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Minimum energy channel codes for 
molecular communications 
 
Chenyao Bai, Mark S. Leeson and Matthew D. Higgins 

 
Due to the limitations of molecular nanomachines, it is essential to 

develop reliable, yet energy efficient communication techniques. In this 

Letter, two error correction coding techniques are compared under a 

diffusive molecular communication mechanism, namely, Hamming 

codes and Minimum Energy Codes (MECs). MECs, which previously 

have not been investigated in a diffusive channel, maintain the desired 

code distance to keep reliability whilst minimising energy. Results show 

that MECs outperforms the Hamming codes, both in aspects of BER 
and energy consumption. 

   

Introduction: Nanomachines are biologically or artificially created tiny 

devices or components which are capable of implementing only very 

simple tasks, such as computation, sensing or actuation [1]. Molecular 

communications, which operates in aqueous environments and uses 

molecules to encode and transmit information among nanomachines, 

represents a new communication paradigm. It is beginning to become 

established that employing channel coding at the nanoscale is necessary 

for reliable communication [2]. In addition, with their extremely small 

size, nanomachines can only utilise limited energy, which makes it 

essential to develop energy efficient communication techniques. Thus, 

any coding schemes for nano communications should consider energy 

dissipation as an essential metric. In this Letter, a novel MEC is applied 

for the first time and compared with the more traditional Hamming 

codes.  

 

Communication channel model: In diffusive molecular 

communications, the information molecules, typically protein 

complexes, peptides or DNA sequences [3], propagate through a fluidic 

transmission medium between the transmitter and receiver via diffusion. 

Here, a 3-D diffusion based communication system is considered 

where, to simplify the analysis, the medium is assumed to be of 

extremely large dimensions compared to the size of the information 

molecules. Furthermore, collisions between the information molecules 

are neglected and the diffusion coefficient, 𝐷 = 79.4µm2s−1 is used, 

given that it is a known value for insulin in water at human body 

temperature [3]. 

    At a certain time t, the hit time probability is given by:  
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where d is the distance away of the information molecule from the 

receiver with radius R = 5μm [3]. To effectively represent the 

transmitted symbols, the propagation time is divided into time slots 

which have equal length. Only one symbol propagates in single time 

slot which is denoted by 𝑡𝑠 . The information is encoded by 

concentration with binary representation. Specifically, if the number of 

information molecules arriving at the receiver at a certain time slot 

exceeds a threshold τ, the symbol is represented as “1”. Otherwise, it 

will be interpreted as “0”. However, errors may be caused by inter 

symbol interference (ISI), which is an unavoidable consequence of both 

wired and wireless communication systems and is known to have 

adverse effects in communication systems, particularly when the system 

is stochastic [4].  

     In the diffusive communication system here, some information 

molecules may arrive at the receiver after the current time slot 

according to the diffusion dynamics, which will lead to the incorrect 

decoding of the received symbol of the next time slot. The channel 

model which is proposed in [3] is applied as the basis for the following 

work and channel noise is introduced by the ISI effect. To maintain 

brevity, we refer the reader to the work in [3] to obtain the BER 

calculations used here.  

 

Error correction coding: For any communication system, the energy 

budget is a fundamental design requirement, and in the nano-domain, 

this limit will tend towards the pW order of magnitude given current 

achievements in energy harvesting devices. This therefore limits the use 

of state-of-the-art recursive coding schemes [5]. As such, although 

relatively simple by today’s standards (in performance terms), both 

Hamming Codes and MECs, are very efficient in terms of energy. 

Subsequently they are thought to be suitable for enhancing the 

performance of a nanoscale system.   

A. Hamming Coding 

Hamming codes, which are described as a (2𝑚 − 1, 2𝑚 − 𝑚 − 1) 

code, are used to form coded output blocks of length 𝑛 = 2𝑚 − 1 , 

where m is the number of parity check bits. The minimum distance, 𝑑𝑚, 

of this type of block code is 3, which means that only one error can be 

corrected in each block. The BER for the Hamming coded operation can 

be approximated by [2]: 
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1
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where n is the length of codeword, 𝑡𝑚 = ⌊(𝑑𝑚 − 1)/2⌋ is the maximum 

number of errors that the code can correct, and p is the probability of 

one bit error. In this case, p is set as the value of the optimised 

probability of error appropriate to the code rate [2]. Encoding the 

transmission information with (7, 4) and (15, 11) Hamming codes, 

produces coding rate of 4/7 and 11/15 respectively.  

B. Minimum Energy Coding 

A novel, minimum energy coding scheme, which takes energy into 

consideration, is provided in [6] for a THz wireless nanosensor network. 

In theory, by using on-off keying (OOK) modulation, minimum energy 

codes with Hamming distance constraints can reduce energy 

consumption by minimising the average weight of codewords [6]. In 

this Letter, the MEC proposed in [6], which is considered reliable and 

suitable for nano communications, is used as the channel code to 

improve the system performance in a diffusive system. Codewords with 

a lower weight result in reduced energy consumption, because 

transmission of a “0” symbol requires less energy than the transmission 

of a “1” symbol. The average codeword energy is minimised by 

minimising the average code weight. The source message, which is of 

length k, can be encoded into a codeword which is of length n in the 

following way. For a given set of source symbols, which have a specific 

source distribution, and a given set of codewords, sorting codewords in 

increasing code weight order and assigning source symbols in 

decreasing probability order yields the optimum average code weight 

[6]. For example, the least probable source symbol is mapped to the 

largest weight codeword. For OOK modulation, transmitting a ‘‘0’’ 

symbol requires no energy. Thus, minimising energy consumption 

means the minimisation of the average codeword weight. The weight 

enumerator of a code is the polynomial 𝑊ℂ(𝑧) = ∑ 𝑐𝑖𝑧𝑖
𝑖 , where 𝑐𝑖 is the 

number of codewords with weight i and z is a symbol which is called an 

indeterminate that does not represent any value. Assuming that M is the 

number of codewords, 𝑑𝑚 is the minimum Hamming distance and 𝑝𝑚𝑎𝑥  

is the maximum probability in the source probability distribution, the 

weight enumerators of MEC codewords are given by [6]: 

Wℂ(𝑧) = {
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The MEC only provides the limitation of the length of codeword and 

the maximum weight, rather than the actual codeword. Thus, different 

codebooks can exist for a single Hamming distance. For MECs, the 

decoding method is minimum distance decoding which means that the 

received n-tuple is mapped to the closest codeword in terms of 

Hamming distance. More errors can be corrected when the minimum 

Hamming distance increases with the codeword length but this leads to 

a larger number of error patterns, which will decrease the reliability of 

the MEC [6]. It can be derived that the minimum codeword length is 

given by: 

                                𝑛𝑚𝑖𝑛 = 𝑑𝑚 + (𝑀 − 2) ⌈
𝑑𝑚

2
⌉                                        (4) 

 

After minimum distance decoding of a MEC, the probability that 

transmitted codeword is correctly decoded is given by: 
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where p is the crossover probability.  

Power consumption for codeword i is 𝑃𝑖 = 𝑤𝑖𝑃𝑠 , where 𝑤𝑖  is the 

codeword weight and 𝑃𝑠 is the symbol power, which is here normalised 

to be unity. For simplicity, we assume that each codeword carries 

log(M) bits of information so M transmitted codewords contain 

𝑀log(𝑀)𝜀𝑑 bits of information. The average energy per information bit 

is given by:  

𝜂 =
𝐸(𝑃) × 𝑡

log (𝑀)𝜀𝑑
     Joules/bit                                     (6) 

where E(P) is the expected value of power consumption per codeword 

and t is the transmission time.  

 

Analytical Results: MECs are compared with Hamming (7,4) and 

(15,11) codes in terms of BER and energy consumption. MECs satisfy 

the minimum Hamming distance required by Hamming codes so here 

this is set to three. The corresponding MECs are thus 𝑀 = 24 and 𝑀 =

211. The error correction performances of MECs and Hamming codes 

over a 4µm transmission distance are illustrated in Fig. 1.  

 
 

Fig. 1 BER comparison between MECs and Hamming codes. 

 
Fig. 2 Average energy per bit comparison between MECs and 

Hamming codes. 

 

Fig. 1 shows that the system performance is improved by using both 

Hamming Codes and MECs. The coding gain can be determined by 

taking the ratio of the number of molecules for a given BER in the 

uncoded and coded cases since there is an approximately linear 

relationship between the transmission energy and the number of 

molecules per bit [2]. Thus the coding gains for the Hamming codes are 

0.89 dB and 1.71 dB for the (7, 4) and (15, 11) codes respectively, and 

for the MECs, the figures are 4.97 dB and 9.44 dB for 𝑀 = 24 and 𝑀 =

211  respectively. In general, MECs have a better performance than 

Hamming codes with a larger coding gain. Also, the system 

performance is better with a lengthy codeword. However, for MECs, 

since increasing the number of codewords means increasing the amount 

of information to be transmitted, it requires more reliable channels to 

transmit the codewords, which is intuitively expected. Fig. 2 shows that 

MECs exhibit superior average energy per bit values. For small 

numbers of molecules per bit extra energy is needed to deal with 

unreliable decoding but this effect levels out as the number of 

molecules per bit increases.  

 

Conclusion: Hamming codes and MECs, with OOK modulation, have 

been developed and applied to a diffusion based molecular 

communication system. Analytical results show that both codes offer 

coding gains which can be several dBs.  MECs offer better BER 

performance and lower energy consumption than Hamming codes but 

MECs require large codeword lengths.  
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