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Abstract 

Movile Cave is an isolated cave ecosystem that receives no input of 

photosynthetically fixed carbon. Instead, carbon is primarily fixed through light- 

independent bacterial processes such as chemolithoautotrophy and methanotrophy. 

Distinctive microbial floating mats appear at the surface of groundwater flooding the 

cave, at the redox interface between the oxygenated air above (7-10%) and the 

anaerobic water below. Methane, of geological origin, bubbles up into the cave and is 

present in the cave atmosphere (0.5-1%). 

The in situ methanotroph community of Movile Cave microbial floating mat was 

determined by examination of metagenomic sequencing and pmoA gene microarray 

data sets. The metagenonomic sequencing approach indicated a Methylococcus 

capsulatus -like organism to be the most abundant methanotroph in Movile Cave.  

pmoA microarray analysis indicated a high abundance of Methylocystis pmoA gene 

sequences with Methylococcus capsulatus-like pmoA gene sequences being relatively 

abundant.  

The methane oxidising bacterium Methylomonas strain LWB was isolated from a 

sample of lake water from Movile Cave. Phylogenetic analysis of the genes encoding 

16S rRNA and the soluble and particulate methane monooxygenase functional gene 

markers pmoA and mmoX, respectively, confirmed that strain LWB belongs to the 

genus Methylomonas. Methylomonas LWB has a second putative copy of the 

particulate methane monooxygenase pXM which displays an unusual gene 

orientation. The Methylomonas LWB genome contains all genes encoding the typical 

Type I methanotroph ribulose monophosphate pathway for formaldehyde 

assimilation and all genes required for a complete TCA cycle.  

Active methane oxidisers in Movile Cave were identified by DNA Stable-isotope 

probing. Organisms belonging to the genera Methylomonas, Methylocystis, 

Methylococcus and Methylobacter- were identified from 
13

C-enriched DNA. Cross-

feeding of the 
13

C label into non-methanotrophic organisms identified from the 
13

C-

enriched DNA indicated that methanotrophs provide a carbon source for other 

microorganisms in Movile Cave. 
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Chapter 1 

Introduction  
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1.1 Cave and karst systems 

 

 

Caves and karst are natural and abundant land morphologies that are found across the 

globe. There can be cracks and crevices to entire networks of cathedral sized hollows 

within the Earth’s crust. Some caves will be devoid of life, impenetrable to living 

organisms and have no interaction with the external environment. Others may be 

teaming with life due to biochemical exchange with external environments and the 

surface ecosystem. Whilst some of these environments would be considered benign, 

others are some of the most extreme and inhospitable places on Earth, highlighting 

them as areas of focus for research. Speleology is the study of cave and karst 

formations, covering geology, shape and structure, speleogenesis - the process of 

cave formation, organisms and also the recreational activity of cave exploration. 

 

Karst by definition are land features predominantly found in limestone that are 

eroded through processes, such as condensation corrosion leading to characteristic 

formations including sinkholes, fissures and often include underground streams. 

Karst structures predominantly form due to the descent of meteoric surface water 

carrying with it enough energy, in the form of water, air and gravity, to carve out 

passages and support life (Palmer, 1991). Much effort has been directed at 

understanding hypogenic speleogenesis, the formation of these karst structures below 

the surface of the earth that form due to the ascension of subsurface water (Forti et 

al., 2002). One such case investigating the speleogenesis of Buso della Rana-Pisatela, 

a karst system in the Venetian Alps, indicated that the oxidation of pyrite (FeS2) leads 

to acidification of the ground water. The acidic ground water then dissolves the 
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limestone (a by-product of which is the formation of gypsum crystals, which can be 

found throughout the cave system), and this is deposited elsewhere as the water flows 

(Tisato et al., 2012). It is thought that the dissolution of limestone and deposition 

process that forms these karst structures expand the dimensions of the hollow by only 

a few millimetres per 100 years, where the flow of water is low to moderate 

(Dreybrodt et al., 2002). 

 

Karst structures can lead to the production of vast cave systems such as Frasassi, 

Monte Cucco and Acquasanta Terme caves, found at the central Umbria and Marche 

regions in Italy (Galdenzi & Menichetti, 1995). The Frasassi cave system is estimated 

to have over 25km of solutional passages. The waters running through Frasassi are 

rich in H2S, and there is a regular supply of O2 coming into the cave from the 

atmosphere or carried by seepage water (Galdenzi et al., 2008). As a result, there is 

the presence of sulfuric acid in the cave water which drives the speleogensis. 

Galdenzi et al., (2008) noted that there was an increase of CO2 in the atmosphere 

where the corrosion was taking place and explained the process through the following 

geochemical reactions:  

 

1. H2S + 2O2 → H2SO4 

2. H2SO4 + 2H2O → 2H3O
+
 + SO4

2-
 

3. H3O
+
 + CaCO3 → Ca

2+
 + HCO3

-
 + H2O 

4. HCO3
-
 + H3O

+
 → H2CO3 + H2O 

5. H2CO3 → H2O + CO2(g) 
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An experiment in the Frasassi cave system was carried out, in which, limestone 

blocks were placed around the cave. After 5 years the change in limestone mass was 

observed. It was noted that the dissolution of the limestone reached rates of around 

20 mg cm
-1

 year
-1

, both when the blocks were placed in areas containing H2S vapour 

and also when they were directly within the acidic water (Galdenzi et al., 1997; 

Galdenzi, 2012).  

 

1.1.2 Cave Microbiology 

 

With the discovery of more and more caves, scientists have become interested in 

discovering how microorganisms survive and interact with these unusual 

environments. Most cave microbiology research has focused on microbial sulfur 

metabolism. The Italian Frasassi and Acquasanta Terme caves mentioned previously 

(Galdenzi and Menichetti, 1995) have been subject to much scrutiny of the microbial 

populations living within.  White microbial floating mats have been discovered on 

the waters of Acquasanta cave. In addition, an investigation by Jones et al., (2010) 

found they had low biodiversity consisting mainly of lithotrophic Gamma- and 

Epsilonproteobacteria, which is a consistent finding with other caves systems with 

fast flowing waters that have a high dissolved sulfur to oxygen ratio. In the study by 

Macalady et al., (2008), it was also shown that filamentous sulfur oxidising bacteria 

thrive where a high dissolved sulfur to oxygen ratio was present, and also that 

Thiothrix species were more dominant when the sulfur to oxygen ratio was relatively 

lower. Snottites, highly acidic viscous biofilms found to dangle from the cave walls 

in Frasassi, are thriving with microbial life dominated by the bacterial species 

Acidithiobacillus along with the Thermoplasmata archaeal group (Macalady et al., 
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2007). A later metagenomics study of cave Snottites by Jones et al., (2014) indicated 

rare species belonging to Ferroplasma, G-plasma and some Acidimicrobium species 

to potentially oxidise sulfide in the Snottites along with the more abundant 

Acidithiobacillus previously identified.  Other than Movile Cave, no other cave has 

been found to have high concentrations of methane,  Methanotrophy in cave 

environments is so far unique to Movile Cave (Hutchens et al., 2004).  

 

 

1.2 Movile Cave 

 

1.2.1 Formation of Movile Cave 

 

In 1986, a power company was digging large shafts in the south eastern region of 

Dobrogea, Romania to see if the region would be a suitable area in which to build a 

geothermal power plant. The region of Dobrogea is well known by the locals to be 

very geologically active. There are several sulfidic springs in the local vicinity as 

well as milky white sulfidic lakes and methane seeps. One shaft in particular was 

excavated about 2 km from the Black Sea in a disused field. The shaft was situated 

on a small hill (Movile in Romanian), that was a part of a series of hills surrounding a 

sinkhole depression feature in the landscape (Figure 1.1). The shaft of about 25 m 

was found to have tapped into a cave system that ran below the series of hills. After 

this discovery, the power company were unable to carry on with their investigations, 

and a group of speleologists investigated and described the extensive cave structure 

beneath (personal communication, Dr Alexandra-Maria Hillebrand-Voiculescu, Emil 

Racoviţă, Institute for Speleology, Romania).  
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Figure 1.1:  Location of Movile Cave. The images B and C were obtained from 

Google maps (https://maps.google.co.uk/). The cave is situated in the south eastern 

region of Romania (Dobrogea) just off of the coast of the Black Sea. The series of 

hills around the sinkhole is west of the coastal town on Mangalia, about 2 km from 

the beach. On top of one of the small hills to the eastern side of the sinkhole lies the 

entrance to Movile Cave.  

 

Movile Cave is a hypogenic karst system situated around 25 m below the Earth’s 

surface. It consists of an entrance shaft, a descending passageway, a room with a 

lake, flowing ground water and two air bell structures (Figure 1.2). At the surface, 

the limestone is covered with clay and loess, which prevent meteoric waters from 

entering the cave system and also prevent gaseous exchange between the cave and 

the surface (Sarbu and Kane, 1995).  The upper cave tunnels covering a distance of 

around 200 m are dry, highlighting the fact that meteoric water does not penetrate the 
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cave. The lower region of the cave is flooded with thermal ground water. The 

temperature of the cave water is 21 °C, while the wall and air temperature is 

approximately 19-20 °C, which is much higher than the average temperature above 

ground of 8 °C. The water is rich in hydrogen sulfide at a concentration of 8-12 mg/l 

(Sarbu and Kane, 1995). The flow rate of the water is estimated to be 5 L/s, and there 

is a dissolved methane concentration of 0.2 mM (Sarbu and Lascu, 1997). The air 

found in the air bells has an increased concentration of CO2 (2.5-3.5%) and high 

methane concentrations of about 0.5-1%. Conversely, there is a reduced 

concentration of O2 (7-10%) (Sarbu et al., 1996). Measurements of carbon isotope 

ratios in the cave indicate that most of the CO2 in the cave atmosphere is produced 

from the isotopically light geological methane that enters the cave (Sarbu et al., 

1996). There is a redox interface at the surface of the water in Movile Cave due to the 

presence of reduced compounds in the water and oxygen in the atmosphere. 

Microorganisms thrive at this redox interface and organic floating mats form at the 

water-air interface (Sarbu et al., 1994). These floating mats are made up of bacteria, 

fungi and protozoa feeding on primary substrates and taking advantage of the redox 

potential (Sarbu et al., 1994). 

 

The pH inside the cave is maintained at 7.3, due to the buffering ability of the 

limestone walls, through condensation corrosion producing bicarbonate (Figure 1.3) 

(Sarbu and Lascu, 1997). The condensation corrosion process, along with sulfuric 

acid corrosion, are the two main driving forces behind Movile Cave speliogenesis 

(Sarbu and Kane, 1995; Sarbu and Lascu, 1997). The condensation corrosion process 

occurs due to the warm water releasing water vapour into the cave atmosphere. The 

water combined with the CO2 to produce carbonic acid, which in turn, reacts with the 
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limestone walls. The limestone dissolves, the solution moves and then the limestone 

is deposited elsewhere as the water evaporates again (Figure 1.3). The sulfuric acid 

corrosion is contained within the regions flooded by water. Oxidation of the sulfide in 

the cave water occurs due to the presence of oxygen in the cave atmosphere. This 

produces sulfuric acid which reacts with the limestone again causing deposition much 

like the process occurring in the Frasassi Cave (Forti et al., 2002). The sulfuric acid 

corrosion generates CO2 which will also feed into the condensation corrosion 

process.   

 

 

Figure 1.2: Schematic representation of Movile Cave adapted from Muschiol and 

Traunspurger, (2007). The 20 m descent into Movile Cave leads to limestone clay 

covered passages. These passages end at a small lake roughly 6 m
2
. Beyond the wall 

of the lake are two air bell structures, air bell 1 and air bell 2, that are formed where 

the water level reaches into two dome structures within the limestone.  
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Figure 1.3: A representation of the condensation corrosion process occurring inside 

Movile Cave taken from Sarbu and Lascu, (1997). The production of the bicarbonate 

acts as a buffer, keeping the pH of the cave at 7.3. The constant deposition of the 

limestone (CaCO3) is responsible for part of the Movile Cave speleogenesis, the 

process of which is boosted by biogenic CO2 produced by the cave fauna. 
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1.2.2 Movile Cave, an isolated ecosystem  

There are several sources of evidence that suggest Movile Cave is an isolated 

ecosystem and does not benefit from carbon fixed by photosynthetic organisms. After 

the 1986 Chernobyl accident, the artificial nuclides 
137

Cs and 
90

Sr could be found in 

the surface soils and water bodies in the area located near Movile Cave. They were 

also found within other caves and also in the Black Sea (Sarbu and Kane, 1995). In 

the study by Sarbu and Kane, (1995) it is stated that the artificial nuclides 
137

Cs and 

90
Sr were completely absent in Movile Cave. Much of the area around Movile Cave 

is farmland, however, despite this there was no evidence of pesticides or faecal 

streptococci having entered Movile Cave (Sarbu et al., 1994).  Stable isotope ratio 

analysis was used by Sarbu et al., (1996) in order to determine the source of carbon 

and nitrogen in organic matter obtained from Movile Cave. It was shown through this 

process that Movile Cave is a self-sustaining eco-system. Organisms from Movile 

Cave were isotopically lighter than those from the surface. The organisms at the 

surface showed typical isotope ratios dependant on photosynthetic production, 

whereas the organisms from Movile Cave displayed ratios more indicative of 

chemoautotrophic production (Sarbu et al., 1996).  
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1.2.3 Movile Cave Biology 

There are 48 species of invertebrates that are adapted for aquatic and terrestrial life in 

Movile Cave, 33 of which are endemic to this environment (Rohwerder et al., 2003, 

Muschiol and Traunspurger, 2007; Sarbu et al., 1994; Sarbu and Kane, 1995; Sarbu 

et al., 1996). Troglomorphy is the adaptation to living in constant darkness and 

includes the loss of eyes, pigment and the development of long sensitive antennae 

and appendages for feeling instead of seeing the surroundings. The majority of the 

invertebrates in the cave have evolved through a process of troglomorphy during the 

time the cave has been isolated, estimated to be around 5 million years (Sarbu and 

Kane, 1995) (Figure 1.4). Carnivores in the cave include leeches, spiders, 

pseudoscorpions and centipedes. The carnivores likely feed on the abundant 

bacterivors including the bacterivorous nematodes. Bacterivors play a vital role in the 

Movile Cave food web, as they provide the transition route for biomass that is 

produced by the microbial community into the larger organisms that inhabit the cave 

(Muschiol and Traunspurger, 2007).  

Figure 1.4: Some of the invertebrate inhabitants of Movile Cave. Images provided by 

Emil Racoviţă, Institute for Speleology, Romania. Left to right: millipede, water-

scorpion and spider. 
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The microbial mats that form at the redox interface on the surface of the water 

contain a dense network of fungal hyphae including Plasmopara, Glicocadium, 

Penicillium and Trichoderma (Sarbu et al., 1994). Bacteria live amongst the network 

of fungi and include sulfur oxidisers and methylotrophs (Hutchens et al., 2004; 

Vlasceanu et al., 2000; Chen et al., 2009).  Lazar et al., (2005) used different 

selective growth media to analyse the bacteria in Movile Cave and found them to be 

much more diverse than was previously thought. The methods used by Lazar et al., 

(2005) were by no means quantitative, but they did show a large diversity of bacteria 

including chemoheterotrophs, sulfate reducers, sulfur oxidisers, methylotrophs, 

nitrifiers and N2 fixers.   

 

1.2.4 Microbiology of Movile Cave 

The Movile Cave ecosystem is believed to be built on a foundation of primary 

producing bacteria, including organisms that gain energy from reduced sulfur 

compounds, methane and ammonia (Chen et al., 2009; Hutchens et al., 2004). Since 

the discovery of Movile Cave in 1986, there have been several studies conducted to 

investigate the microbiology present. The earlier studies tended to focus on the 

bacteria that participated in the cycling of sulfur (Sarbu et al., 1994; Rohwerder et al., 

2003; Vlasceanu et al., 1997). Notable sulfur oxidisers identified from the microbial 

mats in Movile include Beggiatoa,  Thiobacillus, Thiosphaera and Thiomicrospira 

(Sarbu et al., 1994; Sarbu et al., 1995). Rohwerder et al., 2003 identified that there 

were also facultatively anaerobic sulfur oxidisers in Movile Cave that used nitrate as 

a terminal electron acceptor, and found they were relatively abundant. It is likely that 

these facultatively anaerobic sulphur oxidiser groups of microbes also contribute 
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significantly to the primary production in the cave. DNA Stable-Isotope Probing 

(DNA-SIP) performed by Chen et al., (2009) identified species including Thiovirga, 

Thiothrix, Thioploca and Sulfuricurvum (anaerobic sulfur oxidiser), with Thiobacillus 

being the most active in assimilation of the 
13

C bicarbonate ions. Further sulfur 

oxidisers identified from Movile Cave by Porter et al., (2009) include 

Halothiobacillus and Thiomonas. Porter et al., (2009) were able to estimate that the 

chemolithoautotrophic productivity of Movile Cave would be around 281 g C/m
2
/yr.  

 

Sulfate reducing bacteria have been identified in Movile Cave, but it was suggested 

by Rohwerder et al., (2003) that they are not primary producers. It is thought that the 

sulfate reducing bacteria utilise carbon sources that are bio-available made by the 

primary producers. Both Chen et al., (2009) and Porter et al., (2009) identified the 

presence of Desulfobulceae from 16S rRNA gene clone libraries. It was noted by 

Engel, (2007) that the sulfate reducers in Movile Cave fall mostly into the 

Deltaproteobacteria, despite sulfate reduction being a phylogenetically diverse 

phenotype.  

 

There is relatively little known of the microbiology of nitrogen cycling in Movile 

Cave. Sarbu et al., (1996) carried out nitrogen stable isotope ratio measurements and 

found that ammonia in the cave water was relatively high in 
15

N, while in the floating 

microbial mats it was relatively light. It had been reported (Sarbu et al., 1996) that a 

similar fractionation pattern of nitrogen isotopes to that observed in Movile Cave was 

observed when microbes growing on ammonia were not substrate limited. It was also 

noted (Sarbu et al., 1996) that the process of nitrification can deplete 
15

N in a 
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biological sample. Either or both of these phenomena could be the cause of the 

nitrogen stable isotope signature in the floating microbial mat. In the study by Chen 

et al., (2009) 
13

C-bicarbonate DNA-SIP experiment indicated that both ammonia and 

nitrite oxidisers were active in assimilating the 
13

C label. This study provided 

evidence that the nitrification process would contribute to the nitrogen isotope ratios 

seen by Sarbu et al., (1996). Denitrification and or assimilatory nitrate reduction may 

be taking place in Movile Cave since nitrate was not observed in the cave waters, 

indicating rapid turnover of any nitrate available (Sarbu, 2000). Some of the bacteria 

found in Movile Cave are known to be able to fix nitrogen gas (N2), including 

Beggiatoa and Methylocystis (Sarbu and Kane, 1995; Hutchens et al., 2004).  

 

Isotope ratio measurements of carbon from within Movile Cave suggested that 

biological methane oxidation may be a contributing factor to the results obtained 

(Sarbu et al., 1996). Active methane oxidising bacteria were identified in Movile 

Cave by DNA-SIP experiments (Hutchens et al., 2004); a sample of floating 

microbial mat was incubated with 
13

CH4 in order to identify those bacteria that could 

incorporate the 
13

C-label into their DNA. It was found that species of the genera 

Methylomonas, Methylococcus and Methylosinus/Methylocystis were among the most 

active methane utilisers (Hutchens et al., 2004). Furthermore, through functional gene 

analysis several strains of the Methylomonas, Methylococcus and 

Methylosinus/Methylocystis that contained the genes encoding the active sites of 

methane monooxygenase enzymes (pmoA and mmoX) were detected. This study 

indicated that there was relatively high diversity among the methane oxidising 

bacteria in Movile Cave and that the phenotype was not dominated by a single 

organism. CO2 produced as a result of methane oxidation will contribute to the pool 
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of CO2 in the environment thus feeding the autotrophic bacteria present. 

Methanotrophs may also release methyl compounds, such as methanol, into the 

ecosystem, providing a carbon and energy source for non-methanotrophic 

methylotrophs (e.g. methanol utilising bacteria).  

 

Non-methanotrophic methylotrophs have also been shown to be both present and 

active in Movile Cave. The first evidence of methylotrophy in Movile cave came 

from Rohwerder et al., (2003) with cultivation of methylotrophs from the floating 

mats growing on methanol. Methylotrophs were shown to be active in Movile Cave 

through the DNA-SIP study peformed by Hutchens et al., (2004). In this study, clone 

libraries of the functional gene marker mxaF encoding the enzyme for the methanol 

dehydrogenase enzyme were identified from 
13

C-enriched DNA, including sequences 

from the non-methanotrophic methylotrophs Methylophilus and Hyphomicrobium. 

Hutchens et al., (2004) speculated that Methylophilus and Hyphomicrobium utilised 

13
CH3OH, which may have been excreted by the methanotrophs. Chen et al., (2009) 

identified more examples of non-methanotrophic methylotrophs from a 16S rRNA 

gene study, noting that the obligate methylated-amine utiliser Methylotenera mobilis 

was relatively abundant and also other methylotrophs including Methylophilus and 

Methylovorus species were present. The detection of Methylotenera and 

Methylophilus species in Movile Cave was also noted by Porter et al., (2009).  
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1.3 Methane oxidising bacteria 

 

1.3.1 Characteristics of methane oxidising bacteria 

Bacterial oxidation of methane was first identified in the late 1900’s (Kaserer, 1905, 

1906 and Söhngen, 1906, 1910). Methanotrophy, the ability to grow on methane is a 

sub-phenotype of methylotrophy, the ability of organisms to grow on C1 compounds, 

i.e. compounds which contain no carbon-carbon bonds. Isolation and characterisation 

of methanotrophic bacteria have been key to the understanding of these organisms. 

Since the isolation of the first methane oxidising bacterium Pseudomonas (Bacillus) 

methanica (Söhngen, 1906), there have been many methane oxidising bacteria 

isolated covering (currently) 19 formally described genra (Methylomonas, 

Methylobacter, Methylococcus, Methylomicrobium, Methylosphaera, 

Methylocaldum, Methylosarcina, Methylothermus, Methylohalobius, Methylogaea, 

Methylosoma, Methylomarinarum, Methylovulum, Methylosinus, Methylocystis, 

Methylocella, Methylocapsa, Methyloferula and Methylacidiphilum).  The majority 

of methanotrophs identified belong to the Alphaproteobacteria and 

Gammaproteobacteria phyla. The validly published genus Methylacidiphilum 

belongs to the Verrucomicrobia phylum. 

 

The classic aerobic methanotrophs can be grouped based on their carbon assimilation 

pathway into Type I and Type II methanotrophs (Trotsenko and Murrell, 2008). The 

methanotrophs that assimilate carbon via the ribulose monophosphate cycle (RuMP) 

(Lawrence and Quayle, 1970) are deemed to be Type I methanotrophs.  The 
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methanotrophs that assimilate carbon through the serine cycle (Shishkina et al., 1976) 

are deemed to be Type II methanotrophs. The difference in methanotroph type is also 

defined by the 16S rRNA gene taxonomy of the organisms. Type I methanotrophs 

fall into the Gammaproteobacteria, while the Type II methanotrophs are 

Alphaproteobacteria (Figure 1.5). Interestingly the Type I and Type II 

methanotrophs differ physically in their intracytoplasmic membrane structure 

(Figure 1.6). Type I methanotrophs tend to have stacks of vesicular disc-shaped 

intracytoplasmic membranes throughout the cell, whereas Type II methanotrophs 

have the intracytoplasmic membranes arranged around the periphery of the cell 

(reviewed in Trotsenko and Murrell, 2008).  
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Figure 1.5: 16S rRNA gene phylogenetic tree of proteobacterial methanotrophs. 

There is a clear distinction phylogenetically between the Type I 

(Gammaproteobacteria) and Type II (Alphaproteobacteria) methanotrophs. The 

phylogenetic tree was constructed using the Neighbour joining method covering 

1,245 nucleotide positions. (Image taken from McDonald et al., 2008).  
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Figure 1.6: Electron micrographs showing the difference in intracytoplasmic 

membrane structure. Left is Methylomonas methanica, a Type I methanotroph, 

displaying stacked vesicular disc shaped membranes throughout the cell, indicative of 

Type I methanotrophs. Right is Methylocystis parvus, a Type II methanotroph, 

displaying intracytoplasmic membranes arranged around the periphery of the cell, 

indicative of Type II methanotrophs. Image from Green, (1992).   
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The first Verrucomicrobial methanotrophs Methylacidiphilum fumarolicum (Pol et 

al., 2007) and Methylacidiphilum infernorum (Dunfield et al., 2007) were published 

back to back in Nature due to the substantial importance of the finding of methane 

oxidation in a new phylum. Methylacidiphilum fumarolicum was isolated from a 

sample of mud at the Solfatara volcano in Italy, and the Methylacidiphilum 

infernorum was isolated from a geothermal field on the North island of New Zealand 

(Pol et al., 2007; Dunfield et al., 2007). These Methylacidiphilum species are 

extremophiles able to oxidise methane at pH values as low as 1.0, and grow at 

temperatures in excess of 50ᴼC.  A further Verrucomicrobial isolate, 

Methylacidiphylum kamchatkense, was isolated from an acidic hot spring in Russia 

(Islam et al., 2008). Methylacidiphilum infornorum and fumarolium both lack the 

genes required for the ribulose monophosphate and serine cycles, the two 

formaldehyde assimilation pathways. It was found that Methylacidiphilum contained 

the genes required to produce a fully functional ribulose-1,5-bisphosphate 

carboxylase/oxygenase (RuBisCO) enzyme and a full set of genes for the Calvin-

Benson-Bassham (CBB) cycle for the fixation of CO2 by Khadem et al., (2011). 

Khadem et al., (2011) demonstrated that Methylacidiphilum was able to grow 

autotrophicaly with CO2 as carbon source, whilst using methane as an energy source 

only.  

 

1.3.2 Ecology of methane oxidising bacteria 

Methane oxidising bacteria are ubiquitous in the environment. They have been found 

in landfill cover soil, coal mines, forest soil, peat bogs, rice paddies, wetlands and in 

fresh and ocean water sediment (Hanson and Hanson, 1996) (Dedysh et al., 1998). 
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They have also been found in more extreme environments such as volcanic mud, 

geothermal soils, hot springs, alkaline lakes and arctic wetland soil (Op den Camp et 

al., 2009; Wartiainen et al., 2006; Lin et al., 2004). Most known species of 

methanotroph tend to be mesophilic in nature but those isolated from more extreme 

environments tend to be more thermophilic, psychrophilic, acidophilic, alkalophilic 

or halophilic. Methanotroph distribution is dependent on several environmental 

factors including substrate availability, moisture, temperature and pH (Amaral and 

Knowles, 1995). Thermophilic methanotrophs include Methylococcus capsulatus 

Bath isolated from the thermal waters of a Roman bath house (Whittenbury et al., 

1970), and Methylothermus thermalis isolated from a hot spring in Japan (Tsubota et 

al., 2005). Methylomonas, Methylobacter, Methylosinus and Methylocapsa species 

were all identified from alkali soda lake sediments reaching pH of 9.5 (Lin et al., 

2004). Methylohalobius crimeensis was isolated from a hypersaline lake in the 

Crimean Peninsula of the Ukraine and is halophilic. Psychrophilic methanotrophs can 

grow at temperatures as low as 5 °C, and include Methylomonas scandinavica 

isolated from a sample of deep igneous rock in Sweden (Kalyuzhnaya et al., 1999) 

and Methylobacter tundripaludum isolated from arctic wetland soil (Wartiainen et al., 

2006). The extreme acidophilic Verrucomicrobial methanotrophs of the genus 

Methylacidiphilum, that can grow as low as pH 1.0, were isolated from a geothermal 

field in New Zealand and volcanic mud pool in Italy (Pol et al., 2007; Dunfield et al., 

2007).  
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1.3.3 Bacterial oxidation of methane 

 

1.3.3.1 Overview of bacterial methane oxidation 

The aerobic bacterial methane oxidation pathway involves converting methane 

through to the central intermediate, formaldehyde, which can then be assimilated or 

further oxidised to CO2 (Hanson and Hanson, 1996; Trotsenko and Murrell, 2008). 

Methane can be oxidised anaerobically by some bacteria (Knittel and Boetius, 2009), 

but this process is not considered further here as this study is focused on aerobic 

oxidation of methane. Methane is initially oxidised to methanol by the enzyme 

methane monooxygenase, of which there are two types, a particulate methane 

monooxygenase (pMMO) and a soluble methane monooxygenase (sMMO) (Hanson 

and Hanson, 1996; Trotsenko and Murrell, 2008) (Figure 1.7). Methanol is further 

oxidised to formaldehyde via the enzyme methanol dehydrogenase. It was suggested 

by Myronova et al., (2006) that methanol dehydrogenase could be the electron donor 

for pMMO with direct transfer between the docked enzymes. Formaldehyde can be 

assimilated into biomass at this oxidation level via the RuMP cycle or the serine 

cycle. Alternatively, the formaldehyde may be further oxidised to formate via the 

enzyme formaldehyde dehydrogenase. Formate is then oxidised into CO2 by the 

enzyme formate dehydrogenase.  
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Figure 1.7: Methane oxidation pathway. pMMO requires an electron donor 

represented by X while sMMO receives electrons via NADH, Crombie, (2011).  

 

1.3.3.2 Particulate methane monooxygenase 

 

Particulate methane monooxygenase is known to be present in all known methane 

oxidising bacteria, with the exception of Methylocella and Methyloferula (Theisen et 

al., 2005; Vorobev et al., 2011).  This enzyme is membrane bound and, as such, has 

been relatively little studied due to the difficulties in isolating the protein in its active 

form compared to the sMMO, which is much easier to purify from whole cells. Smith 

and Dalton, (1989) made attempts to isolate pMMO and were successful in isolating 

the protein from Methylococcus capsulatus Bath. Improved solubilisation protocols 

enabled the whole pMMO complex to be purified. The complex consisted of two 
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components, a putative reductase composed of 8 and 63 kDa proteins and a 

hydroxylase component comprised of 3 subunits; α (47 kDa), β (24 kDa) and γ (22 

kDa) (Basu et al., 2003; Zahn and DiSpirito, 1996). The genes encoding the pMMO 

can all be found as a single operon and always in the order pmoCAB and are 

controlled by a σ
70

 promoter directly upstream of the gene cluster (Gilbert et al., 

2000) (Figure 1.8).   

 

 

 

 

 

Figure 1.8: Arrangement of the pMMO gene cluster consisting of the genes pmoC, 

pmoA and pmoB. (Adapted from Gilbert et al., 2007).   

 

The particulate methane monooxygenase is a copper containing enzyme and has been 

shown to have from 2 to 15 copper ions bound per αβγ complex (Yu et al., 2003; 

Lieberman et al., 2003; Basu et al., 2003; Zahn and DiSpirito, 1996). In 2005, 

Lieberman and Rosenzweig, (2005) determined the crystal structure of the particulate 

methane monooxygenase of Methylococcus capsulatus Bath to a resolution of 2.8 Å. 

The enzyme was determined to be a trimeric structure consisting of a α3β3γ3 

polypeptide arrangement. Further crystal structures have been determined for the 
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pMMO of Methylosinus trichosporium OB3B and Methylocystis strain M (Hakamien 

et al., 2008; Smith et al., 2011).   

 

1.3.3.3 Soluble methane monooxygenase 

Soluble methane monooxygenase is a much more stable enzyme than the particulate, 

membrane bound enzyme. Whereas pMMO has been found in almost all 

methanotrophs, sMMO has only been described present in the genera Methylococcus, 

Methylocystis, Methylosinus, Methylomicrobium, Methylomonas, Methylovulum and 

is the only MMO present in Methylocella and Methyloferula (Theisen et al., 2005; 

Vorobev et al., 2011). The sMMO is part of the soluble diiron centre monooxygenase 

family (Leahy et al., 2003). The diiron centre at the active site of the sMMO has roles 

as both an oxygen carrier and also has a catalytic function (Trotsenko and Murrell, 

2008).  As the sMMO is a relatively stable enzyme and is readily purified from cell 

free extract, it has been the focus of many more investigations compared to pMMO. 

sMMO was first purified from Methylococcus capsulatus Bath and characterised by 

Dalton, (1980).  The sMMO enzyme is made up of three components; the active site 

containing hydroxylase subunit (α2β2γ2), a NADH-dependent reductase for electron 

transfer to the active site and a coupling protein. The hydroxylase component 

containing the active site is made up of 3 subunits; MmoX (α) 60 kDa, MmoY (β) 45 

kDa and MmoZ (γ) 19 kDa.  The gene arrangements of the sMMO operons differ 

from one organism to the next, but all contain the genes for the 3 components of the 

enzyme (Figure 1.9).  
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Figure 1.9: Arrangement of the genes encoding the soluble methane monooxygenase 

from Methylococcus capsulatus Bath, Methylosinus trichosporium OB3B and 

Methylocella silvestris BL2. Homologous genes are represented in the same colours. 

All operons are controlled by a σ
54

 promoter. Data taken from Csaki et al., (2003); 

Stafford et al., (2003) and Theisen et al., (2005). mmoXYBZDC encode the sMMO, 

mmoR is a transcriptional regulator and mmoG encodes a homologue of the 

chaperone GroEL (Crombie, 2011).   

 

1.3.3.4 The copper switch 

Methanotrophs that contain both the soluble and particulate methane monooxygenase 

genes control the expression of these genes depending on the availability of copper 

ions to the cell. It is the available copper-to-biomass ratio that determines whether the 

soluble or particulate form of the enzyme is expressed (Murrell et al., 2000). When 

the copper-to-biomass ratio is high, the pMMO will be expressed. Conversely, when 

the copper to biomass drops below a certain threshold, the sMMO will be expressed. 
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The pMMO was seen to be transcribed during growth under low copper-to-biomass 

ratios by Ali (2006), which suggests that the pMMO is constitutively transcribed 

under the low copper conditions. It was suggested that there is also a level of post-

translational regulation. pMMO is known to have copper ions at its active site 

(Lieberman and Rosenzweig, 2005). Without copper ions in the pMMO active site its 

function is significantly reduced. The sMMO is controlled by a σ
54

 promoter which is 

only activated under low copper conditions. A similar repression of the sMMO is 

noted in Methylocella silvestris where sMMO transcription is repressed by the 

presence of other available substrates such as acetate as opposed to copper (Theisen 

et al., 2005).  

 

1.3.3.5 Formaldehyde assimilation 

Proteobacterial methanotrophs have two main cycles through which formaldehyde is 

assimilated, the Ribulose monophosphate pathway (RuMP) and the serine cycle. The 

Verrucomicrobial methanotrophs have been shown to use the Calvin-Benson-

Bassham cycle for CO2 fixation and some Proteobacterial methanotrophs have also 

been shown to have RuBisCO (Taylor et al., 1981; Khadem et al., 2011). The RuMP 

pathway is operational in the Type I Gammaproteobacterial methanotrophs (Figure 

1.10). Three molecules of formaldehyde are used in the production of 

phosphoglycerate, which leads into central biosynthesis and metabolism. The serine 

cycle is operational in the Alphaproteobacterial Type II methanotrophs. 

Formaldehyde is fed into the serine cycle bound to tetrahydrofolate (H4F), or via 

formate (Vorholt et al., 1999; Crowther et al., 2008) (Figure 1.11).  
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Figure 1.10: The ribulose monophosphate pathway that occurs in 

Gammaproteobacterial methanotrophs. Adapted from Anthony, (1982). 
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Figure 1.11: The serine cycle that occurs in Alphaproteobacterial methanotrophs 

showing the production of acetyl-CoA from methylene-H4F (Formaldehyde bound to 

tetrahydrofolate). Anthony, 2011.  

 

The RuMP and Serine cycles are elaborated on in more detail in Chapters 3 and 4.  

 

1.4 The study of methanotrophic bacteria in the environment 

In the attempt to study microorganisms and how they function and interact with their 

environment, many creative techniques have been developed and reiterated to 

accomplish this. The methods used rely on cultivation dependent, the isolation and 

analysis of an organisms physiology and cultivation independent techniques; these 

involve the retrieval and analysis of bio-markers including functional genes, proteins 

and lipids obtained from target communities. In most cases the use of one tool for 

analysing a microbial community will not provide enough robust evidence to draw 
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accurate conclusions due to limitations of the individual techniques and so many of 

the techniques are performed in a polyphasic approach to overcome this. Many of the 

cultivation independent techniques rely on the retrieval and sequencing of nucleic 

acids. Over the past few decades the emergence of metagenomics facilitated by ever 

improving high throughput sequencing (HTS) has emphasised how little of the 

microbial community in many environments was know when microbiology relied on 

cultivation dependant study (Sleator et al., 2008; Singh et al., 2009; Wilson and Piel, 

2013).  

 

1.4.1 Cultivation dependent studies of methanotrophs 

Many of the earlier studies on methane oxidising bacteria relied on the enrichment 

and isolation of bacteria, since obtaining genetic (DNA and RNA sequence) 

information was not as common, easy or cheap as it is now. One of the largest 

notable efforts into the isolation of methanotrophic bacteria was performed by Roger 

Whittenbury and colleagues particularly noted in the paper (Whittenbury et al., 

1970). Whittenbury describes in detail the process of enrichment and isolation using 

two defined media, NMS and ANMS, both of which are still routinely used for the 

isolation of methanotrophs today. Numerous samples were obtained of mud and 

water from ponds, rivers, streams and ditches from the UK, France, Germany, Russia, 

North America, South America, East and North Africa and Egypt (Whittenbury et al., 

1970). From this study many strains of the genera Methylosinus, Methylocystis, 

Methylomonas, Methylobacter and Methylococcus were isolated. Notably two of the 

isolates Methylococcus capsulatus and Methylosinus trichosporium OB3B have been 

extensively studied by several research groups since their isolation.   
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More recently, cultivation of methane oxidising bacteria from more extreme 

environments have delivered methanotrophic isolates with properties that reflect their 

origin, including thermophilic, psychrophilic, acidophilic, alkylophilic and halophilic 

isolates (Tsubota et al., 2005; Lin et al., 2004; Kalyuzhnaya et al., 1999; Wartiainen 

et al., 2006; Pol et al., 2007; Dunfield et al., 2007).  There are several advantages to 

isolating microorganisms; the physical limitations of the organisms can be tested by 

measuring growth rate and yield with different substrates and by changing the 

environment (pH, temperature, salinity). Enzymes can be purified and functions 

physically tested, including testing substrate specificity and range, co-factor 

requirements and optimal pH. All of these parameters will give an indication of how 

these isolates might function in different environments (Dalton, 1980; Grosse et al., 

1999). 

 

Cultivation also makes genome sequencing more successful as good quality high 

yield DNA, all from the same organism, can be purified and sequenced. It is possible 

to sequence genomes from single cells from the environment by applying processes 

such as multiple displacement amplification (Arakaki et al., 2010), but this is likely to 

give more erroneous sequence compared to isolation of DNA from a batch culture of 

a pure isolate (Binga et al., 2008). With a genome sequence of a pure isolate, one is 

able to identify potential metabolic versatility that may not be apparent or tested for 

during the isolation and characterisation process. The sequences of the genes and the 

arrangement of genes for particular operons can be used to determine phylogeny and 

possible evolution of some metabolic units. The genomes of several methanotrophs 

have been published (Table 1.1). Dam et al., 2012 sequenced the genome of 

Methylocystis sp. SC2, and then carried out a comprehensive comparison of this 
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genome with those of other methanotrophs. From this they were able to identify all of 

the common genes that were shared among the organisms. For instance, there were 

1,853 homologues across the genomes of three Methylocystaceae methanotrophs, 

including Methylocystis sp. SC2 (Dam et al., 2012).   
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Table 1.1: List of published methanotroph genomes that are complete or at the final 

draft stage.  

Organism 
Accession 

Genbank  
Stage Reference 

Methylocapsa acidiphila CP001280 

ABLP01000000 

Complete Chen et al., 2010 

Methylocystis sp. ATCC 

49242 

AEVM00000000 Final draft Stein et al., 2011 

Methylocystis sp. SC2 HE956757 Complete Dam et al., 2012 

Methylocystis parvus OBBP AJTV00000000 Final draft Del Cerro et al., 

2012 

Methylosinus trichosporium 

OB3b 

ADVE00000000 Final draft Stein et al., 2010 

Methylococcus capsulatus 

BATH 

AE017282.2 Complete  Ward et al., 2004 

Methylomonas methanica 

MC09 

CP002738 Complete Boden et al., 2011 

Methylobacter 

tundripaludum SV96 

AEGW00000000 Final draft Svenning et al., 

2011 

Methylomicrobium 

alcaliphilum 20Z  

FO082060 Complete Vuilleumier et al., 

2012 

Methylomicrobium 

buryatense 5G 

AOTL00000000 Final draft Khmelenina et al., 

2013 

Methylomicrobium album 

BG8 

CM001475  Final draft Kits et al., 2013 

Methylacidiphilum 

infernorum V4 

CP000975.1 Final draft Hou et al., 2008 

 

 

 

http://www.ncbi.nlm.nih.gov/nuccore?term=AEVM00000000%5Bpacc%5D
http://www.ncbi.nlm.nih.gov/nuccore?term=AJTV00000000%5Bpacc%5D
http://www.ncbi.nlm.nih.gov/nuccore/AE017282.2
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1.4.2 Cultivation-independent studies of methanotrophs 

Cultivation-independent techniques are vital for the study of organisms that are as yet 

uncultivated or unlikely to be cultivated with currently used methods (Hugenholtz et 

al., 1998). The basis of many cultivation-independent techniques is the PCR and 

subsequent DNA sequencing of PCR gene products and determining phylogeny from 

sequence variation of particular genes. The presence or absence of key functional 

genes can also be determined.  

 

1.4.2.1 Phylogenetic probes 

Functional gene analysis is reliant on the design of oligonucleotide probes that are 

specific enough to target genes of only a particular function, but have a broad enough 

coverage to be able to identify unknown gene sequences of enzymes that offer the 

same function. Functional gene probes for the enzymes involved in the methane 

oxidation pathway have been vital in understanding methanotroph ecology in the 

environment (Holmes et al., 1995; McDonald et al., 1995). Several sets of functional 

gene primers have emerged over the years as primer sequences have been refined to 

include coverage of novel sequences (Costello and Lidstrom, 1999; Bourne et al., 

2001; Hutchens et al., 2004). Functional gene probes for methane monooxygenase 

focus on the pmoA gene of the pMMO and the mmoX gene of the sMMO. These sets 

of probes have been used extensively for the analysis of methanotrophs, and there are 

now thousands of sequences for each gene in public databases (reviewed in 

McDonald et al., 2008).  
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Phylogenetic probes are designed based on known sequences of the target gene of 

interest. Regions of sequence homology are identified along the target gene, and 

primers are designed to amplify the internal region of DNA sequence. This brings an 

inherent limitation when trying to identify novel homologous sequences, for example, 

from an environmental sample, as the unknown sequences of interest may differ in 

sequence at the region of primer design despite encoding a similar functioning 

enzyme to the target gene of interest and therefore be missed in the study. This can in 

some way be dealt with by designing a degree of degeneracy into the primers, but a 

balance needs to be made so the primers are still amplifying the original genes of 

interest along with any novel environmental sequences.   

 

1.4.2.2 Denaturing Gradient Gel Electrophoresis (DGGE) 

DGGE was originally intended for use as a mutation detection system. This is a 

powerful technique that is able to distinguish Single Nucleotide Polymorphisms 

(SNP), based on the different bond strengths between Adenine & Guanine and 

Thymine & Cytosine. The DGGE technique was adapted for use in microbial ecology 

by Muyzer et al., (1993) and has formed the basis of many microbial ecology studies 

(Schäfer and Muyzer, 2001). PCR products generated from DNA isolated from the 

environmental samples should be able to pick up all sequences with the same 

function, but the sequences may vary by only a single nucleotide between two 

organisms. PCR products used for DGGE require the use of a “GC Clamp” at one 

end of the PCR product which forms a stable connection between the two strands of 

DNA. As the PCR products move through the DGGE gel, they will meet increasing 

denaturants with increasing temperature or chemical denaturant can be used. Upon 
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reaching a position in the gel individual PCR products will reach a sequence 

dependent threshold of denaturant. Here the two strands of DNA will split, but will 

still be connected by the GC clamp. The electrophoretic pull on the PCR product 

through the gel is retarded due to this split. PCR products of different sequence will 

reach different positions along the gel when they reach their individual denaturant 

thresholds, and so produce a sequence-dependent fingerprint. Sequences that are 

more abundant will create brighter bands as they will all be retarded at the same 

position. The DGGE technique has been used most extensively with environmental 

16S rRNA gene PCR products for profiling bacterial communities in the 

environment. (Chen et al., 2007; Eller and Frenzel, 2001; Henckel et al., 2000; 

Henckel et al., 1999).  

 

Functional gene DGGE has been used to specifically target methanotrophs in the 

environment with pmoA gene PCR products (Lin et al., 2005; Knife et al., 2003; Horz 

et al., 2001; Henckel et al., 1999) and mmoX gene PCR products (Iwamoto et al., 

2001). McDonald et al., 2008 found that using DGGE with functional genes would 

sometimes result in multiple bands representing the same DNA sequence.  

 

As with other fingerprinting techniques, there are limitations to the use of DGGE. 

DGGE relies firstly on DNA being extracted from a community, which can be 

variable depending on the method used (Starke et al., 2014). It is generally the 

opinion that within a given study, consistent use of the same method of DNA 

extraction for all samples is acceptable. This applies to all methods of DNA 

fingerprint analysis. DGGE is based on a PCR amplification of the target DNA that 
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will potentially introduce primer bias on the sequences amplified (Ishii and Fukui, 

2001). There is the potential to miss dominant novel sequences if the primers used 

have not been designed to recognise and amplify them.  DGGE being designed as a 

SNP mutation detection system means that any error introduced to sequences during 

the PCR amplification process will potentially result in the production of a second 

band on a DGGE, that would otherwise be in the same position of the original 

sequence making that individual band brighter. Retrieval of sequences from bright 

dominant DGGE bands can be difficult, especially in the situation where several 

bright bands may occur next to each other or very close to other bands. There is again 

another round of PCR amplification after the excision of bright DGGE bands for 

sequencing which can potentially introduce errors. In the event of a co-migration 

where two or more sequences, occupy the same position on a DGGE gel, 

erroneoussequences will likely be retrieved due to the sequencing of multiple target 

sequences at once (Gafan and Spratt, 2005). However, this can however be overcome 

by producing a small clone library of the originally extracted sequences and 

subsequent sequencing of the target sequence from the clones.  

 

 

1.4.2.3 Metagenomics 

Metagenomics is becoming much more popular and accessible due to the reduction in 

the cost of high throughput sequencing. The ever improving sequencing platforms 

provide more robust data sets, as sequences obtained are longer and coverage 

(number of sequences) of sequence gets higher. Metagenomes provide a snapshot 

view of potential metabolic processes that could be active within a given sample. 



38 
 

DNA is extracted from all organisms in an environmental sample and the 

metagenome is the sum of genetic information available from all of the organisms in 

that sample, providing sufficient coverage is achieved. Once the sequences are 

collected, they then need to be annotated in order to understand what processes and 

organisms may be present (Tyson et al., 2004). Annotation is carried out by 

comparing all of the metagenome sequences to sequences in reference databases. 

Once sequences have been annotated, the metagenomic datasets can be screened for 

specific genes of interest and compared between metagenomes to get a gross 

overview of genetic difference between different environmental communities. With 

the increase in popularity of metagenomic sequencing, robust analysis platforms are 

required. Websites such as MG-RAST provide public access to tools for the 

preparation, annotation and analysis of metagenomic data sets (Meyer et al., 2008). 

Metagenomics has been used for the analysis of microbial communities from myriad 

environments including a termite gut, Yellowstone hot spring, indoor urban 

environment, Alaskan oil facility and the oceanic dead zone (Warnecke et al., 2007; 

Schoenfeld et al., 2008; Tringe et al., 2008; Duncan et al., 2009; Walsh et al., 2009).  

 

1.4.2.4 Microbial diagnostic microarrays 

Microbial diagnostic microarrays are used as high throughput tools for the analysis of 

genes present in a sample. The first microarrays were designed to study expression of 

genes from genomes. The technology was then adapted for use with specific 

functional genes as a screening method for those genes from environmental samples. 

For example, functional gene microarrays were designed to test for the functional 

genes nirS, nirK, amoA and pmoA by Wu et al., (2001). Bodrossy et al., (2003) 
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designed a microbial diagnostic microarray that was designed to specifically target 

methane oxidising bacteria. This first microarray of 59 oligonucleotide probes 

covered all known sequences of pmoA and amoA genes, thus targeting methane and 

ammonia oxidising bacteria respectively. The pmoA microarray has undergone 

improvement with the addition of more probes targeting the pmoA- and amoA-like 

sequences; and in this study, a microarray of 198 probes was used.  The pmoA 

microarray has been used to successfully determine the diversity of methane 

oxidising bacteria from a range of environments, including including saline soil, pond 

water and landfillcover soil (Saidi-Mehrabad et al., 2013; Bisset et al., 2011; 

Kumaresan et al., 2011). 

 

The microbial diagnostic microarray, as with other fingerprinting techniques, relies 

on the PCR amplification of the target gene sequences of interest. This means the 

community observed will be dependent on the specificity of the primers being used. 

The primers will be designed based on current known target gene sequences, which 

will result in them potential not picking up novel and possibly abundant sequences. 

The approach used by Bodrossy et al., (2003) uses two different primer sets targeting 

the pmoA gene to somewhat compensate for these biases. Where microarrays are 

concerned ,there are also probe hybridisation binding efficiencies to be taken into 

account which could skew results (Bodrossey et al., 2003; Koltai and Weingarten-

Baror, 2008).  
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1.4.2.5 DNA-Stable Isotope Probing (DNA-SIP) 

There are studies that cover a range of stable isotope labelling techniques, probing a 

number of organic molecules including RNA, mRNA, protein and phospholipid fatty 

acids (PLFA) (Manfield et al., 2002; Dumont et al., 2011; Jehmlich et al., 2008 and 

Boschker et al., 1998). This study only focuses on DNA-Stable Isotope Probing 

(Radajewski et al., 2000). Stable Isotope Probing is a tool which is used to link 

microbial identity with function. A stable isotope labelled substrate such as 
13

CH4 is 

incubated with an environmental sample. Organisms that are able to metabolise the 

labelled substrate will incorporate the stable isotope (
13

C) into their cellular material, 

for instance DNA, during synthesis and replication. Once DNA is extracted from all 

of the bacteria in the environmental sample, the heavy, 
13

C labelled DNA can be 

separated from the lighter (
12

C labelled) DNA by density gradient ultracentrifugation 

(Radajewski et al., 2000; Neufeld et al., 2007) (Figure 1.12). Ideally, only the DNA 

from organisms able to utilise the 
13

C labelled substrate will be in the heavy DNA, 

which means that targeted analysis can be carried out, focusing on the active 

community.  The heavy and light DNA are separated by a process of fractionation. 

The individual fractions will contain DNA from the different buoyant densities 

achieved in the ultracentrifugation process. Once the DNA has been fractionated, it is 

ready for downstream processing, such as 16S rRNA and functional gene analysis, 

DGGE profiling and high throughput sequencing.   
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Figure 1.12: DNA-Stable Isotope Probing. An environmental sample is incubated 

with a 
13

C labelled substrate. After a period of incubation, DNA is extracted and 

subject to density gradient ultracentrifugation. Heavy and light DNA are separated by 

a process of fractionation by collecting contents of the centrifuge tube as it drains 

from the bottom into separate collection tubes. The fractionated DNA can then be 

analysed.  
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DNA-SIP has been used to analyse organisms that can utilise a wide variety of 

labelled substrates including 
13

CH4, 
13

CH3OH, 
13

CH3Cl, 
13

CO2,
13

C-acetate and  
15

N2 

(Hutchens et al., 2004; Neufeld et al., 2008; Borodina et al., 2005; Lu et al., 2006; 

Schwarz et al., 2007; Buckley et al., 2007). Using different labelled substrates and 

different stable-isotopes, one is able to probe different organisms within communities 

carrying out different functions. 

With DNA-SIP requiring sufficient incorporation of an isotope label, the labelled 

substrate is often added in excess and much higher than what might be considered 

environmentally relevant. This likely alters the community of organisms observed 

and would otherwise be apparent in the natural environment. The heavy-isotope 

substrate could be metabolised differently to what would be ideal for the 

experimental set up. For example, when adding 
13

CH4 to a microcosm, some of the 

methane may be fully oxidised to 
13

CO2 rather than being fixed into biomass. This 

has a two-fold negative effect in that isotope incorporation into the target organism 

DNA may be reduced, leading to incomplete separation of heavy and light DNA 

during ultracentrifugation; secondly, that the liberated isotope label may be 

metabolised and incorporated into the DNA of non-target organisms.  

 

1.4.2.6 Raman spectroscopy 

Raman spectroscopy is another technique which takes advantage of organisms 

incorporating stable isotopes into their cellular material. It is a non-destructive tool 

for monitoring cellular constituents at the single cell level by analysing scattered light 

(Huang et al., 2007).  Monochromatic light is shone onto a sample. Photons of light 

interact with molecules in the sample and are reflected and scattered in different 
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wavelengths. The wavelength of the scattered light is dependent on the bond 

frequency of the molecule it interacts with, which can also differ from molecule to 

molecule. For example, a C=O bond will reflect light of different wave lengths 

dependent on the other bonds that the elements are bound to, as this shifts the 

electron density of the molecule. If the 
12

C=O bond becomes a 
13

C=O bond, then the 

reflected light wavelength will shift predictably to another wavelength. This shift in 

wavelength caused by an alternative isotope is called the “Red shift” as the wave 

length becomes smaller. Raman spectroscopy was combined with FISH to identify 

single cells using fluorescence to link function with identity of organisms that had 

metabolised a 
13

C labelled substrate (Huang et al., 2007).      

 

Similarly to DNA-SIP, Raman spectroscopy relies on a certain amount of isotope 

label to be incorporated into the microbial biomass in order to distinguish a “Red 

shift” in key peak positions. The 
13

C isotope label could of methane could again be 

fully oxidised to 
13

CO2 and be incorporated by non-target organisms. If combining 

the technique with FISH to identify the organisms that have incorporated a detectable 

amount of label, a limitation occurs in the design of the probe. Similarly to PCR 

primer design, FISH probe design is often based on currently known sequence data. 

If cells are identified to have incorporated the isotope label, unless a FISH probe 

designed to target the isotope labelled cell is used, the cells’ identity will remain 

unknown.    
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1.5 Project hypotheses 

 There is a large diversity of Methane oxidising bacteria in Movile Cave 

 Methane oxidising bacteria are active in Movile Cave 

 Methane oxidising bacteria of Movile Cave are genetically similar to other 

known methane oxidising bacteria 

 Methane oxidising bacteria in Movile Cave are primary producers providing a 

carbon source for organisms at subsequent trophic levels 
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Chapter 2 

Materials and Methods 
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2.1 Sampling from Movile Cave 

Samples of microbial floating mat and water from Movile Cave were collected by 

Alexandra-Maria Hillebrand Voiciulescu. The microbial floating mat was obtained 

by scuba-diving through to airbell 2. Samples of the microbial floating mat were 

obtained by resting a 1 L Nalgene bottle at the surface of the water and collection of 

the mat into the bottle. The microbial floating mat consisted of a ~1 mm thick large 

sheet of tissue paper coloured beige with orange and brown patches. The mat lost its 

flat shape and tore upon collection into the Nalgene bottle.  Water samples were 

collected by dunking a 1 L Nalgene bottle approximately 5-10 cm below the surface 

of the water until filled.  Samples used for bacterial isolation were transported from 

the cave to the University of Warwick at 4 °C. Sample used for DNA extraction for 

metagenomic and microarray analysis was frozen within 2 hours of being taken from 

the cave and remained frozen until processing. DNA-SIP experiments were set up 

inside the cave moments after sampling by Professor Colin Murrell and Dr Rich 

Boden.   

2.2 Bacterial strains and cultivation 

2.2.1 Escherichia coli JM109 

Escherichia coli JM109 competent cells were cultivated for use when cloning PCR 

products. JM109 cells were obtained commercially from Promega. E.coli was 

cultivated in Lysogeny Broth (LB) and incubated at 37 °C on an orbital shaker 

rotating at 150 rpm. Where solid media was required, 1.5% (w/v) Bacto agar (DB 

Diagnostic) was added to the LB media and autoclaved. When required, the media 

was supplemented with an appropriate concentration of Ampicillin.  
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2.2.2 Methylomonas LWB 

Methylomonas sp. Strain LWB was isolated from a lake water sample from Movile 

Cave. LWB has had its genome sequenced, and the strain was used for the carbon 

cross-feeding experiment. LWB was isolated on a modified Ammonium Nitrate 

Mineral Salts media (mANMS) (Tsubota et al., 2005), and subsequently maintained 

on Nitrate Mineral Salts (NMS) (Whittenbury et al.,1970) media at 30 °C.  Where 

solid media was required, 1.5% (w/v) Bacteriological agar, Agar No.1 (Oxoid) was 

added to the mANMS or NMS liquid media. Methylomonas was always cultivated in 

the presence of methane. 

2.2.3 Methylobacterium strain 

Methylobacterium Strain. Movile was isolated by Daniela Wischer from a sample of 

microbial floating mat from Movile Cave. The Methylobacterium strain was used for 

the carbon cross-feeding experiment. Methylobacterium was isolated on Dilute Basal 

Salts (DBS) media and subsequently maintained on NMS media at 30 °C. Where 

solid media was required, 1.5% (w/v) Bacteriological agar, Agar No.1 (Oxoid) was 

added to the mANMS or NMS liquid media.  Methylobacterium was always 

cultivated in the presence of methanol unless otherwise stated.  

2.2.4 Methylococcus capsulatus Bath 

Methylococcus capsulatus Strain Bath was obtained from the University of Warwick 

culture collection. DNA extracted from Methylococcus was used as a positive control 

for most PCRs. Methylococcus was maintained on NMS media in the presence of 

methane at 45 °C. 
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2.3 Media and solutions   

All chemicals used for media preparation were obtained from Sigma Aldrich (UK). 

2.3.1 DBS 

Per litre:   

(NH4)2SO4 0.5 g 

MgSO4·7H2O 0.1 g 

CaCl2 ·2H2O 0.05 g 

K2HPO4 0.11 g 

KH2PO4 0.085 g 

 

Add 1ml/L thiothrix trace elements solution after autoclaving.  

2.3.2 Thiothrix trace elements solution 

Per litre:   

Na-EDTA  50 g  

NaOH 11 g  

ZnSO4 ·7H2O 5 g  

CaCl2 ·2H2O 7.34 g  

MnCl2 ·6H2O 2.5 g  

CoCl2 ·6H2O 0.5 g  

(NH4)2MoO4 0.5 g  

FeSO4 ·7H2O 5 g  

CuSO4 ·5H2O 0.5 g  

   

The solution is filter sterilised before use 
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2.3.3 NMS 

Solution I (10X) 

Per litre:   

MgSO4·7H2O 10 g  

CaCl2 ·2H2O 2 g  

KNO3 10 g  

 

Solution II (1000X) 

Per litre    

Fe-EDTA 3.8 g  

 

Solution III (1000X) 

Per litre    

NaMoO4 ·6H2O 0.26 g  

 

Solution IV (1000X) 

Per litre    

CuSO4 ·5H2O 0.2 g  

FeSO4 ·7H2O 0.5 g  

ZnSO4 ·7H2O 0.4 g  

H3BO3 0.015 g  

CoCl2 ·6H2O 0.05 g  

Na-EDTA 0.25 g  

MnCl2 ·4H2O 0.02 g  

NiCl2 ·6H2O 0.01 g  
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Solution V (100X)  

Per litre    

KH2PO4 26 g  

Na2HPO4 ·12H2O 71.6 g  

 

NMS is made by autoclaving a 1X solution of I-IV together and 100X solution V 

separately. Autoclaved solution V (10 ml) is added to 990 ml of autoclaved 1X 

solution I-IV.   

2.3.4 mANMS 

Solution I 

Per litre    

KNO3 0.25 g  

NH4Cl 0.25 g  

MgSO4·7H2O 0.4 g  

CaCl2      0.1 g  

Fe-EDTA 0.19 mg  

NaMoO4 ·6H2O 0.13 mg  

   

Solution II 

Per litre    

KH2PO4 13 g  

NaHPO4 35.8 g  

 

Solution I and II are autoclaved separately. Once cool, 10 ml of solution II is added to 

989 ml of solution I. 1 ml of thiothrix trace elements solution was also added to the 

medium.  
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2.3.5 LB 

Per litre    

Tryptone  10 g  

Yeast extract  5 g  

NaCl 10 g  

 

pH is adjusted to 7.4 before autoclaving.  

2.3.6 Tris-EDTA (TE) buffer 

Tris-HCL 10 mM  

Na2HPO4  1 mM  

 

The solution is prepared from 1 M Tris-HCl (pH8) and 0.5 M Na2EDTA (pH8)  

2.3.7 SET buffer 

EDTA 40 mM  

Tris-HCl, pH9 50 mM  

sucrose 0.75 mM  

 

2.3.8 Lysozyme solution 

Sterile water 990 µl  

lysozyme 9 mg  

1 M Tris-HCl, pH 8 9 µl  

 

2.3.9 SDS solution 

SDS 10 %  
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2.3.10 Proteinase K solution 

sterile water 950 µl  

proteinase K 20 mg  

1 M Tris-HCl, pH 8 50 µl  

 

2.3.11 Ammonium acetate solution 

NH4acetate 7.5 M  

  

2.4 DNA purification 

DNA was extracted by enzymatic lysis and the presence of SDS (Neufeld et al., 

2007a), or in some cases using the FastDNA SPIN Kit for soil from MP Biomedicals 

(UK).  

  

2.4.1 DNA Extraction 

DNA was extracted from all biological samples using the following protocol unless 

otherwise stated. The DNA extraction method was modified from the Neufeld et al., 

(2007) protocol by using twice as much SDS to maximise DNA recovery.  

Biomass was collected at the bottom of a 15 ml falcon tube and re-suspended in 1.6 

ml of SET buffer. To this, 180 μl of 9 mg/ml lysozyme was added and the sample 

incubated at 37 °C for 30 minutes. Next, 400 μl of 10 % SDS and 55 μl of 20 mg/ml 

proteinase K was added. The sample was then incubated at 55 °C for 2 hours. 

Following incubation another 1 ml of SET buffer was added to the sample and mixed 
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by inversion. The sample was then transferred to a Maxtract™ High Density phase 

lock tube (Qiagen, UK).  3 ml of Phenol:Chloroform:Isoamylalcohol (25:24:1) was 

added to the phase lock tube and the sample was inverted until it appeared milky 

white. The tube was then centrifuged at 6500 g for 10 minutes. The addition of 3 ml 

of Phenol:Chloroform:Isoamylalcohol (25:24:1) and centrifugation at 6500 g for 10 

minutes was then repeated. Next, the addition of 3 ml of Chloroform:Isoamylalcohol 

to remove any residual phenol was carried out along with another centrifugation step 

at 6500 g for 10 minutes. The top liquid layer above the white phase lock matrix was 

then transferred to a new 15 ml falcon tube. DNA was precipitated from the sample 

with the addition of 5 μl of Glycogen (Roche), 1 ml of 7.5 M ammonium-acetate and 

6 ml of ethanol. The sample was inverted to mix and kept at -20 °C overnight while 

the DNA precipitated. DNA was retrieved from the sample by centrifugation at 

16,000 g for 20 minutes, then aspiration of the precipitation buffer. The DNA was re-

suspended in water or TE buffer. DNA quality was assessed by running a sample on a 

0.8% agarose gel stained with Ethidium bromide and visualised by 

UVtransluminesence in a GeneGenious imaging system (Syngene) and visualised 

using the Gene-snap software. DNA was quantified on a Nanodrop-1000.  
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2.5 Polymerase Chain Reaction (PCR) 

PCR was carried out with the following mix of reagents per 50 µl reaction as an 

example of a typical set up. Variations were used when required for particular primer 

sets according to published protocols.  

Water 36.1µl  

BSA (3.4 %) 1 µl  

PCR buffer (10x) 5 µl  

dNTPs 25 mM 0.4 µl  

Forward primer 10 mM 2 µl  

Reverse primer 10 mM 2 µl  

MgCl2 1.5 mM 3 µl  

Taq DNA polymerase (5U/μl) 

(Fermentas UK) 

0.5 µl  

 

PCR reactions were performed using a Tetrad thermocylcer (Bio-Rad). Analysis of 

DNA fragments was carried out by electrophoresis through a 1% agarose gel. 

Agarose gels were analysed by UVtransluminesence in a GeneGenious imaging 

system (Syngene) and visualised using the Gene-snap software. 
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2.5.1 List of primers used  

Table 2.1 

 

*The GC clamp is added to the 5’ end of the primer for use in DGGE. 

 

 

 

Primer Sequence Target Reference 

27F AGAGTTTGATCMTGGCTCAG 16S rRNA gene Lane, 1991 

907R CCGTCAATTCMTTTGAGTTT 16S rRNA gene Lane, 1991 

341F CCTACGGGAGGCAGCAG 16SrRNA gene Muyzer et al., 1993 

341F_

GC* 

CGCCCGCCGCGCCCCGCGCCCGTCC

CGCCGCCCCCGCCCGCCTACGGGAG

GCAGCAG 

16S rRNA gene Muyzer et al., 1993 

1492r TACGGYTACCTTGTTACGACTT 16S rRNA gene Lane, 1991 

189F GGNGACTGGGACTTCTGG pmoA Holmes et al., 1995 

661R CCGGMGCAACGTCYTTACC pmoA  Costello and 

Lidstrom, 1999 

682R GAASGCNGAGAAGAASGC pmoA Holmes et al., 1995 

206F ATCGCBAARGAATAYGCSCG mmoX Hutchens et al., 

2004 

886R ACCCANGGCTCGACYTTGAA mmoX Hutchens et al., 

2004 

M13F GTAAAACGACGGCCAG pGEM-T vector Invitrogen 

M13R CAGGAAACAGCTATGAC pGEM-T vector Invitrogen 
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2.6 Denaturing Gradient Gel Electrophoresis (DGGE) 

DGGE was performed according to the protocol first described by Muyzer et al., 

(1993). PCR products amplified using a primer set with a GC clamp were analysed 

using the DCode™ universal mutation detection system (BioRad, USA).  The DGGE 

gels were 8 % (w/v) polyacrylamide with a 30 % - 70 % linear denaturant gradient, 

where 100 % was equivalent to 7.0 M urea and 40 % UltraPure™ formamide 

(Invitrogen). Gels were run in 1 x TAE buffer for 16 hr, 80 V at 60 °C. DGGE gels 

were stained with 5 µL of 10 000 x SYBR
®
 Gold in 200 ml of 1 x TAE buffer for 60 

min. Gels were then imaged by UVtransluminesence in a GeneGenious imaging 

system (Syngene) and visualised using the Gene-snap software. 

 

Dominant bands of interest were excised from the DGGE gel using a sterile razor 

blade while being viewed on a 365 nm long wavelength UV transilluminator. Excised 

bands were transferred to a 250 µL eppendorf tube containing 20 µL of sterile 

nuclease free water and incubated over night at 4 °C. A sample of the 20 µL water 

was then used as a PCR template for re-amplification of the target sequence. PCR 

products were purified using the NucleoSpin
®

 Extract II Nucleic Acid and Protein 

Purification kit (Macherey-Nagel, Germany). Purified PCR products were then 

sequenced at the University of Warwick Molecular Biology Facility.  

 

2.7 Cloning 

Cloning was carried out using the pGEM®-T Easy Vector system for the cloning of 

purified PCR products (according to the manufactures instructions).  
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2.8 DNA sequencing 

PCR amplicon sequencing was carried out at the University of Warwick molecular 

biology service. Between 10 and 80 ng of PCR product was combined with 5.5 ρmol 

primer and sequenced by Sanger sequencing. High-throughput metagenomic 

sequencing was carried out at the UCL genomics facility. Genome sequencing of 

Methylomonas LWB was carried out at TGAC, Norwich research park. The DNA 

sample was sequenced using an Illumina MiSeq benchtop sequencer. Data sets were 

produced for both 150 bp and 250 bp paired end reads. A combined assembly of both 

data sets were used to produce a genome scaffold. The assembled data were then 

uploaded to the RAST website for annotation and analysis (http://rast.nmpdr.org).   

2.9 Phylogenetic analysis 

Phylogeny of sequences was determined by alignment by ClustalW with BLAST hits 

obtained from the GenBank database using Mega5 (Tamura et al., 2011). 

Phylogenetic trees were constructed using the Neighbour-joining method with 

bootstrap values calculated with 1000 replicates in all cases.  

2.10 Metagenomic Analysis 

Metagenomic data was uploaded to the MG-RAST website 

(http://metagenomics.anl.gov/) for analysis (Meyer et al., 2008). The analysis 

pipeline first involved de-replication of sequences to remove artificial duplicate reads 

that can occur due to artefacts during the sequencing process. Sequences containing 

five or more consecutive ambiguous base pairs were removed. A step of gene calling 

was then implemented which predicts coding DNA sequence from sequences of 75 

base pairs or longer using the inbuilt tool “FragGeneScan”. The amino acid 
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sequences were then determined and clustered, using the uclust component of 

QIIME, on a basis of 90% sequence similarity, maintaining relative abundances for 

function abundance comparison. Protein identifications were determined for 

representatives of each cluster using the sBLAT component of the BLAT algorithm. 

Sequence similarities were identified by comparison to the M5nr non redundant 

protein database which contains identities from a range of integrated databases 

including, but not limited to, GenBank, IMG, KEGG, EBI and NCBI. Abundance 

profiles were generated for all functions which can then be scanned for comparison 

and analysis. The MG-RAST website was used to search the Movile Cave 

metagenome for genes of interest by keyword search.  

2.11 Genome Analysis 

A DNA sample from Methylomonas LWB was sequenced using an Illumina MiSeq 

benchtop sequencer. Data sets were produced for both 150 bp and 250 bp paired end 

reads. A combined assembly of both data sets were used to produce a genome 

scaffold. The assembled data were then uploaded to the RAST website for annotation 

and analysis (http://rast.nmpdr.org).  Further analysis was also carried out by 

uploading the assembled genome to the IMG genome analysis website 

(http://img.jgi.doe.gov/). A Microsoft Excel spreadsheet with all annotations was 

used to identify and manipulate genes of interest for phylogenetic analysis. Kegg 

recruitment plots were created based on the gene annotations of the Methylomonas 

LWB genome from the Seed viewer comparison tools. These were then used to 

determine complete metabolic pathways encoded by the Methylomonas LWB 

genome.  
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2.12 DNA-Stable Isotope Probing (DNA-SIP) 

DNA-SIP was performed following the protocol described by Neufeld et al., (2007). 

Microcosms with a mixture of Movile Cave floating microbial mat and water were 

incubated in 120 ml serum vials with approximately 20 ml of sample per vial. The 

microcosms were incubated with either 
12

CH4 or 
13

CH4 in the headspace at 2.0 % 

(v/v). Methane consumption was monitored by gas chromatography. Samples of 5 ml 

of the mat and liquid were taken from the microcosm at different time points and then 

resealed and re-spiked with methane. DNA was extracted from the samples as 

described above and subject to CsCl density gradient ultracentrifugation. 

Fractionation of gradients was carried out by allowing the CsCl to drop from the 

centrifugation tube into collection tubes. Gradient formation was confirmed by 

measurement of the density of every fraction of CsCl using a digital refractometer 

(Reichert AR2000, Reichert Analytical instruments, USA). DNA was precipitated 

from all fractions as described by Neufeld et al., (2007). DNA from every fraction 

was then frozen at -20 °C for analysis.  

2.13 Gas chromatography 

Gas chromatography was used for measuring CH4 concentration from bacterial cell 

cultures and microcosms. An Agilent 6890 instrument was used with a Porapak Q 

column with N2 carrier gas flowing at 20 ml min
-1

.The temperature set up was; 

injector 150 °C, column 125 °C, detector 200 °C. An injection volume of 100 µl was 

used for all measurements.  
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2.14 pmoA microarray 

The pmoA microarray was carried out by Dr D. Kumaresan at the CSIRO institute, 

Hobart, Tasmania. The microarray consisted of 198 probes covering all known 

methanotroph sequences. The analysis was performed as stated by Stralis-Pavse et 

al., (2004). 
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Chapter 3 

Analysis of Movile Cave 

Microbial Community  
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3.1 Metagenome of Movile Cave microbial floating mat 

Metagenomics is a tool being used by the microbial ecology community to gain an 

insight into microorganisms and their genetic potential in an ecosystem. One of the 

key advantages of using the metagenomics approach is that it eliminates PCR primer 

bias (Wooley et al., 2010). A limitation to the technique is that it can only display 

genetic potential and it does not give evidence for the function of each individual 

bacterium (Takami et al., 2012). However, despite this limitation, metagenomic 

datasets can be important for formulating hypotheses about microbial diversity and 

function in a given environment. If one knows the genes that are present, one can 

make assumptions about possible functions occurring in the environment which can 

then be tested. Large noteworthy metagenomics studies include the Sorcerer II Global 

Ocean Sampling Expedition (http://collections.plos.org/plosbiology/gos-2007, a 

collection of papers from the Venter institute) and The Human Microbiome Project 

(http://commonfund.nih.gov/Hmp/, a collection of works funded by the NIH). In this 

study, a metagenomic data set from the DNA extracted from microbial mats floating 

in the Movile Cave water was produced and analysed in order to create hypotheses 

for further research in this project.  

 

The purpose of this metagenome was to identify the methane oxidising bacterial 

community from a non-enriched sample of microbial floating mat that had been 

frozen shortly after leaving the cave. This would be the best opportunity to get a 

snapshot of the methanotroph community as it exists in the cave environment.  
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Method 

A sample of microbial mat and water was retrieved from air bell 2 of Movile Cave 

and was frozen at -20 °C two hours after being harvested. The sample remained 

frozen at -20 °C for three weeks until processing. DNA was extracted from the 

microbial mat following the protocol described in section 2.4.1. (Neufeld et al., 

2007/sterivex method). An aliquot of the extracted DNA was run on an agarose gel 

(0.7 % agarose) to determine quality, while quantity was determined using a Nano-

drop 1000 Spectrophotometer.  

 

The DNA extracted (20 µg) was subsequently sent to the UCL Genomics sequencing 

facility for analysis. 500 ng of the DNA was sheared using a Corvis S2 focused-

ultrasonicator. The sequence library was prepped using the Roche Titanium Rapid 

Library kit (http://454.com/downloads/my454/documentation/gs-flx-plus/Rapid-

Library-Preparation-Method-Manual_XLPlus_May2011.pdf). Quality of the library 

was assessed on the Bioanalyser and then sequenced using Titanium chemistry on the 

two large regions of a PTP on a Roche 454 GS FLX. Image and signal processing 

were carried out using GS software v2.5.3. Sequence data were analysed using the 

MG-RAST online metagenomics analysis server and pipeline (Meyer et al., 2008).  

The analysis pipeline first involved de-replication of sequences to remove artificial 

duplicate reads that can occur due to artefacts during the sequencing process. 

Sequences containing five or more consecutive ambiguous base pairs were removed. 

A step of gene calling was then implemented, which predicts coding DNA sequence 

from sequences of 75 base pairs or longer using the inbuilt tool “FragGeneScan”. The 

amino acid sequences were then determined and clustered, using the uclust 

http://454.com/downloads/my454/documentation/gs-flx-plus/Rapid-Library-Preparation-Method-Manual_XLPlus_May2011.pdf
http://454.com/downloads/my454/documentation/gs-flx-plus/Rapid-Library-Preparation-Method-Manual_XLPlus_May2011.pdf
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component of QIIME, on a basis of 90% sequence similarity, maintaining relative 

abundances for function abundance comparison. Protein identifications were 

determined for representatives of each cluster using the sBLAT component of the 

BLAT algorithm. Sequence similarities were identified by comparison to the M5nr 

non redundant protein database, which contains identities from a range of integrated 

databases including, but not limited to, GenBank, IMG, KEGG, EBI and NCBI. 

Abundance profiles were generated for all functions, which can then be scanned for 

comparison and analysis.   

 

Results 

There were a total of 1,326,733 sequences analysed from this run. The mean 

sequence length was 343 ±105 bp with mean mol % GC content of 51 % ±11 %. 

After quality control there were 960,943 sequences remaining with a mean length of 

360 ±89 bp with a mean GC mol % content of 50 % ±11 %. After processing, the 

sequences were assigned as such; 36.8 % annotated proteins, 33.7 % unknown 

proteins, 27.6 % failed quality control and 1.9 % represented ribosomal sequences 

(Figure 3.1).  Of the annotated sequences, 96.5 % were of bacterial origin with 1.8 % 

being eukaryotic, 1.3 % being from archaea and 0.2 % from viruses.  
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Figure 3.1: A pie chart representing the distribution of sequences after quality 

control. 

 

After processing and annotation of the sequences with the M5NR database with more 

stringent annotations, 85 % appeared to be bacterial, 1 % archaeal, 1 % eukaryote, 

with the remaining being unassigned or other sequences (Figure 3.2). 

 

At the phylum level, the DNA sequences were dominated by sequences from 

Proteobacteria, covering 60.2 % of the total annotated sequences followed by 

bacteroidetes at 12.1 % and firmicutes at 7.6 % (Table 3.1 Figure 3.3). The small 

proportion of archaea are dominated by euryarchaeota (Figure 3.4). Surprisingly 2.72 

% of the sequences represent cyanobacterial sequences, which would not be expected 

in an environment such as Movile Cave where there is no light. The cyanobacterial 

sequences identified here could be close relatives of the canonical photosynthetic 
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cyanobacteria surviving by utilizing different metabolic strategies other than 

photosynthesis. The presence of such a large proportion of cyanobacterial sequences 

may also be an artefact of poorly annotated sequences in reference databases or an 

incorrect annotation of the sequence. While there is a possibility for contamination in 

the environment during sampling trips into the cave, the likelihood of survival and 

proliferation of cyanobacteria in this environment would be limited but not 

imposible.  

 

Figure 3.2: Distribution of sequences at the domain level with annotations predicted 

using the M5NR MG-Rast multi database annotation system. A maximum e-value 

cutoff of 1 x 10
5
 was used with a minimum % identity cut off of 60 % and a 

minimum alignment length of 15. 
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Table 3.1: List of annotated sequences at the phylum level.     

Phylum N
u

m
b

er
 o
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re
p

re
se

n
ta

ti
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se
q

u
en

ce
s 

P
er

ce
n

ta
ge

 o
f 
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n
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o

ta
te

d
 

se
q

u
en

ce
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Acidobacteria 7905 0.84 

Actinobacteria 28045 2.97 

Annelida 5 0.00 

Apicomplexa 358 0.04 

Aquificae 2818 0.30 

Arthropoda 2079 0.22 

Ascomycota 2525 0.27 

Bacillariophyta 216 0.02 

Bacteroidetes 114020 12.06 

Basidiomycota 499 0.05 

Blastocladiomycota 1 0.00 

Bryozoa 2 0.00 

Candidatus 
Poribacteria 198 0.02 

Chlamydiae 1306 0.14 

Chlorobi 14886 1.57 

Chloroflexi 14861 1.57 

Chlorophyta 787 0.08 

Chordata 4233 0.45 

Chromerida 1 0.00 

Chrysiogenetes 726 0.08 

Chytridiomycota 3 0.00 

Cnidaria 522 0.06 

Crenarchaeota 956 0.10 

Cyanobacteria 25723 2.72 

Deferribacteres 1736 0.18 

Deinococcus-Thermus 4585 0.49 

Dictyoglomi 699 0.07 

Echinodermata 156 0.02 

Echiura 2 0.00 

Elusimicrobia 300 0.03 

Euglenida 4 0.00 

Euryarchaeota 10324 1.09 

Fibrobacteres 466 0.05 

Firmicutes 69950 7.40 

Fusobacteria 2451 0.26 

Gemmatimonadetes 839 0.09 

Glomeromycota 2 0.00 

Hemichordata 62 0.01 

Korarchaeota 81 0.01 

Lentisphaerae 1908 0.20 

Microsporidia 30 0.00 

Mollusca 22 0.00 

Nanoarchaeota 19 0.00 

Nematoda 375 0.04 

Neocallimastigomycota 6 0.00 

Nitrospirae 2219 0.23 

Phaeophyceae 109 0.01 

Placozoa 58 0.01 

Planctomycetes 15800 1.67 

Platyhelminthes 47 0.00 

Porifera 10 0.00 

Proteobacteria 568691 60.17 

Rotifera 9 0.00 

Spirochaetes 9150 0.97 

Streptophyta 3174 0.34 

Synergistetes 1932 0.20 

Tenericutes 673 0.07 

Thaumarchaeota 137 0.01 

Thermotogae 3363 0.36 

Verrucomicrobia 13199 1.40 

unclassified (derived 
from Archaea) 552 0.06 

unclassified (derived 
from Bacteria) 3897 0.41 

unclassified (derived 
from Eukaryota) 1855 0.20 

unclassified (derived 
from Fungi) 20 0.00 

unclassified (derived 
from Viruses) 2198 0.23 

unclassified (derived 
from other sequences) 206 0.02 

unclassified (derived 
from unclassified 
sequences) 1205 0.13 
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Figure 3.3: Visual representation of bacteria phyla distribution.  
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Figure 3.4: Visual representation of archaeal phyla distribution.   

 

 

Figure 3.5: Rarefaction curve based on all annotated sequences in the metagenome 

and their species affiliation.  

 

The rarefaction curve is a display of the number of new species that occur after 

analysing an increasing number of sequences. To be sure that all the potential species 

within a sample have been “discovered”, one would expect the graph to plateau. In 
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this case, (Figure 3.5), the rarefaction curve is heading to a plateau but does not 

reach it, indicating that this sequencing effort has potentially not captured the entire 

community composition present in Movile Cave mat. When compared with 

metagenomic data from other ecosystems, the Movile Cave biofilm has a rather high 

microbial diversity (Figure 3.6). The metagenomic data from Movile Cave mats was 

compared with those from different environments: mine sediment, fish pond water, 

Antarctic water and a Galapagos mangrove. There were no other metagenomes from 

a similar environment to Movile Cave found in the MG RAST database.  
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Figure 3.6: Rarefaction curves based on metagenomic data from different 

environments. All metagenomes were obtained from the MG-Rast public database, 

Accession numbers provided. Image produced using MG-Rast.  

 

 

As there were no metagenomes available from environments similar to Movile Cave, 

the database was scanned for metagenomes from a range of different environments 

for comparison.  

 

Metagenome  Rarefaction curve  

Movile Cave (4482825.3)  

Black Soudan mine sediment (4440281.3)  

Tilapia pond water (4440413.3)  

Antarctic water  (Ace Lake) metagenome (4443680.3)  

Mangrove on Isabella Island (Marine water) – Ecuador (4441598.3)  
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Figure legend on next page.  
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Figure 3.7: Relative abundance of bacterial phyla across the compared metagenomes. 

Colours represent the same metagenome as in the rarefaction curve above (Yellow: 

Movile Cave, Blue: Black Soudan mine sediment, Red: Tilapia pond water, Green: 

Antarctic water and Purple: Mangrove on Isabella Island). 

 

 

Figure 3.8: Relative abundance of archaeal phyla across the compared metagenomes. 

(Yellow: Movile Cave, Blue: Black Soudan mine sediment, Red: Tilapia pond water, 

Green: Antarctic water and Purple: Mangrove on Isabella Island). 

 

The Movile Cave rarefaction curve is steeper than the curves of the pond, Antarctic 

and mine samples, showing that more organisms have been “discovered” with fewer 

sampled sequences, thus indicating a higher diversity of microorganisms. The 

rarefaction curve for the mangrove marine water sample is steeper than that of 

Movile Cave, but the sequence data set was not large enough to discover more 

species than was found within the Movile Cave metagenome.  
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All of the metagenomes compared at the relative abundance of bacterial phyla level 

shared similar profiles with proteobacteria being the most abundant across all 

metagenomes, with the mangrove metagenome (4441598.3) having the highest 

percentage of the metagenome being represented by proteobacteria. The Black 

Soudan mine sediment (4440281.3) and the Antarctic water (4443680.3) 

metagenomes were similar in that, compared to the other metagenomes, they had 

relatively high abundances of firmicutes and actinobacteria whereas the Movile Cave 

(4482825.3) and Tilapia fish pond (4440281.3) metagenomes had relatively higher 

bacteroidetes. In fact the Tilapia fish pond metagenome had almost as many 

bacteroidetes sequences as it had proteobacteria. The Movile Cave bacteria domain 

relative abundance profile appears to most closely correlate with the profile of the 

mangrove metagenome.  

 

Similarly to the bacterial phyla distribution, the archaeal phyla distribution saw a 

single phylum as most abundant across all metagenomes, euryarchaeota. The 

mangrove metagenome had quite a large relative abundance of thaumarchaeota, 

whereas the other metagenomes had very little thaumarchaeota. The other four 

metagenomes had crenarchaeota, as the next most abundant archaeal domain which 

was less than the thaumarchaeota presence in the mangrove.  
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3.2. The methanotroph community structure in Movile Cave mat 

  

3.2.1 Methane monooxygenase analysis 

Methane monooxygenase is the first enzyme in the oxidation pathway of methane 

(Trotsenko and Murrell, 2008). Methane oxidising bacteria in the Movile Cave 

biofilm were examined by screening the functional annotation database of the 

metagenome for genes annotated as encoding the methane monooxygenase enzyme. 

All annotations in the metagenome were set at a threshold of having a maximum e-

value cutoff of 1 x 10
-5

, a minimum identity cut off of 60 % and a minimum 

alignment length of 15. The screening was done using the keyword search of function 

to search all annotated sequences for methane monooxygenase sequences. (25) 

Representative sequences, out of 238 sequences, from the metagenome were obtained 

(Table 3.2). Interestingly most of the annotated sequences were related to soluble 

methane monooxygenase, highlighted blue in Table 3.2. This is contrary to what was 

found when using specific PCR primers to identify both particulate and soluble 

methane monooxgenase gene sequences from 
13

C labelled SIP-DNA (see chapter 5).   
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Table 3.2: DNA sequences annotated as methane monooxygenase in the Movile Cave metagenome. sMMO sequences are highlighted in blue.  

Closest hits 
Accesion 
number 

Function 

A
b

u
n

d
an

ce in
 

m
etagen

o
m

e 

M
ean

 e
-valu

e 

M
ean

 %
 

id
en

tity 

M
ean

 seq
 

len
gth

 (A
A

) 

Methylococcus capsulatus str. Bath AAU92736.1 methane monooxygenase,  alpha subunit, hydroxylase component. mmoX 73 -26.4 87.0 63 

Methylosinus trichosporium OB3b EFH04545.1 methane monooxygenase,  alpha subunit, hydroxylase component. mmoX 22 -34.6 82.4 81 

Methylococcus capsulatus AAB62391.2 methane monooxygenase, Component C, the iron-sulfur flavoprotein. mmoC 20 -22.1 67.2 70 

Methylococcus capsulatus str. Bath AAU92722.1 methane monooxygenase, Component C, the iron-sulfur flavoprotein. mmoC 20 -22.1 67.2 70 

Methylocella silvestris BL2 ACK50231.1 methane monooxygenase,  alpha subunit,  alpha chain. mmoX 19 -34.4 76.2 82 

Methylocella silvestris BL2 ACK50232.1 methane monooxygenase,  alpha subunit, beta chain. mmoX 12 -12.3 73.2 48 

Methylococcus capsulatus AAF04158.2 methane monooxygenase, regulatory protein B. mmoB 8 -19.5 81.6 57 

Methylococcus capsulatus str. Bath AAU92726.1 methane monooxygenase, regulatory protein B. mmoB 8 -19.5 81.6 57 

Methylosinus trichosporium OB3b EFH04546.1 methane monooxygenase, protein A-beta subunit. mmoY 7 -20.4 68.8 74 

Methylococcus capsulatus AAB62392.3 methane monooxygenase,  alpha subunit, hydroxylase component. mmoX 6 -51.3 87.0 103 

Methylocystis sp. M AAC45290.1 methane monooxygenase, protein A-beta subunit. mmoY 5 -32.7 67.0 95 

uncultivated type I methanotroph AAM22463.1 methane monooxygenase,  alpha subunit, hydroxylase component. mmoX 4 -60.0 84.1 132 

Methylocella palustris AAC46173.1 methane monooxygenase,  alpha subunit, hydroxylase component. mmoX 4 -66.0 74.7 138 

Methylococcus capsulatus str. Bath AAU91113.1 methane monooxygenase, subunit C. pmoC3 4 -23.4 67.2 74 

Methylococcus capsulatus str. Bath AAU92181.1 methane monooxygenase, subunit C. pmoC1 4 -23.4 67.2 74 

Methylocystis sp. M AAC45289.1 methane monooxygenase,  alpha subunit, hydroxylase component. mmoX 3 -18.3 84.4 52 

uncultivated bacterium ABQ10690.1 methane monooxygenase,  alpha subunit, hydroxylase component. mmoX 2 -34.0 88.0 77 

uncultivated bacterium AAR04314.1 methane monooxygenase,  alpha subunit, hydroxylase component. mmoX 2 -26.5 79.8 70 

Methylocystis hirsuta ABG56535.1 methane monooxygenase,  alpha subunit, hydroxylase component. mmoX 2 -17.0 71.2 52 

Methylocystis sp. M AAC45294.1 methane monooxygenase, Component C, the iron-sulfur flavoprotein. mmoC 2 -14.0 68.1 56 

Methylocystis sp. M AAC45291.1 methane monooxygenase, regulatory protein B. mmoB 2 -16.0 84.0 50 

uncultivated bacterium AAZ06199.1 methane monooxygenase,  alpha subunit, hydroxylase component. mmoX 1 -6.0 96.0 25 

Methylobacter tundripaludum SV96 EFO03473.1 methane monooxygenase, subunit A. pmoA 1 -22.0 84.5 58 
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By far the most abundant sequence (31 % of total methane monooxygenase 

sequences) was annotated as being closely related to mmoX from Methylococcus 

capsulatus Bath, sharing 87 % amino acid similarity to the annotated sequence over 

an average of 63 amino acids. Genes encoding other soluble methane 

monooxygenase subunits related to Methylococcus capsulatus Bath (mmoY, mmoC, 

mmoB) were also abundant. As a result, 45 % of the annotated sequences were from 

the same organism, Methylococcus capsulatus Bath. This includes 8 sequences that 

were annotated as particulate methane monooxygenase sequences related to pmoA of 

Methylococcus capsulatus Bath. It is odd that the particulate methane 

monooxygenase represents such a low proportion of the annotated methane 

monooxgenase sequences, when the same organism that contains the most highly 

abundant methane monooxygenase sequence is likely to have the genes for both 

soluble and particulate methane monooxygenase in its genome. One would therefore 

expect to see similar representation of both soluble and particulate methane 

monooxygenase gene sequences in the metagenomic data set, at least represented 

from the same organism. Methylococcus capsulatus strain Bath was isolated by 

Whittenbury et al., (1970) and is an obligate methanotroph. Strain Bath was isolated 

from the Roman spa bath house in Bath, England. Methylococcus capsulatus Bath 

has been the focus of many research projects since its isolation the genome of this 

methanotroph was sequenced in 2004 (Ward et al., 2004).  

 

The next most abundant sequence, representing 22 sequences, is closely related to 

Methylosinus trichosporium OB3b. Again these are soluble methane monooxygenase 

gene sequences with 82 % sequence identity (over a mean of 81 amino acids).  The 

Methylosinus trichosporium OB3b sequences represent 9.2 % of the methane 
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monooxygenase sequences in this metagenome. Methylosinus trichosporium OB3b 

was isolated by Whittenbury et al., (1970) from a soil sample exposed to gas leaks 

from natural gas pipelines and natural seeps (soil used in the study by Coty et al., 

1967). Again this strikes resonances with the Movile Cave environment, as there are 

natural gas seeps only a few hundred meters away and there is methane dissolved in 

the thermal waters entering the cave.  

 

The next two most abundant methanotroph sequences affiliate to Methylococcus 

capsulatus again. They account for 20 sequences each and are both homologous to 

mmoC, component C of the soluble methane monooxygenase. The sequences differ 

in their similarity to the mmoC sequences from two different ecotypes of 

Methylococcus capsulatus. The two different sequences are likely from the same 

organism within the cave, but covering slightly different positions over the same 

gene. When compared to the genes from the similar strains, one end of the gene may 

be more similar to one strain and the other end of the gene more similar to the second 

strain. Alternatively, there could be several closely related strains of Methylococcus 

capsulatus in the cave. 

 

There are 19 and 12 hits for two different regions of the soluble methane 

monooxygenase of Methylocella silvestris BL2. The similarity of the query 

sequences to their respective hit sequences are very close, being 76 % and 73 %. This 

could indicate that both query sequences came from the same organism. Had they 

been largely different, it could be argued there may be more than one strain in the 

cave that is closely related to Methylocella silvestris BL2. Methylocella silvestris 



79 
 

BL2 was isolated from acidic (pH 3.8-4.3) forest soil outside of Marburg, Germany 

(Dunfield et al., 2003). Subsequently, Methylocella has been found in many 

environments at a range of pHs including the sediment of the alkaline Lonar Lake 

(Rahman et al., 2011). Methylocella is an unusual methanotroph as it does not 

possess particulate methane monooxygenase, nor does it contain any intracytoplasmic 

membranes to which particulate methane monooxygenase associates, which are 

found in all other known proteobacterial methanotrophs (Dunfield et al., 2003). It is 

also the first fully authenticated facultative methanotroph, being able to grow on 

multi-carbon compounds such as acetate (Theisen et al., 2005).  

 

There are again more Methylococcus capsulatus related sequences, 16 in total,  here 

being annotated as mmoB, encoding protein B of soluble methane monooxygenase. 

These have quite high similarity to the query sequence at 81.6 % similarity over 57 

amino acids. There is another gene from Methylosinus trichosporium OB3b present. 

These sequences relate to the mmoY gene products, but the similarity to the query 

sequence is much lower than for the Methylosinus trichosporium OB3b mmoX gene 

product, being only 68.8 % similar over 74 amino acids. There are considerably 

fewer copies of another Methylococcus capsulatus-like mmoX sequence (6) than there 

were for the strain Bath mmoX (73), but the similarity of 87 % over a the derived 

amino acid sequence is the same. There are 5 sequences that are annotated as having 

67 % similarity (over 95 amino acids) to the mmoY of a Methylocystis sp. M. This 

bacterium was isolated from a consortium that was found to be able to degrade 

trichloroethylene by Uchiyama et al., (1989).  
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The sequence identified as “uncultivated type 1 methanotroph” that is similar to 4 

sequences in the metagenome is very similar to the mmoX sequence of several 

Methylomonas species. When a protein Blast search was performed on the NCBI 

website, the top hit with 100 % similarity was the uncultivated methanotroph 

sequence as it was the query sequence. However, there are sequences related to 

Methylomonas mmoX sequences that share 99 % similarity to the query sequence. 

Therefore, it is likely the mmoX sequence originates from an uncultivated 

Methylomonas strain or the Methylomonas strain isolated in this study. 

 

There are few particulate methane monooxygenase sequences in the metagenome 

from Movile Cave. There are two sequences that have 4 representatives each that are 

annotated as being two of the three Methylococcus capsulatus Bath pmoC 

homologues (Stolyar et al., 1999). It could be that low sequence coverage gives a 

miss representation of the true abundance of all of the methane monooxygenase 

sequences that may be present within Movile Cave. Interestingly, there are two 

copies of the particulate methane monooxygenase gene cluster found in the genome 

of the Methylomonas LWB isolate found in this study (one of which is putative 

owing to a rare gene arrangement). PCR with pmoA-specific primers using the same 

DNA sample yields a positive result, so possibly both soluble methane 

monooxygenase and particulate methane monooxygenase are being used to oxidise 

methane in Movile Cave. This warrants further study in the future using, for example, 

a transcriptomics approach (mRNA sequence analysis). 
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3.2.2 Methanol dehydrogenase analysis 

 

Another potential gene marker for identifying methane oxidising bacteria within the 

Movile Cave metagenome is mxaF, the gene encoding methanol dehydrogenase, the 

second enzyme involved in the methane oxidation pathway. Methanol dehydrogenase 

is also the first enzyme in the oxidation pathway of methanol found in most 

methylotrophic organisms. Methylotrophs will be important in the Movile Cave 

carbon flow as they will grow on C1 compounds that are released from other 

organisms (such as methanol being released from methane oxidisers). The methanol 

dehydrogenase sequences found in the Movile Cave metagenome can be found in 

Table 3.3.  
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Table 3.3: Methanol dehydrogenase gene sequences annotated as such in the Movile Cave metagenome. Known methane oxidiser mxaF 

sequences are highlighted in blue. 

Closest hits id function 
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Methylophilus methylotrophus AAA83765.1 methanol dehydrogenase large subunit, (mxaF) 20 -38.7 90.4 79.9 

Methylobacillus flagellatus KT ABE50311.1 methanol dehydrogenase large subunit, (mxaF) 15 -37.5 87.9 80.6 

Methylococcus capsulatus str. Bath AAU92935.1 methanol dehydrogenase large subunit, (mxaF) 9 -16.0 77.4 47.1 

Methylobacterium organophilum AAA50289.1 methanol dehydrogenase large subunit, (mxaF) 9 -23.6 80.6 64.0 

Methylobacterium extorquens PA1 ABY32516.1 methanol dehydrogenase  small subunit, (mxaI) 8 -18.1 77.6 52.5 

Methylobacterium chloromethanicum 
CM4 ACK85291.1 methanol dehydrogenase  small subunit, (mxaI) 8 -18.1 77.6 52.5 

Methylobacterium extorquens AM1 ACS42166.1 methanol dehydrogenase  small subunit, (mxaI) 8 -18.1 77.6 52.5 

Methylobacillus flagellatus KT ABE50304.1 Ca2+ insertion into methanol dehydrogenase, (mxaC) 6 -25.6 70.5 84.2 

Beta proteobacterium KB13 EDZ63907.1 methanol dehydrogenase large subunit, (mxaF) 4 -36.5 76.1 93.0 

Methylobacterium nodulans ORS 2060 AAG49450.1 methanol dehydrogenase large subunit, (mxaF) 4 -41.0 77.5 98.3 

Methylobacterium nodulans ORS 2060 ACL63034.1 methanol dehydrogenase large subunit, (mxaF) 4 -41.0 77.5 98.3 

Rhodopseudomonas palustris BisB18 ABD87467.1 methanol dehydrogenase  small subunit, (mxaI) 4 -17.4 67.6 58.5 

Cytophaga hutchinsonii ATCC 33406 ABG57482.1 methanol dehydrogenase regulator, (CDS) 4 -20.6 69.2 69.9 
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Closest hits id function 
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Xanthomonas campestris pv. 
campestris str. ATCC 33913 AAM42752.1 methanol dehydrogenase large subunit, (mxaF) 3 -34.3 66.5 94.5 

Xanthomonas campestris pv. 
campestris str. 8004 AAY47758.1 methanol dehydrogenase large subunit, (mxaF) 3 -34.3 66.5 94.5 

Acaryochloris marina MBIC11017 ABW30237.1 methanol dehydrogenase regulator, (CDS) 3 -18.3 75.3 63.0 

Methylocystis sp. ATCC 49242 EFX98596.1 methanol dehydrogenase  small subunit, (mxaI) 2 -12.0 72.1 43.0 

Flavobacteriales bacterium ALC-1 EDP69957.1 methanol dehydrogenase regulatory protein, (moxR) 2 -42.5 82.6 103.0 

Methylococcus capsulatus str. Bath AAU90462.1 methanol dehydrogenase large subunit, (mxaF) 2 -37.0 79.2 93.0 

Methylophilales bacterium HTCC2181 EAV46784.1 methanol dehydrogenase large subunit, (mxaF) 2 -16.5 70.3 57.0 
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The sequences annotated as methanol dehydrogenase genes present in the Movile 

Cave metagenome are dominated by mxaF from known methylotrophs, as would be 

expected. There are only two methane oxidising organisms that have representative 

methanol dehydrogenase sequences in the metagenome. The most abundant 

methanotroph mxaF sequence is that from Methylococcus capsulatus Bath. This is 

not suprising given the relatively high abundance of Methylococcus capsulatus Bath 

methane monooxygenase sequences. These mxaF sequences shared 77 % identity to 

the mxaF of Methylococcus capsulatus Bath, but was a relatively short sequence 

representing only 47 amino acids on average. This sequence was one of the most 

abundant of all of the methanol dehydrogenase sequences, but still fewer than half of 

the most abundant sequence. The second methanotroph mxaF sequence is annotated 

as belonging to a Methylocystis species. This was only represented by two sequences. 

A similar situation occurred with Methylocystis methane monooxygenase genes, with 

only 5 sequences being found in the metagenome. The derived mxaF sequences in the 

metagenome share 72 % sequence identity over an average of 43 amino acids to the 

mxaF from Methylocystis. 

 

It would have been expected there would be more methanotroph representatives 

among the methanol dehydrogenase sequences given there is a rather large diversity 

of methane monooxygenase sequences. All methane oxidising bacteria should 

contain the genes encoding methanol dehydrogenase. Therefore, all genomes that 

contain a methane monooxygenase should contain a methanol dehydrogenase. The 

number of methanol dehydrogenase sequences observed might be lower than those of 

the methane monooxygenase, as some methanotrophs can have multiple gene copies 

of the methane monooxygenase (Stolyer et al., 1999). However, even though the 
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abundance of methanol dehydrogenase would be less, a similar diversity should still 

be seen for both methanol dehydrogenase and methane monooxygenase sequences. 

This also suggests that the metagenome coverage is not sufficent to determine the full 

diversity of methanotrophs present in Movile Cave.    

 

The most abundant methanol dehydrogenase sequence, with 20 representatives, was 

related to mxaF from a Methylophilus methylotrophus. This mxaF sequence has a 

very high similarity to the annotation, having 90.4 % similarity over an average of 80 

amino acids. Methylophilus methylotrophus is a restricted facultative methylotroph 

with the ability to grow on methanol and a limited range of more complex organic 

compounds (Jenkins et al., 1987). With methanotrophic bacteria in Movile Cave, 

there may be “leakage” of one-carbon compounds, such as methanol which can be 

utilised by methylotrophs such as Methylophilus methylotrophus.  

 

The next most abundant mxaF gene sequence was related to mxaF sequences from 

Methylobacillus flagellatus KT. There are 15 of these sequences in the metagenome, 

with a high similarity of 80 % to the annotated sequence over an average of 81 amino 

acids. Methylobacillus flagellatus KT is an obligate methanol and methylamine 

utilising methylotroph. It was isolated from a metropolitan sewer system 

(Govorukhina et al., 1987), and is suited to industrial application due to its high 

growth rate on, and tolerance of, methanol and its high yield coefficient of turning 

methanol into biomass (Chistoserdova et al., 2007). There may be micro niches 

within the Movile Cave biofilm, where there are concentrated pockets of methanol or 

even formaldehyde where a Methylobacillus flagellatus KT-like bacterium would 

most likely thrive.  



86 
 

There are multiple mxaF sequences annotated as belonging to different strains of 

Methylobacterium, the total of which exceeds that of Methylophilus related 

sequences. Methylobacterium strains are facultative methylotrophs and are found in a 

variety of environments. The first Methylobacterium strain named Bacillus 

extorquens was isolated by Bassalik, (1913) from the gut contents of an earthworm. 

The current lab “work horse” strain is Methylobacterium extorquens AM1 (originally 

Pseudomonas AM1), which was isolated by Peel and Quayle (1961). Initially, a 

presumed airborne contaminant on a 0.1 M methylamine agar plate, the organism was 

subcultured and isolated. There are currently 44 different species of 

Methylobacterium that have validated names according to the J.P Euzéby website 

(http://www.bacterio.cict.fr/). Methylobacterium species are ubiquitous in nature 

(Lidstrom, 2006), so it is no suprise they are present in Movile Cave.  

 

There are 3 sequences annotated as a methanol dehydrogenase sequence that only 

shares 67 % identity over an average of 95 amino acids to that of  Xanthomonas 

campestris. This bacterium is a plant pathogen and, like Methylobacterium, colonises 

leaves of terrestrial plants (Shaad et al., 2005). It might oxidise methanol released 

from the leaf in the same manner as Methylobacterium. There are another 3 sequence 

hits annotated as being closely related to the cyanobacterium Acaryochloris marina. 

The sequences share 75 % sequence identity over an average of 63 amino acids to 

that of Acaryochloris marina. The number of representative sequences for this 

organism is fairly low, but it would be very unlikely that this photosynthetic 

organism would be able to thrive in the Movile Cave environment in the absence of 

light. There may be a chance that these organisms have been brought into Movile 

Cave as contaminants by researchers entering the cave. In the case of the 
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Acaryochloris, it might suggest that the water in Movile Cave is linked to the water 

of the Black Sea, which is only around 2 km from the cave. One could imagine that if 

the bodies of water are in some way connected, there may be a path for a 

photosynthetic organism to make its way into Movile Cave (although this rather 

unlikely). 
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3.2.3 Formate dehydrogenase analysis 

Formate dehydrogenase is the enzyme converting formate into carbon dioxide. For 

methylotrophic organisms, this is the last step of the complete oxidation pathway of 

one carbon compounds. The genes encoding formate dehydrogenase can often be 

found in multiple copies in some methylotrophs, such as Methylobacterium 

extorquens (Chistoserdova et al., 2004). Formated dehydrogenase is a valuable 

enzyme in biosythetic processes, such as the dehydrogenase based production of 

optically active compounds, and is used for its high throughput of NADH 

regeneration (Tishkov and Popov, 2006). The putative formate dehydrogenase 

sequences found in this metagenome are shown in Table 3.4. 
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Table 3.4: Formate dehydrogenase sequences annotated as such in the Movile Cave metagenome. Known methane oxidiser sequences 

highlighted in blue. There were 368 unique sequences annotated as formate dehydrogenase. A selection of representative sequences are shown.  
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Syntrophobacter fumaroxidans MPOB ABK19180.1 formate dehydrogenase, alpha subunit 14 -20.3 72.8 62.7 

Methylococcus capsulatus str. Bath AAU92551.1 formate dehydrogenase, alpha subunit 10 -18.4 73.2 60.3 

Methylococcus capsulatus str. Bath AAU92353.1 formate dehydrogenase, alpha subunit 9 -36.8 83.6 93.2 

Methylobacillus flagellatus KT ABE48989.1 formate dehydrogenase beta subunit 8 -23.3 79.1 66.4 

Methylobacillus flagellatus KT ABE48988.1 formate dehydrogenase alpha subunit 8 -38.0 80.8 88.6 

Methylibium petroleiphilum PM1 ABM94131.1 formate dehydrogenase large subunit precursor 7 -48 86.6 103 

Sinorhizobium meliloti AK83 EFN28969.1 formate dehydrogenase, alpha subunit 6 -43.3 82.0 98.6 

Methylotenera versatilis 301 ADI30808.1 formate dehydrogenase family accessory protein FdhD 4 -21.2 69.5 71.9 

Methylococcus capsulatus str. Bath AAU92707.1 formate dehydrogenase, iron-sulfur subunit 3 -42 81.6 90.8 

Methylocella silvestris BL2 ABQ35207.1 formate dehydrogenase alpha subunit 3 -20.7 89.6 52.5 

Ruegeria pomeroyi DSS-3 AAV95075.1 formate dehydrogenase, alpha subunit, putative 2 -28 81.2 70.5 
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The most abundant formate dehydrogenase sequence from a known methane 

oxidising bacterium is related to that of Methylococcus capsulatus Bath. There are 10 

sequences that share 73 % sequence identity over 63 amino acids of the 

Methylococcus capsulatus Bath sequence. There are a further 9 occurances of another 

sequence that shares 83.6 % sequence identity over an average of 93 amino acids of 

the same Methylococcus capsulatus Bath sequence. There are also a further two 

sequences related to Methylococcus capsulatus Bath that share 82 % sequence 

identity over an average of 91 amino acids. As seen with other genes of the 

methylotrophic pathway, Methylococcus capsulatus Bath formate dehydrogenase 

sequences are the most abundant in the Movile Cave metagenome.   

 

The only other methane oxidising bacterium with a formate dehydrogenase 

represetative sequence was that of Methylocella silvestris BL2. There are 2 sequences 

that share 90 % sequence identity over an average of 53 amino acids to the sequence 

annotated as Methylocella silvestris BL2. Methylocella silvestris BL2 annotated 

sequences made up a large number of the soluble methane monooxygenase 

sequences, so it was likely it would have representative sequences of the other genes 

involved in the metabolism of methane. However, there were no methanol 

dehydrogenase sequences annotated as being related to Methylocella silvestris BL2, 

and here we only see 2 representative sequences. As mentioned previously, the 

disproportion in abundance of different genes from the organisms that should have 

even representatives of genes from a given metabolic pathway, is evidence to suggest 

that the coverage and annotation of this metagenome may not be adequate.  
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The most abundant formate dehydrogenase present in this metagenome shared 72.8 

% sequence identity with that of Syntrophobacter fumaroxidans MPOB over an 

average of 63 amino acids. Syntrophobacter fumaroxidans MPOB is a non-

methylotrophic sulfate reducer that can grow independently or syntrophically on 

propionate. This strain is known to reduce fumarate into succinate using formate as 

an electron donor (Harmsen et al., 1998).  

 

As with methanol dehydrogenase, there were a relatively large number of sequences 

for the formate dehydrogenase sequences that are annotated as being related to 

formate dehydrogenase from Methylobacillus flagellatus KT. There were 16 

sequences in total, with 8 sequences sharing 79 % sequence identity over 66 amino 

acids and the other 8 sequences sharing 81 % sequence identity over 89 amino acids. 

Methylobacillus flagellatus KT is likely one of the dominant methylotrophs in the 

Movile Cave environment.  

 

There were 7 sequences related to the formate dehydrogenase sequence of 

Methylibium petroleiphilum PM1. These sequences share nearly 87 % sequence 

identity over an average of 103 amino acids. Methylibium petroleiphilum PM1 is a 

betaproteobacterial methylotroph first isolated from a compost biofilter by Nakatsu et 

al., (2006). It was isolated from a mixed bacterial culture being grown on methyl tert-

butyl ether (MTBE). Methylibium petroleiphilum PM1 can grow on methanol 

(Kalyuzhnya et al., 2008), but there were no methanol dehydrogenase sequences 

related to Methylibium species found in this metagenome.  
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Of the formate dehydrogenase sequences, 6 shared 82 % sequence identity over  an 

average of 99 amino acids to the formate dehydrogenase sequence of  Sinorhizobium 

meliloti. Sinorhizobium meliloti is a reclassification of the organism Rhizobium 

meliloti which was first isolated by Jordan, (1984) according to Lajudie et al., (1994). 

Sinorhizobium species are root nodulating bacteria, so it is odd to find them in 

Movile Cave.  

 

There are 2 sequences annotated as being closely related to the formate 

dehydrogenase sequence of  Ruegeria pomeroyi DSS-3. The sequences share 81 % 

sequence identity over an average of 71 amino acids. Ruegeria pomeroyi DSS-3 was 

originally isolated as a DMSP degrader from marine water and named Silicibacter 

pomeroyi (González et al., 2003). The organism was then renamed Ruegeria 

pomeroyi DSS-3 after combining two closely related taxa (Yi et al., 2007). 

This is another case of a known marine organism being found among the Movile 

Cave sequences, which gives more evidence that there may be some connection 

between the cave water and the marine water of the Black Sea.  

 

 

 

 

 

 

 

 

 



93 
 

3.2.4 Hexulose-6-phosphate synthase analysis 

There are two major pathways used by methylotrophic organisms for the assimilation 

of formaldehyde produced by the oxidation of C1 compounds. One of the assimilation 

pathways is the Ribulose mono phosphate pathway (RuMP) (Figure 3.9). The RuMP 

pathway first involves the addition of formaldehyde and Ribulose-5-phosphate. After 

a rearrangement of the molecule and addition of another phosphate from ATP, the 

resultant Fructose1-6-bisphosphate is cleaved with one of the products being 

dihydroxyacteonephosphate. This is then converted into pyruvate which then feeds 

into the TCA cycle for cellular synthesis. Here the gene encoding the first enzyme of 

the RuMP pathway, Hexulose-6-phosphate synthase, is used as a marker of 

organisms able to carry out this metabolic pathway within Movile Cave and focusing 

on the methylotrophic sequences. The hexulose-6-phosphate synthase sequences can 

be found in Table 3.5. 

 

Figure 3.9: The ribulose monophosphate pathway redrawn from Anthony, (1982). 
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Table 3.5: Hexulose-6-phosphate synthase sequences in the Movile Cave metagenome. Known methane oxidiser sequences are highlighted in 

blue. 

 

 

 

 

 

Closest hits id function 
A

b
u

n
d

an
ce in

 
M

etagen
o

m
e 

M
ean

  eV
alu

e 

M
ean

  %
 id

en
tity 

M
ean

  seq
u

en
ce 

len
gth

 (A
A

) 

Methylobacillus flagellatus KT ABE48521.1 3-hexulose-6-phosphate synthase 17 -27.4 81.8 76 

Methylobacillus flagellatus KT ABE49922.1 3-hexulose-6-phosphate synthase 16 -20.3 90.4 54.9 

Methylococcus capsulatus str. Bath AAU91180.1 putative hexulose-6-phosphate synthase/SIS domain protein 15 -25.9 72.0 78.9 

Betaproteobacterium KB13 EDZ64934.1 3-hexulose-6-phosphate synthase 9 -29.7 78.6 85.3 

Methylovorus glucosetrophus SIP3-4 ACT49517.1 3-hexulose-6-phosphate synthase 5 -16 89.1 47.2 

Methylovorus sp. MP688 ADQ84716.1 3-hexulose-6-phosphate synthase 4 -9.8 86.6 38.2 

Methylococcus capsulatus str. Bath AAU90883.1 hexulose-6-phosphate synthase 4 -18.7 81.9 55.7 

Methylobacter tundripaludum SV96 EFO06236.1 3-hexulose-6-phosphate synthase 3 -6 72.1 35.5 

Methylophilales bacterium HTCC2181 EAV47244.1 hexulose-6-phosphate synthase 3 -20.2 81.8 59.6 
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In total, there are 19 hexulose-6-phosphate synthase annotated sequences, similar to 

that of Methylococcus capsulatus Bath; 15 of these sequences share 72 % sequence 

identity over an average of 79 amino acids. The other 4 sequences share 82 % 

sequence identity over 56 amino acids. The  Methylococcus capsulatus Bath 

hexulose-6-phosphate synthase sequences are one of only two methane oxidising 

bacteria representatives of the gene found in this metagenome. Similar to other genes 

observed,  Methylococcus capsulatus Bath sequences by far dominate the 

methanotroph sequences observed.  

 

The second methane oxidising bacterium hexulose-6-phosphate synthase sequence 

was annotated as being closely related to that of Methylobacter tundripaludum SV96. 

There were only 3 sequences in the metagenome that matched this organism, which 

shared 72 % sequence identity over an average of 36 amino acids. There was a 

similarly low abundance of the particulate methane monooxygenase sequences 

related to this organism, being only 1 annotated sequence. Methylobacter 

tundripaludum SV96 was isolated by Wartiainen et al., (2006) from the Arctic 

wetland soil of Svalbard.  

 

 

The most abundant hexulose-6-phosphate synthase sequences were annotated as 

being closely related to that of Methylobacillus flagellatus KT. In total, there were 33 

sequences annotated with 17 of the sequences sharing 82 % sequence identity over an 

average of 76 amino acids, and a further 16 sequences sharing 90 % sequence 

identity over an average of 55 amino acids. Methylobacillus flagellatus KT annotated 

sequences appear with relatively high frequency for several of the C1 oxidation 
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pathway genes. Therefore, it is likely to be one of the more abundant methylotrophs 

in Movile Cave.  

 

There are 9 sequences that share 77 % sequence identity over an average 85 amino 

acids to an unknown betaproteobacterium KB13. There are many betaproteobacterial 

methylotroph species, including Methylobacillus, Methylobacterium and 

Methylotenera. The betaproteobacterium KB13 is believed to be a coastal marine and 

estuarine isolate, and had its genome sequenced as part of a Gordon and Betty Moore 

Foundation marine microbial genome sequencing project carried out at the J. Craig 

Venter Institute. 

(https://moore.jcvi.org/moore/SingleOrganism.do?speciesTag=KB13).  

 

There are 9 Methylovorus species hexulose-6-phosphate synthase sequences present 

in the metagenome. Of the 9, there are 5 sequences annotated as  Methylovorus 

glucosetrophus SIP3-4 sharing 89 % sequence identity over an average of 47 amino 

acids. There are also 4 sequences that share 87 % sequence identity over an average 

of 37 amino acids annotated as Methylovorus sp. MP688. Methylovorus 

glucosetrophus SIP3-4 was isolated by Lapidus et al., (2011) from Lake Washington 

in Seattle WA. Its genome was sequenced as part of a comparative study into the 

metabolic diversity of 3 methylotrophic isolates from Lake Washington. 

Methylovorus sp. MP688 was isolated from a soil sample by Xiong et al., (2011), and 

had its genome sequenced due to an interest in the high levels of pyrroloquinolone 

quinine that the organism produced.  
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There are 3 hexulose-6-phosphate synthase sequences related to the sequence from 

Methylophilales bacterium HTCC2181. The sequence shares 82 % sequence identity 

over an average of 60 amino acids. On the JCVI website 

(https://moore.jcvi.org/moore/SingleOrganism.do?speciesTag=MB2181), it is noted 

that this organism is one of the most abundant betaproteobacterial representatives in 

coastal marine 16S rRNA gene clone libraries. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://moore.jcvi.org/moore/SingleOrganism.do?speciesTag=MB2181
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3.2.5 Hydroxypyruvate reductase analysis 

 

The second of the two major pathways, used by methylotrophic organisms for the 

assimilation of formaldehyde, produced by the oxidation of C1 compounds, is the 

serine cycle (Hanson and Hanson, 1996) (Figure 3.10). Formaldehyde is first 

combined with a molecule of glycine by serine transhydroxymethylase to produce 

serine, which is then converted into hydroxypyruvate by serine-glyoxylate 

aminotransferase. Hydroxypyruvate is then converted into glycerate by the enzyme 

hydroxypyruvate reductase. Glycerate is phosphorylated into phosphoglycerate by 

glycerate kinase and then converted into phosphoenolpyruvate (PEP) by enolase. The 

addition of CO2 to the PEP is carried out by PEP carboxylase, producing oxaloacetate 

which is then converted into malate by malate dehydrogenase. Malyl-CoA is then 

produced through the use of malate thiokinase. The malyly-CoA is then broken into 

acetyl-CoA, which leads into the TCA cycle for cellular synthesis and glyoxylate 

which is used to begin the cycle again. Here the hpr gene encoding for the 

hydroxypyruvate reductase was used to identify organisms present in the Movile 

Cave metagenome, which are able to use the serine cycle for their metabolism of 

carbon. The hydroxypyruvate reductase sequences from the metagenome are listed in 

Table 3.6. 
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Figure 3.10:  The serine cycle. Courtesy of Professor Chris Anthony. 
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Table 3.6: Hydroxypyruvate reductase sequences in the Movile Cave metagenome. 
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Meiothermus silvanus DSM 9946 ADH63318.1 Hydroxypyruvate reductase 4 -13 59.1 64 

Verminephrobacter eiseniae EF01-2 ABM56706.1 Hydroxypyruvate reductase 4 -30.7 70.9 95.8 

Delftia acidovorans SPH-1 ABX34755.1 Hydroxypyruvate reductase 3 -26.3 71.9 83.9 

Roseiflexus castenholzii DSM 13941 ABU59323.1 Hydroxypyruvate reductase 3 -7 73.3 37.8 

Chloroflexus aurantiacus J-10-fl ABY33859.1 Hydroxypyruvate reductase 3 -7.87 56.9 55.3 

Thiomonas intermedia K12 ADG32195.1 Hydroxypyruvate reductase 3 -13.6 72.7 56.7 

Nitrosomonas sp. AL212 EET33322.1 Hydroxypyruvate reductase 2 -5.7 57.7 44.3 
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Compared with the other genes identified here, there are relatively few sequences 

annotated as hydroxypyruvate reductase. No hydroxypyruvate reductase gene 

sequences found in the Movile Cave metagenome were annotated as sequences 

related to known methane oxidising organisms.  

 

There are 4 sequences annotated as being related to the hydroxypyruvate reductase of  

Meiothermus silvanus DSM 9946. The sequence shares only 59 % sequence identity 

over an average of 64 amino acids to the annotation. Meiothermus silvanus DSM 

9946 is an interesting organism, as they are found to produce coloured biofilms on 

machines in the paper production industry (Ekman et al., 2007). It could be likely that 

a similar organism may play a role in the production of the biofilms found in Movile 

Cave.  

 

Four of the hydroxypyruvate reductase sequences were annotated as being related to 

Verminephrobacter eiseniae EF01-2 (71 % identity over an average of 96 amino 

acids). Verminephrobacter eiseniae EF01-2 was isolated from the nephridia 

excreatory organ of the earthworm Eisenia foetida by Pinel et al., (2008). Nematodes 

are known to live within and consume the microbial mats in Movile Cave (Muschiol 

et al., 2007; 2008a,b; 2009). This organism may have been in the excretory products 

from a nematode and been present in the mat sample that was used to prepare DNA 

for this metagenome.  

 

There are 3 sequences annotated as being similar to the hydroxypyruvate reductase 

gene of Delftia acidovorans SPH-1. The sequence shares 72 % sequence identity 

over an average of 84 amino acids. Delftia acidovorans SPH-1 was isolated as part of 
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a consortia of organisms from a German sewage treatment plant that are able to 

degrade linear alkylbenzenesulfonate, which is a laundry surfactant used globally 

(Schleheck et al., 2004).  

 

Roseiflexus castenholzii DSM 13941 is the annotation of 3 of the hydroxypyruvate 

reductase sequences (73 % sequence identity over 38 amino acids). Roseiflexus 

castenholzii DSM 13941 is a thermophilic filamentus photosynthetic organism 

capable of growing under anaerobic conditions in the light. It is also capable of 

growing chemoheterotrophically under aerobic conditions in the dark, which would 

be suitable for growth in Movile Cave (Hanada et al., 2002).   

 

Chloroflexus aurantiacus J-10-fl is a similar organism to Roseiflexus castenholzii 

DSM 13941, as it is an anoxygenic photoheterotroph able to grow 

chemoheterotrophically under aerobic conditions. The organism is found in hot 

thermal springs rich in sulfide similar to the Movile Cave environment (Pierson and 

Castenholz, 1974). This hpr sequence shares 57 % sequence identity to the hpr gene 

of Chloroflexus aurantiacus J-10-fl over an average of 55 amino acids.   

 

There are 3 sequences annotated as being closely related to the hydoxypyruvate 

reductase gene from Thiomonas intermedia K12 (73 % sequence identity over an 

average of 57 amino acids). Thiomonas intermedia K12 was isolated from a sewage 

pipe in Hamburg, Germany (Milde et al., 1983). The organism was originally a 

Thiobacillus before being reclassified. Thiomonas intermedia K12 is known to be a 

sulfur oxidiser and capable of growth on polythionates (Wentzien and Sand, 2004).  



103 
 

There are 2 sequences annotated as being closely related to the hydroxypyruvate 

reductase gene sequence of  Nitrosomonas sp. AL212 (58 % sequence identity over 

an average of 44 amino acids). Nitrosomonas sp. AL212 is an obligate 

chemolithotrophic ammonia-oxidiser isolated from an activated sludge sample.  
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3.2 Analysis of Movile Cave mat DNA using a pmoA Microarray 

A pmoA microarray (Bodrossy et al., 2003) has been used in several studies to 

analyse the diversity of particulate methane monooxygenase gene sequences from 

DNA samples from a range of environments including saline soil, pond water and 

landfil cover soil (e.g. see Saidi-Mehrabad et al., 2013; Bisset et al., 2011; 

Kumaresan et al., 2011). Functional gene microarray studies can identify organisms 

at a species level resolution without the need for cultivation. They also provide semi-

quantitive data on relative abundances of the different gene sequences in a given 

sample (Stralis-Pavese et al., 2011).  

 

The pmoA microarray is a tool for fingerprinting the gene, encoding the particulate 

methane monooxygenase enzyme alpha-subunit from a community of bacteria. Most 

methanotrophs contain the genes encoding the particulate methane monooxygenase, 

so the pmoA microarray provides a suitable screening method of methanotrophs from 

a given community. The pmoA microarray was used here as another approach to 

identify the methane oxidising bacteria of Movile Cave. The microarray was 

performed in conjunction with the metagenome sequencing to fully illustrate the 

methane oxidising bacterial community, as it would exist in Movile Cave and without 

any enrichment or substrate bias acting on the community. It was thought that the use 

of this polyphasic approach would provide robustness to data produced, as opposed 

to carrying out either of the techniques individually which have limitations on how 

much information they can reliably produce.  
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DNA extracted from the Movile Cave microbial mat was sent to Dr Levente 

Bodrossy’s lab for pmoA microarray analysis. There were no replicates of the 

microarray produced. The pmoA microarray was carried out by Dr. D. Kumaresan at 

the CSIRO laboratories, Hobart, Tasmania, Australia, under guidance of Dr Levente 

Bodrossy. The pmoA microarray was performed according to the procedure described 

by Stralis-Pavese et al., (2011). The Movile Cave DNA sample was amplified with 2 

different sets of primers targeting the pmoA gene, sharing the 189 forward primer 

with either the mb661 reverse primer, specifically targeting methanotrophs (Costello 

and Lidstrom, 1999) or the A682 reverse primer that targets pmoA and amoA from 

methane and ammonia oxidisers respectively, along with other pmoA-like sequences 

identified in different environments (Bourne et al., 2001). There was also a third 

product used by creating a semi-nested PCR product, using both sets of PCR primers. 

These were used to obtain full coverage of  pmoA genes present in the amplified PCR  

products, and were hybridised onto the microarray probes. A full list of hybridisation 

probes used in this study can be found in Appendix 1.
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Figure 3.11: pmoA microarray heat map indicating hybridisation of pmoA PCR products amplified from the Movile Cave microbial mat to 

various probes. Hybridisation was carried out with three different sets of PCR products. The top track PCR products were amplified with A189f 

and A682r. The middle track PCR products were amplified with A189f and mb661r. The bottom track PCR products were produced from a 

semi-nested approach using A189f with both A682r and mb661r. The colour of each probe represents relative hybridisation signal intensity, 

where red is maximum relative intensity, yellow is about 10% hybridisation intensity and blue is no signal. Only the section of probes with 

hybridisation is shown. The heat map was created by Dr Levente Bodrossy, as he had the software available to create it.  
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Table 3.7 contains a highlighted version from the the pmoA microarray heat map of 

Figure 3.11. It can be observed that there was only one Type Ia probe that gave any 

significant signal with the three microarray analyses. This was with PCR generated 

products with the mb661 reverse primer and hybridising probe Mm275 targeting 

pmoA sequences from genus Methylomonas. There were signals across all 3 

microarrays for the probe SWI1-377, targerting pmoA from Type Ia probes and 

represents a marine sediment clone.  

 

A significant proportion of the stronger hybridisation signals came from the Type 1b 

methanotroph pmoA probes. There were strong hybridisation signals across all 3 

microarrays for probes 501-375 and 501-286. These probes target pmoA sequences 

from Methylococcus found in both marine and fresh water sediment clone libraries. 

There were signals for probe Mcl404, which is a Methylocaldum pmoA, in both 

A189f/A682r and semi-nested PCR amplifications. There were also relatively weak 

hybridisation signals for the probes RSM1-419, JHTY2-562 and JHTY2-578 across 

the A682 and semi-nested PCR product microarrays. There were strong hybridisation 

signals across all three microarrays for the probe LW21-391, which is assumed to be 

a pmoA from a Type 1b clone from the Lake Washington studies. There was a 

hybridisation product for probe M90-574 on the A682 microarray, which is another 

probe targeting Methylococcus and Methylocaldum-like pmoA sequence. There were 

hybridisation signals on the A682 and nested product microarrays for the probe Mha-

500, targerting pmoA from Methylohalobius and Methylothermus. Finally, there are 

hybridisation signals across all 3 microarrays for the probes Ib453 and Ib559 which 

targer pmoA from Methylococcus, Methylothermus and Methylocaldum.  
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Most of the stronger hybridisation signals represent Type II methanotroph pmoA 

sequences. There are strong and some of the strongest hybridisation signals with most 

of the Methylocystis probes (Mcy255, Mcy459, Mcy264, Mcy270, Mcy413 and 

Mcy233).  There was a rather weak signal across all three microarrays for probe 

Msi423, which is representative of a Methylosinus pmoA-like sequence. There were 

relatively weak hybridisation signals across all three microarrays for probe Msi232, 

also targeting pmoA from Methylosinus. Finally, there were strong hybridisation 

signals across all three microarrays for the probes II509 and II630, which are both 

generic probes targeting pmoA from Type II methanotrophs, which is to be expected 

given the strong signals seen with the other more specific Type II probes.  

 

There was a relatively low hybridisation signal across all three microarrays for probe 

NMsiT-271, which is representative of  Type II second copy of a pmoA sequence 

from Type II methanotrophs, which targets a novel copy of the pmoA gene found in 

Methylosinus. There was a very strong hybridisation signal in the A682 microarray 

for probe pmoAMO3-486,  which is just labelled as clone pmoAMO3 with from an 

unidentified organism or location. There is a rather weak hybridisation signal for the 

probe TUSC409 on the nested product microarray, which is a probe based on the 

Tropical Upland Soil Cluster 2 sequences (Kneif et al., 2005).  
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relative probe intensities 

 Probes with strong 
hybridisation signal A682r mb661r nested Identity of related organism 

501-375 11 5 14 Methylococcus 

501-286 3 5 11   

Mcl404 3 
 

6 Methylocaldum 

RSM1-419 2 
 

4 pmoA environmental clones 

JHTY2-562 8 
  

  

JHTY2-578 2 
 

3   

LW21-391 35 13 29 type IB environmental clone 

M90-574 12 
  

M'coccus/M'caldum sediment clone 

Mha-500 10 2 9 Methylohalobius 

Ib453 12 12 15 type IB 

Ib559 6 5 11   

Mcy255 8 16 
 

Methylocystis 

Mcy459 24 28 29   

Mcy264 19 30 33   

Mcy270 14 15 16   

Mcy413 24 32 33   

Mcy522 5 7 7   

Mcy233 9 11 12   

Msi423 4 3 2 Methylosinus 

Msi232 5 6 5 M.sinus+ most M.cystis 

II509 7 8 10 Type II 

II630 8 10 12   

NMsiT-271 4 5 8 Novel pmoA copy of M.sinus 

pmoAMO3-400 28 
  

clone pmoAMO3-400 

TUSC409 

 
2 4 Tropical Upland Soil Cluster #2 

Mm275 

 
16 

 

Methylomonas 

 

Table 3.7: List of pmoA microarray probes that displayed significant hybridisation 

along with relative intensity values for each of the 3 amplificaion products, using the 

primer sets A189f/A682r, A189f/mb661r and A189f/nested. 

 

There were no hybridisation signals seen for any of the amoA probes on A682 

microarray, and there were no signals for any of the novel monooxygenase probes.  
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In summary, the pmoA microarray data suggest that the most abundant pmoA 

sequences are from Methylocystis-like organisms closely followed by sequences 

related to pmoA clones obtained from lake washington. There is an average 

representation of Methylococcus-like pmoA sequences and a more modest 

representation of the Methylosinus- and Methylocaldum-like sequences. There is a 

rather low representation of Methylomonas sequences, and an apparently less Type Ia 

methanotroph representation when compared to Type Ib and Type II representation.  
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3.3 Discussion 

The ability to analyse the genetic potential of all bacteria in a given environmental 

sample simultaneously, allows one to gain a better understanding of how the bacteria 

as a whole can function together as a sustainable community. One of the most 

thorough ways of achieving a snapshot of genetic potential within bacterial 

communities, is to carry out high throughput metagenomic sequencing. Not only can 

this provide great coverage of the genetic potential of a given community, but it also 

rules out sequence misrepresentation often seen with PCR based sequencing 

techniques that often carry primer bias. By removing the primer bias, it is more likely 

that novel sequences will be found. Often the downside to this is not being able to 

annotate a novel sequence correctly due to it never being seen before. However, 

despite potential drawbacks, metagenomics is being used to identify novel 

biosynthetic enzymes that would otherwise be missed due to the lack of cultivation of 

most bacteria (Wilson and Piel, 2013).  

 

The purpose of this section of work was to determine the population of methane 

oxidising bacteria in the Movile Cave microbial floating mat without enrichment, as 

this would represent the natural methanotroph profile. Two independent approaches, 

metagenomics and functional gene microarray, were used to determine the methane 

oxidising bacterial community.  

 

The metagenome obtained here appears to have had reasonable coverage of the 

microbial community that is present in Movile Cave mat. When looking at the 

rarefaction curve of the metagenomic sequences, the curve does appear to be 

reaching a plateau. The total number of sequences from the Movile Cave 
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metagenome is also much higher than in the other metagenomes compared in this 

analysis. Of the sequences that passed quality control, nearly half of the predicted 

proteins had unknown function. If the sequences had unknown function, then they 

likely had unknown phylogeny, which could change the shape of the rarefaction 

curve. If the sequences of unknown origin came from organisms already identified, 

then the rarefaction curve would probably reach a more distinct plateau.  

 

The large number of cyanobacterial sequences observed could be representative of 

the microbial population. In the study by Ortiz et al., (2014), a similar number (2 %) 

of sequences from a metagenome of stalactites in Kartchner cavers were attributed to 

cyanobacteria. A relative of cyanobacteria, melainabacteria, has been identified from 

genomes reconstructed from gut and ground water metagenomes (Di Rienzi et al., 

2013). These melainabacteria are non-photosynthetic and, unlike cyanobacteria, 

instead of producing oxygen, melainabacteria produce hydrogen. The melainabcteria 

also contain homologs to light response regulators (Di Rienzi et al., 2013). With that 

in mind, it may be that the melainabacteria are present in Movile Cave and the 

sequences being identified are being misannotated as cyanobacterial due to how 

similar and closely related the organisms are.  

With a more comprehensive data set, the mangrove metagenome would likely have a 

higher diversity than that of Movile Cave. It is interesting to see that there is such a 

high diversity of microorganisms in Movile Cave. With the cave being isolated and 

relatively stable and being isolated for so long, it would be expected that some 

dominant organisms would take over and any rare biosphere would be out-competed, 

possibly to extinction. Instead, we see there is a complex and high diversity within 

the biofilm, indicating there must be a delicate balance in which these rare organisms 
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play an important role within the floating microbial mat. This could also indicate the 

presence of ecological niches, allowing the rarer microorganisms to survive. This was 

the case in Frassasi cave; it was found that many sulfur oxidising species were found 

to co-exist due to the niche partitioning of counter reduced sulfur species and oxygen 

gradients (Macalady et al., 2008).  

 

The metagenome was predominantly used to identify which methanotrophs and other 

methylotrophs were present in Movile Cave. The metagenome was analysed for any 

sequences annotated as soluble or particulate methane monooxygenase. The soluble 

methane monooxygenase sequences that were found, far outnumbered the particulate 

methane monooxygenase sequences identified. Of the methane monooxygenase 

sequences, most were related to genus Methylococcus. Therefore, it is assumed that 

Methylococcus may be the most abundant methane oxidising bacterium in Movile 

Cave. Despite many efforts, Methylococcus was not isolated from any Movile Cave 

sample. It may not be too suprising that a methane oxidising bacterium, like 

Methylococcus capsulatus Bath, is able to proliferate and dominate in this 

environment, as there are several similarities between Movile Cave and the Roman 

Baths where Methylococcus capsulatus Bath was isolated (Whittenbury et al., 1970). 

The environment from which strain Bath was isolated contains water at 42 °C that is 

rich in sulfur compounds and methane. Hutchens et al., (2004) found both mmoX and 

pmoA gene clones relating to Methylococcus capsulatus Bath from heavy fractions of 

a DNA-Stable Isotope Probing experiment, proving that this organism is indeed 

active in Movile Cave.  

 



114 
 

The methane monooxygense gene sequences were dominated by soluble methane 

monooxygenase gene sequences. All methanotrophs except Methylocella and 

Methyloferulla have particulate methane monooxygenase, so it is odd that there 

would be more soluble methane monooxygenase gene sequences (Theisen et al., 

2005; Vorobev et al., 2011). This suggests that the metagenome coverage is not good 

enough, as one would expect to see similar representation of both soluble and 

particulate methane monooxygenase. 

 

The pmoA microarray indicated there was much more diversity of the particulate 

methane monooxygense gene in Movile Cave than was observed from the 

metagenome. The microarray suggests that the most abundant pmoA sequences are 

from the genus Methylocystis, as opposed to the Methylococcus as seen in the 

metagenome. Relatively, the hybridisation to the Methylococcus probes were some of 

the lowest hybridisation signals observed. This does not mean that Methylococcus is 

less abundant than the other methanotrophs, because when analysing the microarray 

data the potential for primer bias in amplification of the pmoA gene from the sample 

DNA needs to be taken into account. Primer bias could occur if the pmoA sequences 

in Movile Cave differ in sequence enough at the positions where the primers are 

designed to anneal. Two primer sets are used along with a nested approach, using 

both sets to try and account for either of the sets, missing any target sequences and 

also to cover the various pmoA sequences that are known. pmoA gene PCR products 

and hybridisation probe efficiency may also be weak if the target sequences are novel 

or have a slight sequence variation to a matching probe. There is also the possibility 

that there isn’t a probe designed that would hybridise with any potentially novel 

pmoA gene sequences.   
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When looking at the diversity of methanotrophs in general, rather than of a particular 

gene, both metagenome and microarray suggest a similar level of diversity. The 

metagenome highlighted organisms related to Methylococcus, Methylosinus, 

Methylocella, Methylocystis and Methylobacter. The pmoA microarray highlighted 

pmoA sequences related to genera Methylomonas, Methylococcus, Methylocalcdum, 

Methylohalobius/Methylothermus, Methylocystis and Methylosinus.  The microarray 

could not identify Methylocella or Methyloferulla, as they don’t have a particulate 

methane monooxygenase.  

 

Methanotroph species Abundnce in metagenome Abundance in pmoA microarray 

Methylococcus +++ ++ 

Methylocystis + ++ 

Methylomonas - + 

Methylosinus ++ + 

Methylocella ++ - 

Methylobacter + - 

Methylocaldum - + 

Methylohalobius / 
- + 

Methylothermus 

 

Table 3.8: Comparison of relative occurrence of different methanotroph species 

observed from the metagenome and microarray analyses.  “+++” is very high 

occurrence, “++” is high occurrence, “+” is low occurrence and “-” is absent.  

 

From this it can be assumed that Methylococcus species are likely to be the most 

abundant in the microbial floating mat, as they are highly represented in both the 

metagenome and the pmoA microarray. Methylocystis and Methylosinus species are 

both represented in the metageome and pmoA microarray, and are also likely to be 

relatively abundant in the Movile Cave microbial floating mat. Methylobacter species 
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were only present in the metagenome, not as abundant in comparison to the other 

methanotroph species, but present nonetheless. Methylomonas, Methylocaldum and 

Methylohalobius/Methylothermus were present in the pmoA microarray, but not the 

metagenome and none with a particularly high abundance, but again there were still 

representatives of these methanotrophs in the Movile Cave microbial floating mat.  

 

With these findings it can be hypothesised that Methylococcus species are the most 

abundant and active methanotrophs in Movile Cave microbial floating mat. It can 

also be hypothesised that there is a diverse community of methanotrophs active in the 

Movile Cave microbial floating mat.  

 

 

There was little more to be gained in terms of methanotroph diversity from the other 

functional genes analysed from the metagenome. The same methane oxidising 

organisms were being highlighted, particularly Methylococcus which had 

representative sequences in the methanol dehydrogenase, formate dehydrogenase and 

hexulose-6-phosphate synthase tables. Unfortunately, there were no hydroxypyruvate 

reductase genes from methanotrophs identified. It is again assumed that this is due to 

a lack of sequence coverage or poor annotation.  

 

Metagenomics has no doubt been a valuable tool in this study, but there are concerns 

over how much information can be taken from it. As the cost of metagenomic 

sequencing comes down drastically, there is a huge increase in the number of 

uncurated sequences (Temperton and Giovannoni, 2012). This then has knock-on 

effects for the annotation of future metagenomic studies. A sequence could be 
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assigned based on a sequence, which itself could be an uncurated annotated sequence. 

For now, all that can be done is to treat the output of metagenomics with caution and 

use the data as an indication of potential microbes and metabolism in a given 

environment from which hypotheses can be drawn and subsequently tested.  
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Chapter 4 

Isolation of the methanotroph: 

Candidatus: Methylomonas LWB 

from Movile Cave 
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4.1 Introduction 

To gain a more in-depth understanding of the organisms carrying out methane 

oxidation in Movile Cave, enrichment and isolation of methanotrophs was carried 

out. This process is used to gain better understanding of individual organisms from 

which conclusions may be drawn as to why they succeed in a given niche. Methane 

oxidising bacteria have been isolated and characterised for more than a century. The 

first described Methylomonas species, then named Bacillus methanicus, appeared in a 

communication by Söhngen (1906). Since then there have been many methane 

oxidising bacteria from the Proteobaceria and Verrucomicrobia phyla isolated and 

characterised (Hanson and Hanson, 1996; Pol et al., 2007; Dunfield et al., 2007; 

Trotsenko and Murrell, 2008).  

 

Bacterial isolation is conducted so that individual organisms can be characterised 

based on how they react to any given stimulus. This is an important facet of 

microbiology, understanding how the individual components (in this case, bacteria) 

contribute to the overall output or function of a given ecosystem (in this case, Movile 

Cave). The function of the environment is a sum of the individual components. 

Bacterial isolation facilitates the finer detail and understanding of the individual 

components. Once characterisation of the individual components has been done, 

models and predictions can be made as to what may happen if a given environmental 

sample experiences different stimuli. Here isolation of methanotrophs was attempted 

in order to characterise them and to gain a better understanding of their function in 

Movile Cave. 
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 Characterisation of methane oxidising bacteria has typically involved monitoring the 

growth of an organism in bacterial cell culture under varying conditions. More 

recently with the availability of high-throughput DNA sequencing, it has been 

possible to sequence the entire genomes of a number of methane oxidising species 

such as Methylococcus capsulatus Bath, Methylocystis parvus OBBP,  Methylosinus 

trichosporium OB3B and Methylomonas methanica MC09 (Ward et al., 2004; del 

Cerro et al., 2012; Stein et al., 2010 and  Boden et al., 2011). Genome sequences do 

not dictate physiology in the environment. They do, however, provide a metabolic 

blueprint of how organisms grow and cope with certain environmental stresses. 

Genomes also provide longer regions of DNA sequence from which gene 

phylogenies can be determined. Phylogeny comparisons are more robust when longer 

DNA sequences are compared. DNA sequences obtained from whole genome 

sequence will likely be longer than the shorter sequences obtained from PCR-based 

gene analysis, therefore improving the robustness of the sequence comparison 

conclusions.  

The genome of a Methylomonas species isolated in this study was sequenced. The 

genome was sequenced to identify genetic traits that make this organism suitable to 

living in the conditions of Movile Cave. Genome comparison can also be carried out 

with the genomes of closely related organisms to identify differences and similarities 

that are dictated by the environments from which they are isolated. For example, 

genome size and an allowance for genetic redundancy may vary between two 

organisms if they are from environments with varying nutrient availability 

(Giovannoni et al., 2008; Grote et al., 2012).  
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The aim of this section of work was to: 

 Isolate and identify methanotrophic bacteria from Movile Cave 

 Compare methanotrophic isolates obtained with closely related species 

 Characterise methanotrophic isolates obtained at the genomic level  

 

4.2 Enrichment, isolation and characterisation 

Method 

A sample of water taken from the lake in Movile Cave was used to enrich and isolate 

methane oxidising bacteria. The enrichment culture was set up in a 120 ml serum vial 

with 20 ml of lake water. The air in the vial was flushed with oxygen-free-nitrogen to 

remove all other gases and then to amend with to contain 7 % O2 and 3.5 % CO2, as 

would be found in the cave atmosphere (Riess et al., 1999). The serum vial was then 

spiked with 10 ml of CH4 as carbon source for enrichment of obligate methanotrophs. 

 

After two weeks, 50 µl of the enrichment culture was spread onto DBS agar plates 

together with a 1:10 and 1:100 dilutions of the culture. The spread plates were then 

incubated in plastic boxes containing ~10 % CH4 in air. Plates were incubated for two 

weeks and monitored for microbial colony formation. A selection of colonies that had 

grown was streaked out onto fresh DBS agar plates. After several sub-cultures of 

single colonies, the cultures were deemed to be pure. Further purity checks included 

microscope examination of cells from colonies under phase contrast microscopy 

(x1000) and lack of growth on R2A agar plates.  



122 
 

Results 

Initial identification of the methanotroph isolates was determined by 16S rRNA gene 

sequencing. The 16S rRNA gene sequence was obtained from the isolates by colony 

PCR and sequencing of the PCR product. One of the isolates appeared to be a 

genuine methanotroph. Isolate LWB 16S rRNA gene sequence was used as a query 

sequence to search the GenBank database using nucleotide BLAST. The closest hits 

to the isolate sequence all appeared to be 16S rRNA genes of Methylomonas species. 

The phylogeny of isolate LWB was determined from the 16S rRNA gene sequence 

obtained from the LWB genome (Figure 4.1).  
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Figure 4.1: Neighbour-joining phylogenetic tree of Methylomonas 16S rRNA gene 

sequences including the 16S rRNA gene sequence from the isolate Methylomonas 

LWB. The sequence alignment was determined using ClustalW with the sequences 

covering 1,300 nucleotide positions. The scale bar represents 1 % sequence 

divergence. Bootstrap values calculated over 1000 replicates are represented at the 

nodes. The sequence at the root of the tree is the 16S rRNA gene sequence of 

Methylococcus capsulatus Bath (NR_074213). The phylogenetic tree was created 

using MEGA5.  

 

The 16S rRNA gene sequence of isolate LWB confirmed the isolate to be a 

Methylomonas species as determined by BLAST of the sequence against the 

GenBank database. The Methylomonas LWB 16S rRNA gene sequence branched 

separately from other Methylomonas species along with the sequence of 

Methylomonas koyamae. Methylomonas koyamae was isolated by Ogiso et al., (2012) 

from floodwater of a Japanese rice paddy field. When observing the phylogenetic 



124 
 

distance between the different species of Methylomonas on the 16S rRNA gene 

phylogenetic tree, there appeared to be a greater sequence divergence between 

Methylomonas LWB and Methylomonas koyamae than there is between other 

Methylomonas species. Methylomonas LWB and Methylomonas koyamae share 97 % 

sequence identity of the 16S rRNA gene, whereas Methylomonas fondinarum and 

Methylomonas aurantiaca share 99 % sequence identity over the same region and are 

deemed to be different species. This is good evidence to suggest that Methylomonas 

LWB may in fact be a new species of the genus Methylomonas.   

 

4.3 Growth of Methylomonas LWB in the presence of tetrathionate (S4O6
2-

) 

 

Movile Cave water contains high concentrations of sulfide (240 µM) (Porter et al., 

2009). Some bacteria including species of Thiobacillus (Podgorsek and Imhoff,1999) 

can produce tetrathionate from sulfide. There are polythionates in Movile Cave 

(measured at 250-500 µM in airbell 2 with tetrathionate being around 70 µM of the 

total polythionate (Boden, personal communication, unpublished)). Thiobacillus 

species were identified in Movile Cave by Chen et al., (2008) and likely benefit from 

the source of tetrathionate. Organisms such as the obligate chemolithoautotroph 

Thermithiobacillus tepidarius (Lu and Kelly, 1988) can gain energy from 

tetrathionate as an energy source. It was hypothesised that isolates from Movile Cave 

might gain energy from substrates such as tetrathionate. Pure cultures of 

Methylomonas LWB were grown on methane plus increasing concentrations of 

tetrathionate to observe its effect on growth (Figure 4.2).  
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Method 

Methylomonas LWB cultures were set up in 120 ml serum vials containing 10 % 

(v/v) methane in air. Cultures were grown in ANMS medium in a total volume of 20 

ml with an inoculum of 2 ml. Tetrathionate was added to the cultures from a 100 mM 

stock solution to give a range of concentrations of 0, 0.5, 1, 5 and 10 mM. All 

cultures were set up in triplicate. Growth of the cultures was monitored by measuring 

the optical density at 440 nm (OD440).  

 

Figure 4.2: Growth curves of Methylomonas LWB grown in the presence of 

increasing concentrations of S4O6
-2

. Culture growth was monitored by measuring 

optical density of the cultures at 440 nm (OD440). Measurements for cultures 

containing 5 mM and 10 mM S4O6
2-

 were taken at 165 hours to 225 hours when it 

was noticed they had started to grow. Growth curves were conducted in triplicate; the 

error bars represent standard deviation from the mean.   
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Results 

Increasing concentrations of tetrathionate in the culture medium resulted in an 

increasing lag phase before growth was observed (Figure 4.2). Methylomonas LWB 

culture with no addition of tetrathionate had reached its maximum OD by 69 h. The 

OD then appears to fall. It was noticed at this point that the culture had begun to 

flocculate and form a pellicle around the edge of the serum vial. There was no 

significant difference in growth yield between the cultures grown without 

tetrathionate and those grown in the presence of 5 mM tetrathionate. With these data, 

it is not known what the final yield OD would have been observed with the 1mM and 

10 mM tetrathionate cultures. It is likely that the 1 mM tetrathionate would have 

given a similar yield to that of no tetrathionate and 5 mM tetrathionate cultures. It 

was assumed that the 5 mM and 10 mM tetrathionate cultures were not going to grow 

by the 94 h time point. It was noticed later that they had begun to grow; it is not 

known at what point the 5 mM tetrathionate culture began to grow. From this data 

set, it looks very unlikely that Methylomonas LWB can grow whilst using 

tetrathionate as a supplementary energy source. There is no increase observed in final 

yield in the presence of tetrathionate, and growth rate appeared to be slower than the 

control.  
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4.4 The genome of Methylomonas strain LWB 

Method 

A 50 ml batch culture of Methylomonas LWB was grown and the DNA extracted as 

described in section 2.4.1. The DNA sample was sent to The Genome Analysis 

Center (TGAC), Norwich for genomic sequencing. The DNA sample was sequenced 

using an Illumina MiSeq benchtop sequencer.See section 2.11 for more detail. The 

assembled data were then uploaded to the RAST website for annotation and analysis 

(http://rast.nmpdr.org).  Further analysis was also carried out by uploading the 

assembled genome to the IMG genome analysis website (http://img.jgi.doe.gov/).  

Result 

The Methylomonas LWB genome consisted of 5,365,682 bp over 102 contigs. There 

were a total of 5296 predicted genes. For further details see section 4.4.3. 

 

4.4.1 Analysis of Methylomonas strain LWB methane functional gene sequences 

 

The Methylomonas LWB genome was screened for methane monooxygenase genes 

encoding the first enzyme in the methane oxidation pathway. There were two sets of 

genes encoding particulate methane monooxygenase found along with a single 

soluble methane monooxygenase gene cluster. One of the sets of particulate methane 

monooxygenase genes conformed to the expected gene arrangement of pmoCAB. 

However, the second set had the gene arrangement pmoABC (Figure 4.3). The pmoA 

gene from the pmoCAB operon was too short (219 bp, 73 aa, Table 4.1) to be 
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included in the following PmoA alignment, but the pmoA sequence from the 

pmoABC, designated PxmA, was present at full length and included in the alignment 

for the phylogenetic tree of Figure 4.4. The pmoA from the pmoCAB operon along 

with flanking sequence would not align with the other pmoA or pxmA sequences. 

 

 

Figure 4.3: Arrangement of the two particulate methane monooxygenase operons 

found in the Methylomonas LWB genome. pmoC is represented by the green arrow, 

pmoA is represented by the red arrow and pmoB is represented by the yellow arrow. 

The pmoA gene from the pmoCAB operon (bottom) has an incomplete pmoA gene 

sequence identified.  

 

Table 4.1: Size of particulate methane monooxygenase genes as annotated by RAST. 

Gene Methylomonas 

LWB Pxm 

Methylomonas 

LWB Pmmo 

Methylomonas methanica 

MC09 Pmmo 

pmoA/pxmA 753 bp – 251 aa 219 bp – 73 aa 750 bp – 250 aa 

pmoB/pxmB 1239 bp 413 aa 1245 bp – 415 aa 1245 bp – 415 aa 

pmoC/pxmC 774 bp 258 aa 753 bp – 251 aa 213 bp – 71 aa 
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Figure 4.4: Figure legend, see next page.  
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Figure 4.4: Neighbour-joining phylogenetic tree of PmoA and PxmA derived 

sequences showing the relationship of the Methylomonas LWB PxmA sequence 

among other particulate methane monooxygenase alpha-subunit sequences obtained 

from GenBank (accession numbers in brackets). The tree was created at the amino 

acid level (128 amino acid residues) derived from nucleotide sequences. Bootstrap 

values were calculated from 1000 replicates. Bootstrap values <50 were removed. 

The tree is rooted with the AmoA derived amino acid sequence from Nitrosomonas 

europaea (Winogradsky, 1892). The scale bar represents 0.2 substitutions per amino 

acid. The phylogenetic tree was created using Mega5.  

 

The putative second copy of the pmoA gene from the pmoABC operon did not group 

with any of the derived PmoA sequences. Instead, the derived amino acid sequence 

of the gene clustered tightly with a group of sequences which have been annotated as 

being PxmA. The pxm genes belong to a divergent copy of the particulate methane 

monooxygenase gene set, which has the gene orientation of pxmABC (Tavormina et 

al., 2011). The pxm genes have only been observed in Gammaproteobacterial 

methanotrophs. 

 

The Methylomonas LWB genome was shown to contain a set of genes that encode a 

soluble methane monooxygenase enzyme. Other Methylomonas species including 

MC09, LW13 and M5 all have soluble methane monooxygenase genes as well as the 

genes encoding the particulate methane monooxygenase (Boden et al., 2011; Auman 

et al., 2000 and Kip et al., 2011). The phylogeny of the derived MmoX sequence of 

Methylomonas LWB was compared to other derived MmoX sequences obtained from 
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the Genbank database (Figure 4.5). The MmoX sequence of Methylomonas LWB 

clustered among the other Type I methanotroph MmoX sequences as expected. It is 

well known that there is a “copper switch” in methane oxidising bacteria which 

contain both a particulate and soluble methane monooxygenase. This copper switch 

operates depending on the copper to biomass ratio during growth of cells (Murrell et 

al., 2000; Semrau et al., 2013). When the copper to biomass ratio is high, the 

particulate methane monooxygenase is expressed. When the copper to biomass ratio 

is low, the soluble methane monooxygenase is expressed. This may be an indication 

that Methylomonas LWB may encounter situations where copper availability in 

Movile Cave is low and, therefore, it may be a competitive advantage for strain LWB 

to have sMMO as well as pMMO.
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Figure 4.5: Neighbour-joining phylogenetic tree of MmoX derived sequences of Methylomonas LWB and other MmoX sequences encoding the 

soluble methane monooxygenase, alpha subunit, obtained from GenBank (accession numbers in brackets). The tree was created at the amino 

acid level (367 amino acid residues) derived from nucleotide sequences. Bootstrap values were calculated from 1000 replicates. The tree is 

rooted with the BmoX derived amino acid sequence from Thauera butanivorans (Takahashi et al., 1980), encoding the homologous alpha 

subunit of butane monooxygenase. The scale bar represents 0.5 substitutions per amino acid. The phylogenetic tree was created with Mega5.
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Methylomonas LWB has the genes encoding the second enzyme in the methane 

metabolic pathway, methanol dehydrogenase. As mentioned earlier, not all 

methanotrophs contain the genes encoding either or both forms of the methane 

monoogygenase enzyme (pMMO and sMMO). All methanotrophs identified to date 

do however have the genes encoding methanol dehydrogenase.  Lau et al., (2013) 

showed that methanotroph 16S rRNA gene phylogeny was almost mirrored by the 

phylogeny of the mxaF gene sequences (Figure 4.6) Therefore, the identity of 

Methylomonas LWB can therefore be inferred from the phylogeny of its mxaF gene 

sequence. In the phylogenetic tree of methanotroph mxaF gene sequences in Figure 

4.6, the mxaF gene sequence of Methylomonas LWB is most closely related to the 

mxaF gene sequence of another Methylomonas species. 

Figure legend on next page 
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Figure 4.6: Left, is a neighbour-joining phylogenetic tree of mxaF gene sequences 

obtained from several genera of methanotroph. Sequences were obtained from the 

Genbank database (accession numbers in brackets). The tree was constructed at the 

nucleotide level comparing 496 nucleotide positions. The alignment was constructed 

using ClustalW, while evolutionary distance was calculated using the Jukes-Cantor 

method. Bootstrap values were calculated from 1000 replicates.  Right, is a figure 

taken from Lau et al. 2013 illustrating the similarity of methanotroph phylogeny 

when determined using either the mxaF gene sequence or the 16S rRNA gene 

sequence.  

 

 

4.4.2 Metabolic pathway analysis for Methylomonas LWB 

The potential metabolic pathways of Methylomonas LWB were determined using the 

Kegg recruitment maps through The Seed Viewer on the rast.nmpdr.org website. 

These were used to determine if the Methylomonas LWB genome contained the 

relevant genes encoding enzymes for specific metabolic pathways. It should be noted 

that the Methylomonas LWB genome was not closed, which leaves the potential for a 

number of genes to not be present and, therefore, will not be present on the Kegg 

recruitment plots. Figure 4.7 displays all potential enzymes in the methane oxidation 

pathway.  All of the enzymes required to oxidise methane through to carbon dioxide 

via methanol, formaldehyde and formate (methane monooxygenase, methanol 

dehydrogenase, formaldehyde dehydrogenase and formate dehydrogenase) are 

present in the Methylomonas LWB genome.  
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There are two routes for formaldehyde assimilation in methanotrophs, the ribulose 

monophosphate pathway or the serine cycle (Hanson and Hanson, 1996). The gene 

for the enzyme formaldehyde transketolase (2.2.1.3) is present, which produces D-

glyceraldehyde-3-phosphate from formaldehyde and D-xylulose-5-phosphaste. The 

D-glyceraldehyde-3-phosphate then feeds into the ribulose monophosphate pathway. 

The Methylomonas LWB genome also contains the genes encoding serine 

hydroxymethyltransferase (2.1.2.1), which is used to combine formaldehyde bound to 

methylene-tetrahydrofolate with glycine to produce the serine which feeds into serine 

metabolism. 
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Figure 4.7: Kegg 

recruitment plot of the genes 

from the Methylomonas 

LWB genome that are 

involved in methane 

metabolism. Enzyme 

positions highlighted in 

green indicate that the gene 

encoding that enzyme is 

present in the Methylomonas 

LWB genome.  
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D-glyceraldehyde-3-phosphate enters the ribulose monophosphate pathway (Figure 

4.8, bottom left) after the condensation of formaldehyde and D-xylulose-5-phosphate. 

There are many of the genes involved in the production of enzymes for the ribulose 

monophosphate pathway present in the Methylomonas LWB genome. The D-

glyceraldehyde-3-phosphate is converted into β-D-fructose-6-phosphate via fructose 

–bisphosphate aldolase and fructose-bisphosphatase (4.1.2.13 and 3.1.3.11 

respectivley).  The β-D-fructose-6-phosphate can be broken down to produce more 

D-xylulose-5-phosphate by a transketolase enzyme (2.2.1.1), or it can be converted 

into α-D-glucose-6-phosphate by the enzyme glucose-6-phosphate isomerase 

(5.3.1.9). The α-glucose-6-phosphate is converted into 6-phospho-D-gluconate via 3 

enzymes (5.3.1.9, 1.1.1.49 and 3.1.1.31); the genes encoding all of these enzymes are 

present in the Methylomonas LWB genome. Genes encoding the enzyme that 

converts 6-phospho-D-gluconate into D-ribulose-5-phosphate, phosphogluconate 

dehydrogenase (1.1.1.44), are not present in the Methylomonas LWB genome. There 

are, however, genes encoding enzymes that are used to utilise D-Ribulose-5-

phosphate. These include ribulose-phosphate 3-epimerase (5.1.3.1) used to produce 

D-Xylulose-5-phosphate and ribose-5-phosphate isomerase (5.3.1.6), which is used to 

produce D-ribose-5-phosphate for further reactions in the cycle. It may be that the 

phosphogluconate dehydrogenase (1.1.1.4) is missing due to the LWB genome not 

being complete.  

 

Alternatively, the 6-phospho-D-gluconate can be converted into 2-dehydro-3-deoxy-

D-gluconate-6-phosphate by the enzyme phosphogluconate dehydrogenase 

(4.2.1.12); the gene encoding this enzyme is present in the Methylomonas LWB 

genome. The next enzyme in the pathway, which also has the corresponding gene 
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present in the genome, is 2-dehydro-3-deoxy-phosphogluconate aldolase (4.1.2.14) ; 

this is used to split the 2-dehydro-3-deoxy-D-gluconate-6-phosphate into pyruvate 

and D-glyceraldehyde-3-phosphate, which both feed into glycolysis. The gene 

encoding ribose-phosphate pyrophosphokinase (2.7.6.1) is also present in the 

Methylomonas LWB. D-ribose-5-phosphate is converted into 5-phospho-α-D-ribose 

1-diphosphate which feeds into purine, pyrimidine and histidine metabolic pathways.    
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Figure 4.8: Kegg recruitment plot of the 

genes of the Methylomonas LWB genome 

involved in the pentose phosphate pathway. 

The enzyme positions highlighted in green 

indicate that the gene encoding that enzyme 

is present in the Methylomonas LWB 

genome.  
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The Methylomonas LWB genome has the gene required to produce the enzyme which 

makes serine from glycine and formaldehyde (2.1.2.1). The serine then feeds into the 

serine cycle (Figure 4.9). Pyruvate can be produced directly from serine by the 

enzyme L-serine ammonia-lyase (4.3.1.17), for which the corresponding gene is 

present in the Methylomonas LWB genome. There are genes present for the enzymes 

required to metabolise serine into D-glycerate-3-phosphate (3.1.3.3, 2.6.1.52 and 

1.1.1.95), which leads into the glycolysis pathway. There is also the gene encoding 

serine-glyoxylate transaminase (2.6.1.45) which produces hydroxypyruvate further 

leading into glyoxylate metabolism. Glyoxylate metabolism via hydroxypyruvate 

does not appear to be an option for Methylomonas LWB (Figure 4.10). There are not 

sufficient genes present to produce the enzymes that can facilitate glyoxylate 

production from hydroxypyruvate. Therefore, it is likely that the ribulose 

monophosphate pathway (Figure 4.8) is the major route for formaldehyde 

assimilation in Methylomonas LWB.  
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Figure 4.7: Kegg recruitment plot of the genes involved in the serine, glycine and 

threonine metabolic pathways from the Methylomonas LWB genome. The enzymes 

highlighted in green indicate that the corresponding gene is present in the genome.  
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Figure 4.8: Kegg recruitment plot of the genes involved in glyoxylate metabolism from the Methylomonas LWB genome. The enzymes 

highlighted in green have corresponding genes in the genome.  
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Both pyruvate and D-glyceraldehyde-3-phosphate produced by the ribulose 

monophosphate pathway and partly by the serine pathway lead into the glycolysis 

pathway (Figure 4.11). There is nearly a full suite of genes in the Methylomonas 

LWB genome to facilitate glycolysis. Genes are present for enzymes that are required 

for glucose metabolism into α-D-glucose-6-phosphate (2.7.1.2, 5.3.1.9), which can 

feed into the ribulose monophoshate pathway or convert into D-glyceraldehyde-3-

phosphate. The D-glyceraldehyde-3-phosphate, either from glycolysis or the Ribulose 

monophosphate pathway, can be converted into pyruvate by the enzymes 1.2.1.12, 

2.7.2.3, 5.4.2.1, 4.2.1.11 and 2.7.1.40; the corresponding genes of which are present 

in the Methylomonas LWB genome. In the case of pyruvate metabolism, all genes are 

present to facilitate the production of the enzymes (1.2.4.1, 2.3.1.12 and 1.8.1.4), 

which are needed to feed pyruvate into the TCA cycle. Interestingly there are genes 

present for some of the enzymes (6.2.1.1, 1.2.1.3, 1.1.1.1 and 1.1.99.8) that are used 

to ferment acetyle-CoA, produced from the pyruvate, via acetate and acetaldehyde 

into ethanol. The genes for the enzyme required to convert pyruvate directly into 

acetaldehyde (4.1.1.1) is not present.
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Figure 4.11: Kegg recruitment plot of the genes involved in glycolysis that are 

present in the Methylomonas LWB genome.  The enzymes highlighted in green 

indicate that corresponding genes can be found in the Methylomonas LWB genome. 

 



145 
 

Pyruvate produced from either the ribulose monophosphate pathwathway or 

glycolysis feeds into the TCA (tricarboxylic acid) or Krebs cycle (Figure 4.12). The 

TCA cycle is the major metabolic powerhouse of bacteria producing reducing 

equivalents to facilitate dependant metabolic reactions. Pyruvate is converted into 

oxaloacetate by pyruvate carboxylase (6.4.1.1), with the addition of malate by malate 

dehydrogenase (1.1.1.37) or into acetyle-CoA as mentioned previously. Both 

enzymes have corresponding genes in the Methylomonas LWB genome to be 

facilitated.  Both oxaloactate and acetyl-CoA feed into the TCA cycle to produce 

citrate. There are genes present in the Methylomonas LWB genome that encode for 

all of the necessary enzymes (4.2.1.3, 1.1.1.41, 1.1.1.42, 1.2.4.2, 2.3.1.61, 1.8.1.4, 

6.2.1.5, 1.3.99.1, 4.2.1.2 and 1.1.1.37), that are required for the TCA cycle to convert 

citrate into malate and oxaloacetate and to produce reducing equivalents.  
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Figure 4.12: Kegg recruitment 

plot of the genes involved in 

the TCA cycle from the 

Methylomonas LWB genome. 

The enzymes highlighted in 

green indicate that the gene 

encoding that enzyme is present 

in the Methylomonas LWB 

genome.  
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The Methylomonas LWB genome contains the genes encoding the enzyme 

nitrogenase (1.18.6.1) which is used for the fixation of di-nitrogen (N2) gas into 

ammonia (Figure 4.13). There is also the presence of the genes encoding the 

enzymes assimilatory nitrate reductase and nitrite reductase (1.7.99.4 and 1.7.1.4 

respectively), which can produce ammonia from nitrate or nitrite. The Methylomonas 

LWB genome does not contain the genes for the enzymes (1.7.3.4, 1.7.1.10 and 

1.7.99.1) that allow for ammonia oxidation to nitrite via hydroxylamine. There is also 

the lack of genes encoding the enzymes (1.7.2.1, 1.7.99.7 and 1.7.99.6) required to 

metabolise nitric oxide. There are several genes present in the Methylomonas LWB 

genome encoding enzymes for utilisation of ammonia; some of which are involved in 

amino acid production via glycine (2.1.2.10), the production of glutamine and 

glutamate (6.3.1.2, 1.4.1.13 and 6.3.5.4) and for the production of cyclic amides 

(6.3.1.5). Many genes for enzymes involved in obtaining ammonia from amino acids 

or nitrogenous compounds (1.4.3., 4.3.1., 1.14.13.35, 1.14.12.1, 4.4.1.1, 4.4.1.2 and 

4.4.1.8) are not present in the Methylomonas LWB genome.
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Figure 4.13 Kegg 

recruitment plot of the 

genes involved in nitrogen 

metabolism found in the 

Methylomonas LWB 

genome. Enzymes 

highlighted in green 

indicate that the gene 

encoding that enzyme is 

present in the 

Methylomonas LWB 

genome. 
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4.4.3 Genome comparison  

The genome of Methylomonas LWB was uploaded to the IMG server for analysis. Of 

the 5,365,682 bp, 87.09 % is predicted to contain coding sequence with a G+C 

content of 55.92 %. A total of 5296 genes were predicted, with 5225 identified to be 

protein coding of which 3552 were identified to have a function. 71 RNA genes were 

identified including 3 x 5S rRNA, 6 x 16S rRNA, 9 x 23S rRNA and 53 x tRNA 

genes.  

 

Data output from the RAST analysis server was slightly different to the output from 

the IMG output, but was used for genome comparison. The compared genomes here 

were both analysed after processing through the same pipeline. The genome of 

Methylominas LWB was compared to the genome of the most closely related 

organism with a fully sequenced genome, Methylomonas methanica MC09. It must 

be reiterated that the genome of Methylomonas LWB is not a closed genome and any 

genes that are absent, but present in the MC09 genome, may not be representative of 

the true nature of the Methylomonas LWB genome. A comparison of the major 

genome features can be found in Table 4.2. 
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Table 4.2: A comparison of genome features between the genomes of Methylomonas 

LWB and Methylomonas methanica MC09. 

Feature Methylomonas 

LWB 

Methylomonas methanica 

MC09 

Genome size 5,365,682 bp 5,051,681 bp 

Number of Contigs 102 1 

Number of predicted coding sequences 4825 4748 

Number of functional annotations 1986 2071 

Number of unique functional annotations 93 178 

Number of shared functional annotations 1893 1893 

Number of metabolism specific annotations   

Methane metabolism  11 11 

Nitrogen metabolism 10 15 

Sulfur metabolism 8 9 

Pentose phosphate pathway 17 17 

      

Despite being far from complete, the Methylomonas LWB genome has more 

predicted coding sequences than that of Methylomonas MC09. The two genomes are 

of relatively similar size (just over 5 million bp), but the Methylomonas LWB 

genome could be much larger once complete. The two genomes share a large number 

for functional annotations (1893). Methylomonas LWB has 93 unique functional 

annotations and Methylomonas MC09 has 179 unique functional annotations. On a 

functional basis, the two genomes share all the genes for methane metabolism, 

however pxmABC was absent from the Methylomonas MC09 genome. When the full 
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pxmA gene sequence was used as a query to BLAST against the Methylomonas 

MC09 genome, the top hit was the pmoA gene of Methylomonas MC09. However, 

the largest identity between the sequences was only over 30 bases. The 

Methylomonas MC09 genome was searched for the ABC orientation of particulate 

methane monooxygenase genes indicative of the pxm operon, but this was absent 

from the genome with only a single copy of the pmoCAB operon being present. 

Where nitrogen metabolism is concerned, the functions found in the Methylomonas 

LWB are also all present in the Methylomonas MC09 genome. The Methylomonas 

MC09 has additional genes for the metabolism of nitrite to nitric oxide and dinitrogen 

oxide along with additional genes involved with the metabolism between glutamine 

and glutamate. These include a second glutamate synthase and an asparagine 

synthase which are essential for ammonium assimilation. Therefore, it is likely that 

these are missing from the Methylomonas LWB genome due to the incomplete 

sequence. The only difference in sulfur metabolism function was the Methylomonas 

MC09 genome having a component of the enzyme alcohol sulfotransferase, 

conferring the ability for metabolism between 3’Phosphoadenylylsulfate and 

Adenosine3’,5’-bisphosphate.  
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4.5 Discussion 

Isolate LWB, is a methane oxidising bacterium that belongs to the genus 

Methylomonas.  The 16S rRNA gene sequence of Methylomonas LWB groups 

closely with the other members of the Methylomonas genus. Based only on the 16S 

rRNA gene phylogenetic tree, Methylomonas LWB appears to be a new species 

sharing only 97 % identity to the closest organism Methylomonas Koyamae. The 

PxmA sequence observed provides more evidence for isolate LWB belonging to the 

Methylomonas genus, as PxmA genes have so far only been identified from 

Gammaproteobacterial methanotrophs, most of which have come from 

Methylomonas species. The PxmA gene sequence of Methylomonas LWB is most 

closely related to the PxmA sequence of Methylomonas LW13 (Auman et al., 2000). 

Methylomonas LW13 does not have a valid name with standing in nomenclature and 

has not been fully characterised. The pxm genes belong to a divergent copy of the 

particulate methane monooxygenase gene set, which has the gene orientation of 

pxmABC ). It was indicated by Tavormina et al., (2011) that there was sufficient 

amino acid representation and similarity of the PxmA to the PmoA to suggest that the 

Pxm monooxygenase would also be a membrane bound enzyme. Tavormina et al., 

(2011) were able to show the presence of pxmA mRNA in pure cultures of 

Methylomonas species strains LW13 and S1 grown on methane and also RNA 

extracted from freshwater creek sediments. This showed that the pxm genes were 

probably of ecological and functional significance and may represent an alternative 

pMMO system in some methanotrophs. 
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It was speculated by Tavormina et al., (2011) that the pXMO could have a primary 

substrate other than methane, as the function of pXMO was not categorically proven. 

It was shown that other Pxm proteins grouped more closely with proteins involved in 

ethane or ammonia oxidation, rather than methane oxidation (Tavormina et al., 

(2011). It could be that the pXMO enzyme is capable of oxidising a broad range of 

substrates, including ethane and ammonia but further investigation is required for this 

to be confirmed. The MmoX sequence of Methylomonas LWB grouped separately 

from the MmoX sequence of Methylomonas LW13. The MmoX of Methylomonas 

LWB grouped separately with that of a Methylomicrobium species, whereas that of 

LW13 grouped more closely to that of Methylovulum species. This indicates some 

divergence between the MmoX sequences of the two Methylomonas species. 

 

In order to determine if Methylomonas LWB is in fact a new species more in-depth 

characterisation is required including DNA-DNA hybridisation with closely related 

species such as Methylomonas Koyamaea, the most closely related organism at the 

16S rRNA gene level and also Methylomonas methanica the type species of the 

Methylomonas genus. Also more in depth physiological characterisation, such as 

profiling growth with regards to temperature and pH, examining intracytoplasmic 

membranes, cell morphology and growth tests on a range of substrates.  

 

The growth of Methylomonas LWB in pure culture is not enhanced by the presence 

of tetrathionate as hypothesised, and no significant improvement in growth rate or 

final yield were observed. The presence of increased concentrations of tetrathionate 

to 10 mM in the Methylomonas LWB culture resulted in increased lag phase and an 
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apparent reduction in growth rate. Methylomonas LWB is not able to utilise 

tetrathionate as an additional energy source.  

 

The genome of Methylomonas LWB was not closed, which presents some difficulty 

in characterisation as the genes missing obviously present an unknown. It was 

established that the Methylomonas LWB contained all enzymes required for methane 

oxidation, with the exception of having an incomplete pmoA gene sequence in the 

standard pMMO operon. It was apparent that Methylomonas LWB assimilates 

formaldehyde by the ribulose monophosphate pathway, as do other Methylomonas 

species including Methylomonas methanica MC09 (Boden et al., 2011). 

Methylomonas LWB has all genes required for glycolysis and a TCA cycle. The 

Methylomonas LWB genome has the genes encoding the proteins that make up the 

nitrogenase enzyme, which allow an organism to fix nitrogen. Nitrogen fixation has 

been shown to occur in many obligate methanotrophs, including Methylococcus 

capsulatus bath (Murrell and Dalton, 1983) and several strains of Methylomonas 

(Auman et al., 2001). The annotated genome of Methylomonas LWB also indicated 

that the bacterium would be able to utilise the inorganic nitrogen sources nitrate, 

nitrite and ammonia.  

 

A direct comparison was made between the genomes of Methylomonas LWB and the 

closest related, fully sequenced genome of Methylomonas methanica MC09 (Boden 

et al., 2011).  The Methylomonas LWB genome was incomplete and consisted of 102 

contigs compared with the single completed genome sequence of Methylomonas 

MC09. With this in mind, there may be gene sequences present in the genomes of 
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both organisms but not present in this version of the Methylomonas LWB genome. 

Despite the genome of Methylomonas LWB being incomplete, it is still larger than 

that of Methylomonas MC09. There are also more predicted coding sequences in the 

Methylomonas LWB genome, though slightly less functionally annotated genes.  

These observations may be explained through the environment from which both of 

the organisms were isolated. Here Methylomonas LWB was isolated from a relatively 

nutrient rich environment, allowing it to offset having a larger genome as nutrients 

are not so limiting to the survival of the organism. The Methylomonas MC09, 

however, is a marine organism from an environment where nutrients are at a 

premium. This will have a streamlining affect on the organism’s genome 

(Giovannoni et al., 2008; Grote et al., 2012), as can be seen by the larger number of 

functionally annotated genes within a smaller sized genome. The larger genome of 

Methylomonas LWB containing as yet, less functionally annotated genes indicate that 

it may not be suited to surviving in such a low nutrient environment.  

 

Both the Methylomonas LWB and Methylomonas MC09 genomes contain the same 

functional genes involved in methane metabolism. Both genomes contain genes 

required for the production of both soluble and particulate methane monooxygenase 

enzymes. However, it was found that the Methylomonas MC09 did not contain any 

additional particulate methane monooxygenase operons as found with the additional 

pxm operon found in the Methylomonas LWB genome. This could again be explained 

by the streamlining of the Methylomonas LWB genome in comparison to the 

Methylomonas LWB genome. The Methylomonas MC09 smaller genome may not 

permit the functional redundancy of a second similar copy of the methane 
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monooxygenase enzyme system, assuming that the pxm operon is indeed involved in 

the metabolism of methane (Tavormina et al., 2011).    

 

There were 5 genetic functions present in the Methylomonas MC09 genome involved 

in nitrogen metabolism that were absent from the Methylomonas LWB genome. Two 

of these genes were involved in nitrite reduction metabolism between nitrite and 

dinitrogen oxide, encoding the enzymes nitrite reductase and nitric-oxide reductase. 

The Methylomonas MC09 genome also has two more functional genes involved in 

nitrogen metabolism involved in the metabolism between glutamine and glutamate. 

Perhaps the extra nitrogen processing enzymes help Methylomonas MC09 to survive 

in a more nitrogen limited environment. Alternatively, the genes for these functions 

are missing from the Methylomonas LWB genome. 
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Chapter 5 

Stable Isotope Probing 
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5.1 Stable Isotope Probing 

One of the key advances in molecular microbial ecology in the 21
st
 century so far was 

the advent of Stable Isotope Probing, initially with the introduction of Phospholipid 

Fatty Acid Stable Isotope Probing (PLFA-SIP) (Boschker et al.,1998), followed by 

DNA Stable Isotope Probing (DNA-SIP) by Radajewski et al., (2000). Stable Isotope 

Probing stands out from other molecular microbiology tools because it allows one to 

focus in on the active proportion of a microbial community. This is achieved by using 

13
C-labelled substrate (or alternate stable isotopes such as 

15
N or 

18
O) that is 

metabolised by the target community and into the cellular material. In the case of 

DNA-Stable Isotope Probing, the metabolised 
13

C substrate will result in the target 

bacteria incorporating the 
13

C label into their DNA. The DNA from the total 

microbial community can then be extracted. Then the heavy 
13

C labelled DNA, which 

will consist of the active community, can be separated from the lighter 
12

C DNA that 

represents the microbial community incapable of utilising the 
13

C labelled substrate 

(see section 1.4.2.5 for more detail).  

 

DNA-Stable Isotope Probing has been used successfully in a number of studies with 

a wide variety of 
13

C label substrates including methane, methanol, methylamine, 

bicarbonate and many multi-carbon compounds (Morris et al., 2002; Radajewski et 

al., 2002; Neufeld et al., 2007; Chen et al., 2009; Murrell and Whiteley, 2011). In 

these studies, the active microbial community capable of utilising the 
13

C substrate 

has been identified. Use of this technique allows researchers to focus in on a specific 

niche-group of microorganisms rather than making assumptions based on analysis of 

the whole microbial community.   
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Potential methane oxidisers in Movile Cave have been identified through 

metagenomics, microarray analysis and the isolation of a methane oxidising 

bacterium from the environment (see Chapters 3 and 4). In this study, DNA Stable 

Isotope Probing was used to identify the active microbial community responsible for 

the metabolism of methane in Movile Cave microbial mats.  

 

Aims of this section of work: 

 Identify the active microbial population metabolising methane in Movile 

Cave. 

 Use a time-course labelling regime to follow succession of the 
13

C label 

throughout the Movile Cave microbial community.   

 Identify any potential cross feeders of the carbon metabolised by 

methanotrophs.  
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5.2 Methods: Sampling and Experimental set up 

Samples from Movile Cave for these experiments were obtained by Dr Alexandra 

Hillebrand-Voicilescu, Mr Vlad Voicilescu, Prof Colin Murrell and Dr Rich Boden 

on the 13
th

 April 2011. A sample of water and floating microbial mat was pooled 

from several regions of the air-water interface in air bell 2 of Movile Cave, and was 

subsequently aliqoted into 120 ml serum vials inside the cave environment just a few 

minutes after being sampled. The microcosms each contained 20 ml of the mat plus 

cave water. As far as was practical, each 20 ml of the mat sample contained 

approximately the same amount of biomass. 

 

The microcosms were spiked at the time of sampling with 2 ml of either 
12

C methane 

or 
13

C methane, resulting in a headspace concentration of 2.0 % (v/v) methane. There 

was no way of measuring the methane concentration in the microcosm until the 

samples had arrived back to the lab at Warwick University, 48 hours after sampling. 

Headspace methane concentration was measured by gas chromatograph (GC). On 

arrival into the lab, the microcosms were processed. 5 ml mat and water was removed 

from each microcosm 48 hours after sampling. The vial was resealed and methane 

was injected to 2.0 % (v/v). Subsequently, the methane concentration in the 

headspace was monitored by GC (Figure 5.1).  The microcosm was sampled again at 

165 hours when another 5 ml of mat and water was removed. The serum vial stopper 

was replaced and the microcosm was spiked with methane, again to 2.0 % (v/v). The 

methane concentration in the serum vial headspace was monitored by GC until the 

microcosm was harvested at 261 hours. All samples were immediately stored at  

-20 ᴼC until DNA extraction was carried out. 
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Figure 5.1: Consumption of methane in microcosms over time. 

Plots indicate the consumption of methane over time from the DNA-SIP microcosms. 

Error bars represent 1 standard deviation from the mean of triplicate microcosms.   

 

DNA was extracted from t=48, t=165 and t=261 samples and was quantified using 

the Nano-drop 1000. The DNA was then subject to isopycnic density gradient 

ultracentrifugation, as outlined in the Neufeld et al., (2007) DNA SIP protocol paper. 

In brief, 3 µg of DNA was added to an ultracentrifuge tube along with gradient buffer 

and CsCl to a density of 1.725 g/ml
-1

. This was then inserted into a 5.1 ml 

ultracentrifuge tube, the tube was heat sealed and tubes were spun in a Beckman Vti 

65.2 rotor on a Beckman L-90K ultracentrifuge at 177,000 gav, at 20 ᴼC for 40 hours 

under vacuum. Samples were then fractionated directly from the centrifuge tube by 

inserting a needle and tubing that was hooked up to a peristaltic pump. A second hole 

was made at the bottom of the centrifuge tube and the peristaltic pump turned on to 
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feed water into the top of the tube. This allowed the CsCl to drain at a controlled rate 

so as not to disturb the gradient, and fractions of ~425 µl were collected every 

minute. To ensure a gradient had formed, the CsCl density of each fraction was 

measured using a Reichart AR200 digital refractometer (Figure 5.2). Good gradients 

formed in both centrifuge tubes. The density of heavy DNA (1.725 g/ml
-1

) was found 

in fractions 6 and 7. The very low density of fraction 12 from both samples is due to 

a small amount of the displacement water mixing with the CsCl at the end of the 

fractionation process. DNA was precipitated from the fractionated samples using 

polyethylene glycol 6000 (Neufeld et al., 2007). Precipitated DNA was then stored at 

-20 ᴼC until processed. 

 

Figure 5.2: Density gradients of CsCl measured from each fraction of the 
12

CH4 and 

13
CH4 incubated samples after fractionation. 

12
C Blue trace, 

13
C Red trace.  

 

In order to determine which microorganisms had assimilated the 
13

CH4, and also to 
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amplification of 16S rRNA genes of DNA from each of the fractions was carried out. 

The PCR primers were designed with GC clamps in order analyse the PCR products 

using DGGE. The PCR products were then run on a DGGE polyacrylamide gel with 

a denaturing gradient of 30-70 % urea and formamide (Figure 5.3). Bands from the 

DGGE profiles were excised using a razor blade after visualisation using a UV lamp 

table. Excised bands were placed into 20 µl of PCR grade water and left overnight at 

4 ᴼC for the DNA to dissolve in the water. This solution was then used as template 

for 16S rRNA gene PCR amplification using standard 341F 907R primers without the 

GC clamp. The PCR reactions that yielded PCR products were sent for DNA 

sequencing.  

 

A clone library targeting the methane monooxygenase pmoA gene was constructed to 

analyse the methanotroph community labelled by the DNA-SIP process. The pmoA 

gene PCR products were cloned using the Promega p-GEM-T Easy vector cloning 

kit. In brief, the pmoA gene PCR products were ligated into the p-GEM-T vector, 

which was then transformed into JM109 E.coli competent cells. The transformed 

cells were screened on LB agar with ampicillin, IPTG and X-Gal. White colonies 

were picked, re-streaked and used for whole cell colony PCR using the M13 primer 

pair (Messing, 1983). 
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5.3 Results of the DNA-SIP experiment 

16S rRNA gene analysis 

After fractionation of the DNA samples, only the fractions obtained from a T
3
 sample 

gave PCR products when amplified with the DGGE 16S rRNA gene primers. Where 

weak PCR products were obtained for some replicates and other time points, the 

DGGE profiles were not visible. A DGGE profile was obtained from the T3 sample 

and dominant bands were excised. The 16S rRNA gene sequences obtained from the 

T
3
 DGGE bands were used as BLAST query sequences against the GenBank 

database. The 16S rRNA gene sequences obtained, together with some of the closest 

hits from GenBank, were compared using Mega5 to create a phylogenetic tree of 16S 

rRNA genes obtained from these DNA-SIP experiments (Figure 5.4). 
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Figure 5.3: DGGE images of 16S rRNA genes obtained by PCR of DNA from all fractions of the microcosm containing 
12

CH4 (left) and the 

microcosm incubated with 
13

CH4 (right). Excised bands that gave retrievable 16S rRNA gene sequences are highlighted. Marker lanes are 

labelled “L”. 

 

 

 

 

 

 

 

 

SIP fractions from 
12

CH4 incubated microcosom SIP fractions from 
13

CH4 incubated microcosom 
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Figure 5.4: Phylogenetic tree of the 16S rRNA gene sequences obtained from bands excised from the 16S rRNA gene DGGE gel. The 

phylogenetic tree was constructed using Mega5 with the neighbour-joining algorithm with bootstrap values calculated from 1000 replicates. 

Bands marked with letters are from the heavy fractions of the 
13

C incubation while the bands marked with numbers are from the 
12

C incubated 

microcosm. The Methylomonas LWB isolate 16S rRNA gene sequence is highlighted in purple. 
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Most DGGE bands visible, particularly the brightest, were excised as these would 

represent the most abundant sequences after PCR amplification with the DGGE 

primers. All of the excised bands from the DGGE analysis from which retrievable 

sequences were obtained, contained 16S rRNA genes from Proteobacteria. None of 

the sequences were closely relate to any 16S rRNA gene from known methane 

oxidisers. Band 1 from the 
12

C incubated microcosm was closely related to the 

bacterium Brevundimonas aurantiaca, which is a reclassification of the organism 

Caulobacter henricii sub. sp. Aurantiacus isolated in 1964 from a fresh water sample 

by Poindexter, (1964) (Abraham et al., 1999).  

 

Band 2, also from the 
12

C incubated microcosm, was closely related to band E from 

the 
13

C incubated microcosm. The closest affiliated 16S rRNA gene sequence to 

these sequences was that of Oleomonas sagaranensis. This bacterium was originally 

isolated by Kanamori et al., (2002) from a Japanese oil field and is able to grow on 

long chain aliphatic hydrocarbons. A similar organism was also isolated in this study, 

isolate Oleomonas OCT1 (data not shown) as a contaminant in the Methylomonas 

LWB isolation process. It was also able to grow on aliphatic hydrocarbons from 

hexane and longer chain molecules.  

 

Bands A, B, G and I were all 16S rRNA gene sequences from Betaproteobacteria that 

shared similarity to 16S rRNA gene of Methylovorous glucosotrophus, and also to a 

16S rRNA gene sequence from an uncultivated organism obtained from a previous 

study on Movile Cave (Hutchens et al., 2004). Methylovorous glucosotrophus is a 
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facultative methylotroph that is able to metabolise methanol and was isolated from 

waste water at Alma-ata (USSR), now Kazakhstan (Doronina et al., 2005).   

 

The 16S rRNA gene sequence obtained from Band F was a Gammaproteobacterial 

16S rRNA gene sequence that was mostly related to uncultivated organism 16S 

rRNA gene sequences, interestingly from a range of environments including a 

radioactive waste site, an alkaline saline soil and also from horse faeces. The closest 

related sequence to the 16S rRNA gene sequence of B and F is the heterotroph 

Pseudofluvimonas gallinarii. This organism was isolated from a sample of air from a 

duck barn by Kämpfer et al., (2010)   

 

The 16S rRNA gene sequence of Band C from the 
13

C incubated microcosm was very 

closely related to the 16S rRNA sequence of Sphingomonas adhaesiva. 

Sphingomonas species are chemoheterotrophs that grow on a broad range of organic 

compounds. They are also known to form part of biofilms in association with 

metheylotrophs such a Methylobacterium on shower curtains. In the study by Kelly et 

al., (2004), 16S rRNA gene sequence clones that were very closely related to 

Sphingomonas adhaesiva were also found from a sample of biofilm growing on a 

shower curtain. 

 

Bands D and F shared identical 16S rRNA gene sequences, and no closely related 

16S rRNA gene sequences could be identified. The closest BLAST hit that matched 

these was the 16S rRNA gene sequence from the bacterium Azospirillum brasilense. 
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Azospirillum brasilense is a root-associated, nitrogen fixing bacterium that grows on 

glucose as sole carbon source in nitrogen-free media (Tarrand et al., 1978). 

 

Functional gene analysis 

As the 16S rRNA gene analysis did not highlight any methane oxidisers, despite a 

clear indication of metabolism and incorporation of the 
13

C label, a small clone 

library targeting the particulate methane monooxygenase gene (pmoA) was 

constructed. DNA from fraction 7 of the T
3
 
13

C incubated microcosm was used as 

template in PCR to construct a pmoA gene clone library, using the primers 189F and 

mb661R (Costello and Lidstrom, 1999). 15 clones were chosen for sequencing and 

subject to colony PCR, using the M13 primer set to amplify the cloned insert. 

PCR products of the correct length were sent for sequencing with the M13F primer. 

Sequences retrieved were trimmed of excess sequence from the backbone of the p-

GEM-T vector. The obtained sequences were used as BLAST query sequences to 

search the GenBank sequence database. The pmoA gene sequences were then 

compared to the closest BLAST hits using Mega5. The derived polypeptide (PmoA) 

sequences were compared at the amino acid level (Figure 5.5). 
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Figure 5.5: Neighbour-joining phylogenetic tree of 

derived PmoA sequences from pmoA genes 

obtained by PCR from the heavy fraction of the 

13
C DNA SIP microcosm. Bootstrap values were 

calculated from 1000 replicates. The tree was 

constructed at the amino acid level (146 amino 

acid residues) derived from nucleotide sequences.  

The phylogenetic tree was constructed using 

Megas5. pmoA clones obtained from the “heavy” 

DNA of the 
13

CH4 incubated sample are 

highlighted in red. The pmoA sequences 

highlighted in blue are clones from the Hutchens et 

al., (2004) study on Movile Cave methanotrophs.

Nope 
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The pmoA clone library indicated that there were indeed methane oxidiser sequences 

in the heavy fraction of the DNA from the 
13

C incubated microcosm. Of the 15 clones 

sequenced, there were 10 unique sequences identified. There were four known 

methane oxidising bacteria species that were shown to have incorporated the 
13

C 

label into their DNA. These were Methylomonas, Methylobacter, Methylocystis and 

Methylococcus.  

 

Clone P1 was identical to a previous pmoA clone obtained from another Movile Cave 

study by Hutchens et al., (2004) and Clone P11 was also identical to another pmoA 

sequence that was identified by Hutchens et al., (2004). The PmoA sequence from a 

validated methanotroph that was most closely related to sequences derived from 

pmoA clones P1 and P11 was the pmoA sequence of Methylomonas methanica. 

Methylomonas methanica was first identified in 1906 by Söhngen (Söhngen, 1906) 

according to website List of prokaryotic names with standing in nomenclature 

(http://www.bacterio.net/m/methylomonas.html) and was then reclassified by 

Whittenbury and Krieg, (1984) in their entry of the Bergey’s Manual of Systematic 

Bacteriology First Edition, Volume 1 (International Journal of Systematic 

Bacteriology, 1984). The Methylomonas genus was then re-defined by Bowman et 

al., (1993). The genome of Methylomonas methanica MC09 (Boden et al., 2011) was 

the first genome of an aerobic marine methanotroph to be sequenced and published. 

The majority of Methylomonas species however are terrestrial isolates. The two 

clones P1 and P11 are both different from the pmoA sequence obtained from the 

Methylomonas LWB strain isolated from Movile Cave in this study, suggesting that 

there may be several species of Methylomonas in Movile Cave. 
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Clones P4 and P8 were most closely related to each other, with the closest PmoA 

sequence from a validly named methanotroph being Methylobacter tundripaludum. 

This organism was isolated by Wartiainen et al., (2006) from an arctic wetland soil 

sample taken from Svalbard, Norway. The Methylobacter genus currently contains 8 

validly published species (http://www.bacterio.net/m/methylobacter.html). Four of 

the original species were reclassifications by Bowman et al., (1993) of 

Methylococcus and Methylomonas species that grouped together. The Methylobacter 

genus is mostly populated by organisms that were isolated from marine 

environments. Some are psychrophilic in nature (Wartiainen et al., 2006).  

 

Five unique pmoA clones, P3, P6, P7, P10 and P12 were all closely related to pmoA 

from Methylocystis. The derived amino acid sequence from clone P3 was identical to 

the PmoA sequence of Methylocystis echinoides, a methanotroph described as having 

a spiky appearance, originally isolated by Gal’chenko et al., (1977) and reclassified 

by Bowmen et al., (1993). Clones P6, P7 and P10 were all similar to the PmoA 

sequence of Methylocystis parvus, while Clone P12 was identical to the PmoA 

sequence of Methylocystis parvus. Methylocystis parvus is the type species of the 

genus (http://www.bacterio.net/m/methylocystis.html). Methylocystis parvus strain 

OBBP was originally isolated by Whittenbury et al., (1970). In a more recent study, a 

strain of Methylocystis parvus was isolated from a methane-fed bioreactor and was 

shown to produce poly-β-hydroxybutyrate when under microaerobic conditions (5-10 

% oxygen). The poly-β-hydroxybutyrate could then be fermented under anaerobic 

conditions when other exogenous carbon sources were not available (Vecherskaya et 

al., 2009).  
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Clone P2 was most closely related to another clone that was identified in the 

Hutchens et al., (2004) study. These sequences were most closely related to the 

PmoA sequence of Methylococcus capsulatus. Methylococcus capsulatus was 

isolated by Foster and Davies, (1966) and has been the focus of many studies of 

methanotrophic microbiology over the past 50 years. The most notable strain, 

Methylococcus capsulatus Bath, was isolated from the Roman spa bath houses in 

Bath, England by Whittenbury et al., (1970). Studies such as those by Colby and 

Dalton, (1976) allowed identification of a soluble methane monooxygenase, as well 

as a membrane-bound form of the enzyme (Hanson and Hanson 1996, Trotsenko and 

Murrell, 2008). The genome of Methylococcus capsulatus Bath was sequenced by 

Ward et al., (2004). Now that much more of the molecular biology of the organism is 

known, more research is focusing on how the organism regulates methane oxidation, 

methane monooxygenase gene expression and how Methylococcus regulates copper 

homeostasis using chalkophores such as methanobactin (reviewed in 

Balasubramanian and Rosenzweig, 2008; Kenney and Rosenzweig, 2012; Semrau et 

al., 2013). 

 

As part of the DNA-SIP study, it was planned to directly monitor the amount of 
13

C 

label incorporated into individual cells. Unfortunately, this aim was not completed, 

but it was shown that the relative amount of 
13

C incorporation into cells could be 

determined using Raman spectroscopy. These data can be found in appendix 2. 
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5.4 Discussion 

Stable Isotope Probing has been used to identify organisms that were capable of 

methane oxidation in the Movile Cave environment. It was also shown that the 

carbon fixed by the methane oxidisers is used by other organisms in the cave that are 

capable of a chemolithoheterotrophic life style.   

 

The 16S rRNA gene sequences from the DNA-SIP fractions were analysed in order 

to identify the organisms that had been able to utilise the 
13

C-labelled methane. None 

of the sequences identified were closely related to the 16S rRNA gene sequences of 

any known methane oxidising bacteria. The 16S rRNA gene sequences that were 

identified were all proteobacterial 16S rRNA gene sequences. There were very few 

identifiable bacteria that were closely related to the sequences found, but those that 

were tend to be heterotrophs.The bacteria identified from this 16SrRNA gene 

sequencing are found in a wide range of environments, not sharing significant 

environmental similarities such as location or type of environment.  

 

Unlike previous DNA-SIP studies which highlight only the organisms that utilise the 

substrate of interest, here it was shown that the carbon metabolised by methanotrophs 

feeds subsequent trophic layers of the Movile Cave microbial community. The 16S 

rRNA gene sequences obtained from the heavy fractions of DNA from the DNA-SIP 

must have incorporated the 
13

C label in order to be present at that position along the 

CsCl gradient. These highlighted organisms, which have not been shown to 

metabolise methane must be feeding on other metabolites produced by the 
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methanotrophs, such as the 
13

CO2 that will be released from the complete oxidation 

of the 
13

CH4. 

 

Not finding methane oxidiser sequences among the 16S rRNA gene sequences could 

be due to a number of reasons. The sequences were obtained from bands that 

appeared after DGGE analysis. Not all bands that were excised yielded useable 

sequence, and there is the possibility that the methane oxidiser 16S rRNA gene 

sequences may have been among those. Another possible reason for not finding 

methane oxidisers could be due to primer bias, or simply low numbers of 

methanotroph sequences in the Movile Cave mat DNA. There may also be conditions 

within the microcosm where a build up of potentially toxic compounds to the 

methanotrophs occurs. This may result in the methanotrophs oxidising more methane 

to generate energy for cooxidation reactions which then remove harmful compounds 

(rather than channelling the carbon into building new cell materials). This would 

result in a larger output of 
13

CO2 which could be used by autotrophs. If the bacteria 

feeding on the 
13

CO2 are able to utilise the carbon for building cellular material faster 

than the methanotroph is able to use the 
13

CH4, then the secondary organisms might 

well begin to outcompete the methane oxidisers. Perhaps one way of getting around 

this problem would have been to analyse the heavy 
13

C- DNA from the 
13

CH4 

incubated microcosm by metagenomic sequencing. The low quantity of DNA in the 

heavy fraction would probably not be enough for metagenomic sequencing, but this 

could be solved using multiple displacement amplification (Arakaki et al., 2010) to 

generate enough DNA for analysis.  
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DNA-SIP has been used to analyse the methane oxidising population of Movile Cave 

in a previous study (Hutchens et al., 2004). In this study pmoA clones similar to those 

identified by Hutchens et al. were identified along with some otherwise unidentified 

pmoA clones. Clones P1 and P11 were similar to two of the clones from the Hutchens 

et al., (2004) study and are closely related to PmoA from Methylomonas. With the 

isolation of clones P1 and P11, it has been shown that Methylomonas species are 

active at metabolising methane in the Movile Cave environment, as they are found in 

the heavy fraction of the 
13

C incubated sample.  

 

The two clones P4 and P8 are most closely relate to the PmoA sequence of 

Methylobacter tundripaludum.  However, they are somewhat different to the M. 

tundripaludum PmoA sequence and may originate from a different, but, closely 

related organism. Clone P8, in particular, is almost the same distance 

phylogenetically from the M. tundripaludum as the phylogenetic distance between 

Clone P3 and Methylosinus trichosporium BF1 sequence yet P3 is a Methylocystis 

Clone. It may be likely then that clones P4 and P8 are from a yet unidentified 

methanotroph.  

 

Clones P3, P6, P7, P10 and P12 are all very closely related. They form a tight group 

clustering within the Methylocystis PmoA clade. Clones P3 and P7 appear to be more 

closely related to PmoA sequence of Methylocystis echinoides (Clone P3 is identical). 

Clones P6, P10 and P12 are more closely related to the PmoA sequence of 

Methylocystis parvus. The Hutchens et al., (2004) study did not have as many pmoA 

clones as closely related to the Methylocystis sequences found here. When analysing 
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the Movile Cave metagenome, Methylocystis was very under-represented among the 

methane monooxygenase sequences (see chapter 3). It could be an artefact of the 

microcosm that favours the growth of methanotrophs such as Methylocystis, whereas 

in the Movile Cave environment, Methylocystis represent the less active 

methanotrophs present. However, the opposite is suggested by the pmoA microarray 

(see section 3.3). Some of the strongest signals observed on the microarray were 

found with Methylocystis probes. Therefore, it looks more likely that it could be a 

primer bias that favours more Methylocystis-like sequences since PCR is used for 

both the microarray and for amplification from the heavy 
13

C labelled DNA, whereas 

there is no amplification involved with the metagenomic sequencing.   

 

Clone P2 was most closely related to Clone mvpb13.7 from the Hutchens et al., 

(2004) study. Both Clone P2 and mvpb13.7 are relatively low in number among the 

representative clones from both studies. The most closely related PmoA sequence to 

that of Clone P2 is that of Methylococcus capsulatus BF4. Rather the opposite was 

seen with Methylococcus clones compared with those of Methylocystis. 

Methylococcus was the most represented methanotroph among the methane 

monooxygenase sequences in the metagenome and yet there was relative low 

representation of this gene among the heavy 
13

C DNA pmoA clones. The pmoA clone 

library presented here was very small as only 15 clones were sequenced, with 5 of the 

sequences being identical. With such a low sample number across the potential pmoA 

clones, it is unlikely that a true representation of the diversity among the pmoA clones 

was observed. It may be that Methylococcus is the most abundant methanotroph but it 

cannot be determined from this data set. What is known though, is that there are 

Methylococcus species that actively metabolise methane in Movile Cave.  
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In order to observe the full diversity among the pmoA gene sequences in the heavy 

13
C DNA, a much larger clone library would need to be constructed or, alternatively, 

a sample of the pmoA PCR products could be sent for high-throughput sequencing. 

This would give much deeper coverage of the clones and give insights to the true 

diversity of the active population of methanotrophs. It would also be beneficial to 

repeat the mmoX PCR amplification using the 
13

C heavy DNA again. It had been 

attempted several times in this study with little success. The organisms that have been 

identified from the pmoA clones are known to have representatives among their 

genera that contain both particulate and soluble methane monooxygenase. If the 

pmoA genes from these organisms have been labelled with the 
13

C label then the 

mmoX genes should also have been labelled. It is surprising that PCR assays of 

mmoX were not successful given that the methane monooxygenase sequences in the 

metagenome were dominated by soluble methane monooxygenase gene sequences 

(see section 3.2.1).  

 

From pmoA analysis, it is clear that methane oxidising bacteria are indeed active at 

metabolising methane in Movile Cave. Methanotrophs of the genera Methylomonas, 

Methylocystis and Methylococcus are among the most active, along with a bacterium 

closely related to Methylobacter. More in-depth sequence coverage is required to 

elucidate the true diversity and relative abundance among the active methanotrophs.   

The data identifying the active methanotrophs in this study do not add to current 

knowledge of what exists, but it does complement and back up what was found in the 

Hutchens et al., (2004) study. This study does however further the understanding of 

the importance of the methanotroph community in the Movile Cave food web, as it is 
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evident that carbon from methane metabolised by the methanotrophs provides a 

significant carbon source for organisms further along the food chain. This highlights 

the Movile Caves methanotrophs as key primary producers in this environment and 

potentially one of the foundations on which this rare ecosystem is built upon. 
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Chapter 6 

Final discussion and future 

perspectives 
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6.1 Discussion and future perspective 

Movile Cave is an isolated ecosystem that harbours a thriving community of 

organisms that are not supported by photosynthetically fixed carbon. Instead, primary 

producers including chemolithoautotrophic and methanotrophic bacteria are believed 

to provide the organic carbon supporting the cave inhabitants. The aim of this project 

was to determine the presence of methane oxidising bacteria in Movile Cave, to 

determine which, if any, actively oxidise methane in the cave, to identify if 

methanotrophs provide a carbon source for other organisms in the Movile Cave 

environment and to isolate and characterise any methane oxidising bacteria. The 

study here has been able to fulfil all aims stated above through the use of cultivation 

and cultivation independent methods.  

 

A metagenomic analysis was carried out on DNA extracted from microbial floating 

mat and water obtained from air bell 2 in Movile Cave. The sample was frozen only a 

few hours after been taken in order to maintain the original community of organisms 

present at the time of sampling. DNA extraction took place when the sample was first 

thawed. The metagenome was screened for several functional genes associated with 

methane oxidising bacteria. Methane monooxygenase genes required for the 

production of both soluble and particulate methane monooxygenase were identified. 

Almost all of the methane monooxygenase sequences identified were genes encoding 

soluble methane monooxygenase components. By far the most abundant methane 

monooxygenase sequences identified from a single organism related very closely to 

the species Methylococcus capsulatus Bath. It is likely that the Methylococcus 

capsulatus Bath like organism is the most prolific methane oxidising bacterium in 
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Movile Cave. Methane monooxygenase gene sequences closely relate to the 

organism Methylosinus trichosporium OB3B were also rather abundant among the 

MMO sequences suggesting that it too may be one of the more prolific 

methanotrophs in Movile Cave. Other functional genes screened for including 

methanol dehydrogenase, formate dehydrogenase and hexulose-6-phosphate synthase 

indicated Methylococcus capsulatus species gene sequences to be among the most 

highly represented. Interestingly, there were no gene sequences involved in the 

oxidation of methane related to Methylomonas species despite this being the only 

methanotroph to be isolated from the cave. More work could be done with the 

comparison of this metagenome with other metagenomes, more specifically 

metagenomes from other cave environments to find trends in community structure 

linked with this type of environment. As the methane monooxygenase sequences 

were heavily biased towards soluble methane monooxygenase it indicated that 

coverage of the community was not sufficient as there should have been more 

particulate methane monooxygenase sequences. This would likely warrant the re-

sequencing of the Movile Cave metagenome on a larger scale with the aim of 

increased coverage.  

 

The pmoA microarray gave a good indication of the in situ diversity among 

methanotrophs. The tool is limited as it only targets the particulate methane 

monooxygenase which means it would miss organisms like Methylocella and 

Methyloferulla (Theisen et al., 2005; Vorobev et al., 2011). Contrary to the 

metagenome data set, the pmoA microarray identified that metanotrophs with 

particulate methane monooxygenase were present in Movile Cave and that there was 

diversity among them. It also suggested that it might be Methylocystis species that are 
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the most abundant methanotroph (owing to the semi-quantitative nature of the 

microarray), however, Methylococcus species were also highly represented.  

Methylomonas was highlighted on the pmoA microarray although quite low in 

abundance compared with the other organisms. Having conducted both the 

metagenome sequencing and the pmoA microarray, and both giving different insights 

into the diversity of methane oxidising bacteria in Movile Cave, it highlights the 

importance of having multiple sources of evidence as drawing conclusions from 

either of the techniques alone would have resulted in inaccurate conclusions being 

drawn. Ideally, these studies should be conducted as replicates to add robustness to 

the diversity of methanotrophs observed. It would also be advisable in future to 

conduct a longitudinal study to determine if the methanotroph community is 

generally stable or perhaps more dynamic.  

 

Methylomonas LWB was the only methane oxidising bacterium to be isolated from 

Movile Cave. This organism showed no apparent tolerance to tetrathionate, a possible 

toxic compound found in Movile Cave due to the high amount of sulfurous 

compounds present. The genome of Methylomonas LWB was sequenced to gain a 

more in depth understanding of the potential metabolisms that the organism employs 

to survive in the Movile Cave environment. Methylomonas LWB displayed 

characteristic metabolic pathways for a Type I methane oxidising bacterium 

including the genes required for formaldehyde assimilation by the ribulose 

monophosphate pathway. The Methylomonas LWB genome contained genes for 

expression of both the soluble and particulate form of methane monooxygenase. 

More interestingly, the Methylomonas LWB genome contained genes required for the 

putative particulate methane monooxygenase enzyme encoded by the pXM genes 
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pxmABC. The orientation of the genes in the pXM operon differs to pMMO as the 

pMMO operon genes are found in the order pmoCAB.  The pxmA gene branches 

separately from the pmoA genes on a phylogenetic tree, grouping with the few pxmA 

genes that have recently been identified. The function of pXM has not been 

determined categorically but transcripts of the pxmA gene have been found during the 

growth of Methylomonas LW13 growing on methane as a sole carbon and energy 

source (Tavormina et. al., 2011). The Methylomonas LWB isolate may well be a new 

species but further characterisation experiments are required to determine this. In 

order to fully understand the potential metabolic processes of Methylomonas LWB, 

the genome will need to be completed. 

 

DNA-Stable Isotope Probing was carried out using a sample of floating microbial 

mat and water from airbell 2. A microcosm was set up with the Movile Cave sample 

containing 
13

CH4 in order to label the DNA of any active methane oxidising bacteria. 

Analysis of 16S rRNA gene sequences from 
13

C-labelled heavy DNA did not indicate 

any methane oxidising bacteria having incorporated the 
13

C-label. Most of the 

bacteria identified from the 16S rRNA genes from the heavy DNA were 

heterotrophic Proteobacteria. This suggested that the 
13

C-label had been incorporated 

by methane oxidisers and cross-fed into these other organisms, thus highlighting 

methanotrophs as primary producers supporting the growth of other organisms in 

Movile Cave. Functional gene analysis by way of a clone library targeting the pmoA 

gene from the heavy 
13

C-labelled DNA indicated that Methylomonas, Methylocystis 

and Methylococcus along with a bacterium closely related to Methylobacter were 

actively oxidising methane in the DNA-SIP experiment. There were a number of 

different clones identified for Methylomonas, Methylocystis and Methylobacter like 
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sequences suggesting multiple species of each genus are present and active in Movile 

Cave. The clone library carried out here was too small to determine the true diversity 

of methane oxidising bacteria from the heavy DNA. If the experiment was to be 

repeated either a larger clone library would be constructed or high throughput 

sequencing would be used to analyse the pmoA PCR products. The mmoX analysis 

would need to be repeated to ensure that they were definitely not present in the heavy 

DNA. Knowing that the Methylomonas LWB isolate contains the putative particulate 

methane monooxygenase pxm genes, the heavy DNA should be analysed for the 

pxmA functional gene as proxy for a potential third methane monooxygenase. 

Initially, in this study it was planned to carry out a time course experiment with the 

DNA-SIP but complications meant that this never happened, one of the factors being 

a lack of labelling in the first time point. This could be overcome by carrying out 

RNA-SIP as RNA molecules are labelled much faster than DNA as cell replication is 

not required as prerequisite for labelling. The multiple time point SIP, if realised, 

would potentially give higher resolution of the incorporation of the 
13

C- label into the 

methanotrophs and the cross-feeding into the other organisms in the environment.  

  

Continuation of the project 

Should the project be continued over the next few years an effort should be put into 

isolating more methanotrophs from Movile Cave. Methylomonas species were shown 

to be active methane oxidisers but were one of the lesser abundant methanotrophs 

present from the in situ community studies. Ideally, isolation and characterisation of 

Methylococcus and Methylocystis species should be a priority. Characterisation of the 

molecular biology of the pXM protein from Methylomonas LWB needs further 
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attention. Too little is known about its precise function and yet it could be the main 

enzyme system LWB uses to oxidise methane in Movile Cave. It would be good to 

start with transcription studies to see if the genes are used during the oxidation of 

methane. Purification of the pXM protein and characterisation of kinetics with a 

range of substrates would be needed to identify substrate specificity and potential 

activity. A good set of functional gene primers targeting the pxmA gene specifically 

would be useful to identify if Methylomonas LWB is the only methanotroph with this 

enzyme system in Movile Cave.  

 

 Much more work with the Raman spectroscopy is needed to carry out the cross-

feeding experiment. A standard curve of Methylomonas LWB with varying 
13

C ratios 

incorporated would be useful. The cross-feeding experiment could be taken a lot 

further with the addition of other isolates from Movile Cave being added to the mix 

to see if a stable community with the methane oxidiser as primary producer can be 

produced in vitro and to monitor the flow of the 
13

C label through the organisms 

present. This experiment could be taken to the next level by combining it with a 

stable-isotope probing experiment. Live bacterial floating mat could be incubated 

with 
13

C methane. The sample could be monitored by DNA SIP in conjunction with 

Raman FISH. DNA SIP would identify the key organisms in action, FISH probes 

could be designed for those organisms to then look within the mat structure at the 

single cell level to confirm uptake of 
13

C label by the identified organisms and to get 

an idea of the macrostructure to determine if there is any structure to the microbial 

floating mats e.g. with secondary feeders surrounding the methanotrophs. 
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Appendicies 

Appendix 1: List of probes used in the pmoA microarray study. See next page. 
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Name Intended specificity Sequence 5' → 3' L GC% Tm 

MbA557 Methylobacter CAATGGCATGATGTTCACTCTGGCT 25 48.0 61.5 

MbA486 Methylobacter AGCATGACATTGACAGCGGTTGTT 24 45.8 61.6 

Mb460 Methylobacter GACAGTTACAGCGGTAATCGGTGG 24 54.2 60.9 

Mb_LW12-

211 

Methylobacter CGTCTTTGGGTTACTGTTGTGCC 23 52.2 60.0 

Mb_SL#3-

300 

Methylobacter GGCGCTGTTGTTTGTGTATTGGGT 24 50.0 62.2 

Mb_SL299 soda lake Methylobacter isolates and clones GGGGTGCAACTCTGTGTATCTTAGG 25 52.0 60.5 

Mb_SL#1-

418 

soda lake Methylobacter isolates and clones GCGATCGTATTAGACGTTATCCTGATG 27 44.4 58.6 

MmbB284 Mmb. Buryatense ATCGCATCGCTTGGGGTGCAA 21 57.1 62.5 

Jpn284 clone Jpn 07061 ACCGTATCGCATGGGGTG 18 61.1 58.0 

BB51-302 Methylobacter CGGTTGTTTGTGTCTTAGGTCTG 23 47.8 57.2 

Mb267 Methylobacter GCATGCTTGTGGTTCCGTTAC 21 52.4 58.1 

Mb292 Methylobacter CCGTTACCGTCTGCCTTTCG 20 60.0 59.1 

Mb282 Methylobacter TTACCGTCTGCCTTTCGGC 19 57.9 58.6 

Mb_URC278 Methylobacter GTTCCGTTACAGACTGCCTTTCGG 24 54.2 61.3 

511-436 Methylobacter 511 group GTTTTGATGCTGTCTGGCAG 20 50.0 55.5 

511-436L Methylobacter 511 group GUUUUGAUGCUGUCUGGCAGCA 22 50.0 60.0 

LP10-424 Methylobacter LP 10 group GTACTTGATTGTATCTTGATGCTGTCAG 28 39.3 55.7 

LF1a-456 Methylobacter LF 1a group CATGGTATTGACTGCTGTTATCGGTG 26 46.2 57.7 

Mb_C11-403 Methylobacter CAAACTTCATGCCTGGTGCTATCGT 25 48.0 61.4 

Mb380 Methylobacter group A (broad specificity probe) CAGTAAATTTCTGCTTCCCTTCAAATCT 28 35.7 55.8 

Mb271 Methylobacter TTGTGGTGGCGTTACCGT 18 55.6 58.0 

S14m2-270 Marine type Ia cluster, S14m#2 CTTATGGTACCGTTACAGATTGCCTTA 27 40.7 56.4 

S14m2-406 Marine type Ia cluster, S14m#2 TTAATTCCTGGTGCAATTGCACTTGAC 27 40.7 58.3 

PS80-291 clone PS-80 ACCAATAGGCGCAACACTTAGT 22 45.5 58.3 

MS1-440 Marine type Ia cluster, Marine sediment #1 TGATGTTGTCTGGTAGCTTCACATTAAC 28 39.3 57.1 

Mm_pel467 Methylomicrobium pelagicum ACTGCGGTAATCGATGGTTTGGC 23 52.2 61.6 
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Kuro18-205 Marine type Ia cluster, Kuro18 AGACGTTTGTGGGTGACAGTTGC 23 52.2 60.0 

DS1-401 Deep sea cluster #1 GCGCGGTAGTTTGTGTTATGGCT 23 52.2 61.7 

Mm531 Methylomonas CTCCATTGCACGTGCCTGTAGA 22 54.5 60.7 

Mm_M430 Methylomonas TGGACGTGATTTTGATGTTGGGCAA 25 44.0 61.6 

Mm_RS311 Methylomonas methanica, RS clade CTGTTGTTGCTCTGATGCTGGG 22 54.5 58.6 

Mm_ES294 Methylomonas CCAATCGGTGCAACAATTTCTGTAGT 26 42.3 59.8 

Mm_ES543 Methylomonas GTGCCAGTTGAGTATAACGGCATGA 25 48.0 60.9 

Mm_ES546 Methylomonas CCAGTTGAGTATAACGGCATGATGAT 26 42.3 58.7 

Mm_MV421 Methylomonas CTATCGTGCTGGATACAATCCTGATGT 27 44.4 60.0 

Mm451 Methylomonas CTGATGTTGGGTAACAGCATGACT 24 45.8 58.8 

Mm275 Methylomonas GTGGTGGAGATACCGTTTGCC 21 57.1 59.2 

Alp7-441 Alpine soil Methylomonas, Alp#7 GATGTTAGGTAACAGCATGACACTGAC 27 44.4 57.4 

peat_1_3-

287 

Mehtylomonas-related peat clones AACTGCCTTTAGGCGCTACC 20 55.0 58.6 

Est514 Methylomicrobium-related clones AATTGGCCTATGGTTGCGCC 20 55.0 59.9 

Mmb259 Methylomicrobium album + Landfill M.microbia CTGTTCAAGCAGTTGTGTGGTATCG 25 48.0 59.8 

Mmb303 Methylomicrobium album CAATGCTGGCTGTTCTGGGC 20 60.0 60.3 

Mmb304 Methylomicrobium album + Landfill M.microbia and related ATGCTGGCTGTTCTGGGCTTG 21 57.1 60.6 

LW14-639 Methylomicrobium LW14 group AAAAGGUACUUGGAGAACCUUCGGU 25 44.0 60.0 

Mmb_RS2-

443 

Methylomicrobium, Mmb_RS2 TGCTGGGCAACAGCATGCAGT 21 57.1 62.8 

Mmb562 Mmb. album and Methylosarcina ATGGTAATGACCCTGGCTGACTTG 24 50.0 60.6 

Mm229 Deep-branching Methylomonas group (WHmb3 related) CCAATCGTTGGAATCACTTTCCCAGC 26 50.0 60.2 

MsQ290 M.sarcina quisquilliarum related TGCCATTCGGCGCTGTAATTTCAGTA 26 46.2 60.8 

MsQ295 M.sarcina quisquilliarum  CGGCGCGGTTCTTTCTGTACTG 22 59.1 60.6 

LP20-644 Methylomicrobium-related clones GTACACTGCGTACTTTCGGTAA 22 45.5 56.0 

LP20-607 LP20 group (Type Ia, deep branching-Methylomicrobium?) ACTGGTATGCCTGAATACATCCGTA 25 44.0 57.4 

Ia193 Type I a (M.bacter-M.monas-M.microbium) GACTGGAAAGATAGACGTCTATGGG 25 48.0 57.8 

Ia575 Type I a (M.bacter-M.monas-M.microbium-M.sarcina) TGGCTGACTTGCAAGGTTACCAC 23 52.2 61.3 

Bsed516 Marine sediment #2, Bsed AACTGGCCAATGGTTGCTCCA 21 52.4 59.9 

SWI1-375 Marine sediment #2, SW#1 TGCTGGCGCTATGGGTTGG 19 63.2 60.9 
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SWI1-377 Marine sediment #2, SW#1 TGGCGCTATGGGTTGGGGTT 20 60.0 62.1 

Nc_oce426 Nitrosococcus oceani CTTGGATGCCATGCTTGCGA 20 55.0 59.8 

DS2-287 Deep sea #2, subgroup (N.coccus and Deep sea Type Ia 10-298) GAATCCCATTTGGCGCGACTTTGTG 25 52.0 61.0 

AIMS1-442 Deep sea #2, AIMS#1 TTGTTGACAGGTAGCTATTTGGCAAC 26 42.3 57.7 

DS2-220 Deep sea #2, subgroup ACGGTGACTCCGATTGTGTGTAT 23 47.8 58.2 

DS2-626 Deep sea #2, subgroup ATTGCTGGTCTGCATCAGCCTG 22 54.5 60.2 

USCG-225 Upland soil cluster Gamma CTGACGCCGATCATGTGCAT 20 55.0 59.1 

USCG-225b Upland soil cluster Gamma CTGACGCCGATCATGTGCATCA 22 54.5 61.2 

JR2-409 JR cluster #2 (California upland grassland soil) TTATTCCCGGCGCTATCATGATCG 24 50.0 60.5 

JR2-468 JR cluster #2 (California upland grassland soil) ACAGCCATAATTGGACCATTCTTCTG 26 42.3 59.2 

JR3-505 JR cluster #3 (California upland grassland soil) TGTATCCTACCAATTGGCCTCATCTG 26 46.2 60.1 

JR3-593 JR cluster #3 (California upland grassland soil) CTATCAGTATGTGCGGACAGGC 22 54.5 58.6 

501-375 Methylococcus- related marine and freshwater sediment clones CTTCCCGGTGAACTTCGTGTTCC 23 56.5 61.3 

501-286 Methylococcus- related marine and freshwater sediment clones GTCAGCCGTGGGGCGCCA 18 77.8 66.7 

USC3-305 Upland soil cluster #3 CACGGTCTGCGTTCTGGC 18 66.7 59.5 

Mc396 Methylococcus CCCTGCCTCGCTGGTGCC 18 77.8 64.4 

MclT272 Methylocaldum tepidum GGCTTGGGAGCGGTTCCG 18 72.2 61.9 

MclG281 Methylocaldum gracile AAAGTTCCGCAACCCCTGGG 20 60.0 61.5 

MclS402 Methylocaldum szegediense GCGCTGTTGGTTCCGGGT 18 66.7 61.8 

MclS394 Methylocaldum szegediense and related TTCCCGGCGCTGTTGGTTCC 20 65.0 63.3 

MclS400 Methylocaldum szegediense and related CGGCGCTGTTGGTTCCGGGT 20 70.0 65.7 

MclE302 Methylocaldum E10 CGCAACCATGGCCGTTCTG 19 63.2 60.3 

Mcl404 Mcl.tepidum-Mcl. Gracile-Mcl.Szeg and related TTTTGGTTCCGGGTGCGATTT 21 47.6 58.0 

Mcl408 Methylocaldum GGTTCCGGGTGCGATTTTG 19 57.9 57.8 

fw1-286 fw-1 group: M.coccus-M.caldum related marine and freshwater 

sediment clones  

ATCGTCAACCGTGGGGCG 18 66.7 61.1 

fw1-639 fw-1 group: M.coccus-M.caldum related marine and freshwater 

sediment clones  

GAAGGGCACGCTGCGTACG 19 68.4 62.0 

fw1-641 fw-1 group: M.coccus-M.caldum related marine and freshwater 

sediment clones  

AGGGCACGCTGCGTACGTT 19 63.2 63.3 
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JHTY1-267 JH-TY#1 TTGGTTGTGGGAAAACTTCCGT 22 45.5 57.4 

JRC4-432 Japanese rice cluster #4 GACGTTGTCCTGGCTCTGAG 20 60.0 58.3 

OSC220 Finnish organic soil clones and related TCACCGTCGTACCTATCGTACTGG 24 54.2 60.8 

OSC300 Finnish organic soil clones and related GGCGCCACCGTATGTGTACTG 21 61.9 61.4 

JRC3-535 Japanese Rice Cluster #3 CGTTCCACGTTCCGGTTGAG 20 60.0 59.3 

LK580 fw-1 group + Lake Konstanz sediment cluster CCGACATCATTGGCTACAACTATGT 25 44.0 58.7 

RSM1-419 RSM#1 CCATTCTGCTCGACGTGGTTCT 22 54.5 59.4 

JHTY2-562 JH-TY#2 ATGCTGTTGTCGATCGCCGACTTGC 25 56.0 63.6 

JHTY2-578 JH-TY#2 CCGACTTGCAAGGCTACAACTATGTC 26 50.0 59.5 

JRC2-447 Japanese Rice Cluster #2 CTGAGCACCAGCTACCTGTTCA 22 54.5 60.2 

LW21-374 LW21 group CTACTTCCCGATCACCATGTGCT 23 52.2 60.2 

LW21-391 LW21 group TGTGCTTCCCCTCGCAGATC 20 60.0 60.5 

M90-574 M.coccus-M.caldum related marine and freshwater sediment 

clones 

ATCGCCGACCTGCTGGGTTA 20 60.0 62.2 

M90-253 M.coccus-M.caldum related marine and freshwater sediment 

clones 

GCTGCTGTACAGGCGTTCCTG 21 61.9 61.7 

Mth413 Methylothermus CACATGGCGATCTTTTTAGACGTTG 25 44.0 58.3 

Mha-500 Methylohalobius - M.thermus and related ? TGATGTACCCGGGCAACTGGC 21 61.9 62.3 

DS3-446 Deep sea cluster #3 AGCTGTCTGGCAGTTTCCTGTTCA 24 50.0 62.5 

PmoC640 PmoC AAGGGAACGCTTCGTACGTTTGG 23 52.2 59.8 

PmoC308 PmoC CCTGTGTGCTGGCGATTCTGCT 22 62.3 59.1 

Ib453 Type I b (M.thermus-M.coccus-M.caldum and related) GGCAGCTACCTGTTCACCGC 20 65.0 61.7 

Ib559 Type I b (M.thermus-M.coccus-M.caldum and related) GGCATGCTGATGTCGATTGCCG 22 59.1 62.5 

McyB304 M.cystis B (parvus/echinoides/strain M) CGTTTTCGCGGCTCTGGGC 19 68.4 62.7 

Mcy255 M.cystis B (parvus/echinoides/strain M) GGCGTCGCAGGCTTTCTGG 19 68.4 62.3 

Mcy459 Methylocystis GTGATCACGGCGATTGTTGGTTC 23 52.2 60.2 

Mcy264 Methylocystis CAGGCGTTCTGGTGGGTGAA 20 60.0 61.0 

Mcy270 Methylocystis TTCTGGTGGGTGAACTTCCGTCT 23 52.2 61.8 

Mcy413 Methylocystis TTCCGGCGATCTGGCTTGACG 21 61.9 63.2 

Mcy522 Methlocystis A + peat clones GGCGATTGCGGCGTTCCA 18 66.7 62.3 

Mcy233 Methylocystis ATTCTCGGCGTGACCTTCTGC 21 57.1 60.9 



239 
 

McyM309 M.cystis strain M and related GGTTCTGGGCCTGATGATCGG 21 61.9 61.0 

Peat264 peat clones GGCGTTTTTCTGGGTCAACTTCC 23 52.2 60.3 

MsS314 Methylosinus sporium GGTTCTGGGTCTGCTCATCGG 21 61.9 60.8 

MsS475 Methylosinus sporium TGGTCGGCGCCCTGGGCT 18 77.8 68.3 

Msi263 Methylosinus sporium + 1 Msi.trichosporium subclaster GGCGTTCCTGTGGGAGAACTTC 22 59.1 61.2 

Msi423 Methylosinus CTGTGGCTGGACATCATCCTGC 22 59.1 61.4 

MsT214 Methylosinus trichosporium OB3b and rel. TGGCCGACCGTGGTTCCG 18 72.2 63.5 

Msi520 Methylosinus trichosporium GCGATCGCGGCTCTGCA 17 70.6 61.6 

Msi269 Methylosinus trichosporium TCTTCTGGGAGAACTTCAAGCTGC 24 50.0 60.6 

Msi294 Methylosinus GTTCGGCGCGACCTTCGC 18 72.2 62.5 

ARC2-518 Deep branching type II clade ARC2 GGCCGGCGATTGGTCAGTATCA 22 59.1 61.7 

Msi232 M.sinus+ most M.cystis -considered as additional type II probe ATCCTGGGCGTGACCTTCGC 20 65.0 63.3 

II509 Type II CGAACAACTGGCCGGCGAT 19 63.2 61.7 

II630 Type II CATGGTCGAGCGCGGCAC 18 72.2 62.4 

Alp8-468 Type II novel pmoA, Alpine cluster Alp#8 CGCGCTCCTTGGCTCGTTGG 20 70.0 64.0 

xb6-539 Novel pmoA copy of type II and related environmental clones AGGCCGCCGAGGTCGAC 17 76.5 63.0 

LP21-190 Novel pmoA copy of type II and related environmental clones ATCGACTTCAAGGATCGCCG 20 55.0 58.2 

LP21-260 Novel pmoA copy of type II and related environmental clones CGCAGTCCTTCTTCTGGACG 20 60.0 58.6 

NMcy1-247 Novel pmoA copy of M.cystis #1 (?) TCGACATCGTGCTGATGATCTCGG 24 54.2 62.1 

NMsi1-469 Novel pmoA copy of M.sinus  GCGCTGGTCGGCTCCATGG 19 73.7 64.3 

NMcy2-262 Novel pmoA copy of M.cystis #2 (?) CAGTCCTTCTTCTGGCAGAAGTTCC 25 52.0 60.9 

LP21-436 Mcy + Msi novel pmoA #1 groups GTGCTGATGATGTCGGGCAGCTGGC 25 64.0 66.1 

NMsiT-271 Novel pmoA copy of M.sinus trichpsporium (?) AGCGCTTCCGTCTGCCGAT 19 63.2 62.9 

LP21-232 Novel pmoA copy of type II and related environmental clones ATCGTCGCCATGTGCTTCGC 20 60.0 61.9 

RA14-299 RA14 related clones GCGCGACGTTCCTTTGTGTC 20 60.0 59.5 

RA14-594 RA14 related clones CCACAACGTTCGTACCTCGA 20 55.0 57.9 

RA14-591 RA14 related clones GGCTTCCACAACGTTCGTACCT 22 54.5 60.9 

Wsh1-566 Watershed + flodded upland cluster 1 GCTCATGAGCTTGGCCGACATC 22 59.1 61.8 

Wsh2-491 Watershed + flodded upland cluster 2 TCATTTGGCCAACCTCTCTCATTCC 25 48.0 60.9 

Wsh2-450 Watershed + flodded upland cluster 2 CAAGAGCTGGATCATCACGATG 22 50.0 56.8 
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B2rel251 Methylocapsa-related clones CCGCCGCGGCCCAGTATTA 19 68.4 63.4 

B2-400 Methylocapsa ACCTCTTTGGTCCCGGCTGC 20 65.0 63.4 

B2-261 Methylocapsa TCAGGCCTATTTCTGGGAAAGCT 23 47.8 58.3 

B2all343 Methylocapsa and related clones AACCGCTACACCAATTTCTGGGG 23 52.2 61.2 

B2all341 Methylocapsa and related clones TCAACCGCTACACCAATTTCTGGG 24 50.0 61.1 

pmoAMO3-

400 

clone pmoA-MO3 ACCCAGATGATCCCGTCGGC 20 65.0 62.6 

pmoAMO3-

486 

MO3 group ggGATGGGGCCTTCTCATGTACC 23 60.9 61.5 

pmoAMO3-

511 

MO3 group AGCAACTGGCAGGTCCTCG 19 63.2 60.2 

Ver330 Verrucomicrobia, all pmoA1+pmoA2 TGGTCAGTGGATGAATAGGTATTGGA 26 42.3 57.3 

Ver307 Verrucomicrobia, all pmoA2 TTCAGCTGTGCCGGATTGTTTT 22 45.5 57.9 

Ver285 Verrucomicrobia, Ma.fum pmoA2+Ma.kam. pmoA2 TAAAGCGCCTATAGGAGCAACCT 23 47.8 58.0 

Ma_F1-355 Ma.fum. pmoA1 AACTTCTGGGGTTGGGGCACTT 22 54.5 61.5 

Ma_F1-594 Ma.fum. pmoA1 TGAATACATCCGGACTTCTACCCC 24 50.0 57.9 

Ma_I1-312 Ma.inf. pmoA1 AACCGTTGGGCTTTTCTTTGGC 22 50.0 59.1 

Ma_I1-401 Ma.inf. pmoA1 AAACATTAATTCCCCAGGCTGTCGT 25 44.0 58.9 

Ma_F3-638 Ma.fum. pmoA3 AAAGTGGGACTCTTCGGACCTT 22 50.0 58.1 

Ma_F3-542 Ma.fum. pmoA3 AACCCTTAGAAGCCTTAGGCCA 22 50.0 58.1 

ESR-579 ESR (Eastern Snake River) cluster GACCTGATCGGATTCGAGAACATC 24 50.0 58.5 

M84P22-514 environmental clones of uncertain identity AACTGGGCCTGGCTGGG 17 70.6 61.0 

TUSC409 Tropical Upland Soil Cluster #2 CGATCCCGGGCGCGATTC 18 72.2 61.8 

TUSC502 Tropical Upland Soil Cluster #2 TCTTCTACTTCGGCAACTGGC 21 52.4 58.3 

mtrof173 Universal GGbGACTGGGACTTCTGG 18 66.7 57.4 

mtrof362-I Methanotrophs TGGGGCTGGACCTACTTCC 19 63.2 59.5 

mtrof661 Methanotrophs GGTAARGACGTTGCKCCGG 19 63.2 60.4 

mtrof662-I Methanotrophs GGTAAGGACGTTGCGCCGG 19 68.4 61.9 

mtrof656 Methanotrophs ACCTTCGGTAAGGACGT 17 52.9 53.2 

NmNc533 Nitrosomonas-Nitrosococcus CAACCCATTTGCCAATCGTTGTAG 24 45.8 58.6 

Nsm_eut381 Nitrosomonas eutropha CCACTCAATTTTGTAACCCCAGGTAT 26 42.3 59.0 
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PS5-226 Nitrosomonas-Nitrosococcus related clones ACCCCGATTGTTGGGATGATGTA 23 47.8 59.9 

Pl6-306 Nitrosomonas-Nitrosococcus related clones GGCACTCTGTATCGTATGCCTGTTAG 26 50.0 60.5 

NsNv207 Nitrosospira-Nitrosovibrio TCAATGGTGGCCGGTGG 17 64.7 58.5 

NsNv363 Nitrosospira-Nitrosovibrio TACTGGTGGTCGCACTACCC 20 60.0 59.6 

SV308 Svalbard clade TGAGCATCTCTGGGCTTGTCGT 22 54.5 60.7 

SVrel583 Svalbard clade and related TACATGGGATTCACATTTGTGAGGAC 26 42.3 57.0 

Nit_rel471 AOB related clones/probably methanotrophs CGTTCGCGATGATGTTTGGTCC 22 54.5 60.1 

Sed585 Ssedi#1 GGGCATTCGCGATGATGTTTTATCCGA 27 48.1 61.2 

Sed422 Ssedi#1 and related TGATCCTAGACTGCACCCTGTTG 23 52.2 58.5 

Nit_rel223 AOB related clones/probably methanotrophs GTCACACCGATCGTAGAGGT 20 55.0 56.9 

Nit_rel417 Arctic soil related #1, subgroup CGCGTTGATCTTTGATTGCACCCTGTT 27 48.1 61.8 

Nit_rel419 Arctic soil related #1, subgroup CGTTGATCCTTGATTGCACCCTGTT 25 48.0 59.8 

Nit_rel526 JRC#1+CCd#1 groups GCCATCAACCATTGGTTGCGGA 22 54.5 60.8 

Nit_rel652 Arctic soil MOB CGTACATTCGGTGGTCACACTG 22 54.5 57.9 

ARC529 AOB related clones/probably methanotrophs TAAGCAGCCGATGGTCGTGGAT 22 54.5 62.2 

Nit_rel470 AOB related clones/probably methanotrophs CGATATTCGGGGTATGGGCG 20 60.0 58.4 

Nit_rel351 AOB related clones/probably methanotrophs GTTTGCCTGGTACTGGTGGG 20 60.0 59.2 

gp17-438 environmental clones of uncertain identity - gp17 ACTCTTATTGACCAGGAATTGGACCTTG 28 42.9 58.5 

Nit_rel304 AOB related clones/probably methanotrophs - Crenothrix and 

related 

CGCTCTGCATTCTGGCGCT 19 63.2 61.8 

NLw303 environmental clones of uncertain identity - NL wetland AACGATCACTATTCTGGCTCTTGCCTTT 28 42.9 60.1 

M84P105-

451 

environmental clones of uncertain identity AACAGCCTGACTGTCACCAG 20 55.0 58.1 

WC306_54-

385 

environmental clones of uncertain identity AACGAAGTACTGCCGGCAAC 20 55.0 59.2 

WC306-54-

516 

environmental clones of uncertain identity AACTGGCCGATTTTTGGCATGTT 23 43.5 58.4 

gp23-454 environmental clones of uncertain identity AACGCGCTGCTCACTGCG 18 66.7 62.3 

MR1-348 environmental clones of uncertain identity AATCTTCGGTTGGCACGGCT 20 55.0 61.1 

gp619 environmental clones of uncertain identity CGGAATATCTGCGCATCATCGAGC 24 54.2 61.5 

gp391 environmental clones of uncertain identity ATCTGGCCGGCGACCATG 18 66.7 61.1 
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gp2-581 environmental clones of uncertain identity ACATGATCGGCTACGTGTATCCG 23 52.2 60.0 

RA21-466 clone RA21 - environmental clone of uncertain identity CGGCGTTCTTGGCGGCAT 18 66.7 62.4 

hyaBp spiking control (hyaB gene of E.coli) GATTACGCGCATCGAAGGC 19 57.9 57.5 
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Appendix 2: Raman spectroscopy 

Introduction  

Raman spectroscopy was used to measure different ratios of 
12

C and 
13

C that had been 

incorporated into single cells grown on carbon source with a range of ratios of the two 

isotopes. The Raman spectroscopy was carried out by Dr Daniel Read at the Center for 

Ecology and Hydrology Wallingford. Raman spectroscopy is described in detail in the 

chapter Raman FISH by Read et al., (2010). 

 

Single cell studies using Raman microscopy. 

 

A pure culture of a Methylobacterium strain isolated from Movile Cave by D. Wischer was 

grown in batch culture with methanol as the sole carbon source. Seven cultures were set up 

with the same concentration of methanol but with different isotope ratios of 
13

C-methanol 

(1%, 5%, 25%, 50%, 75%, 95% and 99%). The Methylobacterium grows on the 
13

C-labelled 

methanol and the components of these cells should contain 
13

C depending on the ration of 
12

C 

to 
13

C methanol in the growth medium. Samples of each of the Methylobacterium cultures 

were fixed in 4% paraformaldehyde and were sent to Dr Daniel Read at the Center for 

Ecology and Hydrology, Wallingford. The samples of Methylobacterium containing between 

1% and 99% 
13

C were analysed using a Raman spectrophotometer at the single cell level. The 

Raman spectra for each sample were overlaid. Focusing on one of the sharper peaks of the 

Raman spectra that is indicative of phenylalanine, a “red-shift” could be observed (See Intro 

1.4.2.6) (Figure 5.6). The shift of the peak position has been shown to be directly 
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proportional to the 
12

C to 
13

C ratio within the cells with an R
2
 value of 0.99. This shows that 

it is possible to estimate the relative amount of 
13

C label within single cells.  
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Figure 5.6: (Left) Phenylalanine peaks of the Raman spectra from the labelled Methylobacterium. (Right) Plot of wave number position for the 

phenylalanine peak against the relative %
12

C in the cells. The red line indicates the “red-shift” of peak wave number as the wave length becomes 

shorter with increased 
13

C labelling of the Methylobacterium cells. 

 
Red shift 
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With the data obtained from the Raman spectra of Methylobacterium grown with 

different ratios of 
12

C and 
13

C methanol, it was shown that there is a direct correlation 

between the relative abundance of label within the bacterium and a “red shift” in key 

peaks of a Raman spectrum. This means that it is possible to measure the realative 

percentage of 
13

C label that has been incorporated into single cells. Unfortunately this 

was as far as the study went but points to potential methods for future experiments to 

determine if single cells have incorporated the 
13

C label. The Raman spectroscopy 

has been used with Fluorescence In Situ Hybridisation (FISH) in order to identify 

organisms that have incorporated a 
13

C label (Huang et al., 2007). More recently, 

Raman FISH was used to generate data similar to what is presented here, indicating 

that there is a direct link between the shift of particular Raman spectra peaks and the 

amount of label incorporated (Li et al., 2012). 

 

Disscusion 

Raman spectroscopy was used to create a standard curve with a Methylobacterium 

isolate from Movile Cave with different ratios of 
13

C incorporated into the cells. This 

means that single cells from 
13

C-enriched sample can be identified having taken up 

the 
13

C-label and the extent to which the 
13

C-lable makes up the organic molecules in 

the cell can be determined.  It was planned to use this data to be able to directly 

follow the flow of a 
13

C label between two isolates from Movile Cave. A 

Methylomonas culture would be grown with 
13

CH4 as the sole carbon source. The 

Methylomonas culture would then be inoculated with the Methylobacterium isolate 

from Movile Cave. The only way in which the Methylobacterium growth would be 
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able to be supported would be from any carbon released by the Methylomonas be it 

methanol, formate, formaldehyde etc. Raman FISH would then have been use to 

identify single cells and to obtain Raman spectra from the Methylobacterium cells. If 

the Raman spectra from any Methylobacterium cells displayed a “red shift” then they 

must have gained that carbon from the Methylomonas. This would directly illustrate 

the first step of carbon flow from the primary consumer (methanotroph) into the 

secondary consumer (methylotroph). It would only be representative of one possible 

route of carbon flow but would show that it is possible between two of the Movile 

Cave isolates. Hopefully this experiment or similar experiments will be carried out in 

near the future.  

 

 


