented in AURA previously (but not using Hadoop) and two have 

not been implemented in AURA before, 

 To analyse the resulting framework to show how the four feature selectors have common 

requirements  

  To demonstrate distributed processing in the framework.  

The feature selectors fit into one common data index representation. If we process any common 

elements only once and propagate these common elements to all feature selectors that require them 

then we can rapidly and efficiently determine the best feature selector and the best set of features to 

use for each data set under investigation. In section 2, we discuss AURA and related neural networks 

and how to store and retrieve data from AURA, section 3 demonstrates how to implement four feature 

selection algorithms in the AURA unified framework, section 4 describes parallel and distributed 

feature selection using AURA, we than analyse the unified framework in section 5 to identify common 

aspects of the four feature selectors and how they can be implemented in the unified framework in the 

most efficient way and finally, section 6 provides the overall conclusions from our implementations 

and analyses. 

2 Binary Neural Networks 
AURA [3] is an associative memory (binary) neural network. It is based on binary matrices, called 

Correlation Matrix Memories (CMMs) [6]. CMMs store associations between input and output vectors. 



Input vectors address the CMM rows and output vectors address the CMM columns. Binary neural 

networks have a number of advantages compared to standard neural networks including rapid one-

pass training, high levels of data compression, computational simplicity, network transparency, a 

partial match capability and a scalable architecture that can be easily mapped onto high performance 

computing platforms including parallel [47] and distributed platforms [5].  

Previous parallel and distributed applications of AURA have included distributed text retrieval [23], 

distributed time-series signal searching [13] and condition monitoring [4]. We have previously 

developed a k-NN algorithm [26][28] using AURA called AURA k-NN. The AURA k-NN allows 

classification [31][32][37] and prediction [33] with feature selectors for both classification and 

prediction [30]. Thus, coupling feature selection, classification and prediction with the speed and 

storage efficiency of a binary neural network in the AURA framework allowing parallel and distributed 

data mining. This makes AURA ideal to use as the basis of an efficient distributed machine learning 

framework. A more formal definition of AURA, its components and methods now follows.  

2.1 AURA 
The AURA methods use binary input I and output O vectors to store records in a CMM M as in equation 

1.     ⋁                                    (1) 

 

Training (construction of a CMM) is a single epoch process with one training step for each input-output 

association (each Ij Oj
T
 in equation 1) which equates to one step for each record in the data set. Ij Oj

T 
is 

an estimation of the weight matrix W(j) of the neural network as a linear associator with binary 

weights. Every synapse (matrix element) can update its weight independently and in parallel. This 

learning process is illustrated in Figure 1. 

 
Figure 1 Showing a CMM learning input vector In associated with output vector On on the left. The 

CMM on the right shows the CMM after five associations Ij Oj
T
. Each column of the CMM represents a 

record. Each row represents a feature value for symbolic features or quantisation of feature values 

for continuous features and each set of rows (shown by the horizontal lines) represents the set of 

values or set of quantisations for a particular feature. 

For feature selection, the data are stored in the CMM which forms an index of all features in all 

records. The input vector and CMM rows represent the features and feature values; and the output 

vector and the CMM columns represent the data records. Note: for feature selection, the class values 

and the associated records that take those class values are also trained into the CMM as extra rows. 



This process is identical to training the other feature values; the class is treated as an extra feature 

[30]. Figure 1 shows a trained CMM where each row is a feature or class value and each column 

represents a record. In this paper, we set only one bit in the vector Oj indicating the location of the 

record in the data set, the first record has the first bit set, the second record has the second bit set etc. 

Using a single set bit makes the length of Oj potentially large. However, exploiting a compact list 

representation [25] (more detail is provided in section 5) means we can compress the storage 

representation for single bit set vectors to a single index (set bit location), thus allowing AURA to be 

used for distributed processing with data sets of millions of records yet using a relatively small amount 

of memory.  

2.2 Data 
The AURA feature selector, classifier and predictor framework can handle symbolic, discrete numeric 

and continuous numeric features.  

The raw data sets need pre-processing to allow them to be used in the binary AURA framework. 

Symbolic and numerical unordered features are enumerated and each separate token maps onto an 

integer (Token  Integer) which identifies the bit to set within the vector. We refer to these features as 

symbolic henceforth. For example, a SEX_TYPE feature would map as (F    0) and (M    1). Any real-

valued or ordered numeric features are quantised (mapped to discrete bins) [29], and each individual 

bin maps onto an integer which identifies the bit to set in the input vector. We refer to these features 

as continuous henceforth. Next, we describe the simple equi-width quantisation. We note that the 

Correlation-Based Feature Selector described in section 3.2 uses a different quantisation technique to 

determine the bin boundaries. However, once the boundaries are determined, the mapping to CMM 

rows is the same as described here. 

To quantise continuous features, a range of input values for feature Fj map onto each bin. Each bin 

maps to a unique integer as in equation 2 to index the correct location for the feature in Ij. In this 

paper, the range of feature values mapping to each bin is equal to subdivide the feature range into b 

equi-width bins across each feature.                             (  )                            (         )                      

 

(2) 

In equation 2, offset(Fj) is a cumulative integer offset within the binary vector for each feature Fj and 

offset(Fj+1) = offset(Fj) + nBins(Fj ) where nBins(Fj ) is the number of bins for feature Fj,   is a many-to-

one mapping and   is a one-to-one mapping. 

  For each record in the data set  

    For each feature  

      Calculate bin for feature value; 

      Set bit in vector as in equation 2; 

 

2.3 AURA Recall 
To recall the matches for a query record, we firstly produce a recall input vector Rk by quantising the 

target values for each feature to identify the bins (CMM rows) to activate as in equation 3. During 

recall, the presentation of recall input vector Rk elicits the recall of output vector Ok as vector Rk 

contains all of the addressing information necessary to access and retrieve vector Ok. Recall is 

effectively the dot product of the recall input vector Rk and CMM M, as in equation 3 and Figure 2.            (3) 



 
Figure 2 Showing a CMM recall. Applying the recall input vector Rk to the CMM M retrieves a 

summed integer vector S with the match score for each CMM column. S is then thresholded to 

retrieve the matches. The threshold here is either Willshaw with value 3 retrieving all columns that 

sum to 3 or more or L-Max with value 2 to retrieve the 2 highest scoring columns. 

If Rk appeared in the training set, we get an integer-valued vector S (the summed output vector), 

composed of the required output vector multiplied by a weight based on the dot product of the input 

vector with itself. If the recall input Rk is not from the original training set, then the system will recall 

the output Ok associated with the closest stored input to Rk, based on the dot product between the 

test and training inputs. 

The AURA technique thresholds the summed output S to produce a binary output vector. For exact 

match, we use the Willshaw threshold [49]. This sets a bit in the thresholded output vector for every 

location in the summed output vector that has a value higher than or equal to a threshold value. The 

threshold varies according to the task. For partial matching, we use the L-Max threshold [9]. L-Max 

thresholding essentially retrieves at least L top matches. Our AURA software library automatically sets 

the threshold value to the highest integer value that will retrieve at least L matches. 

Feature selection described in section 3 requires both exact matching using Willshaw thresholding and 

partial matching using L-Max thresholding.  

3 Feature Selection 
There are two fundamental approaches to feature selection [36][50]: (1) filters select the optimal set 

of features independently of the classifier/predictor algorithm while (2) wrappers select features which 

optimise classification/prediction using the algorithm. We examine the mapping of four filter 

approaches to the binary AURA architecture. Filter approaches are more flexible than wrapper 

approaches as they are not directly coupled to the algorithm and are thus applicable to a wide variety 

of classification and prediction algorithms. They can then be used as stand-alone feature selectors for 

other classification or prediction algorithms exploiting the high speed and efficiency of the AURA 

techniques to perform feature selection which is a combinatorial problem. We also intend to integrate 

them with the AURA k-NN for classification and prediction in the unified AURA framework. 

We examine  a mutual information based approach (Mutual Information Feature Selection (MI) 

detailed in section 3.1 that examines features on an individual basis, a correlation-based multivariate 

filter approach (Correlation-based Feature Subset Selection (CFS) detailed in section 3.2 that examines 



greedily selected subsets of features, a revised Information Gain approach Gain Ratio (GR) detailed in 

section 3.3 and a feature dependence approach Chi-Square Feature selection(CS) detailed in section 

3.4 which is univariate. Univariate filter approaches such as Mutual Information or Chi-square are 

quicker than multivariate as they do not need to evaluate all combinations of subsets of features. The 

advantage of a multivariate filter compared to a univariate filter lies in the fact that a univariate 

approach does not account for interactions between features. Multivariate techniques evaluate the 

worth of feature subsets by considering both the individual predictive ability of each feature and the 

degree of redundancy between the features in the set.  

During training for the MI, CFS, GR and CS algorithms, the input vectors Ij represent the feature and 

class values in the data records and are associated with a unique output vector Oj. They all use an 

identical CMM and CMM training is an n-iteration process where n is the number of data records. This 

single CMM means that we can calculate and compare all four feature selectors using a single data 

representation. We note that the CFS as implemented by Hall [17] uses an entropy-based quantisation 

whereas we have used equi-width quantisation for the other feature selectors (MI, GR and CS ). We 

plan to investigate unifying the quantisation as a next step. For the purpose of our analysis in section 5, 

we assume that all feature selectors are using identical quantisation.  

We assume that all records are to be used during feature selection.  

3.1 Mutual Information Feature Selection 
Wettscherek [48] described a mutual information feature selection algorithm. The mutual information 

between two features is ``the reduction in uncertainty concerning the possible values of one feature 

that is obtained when the value of the other feature is determined' '[48]. We introduced an AURA 

version of the MI feature selector in [34] and just provide a brief overview here. 

For our feature selection, AURA excites the row in the CMM corresponding to feature value fi of 

feature Fj. This row is a binary vector (BV) and is represented by BVfi . A count of bits set on the row 

gives n(BVfi) from equation 4  and is achieved by thresholding the output vector Sk from equation 3 at 

Willshaw value 1. AURA also excites the row in the CMM corresponding to class value c where the 

binary vector is denoted BVc. Again, counting the number of bits set on the row as above gives n(BVc) 

from equation 4.  

 
Figure 3 Diagram showing the feature value row and the class values row excited to determine co-

occurrences. 



If both the feature value row and the class values row are excited then the summed output vector will 

have a two in the column of every record with a co-occurrence of fi with cj as shown in Figure 3. By 

thresholding the summed output vector at a threshold of two, we can find all co-occurrences. We 

represent this number of bits set in the vector by n(BVfi   BVc) which is a count of the set bits when 

BVc is logically ANDed with BVfi . The mutual information is given by equation 4 where rows(Fj) is the 

number of CMM rows for feature Fj and nClass is the number of classes: 

 (    )   ∑ ∑                   
        (                             )        

    

(4) 

We can follow the same process for real/discrete ordered numeric features in AURA. In this case, the 

mutual information is given by equation 5: 

 (    )   ∑ ∑                   
        (                             )        

    

(5) 

where bins(Fj) is the number of bins (effectively the number of rows) in the CMM for feature Fj , N is 

the number of records in the data set, BVbi is a binary vector (CMM row) for the quantisation bin 

mapped to by feature value fi, BVc is a binary vector with one bit set for each record in class c,      

n(BVbi   BVc) is a count of the set bits when BVc  is logically ANDed with BVbi (as shown in Figure 3 

and n(BVc) is the number of records in class c. 

The MI feature selector assumes independence of features and scores each feature separately so it is 

the user's prerogative to determine the number of features to select. The major drawback of the MI 

feature selector along with similar information theoretic approaches, for example Information Gain, is 

that they are biased toward features with the largest number of distinct values as this splits the 

training records into nearly pure classes. Thus, a feature with a distinct value for each record has a 

maximal information score. The CFS and GR feature selectors described next make adaptations of 

information theoretic approaches to prevent this biasing.  

3.2 Correlation-based Feature Subset Selection 
Hall [17] proposed the Correlation-based Feature Subset Selection (CFS) which measures the strength 

of the correlation between pairs of features. CFS favours feature subsets that contain features that are 

highly correlated to the class but uncorrelated to each other to minimise feature redundancy. CFS is 

thus based on information theory measured using Information Gain. However, as noted in the previous 

section, Information Gain is biased toward features with the largest number of distinct values. Hence, 

Hall and Smith [20] used a modified Information Gain measure (Symmetrical Uncertainty) to estimate 

the correlation between features given in equation 6. Symmetrical Uncertainty effectively normalises 

the value in the range [0,1] where two features are completely independent if SU=0 and completely 

dependent if SU=1.  

  (     )       [   (  )     (   |       (  )         ] (6) 

where the entropy of a feature Fj for all feature values fi is given as equation 7:    (  )    ∑                          

(7) 

and the entropy of feature Fj after observing values of feature Gl is given as equation 8: 



   (       )    ∑      ∑                                            

(8) 

Any continuous features are discretised using Fayyad and Irani's entropy quantisation [12]. The bin 

boundaries are determined using Information Gain and these quantisation bins map the data into the 

AURA CMM as previously.  

As noted previously, for feature selection, the class values and the associated records that take those 

class values are also trained into the CMM as extra rows (extra features) as shown in Figure 3. CFS has 

many similarities to MI through calculating the values in equations 6, 7 and 8 and through using the 

CMM as noted below. 

In the AURA CFS, for each pair of features (Fj ,Gl) to be examined, the CMM is used to calculate Ent(Fj), 

Ent(Gl) and Ent(Fj ·Gl) from equation 6. There are three parts to the calculation. 

1. Ent(Fj)requires the count of data records for the particular value fi of feature Fj which is n(BVfi) 

in equation 4 for symbolic and class features and n(BVbi) in equation 5  for continuous 

features. Similarly, Ent(Gl) counts the number of records where feature Gl has value gk. 

2. Ent(Fj ·Gl) requires the number of co-occurrences of a particular value fi of feature Fj with a 

particular value gk of feature Gl as in equations 4 and 5  and Figure 3 except that CFS 

calculates Ent(Fj ·Gl) between a feature and the class n(BVfi   BVc) and n(BVbi    BVc) as well as 

between pairs of features n(BVfi   BVgk) and n(BVbi   BVbk). 
 

CFS determines the feature subsets to evaluate using forward search. Forward search works by 

greedily adding features to a subset of selected features until some termination condition is met 

whereby adding new features to the subset does not increase the discriminatory power of the subset 

above a pre-specified threshold value. The major drawback of CFS is that it cannot handle strongly 

interacting features [19]. 

3.3 Gain Ratio Feature Selection 
Gain Ratio (GR) [43] is a new feature selector for the AURA framework. GR is a modified Information 

Gain technique and is used in the popular machine learning decision tree classifier C4.5 [43]. 

Information Gain is given in equation 9 for feature Fj and the class C. Hall and Smith [20] used a 

modified Information Gain measure in their CFS feature selector to prevent biasing toward features 

with the most values. GR is an alternative adaptation which considers the number of splits (number of 

values) of each feature when calculating the score for each feature using normalisation.      (    )     (  )     (   |    (9) 

where Ent(Fj) is defined in equation 7 and Ent(Fj |C) is defined by equation 8. Then Gain Ratio is defined 

as equation 10: 

         (    )                                (10) 

where IntrinsicValue is given by equation 11:               (  )  ∑             (   ) 

(11) 

and V is the number of feature values (n(Fj)) for symbolic features and number of quantisation bins 

n(bi) for continuous features and Sp is a subset of the records that have Fj=fi for symbolic features or 

map to the quantisation bin bin(fi) for continuous features. 



To implement GR using AURA, we train the CMM as described in section 2.1 using a suitable 

quantisation for continuous features. This could be Fayyad and Irani's quantisation used in CFS or could 

be equi-width binning as described in section 2.2. We can then calculate Ent(Fj) and Ent(Fj| C) as per 

the CFS feature selector described in section 3.2 to allow us to calculate Gain(Fj, C). To calculate 

IntrinsicValue(Fj) we need to calculate the number of records that have particular feature values. This 

is achieved by counting the number of set bits n(BVfi) in the binary vector (CMM row) for fi for 

symbolic features or n(BVbi) in the binary vector for the quantisation bin bi for continuous features. We 

can store counts for the various feature values and classes as we proceed so there is no need to 

calculate any count more than once. The main disadvantage of GR is that it tends to favour features 

with low Intrinsic Value rather than high gain by overcompensating toward a feature just because its 

intrinsic information is very low. 

3.4 Chi-Square Algorithm 

We now demonstrate how to implement a second new feature selector in the AURA framework. The 

Chi-Square (CS) [39] algorithm is a feature ranker like MI and GR rather than a feature selector; it 

scores the features but it is the user's prerogative to select which features to use. CS assesses the 

independence between a feature (Fj) and a class (C) and is sensitive to feature interactions with the 

class. Features are independent if CS is close to zero. Yang and Pedersen [51] and Forman [14] 

conducted evaluations of filter feature selectors and found that CS is among the most effective 

methods of feature selection for classification.  

Chi-Square is defined as: 

  (    )   ∑ ∑                                                    

(12) 

where b(Fj) is the number of bins (CMM rows) representing feature Fj, nClass is the number of classes, 

w is the number of times fi and c co-occur, x is the number of times fi occurs without c, y is the number 

of times c occurs without fi, z is the number of times neither c nor fi  occur. Thus, CS is predicated on 

counting occurrences and co-occurrences and, hence, has many commonalities with MI, CFS and GR.  

 Figure 3 shows how to produce a binary output vector (BVfi   BVc) for symbolic features or 

(BVbi   BVc) for continuous features listing the co-occurrences of a feature value and a class 

value. It is then simply a case of counting the number of set bits (1s) in the thresholded binary 

vector T in Figure 3 to count w.  

 To count x for symbolic features, we logically subtract (BVfi   BVc) from the binary vector 

(BVfi) to produce a binary vector and count the set bits in the resulting vector. For continuous 

features, we subtract (BVbi   BVc) from (BVbi) and count the set bits in the resulting binary 

vector.  

 To count y for symbolic features, we can logically subtract (BVfi   BVc) from (BVc) and count 

the set bits and likewise for continuous features we can subtract (BVbi   BVc) from BVc and 

count the set bits.  

 If we logically OR (BVfi) with (BVc), we get a binary vector representing (Fj=fi)  (C=c) for 

symbolic features. For continuous features, we can logically OR (BVbi) with (BVc) to produce 

(Fj=bin(fi))  (C=c). If we then logically invert this new binary vector, we retrieve a binary vector 

representing z and it is simply a case of counting the set bits to get the count for z.  
 

As with MI, CS is univariate and assesses features on an individual basis selecting the features with the 

highest scores, namely the features that interact most with the class. The main issue with CS is that it 

does not take into account inter-feature interactions. 



4 Parallel and Distributed AURA 
In distributed systems, data may be processed locally at each parallel compute node minimising 

communication overhead or globally across all distributed nodes providing an “overall” data view [46].  

4.1 Parallel 
In Weeks et al. [47], we demonstrated a parallel search implementation of AURA. AURA can be 

subdivided across multiple processor cores within a single machine or spread across multiple 

connected compute nodes. This parallel processing entails “striping” the data across several parallel 

CMM subsections. The CMM is effectively subdivided vertically across the output vector as shown in  

Figure 4. In the data, the number of features m is usually much less than the number of records N, 

hence, m << N. Therefore, we subdivide the data along the number of records N (column stripes) as 

shown in  

Figure 4. 

 

 
 

Figure 4 If a CMM contains large data it can be subdivided (striped) across a number of CMM stripes. 

In the left hand figure, the CMM is striped vertically (by time) and in the right hand figure the CMM 

is striped horizontally (be feature subsets). On the left, each CMM stripe produces a thresholded 

output vector Tn containing the top k matches (and their respective scores) for that stripe. All {Tn} are 

aggregated to form a single output vector T which is thresholded to list the top matches overall. On 

the right, each stripe outputs a summed output vector Sn. All Sn are summed to  produce an overall  

summed output vector  which is thresholded to list the top matches overall. 

Splitting the data across multiple CMM stripes using columns means that the CMM can store data as 

separate rows within a single stripe. Each record is contained within a single stripe. Each separate 

CMM stripe outputs a thresholded vector from that CMM stripe.  

If the number of features is large then it is possible to subdivide the CMMs further. The CMM is divided 

vertically by the records (column stripes) as before and then the column stripes are subdivided by the 

input features (row stripes). Dividing the CMM using the features (row stripes) makes assimilating the 

results more complex than assimilating the results  for column stripes. Each row stripe produces a 

summed output vector containing column subtotals for those features within the stripe. The column 

subtotals need to be assimilated from all row stripes that hold data for that column. Thus, we sum 

these column subtotals to produce a column stripe vector C holding the overall sum for each column in 

that stripe. Row striping involves assimilating integer vectors of length c where c is the number of 

columns for the column subdivision (column stripe).  

4.2 Distributed 
We have previously developed a distributed AURA search for condition monitoring of civil aerospace 

[5]. Here we use that as a basis for distributed feature selection. There are two central challenges for 



distributed feature selection: maintaining a distributed data archive so that data does not have to be 

moved to a central repository and secondly, orchestrating the search process across the distributed 

data.  

 

Figure 5 Distributed Data Management Architecture using a Pattern Match Controller accessing the 

Global Metadata Catalogue and Storage Resource Brokers on each processing node. 

Our architecture for orchestrated search used a middleware stack (Pattern Match Controller [5] (PMC)) 

to farm search queries across distributed data resources. PMC allows a front-end service client to 

submit queries to all known data resources in a parallel, asynchronous manner, and to manage the 

processing and analysis of the data at the remote repositories. Forcing the pattern matching process to 

take place at the remote data repositories removes the costly requirement of moving large volumes of 

data during the search. An overview of the distributed AURA architecture is shown in Figure 5. The 

PMC uses a global Metadata Catalogue (global MCAT) that contains the locations of the data. In the 

implementation described in Austin et al. [5], the local data catalogue is provided by Storage Resource 

Broker [2] (SRB). SRB can manage distributed storage resources from large disk arrays to tape backup 

systems by mapping physical file locations to logical file handles referenced by PMC so PMC requires 

no knowledge of where the data resides. All nodes processing a query perform their search in parallel, 

searching all data held across the system as required. The PMC is also responsible for correlating the 

results and returning them.  

Orchestrated search with minimal data movement can also be provided by the open source software 

project: Apache Hadoop [45].  Hadoop operates on the premise that “moving computation is cheaper 

than moving data” [1]. Hadoop allows the distributed processing of large data sets across clusters of 

commodity servers. It provides load balancing, is highly scalable and has a very high degree of fault 

tolerance. It is able to run on commodity hardware due to its ability to detect and handle failures at 

the application layer. When nodes fail with SRB, any search operations will not include results from 

these nodes. With Hadoop, there are multiple copies of the stored data so, if one server or node is 

unavailable, its data can be automatically replicated from a known good copy. If a compute node fails 

then Hadoop automatically re-balances the work load on the remaining nodes. There are two parts to 

Hadoop: MapReduce which assigns work to the nodes in a cluster and the Hadoop Distributed File 

System (HDFS) which is a distributed file system spanning all the nodes in the Hadoop cluster.  

MapReduce divides (maps) the processing into separate chunks which are processed in parallel. The 

outputs of the processing tasks are combined (reduced) to generate a single result. The input and 

output data for MapReduce can be stored in HDFS on the same compute nodes used for processing the 



MapReduce jobs. This produces a very high aggregate bandwidth across the cluster. The user’s 
applications specify the input/output locations and supply map and reduce functions via 

implementations of appropriate interfaces and/or abstract-classes. The framework takes care of 

distributing the software/configuration, scheduling tasks, monitoring the tasks and re-executing any 

failed tasks. 

HDFS links together the file systems on many local nodes to make them into one big file system. HDFS 

assumes nodes will fail, so it achieves reliability by replicating data across multiple nodes. Processing 

data in situ on local nodes is efficient compared to moving the data over the network to a single 

processing node. This local processing architecture of Hadoop has resulted in very good performance 

[44] on cheap computer clusters even with relatively slow network connections (such as 1 Gig 

Ethernet) [44]. Hence, Hadoop is ideal to underpin our distributed processing architecture. 

5 Analysis 
The key challenge for distributed feature selection is identifying the optimum method for distributing 

the search. Different data and applications will have different criteria that they wish to optimise. These 

could be optimising:  communication overhead, processing speed, memory usage or combinations of 

these criteria. Hence, there is unlikely to be a single best technique for distribution.  

However, Hadoop has demonstrated high performance for a wide variety of tasks [8]. It is aimed at 

batch processing tasks so is ideally suited to the task of feature selection where the feature selector is 

trained with the training data and feature selection is run once on a large batch of test data. In this 

paper, we focus on the implementation details of the four feature selectors using AURA with Hadoop. 

The capabilities of Hadoop have been demonstrated elsewhere [8] so we focus on describing how to 

map AURA CMMs to Hadoop to create an evaluation framework.  Users will use this framework to 

select the best feature selector for their data and application using their own specific criteria. 

Feature selection is a two part procedure. A training phase trains the data into the CMMs. A test phase 

then applies test data to the trained CMMs and correlates the results to produce feature selections. 

Each compute node holds a CMM that stores all local data. Data are trained into the CMM as described 

in section 2.1. During training, CMMs are not immutable as each association in equation 1 changes the 

underlying CMM so Hadoop MapReduce is not a suitable paradigm for CMM training. Hence, the 

CMMs are trained in a conventional fashion and uploaded to the Hadoop Distributed File System once 

trained. If the data stored in a node's CMM exceed the memory capacity of that node then the CMM is 

subdivided into stripes as described in section 4.1. The set of all CMM stripes at a node stores all data 

for that node. Every CMM stripe across the distributed system has to be coordinated so that record IDs 

(such as timestamps) are matched.  If column 2 of one CMM stripe represents a time-stamp 10:00am 

on 31st May then column 2 in every associated row stripe must represent the identical time-stamp. 

When the results from different CMMs are unified then the columns from the various CMMs need to 

be aligned and hence must be identical time representations. The system is very flexible, we can access 

which nodes we require to access: all data or just a subset of data. The approach is a combination of 

the striping described above in section 4.1 and the CMM distribution described in section 4.2 with 

Hadoop orchestrating the search. 

While the CMMs are being trained it is expedient to generate a MapReduce input file of input vectors 

to be used to produce the feature selections.  These files will be split into batches by the MapReduce 

software and the results will be correlated to produce the feature selection scores.  There is one input 

file per CMM stripe and the input vectors in each file represent the set of input vectors for recall to 

produce the feature selections. 



Each CMM stripe that receives a search request, executes the recall process described in section 2.3. 

This retrieves a set of candidate matches as a vector. The candidate matches are the set of stored 

patterns that are close to the query in the feature space. In Hadoop the processing is coordinated by 

MapReduce [45]. Hadoop schedules the MapReduce tasks independently of the problem being solved. 

There is one Map job for each input file. Therefore, we model feature selection as a series of 

MapReduce jobs with each job representing one CMM stripe and the tasks are batches of file iterations 

(batch processing subsets of records) from the test data. The tasks are processed in parallel on 

distributed nodes. Each CMM stripe is read into a job. The recall function for CMM stripes is written as 

a Map task. Each MapReduce job invokes multiple Map tasks, each task represents a batch of recalls 

for a subset of input records, the batches execute in parallel. The Hadoop Mapper keeps track of the 

output vector versus record ID pairs so we know which output vector is associated with which record. 

The Reduce tasks perform the integer output vector thresholding as described in section 2.3 and write 

the data back into the file associated with CMM stripe. Multiple feature selectors can be run in parallel, 

each executing as a series of MapReduce jobs. The CMMs for feature selection are immutable so 

subsequent iterations do not depend on the results (or changes) of the CMMs.  

This whole MapReduce process has to be coordinated.  If the MapReduce process is running at a single 

location then it can be coordinated as a Java class that initiates the individual jobs and then 

coordinates the results from all jobs to produce the feature selection scores. If the processing is 

geographically distributed then it needs a more complete coordinator.  This can be achieved using for 

example the UNIX curl command and a monitor process that determines when curl has collected new 

data.  Alternatively, it can be achieved using a distributed stream processor such as Apache S4 

(http://incubator.apache.org/s4/) or Twitter's STORM (https://github.com/nathanmarz/storm). 

Essentially, whichever tool is used this is a three part process: initiate the feature selection process at 

each of the distributed nodes; retrieve the results data from the distributed nodes; and, monitor when 

the results have been returned from all nodes and combine them into a single unified result. Each 

CMM stripe can return its results as  

1. an integer vector Sk (unthrehsolded),  

2. a thresholded vector Tk or  

3. a list of the set bits in the thresholded vector. 

 

Option 1 is the least efficient as, potentially, every column could have an integer score so the vector 

would be an integer vector of length n where n is the number of data records stored. This integer 

vector can be thresholded for option 2 which produces a binary vector.  A binary vector requires less 

storage capacity than an integer vector (1 bit per element for the binary vector compared to 16 or 32 

bits per element for the integer vector). For option 3, we would return a list of the set bits. For this we 

can exploit a compact list representation for representing binary vectors, more detail is given in [25]. 

This compact list representation is similar to the pointer representation used in associative memories 

[7]. It ensures that retrieval is proportional to the number of set bits in the thresholded output vector 

so is fast and scalable. For example, if we retrieved the binary thresholded vector 000000001011, with 

a compact representation this can be stored as {8,10,11} indexing from 0. On a vector of this size, the 

advantage of the compact representation is not apparent but if there were 100,000 records in the data 

set then the vector would have 100,000 elements. If only three records match (records; 8, 10 and 11) 

then storing {8,10,11} as indices requires much less memory and is much more efficient than storing 

100,000 binary digits. Hence, wherever possible we use option 3.  Minimising the communication 

overhead is of paramount importance in parallel and distributed processing systems so option 3 is best 

in this respect. All three methods require an index of what data are stored where and what each 

datum represents so the coordinating node can coordinate the matching, receive all matching data and 

determine the set of best matches across all searchable data.  



The feature selection process produces a large set of output vectors from the CMM stripes; namely, all 

vectors necessary for all feature selectors. These results need to be amalgamated for each feature 

selector to produce the feature scores for that feature selector. Each feature selector will have a 

separate amalgamate program running at the coordinating node.  This program uses the required 

vectors and set bit counts returned from AURA to produce the feature score as described in sections 3 

and 5.1. 

AURA has demonstrated superior training and recall speed compared to conventional indexing 

approaches [25] such as hashing or inverted file lists which may be used for data indexing. AURA trains 

20 times faster than an inverted file list and 16 times faster than a hashing algorithm. It is up to 24 

times faster than the inverted file list for recall and up to 14 times faster than the hashing algorithm. 

AURA k-NN has demonstrated superior speed compared to conventional k-NN [27] and does not suffer 

the limitations of other k-NN optimisations such as the KD-tree which only scales to low dimensionality 

data sets [41]. We showed in [34] that using AURA speeds up the MI feature selector by over 100 times 

compared to a standard implementation of MI. Feature selection is a combinatorial problem so a fast 

and efficient platform will allow rapid analysis of large and high dimensional data sets. 

5.1 Distributed Feature Selection 
All four feature selection algorithms have been well documented elsewhere and their relative 

strengths and weaknesses analysed on a range of data sets. Hence, we refer the reader elsewhere for 

accuracy evaluations. We note from the evaluations in the literature that no feature selector excels 

across all data sets. Different feature selectors are required for different data sets and applications. 

Hence, we are building a framework to allow the relevant feature selector to be chosen. Guyon and 

Elisseeff [15] posit that users should compare several feature selection methods before deciding the 

best for their problem. Therefore, we propose that users exploit the AURA framework to evaluate 

multiple feature selectors in parallel for use with either the integrated AURA k-NN classifier or 

predictor or for use with their own methods. Each feature selector produces feature scores. Some 

feature selectors such as CFS select the best set of features to use while other such as MI, CS and GR 

rank the features with the scores. For these feature rankers, the best set of features may then be 

chosen by the user, for example, using greedy search [50]. The user's classifier or predictor can then be 

evaluated against the sets of features to find the best feature selector and best subset of features 

according to the user's criteria. Having multiple feature selectors in a single framework also provides 

the opportunity for ensemble feature selection where the results from a range of feature selectors are 

merged to generate a consensus overview of the best set of features to use. 



 
Figure 6 The 12 records from the iris data set, quantised and trained into a single AURA CMM (left) 

and subdivided across 4 stripes of the CMM (right). The letters in rows 20-22 indicate the class of the 

record: A=Iris-setosa, B=Iris-versicolor, C=Iris-virginica. 

The feature selectors in section 3 have many commonalities when implemented in the unified AURA 

framework. We can demonstrate the commonalities by analysing 12 records from the Iris data set used 

in [34]. The data are illustrated in Figure 6 (left) when trained into the CMM. The 12 records have been 

trained into a CMM using the four features and the class. Each feature is continuous-valued and has 

been subdivided into five quantisation bins of equal width. Figure 6 (right) shows the same data 

divided into four CMM stripes (CMMStripe1, CMMStripe2, CMMStripe3 and CMMStripe4). The 

horizontal (row-based) striping means that the features “sepal len” and “sepal width” are in the top 

stripes and “petal len”, “petal width” and the class are in the bottom two stripes.  The vertical (column-

based) striping means that the first 6 data records are stored in the left two stripes and the other 6 

records in the right two stripes.  If the data were time-series or sequential, the column-based striping 

would form two time frames with the oldest data in the left two stripes and the newest data in the 

right two stripes. The input vectors are stored in a file for each CMM or CMM stripe.  These files can 

then be batch processed in the Hadoop framework described. Within the evaluation, we consider how 

the data and CMMs would be accommodated in our Hadoop framework. 

 MI, CFS, CS and GR can all use a single CMM representation for the data such as the CMM in 

Figure 6. This overall CMM is amenable to striping across the processing nodes to allow 

Hadoop processing in a similar fashion to  

 Figure 4. This could encompass striping across local compute nodes or striping across 

geographically distributed nodes. Vertical striping would store different time frames at 

different nodes and horizontal striping would store different features at different nodes.   



 MI, CFS, CS and GR all use BVfi (the binary vector where (Fj=fi)), BVbi (the binary vector 

representing the quantisation bin bin(fi)) and BVc (the binary vector representing all records 

that have a class label) so these only need to be extracted once and used in each feature 

selector as appropriate. For example in Figure 6, if we want all records where                         

1.12 ≤ petal width < 1.58 then we activate row 17 of the CMM using the input vector 

00000000000000000100000 which will be one of the input vectors stored in the Hadoop input 

file for this CMM. We can then Willshaw threshold the integer output vector S at level 1 and 

retrieve the binary thresholded vector T with a bit set for every record where                          

1.12 ≤ petal width < 1.58, that is 000011110000 from Figure 6 (left). For the Hadoop 

distributed version, we use input files that hold the vectors to be processed. The vectors are 

subdivided across CMM stripes so that only the data that are relevant to that CMM stripe are 

input. Activate row 17 of CMMStripe3 and CMMStripe4 using the input vector 00000100000 as 

these stripes hold the relevant data.  CMMStripe3 will output 000011 and CMMStripe4 will 

output 110000 in Figure 6 (right).  These can be concatenated to form a single vector 

000011110000. For a fully distributed system, each CMM stripe outputs a list of the indices of 

the set bits for the data relevant to that stripe.  

 MI, CFS and GR all require a count of the number of data records where a particular feature 

has a particular value n(Fj=fi) and a count of the number of records where the class has a 

particular label n(C=c). To count the number of records where 1.12 ≤ petal width < 1.58, we 

retrieve the binary thresholded vector as above (000011110000) and count the number of set 

bits giving four records. For the Hadoop approach, we coordinate the retrieval as above, 

concatenate the lists to produce a single overall list of set bits and count the list length. 

 MI, CFS, CS and GR all use (BVfi   BVc) and (BVbi   BVv) for symbolic and continuous features 

respectively. For example, we can find all records where 4.6 ≤ sepal len < 5.1 and the class is A 

by activating rows 0 and 20 of the CMM using the input vector 10000000000000000000100 

stored in the Hadoop input file for this CMM, thresholding  at Willshaw level 2 to retrieve all 

records that match both inputs and retrieving the binary thresholded vector T, 011100000000 

from Figure 6 (left). This takes more coordinating in the Hadoop framework as the data for the 

feature value may not be stored with the data for the class; they may be in different CMM 

stripes. Activate row 0 in CMMStripe1 and CMMStripe2 using input vector 1000000000.  

Activate row 20 in CMMStripe3 and CMMStripe4 using input vector 0000000000100.  The 

coordinating program needs to correlate the sections of the vector for the feature value and 

correlate the sections of the vector for the class to form a single vector.  CMMStripe1 needs to 

be added (summed) with the output integer vector of CMMStripe3 (011100+111100=122200) 

and CMMStripe2 needs to be added (summed) with the output integer vector of CMMStripe4 

(000000+000000=000000).  The summed vector can then be thresholded at 2 giving 011100 

for Stripe1+Stripe3 and 000000 for Stripe2+Stripe4  in Figure 6 (right). These two thresholded 

output vectors are concatenated to produce 011100000000. If the thresholded vectors are 

stored as lists of indices then this is simply a task of finding the common indices between the 

two vectors. 

 MI, CFS, CS and GR all also need a count of the conjunction, that is n(BVfi   BVc) and          

n(BVbi   BVc) for symbolic and continuous features respectively. Hence, to count the number 

of records where 2.04 ≤ petal width < 2.5 and the class is C, we retrieve the binary thresholded 

vector T (000000001011) and count the set bits giving 3 records. We coordinate the retrieval as 

above and, finally, count the number of set bits in the result. 

Hence, rather than calculating these elements multiple times, we can take advantage of the 

commonalities by calculating each common value, binary vector or count only once and propagating 

the result to each feature selector that requires it. Following the common calculations, all necessary 

calculations will have been made for MI and GR. CFS just requires the pairwise feature versus feature 

analyses (BVbi   BVbk).  These are performed in the same way as the feature versus class analyses 

above. CS requires the manipulation of some of the binary vectors to produce the logical OR vectors. 



This requires the coordination of the vectors. To find (BVbi)   (BVc), we combine the list of set bits for 

(BVbi) with the list of set bits for (BVc) and count the resulting list length. By calculating the common 

elements first, the remainder of the calculations can be performed for each feature selector using 

either this CMM and processing the algorithms in series or by generating multiple copies of the CMM 

and processing them in parallel if sufficient processing capacity is available. 

For the Iris data set, there are n(BVbi) = 20 * BVbi calculations (20 row activations) and n(BVc) = 3 * BVc 

calculations.  To calculate (BVbi   BVc) requires n(BVbi) x n(BVc) = 20 x 3 =60 calculations.  Hence, there 

are 83 common calculations (20+3+60) across all four feature selectors. CFS then needs to calculate 

(BVbi   BVbk) which would require 19! calculations if every feature value was compared to every other. 

However, CFS uses greedy forward search so that the number of comparisons is minimised [17] to a 

worst case of (20
2
-20)/2=190. We have already extracted all 20 * BVbi binary vectors so CFS needs 190 

logical ANDs but no CMM accesses. We have saved a minimum of n(BVbi) = 20 CMM accesses to extract 

the 20 binary feature vectors BVbi and a maximum of 190 CMM accesses for worst case forward 

search. Manipulating the binary vectors can be performed at the coordinating node and in parallel as a 

Hadoop batch process. CS requires the logical OR vectors (BVbi   BVc). Again, we already have all 20 

BVbi binary vectors and all 3 BVc binary vectors so there are 20 x 3=60 logical ORs to perform. Thus, we 

have saved a minimum of n(BVbi) + n(BVc) = 23 CMM accesses and potentially 60 CMM accesses if all 

60 OR operations were performed in the CMM. Thus MI requires 83 calculations, GR also requires 83, 

CFS requires 83 plus 190 and CS requires 83 plus 60.  In total there are 83+83+83+190+83+60 

calculations.  We have reduced this to 83+190+60 and the 190+60 additional calculations (not 

common) can use vectors already extracted so there is no need to access the CMM. We have saved      

3 * 83=249 recalls from the CMM by finding common aspects, have removed a minimum of 20+23 

further CMM recalls and have reduced the other calculations to logical operations on stored binary 

vectors. The minimum saving on CMM recalls is given by equation 13.                (   (               (               )))  ((          )        )  
 

 

(13) 

Once all of the binary vectors have been retrieved by the distributed Hadoop system, they need to be 

processed to calculate the feature scores using the various feature selectors. A coordinator program 

organises this and can be used to process in parallel. It takes the binary vectors stored in the files 

output from the Hadoop processing and uses these binary vectors to calculate the feature scores as 

per section 3. There is one feature score calculation process per feature selector (currently four feature 

selectors are described here).  There is scope for subdividing the feature score calculations for each 

feature selector using parallel and distributed processing as appropriate to the location of the binary 

vectors required. 

6 Conclusion 
In this paper we have introduced a distributed processing framework for machine learning using the 

AURA neural network. There are currently four feature selectors available which may be used 

independently or coupled with the AURA k-NN for classification or prediction. All four feature selectors 

can use a single trained CMM.  CMMs lend themselves to distributed processing as they can be striped 

(split) using both row-based and column-based striping. We have identified common aspects of the 

four feature selectors when they are implemented in the AURA framework and indicated how these 

common aspects may be processed as a common block. All remaining aspects of the feature selectors 

can then be implemented in parallel using duplicate copies of the trained CMM as compute resources 

allow. The CMM created for feature selection can be used directly for the AURA k-NN for classification 

or prediction and any unwanted features (those not selected by the feature selection) can simply be 



ignored (masked off). Alternatively, the CMM can be retrained with only the required data if 

processing speed and memory usage at recall time are the primary concern. 

The AURA neural architecture has demonstrated superior training and recall speed compared to 

conventional indexing approaches such as hashing or inverted file lists [25] and an AURA-based 

implementation of the MI feature selector was over 100 times faster than a standard implementation 

[34]. This allows rapid processing of feature selectors on large and high dimensional data sets. The user 

can then evaluate the feature sets chosen by the feature selectors against their own data to determine 

the best feature selector and the best set of features. 

The technique is flexible and easily extended to other feature selection algorithms. We intend to 

introduce a ReliefR and an Odds Ratio feature selector among others. By implementing a range of 

feature selectors in a single framework, we can investigate ensemble feature selection where the 

results from a range of feature selectors are merged to generate a consensus overview of the best set 

of features to use. 

We plan to use the feature selection framework that we have developed in this paper in conjunction 

with the AURA k-NN for traffic state [31][32][37], for traffic state prediction [33], for journey time 

prediction [30] and for condition monitoring [4]. 
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