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Summary

In this thesis we study some properties of the geometrical realizations of
the dynamical systems that arise from the family of Pisot substitutions:

1 —s 12
I, : 2 — 13

(n=1) — 1n
n — 1
for n a positive integer greater than 2.

In chapter 1 we compute the Holder exponent of the Arnoux map, which
is the semiconjugacy between the geometrical realization of (2, 0), the dy-
namical system of this substitution, in the circle (S, f) and the n — 1
dimensional torus (T™~1,T). Also in this chapter we introduce the notion
of the standard partition in the symbolic space { and in its geometrical
realizations. The cylinders of this partition are classified according to their
structure. , ‘

In chapter 2 we construct a geodesic lamination on the hyperbolic disk
associated to this standard partition and a transverse measure on the lami-
nation. The interval exchange map f and the contraction A induce maps F
and H on the lamination, respectively. The map F preserves the transverse
measure and H contracts it.

In chapter 3 we compute the Hausdorff dimension of the boundary of
w, the fundamental domain of the torus T? obtained by the realization of
the symbolic space 2 that arises from the substitution II3. As a corollary
we compute the Hausdorff dimension of the pre-image of the boundary
of w under the Arnoux map. We also describe the identifications on the

boundary of w that make it a fundamental domain of the two dimensional
torus. '
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In chapter 4 we study some relationships between the dynamical systems
of this family of substitutions. We describe how the dynamics of the systems
of this family, corresponding to lower dimensions —i.e. the parameter n in
the definition of II,, — are present in systems of higher dimensions. Also we
study the realization of this property in the interval.
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Chapter 0

Introduction

Space filling curves were first introduced by Peano, in 1890 ([34], [35)).
Later other examples were introduced by Hilbert ([27]), Lebesgue ([32]),
Schoenberg ([44]) and others. These constructions rely on the representa-
tion in a integer base of the numbers in the interval and a representation of
the points of the unit square using this base, eg. in [34] the base used was
3, in [27] was 4 and in the construction of Schoenberg a different integer
base representation of the points in the interval and in the unit square was
used. However these constructions have very few dynamical properties.

Substitutions are a source of dynamical systems with very different prop-
erties. Using the dynamical systems that arise from a particular family of
substitutions a space filling curve can be constructed with interesting dy-
namical and geometrical properties. A substitution in a finite alphabet A,
is a map from the alphabet to a set of words in this alphabet:

O : A — U A"
a — Vq.
This map is extended to a map the set of words in the alphabet A into
itself by juxtaposition, i.e. I(UV) = II(U)II(V') where U and V are words
in the alphabet and II(0) = 0. In this way the substitution is extended to
a set of infinite sequences in the alphabet A. We are interested in the fixed
points of II or II" for some n > 1. When .such points exist, we consider
the closure, in the product topology on AN , here N* is the set of positive
integers of the orbit under the shift map — o(uousus...) = uguy... — of
the fixed point, this space is denoted by Q. One of the main interests of
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these dynamical systems is that they provide the coding information for
certain geometrical dynamical systems.
One of the first substitutions to be studied was
o : {01} — {0,1}?
0 — 01
1 — 10

It was studied in 1906 by Thue ([45], [46]), who was interested in sequences
with non-repetition properties, and rediscovered in 1921 by Morse ([33]) in
the study of geodesics flows on surfaces of negative curvature.

As far as the geometrical realization of these dynamical systems is con-
cerned the substitutions are classified into two groups: substitutions of
constant length, i.e. all the words II(a), for a an element of the alphabet
A, have the same length and Pisot substitutions, i.e. the Perron-Frobenius
eigenvalue of the matrix that represent the substitution is a Pisot number.
In the case of substitutions of constant length, 2 is realized as an algebraic
extension of the ring of p-adic integers, where p is the length of the substitu-
tion. The shift map is realized as a rotation in this non-archimedian space
([42], [40]). In the case of Pisot substitutions,  is realized as a compact
region in R", for some n, which is a fundamental domain of torus T". The
shift map is realized as a piece exchange map in this compact region of R",
in fact, the dynamical system (2, ¢) is semiconjugate to a translation in
T™ ([38]). In the general case the realization of the substitution dynamical
system is a product of the spaces that arise in the case of constant length
and in the Pisot case([42], [40]). '

A comprehensive study of the dynamical systems that arise from sub-
stitutions of constant length can be found in [36].

On the other hand, some substitutions can be realized as an interval
exchange map. In [3], it was showed that for the family of Pisot substitu-
tions: ~

1 — 12
I, : 2 — 13

(n-1) — 1n
n — 1

with n > 3, there exists an interval exchange map f : S — S such that
the diagram '



Sl f Sl

6

Q0 —< Q

is commutative, where 6 is continuous from the right and therefore there
exists a map ¢ : S — T™"1 such that the following diagram commutes:

st A st
4 Q—2 .0 £
| / - \
Tn-1 T . pn-1

where 7 is the semiconjugacy given in the case of Pisot substitutions. In [3]
it was proved that the map ¢ is continuous. Hence it is a space filling curve.

On the other hand, a symbolic dynamical system in the alphabet A
can be obtained from an arbitrary sequence » = v;v;... by considering the
space: ‘

S =To"() [n e NT.

The dynamical system (I, o) is said to be of complexity p(n) if the
cardinality of the set of subwords, of length n, of the sequence v is p(n). If
v is periodic p(n) is constant for large n. The next degree of complexity
is when p(n) = n + 1. In this case the sequence is called a sturmian
sequence([5], [13], [16], [24], [25],(26],[39], [41]). Among these sequences is
the one obtained by the Fibonacci substitution, II,:

1 — 12

2 — 1.

The dynamical systems that arise from the substitutions II; are of com-
plexity (k —1)n + 1 (see proposition 1.2.4).

3



In [5] it was proved that all the sequences of complexity
(k—1)n+1 that satisfy a hypothesis, that we will specify next, are realized
as an interval exchange map of 2k intervals. The additional hypothesis that
we have just mentioned is: for every n and any subwordof v, W = w; ... w,,
of length n, it can be extended uniquely to a subword of some length m
(m >n) and this extended subword admits k exactly extensions to a word
of length m+ 1. And also, there exists a subword W = y... 0 of length

m' > n of v such that W,—; = wp_;for 0 <1 <n-1 and aW is also a
subword of v for all a € A.

The dynamical system that arises from the substitution II; satisfies
these properties ( propositions 1.2.1 and 1.2.2). These dynamical systems
are the simplest substitution dynamical systems that can be realized as an
interval exchange map and a translation on the torus of some dimension
and these two realizations are semiconjugate.

In this thesis we study the dynamical systems, that arise from the family
of substitutions IIx, and their geometrical realizations. Before describing
the contents of each chapter, we shall give a summary of the main properties
of the dynamical systems that arise from this family of substitutions and
their geometrical realizations ([3], [6], [38]). We shall use these results in
the thesis.

The substitution II; has a unique fixed point since it is a contraction
as a map from AN into itself. Let denote this point by = (uouy...).
According to previous lines

Q= {o"(u) | n € N"}.

The dynamical system (2,0) is minimal, i.e. every orbit is dense. This
space admits a natural self-similar partition Q@ = UL,;Q; where
Q = {v € Q|vo = i}. The self-similarity among the elements of this
partition comes from the commutativity of the diagram:

QO —2 .0
II I (0.1)
Ql Ql




where & denotes the induced map of o on £y, i.e.
&(l).) — o,m.in{l[a'(g) Gﬂl}(g).

The construction of the geometrical realization of (£2,s) in R¥! is as fol-
lows: Let us define the map 7 : & — R*"! on the orbit of the fixed point
of the substitution, u:

o r1(Un) ,
qe*(u)=n| : |- P (0.2)
ak-1 Tk=1(Un)

where U,, = uouy ... u,-1 and r;(U,) is the number of symbols equal to i in
U, and « is the inverse of the real root, greater than 1 of ¥ —z*-1—...—z—1,
The map 7 is extended by continuity to 2. The image of Q under 7 is
denoted by w, this set is a fundamental domain of T¥~1, therefore the map
7j could be re-defined as a map from © to T*-1, this map is denoted by
n. This map is a semiconjugacy between (Q,0) and (T*~1,T), where T
is the translation defined by the vector (a,...,a*). The set w admits a
self-similar partition {wi,...,wr}, where each w; is the image of Q;. When
the map T is considered as a map of w into itself, it exchange the sets w;’s
In figure 0.1 can be seen w and its partition, and figure 0.2 shows how w
teselates the plane. for the case k = 3.

A space homeomorphic to 2 is obtained using the representation of the
non-negative integers, given by the recurrence relation associated to the
substitution:

k-1
gn+k=Zgn+; forn>0 and g; =2 for 0 <i < k.
=0
See [38] for the details of the construction. We give a summary of it in
section 1.3. The space obtained is denoted by N

In [6], was introduce the interval exchange map f on I = [0,1) de-

ﬁned as: f = I 2 Ly o---0Lj where I; = [0,a) and, for j > 2,
I = [Tzl f, Ti,a'). Note that %, a' = 1, so that the intervals
Li,.:., I form a partition of I. The map L; denotes the rotation of order
2 on the interval J = [a, D), i.e.

z 4 e ifa5m<"7+b

Ly(z) = x—ér{e if Ft<z<b
z otherwise



Figure 0.1: The set w and its partition, in the case of k = 3.



under the

Figure 0.2: The set w (in the case of k = 3) and its translations
lattice Z2.
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When k > 3 the dynamical system (I, f) is minimal ([2}) and is self-similar,
1.e. the diagram

~

I, ——— 1,
is commutative, where the map h is

a:c-l-ﬂ%‘i if0§x<-1:;—k

“h(z) = .
(=) {oz:z:—-‘"";k+1 if 2t <z <1

and f is the induced map of f on .

Let 6 be the coding map of the orbits of f, under the partition given by
the I's, 1ie. 6(z) = {Z(f*(z))}, N+ where the map
Z : 1 — Ais defined as Z(z) = j if z is in I;. The map 6 is not con-
tinuous, however it is right-continuous since f is right-continuous.

Themap ¢ : S — T¥-1, defined as the composition of 5 and 6 is a semi-
conjugacy between (S!, f) and (TX-1,T), here the circle; S!, is identified
with I = [0,1). The continuity of £ is not obvious, since § is discontinuous
([3]). In the following chapters we will denote by ¢ the version map of the ¢
when it is considered as a map from I to the fundamental domain of T*-!
in R¥, obtained before, i.e.

£:1ow €=1hHod.

In chapter 1 we shall compute the Holder exponent of the Arnoux map
£ : S — Tk-1, In order to do that we introduce the notion of standard
partition of the symbolic space §, that comes from the self-similarity of the
§2;’s.-This partition is induced in the geometrical realizations of IIx in I and
in w (or in S'and TX-1). The structure of the cylinders of this partition
on T¥-1 is trivial; however the structure of the cylinders in the interval is
more complex, the cylinders could have many connected components, due
to the discontinuity of the map h. In section 1.5 we classify the cylinders
of this partition. In order to describe the cylinders of this partition we
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introduce, in section 1.4, a binary operation on the natural numbers, which
reflects the sub-division of a cylinder into sub-cylinders. In this section we
introduce a subset of the natural numbers that is a semi-group under this
binary operation. '

In chapter 2 we construct a geodesic lamination on the hyperbolic disk
associated to this standard partition and a transverse measure on the lami-
nation. The interval exchange map f and the contraction h induce maps F'
and H on the lamination, respectively. The map F preserves the transverse
measure and H contracts it and the following commutative diagram arises

A—E A
H H
A —E A

Because of this we can think this lamination as a geometrical realization. of
(Q,0). ‘ '

In chapter 3 we compute the Hausdorff dimension of the boundary of w,
the fundamental domain of T2 obtained by the realization of the symbolic
space € that arises from the substitution IIs. This result was proved inde-
pendently by Ito and Kimura ([28]). As a corollary we compute the Haus-
dorff dimension of the pre-image of the boundary of w under the Arnoux
map. We also describe the identifications on the boundary of w that make
it a fundamental domain of the two dimensional torus.

In chapter 4 we study some relationships between the dynamical systems
~of this family of substitutions. We describe how the dynamics of the systems
- of this family, corresponding to lower dimensions — i.e. the parameter k in
the definition of II; — are present in systems of higher dimensions. In
particular we show that there is a subset of _./Vk, whose dynamics resembles
the dynamics of Nk_l, from the topological and metric point of view. We
compute the Hausdorff and Billingsley dimensions, with respect to a natural
metric and measure on ._/Vk, of this set. Also we study the realization of
this set in the interval. '



Chapter 1

Holder exponent of Arnoux’s
semiconjugacy and the
standard partition of the
geometrical realization of the
substitution II.

1.1 Introduction

In this chapter we shall compute the Holder exponent of the semiconjugacy,
constructed by P. Arnoux in [3], between an interval exchange map and an
irrational translation on T¥-1, which are the geometrical realizations of
the dynamical system associated with the substitution II; ( which will be
denoted by II, whenever the parameter k is understood): '

m:{1,2,....; 3N 51,2, 5N

1512, 2513,..., (k-1) B 1k, £ 51

The construction of Arnoux’s map gives us a fundamental domain for
Tk-1 with very irregular — fractal — boundary. This fundamental domain
admits a partition into k rectangles, each one associated ‘with one of the
symbolsin the alphabet A = {1,...,k} on which the substitution is defined.
This partition is constructed in such a way that the dynamical system

-
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associated with the substitution i.e. o : @ — § gives symbolic dynamics
for the irrational translation, T on T¥-1. If we denote this semiconjugacy
by € : St — Tk-1 the following commutative diagram arises:

Sl -f Sl
g

(1.1)

IS
/7

T

/
Q 13
N

Tk

where f is an interval exchange map.

Since these k-regions are self-similar, we have a refinement of the par-
tition for all different levels. We call this partition the standard partition,
which is study in section 1.5

Given a level n cylinder of these partition, which corresponds to a word
of length I, (I > n); it turns out that this word can be extended uniquely
to a word of length m (m > l) such that there are k different possible
extensions to a word of length m +1 (that correspond to rectangles of level
n+1)(section 1.2). In the proof of the main theorem of this chapter and for
further purposes, we work with words of maximal length for a cylinder of a
given level, because the maximal words give more dynamical information.
In order to describe and manage this phenomenon properly we define in
section 1.4, a binary operation * : N x N — N. The definition of * uses the
representation of the natural numbers into “base II”. We shall show that
there are some natural numbers , which are very useful for representing
the cylinders of the standard partition; these numbers are called integers
compatible with the partition (I.C.P.), and form a semigroup under the
binary operation * (Sections 1.4 and 1.5). Also in section 1.4 we use this
binary operation for describing other dynamical properties of ¢ : @ — Q
and its geometrical realizations. :

For computing the Holder exponent of Arnoux’s map, we need a good
understanding of the standard partition in the symbolic space 2 and in its
geometrical realizations. In particular in the interval, the structure of rect-

11



angles is not very clear since the interval exchange map f is not continuous.
We deal with this topic in section 1.5 and especially in lemma 1.5.3.

1.2 Extension of allowed words in

In this section we are going to show that any allowed word in 2 of length
n can be extended uniquely to a word of length m (m > n) such that this
new word admits k different extensions to a word of length m + 1. Later
we shall show that the complexity of (,0) is (k —1)n + 1.

Proposition 1.2.1 Let V be;any allowed word of length n. It can be
uniquely eztended to a word V of some length m (n < m), such that V
admits k possible extensions.

Proof: For simplicity we are going to prove this proposition when
A={1,2,3}. '

Consider I1*(1) which is equal to 1213121121312. Here we can see that
the symbol 1 admits three possible extensions. It can be followed by 1,
2 and 3. Moreover, the symbol 3 can only be followed by 1. Because
33 is not an allowed word since is not in II(A) and cannot be formed by
Juxtapositions of elements of 4. Similarly 32 is not an allowed word. On
the other hand 31 and 131 are subwords of II*(1). Therefore the extensions
of 1 are:

1
/
1 - 2
N
31

Hence I19(1) admits‘the extensions:

(1) = -2 (1)117(2)
Ve ‘
me(1) — II9(2) = me-1(1)Ie-1(3) forall ¢ >1
N ‘
I9(31) = H9e-1(1)II9-1 (1)Ie-1(2) |

On the other hand, any allowed word V of Q is a subword of 11¢9(1) for
some gq. Therefore V can be extended in the same way as I1%(1), moreover

-
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this extension is unique when we consider the minimun ¢, such that V' is a
subword of 1I9(1).
Q.E.D.

In a similar manner we can prove the following proposition:

Proposition 1.2.2 Let V = v;...v, be an allowed word. Then there ez-
1sts @ unique word V= D1...0m with m 2> n such that Vi = vn; for
0>:i>n—1 and aV 1s an allowed word for any a in the alphabet A.

Let W(n) denote the set of allowed words of length n in Q. In order
to prove that the cardinality of W(n) is (k — 1)n 4+ 1, We introduce the
following proposition.

Proposition 1.2.3 Let W be an allowed word of 2.

1. If the word aW is allowed for some a in the alphabet A and if there
ezists a unique b in A such that the word Wb is allowed then aWb is
an allowed word. )

2. If there exists a unique a in A such that aW is an allowed word and
if WB 1s an allowed word for some b in A then aWb is an allowed
word.

3. If aW and Wb are allowed words for all a,b in A then there exist
unique @’ and b’ in such that a’WV is an allowed word.

Proof:

1. Since the word aW is allowed there exists an allowed word U such
that aW is a subword of II(U).

If Wb is not a subword of II(U) there exists ¢ an element of the A
such that Uc is an allowed word and Wb is a subword of II(Ue¢). The

existence of such symbol ¢ is given by the unicity of b. Therefore aWW'b
is a subword of II(Uc).

2. This proof is similar to 1.

3. Without of lost of generality, we can assume that 4 = {1,2,.3}. Sup-
pose as an inductive hypothesis that the statement is true for all
allowed words of length m, where 1 < m < n.

13



Consider W = w; ... w,, an allowed word. Since Wb is allowed for all
bin A, and since the words 22, 23, 33, 32 are not allowed in 2, we
can conclude that w,, = 1. There exists an allowed word U such that
Ud ia an allowed word for all d in A4 and U31 is also allowed such
that

e W1 is a subword of II(U31)
e W2 is a subword of II(U1)
e W3 is a subword of II(U2).

The word U is choosen with minimal length, i.e. if U’ is a subword
of U then w;... w1 is not a subword of II(U’). Observe that the
length of such word U is smaller than n. '

Since U is choosen with minimal length and the fact aW is an allowed
word for all a in A, we have that ¢U is an allowed word for all ¢ in 4
and for any a there exists a C such that aW is a subword of II(cU).
Therefore U is an allowed word such that ¢U and Ud are allowed for
all ¢ and d in A. Since the length of U is smaller than n, by the
inductive hypothesis, there exist unique ¢’ d' such that c'Ud’ ia an
allowed word, therefore this determines uniquely a’ and &' such that

a'Wb' is an allowed subword.
Q.E.D.

Proposition 1.2.4 The cardinality of W(n) is (k —1)n + 1.
Moreover (k-1)n elements of W(n) can be eztended uniquely to a word
of length n+1 and only one element of W(n) admits k possible extensions.

Proof: Again for simplicity, we are going to give the proof when A=
{1,2,3}. The proof is given by induction on the length of the word.

In the case n = 1 the elements of the alphabet admit the extensions
shown in Proposition 1.2.1

e 1 can be followed by 1,2,3
e 2 can be followed only by 1

¢ 3 can be followed only by 1.

14



Let W(n) = {V1,...,V?*1} where
Vi = v...0]
V2n+1 — v%n-}-l . vgn+1.

By the inductive hypothesis there exists j such that V7 is the only element
of W(n) that does not admit a unique extension.

71— 1 1
V' = v.vny,
Vo= o] 01
V2 = .. .02
Ve = v]...v)3
(72n+1 2n41 2n+1 2n+1
|4 = vy Lo T

In order to prove that only one of these words cannot be extended
uniquely to a word of length n 4 2, consider the following words of length
n:

Wi=vi... v,",vfl_,_1

Observe that by the inductive hypothesis we have 2n + 1 different words of
length n, so there is a unique ¢’ such that 1W*, 2W* and 3W?* are allowed
words, for i 7 i’ there exists a unique v] such that vj W* is allowed.

On the other hand there exists :— - possibly equal to i'— such that W‘
Wi2, W3 are allowed words, for i £ there is a unique extension of W* to
a Word of length n + 1, denoted by Wiwi,,.

If i’ & 7, by the proposition 1.2.3 parts 1 and 2, the words viWiwi,
are allowed, having in total 2n + 3 words of length n + 2.

If i = 1,by the proposition 1.2.3 part3, for each a in .4 there is a unique
by in A such that aW¥b, is allowed. For i # i’ the word viWiwi,, is
allowed. Obtaining in this way 2n + 3 words of length n + 2.

Q.E.D.
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1.3 A Numeration system associated with
the substitution |

In this section we are going to mention some results and techniques pre-
sented by Rauzy ([38]). The substitution associated with a Pisot number
allows us to represent the natural numbers in an ‘exotic basis’. This rep-
resentation is useful for constructing a dynamical system isomorphic to
0 : Q — Q in which some computations and geometrical constructions are
easier to do. In this section for simplicity we are going to restrict to the
case when the substitution is ‘

1 — 12
II: 2 — 13

3 — 1

however the construction and results are valid for all the substitutions of
this family, that is, also for k > 3.

Let u = uqu; ... the fixed point of I. Observe that ug = 1 which implies
that u must start with II(1) and also II*(1) and so on. Therefore, for all /,
the first symbols of u agree with I'(1). Let U, = uo...un—1 be the first n
symbols of u. U, will be expressed as a juxtaposition of words of II%(1).

Proposition 1.3.1 (Rauzy [38]) Given a positive integer N then

1. There exists a unique ¢ and (io,...,19) such that0 < ip < i < ... < iq
with ij40 > 1;+2 for0< j < k.

2. Uy = II'9(1)IT'-1 (1) - - - T (1)
This result can be expressed in terms of the recurrence relation associ-

ated to the substitution. Let g; = |II7(1)] where |V] is the length of the
word V.

Since the substitution satisfies
Hn+3(1) — Hn+2(1)nn+l(1)nn(1) Vn 2 0
we have the_ recurrence relation

In+3 = Gn42 T Gnt+1 + gn (1'2)
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with initial conditions go =1, g1 = 2, g = 4.

Proposition 1.3.1 permits us to represent each natural number in a
unique way as a sum of cetain of the g;’s with no three consecutive g;’s
in the present sum. This is a generalization of the Zeckendorf representa-
tion of the non-negative integers ([48]) using this recurrence relation instead
of the Fibonacci relation.

Let
N ={z € {0,131 | 2j4+2;41+2;42 < 3Vj and 3K > 0 s.t. Vn > K z, = 0}
e : N* - N
N — ¢N)
where ¢(N) is such that

N=gio+"'+gik =Z€j(N)gj

J20

which makes € a bijective map.

Consider NV (where it has the topology induced from the product topol-
ogy on {0, l}N ) and the dynamical system (+1) : N — N where the map
(+1) is the induced operation in N of adding one in N., i.e. (+1)e(N) =
e(N +1)

Proposition 1.3.2 (Rauzy [38)) There ezists a homeomorphism
¢ : N — Q such that the diagram '

AR N,
$ $
Q g Q

18 commutative.

To the set N it is associated the set of formal power series with coeffi-
cients zeros and ones, where series with three consecutive coefficients one

17



are not allowed. This set is denoted by A[z]. The bijection between then
is:
X { N - Nz]

a=(ap,a,...) = Yioax'
Since X is a bijection, we have the map X(+1)X~! : N[z] — N[z], which
we will denote by (+1), whenever the context is clear.
According to proposition 1.3.2 the diagram (1.1) can be expressed as:

Sl f Sl
¢ Wiz 7] ¢
Y
Tk-1 T k-1

where the map x is given by: x = X¢~', which is right continuous, and
8, is defined as: §,(a) = 2@iB'2/_ The relation ~ is the equivalence
relation defined by the lattice Z? in R?. Here B is the matrix

—a -—a
1—-a? —a?

and z is the vector, whose transpose is given by (a — 1,a?) = ij(a(u)).
In general the matrix B is the restriction of the matrix that represent the
substitution to its contracting eigenspace, which is of codimension 1, since
the Perron-Frobenius' eigenvalue of this matrix is a Pisot number.

1.4 A binary operation in N compatible with
the dynamical systems associated with
this family of substitutions

Using the representation of natural numbers described in the last section,
we can define a binary operation similar to the Fibonacci multiplication

18



(3], [4)).

Let n and m be givén in the form
N M
n= Za;g;, m = z b;9;
i=0 =0

where
eiln)=a; 0Zt<N ¢(n)=0 Vi>N

ej(m)=bj 0<;j<M ej(m)=0 V]>M

Define nom by
N M
nom =Y % abjgit;.

i=0 j=0

Like the Fibonacci multiplication this operation is associative.

Now we define a new binary operation in N:
If n= g+ +g; with g;; < g;, when j < q.
Observe that we can write n in the following way:

n = giyo(l4gi-io+ -+ gi—iy)
Gioo(T+gi-io o1+ +gi-iy)

= G, © (1 + Giy—ip © (1 et G-, © (1 + gil""z-q) .. ))

Definition 1.4.1 Define the binary operaration * by
N x N - N

(1.3)

nox m = g,o(l+gi-i,0o(l+-- +gil—1-il;2 o (1 + gir—iry om):-+))

Properties:
e lxm=mxl=m
o Ifn=g, then n¥xm=g,om

e x is not commutative: e.g.
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24+T7=g1+93=91°(g0 + 92)

9 =
3 = 14+2=g0+qn
9%3 = g10(go+g0o(1+g))=g°(g+g+g)=

= g1+93+9+1=24+7+13=22
3¥9 = go+910910(90+92) =go+920(g0+ g2) =
= go+g2+91=14+2+13=16

e In general it is not associative: e.g.

3%(3%2) = (go+g1)*((90+91091)) = (90 + g1) * (g0 + 92) =
gotg10(gotg2)=go+g1+gs=
1+4247=10
3%3 = (go+g)*x(9o+g)=go+go(90+tg)=
= gotgatg=gs=T
(3%3)%2 = gs*xg1=g4=13

For this reason, we keep the following convention:
def
My *x Mg ke kmy = my * (Mg * (- ok (my_g * (My=q xmy))--+))

However this operation is associative in a subset of the natural numbers.
Letny =g1 =2,ny=go+g2=1+4=5,n3 =go+g1+93 = 1+2+47 =10,
no = go = 1 and P the set generated by these four numbers under the
operation , i.e.

Pr = {ni, *---xnyli; =0,1,2 or 3 for allj} P =UxPi

In section 1.5 we are going to show a geometrical interpretation of this
set.

Given any three natural numbers n, m and m’ then the associativity in
n % m * m' fails when we do the operation n * m and we get an expression
with three consecutive g;’s and therefore we have to use the relation 1.2 for
expressing the number as in proposition 1.3.1.

Easy calculations show that when we do n; x n; for z, 7 =01, 2 3 we
 never get three consecutive g;’s. So the operation * : P x P — P is
associative, which gives:
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Proposition 1.4.1 (P, %) 1s a semigroup.

One of the first applications of this binary operation in N is as follows:
given ¢"(u) (which is equal to II(¢"(u))) — & is the induced map of ¢ in
= {v € Q|vg = 1}— from the definition of & it is clear that 5"(u) belongs
to the orbit of u under o (i.e. "(u) = o™(u) for some m). However what
is the relationship between n and m?.

We are going to show how to express ¢™(u) as a composition of powers
of II, applied to o(u), and o (without using its powers). In particular we
shall associated to each natural number n an operator O, n(n) such that
o™(u) = O,n(n)(o(u)). Moreover we shall the property

Osn(m) o O,n(n) = Oyn(n * m)

Also we shall show how this property is preserved in the geometrical
realizations of ¢ : O — Q.

Definition 1.4.2 If n = g;, + 49, as n sectzon 1.8 (i.e. mo three
consecutive g;’s are preeent) then

n=giO(l+gi-io 01+ + giy—iry © (L + Girmirey ) 7))
We define:

Oeni(n) : Q-0
O,n(n) = Mgl g... [[#-~=2g[h—i-1,

Lemma 1.4.1 The map O,n(n) satisfies the properties:
1.

Osn(n)(o(u)) = o™(u) for any n € N.
O,n(m) o Oyn(n) = O;n(m *n) for myn € 73; '

0. n(m)(Opn(n)(0(w)) = e™"(u) for m,n € P.
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We are going to prove first the following proposition:

Proposition 1.4.2 1. ¢%(u) =II(o(u)) .
2. ¢9(u) = g%+ (u) .

3. ¢9°n(u) = ¢™%(u) = M9e™(u) for all n € N*
Proof of proposition 1.4.2:

1. This fact is proved by induction on gq.
In the case ¢ =1
1 = tor () = 1o(1) so 1 = I(u) = I(L)I(o(w)) = 120(o(w)).
Therefore 02(u) = IIo(u) but 2 = g; hence 09 (u) = (o (u)).
Let the expression of u as

u = U(gy)o9%(u) = II?(1)o9%(u) since u is the fixed point of the sub-
stitution we have u = II9t1(1)II(¢%(u)) therefore we have g%+ (u) =

(0% (u) = I(I*( (u)) = T+ (o (w)).

2. As we showed in part 1 of this lemma g%+ (u) = II(¢9(u)) and since
IToo = 6 oIl we have II(¢9(u)) = 69 (II(u)) and since u is the fixed
point of the substitution, we have:

g9at1 (-1_1.) = &gq(g).

3. Let n=g;, + -+ gi. By Proposition 1.3.1 A

U(n)o™(u) = (1) - I°(1)(c" ().

u

Since u is a fixed point of the substitution II

u=1I%u)= Ht‘z+q(1) cos Hi°+q(1)an"(g).

Therefore
%" (1) = g%+at=+siota(y) = g9 (u).

End of the proof of Proposition 1.4.2

Proof of Lemma 1.4.1:
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1. Let
n = g+ +9g
= Gio®(L+girmio 0L+ + Firsy—ir, © (L + Gitmiry )+ +))-
By proposition 1.4.2
i (g(w)) = a®=i(u)
aniz—ix_z(a(g)) — 01+g.',_.',_1(1_1)
Iit-1—f-2 g [~ f1-1 (U(H)) = g% -6,_2°(1+96,-;,_1)(2)

Hio aﬂil""’a s Hit—iz-x (0(2)) — a-gia°(1+9-'1-"o°(1+---+g.',_1 _;1_20(1+g.~l..,~l_1 )...))(H)

But the last term is ¢"(u) by using the expression for n given at
the beginning of the proof. But, by definition 1.4.2, O,n(n) =
Mgt~ ... II"~-1 Therefore

Opn(n)(o(u)) = o"(u)
2. Let

m = g+ +9; and meP
= G5 © (1 + 9ji—jo © (1 Foeeet 95q-1—Jg-2 ° (1 + gjqj-jq—l) e )) ‘

So . . ..
Oa,]’l(m) = [MYgII*~%¢g...I[79" %91
and
O,n(m) 0 O,ni(n) =
IIjo JHjl -joo. cc qu-jq_t;ﬂio AIJ'III1 _100' ves Hil'—il-l,
Ocin(m) Ouni(n)

-

Since mand n € P, m*n =
Gio (Lt 0(1+Gjg—jpr ©Gio (L +gis—ip (L4 -0 (T +gipirey ) ++)))-

Therefore

O, n(m * n) = Ogn(m) o Ogn(n).
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3. Follows immediately from 1 and 2.
End of the proof of Lemma 1.4.1

Now we are going to show what is equivalent to lemma 1.4.1 in the ge-
ometrical realizations of the dynamical system induced by the substitution
ie. 0: 0 — Q.

Definition 1.4.3 Let n be as in definition 1.4.2 Define:

Orp(n) : w—w by
Orp(n) = B®TB"T...Bi-1-i-2TBi~iia

Corollary 1.4.1 Let z = T(0,0) then

1. Org(n)z = T%(0,0) for n € N
2. Org(m)o Orp(n) = Org(m*n) for allm andn € P
3. O7,8(m)(Or,5(n)(z) = T™"(0,0) for m and n € P

Proof: From the commutativity of the diagran

Q g Q
n n
T2 T TZ

we obtain that

i(o(v) = T(H(v)) ; forall v € Q.

Since H(II(v)) = B(#(v)) for v in Q, we obtain #(0,n(m)o(u) = Or,z(m)ij(s(u)) =
Or,B(m)z Therefore the corollary follows from Lemma 1.4.1
Q.E.D. .
When we consider the geometrical realization of o : @ — Q in I=[0,1),
there is a slight difference that comes from the fact that the preimage of u
in the interval — under the map 6 (see page 8) — consists of three different
points with the property h(z;) = %it1 (mod3), ¢ =1,2,3.
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Definition 1.4.4 Let n be as in definition 1.4.2 Define:
Ofp(n) : I—-1 by
Osp(n) = B fRirio f ... plimimii-z fRii=ii
and define the degree of Ogpn(n) as 4

Corollary 1.4.2 Let zj, j =1,2,3 be the preimages of u under 8:

1.
Os5u(n)f(25) = f(Zgrada()
where grad,(j) =7+ 4 (mod 3) and i; is the degree of Oy x(n)
2. Ogp(m) o Ogp(n) = Opp(m xn) where m, n € P

8. O n(m)(Osn(n)(f(2:)) = f™ ™ (Zgradmenti)) for m and n € P

We shall prove this corollary after the following proposition.

Proposition 1.4.3 1. h9(2:) = f%(grad, (i)
2. h9afn(z;) = f99(2graa,(i))

Proof of 1.4.3: We shall prove the two statements of this proposition
by induction: :

1. If ¢ =1 then Iif(x,-) = fh(z;) = f(ziy1). But f(zig1) = f2(zip1), in.
fact 6f(ziy1) = 6(u) = o*(u) (by proposition 1.4.2).

Consider
R f(2:) = hhIf(2:) = hf*(Tgrady(i) = FO (Zgradosr ()

But f: 99(Zgradyys (i) = F94 (Zgrad,4, (i) Since, by proposition 1.4.2, we
have: 0(f%(Zgrad,a (1)) = 7%(u) = o9+ (n).

Therefore:
th(f(-'C:')) = fot (zgradqu(i))
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2. If ¢ =1 then hf"(z;) = fzip1) and fA(zip1) = 9 (2ip1) (since
0(f"(zi41)) = &(u) = I(o"(u)) = a™*(u)).

Therefore: hf*(z;) = f*°9(zi4+1). Suppose that the statement is true
for ¢, then:

hatt 7 (z;)

hfnogq(xg,.adq(i))
fn°99°91 (:Dgradq+1 ('))

fregan (xymdq+1 ("))

End of the proof of proposition 1.4.3
Proof of corollary 1.4.2:

1. Let:

no= gt tg
= Gix© (1 + i —ip © (1 +e gil—y—i’t—z ° (1 +_gil-51-1) . ))

On the other hand:

R (f(25)) = fm (2, (moa®))
fRT=(f(25)) FHO oy (2, (mod3)
h,‘,_l_i,_z fhil—z',_l (f(c'c])) — fgil-l —ij_p0(14g9ip—i;_,y )(xj-i-ix

—{2 (modS)) ‘

B fhi~in oo Rt (f(z)) =
foise o mios ity i o0 Dz (o s)

Therefore:

-

Of,’l(n)f(xi) = fn(xgradn(j))

2. Follows from lemma 1.4.1.
3. Is a straight-forward consequence of part 1 and 2 of this corollary.

End of the proof of corollary 1.4.2
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1.5 The Standard Partition

In the symbolic space 2 we have a natural partition into k rectangles,
where k is the number of symbols in the alphabet in which the substitution
is defined. In the rest of this chapter we are going to work in the case k = 3,
only for simplicity, the results can be generalized to k > 3.

The space Q admits the partition Q = U2, 2; where

L={vev =1} i=1,2,3.
and each of these sets is self-similar to Q:

0, = I(Q)
Q= o(IT(Q)) = o(II())
Qs = o(Il(o(I1*(2)))) = o(T(c(()))) = o(TL(2))

This self-similarity induces a partition in each of the ;s and each of these

cylinders can be subdivided in three subcylinders according to the maps II,
oll?, cIoTI2.

Definition 1.5.1 The partition of §2 geﬁemted by the the system of iterated
maps (I, oI1?, olloII?) is called the standard partition of 2. The elements
of this partition are called cylinders.

We are interested in the standard partition because it plays an impor-
tant role in the proof of the the Holder continuity of the Arnoux map, and
in the next chapter. -

Let O,n(n) be as in definition 1.4.2. In the following lines we are going
to show that O,n(n)2 gives a l-cylinder of the standard partition in ,
when n € P

As we said before the partition is generated by the iterated system of
maps described bellow, so Oan(n) has to be a composition of members of
this family of maps.

In section 1.3, we mtroduced

ny=aq Ny = Jdo + g2
n3 = go+ g1+ 93 = go + 91 (g0 + 92) '
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So -
O,n(n) =1 O,n(ny) =dlI> O,n(n3) = olloll?

So any composition of O,n(n;) ¢ = 1,2,3 using lemma 1.4.1 can be
associated a natural number m such that O,n(m) is equal to this com-
position, i.e O,n(ni,) Oon(ni) -+ Osn(ni,) is equal to O,n(m) where
M = n, kN * -k n;,; since the n;’s are the generators of P, m belongs to
this set. Due to this fact, we introduce the following definition:

Definition 1.5.2 The elements of P are called integers compatible with
the partition (ICP)

Therefore we have:

Lemma 1.5.1 R is a cylinder of the standard partition if and only if there
ezists an ICP n such that R = O, n(n)S.

In section 1.2 we saw that any allowed word in {2 can be extended
uniquely to a word that admits three possible extensions. We are going to
show that any such maximal word represents the symbols of the standard
partition cylinder. '

Lemma 1.5.2 Let V = vg...Vm-1 be a mazimal allowed word as in sec-
tion 1.2. Then ezists a cylinder R of the standard partition such that
R =nNL'e™ () |

Proof of lemma 1.5.2:

The set R = N30~ () is not empty since v is an allowed word, we
need to find an ICP n such that R = O,n(n)(Q).

Now vy can be extended uniquely in €2 to vg...v;, and evidently this is
~ a subword of V.

Clearly the cylinder corresponding to this subword ﬂf‘;oa"(Qv,) can be
expressed as O,n(n;) (since this subword is the extension of a word of
length 1). Among the three possible next symbols after v;, let v;,41 be the
one in V, and we stop at the next symbol in which the word vg. .. vi,vi 41
cannot be extended uniquely i.e. vo... Vi Vig41 ... Vi; 4, Since each symbol
of the word v;y41...v;; ,, expresses a rectangle Q; §2; or 3 we have

N2 107 Q) = Oon(n;, ) ()

28



Therefore a1
MZs 07(Qu) = Oan(ng, * n;,)Q
Carrying on this process we find nj,, n;,...n;, such that

R = O,n(nj, xnj * -+ xn; )(Q)

Q.E.D.

Evidently the partition structure of €2 is translated to its geometrical
realizations. The cylinders of the standard partition in T? are “easy to
understand”, all of them are closed, connected and simply connected, since
Or,s(n) is continuous. However Of;(n)I for n an ICP are “more com-
plicated” since Oyx(n) might not be continuous as a map of the interval
into itself so Oyx(n)I might not be connected. Lemma 1.5.3 deals with
the structure of Oy (n)I, but first we introduce the notion of equivalence
of cylinders and some examples of the cylinders of this partition, having
different structures.

Definition 1.5.3 Letn and m be ICP’s. We say that the cylinders Oy ,(n)I
and Oy n(m)I are equivalent if there ezists a homeomorphism that maps one
cylinder into the other, in such a way that each subcylinder, belonging to
the standard partition, of Ofn(n)I is map into a subcylinder of the standard
partition in Ofp(m)L.

Remark 1.5.1 In the following lines we show the structure of Osx(n)I for
some particular ICP’s. In Lemma 1.5.8 we prove that these are all the
possible structures of the cylinders of the standard partition in the interval.

e Consider the case ny = g = 2,
Ofp(n)I=nR(I) =1, =[0,q]
The map h induce a partition in I, which is the image of
I = LULUIL: '
L = k(L) Uh(L)Uh(I5)
o, a+at

ME) = [0,h(@) UTR0),0) = [0, 55 u 2t o)

: 2_ 3 2 3
M) = [h(e), ha+a?) = (£, L,
a?+a® a+a4)

2 2

hI3) = [h(a+a?),h(0)) =]
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As can be seen here this cylinder consists of one interval and its nect
level partition consists of two cylinder, which are connected and one
cylinder which has two connected components.

Consider the case when n = ng * ny,

Osn(ny xny))I = R*(X) = k(1) = [0, h(a)) U [R(0), @)

a?—-ab a+ at

= [0, ) JU | D) , @)

And this cylinder admits the following partition:

Of’h(‘nl * Tl])I = Of,h(nl * nl)Il U O_f,h(nl * n;)Iz U Oj,h(n] * 711).[3
= hz(Il) U ]1,2([2) U hz(I;;)
R*(L) = [0,h(a))U[R(0),h*(a)) U [hY(a + a?), )
(L) = [h¥*(a),h*(a+ a?))
R (L) = [k« +.a2),tl_i’1}}_ R¥(t))

So Ogn(ny * ny)I consists of two intervals, and its next level partition
consists of two cylinders which are connected and one cylinder which
has three connected components.

Now, we consider n = ny *ny xny and Ofp(ng * ny * ng)I

Ofn(ny *ny x )L = A3(I) = K23 (L) ,
= [0,h(a)) U[R(0), h*(e)) U [A*(0), )

And the nezt level partition is

Ogn(ny*nyxmy)I = K3(I) U R3(L,) U A3(13)
) R3(Ih) [£3(0), h*(@)) U [R*(0),R*()) U [R*(0), h3(a))
R¥(I,) [R¥(a), h(@)) U [R(0), A} (a + a?))
R(L) = [hY(a+a?),h*(0))

When we consider the cases Ojpp(ny*ny*xng*xny)l  and
On(n1 * ny * ny x nq % ny)I we also have cylinders consisting of three
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h(I,) h(I2) h(I3) NI,)
0 h(ex) h(x+a2)  K(0) x
Figure 1.1: Partition of Oy x(n)I
2 2 2
ht,) hr,) hr,)
—_— — ' ]
° M) o) Wiy Kam)
Figure 1.2: Partition of Ofp(nq % ny)I
3
h(o) h3(o<)
bty —_— ——
0 h 2
'3\ (=) h(0) h(w) o) x
2
h (x+x“)
Figure 1.3: Partition of O (ny * ny xny)L
4 Aecee®) (o) 3
h f“) . \ / h ()
3 —H— i v H——{ —
h(0) h(e) h(0) hz(o() ,hz(oj '

Figure 1.4: Partition of O u(ny % 1y * ny % 1q)L
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5 2 S 2. 5
R () h(x) h(x+x?) h(o
) | v/ L p
— - H—
4 2 3
h(0) h(0) h(x)

K(0)

Figure 1.5: Partition of Oy (nq * ny * ny *nq *xng)I

intervals, but the subpartition structure is slightly different between
them and the case O p(ny * ny % nq)I; as can be seen in the figures 1.4
and 1.5. .

o However if we consider the case Ogp(ng * ny * ny * ny * ny *nq)I we
get cylinders of similar structure to Ofp(ny * ny x nq)I, and all the
cylinders coming from Oy p(ny * nq * - - - % ny)I have three intervals and
they are of the previous types, as can be seen 1n the proof of lemma 1.5.3.

Proposition 1.5.1 Let be n,n' ICP’s, such that n = n; *:-- xn;, and
n' = n; - xkn;, with l < k. If there exists a continuous and bijective
function ¢ : Ogp(n')I = Ogp(n)l of the form Ogp(m) for some integer
m (m might not be an ICP) such that this map preserves the number of
disjoint intervals in each of these cylinders and if

210, a(n); * 01N I; — Ogp(nx )L (1.4)
is also bijective for j = 1,2,3; then Osn(n)I and Ogn(n')I are equivalent

Proof of Proposition 1.5.1: Since ¢ is a continuous and bijective
map from Ogn(n’)I to Ogp(n)I, which preserves the number of disjoint
intervals of these cylinders. It can be extended to a homeomorphism of I
into itself.

In order to prove that ¢ preserves the cylinders of the standard partition,
cousider a subcylinder of Oy u(n')I, say Ofu(n' * nj, *---*n;,)I for some
s 2> 1. Using corollary 1.4.2 we obtain: ’

eOpn(n' *mj %+ xni )T = @Ogu(n %0y )Opn(ng, * -+ %)l
= Ogn(n*n;)O05n(n;, * -~ *n;,)I
= Ogpn(n*nj *---%n;)l
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which is a subcylindér of O f,;l(nji belonging to the standard partition.
Therefore Ogx(n')I and Oy (n)I are equivalent.

Q.E.D.

Lemma 1.5.3 Let n be an ICP. The cylinder Oy, n(n)I is either:

1.

an interval and 1t 1s equwalent to I1 =04 n(n1)L. In this case, we say
that Oz ,(n)I is of type 1.

two connected components and it is equivalent to Ogpn(ny *ny)L. In
this case, we say that Oz n(n)I 1s of type 2.

the union of three connected intervals and one of the following equiv-
alences happens:

(a) Osn(n)I is equivalent to Ogp(ng * nq * nl)I In this case, we say
that O n(n)I is of type 3-a.

(b) Ofn(n)I is equivalent to Oy p(ny * ny * nq * ny)L. In this case, we
say that Osi(n)I is of type $-b. _

(c) Osn(n)I is equivalent to Ogp(ny * ny *xnq *ny *ng)I.  In this
case, we say that O (n)I is of type $-c.

Proof Of Lemma 1.5.3: We use induction on the number of factors

in the ICP Forl =1:

e In the case n = n; , there is nothing to prove.

e In order to study the case n = n, =1+ g3, we consider the cylinder

Oj.n(n1 * ny)I=h%(I) - discussed in remark 1.5.1-, which is of type
2. Since the map f is continuous in [0, k(a)] C [0,%) and [R(0),a] C
[$,a] and also lim,_,- = f(0). Therefore fR*(I) consists of only one
connected component. If we define ¢ = Oy x(m) for m =1+ g; then

@: Opn(n)I — Oppn(ng)I

by construction is bijective and continuous on O¢n(n1)I. Further-
more:
. goOf,h(nl * nj)I = O,e,,,(m)Of,h(nl * nj)I
= Of,h(m * nl)Of,h(nj)I
= Oyx(n2)O0sn(n;)I
= Of,h(ng * nj)I.

Hence Oy n(n2)I is of type 1. See figure 1.6
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ox+x2

2
th (Il) fhz(ll)
(o4 2 ' 2 —
Th(1,) fh(1,)
Figure 1.6: Partition of Oy x(n,)I
o In the case n = n3 = 1 + g; + g3, consider the | cylinder

R(fh*)(X) = h(I,) and the map f is continuous in it, since h() =
[h(a), h(a+a?)) C [0,5] and f is continuous in this interval. There-
fore f(h(1I;)) is an interval. Moreover f(h(I;)) = I3, because fh(a) =
a+ o® and fh(a + o) = 1. Let be ¢ = Oypu(m) where m =
1+g10(1+g1)

@ : Ogn(n1)l — Ogp(ns)I

which is a bijection because

o(h) = fhfh(l}) = fRfA*(I) = O4p(ns)1
and continuous. Therefore Oy (n3)I is of type 1.

We are going to show that the lemma holds for Oyp(n * n;)I where
n=n; *---*xn; and j =1,2,3.

¢ Suppose Oyu(n)l is of type 1. By the inductive hypothesis, we have
a continuous and bijective map :

@ I1 _ Of,,,(n)I
such that . .
@ : Ofp(ny * 1)1 — Opp(n * nj)l

is bijective for j = 1,2,3. Also the map ¢ preserves the number of

disjoint intervals. Furthermore ¢ is of the form Oy (m) for some

positive integer m. By the existence of the map ¢ we obtain the

equality ’
Osn(m)Osn(n1) = Ogp(m x n1)

- (which is not always true for all positive integers m).
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If j =1 then Oy pu(n * nq1)Lis of type 2, because ¢ maps the partition
structure of Oy (n * ny)I into the partion structure of Oy n(ny * ny)I,
i.e. satisfies the property (1.4) in proposition 1.5.1:

©Osn(ny xny *n))I = Opp(m)Osn(ng * ny * n;)I
= Ofn(m *n1)0gn(ny * ;)1
= Of,,,(n)Of,h(nl * n,-)I ’
= Osp(n*nyxn;)I  fori=0,1,2,3

From this, we can conclude that the cylinder Oy x(n * n;)I consists
of two connected components since Oy ;(n; * n1)I is the union of two
disjoint intervals.

If j = 2 then O p(n * ny)Lis of type 1. Since Oy x(ny * ny)I is of type
1, in fact

O n(ng * 7o) = hfR*(I) = h(L,) = [h(a), k(e + &?)).

Taking m’ = g, o (1 + ¢1), we have Osu(m) = 'hfh and
O n(m')Og1(n1)I=04p(ng * ny)IL.

We define the map
" : Ogn(n1)l — Ogn(n * no)I

by ¢’ = @Oygx(m'), which is continuous since Ofn(m')Ogn(n1)L is the
domain of ¢, which is continuous. Moreover it is bijective and satisfies
the property 1.4, because:

@' Ofn(n1 *n)I = @Osna(m')Ofp(ny * n;)I
©O0£,1(m")O,n(11)Ogp(ni)I

0O p(m' % n1)0y p(n;)1

(,OOf,h(nl * nz)Of,h(n,-)I

Osn(n * ny % n3)Ofp(n;)I

Osn(n *ny *xng xny)I ,

= Of,;,(n * 711)Of,h(n2 * n;)I for i = 0, 1,2,3.

Therefore Ogp(n * ny)I is an interval. These properties show that
Oy.n(n * n2)L is of type 1.

In a similar way, we can prove that Oy x(n * n3) is of type 1.
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e When O ,(n)lis of type 2, similarly we can prove that Oy x(n * ny)I
is of type 3-a and Oy p(n * ny)I, Ofp(n * n3)I are of type 1.

e In the same way we can discuss the case when Oy i(n)I is of type
3. Here, if Ofi(n)I is of type 3-a then Ofn(n * nq)I is of type 3-b,
Oy n(n * na)Lis of type 2 and Oy n(n * n3)Lis of type 1. When Oy i(n)I
is of type 3-b then Oy ;(n * n1)L is of type 3-c, Ogn(n * ny)Lis of type
2 and Oy p(n * n3)L is of type 1. And finally, when Oy (n)I is of type
3-c then Oy u(n * np)I is of type 3-a, Ogn(n * n2)I is of type 2 and
O x(n * n3)L is of type 1.

Q.E.D.

1.6 Holder exponent

In this section we compute the Holder exponent of ¢ : S — T"-1, the semi-
conjugacy between the interval exchange map f : S! —- S! and
T : T-1 — T2-1 an irrational translation in T®-1,

Theorem 1.6.1 The map £ : S* — T*~1 45 Holder continuous with ezxpo-
nent p = —%—é—i‘i, where B, 1s the greatest, in modulus, among those eigen-
values of the mairiz associated with the substitution, with norm smaller
than one. And A is the Perron-Frobenius eigenvalue of this matriz.

Proof:
First we are going to prove this in the case n = 3. In this situation
1B = A2 =a?s0p=1 (At the end of this section we shall show how

to prove the theorem in the case when n > 3.)
It is enough to prove that

3C, > 0Vt t' €1 such that |6(t) — ()| < Colt =tz (1.5)

Because from the dimensions of the domain and the image, one and two
respectively, of £ we get that the Holder exponent p <1/2.

Also we can reduce the proof of the inequality (1.5) to the case when #/
is in the interior of a cylinder of the standard partition and ¢ is an extreme
point of this cylinder — In this proof we assume that the cylinders of the
standard partition are closed intervals, instead of semi-open as we showed
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in the previous section. This assumption is made in order to facilitate the
finding of a extreme point of the cylinder, on the other hand it does not alter
the proof. In fact, let £ be one point that is in closure of a cylinder but not
in the cylinder, so { = bm,__, - Oy xr(m)7 where 7 is either the discontinuity
point of the map h or an extreme point of I, I, I3. Therefore Oy x(m)7o
is a extreme point of the cylinder. Moreover x(t) = lim,_;- x(7) hence
£(t) = £(f) — In fact suppose that 7,t' are in the interior of a cylinder
of the standard partition, i.e. 1,t’ € Oy (m)I for some ICP m, such that
they are in different subcylinders at the next level: ¢ € Ofn(m * n;)I and
t € Ogp(m *n;)I with 7 # j, 1 <4,j < 3. Consider ¢ the extreme point of
Oy n(m * n;)I closest to t:

£(t) - £@) £(t) = €@)] + 1€(2) — £(2)

Colt — /|7 + Colt — 1|2

2C,max{|t —t'|2, |t — 7|2}

2C,|t' —72.

If ¢ is not a extreme point of Oy,(m * n;)I, we denote by t” the extreme
point of Oy u(m * n;)I closest to t'. We have a similar computation, since
the image of ¢t and ' under £ are the same because t = Oy (m * n;)s and
1" = Oy n(m *nj)s’ where s and s’ are the extreme points of I, I, I3 or
the image of the discontinuity point of & under Oy (m * n;).

We prove the inequality (1.5) in the case of ¢ an extreme point of a
cylinder of the standard partition and ¢’ an interior point of such cylin-
der. Always the cylinder can be subdivided into sub-cylinders such that
t still remains an extreme point for one sub-cylinder and t’ is in another
-sub-cylinder. Thererfore we can reduce the proof, to show that the in-
equality( 1.5) holds for ¢ and extreme point of Oyx(m * n;)I and ¢ is in
- Ogn(m*nj)I for | # j and m an ICP, i.e. m = g;) + -+ g;,; for all five
cases of Og,(m)I — according to lemma 1.5.3 —. In each case the idea of
the proof is to find an upper bound for |£(t) — &(#')| using the contraction
in Or,5(m) in T2 and a lower bound for |t — #'| based upon the length of -
the cylinder Oy,(m)I and its sub-cylinders. The three cases are:

<
<
<
<

- 1. Thecylinder Oy (m)Iis of type 1. Assume that ' belongs to Oy ,(m x ny)IL.
(If ¢’ is in Oy u(m * n3)I the proof follows the same lines). Since t is
an extreme point of Oy ,(m)I it is image under Oy 4(m), of the dis-
continuity point of h, denoted by p and p = %“2
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th(m*nl)l

t th(m*nl)l

th(m*nz)l th(m*ns)l

Figure 1.7: The cylinder Oy x(m)IL is of type 1

Let be x : I — W[x] the map defined in section 1.3, that gives the
symbolic expression in A[z] of any point of the interval. The map 6,

N[z] — T? was defined in the same section as §,(a) = Z a,B’z)/
where ~ is the equivalence relation defined by the lattice Z* in R?.

Since m is an ICP- is of the form m = g;; +---¢;, — and ' is in
O n(m * ny)I, we have x(t') = z' +- - -+ 2’ + 2% +2p(z) for some r(z)
in Mz).

On the other hand, the point t is the image under Ogn(m) of the
discontinuity point of h, denoted by p, since we assume that ¢ is an
extreme point of the cylinder Oy ;(m)I. A direct computation shows
that p is a fixed point of the map h?fh, therefore x(p) = Tipo %12,
so:

X(t) — zio gt xfk—l + xik+2 + xt'k+5 g xik+31+2 g,

Now we can find the upper bound for:

€)= €@ = 16:(x(¥)) — &(x(ENl

|(B*z 4 -+ + Bz + B**2p(B)z) —

(Bioz 4 ...+ Bik-1z 4 Bik+2q(B)z)'

|Bi*z + Bi**t2pr(B)z — B**2¢(B)z]

~ where g(z) = Tixo z¥

IB"‘II(I + B*(r(B) — q(B)))z|

aFC  where C = diameter of w
oo

IAIA

V2 ixte)/2

(YEex) (=t22)

a+a
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0, (mxn,)I 0, (mx=n, )1 O, (Mxng)T :

r"**.t _— -

’——————. - T T '\-—-\,—-;

o

| figure 1.8: The cylinder Oy x(m)I is of type 2

On the other hand :

It —t'| [t — Ofn(m)a
|041(m)p — Ogp(m)e]
a'* |p 2al

zk(a—a )

"‘(—*—)
tk+2(m_)

v

Therefore 12
C, ( ata? )

<
< (et
S Cllt - tI|2

ik +6)/2
a(£k+2)/2

€)= €@

1/2

where
-(1/2)

).

When the cylinder Oy ;(m)Iis of type 2, we assumet’ is in 0 sa(m xng)L.

a-l—a

C, = Ca(EE

. The case t’' in Oy (m * nzI)ean be studled in a similar way. -

In this case we compare t’ with ¢ and £, the extreme points of O ,(m)I
that realize its diameter, see figure 1.8. As we remarked before
Ofn(m)p = t-and lim,_,,- Oy, h(m)'r = {. Moreover x(t) = x(%),
so £(t) = £(1). |
The finding of the upper bound for |{(¢') — £(t)| is the same as in case
1, so:

V2eA3 + a2 ' Qlixt6)/2

(") — €(t)] < ( ¢—) (—5—)
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0, (m=n)I
fh \3 fh(m*n e . 0, (m=n,)I
vy N
| 0, (mxn,)I
th(m*nz)l fh 2

Figure 1.9: The cylinder Oy ;(m)I is of type 3-a

and also [£(t') — £(t)] = [£(t) — €CF).
On the other hand
[E—¢] > |Osn(m)(a+a?) -1
= |Osn(m)(a+ a?) — 1’1i1£1__ O;n(m)7|

a'*|(e + o) — p|
aik(ai202 ).

Also
It =] > [Opn(m)(a)—1
= |Osn(m)(a) — Osn(m)pl|
a't|a — pl

z,,(a—a )

‘k+2(£"_'.t°'_)

I

Therefore

. [€(t) = €@t)] < Chlt — ']V and |€(t') — €(F)| < ChlE — ]2

3. Suppose that the cylinder is of type 3. According to lemma 1.5.3
there are three possible cases: 3-a, 3-b, 3-c. We shall prove the in-
equality 1.5 in case 3-a. In the other two cases the computations are
similar.

In the case 3-a the point ¢’ can be in Oy x(m * n3)L orin Oy p(m * ny)I
and ¢, ¢ are the extreme points of Oy (m)I that they are also extreme
points of Oy r(m * ny)I, see figure 1.9.
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" Suppose that ' is in Og5(m * n3)I then x(#') = 20 4+ -+ ' + 21 +
z*+3r(z) for some r(z) in Nz]. Therefore:

() — €@

A A

On the other hand

|t -]

|62 (X(t')) 82(x(1))l

|(Bz 4 -+ + Bi*z 4 Bi**1 4 B*+3p(B)z) —

(Bioz 4 --- + Bi*-1z + B'**2¢(B)z)|

|Bi*z + IB'.’“"1 Bi**3p(B)z — B**2¢(B)z|
where g(z) = Y50 ¥

|B*||(I + B + B*(r(B) — q(B))z)|
atC

o™ ON

VICX \ rata2\1/2 (i 46)/2
(Y=57) (%% ) alix+6)

> |t = Oga(m)(a+o?)]

= |Ogn(m)p — Ogn(m)(a + a?)]
= a*|p- CvI

- o)

Therefore [E(t') — €(2)] < Ch|t =1

If t' is in Og,(m * nq)I we compare it with the two extreme points of
the cylinder that realize its diameter, see figure 1.9. As we remarked
before these two extreme points have the same image under the map
x and therefore under €.

Since t' is in O p(n * nl)I its image in N[z is x(#') = z' + x4
© z'*+1p(2) for some r(z) in N|z]. So:

|6= (x(t’)) 82(x(£))]

|(B*z + -+ + Bz + Bi*lp(B)z) —
(Box + -+ Btz + Brvig(B):)| |
|Bi+1r(B)z — B**2q(B)z| where ¢(z) = ¥j50 2%
|B*|Ir(B) — B*q(B)=|
atC

£(¢) - &)

IA A

(

ot ON

\/-Cz\a) (ai2a2 )1/2 a(ik+6)/2

a+a
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On the other hand:

t—t| 2 [t—Ogn(m)(a+a?)
|05,4(m)p — O p(m)(e + )|

o' |p — «af

v

QO

b
~~
il

i
[X)

)

i—t] > |Ogn(m)(a) ~ ]

0(m)(@) = lim Oga(m)r]
a’*la — p

i [ a—o?
o' (25)
aik+2(aizol2 )

v

This ends the proof of theorem 1.6.1 in the case of n = 3.

As was showed, the proof of this theorem in case n = 3, depends on
the structure of standard partition cylinders in the interval — studied in
lemma 1.5.3 — which allowed us to compare the distance between a point
in the interior of the cylinder and its extreme points. As we have seen this
distance is of the order of a'* where i is the degree of m, m = g;; +- - -+ gi,.
On the other hand the distance between the images of these points , under
the map £ is of the order |Bi*| = ot

In the case of n greater or equal to 4, the structure of the cylinders of
the standard partition is similar, but could however consists of j connected
components for 1 < j < n. The distance between a point in the interior
and the extremes is still of the order a’* for a the real root of z" 4 z"~! 4
.+ 4z — 1. On the other hand the distance between the images of these
points is of the order v

[Bir| = |y = ot = A

where f; is the gratest eigenvalue of B, in modulus.

End of the proof of Theorem 1.6.1
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Chapter 2

A Geodesic Lamination on D2

as a geometrical realization of
the substitution Il,.

2.1 Introduction

In this chapter we construct a geodesic lamination on the disk D? with the
Poincaré metric, associated to the standard partition on Q (the symbolic
space defined by the substitution II;) and therefore on its geometrical real-
izations on T*~! and S!. Some of this lamination can be seen in the figures
2.1 and 2.2. The construction given here is done in the case ¢ = 3, i.e. the
substitution is defined in three symbols, but can be easily generalized to an
arbitrary q.
~  We consider the circle at infirity of D? as the domain of the interval
exchange map f, studied in the previous chapter. We shall join by geodesics
in D?, the points of S! that are mapped, under Arnoux’s map ¢ to “the
triple point” of Opg(n)w (which is the image under Opr(n) of the point
where wy, w; and w3 intersect in the interior of w) for all each integer n
compatible with the partition. Later we define the geodesic lamination A .
as the closure of the set of geodesics defined above. In section 2.2, it is
proved that A really is a geodesic lamination. ‘
The dynamics on I, given by the commutative diagram
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Figure 2.1: The geodesic lamination Aforg=3
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I, —— L

is extended to A — in section 2.4—, and gives rise to the following
commutative diagram

A —E A
H H
A —E A

where
A; = {X € A| the end points of A are in [0, a]}.

and F is semiconjugate to o : Q@ — 2 (the dynamical system defined by the
substitution II)

A—£ A
() (7
Q—2 . Q

where 1 is continuous and surjective.

Finally we shall show that A admits naturally a transverse measure p
that is invariant under F and H,u = A*°u where ) is the Pisot number
associated to the substitution and so € (0,1) is computed in section 2.3.
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Figure 2.2: The geodesic lamination A for ¢ = 4
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2.2 Construction of the geodesic lamination
A.

We can think of S? as the circle at infinity of D? and of the interval exchange
map f — defined in page 5 — as acting on it.

On S! we are going to distinguish three points y; = 0, ¥ = @, y3 =
a + o?; the boundary points of the standard-partition-rectangles, in S,

Proposition 2.2.1 The images of y; i = 1,2,3 under £ : S' — T? are the
same. Furthermore £(Ofn(n)y:) = £(Osn(n)y;) for all n ICP and i,j=1,2,3.

Proof: The points y;, 1 = 1,2, 3 satisfy the relation:

fh(y1) = y2, fR(y2) = y3, fR(y3) =91 (2.1)

Since the maps (fh)*: I; — I; are contractions, the points y;, ¢ = 1,2,3 are
the fixed points of these maps. On the other hand (TB)® : w; = w; is a
contraction with fixed point f(y,) 1 =1,2,3, since

£(f()) = T(§(z)) and &(h(z)) = B((§(z)) forallzel  (2.2)

Since y; is a boundary point of two rectangles: I; and I; for some
1<5<3, f(y,) is also a boundary point of the w;. i.e. {(y,) € w; Nwj, so
E(y,) also satisfies the equation

(TB)}(z) = 2z, z € w; : (2.3)

therefore é(y,-) = f(yj). But similarly E(y,-) € wj Nwy for k # 1 (since y; is
the boundary point of I; and I;) and therefore (y;) = €(ui) = é(w:).

On the other hand €(Oyu(n)y) is equal to Orp(n)é(y:) by the prop-
erty 2.2. Therefore £(Osu(n)y) = {(Of,h(n)yj) Hence &(Ogp(n)y;) =

£(Ogn(n)y;)-
Q.E.D.

Let £ be the set of geodesics in D2, The topology on £ U S! — where

S is the circle at infinity of D®2— is given by the following basis of neigh-
bourhoods:
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e If v is an element of £ with end points @ and b in S, consider the
collection of neighbourhoods (a — €,a + €) and (b — €,b + ¢) for € > 0.
Then the basis elements containing v are given by the set of geodesics
with one end point in (a — €,a + €) and the other in (b —¢,b + ¢).

o If ¢t is in S1, consider the collection of neighbourhoods in S'given by
(t — €,t + €) for € > 0, then the basis elements containing ¢ are given
by the point £ and the set of geodesics with one end point in (t — ¢, 1)
and the other in (¢,% + €).

The construction of A is as follows: the pair of points O¢x(n)y;, Ofn(n)y;
for n an ICP is joined by a geodesic in D2, say 7%;, and then the closure of
the union of all these geodesics is taken, i.e.

A=U(En€P4,j =1,2,3}. (2.4)

The elements of A are either geodesics of D? or points in S!. In the
later case, those points are called degenerate geodesics.

Definition 2.2.1 A geodesic lamination on D? is a non-empty closed
subset of LU S! whose elements are disjoint.

Proposition 2.2.2 Ift,7 € ST are joined by a geodesic of A then £(t) = £(7).

Proof: Let 4 denote the geodesic in A that joins t and t. There exists
a sequence {my} € P such that 4f — v therefore Ofn(my )y — t and
Osn(my)y; — t where {my,} is a subsequence of {m;}. Using proposi-
tion 2.2.1 and the continuity of ¢ we get £(t) = £(F).
T . Q.E.D.

The converse of this proposition is not true.

Before proving that A is a geodesic lamination, we need to introduce
more notation and some technical lemmas.

Given a cylinder of the standard partition in S, according to Lemma 1.5.3,
this cylinder is either:

.1. one interval, [dl,ag)
2. two intervals [b1,b2), [b3,b4) or

3. three intervals [e1,¢;), [es,c4), [55,c6).
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Figure 2.3: Os,(n)S! = [ay,ap)

Definition 2.2.2 o In case 1 we say ai, ay are extreme points of the
same type.

o In case 2, by and by are exzireme points of the same type, and so are
by and bs.

o In case 3 ¢y, ¢ are extreme points of the same type, and similarly for
¢y, ¢3 and ¢y, Cs.

This definition is justified by the following lemma:

Lemma 2.2.1 Let n be an ICP and Oy,(n)SY a cylinder of the standard
partition. Then the geodesics that join the same type of extreme points of
O;1(n)St, belong to A. .

Furthermore if n = n;, *---*n;, 1s the factorization of n in (P,*) the
eztreme points of Ojn(n)S' are of the form Opp(m)y; for
m=mn; x--%n; , for some r < k. '

Proof: We use induction on the number of factors of n in (P, *).

When k = 1, n is either ny, ny or ng. If n = ny, Og,(n1)S* = [0, ).
Here the extreme points 0 and « are joined by a geodesic in A, according to
its definition, and also 0 = y; = O u(no)y1, @ = y2 = Ogx(no)y2. Similarly
for n = ny and n = nj.

When k > 1, n = n;, *--- xn;,, we have to consider the different cases
of Of,(n)S? given by Lemma 1.5.3.

If Of,1(n)S? is one interval (See figure 2.3) which is subdivided Oy ;(n)S?
= Ogn(n *n2)ST U Opp(n xn3)SY U Oy u(n * n,)S? since O n(n x n;)S? =

Ogn(n)I; for i = 1,2,3 we have a3 = Ogp(n)a = Osp(n)y, and a4 =

Osn(n)a+ o = Ogp(n)ys and as = Osu(n)0 = Ofn(n)y1, the boundary
points of the subpartition of the cylinder Oj;(n)S?.
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Figure 2.4:

So the extreme points of Oy ,(n * n2)S i.e. a3, a4 are joined by geodesics
of A, 735 |

Similarly for a4, as the extreme points of Oy, (n * n3)St, also as, as are
joined by geodesics in A, 77, and on the other hand are extreme points of
the same type of Oj (n * n;)St.

By the inductive hypothesis a; and a; —extreme points of Oy (n)S?
and also for Oy u(n * n;)S'— are joined by a geodesic of A : v where
m =mn; *---*xn; with r < k. See figure 2.4 ‘

If 04 (n)S! has two connected components:

Figure 2.5: Oy u(n)S! = [b1,b;) U [b3,b4),



Figure 2.6:

Whele Of h(n)Sl = [bl, bz) U [b3,b4),
Oyn(n)St = U?—x Ojgu(n * n;)St
O n(n * ny)S = [bs, bg) Osn(n * n3)St= [bs, b7)
O,«h(n*nl)Sl [bl,bz)U [bg,bs)U [b7,b4)
and bs = Oz p(n)a, bs = Ofn(n)(a + a?), by = Ofn(n)0. See figure 2.5

So the extreme points of Oy u(n * ny)ST are joined by geodesics of A,
V23 Similarly for b and b; the extreme points of Oy x(n * n3)S! , which are
joined by 7%;. Also bs and b7 are same type extreme points of Oy,n(n * nl)S1
and are Jomed by geodesic 77,. v

The pairs of points by, b3 and by, by are extreme points of the same type
for Ogn(n *ny)S! and also for Ofx(n)St. Therefore they are joined by
geodesics 1%, > where m =n .-+ % n;, m' =n; x---*n;,, r,r’ < k.
See figure 2.6 )

In the case when Oj;(n)S? has three connected components, suppose
that Oy (n * n3)S! is contained in the first component Oy, (n)S? i.e. case
3.1 of the Lemnma 1.5.3. See figure 2.7. where Oy 1(n)S! = [e1, c2)U][es, c)U
[Cs, Ce) :

O n(n *n3)ST = [cg, o)
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c C Cc
Cy 3 4 5

Figure 2.7: O;1(n)S! = [e1,¢3) U [e3,¢4) U [cs5, C6)

O‘f,[,(n * 712)81 = [C], Cg) U [C7, Ce)

Oy n(n*n,)S = [co, c2) U [c3,cq) Ules, c7)

and ¢; =0su(n)a, cs =0su(n)(a+a?), co _-Of,,(n)O Therefore the
points cg and c3 are joined by fy} ¢s and ¢4 by v 3, and cg, ¢; by fy-- where
M= ke kg, m=ng keekn,, M=mn; - xn; and r, e, F < k.

Q.E.D.

Corollary 2.2.1 The points Ozp(n)y; t =1,2,3 are the eztreme points of
Osn(n*n;)St j =1,2,3.

Theorem 2.2.1 A i3 a geodesic lamination

Proof: It is sufficient to prove that there are no intersections among the
geodesics of the type 7} for n € P. However, according to Corollary 2.2.1
we can reduce the proof to showing that there is no intersection between
geodesics that join extreme points of the same type of standard partition
cylinders.

Suppose that such an intersection happens i.e. a geodesic that joins
the same type extreme points of Of,h(n)S intersects another geodesic that
joins the same type extreme point of Oy (m)St, with n and m € P.

There are two possible cases:

1. int(0;4(n)SH)Nint(O44(m)St) # 0
2. int(Of,(n)S)Nint(O4 1 (m)S) = 0

In 1, the cylinders intersects in a set of positive Lebesgue measure and
‘since they are cylinders of the standard partition one must be contained in
the other. But in this case there is no intersection between the geodesics

n m
’)’ij dnd 7'1]'/

[
[



Figure 2.8:

In 2 one connected component of Oy ,(m)S! lies in one of the gaps of
O n(n)SY. In fact, we shall show that we can fill the gaps between two
components of any cylinder of the standard partition by other cylinders of
this partition.

Suppose that Oy ;,(n)S! has two connected components [b;, b3) and [by, bs)
(in the case of three connected components the argument is the same) and
no= Ny ke kN, ) V

According to lemma 2.2.1 the geodesic that joins b; with by is of the
type 7,!,1- where | = n;, *--- % n;, 8 < k. Suppose that Oy ,()yir, where i’ €
{1,2,3} \ {i,j}, is greater than b, or smaller than b;, so O;4(I)S! and
O 1(n)S! have empty intersection and neither is contained in the other.
This is a contradiction to the fact that O ;,(1)S! and Oy, (n)S? are cylinders
“of the standard partition. )

Therefore O n(1)ys € [b1,03) U [b4, b2) or Ofu(l)yir € [b3,bs). ,

Suppose that Osn(1)ys € (bs,bs). According to lemma 2.2.1 there exits
bs and bs (possibly bs = bg) such that b3 < bs < bs < Ogn(n)y;, and
[b3,bs), [be,bs) are contained in the connected components of Oy x(l)St.
See figure 2.8

If b5 # bs we consider the geodesic that joins these two points and get
b7 and bg using the same arguments. And so on.

Either there exists ¢ such that by_; = by, or the sequence {b;},.1y con-
verges to a point. In each case we have filled the gap with cylinders of the
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b1 b3 bs b b4 of,h(l) Yo . b

Figure 2.9:

standard partition. :

If Ofn(1)yi € [b1,b3)U[bs, by) (See figure 2.9) we apply the same argument
to the geodesic that joins b3 and by and we get bs and bg, and we carry on
in the same way.

Q.E.D.

2.3 The transverse measure to A

Let § be any arc in D2 joining two distinct geodesics of A. It can be slid
along the geodesic towards the boundary of D? according the two possible
directions in which the geodesics can be oriented. This procedure gives rise
to a Cantor set in the boundary of D2, say C;s

Let § be a transverse arc to A. We define

”(6) = M30(06)

where M, is the so-Hausdorff measure and s, is the Hausdorff dimension

of Cs
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Lemma 2.3.1 For every transverse curve § to A, the Hausdorff dimension

of Cs 18 89 = } where 6 13 the greatest root, in modulus, of the polynomial

-2z -1

Proof: Since any geodesic of this lamination is a limit of geodesics of
the form 4f; with n € P, we can suppose that the extreme points of § are
in geodesics of this type. Also we can assume that this geodesic joins the
same type extreme points of Oy ,(n)S! for some n € P. (If this is not the
case we can write § as a union of §;’s which have the cited property).

In the following lines we are going to show how the Cantor set Cjs is
obtained.

Let Ko(n) = Oyn(n)S? which admits the partition Of,(n)S? = U,
Oy n(n * n;)St ,

When 6 is slid along the geodesics towards the boundary, some of the
cylinders of this partition do not contribute to Cj, i.e. the intersection
between Cs and a non-contributing cylinder is empty.

Let Ki(n) = UMY, Ki where Ki(n) is a contributing cylinder to Cj of this
partition. We carry on this subdivision in O;n(m * ny)SY, O x(m * ny)S?t,
Oyu(m * n3)St for any contributing rectangle Ki(n) =0y x(m)S?.

It is clear that Cs = N;>0K;(n).

Next we study the formation rule of the K;(n)’s. We distinguish two
cases:

1. O4x(n)S? has two connected components.
2. Oy n(n)S? has three connected components.

In case 1 Of,h(n)Sl—: [bl,b3) \J [b2,b4). and according to Lemma 1.5.3
Osr(n)St= UL, 04 1(n * n;)S?

where Oy, h(n * nz)S = [bs, bs) Oy, /,(n * 13)S= [bg, br)

“and Oy p(n * n)ST U Opn(n *n3)S C [b2,by) See figure 2.10

When § is slid towards (b;, by) the interval (bs, b7) is removed. Therefore:
Ko = O41(n)S?, and K; =0y u(n * n;)S?

Observe that |K;| = a|Kp|, where | | denotes the Lebesgue measure.

- And now K has three connected components, so its subd1v151on is stud-
ied in case 2.



Figure 2.10:

In case 2 we are going to suppose that the cylinder Oy ,(n)S? is of type
3.1 in the classification given in Lemma 1.5.3. 1.e.

Of h(n)Sl U Of ;,(n * n.)Sl

i=1

Of,h(n * nl)sl = [Cs, Cz) U [C3, 64) U [05, Cg)
- ' Of,h(n * n2)81 =. [C1, C7) U [Cg, Ce)
Otn(n*n3)S' = [cr,cs) (See figure 2.11)

therefore: Ko(n) =0y ,(n)St, Ki(n) = K}(n) U Kf(n),

Kl(n) =0sn(n *n2)SY KE(n) = O p(n * ny)St

K}(n) has two connected components and therefore its subd1v151on is
according to the description given in case 1.

Lemma 1.5.3 gives three different types of cylinders having three con-
nected components. Since K?(n) is of a different type from Ko(n), we need
to subdivide it, until we reach cylinders of the same type as Ko(n).

K3(n) = Ogp(nxny)St= U2, Osn(n *ny * n,)S1 where
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Figure 2.11:
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Oy n(n * ny *ny)S = [eg, c10) U [er2, €4) U [es, ¢5)

Oj,[,(’ll * 1 * 11.2)81'—" [C]Q, 02) U [C3, C]])

Oy n(n * 1y * n3)S= [c11, ¢12) but this one is a non-contributing cylinder
to 05.

Therefore  K,(n) = Kl(n) U Ki(n) U Kza(n) ~ where
K}(n) = Oy p(n * ny * n;)S? is the contributing cylinder that arises in the
subdivision of K}(n).

K2(n) = Ofp(n % ny % np)St and Ks(n) = Osn(n * nqg xn2)ST this last
one has two connected components.

The cylinder K;(n) is of type 3.3, therefore we need to subdivide it.

Opn(n*ny *ny)St= UL, Osn(n *ny * nq xn;)St

O n(n *ny x ny * nq)St= [cg, c10) U [12, 13) U [e1s, €o)

Oy n(n * nq * nq % n)S = [e13,¢4) U [c5, €14)

Oy n(n * 1y * n3)Sr= [c14, ¢15)

Here the only contributing cylinder is Oy p(n * ny * ny * nl)S1 which is
of the same type of Kj.

Observe that [Of(n * nq * 0y * ny)St| = |0y, 1,(11)SI|

K3(n)| = 0|

|K1(n)| = o | Ko

Hence the structure of Cs can be described by an infinite labelled tree.
Vertices correspond to cylinders and are labelled 1 or 2 corresponding to
a cylinder of two or three components. Directed edges are labelled «, o?,
etc corresponding to a reduction of Lebesgue measure by this factor when
passing to a sub-cylinder. The edges from vertices labelled 1 or 2 are:

«i (D
ECArai Ol =

In the infinite tree we can either suppress the vertices labelled 1 while
Jjoining successive edges and multiplying their labels or suppress the vertices
labelled 2. This corresponds to subdividing a cylinder further into sub-
cylinders with same number of components. Two new self-similar infinite
trees arrise according to these two possible procedures. In these new trees
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the edges emanating from a vertex are:

=@ e
}}@ o3 @

that defines the Cantor sets C and C;, Cs = Cf U Cy .

The sets of function that defines these trees are the same but they are
applied to different kind of sets i.e. sets of type (-) and(+) we get that Cy
and Cj are disjoint. : _

The Hausdorff dimension of the sets C; and Cj are given by the theo-
rem.

Theorem 2.3.1 (Falconer [19], pag. 118) Let¢;:R* - R",i=1,...,k
a system of iterated functions with ratios c; and satisfying the open set con-
dition. , ‘

If X 1is an invariant set for the system of iterated functions (i.e.
X = UL, 6i(X)) then the Hausdorff dimension of X is the solution of
Zf:l Cf =1

Moreover, for this value of 3, 0 < M (X) < o0
Clearly the open set condition (i.e. there exists a bounded non-empty
open set V such that U, ¢:(V) C V) is satisfied by the system of functions
that define C; and Cj i.e. either of the two descriptions indicated in the
self-similar trees discussed above. . _

Therefore the Hausdorff dimension of these two sets is given by the -

solution of a** + 243 = 1 which is 5o = {2% where v is the real solution

smaller than one, in absolute value, of z* 4+ 22% — 1 = 0.

End of proof of Lemma 2.3.1



2.4 Induced Dynamical Systems on A

Theorem 2.4.1 There exist

e a continuous map F : A — A that preserves the transverse measure p
and

e a continuous map H : A — A; with the property Hop = /\s°p_ where
= {7 € Althe end points of v are in [0,a]}

such that the following diagram commutes

A—E£ A
H H
Ay —E L A

where F' is the map induced by F in A;.

Proof: We are going to define F' : A — A and H : A — A; as the
extensions of f : I — I and h : I — I, respectively, to the geodesic
lamination A. ' ’

Let v € A with end points in I, ay < b,.

F(v) (and similarly H(y)) is defined as the geodesic with end points

f(ay) and lim, - f(t) (h(ay), lins,_,- A(t)).

H(y) € A Suppose that v is of the form 75 for some n € 'P with
end points y;, y;. Then H(4f:) = 7} and clearly ny *n € P, therefore
H(~%) € A and since the end points are

h(Ofn(n)y;) and lim (O n(n)(y;))
| t—=[Ogn(n)y;1-

if“Of r(n)yi < Ogn(n)y;.
Hence H(7}) € As.

Next we prove that F(y) € A. Suppose that v = 7;; for some n € P, so
7 is a geodesic that joins two extreme points of the same type of the cylinder
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Of,h(n)sl = [bl, bz) V) [b3, b4)
Of,h(nl)sl = [bl,' C1) U [03, b4)

Figure 2.12:

Oy 1(1)S!. By the arguments used in theorem 2.2.1 we can suppose that y
is the “exterior geodesic” of the geodesics that join the same type extreme
points of the cylinder Oy, h(n)S (i.e. the geodesic that joins the greatest
extreme point of Oy;(n)S! with the smallest).
CIfn+1e P, which implies that f(Osn(n)S!) is a cyhnder of the
standard partition, then F(7}}) = j;"' and therefore 47! € A. ‘
Ifn+1¢ P we subdivide O;,(n)S! such that 4" is still an “ex-
terior geodesic” of a new cylinder, say Oj,(n')S? with n' € P so that

f(Oz4(n')SY) is a cylinder of the standard partition, i.e. n'+1 € P. See
figure 2.12.
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This can be done by using the next lemma:

Lemma 2.4.1 Given n an ICP (i.e. n € P) such that n + 1 is also an
ICP then1+n+n; € P.

In its proof the folloiving proposition is needed

Proposition 2.4.1 Let m be a positive integer and m =g;y + -+ + gi, be
its expression as a sum of the g;’s.
Ifm &P then iy =411 +1

Proof of proposition 2.4.1: We use induction on [.
Whenl =2, m =g, + gi;, = gi, *(1 + gip—i; ) if i — iy =7 > 1 then

14g-=(1+g2)*g1%-+-%g1,s01+g, € P.
—
r-2 times

Hence m € P.
Now suppose:

m=gi,+ "+ Gy, =Ggic+ -+ G5 *(1 +gi1+1—iz)

where 7141 — 4y = r > 1. We shall prove that m € P. If g,O +--4g,€P
then m € P since 1+ g, € P for r > 2. However if g;; + --- + g,,gZ P then,
by the inductive hypothesis, i; = 1,3 + 1 so

Gio 0+ iy = Gip + -+ Gi, *(1+gl)-
Observe that (14 g1)*(1+g:) € P for all » > 2 because

Q4+g)*x(Q+g) = 149+ g
= (14g1)*(1+g2) * gr-2
= (14 g1+ g3) * gr—2
= nakngk---kng.
|

-

r—2

soif g;, + *+gi,_, € Ptheng;, +--- + g;,*(1+gl)*(1+g,) € P. Therefore
if gig++++gi_, €P thenm € ’P

Next we are gomg to prove that g;; + -+ g;_, € P. Suppose that it
is not an ICP then 7;_, = 14,3 + 1 by the mductwe hypothesis.
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Therefore

m = gip+-+gi,*(1+g)*(1+g1)*x(1+g)
Gio + o+ i, * (L + 91+ 92+ gry2)

Gio T+ Giry + Giy_o+1 T Giypt2 + iy _otr42
Gio T+ Gi_g Tt Giro+3 T Girptr2

Having a different expression of m, contradicting in this way the uniq-
ness of the expression of m as a sum of the g;’s.
Therefore m € P.

End of the proof of Proposition 2.4.1

Proof of Lemma 2.4.1:
Let the expressions of n and n 4+ 1 as sums of the g;’s be

n=gototgy ntl=gi ot

When 1 is added to n, there could be cancellations of the g;’s according to
the relation:

gr T gr41 + grt2 = Gr43

so 7; might be increased by 1. However n € P so that 73 > 4,1 + 1 (by
proposition 2.4.1); thus such cancellations cannot affect 4, therefore g;, =
gi,- Hence gjo + -+ gj,_, =1+ gis + - + gir_,-
On the other hand n *ny = g;; + -+ + gi,_, + gi;+1, when 1 is added we
-obtain 1 +nxny; =1+ gi, +---+gi_, + giy1. Since gj, +--++ gj,_, =
14 giy++ -+ 9i_, and g;, = gi, then 1+ n xny = (1 + n) * ny; therefore
14nxn, €P.

- End of the proof of Lemma 2.4.1

We return to the proof of theorem 2.4.1. If v is not of the type 47}, then
7 could still be a geodesic that joins two different points of S!, in this case
it is straight-forward to prove that F(y) € A, since it can be approximated
by a geodesic of the type 7. But it can happen that v is a degenerate

geodesic i.e. consists of only one point in the boundary of D2. In this case
two different situations could occur :
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1. fis continuous at this point. Then + is mapped to another degenerate
geodesic and clearly this is in A, since the approximations 4™ to y have
the property F(v,) € A and approximate F(y).

2. fis discontinuous at this point.

We know that the discontinuities of f are 0, 5, @, a + 323, a+ a? and
ata?+ e, ’ . '

But at the points 0, a and a + a? there are no degenerate geodesics.
In fact these points are joined by +{,, 713, 733 However the points §,
a+ %ﬁ, a+a?+ 923 are degenerate geodesics as is proved in the following

proposition:

Proposition 2.4.2 The elements of A with extreme points at 5, a + %2
and o + o? + %3- are degenerate geodesics.

Proof of Proposition 2.4.2: The proof is done for the point% and it
is entirely similar for the other points. J is the fixed point of the function
g =hfhfh : I — I. Since this function is increasing, (¢"(0)) approaches
increasingly to § and (g"(«)) decreasingly. So the geodesics that join these
points which belong to A, namely

(’)/gn(o)gn(a) = "yg:a where m = Ny kNg k.. %k Ng).
n-times

collapse, in the limit, to the point 3.

End of the proof of propositibn 2.4.2

According to the definition of F, F(z) — where z is a point in the
boundary of D? that represents a degenerate geodesic in A — is the geodesic
that joins ' '

f(z) and lm f(8)
In the particular case when

012

o 3
ze{ga+T,ata’+5)
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Figure 2.13:

F(z) belongs to A since

3n a 3n 03
h**(0) — f(5) and ™*(a) — f(a + 7)
therefore |
Vidn (0) 137 () = Vo = F(%) where m=mnq*---%n,

and similarly for other points.

This finishes the proof of the fact that F' is well defined.

The domain of F' (and similarly H) can be extended to the set of equiv-
alence classes of transverse curves to the geodesic lamination A.

Given § and &' two transverse curves to A we say that § ~ §' if the end
points of each curve lie in the same pair of distinct geodesics and Cs = Cy.
See figure 2.13 Since Cs = Cy if-§ ~ &' we get p(8) = pu(§').

Let ~

T = { transverse curves to A}

Given § € T, F(§) is defined as a curve transversal only to all F(v)
where v are the geodesics in A that they are transversal to . (Similarly
we can define H(§).)

It is clear that

F:T) T/  and H:T) T/

are well defined.



Lemma 2.4.2

fCs =Cre and p(8) = p(F(6))

Proof: Let § be a transverse curve to the geodesics of A with extreme
points in Oz (n)S! for some n € P. Let Cs be the Cantor set defined in
section 2.3. According to lemma 2.3.1

Cs = N2, Ki K; =U¥, K}
and  Cr(s) = N2 Ji Ji = UM i

Observe that the subcylinder of Oy4(n)S! contributes to Cs if and only
if its image under f contributes to Cr(s). Therefore J; = f(K;) Vi.

Hence f(Cs) = Crs).

If the image of the map Oy(n) does not contain a discontinuity point
of f each K7 is translated by f:

f(KI) = KI + k; where &; € (0,1).

So f(Cs) = N, f(K;) and f(K;) = K¥ + kg, (if K C K¥).

Therefore M, (f(Cs)) = 30(05) and u(F(é)) = ;L((S) See figure 2.14.
If p is a discontinuity point of f such that is in Oj r(n)St, suppose that
belongs to one of the contnbutmg rectangles e.g. Kj (If not the argument
is the same as before, since f translates each rectangle)

The interval exchange map f translates a subset of Kj I by a constant

and the complement of this subset in Kj 7 is translated by another constant
. K] = KI(-)UKi(+) where

Ki(-)={zeKile<p}, K{(+)={zeK]lz>p}

and

FK(=)) = K{(=)+~L and f(K](+)) = K{(+)++} where x’, x} € (0,1)

S0
f(Ca) = ﬂf_f_of(K;)

and
K = (Uit gy K8 + 90 et Wi sy 550 0 K5 + ).
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a b C d

Dfxﬁn) = [a,b) U [c,d)

f(a)  lim f(t)- f(c) f(d)
' t->b .

1 .
f(0, () §) = [f(a), im_f(£)) U [(c),(d))

=[a-+x1,b+-x) U [c+—xi,d-+x2)

1

Figure 2.14:
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Therefore

Mso(f(c5)) = M,,O(Ca)

End of the proof of Lemma 2.4.2
Lemma 2.4.3

h(Cs) = Crs) and Hup = A"p

Proof of Lemma 2.4.3: Let § be a transverse curve to A as in
lemma 2.4.2. Similarly: -

Cs=N2oK:  and K= UM K¥
CH(&) = nf’_‘;oL, and L J_oL‘J

In the same way as before a subcylinder of Of,h(n)S1 contributes to Cs
if and only if its image under h contributes to Cy(s). Therefore h(K;) = L;,
hence Cp sy = h(Cs).

Also lh(K")| = aIK"I Vi, j. See figure 2.15.

Therefore

Mo (R(C5)) = @ M, (Cs)

Note that h(K J) has one more connected component than K; 4 if and
only if the discontinuity point of k is in K°. ]

‘End of the proof of proposition 2.4.3

Finally the commutativity of the diagram

A—L£ A
H H
Ay —E LA

is a straight-forward consequence of the commutativity of the diagram:
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h(a)

h(b) h(c)

h(D,,(n) S") = [h(a),h(b)) U [h(c),h(d))

Figure 2.15:
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hl hl
f

I,

End of the proof of Theorem 2.4.1
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Chapter 3

Boundary of w

3.1 Introduction

In this chapter the Hausdorff dimension of the boundary of w is computed,
where w is the geometrical realization on the plane of the dynamical system
associated to the substitution:

1 — 12
I: 2 — 13

3 — 1

First we describe the identifications on the boundary of w that makes w
a fundamental domain of the two dimensional torus, for the action of the
lattice Z% on the plane. We define a system of maps which is related to
the inverses of the iterated system of maps which generates the standard
partition, studied in section 1.5. We shall show that the boundary of w
is invariant under this system of maps and compute the transitions under
it. Finally we use the spectral information of the transition matrix for
computing the Hausdorff dimension of the boundary of w and also the
dimension of the pre-image of this boundary under Arnoux’s map. -

The methods expounded here can be generalized to other substitutions,
associated to Pisot numbers, which are realizable on T?2.

Theorem 3.3.1 has been proved independently in [28].

)
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3.2 Triple points and identifications on the
boundary

In the first part of this section we are going to define a equivalence relation R
in the space N[z, which  together  with  the map
(+1) : N[z] — N|z] gives the symbolic dynamics for the dynamical system
T : T? — T2 defined in page 5. This equivalence relation identifies the
points that have the same image on the torus, under the semi-conjugacy
between these two maps . We shall prove that the equivalence class con-
tains at most three points. The image of such points will be called triple
points. In order to do this we shall introduce some auxiliary spaces: N*[z],
N_[x]) B{x}a {—130)1}{1:}’ and ZB{x}‘ ‘

Section 1.3 introduced the bijection € : N* — A given by the representa-
tions of the non-negative integers in the base associated to the recurrence re-
lation established by the substitution II, ie.
In+3 = Gnt+2 + gn+1 + gn, with the conditions go =1, g1 =2, g, = 4.

To the set A we associate A [z]— the set of polynomials with coefficients
in {0,1} where polynomials with three consecutive coefficients equal to 1
are not allowed — according to the bijection:

N - N|z]

(a0,a1y..-,8,) — T, az

and let €, be the composition of the bijection e and this new map:

N*—& NV
€
Nlz]

We consider the binary operation on N[z], induced by the standard
addition on N*:

Nz] + N[z] — Nlz]
a(z) + bz) = el (a(z)) + 7 (K(=))
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Let N*[z] be the set of polynomials with non-negative integer coefficients
and R the equivalence relation defined as follows: a(z) R b(z) if b(z) can be
obtained from a(z) using the rules:

o "3 R (z"? 2"l 42" foralln >0

e 2Rz

o 2z R z?

o 222 R(2® +1)

o if a(z) RY(z) then (a(z) + c(z)) R (b(z) + c(z)) for all c(z) in N*[z].

Proposition 3.2.1
Nz)=Nlel/p

Proof: Let E be the map:

N*[z] =, Nz]
Ypirt — Y(e(pi))e

where the sum is according to that defined in M[z].

Let a(z),b(z) € N*[z], if a(z) Rb(z) then E(a(z)) = E(b(x)), since
E does not distinguish the transformation rules that define the relation
R. On the other hand, the rules that define the relation R are the same

. ones under which the addition in A[z] is done, therefore a(z)Rb(z) if
E(a(z)) = B(¥(z). ' ~
Q.E.D.

Observe that we have a finite representation of the negative integers if

we allow the symbol —1 in the alphabet. Let

N7[z] = N[z]U {Z;a;xi | Y az' € Nz]}

€& : Z — N-[z]
€z(n) Yiso —-e;(—n);ci ifn<O
ez(n) Yiso €i(n)z? fn>0
Therefore we can consider the equivalence relation R in the set of poly-
nomials with integer coefficients, Z[z].
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Also in section 1.3 was introduced the dynamical system
(+1) : N — N where the space N is the closure of A in the product

topology of {0,1}N and the map (+41) is the induced operation in N of
adding 1 on A. This map gives the symbolic dynamics of T' : T? — T2,
since proposition 1.3.2 shows that this dynamical system is conjugate to
the dynamical system induced by the substitution i.e. o : Q — .

In a similar way the set M[z] is defined as the set of formal power
series with coefficients zeros and ones, where series with three consecutive
coefficients one are not allowed. The bijection between N and N[z is:

N - Nz]

g_:(ao,al,...) — Zizoaim'

We introduce the topology in A[z], that makes this bijection a homeomor-
phism. We denote (1,0,0...) by 1 and its image under this map by 1(z),
however, in order to simplify the notation we will denote both elements just
by 1, whenever the context is clear.

Let N3{z} denote the set of bounded power series with coefficients in
N*, with the norm ||a(z)|| = sup{a;}. If we allow to consider the equivalence
relation R an infinite number of times, we get a relation R. Unlike the finite
case:

N(z) # Nol=} /g
because when the relation R is taken an infinite number of times, new
identifications turn out, as can be seen in the following example: consider

_a(z) =T, 20 and b(z) = .50 2°**! which are two different elements of
N[z]; however a(z) R b(z), since:

a(z) = Y =

) n>1
R Z(x:%n—?» + x3n—2 + x3n—l)
n>1
— Z(x3n +x3n+1 +x3n+2)

n>0

n>0

R 14 Z 3t

n>0
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Z x3n+1

n>0

= b(z)

However this definition of R is vague, it will be defined properly in defini-

tion 3.2.2; in order to do this we need to introduce some auxiliary spaces
and give some additional definitions.

Given any formal power series ¢(z) = ;>0 ¢;z' we denote by gn(z) the
polynomial obta.ined by truncating the power series at the N-th term, i.e.
an(z) = TN, giz’. Also we denote the series with all its coefficients equa.l
to zero by 0(z) or simply by 0.

Let {—1,0,1}{z} be the set of formal power series with coefficients in

{~1,0,1}.

Definition 3.2.1 Let e(z) be an element of {—1,0,1}{z}. We say e(z) is
R-equivalent to 0 (or simply e(z)R0 ) if either

o there ezists N > 0 such that foralln > N c;:cz's't.s N, with the property
{N!|n > N} has no upper bound and e,R £ z"Nnp(z) where p(z) €
N|z] and po = 1.

o ore(z)=0

We can subtract two formal power series in N [z] term by term, however
the result might not lie in M[z] but certainly it is in {—1,0,1}{z}.

Definition 3.2.2 1. Let a(z) and b(z) € Nz], a(z) is R-equivalent to
b(z) (or simply a(z)Rb(z) ) if (a(z) — b(=))RO '

2. Let a(z) and b(z) be elements of N{z] ( or {=1,0,1}{z}), we say
a(z) is R-equivalent to b(z) if for alln > 0 there ezist N!, N’ >0
such that an: (z)Rbny(z) and the sets of the N’s and N" are not
bounded aboye.

There is no difficulty in proving that R is an equivalence relation.

As we showed in the previous example R-equxvalence does not imply
R-equivalence.
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Proposition 3.2.2 Let Q be the projection:

Q : Nz] — N[‘”]/‘R

then
| #Q(a(e)} <3 forany a(x) € Vol/g

Proof: Let
= {e(z) € {-1,0, 1}{x}|e(x)RO}

and I(z) =1+ T,,50 2°"11 4 2%712,

Clearly L = {£z"I(z)|n > 0} C C.

On the other hand every element of C is R-equivalent to a element of L.
In fact, let e(z) € C and n sufficient large so that exists NV,, > 0 with the
property e,(z)Rz™N*p(z) for some p(z) in M[z] and py = 1. Since the sets
of the N,.’s is not bounded above, exists m > n such that em(x)RxN"‘ q(z)
for some g(z) in M[z] with go =1, N,, > N,, and N,, > n. We can express
em(2) as: en(z) = T, ezt = eq(z) + E;’;,H_l e;z' therefore:

em(x) R xN”p(x) + Et-'n-!-l €iZ .
= 2X(a™Fp(z) + 2:’:3:1 g eiz’) K =min{Ny,n}

Since en(z)Rzg(z), there exists k£ > 1 such that the first k-terms of
e =Kp(z) + YK, _x ez’ are R-equivalent to #™m~X. Therefore e(z) is
R-equivalent to an element of L.
Since for any n > 0 z**+](2)Rz/l(z) with j = 0,1 or 2 we have that
every element of L is R-equivalent to either %I(z), xzl(z) or =+ z%l(z).
Hence for any par of elements of N[z, say a(z) and b(z) such that
a(z)Rb(z), we have that a(z)—b{z) is R-equivalent to either £i(z), £zl(z) or £
z%l(z).
So we conclude there can not be more than three elements of Nz] in
any R-class.
Q.E.D.
On the other hand Rauzy’s construction of w is obtained as the image
of N[z] under the map

33(2;20 a,-.’c") = 2520 a,-B‘z for E,‘Zo a,-xi € N[.'C]

where B and z were explained in page 18.
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Remark 3.2.1 Since €, is compatible with the additive structure of N* and
Nlz] we have

1(z) +1(z) = &(1) + &(1) = &(1 +1) = &(2)

hence
1(2) +1(2) = 2

and their images under bz satisfy the relation

5(1) +8:1=) = &(2)+(-1,1)

z4+z = Bz+(-1,1)
similarly »
z+z = z?
6-(z) + 62(z) = 6,(2?)+(0,-1)
Bz+Bz = B?z+(0,-1)
On the other hand, the characteristic polynomial of the matriz B is
3_ 2

23 — 22—z —1, therefore the points in the images under b4 of two
R-equivalent power series in N[z] are the same point in w or they dif-
fer by a vector of integer coordinates. In the later case, the point belongs
to the boundary of w, since this set is o fundamental domain of T2,

From proposition 3.2.2 and remark 3.2.1 the preimage, under §,, of any
point in w, consists at most of three points, facts that allow us to introduce
the definition of triple point:

Definition 3.2.3 A point p in T2 is a triple point if it is in the intersection
of three different cylinders of the standard partition.

For the definition of cylinder of the standard partition, see section 1.5

Definition 3.2.4 A point p in T? is a O-triple point if it is in
wi NwaNws or wia Nwiz Nwy or wig Nwiz Nws

Later we are going to find the 0-triple points and use them for descnbmg
-the identifications in the boundary of w.

The previous definitions of R and R equivalence extend in a straight
forward manner to Nj{z}and, also to Zg{z} (the set of bounded power
series Wlth integer coefficients).
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Proposition 3.2.3
H{2} /g = Nlel/z

Proof: Clearly N[‘”]/”R c Ni{=}/z.

On the other hand, consider a(z) and b(z) in N3{z} such that they are
R-equivalent. Let a’(z) be an element of N'[z] in the closure of U,5o{cn(z) €
N[z]|ea(2)Ra(x) for some m} so a'(z) is R-equivalent to a(z), similarly
we get b'(z) . By transitivity we conclude that a'(z)Rb'(z).

Q.E.D.

The group structure of (T2,+) almost induces a binary operation on w.
However it is not well defined, since the addition of two points might lie on
different pieces of the boundary, which are identified under Z2, this fact is
reflected in N|z], where we introduce the operation:

®: Nz] x N[z] — N[z}
a(z) @ b(z) = Q'I(Ei2°(a"+bi)xt/-§)

which is not well defined, because when the identifications under the equiv-
alence relation are taken we might have three different representatives in
N|z], as was pointed out in proposition 3.2.2. However this “operation”
suggests the introduction of the notion of an inverse of a point in Nz].

Definition 3.2.5 Let a(z) be an element of N[z); an element b(z) of N|z]
is an inverse of a(z) if (a(z)+ b(z)) RO, where a(z) +b(z) = Ti5o(ai + bi)z*
and R is taken on Ny{z}.

By proposition 3.2.2 a point may have more than one inverse but no
more than three.
We will use the following convention for denoting the inverses:

o If the inverse of a(z) is unique we denote it by —a(z)

e If a(z) has more than one inverse we denote them as follows:

(-'a'(x))1 i= (iliz oo 't,.)
(—a(@)}  j=(ja-.. )
(—a(z)t k= (kiks... ko)

such that (—a(z) )} € Ny[z] and the words, J,k have minimumlength,
such that, allow us to distinguish that they are different.
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As an example we consider a(z) = 1. A direct computation show that

its inverses are: sni1 3mt2
n n
21120(1: + +z )

ano(x&z + x3n+2)
Tnzo(2®" + 2%*1)

and they are denoted (—1)°, (—1)'° and (—1)" since they belong to Nolz],
N1o[z] and Ny [z], respectively.

Lemma 3.2.1 The 0-triple points of w are:
o 6((—=1)) fori=0,10,11

6z((=z)) for i =10,00,010

8:((—(1 + z))t) for i = 0,10,11

8-(ri(z)) for i =0,10,11 where:

r°(x2 = z+) "

n>1 ‘
7‘10(3}) = 1+ szn+2
n>0
7‘11(.’0) _ 1+Zx3n+1
n>0

§2(s4(z)) for i = 10,00,010 where:
M) = g

n>0
soo(x) — x3n+2
SbIO(x) —_ Zx3n+1
n>0

6:(t(z)) for i = 0,10,11
tO(x) — Z x3n

n>1
tw(:z:) = 1 + Z 2:3"+1
n>1
t(z) = l4+z+ > g2
n>1
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Figure 3.1: Identifications of the boundary of w

and the identifications of the boundary of w are given by:

® 65;((—1)"),3,(3“"(1‘)) 7:3 identiﬁed with 63;((—1)10),53(8°°(I))
[ 5;((—1)1]),5z(81°(-’l’)) 18 zdentzﬁed 'U)Zth 853((_1)0),31(300(35))
[ 4 33((_1)10)‘5::(310(1)) iS identiﬁed With 631((_1)0),53(3010(1,))

where 0,4 18 the shortest segment of boundary between p and q, t.e. the
segment of boundary that has cmaller diameter.

In the proof of this lemma the following proposition is required:
Proposition 3.2.4
(Wi+(m,m)Nw; =0 for i€{2,3,12,13} and any (n,m) € Z*\(0,0)

Proof of Proposition 3.2.4: In [38] it is proved that ||p|| < 1/2 for ever3; pE
w where || || is a suitable norm in the plane, with the property:

IBpll = &' ?|jp|| for any pe€w.
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wil?

therefore || BYp|| < &5- < 1 for j>2.
The rectangle wq; is disjoint from its translates under the lattice Z2,
since w3 = B?w. Similarly for w,, since

w; = TB*w = B%w +(a,a?)

On the other hand w;3 = BT B?w, s0 ||wi3]| < a®/?; therefore it is disjoint
from its translates under Z2. Similarly for w3, which is equal to Tw3

End of the proof of Proposition 3.2.4

Proof of Lemma 3.2.1: Now we are going to prove that these points

are 0-triple points.
As has been shown before, the inverses of 1 are:

(-1)° = Z(x3n+l+:c3n+2)

n>0 )

(_1)10 — 'Z(z3n+x3n+2)
n>0

(_1)11 — Z(x3n+x3n+1)
n>0

according to remark 3.2.1, we have:
8((-1)°) = &((-1)°)+(1,-1)
8:((-1)°) = &((-=1)")+(1,0)

So the images under &, of the points (—=1) are three different points in
w which differ by an vector of integer coordinates, therefore they have the
same image in T? and it is a O-triple point.

On the other hand:

CL6E) = &) +(0,-1)
500 = E()

‘and

8(™(@) = B(2() +(0,1)
8(™(@) = B(s°() +(1,0)
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Similarly we have

5.(£(z)) = 6:(1°(x)) = 6.(t"(2))

which is the point where the rectangles w;, w, and ws intersect in the interior
of w.
An easy computation shows that the inverses of 1 4 = are:

(_(1 +1:))0 —_ .’132 + Z(x3n+l +x3n+2)

n>1
(—(1+:c))1° — 1+E(x3n+x3n+1)
n>1
(_‘_(1_*_&;’))11 — 1+x+2(x3"+z3"+2)
n>1

and

8((=(1 +2))°)
(-1 +2)) =

Also, the inverses of z are:

(_x)OO —_ :c2+>:(:cs“+x3”+2)

A

ba((=(1 +2))'°) +(1,0)
S((=(L +2)M) +(1,0)

n>1
(_x)OIO — x+Z(x3n+x3n+l)
n>1 (
(_x)lo — 1+x2+2(x3n+1+x3n+2)
n>1

and the relations between their images are:

b:((=2)"°) = &u((=2)") +(0,~1)
= 8 ((=2)™) = &((—=))

Therefore §,((—1)) for 2 = 0,10,11, §,((—(1 + z))}) for i = 0,10,11,
6:((—z)) for i = 00,010,10, §,(t(z)) for i = 0,10,11 §,(ri(z)) for i = -
'0,10,11 and §,(s¥(z)) for i = 00,010, 10 are O-triple points. '

In order to show that these are the only O-triple points, we are going
to describe the identifications on the boundary (Ow;) of w;. In this way
we shall find all the 0-triple points contained in this boundary. Later this
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analysis is done in the boundary of w3 and w; (Ow; and Ow;, respectively).
In this way we shall have all the identifications on the boundary of the
fundamental domain w and all its 0-triple points.
We consider the boundary of w; as the union of different pieces of bound-
ary:
Oz = g (capo)hatrio(@) Y e (rio(e) du((~ay9)V
b ((~2)10)8:(00(2)) Y O, (120 (@) el (- (12)10) U
b= 429 Beteo(@) Y B (10 ha((-1719)
Let p € O3, (_1y10) 4, (r10(ey) Since 8:((=1)1°) is identified to &,((—1)1)

and 3,(1'10(:0)) to 5$(r11(m)), p is identified to an unique point in ws, if not
there would be two points in w; that differ by an element of Z? fact that
contradicts proposition 3.2.4. Therefore 0;_ ((=1)10),8:(20(2)) is identified to
361(( —1)11) 4, (11 (2)) and moreover there is not a 0-triple point in this piece of

boundary, with the exception of &,((—1)1) and &,(r'%(x)).
Similarly it is proved:
® 05, (= (142))10) u(s10(z)) 15 identified 0 Tg ((_(144))0),5,(s010(2))
® 0, (510 (2)) ha((-1)r0) 15 1dentified to O (on g) ,((-1)0)
[ ] agz(ru)(x)),g;((_x)lo) iS identiﬁed to 651(1'0(.’!:)),33((—2?)010) ’

On the other hand 36 ((~2)10) 4 (t10(2)) 1 identified to &;, (=) &=(t0(@))"

Since b-(t°(z)) and §,(t'°(z)) are in the interior of w and &, ((—:n)lo)
b5((=z)*), therefore

s, ((~2)19) 8o (09() = Dbu((2)®) da(t(a))

and this section of the Jw; and Ow; lies in the interior of w, with the excep-
tion of the point,,((~z)'°) which is in the boundary (smce bz((—2)°10) =
8u((=2)) + (0, -1))

Similarly &; (£19(2)) da((= (142))10) is identified to 0 (#11(2)) Bo (= (142))1) and
therefore

T @o(@) de((-4a)) = Tsu(e1(e) bul(-a+a)0)

The identifications in w3 and w; are obtained in a similar way.

End of the proof of Lemma 3.2.1
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3.3 Boundary Transitions and Dimension

The partition of the symbolic space §2 into w; w, and wj; gives rise to the
iterated system of maps (ISM)-studied in section 1.5

Im: Q — Ql
) O'H2 . Q — Qz
ollell’: § — Q3

which induces equivalent systems of maps in all the other geometrical real-
izations of the dynamical system associated to the substitution.

In this section we consider a map that are related to the inverses of the
previous ISM:

p : Q—N
H—l . Ql —_— )
® Ol ¢ Q — O

It : Q3 —

This map induces a system of maps in all the other geometrical realiza-
tions of ¢ :  — Q. In particular, we are interested in the realization on
w, we denote this system of maps by ®.

d w—w
&, = B! W — w
P ‘1)2 = .B_:I:Z-'—1 Py — W
$; = BT . wy — Wws.

Observe that @ is not a map since it is not defined .uniquely in the
boundary points of w.

Lemma 3.3.1 The boundary of w s invariant under ® and the induced
system of maps on the boundary, as a subset of T2, can be represented by
the transition matriz:

M

I
O HKHO
Hooo
oo+~ O
OO KM



Proof: Each map ®; is a homeomorphism in the regions where it is defined,
So ®; maps the boundary of w; into the boundary of w;_; for i = 1,2,3
(where wq is w). Therefore the extended boundary of w, i.e. dwqU0w,Udws,
is invariant under ®;.

Next we are going to compute the transitions of @ in this extended
boundary, and these transitions will show that the boundary of w is invari-
ant under ®.

For finding the transitions it is sufficient to compute the images of the
0-triple points, since the extended boundary of w is invariant under ®. In
order to do that we will work in the space A[z], since the computations
are easier, here the map equivalent to ¢ : @ — Qis ¢ : N[z] — N[z]

é1 No [z] — N[-'U] ¢1(P(x)) = %p(m) '
$:3 ¢ Nlo[x] — Nolx] da(p(z)) = i(p(:c)—-l)
s : Nule] — Niolz]  da(p(z)) = L(p(z)—1)

First we shall find the transitions of dw N fw; according to P3.
Observe: '

¢3((__1)11) — ¢3(Z(x3n+x3n+l))

n>0 .
= ¢3(1+z+ Y (2 +2>))
n>1
= 1+ Z(x:in‘—l + £3n)’
v n>1

= (-1

Similarly we get:

$3(r'’(z)) = $%z)
$s(t'(2)) = t%=)
$s((-(1+2)") = (-2)*

Therefore:
P10 comsene) = Fnape) b
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2105 (@ baer@) = G0 s
@105, (2 @) b)) = Fnpo(@) du((-2))
1095, (- ) det-1) = Fa((cay) ha((-10)

But as far 0w N Ows is concerned we have:

01(0s, ((—1y1)detrir(@)) = Fha((-1)10),5u(s1%(2))
21005, (e ) da(-1) = Dsa((may0) da((-1)10)

Doing similar computations we get the transitions of dwNdw, according
to ‘I’z!

D305, (=ayi0)datrio(@) = Osa((-2)10) 2 (s220(a)

2005, 1o dut-10) = Fa(m10 () but(-1)0)

22(03, ((<1)10)u(610(@)) = Da((-1)0)6s(s%(2))
(I‘z(353(310(1)),33((-(1-1-@)10)) = a5z(S°°(¢))’5z((—$)°°)

Finally the transitions of dw N Ow; according to P, are:

21(s, (0@ be(-2)%) = Dbu(ro(e)) dut=1)10)
21(05, ((=a)10) du(620(@)) = Fsa((=1)10) du(s10(s))
<I>1(3*,(soxo(x)),5z((-1)°)) = 33,(310(1)),5,((—1)11)
(I)l(651((_1)0),33((-(1-1-1'))0)) = 03:((—1)“),3:((—3)9“’)
1(0, () b (e0) = Du(-am0)deteo(e))
21(G5, (500 (2)) dul(-2)0)) = Fgo(s010(2)),ba((-1)0)

This shows the invariance of the boundary under &:
®(0w) C Ow

All these transitions can be expressed in a 12x12 matrix — since we have |
considered 12 different rectangles (R;) in the boundary in the computations
of the transitions — according to the rule:

My = { 1 i &(B;)N Rit 0

0 otherwise
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where R; is the interior of R; as a subset of Jw.

(00 000O0O0O01000)
00000000O0T100
000000000100
100000000010
01 00000000O0TO071
M=|010000000000
“1]001000000O00O00O
00010000O00O00O0O
000100000O0O0TO
000010100000
000001010000
\0 00000001000

where the rectangles R; are:

By = O caynybe(rii(@)

Ry = 05, (o)) da((-1)11)
Ry = Op,(a0(2)) 8u((-(1+2))10)
Ry = 8,(c1)0)8.(20(2))
Rs = 05, ((c1p0) 4u(r10(a)
Rs = 85, (10(2)) 6u((=2)1)
Rr = O, (<)) 8. (2 (c))
Rs = Og,(0(a)) du((-(14+2))7)
Ry = Of,((-14)0) (1))
Rio = O (-1)0) 8u(s010(2))
Ry =

52 (=2)01), 82010 (2))
Rz = g, (0()) ba((=2)0)

using algebraic computational software, we found that the characteristic
polynomial of M is '

(-14+z)z* (—1 +z + z? +:c3) (-—-1 -2z —l—z:‘) | (3.1)

We can reduce the number of rectangles by merging the ones which have
the same image under ¢, and later considering the identifications, under Z?2.
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Figure 3.2: The partition of the boundary of w as a subset of R?
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We end up with 4 rectangles:

P = R, Ry is identified to R,

P, = RyUR;7; Rjis identified to R; and R, to Ry
P; = R3;URg Rgis identified to R3 and R;; to Rs
P4 S

R4 RlO 1s identified to R4

and the transition matrix is

0 001
1010
M_1001
0100

defined as:
M, = 1 i if ‘I’(Pj)n P#0.
0" otherwise

This operation of merging and identifying rectangles can be represented
using matrices. If the matrices @ and Q' are

[0 10 0)
1000
0010
0001
010000001000 0000
100010100010 , 0000
@=loo01001010001|2%=]0900
000100000100 0000
) 0000
0000
0000.|
\0 00 0

then

QMQ' =M
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Theorem 3.3.1 The Hausdorff dimension of the boundary of w 1s

2logp
~log A
where p is the Perron-Frobenius eigenvalue of
0001
1010
M = 1001
0100

Proof: First observe that the Perron-Frobenius eigenvalues of M and
M are the same, therefore we are going to work in the plane where the
matrix M is the transition matrix for ®. Consider the coverings of the
boundary, as a subset of the plane, given by the partition R = {Ry,...,Ri2}
— the rectangles of this partition are disjoint except for the end points —
and its iteration under ®~!. We denote by V5 ,®~R the partition of the
boundary given by cylinders of the form

R; =Riy N®7(Ri)) N+~ N&H(Ry,), &= (o,---,ik)
By definition the s-Hausdorff measure of Jw is:

H,(Ow) = ](ji%inf{zi: AN L;JU,- D Ow, |Ui| <€ Vi}.

therefore
H,(0w). < klim Z |Ri|*.

o0 :
RieVi_(®JR

Since ® is a composition of B~! —which expands distance by AY/2— and

T which is a piece exchange transformation on w, exist constants Cy, Cy > 0
such that :

Cra*?||pl| < [|27*pl| < C2a*|Ip|| Vpew (3.2)

So exists a constant C' > 0 such that
|Ri,...i, | < C'a*/?

On the other hand the number of rectangles of the partition V& @'R
is equal to 1*M*¥1 where 1* = (1,...,1) -
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Proposition 3.3.1 ([23]) Ezists a constant C3 > 0 such that
IPMk1 < C’3p'c forall k>0
where p is the Perron-Frobenius eigenvalue of the Matriz M

Hence

Ho(0w) < Lm > |R
R pievk_ga-iR

< lim C"a"i&(number of cylinders in VX_,®7'R)
k—o0 J

< lim C'a? p*.
k—oo

therefore the Hausdorff measure of w is smaller or equal to

B 2log p
log a

So

In order to prove the opposite inequality, we consider a measure y; on

Ow. We define p on the cylinders of the partition VX_ &7 R, which generate

Jj=0
the Borel o-algebra of the boundary of w, by
k .
Ly ) Vigp if Riig,...ix) 7 0
(Rs..i)) = { 0 if R,y =0

where the v;-s are the components of the normalize right positive eigenvec-
tor of M given by the Perron-Frobenius theorem. Clearly this measure is
supported on Jw.

Proposition 3.3.2 There ezists a constant Cy > 0 such that
1(R;) < Co| Rl

Proof of Proposition 3.3.2:

(kz!eg

P(R(io,...,ik)) = v,‘opk < pk =«

On the other hand, due to the inequality 3.2 there exists a constant
Cy4 > 0 such that

|8'Ri| > C4a'/? forall R, € R
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and since the partition R satisfies the Markov condition ie.  if

@(]%,-)ﬂ I%ﬁé 0 then R; C ®(R;); we have:
lRil = |R(io,-~-,ik)|
Z CY4(Z¥12E

therefore
p(R;) < Co|Ri|*® for some Co >0

End of the proof of proposition 3.3.2

Let U be a open subset of 0w and R; with i € J a covering of U by
cylinders of Ukyo Vi, 'R, therefore

0<u(U) < /L’(U R) <3 u(Ri) < Co) |Ril*™

Since this inequality is true for any covering of U by cylinders of Uy Vi,
®~'R and any other covering can be express in terms of this covering, we
have:

0< [L(U) < 'HSO(U)

hence the Hausdorff dimension of dw is equal to so.
End of the proof of Theorem 3.3.1

The system of maps & : w — w induces a system of maps on the
interval, using the Arnoux semiconjugacy € : I — w (Chapter 0. This new
system .

196 1—1

is given on the interval by:

T s T R Y |
B¢ = é_l@zé = b7 s L— I
6_1@35 = h-lf_l : Iz — I

Since the boundary of w is invariant under @, its preimage under Arnoux’s
map is an invariant set for the transformation £-1®¢.
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Corollary 3.3.1 The Hausdorff dimension of the preimage of the bound-
ary of w, under the Arnouz map &, s

log p

log A

Proof: The proof is the same as in theorem 3.3.1, but we consider
the partition of £-1(0w) given by S = {S4,..., 512} where S; = {-1R; and
V§=O€_J¢€(S)'

Since each map of the system expands the distance by a factor of A
(while & expands the distance by A/?) and each S; is contained in the
continuity component of f there exist constants Cj and C} such that

Cia < |€87E7Y(S)| < Cha forany Si€ S

and therefore

Cio* < [E84E1(S)| < Chot for any S; € VALETBE(S)

hence the Hausdorff dimension of £~1(8w) is half of the dimension of dw.

Q.E.D.
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Chapter 4

Relationships between the II,
substitution dynamical
systems.

4.1 Introduction

In the previous chapters we have been studying the family of substitutions:

1 — 12
II, : 2 —_— 13

(n—-1) — 1n
n — 1

and for each n we have shown different properties of the dynamical system
associated to this substitution and of it various geometrical realization.

In this chapter we describe how the dynamics of the systems of this
family, corresponding to lower dimensions — i.e. the parameter n in the
definition of II, — are present in systems of higher dimensions. In partic-
ular we show that there is a subset of ', whose dynamics resembles the
dynamics of N, We compute the Hausdorff and Billingsley dimensions,
with respect to a natural metric and measure on N, of this subset. Also
we study the realization of this subset in the interval.
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4.2 Topological conjugacies

Let 0 : Q* — Q" be the dynamical system associated to II,, as described in
page 4. This system is topologically conjugate to

(+1)n : N — N where
n-1

N = {a € {O,I}N‘| Z Aip; <N Vi}

J=0
and the map (+1), is the extension to N of adding 1 on
N" ={a € N'|3N > 0 such that Vi > N q; = 0}

as it was described in page 17. This system is self-induced, i.e the diagram

(), 5m

N
[ l e
m (+1)n "

commutes where
Ny ={a e N"|ap = 0},
T Nt — Ny
(aoa1 . .) - (0a0a1 )
and (—1?1’),, is the induced map of (+1), in m. ‘

Let C* be the subset of NV" in which n consecutive 0’s are not allowed.
i.e: v
. n-1
ct ={Q€W|Za;+,‘ > 0 Vi}

=0
Theorem 4.2.1 There exists a continuous and surjective map
Yp:C" = N ' such that the followmg diagram commutes: '

Cn g Cn
Vn Yn
Wn-l ag wn—l
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and also there exists a continuous map g, : C* — C" such that the diagram

cn gn cn
¢n d)n
Nn_l (+1)n Nn—

commutes.

Proof: Let {a;, .. i, ,}2o8 be the symbols of C*, which are all the
elements of {0,1}""! — since the non-allowed symbols of C™ have length n
or greater — and M(n) its transition matrix:

1 if Aiy ooy 5 = Qg 00 A5,_4
M;i(n) = and0<aj +--+ai_,+a;,,<n
0 otherwise .

We re-arrange the entries of this matrix as follows: Let a;,...a;,_, be
any of the symbols of C*. Consider @;, ...d;,_, where

— _JO0 ifa;=1
1 ifa,-:O.

i—.

The transition matrix of C* can be re-written in such way that it can be
split into sub-blocks of size 2x2, so that each of them gives the transitions
from a;,...q;,_ , and @, ...a@;,_, to a; ...a;,_, and @j, ... G, _,.

Cons1der any of these 2x2 blocks. If there is at least one entry equal
to 1, in this block, we can suppose that this entry represents the tran-
sition between a;,...a;,_, and aj ...a;,_,. Then the transition between
@, ... qy,_, aid @, ... G ,_, is also allowed and the other two transitions are
not allowed. Therefore the block is of the form

10 01
Idz—(o 1) or Jz—-(l 0).

On the other hand if there is not any 1 in the block, it is of the form

-(22)
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We obtain a 2"72x2"? matrix K by collapsing each of these blocks to
only one entry. If the block is of the form Id; or J; the corresponding entry
in K is 1. It is 0 if it comes from a block of type O.

We introduce the maps ¢ : {0,1}2 — {0,1} defined by ¢(00) = ¢(11) =1,
s(10) = ¢(01) = 0 and

v, : {0,1}*! — {0,1}"?
U,(ag: an-2) = ¢(agai)s(araz)- - ¢(an-3an-2).

Observe that ¥, (ao: - @u-2) = ¥n(ao - - Tn-2). So the map is two to one.
The matrix K is also a transition matrix, in fact: if the entry Kj;
comes from the block corresponding to the transitions from a;,...a;,_,,
@iy ... Ti,_, to aj, ... 44, _,, Tj,...qj,_, then k;; gives the transitions from
U, (ai ... a,_,) to ¥,(aj ...aj,_,). In order to show that the matrix K is
the transition matrix for N"" , it is sufficient to prove that the pattern
1.1 —ie. 1---1 —is not allowed and also if b;, ... b;,_, anddj, ...b;, _, are
n-1 :
words of length n—2in V"' such that at least one of them is different from
l,-2 and b, ...b;,_, = bj,...b;,_, then K;; = 1. Consider the pre-image of
1,,—, under ¥,,, which is 1,,_; or 0,,—;. Since the symbols 1,, and 0,, are not
allowed in C", the block of M(n) which expresses the transitions between
1,-1, 0,—1 and themselves is of type O. So the transition, expressed in K,
between 1,,_; and itself is not allowed. Consider b;,...b;,_, and b, ...b;, _,
such that b; ...b;,,_, = bj,...b;,_, and at least one of them is different
from 1,_5. Let a;,...qi,_,, Giy...Ti,_, and ajy ... a5, _,, Tj, ... dj,_, be the
pre-images of b;,...b;,_, and bj ...b;,_,, respectively, under ¥,. Since

b, ...b

i oo bin_g = bj ... b, we have

Aiy oo o Qi _g = Qg5 .. A5, 4 ( or = aj,...45, 4 )

and also a;,...a;,_, is allowed in C" ( the only way that it could not be
allowed is in the case that it is equal to 0,,—; or 1,_; which implies that
big ... bi,_y OF bj, ...bj,_, is equal to 1,_;). Therefore the block of M(n)
that gives the transitions between a;, ... a;,_,, @ ... @i,_; and aj, ... a;,_,,
@j, ... aj,_, is of type Id; or Jy, so K;; = 1. This proves that the matrix K
describes the transitions in "',
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Let v, be the map:

Yo : CP— N
")bn(aoal e ) = lI’n(ao ce an—Z)\I’n(an—2 e a2n—4) v
s(aoar)s(araz)s(azas) - -
= bobib,

In order to show that the image of this map lies in N7 take any subword
of length n — 1 of b = 9,(a), for some a in C*, say bi_1b;...bitn-3. If
@jaj41 ... Aj4n—2 is one of the pre-images of b; ... b;4,—3 under ¥,, then one
of the preimages of bj_1b;...bi4n-4 IS @j_10jaj41...Qj4n-3. Since g is in
C" the transition from a@;_ja;a;41...aj4n-3 t0 @;aj41...aj4n—2 is allowed,
therefore the transition between b;_1b;...b;4n—4 and b; ... b;1,-3 is allowed
according to the matrix K which gives the transitions in N"_l, so bis an
element of N, o _

In order to prove that v, is surjective, take any element b of N, Con-
sider bg...b,-3 and its two preimages under ¥,;: ag...an_2 and @p...apn_s.
On the other hand the preimagesof b; ... b, are ay ...a,—; and @, ... a1,
since the transition between by ...b,_3 and b; ... b,—2 is allowed, we get that
ag...0a,-1 and @g...q,-; are allowed words in Nn—l, so by induction we
construct the sequences @ and @ which are the prelmages of b under ,.
This proves that 3, is surjective and two to one.

The set C" admits the natural partition C" = CJ U C} where

= {a € C"|ag = i} for ¢ = 0,1. Observe that the previous argument
proves that the map 1, is bljectlve in each C}.

The continuity of 1, is stra.lght forward. Also, from the construction of

this map it follows that

= Yn(o(a)) = 0(Yn(a)) forall aecC".
On the other hand the map (+1)u_1 : N*~' — N""" lifts continuously to

gy :C3 — C¥ and gl : C} — CP but since C} and C} are disjoint we obtain
gn : C™ — C™ which is continuous and

Yn(gn(a)) = (+1)n-1(¥n(a)) for all a € C".
Q.E.D.
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Corollary 4.2.1 Define an involution
6 : {0,131 — {0,1}

(agay...) — (@oar--:)

The set C" 18 invariant under ¢ and g, : Cn/¢ — Cn/¢ is-topologz'cally

congugate to (+1)n-1 s N N where g, is the map corresponding to
gn under the projection which maps C* into Cn/¢.

Proof: In order to prove the invariance of C"* under ¢, it is sufficient to
show the transitions in C™ are invariant under the operation that changes
0’s to 1’s and vice versa, i.e. if a;;...a;,_, and aj, ...a;,_, are symbols such
that a;, ...ai,_, = aj,...aj,_, and a;;...a;,_,a;j,_, is an allowed word in
C" thena,, ...q;,_,G;,_, is also an allowed word in C". This is true because
a, ...d;,_, = Gj,...0q;,_, and the only case where @;,...a;,_,@;, _, is not
allowed is when is equal to 0,4 or 1,41, which implies that a;, ... ai,_,a;,_,
is equal to 1,41 or 0,41, respectively, contradicting the transition between
aiy ... 0q;,_, and aj,...a;, _,.

Since ¢ is a homeomorphism between CJ and C}, we have that cr / é is
homeomorphic to C§ and to CJ. According to theorem 4.2.1,
Puler 1 CIF —: N is continuous and bijective, for 7 = 0,1; since both
spaces are compact we have that this map is a homeomorphism. Therefore
gi 1 C} — CP is topologically conjugate to (+1)n_q : N — N"7", hence
Gn C"/¢ — C"/¢ is conjugate to (4+1),-1 NS N

. Q.E.D.

4.3 Metric relations

In this section we shall show that the dynamics on C™ resembles the dynam-
ics on V""" from the metric point of view, i.e. the shift map o|¢n expands
the Hausdorff measure — of its dimension — by the same amount as O'IWn-‘l .
In particular the Hausdorff and Billingsley dimensions of C* are computed,
for a natural metric and measure on N".

We consider N with the metric d,, defined as:

dn(g, g—l') — /\;miﬁ{i[a;;éa:.}
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where a,a’ € N and )\, is the Pisot number of the polynomial
2" — 2" ! — ... —z —1 ([6]). This metric is compatible with the prod-
uct topology on N

In order to define a measure on N, we introduce cylinders of the form:

P,

Aiye--Qipy

={b_€N"[bj=a;j 0<j<m}.
The measure v, is defined on these cylinders as

Vn(Pa;O...a,-m) = ﬂaio...a; /\-(m+1-2n—1) for m > 211/—1

on—-1" T

where 9, ...q; , are the components of the normalized positive right eigen-
27!.- .

vector of the transition matrix that defines N, given by the Perron-
Frobenius theorem.

In theorem 4.3.1 we compute the Hausdorff dimension of any subset S
of N, defined by a transition matrix S. Let S be an sxs-matrix with 0’s
and 1’s as coefficients: .

S = {g € FIISG;'---OH-k-l Ai41.Qiqk =1 Vz}

where k is such that there are s symbols of length k: a;,...a;,_,.

Theorem 4.3.1 If S C N is defined by a transition matriz S then the
Hausdorff dimension of S 13 %g:\%, where p 1s the Perron-Frobenius eigen-
value of S. Moreover the Vn-Bz'flingsley dimension of S 1s equal to its Haus-
dorff dimension. .

Proof: Consider the covering of S given by cylinders of the form:

b Ra.'o...a.-m

={beN"bj=a; 0<j<m}

where a;, ...a;, is an allowed word in § and m > k. We denote this
covering by R, and R = U;n>kRm. Observe that the diameter of each
cylinder of R,, is A0+,

Since S is the transition matrix that define S, we obtain:

R

AigeeeBipy

m—k+1
g (}za,'c,...a;k_1
“es n U(Ral'm_‘k_*,

)N o™ *(R

Ay e@ip_,

)N R,

)n...

1By g Qim
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therefore the number of cylinders in R,, is given by
l(s)tsm—k+ll(8)
where 1(s)t = (1,...,1).
N

“l I”

Y v
Hence, if we denote the diameter of any set by , we get:

H-(S) = liminf{Z|U-|T |U; U; D S and |U;] < €}
= n]z'l—l»roloZIRa'o "'m|¢
< lim /\ (’"“)’(# of cylinders inR,,)
— n]{l_l}go’\ (m+1)r1(s) Sm- k+11(8))

Since p is the Perron-Frobenius eigenvalue of S, there exists a constant
C > 0 such that
1(s)'S'1(s) < Cp' foralll >0

So:
HT(S) < n]illlgo(cp-k)/\r—‘(m+l)1p1n+l

therefore the Hausdorff dimension of S is smaller or equal to 79 = %3- In

order to prove the opposite inequality we consider the measure p on N

We define it on cylinders of the form R,

Qi eeeQim,

l‘(Ra,’o...a;m) = vago...a,'k_l P_(m+l_k)
where the v, ..q;,_ ’s are the components of the normalized positive right
elgenvector of S given by the Perron-Frobenius theorem. Clearly this mea-
sure is supported on S.
Since |Raw_,_a,m| = A;(m+) | we get:
lL(Ra‘»O_“a‘-m) va'-o "'a;k;l p“(m+1—k) _— (vaio"'a"k_l pk)lR
CllR |1'0

|
Qigelipy

IA

@igeelip,

where C' is a constant independent of the cylinder. .
Let U be an subset of S of positive p-measure and U;ecyR; any covering
of U where R; are elements of R = Ujn>tRm and J a family of indexes; so

0 <p(U) < p(UiesRe) < 3 p(Ri) S C' 3O |Ri|™.
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Since this inequality is true for any covering of U chosen from R, and this
family of sets generates the Borel o-algebra of S, we obtain:

0 < u(U) < HA(U)

therefore the Hausdorff dimension of S is

log p
0= log A\’

The computation of the 1,-Billingsley dimension of S follows the same
lines as before. If B,(S) denotes the v,-Billingsley measure of dimension 7
we have:

B.(5)

]Einéinf{z vn(U))" |U; U; D S and v,(Us) < €}

SR e TO G 1)
< 7313(]’-0 CA;(m+l+2n_l)TPm+1_k

therefore the 1,-Billingsley dimension of S is smaller or equal than 75 =
log p/log An. And the opposite inequality follows from

1(Ra;, ..ai,,) < C’"V,,(Ra,.o,,,a,.m )° for a constant C” > 0.
End of the proof of Theorem 4.3.1

In order to compute the Hausdorff dimension of C* and N, as a corol-
lary of theorem 4.3.1, we need to prove some properties of the transition
matrices of these two spaces, which deal with their eigenvalues.

Proposition 4.3.1 The characteristic polynomial of the matriz

(111 .- 1111Y)
1 0

00 --000
010 .--0000
An) = :
000 .--0100

\0 0O --0010)

s — 2"l —... —x —1, for everyn > 2.
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Proof: We shall prove this by induction. For n = 2, the proposition is

true since
11
AQ@) = < 10 )

and its characteristic polynomial is z2 — z — 1.
Observe that A(n) has the structure

1

An) = An-1) 0

00 010

We denote by Id,; the nxn-identity matrix. Developing the determinant of
A(n) — z 1d,, through its last row we obtain:

Det(A(n) — z Id,) = (—z) Det(A(n — 1) — z Idn-1) — Any

where )
/l—x 1 1 1 .---11 1 1\
1 -z 0 0 --- 00 O O
0 1 -z O -0 0 0 O
An-1= Det
0 0 0 0 ---01 -z 0
\ 0 0 0 0 --00 1 0
but

Ap1=—Apz = (’"1)2An—3 = (—1)"'4A§;
and Az = 1, therefore

Det(A(n) — z Id,,) = (—z) Det(A(n — 1) — z Id,—;) + (1)

If nis even Det(A(n—1)—z Id,eq) = —(2™ 1 =22 —... —z —1), hence
Det(A(n) —z1d,) = z(e" ' —=2z" 2 - —2—-1)-1 |
‘ = gt -zl -1
and if n is odd Det(A(n —1) —z Id,y) = (2" ! — 2" % —... — 2 —1), 50
Det(A(n) —z Id,) = (-z)(z" ' —2"?—.ci—z—-1)+1
= —(z"-z"1—...—2—1)
Q.E.D.
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Proposition 4.3.2 Let N(n) be the transition matriz of N, with n > 2.
There ezist matrices P(n) and Q(n), with 0’s and 1’s as coefficients, such
that

' P(n)N(n)Q(n) = A(n)

Proof: We prove this by induction on n. In the case n = 3, we order
the symbols of N of length 2 as follows: 00, 01, 10, 11 and the transition
matrix of N°, according to this order of the symbols is

1100
0011
-N(3)=41100
0010

We define P(3) and Q(3) as

OO O+
o - O o
= O OO

1100
P(3)=(0 01 0) Q@3) =
0001

and when the multiplication P(3)N(3)Q(3) is done we obtain that is equal
to A(3). Observe that the equality also holds if we consider

o= OO0
= O OO

0
Q@) =] 4
\o

Suppose that the proposition is true for n-1 where P(n — 1) is:
2n- on-

—— —N—

(1T 0--0 --- 00 0 0)
9.--0 1-+¢1 -« 00 O O
P(n—-1)= .
D=1 5.0 000 o 11 00
0-++0 0+--0 --- 00 1 0
\ 0---0 0-+-0 +-- 00 0 1
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and the transpose of Q(n —1)is
2n- 2n-

—N—
10.---0 00.---0 --- 00 0 O

00---0 10---0 --- 00 0 O

00---0 00---0 --- 10 0 0
00---0 00---0 --- 00 1 O
\ 00---0 00---0 --- 00 0 1

Consider the case of dimension n, the ordering of the symbols of length

n —1 of N, is given by the lexicographical order. Since {a;, ... a;,_,}'o

are the lexicographically ordered symbols of length n — 2 of N"-l, a;, =0
for 1 <j <273 a;, =1for 1 <j<2"*andin particular 0,-; is the first
symbol and 1,,_, the last one. ,

So according to this ordering of the symbols of N, we obtain that
the transition matrix is N(n) = (Bij)1<i,j<an-2 Where By;-is a 2x2- block
expressing the transitions of a;)-..a;,_,0, a;...a;,_,1 and aj ...a;,_,0,

aj, ... a;,_,1. The block B;; is either:
(11 -_(00
“\oo)"="{11

00 00
o=(56)7=(11)
in each case the corresponding entry — the i,j-th entry — of N(n — 1) is
0,0,1 or 1 respectively. In fact, if (N(n — 1));; = 1 then a;, ... a;,_, =
@jo .- Qj,_y, if aj,_, = 0 then a;, ...a;,_,0 is equal to aj,...a;,_,a;,_,, sO
Bij = E; and if aj,_, = 1 we get B;; = E. In the case N(n —1));; = 0
then a;...ai,_, = ajo...a;,_, =l,0ra;...qa;_, # aj,...a;j,_,. In the
latter case we obtain that B;; = O and in the former, the transition from
@i, ...a;,_,1 to aj, ...a;, _,0 is allowed and the other three transitions are
not. .
We define the matrices P(n) and Q(n) as follows:

]l

P11 te P12n-2 0 0

P(n)=| B, 4y -+ Boypma 0 0 | where Bj=(Py(n-1),Pj(n-1))
0 0 10
0 0 01
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~

Qu - an-z 00

~ : . : - w(n =1
Qn) = Qan-21 -+ Qan-2pn_g 0 where Q;; = ( Q’(TS , ) ) X
0 0 1
0 0 01

Since the matrix A(n) has the structure
A(n -1 0

A = m-n

00 XX 010

we have that the ¢,j-th entries of the matrix A(n), for 1 < 4,5 < n -1, are:

Aij(n) = "Sﬁ n)_z '
yYNY  Py(n—1) ,1(n—1)Q1,(7l—1)

= TS BuBaly
= = e o) (N0 WO ) (907)
= YU T Pu(n)Nu(n)Qui(n)

Next we shall show

2n—1 2'n—l

Ann(n) = 3 3 Puo(m)Na(2)Qun(n).

=1 r=1

According to our construction of P(n) and Q(n), we have Py, (n) = Pp_1), =
0for r = 2771,2""'~1and Q,n(n) = Oforall s < 27"1—1 and Qan-1n(n) =
1; So:

; ; Plf(n)er(n)an(n) épl,(n)N,z,.-l(n)

regrouping the terms in this sum, we obtain that it is equal to:

on=2 . 1
E Pls(n)Bagn—-l ( 0 ) 3
s=1
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and by the construction of the P and Q, we have:

on=1 gn-1 on—2
3> 3" P (n)Nu(n)Qia(n) = Y Pro(n — 1)Nygn-2(n —1).
=1 r=1 s=1

According to our ordering of the symbols of Nﬂ‘l, the entries N gn-2(n—1),

express the transitions between {a;, ...a:,_, }:-';11 and 1,,_,. Since 1,,_; 1s not

allowed in N"_l, the only allowed transition expressed by N,n-2(n — 1),

occurs when a;;...a;,_, = 01...1. Let s’ be the corresponding integer,
n-2

ie. Nggn-2(n —1) = 1. On the other hand, s’ < 2773, since a;, = 0, so

P g¢(n —1) = 1. Therefore:

2n-1

> P (n)Na(n)Qum(n) = 1

rl=1

which is the value of A;,(n).
Similarly it is proved that

2")-—1

Aij(n) = 3 Pir(n)Nu(n)Qu(n)

lr=1

Wi’ﬁh.‘ZSiS:t—l,j=nandi=n,1§j§n.

Q.E.D.
Remark 4.3.1 Proposition 4.5.2 is true for any matrizc Q(n) of the form:
_mr w2
(0---010---0 0---0---0 --- 00 0 0)
0---0 0---010---0 --- 00 0 O
n)t = E
Q_( 2 0---0 0 ---0 ..« 10 0 0
0---0 0---0 -+ 00 10
\ 0---0 0---0 .- 00 0 1)

Propositidn 4.3.3 There ezist constants C1,Cy > 0 such that -
CidE < 12" 1) N(n)F 1(2771) < CoAk

where 1(2" 1) = (1,...,1). In particular A, is the Perron-Frobenius eigen-
S—— .

n—1

value of N(n).
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Proof: We subdivide the matrix N(n) in sub-blocks,{D;;}};-; — many
of them are not square blocks — such that each D;; is mapped to the i, j-th
entry of A(n), i.e. A;j(n); when the matrices P(n) and Q(n) of proposi-

tion 4.3.2 are apply to N(n), i.e.

Py - B, Dy +++ Din Qu - Qun
: s = A(n)
pnl e -Isnn Dﬂl e Dnn in o Qim
where P; = (1,...,1), P = (0,...,0) for 7 # j and Q% = (1,0,...,0),

1—4 gn—1—i gn=1—j

gn—1—i nele—i n-—l-—

4 =1(0,...,0) for i # j. According to this construction:
A\

gn—1—¢

Aij(n) = PiDy;Qj;

. .
diyj, o0 diyj, 0

= (1,...,1) ! )
diyjy -0+ dij, 0

= iz dii |

where s = 27173 and 7 = 2n-1-i, Similarly it can be done for N*(n),
we subdivjde itAin blocks {Df;}7?;-, such that DY = ¥, D§'Dy; and
Afj(n) = P,';D,%ij.
In the following lines, we prove by induction on k the equality
12" DE 1(2m 1Y) = 21 Ak (). (4.2)
When k£ =1:

l(2rl—l—i)t Dij l(zn-—l—j) —

1 0 : [0
0 1 ' 0
= (1,...,1)D; . +(1,...,1)D;; . -I—---—i—('l,...,l)D,'j :
0 0 : 1

gn—1—j 2n-1—i

= 2 ( ; di}’jl)
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2n—1 -1 Zn—l—i

According to remark 4.3.1, Y, dij, = Xjo; diyj for 1 <p < s On
the other hand A;;(n) = Y d;j;, hence

12717 Dy;1(27 1) = 2771 445(n).
Consider | |
Al(n) = S AT (n)Ai;(n)
=1

. 1 n—1-1 t - n—1-— 1 n—1- t nele—iq
= 2l 1277 Dt 1(2*) (o 127717 D127 )

1 = 1 .n-—it - n—-1- n;—t n—1-j3
= g 2 g 10 DI Q@ hLen ) Dy1(r)
=1
1 = 1 n—1-1 n=1-i\t k-1 yn~1-~j
=1
= g 10 DDy 1)
=1
— 1 1(271-—1—1' t Dk 1 2n—1—j
- 2n—1—j = ) i -—( : )

Which proves the equality (4.2).
Therefore

[

%( S Ak(n) < 3 Y27 4k (n) = 127 N(n)kL(2™Y) < 271 S Ak(n).
t,7=1 =1 j=1 t,5=1

Since ), is the Perron-Frobenius eigenvalue of A(n) — proposition 4.3.1 -,
there exist constants C,C’ > 0 such that ~

CA! < 1(n) A(n)*1(n) < C'A*
So:

She!

A <127 N(n)FL(RT) < (C2rAE
Q.E.D.
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Proposition 4.3.4 There ezist constants C,C’ > 0 such that:
CAE_, <12 M(n)*1(2%) < C'AE_, for all k> 0.
In particular A,y is The Perron-Frobenius eigenvalue of M(n).

Proof of proposition 4.3.4: The 2"~2x2"~2.matrix N(n — 1) defines the

transitions of N"'. We have seen in theorem 4.2.1 that this matrix is
equivalent to the matrix K, constructed there, So we can suppose that
N(n —1) = K. In the proof of this theorem, we have seen that each entry
of K = (Ki;)i; comes from a 2x2 block B;; of M(n) ~ which is 27~1x2""1
—, with the properties: -

o if K;; =0 then
(00
B;j——O—-—(O 0)

o if K;; =1 then B;; =1d, or Bi; = J,, where

I(lz'—"-(é 2) andJ2=<(1) 2.))

From proposition 4.3.3 there exist constants C;,C; > 0 such that

CiX,; <12 'K'1(2"%) < oMy

n-1

for I > 1, where 1(27~2)" == (1,...,1).
2
an-

If we denote by I{fj the 1, j-th entry of the matrix Kfj and by ij the
7, j-th 2x2-block of M!(n), defined by: Bj; = 22:12 B 1B,;. So:

2n—2

12" ) M )1 = 3 1(2)'BL1?2)

1,3=1

Therefore, in order to prove the proposition it is sufficient to show that the
following inequality holds:

1(2)'B;1(2) = 2K;.
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We shall prove it using induction on I. When | = 1 it is clear that the
inequality holds. Consider Kf = 22:-2 K> 1Ky if Kp; = 1 for some p
then B,; = Id; or J,. In the former case:

1(2)'BLB,;1(2) = 1(2)° B, '1(2) = 2K

and in the latter case B}, !B,; is the block obtained from B ! permuting
its columns. Hence '

1(2)' B}, B,;1(2) = 1(2)'B};'1(2) = 2K

and if K,; = 0 then B,; = 0 and the corresponding term does not contribute
to the sum.

Therefore .
1(2)'Bi;1(2) = ,31}21(2) Bi;'Byil(2)
= 22" 2K} 1K
= 2] )
Q.E.D.

Corollary 4.3.1 The Hausdorff dimension of C*, as a subset of N'= with

the metric d,, 18
_ log An—l

n = log \,,
Moreover: ‘
H, (0(V)) = AncaHs, (V) for V. CC"
where H,, is the Hausdorff measure in dimension s,,.
Proof: According to proposition 4.3.4 the Perron-Frobenius eigenvalue
of M(n) - the transition matrix of C* — is A,_;; therefore the Hausdorﬁ'

dimension of C" is -9—54\"; On the other hand, for any subset V of C",
expands its dlameter lg)y An, SO

He(0(V)) = A0 Heo(V) = Auc1 Heo (V)
' Q.E.D.
Corollary 4.3.2 The Hausdorff dimension of N is equal to 1.

Proof: By proposition 4.3.3 the Perron-Frobenius eigenvalue of N (n) — the
transition matrix of N - is equal to ). So, according to theorem 4.3.1
the Hausdorff dimension of N is equal to 1.

Q.E.D.

111



4.4 Geometrical realizations of C"

In this section we shall study some properties of the geometrical realiza-
tions, in particular in the circle, of the set C".
In section 1.3 we introduced the set of formal power series associated to

N .
N'z] = {g a;z' |a = (ao,a1,...) € N’}
X { N — N[x]

g:(ao,al, ) - Ez>0at

We consider a metric and a measurein N [z] that ‘make the map X an
isometry and a measure preserving map. Also in section 1.3 was introduced
the map

x: S — N"[z].

In this section we consider the map ¥ : S — N" defineby ¥ = X 'ox. In
order to prove that ¥ is a measure preserving map between the Lebesgue
measure of S'and the v,-measure ~ defined in section 4.3 —, we need to
consider the concept of the standard partition defined in section 1.5. This
partition arises from the self-similarity of the interval exchange map f on
the circle and the addition by 1, i.e. (41), in N". This self-similarity i 1s.
expressed by the commutative dlagrams

N'n (+1)n Nn 1 f

I .1
T T . h h

w7 e

L ——— 1,

In section 1.5, it was shown that any cylinder of the standard partition
in the interval, can be expressed as Oy ,(m)I for a integer compatible with
the partition (ICP) m. This cylinder is mapped under ¥ to a cylinder of
the standard partition of A/".

Proposition 4.4.1 The map ¥ : S* — N is o measure preserving map
between the Lebesgue measure of Stand the v,-measure on N
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Proof: Since the standard partition on the circle (respectively "),
generates the Borel o-algebra, it is sufficient to show that ¥ preserves mea-
sure for the cylinders of these partitions. Any cylinder of the standard
partition of A" is the image, under ¥ of a cylinder of the standard parti-
tion of S1, i.e. if m is an ICP then O(41).(m)N " is equal to X(Of r(m)I),
where O(41),-(m) is defined as

Osnye(m) = T(HL)7~(41) -+ (+D)ris =iz (41 7ir
if m = g;; + -+ gi,. In section 1.4 it was shown that m can be written as:
m = g, ¢ (1 + Gir—ip © (1 ot Gy -i, © (1 + gi:—il—t) ot ))

Since the maps 7 and (+1)7 contract the v,-measure by a factor of A;!, we
obtain:

va(Opn) o (m)N™ = A7

On the other hand h contracts the distance by a factor A;! and f is an
interval exchange map, therefore the Lebesgue measure of Oyn(m)S?t is
g
Q.E.D.
Denote by K,, the geometrical realization of C* on the circle, i.e. K, =
X1 (C").

Corollary 4.4.1 The Hausdorff dimension of K, is equal to l%;;“:'\—“.

Proof: According to theorem 4.3.1 the v,- Blllmgsley dimension of C*
is EA"—‘ Since the map Y : (S1 L) = (N",v,) is measure preserving, the
L- Blﬁmgsley dimension of K, is equal to the v,-Billingsley dimension of
its image under Y. On the other hand, the L-Billingsley dimension of any
subset of Slcoincides with its Hausdorff dimension.

Q.E.D.
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