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Summary 20 

In order to better understand how the activity of microbial organisms influences and regulates 21 

all major biogeochemical cycles, a great deal of effort has been put into characterizing the 22 

physiology and metabolism of key representatives available in culture. Such effort is often 23 

limited by the difficuties associated with isolating novel microorganisms from the 24 

environment and cultivating them in the laboratory. To overcome this problem, a variety of 25 

culture-independent techniques have been developed that can be used in conjunction with the 26 

above to investigate natural microbial populations. In this study, we combined DNA-stable 27 

isotope probing with metagenomics and metaproteomics to characterize an as yet 28 

uncultivated marine methylotroph that actively incorporated carbon from 13C-labeled 29 

methanol into biomass. By metagenomic sequencing of the heavy DNA, we retrieved 30 

virtually the whole genome of this bacterium and identified through protein-stable isotope 31 

probing the metabolic pathways used to assimilate methanol. This proof-of-concept study is 32 

the first in which both DNA- and protein-stable isotope probing has been used to characterize 33 

the metabolism of an uncultivated bacterium from the marine environment and thus provides 34 

a powerful approach to access the genome and proteome of uncultivated microbes involved 35 

in key processes in the environment. 36 
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Introduction 37 

One of the main challenges in microbial ecology is to directly access the genomes and 38 

understand the metabolism of key microbes involved in biogeochemical cycling. An ideal 39 

scenario is to isolate model organisms and then characterize them using conventional 40 

physiological and biochemical techniques. However, since many microbes are difficult to 41 

cultivate in the laboratory, focussed cultivation-independent techniques are also required. To 42 

address these challenges, DNA-Stable Isotope Probing (DNA-SIP), involving the use of 13C-43 

labeled substrates that are incorporated into the biomass of active microbes, has been 44 

developed (Radajewski et al., 2000, Dumont and Murrell, 2005, Neufeld et al., 2007b). This 45 

technique enables the separation of heavy (13C-labeled) from light (unlabeled) DNA, thus 46 

allowing the isolation of 13C-DNA from microbes that have assimilated the target 13C-labeled 47 

substrate from those that have not. The identity of active cells can then be determined by 48 

interrogating the heavy DNA via PCR using 16S rRNA or genes encoding key steps in 49 

microbial metabolism.  50 

Further information regarding the metabolic potential and the metabolic pathways actually 51 

being used by target microorganisms during SIP incubations can be obtained by 52 

complementary metagenome analysis of the heavy DNA combined with metaproteome 53 

analysis, i.e., protein-SIP. This approach yields quantitative data on the incorporation of 54 

heavy isotopes of carbon, nitrogen or sulfur into peptides (Seifert et al., 2012) and their 55 

sequence analysis results on information on both the phylogeny and physiology of microbial 56 

organisms (von Bergen et al., 2013). 57 

In this study, we provide proof-of-concept experiments to show that DNA- and protein-SIP 58 

can be combined with metagenomics to characterize the metabolism of an as yet uncultivated 59 

marine bacterium. We chose to use methanol and methylotrophic bacteria in the marine 60 

environment to develop these techniques because in our previous studies we showed that 61 
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marine methylotrophs of the genus Methylophaga were present and active in coastal seawater 62 

environments (station L4 of the Western Channel Observatory, Plymouth, UK) and that we 63 

could use DNA-SIP to recover genes involved in methanol oxidation from this uncultivated 64 

Methylophaga species (Neufeld et al., 2007a, Neufeld et al., 2008b, Neufeld et al., 2008a). 65 

We previously showed that methanol is metabolized in situ at station L4 (Dixon et al., 2011, 66 

Sargeant, 2013) and therefore in this study we used methylotrophy as a model system with 67 

which to combine for the first time DNA- and protein-SIP approaches to access the 68 

metabolism of a marine Methylophaga which we have failed to isolate and cultivate in the 69 

laboratory. 70 

A key enzyme involved in methanol metabolism by methylotrophs, methanol dehydrogenase 71 

(MDH), catalyses the conversion of methanol to formaldehyde (Anthony, 1982, 72 

Chistoserdova, 2011). The gene coding for the large subunit of the classical MDH, mxaF, has 73 

been well characterized (Anthony et al., 1994). A homologue of mxaF gene, xoxF, which can 74 

also be involved in methanol metabolism, is present in all known methylotrophs and several 75 

non-methylotrophic organisms (Chistoserdova and Lidstrom, 1997, Chistoserdova et al., 76 

2009, Chistoserdova, 2011). Multiple xoxF genes, sometimes belonging to more than one of 77 

the five distinct xoxF clades that have been described (Chistoserdova, 2011, Keltjens et al., 78 

2014), can often be found in a single methylotroph genome, making it difficult to 79 

unequivocally assign a functional role to this gene (Chistoserdova, 2011). Based on 80 

sequencing data, specific PCR primer sets have been designed to target mxaF (McDonald and 81 

Murrell, 1997, Neufeld et al., 2007a) and xoxF genes (Taubert et al., in revision) and thus 82 

determine the distribution and diversity of methylotrophic bacteria in the environment. The 83 

presence of these functional biomarkers alone does not however imply that they are 84 

metabolically active.  85 
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In this study, a combination of DNA-SIP and protein-SIP, metagenomics and 86 

metaproteomics, 16S rRNA gene, mxaF and xoxF functional gene amplicon sequencing was 87 

used to identify the phylogenetic affiliation and methanol utilization pathways of a marine 88 

methylotroph. We estimate that more than 90% of the genome of a marine Methylophaga 89 

species from the English Channel was obtained and concomitant metaproteomics analysis 90 

revealed the pathways of carbon assimilation used by this uncultivated methylotroph. 91 

Results and discussion 92 

SIP incubations were carried out in duplicate over three days using surface seawater from 93 

station L4 in the English Channel, with 13C-labeled and unlabeled (12C) methanol (control) as 94 

substrate. The purpose of this study was to use SIP to access the genome and proteome of an 95 

uncultivated marine methylotroph, so we chose a substrate concentration that we could 96 

confidently measure to monitor methanol consumption throughout the experiment, i.e., 100 97 

μM. Given that surface methanol concentrations at station L4 are in the 16-78 nM range 98 

(Beale et al., 2015), it could be argued that this concentration is not environmentally relevant. 99 

However, we have previously shown that even 1 μM stimulates the activity of Methylophaga 100 

from station L4 (Neufeld et al., 2008a). We therefore believe that the methanol concentration 101 

used here is suitable for the purpose of the proof-of-concept study presented here.  102 

Total DNA was extracted from seawater at the beginning and end of the experiment and used 103 

to determine bacterial diversity. To assess the metabolic potential of the bacterial community, 104 

protein was also extracted from SIP incubations after three days. After separating 13C-DNA 105 

from 12C-DNA, the former was used to determine the diversity of active methylotrophs in 106 

DNA-SIP incubations by isolation and analysis of 16S rRNA, mxaF and xoxF gene sequences 107 

(Supplementary Table S1, for the total number of sequences retrieved from each sample). 13C-108 

DNA was also amplified using multiple displacement amplification to generate sufficient 109 
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material for metagenome sequencing and analysis of DNA of the dominant methylotroph in 110 

duplicate SIP incubations.  111 

Combining DNA- and Protein-SIP. Bacterial community composition at the beginning of 112 

the incubations (T0) was determined by analysis of 16S rRNA gene sequences from duplicate 113 

DNA samples. Contributions of different bacterial groups to the total 16S rRNA gene 114 

sequences retrieved from each sample (Supplementary Table S1) were virtually identical (not 115 

shown), so average values are given below. 16S rRNA gene sequence analysis showed that at 116 

T0, the bacterial community was mainly dominated by Alphaproteobacteria (e.g., Candidatus 117 

Pelagibacter constituted 21% of all 16S rRNA gene sequences retrieved), Betaproteobacteria 118 

(e.g., Achromobacter, 15%), and Flavobacteria (e.g., Formosa, 15%) (Figure 1A). These 119 

results agree with previous studies carried out at station L4 where Alphaproteobacteria 16S 120 

rRNA gene sequences, particularly those belonging to the SAR11 clade (Pelagibacteraceae) 121 

are predominant throughout most of the year followed by Flavobacteria, with Beta- and 122 

Gammaproteobacteria also being present (Gilbert et al., 2009, Gilbert et al., 2012, Sargeant, 123 

2013). Eighty different bacterial genera that constituted less than 5% of the total number of 124 

sequences could also be identified at the beginning of the SIP incubations (combined under 125 

“Others” in Figure 1A), with potential methanol utilizers, such as Methylophaga, Ruegeria 126 

and Roseovarius representing <0.5% of the total 16S rRNA gene sequences analyzed.  127 

After incubating for three days with 100 μM methanol, changes in community composition 128 

were assessed based on 16S rRNA gene sequences retrieved from unfractionated DNA 129 

obtained from duplicate 13C and 12C methanol incubations (Supplementary Table S1). 130 

Compared with T0, the bacterial community in all four experiments was significantly 131 

enriched in Gammaproteobacteria (75-87% of the sequences; Supplementary Figure S1). At 132 

the methanol concentration used in these SIP incubations, 84% of the 16S rRNA gene 133 

sequences retrieved from the unfractionated 13C-labeled samples belonged to the genus 134 
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Methylophaga (Figure 1A), which only represented 0.01% of the sequences at T0 (included in 135 

“Others” in Figure 1A). Other bacteria present at the start of the SIP incubations, such as 136 

Candidatus Pelagibacter (5%) and Owenweeksia (3%), were also present in the unfractionated 137 

DNA (Figure 1A). 138 

CsCl density gradient centrifugation was used to separate heavy (13C-labeled) from light (12C, 139 

unlabeled) DNA extracted from 13C methanol incubations, following the protocol described in 140 

Neufeld et al. (Neufeld et al., 2007b). 13C-DNA was subsequently used to determine the 141 

phylogenetic affiliation of active methylotrophs by targeting 16S rRNA gene, as well as mxaF 142 

and xoxF functional genes. Most of the 16S rRNA gene sequences present in 13C-DNA 143 

samples belonged to Methylophaga, thus indicating rapid incorporation of 13C from methanol 144 

into Methylophaga biomass (Figure 1B). mxaF and xoxF gene sequences obtained from 13C-145 

DNA 454 data (not shown) confirmed that the enriched group was most closely related to 146 

Methylophaga thiooxydans DMS010 (Schäfer, 2007, Boden et al., 2010). The amplicon 147 

sequencing results presented above agree with previous DNA-SIP experiments carried out at 148 

station L4 using methanol and other C1 substrates, such as mono- and dimethylamine, 149 

dimethylsulfide and methyl bromide, that showed that Methylophaga spp. present in the 150 

marine environment are capable of metabolizing these compounds (Neufeld et al., 2007a, 151 

Neufeld et al., 2008a, Neufeld et al., 2008b). In 12C-DNA samples, only 16% of the total 16S 152 

rRNA gene sequences retrieved from duplicate incubations were affiliated to Methylophaga 153 

whereas Candidatus Pelagibacter dominated (60%), despite being present at only 0.1% in the 154 

13C-DNA fraction (Figure 1B). Although this might seem high, the proportion of Candidatus 155 

Pelagibacter sequences at the end of the incubations (unfractionated DNA in Figure 1A) was 156 

lower than at the beginning (T0 in Figure 1A).  157 

To complement the DNA-SIP data, proteins were extracted from 13C-labeled and unlabeled 158 

(controls) methanol SIP incubations after three days. Tryptic peptides were measured using a 159 
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high resolution Orbitrap mass spectrometer and further identified using the OpenMS pipeline 160 

(Kohlbacher et al., 2007, Sturm et al., 2008) via the OMSSA search engine (Geer et al., 161 

2004). Protein identity and taxonomic affiliation were determined using a customised NCBInr 162 

database (Supplementary Information). 79% of the peptides identified from these protein 163 

samples were assigned to Methylophaga species and most of the peptides affiliated with this 164 

group showed 13C incorporation from methanol (Figure 1C; Supplementary Dataset S1), with 165 

an average relative isotope abundance of 88.8% +/- 2.8%. No unlabeled Methylophaga 166 

peptides were detected in 13C-labeled incubations, showing that the majority of Methylophaga 167 

biomass (>99% based on the detection limit of the instrument, not shown) was produced after 168 

the addition of labeled methanol. This confirms that Methylophaga constituted only a minor 169 

fraction of the bacterial community at the beginning of the experiment, as observed with 16S 170 

rRNA gene sequences data. Finally, ~13% of all peptides found to have 13C incorporation 171 

patterns related to crossfeeding were identified as SAR11 peptides (not shown). This suggests 172 

that SAR11 cells were still active during the three day incubation with 100 μM methanol, 173 

having incorporated 13C-labeled carbon into their peptides through crossfeeding but not by the 174 

direct use of this substrate as a carbon source. This is consistent with previous reports 175 

showing that members of the SAR11 clade to which Candidatus Pelagibacter found in 12C-176 

DNA belongs can oxidize methanol to CO2, but do not seem to use it as a carbon source (Sun 177 

et al., 2011).  178 

Metagenomics of 13C-labeled DNA. In order to investigate the metabolic potential of the 179 

organisms that were actively incorporating methanol into their biomass, heavy DNA from the 180 

13C-labeled experiment from two biological replicates was amplified using multiple 181 

displacement amplification and the amplified 13C-DNA was used for metagenome sequencing 182 

on the Illumina MiSeq DNA sequencing platform (Supplementary Information). 183 
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16S rRNA gene sequences retrieved from 13C-DNA metagenome datasets again showed the 184 

dominance of Methylophaga species, with >50% of them (in both replicates) having been 185 

assigned to M. thiooxydans using the Ribosomal Database Project (RDP) database 186 

(Supplementary Figure S2). Metagenome data were assembled in BaseSpace using SPAdes 187 

Genome Assembler v3.0 and the assembled contigs were annotated in RAST, followed by 188 

manual correction. The assembly of the whole metagenome dataset yielded 8 large contigs 189 

clearly belonging to Methylophaga with a total length of 2.60 Mb, an average coverage of 98x 190 

and a GC content of 45.7% (Supplementary Dataset S2). Of the remaining reads, assembled 191 

into 5,557 much smaller contigs (4.28 Mb and 13x coverage in total), less than 1% belonged 192 

to Methylophaga. The Methylophaga L4 genome derived from the SIP metagenome dataset 193 

was most closely related to the genome of Methylophaga thiooxydans DMS010 (Schäfer, 194 

2007, Boden et al., 2010), a strain originally isolated from an enrichment culture of the 195 

coccolithophore Emiliana huxleyi (Schäfer, 2007). First described as Methylophaga sp. strain 196 

DMS010, this species grows on dimethylsulfide (DMS) and a variety of other C1 compounds 197 

(Schäfer, 2007). Methylophaga sp. strain DMS010 was renamed M. thiooxydans DMS010 198 

after a new pathway of DMS metabolism (DMS oxidation to tetrathionate) was discovered in 199 

this organism (Boden et al., 2010). 200 

Although M. thiooxydans DMS010 has a genome size of 3.05 Mb (Boden et al., 2011), closer 201 

investigation of this genome uncovered a series of identical phage-like regions that when 202 

removed left a core genome of 2.59 Mb. Hence, the 8 contigs of the M. thiooxydans strain L4 203 

genome assembled from the metagenome very likely cover > 90% of the genome of this SIP-204 

enriched Methylophaga species (Supplementary Figure S3). This SIP-metagenome-derived 205 

genome of M. thiooxydans strain L4 is also comparable in size with the genomes of 206 

Methylophaga strains M. nitratireducenticrescens JAM1 (3.1 Mb) and M. frappieri JAM7 207 

(2.7 Mb) (Villeneuve et al., 2012, Villeneuve et al., 2013). Finally, given the high level of 208 
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coverage of the genome, the use of DNA-SIP targeted metagenomic would seem to be a 209 

useful complementary molecular ecology technique to single-cell whole genome sequencing. 210 

Analysis of the M. thiooxydans strain L4 genome assembled here revealed the presence of key 211 

genes involved in one-carbon metabolism (Supplementary Dataset S3). The entire gene 212 

cluster coding for the small (mxaI) and large (mxaF) subunits of the pyrroloquinoline quinone 213 

(PQQ)-dependent methanol dehydrogenase and accessory genes was found (Figure 2). The 214 

full length mxaF gene retrieved from the assembled genome was 98% and 99% percent 215 

identical to the mxaF gene sequence and the derived amino acid sequence of M. thiooxydans 216 

DMS010, respectively (Supplementary Figure S4A). Four copies of the mxaF homolog xoxF 217 

were also identified (Supplementary Figure S5). Their sequences were 93-97% identical to M. 218 

thiooxydans DMS010 (Supplementary Figure S4B).  219 

Two gene clusters containing genes involved in the conversion of methylamine to 220 

formaldehyde via two different pathways were also identified. One gene cluster, 221 

mauFBEDAGLMN, contains genes encoding the large (mauB) and small (mauA) subunit of 222 

methylamine dehydrogenase, a TTQ-dependent dehydrogenase, as well as further accessory 223 

genes required for the activity of this enzyme (Supplementary Figure S6; Anthony, 1982). 224 

Methylamine dehydrogenase catalyses the direct oxidation of methylamine to formaldehyde 225 

and ammonium and is typically found in Proteobacteria that use methylamine as a carbon 226 

source (Wischer et al., 2014). The second gene cluster encodes genes for gamma-227 

glutamylmethylamide (GMA) synthetase (gmaS), N-methylglutamate (NMG) synthase 228 

(mgsABC) and NMG dehydrogenase (mgdABCD). In this pathway, methylamine is oxidised 229 

in a stepwise conversion via the methylated amino acids GMA and NMG to 5,10-230 

methylenetetrahydrofolate (Latypova et al., 2010, Chen et al., 2010; Supplementary Figure 231 

S6). This pathway is found in methylotrophs as well as non-methylotrophs that use 232 

methylamine as nitrogen source (Wischer et al., 2014).  233 
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Further analysis of the M. thiooxydans strain L4 genome enabled reconstruction of key steps 234 

in carbon and nitrogen metabolism (Table 1). Carbon fixation from formaldehyde could occur 235 

via the ribulose monophosphate (RuMP; Johnson and Quayle, 1965) cycle (Entner-Doudoroff 236 

variant), as all the necessary genes are present in the genome. Genes encoding key enzymes of 237 

other potential carbon fixation pathways, such as the serine and Calvin-Benson-Bassham 238 

(CBB) cycles were missing, indicating the likely absence of these pathways in M. thiooxydans 239 

strain L4 (Table 1). Both Entner-Doudoroff and pentose phosphate pathways were complete, 240 

but no gene encoding 6-phosphofructokinase, a key enzyme of the glycolysis pathway, was 241 

found. Genes encoding the 2-oxoglutarate dehydrogenase complex of the tricarboxylic acid 242 

(TCA) cycle, sucA and sucB, were also missing (Table 1), while the lpd gene encoding the 243 

lipoamide dehydrogenase was only found in conjunction with the pyruvate dehydrogenase 244 

complex. All other genes of the TCA cycle were detected. These results are consistent with 245 

the notion that bacteria using the RuMP cycle as their major carbon assimilation pathway tend 246 

to have an incomplete TCA cycle (Anthony, 1982). The resulting incomplete TCA cycle 247 

could still channel carbon from pyruvate to all intermediates that may be required for central 248 

biosynthetic pathways, including oxoglutarate and succinyl-CoA, but cannot be used to 249 

generate energy by oxidising carbon compounds to CO2. To produce reducing power through 250 

the oxidation of formaldehyde to CO2, two potential pathways were present: the dissimilatory 251 

hexulose phosphate (HuP) cycle (Chistoserdova et al., 2000) and the tetrahydromethanopterin 252 

(H4MPT)-dependent oxidation pathway (Vorholt et al., 2000). Regarding nitrogen 253 

metabolism, genes for assimilatory nitrate reduction to ammonium, including a assimilatory 254 

nitrate reductase and a NAD(P)H-dependent nitrite reductase, were present in the genome of 255 

M. thiooxydans strain L4, but no genes linked to dissimilatory nitrate reduction were found. 256 

The glutamine synthase/glutamine 2-oxoglutarate amidotransferase (GS/GOGAT) pathway 257 

for ammonia assimilation (Trotsenko and Murrell, 2008), as well as alanine dehydrogenase 258 
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and glutamate dehydrogenase genes, were also present. For sulfur metabolism, all genes 259 

required for assimilatory reduction of sulfate to sulfide were present in the genome, and 260 

furthermore all genes required for cysteine biosynthesis were found. No genes specific for 261 

dissimilatory sulfate reduction were present. Finally, the biosynthetic pathway for ectoine, a 262 

common bacterial osmolyte, was found, coinciding with the marine habitat of M. thiooxydans 263 

strain L4. 264 

Using a similar targeted metagenomics approach, Kalyuzhnaya and collaborators 265 

(Kalyuzhnaya et al., 2008) were able to retrieve the near complete genome of a novel 266 

methylotroph, Methylotenera mobilis, from Lake Washington sediment. By complementing 267 

this culture-independent approach with metaproteomic analyses, here we further determined 268 

which of the metabolic pathways identified in the reconstructed genome were being expressed 269 

by Methylophaga thiooxydans strain L4 during growth on methanol, thus gaining a deeper 270 

understanding of the metabolism of this organism.  271 

Metaproteomics and metabolic reconstruction. An LC-MS/MS analysis of proteolytic 272 

peptides lysates from proteomes isolated after three day SIP incubations was performed and 273 

analyzed using the predicted proteins of the M. thiooxydans strain L4 genome as reference 274 

database. Of the 2,522 protein-encoding genes predicted in the eight contigs of the M. 275 

thiooxydans strain L4, 737 were identified, accounting for 29% of the proteome of this 276 

Methylophaga species (Supplementary Dataset S4). Based on these data, metaproteomic 277 

reconstruction of the central carbon metabolic pathways of M. thiooxydans strain L4 growing 278 

on methanol was achieved (Figure 3). The large subunit MxaF of methanol dehydrogenase 279 

was detected along with some of the accessory proteins, MxaD, MxaE, MxaJ, MxaG, MxaR 280 

and MxaL, indicating expression of the inducible mxaFJGIRSACKL operon (Amaratunga et 281 

al., 1997, Toyama et al., 1998), as predicted from the metagenome. An additional 282 

mxaRSACKLC operon (Beck et al., 2014) and at least three of the four alternative methanol 283 
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dehydrogenase genes xoxF were expressed, together with the associated xoxJ. Since four out 284 

of the five methanol dehydrogenase genes identified in the metagenome-derived genome of 285 

Methylophaga thiooxydans strain L4 were expressed, the role of individual xoxF genes in 286 

methanol oxidation by this methylotroph remains unclear.   287 

In M. thiooxydans strain L4, the formaldehyde resulting from oxidation of methanol is 288 

assimilated into cell material via the RuMP cycle (Johnson and Quayle, 1965). This was not 289 

surprising since all members of the Piscirickettsiaceae family (Chistoserdova and Lidstrom, 290 

2013), including Methylophaga spp. (Janvier et al., 1985), have been reported to use this 291 

carbon assimilation pathway. All proteins required for the Entner-Doudoroff variant of this 292 

cycle and for the transketolase/transaldolase system were detected, including the key 293 

enzymes 3-hexulosephosphate synthase and 2-keto-3-dexoy-6-phosphogluconate (KDPG) 294 

aldolase (Trotsenko and Murrell, 2008, Chistoserdova, 2011). Formaldehyde is also oxidised 295 

to CO2 via the H4MPT-dependent pathway to provide this methylotroph with energy for 296 

biosynthesis. In contrast, no 6-phosphogluconate dehydrogenase of the oxidative branch of 297 

the HuP pathway was detected, possibly indicating preferential use of the direct 298 

formaldehyde oxidation pathway via H4MPT. 299 

The variant of the RuMP cycle detected in the metaproteome fixes three moles of 300 

formaldehyde into one mole of pyruvate as the central intermediate (Anthony, 1982). For the 301 

conversion of pyruvate, and also phosphoenolpyruvate (PEP), to further central intermediates 302 

such as acetyl-CoA and oxaloacetate, several enzymes were detected that connect to the TCA 303 

cycle, including PEP carboxylase, the pyruvate dehydrogenase complex, oxaloacetate 304 

decarboxylase and pyruvate carboxyl transferase. Also, all enzymes of the lower part of the 305 

Entner-Doudoroff pathway, following KDPG aldolase, were present, enabling the conversion 306 

of glyceraldehyde 3-phosphate to pyruvate and vice versa, via PEP synthase, establishing a 307 

further connection between carbon fixation and central carbon metabolism in M. thiooxydans 308 
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strain L4. Finally, the proteins required for oxidation of methylamine, from both the mau and 309 

the gma/mgs/mgd gene cluster, have not been identified in the proteome data. This is not 310 

surprising, as the incubations were carried out with methanol as growth substrate and these 311 

pathways are only induced in the presence of methylamine. 312 

In this study, we combine for the first time DNA- and protein- stable isotope probing with 313 

metagenomics and functional gene amplicon sequencing to investigate the methanol 314 

metabolism of an uncultivated marine methylotroph. This focussed metagenomic approach 315 

yielded a near complete genome of an uncultivated Methylophaga species, M. thiooxydans 316 

strain L4, and metaproteomics analysis established the pathways of methanol metabolism in 317 

this bacterium. This focussed 'omics approach using 13C-labeled substrates will have 318 

significant utility in cultivation-independent studies in microbial ecology. 319 

Experimental Procedures  320 

Stable Isotope Probing (SIP) experimental set up. Surface seawater for SIP experiments 321 

was collected from station L4 in the English Channel (50°15.0'N; 4°13.0‘W) on September 322 

the 2nd, 2013. Four litres of seawater were filtered in duplicate through 0.22 µm Sterivex TM 323 

filters (Merck Millipore) using a peristaltic pump (Watson-Marlow 502S, 1 ml min-1), to 324 

extract DNA for analysis of the bacterial community composition at the start of the SIP 325 

experiment. Four 2 L gas-tight glass bottles were filled with 0.75 L of the same seawater, 326 

inoculated with 75 μmol of 13C-labeled (2 bottles) or (12C) unlabeled (2 control bottles) 327 

methanol and incubated at 25°C in a shaking incubator (50 rpm) for three days. Methanol 328 

concentration in the incubation bottles was measured every day using an Agilent 7890A gas 329 

chromatograph (GC) equipped with a 7693A autosampler and a HP-5 column (see 330 

Supplementary Information). After incubation for three days, no methanol could be detected, 331 

indicating that sufficient 13C had been incorporated during the SIP experiment. Seawater 332 

from all four SIP incubations was filtered through Sterivex filters using a 50 ml syringe. All 333 
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filters were stored at -20°C before extracting DNA and proteins within two weeks of the start 334 

of the experiment.  335 

DNA extraction. DNA was extracted from Sterivex filters by adding 1.6 ml of SET buffer 336 

(0.75 M sucrose, 40 mM EDTA, 50 mM Tris-HCl pH 9) and 0.2 ml of 10% (w/v) SDS and 337 

incubating with rotation in a hybridization oven (Hybaid, Waltham, MA, USA) at 55°C for 338 

2.5 h. After incubation, two phenol:chloroform:isoamyl alcohol (25:24:1) extractions and a 339 

single chloroform:isoamyl extraction were performed before precipitating the DNA overnight 340 

at -20°C with a glycogen solution (Roche, Basel, Switzerland), 7.5 M ammonium acetate and 341 

ethanol, as previously described by Neufeld and collaborators (Neufeld et al., 2007a; see 342 

Supplementary Information). DNA was pelleted by centrifugation at 4,500 x g for 30 min 343 

before washing twice with 80% (v/v) ethanol, drying for 15 min at room temperature and 344 

resuspending in 50 µl of nuclease-free water. 345 

Protein extraction. The phenol phases from the DNA extraction were combined and mixed 346 

with a five-fold volume of ice-cold 100 mM ammonium acetate in methanol and also left at 347 

-20°C overnight for precipitation. Samples were centrifuged for 30 min at 4,500 x g and 348 

protein pellets were washed twice with 100 mM ammonium acetate in methanol, twice with 349 

ice cold 80% (v/v) acetone and once with ice cold 70% (v/v) ethanol and finally dried at 350 

room temperature. 351 

DNA-SIP centrifugation and fractionation. For each sample, 5 μg of DNA extracted from 352 

SIP incubations were added to a mixture of 7.163 M CsCl and Gradient Buffer (0.1 M Tris, 353 

0.1 M KCl and 1 mM EDTA) set to a final density of 1.725 g ml-1 before centrifugation for 354 

40 hrs at 20°C and 44,100 rpm (~177,000 x g) with vacuum, maximum acceleration and no 355 

brake, using a Vti 65.2 rotor and a OptimaTM LE-80K Ultracentrifuge (Beckman Coulter). 356 

Fractionation of CsCl gradients was done using a low-flow peristaltic pump as described in 357 

Neufeld and colleagues (Neufeld et al., 2007b). A total of twelve CsCl fractions, each of 358 
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425 μl, were obtained, ranging from heavy to light DNA. DNA from all fractions was 359 

precipitated by adding 20 μg of linear polyacrylamide (LPA) and 900 μl of PEG-NaCl 6000 360 

solution (30%/1.6M) and left at room temperature overnight before centrifugation at 13,000 x 361 

g for 30 min. DNA pellets were washed with 500 μl of 70% (v/v) ethanol, centrifuged for 362 

another 10 min, air-dried for 15 min and resuspended in 50 μl of TE buffer (10 mM Tris-HCl, 363 

1 mM EDTA). 364 

DNA amplicon sequencing. Primer sets used in this study were: 27Fmod (5′ 365 

AGRGTTTGATCMTGGCTCAG 3′) and 519Rmodbio (5′-GTNTTACNGCGGCKGCTG-3') 366 

to amplify 16S rRNA gene, 1003F/1555R (Neufeld et al., 2007a) to amplify mxaF gene and a 367 

primer set targeting clade 5 to amplify xoxF gene (Taubert et al., in revision). In each case, 368 

three independent PCR products were combined. Purified PCR products were sequenced by 369 

454 pyrosequencing (GS FLX Titanium system, MR DNA, Shallowater, TX, USA). 16S 370 

rRNA gene data analysis was done according to Dowd et al., 2011) and DeSantis et al., 371 

2006). mxaF and xoxF functional gene amplicon sequencing data was analyzed using 372 

software packages mothur (Schloss et al., 2009) and USEARCH (Edgar, 2013). See 373 

Supplementary Information for details. 374 

Metagenome sequencing. DNA from the heavy fraction of duplicate 13C experiments was 375 

amplified using REPLI-g Mini Kit (Qiagen), using 5-10 ng of DNA (or nuclease-free water 376 

for negative controls) as starting material, following instructions provided by the 377 

manufacturer. The amplified DNA was purified using LPA and PEG-NaCl 6000 solution (see 378 

Supplementary Information) and 4 μg from each sample were sent for MiSeq, 2 x 300 bp, 379 

Illumina sequencing (2 million reads; MR DNA, Shallowater, TX, USA). The metagenome 380 

data received was analyzed using MG-RAST (Meyer et al., 2008) to determine the 381 

phylogenetic classification of the reads based on the Ribosomal Database Project (RDP) 382 

database (Wang et al., 2007), assembled in BaseSpace (basespace.illumina.com) using 383 



 14 
 

SPAdes Genome Assembler v3.0 (Bankevich et al., 2012) and annotated in RAST (Aziz et 384 

al., 2008).  385 

Sequence data deposition. Nucleotide sequences from 454 amplicon pyrosequencing 386 

obtained in this study were deposited in the GenBank nucleotide sequence database under 387 

accession numbers KM657588 (mxaF) and KM657641 - KM657644 (xoxF). Raw data from 388 

454 amplicon pyrosequencing of 16S rRNA and functional gene amplicons have been 389 

deposited in the Sequence Read Archive (SRA) of NCBI under accession numbers 390 

SRR1576828, SRR1576831, SRR1584480 - SRR1584483, SRR1584485, SRR1584486, 391 

SRR1584503, SRR1584504, SRR1584506 and SRR1584507. Annotated genome sequences 392 

of M. thiooxydans strain L4 are available in the GenBank Whole Genome Shotgun (WGS) 393 

database under accession number JRQD01000000. Raw Illumina MiSeq data were deposited 394 

at BaseSpace (https://basespace.illumina.com/s/eiGGwUvz6xBP). 395 

Protein-SIP analyses. Protein extracts were denatured by incubation in SDS sample buffer 396 

(62.5 mM Tris/HCl pH 6.8, 10% glycerol (v:v), 2% SDS (w:v), 5% mercaptoethanol (v:v), 397 

0.005% bromophenol blue) at 90°C for 10 minutes, followed by centrifugation at 13,000 x g 398 

for 10 minutes. Supernatants were subjected to one-dimensional SDS polyacrylamide gel 399 

electrophoresis for prefractionation as described previously (Taubert et al., 2012). Gel lanes 400 

were cut into four bands each. Bands were destained and dehydrated, followed by reduction 401 

with 10 mM dithiothreitol for 30 minutes at room temperature and subsequently alkylation 402 

with 100 mM iodacetamide for 30 minutes at room temperature. Proteolysis with trypsin was 403 

performed overnight at 37°C. Extracted peptides were desalted and concentrated using 404 

ZipTip-µC18 (Merck Millipore, Darmstadt, Germany). Solvents were evaporated under 405 

vacuum and samples were resuspended in 0.1% formic acid for LC-MS/MS analysis. Mass 406 

spectrometry analysis was performed by an Orbitrap Fusion instrument (Thermo Fisher 407 

Scientific, Waltham, MA, USA) coupled to a TriVersa NanoMate (Advion, Ltd., Harlow, 408 
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UK). In total, 5 µL of the peptide lysates were separated via a Dionex Ultimate 3000 nano-409 

LC system (Dionex/Thermo Fisher Scientific, Idstein, Germany). Raw data files were 410 

converted to peak lists and analyzed using TOPPAS v1.11.0 and OpenMS pipeline 411 

(Kohlbacher et al., 2007, Sturm et al., 2008), with the OMSSA search algorithm v2.1.8 (Geer 412 

et al., 2004). Two databases were used, one consisting of protein sequences obtained from the 413 

NCBInr database and one consisting of the predicted protein sequences from the 414 

metagenome. Only peptides with a false discovery rate (FDR) <2%, estimated by a decoy 415 

database, and peptide rank equal 1 were considered as identified (see Supplementary 416 

Information). 417 
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 566 

Table and figure legends 567 

Table 1. Central pathways for carbon and nitrogen metabolism detected in the metagenome 568 

dataset obtained from 13C-DNA of the 13C-labeled incubations. (1) No 6-569 

phosphofructokinase, (2) No 2-oxoglutarate dh complex, (3) Via 2-keto-3-570 

desoxyphosphogluconate aldolase (KDPGA) and transketolase/transaldolase (TK/TA), (4) 571 

Via glutamine synthase/ glutamine 2-oxoglutarate aminotransferase (GS/GOGAT). 572 

Figure 1. Phylogenetic diversity of the total bacterial community (A) at the beginning (T0) 573 

and end (unfractionated DNA) of the Stable Isotope Probing (SIP) experiment, (B) of 13C-574 

labeled (heavy) and unlabeled (light) DNA and (C) in total peptides and peptides labeled by 575 

methylotrophy from SIP samples incubated for three days with 100 μM of 13C-labeled 576 

methanol. Results presented in A and B are based on 16S rRNA gene pyrosequencing data, 577 

whereas in (C) they are based on protein SIP analysis of the 13C samples. 578 
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Figure 2. The methanol dehydrogenase gene cluster of Methylophaga thiooxydans strain L4 579 

(Genbank accession LP43_0439 to LP43_0425) (M. t. L4) retrieved from assembled 580 

metagenomic sequences, compared with sequences from the available genomes of three other 581 

Methylophaga species: M. thiooxydans DMS010 (M. t. DMS010), M. 582 

nitratireducenticrescens strain JAM1 (M. n. JAM1) and M. frappieri strain JAM7 (M. f. 583 

JAM7). Different colours correspond to different genes. mxaF and mxaI correspond to the 584 

large and small subunit of methanol dehydrogenase, mxaG encodes the associated 585 

cytochrome and mxaJ is a gene of unknown function required for activity. mxaDE and 586 

mxaYX have regulatory functions in gene expression, mxaRSACKL are required for 587 

maturation and activation of the enzyme. 588 

Figure 3. Key steps in carbon metabolism of M. thiooxydans strain L4 identified by 589 

combining metagenomics and metaproteomics: coloured arrows indicate pathways that were 590 

present in the metagenome and were detected completely (green), partially (yellow) or not 591 

detected (red) in the metaproteomics data. Key proteins are: (1) methanol dehydrogenase, (2) 592 

formaldehyde activating enzyme, (3) D-arabino-3-hexulose 6-phosphate formaldehyde lyase, 593 

(4) 6-phospho-3-hexuloisomerase, (5) 2-keto-3-deoxyphosphogluconate aldolase. PP and ED 594 

are pentose phosphate and Entner-Doudoroff pathway, respectively. TCA, tricarboxylic acid 595 

cycle; H4MPT, tetrahydromethanopterin;  HuP, dissimilatory hexulose phosphate cycle; 596 

RuMP, ribulose monophosphate cycle; GS/GOGAT, glutamine synthase/glutamine 2-597 

oxoglutarate amidotransferase. 598 


