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ABSTRACT

We focus on optimising the Active Shape Model (ASM)
with several extensions. The modification is threefold. First,
we tackle the over-constraint problem and obtain an opti-
mal shape with minimum energy considering both the shape
prior and the salience of local features, based on statisti-
cal theory: a compact closed form solution to the optimal
shape is deduced. Second, we enhance the ASM searching
method by modelling and removing the variations of local
appearance presented in the training data. Third, we speed up
the convergence of shape fitting by integrating information
from multi-scale local features simultaneously. Experiments
show significant improvement brought by these modifica-
tions, i.e., optimal shape against standard relaxation methods
dealing with inadequate training samples; enhanced search-
ing method against standard gradient descent methods in
searching accuracy; multi-scale local features against popular
coarse-to-fine strategies in convergence speed.

Index Terms— Active shape model, over constraint, in-
verse gradient descent, multi-scale features

1. INTRODUCTION

Active Shape Models (ASMs) [1] have been successfully used
as a robust tool for object segmentation. An ASM constrains
the shape with a statistical shape prior learned from training
examples, thus is robust to noise. The constraint is applied by
abandoning the minor variation components and restricting
the significant components within certain range. The argu-
ment is that the the minor components in the training data are
more likely to be noise, and only shape variations within cer-
tain standard derivations (s.d.) covered in the training data are
deemed plausible. However this is no longer true in the case
of high dimensional training data sets with few training ex-
amples, which causes over constraint. This problem becomes
more critical in medical image analysis due to inadequate
training samples and varied pathologies. There have been
strategies to relieve the over constraint, including loosening
up the shape constraints [2, 3], introducing additional flexibil-
ity [4], synthesising additional training samples [5], and more
recently, modifying shape prior using manifold learning [6]
or sparse composition [7]. In these methods there is no ob-

vious a priori optimal parameters and it is time consuming to
tune the parameters to specific applications. Another strategy
is to optimise an objective function [8—10]. In [9,10] Matthias
adopted the density estimation theory [11] to calculating the
information loss caused by constraint and constructed a en-
ergy function searching for a shape with minimum cost.

Another problem is that ASMs are prone to local mini-
mum. A coarse-to-fine strategy is commonly employed in all
recent publications [12], but the criterion of switching to next
resolution has to be chosen appropriately to avoid trapped into
local minima. Indeed, as shown below it is a trade-off be-
tween the failure rate and iteration number per level. In prac-
tice, the criterion is often chosen conservatively, and a seam-
less coarse-to-fine method could speed up the fitting process
significantly.

The first part of this paper is inspired by [9,11]. We tackle
the over-constraint problem by penalising the two constraint
terms and obtain an optimal shape in a statistical sense with
respect to the shape priori as well as the salience of local fea-
tures. We further derive a closed form solution of the optimal
shape under the assumption of the Gaussian distribution of
variations. In section 3, we adopt the inverse gradient descent
(IGD) for local feature searching and enhance its robustness
by learning and excluding the variation prior of local appear-
ances. In section 4, we integrate multi-scale features into the
energy function of unleashed ASMs, which leads to a seam-
less, fast and robust coarse-to-fine fitting method. We evaluate
the influence of these modifications by applying them sepa-
rately. Experiment shows significant improvement of perfor-
mance especially with very limited training data.

2. ACTIVE SHAPE MODEL UNLEASHED

A 2D point-distribution shape in an ASM is represented by
s = (X1,..,xN) = (T1, Y1, N, yn) € R*V, The statistical
model is built by applying PCA to the aligned training shapes,

b, = PI'(s —%), (D)

with b, being the shape parameters and P; the eigenvectors
matrix. The dimensionality is reduced by retaining ¢ most sig-
nificant eigenvectors associated with the eigenvalues A1, ... \;.

t can be chosen as ¢ = min{¢'| Zf/:l i/ 27251 Ai > 98%}.



Standard ASMs constrain the shape within either a hyperrect-
angle [1] or a hyperellipsoid [13]. This can cause over con-
straint with inadequate training data, which is often the case
in medical data as no training set can cover all pathologies.
The over constraint has two causes: first, it does not count
the cost of truncating minor components, which might cap-
ture shape details although is not statistically significant; sec-
ond, shape variations outside 3s.d. might still be reasonable
variation. Choosing a larger ¢ or more s.d. may relieve the
problem [2], but an optimal solution is to find a shape with
minimum information loss due to projection to the subspace
and the constraint. This can be achieved by constructing an
energy function accounting for these terms, i.e, penalising the
cost of projection as well as the Mahalanobis deviations from
the mean shape and from the local feature predictions:

B
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B € (0, 1) controls the extent of unleashing, which can be ad-
justed accordingly. With the assumption that the shape vari-
ations are multivariate Gaussian distributed, the shape energy
terms [11] are as follow:
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namely the distance in feature space (DIFS) is the Maha-

lanobis distance from the mean shape, A = diag{\1, Ao, ...
is the variance matrix, whereas
Eipe (8) = IIS—SHQ—IIb %), 4)

is the distance from feature space (DFFS) penalising the

costs of the projection to the feature space (i.e. the infor-

mation loss due to cutting-off the minor eigen values),with
= Zf]\; 413 N -. The image energy can be written as,

Fin(s) = 55 ~§)757 (s ), )

which is the Mahalanobis distance from the observed land-
marks § = (%1, %2, ...,Xx) deduced from local features. ¥ =
diag(o?,03, ... N) is the variances, with o7 = (o2 ;,07 ;)
representing the salience of the ¢-th landmark in § (the smaller
the more salient). The optimal shape s* with maximum like-
lihood [11] is the one with minimum energy,

§* = argmin E(s). (6)

Instead of using numerical searching methods [9], we deduce
an closed form solution, which reduces the computation and
guarantees the global minimum. Specifically, Eq. (6) is solved

by £ = 0. From (1) we have b, /ds = PY. We firs
calculate the differentiation of each term of .
dE DIF.S (S)
shape
ds
DFFS
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Substituting these into (6), the solution obtained is,
s* =B7'C +5, (8)

where B = (1
and C' = gY~!

—8) (PATPT +
5 —5).
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3. ACTIVE SHAPE MODEL SEARCHING

The shape model is driven by local features, appearance of
which varies across the training samples. The performance
can be improved by learning the appearance variations in the
training set and excluding the differences by ‘projecting out’
these variations before matching features to their templates.
We adopt inverse gradient descent (IGD) [14] previously used
in active appearance model fitting [15] for this purpose.
Given a set of local 2D features A; 1, A; 2,..., A; N € R?
at the ¢-th landmark in V training samples, PCA is applied to
obtain the mean A; and the eigenvectors matrix P4 ; spanning
a linear subspace covering, say, 98% of the variation. For the
concise of notation, we omit the landmark subscript ¢ in this
section. A new feature instance A thus can be approximated
as,
A=~ A + Pab 4. ®

b 4 is the appearance parameters.

Given a new image and an appropriate initial location x =
(z,y) for a landmark, the searching task is to adjust x and b 4
to minimise the difference between the appearance model and
the image intensities it covers:

(Ax,b4) = argmin(A(x + Ax) — (A + Paba))*.  (10)

The expression of the target function can be rewritten as,

| A(x+Ax)—(A+Paba)|[3, +||A(x+Ax)—(A+Paba)|? .

(1D
where || - |3, and || - ||3 denote the square of the Euclidean
norm of the vector projected into the subspace spanned by
P4 and its orthogonal space respectively. Note the minimum
value of the first term is always zero. And in the second term,
the projection of Py, in its orthogonal subspace is zero. As we
are only interested in Ax, it simplifies to:

Ax = argmin || A(x + Ax) — A|?, (12)

which is a typical gradient descent problem. Now the pre-
diction of x is no longer affected by the appearance varia-
tions, which have been ‘projected out’. Applying the gradient
descent directly is expensive as the numerical gradient of A
needs to be calculated iteratively. This can be tackled with
IGD, i.e., reverse the roles of A and Ag,

Ax = argmin || A(—Ax) — A(x)||2. (13)
The closed form solution is,
OA N\ _
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Fig. 1. (a) Four scale features at a landmark. (b) One standard
error bar of predictions from finest level (green) and coarsest
level (red) features. Blue dash line indicates the actual po-
sition. (c) Gaussian mixture model of four scale predictions
with initial position at 2 (top) and 16 (bottom) pixels from the
actual position.

where (-)T denotes the Moore-Penrose pseudo-inverse. A
is the projection of A onto the orthogonal space of P, and
can be pre-calculated, see [14] for details.

Variance: The variance of prediction of Ax should take
two parts into account,

0-2 = a?‘eature + o-ngf (15)

a’?eatwe depends on the inherent feature salience, which can
be obtained by testing the feature searching method on the
training data and calculating the mean variance. o2, 7 canbe
estimated by calculating the difference between the observed
feature and the template in the orthogonal space of Py.

4. RAPID AND ROBUST FITTING STRATEGY
USING MULTI-SCALE LOCAL APPEARANCE

In this section, we introduce a seamless approach to speed up
the ASM convergence and increase the robustness. Specif-
ically, we generate an L-level Gaussian pyramid of the im-
ages. At each landmark, feature patches with same size in
pixel are extracted from the pyramid, generating a set of pro-
files at multiple scales, see Fig. 1(a) as an example. Then at
the i-th landmark, features at each level I € {1,..., L} gives
an prediction of the correction Ax; ; with variance 01.2’ ;> using
the method described in section 3.

To evaluate the prediction of the multi-level features, an
experiment on the feature example in Fig 1(a) is shown in
Fig 1(b). The experiment is conducted by extracting the fea-
ture patches at each level with known displacements from the
actual position and evaluating the precision of predictions.
We can see that the prediction from smaller scale features has
smaller variance and better linear approximation around zero,
while larger scale features have larger linear range. This ex-
plains the feasibility of coarse-to-fine methods as larger scale
features drag the shape rapidly to the object during initial iter-
ations, while the features at smaller scales begin to converge

Fig. 2. (a) Multi-scale local features. Fewer patches are pre-
served at higher level. (b) The corresponding shape nodes.

and give a more precise prediction when near enough to the
true position. However, it is difficult to decide whether it is
close enough to change to the next level of detail during fit-
ting as it is a trade-off between the efficiency and the risk of
been trapped in a local minimum.

We propose therefore to incorporate multi-level predic-
tions, in a form of a Gaussian mixture, together with the
prior knowledge of shape to choose the best candidate pre-
diction. The rationale is that the shape energy Egpqpe is
more likely to be lower when for each landmark the best
prediction is chosen. If we assume the errors of the pre-
diction is Gaussian distributed, then the prediction of a fea-
ture location from all levels are actually a Gaussian mixture
with expectation {Ax; 1, Ax; 2, ..., Ax; .} and variances of
{071,075,...,07 1}, as shown in Fig 1(c). Modifying the
image energy term (5) taking all level predictions into account
gives,

L
1
§Zs—sl TE (s —§1), (16)
=1
where &, = dlag(a1 O3 ...,UJQVJ),& = (X1,0,%2 1., XN1)-

The optimal shape s* still has the same form as (8), with the
two coefficients replaced by B = (1- B)(P A’lPsT +

(p%_PsPsT))‘*‘ﬁZz 1 tand O = 521 12 (5 -5).

In practice, larger scale feature patches at adjacent land-
marks are more overlapping thus return similar prediction.
Also lower precision at coarser levels is acceptable. So we
can keep fewer feature patches at interval shape nodes at these
levels, as shown in Fig. 2, and propagate the prediction to the
landmarks nearby, which results in a more compact feature
pyramid.

The implementation of the whole algorithm is as follow:

Training:

1. Train the shape prior using PCA and obtain §, P;, A =
diag(A1, Ag, .oy At)s

2. Build Gaussian pyramid, train the local appearance and
obtain A, (8‘4L ) for each node (see Fig. 2) at each level;

Testing:



1. Generate the Gaussian pyramid of the testing image.

2. Initialise the shape s(©;

3. For each node, calculate Ax;, 0'12 at each scale using (14);
4. Update the current shape §l(k+1) = s 4+ Axy;

5. Calculate the optimal shape s*t1) using (8);

6. Repeat 3. 4. 5. until converged;

5. EXPERIMENTS AND RESULTS

As each of our proposed modifications can be applied inde-
pendently, we focus on evaluating the improvement brought
by each one, comparing the performance with and without.
The experiments are performed on 56 axial lumbar vertebra
and 30 sagittal knee slices, sizes of both are 512x512 pixels.

1. Feature searching method with appearance mod-
elling: For each landmark, we randomly initialise the position
within 5 pixels from the true feature and evaluate the search-
ing method in section 3 comparing it with a standard gradient
descent method. After the local appearance variations mod-
elled and removed, the 1 s.d. error of local feature searching
goes down from 4.1 £1.6 to 3.1 £ 1.1 pixels on vertebrae and
from 3.6 + 1.5 to 2.8 & 1.4 pixels on knee data.

2. Shape optimisation vs. shape relaxation dealing
with over constraint: We compare our energy minimising
method with hyperrectangle [1] and hyperellipsoid [13] con-
straints in dealing with inadequate training data situation. All
three methods are trained with different m data randomly
sampled from the dataset and tested on the rest. The experi-
mental optimal loosening parameters are chosen for each m
(around 3 s.d. and 1.7 s.d. for hyperrectangle and hyperel-
lipsoid constraints respectively), while a constant 5 = 0.3
is chosen for our method. The Distance to ‘True Boundary’
(DtoTB) and Dice Similarity Coefficient (DSC) [16] to the
ground truth are used as the metric of segmentation precision.
Table 1 shows the experiment results. We can see that our
method degrades less with reducing numbers of training sam-
ples, and performs better especially with very limited training.

Table 1. Performance of three methods on segmentation of
vertebrae and knees, trained with reducing m samples.

DtoTB (pixels) DSC (%)
Rect. [1]  Ellip. [13] Our Rect. [1]  Ellip. [13] Our
Vertebra
m=40 2.6+1.2 2.6+1.0 2.5+1.1 95.3+2.1 95.7+1.8 95.6+23
m=20 3.1+£13 29+1.1  2.7+1.0 94.3+3.1 94.1+22  95.0+35
m=10 4.1+£1.9 42425 3.1+1.1 92.0+3.0  91.8+£3.6 93.9+2.1
m=5 7.7+26 7.74£29 5.0+1.7 84.1+6.4 84.2+6.7 88.7+4.0
Knee
m=20 2.7+£1.2 2.7+13  2.240.7 97.4+1.3 97.6+12  97.9+0.7
m=10 4.3+2.7 35425 2.7+1.0 96.3+3.2 96.7+2.6  97.6+1.0
m=7 55+3.0 3.74+25 3.0+1.3 94.3+4.9 96.3+2.5 97.3+1.1
m=5 72+32 49+26 4.0+25 92.5+4.3 94.9+32  96.6+1.8

3. Multi-scale vs. coarse-to-fine in convergence speed:
We randomly initialise the shapes within 30 pixels from true

Initial shape

. Shape converged
n per level Failure rate e;00] 8¢

’;;
<
E Coarse to fine: 2 12.5%
= ——3 10.7%
g8 -5 5.3%
o
A Our Method:  —e— 4.6%

15 20

Fig. 3. (a) Convergence process and failure rate of multi-scale
strategy compared with coarse-to-fine method with certain it-
erations per level. (b) Cyan ellipses show the predictions from
local features with the sizes indicating the variances. Red
crosses show the optimal shape. (c) A special case when part
of the vertebra in the axial slice is missing.

position and compare our multi-scale method with a coarse-
to-fine method using n = 2, 3, 5 iterations per level. Fig. 3(a)
shows the mean result of an intensive test trained on 20 sam-
ples. The corresponding failure rate (being trapped in local
minima) is also given. It shows that with decreasing n, the
failure rate increases. While our method converges fastest
with lowest failure rate. The shape in our method is driven by
multi-scale features simultaneously. Salience of each scale is
controlled by the variance of predictions. Fig. 3(b) gives an
example of variances at the finest level before (left) and after
(right) the convergence. The variations decrease significantly
when the landmarks find the salient features, meanwhile the
features whose boundary is blurred have higher variance, thus
depend more on the shape prior. In a special case in Fig. 3(c)
when part of the object is missing, these variances become in-
finite and the corresponding landmarks are completely based
on other salient ones and the shape prior, which is similar to
the partial ASM [17] in dealing with the missing boundary
but is feature-driven thus more compact.

6. CONCLUSIONS

Several modifications of ASM have been presented. Experi-
ments validated the improvement in three aspects.

(1) Higher precision in local feature searching. This is be-
cause variations of feature appearance presented in the train-
ing data are learned and modelled, and during feature search-
ing these variations have been ‘projected out’ before matching
to the feature template.

(2) Better performance with limited training samples. The
shape is unleashed and optimal in a statistical sense taking
both the shape prior and feature confidence into consideration
thus the detail of salient features is better preserved.

(3) Seamless and rapid convergence process. Compared
to coarse-to-fine methods, the multi-scale strategy converges
faster with lower failure rate. This is because larger scale fea-
tures keep the shape from local minima, while smaller scales
take effect as soon as it gets into the convergence range.
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