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Quantum vs Classical Ranking in Segment

Grouping
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Abstract. In this paper we explore the use of ranking as a mean of
guiding unsupervised image segmentation. Starting by the well known
Pagerank algorithm we introduce an extension based on quantum walks.
Pagerank (rank) can be used to prioritize the merging of segments em-
bedded in uniform regions (parts of the image with roughly similar ap-
pearance statistics). Quantum Pagerank, on the other hand, gives high
priority to boundary segments. This latter effect is due to the higher
order interactions captured by quantum fluctuations. However we found
that qrank does not always outperform its classical version. We ana-
lyze the Pascal VOC database and give Intersection over Union (IoU)
performances.
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1 Introduction

When applied to image segmentation, random walks have been used to propagate
labels in a semi-supervised way. For instance, in [1] pixels are labeled in terms
of the probability that a random walk will reach them from a given seed.

However, the random walker approach assumes that the weighting function
quantifying the dissimilarity between pixel intensities is symmetric. From a graph
theoretic perspective this simplifies the problem since the Laplacian matrices of
undirected graphs are semi-definite positive. At the same time the resulting
asymmetric dissimilarity functions are richer since their directionality allows us
to deal with special cases which are particularly interesting in image segmen-
tation. For instance, a symmetric dissimilarity between adjacent segments (e.g.
superpixels) imposes a misleading transitivity which may lead to an incorrect
grouping. In Fig. 1 (bottom-left), segment X is very compatible with A and B
in terms of having similar statistics. However A is in turn more compatible with
B than with X. Therefore, A’s best candidate for a merging will be B instead of
X. This situation also occurs with second-order neighbors (compare X with E).

Incorporating assymetry into semi-supervised labeling has been done in the
area of machine learning. For instance, in [2] conditional probabilities are intro-
duced in the Markov chain, whereas in in [3] the graph Laplacian is symmetrized
for encoding the directness of the edges. However, to the best of our knowledge
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there have been no attempts in the literature to investigate the propagation of
information through the digraphs induced by asymmetric dissimilarity measures
in an unsupervised context.

In this paper, we explore the impact of both classical and quantum ranking
in the selection of the segments to merge in unsupervised segmentation. Our
hypothesis is that ranking may improve significantly the quality of the segmen-
tation, since the result of the process contains the information of random or
quantum walks probing the network given by the adjacency graph. Therefore,
ranking provides local-to-global information that may be critical in a greedy
merging process.

The remainder of the paper is organized as follows. In Section 2 we describe
the simple hierarchical grouping algorithm used for the study of ranking effects.
In Section 3 we review Pagerank from a perspective of digraphs. Section 4 is
devoted to the description of the quantum extension of the Pagerank method.
Experiments and analysis are presented in Section 5. Finally, in Section 6, we
present our conclusions and future work.

Fig. 1. Symmetric vs asymmetric dissimilarity. Top-left: Output of SLIC algorithm.
Bottom-left: Asymmetric dissimilarities (in red and blue) between superpixel X and
some of its 1st and 2nd

−order neighbors (see text). Top-row: Best unsupervised segmen-
tation results imposing symmetry for some VOC Pascal objects. Bottom-row: results
by imposing asymmetry. See the scenes analyzed in Top-left of Fig. 2 and Fig. 3.

2 Hierarchical Grouping Algorithm

The algorithm starts with a basic set of segments which are output by the SLIC
algorithm [4]. We then build a segmentation hierarchy by merging/composing
segments as follows.

Each segment is described by an appearance vector V = (µ, σ, cx, cy, w, h),
where µ, σ are the mean and the standard deviation of (l, a, b,∇x,∇y,∇

2

x,∇
2),

and (cx, cy, w, h) are the centroid of the segment and the dimensions of its bound-
ing box. These appearance vectors are designed so that they can be efficiently
computed recursively for new segments composed by merging existing ones.
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Each segment has a neighborhood structure. This consists of 1st−order neigh-
bors, which are directly adjacent to the segment, and 2nd−order neighbors (i.e.
those adjacent to the 1st−order neighbors). Then, we define an asymmetric sim-
ilarity function ∆A

i|j between segments which are 1st or 2nd-order neighbors. An
appearance measure is defined to be:

∆A
i|j = ||Vi − Vi

⋃
j ||2.

This is the change in the appearance vector of region i caused by merging it
with region j. This quantity is asymmetric – i.e. ∆A

i|j 6= ∆A
j|i. This quantity will

encourage merging neighboring regions which have similar appearance vectors.
The appearance similarity measure is modified by an edge-term (Ei,j ranging

from 0 to 1) that computes the strength of the edge on the boundary between
two adjacent regions. This edge term is computed very simply using the Sobel
edge detector. The underlying intuition is that we reduce the similarity between
adjacent regions if there is an edge between them. We do not introduce an edge-
term between segments in the 2nd-order neighborhood (because we want this
type of merging to jump between regions) and instead we pay a fixed penalty of
size 1 (which is the maximum value the edge term can take).

This gives an asymmetric similarity function ∆i|j :

∆i|j =

{

Ei,j +∆A
i|j if i, j are 1st−order neighbors

1 +∆A
i|j if i, j are 2nd−order neighbors

Alternative segmentation algorithms such as the one in [5] can be used. Herein we
use the simple method described above in combination with PageRank algorithm
or with its quantum extension to rank the pairing between segments (i, j) on the
basis of the similarity function. We allow the 30 % highest ranked segments to
merge, see Fig. (1). This ranking encourages merging between segments which
are most similar. However we reject merges in situations where the similarity
function between two regions is too asymmetric (i.e. we do not allow merges
where i ”likes” j, but j does not ”like” i). After these merges, we re-compute
the PageRank algorithm and repeat the process.

3 Ranking Based on Random Walks

Since the similarity measure used for merging is asymmetric, we use a directed
graph for encoding each segmentation level in the hierarchy.

A directed graph (digraph) G = (V,E) with N = |V | vertices and edges
E ⊆ V × V is encoded by an adjacency matrix A where Aij > 0 if i → j ∈ E

and Aij = 0 otherwise (this definition includes weighted adjacency matrices).
The outdegree matrix Dout is a diagonal matrix where douti =

∑

j∈V Aij . The

transition matrix P is defined by Pij =
Aij

dout
i

if (i, j) ∈ E and Pij = 0 otherwise.

The transition matrix is key to defining random walks on the digraph and
Pij is the probability of reaching node j from node i. Given these definitions
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Fig. 2. Quantum vs classical ranking for car segmentation. Top-left: image. Bottom-
left: ground truth. Top-center: classical ranking of segments at iterations 8 and 13.
Bottom-center: quantum ranking of segments at the same iterations. Top-right: group-
ing result with the hierarchical algorithm based on the classical ranking (IoU = 0.43).
Bottom-right: result using quantum ranking (IoU=0.61).

we have that
∑

j∈V Pij 6= 1 in general. In addition, P is irreducible iff G is
strongly connected (there is path from each vertex to every other vertex). If
P is irreducible, the Perron-Frobenius theorem ensures that there exists a left
eigenvector φ satisfying φTP = λφT and φi > 0 ∀i. If P is aperiodic (spectral
radius ρ = 1) we have φTP = ρφT and all the other eigenvalues have an absolute
value smaller that ρ = 1. By ensuring strong connection and aperiodicity we also
ensure that any random walk in a directed graph satisfying these two properties
converges to a unique stationary distribution.

By correcting P so that Pij = 1

N
if Aij = 0 and douti = 0, we obtain a row

stochastic matrix:
∑

j∈V Pij = 1∀i. This strategy is adopted in Pagerank [6] and
provides and allows for teleporting acting on the random walk to any other node

in the graph. Teleporting is modeled by definingG = ηP T+(1−η)ee
T

N
, where eT

is the all ones row vector and 0 < η < 1. The new matrix G is column stochastic
and ensures both irreducibility and aperiodicity. Under these conditions Gji is
the probability of reaching j from i. Teleporting means that for every node with
Aij > 0, Gji =

Aij

dout
i

is applied with probability η, whereas for nodes with Aij = 0

we have Gji =
1

N
with probability 1− η. In [7] a trade-off between large values

η (preserving more the structure of P ′) and small ones (potentially increasing
the spectral gap) is recommended. For instance, in [3], where the task is to learn
classifiers on directed graphs, the setting is η = 0.99, but usually η = 0.85 is
recommended. In any case, when using the new P we always have that Gii 6= 0
due to the Pagerank masking.

Finding the stationary distribution φ can be then formulated as an eigenvec-
tor problem Gφ = φ subject to a normalization constraint eTφ = 1 (see [8]).
Usually the power method is used. Accordingly iterate φ(k+1) = Gφ(k) starting
by φ(0) = e 1

N
until convergence (which will occur if the second eigenvalue λ2 is

smaller than λ1 = 1). The stationary distribution is used for ranking the nodes.
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4 Quantization of Random Walks

4.1 Unitary vs Stochastic Evolution

The above process for finding the stationary distribution simulates the diffusion
of a discrete-time classical random walk on the directed graph G = (V,E).
Then the states are the nodes and top-ranked nodes are those whose stationary
probability is high.

On the other hand a discrete-time quantum walk [9] diffuses in a very different
way since it is subject to quantum superpositions. In this approach states |ψ〉 ∈
C

N are assumed to belong to a Hilbert space H = span{|j〉 |j = 1, . . . , N} = C
N

where 〈j| = (0 . . . 1 . . . 0) with a 1 at the j − th position. We use the Dirac bra-
ket notation where: |a〉 = a, 〈a| = a∗, 〈a|b〉 = a∗b is the inner product and
therefore 〈j|k〉 = j∗k = δjk. Then, the state of the quantum walk at a given

time is |ψ〉 =
∑N

j=1
cj |j〉 with cj ∈ C so that |c1|

2 + |c2|
2 + . . . + |cN |2 = 1

and |ci|
2 = cici. The probability that the quantum walk is at node i is given

by |〈i|ψ〉|2 = |ci|
2. The |ci|

2 are known as the amplitudes of the wave traveling
through the graph.

Given a initial state |ψ(0)〉 =
∑N

j=1
c0j |j〉, a quantum walk evolves through a

unitary operator instead of a stochastic one which is the case of random walks
do. A N × N complex matrix U is unitary if U∗U = UU∗ = IN , where U∗

is the conjugate transpose, that is (A∗)ij = Aji. Therefore, both the rows and
columns of U form a orthonormal basis in C

N . In addition U is by definition
a normal matrix for it commutes with its conjugate transpose. In this case it is
unitarily similar to a diagonal matrix, i.e., it is diagonalizable by U = V ΛV ∗

where Λ = diag(λ1λ2 . . . λN ) contains the eigenvalues of U and V is unitary and
its columns contains the eigenvectors of U . Combining the latter diagonalization
with the property |det(U)| = 1 we have that all the eigenvalues of U must lie on
the unit circle. In other words, they must have either the form eiθ or the form
e−iθ, where θ is an angle on the complex plane.

Therefore we have |ψ(t)〉 = U t|ψ(0)〉 with the amplitudes of |ψ(t)〉 summing
to unity since U is unitary.

4.2 Szegedy’s Quantization

The problem of associating a unitary operator with a Markov chain (stochas-
tic matrix) has been posed in different ways. One of them is inspired in the
Grover’s search algorithm [10]. Grover’s search relies on projection operators

Π =
∑N

j=1
|Ψj〉〈Ψj | where, for instance, |Ψj〉 =

∑N
k=1

1√
N
|k〉. The projectors

satisfy the condition Π2 = Π and the operator 2(Π − 1) defines reflections
(coin flips) around the subspace spanned by vectors |Ψj〉. In [11] Szegedy uses a
product of reflections for quantizing a Markov chain.

To commence, the state space, originally placed at the N nodes, is moved
to the N × N directed edges of the graph. The Hilbert space is now H =
span{|i〉1|j〉2 : | i, j = 1, . . . , N} = C

N ⊗ C
N where |a〉|b〉 = |a, b〉 = |a〉 ⊗ |b〉 is
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the tensor (Kronecker) product, and the subindexes 1 and 2 make explicit the
orientation of each edge. Following the approach in [12][13] orientation is critical
when computing projections onto the vector encoding the second node of the
edge. Then, the superposition of the edges outgoing from node j are given by

|Ψj〉 =

N
∑

k=1

√

Gkj |j〉1|k〉2 . (1)

Given the projector Π =
∑N

j=1
|Ψj〉〈Ψj | (coin flip) and the swap operator S =

∑N
j=1

∑N
k=1

|j〉|k〉〈k|〈j| which alternates the direction of the edge (swaps both
edge spaces), a step of the quantum walk is given by the unitary operator U =
S(2Π − 1), where 1 is the identity matrix. However, Grover’s search requires a
two-step unitary operator per iteration. When translating this idea to Markov
chains, Szegedy suggested the use of the operator (2Π − 1)(2Π ′ − 1) in order
to contemplate the case of two Markov chains (each one with its own reflection
operator). When the two chains are coincident (e.g. for creating bipartite walks)
then we have (2Π − 1)2. If we include the swap operator, which is also unitary,
then the two-step evolution operator is given by U2 = (2SΠS − 1)(2Π − 1).
This operator swaps the directions of the edges an even number of times

The initial state |ψ(0)〉 = 1√
N

∑N
j=1

∑N
k=1

|j〉|k〉 assumes uniform probabili-

ties for all the N ×N edges in the digraph. Given |ψ(0)〉, we have that the state
of the quantum walk at a given time t is given by |ψ(t)〉 = U2t|ψ(0)〉. In addi-
tion, the probability of being at such state is 〈ψ∗(t)|ψ(t)〉. However, for ranking
a given node i it is desirable to compute the probability of being at i at time t.
This can be done by computing the probability that any edge ends at such node
after t time steps. Let the state |Iq(t)〉 be the superposition of all paths ending
at |i〉2 (the second space of each edge ending at i).

The superposition state is defined as |Ii(t)〉 = 2〈i|ψ(t)〉 = 2〈i|U
2t|ψ(0)〉 and

it is given by the projection of |ψ(t)〉 onto the space |i〉2. Such projection can be
described more clearly if we exploit the spectral theorem, since we have U2t =
∑

µ µ
2t|µ〉〈µ|, where the µ are the N2 eigenvalues of U2 and the |µ〉 are their

corresponding N2−dimensional eigenvectors. Then, 2〈i|U
2t =

∑

µ µ
2t

2〈i|µ〉〈µ|.
If we consider that the structure of 2〈i|µ〉 is 2〈i|j〉1|k〉2, for |µ〉 is defined in the
tensor space H = C

N ⊗C
N , then we have that the proper projection is given by

the contraction 2〈i|k〉2|j〉1.
Consequently, we have that the probability that the quantum walk at vertex

i after t time steps (that is, its quantum ranking at this time) is

Ii(t) = 〈ψ(0)|U∗2t|i〉2〈i|U
2t|ψ(0)〉 =

∥

∥

∥

∥

∥

∑

µ

µ2t
2〈i|µ〉〈µ|ψ(0)〉

∥

∥

∥

∥

∥

2

(2)

In practice, the time-averaged quantum ranking is used (although the long time
average can be used since it only depends on the eigenvectors |µ〉). The average is
useful because quantum oscillation typically decrease in amplitude with Ii(t). In
any case, the main problem when this approach is applied to ranking segments is
to compute or to approximate U2 (memory storage) and/or the its eigensystem.
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4.3 The Eigensystem of the Unitary Operator

One of the nice properties of the Szegedy’s formulation is that it provides a direct
link between the eigenvalues and eigenvectors of U and those of a N ×N matrix
D, where Dij =

√

GijGji, called the discriminant matrix. Such matrix is linked

with the projector operator Π and the half-projection A =
∑N

j=1
|ψj〉〈j| through

the following properties: (i) A∗A = 1, (ii) AA∗ = Π and (iii) A∗SA = D.
Let λ and |λ〉 be respectively the N eigenvalues and N−dimesional eigen-

vectors of the symmetric matrix D. Then, if we define |λ̃〉 = A|λ〉 and apply
the above properties, we have the following ansatz for the eigenvectors |µ〉 and
eigenvalues µ of U : |µ〉 = |λ̃〉 − µS|λ̃〉. This means that we can easily obtain
2N of the N2 eigenvalues and eigenvectors of U from the N ones of D, since
µ = e±i×arccosλ. These latter values come from the SVD decomposition of D,
whose singular values lie in (0, 1).

In addition, when we consider U2 we have that this operator splits H into the
subspaces Hdyn = span{|ψj〉,S|ψj〉} and its orthogonal complement Hnodyn =
H⊥

dyn. The dimension of Hdyn is at most 2N . Thus, the spectrum of U2 cor-

responding to Hdyn is given by, at most, the 2N values {e±2i×arccosλ}. The
spectrum corresponding to Hnodyn is given by at least N2 − 2N 1’s.

When estimating the eigenvectors |µ〉 and eigenvalues µ for segmentations
we have to confront the problem that at the lowest segmentation levels the
number of SLIC superpixels is too high for building an N2×N2 unitary operator
and then getting its eigensystem. The unitary operator is needed to extract
the eigenvectors |µ〉 corresponding to eigenvectors with value 1 (i.e. satisfying
U2|µ〉 = |µ〉). Obtaining the operator U2 (or even U) is infeasible for these
levels, unless a more in-depth analysis of the structure of these operators reveals
a shortcut. This latter question is beyond the scope of this paper and we have
approximated the instantaneous ranking Ii(t) with

Ĩi(t) =

∥

∥

∥

∥

∥

∥

∑

µ∈Hdyn

µ2t
2〈i|µ〉〈µ|ψ(0)〉

∥

∥

∥

∥

∥

∥

2

. (3)

Therefore Ĩi(t) is a low-pass approximation of Ii(t).

5 Analysis: Experiments and Conclusions

We evaluate to what extent the averaged Ĩi(t) can improve grouping when ap-
plied to rank segments at all levels of the hierarchy. In order to do that, we
measure the Intersection-over-Union (IoU) which quantifies this quality of the
segmentation of a particular object class (Pascal VOC 2010). This measure pe-
nalizes both obtaining a smaller area than the ground truth and obtaining a
larger area than the ground truth. We have access to an unpublished ground
truth where it has been assigned one of 57 labels to every pixel. For quantifi-
cation data we use a sample of 1, 100 images of the 10, 103 in the VOC 2010
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plane bicycle bird boat bottle bus car cat
CPMC 78.6 64.4 74.8 71.2 74.9 78.9 72.1 85.5

Uniform 53.7 39.7 55.8 48.3 54.6 46.5 51.7 57.1
R. Walks 53.3 41.9 57.8 56.9 51.7 52.5 53.9 60.5
Quantum 55.6 41.8 56.3 54.7 51.7 49.0 53.0 58.0

chair cow d. table dog horse motorbike person pot. plant
CPMC 51.7 79.9 62.2 82.6 77.5 74.2 67.6 63.9

Uniform 52.1 54.9 57.1 55.9 54.1 52.5 48.4 50.1
R. Walks 52.9 57.0 48.6 57.3 54.6 48.9 51.1 51.7
Quantum 49.7 57.1 51.0 57.5 51.8 49.2 50.3 51.6

sheep sofa train tv bag bed bench book
CPMC 73.7 64.2 78.2 76.8 53.2 65.4 36.5 36.3

Uniform 54.6 58.2 48.0 57.9 54.3 54.3 43.1 46.8
R. Walks 56.8 58.8 50.9 57.2 55.7 59.4 49.0 52.9
Quantum 56.1 57.5 48.5 57.5 54.9 62.4 54.6 55.1

building cabinet ceiling clothes pc cup door fence
CPMC 51.6 54.9 22.4 58.5 70.7 40.9 40.0 42.3

Uniform 51.8 55.5 54.6 57.3 48.8 47.3 50.8 44.5
R. Walks 53.5 54.6 60.1 57.8 48.6 46.8 56.2 45.7
Quantum 55.1 59.0 51.0 58.8 52.0 51.2 59.4 47.4

floor flower food grass ground keyboard light mountain
CPMC 54.5 51.0 44.9 56.5 55.0 46.8 8.3 55.2

Uniform 58.8 49.8 43.3 60.4 58.5 46.3 43.7 59.5
R. Walks 62.1 48.5 56.9 61.3 60.4 52.2 38.4 62.3
Quantum 65.0 49.9 50.7 61.8 60.9 53.5 42.5 63.8

mouse sign plate road rock shelves sidewalk sky
CPMC 12.6 24.6 44.5 56.3 61.1 52.6 53.0 65.1

Uniform 48.2 39.1 43.6 64.8 58.2 47.8 57.2 76.4
R. Walks 48.4 44.9 39.8 66.5 55.3 54.0 61.9 77.2
Quantum 48.3 47.4 39.0 67.5 58.2 49.9 59.2 81.0

snow table track tree truck wall water window
CPMC 60.0 48.9 42.3 54.5 61.8 51.7 65.4 50.9

Uniform 55.8 47.0 41.8 54.2 47.1 59.0 62.4 54.2
R. Walks 55.1 49.2 44.0 56.3 53.7 59.7 62.9 57.9
Quantum 59.1 47.2 41.7 56.7 55.8 61.1 65.1 56.1

wood all IoU
CPMC 49.4 59.6

Uniform 59.2 57.2
R. Walks 60.5 58.7
Quantum 60.3 59.4
Table 1. IoU wrt the ground truth for 57 object classes of the Pascal VOC 2010
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Fig. 3. Quantum vs classical ranking for person and bottle segmentation. First row,
from left to right: image, classical rank at iteration 28, grouping result using classical
rank for person (IoU=0.65), grouping using classical rank for bottle (IoU=0.36) . Sec-
ond row, from left to right: ground truth, quantum rank at iteration 28, result using
quantum rank for person (IoU=0.80), result with quantum rank for bottle (IoU=0.67).

dataset. In all cases the number of initial SLIC super pixels is 500 and there are
35 levels in the hierarchy until we reach a single segment.

Firstly, we analyze the behavior of Pagerank vs qrank (its low-pass approx-
imation), before going through IoU analysis. In Fig. 2 we try to detect a car
embedded in a textured environment. Pagerank seems to invert the priorities of
qrank. It prioritizes the selection of segments inside quasi-homogeneous regions,
whereas boundary segments have a low rank (blue). However, once the homo-
geneous region is built, its ranking decreases (see the grouping of the sky, in
first row, which starts at interation 8 and it is stopped at iteration 13). Most
top-ranked segments in qrank correspond to low-ranked ones in Pagerank (see
the shadowed region at the top of the car). However, this ”inversion” is mislead-
ing since some top/medium-ranked segments in qrank are also prioritized by
qrank. On the one hand, the tendency of Pagerank to propose merging inside a
quasi-homogeneous region may merge a part of the object with the background
when the appearance of the background and the part of the object are similar.
In the case of the car, this results in obtaining a smaller area than the ground
truth. On the other hand, the behavior of qrank may lead us to merge the object
with a part of the background producing a bigger area than the ground truth.
These behaviors are replicated in Fig. 3 where qrank outperforms Pagerank when
segmenting a person and a bottle.

We compare the IoUs obtained by both ranking methods with: (i) a state-of-
the-art unsupervised segmentation algorithm (CPMC) and (ii) our hierarchical
method with uniform ranking probabilities. We show the quantitative results in
Table. 1. In general CPMC [14] outperforms our method. The first stage of the
Constrained Parametric Min-Cuts method (CPMC) applies repeatedly a max-
flow algorithm to output a set of segments based on groupings of an edge map
provided by the gPb algorithm [15]. After a non-maximum supression filtering,
the second stage ranks the segments using cues trained on the Pascal VOC
dataset, provided the groundtruth masks of the objects.
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However, our grouping method uses only low-level cues and is not trained for
object-like segments. Thus, it is natural to outperform CPMC on background
region classes, for which it is not trained. Also, our method tends to group similar
appearance regions, while CPMC may group different appearance regions. This
explains that CPMC outperforms our method on many foreground object classes
and on the overall performance.

To conclude, qrank slightly outperforms its classical counterpart, and in some
cases both outperform a state-of-the-art learning-based method. These experi-
ments provide an initial insight of the power of quantum walks but we must
complete the low-pass ranking with higher-order experiments which become fea-
sible in segmentation settings.
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