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Abstract—This paper considers the problem of multiple human
target tracking in a sequence of video data. A solution is proposed
which is able to deal with the challenges of a varying number of
targets, interactions, and when every target gives rise to multiple
measurements. The developed novel algorithm comprises varia-
tional Bayesian clustering combined with a social force model, in-
tegrated within a particle filter with an enhanced prediction step. It
performs measurement-to-target association by automatically de-
tecting the measurement relevance. The performance of the de-
veloped algorithm is evaluated over several sequences from pub-
licly available data sets: AV16.3, CAVIAR, and PETS2006, which
demonstrates that the proposed algorithm successfully initializes
and tracks a variable number of targets in the presence of com-
plex occlusions. A comparison with state-of-the-art techniques due
to Khan et al., Laet et al., and Czyz et al. shows improved tracking
performance.
Index Terms—Clustering, data association, multi-target

tracking, occlusion.

I. INTRODUCTION

A. Motivation

T HIS paper presents a robust multiple tracking algorithm
which can be used to track a variable number of people

moving in a room or enclosed environment. Hence, the estima-
tion of the unknown number of targets and their states is con-
sidered in each video frame. Multi-target tracking has many ap-
plications, such as surveillance, intelligent transportation, be-
havior analysis and human computer interfaces [1]–[3]. It is a
challenging problem and a wealth of research has been under-
taken to provide more efficient solutions [1], [4], [5]. Two of
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the major challenges associated with visual tracking of multiple
targets are: 1) mitigating occlusions and 2) handling a variable
number of targets. Therefore, the focus of this paper is to present
a technique to robustly handle these challenges.
Overcoming occlusions is a difficult task because during an

occlusion it is not possible to receive measurements originating
from the occluded objects. Significant research effort has been
made to address this problem, e.g., [1], [4], [6], [7].
Many 2-D tracking systems rely on appearance models of

people. For instance [8] applies the kernel density approach
while [9] is based on color histograms, gradients and texture
models to track human objects. These techniques use template
matching which is not robust to occlusions because the occluded
parts of targets cannot be matched. They perform an exhaustive
search for the desired target in the whole video frame which
obviously requires much processing time. These techniques are
also sensitive to illumination changes.
Occlusions can be handled with the help of efficient associa-

tion of available data to the targets. Most of the existing multiple
target tracking algorithms assume that the targets generate one
measurement at a time [1], [10]. In the case of human tracking
from video and many other tracking applications, targets may
generate more than one measurement [4], [11]. To exploit mul-
tiple measurements, most algorithms add a preprocessing step
which involves extracting features from the measurements [9].
This preprocessing step solves the problem to some extent but
it results in information loss due to the dimensionality reduc-
tion and hence generally degrades the tracking results. Another
problem with many of these algorithms is that they adopt the
hard assignment technique [9], [12] wherein likelihood models
are employed to calculate the probability of the measurements.
Recently, in [4] an approach relying on clustering and a joint

probabilistic data association filter (JPDAF) was proposed to
overcome occlusions. Rather than extracting features from the
measurements, this approach groups the measurements into
clusters and then assigns clusters to respective targets. This
approach is attractive in the sense that it prevents information
loss but it fails to provide a robust solution to mitigate the
occlusion problem. This is because it only utilizes the location
information of targets and hence the identity of individual tar-
gets is not maintained over the tracking period. As a result, the
tracker may confuse two targets in close interaction, eventually
causing a tracker switching problem. Other advances of such
filtering approaches to multiple target tracking include multiple
detection JPDAF (MD-JPDAF) [13] and interacting multiple
model JPDAF (IMM-JPDAF) [14].
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Interaction models have been proposed in the literature to
mitigate the occlusion problem [1], [15]. The interaction model
presented in [1] exploits a Markov random field approach to
penalize the predicted state of particles which may cause oc-
clusions. This approach works well for tracking multiple tar-
gets where two or more of them do not occupy the same space,
but it does not address tracking failures caused by inter-target
occlusions.

B. Dynamic Motion Models
Dynamic models can be divided broadly into macroscopic

and microscopic models [16]. Macroscopic models focus on the
dynamics of a collection of targets. Microscopic models deal
with the dynamics of individual targets by taking into account
the behavior of every single target and how they react to the
movement of other targets and static obstacles.
A representative of microscopic models is the social force

model [17]. The social force model can be used to predict the
motion of every individual target, i.e., the driving forces which
guide the target towards a certain goal and the repulsive forces
from other targets and static obstacles. A modified social force
model is used in [18] and in [19] for modeling the movements
of people in non-observed areas.
Many multi-target tracking algorithms in the literature only

consider the case when the number of targets is known and
fixed [3], [12], [15], [20]. In [1] a reversible jumpMarkov chain
Monte Carlo (RJMCMC) sampling technique is described but in
the experimental results a very strong assumption is made that
the targets (ants) are restricted to enter or leave from a very small
region (nest site) in a video frame. Random finite set (RFS)
theory techniques have been proposed for tracking multiple tar-
gets, e.g., [21], [22], in particular the target states are considered
as an RFS.
An appealing approach where the number of targets is esti-

mated, is proposed in [4] and is based on the evaluated number
of clusters. Non-rigid bodies such as humans can, however, pro-
duce multiple clusters per target. Therefore, the number of clus-
ters does not always remain equal to the number of targets.
Hence, calculating the number of targets on the basis of the
number of clusters can be inaccurate in the case of human target
tracking.

C. Main Contributions
The main contributions of this work are:
1) An algorithm that provides a solution to multiple target

tracking and complex inter-target interactions and occlu-
sions. Dealing with occlusions is based on social forces
between targets.

2) An improved data association technique which clusters the
measurements and then uses their locations and features for
accurate target identification.

3) A new technique based on the estimated positions of tar-
gets, size and location of the clusters, geometry of the mon-
itored area, along with a death and birth concept to handle
robustly the variable number of targets.

The framework proposed in [4] uses the JPDAF together with
the variational Bayesian clustering technique for data associa-
tion and a simple dynamic model for state transition. Our pro-
posed technique differs from that of [4] in three main aspects: 1)
in the dynamic model which is based on social forces between

targets, 2) a new features based data association technique, and
3) a new technique for estimation of number of targets which
is based on the information from clusters, position of existing
targets and geometry of the monitored area.
The remainder of the paper is organized as follows:

Section II describes the proposed algorithm, Section III presents
the proposed data association algorithm, Section IV explains
the clustering process and Section V describes the proposed
technique for estimating the number of targets. Extensive
experimental validation is given in Section VI. Section VII con-
tains discussion and finally, conclusions are presented in
Section VIII.

II. THE PROPOSED ALGORITHM

A. Bayesian Estimation
The goal of the multi-target tracking process is to track

the state of unknown targets. The state of each target
is represented as , which is a column
vector containing the position and velocity information of
the target at time . The joint state of all targets is con-
structed as the concatenation of the individual target states

, where denotes
the transpose operator. Measurements at time are represented
as , where is de-
scribed in Section II-B.
Within the Bayesian framework, the tracking problem con-

sists of estimating the belief of the state vector given the
measurement vector . The objective is to sequentially esti-
mate the posterior probability distribution at every
time step . The posterior state distribution can be
estimated in two steps. First, the prediction step [23] is

(1)

where is the state transition probability. After the
arrival of the latest measurements, the update step becomes

(2)

where is the measurement likelihood function.
The two step tracking process yields a closed form expres-

sion only for linear and Gaussian dynamic models [10]. Particle
filtering [23] is a popular solution for suboptimal estimation of
the posterior distribution , especially in the nonlinear
and non-Gaussian case. The posterior state distribution is esti-
mated by a set of random samples , and their
associated weights at time

(3)

where is the total number of particles and denotes a
multivariate Dirac delta function.
We apply particle filtering within the JPDAF framework to

estimate the states of targets. The JPDAF recursively updates
the marginal posterior distribution for each target. In
our work, given the state vector of target , the next set of
particles at time step is predicted by the social force dynamic
model ((6)–(9)) which is described later in Section II-C. The
state transition model is represented by (9). The particles
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and their corresponding weights can approximate the marginal
posterior at time step .
To assign weights to each sample we follow the likelihood

model along with the data association framework which is ex-
plained in Section III.

B. Measurement Model
The algorithm considers number of pixels in a single

video frame captured by one camera as input measurements.
From the sequentially arriving video frames, the silhouette
of the moving targets (foreground) is obtained by back-
ground subtraction [24]. At time , the measurement vector is:

. The state at time
is estimated by using the measurement vector

(4)

where is the measurement noise vector. After the back-
ground subtraction [24], the measurements at time are:

, which are assumed to corre-
spond to the moving targets (please see Section VI for details).
The measurement function is represented by some fea-
tures of the video frames, e.g., the color histogram. The mea-
surement vector contains only a set of foreground pixels.
After background subtraction the number of pixels with non-
zero intensity values is reduced to , where . The
number of foreground pixels is variable over time.
The background subtracted silhouette regions are clustered

with the variational Bayesian algorithm described in Section IV.
During the clustering process each data point (pixel) contains
only the coordinates of the pixel. During the data association
stage we use the red, green, blue (RGB) color information con-
tained in each pixel to extract color features of a cluster.

C. The Social Force Model
The system dynamics model is defined by the following

equation

(5)

where is the system noise vector. Under the Markovian
assumption our state transition model for the target is rep-
resented as , where is the social force being
applied on target .
The motion of every target can be influenced by a number of

factors, e.g., by the presence of other targets and static obsta-
cles. The interactions between them are modeled here by means
of a social force model [17], the key idea of which is to calcu-
late attraction and repulsion forces which represent the social
behavior of humans. The so-called “social forces” depend on
the distances between the targets.
Following Newtonian dynamics, a change of states stems

from the existence of exterior forces. Given a target , the total
number of targets that influence target at time , is . The
overall force applied on target is the sum of the forces
exerted by all the neighboring targets, . Most
of the existing force based models [17] consider only repulsive
forces between targets to avoid collisions. However, in reality
there can be many other types of social forces between targets
due to different social behavior of targets, for instance attrac-
tion, spreading and following [25].

TABLE I
PARAMETERS OF SOCIAL FORCE MODEL

Suppose a target at time step has neighbors, therefore,
it would have links with other targets . Only
those targets are considered as neighbors of target which are
within a threshold distance from . We consider that a social
behavior over link is given by where is the
total number of social behaviors. An interaction mode vector

for target is a vector comprising the
different social behaviors over all the links. The total number of
interaction modes is .
A force due to one interaction mode is calculated as a sum of

forces over all the social links

(6)

where is the force due to social mode and is the
force over the link . In our work we consider three social forces:
repulsion, attraction and non-interaction. These broadly encom-
pass all possible human motions.
People naturally tend to avoid collisions between each other.

This is reflected by repulsion forces. Attraction accounts for
the behaviors when people approach each other for the inten-
tion of meeting, this behavior is usually ignored in the existing
force based models. The non-interactions mode represents the
behavior of independent motion of every person.
The repulsive force applied by target on target over the

link is calculated as [25]

(7)

when is less than an empirically found threshold , defined
as in Table I in Section VI-E; where which is set equal to
is the boundary in which a target has its influence of force

on target . The Euclidean distance between targets and over
link is defined as , is the sum of radii of
influence of targets and over link and is the magnitude
of the repulsive force. The unit vector from target to target
is represented as .
When targets approach each other, repulsive forces act, to

avoid collisions. The repulsive force therefore increases as de-
scribed by (7). Similarly, when targets move apart the repulsion
decreases because it is less likely for a collision to occur, and
therefore they tend to come closer to each other. Attraction is a
phenomenon opposite to repulsion. When targets move apart,
they tend to attract each other for the intension of meeting
and when they move closer, the repulsion increases which
means they are less attracted. This attraction phenomenon is
described by (8). However, if targets are at a distance more than
a threshold, it can be assumed they do not influence each other.
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An attractive force applied by target on target over the link
is calculated as [25]

(8)

when is less than an empirically found threshold , defined
as in Table I in Section VI-E, where is the magnitude of
the attractive force and force due to non-interactions is consid-
ered to be zero.
To represent the state of targets at every time step , a

pixel coordinate system is used. Since, our state transition (9)
below is based on the social force model, to predict the new
particles , position and velocity values contained within the
state vector and the particles at time step are con-
verted to the image ground coordinate system (a process known
as homography [26]). After predicting the new set of parti-
cles for state these particles are converted back to pixel co-
ordinates. For conversion between the two coordinate systems
the four point homography technique is implemented, as used
in [27]. The position and velocity at time step in pixel coor-
dinates are represented as and , respectively, whereas, the
position and velocity in ground coordinates systems are repre-
sented as and respectively. At every time step a new state
is predicted with respect to interaction mode according to the
following model [25]

(9)
where is the time interval between two frames, represents
mass of the target and is the system noise vector.
The social force model gives more accurate predictions

than the commonly used constant velocity model [28] and
helps tracking objects in the presence of close interaction. This
cannot be done with a simple constant velocity motion model.
The implementation of the force model is further explained

in Algorithm 1 at the end of the next section.

III. DATA ASSOCIATION AND LIKELIHOOD
To deal with the data association problemwe represent a mea-

surement to target association hypothesis by the pa-
rameter , whereas represents the set of all hypotheses. At
this stage we assume that one target can generate one measure-
ment. However, later in this section we relax this assumption
and develop a data association technique for associating mul-
tiple measurements (clusters of measurements) to one target. If
we assume that measurements are independent of each other
then the likelihood model conditioned on the state of tar-
gets and measurement to target association hypothesis can
be represented as in [10] (11)

(10)

where and are, respectively, measurement indices sets, cor-
responding to the clutter measurements and measurements from
the targets to be tracked, for convenance of notation the time de-
pendence is not shown on these quantities. The terms and

are characterizing, respectively, the clutter likelihood and
the measurement likelihood association to each target whose
state is represented as . If we assume that the clutter likeli-

hood is uniform over the volume of the measurement
space and represents the total number of clutter measure-
ments, then the probability can be represented as

(11)

The form of is given in Section III-C; for notational
convenience, in (13) and the remainder of the paper we drop the
subscript on the target likelihood.

A. The JPDAF Framework
The standard JPDAF algorithm estimates the marginal dis-

tribution of each target by following the prediction and update
process described in (1) and (2). In the development below, we
exploit the framework from [10]. The prediction step for each
target independently becomes

(12)

where we assume that the prediction at time step is based
on the measurements only at . The JPDAF defines the
likelihood of measurements with respect to target as (25) in
[10]

(13)

where is the association probability that the target is
associated with the measurement and is the association
probability that the target remains undetected. With prediction
and likelihood functions defined by (12) and (13), respectively,
the JPDAF estimates the posterior probability of the state of
target

(14)

The association probability can be defined as (27) in [10]

(15)

where represents the set of all those hypotheses which as-
sociate the measurement to the target. The probability

can be represented as (28) in [10]

(16)

where is the probability of assignment given the
current state of the objects. We assume that all assignments
have equal prior probability and hence can be approx-
imated by a constant. If we define a normalizing constant en-
suring that integrates to one and define the predictive
likelihood as

(17)

then (16) becomes

(18)
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B. Particle Filtering Based Approach
The standard JPDAF assumes a Gaussian marginal filtering

distribution of the individual targets [10], [28]. In this paper we
adopt a particle filtering based approach which represents the
state of every target with the help of samples. Therefore, we
modify (18) as

(19)

where is the total number of particles which are required
to estimate the filtering distribution over every individual
target and represents the associated predictive weights as
described in [10]. We can modify (19) as

(20)

Once the probability is calculated according to (20),
we can substitute it in (15) to calculate the association proba-
bility. We can further use this association probability to calcu-
late the measurement likelihood from (13).
After drawing particles from a suitably constructed proposal

distribution [23], the weights associated with particles are cal-
culated, . The particles and their weights can
then be used to approximate the posterior distribution

(21)

for individual targets where is the particle for target
and is the associated weight. For estimation of a state

we predict particles with respect to every interaction mode.
There are interaction modes, therefore, repre-
sents the total number of samples.

Algorithm to Associate Multiple Measurements to a Target
In the case of tracking people in video, every person gen-

erates multiple measurements. To avoid any information loss
we relax the assumption that every person can generate a single
measurement. Here we present a data association technique for
associating multiple measurements to every target. To achieve
this, the algorithm groups the foreground pixels into clusters
with the help of a variational Bayesian clustering technique,
and then instead of associating one measurement to one target
we associate clusters to every target. The clustering process
returns clusters, where the number of clusters is not prede-
fined or fixed. Clusters at discrete time are regions repre-
sented as , where is the cluster which
contains certain measurements, i.e., a number of vectors of
foreground pixels. The complete clustering process is described
in Section IV. The clustering process aims to assign measure-
ments to the respective clusters and gives as output a correspon-
dence matrix , where

indicates, at discrete time ,
to which cluster, the measurement vector corresponds. All
but one of the elements of is zero, if e.g., belongs to
the cluster then the correspondence vector will be,

, which shows only the element of
is nonzero. Please note that from this section onwards all equa-
tions are written with respect to the measurement vector that
contains foreground pixels.

We modify the measurement to target association
probability to calculate the cluster to target as-
sociation probability , where represents the cluster index

(22)

where represents the set of all those hypotheses which as-
sociate the cluster to the target. We modify (20) to define
the probability as

(23)

where represents only those measurements which
are associated with cluster . The measurement likelihood de-
fined in (13) is modified as follows

(24)

where represents that the measurement is as-
sociated with the cluster and represents the probability
that the cluster is not associated to the target and
is the probability that the cluster is associated to the target.
To limit the number of hypotheses when the number of targets
increases, we have adopted Murty's algorithm [29]. This algo-
rithm returns the -best hypotheses. The elements of the cost
matrix for Murty's algorithm are calculated with the particles

(25)

where represents the cost of assigning the cluster to
the target.
The JPDAF [30] data association technique proposed in [4]

performs well when two targets do not undergo a full occlusion.
However, this data association technique sometimes fails to as-
sociate measurements correctly, especially when two or more
targets partially occlude each other or when targets come out of
full occlusion. This is due to the fact that this data association is
performed on the basis of location information without any in-
formation about the features of targets. This can result in missed
detections and wrong identifications.
In order to cope with these challenges under occlusions, a

data association technique is proposed which assigns clusters to
targets by exploiting both location and features of clusters. First,
we define the term in equation
(23) as follows

(26)
where is the mean vector and is the fixed and
known diagonal covariance matrix. The association probability

in (26) is calculated by extracting features from the
clusters at time step and comparing them with a reference fea-
ture (template) of target . The reference feature for target is
extracted when it first appears in the monitored area. To improve
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the computational efficiency, the probability is cal-
culated only when targets approach each other. This association
probability is defined as

if
otherwise

(27)
where is the measurement noise variance, and are
histograms of features of the target and cluster, respec-
tively and is the distance between them. One pos-
sible option is to use the Bhattacharyya distance [31]. The pa-
rameter is a predefined threshold, and the probability of oc-
clusion is defined as

(28)

where is the minimum Euclidean distance among a set of
distances which is calculated for target from all other targets
at time ,

(29)

and is the distance constant which limits the influence
of target on target . A higher value of minimum distance

results in a smaller value of probability of occlusions and
when this probability drops below threshold the probability

becomes unity.

Algorithm 1: The social force model

Input: particles and the state of targets at time step
Output: particles for time step
1: Convert the state at from pixel coordinates system

to real world ground coordinates.
2: Use ground coordinates to calculate distances between

targets.
3: Based on distances create links between targets.
4: for (where is the number of targets) do
5: Create social modes
6: Calculate forces due to every social mode by using

(6), (7) and (8).
7: for (where is the number of

particles) do
8: Convert the particle to the ground plane.
9: Add random noise to get .
10: for do
11: Predict particle by using particle

w.r.t. the social mode in (9).
12: Convert the particle to the pixel

coordinates.
13: end for
14: end for
15: end for

IV. VARIATIONAL BAYESIAN CLUSTERING—FROM
MEASUREMENTS TO CLUSTERS

The clustering process aims to subdivide the foreground
image into regions corresponding to the different targets. A

variational Bayesian clustering technique is developed to group
the foreground pixels into clusters. Each cluster at time
index is represented by its center , where . A
binary indicator variable represents to which of
the clusters data point is assigned; for example, when
the data point is assigned to the cluster then ,
and for .
We assume that the foreground pixel locations are modeled

by a mixture of Gaussian distributions. The clustering task can
be viewed as fitting mixtures of Gaussian distributions [32] to
the foreground measurements. Every cluster of foreground
pixel locations is assumed to be modeled by a Gaussian distribu-
tion, which is one component of the mixture of
Gaussian distributions. Each cluster has a mean vector and
a covariance matrix . Hence, the probability of a data point

can be represented as

(30)

where and . The mixing coeffi-
cient vector is defined as , where

represents the probability of selecting the component of
the mixture which is the probability of assigning the mea-
surement to the cluster. If we assume that all the measure-
ments are independent, then the log likelihood function becomes
[32]

(31)
The data point belongs to only one cluster at a time and this
association is characterized by a correspondence variable vector

. Therefore, it can be represented as where
the mixing coefficients must satisfy the following conditions:

and . Since only one element of
is equal to 1, the probability of the mixing coefficient can also
be written as

(32)

Similarly, we assume that .
Since only one element of is equal to 1, we can write again

(33)

As a result of the clustering process we will obtain estimates
of the probabilistic weight vector , the mean vectors , the
covariance matrices and correspondence matrix .
The estimation problem can be simplified by introducing

hidden (latent) variables. We consider the correspondence
variables as latent variables and suppose that they are
known. Then represents the complete dataset. The
log likelihood function for this complete data set becomes

. Now the new set of unknown pa-
rameters contains and which can be estimated
by the proposed adaptive variational Bayesian clustering al-
gorithm. If, for simplicity, these parameters are represented as
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a single parameter , then the desired
distribution can be represented as . The log marginal
distribution can be decomposed as described in [32]
(Section 9.4 and equations (10.2)–(10.4))

(34)

We define the distribution as an approximation of the de-
sired distribution. Then the objective of the variational Bayesian
method is to optimize this distribution, by minimizing the Kull-
back Leibler (KL) divergence

(35)

The symbol represents the KL divergence, and

(36)

Minimizing the KL divergence is equivalent to maximizing the
lower bound . The maximum of this lower bound can be
achieved when the approximate distribution is exactly
equal to the desired posterior distribution .
The joint distribution can be decomposed as [32]

(37)

We assume that the variational distribution
can be factorized between latent variable

and parameters , and .

(38)

A similar assumption is made in [32], please see equation (10.
42). Optimization of the variational distribution can therefore
be represented as

(39)

By considering equation (10.54) from [32] the distri-
bution can further be decomposed into

, where represents the optimum dis-
tribution. Therefore, the optimum distribution can be written as

(40)

This shows that the optimum over the joint distribution is equiv-
alent to obtaining , and . There-
fore, the optimum distributions over can be evaluated by
optimizing with respect to all parameters one-by-one. A
general form of optimization can be written as in equation (10.9)
of [32]

(41)

where represents the mathematical expectation with re-
spect to the distributions over all the elements in for ,
where is the component of . represents the
optimum approximate distribution over the component of

. We next evaluate the optimum distributions ,
and by using (41).

1) Optimum Distribution Over : According to (41), the
optimum distribution over can be written as

(42)
Probabilities and can be defined
by using (32) and (33) respectively

(43)

and

(44)

By using (42), (43) and (44), the optimum distribution over
the correspondence variable becomes

(45)

where is the responsibility that component takes to explain
the measurement . The derivation of (45) and can be
found in the Appendix (and in Appendix-A of the long version
of the paper available online at arXiv).
2) Optimum Distribution Over : Before evaluating the

optimum distributions and we need to first
define their priors. The Dirichlet distribution is chosen as a prior
over the mixing coefficient

(46)

where denotes the Dirichlet distribution, and is an ef-
fective prior number of observations associated with each com-
ponent of the mixture. Using (41) we can write

(47)
where const. represents a constant. The optimum distributions

over can be calculated by using (44), (46) and (47),
which becomes

(48)

where and one of its components can be
defined as

(49)

(50)

and is the responsibility that component takes to explain
the measurement . The derivation of (48) can be found in
Appendix-B of the long version of the paper available online at
arXiv).
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3) Optimum Distribution Over and : The prior over
the mean and the covariance matrix is defined by the
independent Gaussian-Wishart distribution

(51)
where , , and are the prior parameters. By using
(44), (46) and (47), decomposition of (37) and following the
steps explained in Appendix-C of the long version of the paper
available online at arXiv, the distribution becomes

(52)
where and are defined from

(53)

(54)

where,

(55)

(56)

(57)

and

(58)

The variational Bayesian technique operates in two steps to
optimize the posterior distributions of unknown variables and
parameters. In the first step it calculates the responsibilities
using (81) and in the second step it uses these responsibilities
to optimize the distributions by using (45), (48) and (52). These
steps are repeated until some convergence criterion is met. In
our work we monitor the lower bound after every iteration
to test the convergence. When the algorithm converges, the
value of the lower bound does not change more than a small
amount. The clustering algorithm is further summarized in
Algorithm 2 given in Section V.
One of the important advantages of variational Bayesian clus-

tering is that it can automatically determine the number of clus-
ters by using the measurements. This can be achieved if we set
the parameter less then 1. This helps to obtain a solution
which contains a minimum number of clusters to represent the
data [4].
The position and shape of clusters are defined using the pa-

rameters and , respectively. A possible choice for se-
lecting these priors is given in Section VI. This stage returns
the minimum possible number of clusters and their associated
measurements which are defined by the correspondence matrix

. In the next stage of the algorithm these clusters are assigned
to the targets by using a data association technique as described
after Section III-C.

V. VARIABLE NUMBER OF TARGETS
Many multi-target tracking algorithms assume that the

number of targets is fixed and known [3], [12], [15], [20]. In
[33] the JPDAF is extended to a variable number of targets.
In other works, including [4] the posterior probability of the
number of targets is estimated given the number of clusters
at each discrete time step

(59)

where is the probability of the clusters given
targets. Here we deal with changeable shapes and calculate the
number of targets in a different way. The number of targets is
estimated based on the: 1) location of clusters at time step ,
2) size of clusters at time step , and 3) position vector of
the targets at the previous time step .
The number of targets in the first video frame is determined

based on the variational Bayesian clustering. At every following
video frame the number of targets is evaluated, by the fol-
lowing stochastic relationship, similarly to [34]

(60)

The variable is defined as

if
if
otherwise

(61)
where corresponds to the probability of decrementing
the number of targets, similarly, represents the proba-
bility of incrementing number of targets and is an appro-
priately chosen threshold.
We assume that at a given time only one target can enter

or leave. In the monitored area people can only enter or leave
through a specifically known region in a video frame. This
known region is called the red region. This red region is
modeled by a Gaussian distribution with its center and
covariance matrix . Multiple Gaussian distributions can be
used if the red region was disjoint.

A. Probability of Death

The probability of death of a target depends on two things: 1)
the probability of finding a cluster in the red region
and 2) the probability that the
cluster found in the red region is due to an existing target (de-
noted by the variable ). This means that when
a target is leaving the monitored area, a cluster is found in the
red region, i.e., at the entrance or exit point, and this cluster will
be due to an existing target. Therefore, probability of death is
modeled as

(62)

In order to estimate , we calculate the probability of the
measurements (foreground pixels) from

(63)
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Note that we are not considering measurements of one cluster
only, because a target in the red region may generate more than
one cluster. Therefore, measurements which have probability

greater than a set threshold value are considered
as measurements found in the red region and all these measure-
ments are therefore grouped to form cluster . Since we as-
sume that maximum one target can be in the red region, then,
all the measurements of are considered to be generated by
one target. For an number of measurements in cluster ,
the probability of finding a cluster in the red region depends on
the number of pixels in and is calculated as

(64)

where is a pixel constant which limits the range of pixels
to be considered for calculating . The second probability
in (62) is the probability that cluster is generated by an ex-
isting target. This probability depends on the location of ex-
isting targets and the location of cluster . The probability

is calculated as

(65)

where is a constant which can be chosen experimentally.
To calculate the distance , we chose the minimum distance
among the distances which are found from the centroid of ,

to each of the existing targets at time step .
Note that this is different from the calculated in (28).

(66)

where denotes the Euclidean distance operator. Note that
the probability depends on the distance between the centroid
of and the closest existing target. The probability that cluster

is generated by an existing target will be high if is small
and vice versa.

B. Probability of Birth

The probability of birth of a target depends on two different
probabilities: 1) the probability of finding a cluster in the
red region and 2) the probability that the cluster found
in the red region is not due to an existing target. According to
our assumption that at a given time step the cluster in the red
region can only be either from an existing target or a new target,
the probability that the cluster in the red region is due to a new
target is . The probability of
birth can be calculated as

(67)

Finally, (62) and (67) are applied in (60) and the number of tar-
gets is updated by using (66). This completes the full description
of our algorithm. A summary of the overall proposed algorithm
is described in Algorithm 2.

Algorithm 2: Summary of Proposed Algorithm
Input: Video frame at time step
Output: 2-D position of all the targets in each frame
1: Perform the background subtraction to extract

foreground pixels.
2: Save the coordinates of foreground pixels which

represent data points .
Clustering

3: Initialize the parameters , , and .
4: for do
5: for do
6: Evaluate initial by using initialized parameters

, , and in (79) and (80).
7: end for
8: Calculate the normalization factor
9: for do
10: Evaluate normalized responsibilities: .
11: end for
12: end for
13: while Convergence criterion is not satisfied do
14: for do
15: Evaluate new , , , , , , and

with (50), (55), (49), (53), (54), (56), (57) and
(58) respectively. For first iteration use initial
responsibilities .

16: end for
17: Evaluate new responsibilities for all and by

using new , , , , , , and and
repeating steps (4) through (12).

18: end while
19: Assign the cluster to measurement , when

and repeat it for all the
measurements.

20: Delete the small clusters.
Identify Number of Targets

21: Evaluate probability of death and birth by using (62) and
(67) respectively.

22: Identify number of targets by using (60).
Data Association and Tracking

23: Evaluate the cost matrix by using (25).
24: Evaluate k-best hypotheses by using Murty's algorithm

[29].
25: for (where is the total number of

targets) do
26: Draw samples by using the state transition (9) as

explained in Algorithm 1.
27: for do
28: Evaluate the set of hypotheses which assign the

cluster to the target.
29: For every hypothesis evaluate

by using (23) and (26).
30: Evaluate with (22).
31: end for
32: Weight all the particles using (24).
33: Update states of all the targets according to (21).
34: end for
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Fig. 1. Background subtraction results for certain frames of sequence
“seq45–3p-1111_cam3_divx_audio” of the AV16.3 dataset: codebook back-
ground subtraction is implemented to separate the foreground pixels from the
background. (a) Frame 255 (b) Frame 278 (c) Frame 288 (d) Frame 313.

Fig. 2. Background subtraction results for certain frames of sequence “Three-
PastShop2cor” of the CAVIAR dataset: codebook background subtraction is im-
plemented to separate the foreground pixels from the background. (a) Frame 334
(b) Frame 440 (c) Frame 476 (d) Frame 524.

VI. EXPERIMENTAL RESULTS
To examine the robustness of the algorithm to close in-

teractions, occlusions and varying number of targets, the
algorithm is evaluated by tracking a variable number of people
in three different publicly available video datasets: CAVIAR,
PETS2006 and AV16.3. The test sequences are recorded at a
resolution of 288 360 pixels at 25 frames/sec and in total there
are 45 sequences. The performance of the proposed algorithm is
compared with recently proposed techniques [4], [1] and [35].
All the parameters are discussed in the following subsections.
The algorithm automatically detects and initializes the targets
when they enter the monitored area. For evaluation the tracking
results we convert the final tracked locations of targets from
pixel coordinates to the ground coordinates by using four point
homography.

A. Background Subtraction Results
The codebook background subtraction method [24] is im-

plemented which is one of the best background subtraction
methods since it is resistant to illumination changes and can
capture the structure of background motion. Adaptation to
the background changes and noise reduction is additionally
achieved with the blob technique [36]. Figs. 1–3 show the
results obtained from the codebook background subtraction
method [24] for a few selected video frames from the AV16.3,
CAVIAR and PETS2006 datasets respectively. In the exper-
iment, we set the shadow bound , highlight bound

and the color detection threshold (see [24]
for further details about these parameters). These parameters
are the same for all the sequences of all three datasets. The
background subtraction results provide the coordinates of the
foreground pixels (the moving objects) which represent data
points . Frames 440 and 476 in Fig. 2 show that we get a
few extra foreground pixels due to reflections on the floor and
in the glass which can be eliminated at the clustering stage.

B. Clustering Results
For the clustering process at each time step we assume that

there are three types of clusters: 1) clusters for the existing tar-
gets, 2) clusters in the neighbors of the existing targets and 3)

Fig. 3. Background subtraction results for certain frames of sequence “S1-
T1-C” of the PETS2006 dataset: codebook background subtraction is imple-
mented to separate the foreground pixels from the background. (a) Frame 85
(b) Frame 292 (c) Frame 327 (d) Frame 1038.

Fig. 4. Clustering results for certain frames of sequence “seq45–3p-
1111_cam3_divx_audio” of the AV16.3 dataset: First, second and third clusters
are represented by blue, red and green colors respectively (a) target 2 starts
occluding target 1 (b) target 2 appearing again after occlusion (c) target 2
is approaching target 3 (d) target 3 comes out of occlusion. (a) Frame 255
(b) Frame 278 (c) Frame 288 (d) Frame 313.

Fig. 5. Clustering results for certain frames of sequence “ThreePastShop2cor”
of the CAVIAR dataset: clusters 1, 2, 3, 4, 5, 6 and 7 are represented by blue, red,
green, magenta, cyan, yellow and black colors respectively. In frame 334, we
have 8 clusters and hence the cluster is again represented by blue. (a) Frame
334 (b) Frame 440 (c) Frame 476 (d) Frame 524.

clusters near boundaries of the field of view. Due to the Dirichlet
prior over the mixing coefficient and by setting the
clustering algorithm converges automatically to the minimum
possible number of clusters. The means of clusters are ini-
tialized with the tracked location of existing targets and hypoth-
esized location of new targets. Other prior parameters are de-
fined as: and . However, a full study about
sensitivity of the system to the choice of different parameters
is beyond the scope of the paper.
The prior parameter used in (56) determines the human

shape which is modeled as an ellipse. It is defined with the help
of the following equation

(68)

where and are equatorial radii of the ellipse which models
the human shape. The equatorial radii and are set to 500
and 300 respectively while is defined as

(69)

The clustering results for a few of the video frames are shown
in Figs. 4–6. Blue, red, green, magenta, cyan, yellow and black
represent first, second, third, fourth, fifth, sixth and seventh clus-
ters respectively. If there are more than 7 clusters we repeat the
color scheme.
These figures show that the clustering performswell and clus-

ters do not contain regions of multiple targets even when targets
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Fig. 6. Clustering results for certain frames of sequence “S1-T1-C” of the
PETS2006 dataset: clusters 1, 2, 3, 4, 5, 6 and 7 are represented by blue, red,
green, magenta, cyan, yellow and black colors respectively. (a) Frame 85
(b) Frame 292 (c) Frame 327 (d) Frame 1038.

are in close interaction or partially occlude each other. To elimi-
nate the extra foreground pixels due to the reflections, the small
clusters consisting of less than 100 pixels are deleted.

C. Data Association and Occlusion Handling

For data association the ten best hypotheses of joint associa-
tion event are considered which are obtained with the help
of Murty's algorithm [29]. The Bhattacharyya distance between
the color histograms of cluster and target is used to calculate
the distance

(70)

where is the reference histogramwhich is created by using
the cluster associated with target at the time step when the
target first appears in the video. is the histogram created
for cluster at the current time step and is the
Bhattacharyya coefficient

(71)

where represents the number of histogram bins and we have
used color histograms bins.
A tracking algorithm with only a JPDAF, without the varia-

tional Bayesian clustering and without a social force model fails
to identify an object during close interactions. In the proposed
algorithm these tracking failures are overcome with the help of
the proposed data association technique. Sometimes, due to the
varying shape of the targets, the clustering stage may produce
more than one cluster per target. Therefore, the proposed data
association technique assigns multiple clusters to every target
with some association probability.

D. Variable Number of Targets Results

The robustness of the algorithm for estimating the correct
number of targets in a video sequence is compared with the
framework developed in [4]. In [4] the number of targets is cal-
culated on the basis of only the number of clusters. Figs. 7 and
8 present a comparison of number of targets and number of clus-
ters in video frames.
It is apparent from Figs. 7 and 8 that the number of targets

does not always match the number of clusters and hence it is
difficult to train the system to estimate the number of targets on
the basis of the number of clusters. In the proposed algorithm,
instead of using the number of clusters we have exploited the
size and location of clusters to estimate the number of targets
on all the sequences. This leads to accurate estimation of the

Fig. 7. The graph shows the actual number of targets, estimated number of
targets by using the proposed method and the number of clusters as a function of
video frames for sequence “seq45–3p-1111_cam3_divx_audio” of the AV16.3
dataset.

Fig. 8. The graph shows the actual number of targets, estimated number of
targets by using the proposed method and the number of clusters as a function
of video frames for sequence “ThreePastShop2cor” of the CAVIAR dataset.

Fig. 9. Tracking results for certain frames of sequence “seq45–3p-
1111_cam3_divx_audio” of the AV16.3 dataset with a variable number of
targets while handling complex occlusions. (a) tracking of two targets, (b) and
(f) show that the algorithm successfully initializes the new tracker, (e) shows
that the tracker is deleted when the target leaves the room, (b)-(d) show
successful occlusion handling. (a) Frame 225 (b) Frame 278 (c) Frame 320
(d) Frame 375 (e) Frame 405 (f) Frame 420.

number of targets and is demonstrated on Figs. 7 and 8 for two
different data sets and in Figs. 9–11.
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Fig. 10. Tracking results for certain frames of sequence “ThreePastShop2cor”
of the CAVIAR dataset : the proposed tracking algorithm can successfully track
a variable number of targets while handling complex occlusions. (a) Frame 152
(b) Frame 334 (c) Frame 452 (d) Frame 476 (e) Frame 497 (f) Frame 524.

Fig. 11. Tracking results for certain frames of sequence “S1-T1-C” of the
PETS2006 dataset: the proposed tracking algorithm can successfully track a
variable number of targets while handling complex occlusions. (a) Frame 85
(b) Frame 273 (c) Frame 292 (d) Frame 379 (e) Frame 996 (f) Frame 1038.

E. Tracking Results
Aminimum mean square error (MMSE) particle filter is used

to estimate the states of the multiple targets. When a new target
enters the room, the algorithm automatically initializes it with
the help of the data association results by using the mean value
of the cluster assigned to that target. Similarly, the algorithm
removes the target which leaves the room. The particle size
is chosen to be equal to 60 and the number of social links are
updated at every time step. Table I shows the values of the other
parameters used in the social force model. The prediction step is
performed by the social force model, described in Section II-A.
The tracking results for a few selected frames from AV16.3,

CAVIAR and PETS2006 datasets are given in Figs. 9–11 re-
spectively. Blue, red, green, magenta and cyan ellipses repre-
sent first, second, third, fourth and fifth targets, respectively.
Fig. 9 shows that the algorithm has successfully initialized new
targets in frames 278 and 420. In frame 278 it can be seen that
the algorithm can cope with the occlusions between target 1 and
target 2. Frame 320 show that the algorithm has successfully
handled the occlusion between targets 2 and 3. In frame 375 we
can see that target 2 has left the room and the algorithm has au-
tomatically removed its tracker, which is started again when the
target has returned back in frame 420. Success in dealing with
occlusions between targets 3 and 1 can be seen in frames 375
and 405.

Results in Fig. 10 demonstrate that new targets appearing in
frame 334 are initialized. In frame 476 it can be seen that the
tracker has solved the occlusion between target three and four.
Similarly, frame 524 shows that the tracker copes with occlu-
sion between target three and five. A similar behavior is also
observed in Fig. 11.
1) CLEAR MOT Matrices: The tracking performance of the

proposed algorithm is measured based on two different perfor-
mance measures: CLEAR multiple object tracking (MOT) ma-
trices [37] and OSPAMT [38]. The performance is compared
with the methods proposed in [4], [1] and [35].
The CLEAR MOT measure includes the multiple object

tracking precision (MOTP) matrix, miss detection rate, false
positive rate and mismatch rate.
Let be the ground

truth at time , where and are respectively
the starting and ending points of the observation interval.
Each ground truth vector component contains
the actual position and identity of the target . Similarly,

represents the output
of the tracking algorithm at time , where each
represents the estimated location vector and identity variable of
target . At every time the error is defined as:
• Missed detections corresponding to the number of missed
targets, calculated based on the difference between
the ground truth and the estimates from the developed
technique.

• Mismatch corresponding to the number of targets which
have given a wrong identity.

• False positives corresponding to the estimated target loca-
tions which are not associated with any of the targets.

The threshold is set at 45 cm, which is the distance between the
estimated position of a target and its ground truth beyond which
it is considered as a missed detection.
If we assume that , , and are respectively

the total number of missed detections, mismatches, false pos-
itives and ground truths at time , the errors are calculated as
[37]

(72)

The precision is calculated as [37]

(73)

where is the distance between the estimated location and
the ground truth location of target and is the total number
of matches found at time step . Table II presents the perfor-
mance result of the proposed algorithm and the tracking algo-
rithms proposed in [4], [1] and [35]. The performance results
are obtained by using 45 sequences from AV16.3, CAVIAR and
PETS2006 datasets. All three datasets have different environ-
ments and backgrounds. The results show that the proposed al-
gorithm has significantly improved performance compared with
other techniques [4], [1] and [35]. Table II shows that there is a
significant reduction in missed detections, mismatches and false
positives. The reduction in the missed detections is mainly due
to the proposed clustering based approach along with the new
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TABLE II
COMPARISON OF PERFORMANCE OF THE PROPOSED TRACKING ALGORITHM

WITH THE APPROACH OF [4], [1] AND [35]

TABLE III
COMPARISON OF PRECISION OF THE PROPOSED TRACKING ALGORITHM

WITH THE APPROACH OF [4], [1] AND [35]

social force model based estimation technique. A simple par-
ticle filter based algorithm without any interaction model pro-
posed by [35] shows the worst results mainly due to the highest
number of mismatches. The algorithm proposed in [1] shows
better results because of a better interaction model. However,
the number ofmissed detections, mismatches and false positives
are higher than that of [4]. This is because [1] does not propose a
solution when two targets partially occlude each other or appear
again after full occlusion. The technique proposed in [4] gives
improved results due to the clustering and the JPDAF however
fails when targets reappear after occlusion. This is due to the
fact that only location information is used for data association
and a simple constant velocity model is used for state predic-
tion. Our proposed algorithm improves the tracking accuracy
by reducing the number of missed detections, mismatches and
false positives. Reduction in the number of missed detections is
mainly due to the proposed particle filter based force model for
particles predictions, while the proposed data association tech-
nique reduces the chances of mismatches. This improvement is
thanks to the utilization of both feature information of targets
along with their locations together with the location of clusters.
There is a significant 3.26% reduction in the wrong identifi-

cations which has improved the overall accuracy of the tracker.
Average precision results for the video sequences from AV16.3,
CAVIAR and PETS2006 data sets are shown in Table III.
Precision plots for two video sequences against the video

frame are shown in Fig. 12. Results show that the MOTP re-
mains less than 4cm for most of the frames. It increases to 12cm
for the frames where occlusions occur but it again drops when
targets emerge from occlusion.
2) OSPAMT: A new performance metric, optimal subpattern

assignment metric for multiple tracks (OSPAMT) [38] is also
used to evaluate the performance of the proposed technique and
approach of [4]. The OSPAMTmetric calculates the localization

distance between a set of true tracks and a set of
estimated tracks at time step as follows

(74)

where and and are the number of
targets in true and estimated set of tracks, respectively, at time
step . The distance is between the true track and
the set of estimated tracks , complete explanation of which
can be found in Section IV of [38]. The distance
at time index is calculated as

(75)

where is defined as follows

(76)

where is the number of targets at time in assigned
to target in , represents an assignment between tracks in

and the tracks in , is the assignment parameter, is the
cutoff parameter and . Details about all these parame-
ters and the OSPAMT metric can be found in [38]. For results
in Figs. 13 and 14 we have used and . Note
that is basically a distance between the objects.
Figs. 13 and 14 show the OSPAMT distances, (75) and (76), re-
spectively, plotted against the video frame index. Fig. 13 shows
low localization errors compared to the technique proposed in
[4]. Fig. 14 indicates a peak dynamic error when a new target
enters the field of view which is between frame numbers 63 and
65.

F. Computational Complexity

A variable measurement size technique reduces signifi-
cantly the computational complexity. The measurement size
is increased or decreased on the basis of the distance between
the targets. Downsampling of foreground pixels is performed
when the distance between targets becomes 80 cm or less.
The decrease in the measurement size reduces the time and
number of iterations for reaching clustering convergence which
results in improved computational complexity. This is shown in
Table IV with the help of a few selected frames from sequence
“seq45–3p-1111_cam3_divx_audio” of the AV16.3 dataset.
Table IV also demonstrates that the proposed technique

reduces the number of iterations needed for achieving con-
vergence. The reduction in the number of iterations for
convergence improves the run-time of the tracking algorithm.
The average run-time (calculated using 45 video sequences
from three datasets) of the proposed algorithm due to the
reduction in number of iterations is 0.587 seconds per frame,
as compared to the run-time without measurement reduction
which is 2.611 seconds per frame. The run-time of the approach
of [4] is 1.417 seconds per frame. This run-time comparison is
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Fig. 12. Precision plot against the video frames of sequences: (a) “seq45–3p-
1111_cam3_divx_audio” of the AV16.3 dataset (b)“ThreePastShop2cor” of the
CAVIAR dataset.

Fig. 13. OSPAMT localization distance plot against the video frames of se-
quence “ThreePastShop2cor” of the CAVIAR dataset.

made by implementing the algorithms on MATLAB (version
R2012a) with a 3.2GHz I5 processor.

G. Summary

Successful background subtraction is achieved with the help
of the codebook background subtraction technique and the
results are shown in Figs. 1–3. Grouping foreground pixels
into clusters with the help of the proposed variational Bayesian
technique is presented in Figs. 4–6. Tracking results are shown
in Figs. 9–11. The variational Bayesian clustering improves

Fig. 14. OSPAMT distance plot against the video frames of sequence “Three-
PastShop2cor” of the CAVIAR dataset.

TABLE IV
COMPARISON OF CONVERGENCE ITERATIONS FOR

DIFFERENT MEASUREMENT SIZES

the overall tracking results especially during close inter-target
occlusions. The JPDAF based technique proposed in [4] does
not always assign the appropriate clusters to the targets and
hence results in tracking failures while solving the complex
occlusions.
The graphical results shown in Figs. 7 and 8 indicate that

estimating the number of targets on the basis of the number of
clusters does not produce accurate results because the number
of clusters does not always vary with the number of targets.
Figs. 9–11 show that accurate target number estimation results
are achieved by the proposed technique thanks to exploiting the
sizes and locations of clusters, and the estimated state of the
targets at the previous time step.
The results in Tables II and III confirm that the overall per-

formance of the proposed tracking algorithm results in an im-
provement as compared with the recently proposed techniques
[4], [1] and [35].

VII. DISCUSSION

The quality of the clustering results influences the proposed
data association technique.We initialize the clusters on the basis
of the estimated locations of targets and by taking into account
merging and splitting of targets. The motion of people is pre-
dicted with the social force model. This yields accurate clus-
tering results in scenarios where one cluster contains regions of
multiple targets. Therefore, the proposed data association tech-
nique performs well even during close interactions of targets. It
associates multiple clusters to targets with the correct proportion
of probability. These association results help in achieving highly
accurate tracking of multiple targets even during their close in-
teractions and partial occlusions. The extensive evaluation of
the proposed technique on 45 sequences from three very dif-
ferent datasets validates the tracking accuracy of the proposed
algorithm in such scenarios.
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A further improvement in accuracy of cluster-to-target as-
sociation can be achieved by calculating joint associations be-
tween multiple clusters. A several-to-one or several-to-several
correspondence strategy can be adopted. However, for these
strategies the association problem is combinatorial and com-
plexity may become intractable because it will grow geomet-
rically. The cluster-to-target association can also be improved
by considering the regions of multiple targets in a cluster as
unique identities and associating those regions to respective tar-
gets [27].

VIII. CONCLUSIONS
A learned variational Bayesian clustering and social force

model algorithm has been presented for multi-target tracking
by using multiple measurements originating from a target. An
improved data association technique is developed that exploits
the clustering information to solve complex inter-target occlu-
sions. The algorithm accurately and robustly handles a variable
number of targets. Its is compared extensively with recent tech-
niques [1], [4] and [35].

APPENDIX

All the variables in the following derivation are for time index
. Therefore, for simplicity, we omit the index from the equa-

tions. According to (42) we can write

(77)

and using the decomposition of (37) we have

(78)

By keeping only those terms which are depending on we get
.

By using (32) and (33) we can write

Considering that

(79)

we get , where ac-
cording to [32]

(80)

where and is the digamma function. We
can write: . Requiring that this
distribution be normalized

(81)

For a detailed proof please refer to Appendix of the long version
of the paper available online at arXiv.
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