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Abstract

This thesis explores the use of tensor networks in the study of disordered
quantum-many body systems and the connection between disorder in the Hamilto-
nian and tensor network geometry.

Tensor networks provide a powerful and elegant approach to quantum many-
body simulation. The simplest example is the density matrix renormalisation group
(DMRG), which is based on the variational update of a matrix product state (MPS).
It has proved to be the most accurate approach for the numerical study of strongly
correlated one dimensional systems. We use DMRG to study the one dimensional
disordered Bose-Hubbard model at fillings N/L = 1/2, 1 and 2 and show that the
whole phase diagram for each can be successfully obtained by analysing entangle-
ment properties alone. We find that the average entanglement is insufficient to
accurately locate all of the phases, however using the standard error on the mean
we are able to construct a phase diagram that is consistent with previous studies.

It has recently been shown that there is a connection between the geometry
of tensor networks and the entanglement and correlation properties that it can
encode, which is a generalisation of the so called area law for entanglement entropy.
This suggests that whilst gapped quantum systems can be accurately modeled using
an MPS, a tensor network with a holographic geometry is natural to capture the
logarithmic entanglement scaling and power law decaying correlation functions of
critical systems. We create an algorithm for the disordered Heisenberg Hamiltonian
that self assembles a tensor network based on the disorder in the couplings. The
geometry created is that of a disordered tree tensor network (TTN) that when
averaged has the holographic properties characteristic of critical systems.

We continue the analysis of holographic tensor network geometry by consid-
ering the average length of leaf-to-leaf paths in various tree graphs, which is related
to two-point correlation functions in tensor networks. For regular, complete trees
we analytically calculate the average path length and all statistical moments, and
generalise it for any splitting number. We then turn to the Catalan trees, which is
the set of unique binary trees with n vertices, as it has a similar geometry to the
disordered TTNs. We calculate the average depth of a leaf and show that it is equal
to the average path length. We compare these analytic results with the structures
found in the TTN and randomly constructed trees to show that the renormalisation
involved in the TTN algorithm is crucial in the selection of the tree structure.

xii



Abbreviations

AdS - Anti-de Sitter space

AdS/CFT - Anti-de Sitter/conformal field theory correspondence

AFM - Antiferromagnetic

APBC - Anti-periodic boundary condition

CFT - Conformal field theory

DMRG - Density matrix renormalisation group

FM - Ferromagnetic

KT - Kosterlitz-Thouless

MBL - Many-body localisation

MDH - Ma, Dasgupta and Hu

MERA - Multi-scale entanglement renormalisation ansatz

MPO - Matrix product operator

MPS - Matrix product state

NRG - Numerical renormalisation group

OBC - Open boundary condition

PBC - Periodic boundary condition

PEPS - Projected entangled pair state

QMC - Quantum Monte Carlo

RG - Renormalisation group

SDRG - Strong disorder renormalisation group

SVD - Singular value decomposition

tSDRG - Tree tensor network strong disorder renormalisation group

TTN - Tree tensor network

xiii



Chapter 1

Introduction

At its most basic level a quantum many-body system can be defined by a Hilbert

space and a Hamiltonian which can describe the evolution of the state. The di-

mension of the Hilbert space grows exponentially with the number of particles in

the system. Calculations for systems containing a small handful of particles can be

simple, but the exponential scaling means that exact calculations quickly become

unfeasible. As a simple example take a spin-1/2 system, where each particle can

take one of two states. Because of the tensor product form of the Hilbert space,

the dimension scales as 2n where n is the number of particles [1]. For one mole of

such particles, the dimension and therefore the number of states is ∼ 210
23

. Thus

the number of possible states in just one mole of these simplified particles dwarfs

the total number of particles in the universe [2], which is estimated to be ∼ 1080.

This highlights part of the problem in modelling quantum matter; any attempt to

perform a calculation for a reasonably large number of particles fails spectacularly.

The exponential growth of Hilbert space has led to some scholars questioning not

just the impracticiality of such a large space, but even if such a construction is

physical [3, 4].

As exact calculations for quantum many-body systems are not possible, it is

necessary to use methods that reduce computational complexity whilst still achiev-

ing high accuracy. There have been several numerical algorithms that have enabled

the simulation of materials that would have otherwise been impossible. For large

scale electronic sturctures, like those found in condensed matter physics and quan-

tum chemistry, dynamical mean field theory (DMFT) and density functional theory

(DFT) have been very successful, but are limited to systems without significant en-

tanglement. DMFT maps a many body problem onto a single particle, interacting

with a field representing the average of all other particles [5]. DFT asserts that
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the properties of physical system can be determined from the electron density of

the ground state, which can be determined from an effective non-interacting sys-

tem [6]. Wilson’s numerical renormalisation group (NRG) [7], as will be discussed

in chapter 2, trucates the Hilbert space using the low energy eigenvectors of the

Hamiltonian. It is used primarily on impurity models, and is not at all successful

as a general approach to quantum many-body problems. Quantum Monte Carlo

(QMC) is perhaps the most well known method, this maps a quantum problem in d

spatial dimensions to that of a d+1 dimensional classical partition function [8]. One

of the major issues with QMC is the sign problem, which prevents the method from

being successful for many frustrated and fermionic systems. In these cases the map-

ping to the classical system introduces negative Boltzmann weights that make the

statistical error quickly become larger than the property being calculated [8]. A new

method created in 1992 by White, called the density matrix renormalisation group,

revolutionised the simulation of one dimensional systems. It truncates the Hilbert

space in accordance with the eigenstates corresponding to the largest χ eigenvalues

of the ground state density matrix. Because of the use of the density matrix, rather

than just the eigenvectors of the Hamiltonian as in NRG, DMRG encodes some of

the entanglement of the ground state allowing accurate simulation of many quan-

tum systems. Unlike QMC, DMRG does not suffer from the sign problem and is

considered the most accurate numerical method for one dimensional systems [9].

Disordered quantum many-body systems are of great interest but are partic-

ularly problematic. It is natural to want to study systems with disorder as perfect

clean materials are very rare in nature. Furthermore the introduction of disorder

can completely change the observed phase of the material. The study of disordered

systems became a major part of the study of the electronic properties of condensed

matter with the analysis of localisation by Anderson [10]. For non-interacting elec-

tronic systems in a three dimensional disordered lattice it was found that a critical

value of the on site disorder marked the transition between extended and localised

states. The interplay between interactions and disorder is much less well understood

and many-body localisation is currently a hot topic of research.

In this thesis we will analyse the theory of tensor networks, and apply them

with a focus on disordered systems. In chapter 2 we introduce the basic concepts of

a tensor network in the context of DMRG. We provide all information necessary to

understand the fundamental operations that make up a tensor network algorithm

and use them to construct the matrix product state (MPS), which is the simplest

example of a tensor network. We show how to perform a variational update to the

MPS, which is the core of all modern DMRG algorithms. Using this knowledge
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of MPS DMRG we analyse the disordered Bose-Hubbard model in chapter 3. As

entanglement is at the heart of DMRG and is calculated at every point in the

simulation of the system, we illustrate the efficacy of entanglement as a tool for

deciphering the phase of the ground state wavefunction. The content of this chapter

is based on ref. [11], which is currently under review. In chapter 4 we discuss

more generally the theory of tensor networks, why they work for certain cases and

why they don’t for others and how tensor networks go beyond DMRG to simulate

more complex systems. Chapter 5 creates a tensor network algorithm where the

structure of the network is determined by the disorder in the Hamiltonian. In this

way each disorder realisation has a custom tree tensor network (TTN) and when

disorder averaged we show that the system has holographic properties that govern

the entanglement and correlation scaling. The chapter is based on [12], which was

published in Physical Review B. The final two chapters (6 and 7) analyse how the

geometry of tree tensor networks affects the asymptotic form of the averaged two-

point correlation function. Chapter 6 looks at a complete tree and finds the average

leaf-to-leaf path length when the leaves of the tree are effective lattice points. This

chapter is based on [13], which is currently under review. Chapter 7 extends the

ideas of the previous chapter to sets of full binary trees that are more similar to

those generated by tSDRG in chapter 5. This work is in [14], which is currently

being prepared for submission.
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Chapter 2

Matrix Product States and the

Density Matrix Renormalisation

Group

2.1 White’s Density Matrix Renormalisation Group

The field of tensor networks has its roots in Wilson’s NRG [7] and the DMRG

method devised by White [15]. As mentioned in chapter 1, for an interacting one

dimensional system of L sites, the Hilbert space of the system is the product of the

Hilbert spaces of the sites

HL = H⊗ . . .⊗H. (2.1.1)

If each site can take one of n states, the Hilbert space of the system scales as nL.

This exponential increase means that any computation quickly becomes intractable.

NRG and DMRG are numerical methods that reduce the size of this Hilbert space

to a point that computations are possible, but still retains the necessary information

regarding the low energy eigenstates. As a motivation to the theory and application

of tensor networks we will briefly sketch out these two algorithms.

2.1.1 Numerical Renormalisation Group

The NRG algorithm famously worked well for the Kondo impurity model, which

maps a spherically symmetric Kondo model onto a lattice Hamiltonian with the

impurity as the first site and the conduction electrons as the rest of the lattice [16].

NRG is a purely numerical method and works by tracing out the higher energy

scales of the system but keeping the low energy states. The procedure is as follows
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[16]:

1. Take L sites at the left hand side of the system to form a block, where L is

small enough so that the Hamiltonian HL can be exactly diagonalised.

2. Diagonalise HL and keep only the m eigenvectors corresponding to the lowest

eigenvalues as the higher eigenvectors do not contribute significantly to the

ground state of the system.

3. Form a matrix O of the m eigenvectors

O =


...

...
...

V1 V2 . . . Vm
...

...
...

 (2.1.2)

where V1 is the ground state eigenvector and so on.

4. Use O to change the basis and truncate the size of the Hamiltonian

H̄L = O†HLO (2.1.3)

and all other operators

ĀL = O†ALO (2.1.4)

These will now be matrices of dimension m×m.

5. Add a site onto the block to form HL+1 and repeat the procedure from step 2

until the full length of the chain is reached.

This procedure works well because each successive site is less well coupled to the

impurity and thus the energy scale is lower. Most lattice problems (for example the

Heisenberg model) do not have these properties, and so NRG is not appropriate. It

turns out that the solution to getting a successful procedure for a one dimensional

lattice system lies in the density matrix projection. Instead of using the lowest m

eigenstates to truncate the Hamiltonian matrix at each step, DMRG uses the lowest

m eigenstates of the ground state density matrix to perform the truncation. Using

the density matrix does not necessarily choose the lowest energy eigenstates locally,

but rather the states that are most highly coupled to the ground state [17].

2.1.2 Infinite System DMRG Procedure

The DMRG procedure is usually split into the infinite and finite algorithms. The

infinite algorithm is used to grow a superblock up to a certain size, whereas the
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finite algorithm acts upon the superblock to accurately find the ground state of the

system. The infinite algorithm is [16, 18]:

1. Start with a superblock of size L = 4 that is made up of a left (system) block

of size l = 1; Hl, two single sites and a right (environment) block of size l = 1;

HR
l .

2. Form Hl+1 and HR
l+1 within the superblock.

3. Form the superblock from Hl+1 and HR
l+1.

4. Diagonalise the superblock and find the ground state eigenvector |ψ〉.

5. Create the density matrix

ρii′ =
∑
j

ψ∗ijψi′j . (2.1.5)

6. Diagonalise the density matrix and keep the eigenvectors V corresponding to

the lowest m eigenvalues.

7. Create matrix O that will be used to truncate the operators:

O =


...

...
...

V1 V2 . . . Vm
...

...
...

 (2.1.6)

8. Use O to change the basis and truncate the size of the Hamiltonian:

H̄l+1 = O†Hl+1O (2.1.7)

and all of the operators:

Āl+1 = O†Al+1O (2.1.8)

These will now be matrices of dimension m×m.

9. Create a new superblock of size L+ 2 from H̄l+1, two sites and H̄R
l+1.

10. Repeat from step 3 to grow the size of the superblock by two sites each itera-

tion. The procedure is shown graphically in figure 2.1.
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Superblock2l+2

l+1 l+1

Construct
superblock

Insert two
sites

L R

L R

L R

Diagonalise and 
truncate L and R

Repeat

Figure 2.1: Pictorial representation of the infinite DMRG process. Starting
with the left (system) and right (environment) blocks, each representing l
sites, two sites are added to create a superblock. This is diagonalised and
the ground state eigenvector used to make a density matrix, the eigenvectors
corresponding to the lowest m eigenvalues of which are used to truncate the
Hamiltonians for the new L and R blocks representing l+1 sites. The whole
process is then repeated.

2.1.3 Finite System DMRG Procedure

The finite system DMRG algorithm uses the same basic principles that are used in

the infinite algorithm, however the system is kept at a set size L and the aim is to

calculate the energy of the desired state to a greater accuracy. The finite system

algorithm is usually used after the length of the chain has grown to a desired size

using the infinite algorithm. In the finite case the superblock is again constructed

from a left (system) block, length l, two states and a right (environment) block, size

l′. Now the system and environment blocks are no longer kept the same size so that

the location on the chain that the two sites are inserted moves along the chain. The

algorithm is performed as follows:

1. Perform the infinite algorithm until the chain length is the desired size L

storing the H̄l, H̄
R
l′ and all of the operators Al that are required to construct

the superblock at each step.

2. Now the system size is set to L = l + 2 + l′, begin growing the left block at

the expense of the right block. Start with l = L
2 and l′ = L

2 − 2.

3. Perform steps 3-8 of the infinite algorithm.
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4. Form a superblock from H̄l+1, two sites and H̄l′−1.

5. Proceed by performing steps 3 and 4 until the right hand edge of the system

is reached, where l′ = 1. This is the right sweep.

6. Now grow the right block at the expense of the left block. Perform steps 3

and 4 with the roles of l and l′ reversed until the left hand edge of the system

is reached, where l = 1. This is the left sweep.

7. Again, reverse the roles of l and l′ and perform another left sweep.

8. Repeat, sweeping back and forth across the system until convergence is hit or

a specified number of sweeps is reached.

DMRG proved to be a highly accurate and versatile numerical method with

applications too numerous to list here, but comprehensive review articles provide

many references [9, 19]. It was discovered by Östland and Rommer [20] that DMRG

can be interpreted as an MPS. The MPS allows a greater understanding of the

structure of information in the DMRG algorithm, giving reason for its successes

and failures (see chapter 4). This has lead to further developments such as time

evolution [21, 22, 23], systems in the thermodynamic limit [24] and efficient periodic

boundary conditions (PBCs) [25, 26, 27]. The theory that has been developed in

the context of MPS DMRG opens the door to more complex algorithms acting on

networks of tensors with structures designed to suit the problem at hand. All of

these tensor network algorithms have a lot in common with MPS DMRG, so the

rest of this chapter will be devoted to a pedagogical overview of MPS.

2.2 Introduction to Matrix Product States

Consider a quantum system with basis states |↑〉 and |↓〉. Simple states can be

formed as a product of these [28], for example

|Ψ〉 = |↑〉 ⊗ |↑〉 . (2.2.1)

In general these states can be written as a product of the two sites

|Ψ〉 = (a |↑〉+ b |↓〉)⊗ (c |↑〉+ d |↓〉) . (2.2.2)
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Using summation notation this can be an outer product of two element vectors

|Ψ〉 =
∑
σ1,σ2

Vσ1 |σ1〉 ⊗ Vσ2 |σ2〉

=
∑
σ1,σ2

Cσ1,σ2 |σ1〉 ⊗ |σ2〉 , (2.2.3)

where σi can be ↑ or ↓ and Cσ1,σ2 is a two component tensor with elements

Cσ1,σ2 =

(
ac ad

bc bd

)
. (2.2.4)

Product states such as these have the bases independent of each other and the

expectation values factorise. On the other hand, entangled states such as

|Ψ〉 =
1√
2

(|↑〉 ⊗ |↓〉 − |↓〉 ⊗ |↑〉) (2.2.5)

do not have factorising expectation values. The maximally entangled state (2.2.5)

would require a tensor of the form

σ2 =↓ σ2 =↑
σ1 =↓ 0 −1/

√
2

σ1 =↑ 1/
√

2 0

which cannot be described by eq. (2.2.4). If instead of being described by vectors,

let Vσ1 and Vσ2 be matrices [29], for example

Mσ1,i =
1
4
√

2

(
1 0

0 1

)
, Mi,σ2 =

1
4
√

2

(
0 −1

1 0

)
(2.2.6)

These matrices are then combined using a standard matrix product over the i index,

which gives the entangled state

∑
i

Mσ1,iMi,σ2 =
1√
2

(
0 −1

1 0

)
, (2.2.7)

as desired. The i index introduces entanglement between the two states and can be

thought of as a form of bond.
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Equation (2.2.2) can be generalised to a lattice of L states with open bound-

ary conditions (OBCs). Here, a product state is given by

|Ψ〉 =
L∏
i=1

[ai(↑) |↑〉i + ai(↓) |↓〉i] , (2.2.8)

where there are two coefficients, ai(↑) and ai(↓), for each site [28]. Equation (2.2.3)

is generalised to include an L index tensor Cσ1...σL and the wavefunction becomes

|Ψ〉 =
∑

σ1,...,σL

Cσ1...σL |σ1〉 ⊗ · · · ⊗ |σL〉 . (2.2.9)

As with the two particle case, the L index tensor can be split into a series of local

tensors with connections to their neighbours that allow the inclusion of entangle-

ment. When away from the boundaries each site has two neighbours thus the tensors

at each site have three indices; one for the site basis and one for each neighbour. In

full the wavefunction takes the form

|Ψ〉 =
∑

σ1,...,σL

∑
a1,...,aL−1

Mσ1,a1Mσ2,a1a2 . . .MσL−1,aL−2aL−1MσL,aL−1 |σ1, . . . , σL〉 ,

(2.2.10)

where |σ1 . . . σL〉 is a short hand for |σ1〉⊗· · ·⊗|σL〉. For the remainder of the thesis

the ⊗ will be omitted for simplicity but is implied in the product of basis vectors.

The σi indices label the spins of the basis and are known as the physical indices,

whereas the ai are the bond, virtual or auxiliary indices. To draw a distinction

between the two index types it is convention to have the physical σi as upper indices,

thus giving the standard form of an MPS

|Ψ〉 =
∑

σ1,...,σL

∑
a1,...,aL−1

Mσ1
a1 M

σ2
a1a2 . . .M

σL
aL−2aL−1

MσL
aL−1
|σ1, . . . , σL〉 . (2.2.11)

Taking the hermitian conjugate gives the bra state

〈Ψ| =
∑

σ1,...,σL

∑
a1,...,aL−1

M∗σ1a1 M∗σ2a1a2 . . .M
∗σL−1
aL−2aL−1M

∗σL
aL−1
〈σ1, . . . , σL| . (2.2.12)

The MPS is a valuable tool in the computation of quantum many body states as, by

controlling the size of the matrices one can introduce enough entanglement to model

a local Hamiltonian but keep the Hilbert space small enough such that calculations

are tractable. This is know as setting the bond dimension, χ, and within a DMRG

algorithm is equivalent to m, the number of eigenvectors to keep when diagonalising
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(a) (b) (c)

Figure 2.2: Diagrammatic representations of (a) a vector, (b) a matrix, and
(c) a general tensor. The shape represents the object and the lines or legs
the indices.

the density matrix (see 2.1.2).

2.3 Diagrammatic Notation

One of the most elegant features of the tensor network formalism is the diagrammatic

representation of the mathematics, which makes visualising the algorithms very easy.

A tensor is drawn as a shape (here circles) where each index is represented by a line

or leg. In this manner a vector, which is a one index tensor, is a circle with one line

coming from it. Similarly a matrix is a circle with two legs and a general tensor

with k indices is a circle with k legs. Examples of these are given in fig. 2.2.

Multiplication of tensors is generalised by the notion of tensor contraction.

The simplest example is a vector inner product that takes two vectors to give a

scalar

S =
∑
i

ViV
′
i . (2.3.1)

In the tensor network diagrammatic convention the contraction is drawn by joining

the lines that represent the summed over index, resulting in a object with no legs

as shown in fig. 2.3(a). Multiplication of a vector with a matrix is

V ′j =
∑
i

ViMij , (2.3.2)

drawn in fig. 2.3(b). General contraction is the summation over the repeated index

of any two tensors, for example

Cij...i′j′... =
∑
k

Aij...k...Bi′j′...k..., (2.3.3)

the diagram of which is fig. 2.3(c). The standard form of the MPS (2.2.11) is there-

fore a set of L tensors where each is contracted by the bond indices to its neighbours.
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(a)
=

(b)
=

(c)

=

Figure 2.3: Diagrammatic representations of contractions. (a) Inner prod-
uct of a vector with another vector (eq. 2.3.1). (b) Vector multiplying a
matrix (eq. 2.3.2). (c) General tensor contraction (eq. 2.3.3).

The standard diagram for an MPS is a chain of circles connected horizontally by the

bond indices with the physical indices drawn vertically. The MPS of eq. (2.2.11) is

given in fig. 2.4(a). The bra state MPS (2.2.12) will be drawn in a similar way to

the ket but with the physical indices pointing in the opposite direction as shown in

fig. 2.4(b).

There is no set convention as to whether the physical indices for the wave-

function should point up or down and the literature contains examples of both

(up: [29, 30, 31, 32, 33], down: [2, 34, 35, 36, 37, 38, 39, 40, 41]). Throughout

this document a ket state will have physical indices that point down to be con-

sistent with the conventions of the literature on holographic tensor network states

[12, 34, 42, 43, 44, 45] that will become important in latter parts of the thesis.

2.4 Fundamental Details

Tensor networks require operations that manipulation the tensors, the most funda-

mental of which are reshaping and contraction. It is using these actions that all of

the more complicated tensor network algorithms are built.

2.4.1 Tensor Reshaping

The reshaping of the tensors involves permutation, fusing and splitting of indices.

Permutation is the reordering of the indices of a tensor, generalising the notion of a
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(a)

(b)

Figure 2.4: Diagrammatic representation of an MPS (a) ket given by eq.
(2.2.11) and (b) bra given by eq. (2.2.12). The circles represent the M
tensors and the lines are the tensor indices. The horizontal lines represent
the bond indices, the vertical lines the physical indices.

transpose operation on a matrix. For example Aa1a2a3 can be permuted to Aa2a1a3

as shown by fig. 2.5(a). Permutation and limited reshaping functions for tensors are

common and exist in packages such as MATLAB and NumPy, but general fusion

and splitting functions are not.

Fusion involves combining two or more indices to create a composite index

that spans all combinations of the original indices, the following is a description of

how to create such a function and is shown diagrammatically in fig. 2.5(b). Begin

by labelling the indices of the tensor by the desired final order with the legs that are

to be fused given a positive number, the indices to be left given a negative number.

The indices are then permuted to be in the order of the labels, with the convention

that the diagrams are labelled from 9 o’clock anticlockwise as in [37]. Note that now

the two indices that are to be fused are next to each other. To fuse these indices

it is necessary to calculate the dimension of the resulting composite index, which is

product of the component indices. The next step is to reshape the tensor into the

desired form. This is performed by flattening the tensor into a vector then splitting

it up into indices of the desired dimension (in MATLAB, for example, this is done

by the reshape function) where the final index is now the composite index. The

final step is to permute the reshaped tensor such that the indices are in the desired

order. Here we note that the distinction between indices to be fused and not is no

longer needed so the negative indices are made positive to allow the permutation to

be made in the correct order.

The split function is in essence the inverse of the fusion function; it splits an

index into smaller component indices. Begin this function by defining the index that
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Figure 2.5: Example of (a) permutation of indices, (b) the tensor fusion
function and (c) the tensor split function as described in the text.

will be split and the sizes of the desired component indices after splitting. Create a

list of the index dimensions for the tensor and insert the split dimensions in place

of the dimension of the index to be split then reshape the tensor according to this

list of index sizes. This is diagrammatically shown in fig. 2.5(c). It is important

that the fuse and split have the same indexing convention such that splitting after a

fusion recovers the same tensor. Note that MATLAB like Fortran is column-major,

whereas NumPy like C and Mathematica is row-major.

2.4.2 Tensor Contraction

The most commonly performed action in a tensor network algorithm is the tensor

contraction, so it is vital that it is done fast. As mentioned in section 2.3, the concept

of a tensor contraction is a generalisation of a matrix multiplication to objects of

arbitrary dimension. Matrix multiplication algorithms are very common and there

exist very highly optimised functions in linear algebra packages such as BLAS and

LAPACK, which form the basis of the tensor contraction function. To use the matrix

multiplication functions, the tensors must first be reshaped into matrices, multiplied

and then converted back into tensors.

This description of a tensor contraction follows the example in [37]. The

fact that there can be more than two indices to the tensor means that there are
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Figure 2.6: Diagrammatic form of the tensor contraction function as de-
scribed in the text. Note that the minus signs are dropped after the multi-
plication.

often many different ways that two tensors can be contracted depending on which

index is being summed over. Therefore in a similar manner to the fusion function,

the contraction function requires instruction as to which indices to contract and the

desired order of the indices of the resulting tensor, where the indices to be contracted

are positive and those to be left are negative. Using the numbering, permute the

tensors such that the indices to be contracted are the final indices on the left hand

tensor, A, and the first indices on the right hand tensor, B. Fuse the indices that

are not contracted on each tensor leaving two matrices, each with one index to be

contracted. These matrices can then be efficiently multiplied resulting in a matrix,

C, with one index being a composite of the un-contracted indices of A and the other

the un-contracted indices of B. These two legs are then split and permuted into

the desired form. Similar to the fusion example, after multiplication there are no

indices to be contracted over therefore the negativity of the remaining indices can

be dropped so that the permutation achieves the desired result. Figure 2.6 shows a

diagrammatic example of the mechanics of the tensor contraction.

2.4.3 Time Estimates

The order in which a tensor network is contracted can have a great effect on the

execution time of an algorithm, therefore it is useful to have a means of estimating

this cost so that the optimal order of contraction can be found. The diagrammatic

notation provides a simple method for this. Using big O notation, the order of an

operation is given by the product of the dimensions of the indices involved. For
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(a)

(b)

Figure 2.7: Contraction of (a) two tensors with computational costing
O(D6) and (b) Contraction of three tensors, showing that the order of
contraction effects the cost of an operation.

example contraction of a rank four and a rank three tensor as shown in fig. 2.7(a)

where each index has D elements is of order D6 or O(D6).

An simple example of where the order of contraction effects the overall cost

of an operation is shown in fig. 2.7(b). This is the contraction of two MPS tensors

with a left block, which is part of calculating an expectation value, the details of

which are in section 2.5.4. The top order is O(χ3d), whereas the bottom is O(χ4d).

With an MPS the bond dimension χ can be ∼ 100 - 1000 so the second order takes

about a thousand times longer, clearly showing the advantage of choosing an optimal

order of contraction.

2.4.4 Singular Value Decomposition

Another commonly used tool in the manipulation of tensor network states is the

singular value decomposition (SVD) [30], which states that a rectangular matrix A

of dimension NA ×NB can always be written in the form

A = USV †. (2.4.1)
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U is an NA ×min(NA, NB) matrix with orthonormal columns (U †U = 11), which is

unitary if NA = NB (UU † = U †U = 11). S is diagonal with non-negative entries,

which are the singular values and are usually given in order of decreasing size. V †

is a min(NA, NB)×NB matrix with orthogonal rows ((V †)(V †)† = 11), which is also

unitary if NA = NB.

For a system of more than two sites, with the bases split into two blocks A

and B with dimensions NA and NB respectively, a state of the system |Ψ〉 can be

written as [30]

|Ψ〉 =
∑
i,j

Ψij |σi〉A |σj〉B , (2.4.2)

where |σi〉A and |σj〉B are orthonormal bases of A and B respectively, and the

coefficients are elements of matrix Ψij . Performing an SVD of Ψij in eq. (2.4.2)

gives

|Ψ〉 =
∑
i,j

Ψij |σi〉A |σj〉B

=
∑
i,j,a

UiaSaaV
†
aj |σi〉A |σj〉B , (2.4.3)

This is also known as a Schmidt decomposition.

The amount of entanglement between blocks A and B is encoded within the

singular values, which is quantified by the von Neumann or entanglement entropy

SA|B = −
∑
a=1

s2alog2s
2
a, (2.4.4)

where sa are the singular values from diagonal matrix S. When the wavefunction is

normalised the set of singular values square and sum to 1. If only one of the sa is

non-zero, then the system is in a product state with SA|B = 0. The other extreme

is having all of the singular values equal, i.e. sa = 1/
√
N where N is the dimension

of matrix S. This maximally entangled state therefore has entropy SA|B = log2N .

2.5 Matrix Product States

2.5.1 The Canonical Form

It is possible to take any state with tensor Cσ1...σL and convert it into an MPS [30].

The tensor is first reshaped into a matrix C
′[1]
σ1,(σ2...σL)

, where the second index is a

composite of the spin indices for sites 2 - L. The matrix C ′[1] can then be split into
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two by performing an SVD

Cσ1...σL = C
′[1]
σ1,(σ2...σL)

=
∑
a1

U [1]
σ1,a1S

[1]
a1,a1V

[1]†
a1,(σ2...σL)

=
∑
a1

Aσ1a1C
σ2...σL
a1

=
∑
a1

Aσ1a1C
′[2]
(a1σ2),(σ3...σL)

, (2.5.1)

where U
[1]
σ1,a1 has been reshaped into Aσ1a1 . S[1] has been contracted with V [1]† and

been reshaped to obtain a tensor that now represents all physical indices apart from

σ1. This can then be reshaped into a matrix C
′[2]
(a1σ2),(σ3...σL)

and split by SVD

Cσ1...σL =
∑
a1

Aσ1a1

∑
a2

U
[2]
(a1σ2),a2

S[2]
a2,a2V

[2]†
a2,(σ3...σL)

=
∑
a1,a2

Aσ1a1A
σ2
a1a2C

σ3...σL
a2 , (2.5.2)

where again U
[2]
(a1σ2),a2

has been reshaped into Aσ2a1a2 and Cσ3...σLa2 has been made

from the contraction and reshaping of S[2] and U [2]. This process can be repeated

for all L sites of the chain giving

Cσ1...σL =
∑

a1,...,aL−1

Aσ1a1A
σ2
a1a2 . . . A

σL−1
aL−2aL−1A

σL
aL−1

. (2.5.3)

Inserting into eq. (2.2.9) gives

|Ψ〉 =
∑

σ1,...,σL

∑
a1,...,aL−1

Aσ1a1A
σ2
a1a2 . . . A

σL−1
aL−2aL−1A

σL
aL−1
|σ1, . . . , σL〉 , (2.5.4)

which is the explicit left-canonical form of an MPS. The diagrammatic derivation

is given by fig. 2.8. The fact that the A matrices were obtained from the U of an

SVD means that it is left-normalised, i.e. it satisfies∑
(ai−1,σi)

U †
(ai−1σi),a′i

U(ai−1σi),ai = δa′i,ai ,∑
(ai−1,σi)

U∗a′i,(ai−1σi)
U(ai−1σi),ai = δa′i,ai ,∑

σi

∑
ai−1

A∗σi
ai−1a′i

Aσiai−1ai = δa′i,ai , (2.5.5)
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Reshape

SVD

S.V
Reshape

Reshape

SVD

S.V
Reshape

†

†

Repeat

Figure 2.8: Diagrammatic representation of the derivation of the left canonical form
of an MPS. The first line shows eq. (2.2.9); the initial general state of L sites. This is
reshaped into a matrix to which an SVD is performed as in eq. (2.5.1). The diamond
tensor is the matrix of singular values D. U is reshaped to A and D is contracted
with V † and reshaped to give the general tensor of L− 1 states. This is repeated to
give the left normalised MPS as desired.



(a)

= 

(b)

= 

Figure 2.9: Diagrammatic representation of (a) left-normalisation given by
eq. (2.5.5) and (b) right-normalisation given by eq. (2.5.9).

or diagrammatically in fig. 2.9(a).

Equation (2.5.4) is obtained by starting at site 1 and working towards site L.

The start point of the derivation does not alter the state, thus an equivalent MPS

can be derived starting from L and working towards 1,

Cσ1...σL = C
′[L]
(σ1...σL−1),σL

=
∑
aL−1

U
[L]
(σ1...σL−1),aL−1

S[L]
aL−1,aL−1

V [L]†
aL−1,σL

=
∑
aL−1

C
′[L−1]
(σ1...σL−2),(σL−1aL−1)

BσL
aL−1

=
∑

aL−2,aL−1

C
′[L−2]
(σ1...σL−3),(σL−2aL−2)

B
σL−1
aL−2aL−1B

σL
aL−1

= . . . ,

=
∑

a1,...,aL−1

Bσ1
a1B

σ2
a1a2 . . . B

σL−1
aL−2aL−1B

σL
aL−1

, (2.5.6)

giving

|Ψ〉 =
∑

σ1,...,σL

∑
a1,...,aL−1

Bσ1
a1B

σ2
a1,a2 . . . B

σL−1
aL−2,aL−1B

σL
aL−1
|σ1, . . . , σL〉 . (2.5.7)

This is the right-canonical form of an MPS. TheB matrices are reshaped V † matrices

which satisfy

V †V = 11

⇒ (V †)(V †)† = 11, (2.5.8)

hence the B matrices are right-normalised∑
σi

∑
ai

Bσi
ai−1aiB

∗σi
a′i−1ai

= δa′i−1,ai−1
. (2.5.9)

20



Figure 2.10: Diagrammatic representation of an MPS with mixed normali-
sation.

The diagrammatic form is given by fig. 2.9(b).

By starting the normalisation process as both ends it is possible to have a

mixed canonical state, where the left side is left normalised and the right side is right

normalised. At the point where the two normalisations meet there will be a leftover

matrix of singular values as shown in fig. 2.10. This matrix can be contracted with

either neighbouring tensor to make a tensor that does not have either right or left

normalisation. These states will prove useful in calculating expectation values in the

next section. These normalisations do not have any effect on expectation values; as

such they are different gauges.

2.5.2 Overlaps

Orthonormality of the basis vectors and normalisation of the wavefunctions implies

that we expect 〈Ψ|Ψ〉 = 1, which is easy to show using the right normalisation of

the A tensors [30]

〈Ψ|Ψ〉 =
∑

σ1,...,σL

∑
a1,...,aL−1

a′1,...,a
′
L−1

A∗σ1
a′1
A∗σ2
a′1a
′
2
. . . A∗σL

a′L−1

×Aσ1a1A
σ2
a1a2 . . . A

σL
aL−1
〈σ1, . . . , σL|σ1, . . . , σL〉

=
∑

σ2,...,σL

∑
a1,...,aL−1

a′1,...,a
′
L−1

[∑
σ1

A∗σ1
a′1
Aσ1a1

]
A∗σ2
a′1a
′
2
. . . A∗σL

a′L−1
Aσ2a1a2 . . . A

σL
aL−1

=
∑

σ2,...,σL

∑
a1,...,aL−1

a′1,...,a
′
L−1

δa′1a1A
∗σ2
a′1a
′
2
. . . A∗σL

a′L−1
Aσ2a1a2 . . . A

σL
aL−1

, (2.5.10)
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= =...

Figure 2.11: Diagrammatic derivation of the normalisation of a bra-ket as
in eq. (2.5.11).

where we have used the conditions on A in eq. (2.5.5). Repeating until the end of

the chain yields the result

〈Ψ|Ψ〉 =
∑

σ3,...,σL

∑
a2,...,aL−1

a′2,...,a
′
L−1

[∑
σ2

∑
a1

A∗σ2
a1a′2

Aσ2a1a2

]
A∗σ3
a′2a
′
3
. . . A∗σL

a′L−1
Aσ3a2a3 . . . A

σL
aL−1

=
∑

σ3,...,σL

∑
a2,...,aL−1

a′2,...,a
′
L−1

δa′2a2A
∗σ3
a′2a
′
3
. . . A∗σL

a′L−1
Aσ3a2a3 . . . A

σL
aL−1

= . . . ,

=
∑
σL

∑
aL−1

A∗σLaL−1
AσLaL−1

= 1. (2.5.11)
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Figure 2.12: Construction of the left block L in derivation (2.5.12) tensor
by tensor.

This derivation can be performed very neatly pictorially as in fig. 2.11. A similar

derivation gives the same result for right-normalised B matrices. The overlap of

two wavefunctions (〈Φ|Ψ〉) cannot make use of this convenient normalisation, so it

is necessary to contract all of the terms. If each wavefunction is represented by an

MPS with a bond dimension χ this can still be done efficiently

〈Φ|Ψ〉 =
∑

σ1,...,σL

∑
a1,...,aL−1

a′1,...,a
′
L−1

M ′∗σ1
a′1

M ′∗σ2
a′1a
′
2
. . .M ′∗σL

a′L−1

×Mσ1
a1 M

σ2
a1a2 . . .M

σL
aL−1
〈σ1, . . . , σL|σ1, . . . , σL〉

=
∑

σ2,...,σL

∑
a1,...,aL−1

a′1,...,a
′
L−1

L
[1]
a1a′1

M ′∗σ2
a′1a
′
2
. . .M ′∗σL

a′L−1
Mσ2
a1a2 . . .M

σL
aL−1

= . . .

=
∑

σi,...,σL

∑
ai−1,...,aL−1

a′i−1...,a
′
L−1

L
[L−1]
ai−1a′i−1

M ′∗σi
a′i−1a

′
i
. . .M ′∗σL

a′L−1
Mσi
ai−1ai . . .M

σL
aL−1

= . . . , (2.5.12)

where the M are the MPS tensors for |Ψ〉 and M ′∗ are the tensors for 〈Φ|. The

calculation is performed one tensor at a time form left to right, grouping the con-

tracted tensors into a block L. Figure 2.12 shows the contraction of one site into the

block, which is performed in O(χ3d) where d is the basis dimension, or the number

of elements in σi. Hence the whole overlap is calculated in O(Lχ3d).
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(a)

(b)

Figure 2.13: (a) MPS density operator ρ̂ of eq. (2.5.14) and (b) reduced
density operator ρ̂A of eq. (2.5.16), where sites l+ 1 to L have been traced
over.

2.5.3 The Density Operator

The density operator for a wavefunction |Ψ〉 is defined as

ρ̂ = |Ψ〉 〈Ψ| . (2.5.13)

For an MPS this takes the form [30]

ρ̂ =
∑

σ1,...,σL
σ′1,...,σ

′
L

∑
a1,...,aL
a′1,...,a

′
L

Mσ1
a1 . . .M

σL
aL−1

M
∗σ′1
a′1

. . .M
∗σ′L
a′L−1
|σ1, . . . , σL〉 〈σ′1, . . . , σ′L| , (2.5.14)

or diagrammatically as in fig. 2.13(a). Like the singular values of an SVD, the

density operator contains the entanglement information of the state. Reduced density

operators are calculated by tracing over the degrees of freedom of the system. Most

relevant here are where spatial regions of the system are traced over, for example

let the left l sites of the chain be region A and the remaining sites be region B. The
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reduced density matrices are then

ρ̂A = TrB |Ψ〉 〈Ψ| , ρ̂B = TrA |Ψ〉 〈Ψ| . (2.5.15)

ρ̂A can be expressed in MPS form as

ρ̂A =
∑

σ1,...,σL
σ′1,...,σ

′
l

∑
a1,...,aL
a′1,...,a

′
L

Mσ1
a1 . . .M

σl
al−1al

M
σl+1
alal+1 . . .M

σL
aL−1

(2.5.16)

×M∗σ
′
1

a′1
. . .M

∗σ′l
a′l−1a

′
l
M
∗σl+1

a′la
′
l+1

. . .M∗σL
a′L−1
|σ1, . . . , σl〉 〈σ′1, . . . , σ′l| ,

which is shown in fig. 2.13(b). The contracted tensors of the B block form the

reduced density matrix ρA

ρA =
∑

σl+1,...,σL

∑
al+1,...,aL−1

M
σl+1
alal+1 . . .M

σL
aL−1

M
∗σl+1

a′la
′
l+1

. . .M∗σL
a′L−1

. (2.5.17)

The reduced density matrix for region B (ρB) can be made using the same argument

but it is the left hand sites that are contracted.

Like the SVD in eq. (2.4.4), the reduced density matrices can be used to

calculate the von Neumann entropy

SA|B = −TrρAlog2ρA = −TrρBlog2ρB. (2.5.18)

The entanglement entropy is the same whether calculated using ρA or ρB as it is a

measure of how entangled block A is to B. It is worth noting that to take the log

of a matrix it is necessary to diagonalise it and can therefore be computationally

expensive. When the MPS is in a mixed state with the left region left normalised

and the right region right normalised the calculation of entanglement entropy is

greatly simplified, ρA of eq. (2.5.17) becomes

ρA =
∑

σl+1,...,σL

∑
al+1,...,aL−1

SalalB
σl+1
alal+1 . . . B

σL
aL−1

Sa′la
′
l
B
∗σl+1

a′la
′
l+1

. . . B∗σL
a′L−1

=
∑
al

SalalS
∗
a′lal

= SS†. (2.5.19)

Similarly ρB = S†S. As S is real and diagonal, ρA = ρB = S2. Thus eq. (2.5.18)

becomes equal to (2.4.4) with the eigenvalues of the reduced density matrix equal

to the squares of the singular values (λa = s2a).
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Figure 2.14: Expectation value for a single site operator.

2.5.4 Expectation Values

The expectation value of a local operator O[i] can be calculated in a highly efficient

manner due to the normalisation of the MPS, where the operator is defined as

O[i] =
∑
σi,σ′i

Oσi,σ
′
i |σi〉 〈σ′i| , (2.5.20)

and implicitly acts with an identity on the rest of the sites. An example of such an

operator is szi , giving the expectation value for the z-component of the spin for site

i. If the MPS bra and ket are gauged such that all sites to the left of the operator

are left normalised and all to the right are right normalised, the calculation of the

expectation value is almost trivial, i.e.

〈Ψ|O[i]|Ψ〉 =
∑

σ1,...,σL

∑
a1,...,aL−1

a′1,...,a
′
L−1

A∗σ1
a′1

. . . A
∗σi−1

a′i−2a
′
i−1
M
∗σ′i
a′i−1a

′
i
B
∗σi+1

a′ia
′
i+1

. . . B∗σL
a′L−1

×Oσiσ′iAσ1a1 . . . A
σi−1
ai−2ai−1M

σi
ai−1aiB

σi+1
aiai+1 . . . B

σL
aL−1

× 〈σ1 . . . σi−1|σ1 . . . σi−1〉 〈σ′i|σ′i〉 〈σi|σi〉 〈σi+1 . . . σL|σi+1 . . . σL〉

=
∑
σiσ′i

∑
ai−1ai

M∗σ
′

ai−1aiO
σiσ
′
iMσi

ai−1ai , (2.5.21)

where the normalisation of the MPS was used to set the sites to the left and right of

the operator equal to the identity. The diagrammatic representation is given in fig.

2.14. In a similar way to fig. 2.12 it can be shown that (2.5.21) can be performed

in O(χ2d).

The expectation value of operators is not limited to one site. Local operators

can be contracted onto as many sites as desired to create such expectations as two-
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(a)

(b)

Figure 2.15: Expectation value for (a) a single site operator acting on all
sites and (b) a general operator acting on all sites.

point correlation functions or the total sz taking the form

〈Ψ| O[1] . . .O[L] |Ψ〉 =
∑

σ1,...σL
σ′1,...,σ

′
L

∑
a1,...,aL−1

a′1,...,a
′
L−1

M
∗σ′1
a′1

. . .M
∗σ′L
a′L−1

Oσ1σ
′
1 . . . OσLσ

′
LMσ1 . . .Mσ′L ,

(2.5.22)

or diagrammatically as shown by fig. 2.15(a). Gauging the MPS to a mixed canonical

form will provide a simplification to the contraction if there are not operators acting

on the edge sites. In eq. (2.5.22) there is no such simplification as all sites are acted

on by operators, so is calculated in O(Lχ3d). The most general form of expectation

value is where the operator is not local and represented by a 2L index tensor,

〈Ψ| O[1...L] |Ψ〉 =
∑

σ1,...σL
σ′1,...,σ

′
L

∑
a1,...,aL−1

a′1,...,a
′
L−1

M
∗σ′1
a′1

. . .M
∗σ′L
a′L−1

Oσ1σ
′
1...σLσ

′
LMσ1 . . .Mσ′L , (2.5.23)

given by fig. 2.15(b). An example of an operator that takes this form is the Hamil-

tonian. Unlike the local operators, contracting full tensor operators means having

the operator for all sites stored in memory, thus the memory and time requirement

grows exponentially in system size as O(dL).
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2.6 Matrix Product Operators

The computational cost of storage and manipulation of general tensor operators

scales exponentially with system size as discussed in the previous section. The

idea of a matrix product operator (MPO) [30, 46, 47] is to use the ideas of MPSs

to transform the tensor operators into a form that can potentially be contracted

efficiently. A general operator can be written as

O =
∑

σ1,...σL
σ′1,...,σ

′
L

Oσ1σ
′
1...σLσ

′
L |σ1 . . . σL〉 〈σ′1 . . . σ′L| . (2.6.1)

This can be decomposed using SVDs in the same way as the MPS derivation for

(2.5.4). Proceeding as before with O′ being the matrix resulting from a reshaping

of tensor O, we have

Oσ1σ
′
1...σLσ

′
L = O′σ1σ′1,(σ2σ′2...σLσ′L)

=
∑
b1

U
[1]
σ1σ′1,b1

S
[1]
b1,b1

V
[1]†
b1,(σ2σ′2...σLσ

′
L)

=
∑
b1

W
σ1σ′1
b1

O′(σ2σ′2,b1),(σ3σ′3...σLσ′L)

=
∑
b1,b2

W
σ1σ′1
b1

W
σ2σ′2
b1b2

O′(σ3σ′3,b2),(σ4σ′4...σLσ′L)

=
∑

b1,...,bL−1

W
σ1σ′1
b1

W
σ2σ′2
b1b2

. . .W
σL−1σ

′
L−1

bL−2bL−1
W

σLσ
′
L

bL−1

(2.6.2)

The standard form for an MPO is therefore

O =
∑

σ1,...σL
σ′1,...,σ

′
L

∑
b1,...,bL−1

W
σ1σ′1
b1

W
σ2σ′2
b1b2

. . .W
σL−1σ

′
L−1

bL−2bL−1
W

σLσ
′
L

bL−1
|σ1 . . . σL〉 〈σ′1 . . . σ′L| .

(2.6.3)

As usual this derivation can be performed pictorially as in fig. 2.16.

The expectation value 〈Ψ|O|Ψ〉 is found by contracting the MPO with an

MPS bra and ket

〈Ψ|O|Ψ〉 =
∑

σ1,...,σL
σ′1,...,σ

′
L

∑
a1,...,aL
a′1,...,a

′
L

∑
b1,...,bL

M
∗σ′1
a′1

W
σ1σ′1
b1

Mσ1
a1 M

∗σ′2
a′1a
′
2
W

σ2σ′2
b1b2

Mσ2
a1a2 × . . .

· · · ×M∗σ
′
L−1

a′L−2a
′
L−1

W
σL−1σ

′
L−1

bL−2bL−1
M

σL−1
aL−2aL−1M

∗σ′L
a′L−1

W
σLσ

′
L

bL−1
MσL
aL−1

. (2.6.4)

Equation (2.6.4) is a clear example of the power of diagrammatic MPS. With all of
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Figure 2.16: Diagrammatic derivation of the standard form of the MPO of eq.
(2.6.3).



Figure 2.17: Diagrammatic form of the expectation value as given by eq.
(2.6.4). As usual the circles are MPS tensors and the squares MPO tensors.

the indices explicitly written the expression is rather opaque yet the diagram in fig.

2.17 is easy to understand. Many operators have an MPO representation that has

a constant MPO bond dimension DW , that is the indices bi have a constant num-

ber of elements. Most noticeably many common Hamiltonians have this property,

for example the Heisenberg and Hubbard models, meaning that calculating energy

expectation values becomes efficient taking O(Lχ3DWd).

2.6.1 Explicit form of Matrix Product Operators

Many of the most common lattice Hamiltonians can be written as an MPO with

a constant bond dimension DW , so it is useful to understand how these explicit

MPOs are created and manipulated. For more complicated MPOs it is helpful to

use graphical representations. Throughout this section matrix product diagrams will

be used but so-called finite weight automata are also common [29]. Matrix product

diagrams consist of two columns of points representing the first and second indices of

a matrix, then a labelled arrow connecting a point of the first column to one on the

second column is the element in the matrix for those indices. Matrix multiplication

is then simply two of these placed end on end and the matrix elements are the sum

of all the paths that connect the appropriate indices (see fig. 2.18 for an example).

The most simple one dimensional nearest-neighbour Hamiltonian with OBCs

takes the form

H =
L−1∑
i=1

AiAi+1. (2.6.5)
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When written explicitly in terms of tensors this is [36]

Hσ1σ′1...σLσ
′
L = A

σ1σ′1
1 ⊗Aσ2σ

′
2

2 ⊗ 11σ3σ
′
3 ⊗ · · · ⊗ 11σiσ

′
i ⊗ · · · ⊗ 11σLσ

′
L

+ 11σ1σ
′
1 ⊗Aσ2σ

′
2

2 ⊗Aσ3σ
′
3

3 ⊗ · · · ⊗ 11σiσ
′
i ⊗ · · · ⊗ 11σLσ

′
L + . . .

· · ·+ 11σ1σ
′
1 ⊗ · · · ⊗Aσiσ

′
i

i ⊗Aσi+1σ
′
i+1

i+1 ⊗ · · · ⊗ 11σLσ
′
L + . . .

· · ·+ 11σ1σ
′
1 ⊗ · · · ⊗ 11σiσ

′
i ⊗ · · · ⊗AσL−1σ

′
L−1

L−1 ⊗AσLσ
′
L

L , (2.6.6)

which can be written as an MPO with tensors

W
[1]σ1σ′i
1b1

=
(

11σ1σ
′
1 A

σ1σ′1
1 0

)
, (2.6.7)

W
[i]σiσ

′
i

bi−1bi
=

11σiσ
′
i A

σiσ
′
i

i 0

0 0 A
σiσ
′
i

i

0 0 11σiσ
′
i

 , (2.6.8)

W
[L]σLσ

′
L

bL−11
=

 0

A
σLσ

′
L

L

11σLσ
′
L

 . (2.6.9)

The matrix product diagrammatic form of eq. (2.6.8) is shown in fig. 2.18(b). The

first and last sites are special cases, they are the first row and last column of the gen-

eral case, respectively. These have the diagrammatic form shown in fig. 2.18(a) and

2.18(c), respectively. The product of multiple matrices is represented by concate-

nating multiple of these diagrams as shown in fig. 2.18(d). The resulting operator is

the sum of the possible paths across the diagram where the binary operator between

the Ai is a tensor product. This gives the explicit form of eq. 2.6.6 as desired.

On-site terms are simple to include in the MPO and have a clear representa-

tion in the diagram. They take the top right element of the MPO and connect the

top to the bottom of the diagram directly on that site. An example of a Hamiltonian

with on-site and nearest neighbour terms is

H =
L−1∑
i=1

AiAi+1 +
L∑
i=1

Bi, (2.6.10)
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Figure 2.18: Matrix product diagrams for nearest neighbour Hamiltonian
showing (a) bulk terms of eq. (2.6.8), (b) the left hand boundary site as
given by eq. 2.6.7, (c) the right hand boundary site, given by eq. 2.6.9 and
(d) four sites contracted. The circles represent the indices of the matrix,
the left hand column gives the bi−1 index of Wbi−1,bi , the right hand column
gives the bi index. The connecting paths give the value at that site in the
matrix. The greyed out arrows in (d) denote elements that are present in
the matrix for a site but are not used by any full path.

where Bi are the on site terms. This can be written as the following MPO,

W
[1]
1,b1

=
(

11 A1 B1

)
, (2.6.11)

W
[i]
bi−1,bi

=

11 Ai Bi

0 0 Ai

0 0 11

 , (2.6.12)

W
[L]
bL−1,1

=

BLAL
11

 , (2.6.13)

where for clarity the σi indices have been omitted. The bulk terms have the dia-

grammatic form as shown in fig. 2.19.
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Figure 2.19: Matrix product diagram of a single site of an MPO Hamiltonian
with nearest neighbour interactions A and on-site term B.

It is possible to use matrix product operators to produce representations of

more elaborate operators with more than simple nearest neighbour interactions [36].

A Hamiltonian with next-to-nearest neighbour interactions would take the form

H =
L−2∑
i=1

AiAi+2, (2.6.14)

which has the MPO

W
[1]
1,b1

=
(

11 A1 0 0
)
, (2.6.15)

W
[i]
bi−1,bi

=


11 Ai 0 0

0 0 11 0

0 0 0 Ai

0 0 0 11

 , (2.6.16)

W
[L]
bL−1,1

=


0

0

AL

11

 . (2.6.17)

The matrix product diagram of a five site system is given in fig. 2.20 and shows

clearly how the next-to-nearest neighbour terms in the MPO arise. This form can

be generalised to interactions of any range by increasing the size of the virtual index

further and including more identities in the middle. Therefore the size of the virtual

indices increases with the range of the interaction.

The final example is an exponentially decaying Hamiltonian. The MPO

representation is interesting because it is very compact, containing terms of all
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Figure 2.20: Matrix product diagram of a five site system with the next-to-
nearest neighbour Hamiltonian MPO of eqs. (2.6.15, 2.6.16, 2.6.17).

orders without a growing MPO bond dimension. Such a Hamiltonian takes the

form

H =

L−1∑
i=1

L−i∑
q=1

βqAiAi+q, (2.6.18)

where β is a constant less than one for a decay and q gives the range of the interac-

tion. The MPO for this Hamiltonian is [36]

W
[1]
1,b1

=
(

11 A1 0
)
, (2.6.19)

W
[i]
bi−1,bi

=

11 Ai 0

0 β11 βAi

0 0 11

 , (2.6.20)

W
[L]
bL−1,1

=

 0

βAL

11

 . (2.6.21)

From fig. 2.21 it is clear that element (2, 2) of the MPO gives the exponential decay.

This horizontal path allows interactions of arbitrary distance but contributes an

extra factor of β for each increase in q, hence giving the desired factor of βq.

The operators themselves that take the place of A and B in the discussion

above depend on the model under consideration. Section 2.7 will concentrate on the
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Figure 2.21: Matrix product diagram of a five site system with the expo-
nentially decaying Hamiltonian MPO of eqs. (2.6.19, 2.6.20, 2.6.21).

spin-1/2 Heisenberg model with an external magnetic field h

HHeis = J
L−1∑
i=1

~si · ~si+1 − h
L∑
i=1

szi , (2.6.22)

where ~s = (sx, sy, sz). This is a quantum spin model and as such the operators will

be the Pauli spin operators

sx =
1

2

(
0 1

1 0

)
, sy =

1

2

(
0 −i
i 0

)
, sz =

1

2

(
1 0

0 −1

)
. (2.6.23)

It is often convenient to create raising and lowering operators, which will be used in

the following sections

s+ = sx + isy =

(
0 1

0 0

)
, (2.6.24)

s− = sx − isy =

(
0 0

1 0

)
. (2.6.25)

The spin-1/2 Hamiltonian has physical or spin indices that take two values. The
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explicit form of the W tensors is [48]

W
σ1,σ′1
1,b1

=
(

[11]σ1,σ
′
1 J

2 [s+]σ1,σ
′
1 J

2 [s−]σ1,σ
′
1 J [sz]σ1,σ

′
1 −h[sz]σ1,σ

′
1

)
, (2.6.26)

W
σi,σ

′
i

bi−1,bi
=


[11]σi,σ

′
i J

2 [s+]σi,σ
′
i J

2 [s−]σi,σ
′
i J [sz]σi,σ

′
i −h[sz]σi,σ

′
i

0 0 0 0 [s−]σi,σ
′
i

0 0 0 0 [s+]σi,σ
′
i

0 0 0 0 [sz]σi,σ
′
i

0 0 0 0 [11]σi,σ
′
i

 , (2.6.27)

W
σL,σ

′
L

bL−1,1
=


−h[sz]σL,σ

′
L

[s−]σL,σ
′
L

[s+]σL,σ
′
L

[sz]σL,σ
′
L

[11]σL,σ
′
L

 , (2.6.28)

where “0” is understood as a zero matrix with indices σi and σ′i. The matrix product

diagrams for these operators are in fig. 2.22. Multiplying the matrices recovers the

familiar Heisenberg Hamiltonian

HHeis = J
L−1∑
i=1

[
szi s

z
i+1 +

1

2

(
s+i s

−
i−1 + s−i s

+
i−1
)]
− h

L∑
i=1

szi . (2.6.29)

Many Hamiltonians are based on particle creation, c†, and annihilation, c,

operators that act on each site. A common example is the Hubbard model [49]

HHub = −t
L−1∑
i=1

∑
σ=↑,↓

(
c†i,σci+1,σ + c†i+1,σci,σ

)
+ U

L∑
i=1

ni,↑ni,↓, (2.6.30)

where c†i,σ and ci,σ create and annihilate particles of spin up or down at site i. The

number operators ni,↑ = c†i,↑ci,↑ and ni,↓ = c†i,↓ci,↓ count the number of spin up and

down particles at each site. Fermions obey anti-commutation relations{
c†i,σ, cj,τ

}
= δi,jδσ,τ ,{

c†i,σ, c
†
j,τ

}
= {ci,σ, cj,τ} = 0, (2.6.31)
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Figure 2.22: Matrix product diagram of the MPO for the full Heisenberg
Hamiltonian for (a) site 1, (b) site i and (c) site L.

with matrix operators for the fermionic Hubbard model taking the form

ci,↑ =


0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 , ci,↓ =


0 0 1 0

0 0 0 −1

0 0 0 0

0 0 0 0

 , ni,↑ni,↓ =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

 .

(2.6.32)

To enforce the anti-commutation on multiple sites it is necessary to introduce a

matrix P that contains information about the number of fermions to the left of the

active site [50, 51]

P =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

 . (2.6.33)

The matrix gives a phase −1 when the site is occupied by one fermion, and +1

when occupied by zero or two. When the operators act on one of multiple sites they

implicitly act on an extended basis, for a two site example

c1,σ → (c1,σ ⊗ 11). (2.6.34)
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The P matrix then acts on the site to the left

c2,σ → (P ⊗ c2,σ). (2.6.35)

Using the identity

(A⊗B)(C ⊗D) = AC ⊗BD, (2.6.36)

P can be introduced into the Hamiltonian by multiplication by the left of each pair

of operators. For example

(c†1,σ ⊗ 11)(P ⊗ c2,σ) = c†1,σP ⊗ 11c2,σ

(P ⊗ c†2,σ)(c1,σ ⊗ 11) = Pc1,σ ⊗ c†2,σ11. (2.6.37)

The MPO tensors will therefore be

W
[1]
1,b1

=
(

11 −tc†1,↑P −tPc1,↑ −tc†1,↓P −tPc1,↓ Un1,↑n1,↓

)
, (2.6.38)

W
[i]
bi−1,bi

=



11 −tc†i,↑P −tPci,↑ −tc†i,↓P −tPci,↓ Uni,↑ni,↓

0 0 0 0 0 ci,↑

0 0 0 0 0 c†i,↑
0 0 0 0 0 ci,↓

0 0 0 0 0 c†i,↓
0 0 0 0 0 11


, (2.6.39)

W
[L]
bL−1,1

=



UnL,↑nL,↓

cL,↑

c†L,↑
cL,↓

c†L,↓
11


. (2.6.40)

2.7 Finite Spin-1/2 Heisenberg DMRG using MPS

When building a DMRG algorithm there are many indices to take care of, therefore

before starting it is useful to define an indexing convention. Throughout this dis-

cussion the convention will be to label physical indices first, top to bottom of the

diagram, then virtual indices, also top to bottom. The indices relating to bras will

be primed and kets unprimed. Explicitly this takes the form

[
σi, σ

′
i, ai−1, bi−1, a

′
i−1, ai, bi, a

′
i

]
, (2.7.1)
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where the a are the virtual indices for the MPS, the b are the virtual indices for the

MPO and the σ are the physical indices.

The starting point for the DMRG algorithm is an MPS

|Ψ〉 =
∑

σ1,...,σL

∑
a1,...,aL−1

Mσ1
1,a1

Mσ2
a1a2 . . .M

σL−1
aL−2aL−1M

σL
aL−1,1

|σ1, . . . , σL〉 , (2.7.2)

where the M are understood as unnormalised MPS tensors with random elements

to begin with, although the MPS form of a known state can also be used. In terms

of the bond indices the first site is a row vector with a placeholder for the column

index, similarly the final site is a column vector. The maximal size of the tensors in

the form [σi, ai−1, ai] is

(d, 1, d), (d, d, d2), . . . , (d, d
L
2
−1, d

L
2 ), (d, d

L
2 , d

L
2
−1), . . . , (d, d2, d), (d, d, 1) (2.7.3)

where d is the spin dimension. In the case of spin-1/2 Heisenberg d = 2, therefore

the tensors have size

(2, 1, 2), (2, 2, 4), (2, 4, 8), . . . , (2, 8, 4), (2, 4, 2), (2, 2, 1). (2.7.4)

When performing DMRG we do not want to keep all of the information for all states

in the MPS, only the most relevant information for calculating the ground state.

In standard DMRG, a density matrix is formed from the ground state, which is

diagonalised and the highest m states are used to truncate the basis. With MPS

the truncation is performed by limiting the size of the bond dimension χ. The

standard general method for doing so is to perform an SVD, keep the largest χ

singular values and resize U and V appropriately.

The DMRG sweep [30] will start at the left hand side of the chain which

requires a right-normalised MPS. The normalisation is performed iteratively using

SVDs in a manner reminiscent of the derivation of the canonical form (2.5.6). Start-

ing with the MPS of eq. (2.7.2), MσL
aL−1,1

is reshaped into a matrix by combing the

σL index with the placeholder 1

|Ψ〉 =
∑

σ1,...,σL

∑
a1,...,aL−1

Mσ1
1,a1

Mσ2
a1a2 . . .M

σL−1
aL−2aL−1MaL−1,(σL,1) |σ1, . . . , σL〉 . (2.7.5)

An SVD is then performed, the V † is reshaped into the right normalised B tensor
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whilst the U and S are combined with the M tensor to the left

|Ψ〉 =
∑

σ1...,σL

∑
a1,...,aL−1

Mσ1
1,a1

Mσ2
a1a2 . . .M

σL−1
aL−2aL−1

× U [L]
aL−1,aL−1

S[L]
aL−1,aL−1

V
†[L]
aL−1,(σL,1)

|σ1, . . . , σL〉

|Ψ〉 =
∑

σ1,...,σL

∑
a1,...,aL−2

Mσ1
1,a1

Mσ2
a1a2 . . . M̃

σL−1
aL−2aL−1B

σL
aL−1,1

|σ1, . . . , σL〉 , (2.7.6)

where M̃ is the contraction of M , U and S

M̃
σL−1
aL−2,aL−1 =

∑
aL−1

M
σL−1
aL−2aL−1U

[L]
aL−1,aL−1

S[L]
aL−1,aL−1

. (2.7.7)

This is then repeated for each site in order L− 1→ 2. Note that in general the Ms

are three-index tensors which are reshaped into a matrix by combining the σi and

ai indices. The result is

|Ψ〉 =
∑

σ1,...,σL

∑
a1,...,aL−1

M̃σ1
1,a1

Bσ2
a1a2 . . . B

σL−1
aL−2aL−1B

σL
aL−1,1

|σ1, . . . , σL〉 . (2.7.8)

The last M is reshaped, decomposed by SVD and V † reshaped to B as before but

now the U and S are just scalars which can be combined to a number
√
N , where

N is simply the norm of the state

|Ψ〉 =
∑

σ1,...,σL

∑
a1,...,aL−1

U
[1]
1,1D

[1]
1,1B

σ1
1,a1

Bσ2
a1a2 . . . B

σL−1
aL−2aL−1BaL−1,(σL,1) |σ1, . . . , σL〉

=
∑

σ1,...,σL

∑
a1,...,aL−1

√
NBσ1

1,a1
Bσ2
a1a2 . . . B

σL−1
aL−2aL−1B

σL
aL−1,1

|σ1, . . . , σL〉 . (2.7.9)

If the state is to be normalised then N is set to 1. Thus state is fully right-normalised

as in eq. (2.5.7). The diagrammatic representation of this normalisation is in fig.

2.23.

The next step is to include a Hamiltonian MPO for the Heisenberg model

given by eq. (2.6.27). At the current point, as the MPS was constructed using

random tensors, 〈Ψ|H|Ψ〉 gives the energy of a random MPS wavefunction. The

DMRG algorithm is a variational approach that builds a set of MPS tensors itera-

tively whose energy expectation value converges to the ground state. The variational

MPS algorithm is essentially the same as the finite White style DMRG in that the

wavefunction is calculated over sweeps of the system where the accuracy increases

with every step.
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SVD,
Reshape

M.U.S

Repeat

Figure 2.23: Procedure to right normalise an MPS as in eq. (2.7.9).

To perform an update to a tensor it is necessary to have the left and right

blocks either side of the active site (l). The left block L[l] contains all of the infor-

mation for the sites to the left of the active site (sites 1 → l − 1) with each MPS

tensor left normalised

L
[l]
al−1,bl−1,a

′
l−1

=
∑

σ1,...,σl−1

σ′1,...,σ
′
l−1

∑
a1,...,al−2

a′1,...,a
′
l−2

∑
b1,...,bl−2

(
A
∗σ′1
1,a′1

W
σ1σ′1
1,b1

Aσ11,a1

)
× . . .

· · · ×
(
A
∗σ′l−1

a′l−2a
′
l−1
W

σl−1σ
′
l−1

bl−2bl−1
A
σl−1
al−2al−1

)
. (2.7.10)

Similarly the right block contains the information for the sites to the right of the

active site (sites l + 1→ L) with each MPS tensor right normalised

R
[l]
al,bl,a

′
l

=
∑

σl+1,...,σL
σ′l+1,...,σ

′
L

∑
al+1,...,aL−1

a′l+1,...,a
′
L−1

∑
bl+1,...,bL−1

(
B
∗σ′l+1

a′la
′
l+1
W

σl+1σ
′
l+1

blbl+1
B
σl+1
alal+1

)
× . . .

· · · ×
(
B
∗σ′L
a′L−1,1

W
σLσ

′
L

bL−1,1
BσL
aL−1,1

)
. (2.7.11)

The diagrams of the left and right block are shown in figs. 2.24(a+b). As the first
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(a)

=

(b)

=

Figure 2.24: Diagram showing the construction of the (a) left block of eq.
(2.7.10) and (b) right block of eq. (2.7.11).

active site is on the left hand boundary the left block is non-existent, but a dummy

block L
[0]
1,1,1 = 1 is used so that the process can be iterated more effectively. The right

block is the contraction of all 2→ L of the remainder of the chain. It is very costly

to contract the whole block for every step as in eq. (2.7.11), it is more efficient to

build it iteratively starting with site L. By contracting site by site, the right blocks

for the whole chain are built as the intermediate blocks for sites L− 1 → 2 can be

saved. Each step in the iteration is calculated using the block to the right of it

R
[i]
ai,bi,a′i

=
∑

σi+1,σ′i+1,ai+1,bi+1,a′i+1

B
∗σ′l+1

a′la
′
l+1
W

σl+1σ
′
l+1

blbl+1
B
σl+1
alal+1R

[i+1]
ai+1,bi+1,a′i+1

. (2.7.12)

As with the left block at i = 1, the right block at i = L is a scalar, R
[L+1]
1,1,1 = 1.

Contraction in this way is therefore O(χ3DWd).

An effective Hamiltonian tensor is built from the left and right blocks along

with the W tensor for the site

H
[l]σl,σ

′
l

al−1,a
′
l−1,al,a

′
l

=
∑
bl−1,bl

L
[l]
al−1,bl−1,a

′
l−1
W

σlσ
′
l

bl−1bl
R

[l]
al,bla

′
l
, (2.7.13)

which is shown in fig. 2.25(a). This can be reshaped into a Hamiltonian matrix

H
[l]
(σl,al−1,al),(σ

′
l,a
′
l−1,a

′
l)

and can be used in the eigenvalue equation

H [l]ψ = Eψ, (2.7.14)

where E is the effective energy for a given MPS tensor ψ. The effective Hamiltonian

H [l] can be diagonalised as a matrix, but in this form it is size O(χ4d2). Retaining

the tensor structure allows the application of MPS trial tensor (ψ) to the effective

Hamiltonian in O(χ3DWd) as shown in fig. 2.25(b). By setting this combination
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Figure 2.25: (a) Diagrammatic form of the effective Hamiltonian as given by
eq. (2.7.13) (b) Cost of application of a trial MPS tensor ψ to the effective
Hamiltonian.

as the new trial and repeating the application to the effective Hamiltonian it is

possible to obtain the MPS tensor that minimises the energy. This is known as the

power method of diagonalising a matrix. In practice the eigenvalue problem is solved

using a sparse matrix Lanczos or Jacobi-Davidson algorithm where the eigenvector

corresponding to the lowest eigenvalue is reshaped to the unnormalised M tensor for

site l. This is then left-normalised by SVD with the S and V matrices contracted

with Bσl+1 , in the opposite way to the right normalisation of eq. (2.7.7).

The active site is then moved one to the right and the process is repeated to

get the M tensor for the new site. Because of the way the right block was built, the

right block for this site is already saved so it is only necessary to build the new left

block before building the Hamiltonian. This is repeated until the end of the chain

is reached, at which point the direction is changed and the new active site is one to

the left. This moving from one end of the other is called sweeping and is performed

until the energy has converged within a preset threshold or a maximum number of

sweeps has been performed. An outline of the DMRG algorithm as described in this

section is provided in fig. 2.26.

As currently described, the DMRG algorithm works, but has a tendency to

get stuck in local minima rather than the global minimum for the system as desired.
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Figure 2.26: Overview of the DMRG algorithm described in detail in the text.
The blue box signifies the setup stage, the pink box is the right sweep, the green
box is the left sweep and the brown box is the output of operator expectation
values.
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Figure 2.27: First step of the infinite DMRG algorithm. The effective
Hamiltonian is made up of the MPO tensors for sites 1 and L.

The reason for this is that with the random starting point there is no guarantee that

the global minimum will be found at each step, particularly when using one-site

DMRG. There are various ways round this problem, two of which will be discussed

in the subsequent sections; two-site DMRG and a modified density-matrix approach,

both of which enlarge the ansatz space by coupling the active site to nearby sites,

hopefully letting the global minimum dominate over the local.

2.7.1 Two-Site DMRG

Two site DMRG is in many ways a direct translation of the original DMRG algorithm

[15] discussed in section 2.1, to MPS in that one considers two sites between the left

and right blocks at each step of the algorithm. Although not always necessary, the

two site algorithm also allows an infinite warm-up to get a first prediction before

the sweeping begins, which was traditionally the method of creating a system of the

desired size. This first prediction will be less likely to lead to the algorithm getting

stuck in local minima and should allow convergence to be reached in fewer sweeps.

The following discussion of the infinite DMRG algorithm follows ref. [30] but

will almost entirely use diagrammatic algebra as it is more transparent and easier

to translate to computer algorithms. That said, every diagram can be written

explicitly as formulae if desired. The starting point is two lone active sites, 1 and

L with Hamiltonian MPO tensors for each site W [1] and W [L]. The Hamiltonian

matrix is built from these MPO tensors and dummy left and right blocks as used

previously, as shown in fig. 2.27. This is diagonalised, the lowest energy eigenvector

reshaped to become Ψ. An SVD is performed on Ψ, U is reshaped and stored as

Aσ1 , V † as BσL , shown in fig. 2.28(a), remembering that the left virtual index of

site 1 and the right virtual index of site L are dummy. Blocks L[2] and R[L−1] are

built from the new A and B tensors and appropriate MPO tensors. The matrix of

45



(a)

SVD

(b)

SVD compress

reshape

Figure 2.28: SVD of the lowest energy eigenvector after diagonalisation
(a) for the first iteration creating the boundary tensors and (b) subsequent
iterations where tensor dimensions are truncated χ.

singular values S is discarded to preserve normalisation before two more sites are

introduced; 2 and L− 1.

The remainder of the iterations of the infinite algorithm are performed in a

similar manner to the first. Insert two sites, build Hamiltonian matrix, then diago-

nalise with the lowest energy eigenvector reshaped into Ψ. An SVD is performed as

before but only the χ left-singular vectors of U with largest singular values are re-

shaped to become Aσi and similarly the χ right-singular vectors of V † are reshaped

to BσL+1−i , shown in fig. 2.28(b). This is known as an SVD compression, which

truncates the size of the MPS tensors, setting the bond dimension to χ. After the

final iteration the last matrix of singular values is set to an identity for normalisation

resulting in a MPS state of with bond dimension χ.

The finite algorithm follows the same idea as the single site algorithm, but

this time the pair of active sites moves along the chain. The infinite algorithm leaves

the MPS in mixed-canonical form, with the left hand side of the chain made up of

left-normalised tensors (A) and the right hand side of the chain made up of right-

normalised tensors (B), thus it makes sense to start the sweeping in the middle of

the chain with i = (L/2) + 1.

The effective Hamiltonian is built up as before from L[i], R[i+1], W [i] and

W [i+1]. It is then diagonalised, to obtain Ψ, upon which an SVD is performed. The

U is reshaped to Aσi , the D and V † are then contracted with Bσi+1 and reshaped to

provide a prediction P for the diagonalisation of the next step, shown in fig. 2.29(a).

This is repeated until i = L−1 at which point the sweep has reached the right hand

end of the chain. The same sequence is performed on the left sweep except after

diagonalisation and SVD V † is reshaped to Bσi+1 and Aσi−1 contracted with U and

D to create the prediction for the next site (fig. 2.29(b)). This is repeated until

i = L − 1 at which point the sweep has reached the right hand end of the chain.
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reshape
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Figure 2.29: Prediction P for the next diagonalisation in (a) a right sweep
(b) a left sweep.

These left and right sweeps are repeated until convergence is reached.

2.7.2 Modified Density Matrix

The modified density matrix approach was introduced by White [52] to tackle the

issue of single site DMRG getting stuck in local minima. The issue arises because

the environment block is incomplete so there are certain components of the wave-

function that span the two blocks that should be present but are not. The procedure

introduces a modified density matrix to couple the active site to the system block

in order to include these missing parts of the wavefunction that may be missed by

a single site density matrix.

The notion of a density matrix has been largely omitted in the DMRG al-

gorithms discussed so far because the SVD truncation performs the same task as

a density-matrix truncation of traditional DMRG. The density matrix for an MPS

tensor after diagonalisation ψσlal−1al
is

ρ(σlal−1al),(σ
′
la
′
l−1a

′
l)

= |ψ〉 〈ψ| = ψσlal−1al
ψ
†σ′l
a′l−1a

′
l
, (2.7.15)

shown diagrammatically in fig. 2.30(a). There are two types of reduced density

matrix depending on which part of the system is traced over

ρA(σlal−1),(σ
′
la
′
l−1)

= TrB |ψ〉 〈ψ| =
∑
al

ψσlal−1al
ψ
†σ′l
a′l−1a

′
l
, (2.7.16)

ρB(σlal),(σ
′
la
′
l)

= TrA |ψ〉 〈ψ| =
∑
al−1

ψσlal−1al
ψ
†σ′l
a′l−1a

′
l
, (2.7.17)

shown in fig. 2.30(b+c). In traditional DMRG it is these density matrices that are

diagonalised (although two site versions), ρA for a right sweep and ρB for a left
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Figure 2.30: (a) Density matrix ρ made from two MPS tensors. Reduced
density matrices (b) ρA and (c) ρB made by tracing over B and A degrees
of freedom of the full density matrix.
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Figure 2.31: Wavefunction for use in the modified density matrix.

sweep. The eigenvectors of the largest χ eigenvalues are kept to truncate the basis.

The MPS form of the modified density matrix is given by ref. [30]. The modification

comes from coupling the ground state wavefunction to the system block, reshaping

and contracting to give a perturbation to the normal density matrix

ρA → ρ′A = ρA + αρ̃A,

= TrB |ψ〉 〈ψ|+ αTrB ˜|ψ〉 ˜〈ψ|, (2.7.18)

where α gives the weight of the modification. The starting value of α depends on

the problem at hand, ref. [30] suggests 0.0001 for the spin-1/2 Heisenberg model.

Throughout the sweeps α will be reduced to zero. The perturbation is constructed

by contracting the ground state wavefunction with the left block and W tensor for

the site

ψ̃
σ′l
a′l−1albl

=
∑
σl

∑
al−1

∑
bl−1

L
[l]
al−1,bl−1,a

′
l−1
W

σlσ
′
l

bl−1bl
ψσlal−1al

, (2.7.19)

as shown in fig. 2.31. The perturbed density matrix in full is

[ρ̃A]σ
′,σ̃′

a′l−1,ã
′
l−1

=
∑
bl

∑
al

ψ̃
σ′l
a′l−1albl

ψ̃
∗σ̃′l
ã′l−1albl

, (2.7.20)

where the tilded indices make the distinction between the indices of ψ̃ and ψ̃∗.

Just as with the original DMRG algorithm this density matrix is diagonalised

and the χ states with the largest eigenvalues are stored in columns as a matrix. The

A tensor for this site is made by reshaping the matrix of column vectors into a

three index tensor. This approach is repeated for each site. For the right sweep the

equivalent formulae are created but the other side of the system is traced over

ρB → ρ′B = ρB + αρ̃B. (2.7.21)
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Figure 2.32: Eigenvalue equation for OBCs. The mixed canonical form
of the MPS ensures that the problem is simplified from a generalised to a
standard eigenvalue problem.

After diagonalisation the eigenvectors of the density matrix need to be stored as

rows in a matrix and reshaped to give the right normalisation of the B tensors.

The modified density matrix approach is akin to an annealing process, whereby

the contribution to the density matrix from this modification acts like heat or noise

and it is gradually removed allowing the system to find the global minimum rather

than a local one.

2.8 Periodic Boundary Conditions

The DMRG algorithm describe in section 2.7 is for OBCs, which is where DMRG is

most efficient. The reason for this is down to the normalisation of the MPS. When

an MPS tensor at site l is being updated the diagonalisation is implicitly solving a

generalised eigenvalue problem [30]

H [l]ψ = EN [l]ψ, (2.8.1)

where H [l] is the effective Hamiltonian operator (2.7.13) for site l and N [l] is the

normalisation for site l defined as

N [l] =
∑

σ1,...,σL

∑
a1,...,aL−1

a′1,...,a
′
L−1

Aσ1a1 . . . A
σl−1
al−2al−1B

σl+1
alal+1 . . . B

σL
aL−1

×A∗σ1
a′1

. . . A
∗σl−1

a′l−2a
′
l−1
B
∗σl+1

a′la
′
l+1

. . . B∗σL
a′L−1

. (2.8.2)

Equation (2.8.1) is shown diagrammatically in fig. 2.32. Due to the left and right

normalisation of the A and B tensors N [l] is simply an identity matrix, which reduces

the generalised eigenvalue problem (2.8.1) to the standard eigenvalue problem of eq.

(2.7.14).

PBCs have long been known to be a problem for DMRG [15] but are never-
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theless very useful, particularly in obtaining certain order parameters to classify the

phase of a system, such as the superfluid density, which will be discussed in chapter

3. The following sections will introduce the traditional poor man’s PBC as well as

the natural method of introducing periodicity using MPS.

2.8.1 Poor Man’s PBC

The essential idea of the poor man’s PBC is to use the efficiency and simplicity of

open boundary DMRG algorithm but apply it to an open system using one long

range interaction to connect the first and last sites through the rest of the chain. It

is only the Hamiltonian MPO that needs changing to implement this idea. Taking

the nearest neighbour Hamiltonian of eq. (2.6.5) as a simple example, adding a PBC

term gives

H =
L−1∑
i=1

AiAi+1 +A1AL. (2.8.3)

The PBC term is included in the MPO by inserting an extra identity row in the W [i]

that allows the interaction between the first and the last site. The MPO tensors

take the form

W
[1]σ1σ′i
1b1

=
(

11σ1σ
′
1 A

σ1σ′1
1 0 A

σ1σ′1
1

)
, (2.8.4)

W
[i]σiσ

′
i

bi−1bi
=


11σiσ

′
i A

σiσ
′
i

i 0 0

0 0 A
σiσ
′
i

i 0

0 0 11σiσ
′
i 0

0 0 0 11σiσ
′
i

 , (2.8.5)

W
[L]σLσ

′
L

bL−11
=


0

A
σLσ

′
L

L

11σLσ
′
L

A
σLσ

′
L

L

 , (2.8.6)

which is given as a matrix product diagram in fig. 2.33. When multiplied out fully

with tensor products this is

Hσ1σ′1...σLσ
′
L = A

σ1σ′1
1 ⊗Aσ2σ

′
2

2 ⊗ 11σ3σ
′
3 ⊗ · · · ⊗ 11σiσ

′
i ⊗ · · · ⊗ 11σLσ

′
L

+ 11σ1σ
′
1 ⊗Aσ2σ

′
2

2 ⊗Aσ3σ
′
3

3 ⊗ · · · ⊗ 11σiσ
′
i ⊗ · · · ⊗ 11σLσ

′
L + . . .

· · ·+ 11σ1σ
′
1 ⊗ · · · ⊗Aσiσ

′
i

i ⊗Aσi+1σ
′
i+1

i+1 ⊗ · · · ⊗ 11σLσ
′
L + . . .

· · ·+A
σ1σ′1
1 ⊗ 11σ2σ

′
2 ⊗ · · · ⊗ 11σL−1σ

′
L−1 ⊗AσLσ

′
L

L , (2.8.7)
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Figure 2.33: Matrix product diagram for the MPO tensors of a nearest
neighbour Hamiltonian with PBCs for (a) site 1, (b) site i and (c) site L.

which is the desired form for a periodic system.

As a more useful example, the spin-1/2 Heisenberg Hamiltonian has the

following MPO tensors

W
[1]
1,b1

=
(

11 J
2 s

+ J
2 s
− Jsz −hsz s+ s− sz

)
, (2.8.8)

W
[i]
bi−1,bi

=



11 J
2 s

+ J
2 s
− Jsz −hsz 0 0 0

0 0 0 0 s− 0 0 0

0 0 0 0 s+ 0 0 0

0 0 0 0 sz 0 0 0

0 0 0 0 11 0 0 0

0 0 0 0 0 11 0 0

0 0 0 0 0 0 11 0

0 0 0 0 0 0 0 11


, (2.8.9)

W
[L]
bL−1,1

=



−hsz

s−

s+

sz

11
J
2 s
−

J
2 s

+

Jsz


, (2.8.10)

where the spin indices have been omitted for clarity. The matrix product diagram
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Figure 2.34: Matrix product diagram for the MPO tensors of a Heisenberg
Hamiltonian with PBCs for (a) site 1, (b) site i and (c) site L.

is given in fig. 2.34. Whilst simple to implement, this method of introducing period-

icity is not optimal as there is an inherent correlation length in an MPS, as will be

discussed in more detail in chapter 4. This means that interaction between two sites

that would otherwise be next to each other are suppressed due to the distance be-

tween them. To reconcile this and obtain more accurate results, the bond dimension

has to be increased at the cost of computational resources and time.

2.8.2 Matrix Product States with PBCs

One of the advantages of MPS is that there is an intuitive method of introducing

PBCs. For an MPS made up of L sites, PBCs are introduced by contracting the

right hand index of site L with the left hand index of site 1, which is equivalent to
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(a)

(b)

Figure 2.35: An (a) MPS and (b) MPO with PBCs is created by contracting
the first and last tensors of the chain. The bL connection is understood as
going behind the diagram, which will make for less cluttered diagrams when
discussing DMRG.

taking a trace over the bond indices [30]

|Ψ〉 =
∑

σ1,...,σL

∑
a1,...,aL

Mσ1
aLa1

Mσ2
a1a2 . . .M

σL
aL−1aL

|σ1, . . . , σL〉

=
∑

σ1,...,σL

Tr (Mσ1Mσ2 . . .MσL) |σ1, . . . , σL〉 . (2.8.11)

Diagrammatically this corresponds to drawing an adjoining line between the ends of

the chain, effectively constructing a circle of tensors. This is shown in fig. 2.35(a). In

a similar manner, MPOs can be constructed with PBCs by contracting the tensors

on sites 1 and L

O =
∑

σ1,...σL
σ′1...σ

′
L

∑
b1,...,bL

W
σ1σ′1
bLb1

W
σ2σ′2
b1b2

. . .W
σLσ

′
L

bL−1bL
|σ1 . . . σL〉 〈σ′1 . . . σ′L|

=
∑

σ1,...σL
σ′1...σ

′
L

Tr
(
W σ1σ′1W σ2σ′2 . . .W σLσ

′
L

)
|σ1 . . . σL〉 〈σ′1 . . . σ′L| , (2.8.12)

which is shown diagrammatically in fig. 2.35(b). In matrix product diagrams a trace

over the bond index is equivalent to only allowing paths that start and finish on

the same number. If the trace was taken naively over an MPO formed from tensors

of the form of eq. (2.6.8), the result would be two identity matrices. This can be

clearly seen in the matrix product diagram. The way to solve the problem is to
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Figure 2.36: Matrix product diagram of a four site Hamiltonian MPO with
PBCs.

create tensors for sites 1 and L that allow non-trivial paths that join up under the

trace. For the simple nearest neighbour Hamiltonian (2.6.5), the first tensor can be

the same as the rest (2.6.8) and the last tensor takes the form

[W
[L]
PBC ]bL−1,bL =

 0 0 0

AL 0 0

11 AL 0

 . (2.8.13)

An example of a four-site Hamiltonian MPO with PBCs is given by fig. 2.36.

Now that a set of PBC MPOs has been created, it is possible to start creating

the DMRG algorithm. As mentioned, one of the important differences between PBC

and OBC chains is the normalisation. With PBCs a generalised eigenvalue problem

of eq. (2.8.1) needs to be solved. The normalisation is also an issue when building

the left and right blocks. The fact that the right and left sides of the chain are joined

means that the notion of a left and right block is lost. One of the crucial differences

between the two blocks in the open case was that one had left normalisation and

the other had right. This change in normalisation cannot occur with PBC as the

normalisation would change part way through the block. Following the suggestion

of ref. [25], one of the normalisations is chosen for one sweep direction. Here, for

the left or anti-clockwise direction, right normalised tensors are used so that the

standard SVD methods can be used without alteration.

The DMRG algorithm for PBCs is essentially the same as for open systems,

remembering to connect the left and right ends of the chain. Despite the notion of

left and right blocks being lost, the blocks will still be used as a means of efficiently

calculating and storing the contracted tensors. As before, the algorithm starts with

a set of right-normalised MPS tensors, however the bond dimension is set as χ for

every site. The left block is calculated for sites 2 to L iteratively by contraction as
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(a) (b)

Figure 2.37: Effective Hamiltonian (a) for site L built from the left block
and (b) for site i built from the left and right blocks with the left hand
indices wrapped round to become the right hand side of the system under
PBCs.

before. As the eigenvalues and eigenvectors are found using a generalised eigenvalue

equation, the normalisation tensor N needs to be built for each diagonalisation.

This will be done in the same way as the left and right blocks but without using an

MPO.

Starting with a left sweep, the effective Hamiltonian is built from the left

block L[L] wrapped round so that the left hand legs become the right hand side of

the system as shown in fig. 2.37(a). The ground state eigenvector is found using

a generalised eigensolver algorithm and is right normalised by performing an SVD.

As before the prediction for the next site is calculated by contracting the MPS

tensor for site L − 1 with the U and S matrices of the SVD. The newly found

MPS tensor for site L is contracted with W [L] and its conjugate to form the right

block for the next iteration and contracted with its conjugate alone to form the

right normalisation block for the next step. The update for the following sites is

performed in a similar manner except that the Hamiltonian tensor is formed by

contracting the left hand legs of the left block with the right hand legs of the right

block as shown in fig. 2.37(b). This procedure is repeated until site 1, at which

point the algorithm changes direction and the right sweep begins. The algorithm

proceeds as normal until convergence.

Although now a much more natural and effective method for modelling PBCs

this comes at the cost of using the more complicated and expensive generalised eigen-

value problem as well as the left and right blocks now have more indices making the

process scale as O(χ5D2
W ). More recently this last issue was resolved by perform-

ing sweeps on thirds of the chain at a time [26, 27] in a manner more reminiscent

of the OBC algorithm. This new PBC algorithm is once again O(χ3) but is more
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complicated to implement.

2.9 Conclusions

In this chapter we have introduced the basic concepts of MPS based DMRG, includ-

ing the fundamental tensor operations and a detailed description of the variational

update. These principles underly all tensor network algorithms and will provide a

foundation for the chapters that follow. MPS DMRG is heralded as one of the most

powerful and versatile methods for the study of one dimensional quantum systems.

It is a conceptual advance on White’s DMRG that has enabled a better understand-

ing of the strengths and weaknesses of the method, allowed new applications and

paved the way for the field of tensor networks.
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Chapter 3

Phases of the Disordered

Bose-Hubbard Model

3.1 Introduction

The DMRG algorithm described in chapter 2 is a remarkably powerful tool for the

study of one dimensional quantum systems. It is therefore an ideal method for

the analysis of disordered bosons on a one dimensional lattice. This has been of

great interest in both theoretical and experimental physics for many years due to

the existence of a quantum phase transition from a superfluid to insulator at zero

temperature [53]. The experimental study of phase transitions in bosonic systems is

possible using Josephson junction arrays [54], thin films [55, 56] and, more recently,

optical lattices [57]. The introduction of disorder causes a further phase transition

into a localised Bose glass phase, which is an insulating phase but remains com-

pressible [53]. Recently it has been possible to introduce disorder in a controlled

manner in optical lattices using speckle potentials to study these phases experimen-

tally [58, 59, 60, 61]. Analytical results for even clean systems are limited to an

approximate Bethe-ansatz solution where the basis is truncated at two bosons per

site [62]. For disordered systems Giamarchi and Schulz used renormalization group

techniques to determine the weak disorder physics given the Luttinger parameter K

[63, 64].

Numerical approaches provide perhaps the most effective means of garnering

information. QMC has been used in 1, 2 and 3 dimensions [65, 66, 67, 68, 69, 70],

but these methods become difficult in the limit of zero temperature. DMRG is in-

herently a zero temperature method and White style DMRG has been applied to the

problem with mixed success [71, 72]. Interestingly, the phase diagrams from QMC

58



[66] and DMRG [72], whilst qualitatively similar, are quantitatively rather different.

In recent years the use of entanglement properties as a means of deciphering phases

has become commonplace [73, 74, 75, 76, 77, 78]. Entanglement is a measurement

of a wavefunction’s non-locality and as such it is an ideal means of analysing various

phases. Modern numerical techniques such as tensor networks and DMRG obtain

entanglement information as part of the update algorithms, so large amounts of

information about the phase is gathered for free [30].

3.2 The Bose-Hubbard Model

In this chapter we use the ITensor libraries [79] to perform a DMRG simulation of

the disordered Bose-Hubbard model in the form of a variational update of an MPS

[20, 30] as discussed in chapter 2. The disordered Bose-Hubbard model is made

up of bosonic creation b†i and annihilation bi operators on sites of a 1 dimensional

lattice. The Hamiltonian [72] is

H = − t
2

∑
i

(b†ibi+1 + h.c.) +
∑
i

U

2
ni(ni − 1) + µini, (3.2.1)

where ni = b†ibi is the local occupation or number operator that gives the number

of bosons on site i. The strength of the kinetic or hopping term is given by t,

the Hubbard U term provides an on-site repulsion when U > 0 and the on-site

or chemical potential strength is determined by µi. The disorder in the system is

introduced to the on-site term by selecting the value of µi at each site i from a box

distribution of values from −∆µ/2 to ∆µ/2. Throughout the chapter ∆µ will be

used as a measure of the strength of the disorder on the chemical potential. We have

adopted the conventions from Rapsch et. al. [72] in that t and U are both divided

by two and throughout the rest of the analysis we keep t = 1.

The basis used for the model is the number of particles and as bosons do not

obey the Pauli exclusion principle, all particles can occupy one site. This means that

the one-site basis dimension needs be be as large as there are particles in the system.

In this chapter we will be looking at systems with up to 300 particles; including a

full basis would greatly increase computational cost. It is therefore necessary to

truncate the number of bosons that can occupy each site. We set the maximum

number to 5 bosons which corresponds to the current limit in the ITensor code.

This is consistent with ref. [80] who find that a higher particle number does not

effect the results appreciably for U > 0 [71, 72, 81]. Using the truncated basis, the
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operators have matrix form

b =



0 1 0 0 0 0

0 0
√

2 0 0 0

0 0 0
√

3 0 0

0 0 0 0
√

4 0

0 0 0 0 0
√

5

0 0 0 0 0 0


, n =



0 0 0 0 0 0

0 1 0 0 0 0

0 0 2 0 0 0

0 0 0 3 0 0

0 0 0 0 4 0

0 0 0 0 0 5


(3.2.2)

The MPO tensors are then

W [i] =


11 − t

2b
† − t

2b µn+ U
2 n(n− 11)

0 0 0 b

0 0 0 b†

0 0 0 11

 , (3.2.3)

with standard boundary terms as described in section 2.6.1. Periodic boundary

conditions will be implemented using the poor man’s PBC method of section 2.8.1.

The reason for choosing this as opposed to the full periodic MPS of section 2.8.2, is

that the ITensor code doesn’t have the full implementation in the current release

and the poor man’s PBCs are adequate for the one observable that periodicity is

needed for.

3.3 Observables

Previous studies of the phases of the Bose-Hubbard model [72, 81] concentrate on

order parameters appropriate for each phase. The superfluid phase is determined

by a non-zero superfluid fraction ρs. This is defined as the difference between the

ground state energies of a chain with PBCs and anti-periodic boundary conditions

(APBCs)

ρs =
2L2

π2N

[
EAPBC

0 − EPBC
0

]
, (3.3.1)

where L is chain length and N is the number of bosons [72]. The motivation behind

this definition is that a change in boundary conditions will affect the extended

superfluid state but will leave the localised phases unchanged. Thus the superfluid

fraction is zero for the Mott insulator and Bose glass phases so it should show where

the superfluid phase is in the phase diagram. Superfluid fraction is not ideal as it is

a property of periodic systems while we are interested in the Bose-Hubbard model

with OBCs. Furthermore, as discussed in chapter 2, DMRG with PBCs converges
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slower and requires more resources than open systems. Also, as ρs is the difference

between two energies, two DMRG calculations have to be performed for each set of

parameters.

The Mott insulator can be differentiated from the Bose glass phase by the

existence the Mott gap; an energy gap between the ground and first excited state.

While DMRG ordinarily finds the ground state of the system, low lying excited

states can be found iteratively by orthogonalising with respect to the lower lying

states [30]. It is simpler for the Bose Hubbard chain to use the fact that the energy

of the excited state is equal to the difference between the chemical potential for

particle (µp = EN+1 − EN ) and hole (µh = EN − EN−1) excitations [72]. This

means that the energy gap can be found by calculating the energies of the N + 1

and N − 1 particle sectors

Eg = EN+1 − 2EN + EN−1. (3.3.2)

As discussed for ρs, the difference between energies of different systems requires

multiple DMRG runs. For the energy gap calculated in this way it is necessary to

run the DMRG three times for each set of parameters.

The two-point correlation function 〈b†ibj〉 also referred to as the one-particle

density matrix [72] or bosonic Green’s function [81] provides information regarding

the localisation of the wavefunction. For the Bose glass and Mott insulating phases

the correlation function decays exponentially [81]

〈〈b†ibj〉〉 ∝ e
−|i−j|/ξ, (3.3.3)

where ξ is the correlation length and 〈〈. . . 〉〉 denotes the expectation value when

averaged over all pairs of sites separated by |i− j| and all disorder realisations. Ex-

tended phases like the superfluid are not localised so the correlation length diverges.

In the absence of disorder the superfluid phase will be described by Luttinger liquid

theory, hence the correlation function will admit a power law decay

〈〈b†ibj〉〉 ∝
1

|i− j|1/2K
, (3.3.4)

where K is the Luttinger parameter. K takes the value 2 for a Kosterlitz-Thouless

(KT) transition from superfluid to Mott insulator [80, 81]. By utilizing an RG

approach, Giamarchi and Schulz [63] showed that disorder scales to zero in the

weak disorder regime when K > 3/2, giving a superfluid phase. On the other hand,

disorder grows for K < 3/2 signifying a Bose glass. This was later extended [64] to
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Figure 3.1: The two-point correlation function from eq. (3.3.5) for a chain
of 150 sites. Averaged over all pairs of sites separated by |j − i|, where
errors are smaller than the line width.

the medium disorder case (U ∼ ∆µ).

Instead of a polynomial fit we use the conformal field theory (CFT) fit as

described in [81] where the expected correlation for an open chain is used to fit the

data and the Luttinger K can be extracted from the CFT formula. For a system

size L the correlation function from the CFT is

〈b†ibj〉 ∝

 π

2L

√∣∣sin (πiL )∣∣ ∣∣∣sin(πjL )∣∣∣∣∣∣sin(π(i+j)2L

)∣∣∣ ∣∣∣sin(π(i−j)2L

)∣∣∣


1
2K

. (3.3.5)

Due to the fact that this formula is for open boundaries there is no translational

invariance, thus one has to calculate the correlation function for each i and j and

average over all those with separation |j − i|. The result of which is plotted in

fig. 3.1. Calculating correlation functions does not require multiple DMRG runs,

but requires the calculation of an expectation value for each combination of i and

j, of which there are L(L − 1)/2. Furthermore, the accuracy of locating the KT

transition from correlation functions for the Bose-Hubbard model has previously

been questioned [81, 82].
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When dealing with disordered systems it is necessary to disorder average,

thus it is vital to reduce the computational cost of each realisation. In order to build

a phase diagram using the standard order parameters one has to perform multiple

calculations for each set of variables. We will concentrate on the entanglement

spectrum as it encodes long-range information about the system as well as being

free to obtain from DMRG as the singular values sa for each bipartition of the chain

are calculated as part of the algorithm. The most common entanglement measure is

the entanglement entropy given by eq. (2.4.4), which gives the entanglement between

regions A and B [30]. In the subsequent analysis we shall average the entanglement

entropy over the possible bipartitions along the chain to obtain a number that can

be used to build a phase diagram. The average entanglement entropy is very good

at distinguishing between phases with high and low entanglement, for example the

superfluid and Mott insulating phases.

Other information can be obtained from the singular values; Deng et al.

[77] used an entanglement spectral parameter (ζ) to obtain the phase diagram for

the extended Bose-Hubbard model. The ζ parameter is defined as the difference

between the first and second, and third and fourth averaged eigenvalues of ρA when

averaged over all bipartition positions such that LA + LB = L, i.e.

ζ = λT1 − λT2 + λT3 − λT4 (3.3.6)

where

λTi =
1

L− 1

L−1∑
LA=1

λi(LA) =
1

L− 1

L−1∑
LA=1

s2i (LA) (3.3.7)

is the average i-th eigenvalue. We see that the entanglement spectrum of the su-

perfluid phase is somewhat noisy, but without too much variation along x. One of

the striking features of the entanglement spectrum of the Mott insulator is that it

is effectively a product state for all bipartitions, even in the presence of disorder.

This means that the average entanglement entropy will be nearly zero with a neg-

ligible variance. Last, the entanglement spectra of the Bose-glass show pronounced

localised peaks, resulting in a much larger variation of ζ (and SA|B) than in the

superfluid phase. These findings suggest that the spatial variations of SA|B and ζ

might also be used to distinguish the phases of the disordered Bose-Hubbard model.
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Figure 3.2: (Top) the largest four singular values, s1 (black ◦), s2 (red
�), s3 (green +), and s4 (blue ×) and (Bottom) the entanglement entropy
SAB (black 4) for all possible bipartition positions, LA, along a chain of
length L = 50 for (a) Superfluid with U = 0.5, ∆µ = 1. (b) Mott insulator
with U = 4.5, ∆µ = 1. (c) Bose glass with U = 4.5, ∆µ = 7. The
dashed horizontal line in the top (bottom) graph shows the average value
of s1 (SA|B) while the grey shading indicates its standard deviation when
averaged over all LA positions. Solid lines connecting symbols are guides to
the eye.

3.4 Results

We collected most data for a modest system size of L = 50 in order to allow disorder-

averaging over 100 samples. We increase L up to 200 for high-precision estimates of

phase boundaries at certain (U,∆µ) points. For disordered systems, getting stuck in

local minima is particularly problematic, so we use a relatively large bond dimension

χ = 200 and perform 20 sweeps of the chain for each sample such that the truncation

error is less than 10−10. We also use the modified density matrix discussed in chapter

2 to introduce a small noise term for the first few DMRG sweeps; this perturbs a

perhaps bad initial wavefunction, letting the system converge faster into the desired

target states.
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(a) (b)

Figure 3.3: Previous phase diagrams for the disordered Bose-Hubbard model at
N/L = 1 reproduced from (a) Prokof’ev and Svistunov [66], and (b) Rapsch et al.
[72]. Note that in these diagrams ∆ = 1

2∆µ.

3.4.1 Density = 1

For particle density N
L = 1, in the clean case the system is in a superfluid phase for

small U but transitions into a Mott insulating phase at a critical Uc. Introducing

disorder enables the existence of a localized Bose glass phase. The possibility of

a direct transition from superfluid to Mott insulator has been a contentious issue

with many arguments on both sides (see references in [83]). In one dimension it

was proved [84] that the transition necessarily goes via the Bose glass phase. It

has subsequently been shown that there is no direct superfluid to Mott insulator

transition with disorder in any dimension [83]. For reference, the previous phase

diagrams of Prokof’ev and Svistunov [66], and Rapsch et al. [72] are provided in

figs. 3.3 (a) and (b) respectively.

We show our results based on ζ and SA|B for L = 50 in fig. 3.4 (a) and

(b), respectively. The superfluid, small U . 1.5, and the Mott insulator, U & 2,

are clearly distinguishable in both panels. The boundary of the superfluid to the

Bose glass is less well defined and it is not even clear that there is a Bose glass

region between the Mott insulator and the superfluid. In these situations, the two

very different wavefunctions give similar average entanglement entropy. Following

on from our discussion of fig. 3.2 in the last section, we also plot in fig. 3.4(c) the

standard error of ζ, ∆ζ, and, similarly, (d) ∆SA|B. In these plots the phases become

clear and their boundaries are consistent with earlier work [72]. In particular, a

Bose glass phase can be easily identified between Mott insulator and superfluid.
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Figure 3.4: Phase diagrams for the disordered Bose-Hubbard model at N/L = 1
given as contour plots of (a) ζ, (b) SA|B, (c) ∆ζ and (d) ∆SA|B. The color
shading goes from low (orange/dark) to high (blue/white) value and its coarse-
graining reflects the (U,∆µ) resolution of our calculations for L = 50. The con-
tour lines correspond to (a) ζ = 0.1, 0.2, . . . , 0.9, (b) SA|B = 0.3, 0.4, . . . , 1.4, (c)
∆ζ/10−4 = 0.1, 1, 2, . . . , 10 and (d) ∆SA|B/10−4 = 0.1, 1, 2, . . . , 10. In all cases the
two extreme contours values are shown as dashed lines. The circles (white) and
squares (blue) denote estimations of K and Eg from finite-size scaling for L → ∞
while the stars (red) indicate the K = 2 values for L = 50 as discussed in the text.
The arrow (black) denotes the expected transition in the clean case at Uc. The
dotted straight line indicates ∆µ = 2U . Error bars (white) show the standard error
of the mean in all cases and are not shown if within symbol size. We emphasize that
the color shading does not directly indicate the transitions, but rather quantifies the
change in entanglement measures.
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Figure 3.5: Luttinger parameter K for various lengths 30–150 at N/L = 1 for the
points shown by white circles on the phase diagrams of fig. 3.4 at (a) ∆µ = 0,
U = 1, 1.1, . . . , 3; (b) U = 1, ∆µ = 3, 3.25, . . . , 5; (c) U = 2, ∆µ = 3.5, 3.75, . . . , 6;
(d) U = 2.5, ∆µ = 3.5, 3.75, . . . , 4.5; (e) ∆µ = 3, U = 2.5, 2.625, . . . , 3.25; (f) U = 2,
∆µ = 0, 0.25, . . . , 1. The horizontal line highlights K = 3/2 for the superfluid to
Bose-glass transition in the presence of disorder (b-f) and K = 2 for the superfluid
to Mott-insulator transition in the clean case (a). The inset shows the finite size
scaling analysis to obtain the critical point in the thermodynamic limit.



Furthermore, we see that the contours for ζ and SA|B in fig. 3.2 are qualitatively

similar, just as those for ∆ζ and ∆SA|B. We emphasize that for the entanglement-

based measures presented here, it is in fact possible to discern all of the phases with

just a single DMRG run for each (U,∆µ, disorder realisation) data point. This is a

clear advantage in terms of numerical costs when compared to calculations based

on Eg, ρs or K.

The standard error on ζ is calculated using a weighted standard deviation.

The ζ parameter is calculated for each seed using

ζs =
1

L− 1

L−1∑
LA=1

[
s1(LA)2 − s2(LA)2 + s3(LA)2 − s4(LA)2

]
, (3.4.1)

where si(LA) is the i-th singular value from an SVD with left block size LA. The

standard error for each seed is then

∆ζs =

√√√√ 1

(L− 1)2

L−1∑
LA=1

[s1(LA)2 − s2(LA)2 + s3(LA)2 − s4(LA)2]2 − ζ2s
L− 1

.

(3.4.2)

The average of ζ over all seeds is

ζ̄ =

∑N
s wsζs∑N
s ws

, (3.4.3)

where ws is the weight for each seed given by ws = 1/∆ζ2s and N is the number of

seeds. The final error is then

∆ζ̄ =

√∑N
s ws(ζs − ζ̄s)2∑N

s wsN
2

. (3.4.4)

The error on the entanglement entropy S is calculated in the same way.

In order to augment the finite-size phases identified in fig. 3.4, we perform

runs with larger L and perform finite-size scaling. In order to find the superfluid-

Bose glass transition in the thermodynamic limit we calculate K for various points

along the boundary for system sizes L = 30, 50, 100 and 150 as shown in fig.

3.5(b-f). The transition is of KT type at K = 3/2. The corresponding points in

(U,∆µ) which are shown as filled circles in fig. 3.4. For reference, we also plot the

points where K = 3/2 for L = 50 (stars). Similarly, the superfluid-Mott insulator

transition point Uc is the point on the zero disorder axis where K = 2 given by fig.

3.5(a). We estimate the critical value as Uc = 1.634±0.002. We also calculate Eg for
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Figure 3.6: Energy gap Eg for various lengths 30–150 and the infinite size
limit at N/L = 1 for the points shown by blue squares on the phase
diagrams of fig. 3.4 at (a) U = 2, ∆µ = 0, 0.25, . . . , 1; (b) U = 3.5,
∆µ = 1.5, 1.75, . . . , 3; (c) U = 5, ∆µ = 3, 3.25, . . . , 5. The horizontal line
highlights Eg = 0 where the gap closes indicating a Bose-glass phase and
the orange dashed line is a guide to the eye. Error bars have been omitted
where smaller than symbol size.

the same system sizes and perform finite size scaling to find the Mott insulator-Bose

glass boundary (fig. 3.6). These are indicated as blue squares in fig. 3.4.

The RG analysis of Refs. [63] and [64] suggests that there may be a further

Anderson glass phase in the low U < ∆µ region of the diagram. This would imply

a critical point along the superfluid boundary at which point K at the transition

becomes disorder dependent in a similar manner to the strongly disordered quantum

rotor model [85, 86]. Our entanglement analysis along with Eg and K shows no sign

of a transition. It does however become very difficult to observe a clear KT transition

in the finite size scaling of K when U � ∆µ and the truncation of the basis becomes

more problematic in this region.
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Figure 3.7: Previous phase diagram for the disordered Bose-Hubbard model at
N/L = 1/2 reproduced from Rapsch et al. [72]. Again, in this diagram ∆ = 1

2∆µ.

3.4.2 Density = 1/2

When N
L = 1

2 the clean case is simply a superfluid for all values of U [53] and

when ∆µ is increased a Bose glass phase is introduced. This is shown for the

thermodynamic limit in fig. 3.7 from Rapsch at al. [72]. Our entanglement measures

indicate that the superfluid phase for L = 50 seems to extend up to ∆µ . 1 for all

U . 5 rather than disappearing with the presence of any disorder as in fig. 3.7. The

Giamarchi-Schulz criterion [63, 72] implies that the Bose-Hubbard model should

be in a Bose glass phase for K < 3/2. The resulting boundaries for the L = 50

case are indicated by the red stars in fig. 3.8. We find that the superfluid phase

extends as far as UK=3/2 = 3.5± 0.1, i.e. it ends somewhat earlier for low ∆µ than

suggested by our entanglement measures. In order to explore this region further,

we have also calculated ρs for fixed ∆µ = 0.5 and sizes L = 50, 100, 150, and 200

as shown in fig. 3.10(a). The results for ρs have been computed for increased bond

dimension χ = 400 with 40 DMRG sweeps and 20 disorder configuration to offset

the reduction in DMRG precision due to PBCs. The figure shows that for U & 3,

ρs decreases when increasing L as expected in the Bose glass phase. However,

the decrease is very slow and, for the system sizes attainable by us, even seems

to saturate at non-zero values. These results suggest that for finite systems, the

K = 3/2 criterion significantly underestimates the extent of the superfluid phase,

while our four entanglement measures and ρs predict a much larger region.
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Figure 3.8: Phase diagrams for the disordered Bose-Hubbard model at N/L = 1/2
given as contour plots of (a) ζ, (b) SA|B, (c) ∆ζ and (d) ∆SA|B. Colors, symbols
and lines (solid and dashed) denote corresponding estimates as in fig. 3.4. The black
contour lines correspond to (a) ζ = 0.2, 0.3, . . . , 0.8, (b) SA|B = 0.3, 0.4, . . . , 1.2, (c)
∆ζ/10−3 = 0.1, 1, 1.5, 2, 3, 4 and (d) ∆SA|B/10−3 = 0.1, 1, 1.5, 2, 3, 4. The black
arrow corresponds to Uc as discussed in the text.
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Figure 3.9: Luttinger parameter K for various lengths 30–150 at N/L = 1/2 for the
points shown by white circles on the phase diagrams of fig. 3.8 at (a) ∆µ = 0, U =
2.5, 2.6, . . . , 4; (b) U = 0.5, ∆µ = 1, 1.1, . . . , 2; (c) U = 1.5, ∆µ = 1, 1, 1, . . . , 2.5; (d)
U = 3, ∆µ = 0.1, 0.2, . . . , 2 As in fig. 3.5, the horizontal line highlights K = 3/2 for
the superfluid to Bose-glass transition and there is no Mott-insulating phase when
N/L = 1/2. Again, the inset shows the finite size scaling analysis to obtain the
critical point in the thermodynamic limit.
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Figure 3.10: Superfluid fraction ρs(U) for N/L = 1/2 with ∆µ = 0.5 for
lengths 50 – 200. The vertical line indicates Uc = 3.09. The inverted
triangles give the finite-size scaled L → ∞ limit with the dashed line a
guide to the eye.

Performing a finite-size scaling analysis for K as shown in fig. 3.10(a) we

find the U values, for which K ≡ 3/2 in the limit L → ∞, converge towards a

limiting value of Uc = 3.09 ± 0.01 (see also fig. 3.8). This again indicates that in

an infinite system, we expect the superfluid to Bose-glass transition to take place

at much lower values of Uc than observed for L = 50. The relevance of this result

is of course that experimental realizations of the Bose-Hubbard model are typically

in cold atom systems, which are limited to finite system sizes, currently a typical

lattice dimension is ∼ 50 − 100 sites [57]. For values of ∆µ & 1, the situation

is less severe and we see in fig. 3.8(a+b) that our entanglement-based measures

again qualitatively agree with the Giamarchi-Schulz criterion, both for L = 50 and

estimated via finite-size scaling at L→∞.

3.4.3 Density = 2

To the best of our knowledge, the phase diagram for N/L = 2 has not been shown

before in the literature. Due to our numerical restriction of five bosons per site, this

regime is close to the limit of what can be studied reliably, particularly for small U

where the lack of strong repulsion implies that most of the bosons should occupy
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Figure 3.11: Contour plot showing average maximum site filling averaged
over 100 samples. The maximum possible is limited at 5. The contour
lines indicate 3, 4 (dashed) and 2.5, 3.5, 4.5 (solid). The results from Lut-
tinger parameter analysis and energy gap are plotted with the same symbol
convention as figs. 3.4, 3.8 and 3.12.

a small number of sites. This is illustrated by fig. 3.11, which shows that average

maximum occupancy of a site is almost 5 for small U and large ∆µ but is lower for

much of the rest of the phase diagram. For large U , one might expect that we will

have a Mott insulator of boson pairs, while a superfluid of boson pairs emerges for

small U and small ∆µ. Similarly, we envisage a disordered Bose glass phase for large

∆µ. With more particles per site than in the N/L = 1 case, we could furthermore

expect that the Mott transition at ∆µ = 0 happens at larger values of U , since the

energy cost of avoiding a two-boson per site state is substantially larger. Similarly,

the cost for two boson pairs to go onto the same site is 2U , hence we expect the

2U = ∆µ/2 line to characterize the superfluid phase as in the N/L = 1 case. In

addition, one might conjecture to see a remnant of the U = ∆µ/2 condition.

In fig. 3.12, we show that our expectations are largely validated. Of particular

interest is that a double lobe shape for the superfluid phase emerges and allows

a possible re-entrant behaviour given a suitable cut across parameter space. The

gradient of the Mott insulating phase boundary is shallower (∼ 4/3) when compared

to N/L = 1. Furthermore, both the ζ and SA|B based entanglement measures, as

well as their errors, ∆ζ and ∆SA|B, capture the phases equally well and agree

with the K and Eg estimates. Note that for N/L = 2, the KT superfluid-to-Mott

transition at ∆µ = 0 corresponds to K = 2 and we use finite-size scaling for the
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Figure 3.12: Phase diagrams for the disordered Bose-Hubbard model at N/L = 2
given as contour plots of (a) ζ, (b) SA|B, (c) ∆ζ and (d) ∆SA|B. Colors, symbols
and lines (solid and dashed) denote corresponding estimates as in figs. 3.4 and 3.8.
The contour lines correspond to (a) ζ = 0.1, 0.2, . . . , 0.9, (b) SA|B = 0.2, 0.3, . . . , 1.4,
(c) ∆ζ/10−4 = 0.1, 1, 2, 3, 4, 6, 8, 9, 10 and (d) ∆SA|B/10−4 = 0.1, 1, 2, 3, 4, 6, 8, 9, 10.
The two dotted straight lines indicates ∆µ = 2U and 4U .
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Figure 3.13: Luttinger parameter K for various lengths 30–150 at N/L = 2 for the
points shown by white circles on the phase diagrams of fig. 3.12 at (a) ∆µ = 0,
U = 1, 1.1, . . . , 4; (b) U = 2, ∆µ = 8, 8.5, . . . , 12; (c) U = 3, ∆µ = 9, 9.5, . . . , 13;
(d) ∆µ = 10, U = 3, 3.25, . . . , 4.5; (e) U = 4.25, ∆µ = 6, 6.5, . . . , 10; (f) ∆µ = 6,
U = 4, 4.25, . . . , 6; (g) U = 3.5, ∆µ = 0.5, 1, . . . , 3. As with fig. 3.5, the horizontal
line highlights K = 3/2 for the superfluid to Bose-glass transition with disorder
(b-g) and K = 2 for the superfluid to Mott-insulator transition when clean (a).
Again, the inset shows the finite size scaling analysis to obtain the critical point in
the thermodynamic limit.
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Figure 3.14: Energy gap Eg for various lengths 30–150 and the infinite size
limit atN/L = 2 for the points shown by blue squares on the phase diagrams
of fig. 3.12 at (a) U = 3.5, ∆µ = 0.5, 1, . . . 3; (b) U = 6, ∆µ = 2, 2.5, . . . , 6;
(c) U = 8, ∆µ = 4, 4.5, . . . , 9. The horizontal line highlights Eg = 0 where
the gap closes indicating a Bose-glass phase and the orange dashed line is a
guide to the eye. Error bars have been omitted where smaller than symbol
size.

Luttinger parameter to find Uc = 2.75± 0.03 as shown in fig. 3.13(a).

3.5 Conclusion

We have analysed the phase diagrams of the disordered Bose-Hubbard model for

fillings N/L = 1/2, 1 and 2 using the entanglement-based measures ζ, SA|B, ∆ζ and

∆SA|B. We found that these measures are an excellent means of quickly identifying

the different phases of the system while reducing the number of DMRG runs per

measurement or removing the need for special boundary conditions. However, ζ

and SA|B alone did not always faithfully reproduce the phase diagrams and were

sometimes misleading regarding the positions of the phase boundaries. The error-

based measures, ∆ζ and ∆SA|B, provide a much clearer picture — the distributions

of the values contain more information regarding the nature of the phase than the
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mean values alone.

For N/L = 1 the phase diagram is as calculated in previous papers [66, 70, 72]

using K, Eg and ρs, providing strong support for the method based on using ζ, SA|B,

∆ζ and ∆SA|B. For N/L = 1/2 the diagram shows strong finite size effects and the

critical U defined by the Giamarchi-Schulz criterion is not apparent for these finite

systems. Finally for N/L = 2 the superfluid phase has a double-lobed appearance

giving rise to re-entrance phenomena.
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Chapter 4

General Tensor Networks

4.1 Success and Failure of DMRG

When performing DMRG simulations the modelling of some systems is far more suc-

cessful than for others. For one dimensional systems away from criticality DMRG

requires a much smaller χ than for critical systems to obtain the same accuracy

[9, 19, 87, 88, 89]. The reason relates to the fact that away from criticality sys-

tems are gapped, that is, in the limit of infinite systems, have a largely discrete low

energy spectrum with a non-zero energy difference between the ground and first

excited state [90]. For gapped phases, when diagonalising the density matrix for

White-style DMRG, or performing the SVD for variational MPS, the magnitudes of

the eigenvalues (singular values) decrease exponentially as a function of eigenvalue

(singular value) number [19]. Thus when selecting a limited number of eigenvalues

(singular values) very little weight is discarded as the higher values do not signifi-

cantly contribute to the overall wavefunction [87].

As an example, fig. 4.1 shows the singular values from an SVD at the centre of

an MPS obtained from a DMRG simulation of the Bose-Hubbard model as discussed

in chapter 3. The system size is 50 sites with χ = 200 and the different symbols

are different values of the Hubbard U . For U . 1.6 the system is in a superfluid

state and is critical; for U & 1.6 the system is in a Mott insulating state. When

U = 5 the system is far away from criticality and as such the singular values decrease

exponentially. The blue circles for U = 2.5 are for a gapped system but closer to

the critical point and as such have larger contributions from higher singular value

number.

Critical systems are also referred to as gapless systems due to the fact that in

the thermodynamic limit the energy spectrum is largely continuous. For finite lattice
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Figure 4.1: Values, sn, of the singular values for the centre of a DMRG
simulation of the Bose-Hubbard model. The system is 50 sites long with
χ = 200 and the different symbols are various values of Hubbard U .

systems the continuity of the energy spectrum is not obvious. The fact that there are

only a finite number of eigenvalues in the spectrum means that there necessarily will

be a non-zero energy difference between ground and first excited states. It is only in

the infinite system limit that the gap closes [90]. The distribution of density matrix

eigenvalues (singular values) in DMRG is also different for these critical systems.

The eigenvalues (singular values) decrease in magnitude polynomially, which puts

far more weight in the tails of the distribution [88, 89]. This is shown by the example

of the Bose-Hubbard model in fig. 4.1. The magnitudes of the singular values for the

black triangles at U = 1 decrease much more slowly than the red squares at U = 5.

Thus when taking only a finite number of eigenvectors in the DMRG algorithm,

more information is discarded, resulting in poorer performance. Note also that the

step-like structure is due to symmetries in the Hamiltonian.

When insufficient χ is used it is not just the energy that is not correctly

represented; many of the physical observables will not be correctly modelled. For

example, for critical systems the two-point correlation function has a power law

decay when plotted with respect to separation of points as opposed to an exponential

decay for gapped states. This is illustrated by fig. 4.2(a), which shows the 〈bx1 .b
†
x2〉

correlation function when averaged over all pairs of x1 and x2 for the Bose-Hubbard
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Figure 4.2: The 〈bx1 .b
†
x2〉 correlation function averaged over all x1 and x2

separated by |x1 − x2|. (a) An example of the correlation function for a
critical system where U = 1 (triangles), and a gapped state where U = 2.5
(circles) with χ = 200. (b) Comparing different bond dimensions used for
the DMRG of a system of 50 sites with U = 1. Different symbols represent
different bond dimension, where χ > 100 does not affect the form of the
correlation function.

model in a critical superfluid (U = 1) and gapped Mott insulator (U = 2.5). When

χ is too small the correlation will be approximately the power law for some length

scale and decay exponentially for large separations. This length scale is increased

by imposing a larger χ as shown in fig. 4.2(b) for the U = 1 superfluid phase of the

Bose-Hubbard model.

Two dimensional systems have been attempted using DMRG from early on

in its development [91, 92, 93], but with limited success. The distribution of density

matrix eigenvalues (singular values) decreases polynomially but much slower than in

the critical case [89, 94]. Thus the use of DMRG in two dimensions is restricted to

small systems as the number of states that have to be kept increases exponentially

with system size [9]. There has been some success by imposing PBCs on one dimen-

sion and keeping its size small, effectively making a quasi-one-dimensional cylinder

[95, 96]. Increasing the cylinder circumference requires a large increase in χ, for

example a circumference of 17.3 sites was achieved by Depenbrock et. al. [95] at a

cost of χ = 16000.

4.2 The Area Law for Entanglement Entropy

The observations described in section 4.1 are quantified by the area law for entangle-

ment entropy. From first glance one would assume that the amount of entanglement

for some region A with respect to B would be proportional to the volume of A.
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Figure 4.3: For an MPS a region A is bounded by two bonds, denoted by
red lines. If the size of A is increased the number of bonds stays at 2. The
bold green line highlights the minimum path between two sites.

This is true of most states of most systems, but it was found that for the ground

state of gapped quantum systems the entanglement, quantified by the von Neumann

entropy (eq. (2.4.4)), scales as the boundary to this region [97].

For tensor networks the boundary is quantified by the number of bonds nA

that connect region A to the environment. The reasoning behind this measure [44]

is that if all of the tensors are identical, with a bond dimension χ the maximum

contribution to the entanglement entropy per bond is log2(χ). Evenbly and Vidal

[44] go further to suggest that for most cases of homogeneous tensor networks the

entanglement per bond is approximately 1, hence SA|B ≈ nA. This gives a reason for

the excellent scaling for DMRG in one dimensional gapped systems. The boundary

of a region on a one dimensional system is simply two points and does not increase

when the region is expanded. An MPS has these same properties; the number of

bonds that one would have to cut to separate region A from the environment (B)

is 2 and does not change if the size of A is altered, as shown in 4.3. The fact that

the MPS has the same entanglement properties as the ground state of a gapped one

dimensional system makes it an ideal variational ansatz for such problems.

The area law also explains the poor performance of DMRG for critical and

two dimensional systems. For critical systems the entanglement entropy scales loga-

rithmically with the region size (SA|B ∝ log(L)) [98, 99], hence the bond dimension

required for accurate DMRG increases with system size. For two dimensional sys-

tems, take a square lattice with a square region within it. If the region has side

length L the area law suggests that the entanglement entropy should scale as its

boundary SA|B = 4L ∝ L, thus the MPS is insufficient as a variational ansatz for the

two dimensional system. A more appropriate, area law conserving ansatz would be

a tensor network where all sites are connected to their four neighbours to match the

lattice geometry, as shown in fig. 4.4. This tensor network is known as a projected

entangled pair state (PEPS) and is the natural two dimensional extension of the
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Figure 4.4: A PEPS on a square lattice, where the PEPS tensors are blue
squares, the virtual indices are vertical and horizontal, and the physical
indices are those pointing diagonally down. As before, the region under
consideration is highlighted in blue and the bonds that separate it from the
rest of the system are shown by red lines. Here the boundary scales as 4L
and is therefore area law conserving.

MPS [35, 47, 100, 101].

Although PEPS is area law satisfying and therefore a more appropriate

ansatz for a two dimensional system, its advantages come at a cost. Contract-

ing a bra and ket PEPS state is a problem that scales exponentially with system

size and there is no canonical form that gauges away the problem like in MPS [2].

Therefore to perform an update it is necessary to approximate the environment and

compress it into an MPO. Even so, performing an update to a site using the tradi-

tional method [102] costs O(χ10). As a result, PEPS is restricted to small system

sizes and χ. For example ref. [102] look at a 20 × 20 lattice with χ = 6. Other

methods have pushed this to χ = 60 for a lattice on a semi-infinite cylinder [103].

Despite this large computational cost and small possible bond dimension, PEPS has

proved a valuable numerical [103, 104] and analytical tool [105].

Using DMRG and PEPS as variational ansätze relies on the algorithms being

able to find the ground state in a reasonable amount of time; that this is possible

is not necessarily expected. The Hilbert space for many-body systems is incredibly

large as it scales exponentially with lattice size, thus the number of possible states

to search through to find the ground state is equally expansive. The fact that for

a large number of quantum many-body systems the ground state is known to have

be area law conserving rather than volume-law makes the problem more tractable.
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Hilbert Space

States satisfying the area law

Figure 4.5: Diagrammatic representation of the exponentially large Hilbert
space and the small corner of the space that area law conserving states
occupy.

Setting the geometry of the tensor network such that it is area law conserving, such

as using an MPS or PEPS, constrains the search to a small corner of Hilbert space

[2, 4], as shown in fig. 4.5. This corner turns out to be exponentially smaller than

the full Hilbert space [3], allowing algorithms to efficiently find the ground state.

Increasing bond dimension χ expands this small corner, allowing states with larger

than area law entanglement to be simulated. Indeed, in the limit of χ → ∞ all of

Hilbert space is accessible [2].

4.3 Beyond the Area Law

There is currently a lot of excitement around the so-called AdS/CFT correspondence

and possible applications in condensed matter physics [106]. AdS/CFT is most

well known in high energy physics where it was noted [107] that there exists a

duality between certain theories of gravity on d+2 dimensional Anti-de Sitter (AdS)

spacetime and CFTs living on its d+ 1 dimensional boundary. In condensed matter

systems, AdS/CFT can provide a geometric interpretation of renormalization group

(RG) techniques since the additional holographic dimension can be interpreted as a

scale factor in the RG coarse graining [106].

The relation to entanglement properties of quantum many body systems has

its roots in the theory of black hole thermodynamics. It was found [108, 109, 110]

that black holes obey thermodynamics and have a thermal entropy that scales with

the surface area of the black hole. This resulted in the famous Bekenstein-Hawking
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minimal surface

holographic dimension

Figure 4.6: A diagrammatic representation of the AdS/CFT correspon-
dence, showing a (d + 1) dimensional CFT on the boundary of a (d + 2)
dimensional AdS spacetime. The entanglement entropy of a region A of the
CFT is proportional to the minimal surface γA that separates A from the
remainder of the CFT.

formula [111]

SBH =
Ah

4GN
, (4.3.1)

where Ah is the area of horizon, GN is Newton’s gravitational constant and BH

either stands for Bekenstein-Hawking or black hole.

The ideas were extended to entanglement entropy in the context of AdS/CFT

by Ryu and Takayanagi [111]. AdS/CFT suggests a duality between a (d + 1) di-

mensional CFT on the boundary of AdSd+2 and a quantum gravity in the bulk. The

entanglement entropy of a region A of the CFT is related to the size of the surface

with smallest area, or minimal surface γA, within the AdS bulk that separates A

from the rest of the system, rather than the boundary within the CFT as suggested

by the area law. This is shown pictorially in fig. 4.6 where the holographic dimension

is interpreted as the renormalisation scale. The result is

SA|B =
AγA

4G
(d+2)
N

, (4.3.2)

where AγA is the area of the minimal surface γA and G
(d+2)
N is Newton’s constant

in d+ 2 dimensions.

It has been argued recently [44, 45, 112] that tensor networks, particularly
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the multi-scale entanglement renormalisation ansatz (MERA) [34, 42, 113], can be

a coarse grained embodiment of AdS/CFT. The structure of MERA, shown in fig.

4.7, is made up of disentanglers (green squares) and isometries (pink triangles) [34].

The intuitive argument behind its construction is that the disentanglers remove

entanglement so that the isometries can then remove degrees of freedom that are

no longer coupled to the system. The network is self-similar in the way that at

each level of coarse graining the network looks the same and it is the direction of

coarse graining, perpendicular to the physical lattice, that is the extra holographic

dimension.

Just as with MPS and PEPS and the area law, the minimal surface γA is

found by counting the minimum number of bonds that have to be cut to separate

one region from the rest of the system. Take, for example, a region comprised of L

sites within a MERA as shown in fig. 4.7. The minimum number of bonds (red lines

in fig. 4.7) nA ≈ log(L), which matches the entanglement scaling of critical systems

[44]. As an extension of this, it was shown [114, 115, 116] that in the continuum

limit of MERA it has a metric that matches the properties of AdS/CFT.

In addition to entanglement entropy, similar arguments hold for two-point

correlation functions [44, 112]. The asymptotic scaling of correlation functions

should be

CTN(x1, x2) ∼ e−αDTN(x1,x2), (4.3.3)

where DTN is the path with the minimum distance or geodesic connecting points x1

and x2. For MPS DMPS = |x2 − x1|, as shown as the bold line in fig. 4.3. Hence

CMPS(x1, x2) ∼ e−αDMPS(x1,x2) = e−|x2−x1|/ξ, (4.3.4)

where ξ is the correlation length, matching the exponential decay observed in fig.

4.2(b) when χ is insufficient. MERA, on the other hand has path lengths that scale

logarithmically with separation of x1 and x2 (DMERA(x1, x2) ∝ log2(L)), as shown

in fig. 4.7. Thus

CMERA(x1, x2) ∼ e−αDMERA(x1,x2) = |x2 − x1|−q, (4.3.5)

recovering the power law decay profile characteristic of critical systems.
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Figure 4.7: Tensor network diagram of a MERA with PBCs where the
green squares are disentanglers, pink triangles are isometries and the blue
circle is the top tensor. A region of the network corresponding to L sites
is highlighted in blue, where the bonds making up the minimum surface
are highlighted by the red lines. The bold green line highlights a geodesic
connecting two points on the lattice.



Chapter 5

Tensor Network Strong

Disorder Renormalisation

5.1 Introduction

For disordered quantum many-body systems, the strong-disorder renormalisation

group (SDRG) provides a powerful and elegant means of analysing a system by

concentrating principally on the disorder within it [117]. The approach was orig-

inally devised by Ma, Dasgupta and Hu (MDH) [118, 119] for the random anti-

ferromagnetic (AFM) Heisenberg chain

H =
L−1∑
i=1

Ji~si · ~si+1, (5.1.1)

which is the same as eq. 2.6.22 but the coupling constant Ji is different for each

position, taking a random value 0 < Ji < Jmax according to some probability

distribution P (J). The principle behind the SDRG is to eliminate the most strongly

coupled pairs of spins and replace them with an effective interaction that couples the

spins at either side of the pair, as shown in fig. 5.1(a). The pair of spins coupled by

Jmax are thought of as being frozen into a singlet ground state as the neighbouring

interactions are significantly weaker — ultimately leading to the random singlet

phase, which is the ground state of the system [120, 121]. This freezing of degrees

of freedom is remarkably close to an update process in entanglement RG for tensor

networks [42] and also suggests the possible usefulness of AdS/CFT for disordered

spin chains. By analysing the probability of survival through the SDRG algorithm

it is possible to predict that mean correlations will have a power-law decay [120]

with negative power 2. Similarly, the entanglement entropy can be shown to scale
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(a)

renormalize

(b)

renormalize

(c)

Figure 5.1: Schematic diagrams of the various SDRG variants. Horizontal
lines indicate the 1D spin system. (a) Traditional MDH SDRG [118], spins
~si, ~si+1 (arrows) with the greatest coupling strength, Ji > Jk∀k 6= i, are
removed and replaced by an effective coupling J̃ . (b) SDRG of Westerberg
et. al. [123], spin pairs are renormalised for the largest energy gap ∆i

and replaced by an effective spin S̃. (c) SDRG variant of Hikihara et.
al. [124], the chain is decomposed into blocks of spins described by block
HamiltoniansHB (shaded rectangles), with left and right spins, respectively,
sL and sR (dark dots) on the boundaries of the blocks forming the coupling
Hamiltonians, HC .

logarithmically with block size [122], where the amount of entanglement between

blocks A and B is quantified by the von Neumann entropy of eq. (2.4.4).

In this chapter, we develop a self-assembling TTN algorithm based on the

previous ideas of SDRG [123, 124]. This allows us to calculate properties such as

expectation values, correlation functions and entanglement entropy directly and ef-

ficiently from the geometry of the TTN. In particular, we find that the distance

dependence of the spin-spin correlation function can be studied not only via direct

calculation of the correlation functions, but also via the holographic distance de-

pendence along the tree network connecting two sites. In section 5.2 we will briefly

review the numerical SDRG of Hikihara et al. [124] and define the states and oper-

ators that form the basis for our work. Section 5.3 shows how the numerical SDRG

on an MPO self-assembles the TTN. In section 5.4 we discuss the details of the

algorithms used in the chapter. Finally, in section 5.5 we compute correlation func-

tions and entanglement entropy (i) directly using the TTN as well as (ii) via simply

counting the path lengths and connectivities in the holography. We find that both
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approaches give consistent results.

5.2 MPO Implementation of the SDRG

5.2.1 The Numerical SDRG

The SDRG method was extended to both ferromagnetic (FM) and AFM couplings

by Westerberg et. al. [123, 125]. The approach finds the neighboring pair of spins

~si, ~si+1 with the greatest energy gap ∆i between the ground state and excited state

and combines them into a single effective spin S̃ (fig. 5.1(b)). The effective couplings

between the new spin and its neighbours are then recalculated using Clebsch-Gordan

coefficients and the new gaps ∆̃i−1 and ∆̃i updated. SDRG was once more extended

by Hikihara et. al. [124] to include higher states at each decimation, in the spirit

of NRG [7] and DMRG [15]. This method therefore decomposes the system into

blocks rather than larger spins allowing for more accurate computation of, e.g., the

spin-spin correlation functions. The more states that are kept at each decimation

the more accurate the description and it is exact in the limit of all states kept.

Consider a point in the algorithm where the Hamiltonian is made up of blocks

HB
i at each site and couplings HC

i,i+1 between them as in fig. 5.1. The couplings

take the form of a two spin Hamiltonian

HC
i,i+1 = Ji~s

R
i · ~sLi+1, (5.2.1)

where ~sRi is the spin operator of the right hand spin of block i and ~sLi+1 is the left

hand spin of block i+ 1. In full the Hamiltonian is

H =

NB∑
i=1

HB
i +

NB−1∑
i=1

HC
i,i+1, (5.2.2)

where NB is the number of blocks.

Let us now define the gap ∆i as the energy difference between the highest-

energy SU(2) multiplet that would be kept and the lowest-energy multiplet that

would be discarded in a renormalisation of block HB
i,i+1. The scheme works by

searching for the pair of blocks with the largest gap ∆im and then combines the

coupling and the blocks that it connects into a single block

HB
im,im+1 = HB

im +HC
im,im+1 +HB

im+1. (5.2.3)

This block and the couplings either side are then renormalised by a matrix, Vχ, of the
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eigenvectors corresponding to the lowest χ eigenvalues of the block, such that only

full SU(2) blocks are kept. The process is repeated until the system is represented

by one block. The explicit form of the algorithm is as follows [124]:

1. Find the coupling Hamiltonian with the largest gap ∆im and create the two-

site block.

2. Diagonalise the two-site block to find the χ ≤ χ′ lowest eigenvalues Λχ and

corresponding eigenvectors Vχ such that only full SU(2) multiplets are kept,

where χ′ is the maximum number of eigenvectors and is set at runtime.

3. Set the χ eigenvalues Λχ from the diagonalisation as the new two-site block,

which is equivalent to renormalising the two site block with Vχ

H̃B
im,im+1 = V †χH

B
im,im+1Vχ = Λχ. (5.2.4)

4. Renormalise the spin operators on the right and left hand side of the new

block to update the couplings

~̃sRim = V †χ (11⊗ ~sRim+1)Vχ

~̃sLim = V †χ (~sLim ⊗ 11)Vχ. (5.2.5)

5. Diagonalise the neighbouring blocks to get the new gaps.

6. Remove site im + 1 and return to step 1.

This process is repeated until the whole system is described by one block.

5.2.2 Numerical SDRG as an MPO Process

Hikihara’s numerical SDRG can be naturally described as a set of operations on an

MPO (see chapter 2).

1. First, we contract the MPO tensors for the pair of sites with the largest gap,

sites im and im + 1 (fig. 5.2(a)

W [im,im+1] =
∑
bim

W
σim ,σ

′
im

bim−1,bim
W

σim+1
,σ′im+1

bim ,bim+1
. (5.2.6)

Here we have σim = 1, . . . , χ for the physical indices and, for the Heisenberg

model (5.1.1), the virtual indices are bim = 1, . . . , 5.
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(a)

(b)

contract fuse

(c)

=

Figure 5.2: (a) Tensor network diagram of the MPO. The (vertical) σ and σ′ legs
denote physical indices and couple to the tensor network wavefunction and con-
jugate. The b’s are virtual indices (in horizontal direction) and couple the local
tensors (blue-shaded squares) of the MPO to each other. (b) The pair of sites with
the largest gap ∆im is found, the MPO tensors for these sites are contracted and the
physical indices fused to form a matrix. (c) Contracting the matrices of eigenvectors

Vχ (red-shaded rectangle) and V †χ creates a new MPO for a coarse-grained system.
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Figure 5.3: Matrix product diagram showing the contraction step (5.2.8)
for the Heisenberg Hamiltonian (5.1.1). Circles (and ellipses) denote (com-
bined) operator entries in the Heisenberg MPO W [i,i+1]. (a) Renormalising
the on-site components has the effect of creating a new on-site component,
which is a diagonal matrix of the lowest eigenvalues Λχ. (b) Contracting

Vχ and V †χ has the effect of renormalising the coupling spins in the same
way as the Hikihara method, storing them as the coupling components of
the new MPO tensor.

2. Next, we perform an eigenvalue decomposition on the on-site components of

the new MPO tensor keeping the eigenvectors of the lowest χ eigenvalues Vχ

Λχ = V †χ (HB
im ⊗ 11 + Jim~s

R
im · ~s

L
im+1 + 11⊗HB

im+1)Vχ. (5.2.7)

As with Hikihara’s algorithm, only the χ eigenvalues that make up full SU(2)

multiplets are used.

3. Then we contract Vχ and V †χ with the new MPO tensor to perform the renor-

malisation (fig. 5.2(b). For the moment write the two-site combined MPO

W [im,im+1] in terms of an effective site with index τ = 1, . . . , χ, χ+ 1, . . . , χ2,

i.e. W τ,τ ′

bim−1,bim+1
. Similarly, we can write the set of eigenvectors as [Vχ]

σ̃im
τ .
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Then the contraction is explicitly given as

W
σ̃im ,σ̃

′
im

bim−1,bim
=
∑
τ,τ ′

[V †χ ]
σ̃im
τ W τ,τ ′

bim−1,bim
[Vχ]

σ̃′im
τ ′ , (5.2.8)

where σ̃im = 1, . . . , χ is the spin index of the renormalised site im. Hence we

replace sites im and im + 1 with a single renormalised site and relabel the

remaining indices. The contraction makes the on-site component of the new

MPO simply a diagonal matrix of the lowest χ eigenvalues Λχ (fig. 5.3(a)). It

also has the effect of renormalising the coupling spins just as in the Hikihara

approach (fig. 5.3(b))

~̃sRim = V †χ (11⊗ ~sRim+1)Vχ, (5.2.9)

~̃sLim = V †χ (~sLim ⊗ 11)Vχ. (5.2.10)

The contraction therefore maps two MPO tensors onto one while preserving

the indexing structure of the MPO.

4. As the final step, we diagonalise the neighbouring blocks to update the distri-

bution of gaps.

The procedure is then repeated until the system is just one site, and we diagonalise

to obtain the ground state energy Eg of the system.

5.3 Tree Tensor Networks and SDRG

The MPO description of SDRG given above amounts to a coarse-graining mechanism

that acts on the operator. Alternatively, we can view it as a multi-level tensor

network wavefunction acting on the original operator. To illustrate this, we can

split the τ index of V †χ as in eq. (5.2.8) back to the original spin indices σim , σim+1

to create an isometric tensor [34] or isometry
[
V †χ
]σ̃im
τ
≡ [w]σ̃imσim ,σim+1

. The isometric

property means that ∑
σim ,σim+1

[w]
σ̃im
σim ,σim+1 [w†]

σ̃′im
σim ,σim+1 = δσ̃im ,σ̃

′
im , (5.3.1)

or ww† = 11 6= w†w (fig. 5.4(a)). A renormalisation in the SDRG algorithm as in fig.

5.2(b+c) can then be rephrased graphically as in fig. 5.4(b). This makes the notion

of mapping two MPO tensors to one immediately explicit.
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Holographic 
Dimension

Lattice 
Dimension

Figure 5.4: (a) Schematic representation of the isometric property ww† = 11 given
by eq. (5.3.1). (b) One step in the MPO SDRG algorithm in terms of isometric
tensors w. Triangles (red-shaded) denote the isometries, squares are as in fig. 5.2.
(c) The SDRG algorithm as a TTN for a chain of L = 20 sites. The squares are the
MPOs (i.e. the spin operators), triangles are isometric tensors and solid lines denote
summations over physical (vertical) and virtual (horizontal) indices as before. The
circle indicates the top tensor, i.e. the ground state eigenvector of the coarse-grained
system. Lattice and holographic dimensions are indicated by the dashed arrows.
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Figure 5.5: Isometries that do not share legs can be computed in any order.

When viewed in terms of isometries, the algorithm can be seen to self-

assemble a tensor network based on the positions of largest gaps before each renor-

malisation. When written in full, it builds an inhomogeneous binary TTN as shown

in fig. 5.4(c). We shall henceforth refer to this TTN approach to SDRG as tSDRG.

Tree tensor networks are one of the major areas of tensor network research and

TTNs with regular structures have been extensively studied [35, 43, 47, 126]. The

isometric nature of the isometries allows for calculations to be performed in a highly

efficient manner [34, 43, 127].

5.4 Algorithmic Detail

5.4.1 Indexing

The fact that the tensor network is built in the order of the SDRG algorithm means

that its structure is not regular and is different for each disorder realisation. This

means that we need an indexing convention that contains information about the

structure of the network so that the isometries and density matrices can be con-

tracted in the correct way. In order to calculate observables we need to know the

order in which pairs of spins are renormalised and which tensors are connected to

each leg of every isometry. This contains all of the structural information necessary

to define the tensor network uniquely up to trivial commutations visualised in fig.

5.5. In this indexing scheme there are two relevant dimensions; The position on the

lattice (l), drawn horizontally and the SDRG iteration number (i) drawn vertically

with the start at the bottom and end at the top as shown in fig. 5.6. The process

of indexing is as follows:

1. Begin the SDRG algorithm with iteration i = 1 and a temporary array

(current) that contains information regarding the tensors that are below that

point in the algorithm, initially L elements filled with zeros.

2. Store the position of the maximum J as element i in an array order.
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Figure 5.6: An example of how the indexing algorithm works based on a 10 site ten-
sor network. The horizontal dimension gives position in the chain l and the vertical
dimension gives SDRG iteration number i. The grey x-axes highlight the current
horizontal position as the algorithm progresses. The isometries wi are labeled by
iteration number and hence there is one per i level. The numbers along the lines
show the value of current for that leg at that point in the algorithm. It is this value
which shows which isometry is connected below.



3. Store the values of currentJmax and currentJmax+1 in arrays tL and tR that

give the tensor connected to the lower left and right legs.

4. Update the current array by setting element currentJmax to i and removing

element currentJmax+1.

5. Finish the SDRG iteration, thus removing a site and relabelling the horizontal

position. Increase i by 1 to start a new SDRG iteration and return to step 2.

At the end of the algorithm orderi stores the vertical position of isometry i in the

algorithm, and tLi and tRi store the index of the isometries that are connected to

the bottom legs of each isometry. tL and tR are useful when indexing the density

matrices as they show which isometry will be connected when contracting from the

top down. Therefore we now have sufficient information to update the isometries

going upwards through the network and update the density matrices going down-

wards. Figure 5.6 shows an explicit example of the indexing algorithm for a 10 site

TTN. In this case the resulting arrays are

order = {2, 1, 7, 6, 2, 4, 2, 2, 1},

tL = {0, 0, 0, 0, 0, 0, 5, 7, 2},

tR = {0, 1, 0, 3, 0, 4, 0, 6, 8}. (5.4.1)

5.4.2 Correlation Functions

An expectation value is calculated by contracting the appropriate operator, likely

given as an MPO, with the whole TTN wavefunction (|Ψ〉) and its conjugate (〈Ψ|).
In general for a tensor network this is a very difficult and costly process. For the

TTN it is made more simple by following the order in which the SDRG progresses,

contracting a pair of MPO tensors with an isometry and its conjugate each step

until the top of the tree.

When the expectation value is for an operator that does not act on every

site, such as the two-point correlation function in fig. 5.7, only those tensors that

affect the sites that the operators act on need to be included. This is known as the

causal cone [34] and is drawn as a blue shadow in the holographic bulk. This allows

for a reduction in the number of contractions that need to be performed to obtain

a result. Further optimisations can be performed by storing blocks of tensor that

have already been contracted for later use. This approach is particularly useful for

the two-point correlator as, typically, the expectation value for all pairs of sites will
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Figure 5.7: Diagram showing the TTN form of the correlation function
〈~s3 ·~s15〉 in the 20 site system from fig. 5.4(c). The causal cone is indicated
by a light blue shaded region and the bold green line shows the path length
through the TTN connecting the two sites. Otherwise lines and symbols as
in fig. 5.4(c).

be needed and subsets of the tree will be reused multiple times. An algorithm to

calculate two-point correlation progresses as follows:

1. Start with the left point at site x = 1 and right point at site x+ 1.

2. Make a vector of the tensors that connect the left and right points to the top

tensor.

3. Find the first value in the intersection of these two vectors. This gives the

highest isometry in the path connecting the two points (see, for example, the

bold green line in fig. 5.7).

4. Contract the spin operator for each point with the isometries and their con-

jugates up to the common node, tracing over any leg that is not connected to

the operator.

5. Before contracting the common node store the new renormalised left point

operator.

6. Contract up to the top tensor.

7. Move the right point to the right by one site. Repeat from step 2 but reuse

the left block as the highest point in the path connecting the two points will
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Figure 5.8: Diagrammatic form of (a) the TTN density matrix ρ and (b) the
reduced density matrix ρA where the legs of block B have been traced over.
For simplicity the large triangle represents the full TTN for wavefunction
Ψ.

only ever grow, to a maximum at the top of the tree.

8. Restart with the left point across one site.

5.4.3 Entanglement Entropy

In a TTN the density matrix ρ = |Ψ〉 〈Ψ| has a graphical form made up of a full

TTN and its conjugate as shown in fig. 5.8(a). The reduced density matrix ρA for

block A is the density matrix but with a partial trace over block B as discussed in

chapter 2. As with the MPS, the reduced density matrix for the TTN is formed by

contracting the legs of block B with themselves as shown in fig. 5.8(b).

Creating a reduced density matrix for a generic block is non-trivial as the

number of elements in the matrix is (dnA)2, where d is the dimension of the single

site (d = 2 for the spin-1/2 Heisenberg Hamiltonian) and nA is the number of sites

in the A block. However, the structure of the TTN can significantly reduce the

size of the matrix and complexity of the calculation. Due to the fact that the wi

are isometric, any tensors that are wholly in block B do not need to be considered.

Furthermore, any isometries that are wholly in the A block don’t contribute to the

entanglement entropy, so it is only the tensors that connect the two blocks that

need to be contracted [43]. The random nature of the tensor network again causes

problems with how to efficiently contract the network when the structure is not

predefined. One way of doing so is:

1. Define a vector showing which sites are in block A and which are not. Label
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block A sites with number 2 and those in B with a 0.

2. Following the pattern set out by the construction of the network, label each of

the bottom legs of each tensor with a number 2 for when there is only block

A below, 1 for when the tensor connects A and B and 0 for when there is

just B below. For each wi, the tensor that is connected to each of the bottom

legs is stored in tL and tR so that the network can be contracted from top to

bottom.

3. Using the information collected, one can then proceed in contracting the net-

work starting from the top tensor, from left to right, contracting the tensor

below if it is labelled with a 1, leaving the leg open if it is a 2 and tracing over

the leg if it is a 0.

In this way the density matrix can be systematically constructed for any TTN,

keeping the size to a minimum.

5.5 Results

In the following, we shall compare results for the disordered AFM Heisenberg model

(5.1.1) when using a modern DMRG implementation, with those obtained from

tSDRG. The set of couplings (Ji) shall always be taken from a box-type distribution

[124], i.e. constant in the range 0 < 1 − ∆J/2 < Ji < 1 + ∆J/2 < 2 and zero

outside. Unless stated otherwise, we use strong disorder ∆J = 2− in the following.

We assume OBCs throughout.

5.5.1 Convergence and Ground-State Energies

In fig. 5.10 (main), we show the dependence of the disorder-averaged ground state

energy per site, Eg/L, on ∆J for constant L. We find that for both DMRG and

tSDRG, the Eg/L values decrease for increasing ∆J , i.e. the ground state energy

lowers as disorder in the Ji couplings allows the system to form particularly ener-

getically favourable spin configurations. We also see that the DMRG for the chosen

values of χ and L reaches lower energies. This suggests that it is yet more efficient

in finding an approximation to the true ground state energy. However, upon in-

creasing ∆J , the difference between DMRG and tSDRG is getting smaller. This

is expected since SDRG is based on the idea that the contribution from the non

singlet interactions is small, which is more accurate an assumption the greater the

disorder. The figure also shows that increasing χ can considerably improve the re-

sults of the tSDRG. We expect a variational tSDRG to be at least as good as our
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A'A

Figure 5.9: Diagram showing the TTN form of the reduced density matrix
ρA for the block A indicated by the dashed rectangle 10 sites long in the
20 site system from fig. 5.4(c). Lines and symbols as in fig. 5.4(c) and 5.7.
The bold line shows the minimal surface in the TTN between regions A
and B (the rest of the chain). The right-hand diagram has been reduced in
the horizontal direction to highlight the reduction in complexity due to the
isometries.

DMRG. Here, however, we concentrate predominately on showing the validity and

usefulness of a TTN approach to disordered chains. In fig. 5.10 (inset) we show

Eg/L as a function of L for various values of χ at the strongest permissible disorder

∆J = 2−. We find that the values of Eg/L do not vary much anymore for system

sizes L ≥ 100. Conversely, Eg/L values for L < 100 are clearly dominated by the

presence of OBCs.

5.5.2 Correlation Functions

The correlation functions for a strongly disordered Heisenberg chain are expected

to average out to be a power-law decay [120]

〈〈~sx1 · ~sx2〉〉 ∼
(−1)x2−x1

|x2 − x1|2
, (5.5.1)
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Figure 5.10: Ground state energy per site Eg/L as a function of disorder
∆J for system size L = 100 for tSDRG (solid lines) and variational MPS
(dashed). The error bars correspond to the standard error on the mean ob-
tained from averaging over 200 different disorder configurations and various
values of χ. Lines are guides to the eye. Inset: System size dependence of
Eg/L for ∆J = 2−. Sizes L = 10–80 have been averaged over 500 disorder
configuration, 90, 100 and 120 over 1000, 150 and 200 over 2000 configura-
tions, respectively.

where 〈〈~sx1 · ~sx2〉〉 is understood to be the disorder-averaged expectation value of

the two point spin-spin correlation function. The r−2 scaling of the correlation is a

feature of the disorder in the system [120] and is different to that of the asymptotic

behavior of the clean open Heisenberg XXX model [128]

〈~sr · ~s0〉 ∼
(−1)r(lnr)1/2

r
. (5.5.2)

As discussed in chapter 4, correlation functions in tensor networks scale as

e−αD(x1,x2), where D(x1, x2) is the number of tensors that connect site x1 to x2 [44].

tSDRG has a holographic geometry based on a random TTN, with path length

DTTN ≈ log |x2−x1|, i.e. scaling logarithmically with distance when averaged. This
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Figure 5.11: Correlation function for L = 150 and ∆J = 2− averaged
over 2000 samples for the direct calculation of 〈〈~sx1 · ~sx2〉〉 (black circles)
and also via the holographic approach (5.5.3) using DTTN (dashed red line
with error of mean indicated by the grey shading) such that 〈〈~sx1 · ~sx2〉〉 ≈
(5.81±0.93)exp[−(0.62±0.02)DTTN]. The expected thermodynamic scaling
|x2 − x1|−2 is also shown (solid blue line) while the dashed orange line
denotes a power-law fit up to |x2 − x1| = 50 with slope 1.64. The (brown)
crosses show 〈〈~sx1 · ~sx2〉〉/4 (for clarity) with all values for even distances
|x2 − x1| multiplied by 1.25. Inset: The holographic path length DTTN

connecting sites x1 and x2 averaged over the 2000 TTNs (black) and a fit
in the logarithmic regime (red).

makes it much more suited to capture the desired power law decay

〈〈~sx1 · ~sx2〉〉 ∼ e−α〈DTTN(x1,x2)〉

∼ e−αlog|x2−x1| ∼ |x2 − x1|−a. (5.5.3)

In fig. 5.11, we show the behaviour of 〈〈~sx1 · ~sx2〉〉 computed directly as well as its

holographic estimate based on (5.5.3). We find that the behaviour for |x2−x1| � 1

and |x2 − x1| < L/2 is indeed very similar for both approaches. The best fit value

for α is 0.62± 0.02 where the error is the standard error. The fitting was performed

using the lsqcurvefit function in MATLAB version 2013a. The function is based on

a trust-region algorithm [129] with weights to take into account the accuracy of the

data. We find that in the indicated distance regime, both measures of 〈〈~sx1 · ~sx2〉〉
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are consistent with the expected r−2 behaviour. For |x2−x1| & L/2 we see that the

boundaries lead to an upturn on the behaviour of 〈〈~sx1 · ~sx2〉〉 for both direct and

holographic estimates. This upturn is a result of boundary effects and can easily

be understood in terms of the holographic TNN: for |x2 − x1| ≥ L/2, the average

path length in the tree decreases (cp. fig. 5.9). This is also consistent with periodic

systems where we expect correlation functions to be equal for |x2−x1| = r and L−r.
In the inset of fig. 5.11 we show the distance dependence of DTTN with χ = 10. For

|x2−x1| < L/2, the data can be described by as linear behaviour in log |x2−x1| with

slope 2.94± 0.02. Note that this slope along with the value of α = 0.62± 0.01 gives

an estimate of power-law exponent a = (0.62 ± 0.01) × (2.94 ± 0.01) = 1.84 ± 0.04

for fixed L = 150. Figure 5.12 shows that as L increases, the resulting value of

the scaling power a also increases towards the expected value of 2 for larger systems

upon increasing L. We have also checked that the differences between χ = 10 and 20

remain within the error bars and hence we use χ = 10 for calculations of 〈〈~sx1 ·~sx2〉〉
in fig. 5.11. We further note that fig. 5.11 shows a clear difference in the correlation

function between even and odd distances, due to the fact that singlets can only

form with nearest neighbours on the current coarse graining scale. The difference

in magnitude is found to be 1/4 as predicted previously [130].

In addition to the power law scaling of mean correlations, it is expected [120]

that the typical correlations scale as

〈log|〈~sx1 · ~sx2〉|〉 ∼ −|x2 − x1|1/2, (5.5.4)

where the left hand side of (5.5.4) is the disorder-averaged mean of the log of the spin

correlation function, i.e. the log of the geometric mean of the correlation function.

Figure 5.13 shows that this typical correlation function indeed scales as |x2− x1|1/2

and the quality of the fit increases upon increasing χ and system size. For L = 150,

as χ is increased from 4 to 50, the agreement with (5.5.4) improves up to approx-

imately half the system size, at which point boundary effects become important

as in fig. 5.11. The typical/geometric mean of the path lengths does not allow to

reproduce the typical correlation behaviour (5.5.4), but rather continues to retain

a logarithmic scaling behaviour. This suggests that the TTN constructed by our

tSDRG selects those path lengths corresponding to mean correlation. Clearly, eq.

(5.5.3) ignores correlation information stored in the isometry tensors and we expect

that its inclusion will recover also the typical correlation behaviour. Indeed, the

need to increase χ in fig. 5.13 in order to reproduce (5.5.4) already confirms that

the tensor content is very important here.
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Figure 5.12: The scaling parameter a from eq. (5.5.3) as a function of system
size L for different values of χ at ∆J = 2−. The solid lines are guides to
the eye only. The asymptotic value of a = 2 is indicated by the horizontal
dashed line.

While eq. (5.5.3) neatly describes the power law behaviour of the data, a

more accurate ansatz should be

〈〈~sx1 · ~sx2〉〉 ' A〈e−DTTN(x1,x2)〉a. (5.5.5)

We plot the fit of this along with the correlation data rescaled to remove the even-

odd discrepancy discussed above in fig. 5.14. This shows that 〈〈~sx1 ·~sx2〉〉 ≈ (1.67±
0.10)〈exp[−DTTN]〉(0.69±0.01) is a remarkably accurate fit to the data for all length

scales. This implies that the majority of the correlation information is stored in the

structure of the TTN rather than the contents of the tensors.

5.5.3 Entanglement Entropy

In general, the entanglement entropy SA|B is difficult to compute as the size of the

reduced density matrix ρA scales exponentially with the size of block A. While for

special cases, such as the XX model [131], SA|B can be computed more easily, the

general strategy involves finding the eigen- or singular values of ρA [30].

The TTN representation of tSDRG gives an alternative means of calculating
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Figure 5.13: The typical spin correlation function averaged over 2000 sam-
ples for L = 500 (green circles) and L = 150 (triangles) and χ values as
given in the legend. Error bars are within symbol size throughout. The
dashed lines are fits to the linear regimes for L = 150, χ = 50 (blue) and
L = 500, χ = 20 (green). The vertical dotted line indicates half the system
size for L = 150.

SA|B for any bipartitions A and B of the system. In a similar manner to the correla-

tion functions, the geometry of the tensor network is related to its ability to capture

SA|B. As mentioned in chapter 4, SA|B is proportional to the minimum number of

indices, nA, that one would have to cut to separate a block A of spins from the rest

B of the chain (cp. fig. 5.9) [44]. For the TTN the position of the block in the chain

alters the number of indices that have to be cut to separate it from the rest of the

system. This suggests that there are spatial regions in the chain that are more and

less entangled, which is likely to be true for a strongly disordered spin chain. The

concept is hence similar to discussing the entanglement in the MDH implementation

[118] of SDRG, where the entanglement entropy is related to the number of singlets

that have to be broken to separate a region from the rest [122].

In fig. 5.15 we show that the average value of SA|B remains approximately

constant upon increasing the disorder, while the average of the maximal SA|B shows

a pronounced increase. This indicates that the full distribution of SA|B develops long

tails with large SA|B values when increasing ∆J . For strong disorders ∆J & 1.5 we

find that tSDRG captures more entanglement than DMRG. The DMRG estimates of

SA|B are consistently below the values obtained by the tSDRG, but when increasing
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discussed in text on a semi-log plot. Odd points are open circles and even
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χ the deviation is reduced. This behaviour is most pronounced for the average of

the maximal SA|B values. For example, with χ = 20, the SA|B values obtained

for DMRG deviate from the tSDRG results around ∆J ≈ 1.2. Hence we see that

an increase in SA|B requires a considerable increase in χ for DMRG to accurately

capture the entanglement. On the other hand, for weak disorders ∆J . 0.5, DMRG

gives consistent results already for small χ = 10. The values obtained for SA|B from

tSDRG are much higher in this regime. We believe this to be an overestimation of

SA|B by the tSDRG because, as discussed before, tSDRG selects most strongly the

singlet pairs in the disordered system, which of course become less prevalent for low

disorder.

Figure 5.16 shows that when L is increased for ∆J = 2, both the average

and average peak values of SA|B increase logarithmically in L. This again implies

that as L is increased, the χ value for DMRG needs to be increased also to be

able to capture the entanglement. On the other hand, the holographic nature of

the TTN means that the minimal surface in the network increases with system size

and thus describes this entanglement without the need to increase χ. Although
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Figure 5.15: Entanglement entropy SA|B for all possible bipartitions (cp. fig.
5.9) for L = 30 as a function of ∆J averaged over 100 disorder configuration
using DMRG and tSDRG. Solid lines indicate the arithmetic mean over
disorder configurations while dashed lines denote the mean of the maximal
SA|B values at the chosen ∆J . Lines connecting symbols are guides to the
eye only. Error bars denote standard error of the mean when larger than
symbol size. The two vertical dotted lines highlight ∆J = 0.5 and 1.2 as
discussed in the text.

SA|B is therefore captured well by the network, contracting ρA for larger L becomes

increasingly difficult, even with the simplifications suggested in section 5.5.3, since

the size of the matrices scales as O(χnA). We therefore have to restrict ourselves to

smaller χ and L values than in sections 5.5.1 and 5.5.2.

In refs. [122, 132], Refael and Moore calculate a block entanglement SA,B in

the random singlet phase and show that it scales as

SA,B ∼
log 2

3
log2 LB ≈ 0.231 . . . log2 LB, (5.5.6)

where region B is a block of extent LB in the centre of the spin chain. Note that

this implies an effective central charge [122] of c̃ = 1 · log 2. This is different from

the bipartition entanglement SA|B that we considered before. We show the resulting

SA,B in fig. 5.17. The figure clearly indicates that finite size effects become prevalent

for large LB, so we fit for LB ≤ L/2 only. The resulting scaling behaviour SA,B ≈

109



10 20 30 40 50 60 70 80 90100
L

1

1.5

2

2.5

3

S
A
|B

χ=4 average maximum

χ=4 average

0.358 log
2
L + 0.411

0.096 log
2
L + 0.671

Figure 5.16: Entanglement entropy SA|B as a function of L averaged over
100 samples and all possible bipartitions (as in fig. 5.15) for χ = 4 and
∆J = 2−. The dashed blue line is the fit (0.358±0.005)log2L+(0.41±0.03),
the solid black line is (0.096±0.008)log2L+(0.67±0.04). Error bars denote
the standard error of the mean for the SA|B values when larger than symbol
size while grey shaded regions show the standard error of the indicated fits.

(0.22± 0.02)log2LB is consistent with eq. (5.5.6). We note, however, that finite size

corrections might still be present at the system size available to us here; ideally one

should aim for much larger system sizes [133].

We finally also examine the entanglement entropy per bond, S/nA, of a

TTN for both bipartitions A|B and blocks A,B with χ = 10 when averaging over

500 disorder configurations with L = 50. Figure 5.18 shows that away from the

boundaries S/nA saturates to the same constant 0.47 ± 0.02 for bipartitions and

blocks. Note that for LB ∼ L/2, we find that up to 20% of our samples for χ = 10

lead to calculations of SA,B consuming memory beyond 100GB and therefore fail

to complete. Larger memory calculations are currently out of reach for us and we

disregard the configurations. Nevertheless, we believe that this will not greatly

change the average values of SA,B/nA reported here as the higher failure rate is for

block sizes where boundary conditions become influential, which is supported by

the calculations for smaller χ. For χ = 4 we find 0.42 ± 0.02 for both blocks and

bipartitions with a much lower failure rate (< 1%) due to the smaller size of the

density matrices. This might conceivably suggest that S/nA = 0.5 is a limiting value
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Figure 5.17: The entanglement entropy SA,B (black) averaged over 500
samples as a function of the size of a block LB placed in the middle of a
chain with L = 50 for χ = 10 and ∆J = 2−. The fitting (red, solid line)
gives SA|B = (0.22± 0.02)log2LB + (1.12± 0.05) for LB ≤ 25, above which
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of the fit. The (green) dashed line shows the entanglement scaling (5.5.6)
from ref. [132] with the vertical position fitted to the point LB = 2. The
straight black lines are a guide to the eye only. At the bottom, we show the
failure rate in percent (crosses) for different LB.

for larger χ and L. In turn, this would imply nA = 2 logLB/3. This is consistent

with ref. [44] and implies that the entanglement entropy is proportional to the length

of the holographic minimal surface that connects the two blocks.

5.6 Conclusion

In this chapter, we demonstrate the validity and usefulness of a suitably adaptive

tensor network approach to locally disordered one-dimensional quantum many-body

systems. In contrast to traditional DMRG approaches to disordered systems, where

the initial geometry of the MPS ignores the disorder and only takes it into account

at the stage of variational sweeps [19], our approach incorporates the disorder into

the fabric of its tensor network. We believe this strategy to be inherently more

suited to disordered systems — the results presented here show that the accuracy
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Figure 5.18: Entanglement entropy S (black circles) and entanglement en-
tropy per bond S/nA (red diamonds) for bipartitions A|B (top, open sym-
bols) and blocks A,B (bottom, filled symbols) with χ = 10 and ∆J = 2−.
The entanglement per bond saturates to 0.47 ± 0.02 for bipartitions and
0.48± 0.02 for blocks (grey shaded regions).

of tSDRG is already comparable to DMRG without including any additional varia-

tional updates. This advantage is particularly evident for long-ranged correlations

and an entanglement entropy that violates the area law.

Our results furthermore show that, when disorder-averaged, a random AFM

spin 1/2 system is well characterised by an effective CFT on the boundary of a

discretised holographic bulk. We believe, to the best of our knowledge, that we

have thus shown the quantitative validity of holography for the first time here.

In particular, our spin-spin correlation function, fig. 5.11, as well as the block and

bipartition entanglement entropies, fig. 5.18 show excellent qualitative and numerical

agreement with their holographic counterparts. Such an agreement also reconfirms

that the self-assembly of the TTN produces the necessary tensor network geometry.

Whilst here we concentrated on the disordered Heisenberg model, the method

should be straightforwardly applicable to the XX and XXZ models as studied by

Fisher [120]. Similarly it should work for the Jordan-Wigner-transformed equivalent

fermionic models with a disordered hopping parameter [134]. It should also be

permissible to implement different forms of disorder, such as aperiodic sequences
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[135] as long as the singlet approximation is valid throughout the renormalisation

procedure. We have checked that tSDRG, just as the SDRG of Hikihara [124], is

also able to model random FM/AFM couplings that create large effective spins as

the renormalisation progresses. As such it may be possible to use our approach to

study higher spin systems given a suitably high χ. It should also be fairly simple

to extend the tSDRG method to periodic systems by introducing a bond between

the first and last MPO tensor, which is effectively taking a trace over the MPO. We

note that implementation of on-site disorder, such as in the random transverse field

Ising model [121], does not appear to have a natural implementation using the local

RG outlined in section 5.2. Here it may be possible to implement a tensor network

with a different structure, but at the moment it is not clear to us how this would

be performed.

The tensor network approach makes finding other expectation values, i.e. in

addition to those studied here, straightforward as they are simply the contraction

of the set of isometries with a matrix operator. An example is the string order

parameter [136] that is used to find a hidden topological order in the ground state

[137]. If the entanglement entropy can be found, so too can the entanglement

spectrum, which has become a popular means of characterising many-body wave

functions [73, 75, 77, 138, 139, 140, 141], for better or for worse [142]. Excited

states can be found by diagonalising the top tensor and instead of keeping the

lowest energy eigenvector, keeping a suitable set of higher energy eigenvectors. This

will only be accurate for low energy excitations as at each step of the renormalisation

process only the low energy components are kept while information about higher

energy modes is discarded. Furthermore, it is possible that when moving far away

from the ground state the geometry of the network is no longer appropriate.

Our local RG procedure selects spin pairs based on energy gaps. It is tempt-

ing to reformulate this based on the local entanglement content of such pairs. How-

ever, it is not straightforward to find such a local measure that captures energies and

wave functions well simultaneously. In particular, we do not find a convenient local

entanglement measure that would have a simple relation to the local values of Ji.

More promising might be the implementation of a variational TTN [43]. Our initial

results suggest that this does indeed improve the energy values, but at considerably

increased efforts in implementation and computation — every disorder configuration

of course necessitating its own variationally updated tree structure.
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Chapter 6

Leaf-to-Leaf Path Lengths in

Complete Tree Graphs

6.1 Introduction

As discussed in section 4.3 the geometry of a tensor network plays a large role in

defining the entanglement and correlation properties that the network can encode.

When the networks are simple, such as an MPS, it is straightforward to find analytic

expressions for the minimal surface and path length that define these properties;

when networks get more complicated it is not so clear. In chapter 5 we find that the

tensor network is an inhomogeneous binary tree where the structure is defined by the

coupling strengths in the Hamiltonian [12]. To analyse the form of the correlation

functions we used numerics to ascertain the average path length (see inset of fig.

5.11) and minimal surface as analytic expressions are not available. The aim of this

chapter is to start the discussion of the structure of TTNs in terms of graph theory.

The study of graphs and trees, i.e. points (or vertices) with pairwise relations

(or edges) between them, has a long and distinguished history inside and outside of

science. In computer science, graphs, trees and their study are closely connected,

e.g. with sorting and search algorithms [143]; in chemistry the Wiener number is

a topological index intimately correlated with, e.g., chemical and physical proper-

ties of alkane molecules [144]. In physics, graphs are equally ubiquitous, not least

because of their immediate usefulness for systematic perturbation calculations in

quantum field theories [145]. In mathematics, graph theory is in itself an accepted

branch of mainstream research and graphs are a central part of the field of discrete

mathematics [146]. Away from science, trees and graphs are perhaps most recognis-

able in the form of a family tree, which is used in mapping family genealogy. The
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connection to family history will become apparent in the nomenclature of tree graph

theory.

An important concept that appears in all these fields is the distance in a

graph, i.e. the number of edges connecting two vertices [147, 148, 149]. For tree

graphs, defined as undirected graphs in which any two vertices are connected by

only one path, various results exist ([150, 151, 152] for example) that compute the

distance from the top of the tree (the root) to the bottom (its leaves). In a binary

tree such as shown in Fig. 6.1 this distance might correspond, e.g. to the number of

yes/no decisions one performs when searching for information.

In this chapter we take the example of a regular, complete binary tree as the

simplest case within the set of all possible trees that can be generated using tSDRG.

These have the same structure as regular TTNs [153, 154]. We let the leaves of

the tree be surrogate lattice sites and therefore fix their position and order. The

lengths that we concentrate on are leaf-to-leaf path lengths across the ordered tree,

which are related to the two-point correlation functions discussed in chapters 4 and

5. We derive the average leaf-to-leaf path length for varying leaf separation with

leaves ordered in a one-dimensional line as shown e.g. in Fig. 6.1 for a binary tree.

The method is then generalised to m-ary trees and the moments of the leaf-to-leaf

distances. Explicit analytical results are derived for finite and infinite trees as well

as the case of PBCs.

Throughout the rest of this chapter the term path length will be used to mean

the number to vertices that separate two leaves. This is in order to be consistent

with the tensor network literature (e.g. [12, 44]) and the rest of the thesis. In most

graph theory literature, including [13], distance is calculated by summing the edges

rather than vertices. Converting between the two is simple as the number of edges

between two leaves is 1 greater than the number of vertices. We also note that in

graph theory the term path length usually refers to the sum of the levels of each of

the vertices in the tree [143].

6.2 Average Leaf-to-Leaf Path Length in Complete Bi-

nary Trees

6.2.1 Recursive Formulation

Let us start by considering the complete binary tree shown in fig. 6.1. It is a

connected graph where each vertex is 3-valent and there are no loops. The root

node is the vertex with just two degrees at the top of fig. 6.1. The rest of the
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Level n

1

2

3

4

Leaf

Vertex

Root node

Separation r

0

Edge

Figure 6.1: A complete binary tree with various definitions discussed in
main text labelled. Circles (•, ◦) denote vertices while lines indicate edges
between the vertices of different depth. The tree as shown has a depth
of 4 and L = 16 leaves (◦). The indicated separation is r = 5 while the
associated leaf-to-leaf path length equals ` = 7 as indicated by the thick
line.

vertices each have two child nodes and one parent. A leaf node has no children. The

depth of the tree denotes the number of vertices from the root node with the root

node at depth zero. With these definitions, a binary tree is complete [155] or perfect

[156] if all of the leaf nodes are at the same depth and all the levels are completely

filled. We now denote by the level, n, a complete set of vertices that have the same

depth. These are enumerated with the root level as 0. We will refer to a level n tree

as a complete tree where the leaves are at level n. The leaf-to-leaf path length, `, is

the number of vertices that are passed to go from one leaf node to another (cp. fig.

6.1).

Let us now impose an order on the tree of fig. 6.1 such that the leaves are

enumerated from left to right to indicate position values, xi, for leaf i. Then we can

define a leaf separation r = |xi−xj | for any pair of leaves i and j. This is equivalent

to the notion of distance on a one-dimensional physical lattice. Let the length L be

the length of the lattice, i.e. number of leaf nodes. Then for such a complete binary

tree, we have L = 2n. Clearly, there are many pairs of leaves separated by r from

each other (cp. fig. 6.1). Let {`n(r)} denote the set of all corresponding path lengths.

We now want to calculate the average path length Ln(r) from the set {`n(r)}. We

first note that for a level n tree the number of possible paths with separation r is

2n − r. In fig. 6.2, we see that any complete level n tree can be decomposed into

two level (n− 1) sub-trees each of which contains 2n−1 leaves. Let Sn(r) denote the

sum of all possible path lengths encoded in the set {`n(r)}.
The structure of the decomposition in fig. 6.2 suggests that we need to distin-
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... ...

Figure 6.2: Schematic decomposition of a level n tree with root node (•)
and leaves (◦) into two level n− 1 trees (rectangles) each of which has 2n−1

leaves.

guish two classes of separations r. First, for r < 2n−1, paths are either completely

contained within each of the two level (n−1) trees or they bridge from the left level

(n − 1) tree to the right level (n − 1) tree. Those which are completely contained

sum to 2Sn−1(r). For those paths with separation r that bridge across the two level

(n − 1) trees, there are r of such paths and each path has length `n−1 = 2n − 1.

Next, for r ≥ 2n−1, paths no longer fit into a level (n − 1) tree and always bridge

from left to right. Again, each such path is (2n−1) long and there are L−r = 2n−r
such paths. Putting it all together, we find that

Sn(r) =

{
2Sn−1(r) + (2n− 1)r, r < 2n−1,

(2n− 1)(2n − r), r ≥ 2n−1.
(6.2.1)

for n > 1 and with S1(r) = 1. Dividing by the total number of possible paths with

separation r then gives the desired average path length

Ln(r) ≡ Sn(r)

2n − r
. (6.2.2)

6.2.2 An Explicit Expression

As long as r < 2n−1, eq. (6.2.1) can be recursively expanded, i.e.

Sn(r) = 2Sn−1(r) + (2n− 1)r

= 2 [2Sn−2(r) + (2(n− 1)− 1)r] + 2nr (6.2.3)

= . . .

After ν such expansions, we arrive at

Sn(r) = 2νSn−ν(r) +

ν−1∑
k=0

2k(2(n− k)− 1)r. (6.2.4)
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The expansion can continue while r < 2n−ν−1. It terminates when n−ν becomes so

small that the leaf separation r is no longer contained within the level-(n− ν) tree.

From eq. (6.2.1) it is clear that the recursion only continues when r < 2n−1 or

n > log2r + 1. (6.2.5)

The critical value nc is the largest integer value that does not satisfy eq. (6.2.5), or

equivalently 1 less than the smallest integer that does satisfy this condition. Hence

log2r + 1 < nc + 1 ≤ log2r + 2 ; nc ∈ Z, (6.2.6)

which can be expressed succinctly as

nc(r) = blog2rc+ 1, (6.2.7)

where b·c denotes the floor function. For simplicity, we will suppress the r depen-

dence, i.e. we write nc ≡ nc(r) in the following. Continuing with the expansion of

Sn(r) up to the nc term, we find

Sn(r) = 2n−ncSnc(r) +

n−nc−1∑
k=0

2k [2(n− k)− 1] r. (6.2.8)

When the final bracket is expanded, it is simply the sum of three geometric series

n−nc−1∑
k=0

2k [2(n− k)− 1] r = rn

n−nc∑
k=1

2k − r
n−nc−1∑
k=1

k2k+1 − r
n−nc−1∑
k=0

2k. (6.2.9)

The first part can be simplified using

l∑
k=1

xk =
x(1− xl)

1− x
, (6.2.10)

the second part using

l∑
k=1

kxk+1 =
x(1− xl+1)

(1− x)2
− x+ lxl+2

1− x
, (6.2.11)

and the final part using
l∑

k=0

xk =
1− xl+1

1− x
. (6.2.12)
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Figure 6.3: The average leaf-to-leaf path length Ln(r) versus leaf separation
r for a complete binary tree of n = 20 (dashed), i.e. length L = 220 =
1, 048, 576, and also for n→∞ (solid). The first 10 values are indicated by
circles.

When all put together eq. (6.2.9) is

Sn(r) = 2n−ncSnc(r) + r
[
2n−nc(2nc + 3)− (3 + 2n)

]
. (6.2.13)

From eq. (6.2.1), we have Snc(r) = (2nc − 1)(2nc − r). Thus eq. (6.2.13) becomes

Sn(r) = 2n(2nc − 1 + 22−ncr)− (2n+ 3)r . (6.2.14)

Hence the average leaf-to-leaf distances are given by

Ln(r) =
1

2n − r
[
2n(2nc − 1 + 22−ncr)− (2n+ 3)r

]
. (6.2.15)

In the limit of n→∞ for fixed r, we have

lim
n→∞

Ln(r) ≡ L∞(r) = 2nc − 1 + 22−ncr. (6.2.16)

We emphasise that L∞(r) <∞ ∀r <∞.

In fig. 6.3 we show finite and infinite path lengths Ln(r). We see that when-

ever r = 2i, i ∈ N, we have a cusp in the Ln(r) curves. Between these points,
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the floor function (b·c) enhances deviations from the leading log2 r behavior. This

behaviour is from the self-similar structure of the tree. Consider a sub-tree with ν

levels; the largest separation that can occur in that sub-tree is r = 2ν , which has

average length 2ν−1. When r becomes larger than the sub-tree size the path length

can no longer be 2ν − 1 but always larger, so there is a cusp where this distance is

removed from the possibilities. The constant average distance when r ≥ L
2 is be-

cause there is only one possible path length that connects the two primary sub-trees,

which is clear from (6.2.1).

6.3 Generalization to Complete m-ary Trees

6.3.1 Average Leaf-to-Leaf Path Length in Complete Ternary Trees

Ternary trees are those where each node has three children. Let us denote by S(3)n (r)

and L(3)n (r) the sum and average, respectively, of all possible leaf-to-leaf path lengths

{`(3)n (r)} for given r in analogy to the binary case discussed before. Furthermore,

L = 3n. Following the arguments which led to eq. (6.2.1), we have

S(3)n (r) =

{
3S(3)n−1(r) + 2(2n− 1)r, r < 3n−1,

(2n− 1)(3n − r), r ≥ 3n−1.
(6.3.1)

This recursive expression can again be understood readily when looking at the struc-

ture of a ternary tree. Clearly, S(3)n (r) will now consist of the sum of leaf-to-leaf

distances for three level n trees, plus the sum of all paths that connect the nodes

across the three trees of level n. The distances of these paths is solely determined

by n irrespective of the number of children and hence remains 2n − 1. As before,

we need to distinguish between the case when r fits within a level n − 1 tree, i.e.

r < 3n−1, and when it connects different level n− 1 trees, r ≥ 3n−1. For r < 3n−1,

there are now 2r such paths, i.e., r between the left and centre level n− 1 trees and

r the centre and right level n−1 trees. For r ≥ 3n−1 there are L− r = 3n− r paths.

We again expand the recursion (6.3.1) and find, with n
(3)
c = blog3 rc + 1 in

analogy to (6.2.7), that

S(3)n (r) = 3n
[
2n(3)c − 1 + 31−n

(3)
c r
]
− 2(n+ 1)r (6.3.2)
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and

L(3)n (r) =
S
(3)
n (r)

3n − r
, (6.3.3)

L(3)∞ (r) = 2n(3)c − 1 + 31−n
(3)
c r. (6.3.4)

6.3.2 Average Leaf-to-Leaf Path Length in Complete m-ary Trees

The methodology and discussion of the binary and ternary trees can be generalised

to trees of m > 1 children, known as m-ary trees. The maximal path length for any

tree is independent of m and determined entirely by the geometry of the tree. Each

leaf node is at depth n, a maximal path has the root node as the lowest common

ancestor, therefore the maximal path is (2n− 1).

A recursive function can be obtained using similar logic to before. For a

given n, there are m subgraphs with the structure of a tree with n− 1 levels. When

r is less than the size of each subgraph (r < mn−1), the sum of the paths is therefore

the sum of m copies of the subgraph along with the paths that connect neighbouring

pairs. When r is larger than the size of the subgraph (r ≥ mn−1), the paths are all

maximal. When all this is taken into account the recursive function is

S(m)
n (r) =

{
mS(m)

n−1(r) + (m− 1)(2n− 1)r, r < mn−1,

(2n− 1)(mn − r), r ≥ mn−1.
(6.3.5)

This can be solved in the same way as the binary case to obtain an expression for

the sum of the paths for a given m, n and r

S(m)
n (r) = mn

[
2n(m)

c − 1 +
2m1−n(m)

c r

(m− 1)

]
−
(

2n+
m+ 1

m− 1

)
r, (6.3.6)

The average path length is then

L(m)
n (r) =

S(m)
n (r)

mn − r
. (6.3.7)

and

L(m)
∞ (r) =

(
2n(m)

c − 1 +
2m1−n(m)

c r

(m− 1)

)
. (6.3.8)

We note that in analogy with eq. (6.2.7), we have used

n(m)
c = blogm rc+ 1 (6.3.9)
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Figure 6.4: Average leaf-to-leaf distance L(m)
∞ (r) for m-ary trees of various

m. The curves for m = 2, 5, 50 are shown as solid lines, while those for
m = 3, 10 and 100 have been indicated as dashed lines for clarity.

in deriving these expressions. Figure 6.4 shows the resulting path lengths in the

n→∞ limit for various values of m.

6.4 Moments of the Leaf-to-Leaf Path Length Distribu-

tion in Complete m-ary Trees

6.4.1 Variance of Leaf-to-Leaf Path Lengths in Complete m-ary

Trees

In addition to the average path length L(m)
n (r), it is also of interest to ascertain its

variance

var[L(m)
n ](r) = 〈{`(m)

n (r)2}〉 − [L(m)
n (r)]2. (6.4.1)

Here 〈{`(m)
n (r)2}〉 denotes the average over the set of all squared paths for given r

in an m-ary tree. In order to obtain the variance, we need to obtain an expression

for the sum of the squares of path lengths. This can again be done recursively, i.e.

with Q(m)
n (r) denoting this sum of squared leaf-to-leaf path length for an m-ary tree
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of leaf separation r. Similarly to eq. (6.3.5) we have

Q(m)
n (r) =

{
mQ(m)

n−1(r) + (m− 1)(2n− 1)2r, r < mn−1,

(2n− 1)2(mn − r), r ≥ mn−1.
(6.4.2)

Here, the difference to eq. (6.3.5) is that we have squared the path length terms

(2n− 1). As before, expanding down to nc gives a term containing Q(m)
nc (r),

Q(m)
n (r) = mn−ncQ(m)

nc (r) +

n−nc−1∑
k=0

mkr(m− 1)[2(n− k)− 1]2

= mn−ncQ(m)
nc (r) + r(m− 1)

×
n−nc−1∑
k=0

[
(4n2 − 4n+ 1)mk + (4− 8n)kmk + 4k2mk

]
, (6.4.3)

where here and in the remainder of the chapter, we suppress the (m) superscript

of n
(m)
c for simplicity. As, before the sum can be simplified using equations for

geometric series. The first part is a simple geometric series given by eq. (6.2.12).

The second part is an arithmetico-geometric series similar to eq. (6.2.11)

l∑
k=0

kxk =
x(1− xl)
(1− x)2

− lxl+1

1− x
. (6.4.4)

The final part is another also an arithmetico-geometric series and has the following

form [157]

l−1∑
k=0

k2xk =
1

(1− x)3

[
(−l2 + 2l − 1)xl+2 + (2l2 − 2l − 1)xl+1 − l2xl + x2 + x

]
.

(6.4.5)

Putting this all together gives

Q(m)
n (r) =

1

(m− 1)2
{

8rmn−nc+1 [nc(m− 1) + 1] +mn(m− 1)2(2nc − 1)2

−r
[
(2n− 1)2 + (2mn+m)2 +m(8n2 − 6)

]}
. (6.4.6)
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We can therefore write for the variance

var[L(m)
n ](r) =

Q(m)
n (r)

mn − r
−
[
L(m)
n (r)

]2
=
Q(m)
n (r)

mn − r
−

[
S(m)
n (r)

mn − r

]2
. (6.4.7)

Using eqs. (6.4.6), (6.3.7) and (6.3.6), we then have explicitly

var[L(m)
n ](r) =

4r

m2nc−2(mn − r)2(m− 1)2

(
m2n

[
mnc−1(m+ 1)− r

]
+m2nc−1r

−mn
{
mnc−1(2n− 2nc + 1)(m− 1)r

−m2nc−2(nc − n)2 +m2nc(n− nc + 1)2

−m2nc−1
[
2n2 − n(4nc − 2) + 2nc(nc − 1)− 1

]})
. (6.4.8)

An example for the case of binary trees is given in fig. 6.5. As before we can find
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the result in the limit of n→∞

var[L(m)
∞ ](r) =

4r
[
mnc−1(m+ 1)− r

]
m2nc−2(m− 1)2

. (6.4.9)

var[L(m)
∞ ](r) for various values of m are plotted in fig. 6.6. When r = mi, i ∈ N0,

then var[L(m)
∞ ] has local minima with values

var[L(m)
∞ ](mi) =

4m

(m− 1)2
. (6.4.10)

Similarly, it can be shown that the local maxima are at r = 1
2m

i(m+ 1), then

var[L(m)
∞ ]

(
1

2
mi(m+ 1)

)
=

4m

(m− 1)2
+ 1. (6.4.11)

These values are indicated in fig. 6.6 for selected m.

125



6.4.2 General Moments of Leaf-to-Leaf Path Lengths in Complete

m-ary Trees

The derivation in section 6.4.1 suggests that any q-th raw moment of path lengths

can be calculated using the same process as for eq. (6.4.2). Indeed, let us define

M(m)
q,n (r) as the q-th moment of the distribution of path lengths in an m-ary tree of

level n with leaf separation r. Then M(m)
1,n (r) = L(m)

n (r), M(m)
2,n (r) = Q(m)

n (r) and

var[L(m)
n ](r) =

M(m)
2,n (r)

mn − r
−

[
M(m)

1,n (r)

(mn − r)

]2
. (6.4.12)

Following eq. (6.4.2), we find

M(m)
q,n (r) =

{
mM(m)

q,n−1(r) + (2n− 1)q(m− 1)r, r < mn−1,

(2n− 1)q(mn − r), r ≥ mn−1.
(6.4.13)

By expanding, this gives

M(m)
q,n (r) = mn−ncM(m)

q,nc(r) +

n−nc−1∑
k=0

mk(m− 1) [2(n− k)− 1]q r. (6.4.14)

As before, nc corresponds to the first n value where, for given r, we have to use the

second part of the expansion as in eq. (6.4.13). Hence we can substitute the second

part of (6.4.14) for M(m)
q,nc−1(r) giving

M(m)
q,n (r) = mn−nc(2nc−1)q(mnc−r)+

n−nc−1∑
k=0

mk(m−1) [2(n− k)− 1]q r. (6.4.15)

In order to derive an explicit expression for this similar to section 6.2.2, we

need again to study the final sum of eq. (6.4.15). We write

n−nc−1∑
k=0

mk(m− 1) [2(n− k)− 1]q r

= r(m− 1)(−2)q

 ∞∑
k=0

mk

(
k − n+

1

2

)q
−

∞∑
k=n−nc

mk

(
k − n+

1

2

)q
= r(m− 1)(−2)q

[ ∞∑
k=0

mk

(
k − n+

1

2

)q
−mn−nc

∞∑
k=0

mk

(
k − nc +

1

2

)q]

= r(m− 1)(−2)q
[
Φ

(
m,−q, 1

2
− n

)
−mn−ncΦ

(
m,−q, 1

2
− nc

)]
, (6.4.16)
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where in the last step we have introduced the Hurwitz-Lerch Zeta function Φ [158,

159] (also referred to as the Lerch transcendent [160] or the Hurwitz-Lerch Tran-

scendent [161]). It is defined as the sum

Φ(z, s, u) =

∞∑
k=0

zk

(k + u)s
, z ∈ C. (6.4.17)

The properties of Φ(z, s, u) are [160]

Φ(z, s, u+ 1) =
1

z

(
Φ(z, s, u)− 1

us

)
, (6.4.18)

Φ(z, s− 1, u) =

(
u+ z

∂

∂z

)
Φ(z, s, u), (6.4.19)

Φ(z, s+ 1, u) = −1

s

∂Φ

∂u
(z, s, u). (6.4.20)

Hence we can write

M(m)
q,n (r) = mn−nc(2nc − 1)q(mnc − r)+ (6.4.21)

r(m− 1)(−2)q
[
Φ

(
m,−q, 1

2
− n

)
−mn−ncΦ

(
m,−q, 1

2
− nc

)]
.

Averages of M(m)
,n (r) can be defined as previously via

A(m)
q,n (r) =

M(m)
q,n (r)

mn − r
(6.4.22)

such that L(m)
n (r) = A(m)

1,n (r) and var[L(m)
n ](r) = A(m)

2,n (r)−
[
A(m)

1,n (r)
]2

.

In order to look at the n→∞ limit of A(m)
q,n (r) it is necessary to see how Φ

behaves in this limit. From eq. (6.4.19)

Φ

(
m,−(q + 1),

(
1

2
− n

))
=

[(
1

2
− n

)
+m

∂

∂m

]
Φ

(
m,−q,

(
1

2
− n

))
,

(6.4.23)

and the sum of a geometric series [157]

Φ

(
m, 0,

(
1

2
− n

))
=

1

1−m
, (6.4.24)

we conclude that for finite q

Φ

(
m,−q,

(
1

2
− n

))
∼ O(nq). (6.4.25)
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Therefore

lim
n→∞

r(m− 1)(−2)qΦ
(
m,−q, 12 − n

)
mn − r

= 0, (6.4.26)

In the n→∞ limit, we find

lim
n→∞

A(m)
q,n (r) ≡ A(m)

q,∞(r)

= m−nc
[
(2nc − 1)q(mnc − r)− r(m− 1)(−2)qΦ

(
m,−q, 1

2
− nc

)]
.

(6.4.27)

6.5 Complete m-ary Trees with Periodicity

Up to now we have always dealt with trees in which the maximum separation r was

set by the number of leaves, i.e. r ≤ mn. This represents open boundary in terms

of physical systems. A periodic boundary can be realised by having the leaves of

the tree form a circle as depicted in fig. 6.7 for a binary tree. For such a tree, only

separations r ≤ L/2 are relevant since all cases with r > L/2 can be reduced to

smaller r = mod(r, L/2) values by going around the periodic tree in the opposite

direction. Therefore we can write

M(m,◦)
1,n (r) =M(m)

1,n (r) +M(m)
1,n (mn − r), (6.5.1)

where r < L/2 and the subscript ◦ denotes the periodic case. Note that the case

where r = L/2 the clockwise and anti-clockwise paths are the same so only need to

be counted once. In the simple binary tree case we can expand this via (6.2.14) as

in section 6.2.2 and find

M(2,◦)
1,n (r) ≡ S(2,◦)n (r)

= 2n
[
2nc + 2ñc − 2n− 5 + 22−ncr + 22−ñc(2n − r)

]
, (6.5.2)

with nc as in eq. (6.2.7) and ñc = blog2(2
n−r)c+1. For every r, we have 2n possible

starting leaf positions on a periodic binary tree and hence the average leaf-to-leaf

path length can be written as

A(2,◦)
1,n (r) ≡ L(2,◦)n (r) =

S(2,◦)n (r)

2n

= 2nc + 2ñc − 2n− 5 + 22−ncr + 22−ñc(2n − r). (6.5.3)
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Figure 6.7: A periodic, complete, binary tree with n = 8 levels. Circles and
lines as in fig. 6.1.

This expression is the periodic analogue to eq. (6.2.15). Generalizing to m-ary trees,

with ñc = blogm(mn − r)c+ 1, we find

M(m,◦)
1,n (r) =M(m)

1,n (r) +M(m)
1,n (mn − r) (6.5.4)

= mn

[
2nc + 2ñc − 2n− 1 +

2

m− 1

(
m1−ncr +m1−ñc(mn − r)−m

)]
.

The average path length for m-ary periodic trees is then given as

A(m,◦)
1,n (r) =

M(m,◦)
1,n (r)

mn
(6.5.5)

=

[
2nc + 2ñc − 2n− 1 +

2

m− 1

(
m1−ncr +m1−ñc(mn − r)−m

)]
.
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To again study the case of n → ∞, it is necessary to observe how ñc behaves for

large n and fixed m, r. When n� r, we have r < mn−1 and hence

lim
n→∞

blogm(mn − r)c = n− 1. (6.5.6)

This enables us to simply take the limits of eq. (6.5.5) to give

lim
n→∞

A(m,◦)
1,n (r) ≡ A(m,◦)

1,∞ (r) = 2nc − 1 +
2m1−ncr

(m− 1)
, (6.5.7)

which is the same as the OBC case (6.3.8). This is to be expected as a small region

of a large circle can be approximated by a straight line.

Lastly, the q-moments can be expressed similarly to eq. (6.4.21) via the Lerch

transcendent as

M(m,◦)
q,n (r) =M(m)

q,n (r) +M(m)
q,n (mn − r),

= mn−nc(2nc − 1)q(mnc − r) +mn−ñc(2ñc − 1)q(mñc −mn + r)

+ (m− 1)(−2)q
[
mnΦ

(
m,−q, 1

2
− n

)
− rmn−ncΦ

(
m,−q, 1

2
− nc

)
−(mn − r)mn−ñcΦ

(
m,−q, 1

2
− ñc

)]
, (6.5.8)

The average q-moments in full are therefore

A(m,◦)
q,n (r) =

M(m,◦)
q,n (r)

mn
(6.5.9)

for a complete, periodic, m-ary tree. To take the limit n → ∞ notice that ñc = n

when r < mn−1 for large n. Just like with eq. (6.5.7), this results in A(m,◦)
q,∞ (r) =

A(m)
q,∞(r).

6.6 Asymptotic Scaling of the Correlation for a Homo-

geneous Tree Tensor Network

To illustrate where the properties calculated for complete trees may arise in tensor

network simulations we aim to construct a tensor network wavefunction that has

this tree structure and calculate its correlation functions. A tensor network that has

the structure of a complete tree graph is known as a TTN and is often used to model

critical one dimensional quantum lattice systems due to the fact that they can be

efficiently updated [43, 126]. It is, however, not clear if there is a Hamiltonian that
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Figure 6.8: Two point correlation function for TTNs with χ = 4 averaged
over all pairs of sites separated by |x2−x1| as discussed in text. The TTNs
have L = 128 (blue diamonds), 256 (green squares), 512 (red circles), 1024
(black crosses) corresponding to n = 7, 8, 9, 10 levels respectively. The
vertical dashed lines highlight |x2 − x1| = 16, 32, 64, 128, 256, 512. The

orange dashed line corresponds to a fit of A exp[−αL(2)n (r)] with A = 99±9
and α = 0.742± 0.006. The grey shaded region is the standard error on the
fit.

admits a wavefunction with a TTN structure as its ground state. In principle it is

possible to start from a tensor network wavefunction and derive a parent Hamiltonian

for which the wavefunction is a ground state [101, 162]. In the case of homogeneous

TTNs the procedure to create such a parent Hamiltonian seems likely to be highly

non-trivial and not unique. Here we build such a TTN from the binary tree structure

shown in fig. 6.1. At each internal vertex we place an isometric tensor [12, 34] with

initially random entries and so-called bond dimension χ = 4. Using as proxy a

spin-1/2 Heisenberg model, given by eq. (2.6.22), we perform energy minimisation

[34, 43] at a bulk site. After each minimization, we replicate the bulk tensor to all

other tensors such that every isometry is kept identical [30]. The process is then

repeated until convergence (in energy).

A two-point correlation function 〈~sx1 · ~sx2〉 is calculated [12, 43] for all pairs

of sites and averaged for all points separated by |x2 − x1|. The results are given in

fig. 6.8. As discussed in chapter 4 the two point correlation function is expected to
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scale as

C(x1, x2) ∼ exp[−αDTN (x1, x2)], (6.6.1)

where α is a constant and DTN (x1, x2) is the number of tensor connecting sites

x1 and x2. Hence we expect the asymptotic correlation function to scale as ∼
exp

[
−αL(2)n (r)

]
. Figure 6.8 shows that, away from small separations (e.g. |x2−x1| >

32 for L = 1024), the content of the tensors no longer dominates the structural

contribution and 〈~sx1 · ~sx2〉 exhibits many of the properties we find in fig. 6.3. The

overall form of the long range correlations is a power law but there are also the

characteristic fluctuations from the self-similar structure of the tree with cusps at

|x2 − x1| = 2i for integer i ≥ 5 (corresponding to |x2 − x1| > 32). When reaching

the finite-size dominated regime |x2 − x1| ≥ L
2 , we find an approximate constant

average correlation. This is smaller than expected from eq. (6.2.16) because the top

tensor of the TTN only has χ = 1 and contributes less to the correlation function

than the other tensors. We emphasize that we have chosen a low bond dimension

χ = 4 so that we can study the asymptotic form of the correlation functions for

smaller system sizes.

The form of the correlations expressed in fig. 6.8 corresponds to those of a

suitable parent Hamiltonian, i.e. one that has a ground state implied by this holo-

graphic tree structure. In addition, the results may also be useful for those building

TTNs as a variational method for the study of critical systems. The appearance of

this form of the correlation for models that do not have a natural tree structure in

the wavefunction, such as the Heisenberg model, is an indicator that the chosen χ

is too small to capture the physics of the model. This is similar to the erroneous

exponential decay of correlation functions found by DMRG for critical systems with

power-law correlations in case of small χ [30], as illustrated by fig. 4.2(b). In these

situations the structure of the network dominates the value of the correlation rather

than the information in the tensors.

6.7 Conclusions

We have calculated an analytic form for the average path length between two leaves

with a given separation — ordered according to the physical distance long a line

— in a complete binary tree graph. This result is then generalised to a complete

tree where each vertex has any finite number of children. In addition to the mean

leaf-to-leaf path length, it is found that the raw moments of the distribution of

path lengths have an analytic form that can be expressed in a concise way in terms

of the Hurwitz-Lerch Zeta function. These findings are calculated for open trees,
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where the leaves form an open line, periodic trees, where the leaves form a circle,

and infinite trees, which is the limit where the number of levels, n, goes to infinity.

Each of these results has a concise form and characteristic features due to the self-

similarity of the trees. We believe that these results provide a useful insight into the

structure of the regular tree graphs that are relevant for the field of tensor networks

[153, 154]. We also note that path lengths computed here are qualitatively similar,

but quantitatively different from those for the random-spin chains [12] described in

chapter 5. This points to a subtle, yet physically relevant, difference in their Hilbert

space properties.
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Chapter 7

Leaf-to-Leaf Path Lengths in

Full Binary Trees

7.1 Introduction

In chapter 6 [13] we analysed the leaf-to-leaf path lengths in complete trees as an

introduction to the study of the structure of the tensor networks formed by the

tSDRG algorithm of chapter 5. However the trees constructed by tSDRG [12] are

very different. In fig. 7.1 we show an example of binary tree created by tSDRG. Here

the leaves do not all appear at the same level, but rather each node can become a

leaf node according to how the couplings are renormalised.

In this chapter we will extend the analysis of tree graphs to full binary trees

in the form of the Catalan Trees and randomly generated full binary trees. In this

context a full binary tree is a tree graph where every internal vertex has exactly two

children [155] and a leaf or a leg is a terminal vertex with no children. We define

n as the number of internal vertices in the graph, which we shall refer to nodes

or simply vertices. The root is the top vertex of the tree, which is unique as it is

not the child of any vertex. An edge is the line connecting any two vertices. The

leaf-to-leaf path length as before is the number of vertices that connect two leaves.

These definitions are shown pictorially in fig. 7.1.

7.2 Introduction to Catalan Trees

To analytically analyse trees that more closely match those found in chapter 5 we

concentrate on the set of all unique full binary trees. This set is known as the set

of Catalan trees [143] for reasons that will become clear as we progress. Given a
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Figure 7.1: A random binary tree created by the tSDRG algorithm of chap-
ter 5. As before the filled (open) circles are internal vertices (leaves) and
the connecting lines are edges. The tree as shown has n = 15 and 16 leaves
(◦). The indicated separation is r = 6 while the associated leaf-to-leaf path
length equals ` = 6 as indicated by the thick line. The thick green line
denotes the path.

specific number of internal vertices n, there are a finite number of unique trees as

shown in fig. 7.2 for 1, 2 and 3 vertices. This set of trees can be decomposed in

terms of primary sub-trees with p and q vertices where p + q + 1 = n as shown by

the dashed boxes in fig. 7.2. Here a sub-tree rooted at vertex v is the set of vertices

and leaves that descend from v, including v itself. A primary sub-tree is then a

sub-tree rooted at one of the children of the root node. The generalisation of this

observation allows us to use a convenient diagrammatic decomposition as given by

fig. 7.3. We emphasise that unlike in chapter 6, n is the number of internal vertices,

not the number of levels. The number of leaves in a full binary tree, and therefore

the length of the effective lattice, can be shown [143] to be L = n+ 1.

From the diagrammatic decomposition of a tree of n vertices as in fig. 7.3 it

is possible to count the number of unique binary trees. The number of trees in each

subset is the number in the left subtree Cα times the number in the right sub-tree

Cn−α−1. When summed over all of the subsets we obtain

Cn =

n−1∑
α=0

CαCn−α−1, (7.2.1)

where C0 = 1 by definition. This is Segner’s recurrence relation and can be used as
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Figure 7.2: The set of all unique full binary trees with 1, 2 and 3 vertices.
The dashed boxes denote the sub-trees that make up the full set. Lines and
symbols are as in fig. 7.1.
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Figure 7.3: Diagrammatic decomposition of the set of trees with n vertices
in terms of primary sub-trees whose vertices add up to n− 1.

the definition of a Catalan number Cn [163]. Therefore the number of unique trees

with n vertices is given by the Catalan number Cn, hence the name Catalan trees.

7.3 Properties of Catalan Numbers

Before we begin the analysis of the Catalan trees it will prove useful to introduce

some properties of the Catalan numbers. The Catalan numbers are described by

Koshy [163] to be “like the North Star in the evening sky, ... a beautiful and bright

light in the mathematical heavens” due to their “ubiquitousness [and] tendency to

appear in quite unexpected and unrelated places”. They first appeared in China

in the early 18th century in works of Ming in deriving series expansions for the
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sine function [164]. In the West the Catalan numbers originate in Euler’s polygon

triangulation problem that he sent to other mathematicians in around 1751 [163,

165]. The first publication was by von Segner and Euler in the same edition of

Novi Commentarii Academiae Scientiarum Imperialis Petropolitanae in 1761 [165,

166, 167]. The Catalan numbers became a named series following the publication

of an article by Catalan in 1838 [165, 168]. Since then the Catalan numbers have

appeared in a surprisingly large number of problems, many of which are found in

ref. [163].

The first few Catalan numbers are {1, 1, 2, 5, 14, 42, 132, . . . }. There are sev-

eral general ways that they can be expressed, for example eq. (7.2.1) and

Cn =
1

n+ 1

(
2n

n

)
=

(2n)!

(n+ 1)!n!
. (7.3.1)

They are also recursive and follow the rule

Cn =
4n− 2

n+ 1
Cn−1. (7.3.2)

In the remainder of the chapter we make extensive use of generating function

methods [169]. These are a convenient means of viewing and manipulating number

series. A generating function is a function such that the n-th number in the series

is the n-th coefficient in a Taylor expansion of the function

a(x) = a0 + a1x+ a2x
2 + a3x

3 + · · · =
∞∑
n=0

anx
n. (7.3.3)

The generating function for the Catalan numbers is

C(x) =
∞∑
n=0

Cnx
n. (7.3.4)

It is possible to find an explicit functional form for this generating function as

follows. Squaring eq. (7.3.4) gives a form comparable to Segner’s relation (7.2.1)

C2(x) = C2
0 + (C0C1 + C1C0)x+ · · ·+ (C0Cn + C1Cn−1 + · · ·+ CnC0)x

n + . . .

= C1 + C2x+ C3x
2 + · · ·+ Cn+1x

n + . . .

=
(C(x)− C0)

x
. (7.3.5)
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Multiplying by x gives a quadratic eq. that can easily be solved

xC2(x)− C(x) + 1 = 0. (7.3.6)

Hence

C(x) =
1±
√

1− 4x

2x
. (7.3.7)

We choose the minus to make C(0) finite and the rest of the Catalan numbers

positive. Expanding the square root using [170]

√
1 + x =

∞∑
n=0

(
1/2

n

)
xn, (7.3.8)

where [171] (
1/2

k

)
=

(
2k − 2

k − 1

)
(−1)k−1

k22k−1
. (7.3.9)

This can be rearranged to give

√
1 + x =

∞∑
n=0

(−1)n(2n)!

(1− 2n)(n!)2(4n)
xn

= 1− 2

∞∑
n=1

(
2n− 2

n− 1

)(
−1

4

)n xn
n
, (7.3.10)

Hence the generating function (7.3.7) can be written as

1−
√

1− 4x

2x
=

1

2x

[
1− 1 + 2

∞∑
n=1

1

n

(
2n− 2

n− 1

)
xn

]

=
∞∑
n=1

1

n

(
2n− 2

n− 1

)
xn−1

=
∞∑
n=0

1

n+ 1

(
2n

n

)
xn. (7.3.11)

Comparison with eq. (7.3.4) yields the explicit binomial form shown in eq. (7.3.1).

Expansion of the binomial coefficient in terms of factorials(
n

k

)
=

n!

k!(n− k)!
, (7.3.12)

then obtains the factorial form of eq. (7.3.1).
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7.4 Leg Depths

To calculate leaf-to-leaf path lengths using a recursive approach similar to that in

chapter 6 it is necessary to calculate the average depth of each leaf. This is trivial for

the complete trees of chapter 6 as all of the leaves have the same depth by definition.

For the case of the Catalan trees this is not so obvious as each individual tree is

different. We define m as the horizontal position of a leaf in a tree or sub-tree, with

m = 1 being the left-most leaf. We emphasise that this is not necessarily the same

as the lattice position (x) as that is a global position for the whole tree, and does

not apply for sub-trees. Also all daughters of the left sub-tree are always to the left

of daughters of the right sub-tree. This is true at all levels and for all sub trees.

Define the depth of a leg as the number of internal vertices that connect the leg to

the root node (including the root node). The depth function Dm,n is then defined

as the total number of vertices that connect the leg m to the root when summing

over all possible diagrams of n vertices, or

Dm,n =
∑
t∈τn

depth of mth leg, (7.4.1)

where t is a Catalan tree and τn is the set of all Catalan trees with n vertices.

7.4.1 Depth of the First Leg

Due to the fact that the set of trees with n vertices can be decomposed in terms

of trees with fewer vertices (fig. 7.4), the sum of the depths of the first leg can be

expressed in terms of the sub-trees. D1,n is equal to the sum of the first leg depths

of the left hand sub-tree multiplied by the degeneracy of the right sub-tree, plus the

number of vertices that connect the sub-trees

D1,n =

n−1∑
k=0

[D1,n−1−kCk + Cn−1−kCk]

=

n−1∑
k=0

D1,n−1−kCk + Cn, (7.4.2)

where in the last line we have used Segner’s relation (7.2.1).

In a similar manner to the Catalan numbers (7.3.5), we can define a gener-

ating function for the depth

D1(x) =
∞∑
n=0

D1,nx
n. (7.4.3)
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Figure 7.4: Schematic representation of the contribution to the first leaf
depth from each of the sub-trees of the decomposition in fig. 7.3.

Multiplying by C(x) gives us an expression of the form of (7.4.2)

D1(x)C(x) = D1,0C0 + (D1,0C1 +D1,1C0)x+ . . .

· · ·+ (D1,0Cn +D1,1Cn−1 + · · ·+D1,nC0)x
n + . . .

= (D1,1 − C1) + (D1,2 − C2)x+ · · ·+ (D1,n+1 − Cn+1)x
n + . . .

=
∞∑
n=0

D1,n+1x
n −

∞∑
n=0

Cn+1x
n

=
(D1(x)−D1,0)− (C(x)− C0)

x
. (7.4.4)

Collecting the D1(x) terms

D1(x) =
C0 −D1,0 − C(x)

xC(x)− 1
(7.4.5)

and using C(x) = 1
1−xC(x) (see (A.2.1) derived in the appendix) gives

D1(x) = C2(x) + (D1,0 − C0)C(x)

= C2(x)− C(x), (7.4.6)

where we have used C0 = 1 and D1,0 = 0. This can be put back into the form of a

generating function using C2(x) =
∑∞

n=0Cn+1x
n (see (A.2.5))

D1(x) =

∞∑
n=0

[Cn+1 − Cn]xn, (7.4.7)

which implies our result

D1,n = Cn+1 − Cn. (7.4.8)
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Figure 7.5: Schematic representation of the contribution to the depth of
the second leaf from each of the sub-trees. The second leg is highlighted
showing that in the (0, n − 1) subset, the second leg is in the right hand
sub-tree.

There are Cn graphs, thus the average depth is

d1,n =
Cn+1 − Cn

Cn
=

3n

n+ 2
, (7.4.9)

where we have used the recursion relation (7.3.2). In the limit of n→∞

d1.∞ ≡ lim
n→∞

d1,n = 3. (7.4.10)

7.4.2 Depth of the Second Leg

Figure 7.5 shows that when the n vertex tree is decomposed in terms of the primary

sub-trees, the second leg on the (0, n−1) subset is no longer in the left hand sub-tree.

Therefore the recursion relation for the second leg depth is

D2,n =

n−1∑
k=1

D2,kCn−1−k +D1,n−1 + Cn. (7.4.11)

As before, we create a generating function for the depths, but here the sum starts

at 1 to reflect the fact that the second leg depth is not defined for a tree with one

leg

D2(x) =
∞∑
n=1

D2,nx
n. (7.4.12)
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As with the first leg, we multiply by C(x) and compare with recursion relation

(7.4.11)

D2(x)C(x) = D2,1C0x+ (D2,1C1 +D2,2C0)x
2 + . . .

· · ·+ (D2,1Cn−1 + · · ·+D2,nC0)x
n + . . .

= (D2,2 −D1,1 − C2)x+ · · ·+ (D2,n+1 −D1,n − Cn+1)x
n + . . .

=

∞∑
n=1

D2,n+1x
n −

∞∑
n=1

D1,nx
n −

∞∑
n=1

Cn+1x
n

=

(
D2(x)−D2,1x

x

)
− (D1(x)−D1,0)−

(
C(x)− C1x− C0

x

)
.

(7.4.13)

Using eq. (A.2.1) and the fact that C0 = 1, C1 = 1, D1,0 = 0 and D2,1 = 1, we can

write

D2(x) = xC(x)D1(x) + C2(x)− C(x). (7.4.14)

Then from the previous results: D1(x) = C2(x) − C(x) and xC2(x) = C(x) − 1 we

obtain

xD1(x) = C(x)− xC(x)− 1. (7.4.15)

Applying this to eq. (7.4.13) gives

D2(x) = 2C2(x)− 2C(x)− xC2(x). (7.4.16)

Writing this as a summation

D2(x) =

∞∑
n=0

[2Cn+1 − 2Cn]xn −
∞∑
n=1

Cnx
n

=
∞∑
n=1

[2Cn+1 − 3Cn]xn, (7.4.17)

implies the result

D2,n = 2Cn+1 − 3Cn. (7.4.18)

The average depth is

d2,n =
2Cn+1 − 3Cn

Cn
=

5n− 2

n+ 2
, (7.4.19)
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again using the recursion relation (7.3.2). In the limit of n→∞

d2.∞ ≡ lim
n→∞

d2,n = 5. (7.4.20)

7.4.3 A General Equation for the Depth Function

We begin by making a recursion relation in a similar manner to the previous ex-

amples. In eq. (7.4.11) we noted that there was one diagram in the decomposition

where the 2nd leg misses the left hand primary sub-tree. For general m there will be

m−1 such cases. When the left sub-tree has k = 0 to m−2 vertices the contribution

to the depth is from the leg m− k− 1 of the right sub-tree because the left sub-tree

has k + 1 legs. The degeneracy of this term is given by the number of trees in the

left block Ck. When k > m−2 the contribution is from the mth leg of the left block

as before. Hence, in full the recursion relation can be written as

Dm,n = Cn +

n−1∑
k=m−1

Dm,kCn−1−k +

m−2∑
k=0

Dm−k−1,n−k−1Ck. (7.4.21)

The depth function is left-right symmetric in that the depth of the mth leg from the

left is the same as the depth of the mth leg from the right (proved in appendix A.3),

i.e. Dm,n = Dn+2−m,n. This is perhaps obvious when looking at the decomposition,

but will be very useful in deriving a closed formula for the depth function.

Just as we saw for m = 2, the generating function for general m needs to

start at m− 1

Dm(x) =
∞∑

n=m−1
Dm,nx

n =
∞∑
n=0

Dm,n+m−1x
n+m−1, (7.4.22)

where in the final part the index on the sum starts at zero (n → n + m − 1). We

start with eq. (7.4.21) for Dm,n+m

Dm,n+m = Cn+m +
n+m−1∑
k=m−1

Dm,kCn+m−k−1 +
m−2∑
k=0

Dm−k−1,n+m−k−1Ck. (7.4.23)

Changing the index on the first sum so that it sums from zero (k → k+m− 1) and

introducing a step function (Hp = 1 if p ≥ 0, 0 if p < 0) so that the upper limit can

go to infinity we obtain

Dm,n+m = Cn+m +
∞∑
k=0

Dm,k+m−1Cn−kHn−k +
m−2∑
k=0

Dm−k−1,n+m−k−1Ck. (7.4.24)
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We multiply both sides by xm+n and sum from n = 0 to∞ to match the generating

function (7.4.22)

∞∑
n=0

Dm,n+mx
m+n =

∞∑
n=0

Cn+mx
n+m +

∞∑
n=0

∞∑
k=0

Dm,k+m−1Cn−kHn−kx
n+m

+
∞∑
n=0

m−2∑
k=0

Dm−k−1,n+m−k−1Ckx
n+m. (7.4.25)

The left hand side can clearly be expressed in terms of Dm(x)

∞∑
n=0

Dm,n+mx
m+n =

∞∑
n=1

Dm,n+m−1x
n+m−1

=
∞∑
n=0

Dm,n+m−1x
n+m−1 −Dm,m−1x

m−1

= Dm(x)−Dm,m−1x
m−1. (7.4.26)

The first term on the right can be written in terms of C(x) as

∞∑
n=0

Cn+mx
n+m =

∞∑
n=m

Cnx
n

=
∞∑
n=0

Cnx
n −

m−1∑
n=0

Cnx
n

= C(x)−
m−1∑
n=0

Cnx
n. (7.4.27)

The second term on the right can also be written in terms of generating functions

∞∑
n=0

∞∑
k=0

Dm,k+m−1Cn−kHn−kx
n+m =

∞∑
k=0

Dm,k+m−1x
m+k

∞∑
n=0

Cn−kHn−kx
n−k

= x

∞∑
k=0

Dm,k+m−1x
k+m−1

∞∑
l=−k

ClHlx
l

= xDm(x)C(x), (7.4.28)
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where we have used l = n− k on the second line. Similarly, the final term is

∞∑
n=0

m−2∑
k=0

Dm−k−1,n+m−k−1Ckx
n+m =

m−2∑
k=0

Ckx
k+1

∞∑
n=0

Dm−k−1,n+m−k−1x
n+m−k−1

=
m−2∑
k=0

Ckx
k+1

[ ∞∑
n=0

Dm−k−1,n+m−k−2x
n+m−k−2

−Dm−k−1,m−k−2x
m−k−2

]
=

m−2∑
k=0

Ckx
k+1

[
Dm−k−1(x)−Dm−k−1,m−k−2x

m−k−2
]
.

(7.4.29)

When put together eq. (7.4.25) becomes

Dm(x)−Dm,m−1x
m−1 = C(x)−

m−1∑
n=0

Cnx
n + xDm(x)C(x)

+
m−2∑
k=0

Ckx
k+1

[
Dm−k−1(x)−Dm−k−1,m−k−2x

m−k−2
]
.

(7.4.30)

Collecting the Dm(x) on the left then using eq. (A.2.1) and Dm,n = Dn+2−m,n yields

Dm(x) = C2(x)− C(x)

m−1∑
n=0

Cnx
n + C(x)D1,m−1x

m−1

+ C(x)

m−2∑
k=0

Ckx
k+1

[
Dm−k−1(x)−D1,m−k−2x

m−k−2
]
. (7.4.31)

This means that we only need to know the depth of the first leg to create the

generating functions of the rest. We know from section 7.4.1 that D1,n = Cn+1−Cn
so

Dm(x) = C2(x)− C(x)
m−1∑
n=0

Cnx
n + C(x)(Cm − Cm−1)xm−1

+ C(x)
m−2∑
k=0

Ckx
k+1

[
Dm−k−1(x)− (Cm−k−1 − Cm−k−2)xm−k−2

]
. (7.4.32)
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Using Segner’s relation (7.2.1) we notice that for m ≥ 2

m−2∑
k=0

CkCm−k−2 = Cm−1 (7.4.33)

and

m−2∑
k=0

CkCm−k−1 =
m−1∑
k=0

CkCm−k−1 − Cm−1C0 = Cm − Cm−1. (7.4.34)

This enables us to simplify eq. (7.4.32) to

Dm(x) = C2(x)− C(x)
m−1∑
n=0

Cnx
n + C(x)Cm−1x

m−1 + C(x)
m−2∑
k=0

Ckx
k+1Dm−k−1(x)

= C2(x)− C(x)

m−2∑
n=0

Cnx
n − C(x)Cm−1x

m−1

+ C(x)Cm−1x
m−1 + C(x)

m−2∑
k=0

Ckx
k+1Dm−k−1(x)

= C2(x) + C(x)
m−2∑
n=0

Cnx
n [xDm−n−1(x)− 1] . (7.4.35)

Here we introduce the ansatz that will take us to the solution. We will show

that the generating function Dm(x) decomposes as

Dm(x) = fm(x)C(x) + gm(x), (7.4.36)

where fm(x) and gm(x) are polynomial in x of order m − 2. This is motivated by

the fact that for m ≥ 2, Dm,n is composed of a sum of Catalan numbers with indices

from n+ 1 down to n− (m− 2). The Catalan numbers come out of the polynomial

due to the fact that

xmC(x) =
∞∑
n=0

Cnx
n+m =

∞∑
n=m

Cn−mx
n. (7.4.37)

The form of fm(x)C(x) will give the expression for dm,n but when putting it in

the form of (7.4.22) there will be a slew of terms that will be cancelled by gm(x).
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Inserting the ansatz (7.4.36) into eq. (7.4.35) gives

fm(x)C(x) + gm(x) = C2(x) + C(x)
m−2∑
n=0

Cnx
n [xfm−n−1(x)C(x) + xgm−n−1(x)− 1] .

(7.4.38)

In the spirit of the ansatz we use eq. (7.3.5) to remove the C2(x) terms and make

the expression dependent on just C(x)

fm(x)C(x) + gm(x) =
C(x)

x
− 1

x
+ C(x)

m−2∑
n=0

Cnx
n [xgm−n−1(x)− 1]

+ [C(x)− 1]

m−2∑
n=0

Cnx
nfm−n−1(x)C(x). (7.4.39)

Collecting coefficients of C(x) gives

fm(x) =
1

x
+

m−2∑
n=0

Cnx
n [fm−n−1(x) + xgm−n−1(x)− 1] , (7.4.40)

leaving

gm(x) = −1

x
−
m−2∑
n=0

Cnx
nfm−n−1(x). (7.4.41)

We can now write out fm(x) and gm(x) for the first few m. Recall that the above

expressions are only valid for m ≥ 2, we therefore obtain f1(x) and g1(x) from

(7.4.6) to seed the other terms. The first seven fm(x) are

f1(x) =
1

x
− 1 (7.4.42)

f2(x) =
2

x
− 3 (7.4.43)

f3(x) =
3

x
− 5− 2x (7.4.44)

f4(x) =
4

x
− 7− 4x− 4x2 (7.4.45)

f5(x) =
5

x
− 9− 6x− 8x2 − 10x3 (7.4.46)

f6(x) =
6

x
− 11− 8x− 12x2 − 20x3 − 28x4 (7.4.47)

f7(x) =
7

x
− 13− 10x− 16x2 − 30x3 − 56x4 − 84x5 (7.4.48)
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and gm(x)

g1(x) = −1

x
(7.4.49)

g2(x) = −2

x
+ 1 (7.4.50)

g3(x) = −3

x
+ 2 + x (7.4.51)

g4(x) = −4

x
+ 3 + 3x+ 2x2 (7.4.52)

g5(x) = −5

x
+ 4 + 5x+ 7x2 + 5x3 (7.4.53)

g6(x) = −6

x
+ 5 + 7x+ 12x2 + 19x3 + 14x4 (7.4.54)

g7(x) = −7

x
+ 6 + 9x+ 17x2 + 33x3 + 56x4 + 42x5. (7.4.55)

It is quite simple to spot patterns in these equations and write a general formula

for each

fm(x) =
m

x
− 1− 2Hm−2C0(m− 1)− 2Hm−3C1(m− 2)x− 2Hm−4C2(m− 3)x2

− 2Hm−5C3(m− 4)x3 − . . .

=
m

x
− 1− 2

m−2∑
k=0

(m− k − 1)Ckx
k (7.4.56)

gm(x) = −m
x

+Hm−2(C1(m− 2) + C0) +Hm−3(C2(m− 3) + C1)x

+Hm−4(C3(m− 4) + C2)x
2 +Hm−5(C4(m− 5) + C3)x

3 + . . .

= −m
x

+
m−2∑
k=0

[(m− k − 2)Ck+1 + Ck]x
k. (7.4.57)

In the first lines of each a step function Hp has been introduced to cut the expression

so that it gives only the terms allowed for that m. This is neatly included within the
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summations in the final forms. Multiplying (7.4.56) by C(x) using (7.4.37) yields

fm(x)C(x) =
∞∑
n=0

[
m

x
− 1− 2

m−2∑
k=0

(m− k − 1)Ckx
k

]
Cnx

n

=
∞∑

n=m−1

[
mCn+1 − Cn − 2

m−2∑
k=0

(m− k − 1)CkCn−k

]
xn

+m
m−2∑
n=−1

Cn+1x
n −

m−2∑
n=0

Cnx
n − 2

m−2∑
k=0

m−2∑
n=k

(m− k − 1)CkCn−kx
n.

(7.4.58)

This implies that

Dm,n = mCn+1 − Cn − 2

m−2∑
k=0

(m− k − 1)CkCn−k (7.4.59)

and we have our result. We now just have to show that the rest of the terms are

taken care of by g(x). The final term in eq. (7.4.58) can be simplified using the

double sum identity
c∑

a=0

c∑
b=a

Ma,b =

c∑
b=0

b∑
a=0

Ma,b (7.4.60)

where a, b, c ∈ Z+, which is found from changing the order of summation of a and b

to c with the condition that a ≤ b.

m−2∑
k=0

m−2∑
n=k

(m− k − 1)CkCn−kx
n =

m−2∑
n=0

n∑
k=0

(m− k − 1)CkCn−kx
n

=

m−2∑
n=0

n∑
k=0

[mCkCn−k − (k + 1)CkCn−k]x
n

=
m−2∑
n=0

[mCn+1 − (2n+ 1)Cn]xn, (7.4.61)

where in the final line we have used Segner’s relation on the first term and (A.2.7)

on the second. Thus (7.4.58) can be written as

fm(x)C(x) =
∞∑

n=m−1
Dm,nx

n+
m

x
−
m−2∑
n=0

[Cn −mCn+1 + 2mCn+1 − 2(2n+ 1)Cn]xn.

(7.4.62)
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Using the recursion relation for Catalan numbers (7.3.2)

fm(x)C(x) =
∞∑

n=m−1
Dm,nx

n +
m

x
−
m−2∑
n=0

[Cn +mCn+1 − (n+ 2)Cn+1]x
n

=

∞∑
n=m−1

Dm,nx
n +

m

x
−
m−2∑
n=0

[(m− n− 2)Cn+1 + Cn]xn

= Dm(x)− gm(x), (7.4.63)

which is simply the initial ansatz (7.4.36).

7.5 Path Lengths in Catalan Trees

Now that the leaf depths have been calculated it is possible to begin the analysis of

the average leaf-to-leaf path distance Ar,n. In a similar way to the complete trees

of chapter 6 and leaf depths in the previous section, we shall first calculate the

summed leaf-to-leaf path length Sr,n, which is defined as the total number of vertices

that connect two leaves of separation r when summing over all possible trees with

n vertices. For a tree with n vertices there are n+ 1 leaves and Cn trees, therefore

for a separation r there are (n+ 1− r)Cn paths, hence

Ar,n =
Sr,n

(n+ 1− r)Cn
. (7.5.1)

7.5.1 Nearest Neighbours (r = 1)

To derive the basic recursion relation, consider splitting the set of n vertex trees

into sub-trees with n − α − 1 and α vertices as shown in fig. 7.6. For the set of

α vertexed trees, the summed path length is simply S1,α. Similarly for the set of

n−α− 1 vertexed trees, the summed path length is S1,n−α−1. The path connecting

the two trees, i.e. the (n− α)th leaf of the n − α − 1 vertex tree connecting to the

1st leaf of the α vertex tree, requires more discussion. The summed root-to-vertex

depth of the first leaf of the α vertex tree is D1,α. We next consider just a single

path, with depth δ1, within the set of paths that connect leaf n−α to the root in the

n−α−1 vertex tree as shown by the dashed line of fig. 7.6. As there are Cα possible

trees with α vertices, δ1 will contribute Cα times in the sum of all connecting paths.

Similarly the root will contribute 1× Cα. The total length for paths connecting to

the first leg of the α tree containing δ1 is D1,α +Cα +Cαδ1. To obtain the complete

summed path length we now sum over all Cn−α−1 paths that connect leaf n− α to
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... ...

Figure 7.6: Schematic of splitting an n vertex tree into a single vertex, an
n−α− 1 vertex tree and an α vertex tree. A possible path from leaf n−α
on the n − α − 1 vertex tree to the 1st leaf on the α tree is indicated as
dashed line.

the root in the n− α− 1 tree (δ1, δ2, . . . , δCn−α−1)

[D1,α + Cα + Cαδ1] + [D1,α + Cα + Cαδ2] + · · ·+ [D1,α + Cα + Cαδn−α−1] . (7.5.2)

As
Cn−α−1∑
k=0

δk = Dn−α,n−α−1, (7.5.3)

the summed path length becomes

CαDn−α,n−α−1 + Cn−α−1D1,α + Cn−α−1Cα. (7.5.4)

The inclusion of contributions from all α yields the equation

S1,n =
n−1∑
α=0

[CαDn−α,n−α−1 + Cn−α−1D1,α + Cn−α−1Cα

+ CαS1,n−α−1 + Cn−α−1S1,α] . (7.5.5)

It is possible to simplify eq. (7.5.5) by utilising Segner’s relation (7.2.1),

the fact that the tree sets and therefore subsets are left-right symmetric (Dm,n =

Dn+2−m,n) and that the order in which a sum is performed is irrelevant (discussed
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in appendix A.1) resulting in

S1,n = Cn +
n−1∑
α=0

(CαDn−α,n−α−1 + Cn−α−1D1,α + CαS1,n−α−1 + Cn−α−1S1,α)

= Cn +

n−1∑
α=0

(CαD1,n−α−1 + Cn−α−1D1,α + CαS1,n−α−1 + Cn−α−1S1,α)

= Cn + 2

n−1∑
α=0

Cn−α−1D1,α + 2

n−1∑
α=0

Cn−α−1S1,α. (7.5.6)

Using the first leaf depth function (7.4.8) eq. (7.5.5) can be written as a recursion

of just path lengths and Catalan numbers

S1,n = Cn + 2

n−1∑
α=0

(Cα+1 − Cα)Cn−α−1 + 2

n−1∑
α=0

Cn−α−1S1,α

= Cn + 2

n−1∑
α=0

Cα+1Cn−(α+1) − 2

n−1∑
α=0

CαCn−α−1 + 2

n−1∑
α=0

Cn−α−1S1,α

= Cn + 2

n∑
β=0

CβCn−β − 2Cn − 2Cn + 2

n−1∑
α=0

Cn−α−1S1,α

= 2Cn+1 − 3Cn + 2
n−1∑
α=0

Cn−α−1S1,α, (7.5.7)

where in the third line we have changed the index of the sum to β = α + 1 and

subtracted 2C0Cn−0 allowing the lower limit of the sum to be zero. On the final

line we use Segner’s relation (7.2.1) for n+ 1. From this recursion relation it is now

possible to use a generating function approach to find a result. The appropriate

generating function is defined as

S1(x) =

∞∑
n=0

S1,nx
n =

∞∑
n=0

S1,n+1x
n+1 (7.5.8)

as S1,0 = 0. To match the generating function multiply S1,n+1 by xn+1 and sum
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over n to obtain

∞∑
n=0

S1,n+1x
n+1 = 2

∞∑
n=0

Cn+2x
n+1 − 3

∞∑
n=0

Cn+1x
n+1 + 2

∞∑
n=0

n∑
α=0

Cn−αS1,αx
n+1

=
2

x

( ∞∑
n=0

Cnx
n − C0 − C1x

)
− 3

( ∞∑
n=0

Cnx
n − C0

)

+ 2x
∞∑
n=0

∞∑
α=0

Hn−αCn−αS1,αx
n−αxα, (7.5.9)

where the first two terms on the right have been rearranged to match the generating

function for the Catalan numbers (7.3.4). In the final term, similar to in eq. (7.4.24)

in the depth function derivation, we introduce a step function Hn−α to allow the α

index to go to infinity. Changing the n index on the final term to q = n− α allows

the whole equation to be expressed in terms of generating functions

S1(x) =
2

x
[C(x)− 1]− 2− 3C(x) + 3 + 2x

∞∑
α=0

∞∑
q=−α

HqCqx
qS1,αx

α

=
2

x
[C(x)− 1] + 1− 3C(x) + 2x

∞∑
α=0

∞∑
q=0

Cqx
qS1,αx

α

=
2

x
[C(x)− 1] + 1− 3C(x) + 2xC(x)S1(x). (7.5.10)

Solving for S1(n) gives

S1(x) =
2
x [C(x)− 1] + 1− 3C(x)

1− 2xC(x)

=
2C(x)2 − 3C(x) + 1√

1− 4x

=

∞∑
n=0

[2(n+ 1)Cn+1 − 3(2n+ 1)Cn + (n+ 1)Cn]xn, (7.5.11)

where on the second line we have used C2(x) = C(x)−1
x from eq. (7.3.5). The final

line is obtained using 1√
1−4x =

∑∞
α=0(α+ 1)Cαx

α, C(x)√
1−4x =

∑∞
n=0(2n+ 1)Cnx

n and

C2(x)√
1−4x =

∑∞
n=0(n+ 1)Cn+1x

n derived in appendix A.2.

Equation (7.5.11) can be readily compared to the generating function (7.5.8)

to get the result

S1,n = 2(n+ 1)Cn+1 − (5n+ 2)Cn. (7.5.12)
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This can be simplified using the recursion rule for Catalan numbers (7.3.2)

S1,n =
2(n+ 1) [(4n+ 2)Cn]

n+ 2
− (5n+ 2)Cn

=
3n2Cn
n+ 2

. (7.5.13)

The total number of paths is nCn so the average leaf-to-leaf path length (A1,n)

becomes

A1,n =
3n

n+ 2
. (7.5.14)

In the infinite n limit this is

A1,∞ ≡ lim
n→∞

A1,n = 3. (7.5.15)

7.5.2 General Path Lengths

As in section 7.5.1, the discussion begins with the set of trees decomposed into an

α and n − α − 1 vertex tree. For this discussion we will split the full expression

into terms coming from paths within each of the sub-trees (the recursion term) and

those paths that connect them.

The recursion term [Sr,n]rec is simply the contribution to the summed path

length from the two sub-trees Sr,n−α−1 and Sr,α with appropriate degeneracies as

before

[Sr,n]rec =
n−1∑
α=0

[CαSr,n−α−1 + Cn−α−1Sr,α]

=
n−1∑
α=0

[
Cn−1−αSr,n−(n−1−α)−1 + Cn−α−1Sr,α

]
= 2

n−1∑
α=0

Cn−α−1Sr,α, (7.5.16)

where in the second line we are effectively summing from n − 1 down to 0 in the

first term.

The connecting paths are somewhat more complicated; in the case of nearest

neighbours there is only one path that connects the two subtrees; for general paths

there are r connecting paths. Figure 7.7(a) shows the three connecting paths for

r = 3. We observe that this is only true for certain values of α, near the edges of the

tree the boundary prevents the existence of all r connecting paths. Figure 7.7(b)

gives an example for r = 3 again. We shall thus refer to the terms away from the
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(a)
......

(b)
...

Figure 7.7: The connecting paths for r = 3 (a) away from the edges of the
tree and (b) at the edge of the tree. The legs highlighted in red are those
which have no connecting path due to the tree edge.

.........
, , ,

... ... ...
, ......

Figure 7.8: Diagrammatic decomposition showing the bulk and boundary
contributions to the leaf-to-leaf path length. Again, the legs highlighted in
red are those which have no connecting path due to the tree edge.

edges as the bulk and the terms affected by the edge as the boundary, both of which

shall be treated separately.

The bulk terms are the simplest ones to create an expression for; they are

just the generalisation of the nearest neighbour case. As before, the length of each

connecting path is the addition of the depth of the leg in the left hand sub-tree, the

root node and the depth of the leg in the right sub-tree. Here, we are again looking

for the summed path lengths so need to use the depth functions Dm,n for the depth

of the legs in the left and right sub-trees, each has a degeneracy given by the number

of trees in the opposing sub-tree and the root contributes 1 for each combination.

We then need to sum over the r different positions that the connecting paths can

start and end on labelled by β and also sum over the sub-tree combinations labelled

by α, noting that the limits on the α sum are given by when this bulk behaviour is

satisfied.

As a simple example take r = 3 again, shown schematically in fig. 7.8. The

β index runs over the three paths connecting leg β in the right sub-tree and leg
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...... ......
=

Figure 7.9: The connecting paths when r = n − 2. The long range paths
are equivalent to short range paths due to the left-right symmetry of the
sub-trees.

α− 2 + β in the left. The bulk behaviour is present for α = 2 to n− 3 thus

[S3,n]blk =
n−3∑
α=2

3∑
β=1

[Cn−α−1Dα−2+β,α + CαDβ,n−α−1 + CαCn−α−1] (7.5.17)

This discussion generalises easily for r ≤ (n + 1)/2 after which there is no obvious

bulk contribution as the lower limit on the α sum becomes larger than the upper

limit.

[Sr,n]blk =

n−r∑
α=r−1

r∑
β=1

[Cn−α−1Dα+1−r+β,α + CαDβ,n−α−1 + CαCn−α−1]

=
n−r∑

α=r−1

r∑
β=1

[Cn−α−1D1+r−β,α + CαDβ,n−α−1 + CαCn−α−1]

=
n−r∑

α=r−1

r∑
β=1

[
Cn−α−1Dβ,α + Cn−r+r−1−αDβ,n−(n−r+r−1−α)−1 + CαCn−α−1

]
=

n−r∑
α=r−1

r∑
β=1

[2Cn−α−1Dβ,α + CαCn−α−1] ; r ≤ n+ 1

2
(7.5.18)

where we have used the left-right symmetry of the depth function (Dm,n = Dn+2−m,n)

to get to line two. To get to line three we have summed the β index from the upper

limit for the first term and summed the α index from the top on the second term.

The paths where r > (n + 1)/2 have equivalent bulk terms due to the left-

right symmetry of the sub-trees as shown in fig. 7.9. In this sense r = n is the same

as r = 1, r = n− 1 is equal to r = 2 and so on. The contribution to the bulk form

these long range terms will have the same form as for r ≤ (n + 1)/2, but in the
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Figure 7.10: The legs that are involved in boundary paths when α < n −
α− 1. All of the legs are involved in the left sub-tree, only the legs r away
are involved in the right sub-tree labelled by r − 1− α+ β.

limits on the sums r will be replaced by n+ 1− r

[Sr,n]blk =

r−1∑
α=n−r

n−r+1∑
β=1

[2Cn−α−1Dβ,α + CαCn−α−1] ; r >
n+ 1

2
(7.5.19)

The boundary terms are limited by the fact that one of the subtrees has fewer

than r legs, meaning that there cannot be all r connecting paths. In the boundary

case for r ≤ (n + 1)/2 there are α + 1 contributions rather than r, so the β index

is limited by α+ 1. The limits on the α sum are given by the set of sub-trees with

fewer than r legs and hence r− 1 vertices. As shown in fig. 7.10 when α < n−α− 1

all of the legs of the left sub-tree contribute but only those that are r legs away from

a starting point do in the right sub-tree. This set starts with leg r−α− 1 and goes

up with β. The α < n−α− 1 refer to left hand boundary as shown in fig. 7.8. The

right hand boundary is identical due to the left-right symmetry of sub-trees. The

total expression is

[Sr,n]bnd = 2
r−2∑
α=0

α+1∑
β=1

[Cn−α−1Dβ,α + CαDr−1−α+β,n−α−1 + CαCn−α−1]

= 2
r−2∑
α=0

α+1∑
β=1

[Cn−α−1Dβ,α + CαDr−β+1,n−α−1 + CαCn−α−1] ; r ≤ n+ 1

2
,

(7.5.20)

where to get to the final line we have summed the β index of the second term from

top to bottom. As with the bulk terms the r > (n + 1)/2 is identical except for
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replacing r with n+ 1− r

[Sr,n]bnd = 2
n−r−1∑
α=0

α+1∑
β=1

[Cn−α−1Dβ,α + CαDn+2−r−β,n−α−1 + CαCn−α−1]

= 2

n−r−1∑
α=0

α+1∑
β=1

[Cn−α−1Dβ,α + CαDr−β+1,n−α−1 + CαCn−α−1] ; r ≤ n+ 1

2
,

(7.5.21)

where we have again used Dm,n = Dn+2−m,n and changed the order of the sum on

the second term. When put together the full recursion relation is

[Sr,n]blk =



n−r∑
α=r−1

r−1∑
β=0

(2Cn−α−1Dβ+1,α + CαCn−α−1) ; r ≤ n+ 1

2

r−1∑
α=n−r

n−r∑
β=0

(2Cn−α−1Dβ+1,α + CαCn−α−1) ; r >
n+ 1

2

(7.5.22)

[Sr,n]bnd =


2
r−2∑
α=0

α∑
β=0

(Cn−α−1Dβ+1,α + CαDr−β,n−α−1 + CαCn−α−1) ; r ≤ n+ 1

2

2
n−r−1∑
α=0

α∑
β=0

(Cn−α−1Dβ+1,α + CαDr−β,n−α−1 + CαCn−α−1) ; r >
n+ 1

2

(7.5.23)

[Sr,n]rec = 2
n−1∑
α=0

Cn−α−1Sr,α. (7.5.24)

Note that the limits on the sums imply that

Sr,n = 0 ∀r > n. (7.5.25)

We combine the bulk and boundary terms to create the source (Tr,n), which

seeds the recursion and sets the boundary properties. Thus the full equation becomes

Sr,n = Tr,n + 2
n−1∑
α=0

Cn−α−1Sr,α. (7.5.26)
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7.5.3 Next-to-Nearest Neighbours

Using the full recursion relation it is simple to obtain an expression for next-to-

nearest neighbours (r = 2)

S2,n = 6Cn+1 − 14Cn + 2Cn−1 + 2
n−1∑
α=0

Cn−α−1S2,α. (7.5.27)

As in section 7.5.1 we can use a generating function to obtain a closed form for the

path lengths. Let

S2(x) =
∞∑
n=0

S2,nx
n =

∞∑
n=0

S2,n+1x
n+1, (7.5.28)

where S2,0 = 0 due to (7.5.25). As before we start with S2,n+1, multiply eq. (7.5.27)

by xn+1 and sum to get

∞∑
n=0

S2,n+1x
n+1 =

∞∑
n=0

(6Cn+2 − 14Cn+1 + 2Cn)xn+1 + 2
∞∑
n=0

n∑
α=0

Cn−αS2,αx
n+1.

(7.5.29)

Putting in a step function and summing to infinity as in eq. (7.5.10) we obtain

S2(x) =
6

x

∞∑
n=0

Cn+2x
n+2 − 14

∞∑
n=0

Cn+1x
n+1 + 2x

∞∑
n=0

Cnx
n

+ 2x
∞∑
n=0

∞∑
α=0

Hn−αCn−αS2,αx
n

=
6

x
(C(x)− x− 1)− 14 (C(x)− 1) + 2xC(x) + 2x

∞∑
α=0

∞∑
q=−α

HqCqx
qS2,αx

α

=
6

x
(C(x)− 1) + 8− 14C(x) + 2xC(x) + 2x

∞∑
α=0

∞∑
q=0

Cqx
qS2,αx

α

= 6C2(x) + 8− 14C(x) + 2xC(x) + 2xC(x)S2(x) (7.5.30)

where we have used q = n − α on the second line and xC2(x) = C(x) − 1 (from

eq. (7.3.5)) on the final line. Collecting the S2(x) terms on the right and applying

1− 2xC(x) =
√

1− 4x (from eq. (7.3.7)) gives

S2(x) =
6C2(x) + 8− 14C(x) + 2xC(x)√

1− 4x
. (7.5.31)
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Then using eqs. (A.2.16), (A.2.18) and (A.2.22), as in the r = 1 case, the final result

can be obtained

S2(x) =

∞∑
n=0

[6(n+ 1)Cn+1 − 14(2n+ 1)Cn + 8(n+ 1)Cn + 2x(2n+ 1)Cn]xn

=
∞∑
n=0

[6(n+ 1)Cn+1 − (20n+ 6)Cn]xn + 2
∞∑
n=1

(2n+ 1)Cn−1x
n

=
∞∑
n=1

[6(n+ 1)Cn+1 − (20n+ 6)Cn + 2(2n+ 1)Cn−1]x
n + 6C1 − 6C0

=

∞∑
n=1

[6(n+ 1)Cn+1 − (20n+ 6)Cn + 2(2n+ 1)Cn−1]x
n. (7.5.32)

This now gives an expression for S2,n, which can be tidied up with (7.3.2)

S2,n = 6(n+ 1)Cn+1 − (20n+ 6)Cn + 2(2n+ 1)Cn−1

=
(n− 1)(5n− 2)

n+ 2
Cn. (7.5.33)

To obtain the average path length we need to divide by the number of possible

paths, which is (n− 1)Cn to get

A2,n =
5n− 2

n+ 2
. (7.5.34)

In the infinite n limit A2,∞ = 5.

7.5.4 Larger Separations

Using the same method as above it is possible to get an expression for r = 3

S3,n =
(n− 2)(13n2 − 18n+ 2)Cn

(n+ 2)(2n− 1)
. (7.5.35)

Dividing through by (n− 2)Cn gives the average:

A3,n =
13n2 − 18n+ 2

(n+ 2)(2n− 1)
. (7.5.36)
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The method can be generalised for any r given an appropriate source function Tr(x).

Starting with (7.5.26) and using the generating functions

Sr(x) =

∞∑
n=r−1

Sr,nx
n, (7.5.37)

Tr(x) =
∞∑

n=r−1
Tr,nx

n, (7.5.38)

we proceed as before,

∞∑
n=r−1

Sr,nx
n =

∞∑
n=r−1

Tr,nx
n + 2

∞∑
n=r−1

n−1∑
α=0

Cn−α−1Sr,αx
n

Sr(x) =
∞∑

n=r−1
Tr,nx

n + 2
∞∑

n=r−1

∞∑
α=0

Hn−α−1Cn−α−1Sr,αx
n

=

∞∑
r−1

Tr,nx
n + 2x

∞∑
α=0

Sr,αx
α

∞∑
q=r−α−2

HqCqx
q

=

∞∑
r−1

Tr,nx
n + 2x

∞∑
α=r−1

Sr,αx
α
∞∑
q=0

Cqx
q

=

∞∑
r−1

Tr,nx
n + 2x

∞∑
α=r−1

Sr,αx
αC(x)

= Tr(x) + 2xC(x)Sr(x), (7.5.39)

where on the third line we have made use of the step function Hq and recalled that

Sr,n = 0 when r < n so the lower limit of the α sum can be raised to match the

rest. Collecting the Sr(x) terms and dividing by [1− 2xC(x)] again gives

Sr(x) =
Tr(x)

1− 2xC(x)
. (7.5.40)

The issue now is finding a general form for the source, which appears to be as hard

as finding a general equation for the path lengths. It is possible to use the gener-

alised recursion relation to get a single case, but the number of terms grows rapidly

with r and it soon becomes impractical to obtain these by hand. Using algebraic

mathematics software such as Mathematica widens the scope of practicality, but a

general expression has still not been found using this method.
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7.5.5 General Solution

In additional work [14] it was shown that the depth function Dm,n and the summed

path length Sr,n are very closely related

Sr,n = (n+ 1− r)Dr,n. (7.5.41)

This in fact means that the average path length for a separation r is equal to the

average depth when m = r, i.e.

Ar,n =
(n+ 1− r)Dr,n

(n+ 1− r)Cn
= dr,n. (7.5.42)

This can be observed for r = 1, 2 by comparing eqs. (7.4.9) and (7.4.19) with (7.5.14)

and (7.5.34). Reference [14] shows that the solution to the depth function (7.4.59)

can be expressed explicitly without the summation as

Dm,n =
2m(m+ 1)(2n− 2m+ 1)(2n− 2m+ 3)

(n+ 1)(n+ 2)
CmCn−m − Cn. (7.5.43)

Hence

Ar,n = dr,n =
2r(r + 1)(2n− 2r + 1)(2n− 2r + 3)

(n+ 1)(n+ 2)

CrCn−r
Cn

− 1. (7.5.44)

Large n behaviour can be accessed by using the factorial form of the Catalan

numbers (7.3.1) along with Stirling’s approximation [172]

n! ∼
√

2πn
(n
e

)n
. (7.5.45)

For large n the Catalan numbers are therefore

Cn ∼
1

n
√
nπ

22n. (7.5.46)

Using this in eq. (7.5.44) gives

Ar,∞ ≡ lim
n→∞

=
8r(r + 1)

4r
Cr − 1. (7.5.47)

For large r as well (0� r � n) we get

Ar,∞ ∼
√

64r

π
, (7.5.48)
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(a)

(b)

, ,

Figure 7.11: Graphical representation of the equivalence between leaf-to-
leaf path length on a Catalan graph with n = 3 nodes and a rooted path
connecting the same nodes created by deforming the tree. (a) All possible
paths on a particular tree are shown, paths with separation r are mapped
to depths in trees with m = r. The thick green line denotes the path. (b)
Example of the degeneracy of rooted paths, showing the (n − r + 1) = 3
cases where n = 3 and r = 1 that map to the same rooted tree.

hence the asymptotic behaviour of the path lengths follow a square root in r.

There is a simple geometric interpretation of the result of (7.5.42). For

example, take a leaf-to-leaf path and deform the tree such that the left hand leaf is

above the root, making the first vertex the new root (a physical example is given

in appendix A.4). Now it is clear that any path with separation r can be expressed

as a leg depth with m = r, as shown in fig. 7.11(a). As the set of Catalan trees is

complete in the sense that all possible binary trees are part of the set of Catalan

trees, the newly deformed tree is also one of the set. By observation in, for example,

fig. 7.11(b), one can see that (n−r+1) paths map to each unique rooted tree depth.

The degeneracy coming from the number of possible vertices to the right of the right

hand leaf, which can be the original root, highlighted in fig. 7.11 by the dashed edge.

The complete set of paths and their corresponding leaf depths are given in appendix

A.4. Figure 7.12 plots Ar,n against r for various values of n. The form of the plots

are similar to those of tSDRG in chapter 5 in that they have a point beyond which

the average path length gets shorter, which was not seen in the case of the complete

trees of chapter 6. The asymptotic form (7.5.48) is however very different from that

found for the complete trees exhibiting a square root form rather than logarithmic
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Figure 7.12: Average length of a leaf to leaf path Ar,n versus separation
r for n = 50 (solid black line), 100 (solid red), 200 (solid blue) and large
n = 5, 000 (dashed black line), 10, 000 (dashed red), 20, 000 (dashed blue).
The solid green line denotes Ar,∞, the dotted line corresponds to r while the
dashed-dotted line shows the corresponding result of chapter 6 for complete
binary trees (c.b.t.).

dependence on r. Furthermore the Catalan trees have a different path structure to

those generated by tSDRG, which also have a logarithmic asymptotic scaling. This

in turn means that when increasing r the average path length increases much more

rapidly in the case of Catalan trees. This is shown in fig. 7.12 by comparing the

green (Ar,∞) line with the dashed-dotted line for complete binary trees. The reason

for the much larger average path length is due to the fact that the complete binary

is the most compact that a tree of n vertices can be. The Catalan trees have many

more variants that are often more extended, even to the maximal case where a path

can contain all n vertices.

7.6 Random Binary Trees

In this section we numerically calculate the average leaf-to-leaf distance ARr,n of all

possible pairs of leaves of separation r in a random binary tree with n vertices. The

random trees are constructed from the ground up, that is starting with L = n + 1

leaves and inserting vertices that join two neighbours until the root node. The
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Figure 7.13: A complete set of random binary trees for n = 1,2 and 3
(L = 2, 3, 4). Circles and lines are as in fig. 7.1. Notice that unlike the
Catalan trees in fig. 7.2 the centre two trees with n = 3 have the same
structure and are therefore degenerate.

structure can then be defined by a vector that gives the order in which the vertices

can be placed, in much the same way as the order vector described in chapter 5.

The trees are random in the sense that the vector that defines their structure can

be generated randomly from the n! different permutations of the structure vector.

This full set of trees is different to the Catalan trees in that there can be two vectors

that create the same structure despite constructing the tree in a different order, as

shown in fig. 7.13. This degeneracy changes the average path lengths in the trees.

For small n it is possible to generate all n! permutations, shown in fig. 7.14(a),

while for large n, fig. 7.14(b), we average over a finite number N � n! chosen

randomly. We see in fig. 7.14(a) that, similar to the complete binary trees considered

in chapter 6, the path lengths increase approximately logarithmically with r until

they reach a maximal value. Like the paths in the Catalan trees, the path length

decreases rapidly beyond this maximal value. We also see that when we choose

10, 000 random binary trees from the 10! = 3, 628, 800 possible trees at n = 10 the

average leaf-to-leaf distance for each r is distinguishably different from the average

over all possible permutations. This suggests that rare tree structures are quite

important.

In fig. 7.14(b) we nevertheless show estimates of ARr,n for various n for 500

randomly chosen trees. As before, the shape of the curves for large n is similar to

those for small n, with the asymptotic logarithmic scaling more apparent. For these

larger values of n the path lengths are now longer than those of the complete tree,

where they are shorter in fig. 7.14(a).
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Figure 7.14: (a) Average leaf-to-leaf path length through a random binary
tree connecting two leaves of separation r averaged over all possible trees
for n = 8, 9 and 10 (solid symbols, lines are guide to the eye only). The
open symbols (dashed line guide to the eye) refer to an average over 10000
randomly chosen trees from the 10! possibilities for n = 10. The grey crosses

(×) and line correspond to L(2)∞ (r) from the complete binary trees in chapter
6. (b) Average leaf-to-leaf distance constructed from 500 randomly chosen
binary trees with n = 99, 499 and 999 (dashed lines). The open symbols
(◦) denote the first 10 data points. The closed symbols (red •) and the solid
line correspond to the L = 10 data from (a). The grey line corresponds to

L(2)∞ (r) as in (a). Error bars have been omitted in (a) and (b) as they are
within symbol size.

7.7 Conclusion

In this chapter we continue the analysis of the structure of TTNs using graph theo-

retic techniques. We find an analytic expression for the average path length between

two leaves of a Catalan tree when averaged over all possible pairs of leaves and all

possible trees. The average path length for separation r is found to be identical to

the average depth of a leaf with m = r. Figure 7.15 shows that the form of the path

lengths in Catalan trees is very different from those found in tSDRG (chapter 5) and

complete binary trees (chapter 6), exhibiting a square root asymptotic behaviour

rather than a logarithmic one. When constructing the trees according to a random

vector as described in section 7.6, which allows degeneracy of the tree structures,

the logarithmic asymptotic form is recovered, but is still not identical to the tSDRG

results. Therefore it is clear that the set of trees under consideration plays a crucial

role in the form of the average path length and can alter their asymptotic form.

The selection process performed by the renormalisation group plays a critical role

in choosing the trees that make up the set in tSDRG.

Upon completion of the work on Catalan trees and writing of this thesis
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Figure 7.15: Comparing the leaf-to-leaf path lengths of the various trees
studied thus far, all with L = 150 apart from the complete binary tree
where we show the infinite limit. The red line gives path lengths from 2000
disorder realisations of tSDRG (from fig. 5.11). The blue line shows the
average path length from Catalan trees using eq. (7.5.44). The green line
is the average path length for 10000 random binary trees as discussed in

section 7.6. The black line is L(2)∞ (r) from the complete binary trees in
chapter 6.

chapter we learned of a proof of the average depth of a leaf of position m (eq.

(7.5.43)) by Kirchenhofer [173, 174] and a generalisation to all statistical moments

[175]. We have so far been unable to obtain refs. [173, 174], but the methods outlined

in this chapter are distinct from those used in [175], whilst finding the same result.

However, to the best of our knowledge, the discussion of the leaf-to-leaf path lengths

is still novel.
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Chapter 8

Summary and Outlook

8.1 Summary

To summarise, this thesis attempts to provide a pedagogical introduction to the field

of tensor networks, particularly for use on disordered quantum many-body systems.

The discussion of geometry and tensor networks is not new to this work, but we

extend the discussion from regular, translationally invariant networks to those with

more complex structures where the geometry is based on the random nature of the

underlying model. We also provide examples of the effect of the geometry, which

we believe are missing from the more conceptual papers on this subject.

The basic concepts of tensor networks were introduced in the context of an

MPS-based DMRG algorithm. The diagrammatic notation that is common within

most tensor network papers and talks was introduced and utilised throughout. The

notion of contraction, reshaping and SVD, which are the fundamental actions that

can be performed in tensor network algorithms, were discussed in the hope that

the reader might use them to write their own routines should they wish. A general

approach to the construction of MPO-based Hamiltonians was introduced with var-

ious examples given. The method by which DMRG is performed on MPSs is shown

for the case of the spin-1/2 Heisenberg model. This method is at the heart of many

modern DMRG algorithms for example the ITensor packages [79] used in chapter

3. We used the newly gained knowledge of DMRG to perform a detailed analysis of

the phase diagram of the disordered Bose-Hubbard model. Because DMRG encodes

the entanglement properties of the wavefunction, we use this as a general observable

to obtain the phase throughout the entire phase space without having to perform

multiple runs for every realisation.

We discuss the area law, which explains why DMRG works so well in cer-
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tain situations and poorly in others [97]. The arguments are based on geometry,

suggesting that DMRG is a special case within a wider range of tensor network

states and that the structure of the network plays an important role in its success.

The extension of the area law to critical systems highlights the connection between

tensor networks and holographic field theories based on AdS/CFT [44]. In light of

these holographic principles, we give examples of more appropriate tensor networks

that can be used for critical and two dimensional systems.

In chapter 5 we reformulate the numerical SDRG of Hikihara [124] for the

disordered spin-1/2 Heisenberg model in terms of a tensor network. This approach

traces out a TTN where the position of the tensors is determined by the disor-

der in the Hamiltonian rather than placed by hand as in all other tensor network

approaches. It is known for the disordered spin-1/2 Heisenberg model that upon

disorder averaging an effective CFT emerges. We suggest that the logarithmic scal-

ing of entanglement and power law decay of correlations are due to the holographic

nature of the wavefunction.

For the regular and translationally invariant tensor networks it is clear what

form the asymptotic average correlation function should take. For MPS it is simply

the number of sites between the two points of the correlation function; for MERA

there is a logarithmic scaling; for TTNs it is not so clear. The structure is not

translationally invariant and there are holographic structures that mean that for

a given separation there are many different path lengths that contribute to the

average. We analyse the complete binary tree graph as it has the same structure as

the regular TTN. We make a restriction that the leaves of the tree are fixed in an

order that mimics a one dimensional lattice and calculate the average path length

as a function of leaf separation. This result is generalised for m-ary splittings and

all statistical moments. The discussion of the structure of TTNs continues with the

Catalan trees which is the set of all unique binary trees with n internal vertices. We

again make the restriction that the leaves form the one dimensional lattice. We find

an analytic form for the depth of a lattice point m as well as the average path length

for separation 1, 2, 3. It was shown by Jon Fellows and co-authors in [14] that the

general form for the average path length of separation r is identical to the average

leaf depth at position m = r. The asymptotic form of the path lengths of complete

trees, Catalan trees and randomly generated trees are compared with the results of

the tSDRG trees to conclude that the choice of trees in the set plays a crucial role

in the form of the resulting average correlation function.
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8.2 Outlook

The use of tensor networks within the fields of condensed matter physics and quan-

tum information theory is becoming ever more common. MPS-based DMRG is

widely believed to be the most accurate method of numerically modelling one dimen-

sional systems and it is being applied in increasingly complicated scenarios [2, 30].

Projected entangled pair states (PEPS) are being used both as a numerical method

and as an analytic platform to uncover topological properties of matter [104, 105].

MERA and holographic tensor networks have become a useful tool within high en-

ergy physics and are being applied in linking entanglement with gravity in string

theory [176].

There are many ways that tensor networks can aid the study of disordered

systems. Although DMRG is in some ways imperfect for the modelling of disor-

der, it is so efficient that much can still be learned by applying it. Beyond the

Heisenberg and Bose-Hubbard models discussed in the thesis, there are still a myr-

iad of possible Hamiltonians that can be examined with DMRG. A current area of

intense research is many-body localisation (MBL), the generalisation of Anderson

localisation to interacting many-body systems [177]. It is believed that the area law

holds for all excited states in systems with MBL up to some mobility energy, unlike

gapped quantum systems where only the ground state is area law satisfying [178].

This in principle should allow for an efficient MPS representation, and therefore ac-

curate DMRG simulation, of any state in a one-dimensional MBL spectrum. Strong

disorder renormalisation techniques such as tSDRG can be used as high precision

methods when disorder is strong. The method should be accurate for use with the

FM/AFM disordered spin-1/2 Heisenberg model where large effective spins would

be created as the renormalisation progresses [124]. Beyond spin-1/2 there have been

exciting discoveries in disordered spin-3/2 Heisenberg systems, where the rich phase

diagram contains topological phases as well as spin doublet and triplet phases [179].

It would be fascinating to uncover the optimal tensor network geometries in these

situations.

More generally we would like to be able to construct an algorithm that can

decide on the best network geometry for any system under consideration. Cur-

rently the geometry in most tensor network approaches is set by hand using prior

knowledge of the model. In a network that can self optimise the structure, the final

geometry can become a resource for learning about the properties of the wavefunc-

tion. Perhaps with these ideas, truly scalable two and three dimensional tensor

network algorithms may be a possibility with and without disorder.
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Appendix A

Proof of Catalan Number

Equations

A.1 Changing the Order of the Sum

It is possible to change the order in which a sum is performed, i.e. instead of counting

the indices upwards from some lower limit, count down from the upper limit. It is

trivial to perform this change, but can be useful in simplifying certain sums. The

general form is
β∑
i=α

xi =

β∑
i′=α

xα+β−i′ . (A.1.1)

A.2 Catalan Number Relations

The following expressions are frequently used throughout the chapter, this section

gives proofs for them. The generating function for the Catalan numbers satisfies

C(x) =
1

1− xC(x)
(A.2.1)

Proof Starting with eq. (7.3.6) isolate one C(x)

xC2(x)− C(x) + 1 = 0 (A.2.2)

C(x) [1− xC(x)] = 1 (A.2.3)

C(x) =
1

1− xC(x)
� (A.2.4)

171



C2(x) can be expressed as

C2(x) =

∞∑
n=0

Cn+1x
n. (A.2.5)

Proof Starting from 7.3.5

C2(x) =
C(x)− 1

x

=

∞∑
n=0

Cnx
n−1 − x−1

=
∞∑
n=1

Cnx
n−1

=
∞∑
n=0

Cn+1x
n � (A.2.6)

The following two expressions are extensions of Segner’s relation (7.2.1) and

are used in the derivation of the nearest neighbour (r = 1) path lengths

(n+ 1)Cn+1 =

n∑
q=0

(2q + 1)CqCn−q. (A.2.7)

Proof Using Segner’s relation, the right hand side can be written as a square of

terms that takes into account the degeneracy given by (2q + 1). This can be easily

seen by first considering degeneracy (q + 1)

n∑
q=0

(q + 1)CqCn−q = C0Cn + C1Cn−1 + C2Cn−2 + · · ·+CnC0

+ 0 + C1Cn−1 + C2Cn−2 + · · ·+CnC0

+ 0 + 0 + C2Cn−2 + · · ·+CnC0 . . . (A.2.8)

This multiplied by two completes this square but double counts the terms along the

diagonal, which need to be removed. The complete square is clearly (n+ 1) copies

of Segner’s relation.

(n+ 1)Cn+1 = 2

n∑
q=0

(q + 1)CqCn−q −
n∑
q=0

CqCn−q (A.2.9)

=

n∑
q=0

(2q + 1)CqCn−q � (A.2.10)
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A similar related expression is

(2n+ 1)Cn =

n∑
q=0

(q + 1)CqCn−q. (A.2.11)

Proof Starting with Eqn. (A.2.9), noticing that the final term is just Segner’s

relation for Cn+1

(n+ 1)Cn+1 = 2
n∑
q=0

(q + 1)CqCn−q − Cn+1 (A.2.12)

(n+ 2)Cn+1

2
=

n∑
q=0

(q + 1)CqCn−q. (A.2.13)

Using the recursion relation (7.3.2) gives

(n+ 2)

2

2(2n+ 1)

n+ 2
Cn =

n∑
q=0

(q + 1)CqCn−q (A.2.14)

(2n+ 1)Cn =
n∑
q=0

(q + 1)CqCn−q � (A.2.15)

In the derivation of the r = 1 path length (eq. (7.5.11)) it is necessary to

simplify various expressions involving 1/(
√

1− 4x).

1√
1− 4x

=
∞∑
α=0

(α+ 1)Cαx
α. (A.2.16)

Proof

∞∑
α=0

(α+ 1)Cαx
α = C(x) + x

∂

∂x
C(x)

=
1−
√

1− 4x

2x
+

[
1√

1− 4x
− 1−

√
1− 4x

2x

]
=

1√
1− 4x

� (A.2.17)

This result is then used for the other parts of eq. (7.5.13)

C(x)√
1− 4x

=

∞∑
n=0

(2n+ 1)Cnx
n. (A.2.18)
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Proof

C(x)√
1− 4x

=

∞∑
α=0

Cαx
α
∞∑
β=0

(β + 1)Cβx
β

=
∞∑

α,β=0

(β + 1)CαCβx
α+β

=
∞∑
n=0

n∑
β=0

(β + 1)Cn−βCβx
n (A.2.19)

=

∞∑
n=0

(2n+ 1)Cnx
n � (A.2.20)

where in the last line we have used A.2.11. Finally

C2(x)√
1− 4x

=

∞∑
n=0

(n+ 1)Cn+1x
n. (A.2.21)

Proof Starting with eq. (A.2.18)

C2(x)√
1− 4x

= C(x)

(
C(x)√
1− 4x

)
=

∞∑
α=0

Cαx
α
∞∑
β=0

(2β + 1)Cβx
β

=

∞∑
α,β=0

(2β + 1)CαCβx
α+β

=
∞∑
n=0

n∑
β=0

(2β + 1)Cn−βCβx
n

=

∞∑
n=0

(n+ 1)Cn+1x
n � (A.2.22)

where in the last line we used A.2.7.

A.3 Left-Right Symmetry of the Depth function

As mentioned in section 7.4.3 the depth function (7.4.21) is left-right symmetric

such that Dm,n = Dn+2−m,n. Proof In the same way as eq. (7.4.21), a recursion
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Figure A.1: A Catalan tree with n = 7 constructed out of string. The path
with r = 3, highlighted by the blue leaves can be deformed so that one leaf
sits above the root node and the other is at m = 3. The dashed red edge
denotes the root node.

relation can be found for the pth leg from the right

Dn+2−p,n = Cn +

n−p∑
k=0

Dn−k−p+1,n−k−1Ck +
n−1∑

k=n−p+1

Dn+2−p,kCn−k−1. (A.3.1)

The first sum is where the (n+ 2− p)th leg is (n− k − p+ 1) in the right sub-tree.

The second sum is where the left sub-tree is large enough to have n + 2 − p legs.

The degeneracies are given by the number of trees in the opposite block as before.

Setting m = n+ 2− p recovers eq. (7.4.21) as desired. �

A.4 Relationship Between Path Length and Leaf Depth

A neat way of visualising the connection between path lengths and leaf depths is by

constructing a physical tree, in fig. A.1 out of string, and deforming it. In this way

all leaf-to-leaf paths can be mapped to leaf depths. Figure A.2 shows all possible

leaf-to-leaf paths and their corresponding leg depths for the set of Catalan trees

with n = 3.
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Figure A.2: All leaf-to-leaf paths and their corresponding leaf depths for
all Catalan trees with n = 3. Symbols and lines as in fig. 7.1 apart from
the dashed line that denotes the edge that would connect to the root from
above.



Appendix B

Word Cloud

Figure B.1 is a diagrammatic representation of the frequency of use of words in this

thesis, known as a word cloud, created using the Wordle applet [180]. It gives an

interesting and fun way of summarising the key ideas within the text, but is no

substitution for actually reading it!

Figure B.1: A Word cloud illustrating the frequency of use of words in
this thesis. The size of each word is determined by the number of times it
appears, larger words appear more frequently.
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[72] S. Rapsch, U. Schollwöck, and W. Zwerger. Density matrix renormalization
group for disordered bosons in one dimension. Europhys. Lett., 46(5):559, June
1999.

[73] H. Li and F. D. M. Haldane. Entanglement spectrum as a generalization
of entanglement entropy: Identification of topological order in non-abelian
fractional quantum Hall effect states. Phys. Rev. Lett., 101:010504, July 2008.

[74] J. Eisert, M. Cramer, and M. B. Plenio. Colloquium: Area laws for the
entanglement entropy. Rev. Mod. Phys., 82:277–306, February 2010.

[75] F. Pollmann, A. M. Turner, E. Berg, and M. Oshikawa. Entanglement spec-
trum of a topological phase in one dimension. Phys. Rev. B, 81:064439, Febru-
ary 2010.

[76] X. Deng and L. Santos. Entanglement spectrum of one-dimensional extended
Bose-Hubbard models. Phys. Rev. B, 84:085138, August 2011.

[77] X. Deng, R. Citro, E. Orignac, A. Minguzzi, and L. Santos. Bosonization
and entanglement spectrum for one-dimensional polar bosons on disordered
lattices. New J. Phys., 15(4):045023, April 2013.

[78] J. A. Kjäll, J. H. Bardarson, and F. Pollmann. Many-body localization in
a disordered quantum Ising chain. Phys. Rev. Lett., 113:107204, September
2014.

[79] ITensor library. URL http://itensor.org/. Version: 0.2.3.

[80] T. D. Kühner, S. R. White, and H. Monien. One-dimensional Bose-Hubbard
model with nearest-neighbor interaction. Phys. Rev. B, 61:12474–12489, May
2000.

[81] G. Roux, T. Barthel, I. P. McCulloch, C. Kollath, U. Schollwöck, and
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[129] J. Moré and D. Sorensen. Computing a trust region step. SIAM J. Sci. Stat.
Comp., 4(3):553–572, September 1983.

[130] J. A. Hoyos, A. P. Vieira, N. Laflorencie, and E. Miranda. Correlation am-
plitude and entanglement entropy in random spin chains. Phys. Rev. B, 76:
174425, November 2007.

[131] N. Laflorencie. Scaling of entanglement entropy in the random singlet phase.
Phys. Rev. B, 72:140408, October 2005.

[132] G. Refael and J. E. Moore. Entanglement entropy of the random S=1 Heisen-
berg chain. Phys. Rev. B, 76:024419, July 2007.
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[134] G. Ramı́rez, J. Rodŕıguez-Laguna, and G. Sierra. Entanglement in low-energy
states of the random-hopping model. J. Stat. Mech. Theor. Exp., 2014(7):
P07003, July 2014.

[135] R. Juhász and Z. Zimborás. Entanglement entropy in aperiodic singlet phases.
J. Stat. Mech. Theor. Exp., 2007(04):P04004, April 2007.

[136] M. den Nijs and K. Rommelse. Preroughening transitions in crystal surfaces
and valence-bond phases in quantum spin chains. Phys. Rev. B, 40:4709–4734,
September 1989.
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