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Abstract— J.R. Wait’s en tire-domain basis function method of

moments matrix formulation for modeling scattering from
periodically loaded wires in free space is modified using the
current edge approximation and extended to include a multilayer
substrate. From this matrix formulation, novel analytical
formulations for the current and the effective transfer impedance
are obtained. The convergence of the matrix and analytical
formulations is improved with the aid of an expression by
A.L. VanKoughnett. Furthermore, for the case of an electrically
dense array, the analytical expression of the effective transfer
impedance leads to a simple impedance model which is more
general than previously published expressions.

Index Terms—Strip scatterers, electromagnetic scattering by
periodic structures, wire grids

I. INTRODUCTION

THE design theory of periodically loaded arrays of narrow
strips is of particular significance since such devices can have
useful properties as frequency selective surfaces (FSS) and
antenna arrays [1][2]. The accurate modeling of periodically
loaded structures can be achieved using versatile subdomain
basis function numerical techniques, often found in commercial
software, such as the finite element method and the method of
moments (MoM). However, the use of tailored electromagnetic
and equivalent circuit methods [3] improves one’s physical
insight into the electromagnetic behavior of these structures. In
addition, these methods are often simpler to implement and
faster than commercial software and hence more amenable to
hybridization with other techniques. One such tailored method
is the formulation of J.R. Wait [4] for modeling scattering from
periodically loaded thin wire grids in free space. As stated in
[5], the procedure is equivalent to a MoM solution of
Pocklington’s equation for thin wires using entire domain
sinuosoidal expansion and testing functions. We demonstrated
recently, [6][7], that this thin wire formulation, and its
extension to orthogonal grids can provide useful insight into the
behavior of connected arrays and FSS, particularly for
electrically dense arrays. With the aim to extend further the
insight on FSS, we extend in this work Wait’s formulation to
include the presence of a multilayer substrate (Fig. 1). This is
shown in section II. Furthermore, instead of using the
approximate kernel formulation with its well described solution
issues [8][9], we employ the narrow strip current with the edge
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Fig. 1. Geometry of the substrate backed periodically loaded array of narrow
strips.

condition [10][11] which was linked by C.M Butler to the exact
kernel [12].

In section III, we improve the convergence of the section II
formulation following a methodology used for thin wire arrays
[4],[5]. Specifically, to apply this methodology to our narrow
strip problem and at the same time gain insight into the
behavior of our substrate backed periodically loaded arrays, we
exploit a Bessel series equation obtained by A.L.
VanKoughnett [13]. Thence, a novel simple expression for the
effective transfer impedance for electrically dense arrays is
obtained. This expression indicates the potential of Wait’s
entire-domain basis function MoM formulation to provide
physical insight into the behavior of periodically loaded strip
arrays. Finally, numerical results are presented in section IV.

II. FORMULATION WITH EDGE CONDITION CURRENT AND

MULTILAYER SUBSTRATE

The periodically loaded narrow-strip configuration, with
periods Dx and Dz, is defined in Fig. 1. It is assumed to lie in the
x-z plane, at the interface between medium 0 and medium 1
(b0 = 0). Medium 0 is assumed to be lossless with permittivity

(0) = 0r(0), permeability (0) = 0r(0), intrinsic impedance (0)

and wavenumber kr(0). However, the layers of the multilayer

substrate can be lossy. The incident electric field Einc, with

amplitude E0, is assumed to be either parallel (  = || ) or

perpendicularly (  =  ) polarized and it is given by [7]
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where zyxs ˆˆˆˆ )0()0()0()0( zyx sss  is the direction vector

with sx(0) = sin sin, sy(0) = cos and sz(0) = sin cos. The

polarization unit vector  )0(00n̂ is defined in eq. (2) of [7].

Following [11], the z-directed surface strip current density is
assumed to be
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where w is the strip width. I (z) is the z-periodic part of the
current. Through a Fourier series expansion,
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it is expressed in terms of the current harmonic amplitudes Am;
m being the integer index of periodicity along the z-direction.

As in [4], the current harmonic amplitudes Am are the
unknowns of the formulation. Their values are determined by
solving matrix equation (12) or from the analytic expressions
(13) and (14).

Unlike [3], the whole of (2) is used in the integration over the
surface of the narrow strip to obtain, using eq. (F.3) of [1], the
radiated electric field, Esc, which is given by
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Thus, our electric field expression contains zero order Bessel

functions of the first kind of the form J0(qw/Dx) where q is the
integer index of periodicity along the x-direction. These Bessel
terms have practically the same numerical value as those of [3]
for a narrow strip. We follow [1] in defining the propagation
and polarization of the fields. Specifically, the direction vector

of the mqth harmonic in medium  is defined as

zyxr ˆˆˆˆ )()()()(   mzmqyqxmq rrr and its components can

be obtained from eqs. (4.24), (5.3)-(5.5) of [1]. In addition,
subscripts on the right include the harmonic order, “m and/or
q”, the cartesian coordinate “x,y,z” for vector components, and
the medium index which appears within round brackets. The

direction of polarization, parallel (||) or perpendicular (), of

the mqth harmonic in medium  is represented by the

polarization unit vectors )(|| ˆmqn and  )(ˆmqn ,

respectively. These vectors are defined in eqs. (4.55) and (4.56)

of [1]. )(|| mqzn and )( mqzn , which appear in (4) for  = 0,

are their z-components . As in [1], the  subscripts refer to the

harmonic direction vector  signs above. The polarization

subscripts (||,) appear on the left of a variable. It is to be noted
that the radiated field in (4) contains both polarizations.

A per unit length load impedance ZL is defined in terms of the

lumped element impedance v as ZL(z) = v / l. v is assumed

to be uniformly distributed along the element length l. ZL is
periodic and can be expressed as a summation of Fourier series
terms [7],
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with Zn = [(1)n (v/Dz) sin(nl/Dz)]/(nl/Dz) and Z0 = v / Dz.

As indicated in [6], multiple lumped elements can be defined
along the strips by modifying Zn accordingly.

The boundary condition in the reference strip (q = 0),

eq. (14) of [4], is applied at Rb=Rb(0,0,z)
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The current I in (6) is obtained by integrating Js(x,z), of
equation (2), over the strip width w,
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(7)
where the approximation holds for an electrically narrow strip
width. For simplicity, this approximation is assumed in our
formulation. Following the approach in [1] for including the
multilayer substrate in the reflected electric field expressions,
the reflection of the incident electric field from the multilayer

substrate, Eref(inc), is given by
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and the reflection of the radiated electric field from the
multilayer substrate, Eref(sc), is
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The effective reflection coefficient e
mq   )(||, of the (m,q)th

harmonic at the interface between media  and +1 is defined
in eq. D.14 of [1]. Inserting eqs. (1), (4-5) and (7-9) in (6) and
following the methodology of [4], we obtain
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 excludes n = 0. In medium , the propagation constant is

mq() = jkr()rmqy() .

The unknown current harmonic amplitude values Am are
evaluated by solving the matrix equation,
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which is obtained from (10). Numerical results are obtained by
truncating the range of m, n values [6][7] and the series in
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eq. (11). A numerical example is considered in section IV.
For the configuration in Fig. 1, if infinitesimal lumped

elements are assumed then Zn = (1)nZ0 and, due to the
similarity of (12) to eq. (9) of [6], the derivation procedure
described in [6] is used to obtain the following analytical

expressions for the current harmonic amplitudes Am. For m  0,
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and for m = 0,

1
0

0)0(00)0(00
0

'ˆ

)1(











Z

z
e

SZ

En
A (14)

with























'ˆ
1

'
1

0 ZZ
SZ (15)

where 0
ˆ'ˆ ZZZ mm  .  excludes  = 0.

From the definition of eq. (23) in [4] we obtain, using eqs. (1),
(4), (8-9) and (14), the effective transfer impedance, Zg, of our
multilayer substrate backed strip array structure,
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For E-plane (||, sx(0) = 0), and H-plane (, sz(0) = 0) incidence,
Zg is the transmission line equivalent circuit impedance of the
periodically loaded strip array structure.

Both the matrix equation (12) and the analytical (13-14)
formulations depend on Ẑm and hence the summation in (11) is
considered in the next section.

III. IMPROVING CONVERGENCE AND GAINING INSIGHT USING

THE VANKOUGHNETT EQUATION

To improve the convergence of the summation in (11) and gain
further physical insight, the convergence methodology in [4] is
used. To use this methodology, the asymptotic expressions (as
q  ) of terms in (11) are obtained, i.e. mq(0) 2|q|/Dx,
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The expressions (17) and (18), which are independent of the
angle of incidence and harmonic order, are obtained using the

asymptotic expression rmqy(1) / rmqy(0)  kr(0) / kr(1) and by
assuming that the exponential terms in the effective reflection

coefficient e
mq   )0(||, expression are essentially zero. The

latter is valid since if q is large enough, no matter what the
thickness of medium 1, the corresponding q harmonics will

evanesce to zero before reaching medium 2. By replacing the
terms in (11) by their asymptotic expressions above leads to a
summation in (11) that can be approximated by a closed form
expression with only a few terms. This is achieved by using the
following equation by VanKoughnett [13],

])O(2[
||

)2(
' 60 SW

q

qSJ

q









(19)

where  excludes q = 0, S = w/(2Dx) and
42 )4()16/3()2()2/1()]/(1ln[ SSSW  (20)

with () being the Riemann zeta function. By ignoring the S u

power terms in (19) for u  6 and following the convergence
methodology in [4], (11) is re-expressed as follows:
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A demonstration of the improved convergence of (21) over

(11) is shown in section IV. The above convergence procedure
using the VanKoughnett equation can also be applied to
eq. (10) of [3].

Following [6], an electrically small period and a sufficiently
small Z0 are assumed such that: (i) SZ

1  Z0 in (16); and (ii) the
 terms in (21) for m = 0 can be ignored. Hence (16) simplifies
to
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For E/H-plane incidence it is worth noting that (25)

simplifies to the strip array formulae which are obtained from
the capacitive grid eqs. (10-11) of [14] using eq. (7) of [14]
assuming that w/Dx is sufficiently small such that W in (20) is
approximated by its first term and sin(x)  x in eq. (4) of [14]. It
is also assumed in [14] that medium 0 is free space and medium
1 is a lossless dielectric of relative permittivity r (the relative
permeability is assumed to be unity). Thus, (25) is a more
general expression than the strip array expressions of [14].

Furthermore, from the derivation of (25), the origin of the
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effective permittivity term in [14], is attributed to the
interaction of the evanescent harmonics with the first interface
at b0 only as indicated by the presence of the asymptotic
expressions (17) and (18).

Moreover, by using a capacitor as a lumped element, a
bandstop FSS can be obtained. It was indicated in [7] that the
E-plane resonance frequency stability with respect to the angle
of incidence  improves by adding a lumped element
inductance sufficiently larger than the wire inductance; this can
be deduced from (25) too. Specifically, by increasing the
inductive part of the load, the impedance Zg becomes less
sensitive to the variations of the square bracket term of (25). It
can also be deduced from (25) that the E-plane resonance

frequency stability also improves as )(
)0(||

  1; i.e. by

increasing the relative permittivity of a dielectric substrate.

IV. NUMERICAL RESULTS

To numerically test the formulation, an arbitary bandstop
FSS example is considered in which the lumped element is a

capacitor of value C = 0.5 pF, hence v = (jC)1. The lumped

element length is l = 0.5 mm, the periods are Dx = Dz = 30 mm
and the narrow strip width is w = 0.24 mm. The substrate
consists of two layers. Medium 1 has a thickness of 5 mm,

relative permittivity r(1) = 4, relative permeability r(1) = 4 (this
value is employed for purely numerical comparison as it does
not occur naturally) and conductivity (1) = 0.05 S/m. For
medium 2, the thickness is 2 mm, r(2) = 2, r(2) = 1 and
(2) = 0.2 S/m. The incident plane wave amplitude is
E0 = 1 V/m. The medium 0 is assumed to be free space and the
medium 3 is assumed to be identical to medium 0. The matrix
equation is obtained from (10) by assuming M  m  M where
M = 10 in this example. As in [6][7], for any value m = , the
range of n in (10) is (M)  n  (M+). For the analytic
solution, M    M in (15).

The scattering characteristics of the structure considered are
shown in Figs. 2-4. There is a very good agreement among the
the MoM matrix solution, the MoM analytical solution and the
CST solution for both, parallel and perpendicular, polarization
incidences. It has to be noted that in the CST simulation input
and output ports are specified at a distance of 20 mm from the
strips and scattering parameter results are obtained. Hence, for
convenience when comparing results, the co-polarized ( = )
and cross-polarized (  ) transmission coefficient, T, of
the propagating fundamental harmonic is defined here as the
ratio of the transmitted field at Rout = R(x,yobs,z) over the

incident field at Rin = R(x,yobs,z), yobs = 20 mm. The symbols
 = ,|| and  = ,|| represent the incident and transmitted
wave polarization, respectively. In addition, the reflection

coefficient, R, of the propagating fundamental harmonic is
defined here as the ratio of the reflected field at Rin over the
incident field at Rin. The expressions of these coefficients are:
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(a)

(b)

(c)

(d)

Fig. 2. Plots of reflection and transmission coefficient versus frequency for
parallel polarization; (a,c) magnitude and (b,d) phase. Angles of incidence:
 = 45,  = 22.5. CST: dashed line. MoM: solid line with symbols;
co-polarized and cross-polarized results: analytical-VanKoughnett: /;
analytical-Bessel:/; matrix-VanKoughnett: /; matrix-Bessel:/.
The dashed and solid lines are visibly indistinguishable. Dotted line: based on
simple expression of Zg, eq. (25).
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(a)

(b)

(c)

(d)

Fig. 3. Plots of reflection and transmission coefficient versus frequency for
perpendicular polarization; (a,c) magnitude and (b,d) phase. Angles of
incidence:  = 45, = 22.5. CST: dashed line. MoM: solid line with symbols;
co-polarized and cross-polarized results: analytical-VanKoughnett: /;
analytical-Bessel:/; matrix-VanKoughnett: /; matrix-Bessel:/.
The dashed and solid lines are visibly indistinguishable. Dotted line: based on
simple expression of Zg, eq. (25).

(a)

(b)

Fig. 4. Plots of normalized absorbed power versus frequency for (a) parallel
and (b) perpendicular polarization. Angles of incidence:  = 45,  = 22.5.
CST: dashed line. MoM: solid line with symbols; analytical-VanKoughnett: ;
analytical-Bessel:; matrix-VanKoughnett: ; matrix-Bessel:. The dashed
and solid lines are visibly indistinguishable. Dotted line: based on simple
expression of Zg, eq. (25).
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where F = (0) A0 n00z(0) / (2Dxsy(0)),  is the Kronecker
delta, and from eq. (D.17) of [1],
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with e
it  , related to the effective transmission coefficient in

eq. D.15 of [1] as e
i

e
it   ,, and )1()(,||,|| /   iyiy

e
i

e
i rrt . For

our example, I = 2.
The normalized absorbed power P is defined as the ratio of

the absorbed power, Pabs, to the incident power, Pinc. As it is
normally the case in FSS, only the fundamental harmonic
propagates. Hence, based on the definitions of (26) and (27), P
is expressed as follows,

2
||

22
||

2
1 TTRR

P

P
P

inc

abs





  (29)

For the MoM matrix and analytical results, both, the exact
Bessel series (11) and its VanKoughnett approximation (21)
were used. In the simulations, the q-series in eqs. (11) and (21)
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(a)

(b)

Fig. 5. Convergence of real (a) and imaginary (b) part of Ẑ0 (= Ẑ0Z0) as the
series limit Q increases. Dashed line: Ẑ0 is given by (11). Solid line: Ẑ0 is given
by (21).

are truncated, Q  q  Q. Q =200 for (11), but for (21) is
considerably lower, Q =10. The accuracy of the simulation
results depends on the convergence of the q-series in the Ẑm

expressions of (11) and (21). The improved convergence of
(21) over that of (11) is demonstrated in Fig. 5 by plotting the
value of Ẑ0 ( = Ẑ0  Z0 ) for different values of the truncated
summation limit Q.

Also shown in Figs. 2-4 are the co-polarization and
cross-polarization results obtained using the simple effective
transfer impedance expression (25). As indicated in [14], the
accuracy of the results of the simple expression improves as the
electrical density of the array increases. Since the accuracy of
such simple expressions for meshes and patches was
considered in [14] and references therein, it is not considered
further here. The need for obtaining and improving such simple
analytic expressions is emphasized in [14] and references citing
it, i.e. they allow physical insight to be applied into the design
of devices. This insight leads to a fast and cost effective design
process. Subsequently, the accuracy of the results can be
improved using tailored electromagnetic methods or
commercial software.

V. CONCLUSION

Wait’s free space thin wire entire-domain basis function
method of moments was extended to model plane wave
scattering from a lumped element periodically loaded vertical
narrow strip array backed by a multilayer substrate. The
formulation was further modified to improve the convergence
of its series term. For a single infinitesimal lumped element per
unit cell, novel formulations for the current and the effective

transfer impedance were derived, and, for the case of an
electrically dense array on a substrate, a novel simplified
expression for the effective transfer impedance was obtained.
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