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a b s t r a c t

Dicarbonyl stress is the abnormal accumulation of dicarbonyl metabolites leading to increased protein
and DNA modification contributing to cell and tissue dysfunction in ageing and disease. Enzymes
metabolising dicarbonyls, glyoxalase 1 and aldoketo reductases, provide an efficient and stress-response
enzyme defence against dicarbonyl stress. Dicarbonyl stress is produced by increased formation and/or
decreased metabolism of dicarbonyl metabolites, and by exposure to exogenous dicarbonyls. It con-
tributes to ageing, disease and activity of cytototoxic chemotherapeutic agents.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Dicarbonyl stress e a definition

Dicarbonyl stress is the abnormal accumulation of a-oxoalde-
hyde metabolites leading to increased modification of protein and
DNA contributing to cell and tissue dysfunction in ageing and dis-
ease [1]. Examples are the increased methylglyoxal (MG) in ageing
plants [2], increased MG-protein modification in ageing human
lens [3], increased plasma and tissue concentration of MG in dia-
betes [4], and increased concentrations of MG, glyoxal, 3-
deoxyglucosone (3-DG) and other dicarbonyls in renal failure [5].
Dicarbonyl stress is caused by an imbalance of the formation and
metabolism of dicarbonyl metabolites and also by increased
exposure to exogenous dicarbonyls. Typical concentrations of
glyoxal, MG and 3-DG are 50e150 nM in human plasma and
1e4 mM in plant and mammalian cells [2,5,6]. When dicarbonyl
concentrations increase beyond this there is potential for protein
and cell dysfunction leading to impaired health and disease.
2. Formation and metabolism of dicarbonyls

Sources of formation of dicarbonyl metabolites, glyoxal, MG and
3-DG, and routes of their metabolism are summarised in Table 1.
MG is formed at relatively high flux mainly by the trace level,
Thornalley).

Inc. This is an open access article u
0.05e0.1 % flux, degradation of triosephosphates, glyceraldehyde-
3-phosphate (GA3P) and dihydroxyacetonephosphate (DHAP). This
increases with increased glucose metabolism, inhibition of GA3P
dehydrogenase and impaired disposal of GA3P by the reductive
pentosephosphate pathway. It may also arise from other metabolic
pathways where triosephosphates are intermediates: gluconeo-
genesis, glyceroneogenesis and photosynthesis. Dicarbonyls in
foodstuffs are completely or partly metabolised and/or react with
proteins before absorption in the gastrointestinal tract and impose
dicarbonyl stress mainly in the gastrointestinal lumen [7,8]. Glyoxal
and MG are metabolised mainly by glyoxalase 1 (Glo1) of the
glutathione (GSH)-dependent glyoxalase system, with minor
metabolism by aldoketo reductases (AKRs) and aldehyde de-
hydrogenases (ADHs). 3-DG is metabolised to 3-deoxyfructose by
AKRs and to 3-deoxy-2-ketogluconate by ADH e Table 1 and Fig. 1.
Glo1, AKRs and ADH are under stress-responsive control by tran-
scription factor Nrf2 through regulatory antioxidant response ele-
ments (AREs). Nrf2 activation in dicarbonyl stress may involve
reversible binding of dicarbonyls to reactive cysteine residues in
regulatory inhibitory protein Keap1.

Other proteins, “glyoxalase III” and DJ1, were proposed as
glyoxalases but their low catalytic efficiency suggests this is un-
likely [9]. DJ1 was also proposed as a catalyst for de-glycating early-
stage reversible reactions of MG with cysteine, lysine and arginine
residues [10]. Comparison with in situ kinetics [11], however, sug-
gests this does not compete effectively with the spontaneous
reversal and metabolism of by Glo1.
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1
Formation and metabolism of dicarbonyl metabolites and adducts formed in protein and DNA.

Dicarbonyl
metabolite

Formation Metabolism Major protein and DNA adducts

Glyoxal 1. Lipid peroxidation.
2. Degradation of glycated proteins.
3. Oxidative degradation of serine (via glycolaldehyde).
4. Monosaccharide degradation.
5. Degradation of nucleotides.
6. Food and beverages.

1. Glyoxalase 1 (MAJOR).
2. Aldoketo reductases 1B1 (aldose reductase),
1B3 and 1B8 (MINOR e except in renal medulla).

Protein: Nu-carboxymethylarginine (CMA),
hydroimidazolone (G-H1) and N

ε
-

carboxymethyl-lysine (CML).
DNA: imidazopurinone GdG and N2-
carboxymethyl-deoxyguanosine (CMdG).

MG 1. Degradation of GA3P and DHAP in anaerobic glycolysis,
gluconeogenesis, glyceroneogenesis and photosynthesis
(MAJOR).
2. Ketone body metabolism (MINOR e expect in ketosis).
3. Threonine catabolism (MINOR).
4. Degradation of glycated protein (MINOR).
5. Monosaccharide degradation.
6. Food and beverages (MINOR).

1. Glyoxalase 1 (MAJOR).
2. Aldoketo reductases 1A4, 1B1 (aldose reductase)
and 1B3; “MG reductase” (MINOR e except in
renal medulla).
3. Aldehyde dehydrogenase E1, E2 and E3; “MG
dehydrogenase” (MINOR).

Protein: hydroimidazolone (MG-H1), and
N
ε
(1-carboxyethyl)lysine (CEL).

DNA: imidazopurinone MdG and N2-(1-
carboxyethyl)deoxyguanosine (CEdG).

3-DG 1. Enzymatic repair of glycated proteins (MAJOR).
2. Degradation of glycated protein (MINOR).
3. Monosaccharide degradation (MINOR).
4. Metabolism of fructose (MINOR).
5. Food and drink (IMPORTANCE VARIES).

Aldoketo reductases 1A4, 1B1 and 1B3; “3-DG
reductase activity” (MAJOR).
Aldehyde dehydrogenase 1A1; “3-DG
dehydrogenase” (MINOR).

Protein: hydroimidazolone isomers 3DG-H
and pyrraline (latter mostly from food).
DNA: unknown.

Relative importance of pathways of formation and metabolism of dicarbonyls is indicated where known.
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3. Biochemical consequences of dicarbonyl stress

Dicarbonyl stress produces increased rate of reaction of dicar-
bonyls with protein, nucleotides and basic phospholipids. The
process is dicarbonyl glycation and the adducts formed are
advanced glycation endproducts (AGEs).

Reaction with proteins is directed to arginine residues forming
dihydroxyimidazolidine and hydroimidazolone adducts. The
hydroimidazolone derived from MG, MG-H1, is one of the most
quantitatively and functionally important AGEs in physiological
systems. There are also minor lysine-derived AGEs formed: Nε-
carboxymethyl-lysine (CML), Nε(1-carboxyethyl)lysine (CEL) and
pyrraline formed from glyoxal, MG and 3-DG respectively e Fig. 2.
The major source of CML formation, however, is the oxidative
degradation of Nε-fructosyl-lysine residues. Pyrraline is formed
exclusively at high temperatures and hence is a marker of exposure
to AGEs from food.

Dicarbonyl glycation is particularly insidious as it is directed to
arginine e the amino acid residue with highest probability of
location in functional sites of proteins, modification induces loss of
charge of the side chain guanidino group and functionally impor-
tant arginine residues tend to be those most reactive towards
dicarbonyl glycation. The extent of glycation of proteins by dicar-
bonyls is low, usually 1e5%, but may increase in ageing and disease.
Proteins modified by glyoxal and MG in dicarbonyl stress are rec-
ognised as mis-folded and directed to the proteasome for proteol-
ysis. In yeast an unfocussed gene deletion analysis showed strains
deleted for genes of ubiquitin-dependent protein degradationwere
sensitive to glyoxal and MG toxicity [12].

Dicarbonyl glycation of cellular and extracellular matrix (ECM)
proteins mediates: mitochondrial protein dysfunction and
increased formation of reactive oxygen species (ROS) [13], inflam-
matory protein expression (receptor for advanced glycation end-
product RAGE, S100 proteins and HMGB1) [14], mitochondrial
pathway activated apoptosis [15] and cell detachment from the
extracellular matrix and anoikis [16]. The dicarbonyl proteome,
proteins susceptible to dicarbonyl modification, is under investi-
gation. In pilot studies, we identified 344 of 1366 proteins modified
with MG in cytosolic protein extracts of human endothelial cells
withMG-H1 content increased 10-fold from control levels and 12 of
1027 proteins in control samples [17].
Glyoxal and MG are important precursors of DNA adducts in
physiological systems: major adducts are imidazopurinones GdG
and MGdG e nucleotide AGEs. Increased nucleotide AGEs was
associated with DNA strand breaks and mutagenesis [18].

4. Physiological consequences of dicarbonyl stress

Where dicarbonyl stress occurs there is potential for increased
cell anoikis and apoptosis and increased dysfunction, turnover and
depletion or compensatory increase expression of the dicarbonyl
proteome. MG permeates cell plasma membranes by passive
diffusion of the unhydrated form. This is rate limited by MG
dehydration, giving a half-life of ~4 min [2]. The half-life for
metabolism of MG by the glyoxalase system to D-lactate from in situ
rates of D-lactate formation in cells is ca. 10 min with free MG
mostly (>95%) reversibly bound to protein. The rate of irreversible
binding to protein in plasma was ca. 3.6 h. This implies that part of
theMG formed in cells leaks out from the site of formation andmay
diffuse through interstitial fluid into plasma and thereafter
permeate back into interstitial fluid and cells of other tissues. Also,
MG formed from the degradation of glycated proteins in the
extracellular compartment enter may enter cells for metabolism by
Glo1 and AKRs. The locus of dicarbonyl stress and related patho-
genesis linked to MG accumulation is therefore likely sensitive to
local decrease of Glo1 expression and activity e Fig. 3.

GLO1 is a hotspot for copy number variation in human and
mouse genomes, giving rise to a 2e4-fold increase in Glo1
expression but is only found at 2e3% prevalence [19]. Deletion of
GLO1 is embryonically lethal in mice and human subjects. GLO1
contains regulatory elements: metal response element, insulin
response element, E2F4, AP-2a and ARE elements, as reviewed [9].
It is negatively regulated by HIF1a in hypoxia [20] and also by RAGE
[9]. Hypoxiamay be an important physiological driver of dicarbonyl
stress as it both increases MG formation by flux through anaerobic
glycolysis and likely decreases Glo1 expression.

5. Comparison and interactions with oxidative stress

Dicarbonyl stress may be both a cause and consequence of
oxidative stress. Overexpression of Glo1 in Caenorhabditis elegans
decreased MG-H1 content of mitochondrial proteins and thereby



Fig. 1. Metabolism of dicarbonyls e the enzymatic defence against glycation. A. Metabolism of glyoxal and methylglyoxal by the glyoxalase system. B. and C. Metabolism by 3-DG
reductase and dehydrogenase.
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formation of ROS [13]. Similarly overexpression of Glo1 in human
aortal endothelial cells decreased formation of ROS in high glucose
concentration [14]. Oxidative stress may also lead to the accumu-
lation of triosephosphates and thereby increase the formation of
MG which occurs non-oxidatively [21]. Also, decrease of cellular
GSH decreases in situ activity of Glo1 and thereby the metabolism
of glyoxal and MG [22], and decrease of cellular NAPDH decreases
the in situ activity of aldoketo reductases and thereby the meta-
bolism of 3-DG.

The locus of reactivity of ROS in physiological systems is related
to the diffusion distance before reaction with substrates, as defined
[23]. Similar considerations of the irreversible reactions of MG in-
dicates the diffusion distance is ca. 2e3 cm, suggesting that MG has
relatively long range and half-life to identify and modify sensitive
sites of proteins, often leading to protein inactivation and
dysfunction.
6. Dicarbonyl stress in ageing and disease

6.1. Ageing

The link of dicarbonyl stress to ageing was established in a func-
tionalgenomics studyofGlo1 innematodeC.elegans [13].MG-derived
AGEs increased in human lens with age and was linked to cataract
formation [3]. Decreased Glo1 activity was associated with impaired
wound healing [24]. Dicarbonyl stress is also likely involved in
senescence of plants. MG-H1 was a major AGE in Arabidopsis leaves
[25] and dicarbonyl content of broccoli increased with age [2].
6.2. Obesity

In obesity there was genetic linkage of GLO1 to body weight in
mice [26] and to upper-arm circumference and supra-iliac skinfold
thickness in human subjects [27]. Latest studies suggest that Glo1 is
decreased in white adipose tissue in mice on a high fat diet and
overexpression of Glo1 suppresses gain in body weight and
adiposity with similar food consumption as wild-type control [28].
Dicarbonyl stress may be a mediator of obesity and insulin
resistance.
6.3. Diabetes and diabetic vascular complications

Formation of MG is increased in cells with GLUT1 glucose
transport incubated in high glucose concentration. Glo1 activity is
decreased in the kidney, retina and peripheral nerve in experi-
mental diabetesewhich may occur via inflammatory signalling via
RAGE and hypoxia [29,30]. These features synergise to increase MG
concentration. PlasmaMG is increased by up to 5e6 fold in patients
with diabetes [4]. Functional genomics studies with Glo1 deficient
and Glo1 overexpressing transgenic mice support increased MG as
a factor linked to the development of diabetic microvascular com-
plications (nephropathy, retinopathy and neuropathy) [29,31,32].



Fig. 2. Biochemistry of dicarbonyl glycation e glycation by methylglyoxal. A. Adduct residues formed in proteins. Other minor AGEs: argpyrimidine and crosslinks MOLD and
MODIC. B. Nucleotide AGEs [17].
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6.4. Chronic renal disease

Dicarbonyl stress came to prominence in renal disease in rela-
tion to exposure of patients with end stage renal disease (ESRD)
Fig. 3. Molecular physiology of dicarbonyl stress. Biodistribution of MG and the MG-H1 in
adducts elsewhere e the latter formed mainly by cellular proteolysis (or digestion for ingeste
- metabolism of MG by the glyoxalase system. Key: Hb, haemoglobin; RBC, red blood cell.
receiving peritoneal dialysis (PD) being exposed to glyoxal, MG and
3-DG in dialysis fluids. Further studies showed patients with ESRD
on haemodialysis also had increased plasma MG and flux of for-
mation of dicarbonyl-derived AGEs [5,33]. The cause of dicarbonyl
normal human physiological function. MG-H1 is shown as residues of protein and free
d food proteins). Key: open and solid arrows - flows of MG and MG-H1 respectively; Glo
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stress remains unclear. It is unlikely due to decreased dicarbonyl
excretion as there is little in normal health [7], although it is linked
to renal function as dicarbonyl stress was a developing feature of
both experimental nephrectomy and ureteral ligation [34].
Decreased Glo1 expression by hypoxia and inflammation, hypoxia-
induced increased anaerobic glycolysis and decreased disposal of
triosephosphates by the reductive pentosephosphate pathway
(enzymes of which are inhibited by uraemic toxins) leading to
increased formation of MG are likely causes. Ageing-related decline
in renal function and interstitial thickening was prevented in
transgenic rats overexpressing Glo1 [35].
6.5. Cardiovascular disease (CVD)

Dicarbonyl stress in plasma likely contributes to CVD risk
through induction of dyslipidaemia. MG modification of LDL
induced atherogenic transformation to small, dense LDL with
increased affinity for arterial walls through binding to heparan
sulphate proteoglycans [36]. MG modification of HDL induced re-
structuring of the HDL particles, increasing density, decreasing
stability and plasma half-life in vivo [37]. Chemical inhibition of
Glo1induced atherosclerosis in apoE deficient mice [38]. A recent
clinical integrative genomics study of >90,000 CVD cases and
controls revealed Glo1 is a driver of CVD [39].
6.6. Carcinogenesis, tumour growth and cancer chemotherapy

Recent studies suggest a duality of functions of Glo1 in carci-
nogenesis and tumour growth. In a p53 knockout, Myc over-
expression model of liver carcinogenesis, a genome-wide scan
found Glo1 is a tumour suppressor protein [40]. Conversely, over-
expression of Glo1 in tumours may be permissive for growth with
high glycolytic activity and high flux of MG formation [18].
Increased expression of Glo1 in tumours is due to GLO1 amplifi-
cation in some cases e particularly breast cancer and lung cancer
[41], and may also be linked to mutation and increased transcrip-
tional activity of Nrf2 through ARE-linked upregulation of Glo1
transcription [42]. It also confers multidrug resistance but sensi-
tivity to siRNA silencing and chemical inhibition of Glo1 [41].
6.7. Neurological disorders

A rare clinical Glo1 deficiency was linked to high risk of severe
schizophrenia [43]. Experimental deficiency of synuclein-a
increased dicarbonyl content and Glo1 expression in brain stem,
midbrain and cortex e suggesting that synuclein-a may prevent
dicarbonyl stress and this function may be impaired in synuclei-
nopathies such as Parkinson's disease [44]. Increased MG-H1 free
adduct was found in cerebrospinal fluid of patients with Alz-
heimer's disease [45] and Glo1 expression was increased in early-
stage and decreased in late-stage disease [46], suggesting that
dicarbonyl stress may be a feature of Alzheimer's disease. There
was also a link of GLO1 duplication to anxiety-like behaviour in
mice which may rather be due to a proximate genetic locus co-
duplicated with Glo1 [19].
6.8. Malaria

Cell permeable Glo1 inhibitor BBGD had potent anti-malarial
activity against the red blood cell stage of Plasmodium falciparum.
This stage of the malarial parasite growth cycle has only anaerobic
glycolysis with an associated high flux of MG formation [47].
7. Dicarbonyl stress-based therapeutics

Dicarbonyl stress may be alleviated by prevention of dicarbonyl
formation, scavenging of dicarbonyls and enhancing the expression
of enzymes of dicarbonyl metabolism e particularly Glo1. Such
interventions may be beneficial in the prevention and treatment of
obesity, type 1 and type 2 diabetes and their vascular complica-
tions, renal failure and CVD, and also support healthy ageing. High
dose thiamine supplements for prevention of type 2 diabetes and
vascular complications of diabetes may work partly by prevention
of MG formation [48,49]. Dicarbonyl scavengers showed some
promise but the high reactivity required for effective scavenging
produces associated toxicity and instability which prohibited
development [5]. Discovery of Glo1 inducers which work through
activation and binding of Nrf2 to the GLO1 functional ARE offers an
alternative that is more effective and safe [50]. Cell permeable Glo1
inhibitors which are inducers of dicarbonyl stress may find use as
anti-tumour and anti-microbial agents for treatment of Glo1-linked
multidrug resistant tumours and microbial infections. Systems
modelling of the glyoxalase pathway is beneficial in assessment of
the potency of Glo1 inducer or Glo1 inhibitor required to achieve
the desired pharmacological and therapeutic effects [9].

8. Technical issues for investigators entering dicarbonyl
stress research

A compilation of methods for dicarbonyl and glyoxalase
research can be found in proceedings of a recent conference
workshop e see Ref. [1] and related papers. Commercial sources of
MG typically contain major contamination and there are many
potential interferences in measurement of dicarbonyls. We have
described protocols to prepare high purity MG, for reliable assay of
dicarbonyls and systems modelling for prediction of dicarbonyl
concentrations [2,6]. For model glycated proteins prepared in vitro
similar low extents of glycation are appropriate for physiological
relevance [17].

9. Closing remarks

Exposure to dicarbonyl metabolites is an intrinsic feature of
physiological systems as a corollary to the presence of tri-
osephosphate glycolytic intermediates and other dicarbonyl pre-
cursors. Formation and enzymatic metabolism of dicarbonyls
maintaining low, tolerable levels of protein and DNA modification
establishes the conditions for dicarbonyl stress.
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