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Abstract

This thesis presents some extensions to the current literature in high-dimensional

static factor models. When the cross-section dimension (represented by N hence-

forth) is very large, the standard assumption for each common factor is to have the

number of non-zero loadings grow linearly with N . On the other hand, an idiosyn-

cratic error for each component can only be correlated with a �nite number of other

components in the cross-section. These two assumptions are crucial in standard

high-dimensional factor analysis, as they allow us to obtain consistent estimators for

the factors, the loadings and the number of factors. However, together they rule

out the possibility that we may have some factors that have strictly less than N

but still non-negligible number of non-zero loadings, e.g. Nα for some 0 < α < 1.

The existence of these weak factors will decrease the signal-to-noise ratio as now the

gap between the systematic and idiosyncratic eigenvalues is more narrow. As the

consequence, in such model it is harder to establish the consistency of the factors

estimated by sample principle components. Furthermore, the number of factors is

even more challenging to identify because most existing methods rely on the large

signal-to-noise ratio. In this thesis, I consider a factor model that allows general

strength for each factor, i.e. both strong and weak factors can exist. Chapter 1

gives more discussions about the current literature on this and the motivation for

my contribution.

In Chapter 2, I show that the sample principle components are still the consistent

estimators for the factors (up to the spanning space), provided that the factors are

12
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not too weak. In addition, I derive the lower bound that the strength of the weakest

factor needs to achieve for being consistently estimated. More precisely, what I mean

by strength is the order of the number of non-zero loadings of the factor.

Chapter 3 presents a novel method to determine the number of factors, which is

asymptotically consistent even when the factors are weak. I run extensive Monte

Carlo simulations to compare the performance of this method to the two well-known

ones, i.e. the class of criteria proposed in Bai and Ng (2002) and the eigenvalue ratio

method in Ahn and Horenstein (2013).

In Chapter 4 and 5, I show some applications that are based on the work of this

thesis. I mainly focus on two issues: selecting the factor models in practice and using

factor analysis to compute the large static covariance matrix.
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1 Introduction

Factor analysis �rst arises in the �eld of Psychometrics, when Spearman (1904)

obtained results of several tests taken by schoolchildren and proposed that the cor-

relations between those tests were due to a single factor, which he referred to as

intelligence. Since then, there has been a rapid growth in applications of factor anal-

ysis in social science, particularly in Finance and Economics. It is very useful and

interesting to �nd a small number of factors (either observed or unobserved) that

capture the movements of a much larger number of variables. For examples, Boivin

et al. (2013) address a strong factor, can be interpreted as credit shock, which has

big impacts on several other �nancial and economic variables such as credit spreads,

interest rates, etc. Additionally, from the statistical angle identifying the common

factors brings a great advantage of dimension reduction in the large-dimensional

setting.

In this thesis, I focus on the case where factor model is used as a dimension

reduction technique. For example, in some applications such as estimating large

covariance matrix or forecasting with many explanatory variable, the factors after

extracted are used in place of the original components. Therefore, this gains bene�t

of reducing the dimension signi�cantly.

In brief, this thesis presents some theoretical extensions to the current literature

in factor analysis. Particularly, I replace the strongly pervasive factors condition

with a less restrictive one that allows the factors to a�ect a relatively small but non-

negligible number of components. This replacement eases the requirement for the

14



1.1 Literature review

consistency of the factors estimated by the standard principle components technique.

In addition, changing this assumption also has some impacts for other areas of re-

search regarding factor analysis, such as determining the number of factors and the

estimation of covariance matrix using factor analysis. Therefore, other contributions

in this thesis are about determining the number of factors and applications of factor

analysis in computing the large covariance matrix.

The main contributions here belong to the theory of Econometrics, rather than

Economics empirical �ndings. Therefore, discussions and application of the common

factors identi�cation are mainly approached from a statistical point of view. I do not

focus on the case where there is a need to interpret the meaning of the underlying

factor processes.

In contrast, there are many other empirical works exploiting factor analysis and

interpret the factors as some meaningful variables for insights. Examples within this

line of research including studies regarding identifying the factors (or shocks) in yield

curve (Diebold et al. (2006)), stock returns (Fama and French (1993)), credit market

(Boivin et al. (2013), Gilchrist et al. (2009), etc.), credit default swaps (Chen and

Härdle (2012)), corporate bond spreads (Elton et al. (2001)), etc. Nevertheless,

the centre of discussion in this thesis regarding general factor identi�cation issues in

large-dimensional setting, rather than these �nancial and economic applications.

Over the next few sections in this chapter, I will gradually discuss some recent rel-

evant advances in factor analysis. Also, some applications are mentioned to illustrate

how this can be used in practice.

1.1 Literature review

Parallel to the practical aspects, theoretical research regarding factor model is com-

parably active, and will be reviewed in section 1.1.1. On the other hand, some

well-known applications are reviewed in section 1.1.2.
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1 Introduction

1.1.1 Developments in factor analysis

Since the literature is extremely large, it is impossible to present all the important

related works in the review, hence there are many signi�cant results missing in these

subsequent sections. For example, I will not discuss dynamic factor model in details

despite its importance, because static factor is the main focus of this thesis. In

contrast, some results in the large covariance matrix estimation will be mentioned,

due to its link with the main contribution.

1.1.1.1 Overview of factor analysis

In particular, a static factor model for yit, i = 1, ..., N is given by:

yit = λ
(1)
i f

(1)
t + ...λ

(r)
i f

(r)
t + uit. (1.1)

or

yit = α+ λ′ift + uit. (1.2)

where λi = [λ
(1)
i , ..., λ

(r)
i ]′ is the factor loadings vector for component yit, ft =

[f
(1)
t , ..., f

(r)
t ]′ is the common factors vector, uit is the idiosyncratic error (shock)

which is not explained by the common factors. The λi term corresponds to the

exposure of yit to the common factors ft. In vector form, we can write:

Yt = Λft + ut.

(N × 1) = (N × r)(r × 1) + (N × 1)
(1.3)

In here, Yt = [y1t, ..., yNt], Λ = [λ1, ..., λN ] is the matrix of factor loadings and ut

is the vector of idiosyncratic errors. W.l.o.g we assume that Yt, ft and ut all have

means 0. In matrix form, given that the length of the time dimension is T we will

denote Y = [Y ′1 , ..., Y
′
T ], F = [f ′1, ..., f

′
T ], and U = [u′1, ..., u

′
T ]. Hence, (1.3) can also

16



1.1 Literature review

be written as:

Y = FΛ′ + U.

(T ×N) = (T × r)(r ×N) + (T ×N)

Recently there has been a rapid growth in applications of factor analysis for social

science, particularly in Economics and Finance. This is due to the need to seek for a

small set of factors that can contain a large proportion of information from the vast

original multivariate series. Some well-known examples of factor model in economic

theory are the capital asset pricing model (CAPM, Sharp (1964)) and the arbitrage

pricing theory (APT, Ross (1976)).

The factor model in Ross (1976) is referred to as strict factor model because

it assumes the common factors capture all the correlations between all variables,

which means Σu ≡ cov(ut) is a diagonal matrix. However, this assumption may

be too stringent in practice and we normally need to allow for some level of cross-

section correlations between the idiosyncratic errors. Therefore the approximate

factor model of Chamberlain and Rothschild (1983) seems more appropriate. In this

model, the key assumption is that the idiosyncratic covariance matrix is not diagonal,

but its eigenvalues must be bounded as N → ∞. I will come back to this in more

details in some later paragraphs.

Clearly, the main objective in factor analysis is to identify the set of common fac-

tors, assuming that they exist. Generally, estimating the factors can be done in many

ways. We can even specify some observed variables as common factors, based on a

theoretical framework or from many experiments. Some examples of this approach

are the CAPM or the 3-factor model of Fama and French (1993). On the other

hand, factors can be considered as latent variables and require statistical techniques

to estimate. This is a more popular direction in current literature, as we usually

have no prior knowledge about the common factors. Based on this approach, a large

literature now in factor models are contributed by extending the factor structure

(e.g. dynamic factor model, multi-level factors, etc,) and identi�cation techniques

17



1 Introduction

(e.g. principle component (PC) analysis, maximum likelihood estimator, etc.).

Another aspect that plays an important role in theoretical and empirical work is

to determine the number of factors in the model. A few methods have already been

proposed and used in applications. The simplest method is to select the number

of factors from the scree plot of the descending sample eigenvalues of Σ ≡ cov(Yt)

(i.e. eigenvalues of the sample covariance matrix of Yt) as in Cattell (1966). Related

procedures are suggested by Onatski (2009, 2010) using the slope of the scree plot

and the di�erence of ordered sample eigenvalues, respectively. In addition to these,

Ahn and Horenstein (2013) consider maximising the ratio of successive eigenvalues

or their growth ratio.

Information criteria have also been used to select the number of factors. Choi

and Jeong (2013) study the consistency of using AIC, BIC or HQIC in choosing the

true factor model. In addition, Bai and Ng (2002) propose several criteria for the

number of factors in approximate factor models and show them to be consistent.

The relationship between the information criteria and those based on eigenvalues is

discussed in Onatski (2010) and Ahn and Horenstein (2013). Once the number of

static factors is determined, the number of dynamic (or primitive) factors can be

determined using methods proposed by Amengual and Watson (2007), Bai and Ng

(2007), and Breitung and Pigorsch (2012).

This is also worth mentioning at this stage that there can be two di�erent ways

when specifying the model in (1.2). In the �rst one, the common factors are assumed

to a�ect most components in the cross-section, which is called pervasiveness. This

formally means the number of non-zero loadings for each factor needs to grow with

N . Literature for this model can be founded in Bai (2003), Stock and Watson (2002),

Bai and Ng (2002) and some references within. A second type of factor model is less

common, but starting to attract some attentions recently. In contrast, the factors in

the second type are not de�ned to capture the cross-section correlation but rather

drive the serial dependence of the original time series. Following this direction, we
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1.1 Literature review

assume there is a set of common factors that account for all the serial correlations

and hence the idiosyncratic components are just white noise. Some attempts in this

direction include Anderson (1963), Priestley et al.(1974), Brillinger (1981), Peña

and Box (1987), and Pan and Yao (2008). More recent e�orts focus on the inference

when the dimension of time series is as large as or even greater than the sample

size; see, for example, Lam, Yao and Bathia (2011), Lam and Yao (2013) and the

references within. In summary, the �rst class of model assumes the common factors

leave very little cross-section correlation in the idiosyncratic components but allow

for serial correlation, whereas the second class assumes ut is serially uncorrelated but

the factors can be less pervasive.

In this thesis, I mainly focus on the static factor model as shown in (1.3) and I

adopt the model setup similar to the one discussed in Bai and Ng (2002), Bai (2003)

or Stock and Watson (2002), in which ut is allowed for serial correlation. However, as

we shall see, I relax the pervasiveness condition that usually comes with the model.

1.1.1.2 Factors identi�cation

It is very important to notice that the latent factors can not be uniquely identi�ed

without further restriction. For example, we can always linearly transform ft and

Λ by an r × r invertible matrix and its inverse and they still generate exactly Yt.

Therefore, we can only estimate the loadings and the factors up to their spanning

spaces without any restrictions.

If ft is a stationary process, a well-known restriction is that Σf ≡ cov(ft) = Ir,

where Ir is the r×r identity matrix. This is simply done by replacing ft by Σ
−1/2
f ft.

However, this is still not su�cient for unique identi�cation, because for now we

can still rotate the factors by an orthonormal matrix and still having cov(ft) = Ir.

Therefore, together with this we usually impose an extra restriction that Λ′Λ is a

diagonal matrix (with distinct diagonal elements in descending order). This extra

assumption helps us exactly identify ft and Λ (up to the signs) instead of the rotations
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1 Introduction

of them, without loss of generality because we know that any other restrictions can

be retrieved by a linear transformation. These restrictions are often found in the

maximum likelihood estimation, e.g. see Lawley and Maxwell (1971). Furthermore,

as discussed in Bai and Ng (2013), it is not as stringent as it seems, and can be

useful for economics applications. An example shown in Bai and Ng (2013) is the

case where r = 3 and

Λ =


Λ1 0 0

0 Λ2 0

0 0 Λ3

 (1.4)

where Λi is the Ni × 1 vectors of loadings, and N1 + N2 + N3 = N . This model

implies that the �rst factor generates the �rst N1 group of cross-section components,

and so on. This can be applied in models for regional panel data. Even when the

order of the cross-section components is shu�ed, the loadings matrix restriction still

holds, which makes it useful because we do not require the knowledge of the grouped

structure. In this thesis, these restrictions regarding the factors and loadings are not

needed for the main results, although I shall often refer to this restriction in some

discussions for convenience.

Having discussed about estimators for the factors and the loadings matrices, it is

also important to point out that in large dimensional setting (N is as large as T ),

principle components (PCs) analysis is considered as the most e�cient methods to

achieve this task. The �rst r (population) PCs of Yt, denoted as gt, are de�ned as

follows:

gt = B′Yt

where B is theN×r matrix whose columns consisting of r eigenvectors corresponding

to the r largest eigenvalues of Σ, normalised so that B′B = Ir. We can also write:

Yt = Bgt + wt (1.5)
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with E(gtw
′
t) = 0. Intuitively, if the �rst r principle components already capture the

large proportion of variation in Yt, the term wt can be interpreted as the disturbance.

Therefore, as in (1.3) and (1.5) there is a similarity between the PCs and factors.

In fact, Schneeweiss (1997) develops a result which shows the convergence of PCs to

the factors. The key requirement for this convergence is:

µr(Λ
′Λ)

µ1(Σu)
→∞. (1.6)

where µk(A) is the kth-largest eigenvalues of a square matrix A. The ratio in (1.6)

can be interpreted as the signal-to-noise, and is a key parameter that determines

how well one can identify the factors.

The results in Schneeweiss (1997) are developed for population PCs, where Σ

is assumed to be known. However, replacing Σ by the sample covariance matrix

introduces further sampling errors, especially when N is large. The convergence of

sample PCs to factors space is one of the crucial developments recently, and can be

found in Bai (2003), Bai and Ng (2002) or Stock and Watson (2002). The authors

show that when (N,T ) → ∞, the sample PCs converge to the factors space under

some conditions, in which some among them imply (1.6).

In order to get to our main contribution, it is worth explaining the intuitive inter-

pretation behind the seemingly technical condition (1.6). What µ1(Σu) and µr(Λ
′Λ)

represent are really the amount of cross-section correlations in the idiosyncratic com-

ponents and the pervasiveness of the factors. First we discuss about Σu, which was

originally assumed to be diagonal in Ross (1976). However, since the introduction

in Chamberlain and Rothschild (1983), the idiosyncratic errors uit are allowed to be

cross-sectionally correlated, i.e. we can have a pair (i, j) such that cov(uit, ujt) 6= 0.

This is called �approximate factor model�, as opposed to the �strict factor model�

where cov(uit, ujt) = 0 for all i 6= j. Although allowing Σu to be di�erent than a

diagonal matrix, Chamberlain and Rothschild (1983) require µ1(Σu) to be bounded
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as N →∞.

In this case, if the factors are pervasive enough, then (1.6) is satis�ed. To see why,

the pervasive condition is usually stated as:
∑N

i=1

(
λ

(k)
i

)2
grows linearly with N for

any k ∈ (1, ..., r). Equivalently, for any factors, the number of non-zero loadings

must grow strictly with order N . If Λ′Λ is a diagonal matrix as usually assumed for

unique identi�cation, then the eigenvalues lie on the diagonal, and the kth eigenvalue

is
∑N

i=1

(
λ

(k)
i

)2
. So condition (1.6) is satis�ed if the factors are strongly pervasive

and µ1(Σu) is bounded.

These two conditions regarding low cross-section correlations of idiosyncratic errors

and pervasiveness of factors can be founded in most recent works of factor models

such as in Bai and Ng (2002), Bai (2003), Stock and Watson (2002) and the references

therein. For example, I recall the two assumption B and E2 in Bai (2003) and denote

them as Assumption 0 in this paper:

Assumption 0. (i) Λ′Λ/N converges to a positive de�nite matrix D whose eigen-

values are bounded away from both 0 and in�nity

(ii) Σu has bounded row sum of absolute entries, i.e. maxi
∑

j |σij | = O(1) where

σij = cov(uit, ujt).

Assumption 0 (i) makes sure that each factor has impacts on the majority of the

components in the cross-section. Assumption 0 (ii) describes the level of cross-section

correlations between the idiosyncratic errors. Slightly weaker one is used in Bai and

Ng (2002): 1
N

∑
i

∑
j |σij | = O(1). The main idea behind these restriction on Σu is

that although the model allows for approximate factor, the level of correlations across

the idiosyncratic errors can not exceed a certain level. Notice that if |σij | is bounded

above and below for all i, j, Assumption 0 (ii) leads to maxi
∑

j I{|σij | > 0} = O(1).
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To see why, notice that:

max
i

∑
j

I{|σij | > 0} = max
i

∑
j

|σij |0I{|σij | > 0}

= max
i

∑
j

|σij |(|σij |)−1I{|σij | > 0}.

≤ max
i,j

[
(|σij |)−1I{|σij | > 0}

]
max
i

∑
j

|σij | = O(1).

Intuitively, maxi
∑

j I{|σij | > 0} = O(1) means that the number of non-zero

entries in each row of Σu must be bounded while its dimension N grows to in�nity.

Therefore, later on we will use the fact that maxi
∑

j I{|σij | > 0} = O(1) can be

derived from of Assumption 0 (ii)1. The reason for looking at maxi
∑

j I{|σij | > 0}

is that we want to use some important results in the sparse matrix2 literature. This

is useful for us later to construct a method to estimate the number of factors (see

Chapter 3).

In addition, Assumption 0 (ii) implies that µ1(Σu) is bounded3. Therefore, to-

gether conditions (i) and (ii) of Assumption 0 imply (1.6), which contributes to the

su�cient conditions required for the population PCs to converge to the factors. How-

ever, it may be stronger than necessary because we only need (1.6) to hold. It is

interesting to consider the cases where Assumption 0 does not hold and examine

whether the population and sample PCs still converge to the factors space. Clearly,

the sample PCs case will be the ultimate goal, so most of the current studies directly

establish the consistency result for this.

One such interesting case is discussed in the PhD thesis of Heaton (2008). This is

the case where
∑

j |σij | grows with rate N1−α for some i and 0 < α ≤ 1. In this case,

Heaton (2008) shows that the sample PCs still converge to the factors, but with a

1The condition maxi,j

[
(|σij |)−1I{|σij | > 0}

]
= O(1) is reasonable, as it just simply states all the

non-zero entries in Σu must be bounded away from 0, which is true when Σu is non-stochastic.
2A large matrix with many zero entries is called sparse matrix, and this has attracted a large
number of studies recently

3As from standard Linear Algebra result, we have µ1(Σu) < maxi

∑
j σij ≤ maxi

∑
j |σij |.
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slower rate. Particularly, he proves that (using our notations):

1

T

∥∥∥F̃ r − FA∥∥∥2
= Op(

1

Nα
+

1

T
)

where F̃ r is the sample PCs and A is a rotational matrix. In Heaton's thesis, where

he assumes the column of F is orthonormal, A becomes only a signs matrix. Under

Assumption 0, the rate of convergence for similar quantity in the left hand side above

is established in Bai and Ng (2002) and is Op(N
−1 + T−1). Therefore we can see

how weakening Assumption 0 (ii) a�ects the rate of convergence.

In this thesis, I mainly focus on the case where Assumption 0 (ii) is not violated,

but we relax Assumption 0 (i). There are some reasons for this to be too stringent,

because under this condition a factor that only a�ects a relatively small number of

cross-section components (say N2/3 out of N) will not be assumed to exist. However,

recently some empirical works suggest the potential loss of information when ruling

out these not-so-strong factors. For example, Boivin and Ng (2001) provide an

empirical study illustrating that a smaller but carefully chosen set of cross-section

variables yields better factors than the whole original set. One potential reason

for this is that the amount of correlations from the large number of idiosyncratic

errors will reduce the sharpness of the estimators. In addition, some factors that

are extracted from the subset can be identi�ed as idiosyncratic errors when applying

factor analysis to the full set, due to their small explanatory powers for the majority

of cross-section variables.

At what level can we relax Assumption 0 (i) is also an interesting issue. If we

relax it so that Λ′Λ converges to a positive de�nite matrix D, then clearly (1.6)

is not satis�ed, and so even population PCs are not consistent for the factors. To

strengthen our argument, Onatski (2012) shows that under this case, the factors are

so weak that sample PCs will be poor estimators for the factors, and can even be

orthogonal to the factors space. A studying case that we present in this paper lies

24
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in the middle, that is we assume the number of non-zero loadings for each factor is

at order d(N), which can be dominated by N but has to grow to in�nity with N .

We even consider the general case where d(N) varies from factors to factors. This

is found useful in the case where some factors are global while some of them are

regional, but both the number of regions and the sizes of them can be large.

Another related area of research with weak factors is the multi-level factor model,

which usually includes global and regional levels. In such model, the factors are

separated into levels, where the top level factors (global factors) are pervasive and

a�ect almost every cross-section component. The second level factors are not as

pervasive because they only a�ect components in each region. In a special case

where the number of components in each sector grow at a slower rate then N , this 2-

level factor is a special case of a mixture model of strong and weak factor. Restriction

for such model and e�ective identi�cation method can be found in Wang (2008). The

most important similarity between the multi-level factor model and the one presented

in this thesis is that the loadings matrix can be allowed to have many zeros. However,

there is a key di�erence, which is that in my proposed model we neither know how

to separate the original cross-section into sectors nor if such separation is possible.

1.1.2 Applications of factor model

There are a wide range of applications of factor model that can be found in the

Economics and Finance literature. They can be separated into two classes: the �rst

one links the factors with some interpretations for meaningful insights about the

observed variables (e.g. APT, CAPM, Fama-French 3 factor model, business cycle4,

yield curve modelling5, etc.), whereas the second class uses the factor analysis as a

tool for dimension reduction. In here, I focus more on the second one.

High-dimensional settings can be found in many applications recently, due to the

growth in available data and the advance in computational techniques. Typically

4Gregory et al. (1997)
5Diebold et al. (2006)
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the vast dimension can be hundreds or thousands, e.g. number of �rms in the stock

markets or macro variables in the global economy. An unarguable advantage with the

growth in the size of data is to capture more information which can not be revealed

from any smaller sets.

However, this clear advantage is not taken for granted, because the suitability

of analysis tools used for these large dimensional data has to be examined before

being applied. For example, in the case where the number of interested variables

expands faster than their sample sizes, many traditional theoretical estimators in

data analysis break down due to undesirable bounds required for convergence, such

as the sample covariance matrix of these data. Therefore, a large class of innovative

methods has arisen which either seek for dimension reducing techniques or extend

the theoretical results for large dimension, including factor analysis.

1.1.2.1 Large covariance matrix estimation:

To begin we give one such technically challenging example that arises in high-

dimensional setting: i.e. estimating the covariance matrix when the cross-section

dimension (N) of the data is as large as the sample size (T ). It is well known that

in this situation, the sample covariance matrix is very ill-behaved, and it is not even

invertible when N > T . Since the development of Markowitz portfolio theory, covari-

ance matrix of returns has been an important concept in Finance and Econometrics,

and we would de�nitely want to have a �good�6 estimator for this, no matter how

large N is.

For some backgrounds in this area: suppose we have a portfolio of N assets. Based

on Markowitz portfolio theory, �nding the optimal portfolio allocation requires us to

estimate the N ×N covariance matrix across the assets returns (assume constant in

this period), denoted Σ. The diagonal of this matrix is the variance of each asset

return in the portfolio, where the (i, j) o�-diagonal entry is the covariance of returns

6By �good� I mean relatively low bias and variance.
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between asset i and asset j. In order to allocate the weighs of investment for these

assets within a portfolio, we may choose the one that reaches our required expected

return with minimal variance. If we denote Yt = {yit}Ni=1 the vector of N assets

returns at time t, the variance of the portfolio with weighs w = {wi}Ni=1 is:

var(w′Yt) = w′Σw.

Therefore, it can be seen that the covariance matrix has a closed link with risk

management in practice. Solutions for estimating high-dimensional Σ are normally

obtained by proposing a structure for the covariance matrix (or in other words, for the

data generation process of Yt). This is usually called regularisation. Some popular

regularised restrictions are banded and sparse, which restrict the number of non-zero

entries in Σ. However, applying a sparse (or banded) structure directly to Σ is not

realistic, for example it is possible that all assets returns are correlated with each

other. Therefore a more rational restriction is that Σ can be decomposed into a sum

of a low rank matrix and a sparse matrix, a property that can be resulted if Yt has

a factor structure representation. If (1.2) holds true and ft and ut are independent

then:

Σ = ΛΣfΛ′ + Σu. (1.7)

where Σf and Σu are the covariance matrices of ft and ut. The decomposition in

(1.7) provides an e�cient estimator for Σ if r is small and Σu has many zero entries.

In this case, the product matrix ΛΣfΛ′ has rank r and Σu is sparse, so we signi�-

cantly reduces the number of parameters required to estimate.

Apart from this, there are many other applications involving extracting factors from

the original data set with high cross-section dimension, because certainly it is desir-

able to �nd a smaller set of variables that can contain a large proportion of infor-

mation from the vast original multivariate data set. In section 1.1.2, there will be a

survey about popular applications of factor model in Economics and Finance.
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1.1.2.2 Forecasting with di�usion indexes7:

Assuming we want to forecast a h-step ahead for a variable xt and know that xt+h

can be predicted by the following forecasting model:

xt+h = α+ F ′tβ + εt+h

In this case, although the factors Ft is not observed, it can be extracted from other

observable variables in the market, i.e. Yt if in fact we have a factor structure as in

(1.3). Given that the dimension of Yt (N) is very large, it is desirable to use the

factors as the explanatory variables in the forecasting equation.

1.1.2.3 Large-dimensional vector autoregressive:

Consider a task where one may want to forecast the future values for {yit} for some

i ∈ (1, .., N). We can imply they follow a VAR structure with some added exogenous

variables. i.e.

Yt = Θ(L)Yt + ΓZt + εt

where Yt = (y1t, ..., yNT ), Zt represents the exogenous variables and εt consists of

some noises that are spatially uncorrelated. When N is small we can estimate all

the unknown parameters by maximum likelihood, as usual. Where N is large, or

even extremely large this can yield further problem due to infeasibility to cope with

large number of unknown parameters. One way to solve this problem is that we can

assume Yt has the factors structure as in (1.3) and replace the Yt on the right hand-

side with Λft. After obtaining ft from Yt then Θ(L)Λ can be estimated together as

a single lag matrix and has much less parameters then Θ(L). For example, if the lag

of our VAR model is 1 then Θ(L)Λ is a N × r matrix whereas Θ(L) is the N × N

matrix.

7Stock and Watson (1998)
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1.2 Contributions of this thesis

In this thesis, I attempt to replace the strong pervasiveness condition for the factors

with a less stringent one, while assuming that the idiosyncratic covariance matrix is

sparse. The sparsity of Σu is stated through Assumption 2 (iii), which is same as

Assumption 0 (ii). Particularly, when Σu has bounded row sum uniformly and �nite

entries, the number of non-zero entries of Σu must be bounded. This has better

interpretation in some applications, e.g. conditional on the common factors, most

asset returns in the market are uncorrelated. I later on de�ne the sparsity level of a

matrix as its maximum number of non-zero entries in a row, and by this de�nition

Σu must have bounded sparsity level. This fact is also found useful later when a

novel criterion to choose the number of factors is proposed.

In summary, together with the sparsity assumption for Σu, here are some important

questions that are studied in this thesis:

1. If we loosen the restriction that Λ′Λ/N → D to Λ′Λ/d(N)→ D for a function

d(N) that grows to in�nity at a slower rate than N can we still identify the

factors, given that the number of factors is known. Recall from above that D

is a positive de�nite matrix whose eigenvalues are bounded away from both 0

and in�nity. Furthermore, replacing N with a single term d(N) means that all

the factors still have same strength order. I will also generalise to discuss the

case where each factor can have di�erent strength, which also generalises the

multi-level factors model in Wang (2008). This is described later in Assumption

1.

2. If it turns out that the factors can be identi�ed in the weak factor model but

we do not know the number of factors, how do we consistently estimate it?

All of these questions are not trivial considering the current literature in high di-

mensional factor analysis. For example, in Bai and Ng (2002) or Bai (2003), it is

known that with Assumption 0 among others, the factors are identi�ed up to a ro-
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tation matrix which equals (Λ′Λ/N)(F ′F̃ k/T )(V k)−1 where F̃ k is the matrix of k

estimated factor by PCs and V k is the k × k diagonal matrix of the �rst k largest

eigenvalues of Y Y ′/(NT ) in decreasing order. Therefore an important condition is

that this rotation matrix has eigenvalues bounded away from both 0 and∞. For the

case when only Λ′Λ/d(N)→ D, this is not straightforward even when k is the true

number of factors, so it requires further investigation and modi�cation to the work

of Bai and Ng.

In addition, most current methods in determining the number of factors such

as in Bai and Ng (2002), Onatski (2010), Ahn and Horenstein (2013) exploit the

sharp edge in the set of sample eigenvalues of Σ, which separates the factors and

the errors. These are all based on Assumption 0 that intuitively states that Σ has

exactly r spiked eigenvalues growing at rate N . In our setting, because of replacing

this crucial condition, the number of factors is now much harder to determined. For

example, using the ratio of eigenvectors method of Ahn and Horenstein (2013), there

might easily be a case where the ratio of orders Nα and N eigenvalues for α < 1 is

less than the ratio of N0 and Nα eigenvalues. Clearly, we want the number of factors

to be at the point where the eigenvalues of Σ begin to be bounded but it will not

always be possible to identify in this case, using the sample eigenvalues ratio based

method. In support of our argument, Yu and Samworth (2013) provide some Monte

Carlo results that show how the Bai and Ng (2002) criteria can underestimate the

number of factors when the �rst r largest eigenvalues of the data are not as spiked

as rate linear with N .

Apart from showing the consistency of the sample PCs for estimating the factors

space (Chapter 2) and propose a novel criterion for choosing the number of factors

(Chapter 3), I will look at two applications of the weak factor model in practice in

Chapter 4 and 5. One of them regards estimating large covariance matrix, partic-

ularly the POET estimator proposed in Fan et al. (2013). I discuss the impact of

weak factor model to the POET estimator and show that the number of factor is not
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crucial for a consistent estimator. In addition, another application of the proposed

criterion for the number of factors can be used for factor model selection, where the

candidates include both observed and unobserved factors.
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weaker assumption

In this chapter, I discuss the identi�cation of factors under the weaker assumption.

It will later be seen that a factor and its loading space are still consistently estimated

if the factor has the corresponding number of non-zero loadings more than a certain

level. This can be useful for some empirical studies as now we can apply factor

analysis to some applications where not all the factors are pervasive. Examples of

these situations are the cases where we can have both regional and global factors.

If the regional factors are not too weak, we can still extract them from the whole

original data set.

First of all, we emphasise that r is �xed while N will grow to in�nity. The number

of factors r includes both the strong and weak factors. We should explicitly clarify

here that the nature of our model allows factors with di�erent strengths co-exist,

hence there must be a clear edge between the weakest factor and the idiosyncratic

errors. The fact that r is �xed when N →∞ is crucial as it implies there must be a

lower bound for the strength of the factors, which leads to the clear edge mentioned

previously.

Some results in this paper require N = o(T 2), so generally the framework in this

paper is regarding to the case that N and T are comparably large.
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2.1 Factors identi�cation techniques

2.1.1 Principle Components

The most usual way to estimate the factors and the loadings are via PCA: Given

a value for k as a predetermined number of factors, we estimate (Λ, F ) by (Λ̃k, F̃ k)

such that

(Λ̃k, F̃ k) = arg min
Λk,Fk

1

NT

T∑
t=1

(Yt − Λkfkt )′(Yt − Λkfkt ) (2.1)

where F k = [fk
′

1 , ..., f
k′
T ], fkt is a k × 1 vector representing a factor value at time t

and Λk is a N × k loadings matrix. Recently, Choi (2012) and Bai and Liao (2013)

generalise the standard PC method to generalised PCA (GPCA) method that gives

bene�t of a lower variance in the estimators, i.e. the objective function becomes:

arg min
Λk,Fk

1

NT

T∑
t=1

(Yt − Λkfkt )′W (Yt − Λkfkt ). (2.2)

In here to keep thing simple all the proofs refer to the traditional PC method, but a

generalisation is also possible.

As usual the solution for (2.1) is not unique up a rotation, because clearly if

(Λ̃k, F̃ k) is a solution of (2.1) then (Λ̃kA, F̃ kA′−1) is another solution for any in-

vertible k × k matrix A. However, if we uniquely restrict (Λ̃k, F̃ k) so that Λ̃k
′
Λ̃k is

diagonal and F̃ k
′
F̃ k/T = Ik, the following pair of solutions of (2.1) can be used: the

columns of F̃ k will contain
√
T times the eigenvectors corresponding to the largest k

eigenvalues of Y Y ′, normalized so that F̃ k
′
F̃ k/T = Ik, then Λ̃k = Y ′F̃ k/T . In this

case, it is easy to check that:

F̃ k
′
F̃ k/T = Ik; Λ̃k

′
Λ̃k is diagonal. (2.3)

Without similar restriction for the true factors and loadings, these estimators can

still converge to the true spanning spaces of Λ and F . Unlike the pervasive factor
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scenario, in here we must be careful with which version of estimators to choose. For

example consider a pair of solution (Λ̄k, F̄ k) where:

Λ̄k
′
Λ̄k/N = Ik; F̄ k

′
F̄ k/T is diagonal. (2.4)

This is a standard estimator also shown in Bai and Ng (2002) or Bai (2003). The

method for �nding (Λ̄k, F̄ k) is as follow: if we concentrate out F k then the columns

of Λ̄k will contain the
√
N times the eigenvectors corresponding to the largest k

eigenvalues of Y ′Y , normalized so that Λ̄k
′
Λ̄k/N = Ik. Then by standard least

square result, f̄kt = (Λ̄k
′
Λ̄k)−1Λ̄k

′
Yt = Λ̄k

′
Yt/N . However, when the factors are

weak, it is possible to have Λ′Λ/N singular, and therefore Λ̄k can not be a consistent

estimator for any rotations of Λ.

For that reason, when the factors are not pervasive, it is always better to use

(Λ̃k, F̃ k) which satisfy (2.3).

2.1.2 Maximum Likelihood Estimator

Assuming the idiosyncratic errors ut are i.i.d and follow Gaussian(0,Σu), the objec-

tive function for estimating (F,Λ) using conditional quasi log-likelihood (removing

all constant terms, and multiplying by -2) is:

1

N
log |det (Σu)|+ 1

NT
tr
(
(Y − FΛ′)′(Y − FΛ′)Σ−1

u

)
(2.5)

This can be shown to be more e�cient than the principle components method, for

discussion see Bai and Liao (2013) or Choi (2012). For example, Choi (2012) shows

that the asymptotic variances of the estimators for (F,Λ) are smaller when using

the objective function in (2.5) than those obtained when using the original principle

component objective function.

It is easy to verify that this is exactly same as the GPCA, where the objective

function is:
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min
Λk,fkt

1

NT

T∑
t=1

(Yt − Λkfkt )′Σ−1
u (Yt − Λkfkt ) (2.6)

In here, the weighted matrix is Σ−1
u . Notice that in this case GPCA to PCA is an

analogy with generalised least square to ordinary least square.

However, this also requires an estimator for Σu. The usual way for obtaining

estimator for Σu is to assume that it is diagonal and its diagonal entries are just the

sample variance of a prior �tted factor model. Recently, Bai and Liao (2013) replace

the diagonal condition for Σuwith sparsity and use the POET estimator. The general

idea of their approach is to �nd the factors and loadings by PCA, then estimate Σu

from the residuals1 and plug this estimator of Σu into (2.6) to obtain a better version

of (F,Λ) estimators.

As already mentioned, GPCA brings some bene�ts of variance reduction of the

estimators. Most of the results in this thesis can be extended to this, but I only stay

in the PCA framework to keep the process and notation clearer.

2.2 Notations

In here I introduce some notations that are used in from here onward. As mentioned

before, let Σ and Σu be the population covariance matrices of Yt and ut. Also, let

σij be the entries of Σu. Furthermore, let Σ̃ and Σ̃u be the corresponding sample

covariance matrices. Clearly, only Σ̃ can be computed from observed data, Σ̃u is

estimated with estimated version of ut, which are the residuals after �tting in the

factors.

Furthermore, for a given value of k ≤ r, de�ne the following partitions:

f
(l:k)
t = (f

(l)
t , ..., f

(k)
t )′, F (l:k) = (f

(l:k)′

1 , ..., f
(l:k)′

T )

1They also apply a thresholding step after computing the residuals sample covariance matrix, as
referred to as POET estimator, see Chapter 4 in this thesis.
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2 Factor identi�cation under the weaker assumption

λ
(l:k)
i = [λ

(l)
i , ..., λ

(k)
i ]′, Λ(l:k) = [λ

(l:k)
1 , ..., λ

(l:k)
N ]

For more convenient, I also use these notations:

fkt = f
(1:k)
t , F k = F (1:k)

λki = λ
(1:k)
i , Λk = Λ(1:k)

ukt = Yt − Λkfkt , Σk
u ≡

(
σkij

)
= cov(ukt )

Those notations above are clearly not de�ned for k > r, however their estimated

version can take any values for k.

We consider estimating the factors by PC analysis, Λ̃k, F̃ k are already de�ned in

(2.1) and (2.3), and we will let all the partitions for Λ̃k, F̃ ksimilar to the notations

for the true ones above. Also, we de�ne:

ũkt = Yt − Λ̃kf̃kt , Σ̃k
u =

1

T

T∑
t=1

ũkt ũ
k′
t

as ut has mean zero.

For a square matrix we will let µi be its ith largest eigenvalues. The matrix

norms we use in this paper are the operator norm and the Frobenius norm, i.e.

‖A‖ = µ1(A′A), ‖A‖F = trace(A′A) respectively. As a special case, we also denote

vi = µi(Σ) and ṽi = µi(Σ̃). In addition if an = O(bn) and bn = O(an) when n→∞,

we will write a � b. Similarly, replacing O by Op, we can de�ne �p in a same manner.

Finally, w.l.o.g we assume all the time series Yt, ut and ft have zero means.

2.3 Asymptotic results

Apart from the new assumption about the strength of factors, the rest of our as-

sumptions are very similar to the standard literature. The main theorem in Chapter

2 can be done by using the same assumptions in Bai (2003) and only replace the
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2.3 Asymptotic results

pervasive factors conditions. However, we also wish to develop a new method for

determining the number of factors in Chapter 3, which makes use of some results in

Fan et al. (2011, 2013). For example, the stationary condition in Fan et al. (2013)

for all stochastic process is stronger than in Bai (2003), but can be still reasonable

in practice. Therefore, in this thesis I adopt the similar set of assumptions as in Fan

et al. (2013).

Assumption 1. There exists a matrix DN = diag(d1(N), ..., dr(N)), where for all

1 ≤ i ≤ r, di(N) → ∞ and di(N)/N is bounded away from ∞ as N → ∞, such

that D−1
N Λ′Λ → D and all the eigenvalues of D are bounded away from both 0 and

in�nity.

This assumption above allows for a more general case where all the factors can

have di�erent strengths, which are indicated by the order of di(N). If we assume

Λ′Λ is diagonal, another way to state this assumption is
∥∥Λ(k)

∥∥2
=
∑N

i=1(λ
(k)
i )2 �

dk(N). In addition, to label the factor according to their strengths, we further let

d1(N) ≥ ... ≥ dr(N) as N → ∞. Recently, Lam et al. (2011) and Lam and Yao

(2012) consider weak factors similar to the ones discussed in this paper. However,

there is a key di�erence with their factor model, which is assumed to capture all

the serial correlation in the original time series. This paper considers a factor model

that is similar to the one discussed in Bai and Ng (2002), Bai (2003) or Stock and

Watson (2002).

Assumption 2. (i) {ut, ft} is strictly stationary with zero mean and {ft} is inde-

pendent of {ut}.

(ii) 1
T

∑T
t=1 ftf

′
t → Σf as T → ∞, with µ1(Σf ) and µr(Σf ) are bounded away

from both 0 and ∞.

(iii) Σu has bounded row sum of absolute entries, i.e. maxi
∑

j |σij | = O(1).

(iv) (exponential-type tails) There exists constants r1, b1 > 0 such that for any

s > 0 and i ≤ N :

P (|uit| > s) ≤ exp (− (s/b1)r1) .
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2 Factor identi�cation under the weaker assumption

Also, there exists constants r2, b2 > 0 such that for any s > 0 and j ≤ r:

P (|fjt| > s) ≤ exp (− (s/b2)r2) .

The next assumption is the mixing condition for the factors and the idiosyncratic

errors.

Assumption 3. (strong mixing condition) De�ne

α(T ) = sup
A∈F0

−∞,B∈F∞T
|P (A)P (B)− P (A ∩B)|

where A ∈ F0
−∞, B ∈ F∞T are the σ-algebras generated by {(ut, ft)}0t=−∞ and

{(ut, ft)}∞t=T respectively, there exists positive constant r3 and C such that for all

t ∈ Z+, 3r−1
1 + 1.5r−1

2 + r−1
3 > 1 and α(T ) ≤ exp (−Ctr3).

Furthermore, we also require the following regularity conditions:

Assumption 4. For all i ∈ (1, .., N) and s, t ∈ (1, ..., T ),

(i) λ
(k)
i is bounded from in�nity for all k ∈ (0, ..., r).

(ii) 1
N [u′sut − E(u′sut)]

2 = Op(1).

(iii)
∥∥∥D−1/2

N Λ′ut

∥∥∥2
= Op(1)

Remarks

Assumption 1 in this thesis is modi�ed on the basis of Assumption 1 in Fan et al.

(2013) as I extend the result to weak factor model. Apart from that, Assumptions 2,

3 and 4 are generally the same as in Fan et al. (2013), with the only di�erence is that

we need to replace N by dr(N) in some places where possible, where dr(N) represents

the strengths of the weakest factors, i.e. the order of its number of non-zero loadings.

The stationary condition for the factors and the idiosyncratic errors in Assumption

2 (i, ii, iii) is slightly stronger than what is required in standard literature of latent

factor models. This allows us to drop the time dependence for Σf and Σu, which
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2.3 Asymptotic results

will make it simple to present the main result. It is not hard to extend to the case

of heteroskedaticity for the factors and errors and prove the result in this chapter.

In such case, we need to put the upper bound for the moments of {ft} and {ut}

across all time. For example, if follow the assumptions used in Stock and Watson

(2002) and Bai (2003), we would replace our assumption 2(iii) as |σij,t| ≤ |σij | and

maxi
∑

j |σij | = O(1), where σij,t = cov(uitujt).

In addition, we require stationary and exponential-type tails (Assumption 2 (iv))

to apply the large deviation theorem, which are needed when dealing with the id-

iosyncratic errors covariance matrix estimator later. The strong mixing condition in

Assumption 3 is also for this purpose. More discussions can be found in Fan et al.

(2013).

Assumption 4 is popular in the factor model literature as used in Fan et al. (2013)

and Bai and Liao (2013). However, Assumption 4 (iii) is adapted to our weak

factor model, i.e. the standard N−1/2Λ′ut is replaced by D
−1/2
N Λ′ut inside the norm.

This helps to improve the convergence rate in Theorem 2.1 but still reasonable. It

is because the ith row of the r × N matrix Λ′ only has order of di(N) non-zero

entries. On the other hand, assumption 4 (ii) is taken exactly as in previously

mentioned papers because the sum of variance and auto-covariance of noises from N

cross-section components is Op(N), that is even to assume that the auto-covariance

vanishes after some �nite lags. Therefore, the 1
N term in Assumption 4 (ii) can not

be replaced by some weaker term, which has some impacts on the convergence rate of

Theorem 2.1. Consequently, the strengths of common factors must be asymptotically

bounded below by some level in order to achieve consistency for the estimators by

sample PCs, also see the discussion after Theorem 2.1 for more details.

In summary, the assumptions in the framework of Fan et al. (2013) is slightly

stronger than the usual assumption used in standard factor literature (e.g. in Bai

(2003)). However, the results in this chapter can still be proved with the same

assumptions as in Bai (2003), with only weakening Assumption B in Bai (2003)
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2 Factor identi�cation under the weaker assumption

which restricts the model to have strong factors only. The reasons I adopt Fan et al.

(2013) assumptions are as follows: �rstly in Chapter 3 I will use these assumptions

to propose a new method to identify weak factors, and secondly in Chapter 4, I show

that even when extracting more than r factors the covariance matrix estimated by

POET in Fan et al. (2013) is still consistent.

2.3.1 Factor strengths

From Assumption 1, we can see that the strength of factor i, 1 ≤ i ≤ r, is measured

by di(N). In standard literature, di(N) = N for all i, which indicates that all

the factors a�ect the majority of cross-section components. In here we allow for

di�erent strengths depending on the factor. However, as we proceed is it required

that for identi�cation issue we have to put a lower bound for di(N) so that the

PCs can consistently estimate the factors. Hence the extra Assumption 5 (i) is very

important, as it tells us how much we can relax Assumption 0 (i). Since we have to

estimate the PCs from the sampled data, it is expected that the value of T has to be

in the lower bound of di(N) to link how much we can tolerate the weakness of the

factors. In addition, we introduce Assumption 5(ii) for the purpose of determining

the number of factors later, the idea is that there must be a gap that separate the

strengths of common factors and of idiosyncratic components.

Assumption 5. (i) N
√

logN
di(N) = o(

√
T ) for all 1 ≤ i ≤ r

(ii) There exists a function (i) g(N) → ∞ such as g(N)/di(N) → 0 as N → ∞

for all 1 ≤ i ≤ r

Notice that Assumption 5 hold immediately in the standard literature when letting

di(N) = N and logN = o(T ), but they also allow for great �exibility. For example,

if dr(N) = N3/4 then we require N1/4
√

logN = op(
√
T ), which is not hard to achieve

in practice. Nevertheless, this condition is imposed technically based on some bounds

used in the proofs. In the future if smaller bound is achieved than we could loosen

this restriction. With this assumption, it is therefore not recommended using sample
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2.3 Asymptotic results

PCs to estimate the factors when we think the strength of the factors is less than

O(
√
N logN), because it then requires N = o(T ), which is not the high-dimensional

setting we want. Having said that, when N = 1000,
√
N logN) ≈ 55, and we clearly

can assume even the weakest factor can a�ect more than 55 cross-section components.

In addition, Theorem 2.1 requires
√
N = o(dr(N)) for convergence, which is another

lower bound for the factor strengths for identi�cation.

2.3.2 Main theorem

Based on all these assumptions, I can now introduce the main theorem in this chapter,

which establishes the consistency of sample PCs for the factors.

Theorem 2.1. Under assumption 1-5, and if r is the true number of factors and F̃ r

is estimated by PC method as shown in (2.1) and restricted by (2.3), there exists a

r × r matrix Hrand Gr = (Hr)−1 such that:

(i) 1
T

∑T
t=1

∥∥∥f̃ rt −Hrft

∥∥∥2
= Op

(
N

[dr(N)]2
+ N2

T [dr(N)]2

)
,

and if N
[dr(N)]2

+ N2

T [dr(N)]2
= o(1), we also have:

(ii) 1
N

∑N
i=1

∥∥∥λ̃ri −Gr′λi∥∥∥2
= Op

(
N

[dr(N)]2
+ N2

T [dr(N)]2

)
The proof for this theorem is given at the end of this chapter. It turns out that

due to the impacts of N cross-sectional noises, the convergence is only achieved if
√
N = o(dr(N)). That is to say that the weakest common factor needs to have

impacts strictly more than N1/2 components. For example, if the weakest com-

mon factor only a�ects Nα components for 1
2 < α < 1, the convergence rate is

Op
(
N1−2α + T−1N2−2α

)
. When α = 1 as in the strong factor case, we go back to

the original rate, which is Op(N
−1 + T−1).

This result also gives supports for the arguments in Boivin and Ng (2006), in which

the authors argue that by having too many cross-section components, the level of

accumulated noises can a�ect the convergence rate of the factors, and therefore it is

better to reduce the cross-section size. If one considers a weak factor which a�ects

di(N) components and drop all the irrelevant ones on the original N components, we
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2 Factor identi�cation under the weaker assumption

go back to the strong factor model with cross-section size di(N) and the convergence

rate is Op(di(N)−1 + T−1), which is better than working with the whole set of N

components and achieve our rate. However, it is not always possible to know which

are the relevant sets and the factor structure can be much more complex. In that case,

one has to apply PCs to the whole data and have the convergence rate depending

on the factor strengths.

One can also link this result with the one in Heaton (2008) and see the similarity.

When the factors are not pervasive, or when the idiosyncratic errors are too strongly

correlated as in Heaton (2008), the sample PCs achieve a lower convergence rate

toward the true factors space. However, the key concluding remark here is that they

are still consistent if dr(N) diverges faster than max(
√
N,N

√
logN/T ). When T is

as large as N , this is approximately
√
N logN , therefore the pervasiveness of factors

can be relaxed substantially.

2.4 Illustrated simulations

In here, I will use Monte Carlo simulations to illustrate the key point made in this

section: the rate of convergence of the factors estimated improves with the perva-

siveness of the factors. We consider a following data generation process:

• Yt = Λft + ut .

• Λ is a N × r matrix.

• ft = αft−1 + wt, where wt ∼ N(0, Ir
√

1− α2) and α2 < 1. This guarantees ft

stationary with serial correlation and the cross-section covariance matrix of ft

is Ir, which make the PCs converge to the factors (up to a sign change) so is

easier for comparing the error rates of estimation.

• ut = βut−1 + εt, where εt ∼ N(0,Σu

√
1− β2) and β2 < 1.
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2.4 Illustrated simulations

• (Σu)N×N is generated as a positive de�nite matrix with some degree of cross

section (but is still sparse). We control for the sparsity level of Σu by the

following procedure: �rst we generate positive semi-de�nite matrix which is

computed as AA′ for some random N×•matrix A, we then forcing a signi�cant

number of o�-diagonal entries of AA′ to 0 symmetrically and then adding the

identity matrix to it to make sure it is positive de�nite.

In order to make the weak factor model. we follow the simulation in Yu and Samworth

(2013) and generate:

• Yt = γΛft + ut

where γ is a number smaller than 1. For example, γ is taken to be 1/3 or 1/10 in

Yu and Samworth (2013).

In Figure (2.1), I plot the average of
∥∥∥F − F̃ r∥∥∥ over 1000 simulations vs. the value

of 1/γ. The value in the vertical axis (so called Estimated error mean) represents

how the estimated factors are di�erent from the true factors. Inside the norm, F is

simulated as described above and F̃ r is estimated by PCA as shown in Section 2.1.

From this �gure, it can be seen that the estimators are more precise when the

factors are stronger, especially we observe a sudden change in estimation error when

the strong factors just start to be weaker. In Figure (2.2) reports the standard

deviation of
∥∥∥F − F̃ r∥∥∥ in 1000 simulations (so called Estimated standard deviation),

which also what can be expected. The variance of the estimator should also depend

on the pervasiveness of the factors, although I will leave it for future research.
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2 Factor identi�cation under the weaker assumption

Figure 2.1: Estimated factor errors vs. pervasiveness (1 corresponds to strong
factors)

Figure 2.2: Estimated factor errors standard deviation vs. pervasiveness (1 corre-
sponds to strong factors)

Notice that when multiplying the weak factors by γ we decrease the value of all

systematic eigenvalues and therefore make the signal-to-noise ratio lower.
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2.5 Proofs of results

2.5 Proofs of results

2.5.1 Proofs of Theorem 2.1

Since F̃ r/
√
T is the matrix whose columns are the orthonormal eigenvectors of Y Y ′

by de�nition (the
√
T term is to make sure that (F̃ r

′
F̃ r/T ) = Ir), we can write:

1

T
Y Y ′F̃ r = F̃ rṼ

where Ṽ is the diagonal matrix whose diagonal consists of the r largest eigenvalues

of Y Y ′/T . Clearly, the eigenvalues of Y Y ′/T are the same as the eigenvalues of Σ̃ =

Y ′Y/T , provided that r < min(N,T ). Therefore, as introduced in the preliminaries

of section 2: Ṽ = diag(ṽ1, ..., ṽr).

We use a similar decomposition in Bai (2003): Let Hr = Ṽ −1F̃ r
′
FΛ′Λ/T

F̃ r − FHr′ =
1

T
Y Y ′F̃ rṼ −1 − 1

T
FΛ′ΛF ′F̃ rṼ −1

=

(
Y Y ′

T
− FΛ′ΛF ′

T

)
F̃ rṼ −1

=

(
Y Y ′

T
− FΛ′ΛF ′

T

)
F̃ rD−1

N DN Ṽ
−1

=

(
FΛ′U ′

T
+
UΛF ′

T
+
UU ′

T

)
F̃ rD−1

N DN Ṽ
−1

Notice that 1
T

∑T
t=1

∥∥∥f̃ rs −Hrft

∥∥∥2
= 1

T

∥∥∥F̃ r − FHr′
∥∥∥2

F
, so we can prove that 1

T

∥∥∥F̃ r − FHr′
∥∥∥2

F
=

Op(
N

[dr(N)]2
+ N2

T [dr(N)]2
). In addition, notice that F̃ r − FHr′ is a T × r matrix, so it

only has r non-zero singular values, where r is a �nite number. Therefore, we can

use the operator norm in the subsequent proofs, which makes the notation easier.

For part (i) of theorem 2.1, we shall prove that 1
T

∥∥∥F̃ r − FHr′
∥∥∥2

= Op(
N

[dr(N)]2
+
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2 Factor identi�cation under the weaker assumption

N2

T [dr(N)]2
) via Cauchy Schwartz inequality:

1

T

∥∥∥F̃ r − FHr′
∥∥∥2
≤
∥∥∥DN Ṽ

−1
∥∥∥2 1

T

{∥∥∥∥ 1

T
FΛ′U ′F̃ rD−1

N

∥∥∥∥2

+

∥∥∥∥ 1

T
UΛF ′F̃ rD−1

N

∥∥∥∥2

+

∥∥∥∥ 1

T
UU ′F̃ rD−1

N

∥∥∥∥2
}
.

From here, the (i) part of theorem 2.1 is proven by lemma 2.1, 2.2 and 2.3. The

dominated term in these is
∥∥∥ 1
T UU

′F̃ rD−1
N

∥∥∥2
, which has order Op(

N
[dr(N)]2

+ N2

T [dr(N)]2
),

the remaining 2 terms in the big curly bracket has order Op(
∥∥D−1

N

∥∥+ 1
T ) = Op(

1
dr(N) +

1
T ), whereas

∥∥∥DN Ṽ
−1
∥∥∥ = Op(1).

For the (ii) part, �rst we notice that Hr has eigenvalues bounded from both 0 and

∞ by lemma 2.4, hence its inverse Gr exists. Similarly with the �rst part, we will

prove using the operator norm of the matrix Λ̃r − ΛGk for easier notation. We now

use the following decomposition:

Λ̃r = Y ′F̃ r/T

=
(
ΛGrHrF ′ + U ′

)
F̃ r/T

= ΛGr
(
HrF ′ − F̃ r′ + F̃ r

′
)
F̃ r/T + U ′

(
F̃ r − FHr′ + FHr′

)
/T

= ΛGr + ΛGr
(
HrF ′ − F̃ r′

)
F̃ r/T + U ′

(
F̃ r − FHr′

)
/T + U ′FHr′/T.
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2.5 Proofs of results

Therefore,

1

N

∥∥∥Λ̃r − ΛGk
∥∥∥2
≤ 1

NT 2

∥∥∥ΛGk
(
HkF ′ − F̃ r′

)
F̃ r
∥∥∥2

+
1

NT 2

∥∥∥U ′ (F̃ r − FHr′
)∥∥∥2

+
1

NT 2

∥∥∥U ′FHr′
∥∥∥2

≤ 1

T

∥∥∥HkF ′ − F̃ r′
∥∥∥2
∥∥∥∥∥ F̃ r

′
F̃ r

T

∥∥∥∥∥
∥∥∥∥Λ′Λ

N

∥∥∥∥∥∥∥Gk∥∥∥2

+

∥∥∥∥UU ′NT

∥∥∥∥ 1

T

∥∥∥F̃ r − FHr′
∥∥∥2

+
1

NT 2

∥∥U ′F∥∥2
∥∥∥Hr′

∥∥∥2

= Op

(
N

[dr(N)]2
+

N2

T [dr(N)]2

)

by theorem 2.1, and the fact that
∥∥Gk∥∥ = Op(1) if 1

T

∥∥∥HkF ′ − F̃ r′
∥∥∥2

= op(1),∥∥∥Hr′
∥∥∥ = Op(1). Furthermore,

∥∥∥UU ′NT

∥∥∥ is bounded above as U has �nite entries and

the size of U is N×T . For similar reason, 1
NT ‖U

′F‖2 is bounded away from in�nity,

which establishes the �nal result above.

2.5.2 Technical Lemmas

Lemma 2.1. Under assumption 1-5, DN Ṽ
−1 has eigenvalues asymptotically bounded

away from both 0 and∞, where as introduced in the preliminaries: Ṽ = diag(ṽ1, ..., ṽr),

ṽ1 is the ith largest eigenvalues of Σ̃.

Proof. We have:

DN Ṽ
−1 ≡


d1(N)
ṽ1

0

. . .

0 dr(N)
ṽr


It su�ces to prove that ṽi � di(N) for every i ∈ (1, ..., r). First of all, we need to

state Weyl's Theorem: Let {ai}Ni=1 be the eigenvalues of A in descending order.

Correspondingly, let {bi}Ni=1 be the eigenvalues of B. Then for all i ≤ N , |ai − bi| ≤
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2 Factor identi�cation under the weaker assumption

‖A−B‖.

If µi(Λ
′Λ) is the ith largest eigenvalue of Λ′Λ and ΛΛ′. So by Weyl's Theorem, we

have: ∣∣vi − µi(Λ′Λ)
∣∣ ≤ ∥∥Σ− ΛΛ′

∥∥ = ‖Σu‖ = Op(1).

Therefore since µi(Λ
′Λ) �

∥∥Λ(i)
∥∥ � di(N) as in assumption 3(ii), vi � di(N). Now,

again by Weyl's Theorem:

∣∣∣∣vi − ṽidi(N)

∣∣∣∣ ≤ ∥∥∥Σ− Σ̃
∥∥∥ /di(N) = Op(

N

di(N)

√
logN

T
).

The result
∥∥∥Σ− Σ̃

∥∥∥ can be found for example in Fan et al. (2011). Since by assump-

tion 4(ii) we have that N
di(N)

√
logN
T = o(1), vi � di(N) implies ṽi �p di(N).

Lemma 2.2. 1
T

∥∥∥ 1
T FΛ′U ′F̃ rD−1

N

∥∥∥2
= Op(

∥∥D−1
N

∥∥) and 1
T

∥∥∥ 1
T UΛF ′F̃ rD−1

N

∥∥∥2
= Op(

∥∥D−1
N

∥∥).

Proof. We have that:

1

T

∥∥∥∥ 1

T
FΛ′U ′F̃ rD−1

N

∥∥∥∥2

≤
∥∥D−1

N

∥∥ 1

T

∥∥∥D−1/2
N Λ′U ′

∥∥∥2
∥∥∥∥ 1

T
F̃ r
′
F̃ r
∥∥∥∥∥∥∥∥ 1

T
F ′F

∥∥∥∥
≤
∥∥D−1

N

∥∥ 1

T

T∑
t=1

∥∥∥D−1/2
N Λ′ut

∥∥∥2

= Op(
∥∥D−1

N

∥∥)

as by assumption 4 (iii)
∥∥∥D−1/2

N Λ′ut

∥∥∥2
= Op(1). Similarly, 1

T

∥∥∥ 1
T UΛF ′F̃ rD−1

N

∥∥∥2
=

Op(
∥∥D−1

N

∥∥).

Lemma 2.3. 1
T

∥∥∥ 1
T UU

′F̃ rD−1
N

∥∥∥2
= Op

(
N

[dr(N)]2
+ N2

T [dr(N)]2

)
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2.5 Proofs of results

Proof. We have that:

1

T

∥∥∥∥ 1

T
UU ′F̃ rD−1

N

∥∥∥∥2

≤
∥∥D−1

N

∥∥2
∥∥∥∥ 1

T
UU ′

∥∥∥∥2 ∥∥∥∥ 1

T
F̃ r
′
F̃ r
∥∥∥∥

=
1

[dr(N)]2

∥∥∥∥ 1

T
UU ′

∥∥∥∥2

≤ 1

[dr(N)]2

(
max
s

1

T

T∑
t=1

u′stt

)2

=
1

[dr(N)]2

(
max
s

[
1

T

T∑
t=1

u′stt − E(u′stt) + E(u′stt)

])2

≤ 2

[dr(N)]2

(
max
s

[
1

T

T∑
t=1

u′stt − E(u′stt)

])2

+
2

[dr(N)]2

(
max
s

1

T

T∑
t=1

E(u′stt)

)2

=
2N

[dr(N)]2
1

N

(
max
s,t

[
u′stt − E(u′stt)

])2

+
2N2

T [dr(N)]2

(
max
s

1

N

T∑
t=1

E(u′stt)

)2

= Op

(
N

[dr(N)]2
+

N2

T [dr(N)]2

)

where we use assumption 4 (ii) to have 1
N (maxs [u′stt − E(u′stt)])

2 = Op(1) and

lemma 6 in Fan et al. (2013) to have maxs
1
N

∑T
t=1 |E(u′stt)| = O(1).

Lemma 2.4. Hr has eigenvalues bounded from both 0 and ∞. error mean

Proof. Hr = Ṽ −1F̃ r
′
FΛ′Λ/T = DN Ṽ

−1F̃ r
′
FD−1

N Λ′Λ/T . It is easy to see that

‖Hr‖ = Op(1), which is equivalent to all eigenvalues of Hr is strictly less than

∞because:

‖Hr‖ ≤
∥∥∥DN Ṽ

−1
∥∥∥∥∥∥∥ 1

T
F̃ r
′
F̃ r
∥∥∥∥1/2 ∥∥∥∥ 1

T
F ′F

∥∥∥∥1/2 ∥∥D−1
N Λ′Λ

∥∥ = Op(1).
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2 Factor identi�cation under the weaker assumption

On the other hand, by a same technique in Bai and Liao (2013), we have:

Ir = F̃ r
′
F̃ r = F̃ r

′ 1

T

(
F̃ r − FHr′

)
+

1

T

(
F̃ r − FHr′

)′
FHr′ +HrF

′F

T
Hr′ .

By theorem 2.1 (i), we already have 1
T

∥∥∥F̃ r − FHr′
∥∥∥2

= Op

(
N

[dr(N)]2
+ N2

T [dr(N)]2

)
=

op(1), so:

HrF
′F

T
Hr′ → HrΣfH

r′ = Ir + op(1)

hence the eigenvalues of Hr must also be bounded from 0 because Σf has eigenvalues

bounded from 0 and ∞.
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3 Determining the number of factors

As discussed earlier, it is not easy to adapt the current methods in the literature to

determine the number of factors when the factors are weak. For example, consider

the Bai and Ng (2002) criteria, i.e. we choose k that maximises the following:

1

NT

T∑
t=1

(Yt − Λ̃kf̃kt )′(Yt − Λ̃kf̃kt ) + kg(N,T ) (3.1)

where Λ̃k and f̃kt are estimated by PCA as above, and g(N,T ) is a function that

converges to 0 at a slower rate than O(N−1 + T−1). To improve the performance,

Alessi et al. (2007) propose to scale kg(N,T ) with a tuning parameter. This is

shown to re�ne the estimation with �nite samples.

To see why this class of criteria may potentially fails due to the existence of weak

factors, considering the following interpretation: as we assume ut has zero-mean,

1

NT

T∑
t=1

(Yt − Λ̃kf̃kt )′(Yt − Λ̃kf̃kt ) =
1

NT
trace(Y − F̃ kΛ̃k′)′(Y − F̃ kΛ̃k′)

=
1

N
trace(Σ̃k

u)

where Σ̃k
u is the residuals sample covariance matrix given k PCs are extracted (see

again the preliminaries at chapter 2 for the notations). Standard matrix algebra tells

us that the trace of a matrix is the sum of all eigenvalues. Therefore, the �rst term

in Bai and Ng (2002) can be seen as the average of all eigenvalues of Σ̃k
u.

Suppose we ignore the sampling error so that 1
N trace(Σ

k
u) is used as a criterion
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3 Determining the number of factors

in stead of 1
N trace(Σ̃

k
u). Under Assumption 0, if we do not extract up to r factors

by PCA, some systematic eigenvalues with order � N are not extracted and hence

1
N trace(Σ

k
u)) is bounded away from zero, which then dominates the term g(N,T ). On

the other hand, if more than r factors are extracted, no more systematic eigenvalues

absorbed in Σk
u hence 1

N trace(Σ
k
u) can be shown to be dominated by g(N,T ). The

key idea behind the proof in Bai and Ng (2002) is to work out the asymptotic value

for 1
N trace(Σ̃

k
u) in place of 1

N trace(Σ
k
u), which then must take into account of the

sampling size T .

Now in our case, where some eigenvalues of Σ have order di(N) which can be o(N),

the choice of g(N,T ) needs to be adjusted carefully to separate the edge of the rth

and the (r + 1)th largest eigenvalues of Σ. Given that it is possible, I think the Bai

and Ng (2002) can be adapted to deal with this problem. However, in this thesis I

will propose a di�erent approach which exploit a di�erent property of Σ̃k
u.

Another popular direction in determining the number of factors is by using the

eigenvalues of Σ̃, i.e. the sample covariance matrix of Yt. This approach has been

originated by the scree test of Cattell (1966). This is a visual test based on the

behaviors of the eigenvalues of Σ̃. The idea is to plot all the eigenvalues of Σ̃ in the

descending order and spot the sharpest edge (elbow) between 2 eigenvalues. Recently,

Forni et al. (2000) also proposed a visual test based on the behavior of the eigenvalues

for determining the number of factors in the context of dynamic factor models. More

similar methods are described in Onatski (2010) and Ahn and Horenstein (2013). For

example, in Ahn and Horenstein (2013), r̃ER = argmaxk<kmax(µk(Σ̃)/µk+1(Σ̃)) is

used as an estimator for r.

These methods based on the sample eigenvalues are empirically shown to work well

under a wide range of factor models, including the case when the idiosyncratic errors

have both serial and cross-section correlations. Another advantage of this approach

is that we do not need to specify a penalty function and the tuning parameter.

However, if we relax the strong factor assumption and replace it with the mix model
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of strong and weak factors, the eigenvalues-ratio based will potentially fail if some

factors are not strong enough. Particularly, if the noise-to-signal is not higher than

the ratio between 2 systematic eigenvalues, r̃ER can not be consistent.

Technically speaking, there is a strong link between the Bai and Ng (2002) crite-

ria and the eigenvalues based method (see Onatski (2010) and Ahn and Horenstein

(2013) for further discussions and comparisons). Hence both su�er from the weaker

assumption for the pervasiveness of the factors. On the other hand, we already see

that the factors can not be too weak otherwise they can not be estimated consistently

(see Theorem 2.1). Therefore, if the strengths of all common factors are assumed ac-

cordingly, i.e. max(
√
N,N

√
logN/T ) = o(dr(N)), the ratio between the systematic

and idiosyncratic eigenvalues is at least �
√
N . Therefore the performance of the

eigenvalues ratio based method should work in most cases, because the ratio of two

systematic eigenvalues can not be greater than a magnitude of order �
√
N . This

agrees with our simulation results, which show that the eigenvalues ratio method

usually performs well if the factors are not too weak.

Recently, Fan et al. (2014) show that the eigenvalues ratio method is robust when

the factors are weak. Particularly, they show that if all the factors have strength

with order Nα for some α ∈ (0, 1], the eigenvalues ratio method still gives consistent

estimator for the number of factors. However, they still assume that all the factors

have same strength, i.e. all the systematic eigenvalues scaled by N−α must be

bounded away from 0 and ∞. This certainly is more stronger than our assumption

in this paper.

In summary, most current methods in the literature do not take into account the

case where all the factors have di�erent strengths, some are pervasive and some are

weaker. This is a key motivation for the work in this chapter. Particularly, in section

3.1 I discuss a novel approach in determining the number of factors that is consistent

even when the factors have di�erent strengths. The key requirement is that there

must exist a diverging sequence which is o(dr(N)).
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3 Determining the number of factors

In the next section, a metric called sparsity level is proposed, which measures

the amount of pairwise correlations between the idiosyncratic errors. From a model

selection point of view, adding more factors to the model should increase the sparsity

level in the conditional idiosyncratic components1. The �nal criterion is obtained in

the similar manner with the Bai and Ng (2002) criteria or the AIC, where we add a

penalty function to the sparsity level.

3.1 Determining the number of factors by sparsity level

To the best of my knowledge, Bickel and Levina (2008) originate the �rst paper that

makes use of the sparsity structure and provides a consistent estimator for a sparse

covariance matrix. However, they propose a sparse structure for a general covariance

matrix, not the idiosyncratic error covariance matrix2. In this chapter, as in Bickel

and Levina (2008), I de�ne the sparsity level as follows: for a matrix A = (aij),

i = 1 : m, j = 1 : n,

m(A) = max
i

n∑
j=1

I(aij 6= 0), (3.2)

which is the maximum number of non-zero entries across all rows of A. For this

measure, the smaller m(A) is, the more sparse A is. A more general measure for

sparsity level replaces I(aij 6= 0) with |aij |q for some q ∈ [0, 1]. Notice that the

de�nition in (3.2) is a special case of maxi
∑n

j=1 |aij |q for q = 0.

Clearly, assuming the covariance matrix of Yt to be sparse is not realistic since it

is possible that all components in Yt are correlated with each other. However, if we

remove the common factors from the original components, the idiosyncratic errors

are more likely to be uncorrelated with each other. As a result, imposing the sparsity

condition to Σu is more reasonable.

This paper is not the �rst work involving sparse idiosyncratic covariance matrix.

1which is the original component subtracting the common component.
2The key di�erence is that the idiosyncratic errors are not observed, see Fan et al. (2011, 2013)
for the work regarding the idiosyncratic covariance matrix.
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3.1 Determining the number of factors by sparsity level

In fact, a standard assumption in the current literature is to have an upper bound

for m(Σu). For example, Fan et al. (2011) propose a sparsity structure for the

idiosyncratic error covariance matrix. They assume that for a given observed factor

model (such as the Fama-French 3-factor model) the sparsity level of Σu must be

o(
√
T/(r2 logN). Exploiting this condition, they provide an estimator for Σu and

thence Σ. Fan et al. (2013) extend the result of their 2011 paper by proposing the

sparsity structure for the idiosyncratic errors covariance matrix when a PC factor

model is applied to the data. Notice that the estimator for sparse Σu is important

for some applications other than for estimating Σ. For instance, Bai and Liao (2013)

use the estimator for Σu (assuming that it is sparse) to compute weighted principle

components as more e�cient estimator for the latent factors.

There are two key remarks in this chapter. Firstly, we have a stronger sparsity

assumption than in Fan et al. (2011, 2013), i.e. m(Σu) is bounded when N grows to

in�nity. Secondly, the main focus of this chapter is not to use the sparsity assumption

to estimate Σu, it is to use the sparsity assumption to select the number of factors

in the data by estimating the sparsity level of Σk
u for a range of k.

Clearly, by de�nition, estimating m(Σk
u) requires methods of identifying the ex-

act zero entries in Σk
u, which usually can be done with the thresholding technique.

Particularly, Bickel and Levina (2008) apply hard universal thresholding, in which

all entries that have magnitude less than a single value are forced to zero. Cai and

Liu (2011) proposes the adaptive hard thresholding technique, where the values of

threshold vary from entries to entries. More general form of threshold include the

smoothly clipped absolute deviation (SCAD), soft thresholding, the adaptive lasso

etc., which can be found in Rothman et al. (2009) and the references therein.

In this chapter, I use the adaptive hard thresholding to estimate the sparsity level,

which is de�ned as:

m̃(Σk
u) = max

i≤N

N∑
j=1

I
(∣∣∣σ̃kij∣∣∣ > hkij

)
(3.3)
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3 Determining the number of factors

where hkij = C1ωT

√
θ̃kij , in which C1 is a tuning constant, θ̃kij is an adaptive param-

eters that must be asymptotically bounded between 0 and ∞, i.e.:

∃ (CL, CH) such that ∀(i, j), P
(
CL ≤ θ̃kij ≤ CH

)
= 1, (3.4)

and

ωT =

√
logN

T
+

√
N

[dr(N)]
+

N√
T [dr(N)]

. (3.5)

Some choices for θ̃kij is T
−1
∑T

t=1(ũkitũ
k
jt − σ̃kij)2 as in Cai and Liu (2011) or σ̃kiiσ̃

k
jj ,

which both can be shown to satisfy the asymptotic bounded requirement in (3.4).

Notice that if θ̃kij = σ̃kiiσ̃
k
jj , then we just thresholding the sample correlation matrix

of ũkt by a universal thresholding value C1ωT . Furthermore, in order to consistently

identify the non-zero entry, we will need an extra assumption that require all the

non-zero entries of Σk
u are not too small, which is shown below.

Assumption 6. ∀k ≤ r, σkij 6= 0 ⇔
∣∣∣σkij∣∣∣ > τ = C ′ωT , for a su�ciently large

constant C ′.

In words, the assumption above requires all the non-zero entries in Σk
u are bounded

away from zero at a certain level, which is needed to correctly identify the non-zero

entries of Σu. Since ωT is converging toward zero when N and T approaches in�nity,

this assumption is reasonable for large dimension.

When we apply the sparsity assumption to the idiosyncratic errors covariance

matrix, the intuition is that after a correct factor model is speci�ed, the conditional

idiosyncratic errors must have low level of cross-section correlation. We formulate

that intuition into Lemma 3.1 as follows.

Lemma 3.1. Under Assumptions 1-6, m(Σk
u) is bounded as N → ∞ if and only if

k = r.

The above lemma is useful in connecting the factor model assumption with the

newly introduced sparsity level measure. We exploit this property to �nd the number
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3.2 Choices of threshold and penalty functions

of factors, which should be taken as the �rst number when the conditional sparsity

level is bounded. In this paper, we use the sparsity level as a metric to select the

number of factors, instead of the sample eigenvalues ratio or the mean square errors.

Using it has some advantages over the others with the �rst one being that it actually

has meaning on its own, so we can directly interpret the criterion value and see how

good a chosen factor model is. Secondly, although m(Σk
u) is not observed so we need

to provide its estimator, it turns out in Theorem 3.1 that our estimator has a good

rate of convergence toward the true number.

Notice that although ukt and Σk
u are only de�ned for k ≤ r, ũkt and Σ̃k

u are available

for any non-negative value of k less than min(N,T ). Therefore, we also need to

investigate m̃(Σk
u) even when k > r. This is achieved in Theorem 3.1.

Theorem 3.1. Under Assumptions 1-6, if N = o(T 2) then m̃(Σk
u) is bounded for

k ≥ r and grows to in�nity with rate at least dr(N) when k < r.

Based on Theorem 3.1, we can estimate the number of factors by adding the

penalty function to m̃(Σk
u). By Assumption 4 (i), we know that there exists a function

g(N) which can be used to separate dr(N) and a bounded sequence. In this case, r

will be estimated using the corollary below.

Corollary 3.1. Under assumption 1-6, if we de�ne r̃ = argmink
{
m̃(Σk

u) + C k g(N)
}

for some constant C, then with probability tending to 1, we have r̃ = r.

Intuitively, this criteria is similar to the ones in Bai and Ng (2002), where the term

m̃(Σk
u) corresponds to how good a model is and C k g(N) penalises the complexity

of the model.

3.2 Choices of threshold and penalty functions

The proposed criterion in this thesis consists of two parts, the estimated level of

sparsity m̃(Σk
u) and the penalty term C k g(N). Each of these terms has its own tun-
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3 Determining the number of factors

ing constant and unknown quantity so I will in turn discuss them in the subsequent

sections.

3.2.1 Thresholding value

Recall that the thresholding value used here is hkij = C1ωT

√
θ̃kij . The most important

work in �nding this value is to work out the theoretical bound for ωT as in (3.5).

However, as we do not observe dr(N) in practice, the choice of ωT is subjective and

should re�ect the prior belief regarding the strength of the weakest factor. In this

paper I propose to use the thresholding value of
√

logN
T + 1

N1/4 + N1/4
√
T

(denoted as

SC1) which corresponds to the case where dr(N) = N3/4. Due to simulations result,

I also suggest using
√

logN
T + 1

N1/4 (denoted as SC2), which although is not quite the

theoretically required value, does better in some cases.

Regarding the constant C1, I use a conservative choice of
1
2 in SC1 and 1 in SC2 for

simulations in this paper. Notice that the asymptotic consistency of the estimators

does not depend on the value for C1. However, clearly a more data-driven way for

choosing C1 is better in practice.

In the literature of thresholding sparse covariance matrix, the choice of C1 is

also discussed, e.g. in Fan et al. (2013), Bickel and Levina (2008) and Cai and

Liu (2011). Their focus is to improve the performance of thresholding in order to

obtain a closed estimator for the true covariance matrix, which also theoretically

improves the estimation for the sparsity level. Therefore, we can apply the following

cross-validation procedure suggested by Bickel and Levina (2008) to determine C1

as follows:

• First we split our residuals
{
ukt
}T
t=1

into 2 part for cross-validation purpose,

the length for each part should be T1 = T
log T and T2 = T − T1.

• We construct the thresholded sample covariance matrix Σ̃k,τ
u (T1) based on a

trial value of C1 and the residuals set which has T1 elements. The rule for
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3.2 Choices of threshold and penalty functions

thresholding is the adaptive hard thresholding as we discussed earlier in this

paper, with thresholding value hkij = C1ωT

√
θ̃kij .

• We �nd C such that the distance between Σ̃k,τ
u (T1) and Σ̃k

u(T2) is minimal,

where Σ̃k
u(T2) is the sample covariance matrix of the residuals set which has T2

elements. . The distance between two matrices is measured by the Frobenius

norm.

• To get better result, we should repeat the cross-validation procedure many

times and choose the value C1 such that the average of the Frobenius norms

of Σ̃k,τ
u (T1)− Σ̃k

u(T2) for di�erent splits is minimised.

If one has chosen to use the value of C1 suggested by the procedure described above,

it is possible to see some improvements in the sparsity level estimation, and hence

also for the number of factors. The rate of convergence can also be revised with the

data-driven value for C1. However, to keep our simulations simple I do not use this

procedure for selecting C1.

3.2.2 The penalty function

A second part in the criterion is the penalty function, and the tuning parameter going

with it. Recall that g(N) needs to grow to in�nity at a slower rate than dr(N). In

practice, I suggest to use
√
N as the value for g(N) and let C = 1/10. However,

this tuning parameter can be de�ned in a data driven way, which is left for further

research. At the moment, our simulations show these choices achieve relatively good

results comparing to the existing methods. Similar approach to work out C can

be done as in Alessi et al. (2008), in which the authors also suggest multiplying a

penalty function of Bai and Ng (2002) criteria with a constant.
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3 Determining the number of factors

3.3 Monte Carlo Simulations

I start with simulating some standard factor models with dimensions easily seen in

practice. The three methods used here are the Sparsity criterion (SC1 and SC2), the

eigenvalues ratio (ER) method of Ahn and Horenstein (2013) and the BIC3 in Bai

and Ng (2002)3. We summarise all the criteria for choosing the number of factors as

follow:

• Sparsity criterion: I use adaptive thresholding with θ̃kij = σ̃kiiσ̃
k
jj , therefore I

choose r by the following 2 objective functions, corresponding to each case of

the thresholding function:

SC1: argmink

max
i≤N

N∑
j=1

I


∣∣∣σ̃kij∣∣∣∣∣∣σ̃kiiσ̃kjj∣∣∣ >

1

2

(√
logN

T
+

1

N1/4
+
N1/4

√
T

)+
kN1/2

10


(3.6)

SC2: argmink

max
i≤N

N∑
j=1

I


∣∣∣σ̃kij∣∣∣∣∣∣σ̃kiiσ̃kjj∣∣∣ >

(√
logN

T
+

1

N1/4

)+
kN1/2

10


(3.7)

• Eigenvalues ratio: we choose r by

argmaxk<kmax(µk(Σ̃)/µk+1(Σ̃)) (3.8)

with the dummy case for k = 0 is set as µ0(Σ̃) =
(∑kmax

k=1 µk(Σ̃)
)
/ logN .

• BIC3: we choose r by

1

NT

T∑
t=1

(Yt − Λ̃kf̃kt )′(Yt − Λ̃kf̃kt ) + kσ̂2

(
(N + T − k) log(NT )

NT

)
(3.9)

where σ̂2 =
∑T

t=1(Yt − Λ̃kmaxf̃kmaxt )′(Yt − Λ̃kmaxf̃kmaxt ).

3The reason we choose the BIC3 is because it usually outperforms the rest of BN criteria, as
shown in Bai and Ng (2002). Also, we see the note that Prof. Juhsan Bai recommends using
for comparisons made in Ahn and and Horenstein (2013).
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3.3 Monte Carlo Simulations

3.3.1 Simulated Scenarios for Comparing

3.3.1.1 Weakening signal-to-noise ratio

I simulate a mix model between strong and weak model by the following data gen-

eration process:

• Yt = Λ(1:m)f
(1:m)
t + γΛ(m+1:r)f

(m+1:r)
t + ut

The generation Λ, ft, ut are described in Section 2.4 of Chapter 2. In here, some of

the control parameters are:

• α: the serial correlation level for the factors.

• β: the serial correlation level for the idiosyncratic error.

• γ: the strength of the factors (which controls the signal-to-noise ratio), so

to weaken the signal-to-noise ratio we decrease γ. γ = 1 corresponds to the

all-strong-factor case.

• m: the number of strong factors.

• r: the total strong and weak factors (which we �x to be 5).

So in general there are m strong factors and r−m weak factors. Di�erent scenarios

for α, β, γ and m are simulated with di�erent values of cross-section and sample

sizes. Tables 3.1-3.6 report the results of the mixture models of strong and weak

factors (m = 2). Section 3.6 has additional tables for the case of all-strong (m = 5)

or all-weak factors (m = 0). For each value of N,T in each scenario (table), the

result reported is the average number of factors estimated by di�erent methods from

500 repeated simulations.

3.3.1.2 Regional factors

Notice that when multiplying the weak factors by γ we decrease the value of all

systematic eigenvalues and therefore make the signal-to-noise ratio lower. On the
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3 Determining the number of factors

other hand, it is more interested to consider the case that is more likely to come

across in practice. We go back to the aforementioned case in the literature review

(Section 1.1.1.2, Figure 1.4) where r = 3 and

Λ =


π1 0 0

0 π2 0

0 0 π3


where πi is the Ni×1 vectors of loadings, and N1 +N2 +N3 = N . For this simulation

we choose N = 200, N1 = 100, N2 = 50, N3 = 50, i.e. after simulate random N × r

loadings matrix Λ, we force parts of the entries to 0 as shown in the matrix Λ above.

Then we generate ft and ut as previous section and let Yt = Λft + ut. It means

that the �rst 100 components of Yt are generated from the �rst factor, the next 50

components of Yt are generated by the second factor and so on. In this case I increase

the sample size from 100 up to 500 while keeping the cross-section size of 200, this

is shown in Tables 3.7 and 3.8.

3.3.2 Comparisons between methods

3.3.2.1 Weakening signal-to-noise ratio

For all cases regarding the parameter γ, we include in our simulations the sub-cases

with and without serial correlations in ft and ut. We provide our results in the tables

shown below. The interesting cases and most relevant to our model are reported in

Tables 3.1-3.6, where we include both strong and weak factors in the model. In most

cases, our criterion correctly determines �ve factors, although only the �rst two are

strong. When some factors are very weak (γ = 1/10), it can be seen from Table 3.6

that under reasonable values of N and T , only our criterion selects the true number

of factors whereas other methods fail to capture the weak factors.

In Section 3.6, I show additional tables for simulation results without mix-strength

factors. When the factors are all strong, the BIC3 criterion is extremely accurate in
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determining the number of factors. However, its performance drops when the factors

get less pervasive. For the case γ < 1/5, BIC3 consistently results in zero factors.

Therefore it is not recommended to use BIC3 when the factors may not be pervasive.

On the other hand, ER is much more robust to weak factors as it still be able to

pick the near the true number when γ = 1/10. In fact, when the factors all have the

same strengths, ER can work well even the strength of the factors grow slower than

N .

In theory, I have shown that the number of factors estimated by SC1 and SC2

should be consistent. This is veri�ed with the simulations, although the performance

of these is slightly worse than ER when the factors have same strengths. However,

when the factors have various strengths, SC1 and SC2 perform much better than

BIC3 and ER.

Table 3.1: Strong and weak factors (m = 2, r = 5, γ = 1/3), kmax = 8, (α = β = 0).
The number of factors reported is averaged out of 500 simulations, on the
right side are the standard deviations.

N T
no serial correlations in ft and ut

SC1 SC2 BIC3 ER

100 20 5.016 0.126 5.004 0.063 4.318 0.591 4.994 0.134

100 40 5.014 0.118 5.000 0.000 3.888 0.603 5.000 0.000

100 60 5.006 0.077 5.000 0.000 3.610 0.585 5.000 0.000

200 60 5.004 0.063 5.000 0.000 3.128 0.587 5.000 0.000

500 60 5.000 0.000 5.000 0.000 2.614 0.556 5.000 0.000

100 100 5.008 0.089 5.000 0.000 3.228 0.584 5.000 0.000

200 100 5.002 0.045 5.000 0.000 2.682 0.556 5.000 0.000

500 100 5.000 0.000 5.000 0.000 2.182 0.391 5.000 0.000

10 100 3.446 2.076 3.368 2.005 4.888 0.316 3.872 1.411

20 100 5.434 0.674 5.304 0.623 4.366 0.526 4.936 0.410

40 100 5.300 0.532 5.040 0.196 3.880 0.564 5.000 0.000

60 100 5.240 0.459 5.026 0.159 3.654 0.596 5.000 0.000

60 200 5.242 0.451 5.006 0.077 3.248 0.586 5.000 0.000

60 500 5.310 0.524 5.018 0.133 2.794 0.559 5.000 0.000
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Table 3.2: Strong and weak factors (m = 2, r = 5, γ = 1/3), kmax = 8, (α = β =
0.5). The number of factors reported is averaged out of 500 simulations,
on the right side are the standard deviations.

N T
serial correlations in ft and ut (α = β = 0.5)

SC1 SC2 BIC3 ER

100 20 5.144 0.363 5.056 0.230 4.562 0.539 4.964 0.327

100 40 5.136 0.387 5.034 0.181 4.100 0.599 5.000 0.000

100 60 5.090 0.313 5.020 0.140 3.768 0.575 5.000 0.000

200 60 5.084 0.292 5.032 0.187 3.434 0.575 5.000 0.000

500 60 5.006 0.077 5.032 0.176 3.028 0.580 5.000 0.000

100 100 5.070 0.255 5.008 0.089 3.436 0.592 5.000 0.000

200 100 5.034 0.181 5.010 0.100 3.016 0.604 5.000 0.000

500 100 5.004 0.063 5.004 0.063 2.534 0.523 5.000 0.000

10 100 3.384 2.122 3.364 2.049 4.914 0.288 3.912 1.427

20 100 5.470 0.694 5.310 0.631 4.382 0.570 4.928 0.446

40 100 5.462 0.661 5.098 0.298 4.024 0.607 5.000 0.000

60 100 5.466 0.665 5.134 0.347 3.752 0.619 5.000 0.000

60 200 5.380 0.580 5.054 0.226 3.348 0.579 5.000 0.000

60 500 5.342 0.549 5.040 0.196 2.814 0.562 5.000 0.000

Table 3.3: Strong and weak factors (m = 2, r = 5, γ = 1/5), kmax = 8, (α = β = 0),
the number of factors reported is averaged out of 500 simulations, on the
right side are the standard deviations.

N T
no serial correlations in ft and ut

SC1 SC2 BIC3 ER

100 20 5.002 0.045 5.002 0.100 2.570 0.531 3.266 1.484

100 40 5.012 0.109 5.000 0.000 2.006 0.077 4.418 1.187

100 60 5.004 0.063 5.000 0.000 2.000 0.000 4.664 0.947

200 60 5.004 0.063 5.000 0.000 2.000 0.000 4.982 0.232

500 60 5.000 0.000 5.000 0.000 2.000 0.000 5.000 0.000

100 100 5.006 0.077 5.000 0.000 2.000 0.000 4.952 0.377

200 100 5.004 0.063 5.000 0.000 2.000 0.000 5.000 0.000

500 100 5.000 0.000 5.000 0.000 2.000 0.000 5.000 0.000

10 100 3.784 1.405 3.588 1.301 4.426 0.567 2.106 0.769

20 100 5.388 0.628 5.232 0.554 2.772 0.611 2.722 1.302

40 100 5.344 0.571 5.042 0.201 2.056 0.230 3.980 1.423

60 100 5.228 0.457 5.020 0.140 2.002 0.045 4.556 1.066

60 200 5.288 0.519 5.008 0.089 2.000 0.000 4.820 0.713

60 500 5.226 0.481 5.022 0.147 2.000 0.000 4.952 0.377
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Table 3.4: Strong and weak factors (m = 2, r = 5, γ = 1/5), kmax = 8, (α = β =
0.5), the number of factors reported is averaged out of 500 simulations,
on the right side are the standard deviations.

N T
serial correlations in ft and ut (α = β = 0.5)

SC1 SC2 BIC3 ER

100 20 5.118 0.347 5.022 0.160 3.108 0.604 2.728 1.300

100 40 5.136 0.349 5.022 0.147 2.192 0.399 3.518 1.501

100 60 5.118 0.323 5.024 0.153 2.018 0.133 4.058 1.394

200 60 5.104 0.325 5.040 0.196 2.000 0.000 4.544 1.078

500 60 5.008 0.089 5.024 0.166 2.000 0.000 4.820 0.713

100 100 5.058 0.242 5.002 0.045 2.000 0.000 4.736 0.851

200 100 5.052 0.231 5.006 0.077 2.000 0.000 4.958 0.353

500 100 5.002 0.045 5.004 0.063 2.000 0.000 5.000 0.000

10 100 3.682 1.481 3.602 1.285 4.438 0.565 2.220 0.882

20 100 5.530 0.742 5.288 0.585 2.906 0.602 2.640 1.245

40 100 5.402 0.655 5.108 0.311 2.118 0.329 3.482 1.501

60 100 5.386 0.618 5.124 0.330 2.012 0.109 4.154 1.351

60 200 5.328 0.530 5.058 0.234 2.000 0.000 4.688 0.917

60 500 5.372 0.588 5.028 0.165 2.000 0.000 4.922 0.478

Table 3.5: Strong and weak factors (m = 2, r = 5, γ = 1/10), kmax = 8, (α = β = 0),
the number of factors reported is averaged out of 500 simulations, on the
right side are the standard deviations.

N T
no serial correlations in ft and ut

SC1 SC2 BIC3 ER

100 20 4.812 0.507 4.324 0.888 2.000 0.000 2.000 0.000

100 40 5.012 0.109 5.000 0.000 2.000 0.000 2.000 0.000

100 60 5.006 0.077 5.000 0.000 2.000 0.000 2.000 0.000

200 60 5.002 0.045 5.000 0.000 2.000 0.000 2.000 0.000

500 60 5.000 0.000 5.000 0.000 2.000 0.000 2.000 0.000

100 100 5.004 0.063 5.000 0.000 2.000 0.000 2.000 0.000

200 100 5.000 0.000 5.000 0.000 2.000 0.000 2.000 0.000

500 100 5.000 0.000 5.000 0.000 2.000 0.000 2.000 0.000

10 100 2.964 0.934 2.596 0.784 3.196 0.662 1.978 0.147

20 100 5.194 0.823 4.352 1.013 2.000 0.000 2.000 0.000

40 100 5.354 0.577 4.994 0.233 2.000 0.000 2.000 0.000

60 100 5.250 0.447 5.008 0.089 2.000 0.000 2.000 0.000

60 200 5.236 0.470 5.012 0.109 2.000 0.000 2.000 0.000

60 500 5.288 0.515 5.008 0.089 2.000 0.000 2.000 0.000
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Table 3.6: Strong and weak factors (m = 2, r = 5, γ = 1/10), kmax = 8, (α = β =
0.5), the number of factors reported is averaged out of 500 simulations,
on the right side are the standard deviations.

N T
serial correlations in ft and ut (α = β = 0.5)

SC1 SC2 BIC3 ER

100 20 4.838 0.699 4.484 0.839 2.008 0.089 2.000 0.000

100 40 5.130 0.365 5.004 0.228 2.000 0.000 2.000 0.000

100 60 5.122 0.351 5.018 0.133 2.000 0.000 2.000 0.000

200 60 5.082 0.296 5.038 0.191 2.000 0.000 2.000 0.000

500 60 5.004 0.063 5.026 0.159 2.000 0.000 2.000 0.000

100 100 5.078 0.276 5.008 0.089 2.000 0.000 2.000 0.000

200 100 5.032 0.176 5.010 0.100 2.000 0.000 2.000 0.000

500 100 5.004 0.063 5.006 0.077 2.000 0.000 2.000 0.000

10 100 2.964 0.892 2.698 0.803 3.260 0.676 1.968 0.198

20 100 5.228 0.870 4.460 1.040 2.000 0.000 1.998 0.045

40 100 5.464 0.691 5.122 0.379 2.000 0.000 2.000 0.000

60 100 5.464 0.637 5.130 0.343 2.000 0.000 2.000 0.000

60 200 5.376 0.579 5.064 0.245 2.000 0.000 2.000 0.000

60 500 5.322 0.524 5.038 0.191 2.000 0.000 2.000 0.000

3.3.2.2 Regional factors

In Tables 3.7 and 3.8 are the performances of all the criteria in the case of regional

3-factor. We also include the results obtained when we forcing ER and BIC3 identify

at least 1 factor. As it can be seen, the sparsity criterion usually produces better

results in this case, due to the fact that all the factors are not too strong. Even when

we ensure that ER and BIC3 select at least one factor, they still under-perform

comparing to SC1 and SC2. This shows great support for SC1 and SC2, as regional

factors can be very common in practice.
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Table 3.7: Regional factors, r = 3, no serial correlations in ft and ut, kmax = 8,
the number of factors reported is averaged out of 500 simulations, on the
right side are the standard deviations. We also include the case where we
remove the zero factor case for the ER and BIC3.

N T ER (no zero) BIC3 (no zero) SC1

200 100 2.32 0.91 1.00 0.00 2.88 0.33

200 150 2.61 0.78 1.00 0.00 2.98 0.13

200 200 2.74 0.65 1.00 0.00 3.00 0.06

200 250 2.82 0.56 1.00 0.00 3.00 0.04

200 300 2.85 0.51 1.00 0.00 3.00 0.04

200 350 2.90 0.42 1.00 0.00 3.00 0.00

200 400 2.91 0.42 1.00 0.00 3.00 0.00

200 450 2.91 0.41 1.00 0.00 3.00 0.06

200 500 2.96 0.27 1.00 0.00 3.00 0.00

N T ER BIC3 SC2

200 100 0.00 0.00 0.00 0.00 2.61 0.55

200 150 0.00 0.00 0.00 0.00 2.82 0.39

200 200 0.00 0.04 0.00 0.00 2.92 0.27

200 250 0.16 0.68 0.00 0.00 2.95 0.23

200 300 0.65 1.23 0.00 0.00 2.96 0.19

200 350 1.59 1.49 0.00 0.00 2.97 0.17

200 400 2.16 1.34 0.00 0.00 2.99 0.09

200 450 2.55 1.05 0.00 0.00 2.99 0.11

200 500 2.78 0.77 0.00 0.00 3.00 0.04
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Table 3.8: Regional factors, r = 3, with serial correlations in ft and ut (α = β =
0.5) kmax = 8, the number of factors reported is averaged out of 500
simulations, on the right side are the standard deviations. We also include
the case where we remove the zero factor case for the ER and BIC3.

N T ER (no zero) BIC3 (no zero) SC1

200 100 1.72 0.88 1.00 0.00 2.81 0.49

200 150 2.09 0.94 1.00 0.00 2.98 0.27

200 200 2.29 0.92 1.00 0.00 3.02 0.14

200 250 2.42 0.89 1.00 0.00 3.01 0.09

200 300 2.63 0.76 1.00 0.00 3.01 0.09

200 350 2.73 0.66 1.00 0.00 3.02 0.14

200 400 2.73 0.67 1.00 0.00 3.01 0.12

200 450 2.77 0.63 1.00 0.00 3.00 0.06

200 500 2.85 0.50 1.00 0.00 3.01 0.08

N T ER BIC3 SC2

200 100 0.00 0.00 0.00 0.00 2.50 0.64

200 150 0.00 0.04 0.00 0.00 2.80 0.43

200 200 0.02 0.20 0.00 0.00 2.93 0.25

200 250 0.04 0.33 0.00 0.00 2.97 0.18

200 300 0.42 1.02 0.00 0.00 2.98 0.16

200 350 1.12 1.43 0.00 0.00 2.99 0.11

200 400 1.91 1.40 0.00 0.00 2.98 0.13

200 450 2.38 1.14 0.00 0.00 2.99 0.10

200 500 2.70 0.83 0.00 0.00 3.00 0.00

3.4 Remarks

In overall, we can see that the proposed criteria for selecting the number of factors

SC1 and SC2 work well in most cases. They show more advantage over other com-

peting criteria in the case where both strong and weak factors exist in the model.

Notice that these simulations are based on conservative choice for the thresholding

constant as discussed in Section 3.2. Therefore, we can even improve the selection

with a data-driven method for choosing the constant. However, this cross-validation

process may require signi�cant computational time and therefore will be drawback

for moderate system.
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Another remark worth mentioning this chapter is the fact that the estimated id-

iosyncratic covariance matrix from the factor model will also be sparse even when

we extract more than r factors. This is a foundation for our criterion to work. Inter-

estingly, the reason for this is that when we extract more than r factors, the sample

covariance σ̃kij still converge to the true σij . It turns out as this result leads to some

extension theory in the large covariance matrix estimation literature. More on this

will be discussed in Chapter 4.

3.5 Proofs of results

3.5.1 Proofs of Lemma 3.1

We consider the case when k = r �rst. In this case we will drop the superscript k

in Σk
u, so we need to prove that m(Σu) is bounded, which is immediately stated in

assumption 2(iii).

Now for the case when k < r,

ũkt = Yt − Λ(1:k)f
(1:k)
t = Λ(k+1)f

(k+1)
t + ...+ Λ(r)f

(r)
t + ut

Hence, if we consider the case when Σf = Ir for convenient notation (otherwise the

result is still valid)

Σk
u = cov(Yt − Λ(1:k)f

(1:k)
t ) = cov(Λ(k+1)f

(k+1)
t + ...+ Λ(r)f

(r)
t ) + Σu

= Λ(k+1:r)Λ(k+1:r)′ + Σu

It is clear to see that with the pervasive condition of factors, the eigenvalues of

Λ(k+1:r)Λ(k+1:r)′ diverge at least at rate dk+1(N) whereas the eigenvalues of Σu are

bounded. Hence,
∥∥Σk

u

∥∥ diverges at least at rate dk+1(N) because

‖Σu‖ =
∥∥∥Λ(k+1:r)Λ(k+1:r)′ − Σk

u

∥∥∥ ≥ ∥∥∥Λ(k+1:r)Λ(k+1:r)′
∥∥∥− ∥∥∥Σk

u

∥∥∥
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Therefore, the maximum row sum of Σk
u must diverge as well. Since all the entries

of Σk
u are �nite, diverging maximum row sum implies that the number of non-zero

entries must be unbounded, since clearly all the entries of Σk
u are �nite.

3.5.2 Proofs of Theorem 3.1

The proof of this theorem will make use of Lemmas 3.8 and 3.9. We will divide the

proof of this theorem to 2 cases: when k ≥ r and k < r.

When k ≥ r

De�ne mi(Σu) =

N∑
j=1

I {σij 6= 0} and m̃i(Σ
k
u) =

N∑
j=1

I
{∣∣∣σ̃kij∣∣∣ > hkij

}
, then m(Σu) =

max
i
mi(Σu) and m̃(Σk

u) = max
i
m̃i(Σ

k
u). Now:

m(Σu)− m̃(Σk
u) = max

i
mi(Σu)−max

i
m̃i(Σ

k
u)

≤ max
i

∣∣∣mi(Σu)− m̃i(Σ
k
u)
∣∣∣

Since m(Σu) is bounded, we only need to show that max
i

∣∣mi(Σu)− m̃i(Σ
k
u)
∣∣ = op(1).

To �nd the bound for max
i

∣∣mi(Σu)− m̃i(Σ
k
u)
∣∣, use Markov's Inequality, i.e. we have

that:

∀i, P
{∣∣∣mi(Σ

k
u)− m̃i(Σ

k
u)
∣∣∣ > ε

}
<

E
{∣∣mi(Σ

k
u)− m̃i(Σ

k
u)
∣∣}

ε

70



3.5 Proofs of results

Also,

E
{∣∣∣mi(Σ

k
u)− m̃i(Σ

k
u)
∣∣∣} = E


∣∣∣∣∣∣
N∑
j=1

I {σij 6= 0} −
N∑
j=1

I
{∣∣∣σ̃kij∣∣∣ > hkij

}∣∣∣∣∣∣


= E


N∑
j=1

I
{∣∣∣σ̃kij∣∣∣ > hkij , σij = 0

}
+

N∑
j=1

I
{∣∣∣σ̃kij∣∣∣ ≤ hkij , σij 6= 0

}
=

N∑
j=1

P
{∣∣∣σ̃kij∣∣∣ > hkij , σij = 0

}
+

N∑
j=1

P
{∣∣∣σ̃kij∣∣∣ ≤ hkij , σij 6= 0

}

≤
N∑
j=1

P
{∣∣∣σ̃kij∣∣∣ > hkij |σij = 0

}
+

N∑
j=1

P
{∣∣∣σ̃kij∣∣∣ ≤ hkij |σij 6= 0

}

≤
N∑
j=1

O

(
1

N2
+

1

T 2

)
= O

(
1

N
+
N

T 2

)

The last step above is from lemma 3.8. Therefore, choosing ε such that 1
N +

N
T 2 = o(ε), then clearly ∀i, P {|mi − m̂i| > ε} → 0, Notice that if N,T → ∞ and

N = o(T 2), then ε→ 0 and max
i

∣∣mi(Σu)− m̃i(Σ
k
u)
∣∣→ 0, which proves Theorem 3.1

for the case k ≥ r.

When k < r

By lemma 3.9 , we have the same result required to show that
∣∣mi(Σ

k
u)− m̃i(Σ

k
u)
∣∣→

0. Since mi(Σ
k
u) diverges at rate at least dk+1(N) as shown in lemma 3.1, we can

establish the claim.

3.5.3 Proofs of Corollary 3.1

We need to prove that in both case where k > r and k < r, then

P
{
m̃(Σk

u) + C k g(N) > m̃(Σr
u) + C r g(N)

}
→ 1

or

P
{
m̃(Σk

u)− m̃(Σr
u) + C (k − r) g(N) > 0

}
→ 1
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Using theorem 3.1, when k < r, m̃(Σk
u) grows to in�nity at rate dk(N), m̃(Σr

u)

is Op(1), g(N) grows at a slower rate then dk(N), therefore the dominating term is

m̃(Σk
u), which is positive.

On the other hand, when k > r, m̃(Σk
u) and m̃(Σr

u) are both Op(1) so the domi-

nated term is C (k − r) g(N), which are also positive.

Hence, P
{
m̃(Σk

u)− m̃(Σr
u) + C (k − r) g(N) > 0

}
→ 1 for k 6= r.

3.5.4 Technical Lemmas

Lemma 3.2. For k ≥ r, let Hk = (Dk
N )−1F̃ k

′
FΛ′Λ/T which is a k × r matrix,

where

Dk
N =

 DN 0

0 NIk−r

 .
Furthermore, for k ≥ r, Ṽ k = diag(ṽ1, ..., ṽk) and F̂

k = F̃ kṼ k(Dk
N )−1 = 1

T Y Y
′F̃ k(Dk

N )−1.

Under assumption 1-5, there exists a constant C such that:

P

(
1

T

T∑
t=1

∥∥∥f̂kt −Hkft

∥∥∥2
> C

[
N

[dr(N)]2
+

N2

T [dr(N)]2

])
≤ O

(
1

T 2

)
.

Proof. Similarly to the proof of theorem 2.1, we consider the operator norm of the

matrix F̂ k − FHk′ and a similar decomposition:

F̂ k − FHk′ =
1

T
Y Y ′F̃ k(Dk

N )−1 − 1

T
FΛ′ΛF ′F̃ k(Dk

N )−1

=

(
FΛ′U ′

T
+
UΛF ′

T
+
UU ′

T

)
F̃ k(Dk

N )−1

=


(
FΛ′U ′

T + UΛF ′

T + UU ′

T

)
F̃ r(DN )−1 0

0
(
FΛ′U ′

NT + UΛF ′

NT + UU ′

NT

)
F̃ (k+1:r)
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Therefore, for (i) we have:

1
T

∥∥∥F̂ k − FHk′
∥∥∥2
≤ max

 1

T

∥∥∥∥(FΛ′U ′

T
+
UΛF ′

T
+
UU ′

T

)
F̃ r(DN )−1

∥∥∥∥2

︸ ︷︷ ︸
A

,

1

T

∥∥∥∥(FΛ′U ′

NT
+
UΛF ′

NT
+
UU ′

NT

)
F̃ (k+1:r)

∥∥∥∥2

︸ ︷︷ ︸
B

 .

.

We work out the result for each term A and B separately:

A ≤ 1

T

∥∥∥∥( 1

T
FΛ′U ′F̃ r(DN )−1

)∥∥∥∥2

+
1

T

∥∥∥∥ 1

T
UΛF ′F̃ r(DN )−1

∥∥∥∥2

+
1

T

∥∥∥∥ 1

T
UU ′F̃ r(DN )−1

∥∥∥∥2

≤ 2
∥∥D−1

N

∥∥ 1

T

∥∥∥(DN )−1/2Λ′U ′
∥∥∥2
∥∥∥∥ 1

T
F̃ r
′
F̃ r
∥∥∥∥∥∥∥∥ 1√

T
F

∥∥∥∥2

+

∥∥∥∥ 1

dr(N)T
UU ′

∥∥∥∥2 ∥∥∥∥ 1

T
F̃ r
′
F̃ r
∥∥∥∥ .

Since
∥∥∥ 1
T F̃

r′F̃ r
∥∥∥, 1

T

∥∥(DN )−1/2Λ′U ′
∥∥2

are all Op(1), we need to show that:

P

(∥∥∥ 1√
T
F
∥∥∥2
> C

)
= O

(
1
T 2

)
: This follows by Lemma B.1 (i) in Fan et al. (2011)

under the common assumptions with this thesis. See also the proof of lemma 3.1 (ii)

in Fan et al. (2011).

P

(∥∥∥ 1
dr(N)T UU

′
∥∥∥2
> C

[
N

[dr(N)]2
+ N2

T [dr(N)]2

])
= O

(
1
T 2

)
: This is done by the same

decomposition as in Lemma 2.3, where we have:

∥∥∥∥ 1

dr(N)T
UU ′

∥∥∥∥2

≤ 2N

[dr(N)]2
1

N

(
max
s,t

[
u′stt − E(u′stt)

])2

+
2N2

T [dr(N)]2

(
max
s

1

N

T∑
t=1

E(u′stt)

)2

and since 1
N (maxs,t [u′stt − E(u′stt)])

2 = Op(1) by assumption 4 (ii), there exist a

constant C such that P
(

1
N (maxs,t [u′stt − E(u′stt)])

2 > C
)
is arbitrarily small. For

similar reason, since maxs
1
N

∑T
t=1E(u′stt) = O(1), there exists a constant C such
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3 Determining the number of factors

that P

((
maxs

1
N

∑T
t=1E(u′stt)

)2
> C

)
is arbitrarily small. Hence,

P

(
A > C

[
N

[dr(N)]2
+

N2

T [dr(N)]2

])
= O

(
1

T 2

)
.

Notice that we omit the term
∥∥D−1

N

∥∥ = 1
dr(N) that comes from the �rst part of A

because it is dominated by N
[dr(N)]2

. For B,

B ≤ 1

T

∥∥∥∥( 1

NT
FΛ′U ′F̃ (k+1:r)

)∥∥∥∥2

+
1

T

∥∥∥∥ 1

T
UΛF ′F̃ (k+1:r)

∥∥∥∥2

+
1

T

∥∥∥∥ 1

T
UU ′F̃ (k+1:r)

∥∥∥∥2

≤ 2
1

T

∥∥∥∥ 1

NT
Λ′U ′

∥∥∥∥2 ∥∥∥∥ 1

T
F̃ (k+1:r)′F̃ (k+1:r)

∥∥∥∥∥∥∥∥ 1√
T
F

∥∥∥∥2

+

∥∥∥∥ 1

NT
UU ′

∥∥∥∥2 ∥∥∥∥ 1

T
F̃ (k+1:r)′F̃ (k+1:r)

∥∥∥∥ .
By similar result with term A (replacing dr(N) with N), we have: there exist a

constant C such that,

P

(
B > C

[
N

[dr(N)]2
+

N2

T [dr(N)]2

])
≤ P

(
B > C

[
1

N
+

1

T

])
= O

(
1

T 2

)
.

Hence the result follows.

Remark 3.1. Lemma 3.2 establishes the result when one estimate more than r factors

by PCs. It turns out that we can not have both the estimated factors and the loadings

consistent. One can prove that although F̂ k is consistent up to a rotation (even for

all k), Λ̂k = Y ′F̂ k(F̂ k
′
F̂ k)−1 will not be a consistent estimator when k > r. We do

not use this result in this paper so we leave it aside. However, interestingly, as shown

in lemma 3.3, the product of factors and loadings, i.e. the estimated idiosyncratic

errors ũkit is consistent for uit. The rationale behind rede�ne the matrix Hk and F̂ k

is that we want to at least get the factors consistent when k > r, which is needed

for the proof of lemma 3.2.

Lemma 3.3. Recall that ωT =
√

logN
T +

√
N

[dr(N)] + N√
T [dr(N)]

. Under assumption 1-5:
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3.5 Proofs of results

if k ≥ r then: There exists a constant C such that for all c > C,

(i) P
(

maxi≤N
1
T

∑T
t=1

(
ũkit − uit

)2
> cω2

T

)
= O( 1

N2 + 1
T 2 )

(ii) P

(
maxi,j

∣∣∣∣∣ 1
T

T∑
t=1

(
ũkitũ

k
jt − uitujt

)∣∣∣∣∣ > cωT

)
= O

(
1
N2 + 1

T 2

)
.

Proof. First of all, for k > r, we let: Λ̂k = Y ′F̂ k(F̂ k
′
F̂ k)−1. An important identity

that we exploit is Λ̂kF̂ k = Λ̃kF̃ k. Furthermore, we de�ne Gk such that GkHk = Ir.

Now to prove (i), �x i ≤ N and consider the expanding of ũkit − uit:

ũkit − uit

= λ′ift − λ̃k
′
i f̃

k
t = λ′ift − λ̂k

′
i f̂

k
t

= λ′iG
kHkft − λ′iGkf̂kt + λ′iG

kf̂kt − λ̂k
′
i f̂

k
t

= λ′iG
k
(
Hkft − f̂kt

)
+
(
λ′iG

k − λ̂k′i
)
f̂kt

= λ′iG
k
(
Hkft − f̂kt

)
+
(
λ′iG

k − (λ′iF
′ + u′i)F̂

k(F̂ k
′
F̂ k)−1

)
f̂kt

= λ′iG
k
(
Hkft − f̂kt

)
+ λ′iG

kF̂ k
′
F̂ k(F̂ k

′
F̂ k)−1f̂kt

+ λ′iG
kHkF ′F̂ k(F̂ k

′
F̂ k)−1f̂kt +

T∑
t=1

f̂k
′

t

(
F̂ k
′
F̂ k
)−1

f̂kt uit

= λ′iG
k
(
Hkft − f̂kt

)
+ λ′iG

k
(
F̂ k
′ −HkF ′

)
F̂ k
(
F̂ k
′
F̂ k
)−1

f̂kt +

T∑
t=1

f̂k
′

t

(
F̂ k
′
F̂ k
)−1

f̂kt uit
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3 Determining the number of factors

For lemma 3.3 (i):

max
i≤N

1

T

T∑
t=1

(
ũkit − uit

)2
≤ max

i≤N

1

T

T∑
t=1

∣∣∣λ′iGk (Hkft − f̂kt
)∣∣∣2

+ max
i≤N

1

T

T∑
t=1

T

∣∣∣∣λ′iGk (F̂ k′ −HkF ′
)
F̂ k
(
F̂ k
′
F̂ k
)−1

f̂kt

∣∣∣∣2

+ max
i≤N

1

T

T∑
t=1

∣∣∣∣∣
T∑
t=1

f̂k
′

t

(
F̂ k
′
F̂ k
)−1

f̂kt uit

∣∣∣∣∣
2

≤ 1

T

T∑
t=1

∥∥∥Hkft − f̂kt
∥∥∥2

max
i≤N

∥∥∥λ′iGk∥∥∥2

+
1

T

∥∥∥HkF ′ − F̂ k′
∥∥∥2

max
i≤N

∥∥∥λ′iGk∥∥∥2
∥∥∥∥F̂ k (F̂ k′F̂ k)−1

F̂ k
′
∥∥∥∥2

+ max
i≤N

1

T

T∑
t=1

|uit|2
∥∥∥∥F̂ k (F̂ k′F̂ k)−1

F̂ k
′
∥∥∥∥2

We useP

(
1
T

∑T
t=1

∥∥∥f̂kt −Hkft

∥∥∥2
> C

[
N

[dr(N)]2
+ N2

T [dr(N)]2

])
= O

(
1
T 2

)
,

∥∥∥∥F̂ k (F̂ k′F̂ k)−1
F̂ k
′
∥∥∥∥ =

Op(1),
∥∥λ′iGk∥∥ = Op(1) and maxi≤N

1
T

∑T
t=1 |uit| =

√
logN
T as shown below:

By the Bernstein inequality for weakly dependent process (see Merlevède et al.

(2011)), for some positive constants C1, C2, C3, C4 and C5 and for any i ∈ (1, ..., N),

since Euit = 0,

(
1

T

T∑
t=1

|uit| > s

)
≤ T exp

(
−(Ts)γ

C1

)
+ exp

(
− (Ts)2

C2(1 + TC3)

)

+ exp

(
−(Ts)2

C4T
exp

(
(Ts)γ(1−γ)

C5(log Ts)γ

))
.

Using Bonferroni's method and choosing s =
√

logN
T yields:

P

(
max
i≤N

1

T

T∑
t=1

|uit|2 >
logN

T

)
= O

(
1

N2

)

Therefore, the desired result is obtained by combining all the results above (note
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3.5 Proofs of results

that ω2
T = O( logN

T + N
[dr(N)]2

+ N2

T [dr(N)]2
)).

Part (ii) follows from part (i), by the same argument as in the proof of lemma A.3

in Fan et al. (2011).

Remark 3.2. Lemma 3.3 (i) is a similar result from Fan et al. (2013). The reason

that we show it again here is because we emphasise that it is true even for the case

when the factors are weak and even for k > r, not only k = r as in Fan et al. (2013).

This leads to the immediate consistency for the POET estimator under weaker factor

assumption and any k ≥ r.

Lemma 3.4. Suppose that the random variables Z1, Z2 both satisfy the exponential-

type tail condition: There exists r1, r2 ∈ (0, 1) and b1, b2 > 0, such that ∀s > 0,

P (|Zi| > s) ≤ exp (1− (s/bi)
ri) , i = 1, 2.

Then Z1 +Z2 also satisfy the exponential-type tail condition, i.e. for some r3 ∈ (0, 1)

and b3 > 0, ∀s > 0 we have:

P (|Z1 + Z2| > s) ≤ exp (1− (s/b3)r3)

Proof. Let b = 2 max(b1, b2) and r = min(r1, r2), then ∀s > 0 we have:

P (|Z1 + Z2| > s) ≤ P (|Z1|+ |Z2| > s)

≤ P (|Z1| > s/2) + P (|Z2| > s/2)

≤ exp (1− (s/(2b1))r1) + exp (1− (s/(2b2))r2)

≤ 2 exp (1− (s/(b))r) .

The rest of the proof is similar to the proof of Lemma A.2 in Fan et al. (2011)

and hence omitted.
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3 Determining the number of factors

Lemma 3.5. Under assumption 1-5, there exists a constant C such that for all

c > C, k < r:

P

(
max
i≤N

1

T

T∑
t=1

(
ũkit − ukit

)2
> cω2

T

)
= O(

1

N2
+

1

T 2
) (3.10)

Proof. Let Hk = (Dk
N )−1F̃ k

′
F kΛk

′
Λk/T which is a k × k matrix, where

Dk
N =


d1(N) 0

. . .

0 dk(N)

 .

We �rst need to prove that: for some constant C:

P

(
1

T

T∑
t=1

∥∥∥f̂kt −Hkfkt

∥∥∥2
> C

[
N

[dr(N)]2
+

N2

T [dr(N)]2

])
= O

(
1

T 2

)
. (3.11)

Now since, Y = FΛ′ + U = F kΛk
′
+ F (k+1:r)Λ(k+1:r)′ + U

Y Y ′−F kΛk′ΛkF k′ =
FΛ′U ′

T
+
UΛF ′

T
+
UU ′

T
+F kΛk

′
Λ(k+1:r)F (k+1:r)′+F (k+1:r)Λ(k+1:r)′ΛkF k

′

So,

F̂ k − F kHk′ =
1

T
Y Y ′F̃ k(Dk

N )−1 − 1

T
F kΛk

′
ΛkF k

′
F̃ k(Dk

N )−1

=

(
FΛ′U ′

T
+
UΛF ′

T
+
UU ′

T

)
F̃ k(Dk

N )−1

+

(
F kΛk

′
Λ(k+1:r)F (k+1:r)′

T
+
F (k+1:r)Λ(k+1:r)′ΛkF k

′

T

)
F̃ k(Dk

N )−1

= I + II

By lemma 3.2, we have already shown thatP
(

1
T ‖I‖

2 > C
[

N
[dr(N)]2

+ N2

T [dr(N)]2

])
=
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O
(

1
T 2

)
. Now for II,

1

T
‖II‖2 ≤ 1

T

∥∥∥∥∥F kΛk
′
Λ(k+1:r)F (k+1:r)′F̃ k(Dk

N )−1

T

∥∥∥∥∥
2

+
1

T

∥∥∥∥∥F (k+1:r)Λ(k+1:r)′ΛkF k
′
F̃ k(Dk

N )−1

T

∥∥∥∥∥
2

≤ 2

T

∥∥∥Λk
′
Λk
′
(Dk

N )−1
∥∥∥∥∥∥(Dk

N )−1
∥∥∥∥∥∥Λ(k+1:r)′Λ(k+1:r)

∥∥∥∥∥∥∥∥ F̃ k
′
F̃ k

T

∥∥∥∥∥
∥∥∥∥ 1√

T
F k
∥∥∥∥∥∥∥∥ 1√

T
F (k+1:r)

∥∥∥∥
≤ 2

T

∥∥∥Λk
′
Λk
′
(Dk

N )−1
∥∥∥∥∥∥∥∥Λ(k+1:r)′Λ(k+1:r)

dk(N)

∥∥∥∥∥
∥∥∥∥∥ F̃ k

′
F̃ k

T

∥∥∥∥∥
∥∥∥∥ 1√

T
F k
∥∥∥∥∥∥∥∥ 1√

T
F (k+1:r)

∥∥∥∥ .
Using the same results as in lemma 3.2 regarding

∥∥∥ 1√
T
F k
∥∥∥ and

∥∥∥ 1√
T
F (k+1:r)

∥∥∥, we
have

P

(
1

T
‖II‖2 > C

[
1

T

])
= O

(
1

T 2

)
.

Combining, the result for I and II, we have proven (3.11). Now, using

max
i≤N

1

T

T∑
t=1

(
ũkit − ukit

)2
≤ 1

T

T∑
t=1

∥∥∥Hkfkt − f̂kt
∥∥∥2

max
i≤N

∥∥∥λ′iGk∥∥∥2

+
1

T

∥∥∥HkF k
′ − F̂ k′

∥∥∥2
max
i≤N

∥∥∥λ′iGk∥∥∥2
∥∥∥∥F̂ k (F̂ k′F̂ k)−1

F̂ k
′
∥∥∥∥2

+ max
i≤N

1

T

T∑
t=1

∣∣∣ukit∣∣∣2 ∥∥∥∥F̂ k (F̂ k′F̂ k)−1
F̂ k
′
∥∥∥∥2

.

We have already worked our the part for the �rst 2 terms above in result (3.11). For

the bound of maxi≤N
1
T

∑T
t=1

∣∣ukit∣∣, consider:
ukit =

r∑
l=k+1

λ
(l)
i f

(l)
t + uit.

From lemma 3.4, we know that the sum of 2 exponential-type tail condition variables

is an exponential-type tail condition variable. Also, it is clear that an exponential-

type tail condition variable also preserves its condition under scaling by a constant.

Therefore, ukit satis�es the exponential-type tail condition. Hence, similar to part of

79



3 Determining the number of factors

the proof in lemma 3.3, we have that for some constant C:

P

(
max
i≤N

1

T

T∑
t=1

∣∣∣ukit∣∣∣2 > C
logN

T

)
= O

(
1

N2

)
.

Therefore, combining everything, we �nally reach the result (3.10).

Lemma 3.6. Under assumption 1-5, there exists a constant C such that for all

c > C, k < r:

(i) P

(
maxi,j

∣∣∣∣∣ 1
T

T∑
t=1

(
ukitu

k
jt − σkij

)∣∣∣∣∣ > c
√

logN
T

)
= O

(
1
N2

)
(ii) P

(
maxi,j

∣∣∣∣∣ 1
T

T∑
t=1

(
ũkitũ

k
jt − ukitukjt

)∣∣∣∣∣ > cωT

)
= O( 1

N2 + 1
T 2 ).

Proof. To prove part (i), we just need to recall that ukit satis�es the exponential-type

tail condition, as shown in part of the proof of lemma 3.5. The rest is exactly the

same as in the proof of lemma A.3 (i) in Fan et al. (2001).

Part (ii) follows from lemma 3.5, by the same argument as in the proof of lemma

A.3 (ii) in Fan et al. (2001).

Lemma 3.7. Under assumption 1-5, we have the following results:

(i) ∀(i, j) : P
(∣∣∣σ̃kij − σij∣∣∣ > hkij

)
≤ O

(
1
N2 + 1

T 2

)
for k ≥ r.

(ii) ∀(i, j) : P
(∣∣∣σ̃kij − σkij∣∣∣ > hkij

)
≤ O

(
1
N2 + 1

T 2

)
for k < r.

Proof. Fix k ≥ r. For (i), we �rst use the following results in Fan et al. (2011, 2013):

Under assumptions 1-4, there exists constant C1 such that for all c > C1:

P

(
max
i,j

∣∣∣∣∣ 1

T

T∑
t=1

(uitujt − σij)

∣∣∣∣∣ > c

√
logN

T

)
= O

(
1

N2

)
(3.12)

Result (3.12) intuitively shows a convergence of the average of week dependent data,

which in this case is uitujt. Also, by lemma 3.3(iii) for k ≥ r there exists a constant

C2 such that for all c > C2

P

(
max
i,j

∣∣∣∣∣ 1

T

T∑
t=1

(
ũkitũ

k
jt − uitujt

)∣∣∣∣∣ > cωT

)
= O

(
1

N2
+

1

T 2

)
. (3.13)
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Together, (3.12)) and (3.13) yield the following: if c > max(C1, C2):

P

(
max
i,j

∣∣∣σ̃kij − σij∣∣∣ ≤ cωT) ≥ 1−O
(

1

N2
+

1

T 2

)
. (3.14)

Furthermore, by our assumption that θ̃kij is asymptotically bounded between 2 con-

stants,

∃ (CL, CH) such that ∀(i, j), P
(
CL ≤ θ̃kij ≤ CH

)
≥ 1−O

(
1

N2
+

1

T 2

)
. (3.15)

Hence if hkij = CωT

√
θ̃kij for some constant C then

P
(∣∣∣σ̃kij − σij∣∣∣ > hkij

)
≤ O

(
1

N2
+

1

T 2

)

for k ≥ r as required.

For the case k < r in (ii), lemma (3.6) establishes the similar results as in (3.12)

and (3.13), which lead to the required result.

Lemma 3.8. Under assumption 1-5, we have the following results: for k ≥ r,

(i) ∀(i, j) : P
(∣∣∣σ̃kij∣∣∣ > hkij | σij = 0

)
≤ O

(
1
N2 + 1

T 2

)
.

Under assumption 1-6, we have: for k ≥ r,

(ii) ∀(i, j) : P
(∣∣∣σ̃kij∣∣∣ < hkij | σij 6= 0

)
≤ O

(
1
N2 + 1

T 2

)
Proof. Lemma 3.7 (i) directly implies Lemma 3.8 (i), since k ≥ r given that σij =

0, event
{∣∣∣σ̃kij − σij∣∣∣ > hkij

}
is equivalent to

∣∣∣σ̃kij∣∣∣ is greater than hij , which has

asymptotic probability tending to 0 as well. Similarly for the case k < r.

Now, to prove (ii) we will �rst use assumption 6: ∀(i, j),

P
(∣∣∣σ̃kij∣∣∣ > hij | σij 6= 0

)
= P

(∣∣∣σ̃kij∣∣∣ > hij | |σij | > τ
)
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3 Determining the number of factors

Let us de�ning 2 events:

E1 =

{
max
i,j

∣∣∣σ̃kij − σij∣∣∣ ≤ cωT} for all c > max(C1, C2),

E2 =
{
∀(i, j), CL ≤ θ̃kij ≤ CH

}
.

By lemma 3.7 (i), P(E1) ≥ 1 − O
(

1
N2 + 1

T 2

)
. By the assumption that θ̃kij must

be asymptotically bounded, P(E2) = 1. Therefore, P(E1 ∩ E2) ≥ 1−O
(

1
N2 + 1

T 2

)
.

Under event E2 and assumption 6, if we have C ′ su�ciently large such that C ′ >

C
√
CH then max

i,j
hij ≤ C

√
CHωT < τ . Hence ∀(i, j),

P
(∣∣∣σ̃kij∣∣∣ > hij | |σij | > τ

)
≥ P

(∣∣∣σ̃kij − σij∣∣∣ ≤ τ − hij)
≥ P

(∣∣∣σ̃kij − σij∣∣∣ ≤ τ − C√CHωT)
≥ P

(∣∣∣σ̃kij − σij∣∣∣ ≤ C ′ωT − C√CHωT)
≥ P

(∣∣∣σ̃kij − σij∣∣∣ ≤ (C ′ − C√CH)ωT)

Given event E1, if we have C ′ su�ciently large such that C ′ − C
√
CH > c then

∀(i, j) :
∣∣∣σ̃kij − σij∣∣∣ ≤ (C ′ − C√CH)ωT . Hence,
∀(i, j) : P

(∣∣∣σ̃kij − σij∣∣∣ ≤ (C ′ − C√CH)ωT) ≥ P(E1 ∩ E2)

and therefore:

∀(i, j) : P
(∣∣∣σ̃kij∣∣∣ > hij | σij 6= 0

)
≥ 1−O

(
1

N2
+

1

T 2

)
,

which establishes our required result.

Lemma 3.9. Under assumption 1-5, we have the following results: for k < r,

(i)∀(i, j) : P
(∣∣∣σ̃kij∣∣∣ > hkij | σkij = 0

)
≤ O

(
1
N2 + 1

T 2

)
Under assumption 1-6, we have: for k < r,
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(ii) ∀(i, j) : P
(∣∣∣σ̃kij∣∣∣ < hkij | σkij 6= 0

)
≤ O

(
1
N2 + 1

T 2

)

Proof. Similarly to the proof of lemma 3.8, lemma 3.7 (ii) directly proves result (i)

required above, and result (ii) above can be proven by similar argument as in the

proof of 3.8 (ii).

3.6 Additional Tables and Figures

Table 3.9: Strong factors only (r = 5), kmax = 8, (α = β = 0), the number of
factors reported is averaged out of 500 simulations, on the right side are
the standard deviations

N T
no serial correlations in ft and ut

SC1 SC2 BIC3 ER

100 20 5.008 0.089 5.004 0.063 5.000 0.000 5.000 0.000

100 40 5.004 0.063 5.000 0.000 5.000 0.000 5.000 0.000

100 60 5.006 0.077 5.002 0.045 5.000 0.000 5.000 0.000

200 60 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000

500 60 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000

100 100 5.006 0.077 5.000 0.000 5.000 0.000 5.000 0.000

200 100 5.002 0.045 5.000 0.000 5.000 0.000 5.000 0.000

500 100 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000

10 100 2.048 2.332 1.472 2.134 5.000 0.000 4.956 0.224

20 100 5.408 0.653 5.218 0.524 5.000 0.000 5.000 0.000

40 100 5.318 0.545 5.054 0.226 5.000 0.000 5.000 0.000

60 100 5.198 0.451 5.028 0.165 5.000 0.000 5.000 0.000

60 200 5.226 0.455 5.014 0.118 5.000 0.000 5.000 0.000

60 500 5.216 0.445 5.010 0.100 5.000 0.000 5.000 0.000
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3 Determining the number of factors

Table 3.10: Strong factors only (r = 5), kmax = 8, (α = β = 0.5), the number of
factors reported is averaged out of 500 simulations, on the right side are
the standard deviations

N T
serial correlations in ft and ut (α = β = 0.5)

SC1 SC2 BIC3 ER

100 20 5.106 0.327 5.060 0.238 5.000 0.000 5.000 0.000

100 40 5.112 0.352 5.032 0.187 5.000 0.000 5.000 0.000

100 60 5.118 0.347 5.014 0.118 5.000 0.000 5.000 0.000

200 60 5.074 0.270 5.026 0.171 5.000 0.000 5.000 0.000

500 60 5.004 0.063 5.032 0.176 5.000 0.000 5.000 0.000

100 100 5.078 0.283 5.006 0.077 5.000 0.000 5.000 0.000

200 100 5.052 0.240 5.006 0.077 5.000 0.000 5.000 0.000

500 100 5.006 0.077 5.008 0.089 5.000 0.000 5.000 0.000

10 100 1.870 2.297 1.374 2.088 5.000 0.000 4.960 0.225

20 100 5.520 0.750 5.292 0.589 5.000 0.000 5.000 0.000

40 100 5.462 0.673 5.136 0.349 5.000 0.000 5.000 0.000

60 100 5.432 0.634 5.124 0.336 5.000 0.000 5.000 0.000

60 200 5.432 0.625 5.072 0.266 5.000 0.000 5.000 0.000

60 500 5.346 0.575 5.032 0.176 5.000 0.000 5.000 0.000

Table 3.11: Weak factors only (r = 5, γ = 1/3), kmax = 8, (α = β = 0), the number
of factors reported is averaged out of 500 simulations, on the right side
are the standard deviations

N T
no serial correlations in ft and ut

SC1 SC2 BIC3 ER

100 20 5.008 0.089 5.000 0.000 3.846 0.619 5.000 0.000

100 40 5.012 0.109 5.004 0.063 3.180 0.679 5.000 0.000

100 60 5.004 0.063 5.000 0.000 2.768 0.683 5.000 0.000

200 60 5.004 0.063 5.000 0.000 2.160 0.651 5.000 0.000

500 60 5.000 0.000 5.000 0.000 1.454 0.642 5.000 0.000

100 100 5.012 0.109 5.000 0.000 2.248 0.651 5.000 0.000

200 100 5.004 0.063 5.000 0.000 1.430 0.615 5.000 0.000

500 100 5.000 0.000 5.000 0.000 0.676 0.576 5.000 0.000

10 100 1.588 1.975 1.030 1.623 4.796 0.403 4.522 0.909

20 100 5.366 0.611 5.252 0.552 3.914 0.599 4.994 0.077

40 100 5.302 0.532 5.044 0.205 3.226 0.663 5.000 0.000

60 100 5.226 0.446 5.014 0.118 2.746 0.677 5.000 0.000

60 200 5.240 0.459 5.008 0.089 2.282 0.657 5.000 0.000

60 500 5.330 0.523 5.018 0.133 1.688 0.687 5.000 0.000
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Table 3.12: Weak factors only (r = 5, γ = 1/3), kmax = 8, (α = β = 0.5), the
number of factors reported is averaged out of 500 simulations, on the
right side are the standard deviations

N T
serial correlations in ft and ut (α = β = 0.5)

SC1 SC2 BIC3 ER

100 20 5.120 0.355 5.062 0.257 4.168 0.587 4.992 0.109

100 40 5.142 0.387 5.050 0.218 3.486 0.653 5.000 0.000

100 60 5.112 0.334 5.032 0.176 3.084 0.665 5.000 0.000

200 60 5.084 0.278 5.028 0.165 2.574 0.652 5.000 0.000

500 60 5.002 0.045 5.030 0.182 1.996 0.614 5.000 0.000

100 100 5.066 0.256 5.006 0.077 2.500 0.662 5.000 0.000

200 100 5.048 0.232 5.006 0.077 1.884 0.669 5.000 0.000

500 100 5.000 0.000 5.000 0.000 1.194 0.611 5.000 0.000

10 100 1.630 2.040 1.190 1.711 4.770 0.431 4.436 0.944

20 100 5.468 0.717 5.282 0.575 3.914 0.622 4.982 0.204

40 100 5.436 0.656 5.104 0.312 3.380 0.670 5.000 0.000

60 100 5.428 0.624 5.150 0.357 2.950 0.661 5.000 0.000

60 200 5.358 0.571 5.060 0.238 2.370 0.659 5.000 0.000

60 500 5.348 0.569 5.044 0.205 1.798 0.631 5.000 0.000

Table 3.13: Weak factors only (r = 5, γ = 1/5), kmax = 8, (α = β = 0), the number
of factors reported is averaged out of 500 simulations, on the right side
are the standard deviations

N T
no serial correlations in ft and ut

SC1 SC2 BIC3 ER

100 20 5.008 0.109 4.996 0.063 1.356 0.631 4.986 0.118

100 40 5.018 0.147 5.002 0.045 0.154 0.361 5.000 0.000

100 60 5.004 0.063 5.000 0.000 0.012 0.109 5.000 0.000

200 60 5.002 0.045 5.000 0.000 0.000 0.000 5.000 0.000

500 60 5.000 0.000 5.000 0.000 0.000 0.000 5.000 0.000

100 100 5.004 0.063 5.000 0.000 0.000 0.000 5.000 0.000

200 100 5.000 0.000 5.000 0.000 0.000 0.000 5.000 0.000

500 100 5.000 0.000 5.000 0.000 0.000 0.000 5.000 0.000

10 100 1.706 1.713 1.204 1.388 4.134 0.649 3.656 1.468

20 100 5.402 0.649 5.130 0.869 1.722 0.665 4.928 0.308

40 100 5.336 0.558 5.028 0.165 0.304 0.482 5.000 0.000

60 100 5.214 0.434 5.022 0.147 0.024 0.153 5.000 0.000

60 200 5.248 0.472 5.008 0.089 0.002 0.045 5.000 0.000

60 500 5.280 0.492 5.014 0.118 0.000 0.000 5.000 0.000

85



3 Determining the number of factors

Table 3.14: Weak factors only (r = 5, γ = 1/5), kmax = 8, (α = β = 0.5), the
number of factors reported is averaged out of 500 simulations, on the
right side are the standard deviations

N T
serial correlations in ft and ut (α = β = 0.5)

SC1 SC2 BIC3 ER

100 20 5.112 0.357 5.014 0.387 2.172 0.654 4.896 0.444

100 40 5.160 0.398 5.028 0.165 0.698 0.579 5.000 0.000

100 60 5.112 0.340 5.018 0.133 0.158 0.371 5.000 0.000

200 60 5.078 0.276 5.028 0.165 0.020 0.140 5.000 0.000

500 60 5.004 0.063 5.050 0.218 0.000 0.000 5.000 0.000

100 100 5.060 0.246 5.008 0.089 0.010 0.100 5.000 0.000

200 100 5.044 0.249 5.008 0.089 0.000 0.000 5.000 0.000

500 100 5.002 0.045 5.004 0.063 0.000 0.000 5.000 0.000

10 100 1.652 1.655 1.184 1.362 4.174 0.610 3.658 1.455

20 100 5.472 0.747 5.080 0.965 1.870 0.686 4.900 0.427

40 100 5.516 0.729 5.136 0.343 0.518 0.553 4.998 0.045

60 100 5.442 0.666 5.114 0.324 0.100 0.300 5.000 0.000

60 200 5.374 0.554 5.050 0.218 0.004 0.063 5.000 0.000

60 500 5.366 0.611 5.050 0.218 0.000 0.000 5.000 0.000

Table 3.15: Weak factors only (r = 5, γ = 1/10), kmax = 8, (α = β = 0), the number
of factors reported is averaged out of 500 simulations, on the right side
are the standard deviations

N T
no serial correlations in ft and ut

SC1 SC2 BIC3 ER

100 20 3.606 1.784 1.628 1.661 0.000 0.000 3.838 1.918

100 40 5.004 0.063 4.954 0.310 0.000 0.000 4.998 0.045

100 60 5.006 0.077 4.998 0.045 0.000 0.000 4.996 0.063

200 60 5.000 0.000 5.000 0.000 0.000 0.000 5.000 0.000

500 60 5.000 0.000 5.000 0.000 0.000 0.000 5.000 0.000

100 100 5.004 0.063 5.000 0.000 0.000 0.000 5.000 0.000

200 100 5.004 0.063 5.000 0.000 0.000 0.000 5.000 0.000

500 100 5.000 0.000 5.000 0.000 0.000 0.000 5.000 0.000

10 100 1.300 1.173 0.724 0.926 2.562 0.766 3.010 2.006

20 100 4.586 1.234 2.458 1.598 0.004 0.063 3.472 1.477

40 100 5.284 0.494 4.880 0.535 0.000 0.000 4.940 0.359

60 100 5.246 0.449 5.010 0.134 0.000 0.000 5.000 0.000

60 200 5.252 0.474 5.010 0.100 0.000 0.000 5.000 0.000

60 500 5.280 0.492 5.016 0.126 0.000 0.000 5.000 0.000

86



3.6 Additional Tables and Figures

Table 3.16: Weak factors only (r = 5, γ = 1/10), kmax = 8, (α = β = 0.5), the
number of factors reported is averaged out of 500 simulations, on the
right side are the standard deviations

N T
serial correlations in ft and ut (α = β = 0.5)

SC1 SC2 BIC3 ER

100 20 3.944 1.452 2.578 1.708 0.038 0.191 1.702 2.053

100 40 5.118 0.390 4.950 0.309 0.000 0.000 4.496 1.369

100 60 5.124 0.359 5.016 0.154 0.000 0.000 4.994 0.077

200 60 5.064 0.268 5.026 0.159 0.000 0.000 5.000 0.000

500 60 5.006 0.077 5.034 0.181 0.000 0.000 5.000 0.000

100 100 5.070 0.271 5.004 0.063 0.000 0.000 5.000 0.000

200 100 5.048 0.214 5.008 0.089 0.000 0.000 5.000 0.000

500 100 5.000 0.000 5.000 0.000 0.000 0.000 5.000 0.000

10 100 1.408 1.149 0.816 0.951 2.562 0.753 2.750 1.987

20 100 4.602 1.413 2.628 1.720 0.008 0.089 3.284 1.491

40 100 5.458 0.691 4.972 0.558 0.000 0.000 4.858 0.561

60 100 5.530 0.680 5.114 0.330 0.000 0.000 4.980 0.260

60 200 5.318 0.538 5.056 0.230 0.000 0.000 5.000 0.000

60 500 5.356 0.578 5.034 0.181 0.000 0.000 5.000 0.000
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4 Applications of weak factor model in

large dimensional covariance matrix

estimation

4.1 Introduction

Suppose we want to estimate the covariance matrix Σ of a homoskedaticity multi-

variate process Yt, the sample covariance matrix constructed from T observations are

very ill-behaved when the cross-section dimension N is as large as T . The literature

discussing the issue with large-dimensional sample covariance matrix is extremely

large, e.g. some can be found in Ledoit and Wolf (2004), Fan et al. (2011, 2013) and

the references therein.

As discussed in Section 1.2.2, proposing factor structure gives great advantage in

estimating large covariance matrix. Recall that if we assume Yt has factor structure,

i.e. Yt = Λft+ut, then we have Σ = ΛΣfΛ′+ Σu. In here, Σf is the r× r covariance

matrix of ft and Σu is the covariance matrix of ut. While Σf can be estimated by

the covariance matrix of ft (assuming that r is small), Σu requires more attention

as it is still a N ×N matrix.

Originally, it is assuming to be a diagonal matrix, with i-diagonal entry estimated

by the sample variance of ũit = yit − λ̃′ift (or = yit − λ̃′if̃t if the factors are not

observed and need to be extracted from Yt)
1. However, after approximate factor

1See Chapter 2 for notations and the factors identi�cation techniques.
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model is introduced, it is more reasonable to relax the diagonal restriction and only

assume it is sparse.

Therefore, as the �nal part of constructing the estimator for Σ, we need to have

good estimators for Σu. In this chapter I focus on the recently proposed estimator

for Σu in high-dimensional setting, which is discussed in the principle orthogonal

complement thresholding (POET) estimators proposed by Fan et al. (2013).

4.2 The POET estimators for Σ and Σu

Recently, the POET estimators proposed by Fan et al. (2013) has provided a very

useful technique for estimating the covariance matrix of large multivariate series. The

main idea of this method is to decompose the covariance matrix into a low rank and

a sparse components, which is implied by proposing the approximate factor structure

into the observed data.

In fact, this is not the only attempt to identify the decomposition of Σ into a low

rank (ΛΣfΛ′) and a sparse matrix (Σu), for example see Wright et al. (2009), Lin

et al. (2009), etc. Comparing to these approaches, the POET requires a stronger

assumption for the low rank part, i.e. the systematic eigenvalues grow with rate

� N . When this assumption is satis�ed, we can identify exactly the factors and

loadings space. This assumption is standard in factor analysis literature, where we

not only require ΛΣfΛ′ but we also need the factors (and loadings) values. In this

case, the factors and loadings can be estimated consistently by PCA techniques.

The factor structure adopted by Fan et al. only includes strong factors, and hence

the large signal-to noise ratio helps to improve the rate of convergence of the POET

estimator. In the discussion of Fan et al. (2013), Yu and Samworth (2013) point out

that this condition can be loosen in some certain cases. However, Yu and Samworth

do not discuss about the e�ect of this condition to factors estimation, which is now

shown in our Theorem 2.1. Furthermore, a problem arises for estimating the number

of PCs (or factors) because now the gap that separate the eigenvalues of the factors
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part and the idiosyncratic errors part is narrow. In this section, I contribute some

discussion regarding to the POET estimator, particularly with results in Chapter

2 and 3 we can show that the POET estimator is still consistent under our weak

factor model. Furthermore, the number of factors is not an important matter for the

consistency of POET. In fact, any numbers of PCs greater than or equal to r will

make the POET estimator consistent.

4.2.1 Steps for constructing POET estimator

The construction of POET estimator can be summarised in the following steps:

1. Suggest the number of factors k to be some known values, or estimate by some

given criteria.

2. Given k, estimate (Λ̃k, F̃ k) by PCA as in Chapter 2.

3. Then the sample residuals covariance matrix are construed: Σ̃k
u = (σ̃kij)N×N

4. Applying thresholding operator to Σ̃k
u to obtain an estimator for Σu, i.e.

Σ̃k,τ
u =

(
σ̃k,τij

)
N×N

and


σ̃k,τij = σ̃kij for i = j

σ̃k,τij = skij

(
σ̃kij

)
for i 6= j

(4.1)

The operator sij(.) is the adaptive thresholding. For example, the adaptive

hard thresholding is the one used above when estimating the sparsity level:

skij(σ̃
k
ij) = σ̃kijI

(∣∣∣σ̃kij∣∣∣ > hkij

)

Other thresholding rules are the soft thresholding, smoothly clipped absolute

deviation and the adaptive lasso (see Rothman et al, (2009) for more discus-

sions).

5. Finally, the POET estimator for Σ is constructed as: Σ̃k,τ = Λ̃kΛ̃k
′
+Σ̃k,τ

u since
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F̃ k
′
F̃ k/T = Ik by our restriction in PCA.

4.2.2 Spiked eigenvalues and the choice for the number of factors

There are a large number of discussants contributing comments to the POET method

of Fan et al. (2013). Many of them gave their concerns about the spiked eigenvalues,

which is implied by Assumption 0 (i) in Chapter 1. For example, Yu and Samworth

(2013) suggest a weaker version of the pervasive condition, which is a speci�c case of

our proposed model where the factors have strengths Nα for α ∈ (0, 1). Therefore,

the results we have in this paper con�rm that the main results of Fan et al. (2013)

still go through, if the strength of the weakest factor grows at least faster than

max(
√
N,N

√
logN/T ). Of course, the rate of convergence of Σ̃k,τ will depend on

the estimated values for the factors and loadings, and therefore will be slower when

the factors are not pervasive.

In addition, when building up to our main result, Lemma 3.3 implies that the

POET method can be used with any values of k ≥ r. Consequently, even if one can

not determine a reliable number of factors, choosing a relative large value to start

with is recommended. Based on our developed lemmas, the following theorem can

be derived.

Theorem 4.1. Under assumptions 1-5, if k ≥ r then

(i)
∥∥∥Σ̃k,τ

u − Σu

∥∥∥ = Op(
√

logN
T +

√
N

[dr(N)] + N√
T [dr(N)]

)

(ii)

∥∥∥∥(Σ̃k,τ
u

)−1
− Σ−1

u

∥∥∥∥ = Op(
√

logN
T +

√
N

[dr(N)] + N√
T [dr(N)]

)

Apart from the idiosyncratic covariance matrix, using Σ̃k,τ as an estimator for Σ

is not consistent under the same matrix norm as above. However, as shown in Fan

et al. (2013), the entropy loss matrix norm
∥∥∥Σ̃k,τ − Σ

∥∥∥
Σ
converges to 0, whereas∥∥∥Σ̃− Σ

∥∥∥
Σ
does not converge if N > T .
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4.2.3 Simulated examples for demonstration

In this section, I demonstrate the idea behind Theorem 4.1 with a simulated exper-

iment. Consider the same data generation processes as in Section 3.3 of Chapter 3,

i.e.

Yt = Λ(1:m)f
(1:m)
t + γΛ(m+1:r)f

(m+1:r)
t + ut.

For simplicity I ignore the serial correlation parameters α and β as in Chapter 3. The

weakness of the factors are obtained by letting γ = 1
5 . In addition, I choose r = 10

which means that the model will have a total of 10 factors. Three scenarios (all-

strong, all-weak, mix-strong-and-weak factor models) will be applied to demonstrate

the results. In each scenario setting, I try k = 1 to 20 (k is the number of principle

components extracted to estimate the idiosyncratic error covariance matrix) and

verify that for any k ≥ 10 the estimators Σ̃k,τ
u are all very closed to Σu. This

consolidates the result we have in Theorem 4.1, that is POET will work as long as

we extract more than r principle components.

• In the case of strong factors, Figure 4.1 reports
∥∥∥Σ̃k,τ

u − Σu

∥∥∥ for k = 1 to 20

for 20 simulated models. Σu is known as we use this to generate ut, and Σ̃k,τ
u

is estimated as described above. It can be seen from there that when k > r

the gain in consistency of Σ̃k,τ
u is negligible.

• In the case of mix-strong-and-weak factors (I let m = 4 to represent 4

strong factors and 6 week factors), once all the strong factors are extracted,

Σ̃k,τ
u is reasonably closed to Σu, which is what we expect. However, better

estimator is obtained if we use at least the true number of total factors, see

Figure 4.2 for results on 20 simulated models.

• In the case of all-weak factors, we can see that the change of
∥∥∥Σ̃k,τ

u − Σu

∥∥∥
right at the value where k = r is more gradual (see Figure 4.3), which is due to

the fact that now the factors are less separated from the idiosyncratic errors.
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In all cases, it can be seen that for any k ≥ 10 the estimators Σ̃k,τ
u should be consistent

for Σu. This agrees with the main idea behind the method for selecting the number

of factors in Chapter 3, which states that once we extract more than r principle

components, the sparsity level of the sample idiosyncratic covariance matrix will not

signi�cantly change.

Figure 4.1:
∥∥∥Σ̃k,τ

u − Σu

∥∥∥, k = 1 : 20 for 20 di�erent strong factor models, T = 200,

N = 200 and r = 10
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Figure 4.2:
∥∥∥Σ̃k,τ

u − Σu

∥∥∥, k = 1 : 20 for 20 di�erent mixture strong and weak factor

models, T = 200, N = 200 and r = 10, in which the �rst 4 factors are
strong (γ = 1

5).
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Figure 4.3:
∥∥∥Σ̃k,τ

u − Σu

∥∥∥, k = 1 : 20 for 20 di�erent weak factor models (γ = 1
5),

T = 200, N = 200 and r = 10

4.3 Remarks

The POET estimator is ultimately to obtain an estimator for Σ. However, in the path

of constructing this, we need to obtain a consistent estimator for the idiosyncratic

errors covariance matrix Σu, assuming it is sparse. The result we show in this chapter

is useful in two aspects. Firstly, we can con�rm the process is still valid even when the

factors are not all pervasive. Secondly, it makes the estimator for Σu less dependent

on the number of factors.

Finally, it is interesting to note that the estimator for Σu also has many applica-
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tions in practice. For example, the statistics used in the asset pricing theory require

an estimator for Σ−1
u . More precisely, suppose we have a multivariate linear factor

model:

Yt = α+ Λft + ut

and we wish to test if the vector α is zero. This will support the argument of Ross

(1976) for the Arbitrage Pricing Theory, that is the expected excessive return of

any �nancial asset i at time t (yit) should equal the expected excessive returns of

some risk factors (ft) times the loading (λi), if the market is frictionless. Then when

Σ−1
u is known, the Wald statistics includes the terms α̂′Σ−1

u α̂ (see Sentana (2009)

for a survey in various tests). Therefore an estimator for Σ−1
u will be useful for such

applications.

In addition, the rate of convergence obtained in Chapter 2 for weak factors can lead

to a possible improvement when estimating the covariance matrix if segmentation

can be applied to the original data set. Particularly, in this case the original time

series can be divided into several sub-vectors (region), and those sub-vectors are gen-

erated by regional factors that are both contemporaneously and serially uncorrelated

across regions. Therefore, they can be modeled separately. However, out-of-sector

dependence is still possible, due to the idiosyncratic shocks that are not included

in the factors. This factor model has a loading matrix similar to the one in (1.4),

so e.g. in the case of 3 regional factors for 3 regions, we can have the following

representation: 
Y1t

Y2t

Y3t

 =


Λ1 0 0

0 Λ2 0

0 0 Λ3



f

(1)
t

f
(2)
t

f
(3)
t

+ ut. (4.2)

In here (4.2), Λi and Y1t are Ni × 1 vector, and N1 + N2 + N3 = N . In order to

di�erentiate between a factor and a idiosyncratic errors, we assume that the regional

factors are strongly pervasive in each region, and Ni → ∞, ∀i. In this case, the

N × N covariance matrix Σ of Yt can be decompose into the following (assuming
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cov(ft) = I3):

Σ =


Λ1Λ

′
1 0 0

0 Λ2Λ
′
2 0

0 0 Λ3Λ
′
3

+ Σu. (4.3)

It can be seen from Chapter 2 that if can segmentate Yt into Yit for i = 1, 2, 3 and

estimate the factors and loadings for each sub vector than the rate of convergence

can be improved. This can be promising for a future research.

4.4 Proofs of results

4.4.1 Proofs of Theorem 4.1

Both parts of this theorem can be proved from the following results in Lemma (3.7)

of Chapter 3. Particularly, recall that we have the following two results: for k ≥ r,

P

(
max
i,j

∣∣∣σ̃kij − σij∣∣∣ ≤ cωT) ≥ 1−O
(

1

N2
+

1

T 2

)
,

and

∃ (CL, CH) such that ∀(i, j), P
(
CL ≤ θ̃kij ≤ CH

)
≥ 1−O

(
1

N2
+

1

T 2

)
.

These two results are equivalent to the probability of events A1 and A2 approaching

1 in the proof of Theorem A.1 of Fan et al. (2013). As a result, Theorem 4.1 follows

directly.

97



5 Factor models selections

5.1 Observed or un-observed factors model

In this chapter I wish to discuss about a general method that can be used for factor

models selection. Due to the advantage of capturing a large proportion of movements

in big data, factor analysis rapidly becomes more popular in practice. Parallel to

this, researchers nowadays can face a problem with choosing between many potential

factors for a same data set, e.g. in asset pricing, returns of �nancial assets can be

explained by many types of factors. In this case, one will have to make a decision of

whether to use observed factors (such as Fama-French, Macro factors, etc.) or latent

factors estimated by PCs. There are some studies that attempt to link the factors

statistically extracted to the observed ones, in order to provide more meaningful

insight1. However, if they are not statistically identical then one needs to decide

which factors �t better to the observed data.

In this thesis, Chapter 3 studies a criterion for choosing the number of latent fac-

tors, which is equivalently to select an optimal model of unobserved factors estimated

by PCA. More existing criteria for choosing the number of factors can be found in

the discussion in there. On the other hand, observed factors models also have their

long establishments in asset pricing, with many factors models proposed, including

the well-known Fama-French 3-factor model.

To choose the best observed linear factor model, some well-known methods are

present, for example Sparks et al. (1983) generalise Mallow (1973) Cp criterion to

1e.g. see Bai and Ng (2006)
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the multivariate model. The criterion for a model F with k factors and residuals

sample covariance Σ̃k
u (conditional on F) is:

Cp = (T − kmax)
(

Σ̃kmax
u

)−1
Σ̃k
u + (2k − T )IN (5.1)

In here, there can be some confusion in the notation, because for observed factors

model, k may not be di�erent across models, so it should be understood that Σ̃k
u is

conditional of the set of factors used. In addition,Σ̃kmax
u refers to the case where all

the available factors are included.

Other well-known criteria for variables selection are the AIC and BIC under the

framework of maximum log-likelihood and a penalty function. The multivariate

versions of them for observed factor models are as follow:

AIC = log
(∣∣∣Σ̃k

u

∣∣∣)+
[2kN +N(N + 1)]

T
(5.2)

and

BIC = T log
(∣∣∣Σ̃k

u

∣∣∣)+

(
k(N + 1) +

[N(N + 1)]

2

)
log(T ) (5.3)

Notice that these are di�erent than the AIC and BIC for unobserved factors in Choi

and Jeong (2013).

We already see how the sparsity level is estimated for the case where the fac-

tors are unobserved. The key parameter in the thresholding value is ωT , which is

obtained from the convergence rate of maxi≤N
1
T

∑T
t=1

(
ũkit − ukit

)2
for k < r and

maxi≤N
1
T

∑T
t=1

(
ũkit − uit

)2
for k ≥ r where

{
ũkit
}
are the residuals after subtracting

the estimated factors. For the observed case, this quantity will change due to the

fact that we no longer need to estimate the factors themselves. This is derived in
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Fan et al. (2011). Therefore, the thresholding function for each case is as follows:


√

logN
T + 1√

N
for estimated factors√

logN
T for observed factors

Notice that the above values for ωT correspond to the case with strong factor only,

when the factors are not all strong, we can use the values for ωT as shown in the

criteria SC1 and SC2. If one concerns about a situation where some observed factors

are weak, some modi�cation can be done to modify ωT in this case, but for simple

illustration I will not pursue it.

To estimate the sparsity level, the hard thresholding procedure as in (3.3) is still

applied. As the other part of the whole criterion, the choice of penalty function has

already been discussed, and it should not be sensitive to whether factors are strong

or weak. Particularly, I will use the following criterion:

SC: m̃(Σk
u) +

kN1/2

10
(5.4)

where the estimated sparsity level m̃(Σk
u) is de�ned as:

m̃(Σk
u) =


maxi≤N

∑N
j=1 I

(
|σ̃k

ij|
|σ̃k

iiσ̃
k
jj|

> C

(√
logN
T + 1√

N

))
for estimated factors

maxi≤N
∑N

j=1 I

(
|σ̃k

ij|
|σ̃k

iiσ̃
k
jj|

> C

(√
logN
T

))
for observed factors.

(5.5)

However, a key problem arising when evaluating both observed and unobserved

factors at the same time is whether it is fair to use di�erent thresholding parameter for

each case. Some prior study shows that for the same Σ̃k
u, the thresholding parameters

can have big impact on the sparsity level estimated. If we over- or under- estimate

the sparsity level, it would not be sensible to evaluate di�erent models based on

the sparsity level. Therefore, it is really important that data-driven choice for C is

applied to all of our thresholding procedure, to minimise the risk of mis-specify the
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5.2 Empirical Analysis in the FTSE 100 market

sparsity level.

5.2 Empirical Analysis in the FTSE 100 market

In this empirical analysis, I use the multivariate data containing returns of 66 stocks

in the FTSE 100. Most of the empirical studies and simulations use data from the

US markets to validate the Fama-French model, therefore I wish to try using data

in the UK market to extend the study in a larger scale.

5.2.1 Models description

The observed factor models used in this section are the 1-factor CAPM model, the

3-factor Fama-French model, and the 4-factor Carhart model (1997). These fac-

tors include the market returns minus the risk-free rate (Rm-Rf), Small-Minus-Big

(SMB), High-minus-low (HML) and the momentum factors (UMD). Rm-Rf is the

benchmark describing the premium return of the whole FTSE 100 market over the

risk-free rate, which is exactly the factor we have in the well-known CAPM model. In

this case, it is the value-weight return on all FTSE 100 stocks minus the one-month

US Treasury bill rate (obtained from Ibbotson Associates). SMB factor represents

the excess returns of stock with small capitalisation to stock with big capitalisation.

HML factor represents the excess returns of stock with high book-to-market ratio

to stock with low book-to-market ratio. The reason for including these two factors

is that Fama and French (1993) observe that asset with small capitalisation and

high book-to-market ratio (value stock) tends to give higher return than the rest.

Momentum factor measures the excess of high return stocks and low return stocks

recently, because it is observed that stock which recently perform well can keep its

momentum2. Momentum factor is added here to see if it is in fact a good factor

for returns in the UK market. We usually refer to these 4 factors as Fama-French

type. The values of these factors are obtained from The X� Centre for Finance and

2See Carhart (1997) for more discussion.
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Investment at the university of Exeter. More descriptions on how to construct the

values of the factors can be found on Kenneth French's website.

I use the monthly returns of 66 stocks (N = 66) in the FTSE 100 available from 1

Jan 2003 to 31 Dec 2010 (T = 95). The returns are calculated by the logarithm of the

ratios of prices between the �rst date of any two consecutive months in this period.

This sample period includes the time when the global �nancial crisis happens in

2008. We expect to have high volatility and good amount of cross-section correlation

in the idiosyncratic errors in the asset returns.

5.2.2 Empirical Results

In Table 5.1 I report the results from all the criteria for the observed model selec-

tion, including the estimated level of sparsity m̃(Σk
u) and the sparsity criterion (SC)

m̃(Σk
u) + k g(N)/10. In here, the data-driven method is used to select the constant

when estimating m̃(Σk
u).

We can see that all the criteria perform very di�erently, for example the AIC sug-

gests market return, SMB, HML as the 3 factors in the best model whereas the BIC

suggests market return only. Other criteria also give di�erent result. Therefore fur-

ther examination should be taken when choosing the model, such as cross-validation.

For the unobserved factors estimated by PCs, we also try di�erent criteria to

examine how many factors for the FTSE 100 asset returns, see Table 5.2. Notice

that the criterion SC1 and SC2 in Chapter 3 have the adjusted value of ωT for the

possibility of weak factors, but they still work if the factors are all strong. In this

case, it is suggested that 4 and 3 factors exist among 66 components by the SC1 and

SC2 respectively.

For better comparison with results in table 5.1, we also apply the sparsity criterion

under the assumption that all factors are strong. In this case, we use ωT =
√

logN
T +

1√
N
, and the constant of thresholding are chosen by data-driven method. This is

shown in Table 5.3. Based only on the column SC, it can be seen from table 5.1 and

102



5.2 Empirical Analysis in the FTSE 100 market

5.3 that only 2 factors should be included in the model, which are market returns

and SMB in the case of observed factors. However, using the 2 PCs as the estimators

for the latent factors yield slightly better result, as the SC value of PCs factors is

lower.

Also, these numbers have meaning if we ignore the penalty part and look at m̃(Σk
u)

only. In this case, this indicates what conditional on these factors, any idiosyncratic

errors are at most correlated with 5 or 3 others in the cross-section, so these factors

capture quite well the amount of correlations for returns of 66 companies in the

FTSE 100 during this period.

Table 5.1: Some criteria for each observed factor model

Factors included m̃(Σk
u) SC AIC BIC ‖Cp‖

∥∥∥Σ̃k
u

(
T+k
T−k

)∥∥∥
Rm-Rf 12 12.8124 -351.01 -27526.22 16248.08 0.2488442

SMB 61 61.8124 -348.1545 -27254.95 31729.10 0.2688127

HML 39 39.8124 -348.3557 -27274.06 26276.41 0.2779500

UMD 60 60.8124 -347.0888 -27153.70 35949.29 0.3419941

Rm-Rf, SMB 5 6.6248 -351.7284 -27421.36 580.49 0.2071120

Rm-Rf, HML 32 33.6248 -351.7803 -27426.28 421.04 0.2347538

Rm-Rf, UMD 33 34.6248 -350.7663 -27329.96 231.76 0.2507485

SMB, HML 57 58.6248 -348.8321 -27146.21 26150.12 0.2529516

SMB, UMD 66 67.6248 -347.8230 -27050.34 31049.13 0.2702243

HML, UMD 61 62.6248 -348.0539 -27072.28 25390.25 0.2758726

Rm-Rf, SMB, HML 6 8.4372 -352.2783 -27300.49 632.88 0.2095658

Rm-Rf, SMB, UMD 6 8.4372 -351.4926 -27225.85 607.40 0.2100846

Rm-Rf, HML, UMD 7 9.4372 -351.5913 -27235.22 449.09 0.2359544

SMB, HML, UMD 36 38.4372 -348.5143 -26942.91 25434.83 0.2538530

Rm-Rf, SMB, HML, UMD 7 10.2496 -352.0831 -27108.84 653.6978 0.2123541

Table 5.2: Number of latent factors suggested by di�erent criteria

ER (no zero) BIC3 (no zero) SC1 SC2 BIC3 ER

3 1 4 3 0 0
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Table 5.3: Sparsity levels and sparsity criterion after each number of factors ex-
tracted, assuming that all factors are strong.

Number of factors m̃(Σk
u)) m̃(Σk

u) + kg(N)/10

0 61 61

1 5 5.8124

2 3 4.6248

3 3 5.4372

4 3 6.2496

5 1 5.0620

6 1 5.8744

7 1 6.6868

8 1 7.4992

9 1 8.3116

10 1 9.1240

5.3 Remarks

In this chapter, I propose to use adaptive thresholding procedure directly applied to

the covariance matrix of idiosyncratic errors. However, unlike the standard use of

thresholding to provide the estimated covariance matrix, I only use thresholding to

estimate the level of sparsity of the true covariance matrix. Ultimately, estimating

the level of sparsity of the idiosyncratic errors covariance matrix is very useful for

constructing the SC value, which in a way measures the goodness of factor models.

Based on the empirical results, it can be seen that the SC provides informative values

which can be used to compare the observed and unobserved models.

However, one challenge in using SC is that estimating the level of sparsity requires

good estimation for the value of C. For comparing factor models, choosing a right

value of C needs to be careful. A relatively small value of C does not make enough

entries to zero, and the large value of C forces everything to zero. In both case it is

hard to di�erentiate the level of sparsity between two thresholded covariance matri-

ces. Therefore, I have to use the data-driven method for selecting C in this Chapter,

which takes considerably longer time than traditional model selection methods such

as AIC or BIC.
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6 Concluding remarks and further

directions

The research pursued in this thesis is mainly regarding to estimating the factor

models in the case where not all factors are strongly pervasive. As discussed in

several applications, factor model is a powerful empirical tool in Economics and

Finance, and therefore our �ndings can be a useful contribution to the current rich

literature.

6.1 The �ndings of the thesis

In Chapter 2 it is shown that under some regularity condition, the factors space

can still be consistently estimated if the weakest factor has up to a certain strength.

As we can see, in Theorem 2.1, the convergence rate is signi�cantly a�ected when

the pervasiveness condition is relaxed up to a level dr(N). Particularly, this rate is

N
[dr(N)]2

+ N2

T [dr(N)]2
so in order to identify the factors, we need

√
N = o(dr(N)) and

N/dr(N) = o(
√
T ). In addition, due to some lemmas used in the proof of theorem

2.1, we also require N
√

logN/dr(N) = o(
√
T ), hence the lower bound for dr(N) is

max(
√
N,N

√
logN/T ). When T is as large as N , this is approximately

√
N logN .

Therefore, if dr(N) achieve the rate Nα for some α ∈ (1
2 , 1), the consistency of

sample PCs as estimators for the factors space can be assured, although clearly

stronger factors are easier to identify.

In addition, in Chapter 3 I propose a new way to select the number of factors,
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which can work when the factors are weak. Based on simulations, it is recommended

to use SC1 and SC2 when we think the factors can have various strengths. Monte

Carlo simulations verify the performance of this criterion under weak factor model,

however in some cases the performances are not always stable. In the near future,

more study regarding this class of sparsity criterion will be pursued.

One of the direct consequences of our �ndings is the consistency of the POET co-

variance matrix estimator, even when the underlying factors model is not as strong

as originally assumed. Moreover, it is shown that the number of factors (or orthog-

onal PCs) should not play a crucial role in the POET. However, estimating more

factors than what is required may lose e�ciency of the covariance matrix estimated.

A �nal contribution in this paper is factor model selection, in which a common

problem of which factor model to choose is tackled. This should be useful in practice,

because once factor model is considered as a successful tool, we will often face the

di�culty of choosing a best model: observed factors or unobserved factors. It is also

straightforward to apply to the case where one can have a mix model between ob-

served and unobserved factors, in which the key component in thresholding function

should be used as in the unobserved case.

6.2 Future research

A �rst extension to chapter 2 would be to examine the asymptotic distribution of

the factors estimated in the weak model. Furthermore, the performance of the spar-

sity criterion is sensitive to the practical choices of the thresholding parameters and

penalty functions, which are only theoretically shown to satis�ed some conditions.

Therefore, more practical way of choosing these values in order to improve the per-

formance of the sparsity criterion should be further studied.

One of the important applications of factor model in Economics is the factor-

augmented model, which is also called forecasting with di�usion indexes. For such

model, an extra level of convergence needs to be derived for the estimated coe�cients
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in the main regressions equation. The results for the case of strong factor model is

well established, but an adaption to our case needs to be developed in the future.

Similarly to the weak factor model is a sparse VAR model, because in both mod-

els some variables typically on the right-hand side do not a�ect the majority of

cross-sectional components. However, I focus on the case where the cross-sectional

components may not be clusterised into uncorrelated subgroups and we have to ex-

tract factors directly from the original data. The consistency of the factors and

loadings estimated by principle components (PCs) then depends on the strength of

the weakest factor. It is worth noting here that after the factors are identi�ed (under

certain restrictions), we can apply the LASSO method for estimating the loadings to

exactly identify the zero cases. This can be a promising area, as one need to show

the convergence of the LASSO estimated loadings to the true space. This is unlikely

to be straightforward because of the high dimension and the weakly pervasiveness of

the factors.

In the other case of the where it is possible to segmentate all the cross-section

components into regions based on their dependence structure, a weak factor can be

interpreted as a regional factor. A possibly better approach in here is to the extract

the regional factor from each region, instead of from the whole original data. If

natural segmentation in practice exists such as industries in the market or regions in

the global economy, empirical work can be done to examine to improve the factors

estimated from each region, comparing to from the whole data set. More important,

the clear next step is to �nd an automated way for segmentation and work out the

rate of convergence of the regional factors estimated from the estimated regions.
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