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A demand classification scheme for spare part inventory model subject to stochastic 

demand and lead time  

Abstract 

In this study, we aim to develop a demand classification methodology for classifying 

and controlling inventory spare parts subject to stochastic demand and lead time. Using 

real data, the developed models were tested and their performances were evaluated and 

compared. The results show that the Laplace model provided superior performance in 

terms of service level, fill rate and inventory cost. Compared with the current system 

based on normal distribution, the proposed Laplace model yielded significant savings 

and good results in terms of the service level and the fill rate. The Laplace and Gamma 

optimization models resulted in savings of 82% and 81%, respectively.  

Keywords: Inventory control, spare parts, MRO- maintenance, repair and 

operating items, steel industry. 

1 Introduction 

In many organizations, inventory costs pertaining to spare parts are incredibly high and a part 

of such costs is very critical to production process. Many items are strategic for operations 

and a stockout can directly affect the production process. Unlike product and raw material 

inventories, which are driven by production processes and customer needs, spare parts are 

kept in stock to support maintenance operations, i.e., to protect against equipment failures.  

The downtime of spare parts can result in lost revenues, customer dissatisfaction and 

possible associated claims and usually the consequences of spare parts downtime are very 

costly (Driessen et al., 2013; Cavalieri et. al., 2008).  However, if demand for components is 

systematically over-estimated, large amounts of capital are unnecessarily held up in stock 

(Downing et al. 2014). Therefore, companies along the aircraft spare parts supply chain face 

significant challenges in providing fast repair and maintenance services while minimizing 

costs (Liu et. al. 2013). 

  



 
 

Although this function is well understood by maintenance managers, many companies 

face the challenge of maintaining large inventories of spare parts with excessive associated 

holding and obsolescence costs (Porras & Dekker, 2008; Romeijnders  et al., 2012).  

Spare part demand has specific characteristics and is very different from those of other 

materials such as products and work-in-process (WIP). While these are fast-movers and have 

regular demand, spare parts can be described as having slow moving, irregular, intermittent or 

other demand patterns. An intermittent demand pattern has variable demand sizes and the 

demand appears randomly with many time periods having no demand transaction. An 

intermittent demand occurs when there are a few large customers and many small customers 

or when the frequency of many customer requests varies. A slow-moving demand pattern 

always has low demand sizes. It occurs when there are few customers and little demand for an 

item. 

Both patterns can create significant forecasting and stock-holding problems in the 

manufacturing and supply environment. Nevertheless, in the literature the terms sporadic and 

intermittent are frequently used interchangeably and the same can be said for the terms lumpy 

and irregular, as well as for the terms intermittent and irregular (Dunsmuir and Snyder, 1989; 

Eaves & Kingsman, 2004; Regattieri et al., 2005; Willemain et al., 2004; Nenes et al. 2010). 

In general, the term irregular demand has a broader interpretation, encompassing essentially 

all demand types that cannot be expressed by means of the usual normal and Poisson 

distributions (Nenes et al., 2010). 

Lack of tools and models that cover the specific nature of spare parts increase the 

difficulties associated with establishing consistent methodologies and strategies to control 

spare part inventories. Inventory policies for spare parts are different from those for fast 

moving items and raw materials. The common demand-forecasting methods are not 

applicable when used for controlling inventory given intermittent or slow-moving demand 

http://www.sciencedirect.com/science/article/pii/S0377221712000392
http://www.sciencedirect.com/science/article/pii/S0377221710000020#bib7
http://www.sciencedirect.com/science/article/pii/S0377221710000020#bib20
http://www.sciencedirect.com/science/article/pii/S0377221710000020#bib31


 
 

patterns of this type (Silver, 1970; Silver et al., 1971; Botter & Fortuin, 2000; Bacchetti & 

Saccani, 2012). 

With such high requirements related to these items, it is natural that spare parts 

management is an important area of inventory research (Huiskonen, 2001; Kourentzes, 2013). 

The development of a robust methodology that considers the specifics of spare parts can bring 

important savings and managerial benefits to companies. In addition, concept development 

for inventory planning and control of spare parts should concentrate more on its applicability 

in manufacturing companies. At the same time companies should prepare for and be more 

open to the adoption of spare parts inventory planning systems (Downing et al. 2014; Wagner 

& Lindemann, 2008). 

The main objective of this study is to develop a demand classification model for 

maintenance, repair and operating (MRO) items. In addition, we propose different ranges of 

lead time demand for classifying items. The study developed a stochastic inventory model for 

controlling the spare parts inventory of a steel company considering stochastic demand and 

lead time, as well as different patterns of demand, as slow-moving or intermittent demand. 

The items that present such patterns and are considered in this research are spare parts known 

as MRO items. Specifically, this study aims to develop an inventory control methodology for 

spare parts considering the following related topics: statistical techniques for demand 

classification; demand forecasting models for slow-moving items; modeling lead time 

demand (LTD) considering probability distributions not adherent to normal; optimization 

models for determining stock parameters, i.e., reorder point, order quantity and safety stock; 

simulation model for evaluating the proposed inventory model and its use with real data for 

validating the proposed models. 

Most past studies on this topic have focused on applying methods for inventory 

control in a production environment (products and raw materials), where demand and lead 

time are foreseen very accurately and the LTD distribution is normal.  



 
 

Our research contributes to the field through the development of a specific model for 

demand classification of spare parts in steel industry. In addition, we propose different ranges 

of lead time demand for classifying items.  

Our method of classification has the following differences from Eaves’ method (2002, 

2004): the ranges of demand size and lead time variability are different. In Eaves´ model, 

there is no range for classifying the mean of LTD. Both demand-classification methodologies 

are based on empirical data. The differences in the ranges of demand size and lead time 

variability can be ascribed to the fact that Eaves’ approach is based on data from the aircraft 

industry, whereas our approach uses data from the steel industry. 

Our approach uses data from a case study for elaborating inventory models for spare 

parts and evaluating their performance using empirical data. Generally, the inventory models 

in the literature consider the period demand approach for stock control, which is not 

appropriate for intermittent demand with a high proportion of zero values (Krever, 

Wunderink, Dekker, & Schorr, 2005). We have used the single demand approach based on 

single consumption transactions for calculating the mean and variance of LTD using the 

concept presented in Krever, Wunderink, Dekker & Schorr (2005). This approach better 

captures the variability of demand and lead time.  

To develop consistent models for spare parts, we considered alternative statistical 

distributions such as Poisson, Laplace and Gamma for modeling LTD in combination with an 

optimization model developed in this work to calculate reorder point, order quantity and 

safety stock. Our methodology uses Willemain’s bootstrap method (2004).  

2 Relevant Literature  

The inventory planning and control process is concerned with decisions regarding which 

items to stock, when an order must be placed, the length of the lead time, the quantity to be 

ordered and the total cost. To define when an order should be triggered and the associated 



 
 

order quantity, we need to define which inventory policy is more appropriate for the problem 

we have. Let s be the reorder point, S the order up to level, Q the fixed quantity to be ordered 

and n the multiple Q quantities. Considering a continuous review system, there are two main 

models called (s, Q) and (s, S) (Silver, Pyke and Peterson, 1998). 

In the (s,S) model when inventory position (inventory on hand plus on-order minus 

backorders) falls to or below a specified level s, a replenishment is placed to raise the 

inventory level to S.  In the (s, Q) model, a fixed quantity Q is ordered as soon as the stock 

level depletes to reorder point s. We intend to use the (s, nQ) system in the event that orders 

with multiple Q quantities are to be triggered for raising the stock position above s. For unit 

demands, we use the (s-1, S) system, a particular case of the (s, S) model. In the (s-1, S) 

model, when the stock depletes to reorder point s, a unit order quantity is triggered for 

returning the stock level to position S. In this model we assume the costs of the spare parts are 

high enough to justify a (s-1, S) policy. This is a very common policy in industries with long 

lead times or when the cost of parts is very expensive like aerospace, military and some MRO 

items in the steel industry.  

Few authors have presented a consistent methodology for classifying items according 

to their respective demand behaviors. Williams (1984) developed an analytical method for 

classifying demand as smooth, slow moving or intermittent by decomposing the variance of 

the LTD into three parts: transaction variability, demand size variability and lead time 

variability.  

Silver, Pyke and Peterson (1998) did not develop a methodology, but they did 

establish some boundaries between slow-moving and fast-moving items and considered 

normal distribution for LTD modeling. Based on experimental results, they proposed Poisson 

distribution or other discrete distribution in the case that the mean LTD is below 10 units. 

Otherwise, according to them, normal distribution should be considered when the ratio of the 



 
 

standard deviation and the mean demand is less than 0.5. If the ratio is greater than 0.5, the 

use of the Gamma distribution should be considered. 

Based on Williams (1984), Eaves (2002) and Eaves & Kingsman (2004) developed a 

methodology for demand classification and adequated it to the items in his study. Through an 

analysis of Royal Air Force (RAF) data, they perceived that Williams’ original classifications 

did not adequately describe the observed demand structure. In particular, it was not 

considered sufficient for distinguishing the smooth demand pattern from other patterns based 

only on transaction variability. A revised classification schema was proposed that categorized 

demand according to transaction variability, demand size variability and lead time-variability.  

In their model, the boundary for transaction variability can be set to the lower quartile 

while the boundaries for demand size variability and lead-time variability can be set at their 

respective medians. This approach gives the following boundaries: 0.74 for transactions 

variability, 0.10 for demand size variability and 0.53 for lead-time variability. Based on these 

boundaries demands are classified as smooth, irregular, slow moving, mildly intermittent and 

highly intermittent, as shown in table 1. 

Table 1 – Classification of Demand 

Mean time between 
transactions 

variability 

Demand size 
variability 

Lead-time 
variability 

Demand classes 

≤ 0,74 ≤ 0,10 - 1 - Smooth 

≤ 0,74 > 0,10 - 2 - Irregular 

> 0,74 ≤ 0,10 - 3 - Slow Moving 

> 0,74 > 0,10 ≤ 0,53 4 - Mildly Intermittent 

> 0,74 > 0,10 > 0,53 5 - Highly intermittent 

Source: Eaves (2002); Eaves & Kingsman (2004) 

The accuracy of demand forecasting is critical in inventory management (Hax & 

Candea, 1984), but the intermittent nature of demand makes forecasting difficult, especially 

for spare parts. Several studies have been developed for treating demand forecasting for slow-

moving and intermittent demand patterns. 



 
 

Commonly used forecasting methods are often based on assumptions that are 

inappropriate for intermittent demand. Croston (1972) developed an alternative method 

considering intermittent demand and assuming geometric distribution for intervals between 

demands and normal distribution for demand size. He demonstrated that his method was 

superior to exponential smoothing. Croston’s method was investigated and evaluated by 

several authors who showed its consistency and practical applications (Willemain, Smart, 

Shockor, & DeSautels, 1994; Johnston & Boylan, 1996). Ghobbar and Friend (2003) 

presented a comparative study with 13 different forecasting methods for spare parts in the 

aviation industry.  

They use mean average percentage error (MAPE) for calculating forecasting errors 

and evaluating the accuracy of different methods. They confirmed the superior performance 

of Croston’s method and moving average over the exponential smoothing and seasonal 

regression models.  

Hua et al. (2007) developed a new approach for forecasting intermittent demand for 

spare parts with a large proportion of zero values. The authors show that the accuracy of their 

approach in forecasting demand during lead time is better than those of other methods such as 

exponential smoothing, the Croston method and bootstrapping Markov method. 

Eaves & Kingsman (2004) used demand and lead time data to evaluate the practical 

value of forecasting models available in the literature for treating forecasting and inventory 

control problems related to spare parts items. Using analytical methods, the authors classified 

the consumable stock items as smooth, irregular, slow moving and intermittent. They also  

showed that the Syntetos and Boylan approximation method (Syntetos & Boylan, 2005, 

2006a, 2006b), a modification of Croston’s method, presented better results in terms of 

holding cost reduction for a required service level than the common methods, i.e., exponential 

smoothing, moving averages and Croston’s method.  



 
 

Willemain, Smart and Schwarz (2004) proposed a model for forecasting LTD 

distribution using a new type of bootstrap series. The modified bootstrap method used a data 

sample of demand history for creating repeatedly realistic scenarios that show the evolution of 

LTD distribution. This procedure better captures the auto-correlations between demand 

transactions, especially for intermittent demand with a large proportion of zero values. In the 

case of demand size, negative autocorrelation can occur when a low demand is matched with 

a high one or vice-versa. Positive autocorrelation can occur when a low demand size is 

matched with another low demand size or a high demand size is matched with another high 

demand size (Eaves, 2002). 

The method uses a Markov model for evaluating the probability transition between the 

zero and non-zero states of different items. The authors showed that the bootstrap method 

generates more accurate forecasts (based on MAPE measures) of LTD distribution than do 

exponential smoothing and Croston’s method. 

In the context of theoretical models, one of the most extensively studied inventory 

policies is the (S – 1, S) model, with demand distribution based on the Poisson distribution 

(Feeney & Sherbrooke, 1966). Although this model is often used for slow-moving items, it 

requires a continuous review inventory policy. Furthermore, Poisson distribution assumes 

random demand with time intervals between unit demand transactions according to 

exponential distribution. For cases with non-unit demand size, the authors have proposed the 

use of compound models such as Poisson compound (Williams, 1984; Silver, Ho and Deemer, 

1971) or Bernoulli compound (Janssen, Heuts and Kok, 1998; Strijbosch, Heuts, & Schoot, 

2000). However, these models are difficult to use in practice because they require parameters 

from more than one distribution for determining LTD. For instance, Williams (1984) 

developed a method for identifying intermittent demand items in which three parameters are 

necessary: one for exponential distribution of the time intervals between demands and two 

parameters for the gamma distribution of demand size. 



 
 

Many studies have been performed using other theoretical distributions for 

representing lead time distribution (LTD). One common assumption is that LTD is normal, 

despite the fact that for sporadic or slow-moving demand, the normality assumption can be 

inappropriate. Several distributions were used with different approaches for demand and lead 

time behavior, such as the normal (Krupp, 1997), gamma (Burgin, 1975; Das, 1976; Yeh, 

1997), Poisson (Hill, Omar and Smith, 1999) and unknown distributions with stochastic 

demand and lead time (Eppen & Martin, 1998).  

Although the decomposition of LTD into its constituent parts is an important 

development in demand modeling, Krever, Wunderink, Dekker and Schorr (2005) 

demonstrated that it is necessary to obtain detailed information about demand history. They 

developed an approach based on single demands for modeling LTD distribution and proposed 

new expressions for calculating the mean and variance of LTD. The authors showed that this 

method is more robust than the common methods based on the period demand approach 

because it can better capture demand variability. 

Some authors have developed inventory models considering cost optimization for 

determining the stock parameters. Pressuti and Trepp (1970) developed a model for 

calculating the optimal policy for the (s,Q) model using Laplace distribution for LTD. Namit 

and Chen (1999) formulated an algorithm for solving the (Q,r) model considering gamma 

distribution for LTD, where Q is the replenishment quantity and r the reorder point. Whenever 

the inventory position drops to the reorder point r, a replenishment order for quantity Q is 

placed. Tyworth and Ganeshan (2000) presented a simple expression for the Gamma loss 

function to calculate the expected number of backorder units per cycle. This expression 

enabled the use of the optimization model to solve the (Q, r) model for any parameter α of a 

gamma distribution. 



 
 

3 Case study 

Case study research has been considered one of the most powerful research methods in 

operations management.  The results of case research can have very high impact. 

Unconstrained by the rigid limits of questionnaires and models, it can lead to the development 

of new theory, theory-testing, theory extension and refinements, exploratory research, new 

and creative insights and have high validity with practitioners - the ultimate user of research 

(Voss et al. 2002; Yin, R.K., 2003; Childe, S.J., 2011). 

A case study was developed at one of the leading steel companies in the world 

considering the inventory control of spare parts. In this section, we detail the problem 

considered in this real study, its scope, the characteristics of demand and lead time and 

inventory costs.  

3.1 Scope and problem definition 

The company under study operates a centralized depot that covers the needs of the 

maintenance operations and the company uses the module materials management from SAP 

R/3 system for inventory control. The current inventory policy is based on SAP R/3 with 

forecast demand being performed by the method of exponential smoothing. In addition the 

company uses a (s, S) policy from SAP/R3 based on normal distribution and service level for 

calculating the reorder level, order quantity and safety stock. The SAP system has good 

adherence to fast-moving items with smooth demand but its performance is not good for spare 

parts. In section two, we have discussed in detail why the exponential smoothing technique is 

not suitable for slow moving items. 

The company’s management aims to develop a methodology for controlling spare 

parts items, focusing on important and high-cost items. Inventory cost reduction is an 

important driver underlying this requirement. Forecasting is a tough task and the current 

model seems to be inappropriate for these types of items. 



 
 

This study considers different approaches and theories regarding inventory 

management of spare parts to develop an inventory control methodology.  

The following assumptions are made for developing the proposed inventory models: 

(i) demand is random with different patterns, (ii) lead time is stochastic and demand 

distribution is unknown; however, different distributions have been suggested for slow-

moving items. Based on classical statistical distribution provided in the literature, models 

were applied using four different distributions: 

 Current model – based on normal distribution for comparison with the proposed 

models; 

 Proposed models – using Poisson, Laplace and Gamma distributions for modeling 

LTD. 

As a forecasting model, we implemented the modified bootstrap method presented by 

Willemain, Smart and Schwarz (2004). 

3.2 Proposed demand classification model 

The case study considered seven years of demand history in developing and testing the 

models. Information on demand transactions, lead times and costs was extracted from SAP 

R/3, an integrated system used in many organizations. To focus on the single-demand 

approach (Krever, Wunderink, Dekker, & Schorr, 2005), we developed routines that extract 

information on single-demand transactions and lead times for spare parts. The evaluation 

covered the consumption of more than 10,000 parts in a unique plant. The items were 

classified according to ABC consumption analysis. We considered the most important A 

items that represent 80% of the consumption value. According to Silver, Pyke and Peterson 

(1998), the inventory costs of these types of items are sufficiently high to justify a more 

sophisticated control system as compared with less important items B or C.  



 
 

We developed a hybrid methodology for classifying items according to demand 

patterns. We used a methodology very similar to that proposed by Eaves (2002) and Eaves & 

Kingsman (2004) considering the variability of LTD components and the expected value of 

LTD for establishing the boundaries of slow- and fast-moving items, as proposed by Silver, 

Pyke and Peterson (1998).  

The proposed ranges considers the coefficient of variation (CV) of the mean time 

between transactions, demand size and lead time for classifying the materials into five classes 

as summarized in table 2. Similar to Eaves’ classification, the boundaries of each category 

were defined based from seven years of experimental data on 10,000 parts. The coefficient of 

variation (CV) is given by the following formula: 

CV = /mean         (1) 

Table 2 – Proposed ranges for demand classification 

Mean time between 

transactions 

variability 

Demand size 

variability 

Lead-time 

variability 
Demand classes 

≤ 0,74 ≤ 0,30 - 1 - Smooth 

≤ 0,74 > 0,30 - 2 - Irregular 

> 0,74 ≤ 0,30 - 3 - Slow Moving 

> 0,74 > 0,30 ≤ 0,70 4 - Intermittent 

> 0,74 > 0,30 > 0,70 
5 - Highly 

Intermittent 

 

Regarding the mean of LTD, different LTD ranges have been proposed in this work to 

classify the items for evaluating the performance of inventory models in each range and for 

establishing the boundaries of slow-moving and fast-moving items. The items are structured 

into nine ranges, as detailed below, according to the LTD mean. 

Table 3 lists the number of items classified in each group according to both 

approaches used in the classification methodology. The classification process is important for 

establishing auto-correlation among the items during analysis of the simulation results.  



 
 

Correlation between customer requests can lead to intermittent demand pattern 

creating significant forecasting and stock-holding problems (Eaves & Kingsman, 2004). 

1 - Below 5 

2 - Between 5 and 10 

3 - Between 10 and 50 

4 - Between 50 and 100 

5 - Between 100 and 200 

6 - Between 200 and 500 

7 - Between e 500 and 1000 

8 - Between 1000 and 5000 

9 - Above 5000 

3.3 Lead time analysis 

Lead time is the time elapsed between the sending of an order to a supplier and the receipt of 

goods. Lead time is the fundamental component underlying any inventory control system. If 

demand and lead time are known, replenishment can be planned with good accuracy. 

However, this is not the common situation in inventory management. For most spare parts, 

the demand is subject to a high degree of uncertainty and the lead time is stochastic.  

The current system considers lead time as deterministic. A consistent inventory model 

for these items requires a more accurate approach for the treatment of lead time. To meet the 

objectives of our study we considered lead time as stochastic for determining the mean and 



 
 

variance of LTD. We built a routine for extracting the lead time data directly from the SAP 

R/3 system. 

Table 3 – Number of items per class 

Classes 
Number of 

items 

Demand classes 

1 – Smooth 20 

2 – Irregular 32 

3 – Slow Moving 61 

4 – Intermittent 104 

5 – Highly Intermittent 121 

Classes per mean of LTD (units) 

1 - Below 5 278 

2 - Between 5 and 10 20 

3 - Between 10 and 50 17 

4 - Between 50 and 100 4 

5 - Between 100 and 200 7 

6 - Between 200 and 500 4 

7 - Between 500 and 1000 3 

8 - Between 1000 and 5000 3 

9 - Above 5000 2 

TOTAL 338 

 

3.4 Inventory costs 

The objective of a spare parts inventory system is the minimization of operational costs. The 

relevant costs associated with an inventory system can be grouped into three categories (Hax 

& Candea, 1984): (i) costs associated with item acquisition, (ii) costs associated with the 

existence of stock (supply exceeds demand) and (iii) costs associated with stockouts (demand 

exceeds supply). 

Let us group the costs associated with acquisition into two categories: unit cost of the 

item, which depends on the average price of the item and order cost, which depends on 

purchase structure and is independent of order quantity. If K  is the cost per order and 
D

Q
 the 

number of orders per year, the annual order cost is as follows: 



 
 

Order cost 
D

K
Q

        (2) 

Where 

D – Annual demand 

Q – order quantity 

Regarding the costs associated with the existence of stock, the common assumption is 

that the holding costs are proportional to stock value. Therefore, if r  is the opportunity rate to 

invest the amount of stock in a financial system and C  is the average price of an item in 

stock then the annual holding unit cost h  for the item per year is as follows: 

h rC  

Considering the average stock equals
2

Q
SS , the annual holding cost is given as follows: 

Holding cost 
2

L

Q
h s D
 

   
 

      (3) 

Where 

s  – Reorder point 

LD – Expected value of lead time demand 

Safety stock LSS s D   

The costs associated with stockouts arise when the net stock is insufficient for 

covering demand. Let us assume that in the case of a stockout demand will always be 

backordered. The assumption that the backorder cost is proportional to the backorders 

expected per replenishment cycle was a common approach in the literature. 



 
 

If p  is the backorder cost per unit backordered, n is the number of the replenishment 

cycle and  ( )
D

n s
Q

 is the expected number of annual backorders, the backorder annual cost is 

given as follows: 

Backorder cost ( )
D

p n s
Q

        (4) 

We defined ( , )G s Q  the expected total annual cost function whose variables are 

reorder point s  and order quantity Q , as the sum of order cost, holding cost and backorder 

cost. Combining expressions 2, 3 and 4 the expected total annual cost function is defined as 

follows (Nahmias, 2004): 

( , ) ( )
2

L

D Q D
G s Q K h s D p n s

Q Q

 
     

 
                  (5) 

In section 4, the inventory models are detailed based on total inventory cost 

optimization as defined by expression 5. 

4 Inventory control methodology 

In this section, we describe the development of the methodology for implementing the 

inventory system. Figure 1 shows the steps of the methodology detailed in the following 

sections. 

 

Figure 1 - Inventory control methodology 
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4.1 Forecasting model 

Willemain’s bootstrap method was used for generating forecasts of demand during lead time 

and estimating the mean and variance of LTD, as well as the expected number of demand 

transactions per unit time. Using various statistical distributions described in section 4.3 for 

modeling LTD and the optimization process we determined the reorder point and the order 

quantity. 

4.2 Inventory policies 

In this case study, the stock status is checked daily. Considering that the scope of our study 

encompasses slow-moving items we assume that the inventory system is under continuous 

review. For spare parts, this approximation is quite reasonable. We intend to use the (s, nQ) 

system in the event that orders with multiple Q quantities are to be triggered for raising the 

stock position above s. 

4.3 Implemented LTD model 

We developed four inventory models for controlling the items considered in our research. The 

models use different statistical distributions for LTD modeling, i.e., Poisson, Laplace, gamma 

and normal. The concept of single-demand approach presented in Krever, Wunderink, Dekker 

and Schorr (2005) was used for estimating the mean and variance of LTD. We obtained the 

historical values of single-demand transactions for estimating the LTD distribution of each 

model. 

In this section, we present details of LTD modeling. In table 4, we list the variables 

used in the development of said inventory models. 

  



 
 

Table 4 – Notation for inventory models development 

Variable Definition 

L Lead-time 

s Reorder point 

Q Order quantity 

D Demand per time unit 

d Single demands 

N Number of single demands during lead-time 

DL Demand during lead-time 

NS Cycle service level 

 Number of single demands per time unit 

K Cost per order ($) 

h Inventory carrying cost per item ($/unit) 

p Backorder cost per unit backordered ($/unit) 

 

According to Krever, Wunderink, Dekker and Schorr (2005) LTD modeling is divided 

into two different approaches: 

 Period demand approach – PDA – this approach is based on the observed 

stochastic behavior of past period demand. One can estimate the mean and variance of 

demand during a stochastic lead time L using equations 6 and 7 (Tijms, 1994): 

( ) ( ). ( )LE D E D E L         (6) 

2( ) ( ). ( ) ( ( )) . ( )LVar D E L Var D E D Var L       (7) 

 Single-demand approach – SDA – this approach is based on single demands 

and the expected number of single demands per unit time. In this case, the mean and variance 

of demand during stochastic lead time L are defined by equations 8 and 9 (Krever, 

Wunderink, Dekker and Schorr, 2005): 

( ) ( ). ( )LE D E d E L         (8) 

2 2( ) ( ) ( ) ( ) ( ) ( )LVar D E L Var d E L E d E d        (9) 



 
 

The standard deviation of LTD L is  

( )L LVar D        (10) 

Current model 

The current inventory model assumes normal distribution for demand and a fixed service 

level for determining the reorder point and safety stock.  Equation 11 shows the economic 

order quantity (EOQ) policy used by the company. For the A items, the company 

management defines a minimum service level of 80%. Different service levels will be used 

for determining stock parameters and evaluating the models’ performance. These levels are 

80, 85, 90, 95 and 99%. 

2KD
EOQ

h
      (11) 

The reorder point s for normal demand distribution is given as follows: 

L Ls D k         (12) 

The coefficient k for a specific theoretical service level is obtained from the standard 

normal N (0, 1) tables. 

Proposed models 

Three different distributions were used for modeling the LTD, i.e., Poisson, Laplace and 

gamma. The parameters of each of these distributions are determined from mean and variance 

of the LTD estimated using forecast values. The reorder point s  and the order quantity Q  

were determined by optimizing total inventory cost ( , )G s Q  (Nahmias, 2004) subject to some 

constraints defined in the following model: 



 
 

Minimize ( , ) ( )
2

L

D Q D
G s Q K h s D p n s

Q Q

 
     

 
   (13) 

Subject to: 

                          Ls D                        

                                                      0Q                                                           

Where, 

( )n s – Expected backorders per replenishment cycle 

Decision variables: ,s Q  

NS   Theoretical minimum 

The theoretical service levels of 80, 85, 90, 95 and 99% are used for determining the 

stock parameters and evaluating the performance of the models. 

The optimum values of order quantity Q  and reorder point s  that minimize ( , )G s Q  

are given by equations 13 and 14, respectively (Nahmias, 2004). Because there are two 

variables in the objective function, the solution will be iterative. For initiating the iterative 

process, the initial order quantity is set to the EOQ given by equation 14. 

( )
Qh

P s
pD

      (14) 

Where, 

P(s) – Stockout probability 

2 [ ( )]D K pn s
Q

h


     (15) 



 
 

4.3.1 Poisson distribution 

The parameter  of the Poisson distribution is defined as follows:  

( )LTD LE D 
     

(16) 

The expected number of backorders per replenishment cycle ( )n s  for the Poisson 

distribution is given by equation 17. 

( ) ( ) ( 1)Ln s D P s sP s       (17) 

4.3.2 Gamma distribution 

The parameters   and   of gamma is defined as follows:  

2( )

( )

E x

Var x
    (18)    

( )

( )

Var x

E x
    (19) 

The expected number of backorders per replenishment cycle ( )n s  for the gamma 

distribution is given by equation 20 (Tyworth & Ganeshan, 2000). 

1 0( ) (1 ( )) (1 ( ))n s G s s G s       (20) 

where 

1G – Cumulative Density Function (CDF) of gamma (α + 1,) 

0G – CDF of gamma (α,) 

4.3.3 Laplace distribution 

The parameters µ and  of the Laplace distribution are defined as follows:  



 
 

( )E x    (21)   
( )

2

Var x
 

 
 (22) 

Pressuti & Trepp (1970) developed simple expressions for the Laplace distribution. 

Using the expression service level order quantity (SOQ) defined in Nahmias (2004), the 

optimum values of order quantity Q  and reorder point s  can be determined in a single step 

using equations 23 and 24. 

22KD
Q

h
        (23) 

ln(2 ( )) Ls P s D      (24) 

4.4 Inventory model evaluation 

4.4.1 Total costs 

The total cost was obtained by calculating the holding cost, order cost and backorder cost. 

The expressions for calculating these costs are given below. 

*j j jCM EOH h                              (25) 

*j j jCP K nc                  (26)  

*j j jCR QRP p            (27)   

j j j jCT CM CP CR           (28) 

where 

jCM – Holding cost of product j 

jCP – Order cost of product j 



 
 

jCR – Backorder cost of product j 

jCT – Total cost of product j 

jh – Inventory carrying cost per item of product j 

jK – Cost per order of product j 

jp – Backorder cost per unit of product j 

jnc – Number of replenishment cycles of product j 

jEOH – Average stock of product j 

jQRP – Number of backordered units of product j 

4.4.2 Fill rate and cycle service level 

Fill rate is the portion of demand that is met from existing stock. Cycle service level is the 

probability of no stockout per replenishment cycle. The expressions for calculating the fill 

rate and the cycle service level are given below. 

,

,

i j

i
j

i j

i

QF

FR
QD





                         (29) 

1
j

j

j

ncr
NS

nc
                               (30) 

Where   

jFR – Fill rate of product j 

jNS – Cycle service level of product j 

,i jQF – Number of units supplied of product j in period i 



 
 

,i jQRC  – Number of received units of product j in period i 

,i jQD  – Number of demanded units of product j in period i 

jnc – Total number of replenishment cycles of product j 

jncr – Number of replenishment cycles with backordered units of product j 

4.5 Simulation model 

Our objective is to directly use the observed real demand values for assessing the performance 

of the policies using the simulation process. Because we are using the single-demand 

approach, we transformed our historical values into daily demands and developed our model 

to consider daily demand for the seven-year testing period. Using Matlab 6.5, the model was 

elaborated for simulating the performance of each period. 

The simulation model is divided into two parts. The first part is regarding the 

simulation of daily stock movements. The second part pertains to the determination of 

performance measures, total costs, fill rate and service level.  

For initializing the simulation process, we defined the initial stock as the theoretical 

maximum stock for system (s, Q), as given by equation 31. 

j j jEI ES Q     (31) 

Following is the mathematical model of the simulation process. 

,i jEOH   1, , , 1,i j i j i j i jEOH QRC QD QRP    , if , 0i jQRP           (32) 

  0,     otherwise 

,i jATP   , , ,i j i j i jEOH QP QRP                                                     (33)
 

 



 
 

,i jQRP   0,       if , 0i jEOH                   (34)    

, 1, 1, ,i j i j i j i jQD QRP EOH QRC    ,  otherwise 

 ,i jQF    ,i jQD ,      if , ,i j i jEOH QD             (35) 

  ,i jEOH ,   otherwise 

,i jQP    1,i j jQP nQ  ,   if ,i j jATP s  and 1,2,3,...n                (36) 

  1,i jQP ,    otherwise 

,i jQRC    jnQ ,    if ,ji LT j jATP s  and 1,2,3,...n            (37) 

  0,     otherwise 

,i jnc    1,       if , 0i jQRC                (38) 

  0,     otherwise 

,i jncr    1,     if 
1

, 0
j

i

i j

i LT

QRP




  and , 0i jQRC                (39) 

  0,     otherwise 

Where 

,i jEOH
 
– Net stock of product j at the end of period i 

,i jATP  – Stock position of product j at the end of period i 

,i jQRP – Number of backordered units of product j in period i 

,i jQP – Number of ordered units of product j in period i 



 
 

5 Results 

Through simulation, we calculated the inventory costs, fill rate and cycle service level of each 

item for evaluating the performance of the proposed models considering stochastic demand 

and lead time. We classified the items considering their demand patterns and LTD variability 

for establishing correlations between inventory models and items classes. Another aspect 

considered in our simulation process was the use of different minimum theoretical service 

levels (Minimum SL), i.e, 80, 85, 90, 95 and 99% for each model. 

The global results of each model are summarized in table 5. The Laplace model 

yielded the best global result in terms of the cycle service level, fill rate and total cost, 

whereas the Poisson model yielded the worst performance.  

Table 5 – Global results of inventory models 

Logistics 

Indicator 

Global Result per Inventory Model 

Normal Compound Poisson Laplace Gamma 

Result  

(%) 

Result 

(%) 

Savings 

(%) 

Result  

(%) 

Savings 

(%) 

Result  

(%) 

Savings 

(%) 

Service 

Level 
81.2 63.8 -21.0 81.9 1.0 79.2 -2.0 

Fill Rate 92.8 82.3 -11.0 94.6 2.0 92.6 0.0 

Total Cost 1,239,055 2,901,234 - 134.0 226,296 82.0 237,593 81.0 

    

With a 5% higher total cost, the results of the gamma distribution were quite close to 

those of the Laplace distribution. When we compared the proposed models with the current 

system represented by normal distribution, the Laplace model yielded significant savings of 

82% and improvements of 1% in the service level and 2% in the fill rate. The gamma model 

achieved savings of 81% compared with the current system; however, customer service was 

worse 2% than that of the current model. The results obtained using the Poisson model were 

worse for all aspects than those of the current system. In fact, the applicability of the Poisson 

distribution is quite restricted. 



 
 

5.1 Results per theoretical service level 

When we analyze the results per theoretical service level, we could verify that the results of 

the Gamma model are better than those of the other models for minimum Service Levels 

(Minimum SL) equal to or greater than 95%. The results for different Minimum SL, Fill Rate 

(FR) and total cost are listed in table 6.  

Table 6 – Results per theoretical service level 

Minimum 

SL (%) 

Result per Minimum Service Level  

Normal Compound Poisson Laplace Gamma 

Real 

SL 

(%) 

FR 

(%) 

Total 

Cost 

($) 

Real 

SL 

(%) 

FR 

(%) 

Total 

Cost 

($) 

Real 

SL 

(%) 

FR 

(%) 

Total 

Cost 

($) 

Real 

SL 

(%) 

FR 

(%) 

Total 

Cost 

($) 

80.0 73.4 89.0 1,597,950 57.8 79.3 2,850,873 73.9 91.3 275,053 65.9 87.3 219,097 

85.0 77.3 90.7 1,275,316 59.0 79.6 2,850,558 76.5 92.6 271,608 69.8 88.8 273,886 

90.0 80.6 92.7 1,331,106 61.1 81.3 2,850,206 79.9 94.2 265,610 77.5 91.8 398,832 

95.0 84.7 94.8 1,407,739 67.0 83.7 2,849,003 85.6 96.4 240,359 86.2 95.5 229,263 

99.0 90.0 97.0 583,163 74.2 87.6 3,105,531 93.4 98.6 78,850 96.5 99.4 66,885 

Average 81.2 92.8 1,239,055 63.8 82.3 2,901,234 81.9 94.6 226,296 79.2 92.6 237,593 

The performance of the current normal-distribution-based system was comparable 

with that of the Laplace model only in terms of the real service level; However, the Laplace 

model achieved the better total cost ($).  

5.2 Consideration of LTD component variability  

Owing to great variation in the demand patterns of spare parts, the items were classified into 

the demand classes described in section 3.2. The results of the simulation involving different 

demand patterns are listed in table 7.  

  



 
 

Table 7 – Results per demand class 

Demand 

Class 

Result per Demand Class  

Normal Compound Poisson Laplace Gamma 

Real 

SL 

(%) 

FR 

(%) 

Total 

Cost 

($) 

Real 

SL 

(%) 

FR 

(%) 

Total 

Cost 

($) 

Real 

SL 

(%) 

FR 

(%) 

Total 

Cost 

($) 

Real 

SL 

(%) 

FR 

(%) 

Total 

Cost 

($) 

Smooth 87.0 96.6 4,290 83.8 95.2 4,439 84.8 96.7 4,276 85.4 96.6 4,198 

Irregular 71.3 87.3 8,384 59.0 78.6 8,470 76.7 92.1 7,987 73.3 88.4 8,731 

Slow 

Moving 
88.2 97.6 7,229 76.9 90.8 39,728 87.3 97.8 7,270 85.4 96.1 7,798 

Intermittent 78.1 90.3 3,892,276 59.9 79.0 8,091,283 77.6 92.5 670,433 74.9 90.1 698,957 

Highly 

Intermittent 
82.0 93.4 109,163 58.5 79.7 1,126,780 83.7 95.2 49,409 80.3 93.3 56,000 

Average 81.2 92.8 1,239,055 63.8 82.3 2,901,234 81.9 94.6 226,296 79.2 92.6 237,593 

   

Upon analyzing demand patterns, we concluded that the Laplace model achieves the 

best performance for items with great variability of demand and lead time, both intermittent 

and highly intermittent. The gamma model was better than the Laplace model only for smooth 

items, which were the minority in this study. The normal model did not have good adherence 

with the intermittent demand pattern. It achieved good performance only with smooth items. 

For intermittent and highly intermittent classes, the performance of the normal model is far 

from those of the Laplace and the Gamma models.  

5.3 Consideration of LTD size 

Silver, Pyke and Peterson (1998) suggested that the definition of demand distribution should 

consider the mean of LTD; the gamma and normal models would be suited to fast–moving 

items, whereas the Poisson and Laplace models would be suited to slow-moving items. We 

segregated the items according to the expected LTD values and applied the simulation 

process. The results of simulation considering LTD size are listed in table 8.  

  



 
 

Table 8 – Results per range of LTD size 

Mean of 

LTD 

Result per LTD Size  

Normal Compound Poisson Laplace Gamma 

Real 

SL 

(%) 

FR 

(%) 

Total Cost 

($) 

Real 

SL 

(%) 

FR 

(%) 

Total Cost 

($) 

Real 

SL 

(%) 

FR 

(%) 

Total Cost 

($) 

Real 

SL 

(%) 

FR 

(%) 

Total Cost 

($) 

< 5 83.3 94.0 8,433 70.1 87.0 10,509 83.6 95.4 8,005 80.8 93.4 8,622 

5 to 10 73.5 89.6 26,599 49.0 72.7 57,559 77.6 92.9 18,291 72.8 89.2 19,395 

10 to50 75.3 90.9 16,191 38.5 68.6 37,515 74.8 93.0 10,717 73.7 90.9 11,195 

50 to 100 50.6 72.4 35,511 20.0 44.3 75,434 59.0 78.3 18,128 52.0 75.9 18,932 

100 to 200 70.2 91.3 28,000 18.1 48.0 465,864 74.2 95.7 15,796 73.3 95.0 14,962 

200 to 500 61.8 66.9 103,696,440  20.5 46.7 240,900,383 51.7 71.0 18,343,051 53.7 71.1 19,251,326 

500 to 1000 52.4 77.6 98,502 8.6 12.2 2,064,164 63.6 88.8 21,084 63.2 87.3 16,889 

1000 to 5000 81.8 94.6 62,832 25.5 56.2 410,719 85.3 97.0 23,545 86.8 96.4 22,269 

> 5000 96.5 99.5 19,117 22.2 48.6 658,816 96.8 100.0 12,803 98.5 100.0 13,975 

Average 81.2 92.8 1,239,055 63.8 82.3 2,901,234 81.9 94.6 226,296 79.2 92.6 237,593 

 

The Laplace model yielded better performance than the other models in the majority 

of ranges. The gamma model’s performance was comparable to that of the Laplace model for 

average demand greater than 100 units. Although the Laplace model is suited to slow-moving 

items, it achieved good performance in all LTD size ranges.  

6 Concluding remarks 

In this paper, we proposed a model for demand and lead time classification of spare 

parts items in steel industry. Additionally, we developed an inventory control methodology 

for spare parts considering the item classification techniques, demand forecasting, LTD 

modeling and optimization models for determining the stock parameters. Based on statistical 

distributions, we implemented three proposed models and compared the results with those of 

the current model. The current model uses normal distribution and the order quantity follows 

the EOQ. The proposed models use the Poisson, Laplace and gamma distributions for LTD 

and an optimization process for determining the reorder point and order quantity. These 

models were tested with real consumption data spanning seven years for evaluating the 

performance of alternative distributions and comparing them with the normal distribution. 



 
 

The main reason underlying the use of alternative distributions is that it is known from the 

literature that spare parts do not adhere to the normal distribution. 

To generate forecast values, we implemented Willemain’s bootstrap method, which is 

suited to slow-moving items with intermittent demand.  

Considering the behavior of spare parts and the simulation results, the following 

general conclusions were drawn. Spare parts showed great variability in terms of demand 

patterns because they encompassed items ranged from very slow moving to fast moving with 

mean LTD values over 5000 units. The results showed that the Laplace model had superior 

global performance compared with the other models. Thus, the Laplace model has extensive 

applicability and it can be used for slow- or fast-moving items having different demand 

patterns. In general, the optimization models obtained very good performance in terms of the 

fill rate, service level and perhaps most importantly, inventory costs.  

Regarding demand variability, the Laplace and Gamma optimization models adhered 

well to the intermittent demand pattern. The normal distribution model did not perform well 

for items with great variability in demand and lead time. When we analyzed the smooth items, 

the normal model yielded quite satisfactory results. Although the Laplace model has 

remarkable global performance, the gamma model achieved the best result for theoretical 

service levels greater than 95%. Specifically, for working with very high service levels, the 

Gamma distribution is a feasible option. 

Regarding demand size, the Laplace model yielded the best performance for most 

LTD size ranges. However, the gamma model performed well, especially for items with 

expected LTD values greater than 100 units. Although the normal distribution is suited to 

fast-moving items, it did not show good performance with these items owing to great 

variability in demand and lead time. The results showed that the normal distribution is not 

adherent to intermittent items. 



 
 

6.1 Managerial Implications 

The development of a more sophisticated methodology for spare parts inventory control 

brings significant savings to companies. The Laplace and Gamma optimization models 

achieved savings of 82% and 81%, respectively, over the current normal model. 

The use of the proposed models can guarantee better customer service levels. The 

results of the Laplace model showed improvements of 1% and 2% in the cycle service level 

and the fill rate, respectively, over the current system. The implementation of the proposed 

models subject to optimization has important implications for organizations. The main aspect 

is the reduction of capital invested in stock to keep high inventory levels for supporting MRO. 

The increased fill rate and improved inventory management lead to increased credibility of 

the replenishment process, thus reducing parallel stocks and out-of-control consumption. The 

reduction of stockouts leads to the reduction of equipment downtime and avoids the cost of 

production losses. The proposed Laplace model has important practical aspects. It is easier to 

implement than the other models and it can be applied to most demand classes and demand 

size ranges. The Gamma model is a feasible option for fast-moving items and for working 

with very high service levels. 

6.2 Directions for Future Research 

One of the interesting aspects of working with industry is that it is sometimes possible to 

identify the need for a new avenue of research. This might be when technology or models are 

being applied in a new setting, such as a different industry (Childe, S.J., 2011). 

This study shows that there is no universal boundaries for classifying items as smooth, 

irregular, slow moving, intermittent or highly intermittent demand pattern.  What is classed as 

irregular demand pattern in aerospace industry may be considered as intermittent in the steel 

industry.  Therefore, for each industry or eventually for a group of similar industry, research 

must be undertaken in order to define the boundaries for classifying items that best fit in each 



 
 

industry. This can allow managers to make the right decision to reduce the cost of inventory 

management for spare parts saving financial, human and materials resources and consequently 

improving the profit of the company. 
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