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This paper exploits the turbulent flow control method using streamwise travelling waves
(Quadrio et al. 2009) to study the effect of Reynolds number on turbulent skin-friction
drag reduction. Direct numerical simulations of a turbulent channel flow subjected to the
streamwise travelling waves of spanwise wall velocity have been performed at Reynolds
numbers ranging from Reτ = 200 to 1600. To the best of the authors’ knowledge, this
is the highest Reynolds number attempted with DNS for this type of flow control. The
present DNS results confirm that the effectiveness of drag reduction deteriorates, and
the maximum drag reduction achieved by travelling waves decreases significantly as the
Reynolds number increases. The intensity of both the drag reduction and drag increase
is reduced with the Reynolds number. Another important finding is that the value of the
optimal control parameters changes, even in wall units, when the Reynolds number is
increased. This trend is observed for the wall oscillation, stationary wave, and streamwise
travelling wave cases. This implies that, when the control parameters used are close to
optimal values found at a lower Reynolds number, the drag reduction deteriorates rapidly
with increased Reynolds number. In this study, the effect of Reynolds number for the
travelling wave is quantified using a scaling in the form Re−ατ . No universal constant is
found for the scaling parameter α. Instead, the scaling parameter α has a wide range
of values depending on the flow control conditions. Further Reynolds number scaling
issues are discussed. Turbulent statistics are analysed to explain a weaker drag reduction
observed at high Reynolds numbers. The changes in the Stokes layer and also the mean
and r.m.s. velocity with the Reynolds number are also reported. The Reynolds shear
stress analysis suggests an interesting possibility of a finite drag reduction at very high
Reynolds numbers.

Key words: drag reduction, flow control, turbulence simulation

1. Introduction

As spanwise wall oscillation has been shown to attain a drag reduction (DR) as high as
40% (Jung et al. 1992), this type of flow control techniques have attracted considerable
attention among other methods (Karniadakis & Choi 2003). The main aim of such control
methods is to reduce the skin-friction drag (Choi et al. 1998; Dhanak & Si 1999; Bandy-
opadhyay 2006), which is of paramount importance in many engineering applications.

† Email address for correspondence: Y.M.Chung@warwick.ac.uk
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One prominent application of flow control is in the transport industry, in particular, the
air transport, in which a significant reduction of drag corresponds to large fuel savings
and a lower level of CO2 emissions (Bieler et al. 2006; Spalart & McLean 2011). For
these high-Reynolds-number situations, an understanding of the Reynolds number effect
is crucial, as a knowledge of the drag reduction achievable at a cruise condition gives an
important insight into the applicability of the control method.

Wall oscillation can be defined by two parameters: the maximum wall velocity, A, and
the time period of the oscillation, T ,

w(x, y = 0, z, t) = A sin (ωt) , (1.1)

where ω = 2π/T is the angular frequency. In this study, x, y and z denote the streamwise,
wall-normal and spanwise directions, respectively. The effects of these parameters on
drag reduction at Reτ = 200 has been examined with a parametric study by Quadrio &
Ricco (2004). The friction Reynolds number of the turbulent channel flow is defined as
Reτ = uτh/ν, where uτ is the friction velocity, h is the channel half-width, and ν is the
kinematic viscosity of the fluid. (The friction velocity is defined as uτ ≡

√
τw/ρ, where

τw is the wall shear stress and ρ is the density of the fluid.) Quadrio & Ricco (2004)
observed that, for any given T+, the drag reduction increases with A+, but the rate of
increase diminishes as A+ becomes large. In this study, the superscript + represents wall
units using uτ and ν. An optimal value of T+ is found in the range 100 6 T+ 6 125, as
discussed by Karniadakis & Choi (2003), which can give the maximum drag reduction
of around 40%, whilst a drag increase is achieved when a large time period (T+ = 1000)
is employed at Reτ = 200 (Jung et al. 1992).

The temporal wall oscillation case can be converted to a purely spatial one, involving
a streamwise dependant, sinusoidal wave of spanwise velocity (Viotti et al. 2009). The
stationary wave can be defined by the maximum wall velocity, A, and the streamwise
wave length of the oscillation, λ,

w(x, y = 0, z, t) = A sin (κxx) , (1.2)

where κx = 2π/λ is the spatial wavenumber. As the near-wall structures move along the
wave, a similar effect to that of wall oscillation is experienced; in fact, the stationary wave
was found to be more effective than the wall oscillation for any given A+. For example, for
A+ = 12, the optimal wall oscillation (with T+ = 100) resulted in a drag reduction of 33%
while the stationary wave produced a drag reduction of 45%. The optimal wavelength of
the forcing is in the range 1000 6 λ+ 6 1250, in which the stationary wave produces a
significantly larger drag reduction compared with the wall oscillation case. The optimal
of the wall oscillation and stationary wave cases are related by a convection velocity
U+
c ≈ 10. Recently, the effectiveness of stationary wave was confirmed by Skote (2013)

for the boundary-layer flow.
A general form of the spanwise travelling waves incorporates both the wall oscillation

and stationary wave into one wall control technique (Quadrio et al. 2009). This flow
control method is applied in the form

w(x, y = 0, z, t) = A sin (κxx− ωt) . (1.3)

These travelling waves are equivalent to the temporal and spatial cases when κx = 0
and ω = 0 respectively, and when both parameters are non-zero, is a spatially dependant
sinusoidal wave travelling at a speed c = ω/κx. With a fixed maximum wall velocity
of A+ = 12, the forward travelling wave gives a drag increase within a region with
0.35 < c/Up < 0.6 (where Up is the centreline velocity of a laminar Poiseuille flow with
the same flow rate) or 8 < c+ < 14. The maximum drag reduction is found at 48%,
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also by a forward travelling wave, and the maximum net power saving is found as 18%
(ω ≈ 0.15, κx ≈ 1), with an even larger saving of 26% for a lower value of A+ = 6.

Since the first direct numerical simulation (DNS) study of wall oscillation for flow
control by Jung et al. (1992), a number of DNS studies have been performed for the
channel flow (Baron & Quadrio 1996; Choi et al. 2002; Ricco & Quadrio 2008; Quadrio
et al. 2009; Viotti et al. 2009; Ricco et al. 2012; Touber & Leschziner 2012), pipe flow
(Orlandi & Fatica 1997; Quadrio & Sibilla 2000) and boundary-layer flow (Yudhistira &
Skote 2011; Skote 2012, 2013; Lardeau & Leschziner 2013). Although the drag reduction
of wall oscillation has been found to decrease as the Reynolds number increases, the
majority of previous studies have been confined to lower Reynolds numbers, and also the
Reynolds number range investigated has not been wide enough to give a clear indication of
the Reynolds number effect on the drag reduction. Furthermore, only a few (ω+, κ+x ) cases
were considered, instead of studying a wide range of control parameters, due to the great
computational cost of high Reynolds number DNS. Understanding the Reynolds number
effect on the drag reduction achieved by the control strategy is extremely useful and
can help ascertain the applicability of the control to high-Reynolds-number situations.
However, flow control of the moderate- to high-Reynolds-number flow imposes a serious
challenge to both DNS and experiment studies. In DNS, the number of grid points grows

as Re
11/4
τ , and the total cost, including time advancement, will scale even less favourably.

To date, the highest Reynolds numbers used in DNS of channel flows are Reτ = 2000
(Hoyas & Jiménez 2006) and Reτ = 4000 (Bernardini et al. 2014); for boundary-layer
flows Reτ = 2000 (Sillero et al. 2013), and Reτ = 2000 (Pirozzoli & Bernardini 2013);
and for pipe flows Reτ = 1000 (El-Khoury et al. 2013) and Reτ = 1100 (Wu & Moin
2008). These high-Reynolds-number flow DNS studies are very challenging. For example,
Bernardini et al. (2014) used 8192× 1024× 4096 grid points for their channel flow DNS
with a total number of over 34 billion.

In this study, the direct numerical simulations were performed over a range of Reτ from
200 to 1600. In order to fully understand the scaling, a wide range of control parameters
were considered at increased Reynolds number, as opposed to the few parameters studied
in previous studies. The drag reduction values at various control conditions are presented,
and the scaling of DR values with Reynolds number is examined. The present study seeks
to improve current knowledge by extending the limit of the Reynolds number as far as
Reτ = 1600. To the best of the authors’ knowledge, this is the highest Reynolds number
reported for full-scale DNS of flow control. Some of earlier results were presented in
Chung & Hurst (2014).

2. Reynolds number effect

While most of previous DNS studies on wall oscillation flow control listed in table 1
have been confined to Reτ = 200 or 400, several simulations of wall oscillation have been
performed at higher Reynolds numbers. Simulations of the wall oscillation at Reτ = 400
were performed by Choi et al. (2002) with A+ = 5, 10 and 20, and T+ = 50, 100,
150 and 200. A significant decrease in the drag reduction was observed as the Reynolds
number increased from Reτ = 100 and 400, and the parameters were scaled by wall
units. However, the Reynolds number effect on drag reduction was not assessed directly.
Instead, they presented a scaling function linking the input parameters to the level of
drag reduction. They proposed a combined parameter V +

c , which included a Reynolds
number dependence, V +

c ∼ Re−0.2
τ . They obtained a correlation of DR ∼ aV +

c + bV +2
c ,

where a and b are constant, implying that the Reynolds number effect in this correlation
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Previous studies Reτ A+ T+

DNS
Channel flows
Jung et al. (1992) 200 A = 0.8Um 25, 50, 100, 200, 500
Baron & Quadrio (1996) 200 4.3, 8.7, 13, 17.3 100
Choi et al. (2002) 100 1, 5, 10, 20 1, 5, 10, 20, 50, 100, 150, 200

200, 400 5, 10, 20 50, 100, 150, 200
Quadrio & Ricco (2003) 200 3, 6, 9, 18, 27 50, 75, 100, 125, 150, 200
Quadrio & Ricco (2004) 200 1.5 ∼ 27† 5 ∼ 750
Xu & Huang (2005) 170 15 90
Ricco & Quadrio (2008) 200 D+

m = 100, 200, 300 30 ∼ 150
400 12 30, 125, 200

Ricco et al. (2012) 200 12 0 ∼ 500
Touber & Leschziner (2012) 200 12 50, 100, 200, 400, 1000

500 12 100, 200
1000 12 100

Gatti & Quadrio (2013) 950, 2100 12 0 ∼ 250

Pipe flows
Orlandi & Fatica (1997) 170 7, 14, 28‡ steady rotation
Quadrio & Sibilla (2000) 170 2.8, 5.6, 8.4, 11.2, 14‡ 50, 100, 150
Nikitin (2000) 130 3, 6 ω+ = 0.06
Choi et al. (2002) 150 5, 10, 20 5, 10, 20, 50, 100, 150, 200

Boundary layer flows
Yudhistira & Skote (2011) 260 27, 18 100
Skote (2012) 260 6, 12, 11.3 132, 67
Lardeau & Leschziner (2013) 520 12 80, 100, 120, 200

Experimental studies
Pipe flows
Choi & Graham (1998) 650 D+

m = 340 50 ∼ 800
1000 D+

m = 500 50 ∼ 800

Boundary layer flows
Laadhari et al. (1994) 450 D+

m = 160 60 ∼ 300
Trujillo et al. (1997) 670 1 ∼ 18 55 ∼ 330
Choi et al. (1998) 550 D+

m = 490 f = 1, 3, 5, 7Hz
Bogard et al. (2000) 250 D+

m = 200 10 ∼ 110
450 D+

m = 240 30 ∼ 200
630 D+

m = 240, 360, 480 25 ∼ 330
1000 D+

m = 800 142, 250, 330
Choi (2002) 550 D+

m = 400 80
Ricco & Wu (2004) 250 D+

m = 200 20 ∼ 110
450 D+

m = 240 30 ∼ 110
630 D+

m = 240 42, 67, 83

Table 1. Overview of previous DNS studies on wall oscillation flow control. Reτ for the pipe
flow was calculated from ReD = UmD/ν. Reτ for the boundary layer was calculated from
Re∗δ = U∞δ

∗/ν and Reθ = U∞θ/ν. †A+ was calculated from the displacement, D+
m. ‡A+ was

calculated from the rotation number for pipe flow.

is between Re−0.2
τ and Re−0.4

τ . The square term (bV +2
c ) dominates except for V +

c < 0.05,
suggesting that a Reynolds number effect is close to Re−0.4

τ .
Ricco & Quadrio (2008) performed wall oscillation simulations at Reτ = 400, with

T+ = 30, 125 and 200 and A+ = 12. A decrease in the drag reduction from the Reτ = 200
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case was again shown. An interesting feature of their simulations is that the change in
the drag reduction, when the Reynolds number was increased from Reτ = 200 to 400,
was larger for higher values of T+. Recently, Touber & Leschziner (2012) studied wall
oscillation at Reτ = 500 and 1000. The lower drag reduction at higher Reynolds numbers
was proposed to be attributed to the large-scale structures, which will become more
influential over the wall as the Reynolds number increases.

No Reynolds number effect of wall oscillation has been observed in experiment. Choi &
Graham (1998) conducted pipe flow experiments at two Reynolds numbers: ReD = 2.33×
104 and 3.63×104, with the corresponding Reynolds number ratio ofRe2/Re1 = 1.47. The
pipe was oscillated at a frequency of up to 50 Hz with a fixed angle of 30◦. Due to the use
of a constant oscillation amplitude, the wall velocity A+ varied with the oscillating period
T+ and also with the Reynolds number. This makes a direct comparison between the
two Reynolds numbers difficult. In figure 2 of their paper, DR for the higher-Reynolds-
number flow appears to be consistently larger than DR for the lower Reynolds number,
and this was mainly because 30% smaller A+ values were used at the lower Reynolds
number. When scaled to compensate different A+ values, similar DR values are obtained
from the two Reynolds numbers, and the difference between the two cases is much smaller
than the expected difference of ∆DR = 7% for A+ = 12. Ricco & Wu (2004) studied the
boundary-layer wall oscillation experimentally using three different Reynolds numbers
(Reθ = 500, 950 and 1400). Their results did not show any clear Reynolds number effect.
This is again mainly due to the experimental uncertainty associated with the wall shear
stress measurement on an oscillating wall. The expected DR variations for these Reynolds
numbers is within the uncertainty range reported.

It is interesting to note that the Reynolds number effect is much less clear in the
boundary-layer flow. As already mentioned, no Reynolds number effect was observed
in the boundary-layer experiment of Ricco & Wu (2004). Numerical simulations of the
turbulent boundary layer with wall oscillation have been performed in a few studies
(Yudhistira & Skote 2011; Skote 2012; Lardeau & Leschziner 2013). A drag reduction of
DR = 29.4% was obtained at Reθ = 500 (or Reτ = 260) for A+ = 12 and T+ = 132
(Skote 2012). DNS of turbulent boundary layer at Reτ = 520 was conducted by Lardeau
& Leschziner (2013) for A+ = 12 at four different oscillation frequencies: T+ = 80,
100, 120 and 200, with the largest drag reduction of DR = 25% at T+ = 80. In these
numerical studies, a single Reynolds number was used, making a direct comparison for
the Reynolds number effect between different studies less straightforward. Comparing
Skote (2012) and Lardeau & Leschziner (2013) gives a change of ∆DR = 4.4% between
Reτ = 260 and Reτ = 520, but it should be noted that different T+ values were used in
their simulations. Skote (2012) compared his boundary-layer DNS results at Reθ = 500
with channel flow data available in literature using an equivalent Reθ numbers for the
channel flow. Significantly smaller drag reductions were found in the boundary layer
compared with the channel flow, and this difference is too large for the Reynolds number
effect alone. This apparent difference from the channel flow (DNS) results may also be
due to the different flow physics between the channel and the boundary layer, and this
can only be answered by further boundary layer DNS and experimental studies.

Some Reynolds number effect for travelling waves was observed. Quadrio et al. (2009)
reported that the maximum drag reduction depended weakly on the Reynolds number;
the drag reduction decreased from 48% to 42% as the Reynolds number increased from
Reτ = 200 to 400. Recently, Gatti & Quadrio (2013) studied the Reynolds number effect
on travelling waves using a small computational domain size of (1.2h × 2h × 0.6h) to
reduce the computational cost. Due to the use of a small domain size, they were able
to increase the Reynolds number to Reτ = 950 and 2100. They chose several areas in
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the parameter domain (ω+, κ+x ), and claimed that the sensitivity to Reynolds number
varied among different locations in the parameter domain, especially at the boundary of
drag reduction and drag increase regions. While the impact of the small computational
domain size was carefully assessed and validated at a lower Reynolds number, this type
of approach can become more useful once their results are compared with full-scale DNS
results or experimental data.

The effect of Reynolds number was also observed in other control methods. A decrease
in the drag reduction achieved on both opposition control and suboptimal control was
reported as the Reynolds number was increased (Iwamoto et al. 2002). By damping the
near-wall velocity fluctuations, Iwamoto et al. (2005) suggested a much weaker Reynolds
number dependence for drag reduction. This could provide a theoretical limit of drag
reduction at higher Reynolds numbers, but real drag reduction achievable would be
significantly lower than this limit, implying a stronger Reynolds number dependence.
The effect of Reynolds number on opposition control was studied by Chang et al. (2002).
The drag reduction again deteriorated as the Reynolds number was increased. They
also reported that, when scaled in wall units, the optimal location of the sensing plane
moved towards the wall, indicating that the optimal control parameter could be Reynolds
number dependent.

A strong Reynolds number effect was observed in Lorentz force flow control. Berger
et al. (2000) performed a parametric study with different oscillating periods T+, force
strength St and penetration depth ∆+ at three Reynolds numbers i.e. Reτ = 100, 200
and 400. They found that the maximum DR for a given T+,∆+ decreased sharply when
the Reynolds number increased. For example, estimated from figure 11 in their paper,
at T+ = 100, ∆+ = 5, the maximum DR is 42%, 26% and 7% for Reτ = 100, 200 and
400, respectively, suggesting a Re−1.3

τ scaling, which is much stronger than the Reynolds
number effect observed in other control methods.

3. Computational details

3.1. Numerical method

Fully developed turbulent channel flow with wall control is considered using direct nu-
merical simulation. The results presented are generated by a DNS code (Chung & Talha
2011), based on the fully implicit fractional step method proposed by Kim et al. (2002),
in which a Crank-Nicolson discretisation is used for both the diffusion and convective
terms. The Navier-Stokes equations are solved in a Cartesian coordinate system. Us-
ing block LU decomposition each velocity equation is split into three one-dimensional
problems which are solved using suitable banded matrix algorithms. The pressure is up-
dated via the Poisson equation, taking advantage of the uniform grid discretisation in the
streamwise and spanwise directions by performing a combination of a two dimensional
Fourier transform and a tridiagonal matrix inversion. Various versions of the code have
been used for DNS and large eddy simulations (LES) (Chung & Talha 2011; Jewkes et al.
2011; Jung & Chung 2012; Chung & Hurst 2014).

When considering parallelisation using MPI, it is preferable to retain the data from
the full domain length in the direction of any one-dimensional algorithms. Therefore,
a pencil structure is adopted, dividing the processes into a two-dimensional grid. The
code makes use of the 2DECOMP&FFT library developed by Laizet & Li (2011), which
performs optimised transpositions when all the data is required in a particular direction.
It utilises a set of halo cells for calculations requiring only local data, to reduce the number
of necessary transpositions. Parallel I/O is also used to remove the dependency upon
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Case Reτ Re Lx × Ly × Lz Nx ×Ny ×Nz ∆x+ ∆y+ ∆z+

CH200 200 3150 16h× 2h× 6h 320× 140× 240 10.0 0.4 ∼ 6.0 5.0
CH400 400 7000 16h× 2h× 6h 640× 240× 480 10.0 0.4 ∼ 7.2 5.0
CH800 800 15700 12h× 2h× 4h 960× 384× 640 10.0 0.4 ∼ 9.7 5.0
CH1600 1600 34500 12h× 2h× 4h 1920× 800× 1280 10.0 0.4 ∼ 9.2 5.0

Table 2. Parameters of the channel flow simulations at the four Reynolds numbers studied.
Lx, Ly and Lz are the computational domain size in the x, y and z directions. Nx, Ny and Nz
are the corresponding grid sizes. Re = Umh/ν is the bulk mean Reynolds number.

writing data and improve efficiency. Simulations were performed using the local cluster
(Minerva) with 6000 Intel Xeon X5650 Westmere-EP 2.66 GHz cores at the Centre for
Scientific Computing, University of Warwick. The higher-Reynolds-number simulations
at Reτ = 1600 were run on 1024 cores on HECToR and ARCHER (www.archer.ac.uk),
a machine comprising of 16-core AMD Opteron 2.3 GHz Interlagos processors.

3.2. Simulation parameters

Direct numerical simulations of the turbulent channel flow were performed at four Reynolds
numbers Reτ = 200, 400, 800 and 1600, based on the frictional velocity of the no-control
case, uτ0, and the channel half-width, h. The simulations were run with a constant mass
flow rate by dynamically adjusting the pressure gradient. The length of the computa-
tional domain is chosen so that the same wall control parameters, scaled by wall units,
can be studied at each of the Reynolds numbers, due to the requirement of an integer
number of waves within the domain.

The domain sizes, grid sizes and resolutions used in the main simulations are shown
in table 2. Throughout this paper + represents the wall units based on uτ0. The number
of grid points was adopted such that the grid spacing was fixed with ∆x+ = 10 and
∆z+ = 5. A time step size of ∆t+ ≈ 0.12 was used, with time averaging taken over
at least t+ = 7200 after the initial transient. All statistics were obtained using plane
averaging in the streamwise and spanwise directions as well as time averaging.

The current simulations are restricted to forward travelling waves, corresponding to
positive values of ω and κx. Using these parameters, the region of maximum drag re-
duction and the region of drag increase can be investigated. The maximum wall velocity
was also fixed at A+ = 12 to aid in comparison with previous work (Quadrio et al. 2009;
Touber & Leschziner 2012). At Reτ = 200, 400 and 800, a series of simulations were
performed using all combinations of the control parameters ω+ of 0.01 ∼ 0.18 and κ+x
of 0.002 ∼ 0.016. This gives a good view over the region of interest in the (ω, κx) drag
reduction map (Quadrio et al. 2009). For the wall oscillation and stationary wave, extra
points were chosen in the region of the optimal, ω+ = 0.06 ∼ 0.1 and λ+ = 1000 ∼ 1250.
The parameters which achieved the maximum drag reduction for the wall oscillation and
stationary wave were also run at Reτ = 1600. To the best of the authors’ knowledge, this
is the highest Reynolds number attempted for flow control DNS using a full domain.

3.3. Grid sensitivity study

First, the effect of the computational domain size was considered through a sensitivity
study at Reτ = 200. Two simulations of larger computational domain sizes were per-
formed with the same grid resolution as in the CH200 case in table 2. The computational
domain size was doubled in the streamwise direction (Lx = 32h) and spanwise direc-
tion (Lz = 12h), respectively. A comparison of DNS results for the larger domain sizes
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Figure 1. Present DNS data for no-control case on the baseline (G1) grid at Reτ = 200. (a)
Velocity fluctuation, u+

i,rms, and (b) Reynolds shear stress, −uv. Symbols are DNS data of Kim

et al. (1987) at Reτ = 180.

(a)

Grid Nx ×Ny ×Nz ∆x+ ∆z+ ∆y+min ∆y+max Cf × 103 DR(%)

G0 1280× 380× 480 2.5 2.5 0.1 2.5 7.84 – – –
G1 640× 380× 480 5.0 2.5 0.1 2.5 7.73 36.1 – –
G2 640× 140× 240 5.0 5.0 0.4 6.0 7.76 36.4 29.8 26.0
G3 320× 140× 240 10.0 5.0 0.4 6.0 7.93 36.3 30.1 25.7

(b)

∆x+ 5.0, 7.5, 10.0†, 12.5, 15.0, 20.0
∆z+ 2.5, 3.75, 5†, 6.25, 7.5, 10.0

∆y+min 0.1, 0.2, 0.3, 0.4†, 0.5, 0.6, 0.7
∆y+max 2.5, 3.0, 4.0, 5.0, 6.0†, 7.0, 8.0

Table 3. Parameters used in a grid sensitivity study. (a) Four grid resolutions tested for no–
control and wall oscillation cases. Cf values are for no-control cases at Reτ = 200, and DR
values are the amount of drag reduction for the optimal wall oscillation case, ω+ = 0.06 at
Reτ = 200, 400 and 800. (b) Various grid spacings tested from the baseline (G1) grid for a
further grid sensitivity study. † indicates the final grid spacings chosen.

(32h × 2h × 6h and 16h × 2h × 12h) with the baseline case shows that the skin-friction
coefficients were not affected by doubling the domain size. The final domain size chosen
(16h× 2h× 6h) is similar to that used by Bernardini et al. (2014) for channel flow DNS
at Reτ = 4000.

An extensive grid sensitivity study was performed at the lowest Reynolds number
(Reτ = 200) due to the computational cost required. Table 3(a) shows samples of grids
tested including two very fine grids (G0 and G1). The G0 grid uses 1280 × 380 × 480
grid points with a total number of 233 million. The G1 grid is the same as the G0 grid
except a larger streamwise grid spacing (∆x+ = 5), and a total number of 117 million
grid points were used. The skin-friction coefficient Cf values at Reτ = 200 given in table
3(a) are very similar for all cases, and the difference is about 1%. DNS results of flow
quantities show little difference between the G0 and G1 grids, so the G1 grid was used
as the baseline grid for a further grid sensitivity study. The root-mean-squared (r.m.s.)
velocity (u+i,rms) fluctuations and the Reynolds shear stress (−uv) from the G1 grid are
shown in figure 1. Also included in the figure are the DNS data of Kim et al. (1987) at
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Figure 2. Present DNS data for no-control case on the final (G3) grid at four Reynolds numbers
considered. (a) Reτ vs. Re. (b) Turbulence kinetic energy budget terms. Dashed lines are the
present DNS data at Reτ = 200, and Solid lines are the present DNS data at Reτ = 1600.
Symbols are DNS data of Kim et al. (1987) for Reτ = 180 (©) and Hoyas & Jiménez (2006) for
Reτ = 2000 (3).

Reτ = 180. The present DNS results for no-control case exhibit an excellent agreement
with the available DNS data.

The grid resolution was systematically changed only in one direction at a time while
grid resolutions in the other two directions remain unchanged from the baseline (G1) grid;
∆y+min and ∆y+max were also changed separately. The grid spacings tested are shown in
table 3(b). Various flow properties including the skin-friction coefficient Cf were com-
pared with the values from the baseline grid case. From this grid sensitivity study, the
G3 grid was chosen based on the accuracy and also computational resources required to
create a drag reduction map.

The grid sensitivity study was then extended to higher Reynolds numbers (Reτ = 400
and 800). The accuracy of the G3 grid has been thoroughly assessed. First, the relation
between Re and Reτ is compared with other DNS studies (Moser et al. 1999; Iwamoto
et al. 2002; Tanahashi et al. 2004; del Álamo & Jiménez 2003; del Álamo et al. 2004;
Hoyas & Jiménez 2006) in figure 2(a) to examine whether Cf is correctly predicted in the
present DNS. Also included in figure 2(a) are two correlations proposed by Dean (1978)
based on experiments and by Laadhari (2007) based on DNS data. U+

m(=
√

2/Cf ) values
are also compared well with other DNS data (not shown here). The kinetic energy budget
terms for all four Reynolds numbers are compared with the DNS data from literature at
similar Reynolds numbers (Kim et al. 1987; Moser et al. 1999; Hoyas & Jiménez 2008).
The Reτ = 200 and 1600 cases are displayed in figure 2(b). Figure 2 clearly shows that
the present DNS results on the final grid are in good agreement with other DNS studies
and also with the correlations proposed by Dean (1978) and Laadhari (2007).

In addition to the no-control case, wall oscillation simulations for the optimal case
of ω+ = 0.06 were performed at three Reynolds numbers to ascertain the effect of grid
resolution on flow control results. Based on the Reτ = 200 results described earlier, only
the G2 and G3 grids were considered at high Reynolds numbers as it was found that DNS
results are more sensitive to the resolution in the streamwise direction. The difference in
DR prediction between the two grids are shown in table 3(a) at Reτ = 200, 400 and 800.
The effect on DR prediction is found to be smaller than ∆DR = 1%. A similar trend
was observed for the stationary wave case.
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(a) Reτ = 200

(c) Reτ = 800

(b) Reτ = 400

(d) ∆DR = DR800 −DR200

Figure 3. Drag reduction map (ω+, κ+
x ) for the forward travelling waves at (a) Reτ = 200,

(b) Reτ = 400, and (c) Reτ = 800. Contour levels are drawn at 5% intervals. The dark (blue)
indicates a drag reduction, and the bright (yellow) colour indicates a drag increase. White dashed
lines indicate the location for the local DR maxima. (d) ∆DR = DR800 − DR200, change in
drag reduction from Reτ = 200 to 800. The bright (yellow) colour indicates a negative ∆DR,
and the dark (blue) indicates a positive ∆DR.

4. Results and discussion

4.1. Drag reduction map

Figure 3 shows contours of the drag reduction values achieved at three Reynolds numbers,
Reτ = 200, 400 and 800, with using 86, 90 and 106 simulations, respectively. The drag
reduction map at Reτ = 200 is very similar to that shown in Quadrio et al. (2009).
Please note that only forward travelling waves (c > 0) were considered in this study as
this half of the parameter domain contains the optimal travelling wave case while Quadrio
et al. (2009) considered both forward and backward travelling waves. In this study, the
amount of drag reduction can be defined as DR =

(
1− (Cf/Cf,0)

)
× 100(%), where Cf,0

is the skin-friction coefficient for the no-control case. The maximum drag reduction at
Reτ = 200 is about DRmax = 50, and the optimal control parameters are ω+ = 0.02
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(T+ = 300) and κ+x = 0.008 (λ+ = 800). It is interesting to note that at first glance,
drag reduction maps at the higher Reynolds numbers (Reτ = 400 and 800) appear to
be similar to that at Reτ = 200, indicating that the overall drag reduction and drag
increase characteristics of the travelling wave are not affected significantly by increasing
the Reynolds number: the large DR values are observed in the DR peak region around
c+DR ≈ 4 while a drag increase is observed in a narrow region around c+DI ≈ 10 at all three
Reynolds numbers. A line of the minimum ∇DR passing through the DRmax location
is displayed in the DR map to indicate the location for the DR peak region:

κ+x = ω+/c+DR + κ+x,s. (4.1)

Please note κ+x,s is where the above line intersects the ω+ = 0 axis in the DR map.
While the overall similarity of the drag reduction map is evident at different Reynolds

numbers, figure 3 shows that the absolute value of drag change (both drag reduction and
drag increase) is decreased when the Reynolds number is increased. The maximum drag
reduction at Reτ = 400 is reduced to DRmax = 44 with the optimal control parameters
changed slightly. At the optimal control parameters, the difference in the maximum
DR achieved at these two Reynolds numbers is quite significant, ∆DR = −6, which
means by doubling the Reynolds number from Reτ = 200, drag reduction has already
become roughly 10% less effective than the lower-Reynolds-number case. The maximum
DR decreases further to DRmax = 40 at Reτ = 800. It is worthwhile to note that the
optimal control parameters for Reτ = 800 changes slightly from the lower-Reynolds-
number values, and this will be addressed later. The peak region for large DR values
also appears to move towards a smaller ω+ and larger κ+x region. It is observed that
the region of the parameter space in which the drag increase is found diminishes as the
Reynolds number is increased. There is a valley region in the drag reduction map along
c+DI ≈ 10 where DR is negative. This valley still exists at higher Reynolds numbers, but
drag increase in the valley region becomes less pronounced at higher Reynolds numbers,
making the valley shallow. Gatti & Quadrio (2013) suggested that this valley region
widens as the Reynolds number increases. Because our primary interest is in the drag
reduction region, however, it is not quite clear from the present study whether this valley
region widens or not as the Reynolds number increases.

Figure 3(d) shows the change in drag reduction values, ∆DR = DR800 − DR200, to
illustrate the effect of increasing the Reynolds number from Reτ = 200 to 800 on DR.
With control parameters close to that of the maximum drag reduction, (ω+

opt, κ
+
x,opt), the

change is large and negative with a reduction of up to ∆DR = −12. In the valley region
of the drag reduction map, the magnitude of the drag increase also becomes smaller
at higher Reynolds numbers corresponding to positive values of ∆DR. For example, in
the middle of the drag increase valley (ω+ = 0.09 and κ+x = 0.008), drag increases are
DR = −17, −10 and −5 at Reτ = 200, 400 and 800, respectively, resulting in a difference
in DR between Reτ = 200 and 800 of ∆DR = 12.

4.2. Reynolds number effect

The drag reduction results for the wall oscillation (κ+x = 0) for all the Reynolds numbers
are presented in figure 4. The present results shown in figure 4 clearly displays the
decrease in the value of DR as the Reynolds number is increased. At all three Reynolds
numbers, DR increases initially with ω+ to attain a maximum DR at ω+

opt, and then
decreases gradually. One interesting feature of the wall oscillation is that the optimal
frequency increases slightly from ω+

opt = 0.06 (T+ = 100) at Reτ = 200 to ω+
opt = 0.07 at

Reτ = 400, and ω+
opt = 0.08 at Reτ = 800 although the DR peak becomes broader as the

Reynolds number increases, and the DRmax is not easily discernible. The drag reduction
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Figure 4. Drag reduction for the wall oscillation case, κ+
x = 0. The vertical arrow indicates

the location for the maximum DR at each Reynolds number.
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Figure 5. DR data for the wall oscillation case, κ+
x = 0, in literature: Choi et al. (2002),

small bright (yellow online) colour symbols; Quadrio & Ricco (2004), Ricco & Quadrio (2008)
and Gatti & Quadrio (2013), open symbols; Touber & Leschziner (2012), large bright (online
orange) symbols; boundary layer (Yudhistira & Skote 2011; Skote 2012; Lardeau & Leschziner
2013), black symbols. Present results are shown in dashed lines. The wall oscillation amplitude
is A+ = 12 for all cases except for Choi et al. (2002), where the data is for A+ = 10.

at ω+ = 0.06 (T+ = 100) is calculated up to Reτ = 1600. At this Reynolds number,
the drag reduction has been reduced from DR = 37 to DR = 22, corresponding to a
∆DR = −15 decrease from the Reτ = 200 case, which means a 40% less effectiveness
from the low-Reynolds-number result. While the change in DR at the optimal value, ω+

opt,
is greater, there appears to be less of an effect of Reynolds number at larger values of
ω+ (corresponding to smaller T+) in the drag reduction region. Ricco & Quadrio (2008)
reported a similar trend using results from Reτ = 400.

Wall oscillation DR data reported in literature have been examined to identify the
Reynolds number dependence. Figure 5 shows DR data of Choi et al. (2002); Quadrio
& Ricco (2004); Ricco & Quadrio (2008); Touber & Leschziner (2012); Gatti & Quadrio
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Figure 6. Drag reduction for the near optimal wall oscillation cases. The oscillation frequency
is ω+ = 0.06 (T+ = 100), and A+ = 12. Please note that T+ = 125 is used in Ricco & Quadrio
(2008) and T+ = 90 in Gatti & Quadrio (2013). A+ = 10 is used in Choi et al. (2002).

(2013). Some Reynolds number effect is discernible in the data, but there is a lot of scatter
between different studies. This is partly because different amplitudes and oscillation
frequencies have been used in various studies as summarised in table 1. A clear decrease
in DR is shown in Choi et al. (2002) (yellow symbols), but their DR values are somewhat
smaller than the DR values reported in other studies at the same Reynolds numbers.
Quadrio & Ricco (2004); Ricco & Quadrio (2008) (open symbols) display similar trend at
Reτ = 200 and 400. A similar trend is also seen in Touber & Leschziner (2012) (orange
symbols) at Reτ = 200, 500 and 1000. Also included are the DNS data of Gatti & Quadrio
(2013) (open symbols) at Reτ = 950 and 2100.

The DR values for near-optimal wall oscillation cases are displayed in figure 6. The
oscillation frequency used is ω+ = 0.06 (or T+ = 100) in most studies while different
T+ values were used in some studies: T+ = 125 is used in Ricco & Quadrio (2008) and
T+ = 90 in Gatti & Quadrio (2013). All DR data show a clear trend of drag reduction
becoming less successful as the Reynolds number increases. The first thing to notice is
that there is a large variation in the DR values at Reτ = 200. The DR values in Choi
et al. (2002) are particularly low, and this may be partly due to a smaller oscillation
amplitude (A+ = 10) used in their simulations. Also the decrease between Reτ = 200
and 400 appears to be larger than in other studies, indicating a strong Reynolds number
effect. The DR data of Gatti & Quadrio (2013) using a small computational domain are
also included. Their DR values appear to be significantly larger than the present results
even though their DR value for Reτ = 200 is very similar to the DR value from the
present study.

The results from the stationary wave case (ω+ = 0) are presented in figure 7. Also
included are the DNS data of Gatti & Quadrio (2013). The DR increases initially with
κ+x at all Reynolds numbers considered, and the rate of increase is attenuated at high
Reynolds numbers. For κ+x > κ+x,opt, DR decreases very gradually, resulting in a broad
maximum DR peak at higher Reynolds numbers. It is interesting to note that like the
wall oscillation case shown in figure 4, the optimal parameter for the stationary wave
also appears to increase with the Reynolds number from κ+x,opt = 0.006 (λ+ = 1070)

at Reτ = 200 although the optimal κ+x,opt peak is very broad at Reτ = 800. Again,
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Figure 7. Drag reduction for the stationary wave case, ω+ = 0. Open symbols are for Quadrio
et al. (2009) (©) and Gatti & Quadrio (2013) (4).

the change in DR is significant near the optimal parameter. At κ+x,opt = 0.006, the
drag reduction decreases from DR = 48 at Reτ = 200 to DR = 36 at Reτ = 800,
corresponding to ∆DR = −12. However, if the wavenumber κ+x = 0.008 (λ+ = 800)
is considered, a drag reduction of DR = 37 can still be achieved at Reτ = 800, and
even a little higher at κ+x = 0.009 (λ+ = 700). This means that choosing the optimal
parameters determined from a low-Reynolds-number case, and scaling the parameters in
wall units will not guarantee the optimal drag reduction at the higher Reynolds number.
At Reτ = 1600, the drag is decreased further to DR = 33 for κ+x = 0.008 (λ+ = 800),
making it ∆DR = −15 from the Reτ = 200 case.

Figure 8 shows the drag reduction for the travelling wave case at Reynolds numbers
up to Reτ = 800. Gatti & Quadrio (2013) data (open symbols) at similar ω+ and κ+x are
also included for comparison. Looking at horizontal lines through the parameter space
with κ+x = 0.006 (λ+ = 1070), 0.008 (λ+ = 800) and 0.016 (λ+ = 400), DR values
are shown in figures 8(a), (b) and (c). The Reynolds number effect is clearly seen in all
λ+ figures. Please note that Gatti & Quadrio (2013) data included in figure 8(a) are at
κ+x = 0.005. As shown from the DR map in figure 3, the peak region for large DR values
intersects the ω+ = 0 axis at κ+x = κ+x,s. For small κ+x values (κ+x < κ+x,s), the stationary
wave (ω+ = 0) produces the largest DR among all ω+ cases while for κ+x > κ+x,s, the

maximum DR is obtained at ω+ = c+DR
(
κ+x − κ+x,s

)
. For instance, at Reτ = 200, the

stationary wave is most effective for κ+x 6 0.004. As shown in figure 8(a), the κ+x,s value
also increases when the Reynolds number increases. At Reτ = 800, the stationary wave
(ω+ = 0) has the largest DR for κ+x 6 0.006.

In figure 8(b), the optimal frequency is found at ω+ = 0.02 (T+ = 300) with Reτ = 200,
giving a maximum drag reduction of DRmax = 50, slightly higher than that of the
stationary wave, and this is consistent with Quadrio et al. (2009). At Reτ = 800, this
reduces to DR = 37 with the same frequency parameter and the DR peak becomes less
discernible. Figure 8(a) and (b) suggest that for the travelling wave, the peak region for
large DR moves towards higher κ+x values as Reτ increases. It is clear in figure 8(c) that
the location for maximum DR at κ+x = 0.016 moves to a lower ω+, again indicating that
the peak region for large DR moves with the Reynolds number. This is highlighted in
the DR map in figure 3 with white dashed lines.
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Figure 8. Drag reduction for the travelling wave cases. Horizontal lines through the map with
(a) κ+

x = 0.006, (b) κ+
x = 0.008, (c) κ+

x = 0.016, and (d) a vertical line through the map with
ω+ = 0.02. Open symbols in (a) are for Quadrio et al. (2009) (© for Reτ = 200) and Gatti &
Quadrio (2013) (4 for Reτ = 950 and 3 for Reτ = 2100) at κ+

x = 0.005, and open symbols in
(d) are for Quadrio et al. (2009) and Gatti & Quadrio (2013) at ω+ = 0.012.

With fixed ω+ = 0.02 (T+ = 300) in figure 8(d), the optimal location also changes
from κ+x = 0.008 (λ+ = 800) at Reτ = 200 to κ+x = 0.01 (λ+ = 640) at Reτ = 800, but
again the maximum peak becomes very broad. Comparing κ+x = 0.008 and κ+x = 0.016
(λ+ = 400) at Reτ = 200, drag reduction at κ+x = 0.008 is much more efficient while
DR = 43 for κ+x = 0.016, and there is a difference in the measured DR levels of 7 between
the two wavenumbers. At Reτ = 800, however, these two points achieve a similar drag
reduction at DR ≈ 37, showing the larger reduction in DR at the smaller κ+x . At the
new optimal parameter of κ+x = 0.01, DR = 40 is obtained at Reτ = 800.

4.3. Reynolds number scaling

To explore the Reynolds number effect, the values of the drag reduction at the four
Reynolds numbers studied are normalised by the drag reduction achieved in the Reτ =
200 case and plotted against the Reynolds number in figure 9. HereDR/DR200 < 1 means
that drag reduction becomes less effective as the Reynolds increases from Reτ = 200.
The results from the wall oscillation are shown in figure 9(a). It clearly shows that drag
reduction for the wall oscillation deteriorates at higher Reynolds numbers, but there is
a large variation in the rate of decrease in DR/DR200 among the wall oscillation cases
depending on ω+ values. The thick line leading to the Reτ = 1600 represents the optimal
case (ω+

opt = 0.06), indicating the drag reduction becomes much less successful at Reτ =
1600. The results from the stationary wave simulations are shown in figure 9(b). Again,
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Figure 9. Change in drag reduction with Reτ scaled by the results from the Reτ = 200 case,
DR/DR200. (a) Wall oscillation, and (b) stationary wave. A longer dash length corresponds to
a larger control parameter; ω+ for the wall oscillation and κ+

x for the stationary wave.
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Figure 10. Change in drag reduction, DR/DR200, for the wall oscillation case at ω+ = 0.06.
Open symbols indicate the optimal stationary wave cases. Present data are for κ+

x = 0.008, and
Gatti & Quadrio (2013) are for κ+

x = 0.005. Flow conditions for the wall oscillation are given in
figure 6.

a decrease in DR/DR200 is clearly seen as the Reynolds number increases. The rate of
decrease in DR/DR200 varies among the cases, and the optimal case (κ+x,opt = 0.008)
shows a better trend than the optimal wall oscillation case. It appears that the wall
oscillation suffers more from the Reynolds number effect than the stationary wave. At
Reτ = 1600, the wall oscillation becomes 40% less effective than the Reτ = 200 case
while for the stationary wave, this is less than 30%. Figure 9 highlights the difference
in Reynolds number effect dependent on the control parameters chosen. The Reynolds
number dependence is not necessarily limited to the range shown in this figure as this
only shows the cases studied. It is possible that the Reynolds number dependence has
larger variation than presented.

TheDR/DR200 values for near-optimal cases are displayed in figure 10. Wall oscillation
data (Choi et al. 2002; Quadrio & Ricco 2004; Ricco & Quadrio 2008; Touber & Leschziner
2012; Gatti & Quadrio 2013) from figure 6 are included. Also included are the stationary
wave data of Gatti & Quadrio (2013). The Reynolds number effect is clearly seen for all
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Figure 11. Reynolds number scaling parameter α for (a) wall oscillation, and (b) stationary
wave.

(a)
ω+ 0.03 0.06† 0.08‡

DR ∼ Re−0.28
τ Re−0.26

τ Re−0.17
τ

(b)
κ+
x 0.004 0.006† 0.008

DR ∼ Re−0.37
τ Re−0.21

τ Re−0.15
τ

Table 4. DR scalings for (a) wall oscillation and (b) the stationary wave. † indicates the
optimal parameter at Reτ = 200, and ‡ indicates the optimal parameter at Reτ = 800.

cases in figure 10, with large variations between the data. While Choi et al. (2002) display
a rapid decrease in DR, Gatti & Quadrio (2013) suggest rather a moderate decrease in
DR for the wall oscillation. It is interesting to note that the present results indicate
the Reynolds number effect is much stronger in the wall oscillation than the stationary
wave, while the opposite trend was observed in Gatti & Quadrio (2013) although they
considered the κ+x = 0.005 case.

In this study, a scaling in the form Re−ατ is calculated from DR/DR200 to quantify
the effect of the Reynolds number. A large (positive) value of α corresponds to a large
decrease in DR as the Reynolds number increases, and can therefore be interpreted as an
unfavourable scaling. The calculated scalings for the wall oscillation and stationary wave
control are shown in figure 11 and also summarised in table 4. For the wall oscillation,
large values of α are obtained at lower values of ω+ with the largest α at ω+ = 0.04
(T+ = 150), emphasising the fact that the drag reduction is severely affected by the
Reynolds number effect. The α value is still quite large near ω+ = 0.06 (T+ = 100),
the optimal value for Reτ = 200. Ricco & Quadrio (2008) also suggested that a stronger
effect of Reynolds number occurs for smaller ω+ (large T+). The scaling is improved for
ω+ > 0.06, partly as the optimal value of ω+ is increasing with the Reynolds number;
at ω+ = 0.08 (T+ = 75), the optimal value for Reτ = 800, the scaling value is α ≈ 0.17.
The scaling is further improved at larger ω+ with α ≈ 0.1. There is no universal α value
which can be applied for a wide range of control parameters. Instead, a large variation in
α values is obtained. The present DNS results demonstrate that this type of scaling does
not represent the Reynolds number dependence observed in the spanwise wall forcing
flow control. It is interesting to note that Choi et al. (2002) used α = 0.4 to scale their
wall oscillation S+ parameter.

Figure 11(b) and table 4(b) show the Reynolds number scalings for the stationary wave
at different κ+x values. Similarly to the wall oscillation case, the DR for the stationary
wave case is also seen to be affected more at lower values of κ+x by the Reynolds number,
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Figure 12. Reynolds number scaling parameter α. for (a) wall oscillation and stationary wave,
and (b) travelling waves (κ+

x = 0.008, and ωx = 0.06). An equivalent ω+ value (yellow squares)
is calculated for κ+

x using a relationship of ω+ = κ+
x U

+
c , where U+

c = 10 (Viotti et al. 2009).

(a)
ω+ 0.01‡ 0.02† 0.03

DR ∼ Re−0.17
τ Re−0.22

τ Re−0.37
τ

(b)
κ+
x 0.004 0.008† 0.016

DR ∼ Re−0.16
τ Re−0.22

τ Re−0.10
τ

Table 5. DR scalings for (a) the horizontal line through the map with κ+
x = 0.008 and (b) the

vertical line with ω+ = 0.02. † indicates the optimal parameter at Reτ = 200, and ‡ indicates
the optimal parameter at Reτ = 800.

where there are large values of α in the scaling. Unlike the wall oscillation, α decreases
monotonously with κ+x . This is likely due to the limit on the minimum value of κ+x studied,
and is expected to behave similarly to that of wall oscillation. As shown in figure 12(a),
the wall oscillation and stationary wave display a similar trend when a relationship of
ω+ = κ+x U

+
c is used to find an equivalent ω+ value for κ+x , where U+

c = 10 (Viotti
et al. 2009). The scaling around the region of optimal drag reduction for the stationary
wave is better than for the wall oscillation hinting that, at higher Reynolds number, the
stationary wave may remain as a more advantageous control method within the control
parameters studied.

Figure 12(b) and table 5 show the α values of the scalings calculated for the travelling
wave, emphasising the variation of the scaling dependent on the control parameters.
Again, an equivalent ω+ values are calculated for κ+x using ω+ = κ+x U

+
c . Like the wall

oscillation and stationary wave, α values vary significantly depending on ω+ and κ+x
values. The scaling is better (i.e. smaller α values) for larger ω+ and κ+x . The main
impact of this is that, although the DR is reducing as the Reynolds number increases,
and the scaling is strong at the optimal control parameters, by adjusting the control
parameters correctly, the scaling with Reynolds number is improved. This means that,
at a higher value of Reτ , using the parameters which were not optimal at a low Reynolds
number can give a more favourable drag reduction. In the wall oscillation and stationary
wave cases, lower values of ω+ and κ+x have higher α values, hence the drag reduction
deteriorates more rapidly as the Reynolds number increases.

4.4. Turbulence statistics

Figure 13 shows the initial response of the skin friction to the wall oscillation, normalised
by Cf,0. The level of oscillation in Cf is seen to increase as the Reynolds number is in-
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Figure 13. Initial response of skin friction (normalised by the no-control case) for the wall
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Figure 14. Stokes layer for oscillation case: (a) ω+
opt = 0.06 (T+ = 100), and (b) ω+ = 0.03

(T+ = 200). Dashed lines are the laminar Stokes layer solution: W (y, t) = Ae−η cos(ωt − η),

here η = y
√
ω/2ν.

creased while the overall drag reduction deteriorates with the Reynolds number. It has
been shown that, when the oscillation is applied for large time periods (corresponding to
small ω+), substantial oscillations occur in the skin friction (Jung et al. 1992; Touber &
Leschziner 2012). This is due to the turbulence responding to the wall motion, and an
increase of turbulent intensity in the new shear direction. At certain points throughout
the oscillation drag is increased, and this can lead to an overall drag increase when ω+

is sufficiently small (figure 4 when ω+ = 0.01). Figure 13 suggests that the oscillation in
the drag reduction does not scale with wall units, and deteriorates the drag reduction
achieved at the optimal parameters as the Reynolds number increases. Another interest-
ing point from this figure is that the rate of the initial decay in Cf is very similar at
all Reynolds numbers. However this decay is sustained for longer at the lower Reynolds
numbers; for the Reτ = 200 case the initial decrease of Cf is sustained until t+ = 700
while the Cf minimum is achieved much earlier at t+ = 300 for the Reτ = 1600 case. In
global units, the initial decay of Cf is even faster at higher Reynolds numbers.
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Figure 15. Phase averaged spanwise velocity for oscillation case for (a), (b), (c) ω+
opt = 0.06

(T+ = 100), and (d), (e), (f) ω+ = 0.03 (T+ = 200). (a), (d) η = 1; (b), (e) η = 4.6; and (c),
(f) η = 2π. Dashed lines are the laminar Stokes layer solution.
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Figure 16. Mean velocity (U+) profiles at four Reynolds numbers. (a) Wall oscillation for
ω+
opt = 0.06, and (b) stationary wave cases for κ+

x,opt = 0.008. uτ is used in wall units. Black
lines represent the flow control case, and orange (grey) lines represent the no-control case. The
thick grey straight line represents the law of the wall: u+ = 1

κ
ln y+ + 3.7, and κ = 0.37 (Nagib

& Chauhan 2008).

Figures 14 and 15 show the phase-averaged spanwise velocity profiles for the wall
oscillation at two oscillation frequencies, ω+ = 0.06 (T+ = 100) and ω+ = 0.03 (T+ =
200). Also included are the laminar Stokes flow profiles (Schlichting 1968). Please note
that the laminar Stokes layer thickness is δ+ =

√
4πT+ in wall units; δ+ = 35.4 for ω+

opt =
0.06 (T+ = 100) and δ+ = 50.1 for ω+ = 0.03 (T+ = 200), and there is no Reynolds
number dependence. For the optimal case (ω+

opt = 0.06), the spanwise turbulent velocity

profiles at η = 1, corresponding to y+0 = 6, are very similar to the Stokes profile at all four
Reynolds numbers (figure 15(a)), indicating that the turbulent Stokes layer near the wall
is not affected by increasing the Reynolds number. This finding is interesting considering
the weakened drag reduction observed at higher Reynolds numbers. Further away from
the wall (η = 4.6 and 2π) (figures 15(b) and (c)), the spanwise turbulent velocity decays
slower than the laminar flow, and the phase difference for different Reynolds numbers
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Figure 17. Reynolds stresses profiles from the stationary wave cases for κ+
x,opt = 0.008 at four

Reynolds numbers. (a) u+
rms, (b) v+rms, (c) w+

rms, and (d) −uv. uτ0 is used in wall units. Solid
lines represent the flow control case, and dashed lines represent the no-control case. Inset in
(a) is for the location of the maximum u+

rms for the stationary wave cases in log-log scale,
y+u ∼ Re−0.15

τ .

is clearly discernible. At ω+ = 0.03 (T+ = 200), the spanwise turbulent velocity profile
decays much slowly, and this trend was also observed in the previous DNS study at
Reτ = 200 (Touber & Leschziner 2012). The Reynolds number effect is more evident
at the lower ω+ value, and the spanwise turbulent velocity profile deviates significantly
from the Stokes profile in figures 15(d), (e), and (f). The deviation from the laminar
Stokes profile increases at higher Reynolds numbers.

The mean velocity profiles are shown in figure 16 for both the wall oscillation and
stationary wave cases. The optimal control parameters are considered here: ω+

opt = 0.06

(T+ = 100) for the wall oscillation and κ+x,opt = 0.008 (λ+ = 800) for the stationary wave
cases. For the no-control cases, the streamwise mean velocity profiles at four Reynolds
numbers agree well with the log-law profile. Also included in the figure is a logarithmic
velocity distribution u+ = 1

κ ln y+ +B, where κ = 0.37 and B = 3.7 (Nagib & Chauhan
2008). When the uτ value for each controlled flow is used in wall units, the log-law velocity
profiles show a characteristic upward shift (Choi et al. 1998; Touber & Leschziner 2012),
and the magnitude of the shift is roughly proportional to DR. It is interesting to note
that the upward shift was much larger for the stationary wave reflecting larger DR
values achieved. The upward shift for the wall oscillation is about ∆U+ = 5.3, 3.8, 3.1
and 2.7 at Reτ = 200, 400, 800 and 1600, respectively while the upward shift is larger for
the stationary wave with ∆U+ = 7.6, 6.2, 5.5 and 5.0 at Reτ = 200, 400, 800 and 1600,
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Figure 18. Reduction in maximum ui,rms as a function of DR, ∆ui,max/ui,max,0. ∆ui,max is
normalised by the maximum ui,rms value for the no-control case, ui,max,0.

respectively. Since the mass flow rates are constant for the uncontrolled and controlled
flows, a large ∆U+ means a thicker viscous sublayer in the controlled flow. For the
stationary wave, the viscous sublayer is more affected than the wall oscillation case.

Figure 17 shows the velocity fluctuations (ui,rms/uτ0) and the Reynolds shear stress
(−uv/u2τ0) for the stationary wave. The optimal wave number κ+x = 0.008 is chosen for all
four Reynolds numbers studied. When scaled with the friction velocity of the no-control
case, uτ0, the velocity fluctuations display two distinctive characteristics: first, all three
velocity components decrease significantly, and second, the location for the maximum
u+i,rms moves away from the wall. A similar trend was also observed in other types of flow

control (Choi et al. 1994; Chung & Talha 2011). The decrease in u+rms is much larger at
lower Reynolds numbers, consistent with the amount of drag reduction observed earlier.
As the Reynolds number increases, the effect on the velocity fluctuations becomes weaker.
This can be most clearly seen in u+rms profiles; for the no-control case, the maximum u+rms
increases by 0.3 when the Reynolds number increases from Reτ = 200 to 1600, but the
difference becomes much larger for the stationary wave with ∆u+rms = 0.45, indicating
the stationary wave decreases u+rms more significantly at lower Reynolds numbers. The
difference between the new location for the maximum u+i,rms and the no-control value is

found to be quite large at Reτ = 200, but this reduces following y+u ∼ Re−0.15
τ as the

Reynolds number increases.
The changes in the maximum value of each component of Reynolds stresses are exam-

ined at four Reynolds numbers. The reduction in maximum ui,rms, normalised by the
maximum ui,rms value for the no-control case is shown in figure 18. All quantities show
good correlation with DR: a large DR is accompanied with a large reduction in the
maximum value of the Reynolds stresses. Chung & Talha (2011) observed a similar trend
in the opposition control. This finding shows that turbulence fluctuations (e.g. urms)
are reduced much less by the flow control at higher Reynolds numbers. Iwamoto et al.
(2005) suggested that the degree of turbulence attenuation in the near-wall region is re-
lated to the amount of drag reduction achievable. This may explain why drag reduction
deteriorates at high Reynolds numbers.

Since the drag reduction is directly related to the Reynolds shear stress, −uv profiles
are analysed further. Fukagata et al. (2002) showed that the contribution of the Reynolds
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Figure 19. (a) Weighted turbulent shear stress, (1− y) (−uv), and (b) accumulated
contribution of the weighted turbulent shear stress from 0 to y,
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Figure 20. (a) Skin-friction contribution from laminar component; inner and outer regions.
Dashed lines with open symbols are for the no-control cases, and solid lines are for the stationary
wave cases. (b) Contribution to DR from inner and outer regions. The total DR values are also
included.

shear stress to the skin-friction drag is the weighted average of Reynolds shear stress.

Cf =
6

Re
+ 6

∫ 1

0

(1− y) (−uv) dy, (4.2)

where Re = Umh/ν. The first term is the laminar flow contribution while the second term
represents the turbulent flow contribution. Figure 19(a) shows the (1−y)(−uv) profile for
four Reynolds numbers. The accumulated contribution of the weighted turbulent shear
stress from 0 to y is shown in figure 19(b). The Reynolds shear stress in figures 17(d)
and 19(a) shows a stronger Reynolds number effect. This is not surprising because the
no-control turbulent flow also experiences the Reynolds number effect close to the wall
(DeGraaff & Eaton 2000; Hoyas & Jiménez 2006).

In this study, the turbulent flow contribution is further divided into two components:
inner and outer regions. The wall-normal location for the maximum of the Reynolds
shear stress, yp, is used

Cf =
6

Re
+ 6

[∫ yp

0

(1− y) (−uv) dy +

∫ 1

yp

(1− y) (−uv) dy

]
. (4.3)
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Sreenivasan & Sahay (1997) argued that the momentum balance in the critical layer
around yp is different from those in the classical inner and outer layers. It is known that

the y+p location increases with the Reynolds number: y+p = 2Re
1/2
τ (Sreenivasan & Sahay

1997; Guala et al. 2006).
Figure 20(a) shows that for no-control case, the contribution of the outer region in-

creases with the Reynolds number while the contribution of the inner region decreases
gradually. As expected, the laminar contribution becomes smaller as the Reynolds num-
ber increases. For the stationary wave, the contribution of the outer region is significantly
reduced at all Reynolds numbers tested, and the amount of reduction does not appear
to be affected by increasing the Reynolds number, indicating a constant drag reduction
from the outer region. The contribution of the inner region is roughly constant for the
stationary wave. Figure 20(b) displays the contribution of each component to DR. The
contribution of the outer region becomes more or less constant, just over DR ≈ 30, while
the contribution of the inner region diminishes gradually from DR = 20 at Reτ = 200.
The Reynolds number effect shown in figure 20(b) is related to a weaker drag reduc-
tion observed at high Reynolds numbers. This is consistent with Iwamoto et al. (2005).
They predicted that the Reynolds number effect on the drag reduction rate is relatively
mild (i.e., logarithmic) if the fluctuations in the regions near the wall can completely
be damped. This finding suggests an exciting possibility of a finite DR value at a very
high Reynolds number, which is very promising for the transport industry, in particular,
the air transport, where a typical operating condition is of the order of Reτ = 10 000.
This is a conjecture at this stage, and a further study with higher-Reynolds-number DNS
or experiment will be able to present a clearer picture regarding the Reynolds number
effect.

5. Conclusions

A series of direct numerical simulations of a turbulent channel flow subjected to
streamwise travelling waves have been performed for a Reynolds number range up to
Reτ = 1600. Drag reduction maps are calculated from DNS results at Reτ = 200, 400
and 800. It is found that the maximum drag reduction achieved by travelling waves de-
creases significantly as the Reynolds number is increased. The intensity of both the drag
reduction and drag increase is reduced with the Reynolds number. This reduction does
not scale universally, and the drag reduction deteriorates rapidly with increased Reynolds
number when the control parameters used are close to the optimal values found at a lower
Reynolds number. It is also found that the value of the optimal control parameters (ω+

opt

and κ+x,opt) changes, even in wall units, as the Reynolds number is increased. This makes
approximation of the maximum drag reduction achievable at high Reynolds numbers dif-
ficult. The value of ω+

opt for the wall oscillation and κ+x,opt for the stationary wave increase
with the Reynolds number.

The scaling with the Reynolds number is found to be non-trivial. A scaling in the
form Re−ατ results in a wide range of α values depending on the flow control param-
eters. Due to the complex DR scaling it is possible that, although the drag reduction
deteriorates rapidly at the optimal found at a lower Reynolds number, by choosing a
non-optimal parameter, the control method may still yield reasonable values of DR at
a higher Reynolds number. There is no Reynolds number effect in the spanwise veloc-
ity profiles when the optimal parameter κ+x,opt is used, and the Stokes layer is nearly
insensitive to the Reynolds number. The effect of flow control on the mean and r.m.s.
velocity profiles is weakened at high Reynolds numbers as the drag reduction becomes
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less effective. The Reynolds shear stress analysis suggests the Reynolds number effect on
the drag reduction could be rather mild, leading to a possible constant DR at higher
Reynolds numbers.
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