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Summary 

In this thesis we study some properties of the geometrical realizations of 
the dynalnical systelns that arise from the family of Pisot substitutions: 

1 
2 

-+ 12 
-+ 13 

(11, -1) -+ In 
n -+ 1 

for n a positive integer greater than 2. 
In chapter 1 we COlllpute the Holder exponent of the Arnoux Inap, which 

is the selniconjugacy between the geollletrical realization of (n, 0'), the dy­
naIllical systelll of this substitution, in the circle (SI, f) and the 11, - 1 
dilnensional torus (Tn-I, T). Also in this chapter we introduce the notion 
of the standard partition in the SYlllbolic space n and in its geollletrical 
realizations. The cylinders of this partition are classified according to their 
structure. 

In chapter 2 we construct a geodesic lamination on the hyperbolic disk 
associated to this standard partition and a transverse Ineasure on the laIni­
nation. The interval exchange Inap f and the contraction h induce Inaps F 
and H on the lan,lination, respectively. The map .F preserves the transverse 
Ineasure and H contracts it. 

In chapter 3 we cOInpute the Hausdorff dimension of the boundary of 
w,. the fundalnental dOlnain of the torus T2 obtained by the realization of 
the sYInbolic space n that arises froln the substitution 113 • As a corollary 
we cOInpute the Hausdorff dhnension of the pre-image· of the bo:undary 
of w under the Arnoux Inap. 'Ve also describe the identifications on the 
boundary of w that Inake it a fundalllental dOlnain of the hvo dilnensional 
torus. 
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In chapter 4 we study some relationships between the dynamical systeIlls 
of this faIllily of sub,stitutions. "Te describe how the dynamics of the systeIlls 
of this faIllily, corresponding to lower dimensions - i.e. the parallleter n in 
the definition of lIn - are present in systems of higher dimensions. Also we 
study the realization of this property in the interval'. 
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Chapter 0 

Introduction 

Space filling curves were first introduced by Peano, in 1890 ([34], [35]). 
Later other exalnples were introduced by Hilbert ([27]), Lebesgue ([32]), 
Schoenberg ([44]) and others. These constructions rely on the representa­
tion in a integer base of the numbers in the interval and a representation of 
the points of the unit square using this base, ego in [34] the base used was 
3, in [27] was 4 and in the construction of Schoenberg a different integer 
base representation of the points in the interval and in the unit square was 
used. However these constructions have very few dynainical properties. 

Substitutions are a source of dynalnical systeins 'with very different prop­
erties. Using the dynainical systems that arise from a particular family of 
substitutions a space filling curve can be constructed with interesting dy­
namical and geolnetrical properties. A substitution in a finite alphabet A, 
is a Inap froln the alphabet to a set of words in this alphabet: 

IT : A --+ Un~lAn 

a --+ Va. 

This Inap is extended to a map the set of words in the alphabet A into 
itself by juxtaposition, i.e. IT(UV) = IT(U)IT(V) where U and V are words 
in the alphabet and IT(0) = 0. In this way the substitution is extended to 
a s~t of infinite sequences in the alphabet A. "'e are interested in the fixed 
points of IT or ITn for SOlne n 2:: 1. 'Vhen such points exist, we consider 
the closure, in the product topology on AN·, here N* is the set of positive 
integers of the orbit under the shift lnap - 0"( UOUI U2 • ~ .) = Ul U2 ••• - of 
the fixed point, this space is denoted by n. One of the Inain interests of 
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these dynalllical systellls is that they provide the coding infonllation for 
certrun geollletricaldynamical systems. 

One of the first substitutions to be studied was 

II : {0,1} 
o 
1 

---+ {0,1}2 
---+ 01 
---+ 10 

It was studied in 1906 by Thue ([45], [46]), who was interested in sequences 
with non-repetition properties, and rediscovered in 1921 by ~10rse ([33]) in 
the study of geodesics flows on surfaces of negative curvature. 

As far as the geollletrical realization of these dynalnical systelns is con­
cerned the substitutions are classified into two groups: substitutions of 
constant length, i.e. all the words II( a), for a an element of the alphabet 
A, have the saIne length and Pisot substitutions, i.e. the Perron-Frobenius 
eigenvalue of the lnatrix that represent the substitution is a Pisot number. 
In the case of substitutions of constant length, 0 is realized as an algebrruc 
extension of the ring of p-adic integers, where p is the length of the substitu­
tion. The shift lnap is realized as a rotation in this non-archiInedian space 
([42], [40]). In the case of Pisot substitutions, nis realized as a cOlnpact 
region in R n

, for SOlne 11" which is a fundalnental dOlnrun of torus Tn. The 
shift lnap is realized as a piece exchange lnap in this cOlnpact region of R n, 

in fact, the dynalllical systelll (0, (1) is sellliconjugate to a translation in 
Tn ([38]). In the general case the realization of the substitution dynalnical 
systeln is a product of the spaces that arise in the case of constant length 
and in the Pisot case([42], [40]). 

A cOlllprehensive study of the dynalnical systelns that arise fronl sub­
stitutions of constant length can be found in [36]. 

On the other hand, SOlne substitutions can be realized as an interval 
exchange lnap. In [3], it was showed that for the family of Pisot substitu-
tions:' . 

1 
2 

---+ 12 
---+ 13 

(11, -1) ---+ In 
n ---+ 1 

with 11, ~ 3, there exists an interval exchange lnap f : 51 --+ 8 1 such that 
the diagralll 
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Sl f I Sl 

n (j I n 

is cOllunutative, where e is continuous frOlll the right and therefore there 
exists a lnap e : Sl -+ T n - 1 such that the following diagraln COlnmutes: 

f 

T 

where 11 is the selniconjugacy given in the case of Pisot substitutions. In [3] 
it was proved that the lllap e is continuous. Hence it is a space filling curve. 

On the other hand, a symbolic dynamical systeln in the alphabet A 
can be obtained from an arbitrary sequence Q = VI V2 ••• by considering the 
space: 

~ = {(jn(Q) In E N*}. 

The dynalnical systeln (:E, (j) is said to be of complexity p( n) if the 
cardinality of the set of subwords, of length n, of the sequence Q is p( n). If 
Q is periodic pen) is constant for large n. The next degree of cOlllplexity 
is when p( n) = n + 1. In tIlls case the sequence is called a sturmian 
sequence([5], [13], [16], [24], [25],[26],[39], [41]). Among these sequences is 
the ,?ne obtained by the Fibonacci substitution, II2: 

1 ---+ 12 
2 ---+ 1. 

The dynalnical systellls that arise froln the substitutions Ilk are of COlll-
plexity (k - l)n + 1 (see proposition 1.2.4). . 
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In [5] it was proved that all the sequences of complexity 
(k - l)n + 1 that satisfy a hypothesis, that we will specify next, are realized 
as an interval exchange lnap of 2k intervals. The additional hypothesis that 
we have just lnentioned is: for every n and any subword of Q, W = WI •• • W n , 

of length 11" it can be extended uniquely to a subword of SOlne length rn 
(rn ~ 11,) and this extended subword adnlits k exactly extensions to a word 
of length rn + 1. And also, there exists a subword W = WI .•. wm ' of length 
rn' ~ 11, of Q such that Wm'-i = Wn-i for 0 :::; i :::; n - 1 and aW is also a 
subword of Q for all a E A. 

The dynalnical system that arises froln the substitution Ilk satisfies 
these properties ( propositions 1.2.1 and 1.2.2). These dynamical systems 
are the sitnplest substitution dynalnical systems that can be realized as an 
interval exchange map and a translation on the torus of sonle ditnension 
and these two realizations are selniconjugate. 

In this thesis we study the dynamical systenls, that arise fronl the family 
of substitutions Ilk, and their geolnetrical realizations. Before describing 
the contents of each chapter, 've shall give a sumlnary of the main properties 
of the dynalnical systelns that arise £rOln this falnily of substitutions and 
their geoilletrical realizations ([3], [6], [38]).· \Ve shall use these results in 
the thesis. 

The substitution Ilk has a unique fixed point since it is a contraction 
as a lnap froln AN· into itself. Let denote this point by u = (UOUI ••• ). 

According to previous lines 

The dynalnical systelll (0, (J) is minimal, i.e. every orbit is dense. This 
space adlnits a natural self-sitnilar partition 0 - Uf=10i where 
Oi = {Q E 0 Iva = i}. The self-sinlilarity aillong the elelnents of this 
partition COlnes fr'onl the cOlnl11utativity of the diaOgraln: 

o (J 
I 0 

TIl (0.1) 

(J 

• 0 1 

4 



where a denotes the induced Inap of u on 01, i.e. 

qC!!.) = Ulnill{IIO"I(~) End (Q). 

The construction of the geolnetrical realization of (0, u) in R k-l is as fol­
lows: Let us define the Inap "1 : 0 -+ R k

-
1 on the orbit of the fixed point 

of the substitution, u: 

(
a) (rl (Un) ) 

i}(un(y)) = n ~-1 - : ' 

a rk-l(Un ) 

(0.2) 

where Un = UOUI ••• Un-l and ri(Un) is the nUInber of sYInbols equal to i in 
Un and a is the inverse of the real root, greater than 1 of xk_xk-l_ .. ·-x-1. 
The Inap i} is extended by continuity to O. The ilnage of 0 under "1 is 
denoted by w, this set is a fundalnental domain of T k - 1 , therefore the Inap 
"1 could be re-defined as a map frOln 0 to T k - 1 , this map is denoted by 
"1. This Inap is a semiconjugacy between (0, u) and (Tk - 1 , T), where T 
is the translation defined by the vector (a, ... , ak ). The set w admits a 
self-silnilar partition {wt, ... ,Wk}, where each Wi is the inlage of Oi. 'Vhen 
the Inap T is considered as a Inap of W into itself, it exchange the sets Wi'S. 

In figure 0.1 can be seen wand its partition, and figure 0.2 shows how W 

teselates the plane. for the case k = 3. 
A space hOIneolnorphic to 0 is obtained using the representation of the 

non-negative integers, given by the recurrence relation associated to the 
substitution: 

k-1 

9n+k = L 9n+i for n ~ 0 and 9i = 2i for 0 :s; i :s; k. 
i=O 

See [38] for the details of the construction. 'Ve give a sununary of it in 
section 1.3. The- space obtained is denoted by Jr. 

In [6], was introduce the interval exchange niap f on I = [0,1) de­
fined as: f = LI 0 LIt 0 ••• 0 LI/c where II = [0, a) and, for j ~ 2, 
I j = [2:1:; ai, 2:1=1 a i ). Note that 2:~=1 a i = 1, so that the intervals 
II,. :'. ,Ik fornl a partition of I. The Inap LJ denotes the rotation of order 
2 on the interval J = [a, b), i.e. 

X -

{ 
+ b-a 

LJ(x) = : _ b;a 

5 

if a < x < a+b 
- 2 

if ill < x < b 2 -
otherwise 



Figure 0.1: The set wand its partition, in the case of k = 3. 
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Figure 0.2: The set u.,' (ill the case of k = 3) and its translations under the 
lattice Z2. 
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When k ~ 3 the dynaillical systeill (I, f) is minimal ([2]) and is self-siIllilar, 
i.e. the diagraill 

1 f . 1 

is COllllllutative, where the Illap h is 

and f is the induced Illap of f on 11. 

if a < x < I-ole 
- 2 

if I-ole < x < 1 
2 -

Let () be the coding lllap of the orbits of f, under the partition given by 
the Ii'S, i.e. ()(x) - {Z(fn(x))}neN· where the Illap 
Z : 1 --+ A is defined as Z(x) = j if x is in Ij.The Illap () is not con­
tinuous, however it is right-continuous since f is right-continuous. 

The lllap e : Sl --+ T k - 1 , defined as the composition of 17 and () is a seilli­
conjugacy between (S\ f) and (Tk - 1 , T), here the circle; S\ is identified 
with 1 = [0,1). The continuity of e is not obvious, since () is discontinuous 
([3]). In the following chapters we will denote by t the version map of the e 
when it is considered as a map from 1 to the fundaillental domain of T k - 1 

in R k, obtained before, i.e. 

t : 1 --+ w t = 71 0 (). 

In chapter 1 we shall COlllpute the Holder expolient of the Arnoux lllap 
e : Sl --+ Tk-1. In order to do that we introduce the notion of standard 
partition of the sYlllbolic space 0, that COllles froill the self-siIllilarity of the 
OJ's ... This partition is induced in the geoilletrical realizations of ilk in 1 and 
in w (or in Sland T k - 1). The structure of the cylinders of this partition 
on T k - 1 is trivial; however the structure of the cylinders in the ,interval is 
lllore cOlllplex, the cylinders could have many connected cOlllponents, due 
to the discontinuity of the Illap h. In section 1.5 we classify the cylinders 
of this partition. In order to describe the cylinders of t~lis partition we 
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introduce, in section 1.4, a binary operation on the natural numbers, which 
reflects the sub-division of a cylinder into sub-cylinders. In this section we 
introduce a subset of the natural nUlnbers that is a seIni-group under this 
binary operation. . 

In chapter 2 we construct a geodesic lanlination on the hyperbolic disk 
associated to this standard partition and a transverse Ineasure on the lauli­
nation. The interval exchange Ulap f and the contraction h induce Inaps F 
and H on the laulination, respectively. The Inap F preserves the transverse 
Illeasure and H contracts it and the following COInlllutative diagrain arises 

A F,A 

Because of this we can think this lamination as a geoilletrical realization. of 
(0,0-). 

In chapter 3 we COlllpute the Hausdorff dhnension of the boundary of w, 
the fundainental dOlllain of T2 obtained by the realization of the sYlnbolic 
space 0 that arises froin the substitution Il3 • This result was proved inde­
pendently by Ito and I(hnura ([28]). As a corollary we cOlnpute the Haus­
dorff dhnension of the pre-hnage of the boundary of w under the Arnoux 
Inap. We also describe the identifications on the boundary of w that Inake 
it a fundainental dOlnain of the two dhnensional torus. 

In chapter 4 we study SOlne relationships between the dynainical systeins 
. of this faulily of substitutions. 'Ve describe how the dynainics of the systeuls 
of this faulily, corresponding to lower dimensions - i.e. the paraineter k in 
the definition of Ilk - are present in systems of higher dhnensions. In 
particular we show that there is a subset of jJk, whose dynainics reseinbies 
the dynainics of jJk-l, from the topological and Inetric point of view. vVe 
cOlnpute the Hausdorff and Billingsley dhnensions, with respect to a natural 
Illetric and Ineasure on jJk, of this set. Also we study the realization of 
this set in the interval. . 
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Chapter 1 

Holder exponent of Arnoux's 
semiconjugacy and the 
standard partition of the 
geometrical realization of the 
substitution ilk" 

1.1 Introduction 

In this chapter we shall C01l1pute the Holder exponent of the selniconjugacy, 
constructed by P. Arnoux in [3], between an interval exchange Inap and an 
irrational translation on Tk-l, which are the geolnetrical realizations of 
the dynalnical systeln associated ,vith the substitution Ilk ( which will be 
denoted by II, whenever the parameter k is understood): 

" . 

II: {1,2, ... ,k}N ~ {1,2, ... ,k}N 

n n n n 1 ~ 12, 2 ~ 13, ... , (k - 1) ~ lk, k ~ 1. 

The construction of Arnoux's Inap gives us a fundalnental d01l1~n for 
T k - 1 with very irregular - fractal - boundary. This fundalnental dOlnain 
adlllits a partition into k rectangles, each one associated 'with one of the 
sYlnbols in the alphabet A = {I, ... , k} on which the substitution is defined. 
TIns partition is constructed in such a way that the dynalnical syste1l1 
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associated with the substitution i.e. u : n -+ n gives sYlnbolic dynamics 
for the irrational translation, T on Tk-1. If we denote this selniconjugacy 
by ~ : Sl -+ T k - 1 the following cOlnlnutative diagraln arises: 

f 

(1.1) 

T 

where f is an interval exchange lnap. 
Since these k-regions are self-similar, we have a refinelnent of the par­

tition for all different levels. We call this partition the standard partition, 
which is study in section 1.5 

Given a level n cylinder of these partition, which' corresponds to a word 
of length 1, (1 ~ n); it turns out that this word can be extended uniquely 
to a ,vord of length m (nt ~ 1) such that there are k different possible 
extensions to a word of length 1n + 1 (that correspond to rectangles of level 
n + 1)( section 1.2). In the proof of the Inain theoreln of this chapter and for 
further purposes, we work with words of In axhn al length for a cylinder of a 
given level, because the maxhnal words give lnore dynamical infonnation. 
In order to describe and manage this phenomenon properly we define in 
section 1.4, a binary operation * : N X N -+ N. The definition of * uses the 
representation of the natural nUlnbers into "base II". 'Ve shall show that 
there are some natllral nUlnbers , which are very useful for representing 
the cylinders of the standard partition; these nUlnbers are called integers 
cOlnpatible with the partition (I. C.P.), and fonn a selnigroup under the 
binary operation * (Sections 1.4 and 1.5). Also in section 1.4 we use this 
binary operation for describing other dynamical properties of u : n -+ n 
and its geolnetrical realizations. 

For cOlnputing the Holder exponent of Arnoux's nlap, .we need a good 
understanding of the standard partitiqn in the symbolic space n and in its 
geometrical realizations. In particular in the interval, the structure of rect-
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angles is not very clear since the interval exchange lnap f is not continuous. 
'Ve deal with this topic in section 1.5 and especially in lelnlna 1.5.3. 

1.2 Extension of allowed words in n 
In this section we are going to show that any allowed word in n of length 
n can be extended uniquely to a word of length m (m 2:: n) such that this 
new word adlnits k different extensions to a word of length 7n + 1. Later 
we shall show that the cOlnplexity of (n, 0") is (k - l)n + 1. 

Proposition 1.2.1 Let V be any allowed word of length n. It can be 
uniquely extended to a 'word V of .some length m (n ~ m), .such that V 
admitt; k po,-t;.sible exten.sion.s. 

Proof: For silnplicity 'we are going to prove this proposition when 
A= {1,2,3}. 

Consider Il4(1) which is equal to 1213121121312. Here we can see that 
the sYlnbol 1 adnlits three possible extensions. It can be followed by 1, 
2 and 3. Moreover, the sYlnbol 3 can only be followed by 1. Because 
33 is not an allo,ved word since is not in Il(A) and cannot be fonned by 
juxtapositions of elements of A. Similarly 32 is not an allo,ved word. On 
the other hand 31 and 131 are subwords of Il4(1). Therefore the extensions 
of 1 are: 

1 
/' 

1 --+ 2 

~ 
31 

Hence Ilq(l) adlnits'the extensions: 

/' 
for all q 2:: 1 

On the other hand, any allowed word V of n is a subword of Ilq (1) for 
sonle q. Therefore V can be extended in the salne way as Ilq(l), lnoreover 
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this extension is unique when we consider the minimun q, such that V is a 
subword of nq(I). " 

Q.E.D. 
In a siInilar manner we can prove the following proposition: 

Proposition 1.2.2 Let V = VI ••• Vn be an allowed word. Then there ex­
ists a unique word V = VI ... vm with m > n such that Vm-i = Vn-i for 
o ;::: i ;::: n - 1 and a V is an allowed word for any a in the alphabet A. 

Let W (n) denote the set of allowed words of length n in n. In order 
to prove that the cardinality of IV(n) is (k - l)n + 1, We introduce the 
following proposition. 

Proposition 1.2.3 Let W be an allowed word of n. 

1. If the word a W is allowed for some a in the alphabet A and if there 
exist .. q a unique b in A such that the word Wb is allowed then a IVb is 
an allowed word. -

2. If there exists a unique a in A such that a W is an allowed word and 
if lV B is an allowed word for some b in A then a Wb is an allowed 
word. 

3. If a Wand Wb are allowed word .. ~ for all a, b in A then there exist 
unique a' and b' in such that a'Wb' is an allowed word. 

Proof: 

1. Since the word a W is allowed there exists an allowed ,vord U such 
that aW is a subword of II(U). 

If Wb is not a subword of II(U) there exists c an elelnent of the A 
such that U c is an allowed word and Wb is a sub,vord of II(U c). The 
existence of such sYlnbol c is given by the unicity of b. Therefore a Wb 
i~ a subword of II(U c). 

2. TIlls proof is siInilar to 1. 

3. 'Vithout of lost of generality, we can assume that A = {I, 2, 3}. Sup­
pose as an inductive hypothesis that the ~tatement is true for all 
allowed words of length m, where 1 ~ m < n. 
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Consider W = WI ••• Wn an allowed word. Since Wb is allowed for all 
b in A, and since the words 22, 23, 33, 32 are not allowed in n, we 
can conclude that Wn = 1. There exists an allowed word U such that 
U d ia an allowed word for all d in A and U31 is also allowed such 
that 

• TV1 is a subword of II(U31) 

• W2 is a subword of II(U1) 

• W3 is a subword of II(U2). 

The word U is choosen with minilnallength, i.e. if U' is a subword 
of U then WI ••• Wn-l is not a subword of II(U'). Observe that the 
length of such word U is smaller than n. 

Since U is choosen with Ininimallength and the fact a W is an allo'wed 
word for all a in A, we have that cU is an allo\ved word for all c in A 
and for any a there exists a C such that a W is a sub\.vord of II( cU). 
Therefore U is an allowed word such that cU and U d are allowed for 
all c and d in A. Since the length of U is slnaller than n, by the 
inductive hypothesis, there exist unique c' d' such that c'U d' ia an 
allowed word, therefore this detennines uniquely a' and b' such that 
a'Wb' is an allowed subword. 

Q.E.D. 

Proposition 1.2.4 The cardinality of W(n) is (k - l)n + l. 
Moreover(k-l)n elements of W(n) can be extended uniquely to a word 

of length n + 1 and only one element of W(n) admits k possible extensions. 

Proof: Again for simplicity, we are going to give the proof when A= 
{I, 2, 3}. The proof is given by induction on the length of the word. 

In the case n = 1 the elelnents of the alphabet adlnit the extensions 
shown}n Proposition 1.2.1 

• 1 can be followed by 1, 2, 3 

• 2 can be followed only by 1 

• 3 can be followed only by 1. 
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Let W(n) = {VI, ... , V2n+l} where 

By the inductive hypothesis there exists j such that vj is the only elelnent 
of W (n) that does not adlni t a unique extension. 

- I I I I V - VI ••• vnvn+1 

Vjl - j jl 
VI'" Vn 

Vh - j j2 
VI'" Vn 

Via - j j3 
VI'" Vn 

v2n+1 - V2n+ 1 V2n+IV2n+1 
I • •• n n+1 

In order to prove that only one of these words cannot be extended 
uniquely to a word of length n + 2, consider the following vv-ords of length 
n: 

W i iii 
= V2 ••• vnvn +1 

Observe that by the inductive hypothesis we have 2n + 1 different words of 
length n, so there is a unique i' such that 1 Wi', 2Wi ' and 3Wi' are allowed 
words, for i =I i' there exists a unique vf such that vf Wi is allowed. 

On the other hal'ld there exists i-possibly equal· to i'- such that W tl, 
W i2, W i3 are allowed words, for i =I i there is a unique extension of Wi to 
a word of length n + 1, denoted by Wiw~+2' 

If i' =I i, by the proposition 1.2.3 parts 1 and 2, the words vl H!iw:1+2 
are allowed, having in total 2n + 3 words of length n + 2. 

If i' = i,by the proposition 1.2.3 part3, for each a in A there is a unique 
ba in A such that a Wi' ba is allowed. For i =I i' the word vf WiW~+2 IS 

allowed. Obtaining in this way 2n + 3 words of le.ngth n + 2. 
Q.E.D. 
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1.3 A Numeration system associated with 
the substitution 

In this section we are going to mention some results and techniques pre­
sented by Rauzy ([38]). The substitution associated with a Pisot nUluber 
allows us to represent the natural numbers in an 'exotic basis'. This rep­
resentation is useful for constructing a dynamical systelu isoluorphic to 
(f : n --+ n in which SOlne cOluputations and geoluetrical constructions are 
easier to do. In tins section for siInplicity we are going to restrict to the 
case when the substitution is 

1 ----t 12 
II: 2 ----t 13 

3----tl 

however the construction and results are valid for all the substitutions of 
this faluily, that is, also for k > 3. 

Let U = UOUI ••• the fixed point of II. Observe that Uo = 1 which inlplies 
that U lllust start with 11(1) and also 112(1) and so on. Therefore, for all 1, 
the first SYlllbols of U agree with 111(1). Let Un = uo . .. Un-l be the first n 
sYlubols of u. Un will be expressed as a juxtaposition of words of lIij (1). 

Proposition 1.3.1 (Rauzy [38]) Given a positive integer N then 

1. There exists a unique q and (io, ... , iq) such that 0 :::; io < i l < ... < iq 
with i j +2 > i j + 2 for 0 :::; j :::; k. 

2. UN = lIiq(I)lIiq-l (1)··· lI iO(l) 

This result can be expressed in terms of the recurrence relation associ­
ated to the substitution. Let 9j = IlIj(I)1 ,vhere IVI is the length of the 
word V. 

Sin~e the substitution satisfies 

we have the recurrence relation 

9n+3 = 9n+2 + 9n+l + 9n (1.2) 
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with initial conditions go = 1, g1 = 2, g2 = 4. 
Proposition 1.3.1 "pennits us to represent each natural number in a 

unique way as a SUln of cetain of the g/s with no three. consecutive g/s 
in the present SUln. This is a generalization of the Zeckendorf representa­
tion of the non-negative integers ([48]) using this recurrence relation instead 
of the Fibonacci relation. 

Let 

N = {;r. E {O, l}N* I Xj+Xj+1+Xj+2 < 3 Vj and 3I{ > 0 s.t. Vn ~ ]{ Xn = O} 

€ : N* --+ N 
N --+ €(N) 

where €(N) is such that 

which Inakes € a bijective Inap. 
Consider N (where it has the topology induced from the product topol-

ogyon {O,l}N) and the dynalnical system (+1) : N --+ N where the Inap 
(+1) is the induced operation hi N of adding one in N., i.e. (+l)€(N) = 
f(N + 1) 

Proposition 1.3.2 (Rauzy [38]) There exists a homeomorphism 
<P : N --+ n such that the diagram 

n (f I n 

i .. ~ commutative. 

To the set N it is associated the s~t of fonnal power series with coeffi­
cients zeros and ones, where series with three consecutive coefficients one 
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are not allowed. Tlus set is denoted by N[x]. The bijection between then 
IS: 

X : { N --+ N[x] i 
Q = (ao, at, ... ) --+ L:i~o ai X 

Since X is a bijection, we have the map X( +l)X-l : N[x] --+ N[x], which 
we will denote by (+1), whenever the context is clear. 

According to proposition 1.3.2 the diagralll (1.1) can be expressed as: 

where the map X is given by: X = X 4>- I B, wIuch is right continuous, and 
8x is defined as: 8x (Q) = L: aiBi z / f'J. The relation f'J is the equivalence 
relation defined by the lattice Z2 in R2. Here B is the lllatrix 

and z is the vector, whose transpose is given by (0' - 1,0'2) = f7( u(!!)). 
In general the lllatrix B is the restriction of the lllatrix that represent the 
substitution to its contracting eigenspace, which is of co dimension 1, since 
the Perron-Frobenius' eigenvalue of this lllatrix is a Pisot nUlnber. 

1.4 "A binary operation in N compatible with 
the dynamical systems associated with 
. this family of substitutions 

U sing the representation of natural numbers described in the last section, 
we can define a binary operation shnilar to the Fibonacci lllultiplication 
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([31], [4]). " 
Let nand m be given in the fornl 

where 

N 

n = 2: aigi, 
i=O 

At 
m = 2:bjgj 

j=O 

€i(n)=ai O:::;i:::;N €i(n) =0 Vi>N 
€j(m) = bj 0:::; j :::; M €j(m) = a Vj > M. 

Define n <> 1n by 
N M 

n <> m = 2: 2: aibjgi+j. 
i=O j=O 

Like the Fibonacci Inultiplication tills operation is associative. 
N ow we define a new binary operation in N: 
If n = g" + ... + g" with g"" < g" when J. < q to tl tJ tq • 

Observe that we can write n in the following way: 

n - gio <> (1 + gi1-io + ... + gil-io) 

- gio <> (1 + gi1-io <> (1 + ... + gil-i1 ) 

- gio <> (1 + 9il-io <> (1 + ... + gil_1 -il_2 <> (1 + gil-il_ 1) .•. )) , 

Definition 1.4.1 Define the binary operaration *by 

NxN-+N 

(1.3) 

n * m gio <> (1 + gi1-io <> (1 + ... + 9 i l_1 -il-2 <> (1 + gil-il_1 <> m) ... )) 

Properties: 

• I(n = gq then n * rn = gq <> m 

• * is not COlnlnutative: e.g. 
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9 - 2 + 7 = 91 + 93 = 91 <> (90 + 92) 

3 - 1 + 2 = 90 + 91 

9*3 - 91 <> (90 + 92 <> (1 + 91)) = 91 <> (90 + 92 + 93) = 
- 91 + 93 + 94 = 2 + 7 + 13 = 22 

3*9 90 + 91 <> 91 <> (90 + 92) = 90 + 92 <> (90 + 92) = 
- 90 + 92 + 94 = 1 + 2 + 13 = 16 

• In general it is not associative: e.g. 

3 * (3 * 2) . - (90 + 91) * «90 + 91 <> 91)) = (90 + 91) * (90 + 92) = 
- 90 + 91 <> (90 + 92) = 90 + 91 + 93 = 

1 + 2 + 7 = 10 

3*3 - (90 + 91) * (90 + 9t) = 90 + 91 <> (90 + 91) = 
- 90 + 91 + 92 = 93 = 7 

(3 * 3) * 2 - 93 * 91 = 94 = 13 

For this reason, we keep the following convention: 

'In1 * 1112 * ... * 'Inl def rn1 * ('In2 * ( ... * (rnl-2 * (ml-l * n~l))' .. )) 

However this operation is associative in a subset of the natural nUlnbers. 
Let n1 = 91 = 2, n2 = 90+92 = 1+4 = 5, n3 = 90+91 +93 = 1+2+7 = 10, 
no = 90 = 1 and P the set generated by these four nUlnbers under the 
operation *, i.e. 

PI = {nil * ... * nillij = 0,1,2 or 3 for all j} P = Ul?lPI 

In section 1.5 we ~re going to sho,v a geolnetrical interpretation of this 
set. 

Given any three naturalnulnbers n, m and 'In' then the associativity in 
n * 'In * rn,' fails when we do the operation n * 11~ and we get an expression 
with three consecutive 9i'S and therefore vve have to use the relation 1.2 for 
expressing the nUlnber as in proposition 1.3.1. . 

Easy calculations sho,v that when we do ni * nj for i,"j = 0,1,2,3 we 
never get three consecutive 9i'S. So the operation * : P x P -+ P is 
associative, which gives: 
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Proposition 1.4.1 (P,*) is a semigroup. 

One of the first applications of this binary operation in N is as follows: 
given o-tl(u) (which is equal to n(o-tl(u))) - 0- is the induced Inap of 0- in 
fh = h~ E nlvo = 1}- from the definition of u it is clear that atl ( u) belongs 
to the orbit of u under 0- (i.e. utl(y) = o-m(u) for some m). However what 
is the relationship between nand m? 

We are going to show how to express o-tl(u) as a composition of powers 
of n, applied to o-(u), and 0- (without using its powers). In particular we 
shall associated to each natural number n an operator Oq,n (n) such that 
o-tl(y) = Oq,n(n)(o-(u)). l\1oreover we shall the property 

Oq,n(m) 0 Oq,n(n) = Oq,n(n * 1n) 

Also we shall show ho,v tIils property is preserved in the geolnetrical 
realizations of 0- : n ~ n. 

Definition 1.4.2 If n = gio + ... + gil as in section 1.3 (i.e. no three 
con .. ~ecutive gi's are pre .. ~ent) then 

71, = gio <> (1 + gi1-io <> (1 + ... + gil_1-il_2 <> (1 + gil-i,- 1 ) ••• )). 

We define: 

Oq,n(n) n ~ n 
Oq,n( 71,) - nio 0-n i1 - io 0- ••• n i,-1 -i,- 2 0-ni,-i,-l . 

Lemma 1.4.1 The map Oq,n(n) satisfies the properties: 

1. 

2. 

Oq,n(m) 0 Oq,n(n) = Oq,n(m * 71,) for m,n E P .. 

3. 
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'Ve are going to proye first the following proposition: 

Proposition 1.4.2 1. agq(u) = I1q(a(u)) . 

2. agq ( u) = agq+1 (u) . 

9. agqOfl(u) = aflogq(u) = I1qa fl (u) for all n E N* 

Proof of proposition 1.4.2: 

1. This fact is proved by induction on q. 

In the case q = 1 

y - uoa(y} = la( u) so u = I1( u) = II(l )II( a( u)) = 12II( a( u)). 

Therefore a 2(y) = I1a(u) but 2 = 91 hence ag1 (u) = I1(a(y)). 

Let the expression of u as 

u = U(gq)agq(y) = I1q(l)agq (y) since u is the fixed point of the sub­
stitution we have u = I1q+1(1)I1(agq (y)) therefore we have agq+1(u) = 
I1( agq (u) = I1(I1q (a(y)) = I1q+1 (a( u)). 

2. As 've showed in part 1 of this lelnlna agq+1 (n) = I1( agq (n)) and since 
II 0 a = a 0 II we have I1(agq (u)) = agq (I1(u)) and since u is the fixed 
point of the substitution, we have: 

3. Let n =gio + ... + gi,. By Proposition 1.3.1 

Since u is a fixed point of the substitution II 

Therefore 

End of the proof of Proposition 1.4.2 

Proof of Lemma 1.4.1: 
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1. Let 

n - gio + ... + gi, 

- gio 0 (1 + gi1-io 0 (1 + ... + gil-1-i,-2 0 (1 + gi,-i,-I) ... )). 

By proposition 1.4.2 

ni,-i,-l (O"( U)) _ O"gi,-i,- 1 (U) 
0" ni,-i,-l (O"( U)) _ 0"1+9i,-i,_l (U) 

nil-1-i,-2 0" ni,-i,-l (O"( U)) _ O"g"_1-il_2 0 (1+g,,- il_1) (U) 

But the last tenn is O"n(u) by using the expression for n given at 
the beginning of the proof. But, by definition 1.4.2, Oq,n (n) = 
nio 0" n i1 - io 0" ... ni,-i,-l Therefore 

2. Let 

m - gio + ... + 9iq and m E P 

- gio 0 (1 + gil-io 0 (1 + ... + giq-l-iq-2 ~ (1 + 9iq-iq-l) ... )) . 

So 

and 
Oq,n(1n) 0 Oq,n(n) = 

n io 0" nil-io 0" ... niq-iq-l nio 0" n11 - 10 0" ... ni,-i,-l 
, v "" V ", 

Ocr,n(m) 

Since m and n E P, m * n = 
Ocr,n(n) 

Therefore 
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3. Follows immediately from 1 and 2. 

End of the proof of Lemma 1.4.1 

Now we are going to show what is equivalent to lemlna 1.4.1 in the ge­
oilletrical realizations of the dynamical systeln induced by the substitution 
i.e. u : n -t n. . 

Definition 1.4.3 Let n be as in definition 1.4.2 Define: 

W -t w by OTtB(n) 
OTtB(n) - Bio T Btl-iO T ... Biz-l -'Z-2 T Biz-iZ-l 

Corollary 1.4.1 Let z = T(O, 0) then 

1. OTtB(n)z = Tn(o, 0) for n E N 

2. OTtB(m) 0 OTtB(n) = OTtB(m * 71,) for all m and n E P 

9. OTtB(1n)(OTtB(n)(z) = Tm*n(o, 0) for 1n and n E P 

Proof: Frolll the COllullutativity of the diagran 

n u. n 

we obtain that 
i](u(v)) = T(i](v)); for all v E n. 

Since 1J(II(v)) = B(i](v)) for v in n, we obtain i](Ol1tn(m)u(u) = OTtB(m)i](u(u)) = 
OTtB(m)z: Therefore the corollary follows froln Lemma 1.4.1 

Q.E.D. 
'Vhen ,ve consider the geometrical realization of u : n -t n in 1= [0,1), 

there is a slight difference that COllles froln the fact that the preimage of u 
in the interval- under the Illap () (see page 8) - consists of three different 
points ,vith the property h(Xi) = Xi+l (mod 3), i = 1,2,3. . 



Definition 1.4.4 Let n be as in definition 1.4.2 Define: 

OJ,h(n) 

OJ,h(n) -

I --+ I by 
h io f h i 1 -io f ... h i,-1 -11-2 f h Il-tl-l 

and define the degree ofOj,h(n) as i, 

Corollary 1.4.2 Let xj, j = 1,2,3 be the preimages of u under 0: 

1. 
OJ,h(n )f(xj) = fn(Xgradn(j») 

where grad~(j) = j + i, (mod 3) and i, is the degree of OJ,h(n) 

2. OJ,h(m) 0 OJ,h(n) = OJ,h(m * n) where m, n E P 

s. OJ,h(m)(Oj,h(n)(f(xi)) = fm*n(Xgradmrm(i») for m and n E P 

'Ve shall prove this corollary after the following proposition. 

Proposition 1.4.3 

Proof of 1.4.3: We shall prove the two statements of tIlls proposition 
by induction: 

1. If q = 1 then hf(Xi) = jh(Xi) = j(Xi+l). But j(Xi+l) = f 2(Xi+l), in 
fact OJ(Xi+l) = u(u) = a 2(u) (by proposition 1.4.2). 

Consider 

But jgq(Xgradq+l(i») = fgq+1(Xgradq+di») since, by proposition 1.4.2, we 
have: -O(jgq(Xgradq+di»)) = ugq(y) = agq+1(u). 

Therefore: 
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2. If q = 1 then hln(Xi) = jn(Xi+l) and jn(Xi+l) = Inog1 (Xi+l) (since 
B(jfl(Xi+1)) = o-(y) = II«(1n(y)) = (1fl02(U)). 

Therefore: hlfl(Xi) = Inog1 (Xi+1)' Suppose that the statelnent is true 
for q, then: 

hQ+1/
fl
(Xi) - hlflogq(Xgradq(i») 

- Ifl09q09l(Xgradq+di») 

- IflOgq+l (Xgradq+di») 

End of the proof of proposition 1.4.3 

Proof of corollary 1.4.2: 

1. Let: 

n - gio + ... + gi, 

- gio 0 (1 + gi1-io 0 (1 + ... + 9i l-l -i,-2 0 (1 +. gil-i,_1) ... )) 

On the other hand: 

hil-i,-1(/(x;)) _ 

Ihi,-i,-l (/( x;)) -
I

gi,-i,-l (x· .. (d 3») .1+tl-tl_l lllO 

11+9il_" 1 ( ) - X ;+il-i'_1 (mod 3) 

I g"-1 -'1_2 0(1+g"-'1_1) (X. . . 
- , .1+t l-t l_2 

hio Ihi1 - io I .. : hil-i,-l(/(x;)) = 

(mod 3») , 

I gio 0(1 +9i1 -'0 0(1 +"+9i,_1 -"_20(1 +g'I-'I-l ) ... » (X. . 
.1+ t l (mod 3») 

Therefore: 

2. Follows frollllelnlna 1.4.1. 

3. Is a straight-forward consequence of part 1 and 2 .of this corollary. 

End of the proof of corollary 1.4.2 
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1.5 The Standard Partition 

In the sYlnbolic space n ,ve have a natural partition into k rectangles, 
where k is the nUlnber of sYlnbols in the alphabet in which the substitution 
is defined. In the rest of this chapter 've are going to work in the case k = 3, 
only for sitnplicity, the results can be generalized to k > 3. 

The space 0 adlnits the partition 0 = Uf=10i where 

Oi = {.~ E nlvo = i} i = 1,2,3. 

and each of these sets is self-similar to n: 

n 1 - II(n) 
n2 a(II2(0)) = a(II(01)) 
0 3 - a(II(a(II2(0)))) = a(II(a(II(01)))) = a(II(02)) 

Tliis self-sitnilarity induces a partition in each of the n/s and each of these 
cylinders can be subdivided in three sub cylinders according to the Inaps II, 
a TI2, alIa II2 . 

Definition 1.5.1 The partition of 0 generated by the the system of iterated 
maps (II, aII2, aIIaII2) i .. '1 called the standard partition of O. The elements 
of this partition are called cylinders. 

"Te are interested in the standard partition because it plays an ilnpor­
tant role in the proof of the the Holder continuity of the Arnoux Inap, and 
in the next cha.pter. . 

Let DOOln( n) be as in definition 1.4.2. In the following lines ,ve are going 
to show that DOOln (n)O gives a I-cylinder of the standard ·partition in n, 
when 11, E P 

As we said before the partition is generated by the iterated systeln of 
luaps described bello,v, so DOOln(n) has to be a COlllposition of Inelubers of 
this faluily of luaps. 

In section 1.3, we introduced 

11,1 = g1 11,2 = 90 + 92 
11,3 = 90 + 91 + 93 = 90 + 91 0 (90 + 92) 
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So 
OO',n(nl) = II OO',n(n2) = crII2 OO',n(n3) = crIIcrII2 

So any cOlnposition of OO',n(ni) i = 1,2,3 using lelnma 1.4.1 can be 
associated a natural nUlnber m such that OO',n(m) is equal to this COln­
position, i.e OO',n(nio) OO',n(nil ) ... OO',n(nile) is equal to OO',n(m) where 
tn = nio * nil * ... * nile; since the n/s are the generators of P, lU belongs to 
this set. Due to this fact, we introduce the following definition: 

Definition 1.5.2 The elements of P are called integers cOlnpatible with 
the partition (lCP) 

Therefore we have: 

Lenlma 1.5.1 R is a cylinder of the standard partition if and only if there 
exi~t;ts an lCP n such that R = OO',n(n)O. 

In section 1.2 we saw that any allowed word in 0 can be extended 
uniquely to a word that adlnits three possible extensions. 'Ve are going to 
show that any such luaxiIual word represents the synlbols o~ the standard 
partition cylinder. 

Lemma 1.5.2 Let V = Vo ... Vm-l be a maximal allowed word as in sec­
tion 1.2. Then exist~t; a cylinder R of the standard partition such that 
R = n~n-l n--i(l'") ) ,=0 v ~'Vi 

Proof of lemma 1.5.2: 
The set R = ni~olcr-i(OvJ is not elnpty since v is an allowed word, we 

need to find an lep n such that R = OO',n(n)(O). 
Now Vo can be extended' uniquely in 0 to Vo ... Vio and evidently this is 

a sub,vord of V. 
Clearly the cylinder corresponding to this subword n;~ocr-l(OVI) can be 

expressed as OO',n(njo) (since this subword is the extension of a word of 
length 1). Alnong the three possible next sYlnbols after Vio, let Vio+l be the 
one in V, and we stop at the next sYlnbol in which the word Vo ... Vio Vio+l 
cannot be extended uniquely i.e. Vo ... Vio Vio+l ... Vi io+l . Since each symbol 
of the word Vio+l ... Vi io +l expresses a rectangle 0 1 O2 or 03 we have 
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Therefore 
iiO+1 -1(0) 0 ( )0 n1=O cr Vl = (T,n njo * njl 

Carrying on this process we find njo, njl"" njq such that 

R = O(T,n(njo * njl * ... * njq)(O) 

Q.E.D. 
Evidently the partition structure of 0 is translated to its geolnetrical 

realizations. The cylinders of the standard partition in T2 are "easy to 
understand", all of them are closed, connected and siInply connected, since 
OT,B(n) is continuous. However O"h(n)I for n an ICP are "lnore COlll­
plicated" since 0 "~he n) lnight not be continuous as a Inap of the interval 
into itself so O"h(n)I lnight not be connected. Lelnlna 1.5.3 deals with 
the structure of O"h(n)l, but first we introduce the notion of equivalence 
of cylinders and SOllIe exalnples of the cylinders of this partition, having 
different structures. 

Definition 1.5.3 Let nand m be ICP's. We say that the cylinders O"h(n)1 
and 0 "~he m)1 are equivalent if there exists a homeomorphism that maps one 
cylinder into the other~ in such a way that each subcylinder, belonging to 
the standard partition, of ° "~he n)1 is map into a subcylinder of the .. ({tandard 
partition in O"h(rn)1. 

Remark 1.5.1 In the following lines we show the structure of O"h(n)1 for 
.. ({ome particular ICP's. In Lemma 1.5.9 we prove that these are all the 
po .. ({ .. ({ible .. ({tructures of the cylinders of the standard partition in the interval. 

• Consider the case nl = 91 = 2, 

O"h(nl)1 = h(l) = II = [0, a] 

The map h induce a partition in It, which is the image of 

I - II U 12 U 13 : 

II - h(ll) U h(12) U h(13) 
a 2 _ a3 a + a4 

[0, h(a)) U [h(O), a) = [0, ? ) U [ ,a) 
.. 2 

h(ll) -

a 2 _ a 3 a 2 + a 3 

[h(a),h(a+a2
)) = [ , ) 

2 2. 
h(I2) -

2 + 3 + 4 
[h(a + ( 2 ),h(0)) = [a a, a a) 

2 2 
h(I3) -
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A .. c; can be .. c;een here this cylinder consists of one interval and its next 
level partition consists of two cylinder, which are connected and one 
cylinder which has two connected components. 

• Consider the case when n = n1 * nt, 

O"I1(n1 * n1)1 - h2(1) = h(1t} = [0, h( a)) U [h(O), a) 
a2 - a3 a + a4 

- [0, 2 ) U [ 2 ' a) 

A nd this cylinder admits the following partition: 

h2(11) 
h2(12) 
h2(13) 

- O"I1(n1 * ndI1 U O"I1(n1 * n1)12 U O"I1(n1 * n1)13 
- h2(11) U h2(12) U h2(13) 
- [O,h(a)) U [h(0),h2(a)) U [h2(a + (2),a) 
_ [h2(a), h2(a + ( 2)) 
- [h2(a +.(2

), lim h?(t)) 
t-1-

So O"I1(n1 * n1)1 con .. c;i .. c;ts of two intervals, and its next level partition 
consists of two cylinders which are connected and one cylinder which 
ha .. c; three connected components. 

• Now, we consider n = n1 * n1 * n1 and 0 "h( n1 * n1 * n1)1 

O"I1(n1 * n1 * n1)1 - h,3(1) = h2(11) 
- [O,h(a)) U [h(0),h2(a)) U [h2(0),a) 

A nd the next level partition is 

O"h(n1 * n1 * n1)1 
h3(11 ) 

h3(12) 

h3(13) 

h3(1t} U h3(12) U h3(13) 
- [h3(0),h4(a)) U [h4(0),h2(a)) U [h2(0),h3(a)) 
- [h4(a),h(a)) U [h(0),h4(a + ( 2)) 
_ [h4(a + ( 2), h4(0)) 

• When we consider the cases O"I1(n1 * n1 * n1 * n1)1 and 
O"h(n1 * n1 * n1 * n1 * n1)1 we also have cylinders consisting of three 
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h(I 2) h(I3) 

o h(ex) h(O) 

Figure 1.1: Partition of OJ,h(nl)I 

o h(ex) h(O) 

Figure 1.2: Partition of OJ,h(nl * nl)I 

3 
h (0) 

I I 

0, h(ex) 
h(O) 

2 

h3(ex+ex2) 
h( ex) 

Figure 1.3: Partition of OJ,h(nl * nl * nl)I . 

ti(ex) 
J. 

H--f 
3 

h (0) h(ex) 
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h (ex+OC ) h (0) 

\1 
II I I 

2 
h(O) h (ex) 

3 
h(ex) 

I I 

2 
h(O) 

ex 

ex 

ex 

3 
. h (ex) 

t--f 
2 . 

,h(O) 



~(ex) 
I' 

1--1 

5 2 
tl (ex) h (ex) 

~.( 
H-i 

5 2 5 
h (ex+ex ) tl (0) 

'+( 
H-H 

J 
h (0) ~(O) 

2 J 
h(O) h(ex) 

Figure 1.5: Partition of O"h(nl * nl * nl * nl * nl)I. 

intervals, but the subpartition structure is slightly different between 
them and the case O"h(nl * nl * nJ)I; as can be seen in the figures 1.4 
and 1.5 . 

• However if we consider the case O"h(nl * nl * nl * nl * nl * nJ)I we 
get cylinder .. c; of similar .. c;tructure to O"h(nl * nl * nl)I, and all the 
cylinders coming from O"h(nl * nl * ... * nl)I have three intervals and 
they are of the previous types, as can be seen inthe proof of lemma 1.5.9. 

Proposition 1.5.1 Let be n, n' ICP'~c;, .. c;uch that 71- = nil * ~ .. * nile and 
n' = nil * ... * nil with 1 ::; k. If there exists a continuou .. c; and bijective 
function c.p : O"h(n')I -+ O"h(n)I of the form 0,,11(7n) for some integer 
rn (nl, might not be an ICP) .. c;uch. that thi .. c; map preserve .. c; the number of 
di .. c;joint intervals in each of theM?, cylinder .. c; and if 

c.pIO"h(n')Ij : O"h(n')Ij ---+ O"h(n * nj)I (1.4) 

is also bijective for j = 1,2,3; then O"h(n)I and O"h(n')I are equivalent 

Proof of Proposition 1.5.1: Since c.p is a continuous and bijective 
111ap frol11 O"h(n')I to O"h(n)I, which preserves the nUI11ber of disjoint 
iiltervals of these cylinders. It can be extended to a hOl11eol11orphisl11 of I 
into itself. 

In order to prove that c.p preserves the cylinders of the standard partition, 
consider a suhcylinder of O"h(n')I, say O"h(n' * njl * ... * nj,)I for sOlne 
.S 2:: 1. Using corollary 1.4.2 we obtain: 

c.pO"h(n' * njl * ... * nj,)I c.pO"h(n' * njl )O"h(nh * ... * nj,,)I 
- 0" (n * n' )0, 1 (n' * .. '. * n' )1 ,1 31 ,1 32 3" 

- O"h(n * njl * ... * nj,)I 
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. ., 

which is a sub cylinder of OJ,h(n)I belonging to the standard partition. 
Therefore OJ,h(n')I and OJ,h(n)I are equivalent. 

Q.E.D. 

Lemma 1.5.3 Let n be an ICP. The cylinder OJ,h(n)I is either: 

1. an interval and it is equivalent to I1=Oj,h(n1)L In this case, we say 
that OJ,h(n)I is of type 1. 

2. two connected components and it is equivalent to ° j,h( n1 * n1)L In 
this ca .. t;e, we say that OJ,h(n)I is of type 2. 

S. the union of three connected intervals and one of the following equiv­
alences happens: 

(a) ° j,h(n)I is equivalent to ° j,h( n1 * n1 * n1)L In this case, we say 
that OJ,h(n)I is of type S-a. 

(b) OJ,h(n)I is equivalent to OJ,h(n1 * n1 * n1 * n1)L In this case, we 
say that OJ,h(n)I is ol type S-b. 

(c) OJ,h(n)I is equivalent to OJ,h(n1 * n1 * ni * n1 * ndI. In this 
case, we say that OJ,h(n)I is of type S-c. 

Proof Of Lemma 1.5.3: We use induction on the number of factors 
in the ICP For I = 1: 

• In the case n = n1 , there is nothing to prove . 

• In order to study the case n = n2 = 1 + g2, we consider the cylinder 
OJ,h(n1 * n1)I=h2(I) - discussed in remark 1.5.1-, which is of type 
2. Since the Inap f is continuous in [0, h( a)] C [0, ~) and [h(O), a] C 
[~, a] and also limt-+a- =,f(O). Therefore fh 2(I) consists ~f only one 
connected cOlllponent. If we define t.p = OJ,h(m) for m = 1 + gl then 

t.p: OJ,h(n1)I -+ OJ,h(n2)I 

by construction is bijective and continuous on OJ,h(ndI. Further-
lllore: 

t.pOj,h(n1 * nj)I - OJ,h(m)Oj,h(nl * nj)I 
- OJ,h(m * n1)Oj,h(nj)I 
- OJ,h(n2)Oj,h(nj)I 
- OJ,h(n2 * nj)I. 

Hence OJ,h(n2)I is of type 1. See figure 1.6 
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oc 
OC+OC 2 

Figure 1.6: Partition of 0"h(n2)1 

• In the case n = n3 = 1 + g1 + g3, consider the cylinder 
h(fh2)(I) = h(12) and the Inap f is continuous in it, since h(12) = 
[h(a), h(a + ( 2

)) C [O,~] and f is continuous in this interval. There­
fore f(h(12 )) is an interval. Moreover f(h(12 )) = 13 , because fh(a) = 
a + a 2 and fh(a + ( 2

) = 1. Let be 'P = O"h(m) where rn = 
1 + g1 ¢ (1 + g1) 

which is a bijection because 

and continuous. Therefore 0"h(n3)1 is of type 1. 

We are going to show that tl~e lenllna holds for O"h(n * nj)1 where 
n = nil * ... * ni, and j = 1,2,3 . 

• Suppose O"h(n)1 is of type 1. By the inductive hypothesis, we have 
a continuous and bijective Inap 

such that 

'P : 0"h(n1 * nj)1 ---+ O"h(n * nj)1 

is bijective for j = 1,2,3. Also the Inap 'P preserves the nUInber of 
disjoint intervals. Furthermore 'P is of the form O"h(1n) for SOlne 
positive integer nt. By the existence of the Inap 'P we obtain the 
equality 

0"h(rn)O"h(U1) = O"h(m * n1) 

(which is not always true for all positive integers rn). 
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If j = 1 then OJ,h(n * nl)I is of type 2, because cp Inaps the partition 
structure of OJ,h(n * n1)I into the partion structure of OJ,h(nl * nt)I, 
i.e. satisfies the property (1.4) in proposition 1.5.1: 

cpOj,h(n1 * n1 * ni)I - OJ,h(m)Oj,h(nl * n1 * ni)I 
- OJ,h(m * n1)Oj,h(nl * ni)I 
- OJ,h(n)Oj,h(n1 * ni)I 
- OJ,h(n * n1 * ni)I for i = 0,1,2,3 

FroIll this, we can conclude that the cylinder OJ,h(n * n1)I consists 
of two connected components since OJ,h(nl * n1)I is the union of two 
disjoint intervals. 

If j = 2 then OJ,h(n * n2)I is of type 1. Since OJ,h(n1 * n2)I is of type 
1, in fact 

Taking m' = 91 <> (1 + 9d, we have OJ,;l(rn) = hfh and 
OJ,h(ru')Oj,h(nt)I=Oj,h(nl * n2)I. 

vVe define the map 

by cp' = cpOj,h(rn'), which is continuous since OJ,h(m')Oj;h(n1)I is the 
dOlnain of cp, which is continuous. Moreover it is bijective and satisfies 
the property 1.4, because: 

cp'Oj,h(nl * ni)I - cpO)~,h(m')Oj,h(n1 * ni)I 
- 'cpOj,h(rn')Oj,h(nl)Oj,h(ni)I 
- r.pOj,h(rn' * n1)Oj,h(ni)I 
- r.pOj,h(n1 * n2)Oj,h(ni)I 
- OJ,h(n * n1 * n2)Oj,h(ni)I 
- OJ,h(n * n1 * n2 * ni)I 
- OJ,h(n * nt)Oj,h(n2 * ni)I for i = 0,1,2,3. 

Therefore OJ,h(n * n2)I is an interval. These properties sho,v that 
OJ,h(n * n2)I is of type 1. 

In a sinlilar way, we can prove that OJ,h(n * n3) is of type 1. 
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• When O"h(n)1 is of type 2, siInilarly we can prove that O"h(n * nl)1 
is of type 3-a and O"h(n * n2)1, O"h(n * n3)1 are of type 1. 

• In the sanle way 've can discuss the case when O"I1(n)1 is of type 
3. Here, if O"h(n)1 is of type 3-a then O"h(n * nl)1 is of type 3-b, 
O"I1(n * n2)1 is of type 2 and O"h(n * n3)1 is of type 1. 'Vhen O"h(n)1 
is of type 3-b then O"I1(n * nl)1 is of type 3-c, O"I1(n * n2)1 is of type 
2 and O"h(n * n3)1 is of type 1. And finally, when O"I1(n)1 is of type 
3-c then O"I1(n * nl)1 is of type 3-a, O"I1(n * n2)lis of type 2 and 
o "h( n * n3)1 is of type 1. 

Q.E.D. 

1.6 Holder exponent 

In this section we compute the Holder exponent of e : SI -+ Tn-I, the sel11i­
conjugacy between the interval exchange Inap f .: SI -+. SI and 
T : T n- 1 -+ Tn-I, an irrational translation in Tn-I. 

Theorem 1.6.1 The map e : SI -+ T n- 1 is Holder continuous with expo­
nent p = _1~~ 1/3; I, where 131 i~r; the greatest, in modulus, among thos e eigen­
value~r; of the gmatrix associated with the substitution, with norm .. r;maller 
than one. And A is the Perron-Frobenius eigenvalue of this matrix. 

Proof: 
First ,ve are going to prove this in the case n = 3. In this situation 

_11311 = A -1/2 = a 1/ 2 so p = !. (At the end of this section we shall show ho,v 
to prove the theoreln in the case when n > 3.) . 

It is enough to prove that 

:lCo > 0 Vt, t' E 1 such that le(t) - e(t')1 ~ Coli - t'l! (1.5) 

Because frOln the diIllensions of the dOlnain and the image, one and two 
respectively, of e we get that the Holder exponent p ~ 1/2. 

Also, we can reduce the proof of the inequality (1.5) to the case when t' 
is in the interior of a cylinder of the standard partition and t is an extrel11e 
point of this cylinder - In this proof we aSSUlne that the cylinders of the 
standard partition are closed intervals, instead of semi-open as we showed 

36 



in the previous section. This assulnption is made in order to facilitate the 
finding of a extrelne point of the cylinder, on the other hand it does not alter 
the proof. In fact, let i be one point that is in closure of a cylinder but not 
in the cylinder, so i = limr -+7'o OJ,h(m)T where TO is either the discontinuity 
point of the lnap h or an extrelne point of II, 12 , 13 • Therefore OJ,h(m)To 
is a extreme point of the cylinder. Moreover X(t) = limr-+i- X(T) hence 
e( t) = e( i) - In fact suppose that t, t' are in the interior of a cylinder 
of the standard partition, i.e. t, t' E 0 j,h( m)1 for some ICP m, such that 
they are in different subcylinders at the next level: t' E OJ,h(m * ni)1 and 
t E OJ,h(111, * 11,j)1 with i # j, 1 ::; i,j ::; 3. Consider t the extreme point 'of 
OJ,h(1n*11,i)1 closest to t: 

le(t') - e(t) I < le( t') - e( t) I + le( t) - e(t) I 

< Colt - t'lt + Colt - tit 

< ,2Colnax{lt - t'lt, It - tit} 
< 2Colt' - tit. 

If t is not a extrenle point of 0 j,h( m * 11,j )1, we denote by til the extrelne 
point of OJ,l1(nt * nj)1 closest to t'. 'Ve have a similar cOlnputation, since 
the irnage of t and t' under e are the saIne because t = OJ,h(rn * 11,j)s and 
til = OJ,h(111, * nj ).s' where .s and s' are the extrelne points of II, 12 , 13 or 
the irnage of the discontinuity point of h under OJ,h(rn * 11,j). 

'Ve prove the inequality (1.5) in the case of t an extrelne point of a 
cylinder of the standard partition and t' an interior point of such cylin­
der. Always the cylinder can be subdivided into sub-cylinders such that 
t still relnains an extrelne point for one sub-cylinder and t' is in another 

-sub-cylinder. Thererfore we can, reduce the proof, to sho,v that the in­
equility( 1.5) holds for t and extrelne point of OJ,lI(nt * nl)1 and t' is in 
OJ,h(rn * nj)1 for 1 # j and rn an ICP, i.e. m = 9io + "'9ik; for all five 
cases of 0 j,h( 1n)1 - according to lelnlna 1.5.3 -. In each case the idea of 
the proof is to find "an upper bound for 'Ie(t) - e(t')1 using the contraction 
in OT,B(111,) in T2 and a lower bound for It - t'l based upon the length of ' 
the cylinder 0 j,h( m)1 and its sub-cylinders. The three cases are: 

1. The cylinder OJ,h(m)1 is of type 1. Assulne that t' belongs to OJ,h(rn * 11,2)1. 
(If t' is in 0 j,h (m * 11,3)1 the proof follo,vs the same lines)'. Since t is 
an extrelne point of OJ,h(m)1 it is irnage under OJ,h(m), of the dis­
continuity point of h, denoted by p and p = ata2

• 
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t 

t' 

°fh(m*n3)I 

Figure 1.7: The cylinder 0f,h(m)1 is of type 1 

Let be X : 1 ~ N[x] the Iuap defined in section 1.3, that gives the 
sYIubolic expression in N[ x] of any point of the interval. The Inap 8x : 

N[x] ~ T2 was defined in the sallIe section as bx(g.) = (E aiBi z) / "" 
where'" is the equivalence relation defined by the lattice Z2 in R2. 

Since rn is an ICP- is of the fonu rn = gio + ... gile - and t' is in 
o f,h( rn * 12,2)1, we have X(t') = xio + ... + xile + xile+2r( x) for SOlne r( x) 
in N[x]. 

On the other hand, the point t is the hnage under 0 f,h (rn) of the 
discontinuity point of h, denoted by p, since we aSSUIue that t is an 
extrelue point of the cylinder 0 J,h( n~ )1. A direct cOInputation shows 
that p is a fixed point of the ,luap h2 fh, therefore X(p) = El~O x 31+2

, 

so: 

Now we can find the upper bound for: 

le(t') - e(t)1 - 18x(X(t')) - 8x (x(t))1 
_ I(Bioz + ... + Bilez + B ile+2r(B)z) -

(Bioz + ... + Bile-1z + Bile+2q(B)z)1 
IBile z + Bile+2r(B)z - Bile+ 2q(B)zl 

where q( x) = El>O x31 

< IBi le 11(1 + B 2(r(B) - q(B)))zl 
i.k. < a 2 C where C = dialueter of w 

_ ailei6c)..3 

_ (.JiC ),.3) (0'+0'2 )1/2 a(iIe+6 )/2 
VO'+a2 2 
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t 

Figure 1.8: The cylinder OJ,h(rn)1 is of type 2 

On the other hand : 

Therefore 

where 

It - t'l > It - OJ,h(m)al 
IOj,h(1n)p - OJ,h(m)al 

_ aile Ip - al 
_ aile (°-;°2

) 

_ aile C:t31(4
) 

_ a ile +2(Oit2). 

I~(t') - ~(t)1 < GI C:tta2 //
2 

a(iIe+6)/2 

< GI(0~a2 //2 a(iIe+2)/2 

< GIlt - t'lt 

2. When the cylinder OJ,h(m)lis of type 2, we assulnet' is in OJ,h(rn * n2)1 . 
. The case t' in OJ,h(m * n31)ean be studied in a similar way .. 

In this case we COlnpare t' with t and t, the extrelne points of ° j,h( rn)1 
that realize its dialneter, see figure 1.8. As we relnarked before 
OJ,h(1n)p = t- and linlr _ p - OJ,h(m)r = i. l\10reover X(t) = x(i), 
so ~(t) = ~(t). 

The finding of the upper bound for I~(t') - ~(t)1 is the saIne as hi case 
1, so: 
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°fh (m*n3)1 0fh (m*n1)1 
t ~ _____________ A ___________ ~~~ 

~ 

I I I I I I I I I I 

Vt' 

°fh(m*n2)1 

Figure 1.9: The cylinder O/,h(m)1 is of type 3-a 

and also I{(t') - {(t)1 = I{(t') - {(i)l. 

On the other hand 

Also 

Therefore 

Ii - t'l > IO/,h(m)(o: + 0:
2) - il 

- IOj,h(m)(o: + 0:
2) - liln OJ,h(m)rl 

_ a:ilcl(o: + 0:2) - pi 
_ a:ilc(a~a2). 

1'"--+p-

It - t'l > IOj,h(rn)(a) - tl 
- IOj,h(m)(o:) - OJ,h(m)pl 
_ (iklo: - pi 
_ aik (a-:t2

) 

_ aikt2(a~a2). 

3. Suppose that the cylinder is of type 3. According .to lelnma 1.5.3 
there are three possible cases: 3-a, 3-b, 3-c. We shall prove the in­
equality 1.5 in. case 3-a. In the other two cases the cOlnputations are 
silnilar. 

In the case 3-a the point t' can be in OJ,h(m * n3)1 or in OJ,h(rn * nl)1 
and t, i are the extrelne points of ° /,h (m)1 that they are also extrelue 
points of O/,h(m * n2)1, see figure 1.9. 

40 

'-----"" 



Suppose that t' is in OJ,h(rn * n3)I then X(t') = xio + .. ·+xik +xik+l + 
xik+3r(x) for SaIne r(x) in N[x]. Therefore: 

le(t') - e(t)1 - 18x(X(t')) ~ 8x(x(t))1 
_ I(BiOz + ... + BikZ + Bik+1 + Bik+3r(B)z) -

(BiOz + ... + Bik-1Z + Bik+ 2q(B)z)1 
_ IBikz + IBik+l Bik+3 r(B)z - Bik+2 q(B)zl 

where q( x) = El>O x31 

< IBikll(I + B + B 2(r(B) - q(B))z)1 
< a/fC 

i k +6 3 
- a 2 CA 
_ ( .[iC).3 ) (0'+0'2 )1/2 a(ik+6)/2 

-/0'+0'2 2 

On the other hand 

It - t'l > It - OJ,h(nl)(a + a 2 )1 
- IOj,h(m)p - OJ,h(rn)(a + a 2 )1 
_ aik Ip - al 
_ aik (0'+,t2). 

Therefore le(t') - e(t)1 ~ Cllt - t'l· 

If t' is in OJ,h(rn * n1)I 've COlllpare it with the two extrelne points of 
the cylinder that realize its dialneter, see figure 1.9. As we relnarked 
before these two extrelne points have the saIne image under the map 
X and therefore under e. 
Since t' is in OJ,h(n * nl)I its hnage in N[x] is X(t') = xio + ... + Xik + 
xik+1r(x) for SOllle r(x) in N[x]. So: 

le(t') - e(t)1 = 18x(x(t')) - bx(x(t))1 
_ I(Bioz+ ... +Bikz+Bik+lr(B)z)-

(Bioz + ... + Bik-1Z + Bik+ 2q(B)z)1 
- IBik+1r(B)z - Bik+2q(B)zl where q(x) = El>O x31 

. < IBikllr(B) - Bikq(B)zl -

< atC 
_ aiki6 CA3 

_ (.JiC).3) (0'+0'2 )1/2 a(ik+6)/2 
-/0'+0'2 2 . 
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On the other hand: 

It - t'l > It - OJ,h(m)(a + a2 )1 
- IOj,h(m)p - OJ,h(m)(a + a2 )1 
- aile Ip - al 
- aile (aia2 ) 

Ii - t'l > IOj,h(m)(a) - il 
- IOj,h(m)(a) - lim OJ,h(m)rl 

T-+P-

- ailela - pi 
• 2 

- a11e (a-t ) 
- aile+2( a';a2 ). 

TIns ends the proof of theorem 1.6.1 in the case of n = 3. 
As was sho,ved, the proof of this theoreill in case n = 3, depends on 

the structure of standard partition cylinders in the interval - studied in 
Iemina 1.5.3 - which allowed us to COlnpare the distance betweeli a point 
in the interior of the cylinder and its extreine points. As we have seen this 
distance is of the order of aile ,vhere i k is the degree of m, m = gio + ... + gile' 
On the other hand the distance between the iInages of these points, under 

. !1.. 
the Inap ~ is of the order IBtle I = a 2 • 

In the case of n greater or equal to 4, the structure of the cylinders of 
the standard partition is similar, but could however consists of j connected 
cOlllponents for 1 ~ j ~ n. The distance between a point in the interior 
and the extreines is still of the order aile for a the real root of xn + xn

- 1 + 
: .. + x - 1. On the other hand the distance between the iInages of these 
points is of the order 

where f31 is the gratest eigenvalue of B, in modulus. 

End of the proof of Theorem 1.6:1 
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Chapter 2 

A Geodesic Lamination on n 2 

as a geometrical realization of 
the substitution TIq• 

2.1 Introduction 

In this chapter ,ve construct a geodesic lanlination on the disk n 2 with the 
Poincare lnetric, associated to the standard partition on n (the sYlnbolic 
space defined by the substitution IIq) and therefore on its geolnetrical real­
izations on T n - 1 and 5 1 . SOlne of this lalnination can be seen in the figures 
2.1 and 2.2. The construction given here is done in the case q = 3, i.e. the 
substitution is defined in three sYlubols, but can be easily generalized to an 
arbitrary q. 
- 'Ve consider the circle at infi:c.ity of n 2 as the dOlnain of the. interval 
exchange lnap f, studied in the previous chapter. 'Ve shall join by geodesics 
in n 2 , the points of 51 that are lnapped, under Arnoux's Inap e to "the 
triple point" of OBr(n)w (which is the image under OBT(n) of the point 
where WI, W2 and W3 intersect in the interior of w) for all each integer n . 
conlpatible with the partition. Later we define the geodesic lalnination A 
as the closure of the set of geodesics defined above. In section 2.2, it is 
proved that A really is a geodesic lalnination. 

The dynalnics on I, given by the conunutative diagraln 
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Figure 2.1: The geodesic laluination A for q = 3' 
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I f. I 

is extended to A - in section 2.4-, and gives rise to the following 
COllullutative diagralll 

A F 
· A 

HI 
F 

HI 
At · At 

where 

At = {'\ E A I the end points of ,\ are in [0, ~]}. 

and F is semiconjugate to a : n -t n (the dynaillical system defined by the 
substitution II) 

A F. A 

n a. n 

where "p is continuous and surjective. 
Finally we shall sho,v that A adlnits na~urally a transverse llleasure Jt 

that is invariant ulider F and H ... JL = ,\so JL where ,\ is the Pisot number 
associated to the substitution and So E (0,1) is computed in se~tion 2.3. 
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CX+CX 

Figure 2.2: The geodesic lamination A for q = 4 
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2.2 Construction of the geodesic lamination 
A. 

'Ve can think of S 1 as the circle at infinity of D2 and of the interval exchange 
lllap f - defined in page 5 - as acting on it. 

On SI we a.re going to distinguish three points Y1 = 0, Y2 = a, Y3 = 
a + a 2 ; the boundary points of the standard-partition-recta.ngles, in SI. 

Proposition 2.2.1 The images of Yi i = 1,2,3 under ~ : Sl ---+ T2 are the 
same. Furthermore e(Oj,l1(n)Yi) = e(Oj,h(n)Yj) for all n ICP and i,j=1,2,:i. 

Proof: The points Yi, i"= 1,2,3 satisfy the relation: 

. (2.1) 

Since the lllaps (fh?: Ii ---+ Ii are contractions, the points Yi, i = 1,2,3 are 
the fixed points of these maps. On the other hand (T B? : Wi ~ Wi is a 
contraction with fixed point t(Yi) i = 1,2,3, since 

t(f(x)) = T(t(x)) and t(h(x)) = B((t(x)) for all x E I (2.2) 

Since Yi is a boundary point of two rectangles: Ii and Ij for SOllle 
1 ~ j ~ 3, t(Yi) is also a boundary point of the Wj. i.e. t(Yi) E Wi n Wj, so 
t(Yi) also satisfies the equation 

(TB?(x) = x, x E Wj (2.3) 

therefore t(Yi) = t(Yj). But sitllilarly t(Yj) E Wj n Wk for k =1= i (si~lce Yi is 
the boundary point of Ij and Ik) and therefore t(Yj) = t(Yk) = t(Yi). 

On the other hand t(O/,l1(n)Yi) is equal to OT,B(n)t(Yi) by the prop­
erty 2.2. Therefore e(O/,l1(n)Yi) - t(Oj,h(n)Yj). Hence e(Oj,h(n)Yi) -
e( 0/,11(11, )Yj)· 

Q.E.D. 

Let .c be the set of geodesics in D2. The topology on .c u SI - where 
SI is the circle at infinity of D2_ is given by the following basis of neigh­
bourhoods: 
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• If, is an eleillent of .c with end points a and b in S1, consider the 
collection of neighbourhoods (a - €, a + €) and (b - €, b + €) for € > o. 
Then the basis elements containing, are given by the set of geodesics 
,vith one end point in (a - €, a + €) and the other in (b - €, b + E) . 

• If t is in S1, consider the collection of neighbourhoods in S1given by 
(t - €, t + €) for € > 0, then the basis elements containing t are given 
by the point t and the set of geodesics with one end point in (t - €, t) 
and the other in (t, t + €). 

The construction of A is as follows: the pair of points ° j,h (11, )Yi, 0 j,h (11, )Yi 
for n an Iep is jo~ned by a geodesic in D2, say '~i' and then the closure of 
the union of all these geodesics is taken, i.e. 

A = U{,&ln E P i,j = 1,2,3}. (2.4) 

The eleillents of A are either geodesics of D2 or points in S1. In the 
later case, those points are called degenerate geodesics. 

Definition 2.2.1 A geodesic lamination on D2 zs a non-empty clo .. ~ed 
.. ~ub .. ~et of .c u S1 whose elements are disjoint. 

Proposition 2.2.2 1ft, t E S1 are joined by a geodesic of A then ~(t) = ~(t). 

Proof: Let, denote the geodesic in A that joins t and t. There exists 
a sequence {mk} E P such that ,~ -+ , therefore OJ,h(mk1)Yi -+ t and 
OJ,h(tnkJYi -+ t where {tnkl} is a subsequence of {mk}. Using proposi­
tion 2.2.1 and the continuity of ~ we get ~(t) = ~(t). 
- . Q.E.D. 

The converse of this proposition is not true. 
Before proving that A is a geodesic laillination, we need to introduce 

1110re notation and S .. Ollle technicallelllillas. 
Given a cylinder of the standard partition in S1, according to Lel1Ulla 1.5.3, 

this cylinder is either: 

.1. one interval, [at, a2) 

2. two intervals [bt, b2), [b3 , b4 ) or 

3. three intervals [ct, C2), [C3, C4), [cs, C6). 
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Definition 2.2.2 
.. qame type . 

• In case 1 we say aI, a2 are extreme points of the 

• In ca .. ~e 2, bI and b4 are extreme points of the same type, and so are 
b2 and b3 . 

• In case :1 CI, C6 are extreme points of the same type, and similarly for 
C2, C3 and C4, Cs. 

This definition is justified by the following lelnlna: 

Lemma 2.2.1 Let n be an ICP and OJ,h(n)SI a cylinder of the .. ~tandard 
partition. Then the geode .. ~ic .. q that join the same type of extreme point .. q of 
OJ,h(n)SI, belong to A. 

Furthermore if n = nil * ... * tl,i k is the factorization of n in (P, *) the 
extreme points of OJ,h(n)SI are of the form OJ,h(m)Yj for 
rn = nil * ... * nir , for some r < k. 

Proof: We use induction on the nUlnber of factors of n in (P, *). 
'Vhen k = 1, n is either nI, n2 or n3. If n = nI, OJ,h(nt}SI = [O,a). 

Here the extrelne points 0 a.nd a a::e joined by a geodesic in A, according to 
its definition, and also 0 = YI = OJ,h(no)Yt, a = Y2 = OJ,h(nO)Y2' Sitnilarly 
for n = n2 and n = n3. 
. When k > 1, n = nil * ... * nik' we have to consider the different cases 

of OJ,h(n)SI given by Lenllna 1.5.3. 
If OJ,h(n )SI is one interval (See figure 2.3) which is subdivided OJ,h(n )SI 

= OJ,h(n * n2)SI U OJ,h(n * n3)SI U OJ,h(n * nt}SI since OJ,h(n * ni)SI .­
.OJ,h(n)Ii for i = 1,2,3 we have a3 = OJ,h(n)a = OJ,h(n)Y2 and a4 = 
OJ,h(n)a + a 2 = OJ,h(n)Y3 and as = OJ,h(n)O = OJ,h(n)yt, the' boundary 
points of the subpartition of the cylinder OJ,h(n)SI. 
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1 .. 

1,J 

Figure 2.4: 

So the extrelne points of O"h(n * n2)Sl i.e. a3, a4 are joined by geodesics 
of A, 123' 

Siluilarly for a4, a5 the extrelue,'points of O"h(n * n3)Sl, also a3, a5 are 
joined by· geodesics in A, 1~',2 and on the other hand are extreille points of 
the saIne type of O"h(n * n1)Sl. 

By the inductive hypothesis a1 and a2 -extreme points of O"h(n)Sl 
and also for O"h(n * n1)Sl- are joined by a geodesic of A : Ii] where 
rn = nil * ... * nir with r < k. See figure 2.4 

If.O"h(n)Sl has two connecte~ conlponents: 
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Figure 2.6: 

Where OJ,h(n)SI = [bI, b2) U [b3, b4 ), 

OJ,h(n)SI = U~=t OJ,h(n * ni)SI 
OJ,h(n * n2)SI= [bs, b6 ) OJ,h(n * n3)SI= [b6 , b7 ) 

OJ,h(n * nI)SI= [bb b2) U [b3, bs) U [b7 , b4 ) 

and bs = OJ,h(n)o;, b6 = OJ,h(n)(o; + 0;2), b7 = OJ,h(n)O. See figure 2.5 
So the extrelne points of OJ,h(n * n2)SI are joined by geodesics of A, 

12~,3. Similarly for b6 and b7 the extrelne points of OJ,h(n * n3)SI , which are 
joined by 13\,t. Also bs and b7 are Sa1lle type extrelne points of OJ,h(n * nt}SI 
aud are joined by geodesic 11,2. , . 

The pairs of points b2 , b3 and bI , b4 are extrelne points of the saIne type 
for OJ,ll(n * nt)SI and also for OJ,~~(n)SI. Therefore they are joined by 

d · fn fn' 1 I I k geo eSICS li,i' lis w lere 'In = nil * ... * nir , m = nil * ... * nir , , T, T < '". 
See figure 2.6 .. 

In the case when 0 j,h( n )SI has three connected cOlnponents, suppose 
that OJ,h(n * n3)SI is contained in the first component OJ,h(n)SI i.e. case 

.3.1 of the Lelillna 1.5.3. See figure 2.7. where OJ,h(n)SI = [Ct, C2)U [C3, C4)U 
[CS, C6) 
OJ,h(n * n3)SI = [cs, C9) 
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C8 Cs 

OJ,h(n * n2)SI = [c}, cs) U [C7, C6) 
OJ,h(n * nl)SI = [C9, C2) U [C3' C4) U [c5, C7) 
and C7 =OJ,h(n)a, Cs =OJ,h(n)(a + ( 2

), C9 =OJ,h(n)O. Therefore the 
. t d .. d b fn d 1 m' d b fn 1 pOln s Cs an C3 are JOllle y lij C5 an C4)y li'j' an C6, Cl Y Ii] w lere 

rn = 11,;1 * ... * n;r' m' - n' * ... * n' 1Tl, - n' * ... * n' and r r' r < k • • - '1 'r' , - '1 ,;: " • 

Q.E.D. 

Corollary 2.2.1 The points OJ,h(n)Yi i = 1,2,3 are the extreme points of 
( ) 

1 . . 
OJ,11 11, * nj S J = 1,2,3. 

Theorem 2.2.1 A is a geodesic lamination 

Proof: It is sufficient to prove that there are no intersections alnong the 
geodesics of the type Iii for 11, E P. However, according to Corollary 2.2.1 
we can reduce the proof to showing that there is no intersection between 
geodesics that join extrelne points of the saIne type of standard partition 
cylinders. 

Suppose that such an intersection happens i.e. a geodesic that joins 
.the saIne type extrelne points of q j,h (n ) S 1 intersects another geod~sic that 
joins the salne type extrelne point of OJ,h(nl)SI, with nand m E P. 

There are two possible cases: 

1. in t ( OJ ,11 ( 11, ) S 1 ).nin t ( OJ ,h ( m ) S 1 ) =f. 0 

2. int( OJ,l1(n )SI )nint( OJ,h(nl, )SI) = 0 

In 1, the cylinders intersects in a set of positive Lebesgue lneasure and 
. since they are cylinders of the standard partition one lnust be contained in 
the other. But in this case there is no intersection between the geodesics 
-V!l, and -v!Jl., 
/ '3 /, 3 
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Figure 2.8: 

In 2 one connected cOlllponent of 0f,h(m)Sl lies in one of the gaps of 
0f.h(n)Sl. In fact, we shall show that we can fill the gaps between two 
cOIllponents of any cylinder of the standard partition by other cylinders of 
this partition. 

Suppose that 0f,h(n)Sl has two connected cOlllponents [bI, b3 ) and [b4 , bs) 
(in the case of three connected components the argulnent is the saIne) and 
11, = nil * ... * nile. 

According to lelluna 2.2.1 the geodesic that joins b3 with b4 is of the 
type ,f,i where 1 = nil * ... * ni, S < k. Suppose that Of,h(l)Yil , where i' E 
{1,2,3} \ {i,j}, is greater than b2 or smaller than bI, so Of,h(l)Sl and 
0f,h(n)Sl have eInpty intersection and neither is contained in the other. 
This is a contradiction to the fact that Of,h(l)Sl and 0f,h(n)Sl are cylinders 

-of the standard partition. 
Therefore 0f,h(l)Yil E [bI, b3 ) U [b4 , b2 ) or 0f,h(l)Yi l E [b3 , b4 ). 

Suppose that 0f,h(l)Yil E (b3 , b4 ). According to lemllla 2.2.1 there exits 
bs and b6 (po~sibly bs = b6 ) such that b3 < bs < b6 < Of,h(n)yi, and 
[b3 , bs), [b6 , b4 )' are "contained in the connected cOlllponents of Of,h(l)Sl. 
See figure 2.8 

If bs ¥= b6 we consider the geodesic that joins these two points alid get 
. b7 and bs using the saIne arguments. And so 011. 

Either there exists t such that b2t - I = b2t or the sequence {b t } teN con­
verges to a point. In each case we have filled the gap with cylinders of the 
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Figure 2.9: 

standard partition. 
If O"h(l)Yi E [b}, b3 )U[b4 , b2 ) (See figure 2.9) we apply the saIne argulnent 

to the geodesic that joins b3 and b4 ' and ,ve get bs and b6 , and we carryon 
in the saIne way. 

Q.E.D. 

2.3 The transverse measure to A 
- . 
Let 8 be any arc in D2 joining two distinct geodesics of A. It cali be slid 
along the geodesic towards the boundary of D2 according the two possible 
directions in which the geodesics can be oriented. This procedure gives rise 
to a Cantor set in the boundary of D2, say C6 

Let 8 be a transverse arc to A. We define 

where Mso is the so-Hausdorff lneasure and So is the Hausdorff'dhnension 
of C6 
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Lemma 2.3.1 For every transver .. l{e curve 8 to A, the Hausdorff dimension 
of Cs is So = ~~:~ where B is the greatest root, in modulus, of the polynomial 
X4 - 2x -1 

Proof: Since any geodesic of this laInination is a limit of geodesics of 
the fornl ,ii with 11, E P, ,ve can suppose that the extreIne points of 8 are 
in geodesics of this type. Also we can aSSUIne that this geodesic joins the 
saIne type extreIne points of O"h(n)SI for SOIne 11, E P. (If this is not the 
case we can ,vrite 8 as a union of 8i 's which have the cited property). 

In the following lines we are going to show how the Cantor set Cs is 
obtained. 

Let 1<0(n) = O"I1(n)SI which adInits the partition O"h(n)SI = U7=1 
O"I1(n * ni)SI 

When 8 is slid along the geodesics towards the boundary, SOIne of the 
cylinders of this partition do not contribute to Cs, i.e. the intersection 
between Cs and a non-contributing cylinder is eInpty. 

Let 1<1 (71,) = U~1 1<f where 1<1 (n) is a contributing cylinder to Cs of this 
partition. \Ve carryon this subdivision in O"h(m * n1)SI, 0"h(1n * n2)SI, 
O"h(m * n3)SI for any contributing rectangle ]<j(n) =O"h(m)SI. 

It is clear that Cs = nj>01<j(n). 
Next we study the fonnation rule of the 1<j(n),s. We distinguish two 

cases: 

1. O"I1(n)SI has two connected cOInponents. 

2. 0 "~he n)S 1 has three connected cOInponents. 

In' case 1 O"h(n)SI= [b1 , b3 ) IJ [b2 , b4 ). and according to LeInma 1.5.3 
O"h(n)SI= Uf=1 O"I1(n * ni)SI 

where 0,,11(71, * n2)Sl= [b5 , b6 ) O"h(n * n3)SI= [b6 , b7 ) 

. and 0,,11(71, * n2)~1 U O"h(n * n3)Sl C [b2, b4 ) See figure 2.10 
'''hen 8 is slid towards (b2 , b4 ) the interval (b5 , b7 ) is renloved. Therefore: 

1<0 = O"I1(n)SI, and ]<1 =0,,11(71, * n1)SI 
Observe that 1]<11 = al]<ol, where II denotes the Lebesgue Ineasure. 
And now 1<1 has three connected conlponents, so its subdivision is stU:d­

ied in case 2. 

55 



Figure 2.10: 

In case 2 we are going to suppose that the cylinder 0/,I1(n)S1 is of type 
3.1 in the classification given in Leinina 1.5.3. i.e. 

3 

01,I1(n)S1 = U Ol,h(n * ni)S1 
i=l 

O/,h(n * nt)S1 = [Cs, C2) U [C3' C4) U [Cs, Cg) 
O/,I1(n * n2)S1 =, [Ct, C7) U [Cg, C6) 
O/,I1(n * n3)S1 = [C7' cs) (See figure 2.11) 

therefore: ]<o(n) =OI,h(n)S1, ]<l(n) = ](i(n) U ](;(n), 
]<f(n) =Ol,h(n *"n2)SI ](;(n) = OI,I1(n * n1)S1 
](f( n) has two connected cOlnponents and therefore its subdivision is 

according to the description given in case 1. . 
Lenuna 1.5.3 gives three different types of cylinders having three COll­

nected cOlnponents. Since ](;( n) is of a different type froin ](o( n), we need 
to subdivide it, until we reach cylinders of the saIne type as ]<0 ( n). 

](;(n) = 0l,h(n * n1)SI= U~=l Ol,h(n * n1 * ni)S1 where 
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Figure 2.11: 
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O"h(11, * 11,1 * 11,1)51 = [Cs, ClO) U [c12, C4) U [CS, C9) 
O"h(11, * 11,1 * 11,2)5 1= [ClO' C2) U [C3' Cll) 
O"h(11, * 11,1 * 11,3)5 1= [Cll, C12) but this one is a non-contributing cylinder 

to C6• 

Therefore 1{2(11,) I{J(11,) U 1{;(11,) U 1{~(11,) where 
l{i(11,) = 0,,11(11, * 11,2 * 11,t)51 is the contributing cylinder that arises in the 
subdivision of l<f(11,). . 

1<;(11,) = 0,,11(11, * 11,1 * 11,1)51 and 1<~(11,) = O"h(11, * 11,1 * n2)51 this last 
one has two connected cOlllponents. 

The cylinder 1{2(n) is of type 3.3, therefore we need to subdivide it. 

O"h(n * 11,1 * 71,1)5 1 = Uf=1 O"h(n * n1 * n1 * ni)51 

O"h(n * nl * 71,1 * nl)SI= [CS, CI0) U [CI2' C13) U [CIS, C9) 
O"h(11, * 11,1 * nl * 11,2)SI= [CI3' C4) U [es, C14) 
O"h(11, * 11,1 * 11,3)SI= [CI4' CIS) 
Here the only contributing cylinder is O"h(11, * 11,1 * nl * nl)SI which is 

of the saIne type of l{o. 
Observe that \O"h(11, * 11,1 * 11,1 * nt)SI\ = (i\O"h(11,)SI\ 
\1{;(11,)\ = a3\I{o\ 
\1<i(11,)\ = a2 \I<o\ 
Hence the structure of Co can be described by an infinite labelled tree. 

Vertices correspond to cylinders and are labelled 1 or 2 corresponding to 
a cylinder of two or three cOlllponents. Directed edges are labelled a, a 2

, 

etc corresponding to a reduction of Lebesgue Ineasure by this factor when 
pa~sing to a sub-cylinder. The edges frolu vertices labelled 1 or 2 are: 

In the infinite tree we can either suppress the vertices labelled 1 while 
joining successive edges and luultiplying their labels or suppress the vertices 
labelled 2. This corresponds to subdividing a cylinder further into sub­
cylinders with saIne nUluber of cOlnponents. Two ne\v self-siIuilar infinite 
trees arrise according to these two possible procedures. In these new trees 
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the edges eIllanating frOll1 a vertex are: 

that defines the Cantor sets ct and Cs, Cs = ct u Cs. 
The sets of function that defines these trees are the same but they are 

applied to different kind of sets i.e. sets of type (-) and( +) we get that Ci" 
and ct are disjoint. . 

The Hausdorff diIllension of the sets Ci" and ct are' given by the theo­
reIn. 

Theorem 2.3.1 (Falconer [19], page 118) Let <Pi : R n ~ R n
, i = 1, ... ,k 

a system of iterated functions with ratios Ci and satisfying the open set con­
dition. 

If X i~~ an invariant set for the system of iterated functions (i. e. 
X = U7=1 <Pi(.;}{») then the Hausdorff dimension of X is the solution of 
"k 8 1 L...ti=l ci = . 

M?reover, for thi~1J value of s, a < M8(X) < 00 

Clearly the open set condition (i.e. there exists a bounded non-elnpty 
open set V such that U7=1 <Pi(V) c V) is satisfied by the systell1 of functions 
that define Ci" and ",ct i.e. either of tIie t,vo descriptions indicated in the 
self-siInilar trees discussed above. 

Therefore the Hausdorff diInension of these two sets is given by the 
solution of 0:48 + 20:38 = 1 ,vhich is So = llogv where 1/ is the real solution 

~a . 

. slualier than one, in absolute value, of X4 + 2x3 - 1 = O. 

End of proof of Lelnma 2.3.1 
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2.4 Induced Dynamical Systems on A 

Theorem 2.4.1 There exist 

• a continuous map F : A --+ A that preserves the transverse measure It 
and 

• a continuous map H : A --+ A1 with the property H*fL = >..80 fL where 

A1 = {, E Althe end points of, are in [O,o]} 

such that the following diagram commutes 

A F.A 

where F is the map induced by F in A1 • 

Proof: ,\Ve are going to define F : A --+ A and H : A --+ A1 as the 
extensions of f : I --+ I and h : I --+ 11 , respectively, to the geodesic 
lamination A. 

Let, E A with end points in I, a-y < b-y. 
F(,) (and silnilarly H(,)) is defined as the geodesic ,vith end points 

-f(a-y)"and liInt -+b- f(t) (h(a-y), linlt -+b- h(t)). 
~ ~ 

H(,) E A1 : Suppose that, is of the form ,& for some n E P with 
end points Yi, Yj. Then H(,ij) = ,il*n and clearly n1 * n E P, therefore 
H ( ,ij) E A and sinc.e the end points are 

h(Oj,h(n)Yj) and liln h(Oj,h(n)(Yj)) 
. t-+[Oj,h(n)Yj]-

if OJ,h(n)Yi < OJ,h(n)Yj. 
Hence H ( '&) E A,1. 
Next 've prove that F(,) E A. Suppose that, =,& for sonle n E P, so 

, is a geodesic that joins ~wo extreme points of the same type of the cylinder 
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n 
~ ij 

° /,h( 71, )S1 - [bI, b2 ) U [b3 , b4 ) 

0/,h(n')S1 - [bl; Cl) U [C3, b4 ) 

Figure 2.12: 

O/,h(1i)S1. By the arguluents used in theorem 2.2.1 we can suppose that '"'I 
is the "exterior geodesic" of the geodesics that join the same type extrelue 
points of the cylinder 0/,h(n)S1 (i.e. the geodesic that joins the greatest 
extrelue point of 0/l.h(n)S1 with the sillallest) . 
. If 11, + 1 E P, which iIllplies that f(0/,h(n)S1) is a cylinder of the 

standard partition, then F( ,ij) = '"'Iij+l and therefore '"'Iij+1 E A. 
If 11, + 1 f/. P we subdivide 0/,h(n)S1 such that '"'In is still an "ex­

terior geodesic" of a new cylinder, say 0/,h(n')S1 with 11,' E P so that 
f( ° /,h( n')S1) is a cylinder of the standard partition, i.e. 11,' + i E P. See 
figure 2.12. 
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This can be done by using the next lelnma: 

Lemma 2.4.1 Given n an ICP (i. e. n E P) such that n + 1 zs also an 
ICP then 1 + 71, * 71,1 E P. 

In its proof the follo,ving proposition is needed 

Proposition 2.4.1 Let 'In be a positive integer and m =9i o + ... + 9i, be 
it .. ~ expression as a sum of the 9i'S. 

If 'In t/. P then i1 = i1- 1 + 1 

Proof of proposition 2.4.1: We use induction on 1. 
'''hen 1 = 2, 'In = 9il"+ 9i2 = 9il * (1 + 9i2 -il ) if i2 - i1 = r > 1 then 

Hence 'In E P. 

1 + 9r = (1 + 92) * 91 * ... * 91 , so 1 + 9r E P. 
~ 

r-2 times 

Now suppose: 

m = 9io + ... + 9i,+! = 9io + ... + gi, * (1 + gi,+l-i,) 

where i1+1 - il = r > 1. 'Ve shall prove that m E P. If 9io + ... + 9ilE P 
then n~ E P since 1 + gr E P for r ~ 2. However if 9i o + ... + gi, t/. P then, 
by the inductive hypothesis, i1 = i 1- 1 + 1 so 

9io + ... + 9i, = 9io + ... + 9i'-l * (1 + 91)' 

Observe that (1 + 91) * (1 + 9;) E P for all r ~ 2 because 

(1 + 91) * (1 + 9r) - 1 + 91 + gr+1 
- (1 + 91) * (1 + 92) * 9r-2 

- (1 + 91 + 93) * 9r-2 

- n3 * n1 * ... * 71,1 • 
~ 

r-2 

so if 9i o + ... + 9i'- l E P then gio + ... + gi,*(1+91)*(1+9r) E P. Therefore 
if 9i o + ... + 9i ,-1 E P then 'In E P. 

Next, we are going to prove that gio + ... + gi'- l E P. Suppose that it 
is not an Iep then i1- 1 = il-2 + 1 by the inductive hypothesis. 

62 



Therefore 

'In - gio+···+gi,_2 *(1+g1)*(1+g1)*(1+gr) 

- gio + ... + gi,-2 * (1 + gl + g2 + gr+2) 

- gio + ... + gi,-2 + gi,_2+1 + gi,-2+2 + gi,_2+r+2 

- gio + ... + gi,-3 + gi,_2 +3 + gi,_2+r+2 

Having a different expression of m, contradicting in this way the uniq­
ness of the expression of In as a SUln of the gi'S. 

Therefore m E P. 

End of the proof of Proposition 2.4.1 

Proof of Lemma 2.4.1: 
Let the expressions of nand n + 1 as sums of the gi's be 

n = gio + ... + gi,- n + 1 = gio + ... + 9ile 

When 1 is added to n, there could be cancellations of the gi's according to 
the relation: 

gr + gr+l + gr+2 = gr+3 

so i1 l11ight be increased by 1. However n E P so that i 1 > i1- 1 + 1 (by 
proposition 2.4.1); thus such cancellations cannot affect ii, th~refore gile = 
gi" Hence gio + ... + gile-l = 1 + gio + ... + gi'-I' 

On the other hand n * nl = gio + ... + gi'-1 + gi,+l, when 1 is added we 
-obtain 1 + n * nl = 1 + gio + ... + gi,- 1 + gi,+l' Since 9io + ... + gile-l = 
1 + gio + ... + gi,-1 and gile = gi, 'then 1 + n * nl = (1 + n) * nl; "therefore 
l+n*nlEP. 

End of the proof of Lemma 2.4.1 

We return to the proof of theorem 2.4.1. If, is not of the type ,ii, then 
, could still be a geodesic that joins two different points of S 1 , in this case 
it is straight-forward to prove that F(,) E A, since it can be approximated 
by a geodesic of the type 'ii. But it can happen that , is a degenerate 
geodesic i.e. consists of only one point in the boundary of n2. In tIlls case 
two different situations could occur : 
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1. f is continuous at this point. Then, is l11apped to another degenerate 
geodesic and clearly this is in A, since the approxilllations ,n to , have 
the property F( ,n) E A and approxilllate F(,). 

2. f is discontinuous at this point. 

We know that the discontinuities of fare 0, ~, a, a + 02

2
, a + a 2 and 

3 -

a + a 2 + c; . 
But at the points 0, a and a + a 2 there are no degenerate geodesics. 

In fact these points are joined by ,i,2' ,i,3' ,J,3' However the points ~, 
a + c;2 , a + a 2 + c;3 are degenerate geodesics as is proved in the following 
proposition: 

Proposition 2.4.2 The elements of A with extreme points at ~, a + c;2 
and a + a 2 + c;3 are degenerate geodesics. 

Proof of Proposition 2.4.2: The proof is done for the point' ~ and it 
is entirely silllilar for the other points. ~ is the fixed point of the function 
9 = hfhfh : 11 -? 11• Since this function is increasing, (gfl(O)) approaches 
increasingly to % and (gn( a)) decreasingly. So the geodesics that join these 
points which belong to A, namely 

(,gn(O)gn(o) = ';;:a where m = n1 * !1-3 * . :. * n3). 

n-tillleS 

collap~e, in the limit, to the point ~. 

End of the proof of proposition 2.4.2 

According to the definition of F, F(x) - where x is a point in the 
boundary of D2 that represents a degenerate geodesic in A - is the geodesic 
that joins 

f(x) and lim f(t) , 
t-+x-

hi the particular case when 
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Figure 2.13: 

F( x) belongs to A since 

therefore 

and shnilarly for other points. 
This finishes the proof of the fact that F is well defined. 
The dOlllain of F (and similarly H) can be extended to the set of equiv­

alence classes of transverse curves to the geodesic lalnination A. 
Given 8 and 8' two transverse curves to A we say that 8 f'V 8' if the end 

poin~s of each curve lie in the sanle pair of distinct geodesics and Cs = CS'. 
- See figure 2.13 Since Cs = CSI if·8 f'V 8' we get JL( 8) = IL( 8'). 

Let 
T = { transverse curves to A} 

Given 8 E T, F( 8) is defined as a curve transversal only to all F(,) 
where 'Yare the geodesics in A that they are transversal to 8. (Shnilarly 
we can define H( 8).) 

I t is clear that 

are well defined. 
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Lelnma 2.4.2 

IC6 = CF(6) and Jl(8) = Jl(F(8)) 

Proof: Let 8 be a transverse curve to the geodesics of A with extrelne 
points in OJ.h(n)Sl for some n E P. Let C6 be the Cantor set defined in 
section 2.3. According to leInma 2.3.1 

C6 = n~o 1<i 
and CF (6) = ni:o Ji 

Observe that the sub cylinder of OJ.h(n)Sl contributes to C6 if and only 
if its illlage under I contributes to CF(S). Therefore Ji = 1(1<i) Vi .. 

Hence I(Cs) = CF(S)' 
If the inl~ge of the Inap OJ.h(n) does not contain a discontinuity point 

of I each 1<i is translated by I: 

1(1<f) = 1<f + 1\,j where 1\,j E (0,1). 

SO I(C6 ) = n~o/(]{i) and 1(1<i) = U~o1{:j + 1\,k (if 1{fj c ]{t)· 
Therefore Mso(/(Cs)) = Mso(Cs) and Jl(F(8)) = It(8). See figure 2.14. 

If p is a discontinuity point of 1 such that is in 0f..h(n)St, suppose that 
belongs to one of the contributing rectangles e.g. 1<t (If not the arguIllent 
is the saIne as before, since 1 translates each rectangle). . 

The interval exchange map I translates a subset of 1{f by a constant, 
and the cOIllplelnent of this subset in ]<f is translated by another constant 

- I.e. I{f = 1{f( -) U 1<f( +) wher~ 

1<1 ( -) = {x E 1{ 1 I x < p}, 1{ 1 ( +) = {x E 1{ 1 I x ~ p} 

and 

1(1<1(-)) = 1{1(-)+1\,~ and 1(1<t(+)) = ]{I(+)+1\,~ where ~~, ~~ E (0,1) 

so 

and 
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a 

f(a) 

b 

lim_f(t) .. 
t->b 

c 

0f,h(n) = [a,b) U [c,d) 

f(c) 

f(Of h(n) 51) = [f(a), lim_f(t)) U [f(c),f(d)) 
, t->b . 

d 

f(d) 

= [a + >< l' b + >< 1) U [c + >< 2·' d + >< 2 ) 

Figure 2.14: 
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Therefore 
Mso(f(Co)) = Mso(Co) 

End of the proof of Lemma 2.4.2 

Lemma 2.4.3 

Proof of Lemma 2.4.3: Let 8 be a transverse curve to A as In 
lellll11a 2.4.2. Similarly: . 

Co = n~o]<i 
CH(5) = n~oLi 

and 

and 

In the saIne way as before a sub cylinder of 0f,h(n)Sl contributes to C5 

if and only if its ilnage under h contributes to CH(o)' Therefore h(]<i) = L i, 
hence CH (6) = h(Co). 

Also Ih(I<;j) I = al]<;jl 'v'i,j. See figure 2.15. 
Therefore 

i 

Note that h(]<;j) has one lllore connected cOlnponent than ]<;j if and 
only if the discontinuity point of h is in ]<;j. . 

-End of the proof of proposition 2.4.3 

Finally the COllllllutativity of the diagram 

A 

is a straight-forward consequence of the comlllutativity of the diagralll: 

68 



h(a) h(b) h(c) h(d) 

1 
h(Of,h(n) 5 ) = [h(a),h(b)) U [h(c),h(d)) 

Figure 2.15: 
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I f. I 

End of the proof of Theorem 2.4.1 
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Chapter 3 

Boundary of w 

3.1 Introduction 

In this c.hapter the Hausdorff dilnension of the boundary of w is cOlnputed, 
where w is the geolnetrical realization on the plane of the dynalnical systeln 
associated to the substitution: 

1 --+ 12 
II: 2 --+ 13 

3 --+ 1 

First 've describe the identifications on the boundary of w that Inakes w 
a fundalnental dOlnain of the two dimensional torus, for the 'action of the 

- lattice Z2 on the plane. 'Ve define a system of maps which is related to 
the inverses of the iterated syst'em of Inaps which generates the standard 
partition, studied in section 1.5. vVe shall show that the boundary of w 
is invariant under tilis system of Inaps and compute the transitions under 
it. Finally we use the spectral infonnation of the transition Inatrix for 
c.olnputing the Hausdorff dilnension of the boundary of wand' also the 
dilnension of the pre-hnage of this boundary under Arnoux's Inap. 

The Inethods expounded here can be generalized to other substitutions, 
associated to Pisot nUlnbers, which are realizable on T2. 

Theoreln 3.3.1 has been proved independently in [28]. 
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3.2 Triple points and identifications on the 
boundary 

In the first part of this section we are going to define a equivalence relation R 
in the space N[x], which together with the lnap 
( + 1) : N[ x] -+ N[ x] gives the symbolic dynalnics for the dynanlical systelll 
T : T2 -+ T2 defined in page 5. This equivalence relation identifies the 
points that have the saIne itllage on the torus, under the senli-conjugacy 
between these two nlaps. We shall prove that the equivalence class con­
tains at lnost three points. The image of such points will be called triple 
points. In order to do this we shall introduce SOine auxiliary spaces: N* [x], 
N-[x], Ni;{x}, {-I,D, I}{x}, and ZB{X}. 

Section 1.3 introduced the bijection e : N* -+ N given by the representa­
tions of the non-negative integers in the base associated to the recurrence re­
lation established by the substitution IT, I.e. 
g71+3 = g71+2 + gn+l + gn, with the. conditions go = 1, gl = 2, g2 = 4. 

To the set N we associate N[x]- the set ofpolynonlials with coefficients 
in {D, I} where polynolnials with three consecutive coefficients equal to 1 
are not allowed - according to the bijection: 

N[x] 

and let ex be the cOlnposition of the bijection e and this ne,v lnap: 

N* e IN 

~I 
Af[x] 

We consider the binary operation on N[x], induced by ~he standard 
addition on N*: 

N[x] + N[x] 
a(x) + b(x) 

~[x] 
ex (e;l(a(x)) + e;l(b(x))) 
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Let N* [x] be the set of polynomials with non-negative integer coefficients 
and R the equivalence relation defined as follows: a( x) R b( x) if b( x) can be 
obtained from a( x) using the rules: 

• xu+3 R (xn+2 + xu+1 + XU) for all n ~ 0 

.2Rx 

• 2x R x2 

• 2x2 R (x3 + 1) 

• if a(x)Rb(x) then.(a(x) + c(x))R(b(x) + c(x)) for all c(x) in N*[x]. 

Proposition 3.2.1 
N[x] = N*[x]J R 

Proof: Let E be the lnap: 

N*[x] ~ N[x] 
'EPixi -+ 'E(fx(Pi))Xi 

where the SUln is according to that defined in N[x]. 
Let a(x),b(x) E N*[x], if a(x)Rb(x) then E(a(x)) = E(b(x)), since 

E does not distinguish the transfonnation rules that define the "relation 
R. On the other hand, the rules that define the relation R are the saIne 

_ ones' under which the addition in N[ x] is done, therefore a( x ) R b( x) if 
E(a(x)) = E(b(x)). 

Q.E.D. 
Observe that we have a finite representation of the negative integers if 

we allo,v the sYlubol -1 in the alphabet. Let 

z ----+ 

'Ei>O -fie -n )xi 
fi~O fi( n )xi 

N-[x] 
if n < 0 
if n ~ 0 

Therefore we can consider the equivalence relation R in the set of poly-
nOlnials with integer coefficients, Z[x]. " 
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Also in section 1.3 was introduced the dynalnical systeln 
(+1) : N ---+ N where the space N is the closure of N in the product 
topology of {O,l}N and the Inap (+1) is the induced operation in N of 
adding 1 on N. This map gives the sYlnbolic dynaillics of T : T2 ---+ T2, 
since proposition 1.3.2 shows that this dynamical systeln is conjugate to 
the dynallllcal system induced by the substitution i.e. (1 : n ---+ n. 

In a sitnilar way the set N[ x] is defined as the set of fonnal power 
series with coefficients zeros and ones, where series with three consecutive 
coefficients one are not allowed. The bijection between Nand N[x] is: 

N ---+ N[x) 
Q = (ao, at, ... ) ---+ Ei~O aixi 

vVe introduce the topology in N[x), that Inakes this bijection a homeomor­
phislll. 'Ve denote (1,0,0 ... ) by I and its itnage under this Inap by I( x), 
however, in order to simplify the notation we will denote both eleillents just 
by 1, whenever the context is clear. 

Let Ns{ x} denote the set of bounded power series with coefficients in 
N*, with the nonn IIQ( x) II = sup{ ai}. If vve ailo,v to consider the equivalence 
relation R an infhllte number of times, we get a relation R. Unlike the finite 
case: 

N[x] =I Ns{x} / R 

because when the relation R is taken an infin"ite number of titnes, new 
identifications turn out, as can be seen in the following exaillple: consider 

_ a( x) = I:n>l x3n and b( x) = I:n>O X
3n+1 which are two different elements of 

N[ x]; however a( x) R b( x ), since: 

a~x) -

R 

-

-

R 

2:: x 3n 

n~l 

L::(X3n-3 + X3n
-

2 + X3n
-

1
) 

n~l 

2:(x3n + x 3n+1 + x3n+2
) 

n~O 

1 + 2::(X
3n+1 + X 3n+2 + X 3n+3

) 

74 



- 2: X
3n+1 

n~O 

- b(x) 

However this definition of R is vague, it will be defined properly in defini­
tion 3.2.2; in order to do this we need to introduce some auxiliary spaces 
a.nd give SOllle a.dditional definitions. 

Given any fonnal power series q( x) = Ei>O qixi we denote by qN( x) the 
polynolnial obtained by truncating the po,ver series at the N-th term, i.e. 
qN( x) = E~o qixi . Also we denote the series with all its coefficients equal 
to zero by o( x) or siInply by 0. 

Let {-I, 0, 1}{ x} be· the set of formal power series with coefficients in 
{-1,0,1}. 

Definition 3.2.1 Let e(x) be an element of {-l,O,I}{x}. We .say e(x) is 
R-equivalent to ° (or .simply e( x )RO ) if either 

• there exi .. qt.s N > ° .such that for all 11, ~ N ~xi.st.sN~ with the property 
{N~ln ~ N} ha.s no upper bound and enR ± xN~p(x) where p(x) E 
N[x] and Po = 1. 

• or e(x) = ° 
"re can subtract two fonnal power series in N[x] tenn by tenn, however 

the result Inight not lie in N[x] but certainly it is in {-I, 0, l}{x}. 

Definition 3.2.2 1. Let a(x) and b(x) E N[x), a(x) is R-equivalent to 
.b(x) (or .simply a(x)Rb(x) ) if (a(x) - b(x))RO 

2. Let a(x) and b(x) be elernent.s ofN[x] (or {-l,O,I}{x}), we .say 
a(x) is R-equivalent to b(x) if for all n > ° there exi.st N~, N:: ~ ° 
.such that aN~ (x ) RbN::(x ) and the .set.s of the N:/.s and N~ '.s are not 
bounded above. 

There is no difficulty in proving that R is an equivalence relation. 
As we showed in the previous exalllple R-equivalence does not iInply 

R-equivalence. ' 
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Proposition 3.2.2 Let Q be the projection: 

Q : N[x] --7 N[x]/ R 

then 

Proof: Let 
C = {e(x) E {-l,O,l}{x}le(x)RO} 

and l( x) = 1 + L:n>O X 3n+1 + x3n+2. 
Clearly L = {±-xnl(x )In 2:: O} C C. 
On the other hand every elelnent of Cis R-equivalent to a elelnent of L. 

In fact, let e( x) E C and n sufficient large so that exists Nn > ° with the 
property en (x )RxNn p( x) for SOlne p( x) in N[ x] and Po = 1. Since the sets 
of the Nn's is not bounded above, exists m > n such that em (x )RxNm q( x) 
for SOIne q(x) in N[x] with qo = 1, Nm > Nn and Nm > n. 'Ve can express 
em(x) as: em(x) = L:i~o eixi = en(x) + L:~n+l eixi therefore: 

em(x) R xNnp(x) + L:i~n+l ei xi 
- xI< (xNn-I< p( x) + L:i~~l~I-I< eixi) I{ = lnin {Nn , n} 

Since em(x )RxNmq(x), there exists k > 1 such that the first k-tenns of 
xNn-I<p(x) + L:i~~~l-I< ei xi are R-equivalent to xNm-I<. Therefore e(x) is 
R-equivalent to an elelllent of L. 

Since for any n 2:: ° x3n+j l(x)Rx j l(x) \vithj = 0,1 or 2, we have that 
every elelllent of L is R-equivalent to either ±l(x), ±xl(x) or ± x21(x). 

Hence for any par of elelnents of N[ x], say a( x) and b( x) such that 
a(x )Rb(x), \ve have that a(x )-b(x) is R-equivalent to either ±l(x), ±xl(x) or ± 
x21(x). 

So we conclude there can not be lnore than three elelnents of N[x] in 
any R-class. 

Q.E.D. 
On the other hand Rauzy's construction of w is obtained as the iInage 

of N[ x] under the lllap 

Sx(L:i~o aixi) = L:i~o aiBiz for L:i~o aixi E N[x] 

where Band z \vere explained in page 18. 
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Remark 3.2.1 Since €x is compatible with the additive structure ofN* and 
N[x] we have 

l(x) + l(x) = €x(1) + €x(1) = €x(1 + 1) = €x(2) 

hence 
l(x) + l(x) = x 

and their image .. ~ under 8x satisfy the relation 

.. ~imilarly 

8x (1(x)) + 8x (1(x)) - 8x (x) +(-1,1) 
Bz+(-1,1) z+z 

x+x 
8x (x)+8x (x) 

Bz+Bz 

x 2 

- 8x (x 2
) + (0, -1) 

B 2z + (0, -1) 

On the other hand, the characteristic polynomial of the matrix B is 
x3 - x 2 - X - 1, therefore the points in the images under "8x of two 
R-equivalent power series in N[x] are the same point in W or they dif­
fer by a vector of integer coordinates. In tfLe later case, the point belongs 
to the boundary of w, since this set is a fundamental domain of T2. 

From proposition 3.2.2 and reillark 3.2.1 the preilllage, under bx , of any 
point in w, consists at IllOSt of three points, facts that allo,v us to introduce 
the definition of triple point: 

Definition 3.2.3 A point p in T2 is a triple point if it is in the intersection 
- of three different cylinders of t~e standard partition. 

For the definition of cylinder of the standard partition, see section 1.5 

Definition 3.2.4 A point p in T2 is a O-triple point if it is ~n 
WI n w2 n w3 or WI2 n WI3 n w2 or WI2 n WI3 n W3 

Later we are going to find the O-triple points and use them for describing 
" the identifications in the boundary of w. 

The previous definitions of Rand R equivalence extend in a straight 
forward Illanner to Ns{x}and, also to ZB{X} (the set of bounded power 
series with integer coefficients). 
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Proposition 3.2.3 
Ni,{x}/R = N[x]/R 

Proof: Clearly N[x]/ R C Ni,{x} / R. 
On the other hand, consider a( x) and b( x) in Ni, { x} such that they are 

R-equivalent. Let al(x) be an elelnent ofN[x] in the closure ofUn>o{cn(x) E 
N[x]lcn(x)Ram(x) for SOlne m} so al(x) is R-equivalent to a(x), similarly 
we get bl(x) . By transitivity we conclude that al(x)Rbl(x). 

Q.E.D. 
The group structure of (T2 ,+) almost induces a binary operation on w. 

However it is not well defined, since the addition of two points Inight lie on 
different pieces of the boundary, which are identified under Z2, this fact is 
reflected in N[x], where we introduce the operation: 

ffi : N[x] x N[x] 
a(x) EB b(x) 

--t N[x] 
= Q-l(L:i~O(ai + bi)Xi / R) 

which is not well defined, because when the identifications under the equiv­
alenee relation are taken we might have three different representatives in 
N[x], as was pointed out in proposition 3.2.2. However this "operation" 
suggests the introduction of the notion of an inverse of a point in N[x]. 

Definition 3.2.5 Let a(x) be an element ofN[x]; an element b(x) ofN[x] 
i .. ~ aninverseofa(x) if(a(x)+b(x))RO, where a(x)+b(x) . L:i>O(ai + bi)Xi 

and R i .. ~ taken on NB{ x}. -

By proposition 3.2.2 a point may have Inore than one inverse but no 
_ Inore than three. 

Vve will use the following convention for denoting the inverses: 

• If the inverse of a( x) is unique we denote it by -a( x) 

• If a( x) has Inore than one inverse we denote theln as follows: 

( -a( x))i i = (il i2 ... ir) 
(-a(x))i i=(jlj2 ... jr') 
(-a(x ))k k = (k1k2 ••• krll) 

such that (-a(x ))L E N,[x] and the 'words i,j,k have Il1iniIllulnlength, 
sueh that, allow us to distinguish that t~ey-are different. 
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As an exalnple we consider a( x) = 1. A direct computation show that 
its inverses are: 

En>0(X
3n+1 + x3n+2) 

E:>0(x3n + x3n+2
) 

En~0(x3n + X 3n+1
) 

and they are denoted (-1)°, (_1)10 and (-1)11 sinc~ they belong to No[x], 
N 10 [x] and N 11 [x], respectively. 

Lemma 3.2.1 The O-triple points of ware: 

• bx« -1)1) for i = 0,10,11 

• bx« -x )i.) for i = 10, 00, 010 

• bx« -(1 + x ))i.) for i = 0,10,11 

• bx(ri.(x)) for i = 0,10,11 where: 

rO(x) - x + 2:= x3n 

n~1 

r10(x) - 1 + L x3n+2 

n~O 

rll (x) - 1 + 2: X
3n+1 

fl~O 

• bx(.si.(x)) for i = 10, 00, 010 where: 

S10(X) - L x3n 

n~O 

SOO(x) _ Lx3n+2 

tl~O 

S'010( x) - 2: X 3n+1 

n~O 

• bx(ti.(x)) fo1' i = 0,10,11 

to(x) - L x3n 

n~l 

t10(x) - 1 + L X 3n+1 

n~l 

tll(x) _ 1+x+2: x3n+2 

n~l 
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s(x)10 

-1 

11 rex) 
(-1) rex) 11 

1 

o 

-J 

o (-(1 +x» 

Figure 3.1: Identifications of the boundary of w 

and the identifications of the boundary of ware given by: 

• 0S.:z:« _1)11 ),6.:z:(s010 (x)) is identified with 0S.:z:« -1)10),6.:z:(sOO(x)) 

• 0S.:z:({-1)1l ),S.:z:(s10(x)) is identified with 8S.:z:({-1)0),S.:z:(sOO(x)) 

• 0S.:z:«-1)10),s.:z:(s10(x)) is identified with 8S.:z:({-1)0),s.:z:(s010{x)) 

1 

'where Op,q is the shorte .. qt segment of boundary between p and q, z. e. the 
.. qegment of boundary that has cmaller diameter. 

In the proof of this lellllua the' following proposition is required: 

Proposition 3.2.4 

(wi.+(n,m))nwi. = 0 for i.E {2,3,12,13} and any (n,m) E Z2\(0,0) 

Proof of Proposition 3.2.4: In [38] it is proved that Ilpll < 1/2 for every p E 
w where II II is a suitable nonn in the plane, with the property: 

IIBpl! = a 1
/

2 11pll for any pEw. 
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· i/2 1 
therefore II BJ pil ~ T < 2 for j ~ 2. 

The rectangle W12 is disjoint from its translates under the lattice Z2, 
since W12 = B 2w. SiInilarly for W2, since 

W2 = TB2w = B2w+(a,a2) 

On the other hand W13 = BT B2w, so IIw1311 ~ a3/2
; therefore it is disjoint 

frolll its translates under Z2. SiInilarly for W3, which is equal to TW13 

End of the proof of Proposition 3.2.4 

Proof of Lemma 3 .. 2.1: Now we are going to prove that these points 
are a-triple points. 

As has been shown before, the inverses of 1 are: 

(_1)0 = E(X3n+1 + X3n+2) 
n~O 

(_1)10 _ E(x3n + x3n+2) 
n~O 

(_1)11 _ E(x3n + x3n+1) 
n~O 

according to reinark 3.2.1, we have: 

8x (( _1)°) - 8x (( _1)10) + (1, -1) 

8x ((-1)0) - 8x ((-1)11) + (1,0) 

So the iInages under 8x of the points (-1)1 are three different points in 
w which differ by an vector of integer coordinates, therefore they have the 
saIne image in T2 and it is a a-triple point. 

On the other hand: 

8x (rO(x )) - 8x (rl0(x)) + (0, -1) 
8x (rO(x )) - 8x (r11 (x)) 

and 

8x ( SOO( x)) - 8x (SOI0(X)) + (0,1) 
8 x ( S 00 ( x ) ) - 8x (S10(X)).+ (1, 0). 
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Silnilarly we have 

which is the point where the rectangles WI, W2 and W3 intersect in the interior 
of w. 

An easy cOlnputation shows that the inverses of 1 + x are: 

and 

(-(1 + x))O - x2 + L: (X
3n+1 + X 3n+2

) 

n~1 

(-(1 + x ))10 - 1 + E(x3n + X 3n+1
) 

n~1 

(~(1 + x))l1 - 1 + x + L:(x3n + x3n+2
) 

n~1 

8x (( -(1 + x))O) - 8x (( -(1 + X))10) + (1,0) 
8x (( -(1 + x ))0) _ 8x (( -(1 + x ))11) +- (1,0) 

Also, the inverses of x are: 

(-x )10 _ 1 + x2 + 2:(X
3n+1 + x3n+2

) 

tl~l 

and the relations between their ilnages are: 

8x (( -x )010) _ 8x (( -x )10) + (0, -1) 
.. 8x (( -x )00) _ 8x ((-X )10) 

Therefore 8x (( -1}t) for i = 0,10,11, 8x (( -(1 + x)}!.) for i = 0,10,11, 
8x ((-x)!) for i = 00,010,10, 8x (t i (x)) for i = 0,10,11 8x (ri (x)) for i = 

. 0, 10, 11 and 8x ( .si( x)) for i = 00,010, 10 are O-triple points. . 
In order to show that these are the only O-triple points', ,ve are going 

to describe the identifications on the boundary (aW2) of W2. In this ,vay 
we shall find all the O-triple points contained in this boundary. Later this 
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analysis is done in the boundary of W3 and WI (8W3 and 8wl, respectively). 
In this way we shall have all the identifications on the boundary of the 
fundalnental domain wand all its O-triple points. 

We consider the boundary of W2 as the union of different pieces of bound­
ary: 

8W2 = 8So%«-I)10),c50%(r10(x» U 8So%(r10(x»,c50%«-x)10)U 

oso%« -x)l0),c50%(t10 (x» U 8so% (t10(x»,c50%« -(I+x))10) U 

8so%( (- (1 +x) )10),c50%(s10 (x» U 8 Sz (s10 (x »,So%( (-1 )10) 

Let P E 8 So%«-I)10),S0%(r10 (x)). Since 8x (( _1)10) is identified to 8x (( _1)11) 
and 8x (7·10(X)) to 8x (rl1(x)), p is identified to an unique point in W3, if not 
there would be two poilits in W3 that differ by an element of Z2 fact that 
contradicts proposition 3.2.4. Therefore 8 80%«-I)10),80%(r10 (x)) is identified to 
8so%« _I)ll ),c5o%(rll (x)) and moreover there is not a O-triple point in this piece of 

boundary, with the exception of 8x((-1)IO) and 8x (rl0(x)). 
Silnilarly it is proved: 

• 880%« _(I+x))10),60%(slO (x)) is identified to 860%« -(I+x))O),c5o%(sOlO (x)) 

• 860% (s10 (x)),c5o%« -1)10) is identified to 8 60% (sOll (x),c5o%« _1)0) 

• 8 60% (rIO (x)),c5o%« -x)10) is identified to 8 60% (rO (x)),c5o%« _x)010) 

On the other hand 8 so%«-x)10),so%(t10 (x)) is identified to 0So%«-x)OO),c5o%(tO(x)). 

Since 8x (tO(x)) and 8x(t IO(x)) are in the interior of wand 8x ((-x)1°) = 
8x ((""7x )00), therefore 

8So%«_X)10),So%(~10(X)) = 8so%«-x)00),c50%(tO(x)) 

and this section of the 8W2 and 8WI lies in the interior of w, ,vith the excep­
~ion of the point .. 8x(( _X)IO) which is in the boundary (sinc"e 8x (( _X)OIO) = 
Dx(( _X)IO) + (0, -1)). 

Sinlilarly 8So%(t10(x)),S0%« _(I+x»lO) is identified to 8So%(tll (x)),c5o%« -(I+x))ll) and 
therefore 

060% (t lO (x) ),80%( (-(I+x) )10) = 8 80% (tIl (x) ),80%( (-(1 +x»l1) 

The identifications in W3 and WI are obtained in a similar way. 

End of the proof of Lemma 3.2.1 
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3.3 Boundary Transitions and Dimension 

The partition of the sYlnbolic space 0 into WI w2 and W3 gives rise to the 
iterated systeln of maps (ISM)-studied in section 1.5-: 

II: 0 ---+ 0 1 

(J II2: 0 ---+ O2 
(J II(J II2: 0 ---+ 0 3 

which induces equivalent systems of maps in all the other geometrical real­
izations of the dynamical system associated to the substitution. 

In this section we consider a map that are related to the inverses of the 
previous ISM: 

This Inap induces a system of maps in all the other geometrical realiza­
tions of (J : 0 ---+ O. In particular, we are interested in the realization on 
w, we denote this systeln of Inaps by c)? 

c}? W ---+ W 

{ WI - B-1 WI ---+ W 

c}? c}?2 - B-1T-1 
W2 ---+ WI 

c}?3 ~ 
B- I T- 1 

W3 ---+ W2· 

Observe that c}? is not a Inap since it is not defined .uniquely in the 
boundary points of w. 

Lemma 3.3.1 The boundary of W is invariant under c}? and the induced 
system of maps on the boundary, as a subset of T2, can be represented by 
the transition matrix: 

A1 - ( ~ ~ ~ ~) 
100 1 
o 100 
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Proof: Each map -I>i is a homeomorphism ill the regions where it is defined, 
50 -I>i Inaps the boundary of Wi into the boundary of Wi-1 for i = 1,2,3 
(w here Wo is w). Therefore the extended boundary of w, i.e. 8W1 U 8W2 U 8W3, 
is invariant under -I>i. 

Next we are going to COlllpute the transitions of -I> in this extended 
boundary, and these transitions 'will show that the boundary of W is invari­
ant under -1>. 

For finding the transitions it is sufficient to compute the images of the 
O-triple points, since the extended boundary of w is invariant under -1>. In 
order to do that we will work in the space N[x], since the computations 
are easier, here the lllap equivalent to 'P : n --+ n is 4> : N[ x] --+ N[ x] 

4>1 No [x] --+ N[x] 4>1 (p( x)) - ~p(x) 

4>: 4>2 NlO[X] --+ No[x] 4>2(P(X )) - ~(p(x) - 1) 

4>3 N 11 [x] --+ NlO[X] 4>3(P(X )) - ~(p(x) - 1) 

First we shall find the transitions of 8w n 8W3 according to -1>3' 
Observe: 

5itnilarly we ,.get: 

Therefore: 

_ 1 + E(x31l
.-

1 + x31l
), 

1l~1 

= (_1)10 

4>3(rll(x)) _ S10(X) 
4>3(tll (x )) _ t10(x) 

4>3(( -(1 + x ))11) _ (-x )10 
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<1>1 ( 8Sz (r11 (x )),6z(tll (x))) - 8 Sz (s10 (x )),Sz(t10 (x)) 

<1>1 (8Sz(t11 (x)),6z« -(l+x))l1)) - 8 Sz (t 10 (x)),6z« _x)10) 

<1>1 (8Sz« -(l+x))l1 ),6z« _1)11)) - 8Sz«-x)10),6z« -1)10) 

But as far ow n 8W3 is concerned we have: 

<1>1 (8Sz « _1)11 ),6z(rll (x))) = 86z« -1)10),6z(s10(x)) 

<1>1 (OSz« _(l+x))l1 ),Sz« -1)11)) = 86z « -x)10),6z« _1)10) 

Doing similar computations we get the transitions of 8w n 8W2 according 
to <1>2: 

<1>2( oSz « -x )10),6z(r lO (x)))) - 8Sz ( (-x )010) ,6z(s010 (x)) 

<1>2 ( 8Sz (rl0(x)),Sz« -1)10)) - 8 Sz (s010 (x)),Sz« _1)0) 

<1>2 (OSz« -1)10),6z(s10(x))) - 8Sz « -l)O),iz(sOO (x)) 

<1>2 ( OSz (s10 (x)) ,6z( (-(1 +x ))10)) - OSz (sOO (x) ),Sz« -x )00) 

Finally the transitions of ow n 8W1 according to <1>1 are: 

<1>1 ( 86z (rO (x)),6z« -x )010)) - 06z(rlO (x) ),Sz( (-1 )10) 

<1>1 ( OSz « -x )010),6z (sOlO (x))) - 8Sz« -1)10),6z(s10(x)) ' 

<1>1 (8Sz (s010(x)),6z«-1)0)) - 8Sz(s10(x)),6z«-1)11 ) 

ci>1 (8Sz « -l)O),6z« -(l+X))O)) - 8Sz« _1)11 ),Sz« _x)010) 

ci>1 (OSz « -(1+x))0),8z (sOO (x))) - 8Sz « _x)010 ),6z(s010 (x)) 

ci>1 (8Sz (sOO(x)),6z« _x)OO)) - 8 Sz (s010 (x)),6z« -1)0) 

This shows the invariance of the boundary under ci>: 

ci>(8w) c ow 
All these transitions can be expressed in a 12x12 matrix - since we have. 

considered 12 different rectangles (Ri) in the boundary in the computations 
of the transitions - according to the rule: 

M .. - {I tJ - a 

o 0 

if <1>(Rj)n Rrl0 
otherwise 

86 



o 
where Ri is the interior of ~ as a subset of 8w. 

0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 
1 0 0 0 0 0 0 0 0 0 1 0 
0 1 0 0 0 0 0 0 0 0 0 1 

M= 
0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 

where the rectangles Ri are: 

R1 - 8gz « _1)11 ),gz(r11 (x) 

R2 - 8gz « -(1+x))11 ),6z« _1)11) 

R3 - 86z (810 (x)),6z« _(1+x))10) 

R4 - 86z « -1 )10),6z (s10 (x)) 

Rs - 86z « -I)lO),6z(r10 (x)) 

I4 - 86z (r 10 (x)),6z« _x)10) 

R7 - 8gz « -x )OO),6z (sOO (x)) 

Rs - 8 gz (sOO (x)),6z« -(1+x))0) 

R9 = ~. 8gz « -(I+x))O),6z« -1)0) 

RIO - 8 gz« -1)0),6z(8010 (x)) 

Rll - 8 5z« _x)010 ),6z(8010 (x)) 

R12 - 85z(rO(x)),6z« _x)010) 

using algebraic cOlnputational software, we found that the characteristic 
polyn~)lnial of M is 

(-1+x)x
4 

(-1+x+x2+x3) (-1-2x+x~) (3.1) 

'Ve can reduce the nUlnber of rectangles by Inerging the ones which have 
the same itnage under ¢, and later considering the identifications, under Z2. 
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RS I 
1 

Figure 3.2: The partition of the boundary of w as a -subset" of R2 

-1 

Figure 3.3: The partition of the boundary of w as a subset of T2 
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We end up with 4 rectangles: 

PI - R2 Rg is identified to R2 
P2 - RI UR7 Rs is identified to RI and Rll to R7 
P3 - R3U~ Rs is identified to R3 and RI2 to ~ 
P4 - R4 RIO is identified to R4 

and the transition luatrix is 

M=(~~~OO:) 
. 010 

defined as: 

1\1. .. = 1 if ~(Pj)n Pi# 0· 
{ 

0 0 

tJ 0 - otherwise 

This operation of luerging and identifying rectangles can be represented 
using lllatrices. If the lllatrices Q and Q' are 

0 1 0 0 
, 1 0 0 0 

0 0 1 0 
0 0 0 1 

Q=(! 
1 0 0 0 0 o 0 1 0 0 !) =d Q' = 

o 0 0 0 
0 0 0 1 0 1, 0 0 0 1 O. 0 0 0 
0 1 0 0 1 o 1 0 0 0 o 0 0 0 
0 0 1 0 0 o 0 0 1 0 o 0 0 0 

o 0 0 0 
o 0 0 0 
o 0 0 0) 

o 0 0 0 

then I 

QMQ'=M 
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Theorem 3.3.1 The Hausdorff dimension of the boundary of w is 

210gp 

. 10gA 

where p is the Perron-Frobenius eigenvalue of 

Proof: First observ~ that the Perron-Frobenius eigenvalues of M and 
M are the same, therefore we are going to work in the plane where the 
lllatrix M is the transition Inatrix for cI>. Consider the coverings of the 
boundary, as a subset of the plane, given by the partition R = {R1 , ••• ,R12 } 

- the rectangles of this partition are disjoint except for the end points -
and its iteration under cI>-1. 'Ve .denote by Vf=o.p-i R the partition of the 
boundary given by cylinders of the fornl 

Ri =Rio n.p-1(Ri
1

) n ... n cI>-k(Ri
k

), i = (io, ... ,ik) 

By definition the s-Hausdorff Ineasure of 8w is: 

therefore 
?-la( 8w). ~ liln L IRiY· 

k-oo k . 
RiEVj=o~-JR 

Since cI> is a cOlllposition of B-1 -which expands distance by A 1/2_ and 
T which is a piece exchange transforIllation on w, exist constants Cl , C2 > 0 
such that 

c1ci/21lpll ~ 11.p-kpll ~ C2ak/211pll Vp E w 

So exists a constant C' > 0 such that 

IR· . 1< G'ak
/

2 
'o,···,lk -

(3.2) 

On the other hand the nUlllber of rectangles of the partition Vf=o.p-i R 
is equal to ItMkl where It = (1, ... ,1) 
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Proposition 3.3.1 ([23]) Exists a constant C3 > 0 such that 

It Mkl :::; C3pk for all k > 0 

where P is the Perron-Frobenius eigenvalue of the Matrix M 

Hence 

< liln I: IRii s 

k-+oo k • 
RiEVj=o~-JR 

< liln C' a ~2k (nulnber of cylinders in vj=o i]?-j R) 
k-+oo 

< liln C'a¥- pk. 
k-+oo 

therefore the Hausdorff Ineasure of 8w is slnailer or equal to 

210gp 
80=---

_ log a 

In order to prove the opposite inequality, we consider a Ineasure Jt on 
aw. We define J.L on the cylinders of the partition vj=oi]?-j R, which generate 
the Borel cr-algebra of the boundary of w, by 

{ 

k 
l R . . - VioP I ( (to, ... ,tk)) - 0 

if R(· .) -I. 0 to, .. ·,tk I 

if R(· .) - 0 to, .. ·,tk - ,. 

where the Vi-S are the cOlnponents of the normalize right positive eigenvec­
tor of M given by the Perron-Frobenius theorem. Clearly this Ineasure is 
supported on aw. 

Proposition 3.3.2 There exists a constant Co > 0 such that 

Proof of Proposition 3.3.2: 

k k ~ II.(R(· .)) - V· P < P - a 2 ,.- to, ... ,tk - to - -

On the other hand, due to the inequality 3.2 there exists a constant 
C4 > 0 such that 
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and SInce the partition R satisfies the Markov condition I.e. if 
o 0 

1>(Ri)n Rrl= 0 then Rj C 1>(Ri); we have: 

therefore 

IRil - IR(io, ... ,ik) I 
k > C4Q:2 

End of the proof of proposition 3.3.2 

Let U be a o!)en subset of 8w and Ri with i E J a covering of U by 
cylinders of Uk~O V~=o 1>-i R, therefore -

Since this inequality is true for any covering of U by cylinders of Uk~O V7=0 
1>-i R and any other covering can be express in tenllS of this covering, "re 
have: 

o < IL(U) ~ 1iso (U) 

hence the Hausdorff dimension of 8w is equal to so. 

End of the proof of Theorem 3.3.1 

The systenl of maps 1> : w ---+ w induces a systelll of lllaps on the 
interval, using the Arnoux seilliconjugacy t : I ---+ w (Chapter O. This new 
system 

is given 011 the interval by: 

Since the boundary of w is invariant under 1>, its preimage ~nder Arnoux's 
lllap is an invariant set for the transformation t-1 1>~. 
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Corollary 3.3.1 The Hausdorff dimension of the preimage of the bound­
ary of w, under the Arnoux map e, is 

logp 
log ,\ 

Proof: The proof is the same as in theoreln 3.3.1, but we consider 
the partition of t-1(8w) given by S = {S1, ... , S12} where Si = t-1 Ri and 

k " . 
V i=oe-J <pe( S). 

Since each map of the systeln expands the distance by a factor of ,\ 
(while <P expands the distance by ,\1/2) and each Si is contained in the 
continuity component of f there exist constants Cf and C~ such that 

and therefore 

hence the Hausdorff dimension of t-1(8w) is half of the dimension of 8w. 
Q.E.D. 
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Chapter 4 

Relationships between the TIn 
substitution dynamical 
systems. 

4.1 Introduction 

In the previous chapters we have been studying the falnily of substitutions: 

1 
2 
~ 12 
~ 13 

(n-l) ~ In 
n ~ 1 

and for each n we have shown different properties of the dynalnical systeln 
associated to this substitution and of it various geolnetrical realization. 

In this cliapter we describe how the' dynalnics of the systelns of this 
faillily, corresponding to lower dimensions - i.e. the paralneter n in the 
definition of TIn - are present in systems of higher dimensions. In partic­
ular we show that there is a subset of W, whose dynaillics reselnbles t1~e 
dynaillics of N n

-
t

. 'Ve COlllpute the Hausdorff and Billingsley diInensions, 
with respect to a naturalilletric and llleasure on N n

, of this subset. Also 
we study the realization of this subset in the interval. 
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4.2 Topological conjugacies 

Let u : on --+ on be the dynalnical systeln associated to lIn as described in 
page 4. This system IS topologically conjugate to 
(+l)n : N n 

--+ J:r where 
n-l 

N n = {Q E {O, l}N*1 L ai+j < n Vi} 
j=O 

and the Inap (+ l)n is the extension to N n 
of adding 1 on 

JVn = {Q E WI3N > 0 such that Vi ~ N ai = O} 

as it was described in page 17. This system is self-induced, i.e the diagranl 

N n (+l)n,'Nn 

r[ _ r[ (4.1) 

""A?fl (+ 1 ) n T7'n 
JV 0 ' JV 0 

COllllllutes where 
N~ = {Q E Wlao = O}, 

r 

and (+1 )n is the induced lllap of ( + l)n in ~. 
Let en be the subset of N n 

in which n consecutive O's are not allowed. 
I.e: 

n-l 

en = {Q E }l'11 L ai+j > 0 Vi} 
j=O 

Theorem 4.'2.1 There exists. a continuous and surjective map 
1/Jn : en --+ N u-1 

such that the following diagram commutes: 

en u 
I en 

~ .. [ ~ .. [ 
}l'1-1 U Nn-1 , 
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and also there exists a continuous map 9n : en -+ en such that the diagram 

commutes. 

Proof: Let {aio ••. ain_2 }i;l be the sYlnbols of en,. which are all the 
elelnents of {O, l}n-l -·since the non-allowed sYlnbols of en have length n 
or greater - and M( n) its transition lnatrix: 

if ail ... ain_2 = ajo ••• ajn_3 

and 0 < aio + ... + ain_2 + ajn_2 < n 
otherwise. 

We re-arrange the entries of this matrix as follows: Let aio ••• ain_2' be 
any of the sYlnbols of en. Consider aio ..• ain_2 where 

_ {O 
ai = 1 

if ai = 1 
if ai = O. 

The transition lnatrix of en can be re-written in such way that it can be 
split into sub-blocks of size 2x2, so that each of thenl gives the transitions 
froln aio ••• ain_2 and aio ••• ain_2 to ajo ••• ajn_2 and ajo ••. ajn_2' 

Consider any of these 2~2 blocks. If there is at least one entry equal 
to 1, in this block, we can suppose that this entry represents the tran­
sition between aio ..• ain_2 and aio ••. ajn_2' Then the transition between 
aio .•. ain_2 alid aio .•. ain-2 is also allowed and the other two transitions are 
not allowed. Therefore the block is of the fonn 

Id2 = (~ n or J2 = U ~). 
On the other hand if there is not any 1 in the block, it is of the form 
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We obtain a 2n - 2 x2n - 2 matrix ]{ by collapsing each of these blocks to 
only one entry. If the block is of the fonn Id2 or J2 the corresponding entry 
in ]{ is 1. It is 0 if it COlnes froln a block of type O. 

We introduce the maps <; : {O, 1}2 -+ {O, I} defined by <;(00) = <;(11) = 1, 
<;(10) = <;(01) = 0 and 

'lin 
W n( ao ••. a n-2) 

{o,l}n-l ~ {0,1}n-2 
- <;(aOal)<;(al a 2)··· <;(an-3 an-2). 

Observe that 'lI n (ao··· an-2) = 'lI t/ao··· an-2). So the Inap is two to one. 
The matrix ]{ is also a transition Inatrix, in fact: if the entry ](ij 

COllIes froln the block corresponding to the transitions f~oIn aio ••• ain_2, 

aio .•. ain_2 to ajo ... ajn_2' ajo .•. ajn_2 then kij gives the transitions from 
'l1 n( aio ..• ain_2) to 'l1 n( ajo .•• ajn_2). In order to show that the Inatrix ]{ is 
the transition Inatrix for lVn

-
1 

, it is sufficient to prove that the pattern 
1n - 1 - i.e. ~ - is not allowed and also if bio •• ~ bin_a andbjo ••• bjn_a are 

n-l 
words of length n-2 in lVn

-
1 

such that at least one of them is different froln 
1n - 2 and bi1 .•• bin_a = bjo ••• bjn_4 then ](ij = 1. Consider the pre-iIllage of 
1n- 2 under 'l1n, which is 1n- 1 or On-I. Since the symbols In and On are not 
allowed in ert, the block of ~Al( n) which expresses the transitions between 
1n - 1 , On-l and theillselves is of type O. So the transition, expressed in ]{, 
between 1n - 2 and itself is not allowed. Consider bio •.• bin_a and bjo ••• bjn_a 
such that bi1 ••• bin_a = bjo ••• bjn_4 and at least one of. theill is different 
frolll 1n - 2 • Let aio ~ •• ain_2' aio ••• ain_2 and ajo .•• ajn_2' ajo ••• ajn_2 be the 
pre-iIllages of bio ..• bin_a and bjo .•• bjn_a , respectively, under 'l1 n. Since 
bi1 ••• bin_a = bjo ••• bjn_4 we have 

and also aio ••. ain_1 is allowed in en ( the only way that it could not be 
allowed is in the case that it is equal to On-1 or 1n - 1 which iIllplies that 
bio .•• bin_3 or bjo .•• bjn_a is equal to 1n - 2 ). Therefore the block of M(n) 
that gives the transitions between aio ••• ain_2' aio ••• ain_2' and ajo ••• ajn_2' 

ajo ••• ajn_2 is of type Id2 or J2 , so ]{ij = 1. TIlls proves that the matrix ]{ 
describes the transitions in lV"-I. 
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Let "pn be the Inap: 

cn ~ 7Vn- 1 

- 'lI n (ao ... an-2)'lIn (an-2 ... a2n-4)··· 
- ~(aOal)~(ala2)~(a2a3)··· 
- bob1b2 

In order to show that the image of this Inap lies in 7V
n

-
1 

take any subword 
of length n - 1 of Q = "pn(g) , for SOlne g in cn, say bi-1bi ••• bi+n - 3 • If 
ajaj+l ... aj+n-2 is one of the pre-images of bi ••• bi+n- 3 under 'lin then one 
of the preiInages of bi- 1 bi .•• bi+n- 4 is aj-l ajaj+l ... aj+n-3. Since g is in 
Cn the transition froin aj-l ajaj+l ... aj+n-3 to ajaj+l ... aj+n-2 is allowed, 
therefore the transition between bi- 1 bi ••• bi+n - 4 and bi .•• bi+n - 3 is allowed 
according to the Inatrix ]{ which gives the transitions in 7V

n
-

1
, so Q is an 

""i711- I 
elemen t of jV • 

In order to prove that "pn is surjective, take anyelelnent fl.·of7V
n

-
l

. Con-
sider bo ... bn- 3 and its two preimages under 'lin: ao ... an-~ and ao .. . an-2. 
On the other hand the preimages of bl ••• bn- 2 are al ... an-l and al ... an-I, 
since the transition between bo ... bn- 3 and bl .•• bn - 2 is allo,ved, we get that 
ao ... an-I and ao . .. an-l are allowed words in 7V

n
-

l
, so by induction we 

construct the sequences g and Q which are the preimages of 12 under "pn. 
This proves that "pn is surjective and two to one. 

The set Cn adinits the natural partition Cn = Co U CI1 where 
Cr = {g E cnlao = i} for i = 0,1. Observe that the previous arguinent 
proves that the Inap "pn is bijective in each Cr. 

The continuity of"pn is ~traight-forward. Also, from the ·construction of 
this Inap it follows that 

On the other hand the Inap (+l)n-l : 7V
n

-
1 ~ 7V

n
-

1 lifts continuously to 
g~ : Co ~ Co· and g~ : Cr ~ Cr but since Co and Cr are disjoint we obtain 
g71 : cn ~ cn which is continuous and 

"pn(gn(g)) = (+l)n-I("pn(g)) for all g E cn. 

Q.E.D. 
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Corollary 4.2.1 Define an involution 

</> : {O,l}N· -+ {O,l}N· 
(aOa1 ••• ) -+ (aOa1 ••• )· 

The set Cn is invariant under </> and in : C
n 

/ </> --+ C
n 

/ </> is topologically 

conjugate to (+1)n-1 : ;;r-1 --+ }In-1 where in is the map corresponding to 
gn under the projection which maps Cn into C

n 
/ </>. . 

Proof: In order to prove the invariance of Cn under </>, it is sufficient to 
show' the transitions in Cn are invariant under the operation that changes 
O's to l's and vice' versa, i.e. if aio ••• ain_ l and ajo ••• ajn_l are SYlllbols such 
that ail ••• ain_ l = ajo ••• ajn_2 and aio ••• ain_l ajn_l is an allowed word in 
Cn then aio ••• ain_l ajn_l is also an allowed word in Cn

• This is true because 
ail •.• ain_ l = ajo ••• ajn_2 and the only case where aio ••• ain_l ajn_l is not 
allowed is when is equal to On+1 or 1n +1, which hllplies that aio ••• ain_ l ajn_l 

is equal to 1n+1 or On+1, respectively, contradicting the transition between 
aio ••• ain_ l and ajo ••• ajn_l . 

Since </> is a homeoillorphism between Co and C;, we have that cn / </> is 
hOllleolllorphic to Co and to Cr. According to theorem 4.2.1, 
~)n IC!1 : C? --+: lV l

-
1 

is continuous and bijective, for i = 0,1; since both , . 
spaces are cOlnpact we have that this map is a hOlneomorphisnl. Therefore 
g:l : C? --+ C? is topologically conjugate to (+1)n-1 : }In-1 --+ }In-\ hence 
,. cn/ Cn/.. () ""'A71l- 1 77n - 1 

gn : </> --+ </> IS conjugate to + 1 n-l : jV --+ jV • 

Q.E.D. 

4.3 Metric relations 

In this section we shall show that the dynalnics on Cn reseillbies the dynaln­
ics on }In-1 froln the Inetric point of view, i.e. the shift Inap <7lcn expands 
the Hausdorff measure - of its ditnension - by the saIne amount as <7 INn":l. 

In particular the Hausdorff and Billingsley dimensions of.Cn are cOlnputed, 
for a naturallnetric and measure on }In. 

"Te consider }lfl with the Inetric dn defined as: 
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where Q, a' E Jr and An is the Pisot nUlnber of the polynomial 
xtl - x n - 1 - ••• - x-I ([6]). This metric is cOlnpatible with the prod­
uct topology on }Vi. 

In order to define a Ineasure on N n
, we introduce cylinders of the fonn: 

The Ineasure 1/n is defined on these cylinders as 

where iJaio ... ai 1 are the. components of the normalized positive right eigen-
2n -

vector of the transition lllatrix that defines N n
, given by the Perron-

Frobenius theoreln. 
In theoreln 4.3.1 we cOlnpute the Hausdorff dilnension of any subset S 

of Nfl, defined by a transition Inatrix S. Let S be an 8x8-inatrix with O's 
and 1 's as coefficients: 

where k is such that there are 8 symbols of length k: aio ••• aik_l • 

Theorem 4.3.1 If S C Nfl is defined by a transition ~atrix S then the 
H au .. ~dorff dimension of S is l~Og:n' where p is the Perron-Frobenius eigen­
value of S. Moreover the vn-Biflingsley dimension of S is equal to its Haus­
dorff dimension. 

Proof: Consider the covering of S given by cylinders of the fonn: 

where aio ••• aim is an allowed word in Sand m ~ k. We denote this 
covering by 'Rm and 'R = Um>k'Rm. Observe that the dialneter of each 
cylinder of'Rm is A;;(m+l). -

Since S is the transition matrix that define S, we obtain: 
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therefore the nUIllber of cylinders in Rm is given by 

l(s)t sm-k+I1(s) 

where l(s)t = (1, ... ,1). 
'---..---" 

8 

Hence, if we denote the dianleter of any set by "II", 've get: 

1iT(S) - linlinf{2: IUil T lUi Ui ~ Sand IUil < €} 
f:-+O 

< liIll """" IRa· a' IT m-+oo L.J 10 ••• 1m 

'Rm 
< liIll'\ -(m+l)T(# of cylinders inRm) 

tn-+oo n 
_ J~oo ,\;;{m+l)T1(s)t sm-k+l1(s)) 

Since p is the Perron-Frobellius eigenvalue of S, there exists a constant 
C > 0 such that 

So: 
1iT(S) ~ J!-&,(Cp-k),\;;{m+l)T pm+l 

therefore the Hausdorff dinlension of S is sillaller or equal to 'To = llogp . In 
og "n 

order to prove the opposite inequality we consider the Illeasure JL on Nfl. 
'Ve define it on cylinders of the form Raio ... aim 

It(Raio ... ai
m

) = vaio ... ai
k

_
1 
p-{m+l-k) 

where the vaio ... ai
k

_
1 
's are t.he cOlllponents of the nonnalize~ positive right 

eigenvector of S given by the Perron-Frobenius theoreln. Clearly this lnea­
sure is supported on S. 

Since IR. . I = ,\ -(m+l) we get: 
a~ ... alm n , 

where C' is a constant independent of the cylinder. 
Let U be an subset of S of positive It-measure and U;EJ Ri any covering 

of U where Ri are elements of R = Um~k Rm and J a faillily of indexes; so 

o < JL(U) ~ It(UiEJR;) ~ 2: jt(Ri) ~ C' 2: IRiI To . 
i i 
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Since this inequality is true for any covering of U chosen froln R, and this 
falnily of sets generates the Borel a-algebra of S, we obtain: 

therefore the Hausdorff dilnension of S is 

logp 
70=--· 

log '\n 

The cOlnputation of the vn-Billingsley diln~nsion of S follows the saIne 
lines as before. If B".( S) denotes the vn-Billingsley measure of dilnension 7 

we have: 

therefore the l/n-Billingsley dimension of S is smaller or equal than 70 = 
log pI log '\n. And the opposite inequality follows from 

End of the proof of Theorem 4.3.1 

In order to cOlnpute the Hausdorff dhnension of en and N n
, as a corol­

lary of theorenl 4.3.1, we ileed to prove SOlne properties of the transition 
lllatrices of these two spaces, which deal with their eigenvalues. 

Proposition 4.3.1 The characteristic polynomial of the matrix 

1 1 1 1 1 1 1 
1 0 0 0 0 0 0 
0 1 0 

A(n) = 
0 0 0 0 

0 0 0 0 1 0 0 
0 0 0 0 0 1 0 

. n n-l 1 fi > 2 z.s x - x - ... - x - , or every n _ . 
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Proof: We shall prove this by induction. For n = 2, the proposition is 
true since 

A(2) = U ~) 
and its characteristic polynomial is x2 - X - 1. 

Observe that A(n) has the structure 

A(n) = [ 

o 0 

A(n -1) 

o It)· 
,\Ve denote by Idn the nxn-identity matrix. Developing the determinant of 
A(n) - x Idn through its last row we obtain: 

Det(A(n) - x Idn ) = (-x) Det(A(n - 1) ~ x Idn - 1 ). - ~n-l 

where 

1-x 1 1 1 1 1 1 1 
1 -x 0 0 0 0 0 0 
0 1 -x 0 0 0 0 0 

~tl-l = Det 

0 0 0 0 0 1 -x 0 
0 0 0 0 0 0 1 0 

but 
~tl-l = -~{l-2 = (-1)2~n_3 = ... (_1)n-4~~ 

and ~3 = 1, therefore 

Det(A(n) - x Idn ) = (-x) Det(A(n - 1) - x Idn - 1 ) + (_1)3. 

If n is even bet(A(n -1) - x Idn - 1 ) = _(xn- 1 - xn- 2 _ .... - x -1), hence 

Det(A(n) - x Idn ) = x(xtl
-

1 
- x n- 2 - ... - x - 1) -1 

= xn - xn- 1 - ••• - x - 1 

and if n is odd Det(A(n -1) - x Idn - 1 ) = (x tl
-

1 - xn- 2._ ... - x -1), so 

Det(A(n) - x Idn ) - (-x )(xn- 1 
- x n- 2 - ••• - x - 1) + 1 

_ _(xtl 
- x n - 1 - ••• - x -1) 

Q.E.D·. 
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Proposition 4.3.2 Let N( n) be the transition matrix of 7V, with n ~ 2. 
There exist matrices P(n) and Q(n), with 0 's and 1 's as coefficients, such 
that 

P(n)N(n)Q(n) = A(n) 

Proof: We prove this by induction on n. In the case n = 3, we order 
the sYlllbols of}l3 of length 2 as follows: 00, 01, 10, 11 and the transition 
lllatrix of }l3, according to this order of the symbols is 

. N(3) = (t t 1 n 
We define P(3) and Q(3) as 

(
1 0 ~~) P(3) = (~ ~ ~.~) Q(3) = ~ ~ 

o 001 0 0 

and when the Inultiplication P(3)N(3)Q(3) is done we obtain that is equal 
to A(3). Observe that the equality also holds if we consider 

( 

0 0 0) 100 
,Q(3) = 0 1 0 

001 

Suppose that the proposition is true for n - 1 where P( n .:... 1) is: 
2"-3 2"-4 

P(n-1)= 

~~ 
1···1 0···0 
0···0 1···1 

0···0 0···0 
0···0 0···0 
0···0 0···0 
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and the transpose of Q( n - 1) is 
2n - 3 2n - 4 

~ ~ 

10···0 00·· ·0 00 0 0 
00···0 10···0 00 0 0 

00···0 00···0 10 0 0 
00···0 00···0 00 1 0 
00···0 00···0 00 0 1 

Consider the case of ditnension n, the ordering of the sYlnbols of length 
n - 1 of jJ71, is given by the lexicographical order. Since {aio ... ain_2 } i~l 
are the lexicographically ordered synlbols of length n - 2 of jJ71-1, ajo = 0 
for 1 ~ j ~ 211

-
3

, ajl = 1 for 1 ~ j ~ 271
-

4 and in particular On-2 is the first 
sYlnbol and 1n - 2 the last one. 

So according to this ordering of the sYlnbols of lJ'n, 've obtain that 
the transition lnatrix is N(n) = (Bijh~ilj~2n-2 where Bij"is a 2x2- block 
expressing the transitions of aio " ... ain_2 0, aio ... ain_21 and ajo ... ajn_20, 
ajo ... ajn_21. The block Bij is either: 

( 00) (0 0) ~ (11) ..... (00) o = 0 0 ,1 = 1 0 ,.::. = 0 0 or .::. = 1 1 

in each case the corresponding entry - the i,j-th entry - of N(n - 1) is 
0,0,1 or 1 respectively. In fact, if (N(n - l))ij = 1 then ail··· ain_2 = 
ajo ... ajn_3' if ajn_2 = 0 then ail ... ain_2 0 is equal to ajo ... ajn_3 ajn_2' so 
Bij = 3; and if ajn_2 = 1 we get Bij = 3. In the case N(n - l))ij = 0 
then aio ... ain_2 = ajo ... ~jn-2 = 171 - 2 or ail . .. ain_2 i=- ajo 0 ••• ajn_3. In the 
latter case we obtain that Bij = 0 and in the fonner, the transition froln 
ail . .. ain_21 to ajo ... ajn_20 is allowed and the other three transitions are 
not. .. 

We define the lnatrices P( n) and Q( n) as follo,vs: 

Pn P12n-2 0 0 

P(n) = Pn - 21 Pn - 22n-2 0 0 where Pij = (Pij (n-1), Pij(n-1)) 

0 0 1 0 
0 0 0 1 
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011 01n-2 0 0 

Q(n) = 02n - 2 1 02n - 2 n-2 0 0 
- ( Q·(n -1) ) where Qij = tJ 0 . 

0 0 1 0 
0 0 0 1 

Since the Inatrix A( n) has the structure 

A(n) = ( 

. 0 0 

A(n -1) 

we have that the i,j-th entries of the Inatrix A(n), for 1 ~ i,j ~ n -1, are: 

N ext we shall show 

2n - 1 2n - 1 

Aln(n) = 2: 2: P1r(n)Nrl(n)Qln(n). 
, 1=1 r=l 

According to our construction of P(n) and Q(n), we have P1r(n) = P(n-l)r = 
o for r = 2n- 1, 2n-1_1 and Qsn(n) = 0 for all s ~ 2n-1_1 and Q2n-1 n(n) = 
1; So: • 

2n - 1 2n - 1 2n - 2 

2: 2: P1r(n)Nrl (n)Qln(n) = 2: P1r(n)Nr2n-1(n) 
1=1 r=l r=l 

regrouping the terms in this sum, we obtain that it is equal to: 
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and by the construction of the P and Q, we have: 

2n- 1 2n- 1 2n- 2 

2: 2: P1r(n)Nr1 (n)Qln(n) = 2: P1s(n - ~)Ns2n-2(n - 1). 
1=1 r=1 s=1 

According to our ordering of the symbols of '""j:J-l , the entries Ns 2n-2 (n -1), 
express the transitions between {aio ... ain _2 }i~l and 1n - 2 • Since 1n - 1 is not 

allowed in lJ'n-l, the only allowed transition expressed by Ns 2n-2 (n - 1), 
occurs when aio ... ain _ 2 = O,u. Let 8' be the corresponding integer, 

n-2 
i.e. N s' 2n-2 (n - 1) = 1. On the other hand, 8' ~ 2n

- 3
, since aio = 0, so 

P1s,(n - 1) = 1. Therefore: 

2n - 1 

L P1r(n)Nrl(n)Qln(n) = 1 
r,l=l 

which is the value of AIn(n). 
Silnilarly it is proved that 

2n - 1 

Aij(n) = L Pir(n)Nrl(n)Qlj(n) 
l,r=1 

with 2 ~ i ~ n -1, j = nand i = n, 1 ~ j ~ n. 
Q.E.D. 

Remark 4.3.1 Proposition 4.9.2 is true for any matrix Q(n) of the form: 
2n - 2 2n - 3 2 , .... , ~ ~ 

0···010···0 0··· 0··· a 00 a a 
0··· a 0···010···0 00 a a 

Q(n)t = 
0··· a a ···0 10 a a 
0··· a 0··· a . 00 1 a 
0··· a 0··· a 00 a 1 

Proposition 4.3.3 There exist constants CI , C 2 > a such that· 

C1;\~ ~ 1(2n
-

l
/ N(n)k 1(2n

-
l

) ~ C2;\~ 

where 1(2n
-

l
/ = (1, ... ,1). In particular An is the Perron-Frobenius eigen­
~ 

2n - 1 

value of N(n). 
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Proof: We subdivide the lnatrix N(n) in sub-blocks,{Dij}i,j=1 -lnany 
of theln are not square blocks - such that each Dij is mapped to the i,j-th 
entry of A(n), i.e. Aij(n)j when the lnatrices P(n) and Q(n) of proposi­
tion 4.3.2 are apply to N( 11,), i.e. 

"" "t where Pii = (1, ... ,1), Pij = (0, ... ,0) for i =f. j and Qii = (1,0, ... ,0), 
~ ~ ~ 

2n - 1- i 2n - 1 - i 2n - 1-j 

Q~j = (0, ... ,0) for i =f. j. According to this construction: 
~ 

2n - 1 - i 

where s = 2n - 1
-

j and T = 2n - 1- i • Silnilarly it can be done for Nk(n), 
V\re subdivide it in blocks {Dt}i,j=1 such that D7j = 2:l!:1 Dt-1 D1j and 

k "k " Aij(n) = PiiDijQjj. 
In the following lines, ~e prove by induction on k the equality 

1(2n
-
1- i

/ D~ 1(2n
-
1- j ) = 2n

-
1- j A~(n). (4.2) 

'''hen k = 1: 

1(2n - 1- i )t Dij 1(2n - 1- j ) = 

- (l,ooo,l}D;J (l) +(l,ooo,l}D;j (1) +ooo+(l,ooo,l}D;j (~o) 
2n - 1 - j 2n - 1 - i 

L ( L dipj,) 
p=l 1=1 
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• 2n
-

1
-

i d 2n
-

1
-

i d r 0 AccordIng to remark 4.3.1, EI=l ipi, = E,=l iIiI J.or 1 ~ p ~ s. n 
the other hand Aij ( n) = E dij" hence 

Consider 

n 

Afj(n) - L At-1(n)Alj(n) 
1=1 

~( 1 1(2n- 1- i )t D~-1 1(2n-1-1)) ( 1. 1(2n- 1- I )t D .1(2n-1-j)) 
- L.,; 2(n-1-1) - tl - 2(n-1-J) - IJ-

1=1 

1 ~ 1 1(2n-1-i)t D~-l (1(2n-1-1)1(2n-I-I)t) D .1(2n- 1- j ) 
- 2n - 1- j L.,; 2n - 1- 1 - ,I - - IJ -

1=1 

1 ~ 1 2n-1-1 1(2n-1-i)t iJ~-l D .1(2n-1-i) 
- 2n - 1- j L.,; 2n - 1- 1 _ - ,I IJ-

1=1 

n 

~ 1(2n- 1- i )t D~-l D . 1(2n- 1- i ) - -2n---1--j L.,; - . ,I . IJ-
1=1 

1 

1 . 1(2n-1-i)t D~. 1(2n- 1- i ) 
2n - 1- J - tJ -

Which proves the equality (4.2). 
Therefore 

~ct A7j (n)) :::; t t 2n
-l-j A7j (n) = 1(2n- 1 

/ N(n)kl(2n-l) :::; 2n- 1 .:t A~;(n). 
',J=1 ,=1 J=1 ',J=l 

Since An is the Perron-Frobenius eigenvalue of A(n) - proposition 4.3.1 -, 
there exist constants C, C' > 0 such that 

So: 

~ ,\! :::; 1(2n- 1
)' N( n )kl(2n-l) :::; (C'2n- 1 ),\! 

Q.E.D. 
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Proposition 4.3.4 There exist constants C, C' > a such that: 

]n particular An-1 is The Perron-Frobenius eigenvalue of M(n). 

Proof of proposition 4.3.4: The 2n - 2 x2n - 2-1natrix N(n -1) defines the 
transitions of lJ-n-1. 'Ve have seen in theorem 4.2.1 that this Inatrix is 
equivalent to the Inatrix ]{, constructed there, So we can suppose that 
N (n - 1) = ]{. In the proof of this theorem, we have seen that each entry 
of ]{ = (]{ij)ij comes froln a 2x2 block Bij of M(n) - which is 2n- 1x2n- 1 

-, with the properties: 

• if ]{ij = a then 

. (0 00.) Bij = 0 = a 

Frolll proposition 4.3.3 there exist constants C1 , C2 > a such that 

C1A~_1 ~ 1(2n-2)t]{11(2n-2) ~ C2A~_1 

for 1 > 1, where 1(2n - 2 )t ~ (1, ... ,1). 
'----..--" 

2n - 2 

If we denote by ]{fj the i,j-th entry of the matrix ]{!j and by B~j the 

i,j-th 2x2-block of M'(n), defined by: B~j = E;:~2 B~;1Bpj. So: 

2n - 2 

1(2n-1)tM'(n)1(2n-1) = :L 1(2)tB~jl(2) 
i,j=l 

Therefore, in order to prove the proposition it is sufficient to show that the 
following inequality holds: 

1(2)t B~ ,1(2) = 2]{~ '. 
- '3- 13 
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We shall prove it using induction on 1. 'Vhen 1 = 1 it is clear that the 
inequality holds. Consider ]{!j = L:;:~2 ]{!;l ]{pj; if ]{pj = 1 for some p 
then Bpj = Id2 or J2• In the former case: 

1(2)t B~-l B ·1(2) = 1(2)t B~-11(2) = 2]{~-1 
- tp P3- - tp - tp 

and in the latter case B!;l Bpj is the block obtained from B!;l permuting 
its colulllns. Hence . 

1(2)t B~-l B ·1(2) = 1(2)t B~-11(2) = 2]<~-1. - tp P3- - tp - tp 

and if ]{pj = a then Bpj = a and the corresponding term does not contribute 
to the SUln. 

Therefore 

_ "'2~-2 1(2)t B~-l B ·1(2) 
L.Jp_I - tp P3-
",2n - 2 2},1-1}, 

- L.Jp=I '\ip '\pj 

- 2]<fj • 

Q.E.D. 
Corollary 4.3.1 The Hausdorff dimension of en, as a subset of lV1 

with 
the metric dn , is 

Moreover: 

log An-I 
Sn = 1 \ . 

OgAn 

'Hsn(a(V)) = An-1'Hsn(V) for V c en 

where 'Hsn i .. ~ the Hausdorff measure in dimension Sn. 

Proof: According to 1?roposition 4.3.4 the Perron-Frobenius eigenvalue 
of Al(n) - the transition Inatrix of en - is An-I; therefore the Hausdorff 
dhnension of en is l~g).~-l. On the other hand, for any subset V of eft, a 

og n 

expands its dialneter by An, so . 
'Hsn (a(V)) = )..~n'Hsn (V) = An-l'Hsn (V) 

Q.E.D. 

Corollary 4.3.2 The Hausdorff dimension of Nfl is equal to 1: 

Proof: By proposition 4.3.3 the Perron-Frobenius eigell~value of N(n) - the 
transition matrix of N n 

- is equal to An. So, according to theoreln 4.3.1 
the Hausdorff dhnension of Nfl is equal to 1. 

Q.E.D. 
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4.4 Geometrical realizations of en 
In this section we shall study some properties of the geoinetrical realiza­
tions, in particular in the circle, of the set en. 

In section 1.3 we introduced the set of formal power series associated to 
}In: 

X : { }l -+ }l[x] i 

Q = (ao, aI,"') -+ L:i~o aiX 

'Ve consider ainetric and a measure in W[x] that Inake the Inap X an 
isoinetry and a Ineasure preserving map. Also in section 1.3 was introduced 
the Inap 

X : Sl ---+ }In[x]. 

In this section we consider the Inap X : Sl -+ ~ define by'X = X-loX. In 
order to prove that X is a Ineasure preserving Inap between the Lebesgue 
Ineasure of S l and the IJn-lneasure - defined in section 4.3 -, we need to 
consider the concept of the standard partition defined in section 1.5. This 
partition arises froin the self-siInilarity of the interval exchange Inap 1 on 
the circle and the addition by 1, i.e. (+1)71 in }In. This self-similarity is 
expressed by the cOlnlllutative diagraIns: . 

}In (+1)11. }l71 I _.:...1_. I 

rj _ .rj hi 
}l~ (+l)n. Wa 11 

In section 1.5, it was shown that any cylinder of the standard partition 
in the interval, can be expressed as OJ,h(rn)1 for a integer cOlllpatible with 
the partition (Iep) nt. This cylinder is Inapped under X to a cylinde'r of 
the standard partition of}l71. 

Proposition 4.4.1 The map X : Sl -+ lV1 is a measure preserving map 
between the Lebesgue measure of S l and·the vn-measure on }In. 
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Proof: Since the standard partition on the circle (respectively N n
), 

generates the Borel a-algebra, it is sufficient to show that X preserves Inea­
sure for the cylinders of these partitions. Any cylinder of the standard 
partition of N n 

is the illlage, under X of a cylinder of the standard parti­
tion of S1, i.e. if m is an lep then O(+l),1"(m)N

n 
is equal to X(OJ,h(m)I), 

where 0(+1),1"( m) is defined as 

O(+l),1"(m) = riO(+l)ril-iO(+l) ... (+1)ri,-1-i,-2(+1)ri,-l-it 

if m = gio + ... gi" In section 1.4 it was shown that 1n can be written as: 

Since the lllaps"r and (+l)r contract the l/n-measure by a factor of ,\;;\ we 
obtain: " 

l/n(O(+l),1"(m)N
fl 

= A;;it 

On the other hand h contracts the distance by a factor A;;l and f is an 
interval exchange map, therefore the Lebesgue Ineasure of 0J,h(m)S1 IS 
\ -it 
An . 

Q.E.D. 
Denote by 1{n the geolnetrical realization of en on the circle, i.e. 1{n = 

X;;l (en). 

Corollary 4.4.1 The Hausdorff dimension of J{n is equal to l~g.x~_l. 
og n 

Proof: According to theorenl 4.3.1 the vn-Billingsley dilnension of en 
is l~~ .x~:l. Since the mal) X : (S 1, L) --t (Nfl, vn ) is measure preserving, the 
L-Billingsley dimension of J{n is equal to the vn-Billingsley dilnensioll of 
its ilnage under X. On the other hand, the L-Billingsley dimension of any 
subset "of S1coincides with its Hausdorff dilnensioll. 

Q.E.D. 
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