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The Impact of Temperature and Switching Rate on

the Dynamic Characteristics of Silicon Carbide
Schottky Barrier Diodes and MOSFET's

Saeed Jahdi, Student Member, IEEE, Olayiwola Alatise, Petros Alexakis, Student Member, IEEE,
Li Ran, Senior Member, IEEE, and Philip Mawby, Senior Member, IEEE

Abstract—SiC Schottky Barrier Diodes (SBDs) are prone to
electromagnetic oscillations in the output characteristics. The
oscillation frequency, peak voltage overshoot and damping are
shown to depend on the ambient temperature and the MOSFET
switching rate (dIps/dt). In this paper, it is shown experimentally
and theoretically that dIps/dt increases with temperature for a
given gate resistance during MOSFET turn-ON and reduces
with increasing temperature during turn-OFF. As a result of
this, the oscillation frequency and peak voltage overshoot of
the SiC-SBD increases with temperature during diode turn-OFF.
This temperature dependency of the diode ringing reduces at
higher dIps/dt and increases at lower dIps/dt. It is also shown
that the rate of change of dIps/dt with temperature (dZIDs/dth) is
strongly dependent on R; and using fundamental device physics
equations, this behavior is predictable. The dependence of the
switching energy on dIps/dt and temperature in 1.2 kV SiC-SBDs
is measured over a wide temperature range (=75 °C to 200 °C).
The diode switching energy analysis shows that the losses at low
dIps/dt are dominated by the transient duration and losses at high
dIps/dt are dominated by electromagnetic oscillations. The model
developed and results obtained are important for predicting EMI,
reliability and losses in SiC MOSFET/SBDs.

Index Terms—Power MOSFET, Schottky
carbide, Temperature, Oscillation

diodes, Silicon

I. INTRODUCTION

ILICON CARBIDE unipolar devices have now become

commercially available with voltage ratings of 1.2 kV
and higher voltage ratings are expected in the near future
[1]-[5]. These temperature rugged and power dense devices
have repeatedly demonstrated improved energy conversion
efficiency and reduced losses when implemented in power
converters [6]-[13]. Since these devices are unipolar
and are therefore not limited by minority carrier storage
from conductivity modulation, they are fast switching and
can thus be implemented in high frequency applications.
High switching frequency can enable size reduction of
passive components which is a significant advantage in
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applications where space or size is critical to cost. This
may include aeronautical and marine applications. However,
advances in packaging technologies are not catching up
with devices. Parasitic inductances in power modules induce
electromagnetic oscillations in output characteristics which
can be detrimental through the additional losses and reduced
reliability  [14]-[18]. These parasitic inductances depend
strongly on the architecture of the power module and its
layout. However, as the switching frequency increases, even
small parasitic inductances cannot be ignored because of the
high dIps/dt. 1t is well understood that SiC Schottky diodes
are particularly prone to ringing as parasitic capacitances
and inductances interact to cause RLC resonance [19]. The
dependence of this ringing on the ambient temperature and
the rate of change of current with time (dIpg/dt) of the
switching MOSFET has not been fully characterized and
understood. The deployment of these 1.2 kV SiC power
devices in hard-switched high temperature modules will
require more understanding in the dependence of switching
energy on temperature and switching rate [20]. A solution
to this ringing problem could be the use of soft-switching
techniques where zero current and/or zero voltage switching
can be implemented. However, this will increase the cost and
complexity of converters at the power levels targeted by SiC.

In this paper, 1.2 kV SiC MOSFETs and SiC Schottky
diodes have been tested in a clamped inductive switching
test rig. The devices have been tested with a wide range of
gate resistances (10 2 to 1000 €2) at ambient temperatures
ranging from —75 °C to 200 °C. Using fundamental device
equations, the dependence of dIpg/dt on the temperature and
gate resistance is derived and shown to accurately replicate the
experimental measurements. This temperature dependence is
used to explain the performance of the Schottky diode in terms
of energy losses. In Section II of this paper, the experimental
measurements are presented. In Section III, the MOSFET
switching and diode models are presented and compared with
the experimental measurements. In Section IV, the switching
performance of the silicon carbide Schottky barrier diode is
analyzed while Section V concludes the paper.

II. CLAMPED INDUCTIVE SWITCHING MEASUREMENTS
AND EXPERIMENTAL TEST RIG DESIGN

The clamped inductive switching test rig comprises of the
devices under test (1.2 kV/30 A SiC MOSFETs and diodes),
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a 7.4 mH commutation inductor, gate drive system and a
power supply. A schematic of the test set-up is shown in
Figure 1. Shown in Figure 2 is a picture of the test rig. The SiC
MOSFET has the datasheet reference of SCH2080KE while
the SiC Schottky Diode is SDP30S120.

| | Hscrer | SIC Schottky
! L=7.4mH H 4 Barrier Diode
i i SDP30S120
Ii_ :

i_—__ Vdc 1;:Ic=940p|=

i i i_ Rg: 100-1000Q, - SiC MOSFET
| LT ‘;|»- SCH2080KE

! ! = Vg =18V |

| L " Gateoriver

Fowar Supply

Fig. 1. Clamped Inductive Switching Test Rig Schematic

Fig. 2.
2-Function Generator 3- Digital Oscilloscope 4- Gate Drive Power Supplies
5-Bank Capacitors 6-Inductors 7-Gate Drive System

Quasi-Switching Test Rig Components: 1- Thermal Chamber

The switching waveforms were captured on a Tektronix
TDS5054 digital phosphor oscilloscope which has a bandwidth
of 500 MHz and the static characteristics were measured on
a Tekronix curve tracer. The current is measured using a
Tekronix TCP303 current probe connected to the oscilloscope.
This circuit emulates one phase-leg of a 3 phase voltage source
converter in which free-wheeling diodes (FWD) conduct
current in the opposite direction to the MOSFET i.e. the
diodes rectify while the MOSFETsS invert. The environmental
chamber shown in Figure 2 is a Tenney Environment chamber
being able to vary the temperature within a range of —75 °C
to 200 °C. The measurements here have been performed at a
temperature range between —75 °C to 200 °C. Therefore the

measurements have been performed at the above mentioned
temperature range. However, for higher temperatures and
harsh environments such as in aeronautical applications, bare
dies should be packaged exclusively. It should be noted that
emergence of SiC devices have raised the high temperature
expectations considerably as they are proven to act better
in such conditions compared to their silicon counterparts
[21]-[24]. The power supply provides the charge voltage
and the inductor is pre-charged to enable continuous current
through the MOSFET/FWD arrangement. This is achieved
by using the double pulse technique where the MOSFET is
initially switched ON to charge the inductor to a defined
current level before the main switching test is performed.
The gate of the MOSFET is driven by a gate drive circuit
comprised of a voltage source, a pulse generator and an
optocoupler chip jointly supplying 18 V through the gate
resistor for a period of 20 ps. When the MOSFET is switched
OFF, majority of the supply voltage falls across it hence
the FWD is forward biased and conducting. The voltage
drop across the FWD during this phase will be due to its
on-state resistance. As the MOSFET is switched ON and starts
conducting, the current is commutated away from the FWD
and the voltage across the MOSFET starts to fall to its on-state
voltage drop. This causes the FWD to become reverse biased
and blocking.

III. MODEL DEVELOPMENT

The dependence of the turn-ON dIpg/dt on temperature can
be accounted for using the fundamental device equations. The
MOSFET and the diode share the same total inductor current,
hence, the turn-ON of the MOSFET and turn-OFF of the
diode occurs within the same switching transient. Equation
(1a) below is the gate charging transient characteristic during
turn-ON (Equation (1b) is for turn-OFF) where Vg is the
gate-source voltage, V¢ is the gate driver voltage, R is the
gate resistance, ¢ is time and Cj, is the input capacitance.

t
VGS = VGG <1 — exrp <R(;C‘ ))

Vas = Vag exp (

(1a)

t
RGCiss > (1b)

The rate of change of Vg with time (dVs/dt) is evaluated
simply by taking the derivative of (1a) with time for turn-ON
and (1b) for turn-OFF which results in:

dVes

dt

dVes
dt

_ Vea cap (_ t >
ON RgCiss RGCiss

Vaa exp < RGtC' > (2b)

T RGCiss
Equation (3) is the well-known equation for the drain
current of a fully inverted long channel MOSFET in saturation.

(2a)

OFF

B
Ins =+ (Vas - V) )
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where
WuCox

L

Vry is the threshold voltage, W is the width of the device,
1 is the effective mobility of the carriers, Coy is the effective
capacitance density of the gate insulator and L is the channel
length of the device. Taking the derivative of (3) with respect
to time and substituting dVgs/dt yields dIpg/dt as shown below
in (4a) for turn-ON and (4b) for turn-OFF.

B =

drl —t
d?s' =B (VGS — VTH) RG%G efl,'p(RGC ) (43)
ON 188 88
dlps — B (Vs — Vi) —CC cap(——1 ) (4b)
dt |opp RgCiss RaCiss

where the threshold voltage (Vry) and its temperature
dependency is given by [25] as:

Ny

T

)

4es;i KTN ln(
2KT N \/ s
Vruw = Vg + - In(—2) +

ni Cox ©)

In (5) above, N4 is the p-body doping, n; is the intrinsic
carrier concentration, Coy is the oxide capacitance density of
the gate dielectric and Vgp is the flat-band voltage (due to
fixed oxide charge and the metal-semiconductor work-function
difference). Equations (4a) and (4b) predict that dIps/dt will
increase with temperature during turn-ON and decrease with
temperature during turn-OFF. This is due to the negative
temperature coefficient of the MOSFET threshold voltage
as a result of thermally induced bandgap narrowing. As a
result, Vyy will reduce at higher temperatures hence, dIpg/dt
will increase during turn-ON and decrease during turn-OFF
according to (4). The experimental measurements of dIps/dt
shown in Figure 3 for turn-ON and Figure 4 for turn-OFF
agree with the trends predicted by Equations (4a) and (4b).
In these figures, the temperature of the thermal chamber
that houses the devices is set to 25 °C. Figure 3 shows
measurements and calculations of the turn-ON dlpg/dt as a
function of Rg for the SiC MOSFETs. The calculations are
based on values taken from the SCH2080KE datasheet as
Ciss = 2nF, the threshold voltage at 25 °C is 5 V and B
ranges from 0.5 to 1. The values of ¢ used in the calculations
in (4a) and (4b) correspond to the switching time value at
which dIpg/dt is calculated and Vs is calculated from the
equation of the plateau voltage (Vsp). The plateau voltage is
calculated using the standard equations from [25] and it is
assumed that the current switches between the time taken for
Vs to rise from Vyy to Vp during turn-ON and fall from Vgp
to Vyy during turn-OFF. The measurements and calculations
show good agreement over the wide range of Rs as can
be seen in Figure 3. Figure 4 shows the measurements and
calculations of dIpg/dt as a function of Rg during turn-OFF.
There is reasonably good agreement between the measured and
calculated trends however, there is some measurement noise
which introduces some error especially at faster switching
speeds. The rate of change of dIps/dt with respect to Rg can
be evaluated by taking the derivative of (4) with respect to Rg.

This derivative is shown in (6) below for turn-ON. In the case
of the turn-OFF, (6) is simply multiplied by —1.

dZIDS VGG
= B _ —_—
dtdRg (Vru = Vas) RZ, Ciss

t t
o <_ RGCiss> <RGCz’ss a 1)

The dependence of dIps/dtdR; on R can be observed by
plotting the latter as a function of the former which is shown
for the measurements and calculations in Figure 5 for turn-ON
and Figure 6 for turn-OFF. Figure 5 shows good agreement
between the experimental measurements and the calculations
for turn-ON based on (6). Again, in Figure 6, there is some
disparity at low Rg.

(6)

200
160 g B Measured
3 [ ] — Calculated
< 120 |
gt
2 80
a
- a0 F
0 1 1 1 L1 1 111 1 1 1
10 100 1000
Gate Resistance, R; (Q)
Fig. 3. Turn-ON dIps/dt as a function of R for measurements at 25 °C.

4]
- =10
%) |
Z
a -20
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% -30
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-50 L L L1111 1 L M
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Fig. 4. Turn-OFF dIps/dt as a function of R for measurements at 25 °C.
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Fig. 5. Turn-ON d?Ips/dtdT as a function of Rg for measurements at 25 °C.
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Fig. 6. Turn-OFF d?Ipg/dtdT as a function of R for measurement at 25 °C.

The temperature dependence of dIpg/dt can be evaluated by
taking the derivative of (4) with respect to temperature noting
that Vg is temperature dependent through the intrinsic carrier
concentration as shown in (5) and B is temperature dependent
through the effective mobility. For turn-ON, the derivative of
(4a) with respect to temperature (7) is (7) below. For turn-OFF,
(7) can simply be multiplied by —1.

d%Ipg _ Voo < t )
exp

dtdT — Re Ciss a Re Ciss (7)
dB  _dVry
(Vs —veun 7~ 35 )

In SiC MOSFETs, Vry has a negative temperature
coefficient as a result of thermally generated carriers due
to bandgap narrowing (dVry/dT is negative) and B (which
depends on the on-state resistance) is invariant with respect
to temperature at low temperatures. This negative temperature
coefficient of the threshold voltage can be seen in (5) and is
due to the intrinsic carrier concentration (n;) which increases
with temperature due to increased thermal generation of
carriers across the bandgap. Hence, according to (5), Vg
reduces as n; increases. At higher temperatures dB/dT is
negative as a result of the temperature dependence of the
effective mobility i.e. phonon scattering induced mobility
degradation reduces the effective mobility as the temperature
is increased. Hence (7) can be re-written for low temperatures

as:
dQIDS VGG t dVTH
_ " (B
dtdT RG Ciss «rp ( RG Ciss) ( ) (8)

dT

In the case of turn-OFF, (8) is multiplied by -1. It
can be seen from (8) that dipg/dt increases with increasing
temperature during turn-ON since the 2" order derivative is
positive and dIpg/dt decreases with increasing temperature
during turn-OFF since the 2" order derivative is negative.
Figure 7 shows the measured turn-ON dIpgs/dt as a function of
R for different temperatures ranging from —75 °C to 200 °C
whereas Figure 8 shows the measured turn-ON dlpg/dt as a
function of temperature for different gate resistances. It can
be seen from Figure 7 and 8 that dIpg/dt increases with
temperature during turn-ON in agreement with (7) and (8);
however, the rate of change of dIps/dt with temperature is
not uniform for all the gate resistors. This trend can also be
observed in other published reports on the performance of

SiC MOSFETs at different temperatures where dIps/dt can be
seen to increase with temperature during turn-ON [26], [27]
or |dVpg/dt| (meaning the absolute value, i.e. the magnitude
of dVpg/dt) is shown in increase with temperature at turn-ON
[28].

120 dips/dt increasing  —M=T=-75°C —=T=-50°C
100 with temperature  —4—7=_25°c —e=T=0°C
- ~W-T=25°C —+—T=50°C
& 80 | —4-T=75°C -8-T=100°C
< ~=T=125°C ==T=150°C
o
T 60 r ~O=T=200°C
= 40 |
© Turn-ON
20 f Vps=100V
!DS =30A
D L 1 1
10 100 1000

Gate resistance, R; (Q)

Fig. 7. Measured diIpgs/dt as a function of R¢ at different temperatures during
turn-ON.

100 —+150 —4220 -e-300 -#-47Q
——680 —+100Q -e-1500 --2200 =—==3000Q
——4700 —<-680Q 1000 Q
100

- 80

3

'2' 60

S 40

2

= 20 - :

-40 0 40 80
Temperature (°C)

120 160 200

Fig. 8. Measured dipgs/dt as a function of temperature for different gate
resistances during turn-ON.

Figure 9 shows the turn-OFF |dIps/dt| (meaning the
absolute value, i.e. the magnitude of dIpg/dr) as a function of
R¢ for different temperatures where it can be seen that dIps/dt
decreases with increasing temperature as predicted by (7) and
(8). Figure 9 shows the turn-OFF dIpg/dt as a function of
temperature for the different gate resistances. The dependence
of d?Ipg/dtdT on Rg can further be considered by looking at
how the former changes with respect to the latter. Figure 11
shows experimental measurements of the turn-ON d?Ips/dtdT
as a function of R for the different ambient temperatures.
It can be seen from the measurements in Figure 11 that
the variation of dIpg/dt with temperature is small at larger
and smaller values of Rg (d?Ips/dtdT is small) and is much
larger at intermediate values of Rg (d’Ips/dtdT is larger)
i.e. d?Ipsg/dtdT as a function of Rg exhibits a bell shaped
characteristic. Figure 12 shows the calculated d’Ips/dtdT dT as
a function of Rg at the different temperatures using (7) and (8)
where the same bell shaped characteristic can be observed at
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different temperatures. It can also be seen from Figure 11 that
the maximum turn-ON d?Ipg/dtdT decreases as temperature
increases. Equations (7) and (8) explain this behavior. It can
be seen from (7) and (8) that as R is reduced, V6/RgCigs
rises and exp(—t/RsCiy) reduces. Hence, a plot of dIns/dtdT
as a function of Rs will show a bell shaped characteristic as
a result of the competing effects.

450
400 -8-T=-75°C —+T=-50°C
350 dlps/df decreasing —*T=-25°C -#=T=0°%C
2 300 with temperature -#-T=25°C —+-T=50°C
<50 L —-T=75°C -o-T=100°C
-‘.‘; 200 —=T= 125°C —o=T= 150°C
2 150 —=T= 175°C -0-T= 200°C
© Turn-OFF '
100
VDS =100V
0 Ips=30A
0 i i i
10 100 1000

Gate resistance, R; (Q)

Fig. 9. Measured dipg/dt as a function of R¢ at different temperatures during
turn-OFF.
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=
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Fig. 10. Measured dipgs/dt as a function of temperature for different gate
resistances during turn-OFF.
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Fig. 11. Measured d’Ipg/dtdT as a function of R¢ at different temperatures.
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Fig. 12. Calculated d’Ipgs/dtdT as a function of Rg at different temperatures.

IV. DIODE SWITCHING ANALYSIS

The response of the diode output voltage characteristics to
the MOSFET switching is determined primarily by the transfer
function of the diode, the gate resistance of the gate driver and
the junction temperature of the device. The transfer function
of the diode can be determined by the equivalent circuit of
the diode which is represented by a series resistance (Ry),
diode depletion capacitance (Csx), diode depletion resistance
(Rak) and the stray packaging inductance (Lgy,y,) as shown in
Figure 13. The parasitic capacitance arises from the depletion
capacitance of the diode, the series resistance arises from the
resistance of the drift region and the stray inductance arises
from the packaging.

i

Fig. 13. Circuit schematic of experimental test rig showing the equivalent
circuit of the diode.

The diode voltage (Vag) can then be calculated as the
product of the diode transfer function and an input function
that represents the switching of the MOSFET. This transfer
function can be represented by the equation shown below:

_ Vbp »
1+ sRaCeap

5 < Rs > n Rak + Rs
LS’tray LstrayRAKCAK
RagRsC Lty R R
32+s< AKsCak + Ligt y>+ AK + g
LstrayRAKCAK L

Vak

9

stray RAKCAK
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where Cgp is the Miller capacitance of the MOSFET.
As the MOSFET switches ON, the majority of the supply
voltage (Vpp in Figure 13) which initially falls across the
MOSFET now falls across the diode, thereby reverse biasing
the diode. Hence, the action of the MOSFET is identical to
a step voltage rise across the diode with the rate of change
of voltage with time dependent on the MOSFET switching
time constant (RzCgp). The transfer function of the diode is
basically that of a second order circuit which can respond as
over-damped, under-damped or critically damped depending
on the attenuation present. The attenuation and damping of
the diode response can be derived as the equations below:

- RAKRSCAK + Lstray

2Lst7‘ayRAK CAK

_ RsRaxCar + Lstray

2v/RsRak LstrayCax + R% g LstrayCax

The dIpg/dt of the MOSFET at turn-ON will determine the
nature of the diode response since the same current flows
through the transistor and the diode. Hence, the diode response
will depend on the gate resistance and the temperature.
Figure 14 and 15 show the MOSFET turn-ON current
transient at different temperatures for Rg = 150 €2 in Figure 14
and Rg = 15 Q in Figure 15.

¢

35
<30 }
25 Rs=150 Q
€20 |
o
515 1 -==-T=-75°C
= 10 - - T=-25°C
w —T=25°C
& 5 ----T=100°C
- - T=150°C
20 —T=200°C
_5 1 L 'l 1 L 'l

0 02 04 06 08 1 12 14 16 18 2
Time (ps)

Fig. 14. MOSFET drain current as a function of time during turn-ON at
different temperatures with Rg = 150 €.
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Fig. 15. MOSFET drain current as a function of time during turn-ON at
different temperatures with Rg = 15 Q.

From Figure 14 and Figure 15, it can be seen that the diIps/dt
is more temperature invariant at R = 15 () than at Rg =
150 €; i.e. d’Ips/dtdT is larger at Rg = 150 € in agreement
with Figure 11 and Equation (7). It can also be seen from
Figure 15 that the turn-ON dlpgs/dt increases with temperature
according to the equations developed previously. Additionally
Figure 16 and 17 show the diode voltage response at the
Rg =150 © and Rg = 15 (), respectively. It should be noted
that the ringing oscillation frequency of the diode at turn-OFF
depends strongly on the parasitic inductances which will be
unique for a certain power modules and experimental rig.
However, the equivalent circuit shown in Figure 13 will be
universal for power converters. The most obvious difference
between Figure 16 and 17 is the higher V4 variation with
temperature exhibited by the Rg = 150 {2 measurements i.e.
the Rg = 15 2 measurements shows less dependence of Vg on
temperature. Previous publications have shown a temperature
invariance of the SiC Schottky diode turn-OFF characteristics
[14]; however, this was demonstrated at low gate resistance
(Rg = 2.5 Q) as is the case in Figure 17. At slower switching
rates (larger gate resistances); the dependence of dips/dt on
temperature affects the diode temperature characteristics as
shown in Figure 16 In other words, the rate at which the
transistor switches will determine the response of the diode
to the discharge of the free-wheeling current. If the diode
is discharged very rapidly (high dIpg/dt from low Rg), then
the diode will ring with less damping (circuit is excited by
a larger |dV/dt|, resulting in larger overshoots.) and higher
overshoots than if the current is discharged more slowly. The
temperature dependence of the diode response also increases
as the switching rate is reduced. It can also be noticed in
Figure 16 that there is a time shift in the diode response
with low temperature characteristics exhibiting a time delay
compared to high temperature characteristics. This is due
to the negative temperature coefficient of the MOSFETSs
threshold voltage which means that switching time is delayed
at low temperatures (because of the higher MOSFET Viy).
Also, it can be seen from these figures that the damping of
the oscillations for the 15 €2 measurements is less, peak voltage
overshoot is higher and the temperature dependence is smaller
compared to the oscillations at 150 ) gate resistance.

140
----T=-75°C
—~ 120 F - - T=-25°%
= ——T=25°C
¥100 F ----T=100°C
> - - T=150°C
o 80 F ——T=200°C
1)
S 60
S Temperature
> a0 induced
3 MOSFET Vy
L 20 shifts H
D i f' I
0 1 1 1 " i S L L

0 02 04 06 08 1 12 14 16 18 2
Time (us)

Fig. 16. Measured diode output voltage as a function of time during MOSFET
turn-ON at different temperatures with Rg = 150 €.
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Fig. 17. Measured diode output voltage as a function of time during MOSFET
turn-ON at different temperatures with Rg = 15 Q.

This is a direct result of the measurements shown in
Figure 14 and 15 because the diode responds to the dIpg/dt
of the MOSFET. Also, the dIps/dt dependence on temperature
causes a time shift in the diode response with the high
temperature Vg occurring faster. Figures 14 to 17 can be
explained by the fact that d’Ipg/dtdT is higher at intermediate
R¢ values and reduces as R is reduced. Combining (9) and
(4) yields:

VAK =A X
S( Rs >+ Rax + Rs
LStray LstrayRAKCAK (10)
24 (RAKRSCAK + Lstmy> Rax + Rs
LyirayRaxCax LgtrayRaxCak
where
d{iDS Vbp
Ao t
dIps ts <BVGG (Vas — VTH)OGD>
dt Cliss

In deriving (10), it is assumed that the MOSFET switching
time constant RgCgp is substantially larger than ¢, hence,
exp(—t/RcCis) is close to 1.

Equation (10) is a very useful equation because it relates
the turn-ON dIpg/dt of the MOSFET to the diode output
voltage. Figures 18 shows the simulated plot of (10) using
dIps/dt values similar to what was measured (between 10
and 100 A/us). The diode depletion capacitance is taken
from an average depletion capacitance value determined from
CV measurements while R4k is also determined from CV
measurements. Lg,,, is varied between 1 and 5 nH while
Rs is assumed to be a few milliohms. The effect of Ry and
Rk is to dampen the oscillations, while C4x and Lg,,, affect
the oscillation frequency. Figures 18 is a reasonably accurate
simulation of the diode’s switching behavior, however, because
all of these parasitic components vary during switching and
are difficult to measure, an exact replica of the experimental
measurements is difficult to achieve. Figures 18 also shows
that increasing turn-ON dIpg/dt (which can result from either
a lower gate resistance or higher ambient temperatures) causes
higher V4 peak overshoots and more diode ringing.

180
s 160 | A
H
< 140 N
< 1 1
> 120 ! Y
100 |}
£ 80| 5 A/us
4 0 F YU — 10A/|JS
[} ——20A/ps
'g 40 -==-30A/ps
a L —50A/us
20 ----100 A/us
0 1 'l 1
0 1 2 3 4 5
Time (us)
Fig. 18. Calculated diode output voltage as a function of time during

MOSFET turn-ON at different dIpg/dt.

Figures 19 and 20 show 3D plots of the measured switching
energy at turn-OFF and ON for the SiC Schottky diode at
different dIps/dt and temperatures. The dIpg/dt shown in this
figure, is calculated at 25 °C. It can be seen from the figures
that the diode turn-OFF energy is significantly larger than
the turn-ON energy. It can also be seen from Figures 19
and 20 that for a given dlpg/dt (or gate resistance), the
switching energy reduces with increasing temperature during
diode turn-OFF. This is due to the fact that MOSFET switching
rates increases with temperature in the MOSFET as shown
in Figures 7 and the response of the diode is modulated by
the switching of the MOSFET as shown in (10). Figures 19
and 20 show that the dependence of the switching energy on
the gate resistance exhibits a U shaped characteristic with the
lowest switching energies at intermediate R values. At the
lowest Rg, the switching energy is dominated by additional
losses from diode ringing, whereas at the highest Rg, the
switching energy is due to the prolonged transient. Hence,
although using small gate resistances increases the dipgs/dt,
the ringing that results can increase the switching energy.
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Fig. 19. 3D plots of the SiC Schottky diode switching energy as a function
of room temperature dlps/dt and temperature at turn-OFF.
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Fig. 20. 3D plots of the SiC Schottky diode switching energy as a function
of room temperature dlps/dt and temperature at turn-ON.

V. CONCLUSION

The dlps/dt and temperature dependence of the switching
performance of SiC Schottky diodes has been presented
over a wide temperature and dIps/dt range. It is shown that
the switching energy as a function of the gate resistance
exhibits a U shaped characteristic with switching energy at
low R; dominated by diode ringing losses and at high Rg
dominated by transient overlap between V,x and I4x. Diode
voltage turn-OFF ringing has been shown to increase with
temperature for a fixed gate resistance due to the fact the
dIps/dt increases with temperature during MOSFET turn-ON.
It was also shown that the rate of increase of the turn-ON
dIps/dt with temperature increases with the gate resistance.
This resulted in greater diode Vx dependence on temperature
for higher gate resistances. Device physics based models that
explain the experimental observations were developed and
were shown to account for the measurements. These results
are important because they can account for electromagnetic
oscillations as a function of temperature and dIpg/dt, which in
turn is important for determining EMI, operating temperature
and device reliability.
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