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The Effect of String Tension Variation on the Tonal Response 

of a Classical Guitar 
Wanda J. Lewis (University of Warwick) and James R. Smith 

Abstract 

Actual motion of a vibrating guitar string is a superposition of many possible shapes 

(modes) in which the string could vibrate. Each of these modes has a corresponding 

frequency, and the lowest frequency is associated with a shape idealised as a single 

wave, referred to as the fundamental mode. The other contributing modes, each with 

their own progressively higher frequency, are referred to as overtones, or harmonics. By 

attaching a string to a medium (a sound board) capable of a response to the vibrating 

string, sound waves are generated. The sound heard is dominated by the fundamental 

mode, ‘coloured’ by contributions from the overtones, as explained by the classical 

theory of vibration. The classical theory, however, assumes that the string tension 

remains constant during vibration, and this cannot be strictly true; when considering 

just the fundamental mode, string tension will reach two maximum changes, as it 

oscillates up and down. These changes, occurring twice during the fundamental period 

match the frequency of the octave higher, 1
st
 overtone. It is therefore plausible to think 

that the changing tension effect, through increased force on the bridge and, therefore, 

greater sound board deflection, could be amplifying the colouring effect of (at least) the 

1
st
 overtone.  

In this paper, we examine the possible influence of string tension variation on tonal 

response of a classical guitar. We use a perturbation model based on the classical result 

for a string in general vibration in conjunction with a novel method of assessment of 

plucking force that incorporates the engineering concept of geometric stiffness, to assess 

the magnitude of the normal force exerted by the string on the bridge. The results of our 

model show that the effect of tension variation is significantly smaller than that due to 

the installed initial static tension, and affects predominantly the force contribution 

arising from the fundamental mode. We, therefore, conclude that string tension variation 

does not contribute significantly to tonal response.  

Keywords: guitar tonal response; string vibration; perturbation model; overtones; 

tension modulation; geometric stiffness. 
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Introduction  

It is sometimes remarked in classical guitar circles that, in spite of the relatively low 

tuning of the six-string tenor guitar, viz., E2, A2,D3,G3,B3,E4 or  E,A,D,g,b,e, the 

overall effect in solo performance is of a rather higher pitched instrument. This 

impression can be considered to be predicted by the classical theory of a vibrating, 

uniform, thin, laterally flexible string with rigid end attachments. It is noted that this 

classical theory is universally believed to give a satisfactory, ‘first order’ model of string 

behaviour, in terms of predicting vibrational modes and frequencies. Taylor (1978) 

applied this classical background to give a physical basis for tonal control on a classical 

guitar. The perceived sound of a guitar or, indeed, any instrument, is a mixture of tones 

stemming from the ‘modes’ that are excited by the relevant playing action; in the case of 

a guitar: plucking a string. With each mode is associated a frequency that ‘colours’ the 

sound. Taylor used no overt mathematics, but graphs illustrating how energy input to the 

overtones is controlled by: i) plucking position along the string, ii) plucking 

mechanisms, i.e., the use of nails or flesh tips. He showed that, as the string is plucked 

with a point force, and the position of plucking is progressively moved closer to an end, 

energy input to the overtones is increased at the expense of the fundamental. Further, the 

use of nails, modelled as a point force, as against flesh tips, modelled as a short wedge 

plectrum, showed that nails have a noticeably greater ability to energise overtones.  

Figure 1 shows a classical guitar with all its relevant parts identified. 

 

Fret board 

Sound 
hole 

Nut 

Bridge 

Sound 
board 

Fig. 1. A classical guitar (Mexican style) 
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Normal plucking position for a guitar (Fig. 3) varies from just over the sound hole to one 

on the bridge side of the sound hole. More extreme positions magnify the subtle effects 

achieved by small changes of plucking position/mixing nail and flesh tip. Thus, playing 

over the fret board, i.e., playing ‘sul tasto’, produces a dolce/deeper sound, as the 

fundamental is emphasised and the overtones are less energised.  

 

 

 

 

 

 

 

 

 

 

Fundamental 

(n=1) 

1
st
 overtone 

(n=2) 

2
nd

 overtone 

(n=3) 

Fig.2.  First three modes of vibration and the corresponding overtones  

Nut 

Bridge 

l 

l/2 2/3l

2 

3/4l

2 

4/5l

2 

5/6l

2 

Sound hole 

Fig. 3. Typical plucking positions 

 l/2   - at the 12
th
 fret   this emphasises the fundamental mode of the open string 

 2/3l - for playing ‘sul tasto’- over the fret board. As one is often playing in the first few 

frets, sul tasto corresponds to plucking at about the half length of the fretted string 

 3/4l-  just on the nut side of the sound hole  

 4/5l- at the sound hole  

 5/6l – on the bridge side of the sound hole  

 

 

 

 

Common right hand positions 

A guitar string vibrates in 

superposition of a number of 

modes, or shapes, which include: 

fundamental (1
st
) mode, 2

nd
, 3

rd
, 

and higher level modes. The 

fundamental mode produces the 

lowest tone. The 2
nd

mode 

(1
st
overtone), and correspondingly, 

the higher modes are aligned with 

higher frequencies (Fig. 2). The 

first overtone is at double the 

frequency of the fundamental, and, 

in musical terms, is referred to as 

‘an octave higher’. 
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As already noted (Taylor 1978), plucking progressively near the bridge, i.e., playing 

‘ponticello’, changes the tone by putting greater energy into the overtones. The effect isa 

much higher, thinner sound, as the fundamental is weakened and the overtones 

strengthened. It is clear that the classical theory does give an indication as to why a 

guitar can give an impression of a somewhat higher pitched instrument. This classical 

theory is given in many texts for undergraduate physicists and mathematicians covering 

waves and vibrations. The classic references would be Morse (1948), Ramsey (1949) 

and earlier editions, Coulson (1941) and subsequent editions. 

The crucial point to explore beyond the classical theory’s assumption of small 

displacements and slopes, with its consequential opportunities for linearising the 

resulting equations, is just the relaxation of this assumption. Work on string vibration, 

where tension changes are appreciable, has fallen into two classes: i) that dealing with 

the actual equations governing large vibrations, and ii) that which adopt a perturbation 

approach. In the perturbation approach, which is used in the work reported in this paper, 

the length of the string during vibration is taken to be that of the profile predicted by the 

classical theory. 

Interestingly, early examples of modelling, where coupled longitudinal and lateral 

motions are jointly considered, are given in Ramsey (1949, Chap. X1, problems 35 and 

36), where, in 36, longitudinal motion is not small, but lateral motion is. However, it 

seems that Carrier (1945) was the first publication to derive the equations of motion of a 

string rigidly held at both ends that are valid at large amplitude. A very different 

approach is that of Antman (1980), whose work is overtly critical of the majority of 

derivations of string wave equations, including constraint to motion in one plane. The 

final stages of the paper are concerned with the analytical problems involved in 

approximating the governing non-linear equations. Murthy and Ramakrishna (1964) 

modelled a problem of a string excited at, or near, a resonant frequency. Their work 

confirmed that, near resonance, string response is governed more by variation in tension 

than damping. The foregoing are of type i) in their approach. The following papers are 

of type ii). 

The study by Legge and Fletcher (1984) concentrated on a well-known prediction of the 

classical theory that if a string is plucked at ½ its length, the 2
nd

 mode and all its integer 

multiples are missing, and similarly for plucking at 1/n
th

 of the length. The authors noted 

that in musical instruments, where one string end does not have a rigid attachment, the 
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missing mode phenomenon is no longer strictly valid. Their model was based on the 

one-dimensional wave equation, but included damping. 

 

A valuable overview of non-linear effects in a wide range of musical instruments is 

given by Fletcher (1999), in which the coverage is essentially similar to that of the 

jointly authored text by Fletcher and Rossing (1998). On the dynamics of plucked 

strings, he recommends the inclusion of bending elasticity, but indicates that this is not 

important for the nylon strings of a classical guitar, due to their low Young’s modulus.  

For the estimation of string tension variation during vibration, he indicates the use of a 

vibrating string profile predicted by the classical linear theory, i.e., a perturbation model, 

as used in this paper. However, there is no discussion of the influence of tension 

variation on overtone response. 

Tolonen et al. (2000), and Band (2009), simulated the phenomenon of ‘pitch glide’, 

which occurs when a string is given a large lateral displacement and released. During 

vibration, the string motion is damped by air resistance and the string’s internal 

dissipation mechanism. Damping reduces the amplitude of vibration and, consequently, 

the tension falls, as does frequency. The audible effect is a perceptible ‘wow’; a more 

noticeable characteristic of guitars with steel rather than nylon strings. With virtually no 

discussion of the underlying physics, Tolonen et al. simulated pitch glide using a digital 

wave guide and the main content is concerned with showing how the various filters are 

generated. Band does review the relevant underlying physics in some detail. 

None of the work reviewed above produces a model relating tension variation in the 

string to a possible enhancement of overtone response. 

 

The classical theory assumes constant tension, because the lateral displacements of 

strings used in musical instruments are small compared to their overall length. However, 

strings have longitudinal elasticity, and it can be shown that, while change in length may 

be small, the increase in tension may be noticeable. Lewis (2003) made a similar 

observation when discussing the response of tension cable structures to lateral 

displacements.  
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 If we consider just the fundamental mode, actually a sine wave, during one period of 

vibration, the string achieves maximum tension – once up, once down – during this 

period. 

This extension effect, and therefore an increase in string tension due to its elasticity, is 

occurring at twice the fundamental frequency, corresponding to the octave higher, 1
st
 

overtone. Similarly, all other modes have increased tension effects at twice their 

respective frequencies. So, could this increased tension effect be reinforcing the ‘higher 

sounding’ perception? A rather extreme view of this, unsupported by analysis (Decker, 

2007), is that the fundamental frequency is eliminated due to this effect, and the lowest 

observed frequency is the first harmonic. 

The purpose of this paper is to study the effect of tension variation on the tonal response 

of a guitar by examining how the normal component of string tension acting on the 

bridge, i.e., the force that sets the guitar sound board in motion, is changed from the 

constant tension case. In short, what is the effect on the overtone structure? 

 

The Model Assumptions 

The approach to assessing the tension during vibration is that which has been used by all 

authors, viz., Hooke’s law, applied to the increase in length during vibration. In the 

expression for length of the vibrating string profile, the value for the displacement 

function is taken to be that predicted by the classical linear theory. Longitudinal motion 

is ignored, as the speed of sound in a string, given by  
𝐸

𝜌
, (E = Young’s modulus,  = 

density), is of the order of 2000 m/s for nylon, and very much higher for steel. As the 

string length of the tenor guitar is 0.65 m, it follows that tension changes are distributed 

virtually instantaneously throughout the string. Consequently, it is only necessary to 

consider temporal variations of the tension.  

In making use of the known solution to the one-dimensional wave equation, the change 

in tension is estimated by assuming that the profile of the actual vibration is closely 

approximated by the profile found assuming a constant tension. The remaining 

assumptions of the proposed model, based on the one-dimensional wave equation, are 

given below.  
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(i) The string has spatially uniform mass density in the un-deflected state 

(ii) The string is purely flexible in a lateral sense, i.e., there is neither elastic 

bending nor shear resistance to lateral motion, which motion is solely under 

the influence of the constant installed string tension. 

(iii) For the string, there is no energy dissipation mechanism from either an 

internal source (heat generation), or externally from air damping. 

(iv) The string is rigidly anchored at both ends. 

(v) The lateral motion is very small compared to the vibrating length, so that the 

usual linearisation assumptions apply, i.e., self and cross-products of string 

deflection and slope may be ignored relative to first order terms in these 

quantities. 

With regard to (i), modern methods of string manufacture ensure that it is a reasonable 

assumption for commercial strings, and is certainly very well justified if ‘rectified’ 

nylon strings are used.  

For (ii), the inclusion of bending and shear effects is uncalled for as they affect only 

overtones well beyond those which have a major influence on perception, viz., the first 

half-dozen or so. Studies of this effect are due to Rayleigh (1894), Morse (1948), Young 

(1947), and many others. 

In considering (iii), damping is neglected here, not because it is thought to be necessarily 

very small, but rather to determine an ‘in principle’ answer as to whether, in ideal 

conditions, the first overtone, and other higher overtones, can be significantly reinforced 

by incorporating an estimate of tension variation.  

For (iv), the assumption of rigid anchoring would seem to be questionable. Whilst 

relative fixity at the nut is plausible, that at the bridge contradicts the basic mechanism 

of sound generation, viz., the component of string tension at the bridge, normal to the 

sound board, is what sets the sound board in motion, and hence the creation of sound 

waves. In kinematical terms, the vertical motion of the bridge is minute compared to the 

lateral displacement of the string, and so string profile is little affected,  though the 

coupling to the mass-spring system of the sound board will tend to reduce, slightly, the 

overtone frequencies of the string. 
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For (v), this is implicitly accepted here, though the square of the displacement derivative 

is included in the expression for change of length. 

The sequence of the proposed analysis is as follows: 

(i) the analytical detail of the model is developed identifying the crucial 

parameters affecting the size of the normal force on the bridge, and the modal 

series that reflect the combined nature of the force arising from initial tension 

and tension increment; 

(ii) then follows an analysis of the static force on the bridge, as this will indicate 

the relative magnitude of that due to initial tension and the tension increment 

to accommodate the lateral deflection by a point force from an original 

straight line; an important feature of this section is the use of the geometric 

stiffness concept to show why large deflections are inherently likely to be 

avoided when stopping the higher frets, thereby avoiding large tension 

increments; 

(iii)  the next step studies the question of how the tension increment affects the 

modes. A general result for the n
th

 mode is presented, but numerical 

assessment is only given for the first five, as these are considered to have 

most effect on tonal quality. 

 

The Model 

 

 

 

 

 

To discuss the contribution of string tension variation to the total force acting on the 

sound board we have, with reference to Fig. 4, the total vertical force as: 

 𝑇 + ∆𝑇 𝑠𝑖𝑛𝛼,         

  

(1) 

Fig. 4. String configuration 

y 

x Nut Bridge 
Undeflected length of string 

 

T+ T 


s
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where T is the initial static tension, T the change in tension consequent on change of 

length during vibration, and  is the inclination of the string at some arbitrary time, to its 

un-deflected position, virtually parallel to the sound board. 

 

Knowing the deflected profile of the string, y(x,t), for the small deflections and slopes 

involved,  

𝑠𝑖𝑛𝛼 ≈ −𝑡𝑎𝑛𝛼𝑠 = −
𝜕𝑦 𝑙, 𝑡 

𝜕𝑥
 

         

Figure 5 shows a string of length l, which is to be released from rest and initially 

deflected through a distance,, by a point force F acting at a distance, a, from the nut.  

 

 

 

 

 

 

 

 

In this case, the profile of the string, according to the wave equation (Morse, 1948: 87) 

is 

 

𝑦 𝑙, 𝑡 =
2𝛿𝑙2

𝜋2𝑎(𝑙 − 𝑎)
 

𝑠𝑖𝑛
𝑛𝑎𝜋

𝑙

𝑛2
𝑠𝑖𝑛

𝑛𝜋𝑥

𝑙

∞

𝑛=1

𝑐𝑜𝑠
𝑛𝜋𝑐𝑡

𝑙
 

           

where 𝑐2 = 𝑇/𝜌; c being the speed of propagation of lateral waves along the string, T 

the static tension, and   the lineal mass density (mass/unit length). It is helpful to write 

(3) a little more compactly by using: 

(2) 

(3) 

Fig. 5. String deflected by a plucking force 

a 

l 

 

Nut 

F 
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𝑟 =
𝑎

𝑙
,          𝜃 =

𝑎𝜋

𝑙
,         𝜔 =

𝜋𝑐

𝑙
,         𝜇 =

𝛿/𝑙

𝜋𝑟(1 − 𝑟)
, 

 

so that 

𝑠𝑖𝑛𝛼 ≈= −
𝜕𝑦 (𝑙,𝑡)

𝜕𝑥
= 2𝜇 

(−)𝑛+1

𝑛
𝑠𝑖𝑛 𝑛𝜃 𝑐𝑜𝑠 (𝑛𝜔𝑡) = 2𝜇𝑆1(𝜃, 𝜔𝑡)∞

𝑛=1  

 

The normal force component, Tsin, due to initial tension can be evaluated immediately. 

The change to initial tension, T, from Hooke’s law is 

∆𝑇 = 𝐸𝐴
∆𝑙

𝑙
, 

where E is the Young’s modulus of the string, and A is the cross-sectional area.  

The change in length of the string is 

∆𝑙 =   1 +  
𝜕𝑦

𝜕𝑥
 

2

 

1

2

𝑑𝑥

𝑙

0

− 𝑙 

With the assumption of small slopes, (6) has the approximate value  

 

∆𝑙 ≅
1

2
  

𝜕𝑦

𝜕𝑥
 

2

𝑑𝑥,

𝑙

0

 

and substituting for  
𝜕𝑦

𝜕𝑥
 , 

 

∆𝑙 ≅ 2𝜇2    𝑠𝑖𝑛
𝑛𝜃

𝑛

∞

𝑛=1

𝑐𝑜𝑠
𝑛𝜋𝑥

𝑙
cos 𝑛𝜔𝑡 

2

𝑑𝑥

𝑙

0

 

With the orthogonality of the cos⁡
𝑛𝜋𝑥

𝑙
 over (0,l), this reduces to 

∆𝑙 ≅ 2𝜇2  
𝑠𝑖𝑛2𝑛𝜃

𝑛2

∞

𝑛=1

𝑐𝑜𝑠2𝑛𝜔𝑡 𝑐𝑜𝑠2
𝑛𝜋𝑥

𝑙
𝑑𝑥 =  𝜇2𝑙

𝑙

0

 
𝑠𝑖𝑛2𝑛𝜃

𝑛2

∞

𝑛=1

cos2 𝑛𝜔𝑡 , 

 

(4) 

(5) 

(6) 

(7) 

(8) 
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and so 

∆𝑇 = 𝐸𝐴
∆𝑙

𝑙
= 𝐸𝐴𝜇2  

𝑠𝑖𝑛2𝑛𝜃

𝑛2
∞
𝑛=1 𝑐𝑜𝑠2𝑛𝜔𝑡 = 𝐸𝐴𝜇2  

𝑠𝑖𝑛2𝑛𝜃

𝑛2
∞
𝑛=1  1 + cos 2𝑛𝜔𝑡 =  𝐸𝐴𝜇𝑆2(𝜃, 𝜔𝑡) 

Note, T consists of non-oscillatory and oscillatory terms, the latter at double the 

frequency of the original modal frequencies. 

 

Consequently, 

 𝑇 + ∆𝑇 𝑠𝑖𝑛𝛼 = 2𝜇𝑇𝑆1 𝜃, 𝜔𝑡 +  2𝐸𝐴𝜇3𝑆1 𝜃, 𝜔𝑡 𝑆2 𝜃, 𝜔𝑡  

Since 𝜇 ∝
𝛿

𝑙
, and this ratio is very much less than one, it is to be expected that the second 

term, corresponding to tension increment, is likely to be much smaller than the basic 

Tsin term. 

 

The Static Assessment 

Since the string will behave harmonically, the maximum variation in tension during 

oscillation cannot exceed that which occurs when the string is initially deflected. 

Consequently, the relative values of vertical force components 𝑇𝑠𝑖𝑛𝛼𝑡=0  and  

𝑇𝑠𝑖𝑛𝛼𝑡=0  are important for assessing the significance of tension variation. Thus, 

 

{ 𝑇 + ∆𝑇 𝑠𝑖𝑛𝛼}𝑡=0 = 2𝜇𝑇𝑆1 𝜃1, 0 +  2𝐸𝐴𝜇3𝑆1 𝜃1, 0 𝑆2 𝜃1, 0  

= 2𝜇𝑇 
(−)𝑛+1

𝑛
𝑠𝑖𝑛𝑛𝜃 + 2𝐸𝐴𝜇3

∞

𝑛=1

  
(−)𝑛+1

𝑛
𝑠𝑖𝑛𝑛𝜃

∞

𝑛=1

   
1

𝑛2
𝑠𝑖𝑛2𝑛𝜃

∞

𝑛=1

  

 

Both infinite series have finite summation formulae 

 
(−)𝑛+1

𝑛
𝑠𝑖𝑛𝑛𝜃 =

𝜃

2
,   − 𝜋 < 𝜃 < 𝜋;        

1

𝑛2
𝑠𝑖𝑛2𝑛𝜃

∞

𝑛=1

∞

𝑛=1

=
𝜃

2
 𝜋 − 𝜃 ,   0 < 𝜃 < 𝜋 

 

 

 

(9) 

(10) 
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so that the expression for total force is just 

2𝜇𝑇
𝜃

2
+  2𝐸𝐴𝜇3

𝜃

2
 
𝜃

2
 𝜋 − 𝜃  ,         0 < 𝜃 < 𝜋 

 

and as =r, this reduces to 𝑟𝜋𝜇𝑇 +
1

2
𝜋3𝑟2 1 − 𝑟 𝜇3𝐸𝐴. 

Substituting  𝜇 =
𝛿/𝑙

𝜋𝑟  1−𝑟 
 we get 

𝛿/𝑙

 1−𝑟 
𝑇 +

 𝛿/𝑙 3

2𝑟 1−𝑟2 
𝐸𝐴 

Note that 
𝛿/𝑙

1−𝑟
    is simply sint=0 

It is now possible to evaluate this result, and judge the relative importance of tension 

increment. Since the first string carries a substantial amount of melodic line, it is chosen 

for evaluation. A typical first string is a D’Addario J4301, for which the makers quote a 

tension of 63.8 N and a cross-sectional area of 3.610
-6

 m
2
. A typical Young’s modulus 

for nylon is ~ 510
9
 N/m

2
. 

The relative magnitudes of Tsin and Tsin are evaluated for two typical deflections, 

 = 3 mm and 5 mm, as well as for one extreme case,  = 10 mm, over the indicated 

plucking positions. This is done initially for the open string (Table 1). 

  

(11) 
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 r 

 [mm] 

1/2 2/3 3/4 4/5 5/6 

 

Tsin 

[N] 

3 0.58892 0.88338 1.17785 1.47231 1.76677 

5 0.98154 1.4723 1.9631 2.4538 2.9446 

10 1.9631 2.9446 3.9262 4.9077 5.8892 

 

Tsin 

[N] 

3 0.0070787 0.011994 0.018954 0.27651 0.038225 

5 0.032772 0.055303 0.087392 0.12801 0.17697 

10 0.26217 0.44242 0.69914 1.0241 1.4157 

∆𝑇𝑠𝑖𝑛𝛼

𝑇𝑠𝑖𝑛𝛼
 

[%] 

3 1.2 1.4 1.6 1.9 2.16 

5 3.3 3.8 4.5 5.2 6.01 

10 13.3 15.0 17.8 20.9 24.0 

Table 1. Magnitudes of vertical components Tsin and Tsin. Open string: l = 650mm 

 

A similar table can be produced when the 12
th

 fret is stopped and the same deflections 

are used; one simply multiplies the Tsin entries by 2, and Tsin by 8. Consequently, 

the Tsin/Tsin percentages are multiplied by 4. Taking just the results corresponding 

to r = 5/6, the relevant percentages become, for  = 3 mm: 8.64%, for  = 5 mm: 

24.04%, and for  = 10mm: 96%. These are significant increases in the cases of  = 

3mm and 5 mm, and remarkable in the case of  = 10mm. However, for much typical 

playing, they will not occur, for the reasons discussed below. 

A lateral deflection of 10 mm is so large that it can only be produced by pulling, rather 

than plucking, i.e., it will not be produced in a normally sequenced set of notes. If it is 

produced, then the effect termed ‘pitch glide’ occurs, as noted earlier. While pitch glide, 

in principle, is always present, typical playing shows that an initially falling ‘wow’ 

effect, of short period, is only noticeable when the initial deflection is large, 10 mm, or 

more. Such large deflections, save in some avant garde compositions where pitch 

distortion is deliberately invoked, are avoided in order to maintain tonal quality. Further, 

except for relatively short periods to increase or decrease the level of sound, player’s 
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fingers will apply relatively constant levels of force. This fact has an important 

consequence.  

Consider the balance of forces involved in plucking a string, as illustrated in Fig. 6. 

 

 

 

 

 

 

The plucking force, F, has to balance the string tensions in AB and BC. Assuming no 

friction at the point of force application, and ignoring the usually small elastic increase 

in tension 

 

𝐹 = 𝑇𝑐𝑜𝑠𝛽 + 𝑇𝑐𝑜𝑠𝛾 = 𝑇  
𝛿

𝐴𝐵
+

𝛿

𝐵𝐶
  

 

For small displacements, this will be closely approximated by 

 

𝐹 = 𝑇𝛿  
1

𝑎
+

1

𝑏
  

which can be re-written, on putting a= rl, b=(1-r)l, 

 

𝐹 =  
𝑇

𝑟 1 − 𝑟 𝑙
 𝛿 

The entity 
𝑇

𝑟 1−𝑟 𝑙
 is well known in the analysis of large architectural structures, such as 

tensioned cable nets, and is referred to as a ‘geometric stiffness’ (Lewis, 2003). 

At the 12
th

 fret, the vibrating length is halved, and if the point of force application is 

moved to obtain the same value of r as obtained for an open string, geometric stiffness is 

doubled, and for the same F, deflection is halved. Consequently, normal playing has an 

inherent tendency to avoid large deflections as the higher frets are broached. More 

a b 

A 

B 

C 

F 

a + b = l 

T 

 
T   

Fig. 6. Balance of forces  

in a plucked string  

(12) 

(13) 

(14) 
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precisely, the player’s right hand usually remains relatively fixed as higher frets are 

stopped, or moves slightly to plucking at something like half the vibrating length. 

Taking the case of no movement of the right hand, there is the following remarkable 

result, given below. 

 

With the usual assumptions of small deflection and constant plucking force, the factor , 

𝜇 =
𝛿/𝑙

𝜋𝑟 1−𝑟 
 

can be shown (equations 16-19 below) to have  the same value regardless of the fret 

stopped, if the position of force application remains fixed. 

 

The frets raise the pitch by a semi-tone, and the vibrating length at the m
th

 fret from the 

nut is in equal temperament, l/2
m/12

, m = 1,2.... With the same plucking position, r 

becomes r’ where 

𝑟′ =
1

𝑙/2𝑚/12  𝑙/2𝑚/12 −  1 − 𝑟 𝑙 = 2𝑚/12  𝑟 −  1 −
1

2𝑚/12   

with 
1

2
< 𝑟 < 1, always. 

Deflection for this case can be calculated from 

  

𝐹 =  
𝑇

𝑟′ 1 − 𝑟′ 𝑙/2𝑚/12
 𝛿′ 

and for the open string, from (14), viz.,  

𝐹 =  
𝑇

𝑟 1−𝑟 𝑙
 𝛿 

On dividing (18) by (14) and re-arranging 

 

𝛿′ =
𝑟′ 1 − 𝑟′ 

2𝑚/12𝑟 1 − 𝑟 
𝛿 

and the value of ,now’,for the m
th 

fret, is  

 

(16) 

(17) 

(18) 

(15) 
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𝜇′ =
𝛿′/(𝑙/2𝑚/12)

𝜋𝑟′ 1 − 𝑟′ 
=

1

𝜋𝑟′ 1 − 𝑟′ 

𝑟′ 1 − 𝑟′ 

2𝑚/12 1 − 𝑟 

𝛿

𝑙/2𝑚/12
=

𝛿/𝑙

𝜋𝑟 1 − 𝑟 
 

which is the value for the open string, plucked with position a = rl. 

Of course, the result is approximate, but does imply that results for normal force on the 

bridge obtained for the open string will be indicative of results for the fretted case. 

 

The Tension Increment Contribution to the Overtones 

From (10), the vertical force on the bridge due to initial tension is  

2𝜇𝑇𝑆1 𝜃, 𝜔𝑡 = 2𝜇𝑇 
(−)𝑛+1

𝑛
𝑠𝑖𝑛𝑛𝜃𝑐𝑜𝑠𝑛𝜔𝑡

∞

𝑛=1

 

so that the nodal component is  

2𝜇𝑇
(−)𝑛+1

𝑛
𝑠𝑖𝑛𝑛𝑟𝑥,     𝑛 = 1,2… .. 

The tension increment term arises from the product of two infinite series. As one of 

them, S2(,t), is absolutely convergent, the product of the two series can be found by 

multiplying them together term by term. Consequently 

 

2𝐸𝐴𝜇3𝑇𝑆1 𝜃, 𝜔𝑡 𝑆2 𝜃, 𝜔𝑡 = 

= 2𝐸𝐴𝜇3   
 − 𝑛+1

𝑛
𝑠𝑖𝑛𝑛𝜃𝑐𝑜𝑠𝑛𝜔𝑡

∞

𝑛=1

   
1

𝑛2
𝑠𝑖𝑛2𝑛𝜃𝑐𝑜𝑠2𝑛𝜔𝑡

∞

𝑛=1

  

= 2𝐸𝐴𝜇3   
 − 𝑝+1

𝑝𝑞2
𝑠𝑖𝑛𝑝𝜃𝑠𝑖𝑛2𝑞𝜃𝑐𝑜𝑠𝑝𝜔𝑡

∞

𝑞=1

𝑐𝑜𝑠2𝑞𝜔𝑡

∞

𝑝=1

 

The temporal dependence, cos 𝑝𝜔𝑡 𝑐𝑜𝑠2𝑞𝜔𝑡, can be reduced to just cosine terms by the 

use of elementary trigonometric relations 

 

cos 𝑝𝜔𝑡 𝑐𝑜𝑠2𝑞𝜔𝑡 =
1

2
cos 𝑝𝜔𝑡 1 + cos 2𝑞𝜔𝑡 

=  
1

2
cos 𝑝𝜔𝑡 +  

1

4
 cos 2𝑞 + 𝑝 𝜔𝑡 + cos 2𝑞 − 𝑝 𝜔𝑡  

 

(19) 

(20) 

(21) 

(22) 

) 
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There is, therefore, a contribution to all modes as p,q go through all values, 1,2,..., 

arising from these terms. Leaving aside the coefficient, 2𝐸𝐴𝜇3, the three contributions 

from (22), and noting (21), can be grouped into terms A, B, and C as follows. 

 

A)  

1

2
  

 − 𝑝+1

𝑝𝑞2
𝑠𝑖𝑛𝑝𝜃𝑠𝑖𝑛2𝑞𝜃𝑐𝑜𝑠𝑝𝜔𝑡

∞

𝑞=1

∞

𝑝=1

 

This gives a term contributing to the successive modes 

 

1

2
 

 − 𝑝+1

𝑝𝑞2
𝑠𝑖𝑛𝑝𝜃𝑠𝑖𝑛2𝑞𝜃 ,   𝑝 = 1,2, …

∞

𝑞=1

 

 

B) 

1

4
  

 − 𝑝+1

𝑝𝑞2
𝑠𝑖𝑛𝑝𝜃𝑠𝑖𝑛2𝑞𝜃𝑐𝑜𝑠 2𝑞 − 𝑝 𝜔𝑡

∞

𝑞=1

∞

𝑝=1

 

 

With regard to (24), there is a term independent of time occurring when 2q – p = 0, for 

then 

cos  2𝑞 − 𝑝 𝜔𝑡 = cos 0 = 1. 

The non-oscillatory contribution 𝑉0 𝜃  is, therefore, 

 

𝑉0 𝜃 =
1

4
 

 − 2𝑞+1

2𝑞 ∙ 𝑞2
𝑠𝑖𝑛 2𝑞𝜃𝑠𝑖𝑛2𝑞𝜃

∞

𝑞=1

 

 

This term arises through the non-oscillatory term of T (equation 9). This constant force 

does not contribute to the vibrating force on the bridge, but only a ‘constant’ deflection 

of the sound board. Of course, this ‘constant’ component is activated at the rate of 

plucking, so, sound board deflection is, in consequence, varying. However, the rate of 

(24) 

(25) 
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string vibration is at least an order of magnitude higher than a typical fast rate of 

plucking, perhaps 5-10 per second, so the acoustic consequence is negligible.  

 

Since cosine is an even function, there are modal contributions when 2q – p = n, n 

being a positive integer. Taking the case 2q – p = n, and using the constraint p, q1, and 

starting from the lowest values of (p,q) that satisfy 2q – p = n, two sets of  (p,q) emerge 

 

  

 

 

 

 

 

Similarly, when 2q – p = -n, there are simpler results holding whether n is even or odd: 

 

 

 

The modal term,  

1

4
  

 − 𝑝+1

𝑝𝑞2
𝑠𝑖𝑛𝑝𝜃𝑠𝑖𝑛2𝑞𝜃

∞

𝑞=1

∞

𝑝=1

 

 

therefore, consists of a sum of two series, which adopts a different form depending on 

whether n is odd or even: 

 

 

 

 

𝑝 = 2𝑘 + 𝑛 

𝑞 = 𝑘 
k = 1, 2,.., 

𝑞 = 𝑘 +
𝑛

2
 

𝑞 = 𝑘 +
𝑛 − 1

2
 

𝑝 = 2𝑘 
k = 1, 2,.., 

k = 1, 2,.., 
𝑝 = 2𝑘 − 1 

If n is odd 

If n is even 
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n-odd 

 

1

4
 

1

 2𝑘 + 𝑛 𝑘2
𝑠𝑖𝑛 2𝑘 + 𝑛 𝜃𝑠𝑖𝑛2𝑘𝜃

∞

𝑘=1

+
1

4
 

1

 2𝑘 − 1  𝑘 +
𝑛−1

2
 

2 𝑠𝑖𝑛 2𝑘 − 1 𝜃𝑠𝑖𝑛2  𝑘 +
𝑛 − 1

2
 𝜃

∞

𝑘=1

 

 

n-even 

 

−
1

4
 

1

 2𝑘 + 𝑛 𝑘2
𝑠𝑖𝑛 2𝑘 + 𝑛 𝜃𝑠𝑖𝑛2𝑘𝜃 −

1

4
 

1

2𝑘  𝑘 +
𝑛

2
 

2 𝑠𝑖𝑛2𝑘𝜃𝑠𝑖𝑛2  𝑘 +
𝑛

2
 𝜃

∞

𝑘=1

∞

𝑘=1

 

 

where n = 1,2,... 

 

C) 

 

1

4
  

 − 𝑝+1

𝑝𝑞2
𝑠𝑖𝑛𝑝𝜃𝑠𝑖𝑛2𝑞𝜃𝑐𝑜𝑠 2𝑞 + 𝑝 𝜔𝑡

∞

𝑞=1

∞

𝑝=1

 

 

As p, q1, this term can only contribute for 2q + p3. This term is interesting in that the 

number of contributions to the modal sequence is finite for each mode, but this number 

gradually increases. As with B, 2q + p=n , there is a different formula for n, odd or even. 

The pairs (q, p) are generated as follows: 

 

 

 

 

 

 

(26) 

(27) 

(28) 

𝑝 = 𝑛 − 2𝑘 

𝑞 = 𝑘 

𝑝 = 𝑛 − 2𝑘 

k = 1, 2,.., 
𝑛−1

2
, 

𝑞 = 𝑘 

k = 1, 2,.., 
𝑛−2

2
, 

n-odd 

n-even 
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The modal terms are: 

for n– odd: 

 

1

4
 

1

 𝑛 − 2𝑘 𝑘2
𝑠𝑖𝑛 𝑛 − 2𝑘 𝜃𝑠𝑖𝑛2𝑘𝜃

𝑛−1

2

𝑘=1

 

 

for n– even: 

 

−
1

4
 

1

 𝑛 − 2𝑘 𝑘2
𝑠𝑖𝑛 𝑛 − 2𝑘 𝜃𝑠𝑖𝑛2𝑘𝜃

𝑛−2

2

𝑘=1

 

 

For further reference, the terms for n = 3, 4, and 5 are noted 

 

𝑛 = 3:        
1

4
∙

1

1 ∙ 12
sin 𝜃𝑠𝑖𝑛2𝜃 =

𝑠𝑖𝑛3𝜃

3
 

 

𝑛 = 4:        
1

4
∙

(−1)

2 ∙ 12
sin 2𝜃𝑠𝑖𝑛2𝜃 = −

𝑠𝑖𝑛3𝜃 cos 𝜃

4
 

  

𝑛 = 5:        
1

4
∙

1

3 ∙ 12
𝑠𝑖𝑛 3𝜃𝑠𝑖𝑛2𝜃 +

1

4
∙

1

1 ∙ 22
𝑠𝑖𝑛 𝜃𝑠𝑖𝑛22𝜃 =

1

2
𝑠𝑖𝑛3𝜃 −

7

12
𝑠𝑖𝑛5𝜃 

 

Combining the results of A), B), and C), gives modal terms, Vn() defined below: 

n– odd: 

𝑉𝑛 𝜃 =
1

2
 

1

𝑛𝑘2
sin 𝑛𝜃𝑠𝑖𝑛2𝑘𝜃 +  

1

4
 

1

 2𝑘 + 𝑛 𝑘2
𝑠𝑖𝑛 2𝑘 + 𝑛 𝜃𝑠𝑖𝑛2𝑘𝜃

∞

𝑘=1

∞

𝑘=1

+
1

4
 

1

 2𝑘 − 1  𝑘 +
𝑛−1

2
 

2 𝑠𝑖𝑛 2𝑘 − 1 𝜃𝑠𝑖𝑛2  𝑘 +
𝑛 − 1

2
 𝜃   

∞

𝑘=1

 

(29) 

(30) 

(31) 

(32) 

(33) 
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plus when n 3 

 

+
1

4
 

1

 𝑛 − 2𝑘 𝑘2
𝑠𝑖𝑛 𝑛 − 2𝑘 𝜃𝑠𝑖𝑛2𝑘𝜃   

𝑛−1

2

𝑘=1

 

 

n– even: 

𝑉𝑛 𝜃 = −
1

2
 

1

𝑛𝑘2
sin 𝑛𝜃𝑠𝑖𝑛2𝑘𝜃 −

1

4
 

1

 2𝑘 + 𝑛 𝑘2
𝑠𝑖𝑛 2𝑘 + 𝑛 𝜃𝑠𝑖𝑛2𝑘𝜃

∞

𝑘=1

∞

𝑘=1

−
1

4
 

1

2𝑘  𝑘 +
𝑛

2
 

2 𝑠𝑖𝑛2𝑘𝜃𝑠𝑖𝑛2  𝑘 +
𝑛

2
 𝜃   

∞

𝑘=1

 

plus when n> 3 

 

−
1

4
 

1

 𝑛 − 2𝑘 𝑘2
𝑠𝑖𝑛 𝑛 − 2𝑘 𝜃𝑠𝑖𝑛2𝑘𝜃   

𝑛−2

2

𝑘=1

 

 

While some of the series in (26) to (35) can be shown to have closed forms, most were 

not readily so reduced. Therefore, the series were evaluated numerically in 15 significant 

figure precision using Microsoft Excel, employing the first twenty terms of each series. 

This was done for each of the nominal plucking positions, l/2, 2l/3, 3l/4, 4l/5, 5l/6. 

 

The Modal Contributions of the Initial Tension and Tension Increment to the 

Normal Force on the Bridge 

The Modal Contributions from the Initial Tension, T 

The contribution to the initial tension is given by (20) 

2𝜇𝑇  
(−)𝑛+1

𝑛
𝑠𝑖𝑛𝑛𝑟𝜋      𝑛 = 1,2… .. 

 

(35) 

(34) 
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where  𝜇 =
𝛿/𝑙

𝜋𝑟  1−𝑟 
 ,  r = 1/2,  2/3,   3/4,   4/5,  5/6, T = 63.8 N,   = 3 mm, or 5 mm,  

l = 650 mm throughout. The calculated modal terms for varying values of r and n are 

given in Table 2. 

r 

n 

1/2 2/3 3/4 4/5 5/6 

1 1 0.96603 0.70711 0.58779 0.50000 

2 0.0 0.43301 0.50000 0.47553 0.43301 

3 -0.33333 0.0 0.23570 0.31702 0.33333 

4 0.0 -0.21561 0.0 0.14695 0.21651 

5 0.20000 -0.17321 -0.14142 0.0 0.10000 

Table 2. The modal terms for the case of initial tension 

 

The scaling factors converting the modal terms to normal force are 2T. These give 

modal contributions to normal force from the initial tension, as shown in Tables 3a and 

3b. 

r 

n 

1/2 2/3 3/4 4/5 5/6 

1 0.74984 0.73056 0.70696 0.68867 0.67485 

2 0.0 0.36527 0.49990 0.55715 0.58443 

3 -0.24994 0.0 0.23565 0.37143 0.44990 

4 0.0 -0.18264 0.0 0.17217 0.29222 

5 0.14997 -0.14611 -0.14139 0.0 0.13497 

Table 3a. Modal contribution to normal force (in Newtons) from the initial tension;  

 = 3 mm 

 

It can be seen that the contribution to normal force (measured in Newtons) from the 

initial tension is highest for the fundamental mode of vibration (n=1) and gets 

progressively lower for the higher modes. 
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r 

n 

1/2 2/3 3/4 4/5 5/6 

1 1.2497 1.2176 1.1783 1.1478 1.1248 

2 0.0 0.60878 0.83317 0.92858 0.97405 

3 -0.41657 0.0 0.39275 0.0 0.74983 

4 0.0 -0.30440 0.0 0.28695 0.48703 

5 0.24997 -0.24352 -0.23565 0.0 0.22495 

Table 3b. Modal contribution to normal force (in Newtons) from the initial tension; 

 = 5mm 

 

The Modal Contributions to Normal Force from the Tension Increment T 

As shown in (10), (34) and (35), the modal contributions to normal force from tension 

increment are given by 2𝐸𝐴𝜇3𝑉𝑛 𝜃 ,  where  𝑉0 𝜃  is given by (25), and 𝑉𝑛 𝜃  by (34) 

and (35).Results for values of 𝑉𝑛 𝜃  are presented in Table 4. 

r 

n 

1/2 2/3 3/4 4/5 5/6 

0 0.0 -0.09567 -0.1211 -0.1241 -0.1196 

1 0.7498 0.6894 0.5572 0.4565 0.3794 

2 0.0 0.2169 0.2524 0.2222 0.1841 

3 0.8720 0.1745 0.2217 0.2081 0.1787 

4 0.0 -0.0348 0.0491 0.0968 0.1084 

5 0.03141 -0.03177 0.01001 0.06283 0.08604 

Table 4. Modal contributions 𝑉𝑛 𝜃  from the tension increment; n = 0 corresponds to 

non-oscillatory component  𝑉0 𝜃  
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The scaling factors 2𝐸𝐴𝜇3convert the modal terms to normal force given in Tables 5a 

and 5b. 

r 

n 

1/2 2/3 3/4 4/5 5/6 

0 0.0 -0.00099544 -0.0020974 -0.0034571 -0.0050965 

1 0.0057364 0.0071711 0.0096490 0.012722 0.016165 

2 0.0 0.0022562 0.0043708 0.0061925 0.0078438 

3 0.00063689 0.0018151 0.0038391 0.0057995 0.0076120 

4 0.0 -0.00036199 0.00085026 0.0026977 0.0046185 

5 0.00029412 -0.00033047 0.00017331 0.0017507 0.0036580 

Table 5a. Modal contributions to normal force (in Newtons) due to the tension 

increment;  = 3 mm; n = 0 corresponds to non-oscillatory component  𝑉0 𝜃  

 

 

r 

n 

1/2 2/3 3/4 4/5 5/6 

0 0.0 -0.0046052 -0.0097102 -0.016005 -0.023595 

1 0.026557 0.033111 0.044671 0.058898 0.074838 

2 0.0 0.015078 0.020235 0.028667 0.036314 

3 0.0029486 0.0084032 0.0177736 0.026850 0.035241 

4 0.0 -0.0016759 0.039364 0.012489 0.021357 

5 0.0013667 -0.0015210 0.00080236 0.0081051 0.016967 

Table 5b. Modal contributions to normal force (in Newtons) due to the tension 

increment; = 5 mm; n = 0 corresponds to non-oscillatory component  𝑉0 𝜃  

 

It can be seen that modal contributions to normal force due to the tension increment in 

both cases (= 3mm and = 5 mm) are extremely small compared to the case of initial 

tension (Tables 3a and 3b). 
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The crucial items for tonal response are the changes in the ratios of normal modal force, 

compared to those occurring with just initial tension, i.e., the ratios:    

𝑇 =
 𝑇𝑠𝑖𝑛𝛼 𝑛
 𝑇𝑠𝑖𝑛𝛼 1

,    𝑇+∆𝑇 =  
  𝑇 + ∆𝑇 𝑠𝑖𝑛𝛼 𝑛
  𝑇 + ∆𝑇 𝑠𝑖𝑛𝛼 1

 

 

are given in Tables 6, 7a, and 7b. 

 

r 

n 

1/2 2/3 3/4 4/5 5/6 

2 0.0 0.500 0.707 0.809 0.866 

3 -0.333 0.0 0.333 0.539 0.666 

4 0.0 -0.250 0.0 0.250 0.433 

5 0.200 -0.200 -0.200 0.0 0.200 

Table 6. Values of  𝑇 = (𝑇𝑠𝑖𝑛𝛼)𝑛/(𝑇𝑠𝑖𝑛𝛼)1 

 

r 

n 

1/2 2/3 ¾ 4/5 5/6 

2 0.0 0.499 0.704 0.803 0.857 

3 -0.330 0.002 0.334 0.538 0.662 

4 0.0 -0.248 0.002 0.249 0.429 

5 0.199 -0.198 -0.19 0.002 0.119 

Table7a. Values of 𝑇+∆𝑇 =   𝑇 + ∆𝑇 sin ∝ 𝑛/  𝑇 + ∆𝑇 sin ∝ 1; = 3 mm 
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r 

n 

1/2 2/3 3/4 4/5 5/6 

2 0.0 0.523 0.698 0.818 0.842 

3 -0.324 0.007 0.339 0.370 0.654 

4 0.0 -0.244 0.003 0.248 0.423 

5 0.197 -0.193 -0.192 0.007 0.201 

Table 7b. Values of  𝑇+∆𝑇 =   𝑇 + ∆𝑇 sin ∝ 𝑛/  𝑇 + ∆𝑇 sin ∝ 1;   = 5 mm 

 

The other crucial parameter is 
  𝑇+∆𝑇 sin ∝ 1

 𝑇 sin∝ 1
= ,  given in Table 8. 

r ½ 2/3 3/4 4/5 5/6 

 

( = 3 mm) 

( = 5 mm) 

 

1.0 

1.0213 

 

1.0104 

1.0273 

 

1.0136 

1.0379 

 

1.0185 

1.0513 

 

1.024 

1.045 

Table 8. The ratio  =   𝑇 + ∆𝑇 sin ∝ 1/ 𝑇 sin ∝ 1;   = 3 mm, and 5 mm 

 

Analysis of results 

The results in Table 2 give the modal contributions from just the initial tension. The 

results in Tables 3a and 3b give the corresponding modal contributions to the normal 

force on the bridge. It can be seen that the first three modes are generally more 

significant. With plucking positions at a = 4/5l and 5/6l , it is clear that while the 

fundamental mode is still dominant, the fall off in contributions is much less marked, 

i.e., modes 2 to5 are making a greater contribution. The tonal consequence is clear; the 

sound is ‘brighter’.  

The results in Table 4, giving modal contributions from the tension increment, show that 

the entries are mostly smaller, around 50%-70%, of the corresponding results for the 

initial tension model (Table 2). When these are converted to normal force contributions 

(Tables 5a, 5b), they are typically less than 10% of those from the relevant mode of the 

initial tension model (Tables 3a and 3b). As one would expect, the results from the 
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tension increment all add to those for the initial tension, so, the normal force on the 

bridge is slightly increased. This leads to increased sound board amplitudes and, 

therefore, greater sound pressure level. Table 6 gives the ratio of the normal force 

contribution from the overtones, n = 2 to 5, to that from the fundamental mode (n = 1), 

for the case of initial tension, T. These values are to be compared with those in Tables 7a 

and 7b, for the total tension T+T. Concentrating on the more usual playing positions, at 

a = 4/5l and 5/6l , it is clear that while all the modal contributions are increased by the 

tension increment, the principal effect is on the fundamental mode, so much so, that the 

ratio of overtone contributions to normal force are all reduced relative to the results for 

just initial tension.  

Finally, results in Table 8, which exhibit the ratios of total tension in mode 1 to initial 

tension resulting from mode 1, show just how small the tension increment effect is (less 

than 5%). 

 

Conclusions  

Maximum tension variation occurs twice during the fundamental period, i.e., at precisely 

twice the frequency of the fundamental mode, and is, therefore, coincident with its first 

overtone. While the proposal that tension variation could substantially affect the 

overtone response is plausible, the results of the proposed model show no support for 

this conjecture. Indeed, while all modal contributions (due to tension variation) are 

increased and, therefore, some brightness ensues, it is the fundamental mode that is 

mainly enhanced. The perturbation model shows why this is so. Firstly, the tension 

increment, via the elementary trigonometric device, decomposes to terms carrying the 

same harmonic factors, cos 𝑛𝜔𝑡,    𝑛 = 1,2, … ,  as in the classical, constant tension 

model. Thus, the string has the same frequency content as the constant tension model, 

but with increased contribution to the normal force on the bridge. Secondly, what 

prevents the tension increment from making a significant input to tonal response is the 

smallness of the factor 2𝐸𝐴𝜇3 compared to 2𝜇𝑇. If f is the dynamic force on the bridge, 

then it has a form: 𝑓 =  𝑓𝑛 cos 𝑛𝜔𝑡∞
𝑛=1 , where fn is the force contribution from the n

th 

mode. The tension increment changes the fn  to f’n, say, though the differences are small. 

Consequently, the resulting graph of f will look much the same as the classical one, but 

covering a slightly wider spread. 
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Even though the significance of tension increment can be increased by considering large 

initial deflections, practical considerations of the plucking mechanism and the need to 

control tone quality, i.e., avoid pitch glide – save in certain rare circumstances – limit 

this option. Large deflections while playing in the higher frets could lead to significant 

tension increments, but, again, the practical observation that plucking force 

(approximately constant), combined with the novel result stemming from the use of 

geometric stiffness, that 𝜇 =
𝛿/𝑙

𝜋𝑟 1−𝑟 
 is constant for constant plucking position, shows 

that the effects of the initial tension and tension increment remain unchanged regardless 

of whether one is playing in the lower, or higher, frets. 

In summary, the results of the mathematical model presented in this article show no 

support for the conjecture that string tension variation during vibration has a significant 

effect on the overtone response. 
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