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Abstract: Tra�c network modelling is a �eld that has developed over a numberof decades, largely from the economics of predicting equilibria across route travelchoices, in consideration of the congestion levels on those routes. More recently,there has been a growing inuence from the psychological and social science �elds,leading to a greater interest in understanding behavioural mechanisms that under-lie such travel choice decisions. The purpose of the present paper is to describemathematical models which aim to reect day-to-day dynamic adjustments in routechoice behaviour in response to previous travel experiences. Particularly, the aimis to set these approaches in a common framework with the conventional economicequilibrium models. Starting from the analysis of economic equilibria under pertur-bations, the presentation moves onto deterministic dynamical system models andstochastic processes. Simple illustrative examples are used to introduce the mod-elling approaches. It is argued that while such dynamical approaches have appeal,in terms of the range of adaptive behavioural processes that can be incorporated,their estimation may not be trivial. In particular, the obvious solution technique(namely, explicit simulation of the dynamics) can lead to a rather complex prob-lem of interpretation for the model-user, and that more \analytical" approximationtechniques may be a better way forward.Keywords: convergence, day-to-day dynamics, dynamical system, Markov chain,stability, stochastic process.
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1 Introduction: The Roots of EquilibriumNetwork equilibrium models have a long history, both in the transport research literature and inpractical studies of scheme assessment. In particular, the class of static equilibrium models (asdescribed, for example, in [1]) have been seen to be versatile, with extensions able to representperceptual variations across the driver population, mixed vehicle types, and some mixed modeoperations.In the 1980s, with a growing international interest in real-time information and control systems,serious reservations �rst began to be voiced about the assumptions of these approaches, and inparticular their inability to deal with many of the dynamic aspects of tra�c systems. Initially,the predominant focus was on e�orts to generalise the equilibrium model to represent within-daydynamics: that is to say, the dependence of route choice on departure time, while accountingfor the proper temporal and spatial evolution of congestion across the network. Subsequently,more fundamental questions began to be asked about the behavioural basis of the equilibriumparadigm, particularly in the sense of its usefulness for representing drivers' response to exoge-nous information. This led to a growing interest in day-to-day dynamics, whereby the evolutionover days of travel choices and tra�c congestion is linked through a learning model basedon drivers' past experiences. The premise of equilibrium had been at the heart of transportmodelling for many decades. The interest in day-to-day dynamics led to modelling approacheswhich, for the �rst time, constituted a serious alternative to the established approach.The particular interest of the present paper is the study of such day-to-day dynamics. We donot consider within-day dynamic issues, although the day-to-day framework is highly suited tosuch problems (see, for example, [2]). Indeed, one of the great attractions of the day-to-dayapproach is its great exibility, allowing a wide range of behavioural rules, levels of aggregationand types of tra�c model to be integrated within the same modelling framework. The neglectingof within-day dynamic issues here is not intended to question their importance. Rather, it isour belief that it is essential to �rst gain the maximum understanding from simpler within-daystatic models, since (as we shall illustrate in the present paper) the behaviour of the resultingday-to-day models may already be rather complex.3



Many general contrasts may readily be made between the day-to-day dynamic and traditionalequilibrium approaches. For example, the estimation of equilibrium has been typically achievedthrough the solution of some optimization, complementarity or variational inequality problem,yet this makes the approach rather restrictive in terms of the generalisations that are feasible.The contrasting exibility of the day-to-day dynamic approach has already been noted above.On the other hand, given a suitably constructed equilibrium solution algorithm, the interpre-tation of model outputs is typically straightforward, whereas in simulations of the day-to-dayapproach the interpretation stage is often the most challenging task.However, perhaps the greatest contrast to be made is the fundamental basis of each approach.In traditional equilibrium models, the underlying hypothesis is the very notion of a market inequilibrium: a typically isolated, `self consistent' state of the network which, if attained, wouldpersist under certain rational rules of behaviour. In the day-to-day approach, the underlyingbelief is in the behavioural dynamics, namely how the behaviour on day n is a�ected by be-haviour and the state of the network on days n � 1 and earlier. It is therefore tempting toregard the two approaches as competing philosophies. Yet the classical preliminary analysesof dynamical approaches involves examining the `equilibrium' behaviour of the system. Whilethe concept of equilibrium of a dynamical system does not relate directly to the traditionaleconomic equilibria of tra�c network models, there are many important links between the twoapproaches. The purpose of the present paper is to explore these links, as well as contrastingthe notions of `equilibrium' that arise.The structure of the paper is as follows. In section 2, the notion of an economic equilibrium(the traditional one adopted in the tra�c assignment literature) is de�ned. It is illustrated thatfor general problems, even such models cannot avoid dynamics, in the sense that an additionalnotion of `stability' is needed to identify sensible equilibrium predictions. This leads to theintroduction of explicit dynamical models, with the focus in section 3 on deterministic processmodels, for both continuous and discrete time. It is shown how convergent �xed points ofsuch models may be related to economic equilibria, but that the issue of such convergence iscritically related to behavioural and tra�c parameters of the model. The paper culminates insection 4 with the most general kind of model, namely the stochastic process, which incorporatesvariability of the transient kind as well as variability \in equilibrium". However, it is seen that4



this generality comes at a price, with many complex issues of interpretation of model outputsthen arising. Finally, in section 5, paths for further research are discussed.2 Equilibrium and PerturbationsThe focus in this paper will be on the relationship between day-to-day models and the two mostwell-known concepts of economic equilibrium in transport networks. These latter two conceptsare �rst de�ned below.Suppose that:� the inter-zonal (origin-destination) movements are labelled 1; 2; :::;W , with the corre-sponding inter-zonal demand ows denoted q1; q2; :::; qW� the ow on link a is denoted va (a = 1; 2; :::;A), with v the A-vector of network link ows� the travel cost on link a is ta(v) (a = 1; 2; :::;A), a function of the link ows� the ows on theN acyclic routes across all inter-zonal movements are denoted f1; f2; :::; fN,and are contained in an N -vector f� the induced travel cost on route r, as a function of the route ows f , is denoted cr(f),held in an N -vector c(f), where cr(f) = PAa=1 �arta(V(f)) (r = 1; 2; :::;N), where V(f)has elements Va(f) =PNr=1 �arfr (a = 1; 2; :::A), and where �ar is a 0/1 indicator equal to1 only if link a is part of route r� Rw is the index set of acyclic routes corresponding to inter-zonal movement w, for w =1; 2; :::;W .Then de�ne the following two equilibrium models:Deterministic User Equilibrium (DUE) Following [3], for example, the ow vector f is a DUE ifand only if it is both demand-feasible, i.e. Pr2Rw fr = qw (w = 1; 2; :::;W ), and all used routeshave minimum cost at the equilibrium ow levels:fr > 0) cr(f) � cs(f) (r; s 2 Rw; w = 1; 2; :::W ) : (1)5



Stochastic User Equilibrium (SUE) Suppose additionally that p(u) is a function with elementspr(u) (r = 1; 2; :::N) denoting the proportion of drivers on each movement w who would chooseroute r 2 Rw when the route costs are u. Then, following [4], the ow f is said to be an SUEif and only if: fr = qwpr(c(f)) (r 2 Rw; w = 1; 2; :::W ) : (2)Typical functional forms for the function p(:) are based on random utility theory, such as thelogit and probit models [1].Clearly any model is a simpli�cation of reality, and its value should be judged on the basis ofa comparison of its predictions with observed data. However, even before this step, this is amore basic question of plausibility of the model, in respect of whether it is well-de�ned. Inparticular, for any given network data:� Do SUE/DUE solutions exist?� Is there a unique SUE/DUE solution?It transpires that provided no strict capacity constraints are additionally imposed, existenceof SUE/DUE predictions can be guaranteed under rather mild conditions, primarily involvingcontinuity of the involved functions t(:) and p(:) ([3]; [2]).We turn attention then to the question of uniqueness of such equilibrium predictions. Regardingthe DUE model, it is simple to show (e.g. in a �gure-of-eight network) that seeking uniquenessof route ows is not a sensible goal in general. In practically all realistic networks there existlinear combinations of the route ows that leave link ows and costs unchanged, while stillsatisfying the DUE conditions. Therefore, it is usual to refer to uniqueness questions in termsof the induced DUE link ows. While SUE route ows do not generally su�er from the samelinear combination problem, for consistency we may also refer to uniqueness of SUE in the linkow domain. It transpires, then, that the discussion below for DUE has a parallel for SUE (see[5] for details), and so below we shall restrict attention to the simpler DUE case.Regarding DUE link ows, then, Beckmann et al. [6] established uniqueness of the DUE solutionfor separable problems - that is, when the travel cost on a link depends, in a continuous and6



strictly increasing way, on the ow on that link only. However, due to many factors such asjunction interactions, this requirement is too restrictive for many practical cases1. The mostgeneral known su�cient condition for uniqueness is that the vector of cost functions be strictlymonotone [3], though this still only permits mild interactions between links [7]. Indeed, simpleexamples are readily constructed to illustrate the potential for multiple equilibria under realisticmodel assumptions [8].The question of uniqueness of DUE/SUE solutions is therefore not a simple one to classify, andis critically controlled by the form of the cost-ow relationships. Partly because of this potentialfor multiple equilibria, a third plausibility property (in addition to existence and uniqueness) iscommonly considered, at least in the theoretical literature: stability. This term in fact covers avariety of subtly di�erent conditions, but here we shall be concerned with perturbation stability.This property involves characterizing the \attractiveness" of an equilibrium solution followinga perturbation to the ow levels, where the attractiveness is governed by certain reasonable,conservative rules regarding user behaviour. As is illustrated in the examples below, not allDUE are stable in this sense, and so the number of solutions can be reduced by restrictingattention only to stable DUE.Example 1 Consider a network consisting of a single inter-zonal movement, serving a demandof 2 ow units, connected by two parallel routes with cost functions:c1(f) = 3f1n + 1 c2(f) = 2f2 + 2 (3)where n > 0 is some positive constant. Note that the n has no signi�cance in the analysis tofollow, indeed any increasing function would su�ce; the n is only included as a suggestion ofgenerality. Regardless of the value of n, this separable problem has a unique DUE at (f1; f2) =(1; 1). Furthermore, if from this solution, � drivers (0 < � � 1) were to swap from route 1 toroute 2, then (when the costs are updated) these drivers would now experience a cost that isgreater than the (DUE) cost they experienced on their old route before they swapped. Hence,following any such perturbation, there would be an incentive to return back to their previouschoice. A similar incentive would arise for perturbations about the DUE involving swaps theother way, from route 2 to route 1. Therefore, in view of both types of perturbation, the DUE1Incidentally, it is noted in passing that when within-day dynamic tra�c interactions are additionally intro-duced, the resulting problem is inherently non-separable across time periods7



solution can be said to be `attractive' or `stable'.This latter attractiveness comment in the example above turns out to be a critical motivatingfactor in the work to follow in the present paper. It may be traced back to a de�nition ofDafermos and Sparrow [9], who referred to any DUE with such an attractiveness property (forany such pairwise route ow perturbation) as user-optimized. This property is interesting as itis suggestive of dynamical behaviour, namely it refers to how the tra�c system may behave indisequilibrium. It transpires that for any separable problem (i.e. any network of arbitrary sizewith separable and increasing link cost functions), the DUE is user-optimized [10]. However,for non-separable problems, the same is not necessarily true.Example 2 (Smith, [10]) Consider Example 1, but suppose instead that the cost functionshave the form: c1(f) = 3f1 + f2 + 1 c2(f) = 2f1 + f2 + 2: (4)The unique DUE is again (f1; f2) = (1; 1), but it is not user-optimized. For example, following aperturbation to (f1; f2) = (34 ; 54), then the drivers who have switched to route 2 now experiencea cost of 194 , which is less than the cost of 5 which they experienced on route 2 in equilibrium.So in this respect the equilibrium is not attractive, as these drivers do not appear to have anincentive to return to their old route. However, under this perturbation, the cost on route1 changes to 184 , and so if drivers compare the costs of their new and old routes both in theperturbed situation, there is an incentive for drivers to switch back to route 1. Heydecker [11]referred to this alternative attractiveness property as \equilibrated".Example 3 (Watling, [5]) Suppose now that the cost functions have the form:c1(f) = f1 + 3f2 + 1 c2(f) = 2f1 + f2 + 2: (5)This problem has three separated DUE solutions, at (f1; f2) = (2; 0), (1; 1) and (0; 2). Whilenone of these is either user-optimized or equilibrated, the two extremal equilibria satisfy theseconditions for perturbations within an open neighbourhood of each equilibrium (i.e. providedthe ow-swaps are not too large). Therefore, they may be classi�ed as locally attractive. How-ever, this is not the case for the DUE at (1; 1), even in a local sense. Therefore, it is di�cult tojustify (1,1) as a potential long-term persistent state of the system.8



Summary The appeal of conventional equilibrium analysis is often claimed to be its verysimplicity, in the sense that it does not concern itself with issues of dynamical adjustments anddisequilibrium. `[Equilibrium] has the great attraction that it is not necessary to consider howor indeed when decisions are taken' [12]. This claim may be substantiated by the perturbationanalysis of separable problems, since all such equilibria are automatically stable. However, fornon-separable problems, the same is not true: a point de�nition of equilibrium is not on itsown su�cient to identify sensible, attractive states. This is highly relevant as many practicalproblems are non-separable (e.g. interactions across links or across time periods). Althoughthe focus above has been on DUE examples, analogous concepts and examples exist for SUE[5]. The perturbation-type approaches conventionally used to classify stability of traditionaleconomic equilibria make implicit dynamical assumptions, meaning that the issue of dynamicaladjustments is concealed rather than avoided. Therefore, it is claimed, explicit dynamicalsystems are more sensible as a foundation for network modelling, as we shall begin to considerin the following section.3 Deterministic Dynamical SystemsDynamical system models are concerned with describing the evolution over all time of someprocess. They may be broadly classi�ed into deterministic and stochastic processes. In thissection we consider the former class of approaches, characterised by the fact that the evolution ofthe system is assumed to be precisely determined once the initial conditions are speci�ed. Smith[13], Friesz et al. [14] and Zhang and Nagurney [15] each proposed continuous time deterministicprocesses, in order to examine the evolution towards DUE. While these analyses provide somesuggestive information on the links between the dynamical and equilibrium approaches, theysu�er from two signi�cant limitations:1. They assume revisions to a route may be made in continuous time, whereas in realityrepeated trips are subject to activity constraints that mean they are not continuouslyadjustable in time (i.e. over days). Therefore, a more appropriate representation wouldseem to be a discrete time system, with each discrete time epoch representing a lag9



over which trips may be repeated, e.g. days or weekdays2. Critically, this allows aninterpretation to be given to the rate of adjustment, which Horowitz [16] showed to bea critical factor in both the transient and long-term evolution of the system. On theother hand, a continuous time analysis only allows identi�cation of equilibria that couldbe stable, given a su�ciently slow rate of adjustment (see [17] for further elaboration onthis issue).2. The study of dynamical approaches to DUE is inherently problematic, due its assumptionof a homogeneous population. In particular, some additional modelling device is neededto disperse drivers among alternative routes for a given inter-zonal movement, which isnot achieved naturally if they are all aiming to minimise the same travel cost by thesame adjustment process. This dispersion across routes is particularly critical given thatat the DUE state itself, these drivers need to be on minimal and equal cost routes. Inthe dynamical models cited above, this dispersion is e�ectively built into the process byde�ning the transient stage as something like a perturbed version of the DUE conditions.In terms of philosophy, then, these approaches could be said to be somewhat closer to theequilibrium paradigm, whereas in `pure' dynamical models the behavioural adjustmentsare the de�ning feature.We therefore turn attention to discrete time systems, and in particular those that have a rela-tionship with SUE3. Models of this kind were �rst considered for two-link networks by Horowitz[16] and Cantarella [18], and the analysis was more recently extended to general networks byCantarella and Cascetta [2] and Watling [17]. Horowitz in particular considered a range ofpossible `learning models', describing the way in which drivers may integrate accumulated pastknowledge with their most recent experience. These included models where the weight givento the most recent experience may vary during the dynamical process, perhaps decreasing inproportion to accumulation of information, or decreasing at a higher rate to reect habit/inertia.2Looking forward to the section on stochastic systems, if one also includes in such a discrete time system someprobabilistic mechanism by which a \no-travel" option is selected, potentially varying across the population, thenthere is no requirement that all trips actually be made at the same regular time interval.3In fact this approach is rather general, as it is well-known that DUE may be approximated to an arbitraryaccuracy by an SUE model, by allowing the perceptual dispersion across drivers to become very small; thiscorresponds to � ! 1 in the logit examples given later in the text. However, as we shall see, the perceptualdispersion itself has a critical role to play in the attractiveness of equilibrium.10



Here, for illustration, we consider a rather simpler form of system, following [17]:C(n) = �c(f (n�1)) + (1� �)C(n�1)fr(n) = qwpr(C(n)) (r 2 Rw; w = 1; 2; :::W ): (n = 1; 2; : : :) (6)where f (n) is the vector of day n route ows, C(n) is the vector of mean perceived route costsat the start of day n, and � > 0 is a constant weight (independent of n). In this model, drivers'mean perceptions of travel cost are built up through an exponential-smoothing style of learningprocess, which involves a weighted combination of the perceived and actual costs on the previousday. Then, based on these mean perceived costs, drivers choose between the alternative routeson any one day according to p(:). Note that since p(:) is a vector of proportions (rather thanprobabilities), the process de�ned is deterministic. This is commonly a source of confusion withthe SUE model which, in spite of its name, is essentially a deterministic model.So-called point equilibria of such a system occur when �f (n);C(n)� = �f (n�1);C(n�1)�, andthese are readily shown to be given by the SUE solutions. However, this does not guaranteethat an SUE solution is in any sense `attractive' or `stable'. To study this issue, the �rst stepis to examine the nature of the dynamical system in the neighbourhood of an equilibrium.Provided the system is su�ciently smooth to be approximated by a Taylor series expansion inthe neighbourhood of the equilibrium in question, this may be achieved by examining the systemJacobian. Although the two-link example below avoids many of the mathematical complexitiesassociated with such an analysis, it at least allows an illustration of a number of the key issues.Example 4 The notation is simpli�ed somewhat by considering a network with a single move-ment of demand 1 unit. Now, by substituting the second expression in the �rst in system (6),we obtain a system described purely in terms of the evolution of mean perceived route costs:C(n) = �c �p �C(n�1)��+ (1� �)C(n�1) (n = 1; 2; :::): (7)Let us suppose further that the network consists of just two parallel links/routes, with identicalcost functions: cr(f) = a+ bfrd (r = 1; 2) (8)where a, b > 0 and d > 0 are link-independent parameters. Suppose that the route choicefractions at given route costs u are made according to a logit model with dispersion parameter11



� > 0, so that: p1(u) = exp(��u1)exp(��u1) + exp(��u2) = [1 + exp(�(u1 � u2))]�1 (9)p2(u) = [1 + exp(��(u1 � u2))]�1 : (10)In view of the fact that choices depend only on the di�erence in route cost, the system abovemay be further simpli�ed to a one-dimensional state variable, ~C(n) = C1(n) � C2(n):~C(n) = g � ~C(n�1)� (n = 1; 2; :::) (11)where g(x) = �bn(1 + exp(�x))�d � (1 + exp(��x))�do+ (1� �)x : (12)Now by the symmetry of the network, the unique SUE clearly occurs at equal cost on the twoalternative routes, i.e. at ~C = 0. This is also the only point equilibrium of the dynamicalsystem. To investigate the attractiveness of this equilibrium, we linearise the system in theneighbourhood of ~C = 0. Noting that g(0) = 0 and di�erentiating g yields, after simpli�cation,a locally linearised system of:~C(n) ' g(0)+ g0(0) ~C(n�1) = h1� �(2�ddb� + 1)i ~C(n�1) : (13)Clearly, such a sequence will approach 0 from arbitrary starting conditions if and only if���1� �(2�ddb� + 1)��� < 1, i.e. if and only if 0 < � < 22�ddb�+1 . Thus, increasing the steepnessof the cost-ow functions (through increasing b or d) or decreasing the dispersion in perceivedcosts (through increasing �) will tend to decrease the range of � values for which the equilibriumis attractive. This is a necessary and su�cient condition for the linearised system in a `global'sense (i.e. for all initial conditions), but will also apply to the original non-linear system, thoughnow only as a `local' condition (within some unspeci�ed neighbourhood of the equilibrium inquestion).In particular, with d = 1, � = 2 and b = 3, this condition implies that the equilibrium is(locally) stable if 0 < � < 12 , and unstable otherwise. This issue is readily appreciated by anumerical evaluation of system (11)/(12). For example, with � = 14 and an initial cost di�erence12



of ~C(0) = 5, then to three decimal place accuracy the subsequent cost di�erences are: 3.000,1.504, 0.448, 0.021, 0.000. That is to say, the equilibrium solution (at a cost di�erence of zero)is rapidly approached after only a small number of days. On the other hand, with � = 34 , theneven when initiated with an extremely small (but non-zero) cost di�erence, the system rapidlyappears to diverge. For example, with ~C(0) = 0:1, the subsequent cost di�erences are: �0:199,0:393, �0:743, 1:233, �1:590, 1:673, �1:679, 1:679, �1:679, ... etc. Indeed, it is relativelyeasily veri�ed that, unless initialised at exactly ~C(0) = 0, then the system is always ultimatelyattracted towards a periodic motion, whereby the cost di�erence alternates between 1:679 and�1:679. In terms of the original system (6), this relates to a \ip-opping" ow behaviour,whereby the route ow split is alternately 78%/22% and 22%/78%.The example above illustrates how the attractiveness of equilibrium is controlled by the rateof dynamical adjustment in drivers' learning (� in the model above), the steepness of the cost-ow relationships, and the degree of heterogeneity in drivers' route selections (� in the modelabove). These are quite general properties, not speci�c to the example above. In generalnetworks, analysis of the locally linearised system yields the necessary and su�cient conditionthat the (generally complex) eigen-values of the Jacobian, evaluated at equilibrium, are insidethe unit circle. Fortunately, explicit computation of the eigen-values can be avoided for manyproblems (see [17] for the details).In general, where a particular SUE is a point equilibrium of some dynamical system, there aremany potential links between the SUE and dynamical approaches. It may be that this SUEis unstable in an analogous sense to that found in the perturbation Examples 2 and 3. Theidenti�cation of equilibria that are intrinsically unstable, regardless of the rate of adjustment ofthe system (e.g. regardless of � > 0 above), may in fact be achieved by the more straightforwardanalysis of a continuous time approximation to the underlying discrete time system (e.g. see[17]). In such cases, where a given SUE is unstable, other SUE that are stable may exist.Alternatively (as in Example 4 above), it may be that a given SUE is stable for su�cientlyslow rates of adjustment (i.e. su�ciently small � in the model above), but for larger values isattracted to a convergent behaviour that is itself dynamic, such as periodic or aperiodic motion.13



All of these properties may, however, be `local' in the sense of applying to a speci�c range ofinitial conditions. In the case of a point equilibrium, determined to be locally stable, an estimatemay subsequently be made of the range of initial conditions for which the stability is valid, byreturning to the original non-linear system. This range, termed a domain of attraction, may beestimated by the construction of a so-called Lyapunov function: in brief, a scalar function thatdecreases as equilibrium is approached. Although the construction of such functions in not initself trivial, there do exist systematic procedures that result in Lyapunov functions for at leasta fairly wide range of initial conditions, if not the entire state-space.Example 5 The example here was �rst considered by Cascetta [19]. It consists of a singlemovement with two parallel routes serving a demand of 10 units, with a logit choice rule (9)with � = 0:3, and cost functions:c1(f) = 0:7f1 + 7 (14)c2(f) = ( �8:464797f2 + 31:9296 (f2 < 3:132)23f2 + 103 (f2 � 3:132) (15)A signi�cant feature of this example is that the cost function on link/route 2 has both decreasingand increasing parts. This feature may seem unusual, but there are circumstances where itmay indeed arise in practice. Morlok [20] describes such a case, arising from a responsivepublic transport service, where an increase in service frequency that is prompted by an increasein demand, can lead to a local decrease in user costs. A similar feature arise in responsivetra�c signal systems, which apportion junction green-times according to some strategy basedon the ows on the junction approaches. Perhaps most signi�cantly, however, this should beconsidered as an example of a problem that violates the assumption of separable, increasinglink cost functions. In this respect, it is not signi�cant that the example considered violatesthe `increasing' requirement, as opposed to the separability requirement. Indeed, qualitativelysimilar system behaviour may arise in strongly non-separable problems, arising, for example,from junction interactions or mixed mode operations [8].The example above may be shown to have three separated SUE solutions, at ow levels on route1 of approximately f1 = 3:60; 8:40 and 9:95 (and corresponding cost di�erences of c1 � c2 =1:92; � 5:54 and � 17:53). Now let us consider dynamical system (6), and for illustration14



�x attention on a particular value of the learning weight, � = 0:1. Adopting the same kind ofanalysis as that used in Example 4, and linearising in turn in the neighbourhood of each SUE, itmay be shown that the SUE at f1 = 3:60 and 9:95 are locally stable, and the SUE at f1 = 8:40is locally unstable. Therefore, we know that at least if we initialise system (6) \su�cientlyclose to" either of the locally stable SUE, then the system will ultimately converge to thatSUE. However, this analysis does not tell us what \su�ciently close to" means in practice: i.e.given some initial condition, which of the SUE (if any) will be attained? For example, let ussuppose that the system is initialised at ow levels of (f1; f2) = (6; 4), which equates to aninitial cost di�erence of ~C(0) = 5:2.Writing our system in the form (11), then:g(x) = � (c1(f1(x); f2(x))� c2(f1(x); f2(x))) + (1� �)x (16)where f1(x) = 10 (1 + exp(�x))�1 f2(x) = 10� f1(x) : (17)Now, locally-valid Lyapunov functions may be deduced from each of the linearisations of thestable equilibria. In this simple case, these are e�ectively just VSUE1(x) = (x � 1:92)2 andVSUE2(x) = (x+ 17:53)2 for the SUE at cost di�erences of 1.92 and �17:53 respectively. Thesemay then be applied to the underlying non-linear system. If x� is the equilibrium in question,and if S is a bounded subset of the state-space containing x�, then if for all x 2 S (x 6= x�),V (g(x))�V (x) < 0 then S is a domain of attraction for x�. That is to say, given any initialisationof the system within S, the system will converge to the equilibrium x�.Figure 1 illustrates the Lyapunov di�erence VSUE1(g(x))� VSUE1(x) in the neighbourhood ofthe SUE at a cost di�erence x = 1:92. Note that a x = 1:92, the di�erence is exactly zero, sinceby de�nition of a point equilibrium g(1:92) = 1:92. For x < 1:92, the di�erence is negativeuntil around x = �0:18, and for x > 1:92 the di�erence is always negative (continuing o� theright-hand edge of the graph). The subspace �0:18 < x <1 is therefore a domain of attractionfor the SUE at x = 1:92. Translated into the ow-space, this implies that if the initial ow onroute 1 is in the range 0 < f1(0) < 5:13, then the system will ultimately converge to the SUEat f1 = 3:60. Figure 2 illustrates the corresponding graph for VSUE2(g(x))� VSUE2(x), and it15



is similarly seen that �1 < x < �5:54 is a domain of attraction for the SUE at x = �17:53.(Equivalently in the ow-space, 8:40 < f1(0) < 10 is a domain of attraction for the SUE atf1 = 9:95.) Certainly this is a maximal domain, since it stretches to the unstable equilibriumwhere g(�5:54) = �5:54, and so this must certainly act as a \dividing line". In contrast, inFigure 1, we have not attained this dividing line, and so have been unable to determine theconvergent behaviour of the system for �5:54 < x < �0:18 (i.e. for 5:13 < f1(0) < 8:40). Thisshould not be confused, however, with evidence of non-convergent behaviour. It is undoubtedlydue to a break-down in the local linearisation implicit in the de�nition of VSUE1, likely causedby the discontinuity in the derivative of c2(f).FIGURE 1 HEREFIGURE 2 HERETypically, as in the example above, a Lyapunov analysis will be successful in classifying theconvergent behaviour of a system for a rather wide range of initial conditions. In networks of ageneral size, one again is able to obtain a locally-valid, (scalar) Lyapunov function of quadraticform V (x) = (x � x�)TP(x� x�). Determining P now requires a little more algebraic e�ort,however, as one must solve the matrix equation ATPA � P = �Q, where A is the locally-evaluated system Jacobian, and Q is an arbitrary matrix of positive de�nite form. For thedetails the reader is referred to [17].Summary Explicit discrete time, dynamical systems may be speci�ed which link naturally toconventional models of SUE, in the sense that the SUE are point equilibria of the dynamicalsystem. A key component of such systems is a day-to-day learning model, describing how driversassimilate previous perceptions of travel cost with their experiences, in order to form updatedperceptions. The link to SUE allows examination of the question of whether certain dynamicaladjustments in behaviour converge to equilibrium, which can be achieved by a linearisation ofthe dynamics in the neighbourhood of equilibrium. In contrast to the perturbation analyses ofsection 2, it is seen that with discrete time dynamical models, convergence to a point equilibriummay be crucially a�ected by the rate of adjustment. This rate is in turn a�ected by variousparameters of the model, such as those that control the steepness of the cost-ow curves,the dispersion in driver preferences, and the nature of the learning process. When a pointequilibrium is not attained, there a number of other possible \convergent" behaviours, e.g.16



periodic motion. Lyapunov functions may be used to extend the local analysis of convergence,to a wider analysis across the state space of initial conditions.4 Stochastic Dynamical Systems4.1 Self-Consistent Stochastic EquilibriaEven in circumstances most conducive to the formation and retention of equilibrium in a realworld tra�c network, it is hard to believe that the tra�c ow pattern (during some speci�c timeperiod within the day) would remain absolutely unchanged from day to day. Rather, one wouldexpect some kind of haphazard variation resulting from the idiosyncrasies of driver behaviour.A natural way to account for these uctuations is by modelling within a stochastic framework.Equilibrium stochastic assignment models can be de�ned at a microscopic (individual traveller)level in terms of route choice probabilities, represented as functions of route costs. This im-plies that macroscopic properties (e.g. ows on particular road links) will be characterised byprobability distributions, rather than by �xed points.Daganoz and She� [4] recognised some of the advantages of representing driver route choicewithin a stochastic framework, using such an approach to motivate their de�nition of SUE.However, the microscopic random e�ects in their model did not propagate through to themacroscopic level. Instead, probability became replaced by proportion, via a limiting argumentas the travel demand becomes in�nite, and a �xed point equilibrium solution resulted. Withsuch comments in mind, there have been a number of recent attempts to modify Daganzo andShe�'s SUE in order to provide a probability distribution at the macroscopic level: speci�cally,on the space of all feasible link ows.In one such modi�cation, Hazelton [21] highlighted some of the di�culties inherent in developingstochastic equilibrium models in the kind of `self-consistent' process-free way in which DUE isde�ned. The crux of the problem is as follows. An equilibrium probability distribution onthe set of route choices should (in a DUE type manner) be de�ned in terms of route travelcosts, but these are in turn dependent on route ows and hence route choices. This is a logicalshort circuit, since in general the probability of an event cannot depend on whether or not17



that event has taken place. Hazelton found a way of overcoming this di�culty, leading to hisso called Conditional SUE. However, Conditional SUE lacks some of the elegant simplicity ofother equilibrium assignment methods.An alternative modi�cation to SUE, proposed by Watling [22], was based on the premise thatdrivers experiences represent a large sample of independent, identically distributed (i.i.d.) travelcost variables, resulting from i.i.d. ow variables. This allowed the derivation of �xed pointconditions on moments of the equilibrium ow probability distribution. In the so-called secondorder SUE model, this equates to equilibrating the mean ow vector and covariance matrix.A disadvantage of this approach is, however, that it is dependent on driver experiences beingvery large and uncorrelated; it is does not appear to be possible to accommodate more generallearning models within such a framework.In fact, the problem in de�ning general stochastic equilibrium models can be completely removedby introducing a time dimension. There is obviously no logical di�culty in having route choiceprobabilities on day n depending on costs generated by route ows on day n � 1 and earlier.This suggests that it is far more natural to think in terms of stochastic assignment processesevolving in time rather than look at `self consistent' equilibria directly. Nonetheless, equilibriumremains an important concept for stochastic assignment models, as we shall see.4.2 Stochastic Process Tra�c Assignment ModelOne such class of dynamic stochastic assignment model was introduced by Cascetta [19]. Heproposed modelling the day-to-day evolution of a tra�c system as a type of Markov process. Insuch models the route choice probabilities at day n are functions of the route (or equivalentlylink) costs on days n � 1; n � 2; : : : ; n � m for some �nite integer m, known as the memorylength. In fact, this can be generalised to cases where route ows on day n depend on both routecosts and route ows on days in the �nite past (see [2], [23] and [24]). However, for illustrativepurposes we shall here restrict attention to the simpler case, where there is a dependence onlyon the past costs.It is then usual to de�ne the route choice probabilities implicitly as follows. A typical driver18



has his or her own perceived disutility for each route, composed of a measured disutility (adeterministic function of route costs during the previous m days) and a traveller-speci�c randomvariable: viz., �u(n)ir = u(n�1)r + �(n)ir (18)where u(n�1)r is the measured disutility for route r and �(n)ir is a person-speci�c random variablerelating to driver i's perception of the attractiveness of route r. The dependence structure ofthese random terms deserves explicit mention. It is assumed that �(n)i1r is idependent of �(n)i2r(i.e. no dependence between drivers), but �(n)ir1 and �(n)ir2 may be dependent. (Such inter-routedependence is natural for two routes which share a large number of common links. This type ofcorrelation structure can be generated in practice by de�ning � as the sum of link based randomvariables.) For any given driver we assume day-to-day independence; i.e. �(n1)ir is independent of�(n2)ir . The temporal independence assumption is somewhat unrealistic, in that one might expectthat a given traveller's personal preference for a particular route would persist from day to day.(Such a habitual preference would be represented by a sequence of �'s with positive correlationfor each route.) This lack of habitual behaviour in Markov process assignment models tends tolead to a rather greater day-to-day variation in ow patterns than occurs in reality. We do notpursue this issue further in this paper, but note that [23] and [24] describe an extension to thebasic Markov assignment model for overcoming this problem.A common form for the measured disutility is as a linear �lter of past route costs:u(n�1) = mXj=1wjc(f (n�j)): (19)Many forms for the weights w1; w2; : : : ; wn�m are clearly possible (e.g. see [16]), but typicallythey are assumed to be a decreasing sequence summing to unity. On day n driver i will thentake feasible route r with minimum personal disutility �u(n)ir , implying a vector of probabilitiesp(u) on the set of feasible routes. For example, if �(n)ir is Gumbel distributed, then these impliedprobabilities can be written down in closed form, giving a logit route choice model. On the otherhand, if the random components are multivariate Normal, then a probit model arises; whilep(u) is not then available in closed form, the general approach is equally valid. Whatever thedistribution of �(n)ir , the number of drivers taking each possible route for inter-zonal movementk on day n is distributed conditionally asf (n)[k] ju(n�1) � Multinomial �qk ;p[k](u(n�1))� ; (20)19



where p[k] is the set of route choice probabilities and f[k] the set of ows for routes in Rk.Example 6 Consider a network with a single inter-zonal movement serviced by two non-overlapping routes. Suppose that there is a travel demand of q = 2 drivers so that the systemhas three states (corresponding to 0, 1 and 2 drivers respectively using the �rst route). Let theroute cost functions be cr(fr) = 10 + 5fr r = 1; 2:Suppose that drivers have a memory length of m = 1 day so that ur = cr(fr), and that a logitroute choice model is used:pr(ur) = e�0:1cre�0:1c1 + e�0:1c2 = 11 + efr�1 :Then the conditional probability distribution for the number of drivers taking route 1 on dayn is binomial, de�ned byP (f (n)1 = jjf (n�1)1 = i) = 2!j!(2� j)!�ji (1� �i)2�j i; j 2 f0; 1; 2gwhere simple calculations show that�0 = p1(10) = 0:73 �1 = p1(15) = 0:50 �2 = p1(20) = 0:27 :These probabilities can be neatly set out in a transition matrix M, whose (i; j)th element isMij = P (f (n)1 = jjf (n�1)1 = i). We then haveM = 0B@ 0:07 0:40 0:530:25 0:50 0:250:53 0:40 0:07 1CA :This transition matrix describes the dynamics of the system, namely de�ning the probabilitiesthat govern how, given the state of the system on day n � 1, it evolves into its state on dayn. More generally, when m > 1, we will need to consider transitions from the sequence of daysn� 1; n� 2; :::; n�m into day n, but the general approach presented here is still quite valid.While stochastic assignment models were motivated above by the need to represent haphazardday-to-day variation, Markov models also incorporate systematic variation, akin to that seenin the deterministic assignment processes described in section 3. In other words, day-to-dayvariation in Markov models can be decomposed into: (i) a trend, whereby routes with highmeasured disutility on day n� 1 have low probability of being chosen by any given traveller on20



day n, and (ii) haphazard uctuation about the trend, described by (20). In Example 6, forinstance, if route 1 is used by both travellers on day n � 1 and is therefore expensive, there isa trend towards route 2 on day n. Nonetheless, random binomial variation can result in bothtravellers remaining on route 1, although this event has a probability of only 0.07.4.3 Equilibrium Distributions for Markov Assignment ModelsConsider a road network that is subjected to a major change { the closure of an important roadlink or the opening of a new tunnel, for example. One might well expect major uctuationsin the tra�c pattern over some initial period of days, gradually settling down to some kind ofequilibrium. Both the transitional and equilibrium behaviour of the tra�c system would be ofconsiderable interest to a transport planner, and both can be modelled using Markov assignmentprocesses. It can be shown that, under quite general conditions { which are certainly satis�edif the random terms �ir can take values on an in�nite interval { a Markov assignment processwill converge to a unique equilibrium probability distribution. This equilibrium distribution, �say, satis�es the stationary condition that f (n�1) � � implies f (n) � � (where � denotes `isdistributed as'). A point that is worth emphasising here is that the present notion of equilibriumis not inconsistent with persistent variations in tra�c conditions. We are e�ectively requiringthat the variations settle down to some typical long-term pattern.Example 7 The equilibrium distribution for the process in Example 6 satis�es the standardequilibrium condition �T = �TM;where superscript T denotes a transpose. The solution in this case is� = (0:28; 0:44; 0:28)T:It is interesting to consider how this equilibrium distribution would di�er were the logit dis-persion parameter, set at � = 0:1 in Example 6, altered. For example, if this parameter were� = 0:0001, indicating great insensitivity to changes in travel cost, the equilibrium distributionwould be � = (0:25; 0:50; 0:25)T:21



This is (to 3 decimal places) identical to the equilibrium distribution that would be obtainedif travellers chose their routes completely at random, without taking route costs into account.On the other hand, were � set at 10, indicating great sensitivity to changes in cost, then theequilibrium distribution would be � = (0:50; 0:00; 0:50)T:The bimodal appearance of this last distribution contrasts sharply with the unimodality of the�rst two equilibrium distributions. It is worth noting obvious parallels here with the stabilityanalysis of deterministic dynamical systems, described in section 3 (see particularly Example4), where � was again seen to play a major role. Indeed, as � ! 1, the stochastic processapproaches a deterministic system; for the � = 10 case above, simulations of the stochastic pro-cess would exhibit a near-periodic behaviour (alternating between states 0 and 2 on successivedays).Equilibrium distributions therefore arise naturally from the application of dynamic stochasticassignment models. A host of properties of the assignment process can be obtained fromthese distributions { equilibrium mean link ows, equilibrium variances of link ows, and evenequilibrium correlations between ows on di�erent links. However, equilibrium distributions donot tell the whole story, in the sense that many assignment processes with markedly di�erentdynamics may share the same equilibrium distribution.Example 8 Consider Example 6, but with route costsc(fr) = 10� 5fr r = 1; 2:Although this is an arti�cial example, it is noted that realistic cases exist where such decreasingcost functions can occur (see the comments made in the introduction to Example 5). It is easyto show that the transition matrix for this new process isM = 0B@ 0:53 0:40 0:070:25 0:50 0:250:07 0:40 0:53 1CA :In this case travellers tend to prefer the route which was the more heavily used on the previousday. This is in contrast to Example 6 where drivers tended to choose the more lightly used routeon the previous day. A simulation of the ow on link 1 over a sequence of 50 days illustrates the22



qualitative di�erence that exists in the dynamics of Example 6 and the present case, as shownin Figures 3 and 4. FIGURE 3 HEREFIGURE 4 HEREDespite the di�erent dynamics, the equilibrium distribution in the current Example is� = (0:28; 0:44; 0:28)T;identical to that from Example 6.The fact a stochastic assignment process is not uniquely characterised by its stationary distri-bution has analogies in the deterministic setting, where it is possible to de�ne a host of di�erentdynamical processes all converging to the same �xed point. However, in general when the mem-ory length m > 1, there is a subtle distinction in the sense that the di�erence may be not onlyin the transitional phase of the process, but may also a�ect equilibrium properties. This ismanifested in autocorrelated ows over sequences of days, which persist even in equilibrium.In this more general setting, the marginal equilibrium probability distribution of the networkows on any one day (while identical over days in equilibrium) only tells part of the story.4.4 Computing Properties of Markov Assignment ModelsA theoretical derivation of the properties of Markovian assignment models is usually imprac-ticable for `real sized' examples. Fortunately these processes are easily simulated. However,simulation results must be interpreted with care. Consider the problem of modelling the evo-lution of road tra�c ow during some speci�c time period on a sequence of �ve days. A singlesimulation run will be subject to the haphazard binomial variation inherent in Markovian mod-els, and will therefore provide only one possible scenario. To obtain a more complete picture itis necessary to implement many parallel simulations. From these parallel simulations one cancompute properties of interest, such as the mean predicted link ows on day 5 (as the meanof the simulations at that time point) or 95% prediction intervals (obtained from the `central'95% of observed simulations).When interest centres on the long-term behaviour of a road tra�c system, the equilibrium23



distribution of a Markovian assignment model is an important tool. However, computation ofthis distribution is far from straightforward. In principle its properties can be derived to anarbitrary degree of accuracy by a su�ciently long run of simulated ows. In practice there aremany di�culties, including the following.1. The simulation process will only generate tra�c ows from the equilibrium distributiononce the simulation has converged to stochastic equilibrium. This means that a numberof days at the beginning of the simulation must be discarded as a `burn-in' period. Howlong should this burn-in period be?2. The simulations will exhibit serial correlation because of the Markovian structure. Thisshould be taken into account when deriving estimates of equilibrium properties.Both these issues in relation to general Markov processes have received considerable attentionin the statistical literature because of the recent popularity of Markov chain Monte Carlo(MCMC) methods of Bayesian inference. See [25], for example. A number of methodologies foraddressing the �rst issue have been suggested (see [26] for instance), but it is still regarded as adi�cult problem. Even when one is certain that convergence to stochastic equilibrium has beenachieved, the second issue must be addressed. The serial correlation in the simulated outputwill mean that the precision of estimators will not necessarily be well represented by `text book'standard errors (assuming independent and identically distributed data). For example, supposethat one is estimating the mean ow on a particular link for which the equilibrium link owvariance is �2. Then the standard error in estimating the mean ow from N simulated dayswould be �=pN (the `text book' value) if the simulations were independent, but will actuallybe considerable higher than this if the serial correlation in the data is positive. This impliesthat the requisite number of simulated days to provide a speci�c precision in estimation maybe signi�cantly larger than one might expect (based upon text book results for independentdata). See [27] for further comments.In fact, there are particular cases relating to the tra�c assignment application where not onlylack of precision is a problem, but also bias in equilibrium estimates may occur over longsimulation runs. A particular case occurs when in a deterministic setting there would be24



multiple attractors (i.e. multiple stable point equilibria), such as Example 5 considered insection 3. As shown in [8], when applied in a stochastic process setting with a memory lengthm = 1, the true equilibrium distribution may be shown to be bimodal, with peaks focusedin the vicinity of the two stable SUE solutions. A typical Monte Carlo simulation of such aprocess is illustrated in Figure 5. The equilibrium behaviour is seen to be characterised bystable periods in the vicinity of a stable SUE, with occasional transitions between SUE. Thesetransitions between apparently stable regimes are an essential part of the process, and are whatallow the bimodal distribution to be estimated. However, as m is increased such transitionsoccur much more rarely, so that (for example) with m = 10 simulations over many thousands ofdays are likely to see no transitions. Instead any single simulation will typically remain withinthe vicinity of the initial condition for extremely long periods. However, this does not give atrue reection of the equilibrium distribution, which is still bimodal in nature.FIGURE 5 HERESuch di�culties with the interpretation of stochastic process simulations are not restricted to(what might be claimed to be) pathological cases with multiple point equilibria. More generallyin the authors' experience very long simulation runs (e.g. tens of thousands of days) can berequired to obtain estimates of equilibrium properties of acceptable precision. The appeal ofsimulation, in terms of the simplicity of replicating dynamical process, needs therefore to bebalanced against the di�culty of reliably estimating equilibrium properties from simulation.An alternative to simulation is to apply approximation methods. Davis and Nihan [28] wereable to elegantly demonstrate that the evolution of a Markov assignment model with verylarge demand could be well approximated by a particular Gaussian multivariate autoregressiveprocess. In principle the stationary mean vector and covariance matrix of this process can beused as summary statistics for the equilibrium distribution. However, the covariance matrixis only available as the solution to a high dimensional �xed point problem which will itself bedi�cult to solve for large networks. Hazelton and Watling [29] were able to obtain a muchsimpler expression for the equilibrium covariance matrix for Markov processes employing linearlearning �lters with exponentially decreasing weights. Nonetheless, there remains considerablescope for further research into such approximation methods for equilibrium analysis.Summary The problem of representing both dynamical adjustments and general variability25



may be addressed through a stochastic process model, in which the travel choices on day ndepend probabilistically on experiences in day n�1 and earlier. In such a model, the dynamicsare described by a transition matrix of probabilities, and \equilibrium" is now concerned with anequilibrium probability distribution of the possible network ow states. While simulating suchprocesses is in principle straightforward, estimating reliable characteristics from them is notnecessarily so simple, particularly for the model-user. The scope exists for further explorationof approximation methods that avoid the need for simulation.5 ConclusionThe assignment models discussed have been developed over a period of almost 50 years, and havebeen motivated by a variety of precepts for driver behaviour. Nonetheless, they are inter-relatedthrough various limiting results. Starting with Markov assignment models { arguably the mostintricate of the models considered { it can be shown that the mean equilibrium ow of any suchmodel (satisfying certain regularity conditions) will converge to SUE as the demand becomeslarge. Furthermore, the day-to-day evolution of the ow pattern in a Markov assignment processwill converge to a deterministic dynamical model as drivers perceived costs become increasinglyhomogeneous (for example, as the dispersion parameter tends to in�nity in a logit based model).Economic equilibria, such as SUE, may in turn be linked to deterministic dynamical systems, aslocally stable �xed points of the system. The range of initial conditions (\domain of attraction")for which an SUE is a convergent limit of such dynamics may subsequently be estimated by ananalysis of the Lyapunov kind.This work suggests that much can be learnt from the relationships between these apparentlycompeting approaches. One particular example that is worth highlighting is the rapidly in-creasing interest in computer micro-simulation approaches, across the full range of transportmodelling. Such approaches are often regarded simply as a competing ideology to the algebraic-style equilibrium models, with apparently little potential for cross-fertilisation of ideas. This isentirely misleading. For the �rst part, micro-simulation is e�ectively only a solution techniquefor estimating some (often poorly de�ned) underlying characteristic. Linking such approachesto the theory of Markov processes therefore provides the potential for a more rigorous, scien-26
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Figure CaptionsFIGURE 1: Lyapunov di�erence for Example 5, in neighbourhood of equilibrium at x = 1:92.FIGURE 2: Lyapunov di�erence for Example 5, in neighbourhood of equilibrium at x = �17:53.FIGURE 3: Simulated ows on route 1 using Example 6 cost functions.FIGURE 4: Simulated ows on route 1 using Example 8 cost functions.FIGURE 5: Simulated ows on route 1 for Example 5, based on stochastic process model withm = 1.
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