
This is a repository copy of Lax operator for Macdonald symmetric functions.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/87272/

Version: Accepted Version

Article:

Nazarov, Maxim and Sklyanin, Evgeny orcid.org/0000-0003-2194-0643 (2015) Lax 
operator for Macdonald symmetric functions. Letters in Mathematical Physics. pp. 901-
916. ISSN 1573-0530 

https://doi.org/10.1007/s11005-015-0770-1

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Lax operator for Macdonald symmetric functions

M.L.Nazarov and E.K. Sklyanin

Department of Mathematics, University of York, York YO10 5DD, United Kingdom

Abstract: Using the Lax operator formalism, we construct a family of pairwise
commuting operators such that the Macdonald symmetric functions of infinitely
many variables x1, x2, . . . and of two parameters q, t are their eigenfunctions. We
express our operators in terms of the Hall-Littlewood symmetric functions of the
variables x1, x2, . . . and of the parameter t corresponding to the partitions with
one part only. Our expression is based on the notion of Baker-Akhiezer function.
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Introduction

Over the last two decades the Macdonald polynomials [9] have beeen the subject
of much attention in combinatorics and representation theory. These polynomials
are symmetric in N variables x1, . . . , xN and also depend on two parameters
denoted by q and t . They are labelled by partitions of 0, 1, 2, . . . with no more
than N parts. Up to normalization, they can be defined as eigenvectors of certain
family of commuting linear operators acting on the space ΛN of all symmetric
polynomials in the variables x1, . . . , xN with coefficients from the field Q(q, t) .
These operators were introduced by Macdonald [9] as the coefficients of a certain
operator valued polynomial of degree N in a variable u with the constant term 1.
In particular, Macdonald observed that all eigenvalues of the operator coefficient
at u are already free from multiplicities. Hence this coefficient alone can be used
to define the Macdonald polynomials.

It is quite common in combinatorics to extend various symmetric polynomials
to an infinite set of variables. These extensions are called symmetric functions.
The ring Λ of symmetric functions is defined as the inverse limit of the sequence
Λ1 ← Λ2 ← . . . in the category of graded algebras. The defining homomorphism
ΛN−1 ← ΛN here is just the substitution xN = 0 . In particular, the Macdonald
polynomials are extended to infinitely many variables x1, x2, . . . by using their
stability property [9] and by passing to their limits as N → ∞ . The limits are
the Macdonald symmetric functions. They belong to the ring Λ and are labelled
by partitions of 0, 1, 2, . . . . They have been also studied very well. In particular,
the limit at N → ∞ of the renormalized Macdonald operator coefficient at u
was considered in [9]. Other expressions for the same limit were given in [2,5].

Since the higher operator coefficients are not required to define the Macdonald
polynomials, the limits of these coefficients at N → ∞ received due attention
only later. From the geometric point of view they were studied in [15], see also
the works [6,14,19]. Explicit expressions for the limits were given in [1,4,16] and
independently in [11]. All these expressions involved Hall-Littlewood symmetric
functions [9] in the variables x1, x2, . . . . These symmetric functions are labelled
by partitions of 0, 1, 2, . . . but depend on the parameter t only. They also emerge
in the calculus of vertex operators [7] which underlies the results of [1,2,5,6,16].

In the present article we construct a different family of commuting operators
on Λ such that the Macdonald symmetric functions are their eigenvectors. Unlike
in [1,4,11] our operators are expressed in terms of the Hall-Littlewood symmetric
functions corresponding to the partitions with one part only. Our construction
uses the Lax operator formalism, see Subsection 2.1 for details. Our Theorem 1
gives a relation between the new family of commuting operators and the one we
constructed in [11]. The proof is based on the notion of Baker-Akhiezer function
corresponding to the Lax operator, see Subsection 2.2. In our case this function
is given by Theorem 2. The proof of the latter theorem is given in Subsection 2.3.

To find the eigenvalues of our new operators we still need the results of [11].
It would be interesting to prove directly that the eigenvectors of these operators
are the Macdonald symmetric functions, see for instance [8]. Also notice that by
setting q = tα and tending t→ 1 one obtains the Jack symmetric functions [9] as
limits of Macdonald symmetric functions. Our new Lax operator can be regarded
as a discretization of the operator we found in the limiting case [10,12]. The latter
operator has been in turn a quantized version of the Lax operator for the classical
Benjamin-Ono equation [3,13]. Our new Lax operator is a quantized version of
the one for the classical Benjamin-Ono equation with discrete Laplacian [17,18].
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In this article we generally keep to the notation of the book [9] for symmetric
functions. When using results from [9] we simply indicate their numbers within
the book. For example, the statement (2.15) from Chapter III of the book will
be referred to as [III.2.15] assuming it is from [9].

1. Symmetric functions

1.1. Power sums. Fix any field F . Denote by Λ the F-algebra of symmetric
functions in infinitely many variables x1, x2, . . . . Let λ = (λ1, λ2, . . . ) be any
partition of 0, 1, 2, . . . . We will always assume that λ1 > λ2 > . . . . The number
of non-zero parts is called the length of λ and denoted by ℓ(λ) . Let k1, k2, . . . be
the multiplicities of the parts 1, 2, . . . of λ respectively. Then k1+k2+ . . . = ℓ(λ) .

For n = 1, 2, . . . let pn ∈ Λ be the power sum symmetric function of degree n :

pn = xn
1 + xn

2 + . . . .

More generally, for any partition λ put pλ = pλ1
. . . pλk

where k = ℓ(λ). The
elements pλ form a basis of Λ . In other words, the elements p1, p2, . . . are free
generators of the commutative algebra Λ over F .

Define a bilinear form 〈 , 〉 on Λ by setting for any two partitions λ and µ

〈 pλ, pµ 〉 = kλδλµ where kλ = 1k1k1! 2
k2k2! . . . (1.1)

in the above notation. This form is obviously symmetric and non-degenerate.
We will indicate by the superscript ⊥ the operator conjugation relative to this
form. In particular, by (1.1) for the operator conjugate to the multiplication in
Λ by pn with n > 1

p⊥
n = n∂/∂ pn . (1.2)

1.2. Elementary and complete symmetric functions. For n = 1, 2, . . . let en ∈ Λ
be the elementary symmetric function of degree n . By definition,

en =
∑

i1<...<ik

xi1 . . . xik .

We will also use a formal power series in the variable z

E(z) = 1 + e1z + e2z
2 + . . . =

∏

i>1

(1 + xiz) .

By taking logarithms of the left and right hand side of the above display and then
exponentiating,

E(z) = exp
(

−
∑

n>1

pn
n

(−z)n
)

. (1.3)

The complete symmetric functions h1, h2 . . . can be determined by the relation

E(−z)H(z) = 1 (1.4)

where
H(z) = 1 + h1z + h2z

2 + . . . .
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The degree of the element hn ∈ Λ is n . Furthermore, by (1.3) we get an equality

H(z) = exp
(

∑

n>1

pn
n

zn
)

. (1.5)

The elements h1, h2, . . . as well as the elements e1, e2, . . . are free generators of
the commutative algebra Λ over the field F .

1.3. Hall-Littlewood functions. Let F be the field Q(t) with t a parameter. Put

Q(z) = E(−tz)H(z) = 1 +Q1z +Q2z
2 + . . . .

Note that then by (1.3) and (1.4) we have

Q(z) =
∏

i>1

1− t xi z

1− xiz
= exp

(

∑

n>1

1− tn

n
pnz

n
)

. (1.6)

In this article we will employ the Jing vertex operator

J(z) = Q(z)E⊥(−z−1) . (1.7)

This is a formal series in z with coefficients acting on Λ as linear operators. These
operators do not commute, see [7, Proposition 2.12] for commutation relations
between them. Using another variable w instead of z in the equalities (1.6) we get

E⊥(−z−1)(Q(w)) = exp
(

−
∑

n>1

z−n ∂/∂pn

)

(Q(w)) =

Q(w) exp
(

−
∑

n>1

1− tn

n
z−nwn

)

= Q(w)
z − w

z − t w
(1.8)

due to (1.2) and (1.3). The fraction at the right hand side of the equalities (1.8)
should be expanded as a power series in the ratio w/z . It follows by (1.4) that

H⊥(z−1)(Q(w)) = Q(w)
z − t w

z − w
. (1.9)

Following [7, Proposition 3.9] we will use the relation

J(z)(Q(z1) . . . Q(zk)) = Q(z)Q(z1) . . . Q(zk)
k
∏

j=1

z − zj
z − t zj

. (1.10)

To prove (1.10) note that due to [Ex. I.5.25] the series E⊥(−z−1) with operator
coefficients showing in the definition (1.7) is comultiplicative, so that

E⊥(−z−1)(Q(z1) . . . Q(zk)) = E⊥(−z−1)(Q(z1)) . . . E
⊥(−z−1)(Q(zk)) .

Hence the equality (1.10) is obtained by using (1.8) with w = z1, . . . , zk .
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Now let λ be any partition with ℓ(λ) = k . Recall that λ1 > . . . > λk by our
assumption. Introduce a rational function of the variables z1, . . . , zk

F (z1, . . . , zk) =
∏

16i<j6k

zi − zj
zi − t zj

. (1.11)

Let us expand every factor with i < j in the product (1.11) as a power series in
zj/zi respectively. By [III.2.15] the Hall-Littlewood symmetric function Qλ ∈ Λ
is the coefficient at

zλ1

1 . . . zλk

k

in the formal series
Q(z1) . . . Q(zk)F (z1, . . . , zk) .

If the partition λ consists of only one part n then Qλ is Qn by above definition.
The elements Qλ constitute a basis of the vector space Λ . Furthermore, define

a bilinear form 〈 , 〉t on the vector space Λ by setting for any partitions λ and µ

〈 pλ, pµ 〉t = kλ δλµ

ℓ(λ)
∏

i=1

1

1− tλi

(1.12)

in the notation (1.1). It is obviously symmetric and non-degenerate. By [III.4.9]

〈Qλ, Qµ 〉t = bλ(t) δλµ (1.13)

where

bλ(t) =
∏

i>1

ki
∏

j=1

(1− t j ) .

Along with the symmetric function Qλ it is convenient to use the symmetric
function Pλ which is a scalar multiple of Qλ . By definition,

Qλ = bλ(t)Pλ (1.14)

so that due to (1.13)
〈Pλ, Qµ 〉t = δλµ .

1.4. Macdonald functions. Now let F be the field Q(q, t) with q and t parameters
independent of each other. Generalizing (1.12) define a bilinear form 〈 , 〉q,t on
Λ by setting for any partitions λ and µ

〈 pλ, pµ 〉q,t = kλ δλµ

ℓ(λ)
∏

i=1

1− qλi

1− tλi

(1.15)

in the notation of (1.1). This form is again symmetric and non-degenerate. We
will indicate by the superscript ∗ the operator conjugation relative to the latter
form. In particular, by (1.2) and (1.15) for any n > 1 we have

p∗
n =

1− qn

1− tn
p⊥ .
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Hence by (1.6) we get

Q∗(z) = 1 +Q∗
1z +Q∗

2z
2 + . . . = exp

(

∑

n>1

1− qn

n
p⊥
n zn

)

. (1.16)

Using (1.14) when λ consists of only one part n we get Pn = Qn/(1 − t) .
Now consider the linear operator acting on the vector space Λ as the sum

∑

n>1

q−n QnP
∗
n =

∑

n>1

q−n QnQ
∗
n /(1− t) . (1.17)

For future discussion note that (1.17) equals the coefficient at 1 of the series in z

(Q(z)Q∗(q−1z−1)− 1)/(1− t) .

The operator (1.17) is clearly self-conjugate relative to the bilinear form (1.15).
By [2, Eq. 32] for any partition λ the Macdonald symmetric function Mλ ∈ Λ can
be defined up to normalization as an eigenvector of (1.17) with the eigenvalue

∑

i>1

(q−λi − 1) t i−1 . (1.18)

For different partitions λ the eigenvalues (1.18) are pairwise distinct in Q(q, t). It
follows that the eigenvectors Mλ with different λ are pairwise orthogonal relative
to (1.15). In the present article we will not be choosing any normalization of Mλ .
We will use only the fact [VI.4.7] that the Mλ form a basis of the vector space Λ .

1.5. Higher Hamiltonians. In [11] we introduced the following generalization of
the operator (1.17). For any k = 0, 1, 2, . . . consider the linear operator on Λ

A(k) =
∑

ℓ(λ)=k

q−λ1−λ2− ... QλP
∗
λ .

Then A(0) = 1 while A(1) is the operator (1.17). For any k the operator A(k) is
obviously self-conjugate relative to (1.15). Consider a series in a variable u

A(u) =
∑

k>0

A(k)/(u ; t−1 )k (1.19)

where as usual

(u ; t−1 )k =
k−1
∏

j=0

(1− u t−j ) .

In [11] we proved

A(u)Mλ = Mλ

∏

i>1

q−λi − u t 1−i

1− u t 1−i
. (1.20)

If follows from (1.20) that the operators A(1), A(2), . . . on Λ pairwise commute.
The eigenvalue (1.18) of the operatorA(1) can also be obtained from this equality.
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The equality (1.20) can be derived from the results of [1, Sec. 3] which in turn
are modifications of those of [16, Sec. 9]. Our proof [11, Sec. 3] was independent
of all those results. Let us now establish a relation between the works [1] and [11].

For k > 1 denote by S (k) the constant term of the formal series in z1, . . . , zk

Q(z1) . . . Q(zk)Q
∗(q−1z−1

1 ) . . . Q∗(q−1z−1
k )F (z1, . . . , zk) . (1.21)

Here the product (1.11) is regarded as a series in z1, . . . , zk using the expansion
rule explained just after displaying it. This S (k) is a certain linear operator on
the vector space Λ . It is convenient to set S (0) = 1 . It turns out that Mλ for
each λ is an eigevector of the operators S (1), S (2), . . . like that of A(1), A(2), . . . .
This fact goes back to [16]. It also follows from (1.20) by the next proposition.

Proposition. We have the relation

(u−1 ; t )∞ A(u) =
∑

k>0

(u t)−k S (k)/(t−1; t−1 )k

where as usual

(u−1 ; t )∞ =
∞
∏

j=0

(1− u−1 t j ) .

Proof. For every partition λ let us denote by Pλ(z1, . . . , zk) the specialization of
the symmetric function Pλ to x1 = z1 , . . . , xk = zk and xk+1 = xk+2 = . . . = 0 .
This is a homogeneous symmetric polynomial in the variables z1, . . . , zk of degree
λ1+λ2+ . . . . By using the first equality in (1.6) and then the expansion [III.4.4]

Q(z1) . . . Q(zk) =
∏

i>1

k
∏

j=1

1− t xi zj
1− xizj

=
∑

ℓ(λ)6k

Qλ Pλ(z1, . . . , zk) .

It follows from the latter equality that

Q∗(q−1z−1
1 ) . . . Q∗(q−1z−1

k ) =
∑

ℓ(µ)6k

q−µ1−µ2− ... P ∗
µ Qµ(z

−1
1 , . . . , z−1

k ) .

Hence
S (k) =

∑

ℓ(λ),ℓ(µ)6k

q−µ1−µ2− ... Qλ P
∗
µ aλµ(t)

where aλµ(t) denotes the constant term of the formal series in z1, . . . , zk

Pλ(z1, . . . , zk)Qµ(z
−1
1 , . . . , z−1

k )F (z1, . . . , zk) .

It is known that

aλµ(t) = δλµ
(t ; t)k

(t ; t)k−ℓ(λ)

see [1, App.B] for an elementary proof of this fact. Thus we obtain the relation

S (k) =
k

∑

i=0

A(i) (t ; t)k
(t ; t)k−i

. (1.22)
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By substituting the latter expression for S (k) in our Proposition and by using
the definition (1.19) with the running index k replaced by i it remains to prove

∑

i>0

A(i) (u
−1 ; t )∞

(u ; t−1 )i
=

∑

k>0

k
∑

i=0

A(i) (t ; t)k
(u t)k (t−1; t−1 )k (t ; t)k−i

.

By equating here the coefficients at A(i) we have to prove that for every i > 0

(u−1 ; t )∞
(u ; t−1 )i

=
∑

k>i

(t ; t)k
(u t)k (t−1; t−1 )k (t ; t)k−i

.

But the last relation follows by setting v = u−1 t i and j = k − i in the equality

(v ; t )∞ =
∑

j>0

(−v)j t j(j−1)/2

(t ; t)j
. ⊓⊔

Note that the relation (1.22) established above is equivalent to [1, Eq. 3.3].
By using a variation of the Möbius inversion [4, Lemma 5.1] we get from (1.22)

A(k) =
k

∑

i=0

S (i) (−1)k−i t (k−i)(k−i−1)/2

(t ; t)i (t ; t)k−i
.

2. Lax operator and Baker-Akhiezer function

2.1. Lax operator. In this section we will construct yet another family of pairwise
commuting operators on Λ with the Macdonald symmetric functions Mλ being
their eigenvectors. Let

Λ∞ = z−1Λ [z−1]

be the ring of polynomials in z−1 with the coefficients from Λ but without the
constant term. Introduce the linear operator U on the vector space Λ∞ by setting

U : f(z) 7→ [Q(z)f(z)]−

where the symbol [ ]− means taking the only negative degree terms of the series.
Let us extend the bilinear form (1.15) from Λ to Λ∞ so that the subspaces

z−1Λ , z−2Λ , . . . ⊂ Λ∞ (2.1)

are orthogonal to each other, while each one carries the bilinear form determined
by identifying that subspace with Λ. For the operator U ∗ on Λ∞ conjugate to
U we then have

U ∗ : f(z) 7→ Q∗(z−1)f(z).

Moreover, using the decomposition of Λ∞ into the direct sum of subspaces (2.1)
the operators U and U ∗ are represented by infinite matrices with operator entries











1 Q1Q2 · · ·

0 1 Q1 · · ·

0 0 1 · · ·
...

...
...

. . .











and











1 0 0 · · ·

Q∗
1 1 0 · · ·

Q∗
2 Q∗

1 1 · · ·
...

...
...
. . .











.
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Further, let Dt be the linear operator on Λ∞ defined by setting

Dt : f(z) 7→ f(z t−1) .

Accordingly, let
Dq : f(z) 7→ f(z q−1) .

The operators Dt and Dq are clearly self-conjugate relative to the bilinear form
on Λ∞ defined above. They are represented by diagonal matrices with the entries
t, t2, . . . and q, q2, . . . respectively. Our Lax operator on Λ∞ is the composition

L = U ∗Dt U .

Furthermore introduce the operator Q : Λ∞ → Λ by setting

Q : f(z) 7→ [Q(z)f(z)]0

where [ ]0 means taking the constant term of a series in z. The conjugate operator
Q∗ : Λ→ Λ∞ is the application of Q∗(z−1)− 1 to elements of Λ . The operators
Q and Q∗ are represented by an infinite row and a column with operator entries

(Q1 Q2 . . . ) and







Q∗
1

Q∗
2
...






.

Now put
I(u) = Q (uDq − L)

−1Q∗ . (2.2)

It expands as a formal power series in u−1 without constant term. The coefficients
of that series are self-conjugate operators on Λ by definition. These operators will
form our new commuting family. The commutativity follows from the theorem
below which relates I(u) to A(u). The proof of the theorem shall be given later.

Theorem 1. We have an equality of formal power series in u−1 with operator
coefficients acting on Λ

u I(u)

u− 1
= 1−

A(u)

A(u t−1)
.

By using this theorem, the eigenvalues of the operator coefficients of the series
I(u) on the Macdonald symmetric functionsMλ ∈ Λ can be obtained from (1.20).

2.2. Baker-Akhiezer function. Now introduce the formal power series in u−1

Ψ(u) = u (uDq − L)
−1Q∗A(u t−1) . (2.3)

The coefficients of this series are operators Λ→ Λ∞. By the definitions (2.2),(2.3)

u I(u)A(u t−1) = Q Ψ(u) . (2.4)

We will call the series Ψ(u) the Baker-Akhiezer function for the Lax operator
(2.1). Our proof of Theorem 1 will be based on an expression for Ψ(u) given next.
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Theorem 2. We have an equality of formal power series in u−1 with operator
coefficients mapping Λ to Λ∞

Ψ(u) = E⊥(−z−1)A(u t−1)H⊥(z−1q−1)−A(u t−1) .

We will prove Theorem 2 in the next subsection. Let us now derive Theorem 1
from it. Multiplying both sides of the relation in Theorem 1 by (u− 1)A(u t−1)
on the right and then using (2.4) we get an equivalent relation to prove:

A(u t−1) +Q Ψ(u) = uA(u t−1)− (u− 1)A(u) . (2.5)

But by using Theorem 2 along with definitions (1.7),(2.1) we get the equalities

A(u t−1) +Q Ψ(u) = [Q(z)E⊥(−z−1)A(u t−1)H⊥(z−1q−1)]0

= [ J(z)A(u t−1)H⊥(z−1q−1)]0 .

By our Proposition, the right hand of these equalities can be rewritten as the sum

∑

k>0

u−k [ J(z)S (k) H⊥(z−1q−1)]0/(t
−1; t−1 )k (2.6)

divided by (u−1 t ; t )∞ . Note that by using (1.3),(1.5) and then (1.16) we have

E⊥(−z−1)H⊥(z−1q−1) = exp
(

∑

n>1

1− qn

n
p⊥
n z−nq−n

)

= Q∗(z−1q−1) .

Therefore by recalling the definition of the operator S (k) on Λ and then by using
the comultiplicativity [Ex. I.5.25] of E⊥(−z−1), the factor

[ J(z)S (k) H⊥(z−1q−1)]0

in the summand of (2.6) is equal to the constant term of the series in z1, . . . , zk

[ J(z)(Q(z1) . . . Q(zk))Q
∗(z−1q−1)Q∗(q−1z−1

1 ) . . . Q∗(q−1z−1
k )]0 F (z1, . . . , zk) .

By (1.10) and (1.11) this constant term is exactly S (k+1). So the sum (2.6) equals

∑

k>0

u−k S (k+1)/(t−1; t−1 )k =
∑

k>0

u1−k (1− t−k)S (k)/(t−1; t−1 )k

where we first replaced k+1 by k and then formally included the zero summand
corresponding to k = 0. Using our Proposition, the last displayed sum equals

(u−1 t ; t )∞ uA(u t−1)− (u−1 ; t )∞ uA(u) .

Dividing this difference by (u−1 t ; t )∞ we get the right hand side of the relation
(2.5). This we have derived Theorem 1 from Theorem 2. Let us prove the latter.
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2.3. Proof of Theorem 2. Due to the definition (2.3) we have to prove the relation

u (uDq − L)
−1Q∗A(u t−1) = E⊥(−z−1)A(u t−1)H⊥(z−1q−1)−A(u t−1) .

Let us multiply both sides of this relation by uDq − L on the left. In this way
we get an equivalent relation to prove:

uQ∗A(u t−1) = (uDq − L) (E
⊥(−z−1)A(u t−1)H⊥(z−1q−1)−A(u t−1)) .

By the definitions of the operators Q∗ and L the latter relation can be written as

u (Q∗(z−1)− 1)A(u t−1) =

(uDq − U
∗Dt U ) (E

⊥(−z−1)A(u t−1)H⊥(z−1q−1)−A(u t−1)) .

Using the definitions of the operators Dq ,Dt and U , U
∗ it can be rewritten as

u (Q∗(z−1)− 1)A(u t−1) = u (E⊥(−z−1q)A(u t−1)H⊥(z−1)−A(u t−1))

−Q∗(z−1) [Q(z t−1)E⊥(−z−1t)A(u t−1)H⊥(z−1t q−1)−A(u t−1))]− .

Here both sides are series in u with operator coefficients that map Λ to Λ∞. We
can also regard both sides as series in u and z with operator coefficients mapping
Λ to Λ. This allows us to perform obvious cancellations hence getting to prove

uQ∗(z−1)A(u t−1) = uE⊥(−z−1q)A(u t−1)H⊥(z−1)

−Q∗(z−1) [Q(z t−1)E⊥(−z−1t)A(u t−1)H⊥(z−1t q−1)]− .

Using the definition (1.7) the last displayed relation can be also written as

uQ∗(z−1)A(u t−1) = uE⊥(−z−1q)A(u t−1)H⊥(z−1)

−Q∗(z−1) [ J(z t−1)A(u t−1)H⊥(z−1t q−1)]− . (2.7)

Here A(u t−1) is a formal power series in u−1 with leading term 1 by (1.19). We
also know that

E⊥(−z−1q)H⊥(z−1) = Q∗(z−1) , (2.8)

see the previous subsection. Hence the coefficents at u of both sides of the relation
(2.7) coincide. Let us now multiply both sides of the relation (2.7) by (u−1 ; t )∞
and take the coefficients at uk−1 for any k > 1. Due to our Proposition we obtain

Q∗(z−1)S (k)/(t−1; t−1 )k = E⊥(−z−1q)S (k)H⊥(z−1)/(t−1; t−1 )k

−Q∗(z−1) [ J(z t−1)S (k−1)H⊥(z−1t q−1)]−/(t−1; t−1 )k−1 .

Next multiply both sides by (t−1; t−1 )k and divide byQ∗(z−1) on the left. We get

S (k) = Q∗(z−1)−1E⊥(−z−1q)S (k)H⊥(z−1)

− (1− t−k ) [ J(z t−1)S (k−1)H⊥(z−1t q−1)]− . (2.9)

The operator S (k) at the left hand side of the relation (2.9) is the constant
term of the series (1.21) in z1, . . . , zk . Using this definition along with (1.9),(2.8)
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and the comultiplicativity of H⊥(z−1), the first summand of the right hand side
of (2.9) is equal to the sum of those terms of the formal series in z, z1, . . . , zk

Q(z1) . . . Q(zk)Q
∗(q−1z−1

1 ) . . . Q∗(q−1z−1
k )F (z1, . . . , zk)

k
∏

j=1

z − zj
z − t zj

.

that are free of z1, . . . , zk . To present in a similar way the expression displayed
in the second line of (2.9) we will use the following simple lemma. Let G(z) be a
formal series in z with coefficients in any algebra over Q(t). Let [G(z)]0 be the
constant term of this series. Let [G(z)]− be the sum of the negative degree terms.

Lemma. The sum
[G(z)]0 + (1− t−1) [G(z t−1 )]−

is equal to the sum of those terms of the series in z , w

G(w)
z − w

z − t w

that are free of w . Here the fraction should be expanded as a power series in w/z .

Verifying this lemma is straighforward. Let us now set

G(z) = J(z)S (k−1)H⊥(z−1q−1) .

By the definition of S (k−1) this G(z) is the sum of those terms of the series

J(z)Q(z1) . . . Q(zk−1)Q
∗(q−1z−1

1 ) . . . Q∗(q−1z−1
k−1)H

⊥(z−1q−1)F (z1, . . . , zk−1)

in z, z1, . . . , zk−1 that are free of z1, . . . , zk−1 . The last displayed series equals

Q(z)Q(z1) . . . Q(zk−1)Q
∗(q−1z−1)Q∗(q−1z−1

1 ) . . . Q∗(q−1z−1
k−1) ×

F (z, z1, . . . , zk−1)

by (1.10) and (1.11). Note that we have used a similar argument in the previous
subsection. Denote

ck(t) = (1− tk)/(1− t) .

Applying the lemma, the expression displayed in the second line of (2.9) is equal
the constant term of the series in z, z1, . . . , zk−1

Q(z)Q(z1) . . . Q(zk−1)Q
∗(q−1z−1)Q∗(q−1z−1

1 ) . . . Q∗(q−1z−1
k−1) ×

ck(t
−1)F (z, z1, . . . , zk−1) (2.10)

minus those terms of the series in z, w, z1, . . . , zk−1

Q(w)Q(z1) . . . Q(zk−1)Q
∗(q−1w−1)Q∗(q−1z−1

1 ) . . . Q∗(q−1z−1
k−1) ×

ck(t
−1)F (w, z1, . . . , zk−1)

z − w

z − t w
(2.11)

that are free of w, z1, . . . , zk−1 . As we are taking the constant term, the variables
z, z1, . . . , zk−1 in (2.10) can be replaced by z1, . . . , zk respectively. The variables
w, z1, . . . , zk−1 in (2.11) can be replaced by z1, . . . , zk as well.



Lax operator 13

Recall that the coefficients Q1, Q2, . . . of the series Q(z) are free generators
of the algebra Λ , while the operator product

Q(z1) . . . Q(zk)Q
∗(q−1z−1

1 ) . . . Q∗(q−1z−1
k )

is symmetric in z1, . . . , zk . By the above presentation of the terms of (2.9), that
relation is equivalent to the equality between the symmetrization of F (z1, . . . , zk)
and that of

F (z1, . . . , zk)
k
∏

j=1

z − zj
z − t zj

+

ck(t
−1)F (z1, . . . , zk) − ck(t

−1)F (z1, . . . , zk)
z − z1
z − t z1

. (2.12)

Here symmetrizing means taking the sum over all k ! permutations of z1, . . . , zk .
Let us prove the latter equality. At z =∞ the sum (2.12) equals F (z1, . . . , zk)

even before symmetrization. We may assume that z1, . . . , zk are pairwise distinct.
Then it suffices to check that that the symmetrization of (2.12) has no poles at
z = tz1, . . . , tzk . By the symmetry in z1, . . . , zk taking only z = tz1 will suffice.

The product over j = 1, . . . , k showing in the first line of (2.12) is symmetric
in z1, . . . , zk . At z = tz1 it has a simple pole. By [III.1.4] the symmetrization of
F (z1, . . . , zk) is

c1(t) . . . ck(t)
∏

16i,j6k
i 6=j

zi − zj
zi − t zj

.

Hence the residue at z = tz1 of the symmetrization of the whole expression in
the first line of (2.12) is

c1(t) . . . ck(t) (t− 1) z1
∏

16i,j6k
i 6=j

zi − zj
zi − t zj

·

k
∏

j=2

t z1 − zj
t (z1 − zj)

. (2.13)

When symmetrizing the negative term of the difference displayed in the second
line of (2.12), we get a pole at z = tz1 only from the permutations of z1, . . . , zk
preserving z1 . Applying [III.1.4] once again but to the k− 1 variables z2, . . . , zk
instead of z1, . . . , zk the residue at z = tz1 of the symmetrization of the difference
displayed in the second line of (2.12) is

− ck(t
−1) c1(t) . . . ck−1(t) (t− 1) z1

∏

26i,j6k
i 6=j

zi − zj
zi − t zj

·
k
∏

j=2

z1 − zj
z1 − t zj

. (2.14)

To verify that the sum of two products (2.13) and (2.14) is zero, we can cancel
in both of them the product of the common factors

c1(t) . . . ck−1(t) (t− 1) z1
∏

26i,j6k
i 6=j

zi − zj
zi − t zj

and then use the relation ck(t) t
1−k = ck(t

−1) . This verification completes our
proof of Theorem 2.
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