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Abstract

Energy consumption imposes a significant cost for data centers; yet much of that energy is used to maintain excess
service capacity during periods of predictably low load. Resultantly, there has recently been interest in developing
designs that allow the service capacity to be dynamically resized to match the current workload. However, there is
still much debate about the value of such approaches in real settings. In this paper, we show that the value of dynamic
resizing is highly dependent on statistics of the workload process. In particular, both slow time-scale non-stationarities
of the workload (e.g., the peak-to-mean ratio) and the fast time-scale stochasticity (e.g., the burstiness of arrivals) play
key roles. To illustrate the impact of these factors, we combine optimization-based modeling of the slow time-scale
with stochastic modeling of the fast time-scale. Within this framework, we provide both analytic and numerical results
characterizing when dynamic resizing does (and does not) provide benefits.

Keywords: Data Centers, Dynamic Resizing, Energy Efficient IT, Stochastic Network Calculus

1. Introduction

Energy costs represent a significant, and growing, fraction of a data center’s budget. Hence there is a push
to improve the energy efficiency of data centers, both in terms of the components (servers, disks, network, power
infrastructure [3, 4, 5, 6, 7]) and the algorithms [8, 9, 10, 11, 12]. One specific aspect of data center design that is the
focus of this paper is dynamically resizing the service capacity of the data center so that during periods of low load
some servers are allowed to enter a power-saving mode (e.g., go to sleep or shut down).

The potential benefits of dynamic resizing have been a point of debate in the community [13, 9, 14, 15, 16]. On
one hand, it is clear that, because data centers are far from perfectly energy proportional, significant energy is used to
maintain excess capacity during periods of predictably low load when there is a diurnal workload with a high peak-to-
mean ratio. On the other hand, there are also significant costs to dynamically adjusting the number of active servers.
These costs come in terms of the engineering challenges in making this possible [17, 18, 19], as well as the latency,
energy, and wear-and-tear costs of the actual “switching” operations involved [20, 9, 21].

The challenges for dynamic resizing highlighted above have been the subject of significant research. At this point,
many of the engineering challenges associated with facilitating dynamic resizing have been resolved, e.g., [17, 18, 19].

IThis paper is the full version of an accepted poster at ACM Sigmetrics/Performance 2012 [1] and an accepted short paper at the IEEE Infocom
2013 conference [2]
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Additionally, the algorithmic challenge of deciding, without knowledge of the future workload, whether to incur the
significant “switching costs” associated with changing the available service capacity has been studied in depth and a
number of promising algorithms have emerged [11, 22, 9, 23, 12].

However, despite this body of work, the question of characterizing the potential benefits of dynamic resizing has
still not been properly addressed. Providing new insight into this topic is the goal of the current paper.

The perspective of this paper is that, apart from engineering challenges, the key determinant of whether dynamic
resizing is valuable is the workload, and that proponents on different sides tend to have different assumptions in this
regard. In particular, a key observation, which is the starting point for our work, is that there are two factors of the
workload which provide dynamic resizing potential savings:

(i) Non-stationarities at a slow time-scale, e.g., diurnal workload variations.

(ii) Stochastic variability at a fast time-scale, e.g., the burstiness of request arrivals.

The goal of this work is to investigate the impact of and interaction between these two features with respect to dynamic
resizing.

To this point, we are not aware of any work characterizing the benefits of dynamic resizing that captures both of
these features. There is one body of literature which provides algorithms that take advantage of (i), e.g., [9, 10, 11, 22,
24, 25, 16]. This work tends to use an optimization-based approach to develop dynamic resizing algorithms. There
is another body of literature which provides algorithms that take advantage of (ii), e.g., [23, 21]. This work tends to
assume a stationary queueing model with Poisson arrivals to develop dynamic resizing algorithms.

The first contribution of the current paper is to provide an analytic framework that captures both effects (i) and (ii).
We accomplish this by using an optimization framework at the slow time-scale (see Section 2), which is similar to
that of [11], and combining this with stochastic network calculus and large deviations modeling for the fast time-scale
(see Section 3), which allows us to study a wide variety of underlying arrival processes. We consider both light-tailed
models with various degrees of burstiness and heavy-tailed models that exhibit self-similarity. The interface between
the fast and slow time-scale models happens through a constraint in the optimization problem that captures the Service
Level Agreement (SLA) for the data center, which is used by the slow time-scale model but calculated using the fast
time-scale model (see Section 3).

Using this modeling framework, we are able to provide both analytic and numerical results that yield new insight
into the potential benefits of dynamic resizing (see Section 4). Specifically, we use trace-driven numerical simulations
to study (i) the role of burstiness for dynamic resizing, (ii) the role of the peak-to-mean ratio for dynamic resizing,
(iii) the role of the SLA for dynamic resizing, and (iv) the interaction between (i), (ii), and (iii). The key realization
is that each of these parameters are extremely important for determining the value of dynamic resizing. In particular,
for any fixed choices of two of these parameters, the third can be chosen so that dynamic resizing does or does not
provide significant cost savings for the data center. Thus, performing a detailed study of the interaction of these
factors is important. To that end, Figures 12-14 provide concrete illustrations of which settings of peak-to-mean ratio,
burstiness, and SLAs dynamic resizing is and is not valuable. Hence, debate about the potential value of dynamic
resizing can be transformed into debate about characteristics of the workload and the SLA.

There are some interesting facts about these parameters individually that our case studies uncover. Two important
examples are the following. First, while one might expect that increased burstiness provides increased opportunities
for dynamic resizing, it turns out the burstiness at the fast time-scale actually reduces the potential cost savings
achievable via dynamic resizing. The reason is that dynamic resizing necessarily happens at the slow time-scale, and
so the increased burstiness at the fast time-scale actually results in the SLA constraint requiring more servers be used
at the slow time-scale due to the possibility of a large burst occurring. Second, it turns out the impact of the SLA can
be quite different depending on whether the arrival process is heavy- or light-tailed. In particular, as the SLA becomes
more strict, the cost savings possible via dynamic resizing under heavy-tailed arrivals decreases quickly; however, the
cost savings possible via dynamic resizing under light-tailed workloads is unchanged.

In addition to detailed case studies, we provide analytic results that support many of the insights provided by the
numerics. In particular, Theorems 1 and 2 provide monotonicity and scaling results for dynamic resizing in the case
of Poisson arrivals and heavy-tailed, self-similar arrivals.

The remainder of the paper is organized as follows. The model is introduced in Sections 2 and 3, where Section
2 introduces the optimization model of the slow time-scale and Section 3 introduces the model of the fast time-scale
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and analyzes the impact different arrival models have on the SLA constraint of the dynamic resizing algorithm used
in the slow time-scale. Then, Section 4 provides case studies and analytic results characterizing the impact of the
workload on the benefits of dynamic resizing. The related proofs are presented in Section 5. Finally, Section 6
provides concluding remarks.

2. Slow Time-scale Model

In this section and the one that follows, we introduce our model. We start with the “slow time-scale model”. This
model is meant to capture what is happening at the time-scale of the data center control decisions, i.e., at the time-scale
which the data center is willing to adjust its service capacity. For many reasons, this is a much slower time-scale than
the time-scale at which requests arrive to the data center. We provide a model for this “fast time-scale” in the next
section.

The slow time-scale model parallels closely the model studied in [11]. The only significant change is to add a
constraint capturing the SLA to the cost optimization solved by the data center. This is a key change, which allows an
interface to the fast time-scale model.

2.1. The Workload

At this time-scale, our goal is to provide a model which can capture the impact of diurnal non-stationarities in
the workload. To this end, we consider a discrete-time model such that there is a time interval of interest which is
evenly divided into “frames” k ∈ {1, ...,K}. In practice, the length of a frame could be on the order of 5-10 minutes,
whereas the time interval of interest could be as long as a month/year. The mean request arrival rate to the data center
in frame k is denoted by λk, and non-stationarities are captured by allowing different rates during different frames.
Although we could allow λk to have a vector value to represent more than one type of workload as long as the resulting
cost function is convex in our model, we assume λk to have a scalar value in this paper to simplify the presentation.
Because the request inter-arrival times are much shorter than the frame length, typically in the order of 1-10 seconds,
capacity provisioning can be based on the average arrival rate during a frame.

2.2. The Data Center Cost Model

The model for data center costs focuses on the server costs of the data center, as minimizing server energy con-
sumption also reduces cooling and power distribution costs. We model the cost of a server by the operating costs
incurred by an active server, as well as the switching cost incurred to toggle a server into and out of a power-saving
model (e.g., off/on or sleeping/waking). Both components can be assumed to include energy cost, delay cost, and
wear-and-tear cost. The model framework we adopt is fairly standard and has been used in a number of previous
papers, e.g., see [11, 26] for a further discussion of the work and [27] for a discussion of how the model relates to
implementation challenges.

Note that this model ignores many issues surrounding reliability and availability, which are key components of data
center service level agreements (SLAs). In practice, a solution that toggles servers must still maintain the reliability
and availability guarantees; however this is beyond the scope of the current paper. See [18] for a discussion.

The Operating Cost
The operating costs are modeled by a convex function f (λi,k), which is the same for all the servers, where λi,k

denotes the average arrival rate to server i during frame k. The convexity assumption is quite general and captures
many common server models. One example, which we consider in our numeric examples later, is to say that the
operating costs are simply equal to the energy cost of the server, i.e., the energy cost of an active server handling
arrival rate λi,k. This cost is often modeled using an affine function as follows

f (λi,k) = e0 + e1λi,k , (1)

where e0 and e1 are constants [28, 4, 29]. Note that when servers use dynamic speed scaling, if the energy cost is
modeled as polynomial in the chosen speed, the cost f (·) remains convex. In practice, we expect that f (·) will be
empirically measured by observing the system over time.
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The Switching Cost
The switching cost, denoted by β, models the cost of toggling a server back-and-forth between active and power-

saving models. The switching cost includes the costs of the energy used toggling a server, the delay in migrating
connections/data when toggling a server, and the increased wear-and-tear on the servers toggling.

2.3. The Data Center Optimization
Given the cost model above, the data center has two control decisions at each time: determining nk, the number of

active servers in every time frame, and assigning arriving jobs to servers, i.e., determining λi,k such that Σ
nk
i=1λi,k = λk.

All servers are assumed to be homogeneous with constant rate capacity µ > 0. Modeling heterogeneous servers is
possible but the online problem will become more complicated [26] , which is out of the scope of this paper.

The goal of the data center is to determine nk and λi,k to minimize the cost incurred during [0,K], which is modeled
as follows:

min
K∑

k=1

nk∑
i=1

f (λi,k) + β

K∑
k=1

(nk − nk−1)+ (2)

s.t.


0 ≤ λi,k ≤ λk

Σ
nk
i=1λi,k = λk

P(Dk > D̄) ≤ ε̄ ,
(3)

where the final constraint is introduced to capture the SLA of the data center. We use Dk to represent the steady-state
delay during frame k, and (D̄, ε̄) to represent an SLA of the form “the probability of a delay larger than D̄ must be
bounded by probability ε̄”.

This model generalizes the data center optimization problem from [11] by accounting for the additional SLA
constraint. The specific values in this constraint are determined by the stochastic variability at the fast time-scale. In
particular, we derive (for a variety of workload models) a sufficient constraint nk ≥

Ck(D̄,ε̄)
µ

such that

nk ≥
Ck(D̄, ε̄)

µ
=⇒ P(Dk > D̄) ≤ ε̄ . (4)

Here, µ is the constant rate capacity of each server and Ck(D̄, ε̄) is to be determined for each considered arrival model.
One should interpret Ck(D̄, ε̄) as the overall effective capacity/bandwidth needed in the data center such that the SLA
delay constraint is satisfied within frame k.

Note that the new constraint is only sufficient for the original SLA constraint. The reason is that Ck(D̄, ε̄) will be
computed, in the next section, from upper bounds on the distribution of the transient delay within a frame.

With the new constraint, however, the optimization problem in (2)-(3) can be considerably simplified. Indeed,
note that nk is fixed during each time frame k and the remaining optimization for λi,k is convex. Thus, we can simplify
the form of the optimization problem by using the fact that the optimal dispatching strategy λ∗i,k is load balancing, i.e.,
λ∗1,k = λ∗2,k = . . . = λk/nk. This decouples dispatching λ∗i,k from capacity planning nk, and so Eqs. (2)-(3) become:

Data Center Optimization Problem

min
K∑

k=1

nk f (λk/nk) + β

K∑
k=1

(nk − nk−1)+ (5)

s.t. nk ≥
Ck(D̄, ε̄)

µ
.

Note that (5) is a convex optimization, since nk f (λk/nk) is the perspective function of the convex function f (·).
As we have already pointed out, the key difference between the optimization above, and that of [11], is the SLA

constraint. However, this constraint plays a key role in the current paper. It is this constraint that provides a bridge
between the slow time-scale and fast time-scale models. Specifically, the fast time-scale model uses large deviations
and stochastic network calculus techniques to calculate Ck(D̄, ε̄).
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2.4. Algorithms for Dynamic Resizing
Though the Data Center Optimization Problem described above is convex, in practice it must be solved online,

i.e., without knowledge of the future workload. Thus, in determining nk, the algorithm may not have access to the
future arrival rates λl for l > k. This fact makes developing algorithms for dynamic resizing challenging. However,
progress has been made recently [11, 30].

Deriving algorithms for this problem is not the goal of the current paper. Thus, we make use of a recent algorithm
called Lazy Capacity Provisioning (LCP) [11]. We choose LCP because of the strong analytic performance guarantees
it provides – LCP provides cost within a factor of 3 of optimal for any (even adversarial) workload process.

LCP works as follows. Let (nL
k,1, . . . , n

L
k,k) be the solution vector to the following optimization problem

min
k∑

l=1

nl f (λl/nl) + β

k∑
l=1

(nl − nl−1)+

s.t. nl ≥
Cl(D̄, ε̄)

µ
, n0 = 0 .

Similarly, let (nU
k,1, . . . , n

U
k,k) be the solution vector to the following optimization problem

min
k∑

l=1

nl f (λl/nl) + β

k∑
l=1

(nl−1 − nl)+

s.t. nl ≥
Cl(D̄, ε̄)

µ
, n0 = 0 .

Denote (n)b
a = max(min(n, b), a) as the projection of n into the closed interval [a, b]. Then LCP can be defined using

nL
k,k and nU

k,k as follows. Informally, LCP stays “lazily” between the upper bound nU
k,k and the lower bound nL

k,k in all
frames.

Lazy Capacity Provisioning, LCP

Let nLCP = (nLCP
0 , . . . , nLCP

K ) denote the vector of active servers under LCP. This vector can be calculated online using
the following forward recurrence relation:

nLCP
k =

 0, k ≤ 0

(nLCP
k−1 )

nU
k,k

nL
k,k
, 1 ≤ k ≤ K .

Note that, in [11], LCP is introduced and analyzed for the optimization from Eq. (5) without the SLA constraint.
However, it is easy to see that the algorithm and performance guarantee extend to our setting. Specifically, the
guarantees on LCP hold in our setting because the SLA constraint can be removed by defining the operating cost to
be∞ instead of nk f (λk/nk) when nk < Ck(D̄, ε̄)/µ.

A last point to highlight about LCP is that, as described, it does not use any predictions about the workload in
future frames. Such information could clearly be beneficial, and can be incorporated into LCP if desired, see [11].

3. Fast Time-scale Model

Given the model of the slow time-scale in the previous section, we now zoom in to give a description for the fast
time-scale model. By “fast” time-scale, we mean the time-scale at which requests arrive, e.g., on the order of 1-10
seconds, as opposed to the “slow” time-scale (frame length) at which dynamic resizing decisions are made by the data
center e.g., on the order of 5-15 minutes. To model the fast time-scale, we evenly break each frame from the slow
time-scale into “slots” t ∈ {1, . . . ,U}, such that frame length = U · slot length.

We consider a variety of models for the workload process at this fast time-scale, including both light-tailed mod-
els with various degrees of burstiness, as well as heavy-tailed models that exhibit self-similarity. In all cases, our
assumption is that the workload is stationary over the slots that make up each time frame.
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The goal of this section is to derive the value of Ck(D̄, ε̄) in the constraint nk ≥
Ck(D̄,ε̄)

µ
from Eq. (4), and thus

enable an interface between the fast and slow time-scales by parameterizing the Data Center Optimization Problem
from Eq. (5) for a broad range of workloads.

Note that throughout this section we suppress frame’s subscript k for nk, λk, Ck, and Dk, and focus on a generic
frame.

Our approach for deriving the SLA constraint for the Data Center Optimization Problem will be to first derive an
“aggregation property” which allows the data center to be modeled as a single server, and to then derive bounds on
the distribution of the transient delay under a variety of arrival processes.

Note that, in this paper, for simplicity of exposition, the arrival and server models in the fast time-scale have been
defined such that stationary increments are implicitly assumed. This is a mild assumption given the length of frames
defined by the slow time-scale, and is satisfied by the traces used in Section 4. However, if one would like to study
non-stationary processes, the results in this paper can be extended. The resulting bounding functions will generally
be dynamic and time-dependent.

3.1. An Aggregation Property

To get intuition for the aggregation property we prove, observe that if the arrival process were modeled as Poisson
and job sizes were exponential, then an “aggregation property” would be immediate, since the response time distribu-
tion only depends on the load. Hence the SLA could be derived by considering a single server. Outside of this simple
case, however, we need to derive a suitable single server approximation.

The aggregation result that we derive and apply is formulated in the framework of stochastic network calculus [31],
and so we begin by briefly introducing this framework.

Denote the cumulative arrival (workload) process at the data center’s dispatcher by A(t). That is, for each slot
t = 1, . . . ,U, A(t) counts the total number of jobs arrived in the time interval [0, t]. Depending on the total number
n of active servers, the arrival process is dispatched into the sub-arrival processes Ai(t) with i = 1, . . . , n such that
A(t) =

∑
i Ai(t). The cumulative response processes from the servers are denoted by Ri(t), whereas the total cumulative

response process from the data center is denoted by R(t) =
∑

i Ri(t). All arrival and response processes are assumed
to be non-negative, non-decreasing, and left-continuous, and satisfy the initial condition A(0) = R(0) = 0. For
convenience we use the bivariate extensions A(s, t) := A(t) − A(s) and R(s, t) := R(t) − R(s).

The service provided by a server is modeled in terms of probabilistic lower bounds using the concept of a stochastic
service process. This is a bivariate random process S (s, t) which is non-negative, non-decreasing, and left-continuous.
Formally, a server is said to guarantee a (stochastic) service process S (s, t) if for any arrival process A(t) the corre-
sponding response process R(t) from the server satisfies for all t ≥ 0

R(t) ≥ A ∗ S (t) , (6)

where ‘∗’ denotes the min-plus convolution operator, i.e., for two (random) processes A(t) and S (s, t),

A ∗ S (t) := inf
0≤s≤t
{A(s) + S (s, t)} . (7)

The inequality in (6) is assumed to hold almost surely. Note that the lower bound set by the service process is invariant
to the arrival processes.

We are now ready to state the aggregation property. The proof is deferred to Section 5.

Lemma 1. Consider an arrival process A(t) which is dispatched to n servers. Each server i is work-conserving with
constant rate capacity µ > 0. Arrivals are dispatched deterministically across the servers such that each server i
receives a fraction 1

n of the arrivals. Then, the system has service process S (s, t) = nµ(t − s), i.e., R(t) ≥ A ∗ S (t).

The significance of the Lemma is that if the SLA is verified for the virtual server with arrival process A(t) and
service process S (s, t), then the SLA is verified for each of the n servers. We point out that the lemma is based on the
availability of a dispatching policy with equal weights for homogenous servers.
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Figure 1: Three synthetically generated traces within 1 frame, with λ = 300 of Poisson, Markov-Modulated (MM) (T = 1, λl = 0.5λ and λh = 2λ),
and heavy-tailed arrivals (b = λ/3 and α = 1.5).

3.2. Arrival Processes

Now that we can reduce the study of the multi-server system to the study of a single server system using Lemma 1,
we can move to characterizing the impact of the arrival process on the SLA constraint in the Data Center Optimization
Problem.

In particular, the next step in deriving the SLA constraint n ≥ C(D̄,ε̄)
µ

is to derive a bound on the distribution of the
delay at the virtual server with arrival process A(t) and service process S (s, t) = C(D̄, ε̄)(t − s), i.e.,

P
(
D(t) > D̄

)
≤ ε(D̄) . (8)

It is important to observe that the violation probability ε holds for the transient virtual delay process D(t), which is
defined as D(t) := inf {d : A(t − d) ≤ R(t)}, and which models the delay spent in the system by the job leaving the
system, if any, at time t. By this definition, and using the servers’ homogeneity and also the deterministic splitting
of arrivals from Lemma 1, the virtual delay for the aggregate virtual server is the same as the virtual delay for the
individual servers. This fact guarantees that an SLA constraint on the virtual server implicitly holds for the individual
servers as well. Moreover, the violation probability ε in Eq. (8) is derived so that it is time invariant, which implies
that it bounds the distribution of the stead-state delay D = limt→∞ D(t) as well. Therefore, the value of C(D̄, ε̄) can be
finally computed by solving the implicit equation ε(D̄) = ε̄.

In the following, we follow the outline above to compute C(D̄, ε̄) for light- and heavy-tailed arrival processes.
Interested readers may refer to the technical report [32] for details. Figure 1 depicts examples of the three types of
arrival processes we consider in 1 frame: Poisson, Markov-Modulated (MM), and heavy-tailed arrivals. In all three
cases, the mean arrival rate is λ = 300. The figure clearly illustrates the different levels of burstiness of the three
traces.

3.2.1. Light-tailed Arrivals
We consider two examples of light-tailed arrival processes: Poisson and Markov-Modulated (MM) processes.

Poisson Arrivals
We start with the case of Poisson processes, which are characterized by a low level of burstiness, due to the

independent increments property. The following proposition, providing the tail of the virtual delay, is a minor variation
of a result from [33]; for the proof see [32].

Proposition 1. Let A(t) be a Poisson process with some rate λ > 0, and define

θ∗ := sup
{
θ > 0 :

λ

θ

(
eθ − 1

)
≤ C(D̄, ε̄)

}
. (9)
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Then a bound on the transient delay process is given for all t ≥ 0 by

P
(
D(t) > D̄

)
≤ e−θ

∗C(D̄,ε̄)D̄ := ε(D̄) . (10)

Solving for C(D̄, ε̄) by setting the violation probability ε(D̄) equal to ε̄ yields the implicit solution

C(D̄, ε̄) = −
1
θ∗D̄

log ε̄ .

Further, using the monotonicity of the function λ
θ

(
eθ − 1

)
in θ > 0 we immediately get the explicit solution

C(D̄, ε̄) =
K

log (1 + K)
λ , (11)

where
K = −

log ε̄
λD̄

.

Markov-Modulated Arrivals
Consider now the case of Markov-Modulated (MM) processes which, unlike the Poisson processes, do not nec-

essarily have independent increments. The key feature for the purposes of this paper is that the burstiness of MM
processes can be arbitrarily adjusted.

We consider a simple MM processes with two states. Let a discrete and homogeneous Markov chain x(s) with
two states denoted by ‘low’ and ‘high’, and transition probabilities ph and pl between the ‘low’ and ‘high’ states, and
vice-versa, respectively. Assuming that a source produces at some constant rates λl > 0 and λh > λl while the chain
x(s) is in the ‘low’ and ‘high’ states, respectively, then the corresponding MM cumulative arrival process is

A(t) =

t∑
s=1

(
λlI{x(s)=‘low′} + λhI{x(s)=‘high′}

)
, (12)

where I{·} is the indicator function. The average rate of A(t) is λ =
pl

ph+pl
λl +

ph
ph+pl

λh.
To adjust the burstiness level of A(t) we introduce the parameter T := 1

ph
+ 1

pl
, which is the average time for the

Markov chain x(s) to change states twice. We note that the higher the value of T is, the higher the burstiness level
becomes (the time periods whilst x(s) spends in the ‘high’ or ‘low’ states get longer and longer).

To compute the delay bound let us construct the matrix

Ψ(θ) =

(
(1 − ph)eθλl pheθλh

pleθλl (1 − pl)eθλh

)
,

for some θ > 0 and consider its spectral radius

λ(θ) :=
(1 − ph)eθλl + (1 − pl)eθλh +

√
∆

2
, (13)

where ∆ =
(
(1 − ph)eθλl − (1 − pl)eθλh

)2
+ 4ph pleθ(λl+λh). Let also

K(θ) := max
{

pheθλh

λ(θ) − (1 − ph)eθλl
,
λ(θ) − (1 − ph)eθλl

pheθλh

}
. (14)

The two terms are the ratios of the elements of the right-eigenvector of the matrix Ψ(θ). Also, let

θ∗ := sup
{
θ > 0 :

1
θ

log λ(θ) ≤ C(D̄, ε̄)
}
.

Using these constructions, and also the constant rate service assumption, a result on the backlog bound from [31],
pp. 340, immediately lends itself to the corresponding result on the virtual delay:
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Proposition 2. Consider a MM cumulative arrival process as defined in (12), with the λ(θ) given in (13), and K(θ)
given in (14), then a bound on the transient delay process is

P
(
D(t) > D̄

)
≤ K(θ∗)e−θ

∗C(D̄,ε̄)D̄ := ε(D̄) .

Setting the violation probability ε(D̄) equal to ε̄ in Theorem 2 yields the implicit solution

C(D̄, ε̄) = −
1
θ∗D̄

log
ε̄

K(θ∗)
. (15)

3.3. Heavy-tailed and Self-similar Arrivals

We now consider the class of heavy-tailed and self-similar arrival processes. These processes are fundamentally
different from light-tailed processes in that deviations from the mean increase in time and decay in probability as a
power law, i.e., more slower than the exponential.

We consider in particular the case of a source generating jobs in every slot according to i.i.d. Pareto random
variables Xi with tail distribution for all x ≥ b:

P (Xi > x) = (x/b)−α , (16)

where 1 < α < 2. X has finite mean E[X] = αb/(α − 1) and infinite variance. For the corresponding bound on the
transient delay we reproduce a result from [34].

Proposition 3. Consider a source generating jobs in every slot according to i.i.d. Pareto random variables Xi, with
the tail distribution from (16). The bound on the transient delay is

P
(
D(t) > D̄

)
≤ K

(
C(D̄, ε̄)D̄

)1−α
:= ε(D̄) , (17)

where

K = inf
1<γ< C(D̄,ε̄)

λ


(
C(D̄, ε̄)

γ
− λ

)−1
αγ

α−1
α

(α − 1) log γ

 .
Setting the violation probability ε(D̄) equal to ε̄, we get the implicit solution

inf
1<γ< C(D̄,ε̄)

λ

 γ

C(D̄, ε̄)α−1
(
C(D̄, ε̄) − γλ

) γ
α−1
α

log γ
α−1
α

 = ε̄D̄α−1 . (18)

4. Case Studies

Given the model described in the previous two sections, we are now ready to explore the potential of dynamic
resizing in data centers, and how this potential depends on the interaction between non-stationarities at the slow time-
scale and burstiness/self-similarity at the fast time-scale. Our goal in this section is to provide insight into which
workloads dynamic resizing is valuable for. To accomplish this, we provide a mixture of analytic results and trace-
driven numerical simulations in this section.

It is important to note that the case studies that follow depend fundamentally on the modeling performed so far in
the paper, which allows us to capture and adjust independently, both fast time-scale and slow time-scale properties of
the workload. The generality of our model framework enables thus a rigorous study of the impact of the workload on
value of dynamic resizing.

4.1. Setup

Throughout the experimental setup, our aim is to choose parameters that provide conservative estimates of the
case savings from dynamic resizing. Thus, one should interpret the savings shown as a lower-bound on the potential
savings.
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Figure 2: Illustration of the traces used for numerical experiments.

Model Parameters
The time frame for adapting the number of servers nk is assumed to be 10 min, and each time slot is assumed to

be 1 s, i.e., U = 600. When not otherwise specified, we assume the following parameters for the data center S LA
agreement: the (virtual) delay upper bound D̄ = 200ms, and the delay violation probability ε̄ = 10−3.

The cost is characterized by the two parameters of e0 and e1, and the switching cost β. We choose units such that the
fixed energy cost is e0 = 1. The load-dependent energy consumption is set to e1 = 0, because the energy consumption
of current servers with typical utilization level is dominated by the fixed costs [28, 4, 29]. Note that adjusting e0 and
e1 changes the magnitude of potential savings under dynamic resizing, but does not affect the qualitative conclusions
about the impact of the workload. So, due to space constraints, we fix these parameters during the case studies.

The normalized switching cost β/e0 measures the duration a server must be powered down to outweigh the switch-
ing cost. Unless otherwise specified, we use β = 6, which corresponds to the energy consumption for one hour (six
frames). This was chosen as an estimate of the time a server should sleep so that the wear-and-tear of power cycling
matches that of operating [20, 11].

Workload Information
For the slow time-scale, i.e., λk, the workloads are drawn from two real-world data center traces. The first set of

traces is from Hotmail, a large email service running on tens of thousands of servers. We used traces from 8 such
servers over a 48-hour period, starting at midnight (PDT) on Monday August 4 2008 [18]. The second set of traces is
taken from 6 RAID volumes at MSR Cambridge. The traced period was 1 week starting from 5PM GMT on the 22nd
February 2007 [18]. Thus, these activity traces represent a service used by millions of users and a small service used
by hundreds of users.

The original load is averaged over each frame, on the order of 10 minutes, and the traces are normalized as peak
load λpeak=1000, which are visualized in Figure 2. Both sets of traces show strong diurnal properties and have peak-
to-mean ratios (PMRs) of 1.64 and 4.64 for Hotmail and MSR respectively. The traces are then used as the values
of λk in the corresponding frame k. We also adjust the peak-to-mean ratio for some experiments by scaling λk as
λ̂k = c(λk)γ, varying γ and adjusting c to keep the mean constant. In this way, we can simulate a variety of realistic
arrival processes with discrete-event simulation for the optimization problem (Eq. (5)), fix a cost function, and then
use a scheduling algorithm for the slow time-scale, at each time step using the fast time-scale as input.

To simulate the stochastic burstiness of the workload at the fast time-scale model, at each time step for the opti-
mization problem (Eq. (5)), we adapt the workload based on the mean arrival rate in each frame (λk) to parameterize
the arrival processes, A(t). For the stochastic processes being simulated, we consider two examples of light-tailed ar-
rival processes: Poisson and Markov-Modulated (MM) processes, as well as the class of heavy-tailed and self-similar
arrival processes. To parameterize the MM processes, we take λl = .5λ, λh = 2λ, and we adjust the burst parameter T
while keeping λ fixed for each process. To parameterize the heavy-tailed processes we adjust the tail index α for each
process, and b in Eq. (16) is adapted accordingly in order to also keep λ fixed. Unless otherwise stated, we fix α = 1.5
and T = 1.
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Figure 3: Impact of burstiness on provisioning nk for heavy-tailed arrivals.

0 50 100 150 200 250 300 350
0

500

1000

1500

2000

time frame k (10 mins)

nu
m

be
r o

f s
er

ve
rs

 n
k

 

 
T=10s
T=1s
T=0.1s
T=0.01s
Poisson

(a) Hotmail

0 100 200 300 400 500 600 700 800 900
0

500

1000

1500

2000

time frame k (10 mins)

nu
m

be
r o

f s
er

ve
rs

 n
k

 

 
T=10s
T=1s
T=0.1s
T=0.01s
Poisson

(b) MSR

Figure 4: Impact of burstiness on provisioning nk for MM arrivals.

Comparative Benchmark
We contrast three designs: (i) the optimal dynamic resizing, (ii) dynamic resizing via LCP, and (iii) the optimal

‘static’ provisioning.
The results for the optimal dynamic resizing should be interpreted as characterizing the potential of dynamic

resizing. But, realizing this potential is a challenge that requires both sophisticated online algorithms and excellent
predictions of future workloads.1

The results for LCP should be interpreted as one example of how much of the potential for dynamic resizing can
be attained with an online algorithm. One reason for choosing LCP is that it does not rely on predicting the workload
in future frames, and thus provides a conservative bound on the achievable cost savings.

The results for the optimal static provisioning should be taken as an optimistic benchmark for today’s data centers,
which typically do not use dynamic resizing. We consider the cost incurred by an optimal static provisioning scheme
that chooses a constant number of servers that minimizes the costs incurred based on full knowledge of the entire
workload. This policy is clearly not possible in practice, but it provides a very conservative estimate of the savings
from right-sizing since it uses perfect knowledge of all peaks and eliminates the need for overprovisioning in order to
handle the possibility of flash crowds or other traffic bursts.

4.2. Results

Our experiments are organized to illustrate the impact of a wide variety of parameters on the cost savings attainable
via dynamic resizing, e.g., the burstiness parameter on the fast time-scale model, i.e., α and T , and the peak-to-mean
ratio reflected by the slow time-scale model λk. The goal is to understand for which workloads dynamic resizing can
provide large enough cost savings to warrant the extra implementation complexity. Remember, our setup is designed
so that the cost savings illustrated is a conservative estimate of the true cost savings provided by dynamic resizing.

The SLA constraint nk ≥
Ck(D̄,ε̄)

µ
from Eq. (4) provides a bridge between the slow time-scale and fast time-scale

models, i.e., Ck(D̄, ε̄) will be computed from upper bounds on the distribution of the transient delay within a frame.
For given input parameters in Eq. (5), i.e., λk, D̄, ε̄, depending on different arrival processes being simulated, we can

1Note that short-term predictions of workload demand within 24 hours can be quite accurate [35, 29].
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Figure 5: Impact of burstiness on the cost savings of dynamic resizing for different switching costs, β.
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Figure 6: Impact of burstiness on the performance of LCP in the Hotmail trace.

use Eq. (11), (15) (with given T ), or (18) (with given α), in the fast time-scale model to derive the numerical result of
capacity constraint, Ck(D̄, ε̄), in the slow time-scale model. In this way, the theoretical portion of the paper is used in
the numerical results, and by solving the optimization problem (Eq. (5)), we can finally derive the numerical analysis
as follows.f

The Role of Burstiness
A key goal of our model is to expose the impact of burstiness on dynamic resizing, and so we start by focusing on

that parameter. Recall that we can vary burstiness in both the light-tailed and heavy-tailed settings using T for MM
arrivals and α for heavy-tailed arrivals.

The impact of burstiness on provisioning: A priori, one may expect that burstiness can be beneficial for dynamic
resizing, since it indicates that there are periods of low load during which energy may be saved. However, this is not
actually true since resizing decisions must be made at the slow time-scale while burstiness is a characteristic of the fast
time-scale. Thus, burstiness is actually detrimental for dynamic resizing, since it means that the provisioning decisions
made on the slow time-scale must be made with the bursts in mind, which results in a larger number of servers needed
to be provisioned for the same average workload. This effect can be seen in Figures 3 and 4, which show the optimal
dynamic provisioning as α and T vary. Recall that burstiness increases as α decreases and T increases.

The impact of burstiness on cost savings: The larger provisioning created by increased burstiness manifests
itself in the cost savings attainable through dynamic capacity provisioning as well. This is illustrated in Figure 5,
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Figure 7: Impact of peak-to-mean ratio on the cost savings of the optimal dynamic resizing.

which shows the cost savings of the optimal dynamic provisioning as compared to the optimal static provisioning for
varying α and T as a function of the switching cost β.

The impact of burstiness on LCP: Interestingly, though Figure 5 shows that the potential of dynamic resizing
is limited by increased burstiness, it turns out that the relative performance of LCP is not hurt by burstiness. This is
illustrated in Figure 6, which shows the percent of the optimal cost savings that LCP achieves. Importantly, it is nearly
perfectly flat as the burstiness is varied.

The Role of the Peak-to-Mean Ratio
The impact of the peak-to-mean ratio on the potential benefits of dynamic resizing is quite intuitive: if the peak-to-

mean ratio is high, then there is more opportunity to benefit from dynamically changing capacity. Figure 7 illustrates
this well-known effect. The workload for the figure is generated from the traces by scaling λk as λ̂k = c(λk)γ, varying
γ and adjusting c to keep the mean constant.

In addition to illustrating that a higher peak-to-mean ratio makes dynamic resizing more valuable, Figure 7 also
highlights that there is a strong interaction between burstiness and the peak-to-mean ratio, where if there is significant
burstiness the benefits that come from a high peak-to-mean ratio may be diminished considerably.

The Role of the SLA
The SLA plays a key role in the provisioning of a data center. Here, we show that the SLA can also have a strong

impact on whether dynamic resizing is valuable, and that this impact depends on the workload. Recall that in our
model the SLA consists of a violation probability ε̄ and a delay bound D̄. We deal with each of these in turn.

Figures 8 and 9 highlight the role the violation probability ε̄ has on the provisioning of nk under the optimal dy-
namic resizing in the cases of heavy-tailed and MM arrivals. Interestingly, we see that there is a significant difference
in the impact of ε̄ depending on the arrival process. As ε̄ gets smaller in the heavy-tailed case the provisioning gets
significantly flatter, until there is almost no change in nk over time. In contrast, no such behavior occurs in the MM
case and, in fact, the impact of ε̄ is quite small. This difference is a fundamental effect of the “heaviness” of the tail
of the arrivals, i.e., a heavy tail requires significantly more capacity in order to counter a drop in ε̄.

This contrast between heavy- and light-tailed arrivals is also evident in Figure 11, which highlights the cost
savings from dynamic resizing in each case as a function of ε̄. Interestingly, the cost savings under light-tailed arrivals
is largely independent of ε̄, while under heavy-tailed arrivals the cost savings is monotonically increasing with ε̄.

The second component of the SLA is the delay bound D̄. The impact of D̄ on provisioning is much less dramatic.
We show an example in the case of heavy-tailed arrivals in Figure 10. Not surprisingly, the provisioning increases as D̄
drops. However, the flattening observed as a result of ε̄ is not observed here. The case of MM arrivals is qualitatively
the same, and so we do not include it.
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Figure 8: Impact of ε̄ on provisioning nk for heavy tailed arrivals.
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Figure 9: Impact of ε̄ on provisioning nk for MM arrivals.
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Figure 10: Impact of D̄ on provisioning nk for heavy tailed arrivals.

When is Dynamic Resizing Valuable?
Now, we are finally ready to address the question of when (i.e., for what workloads) is dynamic resizing valuable.

To address this question, we must look at the interaction between the peak-to-mean ratio and the burstiness. Our goal
is to provide a concrete understanding of for which (peak-to-mean, burstiness, SLA) settings the potential savings
from dynamic resizing is large enough to warrant implementation. Figures 12–14 focus on this question. Our hope
is that these figures highlight that a precursor to any debate about the value of dynamic resizing must be a joint
understanding of the expected workload characteristics and the desired SLA, since for any fixed choices of two of
these parameters (peak-to-mean, burstiness, SLA), the third can be chosen so that dynamic resizing does or does not
provide significant cost savings for the data center.

Starting with Figure 12, we see a set of curves for different levels of cost savings. The interpretation of the figures
is that below (above) each curve the savings from optimal dynamic resizing is smaller (larger) than the specified value
for the curve. Thus, for example, if the peak-to-mean ratio is 2 in the Hotmail trace, a 10% cost savings is possible for
all levels of burstiness, but a 30% cost savings is only possible for α > 1.5. However, if the peak-to-mean ratio is 3,
then a 30% cost savings is possible for all levels of burstiness. It is difficult to say what peak-to-mean and burstiness
settings are “common” for data centers, but as a point of reference, one might expect large-scale services to have a
peak-to-mean ratio similar to that of the Hotmail trace, i.e., around 1.5-2.5; and smaller scale services to have peak-
to-mean ratios similar to that of the MSR trace, i.e., around 4-6. The burstiness also can vary widely, but as a rough
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Figure 11: Impact of ε̄ on the cost savings of dynamic resizing.
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Figure 12: Characterization of burstiness and peak-to-mean ratio necessary for dynamic resizing to achieve different levels of cost reduction.

estimate, one might expect α to be around 1.4-1.6.
Of course, many of the settings of the data center will effect the conclusions illustrated in Figure 12. Two of the

most important factors to understand the effects of are the switching cost, β, and the SLA, particularly ε̄.
Figure 13 highlights the impact of the magnitude of the switching costs on the value of dynamic resizing. The

curves represent the threshold on peak-to-mean ratio and burstiness necessary to obtain 20% cost savings from dy-
namic resizing. As the switching costs increase, the workload must have a larger peak-to-mean ratio and/or less
burstiness in order for dynamic resizing to be valuable. This is not unexpected. However, what is perhaps surprising
is the small impact played by the switching cost. The class of workloads where dynamic resizing is valuable only
shrinks slightly as the switching cost is varied from on the order of the cost of running a server for 10 minutes (β = 1)
to running a server for 3 hours (β = 18).

Interestingly, while the impact of the switching costs on the value of dynamic resizing is small, the impact of
the SLA is quite large. In particular, the violation probability ε̄ can dramatically affect whether dynamic resizing is
valuable or not. This is shown in Figure 14, on which the curves represent the threshold on peak-to-mean ratio and
burstiness necessary to obtain 20% cost savings from dynamic resizing. We see that, as the violation probability is
allowed to be larger, the impact of the peak-to-mean ratio on the potential of savings from dynamic resizing disappears;
and the value of dynamic resizing starts to depend almost entirely on the burstiness of the arrival process. The reason
for this can be observed in Figure 8, which highlights that the optimal provisioning nk becomes nearly flat as ε̄
increases.
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Figure 13: Characterization of burstiness and peak-to-mean ratio necessary for dynamic resizing to achieve 20% cost reduction as a function of the
switching cost, β.
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Figure 14: Characterization of burstiness and peak-to-mean ratio necessary for dynamic resizing to achieve 20% cost reduction as a function of the
SLA, ε̄.

Supporting Analytic Results
To this point we have focused on numerical simulations, and further we provide analytic support for the behavior

we observed in the experiments above. In particular, the following two theorems characterize the impact of burstiness
and the SLA (D̄, ε̄) on the value of dynamic resizing under Poisson and heavy-tailed arrivals. This is accomplished by
deriving the effect of these parameters on C(D̄, ε̄), which constrains the optimal provisioning nk. A smaller (larger)
C(D̄, ε̄) implies a smaller (larger) provisioning nk, which in turn implies smaller (larger) costs.

We start providing a result for the case of Poisson arrivals. The proof is given in Section 5.

Theorem 1. The service capacity constraint from Eq. (11) increases as the delay constraint D̄ or the violation prob-
ability ε̄ decrease. It also satisfies the scaling law

C(D̄, ε̄) = Θ

(
D̄−1 log ε̄−1

log (D̄−1 log ε̄−1)

)
,

as D̄−1 log ε̄−1 → ∞.

This theorem highlights that as ε̄ decreases and/or D̄ decreases C(D̄, ε̄), and thus the cost of the optimal provi-
sioning, increases. This shows that the observations made in our numeric experiments hold more generally. Perhaps
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the most interesting point about this theorem, however, is the contrast of the growth rate with that in the case of
heavy-tailed arrivals, which is summarized in the following theorem. The proof is given in Section 5.

Theorem 2. The implicit solution for the capacity constraint from Eq. (18) increases as the delay constraint D̄ or the
violation probability ε̄ decrease, or the value of α decreases. It also satisfies the scaling law

C(D̄, ε̄) = Θ

( 1
ε̄D̄α−1

) 1
α

 (19)

as ε̄D̄α−1 → 0 for any given α ∈ (1, 2).

A key observation about this theorem is that the growth rate of C(D̄, ε̄) with ε̄ is much faster than in the case of
the Poisson (polynomial instead of logarithmic). This supports what is observed in Figure 11. Additionally, Theorem
2 highlights the impact of burstiness, α, and shows that the behavior we have seen in our experiments holds more
generally.

5. Proofs

In this section, we collect the proofs for the results in previous sections. We start with the proof of Lemma 1, the
aggregation property used to model the multiserver system with a single service process.

Proof 1 (Proof of Lemma 1). Fix t ≥ 1. Because each server i has a constant rate capacity µ, it follows that the
bivariate processes S i(s, t) = µ(t − s) are service processes for the individual servers (see [31], pp. 167), i.e.,

Ri(t) ≥ inf
0≤s≤t
{Ai(s) + µ(t − s)}

=
1
n

inf
0≤s≤t
{A(s) + nµ(t − s)} ,

where Ri(t) is the departure process from server i. In the last line we used the load-balancing dispatching assumption,
i.e., Ai(s) = 1

n A(s). Adding the terms for i = 1, . . . , n it immediately follows that∑
i Ri(t) ≥ inf0≤s≤t {A(s) + nµ(t − s)},

which shows that the bivariate process S (s, t) = nµ(t − s) is a service process for the virtual system with arrival
process A(t) =

∑
i Ai(t) and departure process R(t) =

∑
i Ri(t).

We next prove the monotonicity and scaling results in Theorems 1 and 2.

Proof 2 (Proof of Theorem 1). First, note that the monotonicity properties follow immediately from the fact that
the function f (x) = (1 + x)

1
x is non-decreasing. Next, to prove the more detailed scaling laws, simply notice that

log (1 + c f (n)) = Θ
(
log f (n)

)
for some non-decreasing function f (n) and a constant c > 0. The result follows.

Proof 3 (Proof of Theorem 2). We first consider the monotonicity properties and then the scaling law.
Monotonicity properties: To prove the monotonicity results on D̄ and ε̄, observe that the left hand side (LHS)

in the implicit equation from Eq. (18) is a non-increasing function in C(D̄, ε̄) because the range of the infimum
expands whereas the function in the infimum decreases, by increasing C(D̄, ε̄). Moreover, the LHS is unbounded at
the boundary C(D̄, ε̄) = λ. The solution C(D̄, ε̄) is thus non-increasing in both D̄ and ε̄.

Next, to prove monotonicity in α, fix α1 ≤ α2 and denote by C1 the implicit solution of Eq. (18) for α = α1. In the
first step we prove that C1D̄ ≥ 1. Let C be the solution of

1
Cα1

= ε̄D̄α1−1,

where the LHS was obtained by relaxing the LHS of Eq. (18) (we used that γ > 1, C − γλ < C, and x ≥ log x for all
x ≥ 1). Consequently, C1 ≥ C, and by assuming that the units are properly scaled such that D̄ ≥ 1, it follows that
CD̄ ≥ 1 and hence C1D̄ ≥ 1.
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Secondly, we prove that γ, i.e., the optimal value in the solution of C1, satisfies γ < e. Consider the function
f (γ) =

γa+1

a log γ with a = α−1
α

. If, by contradiction, γ ≥ e, then f ′(γ) > 0 and consequently f (γ) is increasing on [e,∞).
Since the function 1

C1−γλ
is also increasing in γ, we get a contradiction that γ is the optimal solution as assumed, and

hence γ < e.
Finally, consider the function g(a) =

γa

a log γ with a = α−1
α

. The previous property γ < e implies that g′(a) ≤ 0 and
further that g is non-increasing in a and hence in α as well. Since 1

(C1D̄)α−1 is also non-increasing in α, we obtain that

inf
1<γ< C1

λ

 γ

(C1D)α1−1 (C1 − γλ)
γ

α1−1
α1

log γ
α1−1
α1


≥ inf

1<γ< C1
λ

 γ

(C1D)α2−1 (C1 − γλ)
γ

α2−1
α2

log γ
α2−1
α2

 .

Using the monotonicity in C1 in the term inside the infimum, it follows that C1 ≥ C2, where C2 is the implicit solution
of Eq. (18) for α = α1. Therefore, C(D̄, ε̄) is non-increasing in α.

Scaling law: To prove the scaling law, denote by C the implicit solution of the equation

inf
1<γ<max

{
C
λ ,e

2α
α−1

}
 1

Cα

γ
α−1
α

log γ
α−1
α

 = ε̄D̄α−1 . (20)

The LHS here was constructed by relaxing the function inside the infimum in the LHS of Eq. (18) and extending the
range of the infimum. This means that the implicit solution C is smaller than the implicit solution C(D̄, ε̄). The function
inside the infimum of the LHS of Eq. (20) is convex on the domain of γ and attains its infimum at γ = e

α
α−1 . Solving for

C and using that C(D̄, ε̄) ≥ C proves the lower bound.
To prove the upper bound, let us fix α, D̄0 and ε̄0, and denote by C0(D̄0, ε0) the corresponding implicit solution.

Using the monotonicity of the implicit solution in ε̄D̄α−1, as shown above, it follows that

C(D̄, ε̄) ≥ C0(D̄0, ε̄0) ,

where ε̄D̄α−1 ≤ ε̄0D̄α−1
0 . Fixing γ0 =

C0(D̄0,ε̄0)+λ
2λ , let C be the solution of the equation

γ0

Cα−1 (C − γ0λ)
γ

α−1
α

0

log γ
α−1
α

0

= ε̄D̄α−1 . (21)

Because the range of γ in the solution of C(D̄, ε̄) includes γ0, it follows that C(D̄, ε̄) ≤ C. On the other hand, the LHS
of Eq. (21) satisfies

γ0

Cα−1 (C − γ0λ)
γ

α−1
α

0

log γ
α−1
α

0

≤
K0

Cα
, (22)

where K0 =
γ0C0(D̄0,ε̄0)

C0(D̄0,ε̄0)−γ0λ

γ
α−1
α

0

log γ
α−1
α

0

. Here we used that C ≥ C0(D̄0, ε̄0) (note that we showed before that C ≥ C(D̄, ε̄) and

C(D̄, ε̄) ≥ C0(D̄0, ε̄0)). Finally, combining Eqs. (21) and (22) we immediately get the scaling law C = O

((
1

ε̄D̄α−1

) 1
α

)
,

and since C(D̄, ε̄) ≤ C, the proof is complete.

6. Conclusion

Our goal in this paper is to provide new insight into the debate about the potential of dynamic resizing in data
centers. Clearly, there are many facets of this issue relating to the engineering, algorithmic, and reliability challenges
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involved in dynamic resizing which we have ignored in this paper. These are all important issues when trying to realize
the potential of dynamic resizing. But, the point we have made in this paper is that when quantifying the potential of
dynamic resizing it is of primary importance to understand the joint impact of workload and SLA characteristics.

To make this point, we have presented a new model that, for the first time, captures the impact of SLA charac-
teristics in addition to both slow time-scale non-stationarities in the workload and fast time-scale burstiness in the
workload. This model allows us to provide the first study of dynamic resizing that captures both the stochastic bursti-
ness and diurnal non-stationarities of real workloads. Within this model, we have provided both trace-based numerical
case studies and analytical results. Perhaps most tellingly, our results highlight that even when two of SLA, peak-to-
mean ratio, and burstiness are fixed, the other one can be chosen to ensure that there either are or are not significant
savings possible via dynamic resizing. Figures 12-14 illustrate how dependent the potential of dynamic resizing is on
these three parameters. These figures highlight that a precursor to any debate about the value of dynamic resizing must
be an understanding of the workload characteristics expected and the SLA desired. Then, one can begin to discuss
whether this potential is obtainable.

Future work on this topic includes providing a more detailed study of how other important factors affect the
potential of dynamic resizing, e.g., storage issues, reliability issues, and the availability of renewable energy. Note that
provisioning capacity to take advantage of renewable energy when it is available is an important benefit of dynamic
resizing that we have not considered at all in the current paper.
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