
This is a repository copy of Selecting Highly Efficient Sets of Subdomains for Mutation 
Adequacy.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/81418/

Version: Submitted Version

Proceedings Paper:
Patrick, M., Alexander, R. orcid.org/0000-0003-3818-0310, Oriol, M. et al. (1 more author) 
(2013) Selecting Highly Efficient Sets of Subdomains for Mutation Adequacy. In: Software 
Engineering Conference (APSEC, 2013 20th Asia-Pacific). , pp. 91-98. 

https://doi.org/10.1109/APSEC.2013.23

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Selecting Highly Efficient Sets of Subdomains for

Mutation Adequacy

Matthew Patrick∗, Rob Alexander∗, Manuel Oriol∗† and John A. Clark∗

∗University of York

Heslington, York

United Kingdom

{mtp, rda, manuel, jac}@cs.york.ac.uk

†Industrial Software Systems

ABB Corporate Research

Baden-Dättwil, Switzerland

manuel.oriol@ch.abb.com

Abstract—Test selection techniques are used to reduce the hu-
man effort involved in software testing. Most research focusses on
selecting efficient sets of test cases according to various coverage
criteria for directed testing. We introduce a new technique to
select efficient sets of subdomains from which new test cases
can be sampled at random to achieve a high mutation score.
We first present a technique for evolving multiple subdomains,
each of which target a different group of mutants. The evolved
subdomains are shown to achieve an average 160% improvement
in mutation score compared to random testing with six real world
Java programs. We then present a technique for selecting sets of
the evolved subdomains to reduce the human effort involved in
evaluating sampled test cases without reducing their fault finding
effectiveness. This technique significantly reduces the number
of subdomains for four of the six programs with a negligible
difference in mutation score.

I. INTRODUCTION

Subdomains are used to define the range from which test

input values are sampled. It is important to identify efficient

subdomains of input, so as to reduce the human oracle cost and

provide a starting point for regression testing. Without detailed

analysis, it is difficult to determine the best subdomains to use.

For example, Andrews et al. [1] report that the subdomain

(0..31) gave the best results in testing a dictionary, but it

is not clear how they discovered this ‘magic number’. The

TriTyp program has three integer inputs (a, b and c) and its

branches contain conditions such as a=b=c. Michael et al. [2]

selected over 8000 test cases from the entire input domain, but

exercised less than half of the branches. Duran [3] selected

25 test cases from the subdomains ((1..5), (1..5), (1..5)) and

exercised all the branches. This paper introduces a technique

for finding an efficient set of subdomains automatically.

We employ mutation adequacy as our selection criterion

because mutants have been shown to be representative of

real faults in software [4]. Random testing can be applied

to generate test cases from the evolved subdomains with

minimal computational expense [3]. Experienced practitioners

perceive random testing as ineffective because of its inability

to handle boundary conditions [5]. Yet with carefully selected

subdomains, it is possible to target mutants more efficiently.

Test cases sampled from within the subdomains are able

to find faults more quickly. As a result, subdomain testing

requires fewer test cases than is typical for random testing,

thus reducing the human effort required to create test oracles.

Previously, we investigated evolving a single subdomain

of test input [6] and multiple subdomains targeted at killing

specific sets of mutants [7]. Both techniques perform better

than generating test cases at random from within an arbitrary

interval (0..100). Sampling test cases from multiple subdo-

mains achieved on average 33% higher mutation score than

the single subdomain approach, but required a large number

of subdomains for some programs [7]. We found that reducing

the number of test cases we sampled from a single subdomain

increased test suite efficiency without greatly reducing perfor-

mance [6]. In this paper, we will explore whether reducing the

number of subdomains has a similar effect.

The key to selecting an efficient set of subdomains is to

find those that complement each other in killing mutants. Our

optimisation process initially trains subdomains against the

complete set of mutants. This means that the first subdomains

to be identified are reasonably good at killing a large number

of mutants. Later in the optimisation process, subdomains are

trained against mutants for which no effective subdomain has

yet been found. These subdomains are evolved to become

highly efficient at killing a smaller number of mutants. An

efficient set of subdomains should provide a balance between

killing a large number of mutants with a single subdomain and

having the specificity required for difficult to kill mutants.

In this paper, we show that it is possible to maintain a

high mutation score using fewer test cases, sampled from a

smaller more efficient set of subdomains. This is achieved by

means of a new sequential technique for subdomain reduction.

Subdomains are added and removed one at a time until the

highest possible mutation score is achieved for each set size

(from a single subdomain up to the complete set). In this way,

it is possible to identify the smallest set of subdomains that

have a similar fault finding capability to the complete set. From

the point of view of a human tester, it requires less time to

evaluate test cases sampled from a smaller set of subdomains.

The rest of this paper is organised as follows. Section II

gives background information relevant to subdomain optimi-

sation and Section III describes the process we use to optimise

subdomains. Section IV explains the methodology we use to

select sets of subdomains. Section V details our experiments

and Section VI presents the results. Section VII surveys the

related work. Section VIII summarises our conclusions and

Section IX makes suggestions for further work.



II. BACKGROUND

We use mutation analysis to evaluate subdomain effec-

tiveness. An Evolution Strategy (CMA-ES) is employed to

identify sets of subdomains capable of finding artificial faults.

A. Mutation Analysis

Mutation analysis uses artificial faults to make quantifiable

predictions of the proportion of real faults that will be found by

a test suite [8]. Predictions based upon real faults may indicate

effective test data or poorly written software. Mutation analysis

has been shown to be more stringent than other testing criteria

and a good predictor of real fault finding capability [9][4].

We artificially introduce small changes in syntax one at a

time into the program code (see Figure 1). When test data

has been found that causes a mutant to behave differently

to the original program, we say the mutant has been killed.

Some mutants cannot be killed because they are semantically

equivalent to the original program. The proportion of non-

equivalent mutants killed by a test suite is known as its

mutation score. A given testing approach can be considered

effective if it is able to achieve a high mutation score.

Fig. 1. Examples of three syntactic mutations

B. Evolution Strategies

Evolution strategies are optimisation algorithms inspired by

the process of adaptation in nature [10]. In contrast to some

genetic algorithms, evolution strategies emphasise mutation

over recombination [10]. New candidate solutions are pro-

duced by applying a (typically Gaussian) update function (F )

to existing sets of values, x′

1 . . . x
′

n = F (x1 . . . xn). Evolution

strategies are suited to fine tuning numerical properties, as

disruption from crossover is largely avoided. Amongst many

other applications, they have been used to optimise image

compression [11], network design [12] and web crawling [13].

C. CMA-ES

The evolution strategy applied in this paper (CMA-ES) uses

Covariance Matrix Adaptation. CMA-ES represents the search

neighbourhood with a multivariate normal distribution [14].

It uses a mean vector for the currently favoured solution, a

scaling factor for the step size and a covariance matrix for the

shape. Adaptation is performed to achieve fast, but not prema-

ture convergence, taking into account pairwise dependencies

(covariance) as well as fitness in both time and space [14].

CMA-ES are popular because they can solve difficult op-

timisation problems without the need for manual parameter

tuning. CMA-ES have been shown to be particularly effective

at non-linear optimisation. In a recent black-box comparison

study with 25 benchmark functions, CMA-ES outperformed

eleven other algorithms in the number of function evaluations

before the global optimum value is reached [15].

III. SUBDOMAIN OPTIMISATION

Subdomains specify how test data is to be sampled for input

parameters to the program under test. We define a candidate

solution as a set of subdomains in the following three forms:

Numerical subdomains

are represented with a lower and upper value. Test

inputs are selected inclusively between these values.

Boolean probability values

are described with an integer value between 0 and

100. This value represents the percentage probability

that a generated parameter value is ‘true’.

Character array distributions

are fixed in length (by default to five characters).

Each special character (wildcard, closure etc.) is

given its own independent probability of inclusion.

Algorithm 1 outlines the main process used in searching for

subdomains. Subdomains are preferred that consistently kill

the same group of mutants. This is achieved by maximising

variance in the number of times each mutant is killed and

minimising variance in the number of times the same mutant

is killed (see Equation 1). A mutant is ‘covered’ if it is

killed at least 95 times out of 100 by 5 test cases sampled

from the subdomains, we refer to this as T imesKilled(m) in

Algorithm 1. Once subdomains are found to cover a group of

mutants, the search continues with the remaining mutants.

∑

s∈S

∑

m∈M

(Ks,m − K̄m)2

(K̄m − K̄)2

K̄m = (
∑

s∈S

Ks,m)/100

K̄ = (
∑

m∈M

Ks,m)/#M

(1)

(S is the set of test suites, M is the set of mutants and
Ks,m is the number of times test suite s kills mutant m)

If no new mutants have been covered after 50 generations,

the program is stretched to make one of the mutants easier to

kill. We terminate the search if, after the stretching process

is completed, no new mutants have been covered. Program

stretching was originally described by Ghani and Clark [16].

In our research, we use the following three ‘stretch’ modes:

Path stretching

forces branch conditions leading up to a mutant to

be true or false, depending on whether the branch

was taken the last time the mutant was killed.

Mutation stretching

alters the mutation by an offset of 100, for example

x >= y → x > y becomes x > y + 100 with the

aim of increasing its impact on the program.

Branch condition stretching

adds an offset of 100 to a difficult branch condition in

order to make it easier to meet, for example x == y
becomes (x <= y + 100)&&(y <= x+ 100).



Algorithm 1 Synthesising an optimal subdomain [αl..αu], [βl..βu], .. [Ωl..Ωu]

1: Select initial random values for αl, αu, βl, βu, .. Ωl and Ωu.

2: repeat

3: for s = 1 → 100 do

4: Generate 5 test cases from [αl..αu], [βl..βu], .. [Ωl..Ωu].
5: Count and record the number of times each mutant is killed by the test cases.

6: end for

7: Calculate subdomain fitness (see Equation 1).

8: Sample new values from multivariate normal distribution:

α′

l = αl+ǫαl
, α′

u = αu+ǫαu
, β′

l = βl+ǫβl
, β′

u = bu+ǫβu
, .. Ω′

l = Ωl+ǫΩl
, Ω′

u = Ωu+ǫΩu
where ǫx = N (0, σ2

x)
9: if α′

l > α′

u then swap(α′

l,α
′

u) end if; if β′

l > β′

u then swap(β′

l ,β
′

u) end if; .. if Ω′

l > Ω′

u then swap(Ω′

l,Ω
′

u) end if

10: until ∃m ∈ M,TimesKilled(m) ≥ 95

IV. SUBSET SELECTION

Subset selection is used in testing to reduce computational

and human expense [17]. Subsets of test cases can be selected

according to the coverage criteria met by each test case (e.g.

the mutants they kill). Selecting subsets of subdomains is

slightly different because test cases are sampled probabilis-

tically. We therefore an approach that takes into account the

expected number of times each subdomain kills each mutant.

Our approach borrows ideas from suboptimal feature se-

lection. Optimal techniques (e.g. branch-and-bound) are prov-

ably equivalent to exhaustive search, but computationally

prohibitive. Suboptimal techniques typically employ greedy

heuristics to quickly select features that provide the greatest

improvement for a criteria evaluation. Amongst other appli-

cations, they have been used to diagnose Alzheimers disease

from EEG data [18], detect emotion from speech [19] and

determine steel quality from textural analysis [20].

A. Sequential Floating Forward Selection

Sequential Floating Forward Selection (SFFS) is a sub-

optimal feature selection technique [21]. In practice, SFFS

achieves optimal or near-optimal results [21]. Algorithm 2

describes the technique. Subdomains are selected one at a

time that most improve the criterion evaluation (mutation

adequacy). After a subdomain is added, other subdomains are

removed if they improve the criterion evaluation compared to

any previous evaluation on the smaller size of subset. This

contrasts with other subset selection techniques (e.g. plus l

take away r) that only allow a fixed amount of backtracking.

Algorithm 2 Sequential Floating Forward Selection

1: k = 0; D0 = {}; DN = {all identified subdomains}
2: J(d) is the criteria evaluation for subset d
3: while k < desired subset size do

4: Maximise J(Dk + d+), where d+ ∈ DN −Dk

5: Dk+1 = Dk + d+; k = k + 1
6: Maximise J(Dk − x−), where d− ∈ Dk

7: if J(Dk − d−) > J(Dk−1) then

Dk−1 = Dk − d−; k = k − 1
8: end if

9: end while

B. Our approach

We apply Sequential Floating Forward Selection (SFFS) to

select small but efficient sets of subdomains. The criterion

function we use to evaluate each set is shown in Equation 2.

The aim is to maximise the probability of killing each mutant

whilst using the smallest possible number of subdomains.

∑

m∈M

maxd∈Dx
(killed(d,m)) (2)

(M is the set of mutants, Dx is the current set of subdomains,
killed(d,m) is the number of times subdomain d kills mutant m)

SFFS is a sequential technique. Once a subdomain selection

has been confirmed and backtracking has been completed, the

algorithm will never go back and change it. Our approach

identifies the optimal subdomains to include for each size

of subset before moving on to the next one. This allows

the point to be found at which adding another subdomain

will not increase the mutation score significantly further. It

is not necessary to decide a size of subset in advance, as our

technique is able to determine the smallest size of subset that

still provides a mutation score similar to the complete set.

The first step is to sample 100 test cases randomly from

within the bounds of each subdomain. Subdomains are then

selected for every size of set according to the sum of the max-

imum number of times they kill each mutant. The subdomain

that (on its own) achieves the highest criterion evaluation is

selected, then the two subdomains that achieve the highest

evaluation and so on. The end result should be a small set of

subdomains with a high probability of killing all the mutants.

Our approach is suitable for reducing the human cost of

oracle construction and test evaluation. It achieves this by

selecting a small set of subdomains that has similar fault

finding ability to the complete set. The SFFS technique can be

applied with fewer computational resources than an exhaustive

search and our approach requires little set up time. All that

is necessary is to sample a number of test cases from each

subdomain, then apply them to each of the mutants before

running the SFFS algorithm. We therefore argue that our

approach is suitable for finding the smallest subset from which

test cases can be sampled without significant computational

expense or a detrimental effect on the fault finding ability.



V. EXPERIMENTS

We applied the new technique to six programs (see Table I).

TriTyp and Tcas have numerical and Boolean input parameters

(see Section III regarding their representation). Replace and

Schedule input text files and strings. We limit strings to 5

characters and text files to 10 characters. SingularValueDe-

composition (SVD) and SchurTransformation (Schur) take

matrices. We generate diagonals of a four-by-four matrix for

SVD and values of a three-by-three matrix for Schur.

TABLE I
TEST PROGRAMS USED IN THE EXPERIMENTS)

Program Mutants LOC Function

Tcas 267 120 Air traffic control
TriTyp 310 61 Triangle classification
Schedule 373 200 Task prioritisation
Replace 1632 500 Substring replacement
Schur 2125 497 Matrix transformation
SVD 2769 298 Matrix decomposition

We set up experiments to answer the following research

question in regard to selecting subsets of subdomains for

mutation adequacy:

Is it possible to reduce the number of subdomains

without significantly affecting the mutation score?

To answer this question, we applied Sequential Floating

Forward Selection (SFFS) to select small but efficient sets

of subdomains. A Covariance Matrix Adaptation Evolution

Strategy (CMA-ES) was used to optimise subdomains for each

of the six programs included in this study. The subdomain

optimisation process was applied 100 times for each program

to produce 100 sets of subdomains. This was done so that an

average result could be achieved for the effect of subdomain

optimisation on each program. Subdomain selection was there-

fore applied 100 times to each set of subdomains identified for

each program through the process of subdomain optimisation.

We take advantage of the sequential nature of our approach

to evaluate every possible size of subset. Starting with the

single most efficient subdomain, we add subdomains one at a

time, continuing up to the complete set. At each step, the

subdomain that achieves the highest criterion evaluation is

selected. In practice, this process is halted once a criterion

evaluation is reached similar to that of the complete set. Yet,

for the purposes of experimentation, we continue the process

until the end. We record the minimum, maximum and average

mutation score for each program and size of subset.

Subsets that achieve a similar mutation score to the complete

set of subdomains indicate the potential for improving fault

finding efficiency. Of particular interest is the proportion of

subdomains that can be removed without significantly reducing

the mutation score. The criterion we use, to determine whether

our technique has been successful in improving efficiency for

a particular program, is that the number of subdomains can be

halved with little effect on the mutation score.

VI. RESULTS

We evaluated the effect reducing the number of subdomains

had on the mutation score for each program. Figure 3 and

Table II present the results of subdomain optimisation for the

six programs in our experiments. Figure 4 and Table III present

the results of selecting subsets of optimised subdomains. It is

possible to select fewer subdomains with minimal decrease in

mutation score for all the programs, except SVD and Schedule.

For example, selecting a quarter of the subdomains of Tcas

only reduces the mutation score by 3.6%.

After Schur, Schedule and SVD had the smallest number

of subdomains identified by the optimisation process. This

limits the opportunity for redundant subdomains and makes

it more likely for reducing the number of subdomains to have

a significant effect on the mutation score. The reason why this

is not the case for Schur may be because its mutants are easy

to kill even by random testing.

The minimum, maximum and average values are consis-

tently close to each other. This suggests that our interpretations

can be relied upon. The minimum mutation score when

selecting the first few subdomains of Schur is very low, but this

changes quickly after the fifth subdomain is added. It is likely

caused by a single optimisation run where no one subdomain

has a high mutation score by itself.

It is also worth noting that the graphs are not completely

smooth because each optimisation run identified a different

number of subdomains. This is why, for example, the mutation

score of Schedule appears to decrease at one point when

subdomains are added.

There is a relationship between the subdomains that are

selected and the order in which they were identified by the

optimisation process. Take for example, all the subdomains

selected for Tcas in subsets of size 10 (see Figure 2).

Subdomains are more likely to be included if they were

discovered later in the optimisation process. Subdomains that

are discovered earlier are more likely to be redundant because

they aim to cover mutants more broadly, before some of the

mutants have been put aside. This suggests that it is useful

to focus on identifying subdomains for harder to kill mutants.

This may even eliminate the need for subset selection.

Fig. 2. Frequency order of subdomains selected for Tcas subsets of size 10



(a) TriTyp (b) Schedule

(c) Tcas (d) Replace

(e) SVD (f) Schur

Fig. 3. Percentage of mutants covered by evolved subdomains (averaged over 100 trials)

TABLE II
SUMMARY OF RESULTS (AVERAGED OVER 100 TRIALS)

Program
Subdomain Testing Random Testing

Subdomains Test Cases
Mutation Score Time (mins) Mutation Score

Tcas 0.780 50.6 0.0945 40.6 205
TriTyp 0.998 8.00 0.780 26.9 135
Schedule 0.930 1310 0.850 8.01 40
Replace 0.566 1410 0.350 90.7 455
SVD 0.632 546 0.263 25.4 125
Schur 0.920 885 0.95 8.61 45



(a) TriTyp (b) Schedule

(c) Tcas (d) Replace

(e) SVD (f) Schur

Fig. 4. Percentage of mutants covered by evolved subdomains (averaged over 100 trials)

(NB: Dotted lines represent the minimum and maximum mutation scores from 100 trials. Solid lines represent the average)

TABLE III
SUMMARY OF RESULTS (AVERAGED OVER 100 TRIALS)

Program 25% 50% 75% 100%

Tcas 0.752 0.778 0.779 0.780
TriTyp 0.946 0.988 0.994 0.998
Schedule 0.686 0.862 0.828 0.930
Replace 0.523 0.542 0.547 0.566
SVD 0.460 0.531 0.579 0.603
Schur 0.883 0.920 0.921 0.920



VII. RELATED WORK

Selection techniques are used to improve regression test ef-

ficiency [17]. Test cases can be selected that cover infrequently

met test criteria [22], meet the most number of unmet criteria

[23] or consistently contribute to the overall evaluation [24].

Test selection criteria are typically deterministic, since test

cases produce the same result each time they are executed. In

contrast, our approach to subdomain set selection uses non-

deterministic criteria. This is because test cases are sampled

probabilistically from within the bounds of each subdomain.

Test selection methods are often based on the greedy algo-

rithm [17] - They add test cases one at a time, selecting at each

step the test case that most improves the criteria evaluation.

The problem with this approach is that criteria met by earlier

test cases are also often met by a combination of test cases

selected later in the process, thus making some of the earlier

test cases redundant [17]. Tallam et al. [25] addressed this

issue by removing redundant test cases before applying the

greedy algorithm. In addition to this, Jeffrey and Gupta [26]

use a second set of requirements to determine whether a test

case really is redundant. Our solution is to select test cases

based on the results of multiple evaluations to avoid over-

fitting the selection. We also use backtracking as often as it

helps the evaluation, so as to eliminate redundant subdomains.

Distribution-based techniques have also been used to select

more efficient sets of test cases. Faults typically produce errors

for specific ranges of input values [27]. Many techniques have

been developed to reduce the time it takes to find the first

error by distributing test cases more evenly over the input

domain. They maximise the distance between new and existing

test cases [27], set up exclusion zones [28], use quasi-random

sequences [29] or employ lattices [30]. Nevertheless, the added

expense involved with these techniques can often outweigh the

benefits [31]. We use mutation analysis to predict and improve

fault finding capability for the particular program under test.

Our subdomains are evolved and selected to target specific

ranges of input values that reveal faults as errors.

There have been other attempts at tailoring the range of

test input for specific programs. Andrews et al. [32] use a

genetic algorithm to improve statement coverage by optimising

the range of values for each scalar type. Poulding and Clark

[33] present a Bayesian network representation that allows for

dependencies between parameter values. Thus, the sampling

distribution for a second parameter may depend on the specific

value sampled for the first. The input distribution is specified

in terms of bins (similar to our subdomains). Their goal is

to maximise the least covered element, a criteria originally

developed by Thévenod-Fosse and Waeselynck [34].

We optimise independent subdomains (without dependen-

cies) for each input parameter and use mutation adequacy as

our selection criterion. Mutation adequacy is more stringent

than statement or branch coverage [9]. There has been much

research into test generation for mutation adequacy [35] [36]

[37] [38], but our work is the first to optimise and select

subdomains from which efficient test cases can be sampled.

VIII. CONCLUSIONS

Our subdomain selection technique has two stages. First,

subdomains are optimised for their ability to kill mutants

consistently, then a small set of subdomains is selected that is

able to kill mutants more efficiently. Sampling test cases from

optimised subdomains achieved a higher mutation score than

random testing, except for one trivially easy to test program.

The subdomain selection technique reduced the number of

subdomains for four programs with little affect on mutation

score. Our is therefore suitable for some, but not all programs.

Subdomain optimisation is computationally expensive com-

pared to random testing. Yet once efficient subdomains have

been identified, the cost of sampling new test cases is insignif-

icant and the ability of the new test cases to find faults is

significantly increased. Subdomain optimisation is therefore

a useful technique for regression testing. In our experiments,

subdomain optimisation did receive a lower mutation score

than random testing for one program (Schedule), but this was

only because random testing had already achieved a perfect (or

close to perfect) mutation score in every trial. It seems that

subdomain optimisation is applicable whenever the program

is complicated enough to merit it.

Our approach to subdomain selection is computationally

inexpensive. It adds little additional cost, but can significantly

improve the efficiency of a subdomain set. It is, however,

not effective in all cases: reducing the number of subdomains

had an immediate negative effect on Schedule and SVD. Few

test cases were needed for Schedule in the first place, but for

SVD there must be some other reason. Subdomain selection

is guaranteed to have an effect on mutation score unless there

is some overlap in mutant coverage between subdomains.

In the case of SVD there is little such overlap. Subdomain

selection is therefore only successful for certain programs, but

for those programs it has the potential to provide significant

improvement.

IX. FURTHER WORK

Subdomains identified earlier in the optimisation process

tend to kill large numbers of easy-to-kill mutants. As a result,

they are more likely to prove redundant later, as subdomains

are added that target smaller groups of mutants with greater

precision. This suggests that focussing on difficult to kill

mutants may reduce the computational cost of subdomain

optimisation and selection. For this reason, we will focus our

further work on three main areas of research:

1) Investigate the potential to improve computational effi-

ciency by identifying and removing redundant subdo-

mains earlier during the optimisation process.

2) Evaluate different orderings of mutants to minimise over-

lap in the coverage of subdomains optimised for them.

3) Employ static analysis techniques to identify difficult to

kill mutants and mutants that should be grouped together

and targeted for subdomain optimisation.



REFERENCES

[1] J. H. Andrews et al., “Tool support for randomized unit testing,” in Proc.

1st Int. Workshop Random Testing, Portland, ME, 2006, pp. 36-45.
[2] C. C. Michael et al., “Generating software test data by evolution,” IEEE

Trans. Softw. Eng., vol. 27, no. 12, pp. 1085-1110, Dec. 2001.
[3] J. W. Duran, “An evaluation of random testing,” IEEE Trans. Softw. Eng.,

vol. 10, no. 4, pp. 438-444. IEEE Press, Piscataway, July 1984.
[4] J. H. Andrews et al., “Is mutation an appropriate tool for testing

experiments?,” in Proc. 27th Int. Conf. Softw. Eng., St. Louis, MO, 2005,
pp. 402-411.

[5] G. J. Myers et al., The Art of Software Testing. Hoboken, NJ: Wiley,
2011, pp. 35.

[6] M. Patrick et al., “Using mutation analysis to evolve subdomains for ran-
dom testing,” in Proc. 8th Int. Workshop Mutation Analysis, Luxembourg,
Luxembourg, 2013.

[7] M. Patrick et al., “Efficient subdomains for random testing,” in Proc. 5th

Int. Symp. Search Based Software Engineering, St. Petersburg, Russia,
2013, pp. 251-256.

[8] Y. Jia and H. Harman, “An analysis and survey of the development of
mutation testing,” IEEE Trans. Softw. Eng., vol. 37, no. 5, pp. 649-678,
Sept. 2011.

[9] P. G. Frankl et al., “All-uses versus mutation testing: an experimental
comparison of effectiveness,” J. Syst. Softw., vol. 38, no. 3, pp. 235-253,
Sept. 1996.

[10] T. Bäck, Evolutionary Algorithms in Theory and Practice, Oxford,
England: Oxford University Press, 1996, pp. 66-90.

[11] B. Babb et al., “State-of-the-art lossy compression of martian images via
the CMA-ES evolution strategy,” Int. Soc. Optics Photonics, vol. 8305,
pp. 22-26, Mar. 2012.

[12] V. Nissen and S. Gold, “Survivable network design with an evolution
strategy,” in Success in Evolutionary Computation (Studies in Computa-

tional Intelligence), J. Jung et al., Eds. Berlin, Germany: Springer, 2008,
pp. 263-283.

[13] J. Jung, “Using evolution strategy for cooperative focused crawling on
semantic web,” J. Neural Comput. Appl., vol. 18, no. 3, pp. 213-221, Feb.
2009.

[14] N. Hansen, “The CMA evolution strategy: a comparing review,” Towards

a New Evolutionary Computation, vol. 192, pp. 75-102, 2006.
[15] N. Hansen et al., “Comparing results of 31 algorithms from BBOB-

2009,” in Proc. 12th Genetic Evolutionary Computation Conf., Portland,
OR, 2010, pp. 1689-1696.

[16] K. Ghani and J. Clark, “Widening the goal posts: program stretching to
aid search based software testing,” in Proc. 1st Int. Symp. Search Based

Software Engineering, Windsor, England, 2009.
[17] S. Yoo and M. Harman, “Regression testing minimisation, selection and

prioritisation: a survey,” Software Testing, Verification and Reliability, vol.
22, no. 2, pp. 67-120, Feb. 2012.

[18] K. Akrofi et al., “Classification of Alzheimers disease and mild cognitive
impairment by pattern recognition of EEG power and coherence,” in Proc.

35th Int. Conf. Acoustics Speech Signal Processing, Dallas, TX, 2010, pp.
606-609.

[19] M. Brendel et al., “A quick sequential forward floating feature selection
algorithm for emotion detection from speech,” in Proc. 11th Annu. Conf.

Int. Speech Communication Association, Makuhari, Japan, 2010, pp.
1157-1160.

[20] D. Kim et al., “Determination of steel quality based on discriminating
textural feature selection,” Chemical Engineering Science, vol. 66, no.
23, pp. 6264-6271, Dec. 2011.

[21] P. Pudil et al., “Floating search methods for feature selection with
nonmonotonic criterion functions,” in Proc. 12th Int. Conf. Pattern

Recognition, Jerusalem, Israel, 2013, pp. 279-283.
[22] M. J. Harrold et al., “A methodology for controlling the size of a test

suite,” Trans. Softw. Eng. Meth., vol. 2, no. 3, pp. 270285, July 1993.
[23] T. Y. Chen and M. F. Lau, “Dividing strategies for the optimization of

a test suite,” Information Processing Letters, vol. 60, no. 3, pp. 135141,
Nov. 1996.

[24] J. Offutt et al., “Procedures for reducing the size of coverage-based test
sets,” in Proc. 12th Int. Conf. Testing Computer Software, Washington
D.C., 1995, pp. 111123.

[25] S. Tallam, N. Gupta, “A concept analysis inspired greedy algorithm for
test suite minimization,” SIGSOFT Software Engineering Notes, vol. 31,
no. 1, pp. 35-42, Jan. 2006.

[26] D. Jeffrey, N. Gupta, “Improving fault detection capability by selectively
retaining test cases during test suite reduction,” IEEE Trans. Softw. Eng.,
vol. 33, no. 1, pp. 108123, Feb. 2007.

[27] T. Y. Chen et al., “Adaptive random testing,” in Proc. 9th ASIAN

Computing Science Conf., Chiang Mai, Thailand, 2004, pp. 320-329.
[28] K. P. Chan et al., “Restricted random testing,” in Proc. 7th Int. Conf.

Software Quality, Helsinki, Finland, 2002, pp. 321-330.
[29] T. Y. Chen and R. G. Merkel, “Quasi-random testing,” IEEE Trans.

Reliab., vol. 56, no. 3, pp. 562-568, Sept. 2007.
[30] J. Mayer, “Lattice-based adaptive random testing,” in Proc. 20th Int.

Conf. Automated Software Engineering, Long Beach, CA, 2005, pp. 333-
336.

[31] A. Arcuri and L. Briand, “Adaptive random testing: an illusion of
effectiveness?” in Proc. 20th IEEE Int. Symp. Software Testing Analysis,
Toronto, Canada, 2011, pp. 265-275.

[32] J. H. Andrews et al., “Genetic algorithms for randomized unit testing”
in IEEE Trans. Software Eng., vol. 37, no. 1, pp. 80-94, Jan. 2011.

[33] S. Poulding and J. A. Clark, “Efficient software verification: statistical
testing using automated search,” Trans. Software Eng., vol. 36, no. 6, pp.
763-777, Nov. 2010.

[34] P. Thévenod-Fosse, and H. Waeselynck, “An investigation of statistical
software testing,” J. Software Testing, Verification and Reliability, vol. 1,
no. 2, pp. 526, 1991.

[35] G. Fraser and A. Zeller, “Mutation-driven generation of unit tests and
oracles,” in Proc. 21st IEEE Int. Symp. Software Reliability Engineering,
San Jose, CA, pp. 147-158.

[36] L. Zhang et al., “Test generation via dynamic symbolic execution
for mutation testing,” in Proc. IEEE Int. Conf. Software Maintenance,
Timişoara, Romania, 2010, pp. 533-543.

[37] M. Papadakis and N. Malevris, “Automatic mutation test case generation
via dynamic symbolic execution.” in Proc. 21st IEEE Int. Symp. Software

Reliability Engineering, San Jose, CA, 2010, pp. 121-130.
[38] M. Harman et al., “Strong higher order mutation-based test data gen-

eration,” in ACM SIGSOFT Symp. Foundations Software Engineering,
Szeged, Hungary, 2011, pp. 212-222.


