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Abstract

Nonlinear wavepackets, such as solitons, are seen in many areas of physics. A promising

medium where they could be used in both classical and quantum computational devices is

the exciton-polariton system. Exciton-polaritons are quasi-particles consisting of strongly

coupled excitons and photons. Polariton-polariton interactions result in a system with a

high degree of nonlinearity.

In this thesis, the dynamics of nonlinear wavepackets and pattern formation in several

microcavity structures are studied. Initially, the formation of a polariton condensate in

a periodic potential induced by a Surface Acoustic Wave (SAW) is investigated, with a

particular focus on the role played by phonons absorbed as polaritons scatter between certain

states. This process can result in the formation of “gap solitons”. It is further suggested

that reflections of the SAW from features on the sample can contribute to pattern formation

in the emission spot.

Later chapters focus on nonlinear wavepackets propagating with high momentum which

could be used for the transmission of signals across a polaritonic chip. Patterns of bright

dissipative polariton solitons are studied in planar microcavities. Arrays can be generated

with solitons arranged either along or perpendicular to the propagation direction, with

different localisation mechanisms employed in each case.

Finally, the dynamics of soliton-like wavepackets propagating through quasi one dimen-

sional microwire structures are investigated. Measurements of the quantum properties of

these nonlinear wavepackets reveal non-classical behaviour. Multi-peak patterns are ob-

served as the excitation power is increased, accompanied by discontinuities in phase between

the peaks for higher power cases. At high excitation powers, broadening of the energy spec-

trum is observed in a similar manner to the supercontinuum generation which has previously

been seen in optical fibres.

3





Publications

Spatial Patterns of Dissipative Polariton Solitons in Semiconductor

Microcavities

J. K. Chana, M. Sich, F. Fras, A. V. Gorbach, D. V. Skryabin, E. Cancellieri, E. A. Cerda-

Méndez, K. Biermann, R. Hey, P. V. Santos, M. S. Skolnick and D. N. Krizhanovskii

Physical Review Letters, 115, 256401 (2015)

Logic Gates with Bright Dissipative Polariton Solitons in Bragg Cavity

Systems

E. Cancellieri, J. K. Chana, M. Sich, D. N. Krizhanovskii, M. S. Skolnick and D. M. Whit-

taker

Physical Review B, 92, 174528 (2015)

Effects of Spin-Dependent Interactions on Polarization of Bright Polariton

Solitons

M. Sich, F. Fras, J. K. Chana, A. V. Gorbach, R. Hartley, D. V. Skryabin, S. S. Gavrilov,

E. A. Cerda-Méndez, K. Biermann, R. Hey, P. V. Santos, M. S. Skolnick and D. N.

Krizhanovskii

Physical Review Letters, 112, 046403 (2014)

5



Conference Presentations

Exciton-Polariton Solitons in Quasi-1D Microwires

J. K. Chana, M. Sich, E. Cancellieri, O. A. Egorov, D. N. Krizhanovskii, M. S. Skolnick

Oral Presentation at UK Semiconductors 2015, Sheffield, UK

Bright Soliton Patterns in Semiconductor Microcavities

J. K. Chana, M. Sich, F. Fras, E. Cancellieri, A. V. Gorbach, D. V. Skryabin, E. A. Cerda-

Méndez, K. Biermann, R. Hey, P. V. Santos, M. S. Skolnick, D. N. Krizhanovskii

Oral Presentation at PLMCN15, Montpellier, France (2014)

Bright Exciton-Polariton Solitons and Trains in Microwires

J. K. Chana, M. Sich, F. Fras, E. Cancellieri, A. V. Gorbach, D. V. Skryabin, M. S. Skol-

nick, D. N. Krizhanovskii

Oral Presentation at UK Semiconductors 2014, Sheffield, UK

Soliton-Soliton Interactions in Bright Polariton Soliton Trains

M. Sich, F. Fras, J. K. Chana, A. V. Gorbach, D. V. Skryabin, E. A. Cerda-Méndez, K.

Biermann, R. Hey, P. V. Santos, M. S. Skolnick, D. N. Krizhanovskii

Poster presentation at OECS13, Rome, Italy (2013)

Phonon Assisted Polariton Parametric Scattering in Semiconductor

Microcavities Subjected to Surface Acoustic Waves

J. K. Chana, F. Fras, E. A. Cerda-Méndez, K. Biermann, R. Hey, P. V. Santos, M. S. Skol-

nick, D. N. Krizhanovskii

Poster presentation at PLMCN14, Crete (2013)

Poster Presentation at UK Semiconductors 2013, Sheffield, UK

6



Acknowledgements

I would like to thank my supervisors, Dr Dmitry Krizhanovskii and Prof. Maurice Skolnick

for giving me the opportunity to work on this research project, as well as for their guidance

and support throughout. I would particularly like to thank Maksym Sich for all his help

both in and out of the lab, from keeping the laser pulsing to insightful discussions about how

best to interpret the experimental results. For teaching me all the experimental techniques

I needed when I first started, I am grateful to the polariton group, especially Paul Walker,

Lloyd Tinkler and Francois Fras. Working in the LDSD group has been both productive

and enjoyable, so thank you all for making it such a friendly and supportive environment.

My thanks go to Chris Vickers, Pete Robinson and Phil Taylor for keeping the lab

supplied with helium and for emergency cryostat repairs; also to Ed Clarke for growing

the wafer and Ben Royall for fabricating the microwires on the sample used in my final

experimental chapter; and of course to EPSRC for funding me during my PhD.

Much of the work presented in this thesis has benefited from the contributions of collab-

orators. I would like to thank Edgar Cerda-Mendez and Paulo Santos for the loan of their

Surface Acoustic Wave sample and for fruitful discussions of my results. I am extremely

grateful to Dmitry Skryabin and Andrey Gorbach for carrying out numerical simulations to

support my results on patterns of dissipative solitons; and to Oleg Egorov whose simulations

on wavepackets in microwires both supported my results and helped to guide the direction

of the experimental work.

Thank you to all my friends and family for your patience while I disappeared into a lab

and for all the good times when I came out of it. I would particularly like to thank my

boyfriend Michael for being there for me throughout, for celebrating with me when things

went well and keeping me going when there were problems. Finally, a huge thank you goes

to my parents and brother for your unwavering support, not only during my PhD but also in

all the years before it. Thank you for teaching me not to be bounded by the expectations of

others and for always backing me, whichever direction I decided to take my life in. Knowing

that you will always support me has given me the freedom to pursue my ambitions and get

to where I am now.

7





Contents

1 Introduction 13

2 Background 15

2.1 Microcavity Polaritons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Nonlinearity and Polariton-Polariton Interactions . . . . . . . . . . . . 18

2.1.2 Polaritons in Quasi-1D Cavities . . . . . . . . . . . . . . . . . . . . . . 20

2.1.3 Polaritons in Periodic Potentials . . . . . . . . . . . . . . . . . . . . . 21

2.2 Polariton Condensates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Parametric Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.2 Experimental Observation . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.3 Bistability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.4 Superfluidity and Vortices . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.5 Condensates in Periodic Potentials . . . . . . . . . . . . . . . . . . . . 29

2.3 Solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.1 Non-linear Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.2 Temporal Optical Solitons . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.3 Soliton Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.4 Supercontinuum Generation . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.5 Spatial Solitons in Planar Waveguides . . . . . . . . . . . . . . . . . . 37

2.3.6 Matter-wave Solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3.7 Dissipative Solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4 Polariton Solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4.1 Bright Solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4.2 Dark Solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.4.3 Gap Solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.5 Quantum Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.5.1 Squeezed States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.5.2 Emission Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.5.3 Pair Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.6 Polaritonic Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3 Methods 59

3.1 Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1.1 Sample for Surface Acoustic Wave Experiments . . . . . . . . . . . . . 59

9



CONTENTS

3.1.2 Sample for Bright Dissipative Soliton Patterns . . . . . . . . . . . . . 60

3.1.3 Sample for Nonlinear Wavepackets in Microwires . . . . . . . . . . . . 60

3.2 Sample cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3 Optical Setups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.1 Transmission and Reflection configurations . . . . . . . . . . . . . . . 62

3.3.2 Continuous wave excitation . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3.3 Pulsed excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3.4 Imaging Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3.5 Two-dimensional imaging . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3.6 Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4 Measurement Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.4.1 Hanbury Brown and Twiss . . . . . . . . . . . . . . . . . . . . . . . . 72

3.4.2 Measurement of phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.4.3 Measurement of g(2) using streak camera . . . . . . . . . . . . . . . . 74

4 Phonon-Assisted Scattering in Gap Soliton Formation 79

4.1 Application of a SAW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Intensity Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2.1 Measurements with a y-SAW . . . . . . . . . . . . . . . . . . . . . . . 84

4.2.2 Phonon assisted scattering . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2.3 Measurements of Interference with 2 SAWs . . . . . . . . . . . . . . . 87

4.2.4 Alternatives for S’ state formation . . . . . . . . . . . . . . . . . . . . 87

4.3 Additional Interference Patterns . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3.1 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3.3 SAW Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3.4 Further Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5 Formation of Soliton Patterns in a Dissipative System 99

5.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2 Multi-peak Patterns Along X . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2.1 Soliton Trains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2.2 Power Dependence of Peak Positions . . . . . . . . . . . . . . . . . . . 105

5.2.3 X-Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2.4 Nucleation of Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2.5 Nonlinear Wavepackets in Microwires . . . . . . . . . . . . . . . . . . 111

5.3 Y-Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.4.1 Soliton Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.4.2 Relationship of Pump and WB . . . . . . . . . . . . . . . . . . . . . . 117

5.4.3 Mechanisms for Soliton Formation . . . . . . . . . . . . . . . . . . . . 118

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

10



CONTENTS

6 Nonlinear Wavepackets in Microwires 121

6.1 Sample characterisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2 Dynamics of Self-focussing Wavepackets . . . . . . . . . . . . . . . . . . . . . 123

6.2.1 Single mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.2.2 Multi mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.2.3 Excitation Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.2.4 Dynamics of E-k profiles . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2.5 Secondary parametric scattering . . . . . . . . . . . . . . . . . . . . . 130

6.3 Wavepacket Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.3.1 Array dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.3.2 Continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.3.3 Wavepacket collision . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.4 Phase profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.4.1 Temporal Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.4.2 Power dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.4.3 Discussion of phase observations . . . . . . . . . . . . . . . . . . . . . 145

6.5 Quantum properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.6 Nonlinear Wavepackets in Short Wires . . . . . . . . . . . . . . . . . . . . . . 149

6.6.1 Dynamics of single wavepackets . . . . . . . . . . . . . . . . . . . . . . 150

6.6.2 Wavepacket arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.6.3 Excitation conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.6.4 Femtosecond vs Picosecond Laser Pulses . . . . . . . . . . . . . . . . . 156

6.7 Planar cavities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.8 Polariton Interaction Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.9 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.9.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7 Conclusions 165

7.1 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.1.1 Quantum Properties in Microwires . . . . . . . . . . . . . . . . . . . . 166

7.1.2 Polariton Polarisation in Microwires . . . . . . . . . . . . . . . . . . . 166

7.1.3 Dissipative Solitons in Microwires . . . . . . . . . . . . . . . . . . . . 167

7.1.4 Continuous Wave Soliton Generation . . . . . . . . . . . . . . . . . . . 167

7.1.5 Dark Solitons in Microwires . . . . . . . . . . . . . . . . . . . . . . . . 167

A Fourier Transform Relations 169

A.1 Gaussian Wavepacket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

A.2 Multiple Peaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

B Simulations of Dissipative Soliton Patterns 171

B.1 Soliton Trains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

B.1.1 Numerical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

B.1.2 Nucleation of Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

B.2 Y-arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

11





Chapter 1

Introduction

The wide-spread desire for increased computational power has led to a demand for ever-faster

and smaller technological devices. Many of these devices make use of nonlinear behaviour.

For example, rather than linearly amplifying an input signal, transistors used in logical

electronic circuits switch “on” and “off” as the input crosses some threshold [1]. In analogue

electronics, amplification stages often include some negative feedback to stabilise the output,

effectively altering the degree of amplification of an input depending on the power at the

output. In optical systems such as fibers, nonlinearities such as an intensity dependent

refractive index can be used to stabilise the shape of a beam or pulse of light [2, 3, 4]. In

systems with stronger nonlinearities, significant effects would be seen over shorter distances,

so that smaller devices could be made.

The speed of a device depends both on the time it takes to carry out an operation

and the time that elapses between operations while the device is reset. The time taken

to carry out operations in some electronic components, such as transistors based on p-

n junctions, is determined by the drift velocity of the electron and hole carriers when an

electromagnetic field is applied. The response time of such components could be increased by

using lighter carriers which can be accelerated more quickly, such as photons. However, the

low nonlinearity of photonic systems is not ideal for making smaller devices. A compromise

can be reached by using half-light, half-matter carriers such as exciton-polaritons [5]: these

have a strong non-linearity due to interactions from their excitonic component while their

low mass (∼ 10−5 me, where me is the mass of an electron) allows for a fast response time.

Factors affecting the reset time of a device will vary depending on the nature of the device

and the operations it performs. An example of a simple circuit could be a series of regularly

spaced pulses propagating along some communication line to arrive at a detector: this could

be used as a clocking device. Here, the “operation” would be the detection of a pulse while

the “reset time” would be the spacing between pulses. In order to avoid detection errors,

two neighbouring pulses must be resolvable so must maintain some separation. However,

pulses propagating through a dispersive medium such as an optical fiber will tend to spread

out, increasing the overlap between neighbouring pulses. Detection errors can be avoided

by making sure the pulses are sufficiently separated at the start of the communication line

so that they are still resolvable at the detector, but this limits the reset time of the device.

A preferable solution would be to stabilise the wavepacket shape so that it does not spread

13



CHAPTER 1. INTRODUCTION

as it propagates, allowing a closer packing of pulses. These shape maintaining wavepackets

are known as solitons and work is ongoing to study their dynamics in a variety of systems.

Certain computational problems, such as the factorisation of large numbers, could be

made more efficient by exploiting quantum mechanical effects. While classical computers

perform operations using “bits” which can take values of 0 or 1, quantum computers would

use “qubits” which can exist in a 0 state, a 1 state or a superposition of the two. While

the number of operations required to factorise a large number N using a classical computer

increases exponentially, algorithms using quantum computing have been developed in which

the number of operations only scales as a polynomial [6]. By utilising the superposition of

the outcomes, complex problems may therefore be able to be solved more efficiently.

The 0 and 1 states can be mapped to those of any two level system. For example, the

polarisation degree of freedom associated with polaritons could be used in a qubit, where

right and left circular polarisations map onto the two states of the qubit. Practical qubits

need to be initialised, manipulated during operations and their final state read out, all

of which can be achieved optically in a polariton system. Interactions between a qubit

and its surroundings should be minimised in order to maintain the coherence of the qubit

during operations. While polaritons will interact with their surroundings, for example by

scattering with phonons, these scattering rates are slow compared to the polariton-polariton

interactions used in computing operations. This, coupled with the spontaneous appearance

of coherence in macroscopically occupied polariton states, makes the polariton system a

promising candidate for use in quantum computing applications.

In this thesis, I study the properties of nonlinear polariton wavepackets which may later

be able to be implemented in classical computational devices. Some investigation is also

made into the quantum properties of such wavepackets, demonstrating their potential for

quantum computing applications. In Chapter 4, the parametric scattering mechanism for

the formation of a polariton condensate in a periodic potential induced by a Surface Acoustic

Wave (SAW) is investigated. The resulting macroscopically occupied states are known as

“gap solitons” as they form within a bandgap induced by the periodic potential. The

polariton population is spatially modulated into an array of condensates whose interactions

can be tuned by varying the SAW amplitude: such a configuration could be used as an array

of memory elements or bits with tunable interactions in a device.

Chapters 5 and 6 focus on nonlinear wavepackets propagating with high momentum

which could be used for the transmission of signals across a polaritonic chip. Chapter 5 builds

on previous observations of single bright dissipative polariton solitons [7], demonstrating the

generation of soliton arrays [8]. The closely packed soliton peaks could be used in a clocking

device with a 100 GHz repetition rate.

In Chapter 6, the dynamics of soliton-like wavepackets propagating through quasi-one-

dimensional microwire structures are studied. Changes in behaviour with excitation con-

ditions, such as the emergence of multi-peak patterns at high excitation powers, are also

investigated. The wire structure could be more practical than a planar cavity (used in

Chapter 5) for use in a polariton circuit as the wires could be used to route the signals

around other devices on the chip where necessary. Measurements of the quantum properties

of these nonlinear wavepackets reveal non-classical behaviour, suggesting the possibility of

implementing these wavepackets in a quantum computational device.
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Chapter 2

Background

2.1 Microcavity Polaritons

Polaritons are bosonic quasi-particles formed by the strong coupling of photons and excitons.

Excitons are bound electron-hole pairs which can be generated by exciting an electron from

the valence band to the conduction band in a semiconductor. This electron and the resulting

hole in the valence band form a bound pair due to the Coulomb interaction between them.

The energy required to excite an exciton can be provided by absorbing a photon whose

energy is equal to the difference between the energy of the exciton and that of the electron

in the valence band. The subsequent recombination of the electron and hole results in the

emission of a photon.

The strong coupling of photons and excitons was first predicted by Pekar in 1957 [9] while

the theory of polaritons in bulk semiconductors was further developed by Hopfield [10].

These three-dimensional polaritons have also been studied experimentally [11], although

two-dimensional microcavity polaritons (described below) provide greater flexibility. For

example, in a three-dimensional crystal, the exciton energy is defined by bandgap of the

bulk material while in a two-dimensional quantum well, the exciton energy can be tuned

by changing the width of the fabricated quantum well. In addition, polaritons propagating

through a three-dimensional crystal will only couple to photons with the same energy and

wavevector [12, 11] while in a two-dimensional system only the in-plane component of the

wavevector needs to be matched.

Photons can be trapped in microcavities consisting of two Distributed Bragg Reflectors

(DBRs) separated by a spacer layer (see figure 2.1). The DBRs consist of alternating layers of

two materials with different refractive indices, such as GaAs and AlGaAs. At the boundary

between each layer, a portion of the light will be reflected. The layers have an optical

thickness of λ
4 , where λ is the wavelength of light, so that the light reflected from each

boundary is in phase and will interfere constructively to give an overall strong reflection

from the DBR stack. The DBRs are designed to reflect light with a particular wavelength

λ and if their separation is tuned to a multiple of λ
2 , standing waves form within the cavity.

By positioning quantum wells at the antinodes of this standing wave, an exciton trapped in

one of the wells can couple to a photon confined in the cavity.

Figure 2.1 illustrates a typical energy-kx dispersion where the momentum along the in-
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plane axis x is given by ~kx. While the uncoupled exciton and photon modes will cross, as

the coupling is increased new anti-crossing modes emerge. The splitting between the two

resulting modes is known as the Rabi splitting; if this is larger than the linewidth of the

exciton and photon bands, the system is said to be in the strong coupling regime. The new

modes are the upper and lower polariton branches and were first observed by Weisbuch et

al [12]. The DBRs have a reflectivity of less than 1, allowing some light to escape from the

system to a detector.

Figure 2.1: Microcavity polaritons. (a) Schematic of a microcavity with quantum wells
positioned at an antinode. (b) Polariton dispersion. The dotted lines show the photonic and
excitonic dispersions in the case of no coupling while the solid lines show the polariton dispersion
arising in the strong coupling regime.

In addition to illustrating the relationship between the energy and k vector (and hence

momentum), the E-k dispersion of a collection of particles can be used to extract other

properties of the system. The velocity v of propagating quasi-particles is proportional to

the first derivative of the E-k dispersion

v(kx) =
2π

h

dE

dkx
(2.1)

as illustrated in Fig 2.2b. The change in velocity with k vector can be quantified by looking

at the second derivative of the dispersion. This is related to the effective mass m∗ used to

describe the polariton quasi-particles, which is given by

m∗ =
~2

d2E(kx)

dk2
x

(2.2)

The curvature of the dispersion and the effective mass are shown as a function of k vector

in Figure 2.2 (c,d).

Similar properties are used to describe wavepackets in photonic systems, such as optical
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Figure 2.2: Properties from dispersion (a) Lower polariton branch energy as a function of kx

(E(kx) dispersion). (b) Polariton velocity as a function of kx, proportional to gradient of E(kx).
(c) Curvature of E(kx) (d) Polariton effective mass as a function of kx in units of electronic mass
me. This is inversely proportional to the curvature shown in (c). In (c,d), black dashed lines mark
the zero curvature point.
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fibers. Here, the group velocity vg is defined in terms of the parameter β = nω/c as

vg = (dβ/dω)−1, where n is the refractive index of the medium, ω is the optical frequency

of the light and c is the speed of light in a vacuum. The wavepacket can be broadened due

to variations in vg around the frequency ω0 quantified by the Group Velocity Dispersion

(GVD) parameter β2 = (d2β/dω2)ω0 [4]. Regions with a positive GVD parameter are

described as having “normal dispersion” while those with a negative GVD parameter have

“anomalous dispersion” [13]. Analogous definitions can be made in the polariton system,

where regions of negative effective mass are described as having “normal dispersion” while

those with positive effective mass are described as having “anomalous dispersion”. The

boundary between regions of anomalous dispersion and normal dispersion is known as the

zero GVD point in optical systems and is referred to the point of inflection for polariton

systems. At this point, the curvature of the dispersion (Figure 2.2c) goes to zero.

A splitting in energy between TE (no electric field in the z direction, perpendicular to

the plane of the quantum wells) and TM (no magnetic field in the z direction) modes is

often seen in microcavity systems [14]. This is due to differences in the boundary conditions

for electric and magnetic fields at the DBR interfaces, so these fields penetrate into the

DBR to different extents. The effective cavity length, and hence the confinement energy,

is therefore different for the two modes, leading to an energy splitting which varies with

in-plane momentum [15].

Polariton systems are now an active area of research [5]. They have been shown to exhibit

phenomena including the formation of condensates with superfluid behaviour (§2.2), [16, 17]

and soliton formation (§2.4, [18]). Pattern formation has been studied extensively, looking at

systems such as vortex lattices in condensates [19, 20] and polarisation patterns [21]. Much

of this work has been done on monolithic microcavities in GaAs based systems at cryogenic

temperatures. Now, novel polariton systems are being developed, including semiconductor

waveguides [22], tunable open microcavities [23, 24], and microcavities made from materials

which can operate at room temperature such as ZnO [25], GaN [26] and organic polymers

[27]. Progress is being made towards the development of polaritonic devices, exploiting the

combination of properties including fast propagation, long-range coherence and control of

the spin degree of freedom (§2.6).

2.1.1 Nonlinearity and Polariton-Polariton Interactions

Interactions between particles result in nonlinear behaviour: the higher the particle density,

the stronger the interactions which modify the potential felt by the particles. In a polariton

system, there are several contributions to polariton-polariton interactions, leading to nonlin-

earities. A polariton is a quasi-particle including an exciton (itself a quasi-particle consisting

of a bound electron-hole pair), a photon, and their coupling interaction. Nonlinearities asso-

ciated with these constituent parts, such as exciton-exciton scattering and saturation of the

exciton-photon coupling (oscillator strength), are inherited by the polariton state resulting

in a highly nonlinear system.

Polaritons interact strongly with each other due to their excitonic component. Excitons

will scatter elastically due to Coulomb interactions. In addition to the classical dipole

interaction, there are contributions from exchange interactions: a quantum mechanical effect
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involving interactions between indistinguishable particles. For example, two particles α and

β can collide and be detected in separate positions A and B. For indistinguishable particles,

there is no way of knowing whether the particle detected at A is α or β. Each outcome is

described by a wavefunction and for indistinguishable outcomes, the wavefunctions interfere.

For bosonic particles, they interfere constructively so that bosonic particles are likely to

coalesce: this is known as bosonic stimulation. For fermionic particles, the wavefunctions

interfere destructively so that the particles are never seen to meet, which looks like a repulsive

interaction [28].

It has been found that exciton-exciton scattering is dominated by short-range electron-

electron and hole-hole exchange interactions [29]. As it is the exchange of the fermionic

particles which make up the exciton which contribute the most, the dominant interaction is

repulsive. Studies of polaritonic systems reveal similar behaviour [30].

Interactions between polaritons are spin dependent: those with the same spin will

strongly repel, but there can be a weak attraction between polaritons with opposite spin

[31, 30]. In this work, polaritons are resonantly excited with circularly polarised photons

which carry orbital angular momentum of ±1 for σ± polarisation. This angular momentum

is transferred to the polariton, so that polaritons excited with σ± polarised photons have a

pseudo-spin (total angular momentum) of ±1 [5].

In addition to the direct interactions described so far, polaritons can interact indirectly

via dark exciton and biexciton states [30]. These indirect interactions can greatly modify

the behaviour of the polariton system, for example it has been theoretically proposed that

interactions involving high k vector components of the uncoupled exciton reservoir can lead

to attraction between polaritons [32]. For the right conditions, the strength of this attraction

is predicted to be comparable to the Coulomb repulsion normally felt by polaritons.

As mentioned above, exchange interactions between indistinguishable bosons mean it

is favourable for these particles to coalesce. If a certain state is populated by bosons,

bosonic stimulation increases the likelihood of more bosons being scattered into this state.

The bosonic nature of polaritons means that stimulated scattering is a significant factor

in polariton dynamics, provided that the density is high enough for the short-range boson

exchange interactions to be significant [31].

If the polariton density is too high, the bosonic excitonic component undergoes a phase

transition to a fermionic electron-hole plasma (at the Mott density) [33]. This occurs when

the exciton wavefunctions overlap. As the system approaches this regime, the exciton pop-

ulation starts to saturate due to phase-space filling: the fermionic nature of electrons and

holes limits the number of particles allowed in each state due to Pauli exclusion, reducing the

number of carriers available to form excitons [34]. An additional effect is that the Coulomb

interaction within a given exciton can be screened by the electron-hole plasma as well as

other excitons, reducing the oscillator strength [35].

While there are many contributions to interactions between polaritons, exchange inter-

actions perhaps have the most significant effect. There is interplay between the bosonic

exchange interactions between polaritons and the fermionic exchange interactions between

their constituent electrons and holes. These effects can be observed in the same experiments,

for example a certain polariton state in E-k space can become macroscopically occupied due

to bosonic stimulation, but the population may then spread out spatially due to repulsion
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between the fermionic electron and hole components.

2.1.2 Polaritons in Quasi-1D Cavities

The planar microcavity structures described so far can be modified to make them quasi-one

dimensional, confining the polaritons to mesas which are typically a few microns wide and

≥ 100 µm long. This results in a quantised dispersion as illustrated in Figure 2.3. Polariton

confinement can be achieved by etching through the cavity including the quantum wells

[36] to confine both the photonic and excitonic modes, although just confining the photonic

mode is sufficient, for example by etching through the top DBR only [37].

Figure 2.3: Polaritons in microwires: when confined in a quasi-one dimensional structure such
as a microwire (right), quantisation results in several polariton modes (left).

At high excitation powers, macroscopically occupied states can be generated in a planar

cavity via an Optical Parametric Oscillator (OPO) configuration, although phase matching

requirements limit the states which can be populated in this manner: three states with

equal separation in energy and momentum need to be available (see §2.2.1). In the quasi-1D

system, the multi-mode structure of the dispersion opens up new scattering paths for the

OPO process as scattering can occur between different modes of the lower polariton branch.

Some paths are forbidden due to parity conservation constraints: the product of the final

states must have even parity, matching the even parity of the product of two polaritons

initialised in the same state [38]. Despite these constraints, new processes become available

such as an energy degenerate OPO resulting in a pair of correlated beams with equal emission

intensity [39].

Polarisation

For 1D wires [40], polarisation splitting can occur between modes polarised along (X) or

across (Y) the wires. This arises from the different boundary conditions that apply to

magnetic and electric fields crossing the interface between the wire and the vacuum. For

X (Y) polarised modes, the main component of the electric field is along (across) the wire

while the main component of the magnetic field is across (along) the wire. At the interface

between the wire and the air, the normal component of the D and B fields as well as the

parallel components of the E and H fields must be continuous. Here, D is the electric

displacement, E is the applied electric field, H is the magnetic field strengh while B is the
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magnetic flux density. Due to the different boundary conditions, Y polarised modes are

better confined and so have higher energies than the X polarised modes whose main electric

field penetrates out of the confined cavity.

2.1.3 Polaritons in Periodic Potentials

A spatially periodic system can be described as a lattice consisting of many repeats of a

unit cell which are separated by a certain distance (the lattice vector). The reciprocal space

(the wavevectors making up the pattern) will also have a periodic distribution made up of

repeats of a reciprocal unit cell, known as the Brillouin zone. For polaritons subjected to a

periodic potential, the Brillouin zone consists of the polariton spectrum for an unmodulated

cavity as illustrated in Figure 2.4a. The repeats are separated by a reciprocal lattice vector,

which in this case is the zone width in k space, which is equal to the k vector of the SAW

(kSAW).

The k space can be visualized in a “repeated zone” scheme covering multiple brillouin

zones, where the lower polariton branches (LPBs) extend into neighbouring zones (used

in Fig. 2.4). All the information is contained in a single repeat of this (from −0.5 <

k/kSAW < 0.5 in Fig. 2.4). This structure can alternatively be represented by a “reduced

zone” scheme where only the first brillouin zone is shown (i.e. from −0.5 < k/kSAW < 0.5 in

Fig. 2.4). Here, the appearance of multiple branches can be described as the LPBs folding

back on themselves as they cross the brillouin zone boundary. It can be seen that for each

k vector, there are multiple lower polariton states coming from different branch repeats. As

the amplitude of the applied periodic potential increases, energy gaps open up leading to

anticrossing of the branches (Fig. 2.4, [41]).

Figure 2.4: Polariton dispersion in periodic potential: in a periodic potential, the dispersion
is constructed from repeats of the polariton spectrum centred at wavevectors separated by the lattice
wavevector (a). As the amplitude of the periodic potential is increased, energy gaps open up so
that the resulting branches anticross (b). All dispersion information can be found by looking at one
brillouin zone of the k space (between the dashed lines). Here, 3 repeats are shown, looking at the
first 3 branches.
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Experimental observation

The polariton dispersion can be observed by looking at the far-field photo-luminescence at

low pump power. The periodic dispersion consisting of Brillouin zones has been experi-

mentally observed for static 1D potentials [42] as well as for dynamic potentials which are

periodic in one [41] or two [43] dimensions.

The dynamic potentials cited here are generated using a surface acoustic wave (SAW),

which modulates both the quantum well bandgap and the photonic cavity resonance (see

§3.1.1). With one SAW, the periodic potential corresponds to a mini-brillouin zone (MBZ)

of width kSAW resulting in folding of the dispersion at the edge of the MBZ [41]. The

resulting branches of the dispersion anticross with energy gaps approximately equal to the

peak-to-peak amplitude of the potential modulation. The low energy branches are flattened

and redshifted compared to the case with no SAW. The flattening indicates localisation

of the polaritons. The energy shift can be numerically reproduced by treating the SAW

as a population of coherent phonons [44]. With 2 perpendicular SAWs, a square MBZ is

generated [43]. The dispersion is detected along the diagonal of the square and is folded at

edges separated by
√

2kSAW.

2.2 Polariton Condensates

The concept of a Bose-Einstein Condensate (BEC) was first developed theoretically for non-

interacting bosons, where the particles accumulate in the ground state of the system. The

transition to a BEC can be thought of as the point where the wavefunctions of neighbouring

particles overlap, which requires the particle separation to be smaller than the de Broglie

wavelength λDB =
√

2π~2/mkBT . The de Broglie wavelength drops as the particle mass

increases, so lighter particles can form a condensate at lower densities.

In 3-dimensional systems, BECs can form as the chemical potential (energy change as

more particles are added to the state) drops to zero at a finite temperature TBEC given by

TBEC =
2π~2

mkB
(

ρ

2.612
)

2
3 (2.3)

where m is the particle mass, ρ is the number density, ~ is Planck’s constant divided by 2π

and kB is Boltzmann’s constant [16, 17].

It was found that the superfluid properties of liquid helium, which had been observed

experimentally, qualitatively matched the predicted behaviour of a BEC when weak inter-

actions were introduced between the bosons [45]. This motivated the generalisation of BEC

theory to include interacting bosons, widening the definition of a BEC to include the macro-

scopic occupation of any single quantum state in equilibrium [46]. The transition to a BEC

was found to be associated with the spontaneous appearance of long range order and coher-

ence [47], something which is often considered sufficient evidence to claim the appearance

of a condensate.

BECs were first generated experimentally in an atomic vapour of rubidium-87 in a 3-

dimensional trap, where the temperature was reduced to below 170 nK [48]. Condensation

should not occur at finite temperatures in an infinite 2-dimensional system as the chemical
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potential diverges at low temperature, but for a finite system this has been observed in

excitonic systems with spatially varying potentials [49, 50].

Polaritonic condensates are good candidates for use in devices (see §2.6) as they are

relatively easy to excite. As polaritons are far lighter than atoms (10−5 me vs 104 me, where

me is the mass of an electron), the critical density needed to make a polariton condensate

is much lower and TBEC is higher. The density of a polariton condensate is limited as the

excitons at high density will undergo a phase transition (Mott transition) to a fermionic

electron-hole plasma [33]. Here, the strong coupling regime collapses so the polariton states

are lost. The density for this phase transition is much higher than the critical density for

polariton condensation [17]. As shown by equation 2.3, the low particle mass increases

TBEC , so that polariton condensates will form at a few Kelvin (K), making them accessible

using standard cryogenic techniques. This is in contrast to atomic condensates, where laser

cooling is required to reach µK temperatures. Polaritonic systems are also easier to observe

experimentally as the properties of the light escaping from the microcavities map directly

to those of the polaritons within the cavities, allowing direct detection.

BECs have attracted much interest as they exhibit quantum effects on a macroscopic

scale. Their coherence properties make them good candidates for qubits for quantum com-

puting [51]: they have superfluid-like properties, supporting persistent currents which would

be useful for lossless signal propagation [52]; and they have recently been shown to support

dark solitons in which a wavepacket of low density propagates across the high density con-

densate (see §2.4.2), whose shape-maintaining properties make them useful for signalling.

Polariton condensates have the additional property of emitting coherent light with a well

defined frequency and polarisation: a property shared with lasers [53].

2.2.1 Parametric Scattering

In several phenomena observed in the polariton system, including bright soliton formation

and some observations of polariton condensates, states are populated by a parametric scat-

tering mechanism (see Figure 2.5). In one scattering event, two particles in the “pump”

state scatter into separate “signal” and “idler” states. If the polariton scattering to the idler

state gains energy ∆E = ~ωidler − ~ωpump and momentum ∆p = ~kidler − ~kpump,
then the polariton scattering to the signal state must lose energy ∆E and momentum ∆p

thereby conserving the total energy and momentum. Similarly, the total phase should also

be conserved during the scattering event.

Scattering to a particular pair of signal and idler states can be enhanced by bosonic

stimulated scattering, where the likelihood of a particle scattering into a given state increases

if that state is already occupied (see §2.1.1). This can lead to macroscopic occupation of

a single state, such as a polariton condensate [54, 55]. A particular pair of signal and

idler states can therefore be selected by injecting a small population of polaritons into, for

example, the signal state using a second laser (the probe). This stimulates scattering of

polaritons from the pump state into the selected signal state while the related idler also

becomes populated to conserve energy and momentum. This configuration is known as the

Optical Parametric Amplifier (OPA) and has been demonstrated in a polariton system by

Savvidis et al [56]. In this setup, two lasers were used: a strong pump beam with k vector
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Figure 2.5: Parametric Scattering Left: OPA configuration. A high density of polaritons
is injected in the pump (P) state. A low density of polaritons is injected by a second laser (probe):
this stimulates the scattering of polaritons out of the pump state into signal (S) and idler (I) states,
amplifying the probe signal. Right: OPO configuration. A high density of polaritons is injected
in the pump (P) state near the point of inflection of the lower polariton branch. As polaritons
accumulate at the bottom of the LPB, this spontaneously stimulates scattering into signal and idler
states with no need for a probe laser.

kpump and a weak probe beam at kprobe = 0. The small population of polaritons at k=0 was

amplified by nearly two orders of magnitude by the OPA process while the corresponding

idler state at k = 2kpump also became macroscopically occupied.

It is also possible to generate signal and idler states with no probe; this is the Optical

Parametric Oscillator (OPO) configuration [57, 58]. Polaritons are injected with a k vector

kpump close to the point of inflection (see Figure 2.5b). Due to the curved shape of the

lower polariton branch (LPB), states at k=0, kpump and 2kpump which are equally spaced

in energy are simultaneously resonant with the LPB. At high pump power, a parametric

instability is triggered which results in occupation of the k=0 state, stimulating further

scattering to this ground state (See §2.2.3). The OPO configuration can be more reliably

realised by pumping at a slightly higher energy than the polariton dispersion [16]: as the

population increases, the repulsive polariton-polariton interactions blueshift the LPB into

resonance with the pump. While the signal and idler polaritons generated in a scattering

event must have a fixed phase relative to each other, in general this is linked neither to the

phase of the coherent pump laser nor the phase of signal-idler pairs from other scattering

events. Observations of spatial and temporal coherence in the signal state are therefore

attributed to a phase transition to a condensate-like phase [58].

2.2.2 Experimental Observation

The first experimental observation of a polariton condensate was made in 2006 by Kasprzak

et al [59]. The system was pumped non-resonantly with a high energy laser, injecting

polaritons incoherently into the system. Due to the short polariton lifetime, the reservoir

did not reach thermal equilibrium with the host material as the interactions with phonons

were slow. However, the polariton gas became internally thermalised due to fast polariton-

polariton interactions.

For low excitation powers, the short polariton lifetime limits the number of scattering

events with phonons so that few polaritons can relax to low k vectors and instead accumulate

at the point of inflection in the LPB; this is known as the bottleneck effect [60]. With

high excitation powers, polariton-polariton scattering dominates providing an alternative
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relaxation path leading to suppression of this effect [61].

In the experiment [59], as the pump intensity was increased, the density of this ther-

malised incoherent polariton gas rose and the population of the ground state started to

increase. Above a threshold intensity, the ground state population increased exponentially

due to stimulated scattering (§2.1.1) and became macroscopically occupied. Both the tem-

poral and spatial coherence of the system were found to increase above the threshold with

the spatial coherence extending over the entire condensate. This emergence of long range

coherence was taken to be one of the signatures of condensate formation. Below threshold,

the system was unpolarized while above threshold the condensate showed a high degree

of linear polarization, which could be understood as a macroscopic number of polaritons

described by a single linearly polarised wavefunction.

Later experiments using non-resonantly injected polaritons have revealed behaviour such

as long-range interactions resulting in the phase locking of spatially separated condensates

[62] and pattern formation when several pump spots are used [63]. Wertz et al showed that

when a condensate is formed in a tight pump spot, the strong Coulomb repulsion starts to

eject polaritons from the spot [36]. These maintain their original energy but increase their

k vector as they accelerate away from the high intensity pump: as the polariton density

decreases, the lower polariton branch redshifts, bringing higher k vectors into resonance

with the condensate energy. This change in resonant k vector depending on the spatial

position enhances the polariton acceleration away from the pump spot.

Polaritons can also be resonantly injected by tuning the pump laser into quasi-resonance

(i.e. slightly blueshifted) with part of the LPB. This can be used to inject a polariton fluid

at the pump k vector [54, 55], or can be set up in an optical parametric oscillator (OPO)

configuration where scattering from a pump around the point of inflection populates a con-

densate at around k=0 (see §2.2.1). There is historically some debate about whether such

macroscopically occupied polariton states should actually be referred to as BEC as they are

non-equilibrium systems. These states do however show many of the characteristics associ-

ated with BEC, such as long range coherence, and are commonly referred to as “polariton

condensates” [17].

The effect of polariton-polariton interactions on the coherence of an OPO condensate was

investigated by Krizhanovskii et al [64]. The energy of the condensate at a given real-space

position depends on the polariton density at that position as the repulsive polariton-polariton

interactions introduce an intensity-dependent blueshift. The local polariton density depends

on the location within a non-uniform pump spot (which typically has a gaussian intensity

profile in experiments) as well as defects on the sample. The resulting non-uniformity of the

spatial profile inhibits spatial coherence and also reduces temporal coherence as it broadens

the energy distribution. The coherence of the signal state is affected by polariton-polariton

interactions in all 3 macroscopically occupied states (signal, idler and pump) as they are

parametrically linked.

2.2.3 Bistability

It was shown by Baas et al [65] that bistability of the polariton density as a function of

the pump power can exist in polariton systems. This behaviour was derived by drawing
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an equivalence between the energy shift due to polariton-polariton interactions and the

refractive index in an optical Kerr medium, which changes as a function of photon number

(see §2.3.1). The evolution of the polariton population over time was investigated to find

steady state solutions of the injected population density as the excitation power was varied.

A plot of the polariton population as a function of excitation power revealed an S-shaped

curve, so for some range of excitation powers both high density states and low density states

were stable (see Fig 2.6a). The threshold of this bistable region was shown to depend on the

angle of the exciting pump beam. This model describes the bistability of one macroscopically

occupied state, in this case the pump state.

Figure 2.6: Bistability and Gain Profile. (a) Population of the pump state |P(kp)| as a
function of applied pump intensity. Solid red lines indicate stable solutions while the black dashed
line shows unstable solutions. (b,c) Polariton decay rate as a function of in-plane wavevectors kx

and ky for two values of |P(kp)| indicated on (a). (d) Polariton decay rate as a function of in-plane
wavevector kx and pump state population |P(kp)|. Notably, yellow regions correspond to growth of
the polariton population while red regions correspond to decay.
Reprinted Figure 4 with permission from [Krizhanovskii et al, Phys Rev B, 77, 115336 (2008)].
Copyright (2008) by the American Physical Society

In addition to pump only bistability, the polariton system can exhibit parametric insta-

bility. The eigenenergies of the scattered polaritons have a real part describing the energy-k

vector relationship and an imaginary part describing the polariton decay rate at different

k-vectors (see Figure 2.6(b-d) for k and population dependence of the decay rate). When the

pump state is in the upper branch of its bistability loop, the sign of the decay rate changes

(i.e. there is gain) at k=0 and k=2kpump. The sharp increase in the amplitude of the elec-

tromagnetic field in the microcavity triggers this parametric instability. The relationship

between the decay rate and the pump population and k vector has been investigated in both

one [66] and two [67] dimensions. The onset of the parametric scattering processes (OPA,

OPO) described in §2.2.1 was found to be linked to the population of the pump state, and

so to the pump-only bistability.

2.2.4 Superfluidity and Vortices

Superfluidity has been associated with Bose-Einstein condensation since the 1930s [68] and

superfluid-like behaviour has now been observed in polariton condensates. Signatures of su-

perfluidity, such as diffusionless motion and the frictionless flow past static defect obstacles,

have been demonstrated by Amo et al [54]. Spectrally resolved measurements showed that

the condensate maintained a well defined k vector as it propagated. This was in contrast to

the low excitation case where Rayleigh scattering quickly resulted in a circle of occupied k

states, thus demonstrating a suppression of scattering in the condensate regime.
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Further observations were made of condensate wavepackets moving at high velocities

(∼ 106 m s−1) in a later paper [69] where a continuous wave pump injected polaritons at

k ∼ 1 µm−1 while a pulsed trigger at a higher k vector was used to stimulate parametric

scattering. This configuration, combined with nonlinear interactions, lead to the population

of a linear dispersion rather than the parabolic lower polariton branch. It is noted that while

this spectrum bears some resemblence to the Bogoliubov spectrum describing elementary

excitations of a superfluid (see below), the observed spectrum has a different origin and

describes the wavepacket itself, rather than only its excitations. On collisions with defects,

these wavepackets again maintained a well defined k vector, indicating the suppression of

scattering.

The relationship between the energy and momentum of excitations of a superfluid in

equilibrium was studied theoretically by Bogoliubov [45]. The linear relationship between

these quantities is now known as a “Bogoliubov spectrum”, where the gradient is given

by the speed of sound. For the non-equiblium polariton system, it has been found that

the energy is independent of the k vector for low k vectors although the linear relation

is recovered at high k vectors, approaching the Bogoliubov spectrum [70]. The spectra of

excitations in polariton condensates have been studied and were found to be consistent with

a Bogoliubov spectrum [71].

Vortices

If a portion of a superfluid is given some angular momentum, this cannot be sustained over

the whole superfluid region and instead remains localised in a vortex. A quantised vortex

of order m is a confined region carrying m units of angular momentum while a closed path

around the vortex gains a phase shift of 2mπ (m takes integer values). The particle density

drops to zero at the centre of the vortex where the phase is singular, then rises to that of

the superfluid background over a distance known as the healing length. The healing length

can be found by equating the kinetic energy of the vortex with the potential energy in the

superfluid.

Vortices in exciton-polariton condensates were first observed in a non-resonantly injected

condensate by Lagoudakis et al [72] where they were detected by interfering condensate

emission with a reference beam with homogeneous phase. A fork dislocation with m arms

was seen in the resulting fringes which was attributed to phase winding around the vortex

core (see Fig 2.7). As expected theoretically, the emission had a dark spot at the position

of the vortex whose radius was in good agreement with the healing length.

Vortices have also been investigated in condensates generated by an optical parametric

oscillator (OPO) configuration (see §2.2.1) where the pump at k ∼ 1.5 µm−1 generated a

macroscopically occupied state at k ∼0. A weak pulsed probe was then applied in resonance

with the signal state to imprint some angular momentum and the resulting dynamics were

monitored [52]. Vortices were again seen with a characteristic fork-like dislocation, which

persisted for 70 times the duration of the triggering pulse, indicating a persistent current in

the condensate characteristic of superfluid behaviour. It has been shown [73] that a vortex

in the signal state can also be generated by imprinting an anti-vortex (vortex rotating in

the opposite direction) in the idler state due to the conservation of angular momentum
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requirement in the OPO scattering process. The dependence of the width of the vortex core

on the superfluid healing length was also demonstrated.

Figure 2.7: Observation of vortices.(a) Emission intensity distribution of a honeycomb vortex
lattice. (c) Interference image of the region marked by the blue dashed rectangle in (a). Vortex
(anti-vortex) positions revealed by fork-like dislocations in the fringe pattern are highlighted with
red (yellow) circles. (e) Phase map of the region marked by the blue dashed rectangle in (a) showing
winding of the phase around the vortex centres. Note that intensity minima in (a) correspond to
the vortex positions extracted in (c,e).
Adapted by permission from Macmillan Publishers Ltd: Nature Communications [Tosi et al, Nature
Commun., 3, 1243 (2012)], copyright 2012.

Pattern formation has been investigated, initially by looking at the behaviour of bound

pairs consisting of a vortex and an anti-vortex triggered by phase fluctuations across the

inhomogeneous pump profile [74]. The formation of vortex lattices has also been studied,

investigating the roles played by the shape of the pump spot [19] and the polariton-polariton

interactions [20] in determining the shape of the lattice.

For superfluids which can support different polarisations, such as a polariton condensate,

it is also possible to form half-vortices [75]. A closed path around a half vortex gains a phase

shift of mπ as well as a polarization shift of nπ, where m and n can take integer values.

The spin degree of freedom in a polariton system makes it ideal for the investigation of more

exotic polarisation patterns, such as skyrmions [76] and spin vortices [77].

In the experimental work of Amo et al [54, 69], polaritons were resonantly injected near

the bottom of the lower polariton branch at a low in-plane k vector (k ∼0.5 µm−1). Flow of

a condensate generated in this configuration past a defect has been investigated theoretically

by Pigeon et al [78] (see Fig 2.8). Propagating polaritons were excited by a continuous wave

pump spot positioned close to a defect. By varying the flow rate compared to the speed

of sound at the defect, the polariton fluid moved from a superfluid regime (low flow, no

extra pattern forming around defect, Fig 2.8a) to one where vortices were generated in the

wake of the defect (Fig 2.8b). By increasing the flow rate further, dark solitons were instead

generated in the wake of the defect (Fig 2.8d), a phenomenon which was later observed

experimentally [55] (§2.4.2).

28

http://www.nature.com/ncomms/
http://dx.doi.org/10.1038/ncomms2255
http://dx.doi.org/10.1038/ncomms2255


CHAPTER 2. BACKGROUND

Figure 2.8: Superfluid flow past a defect. Normalised realspace intensity profiles. The ratio
between the polariton flow rate and the speed of sound within the superfluid is increased between
each panel. Effectively, the flow rate is lower than the speed of sound for panel (a) where the
polariton fluid smoothly surrounds the defect. As the flow rate approaches the speed of sound,
vortices form in the wake of the defect (b). As the flow rate exceeds the speed of sound, dark
solitons form in the wake of the defect (d).
Reprinted Figure 1 with permission from [Pigeon et al, Phys Rev B, 83, 144513 (2011)]. Copyright
(2011) by the American Physical Society

2.2.5 Condensates in Periodic Potentials

There is currently interest in the properties of polariton condensates in tuneable periodic

potentials as they provide a useful system in which to study coherent transport through an

array of spatially separated condensates. The degree of coupling between the condensates

can be controlled by varying the amplitude of the modulation in the potential.

Static potential

The static periodic case has been studied with potentials modulated in one [42] and two

[79] dimensions. In both cases, the periodic potential is applied to the sample by patterning

thin metallic films onto the sample surface. The condensate is spatially modulated with

the period of the applied potential, separating into an array of condensate wires (for 1D

modulation) or dots (for 2D modulation).

Imaging the far-field (k space) emission for the 1D case revealed an interference pattern

arising from the array of wires: the visibility of this pattern demonstrated coherence between

the condensate wires [42]. In the 2D case [79], the far-field images and simulations showed

that condensates formed at different points on the Brillouin zone depending on the polariton

density (see Fig 2.9a). This was attributed to the fact that different states have different

associated symmetries. When the 2D periodic potential is applied, states with S, P and

D symmetry are all available. As the excitation power is varied, the most energetically

favourable state could change to one with a different symmetry (see Fig 2.9b,c) so that it

was possible to select the desired k space emission pattern by tuning the pump power.

Dynamic potential

In experiments where the potential was generated with a surface acoustic wave (SAW, see

§3.1.1), the potential at a given position on the sample changed dynamically as the SAW

propagated across the sample. However, as the timescale over which the potential changed
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Figure 2.9: Power dependence of k space intensity distribution, (a) Emission intensity
in reciprocal space for increasing excitation power, where Pth is the condensation threshold power.
(b,c) Experimental (b) and simulated (c) populations of orbitals with s, p and dxy symmetry as a
function of pump power. As the relative populations of the different symmetry states change, the
emission intensity distribution in (a) is also modified.
Adapted by permission from Macmillan Publishers Ltd: Nature Physics [Kim et al, Nature Phys.,
9, 681 (2011)], copyright 2011.

was long compared to the lifetime of the polaritons, they actually experience a quasi-static

potential. Here, a condensate was generated using an OPO configuration (see §2.2.1)

Above the condensation threshold, the realspace modulation of the condensate observed

in a static potential can be replicated in dynamic potentials with SAWs applied in one [41]

or two [43] dimensions. However as the potential moves, the condensate lattice also moves

across the sample so the realspace modulation cannot be directly observed in time integrated

measurements. With one SAW, the condensate modulation was deduced by looking at the

second order intensity autocorrelation function g(2)(δy, δt) = 〈IPL(0, 0), IPL(δy, δt)〉 of two

spots separated by δy. Oscillations were seen in g(2) and as δy was changed between 0

and λSAW, the phase of these oscillations at a given time varied between 0 and 2π. The

interpretation of these results was that the condensate wires were moved across the detection

spots by the SAW with a velocity equal to that of the SAW. With 2D modulation, the two

SAWs add to give a resultant wave propagating in one direction. The condensate dots moved

with the wave, appearing as lines in a time integrated measurement. In some cases a dot

lattice was seen in the time integrated measurement although it was unclear why this is

visible.

With one SAW, the coherence between and along condensate wires has been extensively

measured [80]. The coherence in both directions was found to decrease with increasing SAW

power. The reduction in coherence between the wires was attributed to the decrease in

tunnelling as the potential barriers are higher, while the reduction in coherence along the

wires could be due to increased fluctuations as the dimensionality of the system is reduced

from 2D to 1D.
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With two large amplitude SAWs, the coherence between condensate dots can become

very low. In a uniform potential, the density is fairly uniform across the condensate even if

the exciting beam is gaussian as the repulsive polariton-polariton interactions redistribute

the polaritons from high density to low density regions. In a uniform potential, the polaritons

would be free to move within the 2D plane; with one SAW they can still move along a 1D

line but with two SAWs they are confined in all three dimensions so the density profile of the

condensate remains similar to that of the pump. Due to polariton-polariton interactions,

the condensate energy is density dependent so neighbouring condensate dots have different

energies. This limits the coherence length to the dot size. The transition from a uniform

potential to this dot lattice has been investigated by gradually tuning the SAW amplitude

[43]. Further work on this system has revealed the formation of gap solitons [81], which are

further described in §2.4.3.

2.3 Solitons

Solitons are shape-maintaining wavepackets which are usually stabilised by some non-linear

process. They can be found in nonlinear media, where the presence of the wavepacket modi-

fies the medium, which in turn influences the wavepacket propagation (see §2.3.1). With the

right conditions, this self action can compensate spreading induced by diffraction and dis-

persion, stabilising the wavepacket shape to form a soliton. Wavepacket propagation can be

described theoretically by a Non-linear Schrödinger Equation (see §2.5). Shape-maintaining

wavepackets can be found by looking for steady state solutions, which typically include

plane waves and fundamental solitonic wavepackets with a sech2 intensity profile. Higher

order solutions can be found for high amplitude input waves: the width of these will tend

to oscillate during propagation and they can split into several fundamental soliton modes

(see §2.3.4). The Non-linear Schrödinger Equation can be modified to include perturbations

such as losses to better investigate solitons in real systems [3].

Spatial solitons form when diffraction is exactly compensated by self-focussing due to the

nonlinear refractive index (see §2.3.1). Similarly, when dispersive spreading is balanced by

nonlinear effects, temporal solitons form [3]. These have been extensively studied in optical

fibers (see §2.3.2) but have also been seen in matter systems, such as atomic Bose-Einstein

condensates (see §2.3.6), and hybrid light-matter systems (see §2.4). The first recorded

observation of a solitonic wave was a water wave seen by Russell in 1845 [82]. Since then, a

variety of physical systems from strain waves propagating in geological rock formations [83]

to bio-energy transport along protein molecules [84, 85] have been shown to exhibit solitonic

behaviour.

2.3.1 Non-linear Media

Nonlinear optical effects are seen in media whose response (induced polarisation as a function

of time, P(t)) to an electric field E(t) depends on higher orders of the polynomial expansion

of the field (equation 2.4).

P (t) = ε0[χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + ...] (2.4)
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where ε0 is the permittivity of free space, χ(n) are the nth order terms of the susceptibility

of the medium and t is time.

The second order χ(2) term gives rise to processes such as second harmonic generation

and parametric amplification (see chapter 2 in Boyd [2] for more details). The third order

χ(3) term results in a contribution n(2) to the refractive index of the medium (n) which is

proportional to the intensity of the applied field, so n = n(0) + n(2)|E(t)|2 (see chapter 4 in

[2]). This intensity dependent refractive index gives rise to self-action phenomena such as

those described below. Media with a non-negligible χ(3) are known as Kerr media while the

dependence of their refractive index on the light intensity is known as the Kerr effect.

In optical fibers, the χ(3) nonlinearity comes from the interaction of the electric field

component of propagating light with the polarisable fiber medium [2]. This effect is small,

giving typical values of n(2) ∼ 10−20 m2W−1 [86]. While the Kerr effect normally refers to

observations in optical media, analagous results are seen in other systems exhibiting a χ(3)-

like nonlinearity. In weakly coupled microcavities such as Vertical Cavity Surface Emitting

Lasers (VCSELs), the nonlinearity is stronger due to a contribution from photo-excited

excitons in the quantum wells which interact with each other through Coulomb interactions

[5]. Moving to a strongly coupled regime typically increases the nonlinearity by 2-3 orders

of magnitude [87, 88, 89]. In polariton systems, the χ(3) nonlinearity is dominated by

interactions between polaritons and interactions with the uncoupled exciton reservoir (see

§2.1.1). The result is a much stronger non-linearity of the order n(2) ∼ 10−14 m2W−1 [89].

Self action

Self action refers to the effect on an object of a change in its environment caused by the

presence of that object, such as a beam of light propagating through a medium with an

intensity dependent refractive index. If the beam of light has a non-uniform spatial intensity

profile, such as a gaussian, the refractive index change will vary across the wavefront. The

resulting inhomogeneous medium acts as a lens and will focus or defocus a gaussian beam

depending on the sign of n(2). Media with a positive n(2), such as optical fiber cores, will

shrink the beam width and are said to have a focussing nonlinearity while media with a

negative n(2) are said to be defocussing and will broaden the beam. A narrowing of the

beam width due to the nonlinear refractive index is known as self-focussing [2].

Self-phase modulation

Self-action effects can also occur in the time domain for pulses of light. Here the light

intensity, and hence the refractive index change, varies over the temporal duration of the

pulse rather than over its spatial profile (see Figure 2.10). A consequence of this is self-phase

moduation (SPM) [2], which results in the evolution of a frequency chirp across the pulse

profile as explained below.

A photonic plane wave ψ ∝ e−i(kx−ωt) propagating through a medium with refractive

index n has phase
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Figure 2.10: Self-phase modulation. (a) Gaussian intensity profile of a pulse of light (b)
Phase φNL(t) of the pulse illustrated in (a) as it is transmitted through the medium. (c) Change
in frequency across the pulse profile due to variations in φNL(t).

φ(x, t) = ωt− kx

= ωt− nωx/c
(2.5)

where k is the wavevector of the light, ω is the frequency of oscillation (= ∂φ/∂t), and c

is the speed of light. A pulse of light has a phase term φ(t) with similar contributions,

but properties such as the refractive index and frequency can now vary as a function of

temporal position within the pulse. If the medium has an intensity dependant refractive

index, φ(t) may include a nonlinear component φNL(t) ∝ − n(2)|E(t)|2. Note that in

this case the phase profile will vary over the pulse duration as the field intensity |E(t)|2 is

not constant (see Figure 2.10). The frequency of light across the pulse can be described by

ω(t) = ω0 + δω(t), where the change in frequency at a point t in the pulse profile is given

by the rate of change in φNL(t),

δω(t) =
d

dt
φNL (2.6)

As illustrated in Figure 2.10c, this redshifts the frequency at the start of the pulse and

blueshifts the frequency at the end of the pulse.

2.3.2 Temporal Optical Solitons

Temporal optical solitons are found when the effects of self-phase modulation (SPM) and

group velocity dispersion (GVD) exactly cancel out. GVD describes the frequency depen-
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dence of the group propagation velocity and is proportional to the second derivative of the

E-k spectrum (see Fig 2.2 in §2.1). Self-phase modulation (SPM) results in the evolution of a

frequency chirp due to the varying intensity profile over a wavepacket [2] (see §2.3.1 for more

details). For an optical fiber with anomalous dispersion, the group propagation velocity in-

creases with frequency so that light at the end of the pulse which has been blueshifted by

the SPM starts to catch up with the light at the start of the pulse which has been redshifted

by the SPM. If the blue light approaches the leading edge of the pulse, it will in turn be

redshifted by the SPM and subsequently slowed down by the GVD. The interplay between

GVD and SPM therefore stabilises the shape of the wavepacket to form a soliton.

Temporal optical solitons have been generated in optical fibers at wavelengths suitable

for telecommunciations (∼ 1.5 µm) as early as 1980 [90] and their use in communications

applications has continued to be investigated [91]. Modification of the fiber dispersion, for

example by patterning air holes into the cladding to make a photonic crystal fiber [92] or

tapering the fiber [93], enables the excitation of solitons at visible wavelengths.

Optical fibers have spectral regions with normal dispersion and regions with anomalous

dispersion (see §2.1). Exciting solitons near the boundary between these regions can result

in some interesting behaviour. The evolution of the wavepacket as it propagates is described

by the E-k dispersion and its derivatives in the same way as for a polaritonic system (see

Fig 2.2). In most cases, the first derivative (describing group velocity) and second deriva-

tive (related to GVD, see §2.1) will dominate the response and higher order terms can be

neglected. However at the zero GVD point, the second derivative falls to zero and for a

spectrally broad pulse, the higher order terms can contribute significantly. A similar situa-

tion arises in the polariton system and has been investigated theoretically by Egorov et al

[94] (see Figure 2.11),

Figure 2.11: Contribution of terms to the polariton dispersion. (a) Polariton dispersion.
Here, k is the in-plane polariton wavevector, Ω± are the upper and lower polariton frequencies,
ωr is the resonant frequency of both the exciton and the photon, Ωr is the Rabi frequency and kd

marks the point of inflection were D2 vanishes. (b) Coefficients Dn ∝ ∂n
k Ω−|k0 of the nth order

contributions to the lower polariton branch dispersion as a function of wavevector k0. There is a
significant contribution from higher order terms D3 and D4.
Reprinted Figure 1 with permission from [Egorov et al, Phys Rev Lett, 102, 153904 (2009)]. Copy-
right (2009) by the American Physical Society
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It has been found [95, 96] that perturbations from the third order term result in radiation

from solitons, which appears at a specific frequency in the normally dispersive region and

therefore corresponds to a dispersive wavepacket. However, the central frequency of the com-

bined soliton and wavepacket is expected to be conserved, so as the dispersive wavepacket is

generated in the normally dispersive region, the soliton is shifted further into the anomalous

region. As the soliton spectrum moves away from that of its radiation, the amplitude of the

radiation drops and the soliton frequency becomes stabilised.

Another effect which can alter the soliton frequency is a Raman interaction with the glass

of the fiber medium [3]. Here, photons from the high frequency side of the soliton spectrum

are converted to photons with lower frequency as some of their energy is absorbed by the

fiber. If the spectrum is broad enough that there is already light at this lower frequency,

stimulated Raman scattering results in a transfer of energy to the lower energy states, so

that the soliton spectrum becomes centred at a lower frequency [93]. These high order effects

becomes more dominant for shorter pulses (∼50 fs) where the fiber dispersion varies more

within the spectral width of the pulse.

2.3.3 Soliton Arrays

Spatial (temporal) optical solitons will form in a beam (pulse) at a certain power Psol

when diffraction (dispersion) is exactly compensated by a power dependent refractive index.

Theoretically, a soliton with power Psol is a solution to the nonlinear Schrödinger equation

(NLSE), but higher order solutions can also be found for powers much larger than Psol [2].

These can take the form of periodic multi-peak structures where adjacent peaks can have a

relative phase difference of π [97]. If the power is much larger than Psol, the beam (pulse)

can break up into several filaments each containing an optical power of Psol [2].

Perturbations in the system can split up this multi-peak solution into several funda-

mental solitons containing power Psol. Studies of temporal solitons have shown that these

individual solitons may be centred at different frequencies [98] (more detail on the causes of

the frequency shift is given in §2.3.2). Similar beam break-up has been observed in a con-

tinuous wave regime where a central bright peak separated into multiple peaks, generating

a regular honeycomb pattern [99]. While the authors made no claim that these peaks were

solitons, they were found to exhibit soliton-like behaviour.

In addition to considering the multipeak structure of high power solutions to the NLSE,

there has been interest in studying the interactions between individual solitons which are

brought close together. These arrays with an arbitrary soliton separation are not necessarily

exact solutions of the NLSE even though their constituent elements are [3]. There was

strong motivation for these studies from an applications point of view: using solitons for

the transmission of data enables a higher repetition rate as neighbouring wavepackets will

not spread out and interfere during propagation, unlike dispersive wavepackets. However,

interactions between neighbouring solitons which change their separation could introduce

errors in reading out the data stream if they are not considered [3].

This problem was investigated theoretically for the case of two temporal optical solitons

[100]. It was found that the solitons appeared to pass through one another although they

were also found to interact when their wavefunctions overlap. Solitons injected with similar
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amplitudes and the same phase were found to attract one another but rather than coalescing

into a single peak, they would move together and apart in an oscillatory motion; it was

noted that this attraction corresponds to an unstable solution. If the solitons were π out

of phase with one another, they would repel and gradually move apart. These interactions

are illustrated in Figure 2.12, showing a simulation taken from [101]. The strength of the

interaction decreased exponentially with separation.

Figure 2.12: Soliton-soliton interactions. This simulation shows the spatial intensity profile
across a pair of fundamental solitons as they propagate along z. The solitons in (a) have a relative
phase of zero while those in (b) have a relative phase of π.
Reprinted with permission from the Optical Society of America from [Aitchison et al, Optics Letters,
16, 15 (1991)]

Interactions between temporal soliton pairs were investigated experimentally in optical

fibers a few years later [102], reproducing the predicted repulsion between solitons with

opposing phases. Separated solitons with identical phases were found to attract one another,

although the predicted oscillation in separation as the solitons met was not reproduced.

Instead, the interactions between solitons with identical phases were found to change from

attractive to repulsive once their paths crossed. This was attributed to a shift in the relative

phase caused as the wavefunction of one soliton acted as a perturbation on the second,

enhanced by the predicted instability of the identical phase state. Phase dependent soliton-

soliton interactions have also been seen for spatial optical solitons [101]. By tuning the

relative phase between two spatial solitons propagating side by side to π/2, it has also been

shown that energy can be transferred from one to the other [103].

Soliton arrays have also been observed experimentally in atomic condensates [104], where

repulsive interactions between the solitons were observed despite the fact that interactions

between the atoms within them were attractive. The relative phase of the solitons was not

measured experimentally but a change in phase between neighbouring peaks was inferred

by comparing the dynamics with theoretical simulations of arrays with and without a phase

jump of π between solitons [105].
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Recently, soliton-soliton interactions in an atomic condensate have been investigated

more directly by deliberating colliding solitons together [106] . Here the condensate was in

a harmonic trap so that the solitons were pushed together in the bottom of the trap and

their separation oscillated with time. In some cases, the solitons briefly overlapped as they

collided while in other cases they never met at the centre; these situations were attributed

to differences in the relative phases of the solitons. The relative phase between solitons was

again inferred by comparison with simulations as it could not be measured directly. By

exciting the solitons with different intensities so that they were distinguishable, the solitons

were observed to pass through one another, although the authors acknowledge that it is

possible that atoms are transferred from one soliton to the other as they collide.

2.3.4 Supercontinuum Generation

In the year 2000, experiments in optical fibers revealed a large spectral broadening of input

pulses with an initial width of ∼30 nm to populate a spectrum with a width of 500 nm

[92]. This broadband spectrum became known as a supercontinuum. Very high excitation

powers were needed for these observations with the peak power of the input pulse reaching

1.6 kW. These initial observations were seen in photonic crystal fibers, where air holes were

patterned into the fiber cladding in order to modify the dispersion, shifting the zero group

velocity dispersion point to visible wavelengths. Similar results were later seen in tapered

fibers [107] where ordinary fibers used for telecommunications could be quickly modified to

enhance their nonlinearity.

Over the next couple of years, the mechanisms behind supercontinuum generation were

investigated. Theoretical simulations reproduced the broadening and showed that the extent

of it could not be explained purely by self-phase modulation [108] (explained in §2.3.2).

Instead, simulations showed that supercontinuum generation was linked to the fission of

higher order solitons. These are solutions to the Nonlinear Schrödinger Equation where the

pulse amplitude is high enough to produce multiple solitons (§2.3). These peaks propagate

at the same velocity, appearing as a bound state. However, the bound state is unstable as

there is no binding energy associated with the structure, which is therefore susceptible to

small perturbations.

Perturbations from higher order dispersion terms can shift the frequency of the soliton

peaks, changing their relative velocities and separating the high order soliton into several

individual, spectrally separated, solitons [98]. The variation in frequency shifts of the indi-

vidual solitons broadens the spectrum in the anomalous dispersion region, but each soliton

can also emit radiation at frequencies in the normal dispersion region (§2.3.2), thus broad-

ening the spectrum in both directions. The simulations showing this state evolving into a

supercontinuum [108] were later replicated experimentally [109], justifying the conclusion

that soliton fission was the dominant process leading to supercontinuum generation.

2.3.5 Spatial Solitons in Planar Waveguides

While temporal optical solitons have been observed in one dimensional structures such as

optical fibers (§2.3.2), these devices cannot be used to look at spatial solitons where the
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beam shape perpendicular to the propagation direction is stabilised. Instead, these spatial

solitons can be observed in two-dimensional planar waveguides [110].

Glass slab waveguides

Early observations of spatial solitons were made in a single-mode glass slab waveguide [110].

Laser light was injected into one of the end facets of the slab and propagated through the

waveguide to the output facet where it was imaged. The spatial intensity profile of the beam

at the output (along a line perpendicular to the propagation direction) was compared to

that of the input beam for a range of laser powers. For low input powers, the beam at the

output facet was found to have diffracted, spreading to a width more than 4 times that of the

input beam. As the input power was increased the output beam narrowed, becoming only

slightly wider than the input beam for an input power of 400 kW. When the input power

was further increased to 1.25 MW, the beam broke up into an array of three peaks with a

larger separation than that which would be expected for a higher order soliton (§2.3.3).

Planar waveguides have been used not only to demonstrate the formation of spatial

optical solitons, but also to study the interactions between solitons [101]. Two solitons

were injected so that they initially propagated parallel to each other, subsequently moved

together or apart depending on whether the interaction between them was attractive or

repulsive. This was found to depend on the relative phase of the two solitons, as expected

from observations in other soliton systems §2.3.3.

Semiconductor waveguides

The propagation of optical wavepackets has also been studied in semiconductor waveguide

structures such as a set of InGaAs quantum wells [111] or an undoped GaAs layer [112]

sandwiched between an n-doped substrate and a p-doped capping layer. Electrical contacts

on the top and bottom of the sample can be used to inject electron and hole carriers. While

light propagating through glass only interacts weakly with the medium, photons propagating

through these doped semiconductor structures can interact strongly with free electron and

hole carriers in the material. Optically exciting the sample can generate electron-hole pairs,

but the presence of the optical field will also stimulate photon emission and cause the

electron-hole pairs to recombine. If there is a surplus of free carriers compared with the

ground state of bound electron-hole pairs (known as population inversion), the stimulated

emission will be stronger than the absorption, amplifying the applied optical field.

The refractive index of these structures decreases with an increasing free carrier den-

sity [113]. Injecting light into a certain area of an electrically pumped device will locally

deplete the carrier density, resulting in an intensity dependant refractive index suitable for

soliton formation. The propagation of a laser beam through such a waveguide structure

with embedded quantum wells has been studied by Khitrova et al [111] by comparing the

intensity profile at the input and output of the waveguide. Low intensity beams were found

to diffract while at a higher intensity, the beam shape was similar at the input and output.

This is consistent with the formation of a fundamental soliton. At even higher intensities,

the central peak narrowed further with lower intensity secondary peaks forming on either

side, a profile which was consistent with that of a second order soliton.
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Similar experiments were carried out in a waveguide structure with an embedded un-

doped GaAs layer where the formation of a fundamental soliton as the excitation power is

increased was replicated [112]. As the power was increased to around 5 times the power

needed to excite a soliton, a multi-peak structure was seen. Here, this was attributed to ex-

cess intensity around the main soliton beam which also begins to self-focus, rather than being

caused by the excitation of a higher order soliton. The nonlinear refractive index coefficient

of this semiconductor waveguide was estimated at n(2) = 2.8×10−10 cm2W−1, several orders

of magnitude higher than that of the glass slab waveguides (n(2) = 3.4× 10−16 cm2W−1 or

n(2) = 4× 10−15 cm2W−1 [110]).

Later work has shown that the soliton stability may be improved in these structures

by alternating regions of gain (where carriers are electrically injected via gold electrodes

patterned on the sample surface) with regions of loss (no pumping, optical losses due to

photons being absorbed by the medium) [114]. The shape or intensity of the resulting

soliton no longer strongly depends on the input beam, provided that the beam power is

above a certain threshold. Instead, the soliton intensity increases with the applied current,

i.e. with increasing gain. Meanwhile the output beam width remains around 21 µm as

the input beam width is varied between 15 µm and 35 µm. This behaviour is similar to

the case of the dissipative polariton solitons studied by Sich et al, where the soliton width

and intensity was determined by that of the CW pump that provided gain to the lossy

microcavity (see §2.4.1).

2.3.6 Matter-wave Solitons

In atomic systems, bright solitons have been observed in a BEC of lithium-7 atoms by

Khaykovich et al [115]. The BEC is trapped in two dimensions but is free to propagate

in the third dimension where the energy-momentum distribution is parabolic. The large

curvature of the parabolic dispersion would lead to broadening of a condensate wavepacket

consisting of non-interacting particles. In optical fibers, this spreading can be compensated

due to a nonlinear interaction with the fiber medium; in an atomic condensate the spreading

can instead be halted by attractive interactions between the atoms.

Interactions between atoms are usually repulsive, so when they collide they will scatter

apart. The scattering length for a two-atom collision can be tuned using a magnetic field

and has Feshbach-like resonance features (at a Feshbach resonance, the kinetic energy of

the two colliding particles equals the attractive potential energy of a bound state) in which

the scattering length becomes negative [116]. The result of this is that the inter-atom

interactions can be tuned continuously from their usual repulsive nature to an attractive

interaction,which balances the dispersive spreading.

These matter-wave solitons were generated starting from a BEC of atoms in a trap

which were then expelled into a one-dimensional waveguide. The wavepacket profile with

attractive interactions was then compared to one for a gas of non-interacting particles by

tuning the inter-atom interaction to zero. In both cases, the gas drifted along the wire

but the resulting wavepacket remained very small (resolution limited) for the attractive gas

while it broadened for the non-interacting gas. The attractive gas wavepacket was termed

a soliton and it neither dispersed nor decayed as it propagated.
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2.3.7 Dissipative Solitons

In systems such as optical fibers and atomic condensates, losses are low so the number

of particles in a wavepacket stays roughly constant. These are known as “conservative”

systems and can support soliton formation provided that the particle population decays

over a longer timescale than the characteristic time of dispersive spreading [117]. Solitons

forming in these environments (see §2.3.2 and §2.3.6) have a well defined width which can

be found theoretically by equating energy terms in a similar manner to establishing the

healing length of a superfluid (§2.2.4). This width will, in general, depend on the number of

particles in the wavepacket (see for example Equation 2.7 in §2.4.1 defining the half width of

a bright polariton soliton) so should remain constant for a conservative system. Note that

losses will lead to a broadening in the expected soliton width.

For systems with high losses where the particle number drops too quickly to observe

soliton formation, the particle population can be maintained using an external pump (see

Figure 5.1 in §5.1 for an example setup). Solitons generated in this configuration are termed

“dissipative”. Dissipative spatial solitons have been observed in weakly coupled microcavi-

ties such as Vertical Cavity Surface Emitting Laser (VCSEL) structures. Properties of these

semiconductor devices, such as the refractive index, vary with light intensity so that the

system can be tuned into resonance with the cavity photon mode by varying the optical

excitation power. The result is a bistable system in which a large area can be initialised in

a low density state by a driving field and a localised region can then be excited to a high

density state using a writing pulse. This region remains at high intensity once the writing

pulse is switched off, maintaining its characteristic soliton size over time [118]. This bright

soliton can be switched on and off by changing the phase of the writing pulse [119].

Patterns of solitons can also form where the bright peaks can be independently switched

on and off by the writing pulse [120]. This property has led to the suggestion that arrays of

these switchable solitons could be used for information processing [121]. While in a homo-

geneous sample these solitons would be stationary, they will start to drift along gradients

in parameters such as phase. The ability to control this functionality by tilting the angle of

the driving field to introduce a phase gradient could enable these soliton arrays to be used

as an optical delay line or information buffer [122].

The first observation of a bright polariton soliton was made in a strongly coupled planar

microcavity, which was a dissipative system [7]. Observations of conservative polariton

solitons have recently been made in a waveguide polariton system [89]. Polariton solitons

will be discussed further in §2.4

2.4 Polariton Solitons

Solitons are non-dispersive wavepackets which are useful for information processing and

signalling as they can propagate over long distances without distortion. They can be localised

in the time domain (temporal solitons) or in the spatial domain (spatial solitons). Solitons

can be described as bright, where the soliton peak is an intensity maximum; or dark, when

the soliton “peak” is an intensity minimum in a bright background. Solitons have been

widely studied in low-loss (conservative) systems such as optical fibers (§2.3.2), although
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dissipative solitons can also form in lossy systems supported by an external pump such as

weakly coupled microcavities (§2.3.7).

There clearly exists a rich variety of solitons, many of which can be studied in a polariton

system. While microcavity structures are associated with large photonic losses, they can be

pumped to generate dissipative solitons in a similar manner to the method used in VCSELs

(§2.3.7). The leakage of photons from the DBRs has its advantages, as the emitted photons

can be detected, thereby continuously observing the system as it evolves in space and time.

The lower polariton branch (LPB) is strongly curved, showing regions of positive effective

mass, corresponding to “anomalous dispersion” in an optical fiber; and negative effective

mass, corresponding to “normal dispersion” (see Figure 2.2 and §2.1). In a similar manner

to atomic condensates (§2.3.6), nonlinearity in the polariton system comes from polariton-

polariton interactions (§2.1.1). In systems with repulsive (attractive) interactions, bright

solitons will be stable in regions of normal (anomalous) dispersion. As repulsive interac-

tions dominate the polariton system, a negative effective mass is required to stabilise bright

solitons. Bright (§2.4.1, [7, 123]) and dark (§2.4.2, [55]) polariton solitons have both been

observed experimentally.

Theoretical work

The behaviour of polariton condensates is often modelled using the Gross-Pitaevskii equa-

tion, which is a version of the Nonlinear Schrödinger Equation describing the evolution of

a state in a mean-field approximation [124]. The same equation has been used to simulate

the behaviour of gap solitons (see §2.4.3, [81]) and dark solitons (see §2.4.2, [78]) in a po-

lariton system. This equation predicts the evolution of the shape of a solitonic wavepacket

by considering the effect of energy terms such as potential energy from polariton-polariton

interactions and kinetic energy, which is proportional to the second derivative of the wave-

function. Simulations using this equation give good agreement with experimental results for

dark solitons, which occupy E-k states in the region where the E-k dispersion is approxi-

mately parabolic.

One dimensional bright dissipative polariton solitons are excited in states with a non-

parabolic E-k dispersion by a seed pulse. These were numerically simulated by Egorov et al

using coupled equations which separately consider the excitonic and photonic parts of the

polariton. They considered solitons propagating over a continuously pumped background

and found that this background needed to be in a bistable regime (see §2.2.3 for more on

bistability) in order to observe solitonic solutions. These solitons were found to have an

asymmetric intensity profile with a bright peak on the leading edge and a lower density tail

on the trailing edge, illustrated in Figure 2.13. The dynamics of these solitons can also be

described with an equation which included higher derivatives (up to fourth order) of the

polaritonic wavefunction (see Fig 2.11) in order to establish the effects of these different

terms.

The continuously pumped background can also act as a pump state in an OPO process

(§2.2.1) generating additional signal and idler states. It was found that the transfer of

polaritons between these three states could stabilise the soliton size in both the positive and

negative effective mass directions so that propagating two-dimensional bright solitons could
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Figure 2.13: Soliton profile. Numerically calculated amplitude profile of the photonic Ψ and
excitonic E components of a soliton wavepacket excited at a k vector of 1.57 µm−1.
Reprinted Figure 2f with permission from [Egorov et al, Phys Rev Lett, 102, 153904 (2009)].
Copyright (2009) by the American Physical Society

Figure 2.14: Soliton trains. Examples of different propagating patterns which can be excited by
tuning the amplitude of the continuously pumped background and the k-vector of the seed pulse.
Reprinted Figure 5 with permission from [Egorov et al, Phys Rev B, 84, 165305 (2011)]. Copyright
2011 by the American Physical Society

42

http://dx.doi.org/10.1103/PhysRevLett.102.153904
http://dx.doi.org/10.1103/PhysRevB.84.165305


CHAPTER 2. BACKGROUND

be excited [125], as discussed in §2.4.1. By elongating the seed pulse along the propagation

direction and giving it a sufficiently long lifetime, soliton trains (multi-peak arrays of solitonic

pulses) can be generated. The pattern of soliton pulses (e.g. peak separation) within these

trains can be modified by tuning the amplitude of the continuously pumped background

and the k-vector of the seed pulse (see Figure 2.14).

2.4.1 Bright Solitons

Bright dissipative solitons (described in §2.3.7) have been experimentally observed in mi-

crocavity polariton systems [7, 123]. Solitons can be excited with the continous wave (CW)

pump in a bistable regime because the associated parametric instability (see §2.2.3) pro-

motes scattering out of the pump state to populate a broad soliton spectrum. The soliton

can be considered as locally exciting the pump spot from the low density state to the high

density state on the bistability curve [7].

Sich et al experimentally observed soliton formation, triggering a wavepacket with a

pulsed writing beam (WB) of diameter ∼ 10 µm. The wavepacket evolved into a soliton

which propagated across a pump spot of length ∼ 70 µm. The size and shape of the solitons

were found to be independent of the shape of the writing beam and were instead determined

by the pump and cavity parameters. The mechanism for localisation along the propagation

direction is similar to that for the formation of temporal optical solitons (§2.3.2), arising in

the polariton case from the interplay between repulsive polariton-polariton interactions and

the negative effective mass [94]. Spatial localisation in the direction orthogonal to the pump

is not well understood but may occur due to a parametric nonlinearity which can cause the

wavepacket to spread, collapse or maintain a constant size depending on the pump amplitude

[125]; this mechanism is thus only valid for dissipative solitons.

As the soliton is spatially localised, it must have a correspondingly broad momentum

space profile, which has been observed both in simulations [94] and experiments [7]. The

measured energy-momentum relationship is linear which is in agreement with what is ex-

pected for a non-spreading wavepacket as the components at different k vectors have the

same group velocity (proportional to the first derivative of the dispersion).

Recently, polariton solitons have been generated in a semiconductor waveguide [89] where

photons are confined within the structure by total internal reflection [22]. The polariton

lifetime is much longer so the CW pump is not required and these solitons are termed

“conservative” rather than “dissipative”. Polaritons are injected in the negative effective

mass region, generating bright temporal solitons, localised along the direction of propagation.

By introducing a modulation in intensity and phase in the transverse direction of the trigger,

a dark spatial soliton can form within the temporally bright propagating wavefront. This

demonstrates the potential for generating polariton devices in novel structures, however in

this thesis I will focus on the microcavity system.

Localisation in the propagation direction

Polariton-polariton interactions (see §2.1.1) contribute a repulsive potential with energy

U = gN where g is the interaction coefficient and N is the number of polaritons, favouring

a spreading wavepacket. In a similar manner to optical solitons, the nonlinear shape of the
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polariton dispersion can also influence the evolution of the wavepacket intensity profile. The

polariton propagation velocity, given by the gradient of the E-kx dispersion (see Equation

2.1), varies with kx leading to a change in shape of the spectrally broad wavepacket, such

as a broadening in realspace. The kinetic energy (K) associated with the broadening of a

wavepacket of width 2ξ is given by K = ~2

2m∗ξ2 where m∗ is the polariton effective mass (see

Equation 2.2). At high kx vectors, the value of m∗ is negative, which is analogous to the

normal dispersion sometimes seen in optical fibers (see §2.1). Note that the kinetic energy

term becomes negative for a negative m∗, describing a shrinking wavepacket.

A soliton can form in the region of normal dispersion as the spreading induced by the

repulsive polariton-polariton interactions is compensated by the negative kinetic energy

term (note that for optical solitons, an anomalous dispersion is required as the nonlinearity

is attractive in that case). The full soliton width is 2ξ where ξ is the healing length of the

polariton fluid, found here by equating the K and U terms:

ξ =
~√

2m∗gN
(2.7)

This is similar to the method used to estimate the width of vortex excitations in a superfluid

(see §2.2.4)

Localisation perpendicular to the propagation direction

Localisation perpendicular to the propagation direction is less well understood as ky ∼ 0 so

the effective mass is positive. If parametric scattering is not included, bright solitons for a

positive effective mass and repulsive interactions are unstable [87]. One proposed localisation

mechanism [126] includes parametric scattering from the pump state (kx = kp, ky = 0) to

a pair of signal (kx = 0, ky = 0) and idler (kx = 2kp, ky = 0) states (see §2.2.1). The

overall photonic E and excitonic ψ fields are a sum of the interacting pump, signal and idler

states which are all at different detunings, so have different exciton fractions and effective

masses. Above some threshold, the pump-only state becomes unstable, triggering scattering

from the pump to the signal and idler, reducing the pump population. This local depletion

of the pump population modifies the effective potential of the system in a similar manner

to the intensity dependent refractive index seen in optical fibers (see §2.3.1), which limits

the spread of the wavepacket. Simulations have shown that the signal and idler states

can further stabilise the soliton resulting in self-focussing into bright solitons even with the

positive effective mass [125]. It should be noted that this localisation mechanism is only

valid for dissipative solitons as it relies on the external CW pump, which is not present for

the conservative case (see §2.3.7).

Polarisation properties of solitons

Just as the polariton eigenmodes are circularly polarised, stable soliton solutions with a

dominant σ+ or σ– polarisation have been found [123]. Experimentally, solitons were most

easily excited when the pump and WB were co-circularly polarised: in this situation the

soliton polarisation matched that of the WB and pump. For a linearly polarised pump, a

stable circularly polarised soliton was still excited by a WB of the same circular polarisation.
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This system could be used as a polarisation switch as there is a range of pump polarisations

(with degree of circular polarisation ranging from about -0.25 to 0.25) for which either σ+

or σ– solitons could be reliably triggered with an appropriate WB. Recent theoretical work

by Fu et al [127] suggests that a dark soliton with the opposing circular polarisation may

also be triggered under these conditions, although this has not been verified experimentally.

If the pump and WB were cross-circularly polarised, no soliton was excited: this could be

used to extinguish solitons which propagated to a certain region and could be implemented

in a logic gate.

If both the pump and WB are linearly polarised, excitation is harder as there are no stable

solutions for linearly polarised solitons. For the case where the pump and WB polarisation

are orthogonal, theory predicts that either σ+ or σ– solitons will be generated with equal

probability. Experimentally this corresponded to an apparently unpolarised soliton as the

polarisation changed randomly from pulse to pulse and each measurement integrates over

many pulses. If the pump and WB have parallel polarisation, the excitation of a double

hump soliton is predicted with each hump having a different circular polarisation. This

structure would be difficult to see experimentally due to the limited resolution of the setup,

and in fact solitons were not reliably excited in this configuration [123].

Similar proposals for using the polarisation degree of freedom as a spin switch [88] or a

logic gate in a polariton based circuit [128] have been made for polariton condensates. The

bistability described in §2.2.3 can extend to multistability when the spin degree of freedom

is considered due to the spin dependence of polariton-polariton interactions: polaritons

with like spins strongly repel while those with opposite spin can weakly attract [129]. If,

for example, the population of σ+ polarised polaritons is larger than that of σ- polarised

polaritons, the σ+ polaritons will experience a large blueshift due to the stronger repulsion

from polaritons with the same spin. The two populations would blueshift into resonance at

different laser powers, giving multiple bistability thresholds.

There has been much theoretical [130, 129] and experimental work looking into the

multistability of polaritons in planar cavities [131, 88], traps [132, 133, 134], and magnetic

fields [135]. Such systems could be used as switches in a polaritonic circuit [136]. A spatial

variation in intensity, such as for a gaussian pump spot, coupled with spin multistability

can result in spatial spin patterns such as spin rings [137].

Polariton solitons in microwires

There has been much recent interest in microcavity polariton systems confined in one di-

mension [39]. This can be realised experimentally by etching areas of the top DBR around

a wire structure so that photons are confined to the region where the full cavity remains.

Systems such as this could be used to make elements for circuit applications, including tran-

sistor switches [138], Mach Zehnder interferometers [139] and logic gates [140]. Much of this

previous work has been implemented with polariton condensates in which a single state is

macroscopically occupied. In contrast, in the soliton system a broad spectrum of states is

populated, giving solitonic wavepackets with a well defined size and amplitude. These soli-

tons can be considered as carriers of information bits in all optical signal processing device

based on polaritons [141].
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2.4.2 Dark Solitons

Dark solitons consist of a low density wavepacket propagating through a high density back-

ground. In contrast to bright solitons, polaritons with repulsive interactions form stable

dark solitons in the region of anomalous dispersion, such as in a condensate at the bottom

of the lower polariton branch [87].

Figure 2.15: Dark polariton solitons experimental observation. A shows a two-dimensional
image of the realspace emission. The condensate flows past a defect located at the origin forming
dark solitons in the wake of the defect. C Interference of the soliton emission with a constant-phase
reference beam, revealing phase jumps at the centres of the solitons.
From [Amo et al, Science, 332, 1167 (2011)]. Reprinted with permission from AAAS.

The formation of conservative dark polariton solitons in a condensate was observed by

Amo et al [55], looking at the flow of a condensate past an obstacle . When the flow rate was

low, superfluid behaviour was seen where scattering was suppressed, as evidenced by the lack

of density modulation which would have been induced by interference with back-scattered

particles (see §2.2.4). As the flow rate increased, vortices began to form in the wake of the

obstacle and as the speed increased further these evolved into a pair of dark oblique solitons

(reprinted in Fig 2.15A). This replicated the numerical simulations of Pigeon et al [78] which

are reprinted in Figure 2.8.

In the experiment, the solitons formed when the flow rate was around 0.6 of the speed of

sound through the condensate. A phase jump of up to π was observed across the soliton; a

feature which is characteristic of solitons in condensates (reprinted in Fig 2.15C). A pair of

soliton doublets was also observed by increasing the obstacle size and flow momentum. There

have been suggestions in the literature that these observations can be described by linear

wave dynamics [142], however further analysis by Amo et al supports the original claim that

these results correspond to dark solitons [143]. There has been a theoretical proposal by

Pinsker and Flayac for generating dark soliton trains (soliton arrays with peaks separated

in time) in a one-dimensional wire [144]. Here, a polariton condensate flows through a step

potential in the wire, generating a sequence of peaks whose separation can be tuned by

varying the height of the potential step.

In analogy to half vortices, spin polarised half solitons have been observed [145, 146].

Theoretical work by Flayac et al shows that for a half soliton, a phase jump of up to π/2 and a

rotation of the polarisation of up to π/2 would be expected across the soliton when measured

in a linearly polarized basis. Measurements taken in a circularly polarised basis should reveal
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a phase jump of up to π in one circularly polarised component only. This behaviour was

observed experimentally in work by Hivet et al [146], where the condensate was excited with

linear polarisation parallel to the flow direction. The resulting dark solitons were observed

with polarisation dependent detection. When detected in circular polarisation, each soliton

was only visible in either σ+ or σ− detection; this was the case for both the intensity maps

and the phase maps that were measured. In the phase maps, a phase jump of around 0.85π

was observed. When the detection was linear and diagonal, both the σ+ and σ− solitons

were visible and showed phase shifts approximately half that seen in circularly polarized

detection. The expected polarisation shift across the soliton was also visible using linearly

polarised detection. The half solitons had different trajectories as an effective magnetic field

within the cavity accelerated solitons of opposite spin in different directions.

2.4.3 Gap Solitons

Figure 2.16: Gap soliton states. Blue lines show a polariton dispersion in a periodic potential
(see Fig 2.4 in §2.1.3) which has a band gap at the energy indicated by the black dotted line. Red
dotted lines indicate the edges of the mini-brillouin zone where the lowest energy mode has a strong
negative curvature. Green circles indicate the positions at which gap solitons would form.

Gap solitons are localised wavepackets whose E-k dispersion lies in a bandgap (see Fig

2.16). The effect of a periodic potential on the polariton dispersion is discussed in §2.1.3,

but the significant feature here is a band gap which opens up where two modes anti-cross

(see Fig 2.16). The gap soliton forms when polaritons condense in the band gap at the

anticrossing points where the negative curvature of the dispersion can be interpreted as a

negative effective mass (see discussion in §2.1). These condensates are localised in realspace

due to the interplay between polariton-polariton repulsion and an effective attraction arising

from the polaritons’ negative effective mass [147].

Gap solitons have been observed in several systems with periodic potentials including

atomic [148] and photonic systems [149] as well as polaritonic devices with a potential
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modulated in one [150] or two [81] dimensions. The two-dimensional modulation was applied

using a surface acoustic wave (SAW, see §3.1.1 for details on applying the SAW as well as

§2.1.3 and §2.2.5 for a discussion of the resulting behaviour of polaritons at low and high

densities). These observations of gap solitons was made by Cerda-Mendez et al using the

same sample used for the experiments presented in Chapter 4 of this thesis.

In this experiment, the size of the gap soliton was determined by the coherence length

in realspace. This was typically smaller than the total size of the emission area but larger

than the period of the potential modulation. The coherence length decreased with increasing

SAW amplitude, which was attributed to a change in the energy balance determining the size

of the gap soliton: the polariton effective mass increased with SAW amplitude (described

in their supplementary material) so the magnitude of the kinetic energy term was larger.

The repulsive term did not change as the polariton number was constant, so that balancing

the energy terms resulted in a decreasing soliton size with increasing SAW amplitude. The

decrease in coherence length was accompanied by a broadening of the k space peaks as

expected for fourier-related variables. The experimental observations were well replicated

by numerical simulations looking for gap soliton solutions.

2.5 Quantum Effects

While many observations can be explained using a classical wave description of light, certain

behaviours can only be understood when the quantum nature of light is considered [151, 152].

The quantum properties of light can be revealed through the intensity fluctuations of a light

source (§2.5.2) or by measuring correlations between pairs of emitted photons (§2.5.3).

In a quantum mechanical description of a system, there is a discrete set of outcomes

that can be observed in a measurement of the system. For example, one observation of an

electron in a hydrogen atom might show it is in the ground state with energy -13.6 eV while

a second measurement might find it in the first excited state with energy -3.4 eV. However

the electron will never be measured between these states with some intermediate energy.

These observable states and energies are known as the eigenstates ψi and eigenvalues Ei of

the particle and can be found by solving the time-independent Schrödinger equation

Ĥψi = Eiψi (2.8)

where Ĥ is the Hamiltonian describing the environment, including terms such as potential

energy in the background, the kinetic energy of the particle and interactions with neigh-

bouring particles. While the particle can only be observed in an eigenstate, the unobserved

system is described by a wavefunction ψ =
∑
i

ciψi, where |ci|2 gives the probability of

measuring the system in eigenstate ψi. ψ evolves in time according to the time-dependent

Schrödinger equation.

i~
∂

∂t
ψ(r, t) = Ĥψ(r, t) (2.9)

where ψ(r, t) describes the wavefunction at position r and time t. The Nonlinear Schrödinger

Equation used to describe solitons (§2.3) has the same form but nonlinear terms, such as
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those proportional to |ψ(r, t)|2, are included in the Hamiltonian.

Properties of the particle states can be measured, however due to Heisenberg’s Uncer-

tainty Principle, there is a limit to how precisely one can know the value of certain pairs

of complementary variables, such as position and momentum. For example in the hydro-

gen atom, the energy of the electron in the atom can be measured but its precise location

relative to the nucleus is unknown. Measurements of parameters with these uncertainties

therefore have a certain amount of noise associated with them so that the measured value

fluctuates. This noise can be reduced for a given parameter (at the expense of increasing

the fluctuations of its complementary parameter) by generating “squeezed” states, which

will be further discussed in §2.5.1.

2.5.1 Squeezed States

As mentioned previously, there is an inherent uncertainty in the measurement of comple-

mentary parameters of a system. These might describe properties which evolve sinusoidally,

but have a relative phase difference of π/2. For example in a classical harmonic oscillator,

such as a mass on a spring, the mass will oscillate sinusoidally about a centre position x0.

Its velocity will be at a maximum at x0 and at a minimum at the position of largest dis-

placement (x − x0) where the mass changes its propagation direction. For a particle in the

ground state of a quantum harmonic oscillator, the position and momentum jointly have a

minimum uncertainty

∆x∆p ≥ ~
2

(2.10)

where ~ is Planck’s constant divided by 2π, ∆x is the uncertainty in the position x and ∆p

is the uncertainty in the momentum p. Successive measurements of properties x and p will

give different values, fluctuating about the mean (given by an eigenvalue) within the range

∆x or ∆p to give a noisy measurement.

Figure 2.17: Coherent and squeezed states. (a) Coherent state: fluctuations in parameters
X and Y have similar magnitudes. (b) Quadrature squeezed state: fluctuations are reduced in
quadrature X but simultaneously increased in quadrature Y (c) Coherent state: fluctuations in
amplitude A and phase φ have similar magnitudes. (d) Amplitude squeezed states: fluctuations in
amplitude are reduced while those in phase are increased.

A more general system may have properties X and Y which again oscillate out of phase

and have a similar uncertainty relation; these properties are called “quadratures”. Mea-

surements of these values can be represented in the complex plane with a phasor diagram.

Classically, the least noisy state is a coherent state, which has similar fluctuations in X and

Y (see Figure 2.17a). However in a quantum system, so-called “squeezed states” can be
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generated where the fluctuations are decreased along one axis in the phasor diagram at the

expense of being increased along the perpendicular axis. The squeezing can occur in one of

the quadratures X or Y, which is known as a “quadrature squeezed” state (see Figure 2.17b).

Alternatively, the fluctuations in the combined amplitude of X and Y can be squeezed while

increasing the fluctuations in the phase relation between X and Y, which is known as an

“amplitude squeezed” state (see Figure 2.17d).

It has been predicted theoretically that quadrature squeezing of light fields can be

achieved in a beam propagating through a medium with a non-linear refractive index (Kerr

nonlinearity), with the strongest squeezing occurring at the boundary of the bistable region

[153]. As discussed in §2.3.1, the polariton system has a strong Kerr-like nonlinearity and

squeezing was first observed in such a system by Karr et al [154]. More recent theoretical

work showed that squeezing could be enhanced in a more confined system [155]. Accord-

ingly, further experimental work was carried out in micropillar samples (micrcavities etched

into circular pillars a few µm in diameter) by Boulier et al [156] where they were able to

measure squeezing of 20.3% (thought to be 35.8% after corrections).

Quadrature squeezed states are used in quantum information systems based on contin-

uous variables, such as position [157], where they can be used to produce entangled states.

These states are expected to be easier to generate than their counterparts based on discrete

variables such as photon number, although the quality of the entanglement would not be as

good.

2.5.2 Emission Statistics

Figure 2.18: Types of light. (a) Coherent light (poissonian statistics). This could be a laser
beam with constant intensity. (b) Bunched light (super-Poissonian statistics). This could be a
laser beam with a random intensity fluctuation, or a thermal light source. (c) Anti-bunched light
(sub-Poissonian statistics). This example shows a single photon source. Sub-Poissonian statistics
and anti-bunched correlations (§2.5.3) can only be explained using a quantum description of light,
while classical analogues can be found for coherent and bunched light.

A stream of photons can be detected by a detector which counts the number of photons

arriving in a certain time interval τ (see Figure 2.18a). First, consider a stream of photons

with constant intensity, then the mean number of counts per interval will be n̄ = Φτ where

Φ is the photon flux. If τ becomes sufficiently small, n̄ becomes fractional but fractional

photons cannot be detected. Instead, a photon will be detected in a fraction n̄ of all intervals

while no photons will be detected in (1-n̄) intervals, so even with a perfectly constant photon

flux, the count rate varies randomly from one time interval to the next. It can be shown
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theoretically [151] that the ratio between the variance (fluctuations) in count rate (∆n2)

and n̄ is one, which corresponds to a Poissonian probability distribution.

If the intensity of the photon stream now has fluctuations in time (see Figure 2.18b),

the photon flux Φ(t) can be expressed as the sum of a constant flux φ0 and a time varying

fluctuation φ(t), so Φ(t) = φ0 + φ(t) . The fluctuations about the mean value average to

zero (φ(t) = 0) so the mean count rate n̄ is unchanged by φ(t), but the fluctuations between

the count rates in different time bins will be increased. The ratio of variance to mean will

therefore clearly be increased to values greater than 1 (∆n2/n̄ > 1), corresponding to what

is known as a “Super-Poissonian” probability distribution. Most classical light sources are

expected to shown super-Poissonian statistics, tending to Poissonian statistics in the limit

of a perfectly constant photon flux. In order to cross to the regime of “Sub-Poissonian”

statistics (∆n2/n̄ < 1), a quantum mechanical description is needed.

For the Poissonian light described above, the photons are randomly distributed between

the time intervals. For the situation where photons are evenly spaced with separations of

time T, the statistics can be very different (see Figure 2.18c). If the time interval over which

the photons are counted (τ) is equal to T, there will always be exactly one photon counted

so the variance in count rate drops to zero. If τ 6=T, the variance becomes non-zero but

remains less than the mean unless τ �T, where it once again tends to the mean value to

approach Poissonian statistics. This variation in the measured ∆n2/n̄ is simulated in Figure

2.19 where the cases of Poissonian light and regularly spaced single photons are compared.

Figure 2.19: Photon Statistics. (a) Shows two beams of light. The blue (lower) dots show
photon counts over time t for a coherent beam of light where the photons are on average separated
by a time interval T. The red (upper) dots illustrate the counts registered for a stream of single
photons emitted at regular intervals of T. The counts are slightly offset to help distinguish the
two light beams. (b) Ratio between the variance and mean in the count rate (number of photons
arriving in time interval τ) for the photon beams illustrated in (a) as a function of the width of the
time interval τ . The black dashed line indicates a ratio of 1 corresponding to Poissonian statistics.

The single photon source shown in Figure 2.18c is an example of a “photon number

state” (with photon number 1), where the photons are counted exactly but their phase is

completely undefined. These in turn are extreme examples of amplitude squeezed states (see

§2.5.1). Photon number states with multiple photons would give sub-Poissonian statistics

in the same way as the single photon state: if the number of photons in the measured time

interval is well defined, the variance between measurements will be dramatically reduced.

The measurement of sub-Poissonian statistics is severely hampered by low detection
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efficiencies as the low efficiency randomly removes photons from the beam. This is illustrated

in Fig. 2.20 for the case of regularly spaced single photons separated by time T. The photons

are counted in time intervals of τ=T, which should result in a variance of 0 as discussed

in Fig 2.19. However, as the efficiency is reduced, the ratio of variance to mean rapidly

approaches 1, for example with an efficiency of 3% (comparable to the streak camera used

in this thesis) the measured ratio of variance to mean is ∼ 0.97 instead of 0.

Figure 2.20: Effect of detector efficiency. (a) Shows the photons detected by detectors of
different efficiencies η when the incoming photon beam is a stream of single photons separated by
time T. The count rates are offset so that the beams can be distinguished. (b) Ratio between
the variance and mean in the count rate (number of photons arriving in time interval τ = T) for
the photon beams illustrated in (a). The black dashed line indicates a ratio of 1 corresponding to
Poissonian statistics.

The detection efficiency η modifies the mean and variance (µ, σ2) according to equations

2.11 and 2.12 so that values (µm, σ
2
m) are measured instead [151, 152].

µm = ηµ (2.11)

σ2
m = η2σ2 + η(1− η)µ (2.12)

2.5.3 Pair Correlations

In addition to measuring the photon statistics in a beam of light, the correlations between

photon pairs can also be studied. This looks at how the detection of one photon influences

the probability of detecting a second photon. Pair correlations can be quantified by looking

at the second order autocorrelation g(2)(τ) defined as

g(2)(τ) =

〈
I(t) I(t+ τ)

〉〈
I(t)

〉 〈
I(t+ τ)

〉 (2.13)

where I(t) is the measured intensity in time interval t and I(t+ τ) is the measured intensity

in time interval (t+ τ), while the brackets
〈
...
〉

indicate an average over many time intervals

[151].

In a coherent light beam (see Figure 2.18a), the photons are randomly distributed; the

detection of one photon has no effect on the probability of detecting a second. The photons

are uncorrelated, giving a normalised value of g(2)(τ) = 1 for all τ (see Figure 2.21a).
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Figure 2.21: Schematic g(2)(τ) functions for (a) coherent light, (b) bunched light and (c)
anti-bunched light

In a bunched light beam (see Figure 2.18b), such as a beam with varying intensity, the

detection of one photon increases the likelihood of detecting a second at the same time, as

both photons are more likely to be detected when the beam intensity is at a maximum.

Here, g(2)(0) > 1, although for sufficiently large τ the photons will no longer be correlated

due to their large temporal separation, so that g(2)(τ � 0) ∼ 1 (see Figure 2.21b). Bunched

light can be generated, for example, by spectrally filtering a laser beam which has a constant

intensity but whose lasing frequency drifts over time, as the spectral filter then imposes a

time varying intensity on the light which it transmits.

For amplitude squeezed photon sources where there are always n photons in a given

time interval τ , g(2)(0) < 1 as the detection of one photon reduces the number of photons

remaining in the time interval to n-1. For a perfect single photon source (see Figure 2.18c),

the detection of one photon means there is zero probability of detecting a second photon at

the same time as there is never a second photon present. This gives the result g(2)(0) = 0.

Once again, g(2)(τ � 0) ∼ 1 as photons in well separated time bins are uncorrelated (see

Figure 2.21c).

2.6 Polaritonic Devices

Polariton systems are very versatile, exhibiting phenomena such as long range coherence

(§2.2), bistability (§2.2.3) and soliton formation (§2.4). They have a strong nonlinearity

due to polariton-polariton interactions, which is several orders of magnitude larger than

that in optical fibers, so nonlinear effects can be observed at much lower excitation powers.

The nonlinearity in polariton systems is typically 2-3 orders of magnitude higher than that

in weakly coupled structures (discussed in §2.3.1). In addition, the response time of the

strongly coupled system is enhanced by 2-3 orders of magnitude compared with weakly

coupled devices due to the increased influence of the photonic component compared with

the carrier dynamics [87].

The need to cryogenically cool the well-studied GaAs based polariton systems could be

seen as a barrier to the wide-spread application of polariton systems, however progress is

being made towards achieving similar functionality in newer materials which can operate at

room temperature such as ZnO [25], GaN [26] and organic polymers [27]. Several proposals

for polaritonic devices use polariton condensates: as noted in §2.2, these macroscopically

coherent phases appear at much higher temperatures in a GaAs based polariton system (of

the order of a few Kelvin) than in an atomic system, where µK temperatures are required.

The combination of these factors makes polariton systems a promising platform for the
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development of all-optical devices.

Figure 2.22: Polariton Devices (a,b) Polariton transistor demonstrated by Gao et al. (a) shows
the transistor in the “on” state where a condensate forms at the collector while (b) shows the “off”
position where the polariton flow is stopped by a gate.
Reprinted Figure 1 with permission from [Gao et al, Phys Rev B, 85, 235102 (2012)]. Copyright
(2012) by the American Physical Society
(c) Mach-Zehnder interferometer investigated by Sturm et al for modulating the intensity and
polarisation of polaritons at the output (right hand side).
Reprinted from [Sturm et al, Nature Commun., 5, 3278 (2015)] under a Creative Commons Licence.)
(d) Y-splitter structure for a soliton-based logic gate investigated by Cancellieri et al.
Reprinted from [Cancellieri et al, Phys Rev B, 92, 174528 (2015)] .

Transistors and logic gates

One device which has been proposed is a transistor switch, where the flow of polaritons

into a certain area (the “collector”) is controlled by modifying the potential landscape [138,

158]. This structure is illustrated in Figure 2.22(a,b). Here, polaritons are ejected from

a condensate due to repulsive polariton-polariton interactions in the high density regions.

They propagate along a potential gradient towards the collector located at the end of a

mesa, where they accumulate to form a second condensate: in this case the transistor is

“on”. The flow of polaritons to the collector position can be gated by using a second laser

beam to locally excite polaritons which blueshift the polariton dispersion, thus creating a

barrier. Due to the short polariton lifetime (18ps), the polariton density at the collector will

then decay, turning the transistor “off”.

A different transistor device has been demonstrated which shows a sharper threshold-

like behaviour by exciting a state (the “Address” state) with the laser slightly blueshifted

from the lower polariton branch (LPB) so that as the polariton density increases, the LPB

will blueshift into resonance with the laser and become highly populated [159]. A small

polariton population injected into a second state (the “Control”), excited in resonance with

the LPB, which can be used to switch the high intensity address state on and off. The

amplification of the Address state compared with the Control state opens the possibility

for cascadability, where polaritons ejected from the Address state can be used to switch the

state of a neighbouring device. This can be further extended by using two transistors to

switch the state of a third; a configuration which can be modified into an AND gate (where

the third transistor only switches on if both of the inputs are on) or an OR gate (where

either input will switch on the third transistor).
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An alternative logic gate architecture has been proposed which uses bright dissipative

solitons propagating at ∼ 0.7µm ps−1 [141]. A Y-splitter configuration (see Figure 2.22d)

is simulated where a logical “1” is taken to be the arrival of a soliton with a given circular

polarisation at the output (bottom of Y, right hand side of Fig. 2.22d). In the OR gate

configuration, a soliton in either of the input arms at the top of the Y can propagate to

the output to give a logical 1. The wire parameters (or pump parameters) can be modified

so that solitons arriving simultaneously at both inputs are required to generate a soliton

in the output branch, thereby creating an AND gate. It is estimated that these devices

could work with repetition rates of up to 100 GHz. It is also shown that if solitons with

opposite polarisations arrive from the two inputs, these will annihilate due to the attractive

interaction between polaritons with opposite spins (see §2.1.1).

Intensity and polarisation modulation

The interference of polariton fluids has been studied experimentally in a Mach Zehnder

interferometer device [139]. Here, a polariton fluid is injected into an input wire which splits

into two arms. These later recombine in an output wire as shown in Figure 2.22c. A phase

shift can be introduced into one of the arms by using a weak laser field to generate a small

potential barrier which slows the flow of polaritons. By tuning the phase shift, the output

intensity can be modulated by constructive or destructive interference.

The wire mesas have a splitting between modes polarised along the wire (x direction) and

those polarised across the wire (y direction). This splitting results in an effective magnetic

field which rotates the polarisation of the injected polaritons as they propagate through the

device. Polaritons are injected into the input wire polarised along the horizontal axis of the

sample, corresponding to the x direction of the input and output wires. In the interferometer

arms, the wire bends away from the horizontal axis. Here the injected horizontal polarisation

is no longer aligned with the x direction, so contains contributions from x and y polarised

components. The energy splitting between the x and y contributions gives an effective

magnetic field, resulting in precession of the polariton polarisation. The direction of spin

precession depends on the sign of the angle between the x component in the wire at a given

position and the horizontal axis, so the spin precesses in opposite directions in the two

arms, introducing a π phase shift in the vertical component of the two arms. The vertically

polarised component will interfere destructively while the horizontal component interferes

constructively, so that polarisation at the output can be modulated along with the intensity.

Experiments passing an atomic BEC through a Mach-Zehnder interometer have revealed

the generation of non-classical (number-squeezed) states [160], something which may be

replicated in future experiments on polaritonic devices.

Spin switching

Experimental work has shown that under certain conditions, a polariton device can be

initialised into a multistable regime, where a high density state with σ+ or σ− circular

polarisation can be excited from a linearly polarised low density state using a σ+ or σ−

polarised trigger [88], a functionality which could be used to develop memory elements [134].

There has been a theoretical suggestion [128] of creating a propagating signal by switching
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on consecutive multistable regions in a wire structure (a so-called “polariton neuron”) and

using this system to create AND and OR gates. However, the soliton approach suggested by

Cancellieri et al [141] (described earlier in this section) has an advantage over this system as

the solitonic device effectively resets after the soliton passes, enabling a high pulse repetition

rate. Bright dissipative solitons with either circular polarisation can be triggered by a writing

beam with matching polarisation and will propagate over a linearly polarised continuous

wave pump spot, as has been demonstrated experimentally [123].

“NOT” functionality

While suggestions have been made for the construction of AND and OR gates, many com-

putation algorithms also require a NOT-type gate, which inverts the input (so that a logical

1 at the input gives a logical 0 at the output, and vice versa).

A theoretical suggestion has been made for generating a network of AND and NOT

gates, consisting of micropillar nodes connected by quasi-1D channels whose polarisation

splitting induces a spin precession in any polaritons propagating through them [136]. The

logical states are again encoded in the circular polarisation state of the polaritons. The

micropillar nodes are initialised using a continuous wave laser in a low density state but can

be switched to a high density state with either σ+ or σ− polarisation by a low density signal

of the same polarisation entering the node through one of the microwires. This amplifies

the polarisation signal: a functionality which is important for cascadability (i.e. using the

output of one node as the input to the next, allowing many operations to be carried out).

The “NOT” functionality comes from the spin precession in the microwire. It is then

possible for a σ+ polarised node to eject polaritons into a channel whose spin precesses as

they propagate, so that they excite the next node in a σ− polarised state, thus the logical

state is inverted between nodes. An AND gate can be constructed by introducing a slight

polarisation bias into the continuous wave pump in the nodes, so that the σ+ will be excited

in the output node unless both input nodes have σ− polarisation.

Solnyshkov et al propose a similar structure consisting of two microwire sections at an

angle of 45◦ separated by a micropillar, but now with controlled-NOT (CNOT) functionality

[161]. This gate consists of two bits: the control and the target. If the control bit is set to

1, the target bit is inverted while setting the control bit to 0 leaves the target bit unaltered.

Here, the target bit propagates through the microwire sections, interacting with the control

bit localised in the micropillar which can rotate the polarisation of the target bit if required.

Realisation of this two-bit gate would be an important step towards implementing quantum

algorithms on a polaritonic chip.

Soliton arrays for memory

A related approach for constructing memory elements could involve using solitons. In weakly

coupled cavities (VCSELs), arrays of solitons were optically excited where each peak could

be individually switched on and off by an optical control beam [121]. Polariton systems

have a much stronger nonlinearity so should show similar behaviour at lower optical powers.

There have also been suggestions for using gap solitons (§2.4.3) in photonic crystals for all-

optical memory, where the memory bit consists of a trapped soliton which can be released for
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readout by a second control pulse when required [162]. Similar functionality was suggested

in the polariton system by Tanese et al when they observed gap solitons in a 1D periodic

potential [150].
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Methods

This chapter explains the experimental methods used for the work in this thesis. Details of

the samples are given in §3.1 while the cryogenic cooling is described in §3.2. The optical

setups used to excite the sample and image the emission are described in §3.3. More details

of certain measurement techniques, such as the measurement of the phase profile over the

emission, are given in §3.4.

3.1 Samples

All experimental work presented in this thesis was carried out on microcavity samples con-

taining quantum wells. The wafers were grown by Molecular Beam Epitaxy (MBE). Some

experiments (Chapter 5) were carried out on a section of the wafer with no further pro-

cessing while in others, the wafers were modified either by patterning structures onto the

top surface (Chapter 4) or by etching sections of the top DBR to define mesas in which the

polaritons were confined (Chapter 6).

3.1.1 Sample for Surface Acoustic Wave Experiments

A dynamic periodic potential can be generated using a Surface Acoustic Wave (SAW). This

strain wave periodically compresses and extends the sample thickness along the growth

direction, modulating the width, and hence the bandgap, of the quantum wells.

The SAW is applied via interdigitated transducers patterned onto ZnO islands on top

of the microcavity (see figure 3.1). The islands are necessary because if the SAW were to

propagate along a piezoelectric axis of the GaAs sample surface, the field would dissociate the

excitons [163, 164], so this must be avoided. By placing the transducers on piezoelectric ZnO

islands, the IDTs convert the electrical signal to a mechanical strain along the piezoelectric

axis of the ZnO and then the ZnO transfers the strain wave to the GaAs. The resulting

surface acoustic wave can then be applied along any GaAs axis by changing the orientation

of the ZnO island.

This technique was developed by Rudolph et al for use on an excitonic system [163]. In

that case, the periodic strain field from the SAW induced a modulation in the band gap

of the quantum well at the frequency of the SAW, trapping the excitons in the minima of
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Figure 3.1: Surface Acoustic Wave: A surface acoustic wave (SAW) is applied to the surface
of the microcavity wafer using interdigitated transducers (IDTs) patterned onto ZnO islands on the
sample.

the potential. Here, the microcavity resonance is simultaneously modulated by compression

and extension of the cavity and the refractive index of the material is also modified by the

strain field [44]. Both the excitonic and photonic components are therefore subjected to a

modulated potential due to the SAW which is inherited by the polariton [41].

The sample used was a GaAs/AlGaAs microcavity consisting of two DBRs surrounding

a λ
2 cavity. Three pairs of 15 nm thick quantum wells were embedded in the cavity. The Q

factor of the cavity was ∼ 2000 with a Rabi splitting of ∼ 6 meV and the cavity mode was

detuned from the exciton by ∼ −2 meV. SAWs of frequency 374 MHz with a corresponding

wavelength of ∼ 8µm were applied to the sample surface.

3.1.2 Sample for Bright Dissipative Soliton Patterns

The sample used to study patterns of bright dissipative solitons in Chapter 5 is a GaAs

based λ microcavity with 6 GaAs quantum wells (15nm thick). The exciton emission is at

∼806.3 nm (∼1.5377 eV) which is above the bandgap of the GaAs substrate (∼818 nm,

∼1.52 meV [165]). This sample could only be studied in a reflection configuration as its

emission would be absorbed by the substrate. The Rabi splitting was ∼5.0 meV. The

bottom of the LPB was at ∼808.7 nm (1.5331 eV), corresponding to a cavity mode at

∼807.9 nm (1.5346 eV) and a cavity-exciton detuning of ∼-3.1meV. With these parameters,

the point of inflection of the E-kx dispersion is expected to be at around kx = 1.7 µm−1.

The cavity mode varied across the wafer, allowing the selection of a particular value for the

exciton-photon detuning. The polariton lifetime in this wafer was ∼ 5 ps.

3.1.3 Sample for Nonlinear Wavepackets in Microwires

Experiments on nonlinear wavepackets in microwire structures (Chapter 6) were carried out

in a transmission configuration. For this, a new wafer was grown with the exciton emission

at an energy (∼1.492 eV, 831±1 nm) below the bandgap of the GaAs substrate (∼818 nm,

∼1.52 meV [165]). The large uncertainty in the position of the exciton emission is due to
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the fact that it is not measured directly but is found by fitting to the measured polariton

dispersion. As the Rabi splitting is another free parameter in this fitting, a small range

of values can be found which fit the measured dispersion. The wafer is a 3λ
2 microcavity

with 3 InGaAs quantum wells (10nm thick, 4% Indium). The DBRs are GaAs/AlGaAs

(85% Al) with 23 and 26 repeats for the top and bottom DBRs respectively, resulting in a

polariton lifetime of ∼ 15 ps. The Rabi splitting was ∼5.0 ± 1 meV. By design, the energy

of the cavity mode varied across the wafer, allowing the selection of a particular value for

the exciton-photon detuning between -9meV and -4meV.

The planar cavity used in §6.7 has a detuning of -7 meV; the short wire sample used in

§6.6 had a detuning of -8 meV; and the long wire sample used for most measurements in

Chapter 6 had a detuning of -5 meV (Figure 6.3). These parameters give an expected point

of inflection in the lower polariton branch at kx = 2.0 µm−1 for the long wire sample,

kx = 2.3 µm−1 in the short wire sample and kx = 2.2 µm−1 in the planar sample.

Figure 3.2: Microwires: the top DBR on a planar microcavity is etched away in all but a few
regions. Photons are still trapped in the cavity, but only in these remaining mesas. The polaritons
excited in the sample are similarly confined to these mesas.

Wire-shaped mesas (see Figure 3.2) were then defined by etching the top DBR using

Electron Beam Lithography (EBL). The top DBR was only partially etched to avoid dam-

aging the quantum wells and broadening the exciton. Sufficient confinement of the photonic

mode was achieved by partial etching to generate discrete energy levels in the mesa, as can

be seen from the far-field emission at low excitation power shown in Figure 6.3 in §6.1.

Wires with widths varying between 4 and 8 µm were measured. The wire length was either

1000 µm (“long wires”, used in most of Chapter 6) or 100 µm (“short wires”, used in §6.6).

3.2 Sample cooling

The samples used for all experiments were cooled with liquid helium to temperatures be-

tween 4 K and 20 K. In most experiments, a continuous flow cold finger cryostat was used.

In this system, liquid helium is continuously pumped through the cryostat where it vapor-

ises, cooling the finger and the sample. Vibrations from the pump and the continous flow

of helium introduced noise by vibrating the sample during experiments, however as the am-

plitude of the movement was on the order of 1 µm this did not inhibit the observation of

nonlinear wavepackets where the smallest features were ∼ 4 µm wide (this was the width of
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the narrowest wire used in Chapter 6). It may however have resulted in an overall broad-

ening of the measurement emission in realspace as the measurements were integrated over

the oscillation period. The large windows on this cryostat gave good optical access to the

sample from both the front and back, enabling measurements to be carried out in either a

reflection or a transmission configuration (§3.3.1).

For the experiments involving surface acoustic waves (Chapter 4), a bath cryostat was

used to cool the sample. The higher cooling efficiency of this system was advantageous

as the application of the SAW could otherwise heat the sample, inhibiting the formation

of excitons. Use of this cryostat does however limit the duration of an experiment as the

helium supply would run out 4-5 hours after the cryostat was filled, so it was not used for

all experiments.

3.3 Optical Setups

For the experiments in this thesis, the cryogenically cooled samples (§3.1) are optically

excited by a tunable continuous wave (CW) laser (chapter 4), a tunable pulsed laser (chapter

6), or both of these lasers (chapter 5). Components were added to the CW excitation path

to control the size, shape (circular or elliptical) and polarisation of the laser beam (§3.3.2).

The component of the wavevector in the plane of the quantum wells could also be controlled

by changing the angle at which the incoming laser light hit the top DBR. The pulsed laser

excitation path had similar functionality, but a pulse shaper was also added to fine-tune the

pulse duration and energy (§3.3.3). For some sample characterisation measurements, the

sample was pumped non-resonantly through the top DBR using a CW HeNe laser at normal

incidence. The overall setup is illustrated in Figure 3.3 with a block diagram.

Emission from the sample could be collected from the top DBR in a reflection configura-

tion (the sample is excited through the top DBR) or from the bottom DBR in a transmission

configuration, provided that the emission was at a lower energy than the bandgap of the

GaAs substrate (§3.3.1). The collection path (§3.3.4) could be configured to image the near-

field (realspace) or far-field (k space) emission onto the entrance slit of the spectrometer.

The emission could pass unaltered through the spectrometer to the detectors, or could be

spectrally resolved using the spectrometer gratings (§3.3.6).

Throughout the experimental chapters, references are made to x and y directions. These

refer to the in-plane axes on the sample and are aligned with sample features such as the

trajectories of applied surface acoustic waves (Chapter 4) and the long (x ) and short (y) axes

of etched microwires (Chapter 6). The samples are mounted so that the x axis corresponds

to the horizontal direction in the laboratory frame (parallel to the optical bench) while the

y axis corresponds to the vertical direction in the laboratory frame (perpendicular to the

optical bench). These axes are illustrated in Figure 3.4.

3.3.1 Transmission and Reflection configurations

Figure 3.3 shows an optical setup using a transmission configuration, where the excitation

and collection paths use separate objective lenses on opposite sides of the sample. In this

configuration, the sample is excited through the top DBR and the emission is collected from
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Figure 3.3: Optical setup block diagram. This diagram shows how the excitation and collec-
tion paths used for most experiments were laid out. Here, a transmission configuration is shown
for clarity, but a reflection configuration was used for experiments in Chapters 4 and 5 where the
excitation and imaging of the sample were done through the same objective lens (see §3.3.1). Here,
lens LE is the objective lens used for excitation while lens LC is the objective lens used for collec-
tion. The sample is mounted in a cryostat as discussed in §3.2. The HeNe excitation path (red)
is used to non-resonantly excite the sample while the CW and Pulsed laser paths (green and blue)
are used to resonantly excite the sample. The “Laser Manipulation” blocks include components
to control the size, shape, power and polarisation of the laser beam as shown in Figure 3.6. The
“Pulse Characterisation” and “Pulse Shaper” blocks are shown in Figures 3.7 and 3.8 respectively.
More details on the imaging optics (purple) are shown in Figure 3.10.

Figure 3.4: Schemetic of Sample Orientation showing the relationship between the x and y
sample axes and the horiontal and vertical laboratory axes. The vertical slit on the entrance to the
spectrometer and the horizontal slit on the entrance to the streak camera are also illustrated.
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the bottom DBR through the GaAs wafer substrate. This setup requires the emission to be

at a lower energy than the bandgap of the GaAs substrate (∼818 nm, ∼1.52 meV [165]) in

order to be transmitted through, rather than absorbed by, the substrate.

Figure 3.5: Reflection Configuration. The excitation and collection paths share the same
objective lens. A beam blocker is used to block the resonant laser reflections so that they do not
saturate the detectors.

Samples whose emission is at a higher energy than the GaAs bandgap can however be

studied using a reflection configuration (Figure 3.5), where both the excitation and collection

are done through the top DBR. The down-side to this configuration is that strong reflection

of the excitation lasers from the sample surface can saturate and damage the detectors, so

these must be reduced in the imaging path. A non-resonant laser reflection (such as that from

the HeNe laser) can be filtered out using a long-pass filter which blocks light above a certain

energy. This approach does not work with resonant excitation as the laser wavelength is too

close to the emission wavelength. However, as the experiments presented in this thesis use

resonant excitation at a high k vector, the laser reflection is offset from the main optical axis

of the emission so can be blocked with a beam blocker as shown in Figure 3.5. This approach

reduces the detectable range of k-space when compared to the transmission configuration

but is still sufficient for many experiments, such as those presented in Chapters 4 and 5.

3.3.2 Continuous wave excitation

Continuous wave excitation of the sample is done with a Ti:Sapphire tunable laser (Coherent

MBR-110). It can be tuned into resonance with the lower polariton branch and was used

at wavelengths between 805 nm and 835 nm. The laser emits vertically polarised light,

but the polarisation can be manipulated by using a half-wave plate to rotate the plane of

linear polarisation, or by using a quarter-wave plate angled at 45◦ to the linear polarisation

direction to convert to circularly polarised light. A linear polariser can be inserted before the

wave-plates in order to clean the polarisation, as this could be distorted by optical elements

in the setup; it is therefore desirable to place the polarisation control block as close to the
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sample as possible. The excitation power is controlled using ND filters. The CW excitation

path is illustrated in Figure 3.6.

Figure 3.6: Continuous Wave Excitation including components to control the power, size,
shape, polarisation and in-plane k vector of the laser beam hitting the sample. f is the focal length
of the objective lens while d is the distance of the incident beam path from the optical axis of the
lens.

The size and shape of the beam are controlled using two telescope blocks: the first

magnifies the size of the laser spot on the sample while the second uses cylindrical lenses

to compress the spot along the vertical axis, generating an elliptical spot elongated along

the horizontal axis when required (this was used for experiments in §5.2) The component of

the wavevector in the plane of the quantum wells can be controlled by changing the angle

at which the incoming laser light hits the top DBR. All light beams which are incident on

the objective lens parallel to the optical axis will be focussed to the same focal point on the

optical axis, so light beams coming from a position away from the centre of the lens will

arrive at the focal point with some angle θ given by tan(θ) = d/f where d is the distance

from the centre of the lens and f is the focal length of the lens. The in-plane wavevector is

then given by

kinplane =
2π

λ
sin θ (3.1)

where λ is the wavelength of the laser light.

3.3.3 Pulsed excitation

Pulsed excitation of the sample is done using a pulsed Ti:Sapphire tunable laser (Spectra-

Physics Tsunami). The laser can be set up to emit pulses with durations of ∼ 300 fs or

∼ 3 ps and the centre wavelength of these pulses can be tuned. A small portion of the laser

light can be removed from the main path using a glass wedge or beam splitter: part of this

is spectrally analysed to check the centre wavelength of the emitted pulse while part acts as

a trigger for the streak camera measurement. With the laser in the ps regime, part of this

light is also sent to an autocorrelator in order to check the pulse duration (see Figure 3.7).

For the experiments presented in this thesis, the laser pulses were passed through a pulse

shaper in order to increase the pulse duration to ∼ 5 ps (see Figure 3.8). The pulse shaper

works by using a slit to select a small region of energies out of the broadband laser emission,
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Figure 3.7: Pulse characterisation. A portion of the laser pulse is used to trigger the streak
camera measurement. A second portion goes to the autocorrelator, which is used to measure the
pulse duration in the ps regime. A third portion is sent to a spectral analyser which is used to
check the approximate wavelength of the laser pulses. The rest of the laser beam goes on to the
pulse shaper and the rest of the excitation path.

so the centre energy of the output pulse can be changed by moving the slit. The output

pulse duration can be increased by narrowing the slit, as energy and time are conjugate

variables (related by a fourier transform), so a decrease in the energy width corresponds to

an increase in the pulse duration. For the experiments presented in Chapter 5, the laser

was set up to emit 300 fs pulses, allowing significant tuning of the energy using the pulse

shaper. Unless otherwise stated, the experiments in Chapter 6 were conducted with the

laser emitting 3 ps pulses, increasing the laser power through the pulse shaper as more of

the laser pulse is allowed through (see Figure 3.9). The laser beam can be split into multiple

parts at other stages in the setup as required, for example to use one part as a reference

beam in a phase measurement (§3.4.2) or to have two trigger pulses to inject two polariton

wavepackets into the system (as for experiments in §6.3.3).

Figure 3.8: Pulse shaper. The λ
2

plate optimises the linear polarisation angle of the input pulse
for the diffraction gratings. The laser is incident on grating G1 and the first diffraction maximum
from the grating is sent along the pulse shaper. The beam is now split into energy components
which are collimated by lens L1. The slit selects a small range of energies, lengthening the pulse:
both the width and position of the slit can be adjusted to select the bandwidth and centre energy
of the pulse. Lens L2 focusses the filtered laser onto grating G2 which recombines the energy
components into a collimated output laser beam. The input pulse length was ∼300 fs (or ∼3 ps)
while the output pulses are ∼5ps. f = 50 cm is the focal length of lenses L1 and L2.

The power, polarisation, size and in-plane wavevector of the pulsed excitation can be

controlled in the same way as the continuous wave excitation (§3.3.2). The laser powers

quoted in the experimental chapters are average powers Pav: the peak power in the pulse

Ppeak can be found using Ppeak = Pav/(Fτ) where τ is the pulse duration (∼ 5 ps after the
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Figure 3.9: Laser pulse profiles. Intensity vs energy distribution for gaussian laser pulses of
length 300 fs (left image) and 3ps (right image). The shaded rectangle indicates the energy range
selected by the pulse shaper (∼0.4 meV) for a 5 ps WB pulse.

pulse shaper) and F is the pulse repetition frequency of the laser (82 MHz). However, it is

not known how much of the laser power reaches the cavity as some power is lost in the optical

elements and some is reflected from the sample surface, so the quoted laser powers should

not be taken as a measure of the absolute number of polaritons excited in the sample.

3.3.4 Imaging Optics

The near-field (realspace) and far-field (k-space) emission can be collected and focussed on

the spectrometer slit using the setups shown in Figure 3.10. The image can be spectrally

filtered by introducing components such as beam blockers at the focal plane of the objective

lens while spatial filtering can be applied in a magnification stage as shown in Fig 3.10b. In a

reflection configuration, one objective lens is used for both excitation and imaging while in a

transmission configuration, separate objectives are used on each side of the sample (§3.3.1).

In most experiments, the emission is recorded using a CCD or streak camera, although in

some cases Avalanche Photo-Diodes were used in a Hanbury-Brown and Twiss setup (see

§3.4.1).

3.3.5 Two-dimensional imaging

The streak camera images intensity as a function of time and horizontal position x. It can

however be helpful to measure the intensity in two spatial dimensions as well as time (see,

for example, the figures in §5.3). This can be done by taking a series of measurements,

scanning the vertical position of the imaging lens between each one. This effectively moves

the emission image over the horizontal slit at the entrance to the streak camera, measuring

intensity along x for each y. The two dimensional intensity profiles can then be reconstructed

from this series of traces (Fig 3.11).

Intensity profiles (either along a line or integrated over some region) can be taken and

gaussian peaks can be fitted in order to extract parameters such as the width of a wavepacket

or the separation of several soliton peaks in a pattern, as in Chapter 5. For realspace imaging,

the spectrometer slit can be widened to image an area ∼ 60 µm wide. While this is sufficient

for the measurements presented in Chapters 4 and 5, the nonlinear wavepackets observed
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Figure 3.10: Imaging optics. (a) The sample emission is collected using the objective lens
and focussed onto the spectrometer slit using the imaging lens. This pair of lenses images the
realspace (near-field) intensity profile of the sample emission. (b) The image can be magnified
using a telescope block (lenses TL1, TL2) and spatial filtering can be applied at the focal plane in
the middle of the telescope. (c) the k-space (far-field) intensity profile can be imaged by adding an
extra lens (KL) focussed on the fourier plane of the objective lens. fimg, fObj, fTL1, fTL2 and fKL

are the focal lengths of the imaging lens, the objective lens and lenses TL1, TL2 and KL.
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in Chapter 6 propagate for ∼ 200 µm. In order to observe the whole propagation path, the

imaging lens can again be moved, directing a different portion of the emission to the streak

camera.

Figure 3.11: Reconstructing images: A two-dimensional spatial image can be recorded using
a detector which only measures one spatial dimension. The image can be scanned over the detector
slit so that a different section is selected in each measurement. The recorded data can be then be
reconstructed from the recorded images.

A similar method can be used to measure energy dispersions as a function of kx and

ky (in-plane wavevectors in the x and y directions). At the entrance to the spectrometer

is a vertical slit. For spectrally resolved measurements, this is normally set to be narrow

(0.1 mm wide) in order to select emission in a small range of kx. The emission is diffracted

from the grating so that components at different energies appear at different horizontal

positions. This image can be directed towards the CCD to record the emission intensity as

a function of energy (along the horizontal axis) and ky (vertical axis) for a given value of

kx. The imaging lens can again be scanned, changing the selected value of kx to generate

a series of spectra from which an image of intensity as a function of energy and kx can be

reconstructed.

The imaging lens was mounted onto automated translation stages. A LabVIEW program

was used to scan the stages and record a series of measurements using the CCD or streak

camera. Plots of intensity as a function of two parameters were reconstructed from this data

set using Matlab. An example of this reconstruction is shown in Figure 3.12 where an E-kx

spectrum is measured. The intensity versus energy at this kx for a particular ky (usually

ky=0) is extracted from the E-ky image recorded on the CCD (Fig 3.12a). This is repeated

for many kx and the profiles are combined to form an image (Fig 3.12b). From this image,

the positions of intensity maxima can be extracted to which a pair of polariton modes can

be fitted to characterise the sample at this position.
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Figure 3.12: Data processing example: measurement of an E-kx spectrum. (a) Intensity as a
function of energy at a given kx and ky. (b) Combination of profiles (as shown in (a)) for different
values of kx to form an E-kx spectrum. The upper part of the image has been magnified so that
both polariton branches are visible. (c) Intensity peaks are extracted from the two dimensional
image. (d) Polariton modes are fitted to the extracted peaks in order to characterise the polariton
modes in this sample.

3.3.6 Detectors

The collected emission is focussed onto the input slit of a Horiba Triax320 monochroma-

tor/spectrometer. The spectrometer is used with a 1200 groove/mm grating to give a spec-

tral resolution of 0.06nm (source: Horiba Triax320 data sheet). Real-space images can also

be obtained by opening the spectrometer slit to its maximum value of 7 mm and using the

grating at zero order. The spectrometer has two exit ports, so the emission can be directed

either towards a Princeton Instruments Pixis 1024 CCD on one port or a Hamamatsu streak

camera (model C5680) with a time resolution of 2 ps (source: Hamamatsu C5680 data sheet)

on the other port in order to take time integrated or time resolved measurements (see Figure

3.10).

Streak camera operation

The operation of the streak camera is illustrated in Figure 3.13. The measurement is trig-

gered by the laser pulse: a small portion of the laser light is detected using a PIN diode

positioned after the laser as shown in Figure 3.7. The emission to be measured passes

through a horizontal slit to a photocathode, which converts the photonic signal into an elec-

trical one. The electrons are accelerated and swept vertically, so that photons arriving at

different times are converted to electrons arriving at different vertical positions. A phosphor

screen converts the electronic signal back to a photonic signal and the two-dimensional im-

age is recorded. A time window of ∼ 120 ps can be recorded with a resolution of 2 ps, while

time windows of up to 2 ns can be recorded at a reduced resolution.

Photon counting mode

In normal operation, images recorded on the streak camera are integrated over many laser

pulses: during a typical exposure time of 120 ms, emission excited by 10,000,000 laser pulses

is recorded. In order to measure quantum properties, such as emission statistics and photon

correlations (see §2.5), one needs to know which photons come from the same laser pulse.

This information can be obtained using the streak camera’s “photon counting” mode.

In this mode, one vertical sweep records the emitted photons from one laser pulse only.

A second delay unit can be used on the streak camera to sweep the emission horizontally, so
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Figure 3.13: Operating Principle of the Streak Camera. Source: Hamamatsu C5680 data
sheet

that emission from consecutive laser pulses appear at different horizontal positions on the

detector. In the measurements presented in §6.5, the horizontal axis covers 200 ns while the

vertical axis covers 110 ps. The horizontal sweep allows the separate detection of 15 laser

pulses, each forming a different vertical streak. This increases the number of pulses which

can be recorded. Many frames, typically 200000 in my measurements, are recorded in this

way. The separation between each recorded frame is determined by the frame rate of the

camera, which is this case is 6 ms. Any emission between the end of the nth frame and the

start of the (n+1)th frame is lost, so this method of collecting emission is inefficient.

Streak camera broadening

Traces measured on the streak camera can appear broader than they actually are due to the

limited sampling rate and time resolution of the detector. The time resolution of the streak

camera is about 2 ps, but for a wavepacket moving at ∼ 1% of the speed of light, this can

be a significant limitation. The solitons in this experiment typically move at 2-4 µm ps−1:

as illustrated in Figure 3.14, integrating the emission from a narrow wavepacket over a 2 ps

time window can easily double the measured width.
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Figure 3.14: Streak Camera Broadening. Left column: Simulated streak camera image for
a wavepacket propagating at a velocity of 3 µm ps−1. White dashed lines show the boundaries
of a 2 ps time window, corresponding to the resolution of the streak camera. Middle column:
intensity profile of the “real” wavepacket with the width specified in the label. Right column:
“measured” intensity profile, integrated over the 2 ps window. The “measured” width (FWHM)
(see label on the image) appears broader the “real” wavepacket due to the limited resolution of the
streak camera. The two rows show data for wavepackets of different widths. The broadening effect
is more significant for narrower wavepackets.

3.4 Measurement Techniques

3.4.1 Hanbury Brown and Twiss

In a Hanbury Brown and Twiss setup, the emission is passed through a 50:50 beam splitter

and the resulting 2 signals are each sent to an avalanche photodiode (APD) as illustrated

in Figure 3.15. One APD acts as a trigger, so when a photon hits it a timer is started.

When a photon hits the second detector, the timer is stopped and a count is recorded.

In this way, the relative time of arrival of the 2 photons can be recorded. Once enough

counts have accumulated, this trace can be used, for example, to look at the probability

of the 2 photons arriving at the same time. This method can be used to measure the 2nd

order autocorrleation function g(2)(δy, δt) = 〈IPL(0, 0), IPL(δy, δt)〉 to reveal bunching or

antibunching behaviour (see §2.5.3).

In this work, an HBT setup is used in the SAW experiments (Chapter 4) to measure the

dynamics of the emission intensity over time. While the streak camera reveals time resolved

behaviour on the picosecond timescale (§3.3.6), this HBT setup records the behaviour on

the nanosecond timescale. The HBT setup can be used to study the dynamics over a period

of 50 ns, while the maximum time window for the streak camera is 2 ns.

The emission spot can be magnified so that only photons emitted from a small region

are detected by each APD. The APDs can be made to focus on the same region by spatially

filtering the emission image: inserting a pinhole at the focal plane of a telescope setup (see

Figure 3.10) selects a small region of the realspace image. If this is comparable to the size

of the APD detectors, they can be aligned to image the same spot by maximising the signal

from the spatially filtered emission. The pinhole can be removed for measurements of the
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Figure 3.15: Hanbury Brown and Twiss setup. A beam splitter directs half of the emission to
APD1 and half to APD2. A measurement is started when a photon arrives at APD1, then stopped
when a photon arrives at APD2; the recorded count shows the time difference between the arrival
of photons at the two detectors. The emission spot can be magnified so that only photons emitted
from a small region are focussed onto each APD, allowing the correlations between photons emitted
from different spatial positions (separated by ∆d) to be measured.

correlations between photons emitted from different spatial positions on the sample.

3.4.2 Measurement of phase

Changes in phase across a realspace intensity profile can be measured by interfering the

emission with a reference beam, ideally with a flat phase profile. Variations in the fringe

pattern reveal changes in the relative phase between the emission and the reference beam.

The period of the interference fringes can be reduced by introducing a difference in k vector

between the emission and the reference beam: the higher number of fringes makes it easier

to observe phase discontinuities, such as the fork-like dislocations which are characteristic

of vortex-like behaviour [72] (see §2.2.4).

Figure 3.16: Setup used for phase measurement. The pulsed laser beam is split into two
parts with beamsplitter BS1. One is directed to the sample as before while the other is used as
a reference beam. This is expanded and recombined with the sample emission using beamsplitter
BS2. The delay control stage is used to make sure the reference beam arrives at the same time as
the emission from the sample. The piezo mirror provides a much finer delay stage used to scan the
phase difference between the reference beam and the sample emission.

The reference beam and emission should have the same energy and be mutually coherent

in order to observe a clear fringe pattern. This can be achieved by dividing the emission into
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two parts using a beam splitter and using one part as the reference beam. The reference

portion should be inverted, for example using a retroreflector, so that the phase profile

across the two beams is not identical as the relative phase between the emission and the

reference would then be the same at each spatial position. This method can be useful for

revealing localised discontinuities such as vortices [72], although it may be harder to see

more extended phase variations using this method.

An ideal reference beam will have a constant phase over its spatial profile, making it clear

that changes in relative phase come from the emission rather than the reference. For the

phase measurements presented in §6.4, the pulsed writing beam (WB) is split into two parts:

one is used for excitation while the second is used as the reference. The reference beam was

expanded by a factor of 6 in order to reduce the gradient of any phase changes across the

spatial profile. The emission from the sample and the reference beam were recombined as

they were focussed onto the streak camera as illustrated in Fig 3.16.

The interference fringe pattern can be made clearer by subtracting a background which

consists of the overall intensity profile of the wavepacket emission and reference beam. This

background profile can be found by summing over several streak camera traces where the

relative phase between the wavepacket emission and reference beam is changed. This ef-

fectively averages out the interference pattern. Due to timing jitter in recording the streak

camera images, the intensity profile across the wavepacket is a little smeared out compared

to the single streak camera images, however the contrast between the interference fringes

and the background intensity profile is significantly improved. This processing is illustrated

in Figure 3.17.

Figure 3.17: Phase measurement: background subtraction. (a) Streak camera image
showing the interference of wavepacket emission with a reference beam. (b) Background, found
by averaging over 101 streak camera traces where the relative phase of the emission and reference
beam was steadily increased between traces. (c) Result of subtracting the backgroud in (b) from
the streak camera trace in (a).

3.4.3 Measurement of g(2) using streak camera

Correlations between pairs of photons can be observed by measuring the time dependent

second order correlation function g(2) as discussed in §2.5.3. The g(2) function is often

measured using an HBT setup (see §3.4.1), however the nanosecond resolution of this setup

makes it inappropriate for measuring the nonlinear wavepackets investigated in Chapter

6 of this thesis, which exist and evolve over a timescale of ∼100 ps. The streak camera

provides an alternative method for measuring g(2) and its picosecond resolution enables the
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measurement of the evolution of g(2) over 100 ps (results presented in §6.5).

As explained in §3.3.6, the streak camera can be used in “photon counting mode” where

emission from different laser pulses is recorded separately. Correlations can then be measured

within a given laser pulse. As the arrival time of each photon is recorded, this method can

also be used to measure the emission statistics by finding the ratio between the variance

of count rates in different time intervals and the mean count rate: a ratio of less than

one is known as sub-Poissonian statistics and is an indication of non-classical behaviour as

discussed in §2.5.2.

The g(2) function of the wavepacket emission was measured using the streak camera,

following the method used by Aßmann et al [166]. Using the photon counting mode of

the streak camera, emission triggered from 15 consecutive laser pulses is recorded in each

exposure where each pulse appears in a different horizontal position within the recorded

frame. In a single measurement, typically 200,000 frames are taken.

In order to claim an observation of, for example, antibunching behaviour, one needs to

demonstrate both that g(2)(0) < 1 and that g(2)(0) < g(2)(t � 0). In order to check the

second condition, correlations between photons emitted in the time window of interest and

those emitted at some later time must be measured. Due to the limited field of view in

the experiment, emission from the same wavepacket at a later time could not be recorded.

Instead, correlations were measured between photons in neighbouring pulses (separated by

∼ 12 ns) to check that these uncorrelated photons gave a normalised g(2)(t� 0) ∼ 1.

The measured second order correlation function will be referred to as g(2)(p) to emphasise

that it measures correlations between different laser pulses. This is calculated as

g(2)(p = 0) =

〈
np1 (np1 − 1)

〉〈
np1
〉2

g(2)(p 6= 0) =

〈
np1 np

〉〈
np1
〉 〈
np
〉

(3.2)

where np1 is the number of photons recorded in pulse p1 and np is the number of photons

recorded in pulse p. As will be described below, initially g
(2)
s (p1, p1 − p) is calculated over

a subset s of the total number of exposures F. This is averaged over the subsets s and the

pulses p1 to find g(2)(p) .

For each frame f, a time bin of 13 ps for each laser pulse is selected, excluding any photons

detected outside this range (see Fig. 3.18). The photons pairs between pulse (p1) and pulse

(p1 − p) for 1 6 p1 65 and -5 6 p 65 are counted, as well as the number of photons nf,p

for each pulse in the frame. The pair count and photon count are summed over F frames to

get a value for g
(2)
s (p1, p1 − p) as shown in Equation 3.3. For the case where p1 = p, the

pair count is doubled in the calculation of g
(2)
s (p1, 0) [166].
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Figure 3.18: g(2)(p) processing: selection of pulses. Top: counts from all frames. The pulses
at different horizontal positions correspond to different laser pulses. Middle: Selection of regions
of interest. Bottom: a typical single frame. Photons outside of the marked regions of interest are
not considered.
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g(2)
s (p1, p1 − p) =



sF∑
f=(s−1)F+1

(nf,p1)(nf,p1 − 1)

1
F(

F∑
f=(s−1)F+1

nf,p1)2

if p1 = p

sF∑
(s−1)F+1

(nf,p1)(nf,p)

1
F

( F∑
f=(s−1)F+1

nf,p1

)( F∑
f=1

nf,p

) if p1 6= p

(3.3)

Initially, F was taken to be the total number of exposures, however in some cases the

measured value of g(2)(p � p1) was higher than 1. Further investigation revealed that in

these measurements, a significant slow variation in the photon count rate (attributed to

a drift in the laser intensity) meant that the g(2)(p) function was incorrectly normalised,

resulting in an increase in the measured value. A more reliable calculation could be made

by averaging over subsets of frames s with a constant count rate. For this reason, a value

of F = 5000 was used to calculate g
(2)
s (p1, p1 − p) for each subset s. In the plots shown in

Fig. 6.19, an average is taken over 40 subsets s and 5 streaks p1 to get g(2)(p).

Figure 3.19: Effect of varying count rate. Left image: g(2)(p) where F was taken to be
the total number of exposures (200,000). The high value of g(2)(|p| � 0) shows that there is some
problem with normalisation. Middle image: variation in count rate during the acquisition of
200,000 frames. Right image: g(2)(p) where F was taken to be 5000. Here, g(2)(p) is an average

of 40 values of g
(2)
s (p) taken for each subset s of 5000 frames.

As can be seen from Figure 3.18, emission from many pulses is recorded in each streak

camera frame, so only a narrow portion of the emission along the horizontal direction can

be collected. These measurements were therefore taken by detecting the far-field (k space)

emission (Figure 3.10c), which was narrow along the horizontal direction. Telescope elements

were introduced in order to shrink the image so that as much emission as possible was passed

through the streak camera slit in each measurement.
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Phonon-Assisted Scattering in

Gap Soliton Formation

There has been much interest in the behaviour of polariton OPO condensates in periodic

potentials [44, 42, 79, 41, 43, 167] (see §2.2.5), more recently in the context of gap solitons

[81, 150] (see §2.4.3 for more on gap solitons). Rather than forming at k=0 (an S state) as

in the case of a planar cavity with no potential modulation, the condensate instead forms

at multiple non-zero k vectors (S’ states) defined by the period of the potential modulation.

Several mechanisms for this have been proposed (see §4.2.4), however these do not necessarily

explain all of the observations reported in the literature.

Cerda-Mendez et al have done considerable work using a Surface Acoustic Wave (SAW)

to generate a periodic potential in one [41] and two [43, 81] dimensions. In this case, the

periodic potential moved across the sample as the SAW propagated (see §3.1.1). Time

resolved measurements have shown an oscillation in the polariton density at a given spatial

position over time [41]. This was attributed to the fact that the condensate density was

modulated into “wires” by the potential, which were pulled across the detection spot by the

propagating SAW.

An alternative description of this modulation is that it arises from the interference of

two plane wave states ψa = Aei(ka·r−ωat+φa) and ψb = Bei(kb·r−ωbt+φb). The resulting

intensity pattern is I = |ψa + ψb|2, giving:

I = A2 +B2 + 2AB cos(∆k · r −∆ωt+ ∆φ) (4.1)

where ~∆ω is the energy difference, ~∆k is the in-plane momentum difference and ∆φ is the

phase difference between the states. This describes a modulation in r with period 2π/∆k

and an oscillation in time with frequency ∆ω. For waves with equal amplitude (A = B), the

minima in the modulation go down to zero while for waves with different amplitude (A 6= B)

the modulation appears on top of a finite background. While several proposed mechanisms

give explanations for the choice of k vectors of the condensate states, an energy difference

between them is not explained. In addition, the modulation will be averaged out unless

the two states have a fixed phase difference ∆φ; they should be mutually coherent for a

visible pattern. SAWs have been investigated in other systems for their uses in applications
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including single electron transport [168, 169], control of magnetisation properties [170, 171]

and chemical sensing [172, 173]

In this chapter, I investigate the role played by the phonons constituting the SAW in

selecting the states in which the condensate forms. Once the setup is tested (§4.1), the work

done by Cerda-Mendez et al is built on by carrying out investigations of the interference

between the S’ states with a SAW applied in the y direction (y-SAW) (§4.2.1). It is proposed

that the energy separation between the S’ states as well as the mutual coherence between

them may be explained by a mechanism of phonon-assisted scattering (§4.2.2) and the

predictions of this theory are tested by taking measurements when a SAW in the x direction

(x-SAW) is applied in addition to the y-SAW (§4.2.3). Further observations reveal additional

modulation patterns (§4.3), which are attributed to a contribution to the phonon assisted

scattering process from a reflection of the SAW from features on the sample surface. The

influence of the small reflected SAW demonstrates the possibility of creating a stationary

spatial modulation in the condensate population by combining the applied SAW with one

which is reflected from structures on the sample surface.

4.1 Application of a SAW

In order to test that the experimental setup worked as expected, a SAW was applied in

one dimension to a low polariton population and the far-field emission was recorded and

compared to observations seen in the literature. A 50 µm wide spot on the sample was

optically excited with a continuous wave (CW) pump laser with a power of 2 mW. The pump

laser energy was 1.5386 eV (2.3 meV higher than the lower polariton branch (LPB) at k=0)

and was tuned into resonance with the LPB at a k vector of around (kx,ky) = (2.4,0) µm−1.

A SAW was applied in the y direction (y-SAW) and the (E, ky) spectrum for emission at

kx=0 was recorded.

Low excitation power

The initial experiment was carried out on a low density polariton population where a range

of states on the LPB is populated. As the SAW power is increased from zero, the spectrum

changes from the usual LPB as the dispersion becomes folded (Figure 4.1). The low energy

branches are redshifted compared to the case with no SAW while energy gaps appear at

ky ∼ ±kSAW

2 . The positions of the dispersion peaks as the SAW amplitude is increased are

shown in Figure 4.1a. The dispersions remain unchanged for low SAW powers, but above a

threshold the energy gap between the two states at the edge of the mini brillouin zone (MBZ,

see §2.1.3) increases linearly with SAW amplitude at a rate of 0.04 meV mW−
1
2 (Fig 4.1c).

The initially flat response indicates that there may be an offset between the power reading on

the RF generator that drives the SAW and the power output from the generator. By design,

λSAW is 8µm [41], corresponding to a k value of kSAW = 2π
λ SAW

= 0.8µm−1. Gaps should

therefore appear at around ky =± 0.4 µm−1, which is consistent with the experimental

observations (Figure 4.1f). The low energy branches appear flattened compared to the case

with no SAW, indicating localisation of the polaritons. Modelling the SAW as a population

of coherent phonons, as done by De Lima et al [44], predicts the redshift of the LPB. Here,

80



CHAPTER 4. PHONON-ASSISTED SCATTERING IN GAP SOLITON FORMATION

the k=0 peak redshifts with increasing SAW amplitude at a rate of 0.03 meV mW−
1
2 as

shown in Fig 4.1b .

Figure 4.1: Dispersion, increase SAW power: Effect on dispersion with low optical excitation
power as SAW power is increased. (a) Energies of the main peaks with increasing SAW amplitude.
Black dots show the energies of emission integrated over −0.1 ≤ky ≤ 0.1 while blue crosses show
the energy peaks integrated over −0.55 ≤ky ≤ −0.35, 0.35 ≤ky ≤ 0.55. (b) Energy of the peak at

−0.1 ≤ky ≤ 0.1, showing redshift at a rate of 0.03 meV mW− 1
2 . (c) Width of energy gap between

two peaks at the edges of the MBZ (−0.55 ≤ky ≤ −0.35, 0.35 ≤ky ≤ 0.55) increasing at a rate

of 0.04 meV mW− 1
2 . (d-f) Example dispersions with SAW amplitudes of 0 mW

1
2 , 4 mW

1
2 and

8 mW
1
2

Each branch of the folded dispersion actually corresponds to a 2-dimensional E-k spec-

trum, leading to multiple LPB branches in the transverse direction. If the SAW is instead

applied in the x-direction (x-SAW), the (E, ky) spectrum therefore shows LPB curves ap-

pearing at different energies, but crossing and dispersion folding is not seen (Figure 4.2c).

Figure 4.2: E-ky dispersion under low power excitation with (a) no applied SAW, (b) a y-SAW and
(c) and x-SAW. Dispersion folding is seen in the dimension parallel to the SAW propagation (i.e.
for the y-SAW) while the dispersion perpendicular to the SAW propagation (i.e. for the x-SAW)
shows multiple shifted LPBs.
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High excitation power

The experiment with a y-SAW was repeated on a high density polariton population where

the polaritons are condensed at (kx, ky) = (0,0) when no SAW is applied. Here, the optical

excitation power is increased to 200 mW and kx is reduced to 1.9 µm−1. As the SAW power

is increased, high density states form instead at ky ∼ ±kSAW

2 ; these are termed S’ states.

As the SAW power is increased further, the polaritons start to spread over the bottom of

the LPB instead of being concentrated in well defined states (Fig 4.3, left column). This

has been seen previously [41] and can be explained by the increasing level of confinement

in realspace: increasing localisation in realspace gives a broader spectrum in k space due to

the fourier relationship between the two properties (see Appendix A).

Figure 4.3: Condensate states, increasing SAW power. Left column: Intensity distribution
over ky and energy at kx=0. White labels show the amplitude of the SAW for each measurement.
Right column: Intensity as a function of ky as a function of SAW amplitude, integrated over
energy.

At high SAW powers, it appears that the k vector of the S’ state can decrease slightly

(Fig 4.3, right column). This effect has been observed by Cerda-Mendez et al [81] where it

was used to support their claim that the k-space configuration of the states is determined

by the polariton density distribution and the SAW amplitude rather than by interactions

between the main pump state and its replicas. A discussion of different mechanisms for the

formation of S’ states will be given in §4.2.4

In addition to measurements of the (E,ky) spectrum, k-maps showing the polariton

density at different (kx,ky) states were also recorded for different SAW configurations. With
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no SAW, the condensate forms at (kx,ky)= 0 (Fig. 4.4a). With 1 SAW, the condensate forms

at (kx,ky)= (±kSAW

2 ,0) or (kx,ky)= (0,±kSAW

2 ) for an applied x-SAW and y-SAW respectively

(Fig. 4.4(c,b)).

With both SAWs on, the condensate states can form either in these positions or at

(kx,ky)= (±kSAW

2 ,±kSAW

2 ) i.e. at the corners of the MBZ (Fig. 4.4(d-f)). The position at

which they form seems to depend on the optical pump power, although the power dependence

was not explicitly measured. A similar effect has been seen in a static case where it was

shown that at different pump powers, states with different symmetries (which appear with

different k distributions) become favourable [79] (see §2.2.5). The formation of the states in

the corners (Fig. 4.4f) suggests that two phonons are involved: one from the x-SAW and one

from the y-SAW. Each of these can be either emitted or absorbed. An alternative process is

that only one phonon is absorbed (or emitted) which is a superposition of an x-SAW phonon

and a y-SAW phonon. States created in this way would form a circle in k space, which is

visible in Fig. 4.4e. As expected, the corner states in which two phonons were absorbed

have a larger |k| so fall outside this circle.

Figure 4.4: 2D k space maps with high power optical excitation. (a) No SAW is applied. (b)

A y-SAW is applied with amplitude 4.0 mW
1
2 (c) an x-SAW is applied with amplitude 4.5 mW

1
2 .

(d-f) Both an x-SAW and a y-SAW are applied with amplitude 5.0 mW
1
2 . (d) and (e) show the

same data, but in (e) the image is renormalised to highlight the pattern at the edges.

Another factor which could have an effect on the k at which the condensate states form

with two SAWs is screening of the potential by the polariton population. This has previously

been shown to have a significant effect at high optical pump power [167]. The SAW gener-

ates a periodic potential and the polaritons accumulate at the lowest energy points, but the

higher polariton density then increases the energy at those points due to polariton-polariton

repulsion. The SAW potential is thus screened as the polariton population essentially gen-

erates a second periodic potential in antiphase with the SAW potential. In the 2-SAW

experiment, there is a small region where the x-SAW and y-SAW overlap to generate the
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2D lattice potential and it is here where the excitation spot is centred. The overlap region

then has the highest polariton population and the largest degree of screening. Around the

edges of the excitation spot, only one SAW will have a significant amplitude. Emission from

these regions could dominate the position of the S’ states as the lower polariton population

would mean that the periodic potential was stronger here. If the power is reduced slightly,

the screening effect is weaker so the polaritons condense in the corner states.

If this mechanism was active, the polaritons at the centre of the excitation spot would

be expected to emit either in the corner states (if the potential is not screened) or around

k=0 (where the potential is screened). This emission should have a higher intensity than

the states at the edges of the MBZ which would come from the edges of the excitation spot.

In the case of Fig. 4.4e, the highest emission intensity is from the states at the edge of

MBZ suggesting that these states form at the point with highest polariton density. On the

other hand, as can be seen in Fig. 4.4d, there is emission around k=0 and the corner states

(Fig. 4.4d). The integrated emission intensity for all these states is ∼ 70% of the emission

intensity integrated over the edge states. This suggests that for Fig 4.4(d,e), there are states

which have absorbed 0 phonons, 1 phonon and 2 phonons while in Fig 4.4f the emission is

dominate by states which have absorbed 2 phonons. It is not clear how the k states are

selected, although it is possible that screening could play some role.

4.2 Intensity Correlations

Time resolved oscillations in the polariton density at a point have been observed in previous

experiments in the high density regime [41]. Here, these results are replicated by recording

all emission at angles of up to 15◦ when a y-SAW is applied. An alternative mechanism

is proposed and its predictions are tested with measurements when both an x-SAW and a

y-SAW are applied simultaneously.

4.2.1 Measurements with a y-SAW

In order to compare the phase of the spatial modulation induced by the SAW at different

positions within the condensate, a Hanbury Brown and Twiss setup (§3.4.1) was used to

measure the classical second order intensity auto-correlation function <I(y,t) I(y+δy, t+δt)>

between two small spots separated by ∆d (see Figure 3.15) [41]. Measurements were initially

taken with both detectors pointing at the same 2µm spot (∆d=0) to observe temporal

oscillations in emission intensity. By comparing the phases of traces as ∆d was gradually

increased from 0-12 µm along y, it was possible to observe the propagation of high polariton

density regions across the sample. Fig. 4.5a shows temporal oscillation at ωSAW while the

change in oscillation phase as ∆d is increased shows spatial modulation with period λSAW

(Figure 4.5b).

The measurements in Figure 4.5 replicate previous observations by Cerda-Mendez et al

[41], showing a modulation in polariton density with the period and frequency of the SAW

which propagates across the sample at the velocity of the SAW (3000 ms−1[41]). Cerda-

Mendez et al [41], describe this as condensate “wires” being pulled across the sample as they

are localised in the propagating potential minima induced by the SAW. These observations
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Figure 4.5: Time resolved oscillations. (a) Time resolved intensity oscillations at a given
point on the sample for three values of the relative detector position, ∆d. Grey dashed lines are a
guide to the eye, indicating the position of an intensity maximum for each trace. (b) Change in
the phase of the modulation at time t=0 as ∆d is increased.

can also be described as interference between 2 states separated by energy h̄ωSAW and k

vector kSAW (see Equation 4.1 at the beginning of this Chapter). This leads me to consider

a new mechanism in which phonons are absorbed during an OPO scattering process (see

§4.2.2).

In such a phonon-assisted scattering process, the SAW acts as a reservoir of coherent

phonons which can be absorbed or emitted during the OPO scattering process. This mech-

anism results in the state at +kSAW

2 gaining an energy of h̄ωSAW

2 compared to the case with

no SAW while the state at -kSAW

2 loses h̄ωSAW

2 . The resulting states thus have (ky,∆E) =

(+kSAW

2 , h̄ωSAW

2 ) and (-kSAW

2 ,- h̄ωSAW

2 ) where ∆E is the increase in the energy of a state due

to the application of the SAW. Phonon-assisted scattering could also account for mutual

coherence between the S’ states as each of them is linked to both idler states.

4.2.2 Phonon assisted scattering

The condensate is generated by Optical Parametric Oscillation (OPO, see §2.2.1): a pump

is applied with kP(kx, ky) = (kp, 0) on resonance with the LPB generating a reservoir of

polaritons at the pump k vector where x and y are the in plane axes. With no SAW, pairs

of polaritons scatter parametrically to a signal state with kS = (0, 0) and an idler state with

kI = (2kp, 0). In this event, the energy, momentum and phase of the pump polaritons are

conserved as they scatter to the signal and idler states.

When 1 SAW is applied, it acts as a reservoir of coherent phonons with energy h̄ωSAW

and momentum h̄kSAW. For ease of illustration, consider first the case where the SAW is

applied in the y direction, so kSAW = (0, kSAW). A schematic of the process is shown in

Figure 4.6.

During the parametric scattering event, a phonon can be absorbed from the reservoir,

so now the energy and momentum of two pump polaritons plus a phonon must be shared

between the resulting signal and idler polaritons. A possible resulting signal-idler pair would

have kS2’ = (0,+ kSAW

2 ) and kI2’ = (2kp,+ kSAW

2 ). Both the signal and idler polaritons would

also gain energy h̄ωSAW

2 compared to the case with no SAW. Equally, there can be stimulated
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Figure 4.6: Phonon-assisted scattering: OPO with (a) no SAW and (b) a y SAW applied.
In case (b), the black dashed arrows indicate an event in which a phonon is absorbed while the
solid black arrows show an event in which there is no phonon absorption. The presence of both
paths explains how the S’ states can be coherent: they are parametrically linked via the common
I’ state. Grey dashed arrows show the pump states that would form due to phonon absorption if
there was no OPO event. (c-e): k maps of the signal states when (c) no SAW (d) a y-SAW and
(e) an x-SAW and a y-SAW are applied simultaneously. The white numbers indicate the expected
change in energy of each state compared to the case when no SAW is present in units of h̄ωSAW.
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emission of a phonon into the reservoir generated by the SAW and a corresponding pair of

signal and idler states with kS1’ = (0,− kSAW

2 ) and kI1’ = (2kp,− kSAW

2 ). Both the signal and

idler polaritons would also lose energy h̄ωSAW

2 compared to the case with no SAW. Thus,

signal states form at the edges of the MBZ and have an energy separation of h̄ωSAW. Once

the polariton population begins to build up at these k vectors, further emission is stimulated.

It is not entirely understood why the states at the edge of the MBZ are preferred; there may

be multiple mechanisms contributing to this, some of which will be described in §4.2.4.

When 2 SAWs are applied in perpendicular directions, 2 phonons can be absorbed. This

results in 4 signal states with k vectors kS’ = (±kSAW

2 , ±kSAW

2 ) i.e. at the corners of the

MBZ. These states have different energies as indicated in Figure 4.6e. A test of the phonon

assisted scattering theory would be to measure the time resolved interference between the

states with kS’ = (+kSAW

2 ,+kSAW

2 ) and kS’ = (−kSAW

2 ,−kSAW

2 ). The theory predicts that the

energy separation of these two states would be 2h̄ωSAW, so temporal oscillations at frequency

2ωSAW should be seen. This was checked and the results are presented in §4.2.3.

4.2.3 Measurements of Interference with 2 SAWs

In order to test the hypothesis of phonon-assisted scattering (§4.2.2), time resolved mea-

surements were taken using the same setup as in §4.2.1 but with both an x-SAW and a

y-SAW applied simultaneously. The SAWs are driven by the same frequency generator so

are mutually coherent. The absorption of two phonons during the OPO scattering process

could alter the energies of the final signal states by 0, +h̄ωSAW or −h̄ωSAW as illustrated in

Figure 4.6e.

For some measurements, the emission was spectrally filtered to select only two out of the

four condensate states so that the energy difference between a particular pair of states could

be determined from the observed oscillation period. The experimental results are shown in

Figure 4.7, where (a-c) show how the k space states were filtered and (d-f) show the temporal

oscillations. (g-i) show the frequency distribution, found by fourier transforming the tempo-

ral oscillations in (d-f). In case (b,e,h), the oscillations have a frequency of ∼735±17 MHz

corresponding to 2fSAW = ∼750MHz as predicted by the theory, where fSAW = ωSAW

2π . In case

(c,f,i), no oscillations are expected as the states should have the same energy, however there

may be additional states formed by the contribution of the reflected SAWs in the phonon

assisted scattering process as will be described in §4.3.3, resulting in the observed oscillation

at ∼370 MHz, corresponding to fSAW = ∼374MHz. In case (a,d,g), components oscillating

at both fSAW and 2fSAW are seen, which is consistent with the fact that there are some pairs

of states with an energy difference of h̄ωSAW and one pair with a difference of 2h̄ωSAW.

4.2.4 Alternatives for S’ state formation

There are several proposed mechanisms in the literature for why the condensate subjected

to a SAW forms at the edges of the MBZ. It is possible that multiple mechanisms contribute

to this, resulting in the edge states being preferred compared to the lowest energy state at

k=0.
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Figure 4.7: Intensity correlations, two SAWs (a) 2-dimensional k-map at high power showing
the positions in k space where polaritons are condensed. (b,c) show how the emission can be filtered
to select diagonal or off-diagonal states. (d-f) show the corresponding time resolved realspace
oscillations measured using an HBT setup where both detectors point at the same spot (∆d = 0),
(g-i) Normalised Fourier transforms of the traces in (d-f). The frequency is normalised to that of
the applied SAW (fSAW = 375 MHz).

88



CHAPTER 4. PHONON-ASSISTED SCATTERING IN GAP SOLITON FORMATION

Gap solitons: negative effective mass point

It has been shown [81] that the states generated at the corners of the MBZ with two perpen-

dicular SAWs correspond to 2D gap solitons. While it hasn’t been explicitly shown that the

states with one SAW correspond to 1D gap solitons, the mechanisms involved with separate

and combined SAWs are likely to be similar. These states may also be gap solitons similar

to those which have been seen in a 1D static potential [150].

For gap solitons, spatial localisation is stabilised by the interplay between polariton-

polariton repulsion and the negative effective mass of the polaritons at the edge (corner

with 2 SAWs) of the MBZ. As a degree of confinement is imposed by the SAW, the negative

effective mass polaritons at the edge (corner) of the MBZ are favoured as they give an

attractive kinetic energy term which compensates the repulsive coulomb interaction term,

which in turn favours a more localised distribution.

Symmetry of states

Kim et al [79] suggest a theory where the position on the MBZ at which the condensate

forms depends on the symmetry of the condensate. This depends on both the symmetry

of the system and the power of the pump laser (see Figure 2.9, reproduced from Kim et

al [79]). With no potential modulation, a condensate with S symmetry forms; with a 1D

modulation (corresponding to 1 SAW), the condensate may have S or P symmetry; with a

2D modulation (corresponding to 2 SAWs), the condensate may have S, P or D symmetry.

Condensates with S symmetry are most likely to form at k = 0 (the Γ point); condensates

with P symmetry at the X points (edges of a square MBZ); while condensates with D

symmetry are most likely to form at the M points (corner of a square MBZ). The expected

condensate symmetry depends on the pump power. For a 2D potential modulation, as the

pump power increases, the symmetry of the condensate is expected to change from D to P

and then to S. This describes the results shown in Figure 4.4 where the condensate forms at

different points on the Brillouin zone with 2 SAWs. In the paper by Kim et al, the potential

modulation is static and is applied from patterning of metal strips on the sample.

Scattering with pump diffraction replicas

In previous work, Cerda-Mendez et al [41] suggested that the spatial modulation of the

condensate density resulted in the formation of diffraction replicas of the pump polariton

state with k vectors of ±kSAW. These scattered with the normal pump polaritons to generate

the same signal and idler states shown in 4.6. This mechanism, however, does not account

for any energy difference between the states. In addition, later measurements by the same

group show that the k positions of the S’ states can change with SAW power [81] (replicated

here in §4.1, Fig 4.3). This suggests that the k-space configuration of the states is determined

by the polariton density distribution and the SAW amplitude rather than by interactions

between the main pump state and its diffraction replicas as the latter mechanism should

result in states with a fixed k vector.

This would also appear to contradict the proposed mechanism of phonon-assisted scat-

tering as this should also give S’ states at fixed k vectors which should not change with SAW

power as the SAW k vector remains the same. However, there are other factors to be taken
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into account. At high SAW powers, the pump state is less well defined as it is broadened in

k space due to the realspace confinement of the pump polaritons. The resulting states gen-

erated by OPO would then also be poorly defined, resulting in a broadening of the S’ states

with SAW power, something which is seen in both [81] and §4.1. When the SAW power is

very high, the polaritons spread all along the bottom of the LPB, which looks more like a

thermal relaxation rather than a stimulated OPO process. There is still clearly a maximum

near the edge of the MBZ at the highest power shown in Figure 4.3 so the process cannot be

entirely thermal, but there could be an increase in scattering from thermal phonons leading

to a relaxation of S’ states towards k=0 as a high SAW power heats the sample.

Another possibility is that the momentum of the absorbed SAW phonon is not shared

evenly between the signal and idler states in the OPO process. As long as the I’ state forms

with kI’ ≥ (2kp, + kSAW

2 ), the S’ state can have kS’ ≤ (0, + kSAW

2 ). This situation may

become more favourable at higher optical pump powers as the Coulomb interactions from

the increased polariton density blueshift the LPB, bringing states with lower k vectors into

resonance with the energy of the S’ state.

4.3 Additional Interference Patterns

Further investigations revealed modulations in both the temporal and spatial domains which

are not explained by the interference between the two S’ states formed by the phonon assisted

scattering mechanism (§4.2.2). This data is presented in §4.3.1.

4.3.1 Observations

Time integrated measurements showing real space intensity maps covering the whole exci-

tation spot were taken by directing the emission to the CCD. When one SAW is applied, a

spatial modulation is clearly visible as shown in Figure 4.8b. The orientation of the pattern

changes with the SAW direction such that the fringes appear parallel to the SAW wavefront

(Figure 4.8b,k). The pattern appears as the SAW is applied, then becomes smeared out

as the SAW power is increased in a similar manner to the S’ states as illustrated in Figure

4.8(a-c). The period of the modulation is ∼ λSAW: in Fig. 4.8(b) it is 8.0 ± 0.6 µm, in (c)

it is 7.8 ± 0.7µm and in (k) it is 7.9 ± 1.1µm . This is consistent with the expected period

of the SAW, λSAW = 8µm, driven at 374 MHz with an acoustic speed of ∼3000 µm s−1 [41].

When emission from only one S’ state is observed , the spatial intensity modulation

observed in time integrated measurements disappears (Fig. 4.8d). However, time resolved

measurements reveal that some temporal oscillations persist (Fig. 4.8i). Unlike the unfil-

tered case, there is no phase change as the relative detector position ∆d is increased. This

means that different areas on the sample oscillate with the same phase, indicating that this

modulation is stationary (Fig. 4.8j). The temporal oscillations observed in the spectrally

filtered measurements suggest the presence of states with energies separated by h̄ωSAW but

with the same k vector (although an alternative explanation is presented in §4.3.4). This

energy separation of ≈ 1.5 µeV is beyond the resolution of the spectrometer.

Spatially resolved luminescence measurements were also taken with both an x-SAW

and a y-SAW applied simultaneously. When two perpendicular SAWs are applied, the
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Figure 4.8: Additional Interference Patterns (a-d) Real space time-integrated patterns under

high power excitation when a condensate forms. The amplitude of the applied y-SAW is 0.0 mW
1
2

in (a), 5.6 mW
1
2 in (b) and 8.9 mW

1
2 in (c). In (d), the emission is spectrally filtered as shown

in (h), with a SAW amplitude of 5.6 mW
1
2 . The corresponding energy-ky dispersions are shown

in (e-h) (also see Figure 4.3). (h): Spectral filtering where greyed out areas were blocked. The
experiments shown in Fig 4.5 were repeated while spectrally filtering the emission as in (h). Results
are presented here in (i,j). (k) shows a time-integrated real space intensity map when a x-SAW

is applied with amplitude 5.6 mW
1
2 . (l-n) show time-integrated real space intensity maps when

an x-SAW and y-SAW are applied simultaneously with amplitude 5.6 mW
1
2 . In (l), all emission is

recorded while (m,n) show the pattern when only two states are selected, as in Fig 4.7(b,c)
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condensate is expected to form a dot lattice, mirroring the potential induced by the two

SAWs. This would be moved diagonally across the sample by the resultant wave when the

two SAWs are superposed, so should show diagonal lines in a time integrated measurement.

By changing the relative amplitude of the x-SAW and y-SAW, the direction of propagation

of the condensate dot lattice should be tunable, although this additional degree of freedom

was not investigated here.

These lines along the leading diagonal are visible in the unfiltered signal as shown in

Figure 4.8l although there is some additional intensity variation along the line. Figure

4.8(m,n) shows the resulting pattern when the off-diagonal or diagonal states on the k map

are filtered out as shown in Figure 4.7. Figure 4.8n shows the expected pattern: the two

unfiltered states have different k vectors and the same energy so superpose giving a static

pattern. However, Figure 4.8m would be expected to show no modulation as the unfiltered

states have different energy. Qualitatively, it can be seen that Fig. 4.8l is some combination

of Fig. 4.8(m) and (n). The periods of the fringes in Figure 4.8 (l,m,n) are 6.0 ± 0.1 µm,

5.6 ± 0.3 µm and 6.2 ± 0.1 µm. The expected period for Figure 4.8(l,n) is λSAW√
2

= 5.66 µm.

4.3.2 Discussion

In time integrated measurements of the condensate with 1 SAW applied, the intensity profile

should be a Gaussian spot with no visible spatial modulation: modulation induced by the

SAW should be smeared out as it moves across the sample over a much shorter timescale

than the integration time (∼20ns vs 1s). However, a stationary modulation replicating the

expected SAW wavefront is clearly visible. The pattern is well defined at SAW powers where

the S’ states are well defined, has a period corresponding to the difference in k between the S’

states (i.e. kSAW) and it disappears when one S’ state is filtered out. All these factors suggest

that the pattern relates to interference between the S’ states, although temporal oscillations

due to their energy difference should smear out the pattern. Time resolved measurements

have also revealed a stationary intensity oscillation with frequency ω = ωSAW when emission

at either +kSAW

2 or -kSAW

2 is filtered out.

These observations could be explained by considering the possibility that the SAW may

be reflected from the sample edge or from another transducer (see Fig 4.9). The observed

spatial pattern with period λSAW is not consistent with the accumulation of polaritons in the

nodes or antinodes of a standing wave generated from back reflection of the SAW as this

would generate a pattern with a period of λSAW

2 . However, if the reflected SAW is treated as

a second reservoir of coherent phonons with an equal and opposite k vector to the original

SAW, phonon-assisted scattering with the second reservoir would generate additional states

with (ky,∆E) = (+kSAW

2 ,- h̄ωSAW

2 ) and (-kSAW

2 ,+ h̄ωSAW

2 ) as explained in §4.3.3. The spatial

modulation can arise from the presence of some states with opposite k but the same energy.

This mechanism also explains the stationary temporal oscillation as there are now two states

in the filtered emission with different energies but the same k vector. It should be noted

that the contrast of the fringes is poor as would be expected if the modulation arises from

only some of the occupied states (see Table 4.2).
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Figure 4.9: Transducer positions: Three transducers form three sides of a square. SAWs
propagating in the x direction can be reflected from the opposite transducer. The fourth transducer
is at an angle, but the edge of the transducer combined with the edge of the sample forms a
retro-reflector structure which could reflect SAWs propagating in the y direction.

4.3.3 SAW Reflection

This section describes a mechanism which would explain the temporal oscillations with no

accompanying spatial modulation seen in time resolved measurements. Additionally, it is

consistent with the observation of spatial modulation in time integrated measurements. The

theory was formulated for 1 SAW, then the case of 2 perpendicular SAWs was simulated.

§4.2.2 describes how condensates could form with different k vectors and energies by

absorbing phonons from the SAW. In this situation, all the phonons had the same k vector

i.e. were propagating in the same direction. However, if there was some back reflection of the

SAW from the edge of the sample or from the opposite transducer (see Fig 4.9), there would

be some phonon population with a k vector of opposite sign. If one of these phonons was

absorbed during the scattering event, the resulting signal state would still gain energy h̄ωSAW

2

compared to the case with no SAW, but would have k vector kS = (0, − kSAW

2 ). Similarly,

the emission of a phonon into the reflected SAW reservoir would generate a state which had

lost h̄ωSAW

2 but appeared at ky = +kSAW

2 . With this mechanism, there are effectively 4 S’

states as described in Table 4.1.

The observation of unexpected oscillations can be explained by the presence of extra

states induced by the SAW reflection. Even when states at either + or – kS were filtered out,

states with an energy difference of h̄ωSAW were present, giving rise to temporal oscillations

(Fig 4.8i,j). As there was only one k vector present, there was no spatial pattern so no phase

shift was observed in the oscillations as the detector separation ∆d was increased. Similarly,

states with the same energy but different k vectors lead to a stationary interference pattern

generating a spatial modulation of the condensate population as seen in Fig 4.8. The fringe

contrast is not 1 in any of the measurements (see Table 4.2): poor contrast can be explained

by the fact that the interfering waves have different amplitudes, as shown in Equation 4.1. In

addition in the time integrated measurements, pairs of states with different energy provide

a quasi constant background.
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Table 4.1: S’ states. Comparison of the energies and k vectors of the states formed when phonons
are emitted or absorbed. The phonons can either be part of the SAW applied by the transducer,
or could be reflected from a structure on the sample surface with a reflection coefficient of r.

State k vector energy gain amplitude generation

1 +kSAW

2 + h̄ωSAW

2 1 absorb applied

2 −kSAW

2 − h̄ωSAW

2 1 emit applied

3 −kSAW

2 + h̄ωSAW

2 r absorb reflected

4 +kSAW

2 − h̄ωSAW

2 r emit reflected

..

Simulation

In order to check that this mechanism describes the experimental observations, the expected

interference patterns with different reflection coefficients (r) of the SAW were simulated. In

the case of 1 SAW, the resulting fringe contrast was calculated and compared to the contrast

of experimental results with x or y SAWs in order to determine the value of r. The fringes

with the y SAW had contrasts of 9 ± 5% corresponding to r = 1-4% while the x SAW fringes

had contrasts of 10 ± 3% corresponding to r = 2-4%.

With 2 SAWs, the situation is more complicated. Using a value for r of 3%, the contrast

between the maxima and minima of the whole interference pattern was calculated both

when the signal is unfiltered, and when only a subset of the total states are selected, as in

Figure 4.7b,c: these values however did not match those measured in the data. What was

particularly unexpected was that the experimental data for emission filtered as in Figure

4.7b showed a much better contrast that the predicted value (13 ± 5% vs 2%).

For the case of an unfiltered signal, the contrast of the pattern along a “bright diagonal

fringe” (black box in Figure 4.10b) was also calculated and was found to be a closer match

to equivalent fringes in the experimental data: for a 3% reflection, this simulated contrast

is 20% while the data shows contrasts of up to 20%. The images of the expected pattern

(shown in Figure 4.10) also qualitatively match the measured data and suggest that the

value of r is 1-3%. The calculated and measured contrasts are summarised in Table 4.2.

Overall, the results from different data sets and different SAW configurations are mostly

consistent both with each other and with the simulations.

4.3.4 Further Discussion

Effects of a SAW reflection

The SAW reflection could be expected to contribute to the emission intensity distribution

in two ways. Firstly, the phonons making up the reflected SAW can be absorbed by the

polaritons as they scatter to signal states and interfere as described in §4.3.3. Only the

contributions from polaritons in signal states are seen in the experimental observations as

emission from higher k states (pump, idler) is not collected. Any interference between pump

polaritons which have absorbed a phonon but have not scattered to signal and idler states

(which might result in modulation with wavelength λSAW

2 ) is therefore not observed.

94



CHAPTER 4. PHONON-ASSISTED SCATTERING IN GAP SOLITON FORMATION

Table 4.2: Fringe Contrasts. The contrast is the amplitude of the intensity modulation com-
pared to the background i.e. contrast = (max(I)-min(I))/min(I) where I is the intensity profile.
The contrasts measured with different experimental conditions are compared with simulated values
where each state is considered as a plane wave and the “observed states” are combined to calculate
an interference fringe pattern.

SAW States Measured Simulated Value
Applied Observed Contrast/% Contrast/% of r/%

x all 7-13
4, 8, 11, 15 1, 2, 3, 4

y all 4-14
x,y all 11-21 71 3
x,y diagonal 8-17 2 3
x,y off diagonal 16-30 97 3

Contrast along bright diagonal fringe

x,y all up to 20%
10 1
20 3
30 5

..

Figure 4.10: SAW reflection simulation, 2 SAW (a) shows the expected realspace pattern
for a time integrated measurement if there was no SAW reflection while (b) shows the pattern for
a 3% reflection. The black dashed box shows what is meant by a “bright diagonal fringe” (Table
4.2). (c) and (d) show the pattern for 3% reflection when the k space is filtered to select a subset
of states, as illustrated in Fig 4.7.
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In fact, two separate interference patterns each with period λSAW can be generated from

the S’ states: one from the interference of states 1 and 3 and the second from states 2 and

4 (see table 4.1). The combination of these would only give regular fringes spaced by λSAW

if the patterns were in phase. The phases of states 1 and 2 should be linked as they are

generated from the same reservoir of coherent phonons: the same applies to states 3 and 4.

This could provide a link between the phases of the two interference patterns, as required

to account for the experimental observations.

The second effect that might be expected for a reflected SAW is that it would combine

with the applied SAW to make a standing wave with period λSAW

2 . This modulation in the

strain field on the cavity translates to a modulation in the potential felt by the polaritons,

so polaritons might accumulate in the potential minima. As explained in §4.1, this potential

can be screened by the polariton population. Note that polaritons in all states, including the

high intensity pump state whose emission is not recorded in the experimental observations,

can contribute to screening and reduce the effect of the standing wave potential on the

density distribution in the signal states. This could explain why the experimentally observed

intensity modulation appears to be dominated by the interference mechanism rather than

the standing wave mechanism, resulting in modulation with wavelength λSAW.

Alternative sources of oscillation

There are alternative explanations for the observations of time resolved intensity oscillations

with one S’ state filtered (Figure 4.8)(i,j). Indeed, multiple mechanisms may contribute at

any one time.

Previous observations of intensity oscillations (no filtering, similar to the results pre-

sented in Figure 4.5) described them as the effect of condensate wires being moved across a

sample [41]. In this picture, any observed oscillations would be expected to correspond to

a propagating wave, but the oscillations shown in Figure 4.8, where emission from only one

S’ state is collected, correspond to a stationary wave. This could arise from the fact that

the spatial resolution in the detection is lost when an S’ state is blocked so that emission is

collected from the whole excitation spot rather than a small region defined by the pinhole

(see §3.4.1 for optical setup). Temporal oscillations could then arise from the finite size of

the excitation spot and the fact that as the condensate wires are moved through it, the

number of intensity maxima in the spot can oscillate in time, as illustrated in Figure 4.11.

Figure 4.11: Intensity oscillation: the total polariton density within the pump spot oscillates
in time as maxima move in and out of the pumped region. (a) Spatial intensity distribution at
2.3 ns, (b) spatial intensity distribution at 6.4 ns. (c) Intensity integrated over the spatial pattern
as a function of time: grey dashed lines indicate the times at which patterns (a) and (b) are shown.
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4.4 Conclusions

Experimental observations of temporal intensity oscillations suggest that S’ states have dif-

ferent energies as well as different k vectors and are coherent with each other. While there

are several suggestions in the literature for mechanisms generating states with different k

vectors, neither the energy difference nor the mutual coherence between the states were well

understood. A mechanism of phonon-assisted scattering can explain both of these phenom-

ena and is consistent with all experimental observations of interference if it is assumed that

the SAW can reflect back across the sample.

Further experiments carried out by Cerda-Mendez et al on the case with two perpendic-

ular SAWs have shown that the generated states are gap soliton states [81]. As the same

method is used to generate the 1D potential modulation with 1 SAW and gap soliton states

have been observed with a 1D potential modulation [150], I believe it is reasonable to sug-

gest that the S’ states investigated here may correspond to 1D gap soliton states, although

experiments to prove this were not explicitly carried out. There have been suggestions for

using gap solitons in photonic crystals for all-optical memory, where the memory bit con-

sists of a trapped soliton which can be released for readout by a second control pulse when

required [162]. Similar functionality was suggested in the polariton system by Tanese et al

when they observed gap solitons in a 1D periodic potential [150] and could also be applied

to the system presented here.

Detailed observations of the interference pattern between the resulting signal states re-

vealed a strong influence on the pattern from a reflected SAW. By adding new structures

to the sample surface with a higher reflection coefficient, this could lead to the fabrication

of a SAW resonator structure. Such a device could be used to apply a stationary spatial

modulation of the potential landscape with a tunable period (∝ 1/ωSAW), amplitude (∝
SAW amplitude) and orientation (∝ ratio of x-SAW and y-SAW amplitudes) to a system.
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Chapter 5

Formation of Soliton Patterns in

a Dissipative System

Bright dissipative polariton solitons were first observed by Sich et al in 2012 [7]. In this

chapter, this work is extended so that instead of exciting a single soliton with each laser

pulse, a soliton array can be triggered. This enables the study of the interactions between

neighbouring solitons, opening up the possibility of continuously generating solitonic pulses

using CW excitation, a setup which could be used as a clocking device in a polaritonic

circuit. A fast clock rate of ∼100 GHz could be achieved as the minimum soliton separation

would no longer be limited by the laser repetition rate (82 MHz). The solitons studied in this

chapter are dissipative, meaning that losses due the short polariton lifetime are compensated

by a CW pump with a k vector above the point of inflection of the lower polariton branch

(LPB). The soliton velocity is determined by the k vector of the CW pump.

One dimensional arrays of up to four solitons arranged along the direction of propagation

are investigated. Two regimes of these arrays are studied, termed “soliton trains” (§5.2.1) or

“x-arrays” (§5.2.3) depending on their characteristics. The Energy vs k vector (E-kx) spectra

of these arrays are examined and observations are made to show how the excited regime can

be influenced by the position of the writing beam (WB) relative to the pump spot. It is

shown that the soliton separation in arrays can be tuned by varying excitation conditions

such as the WB power (§5.2.2), which could be used to tune the clock rate of a polariton

device. Observations of arrays of solitons perpendicular to the direction of propagation are

also presented (§5.3).

Here, I define some terminology which will be used to describe different soliton patterns

in this chapter:

• X direction - This is the in-plane axis along which wavepackets and solitons propa-

gate.

• Y direction - This is the in-plane axis perpendicular to the direction of propagation.

• Soliton train: 1D array where solitons are arranged along the x direction. The E-kx

spectrum of this ensemble is a single straight line and the train is believed to be a

single bound state known as a multi hump soliton.
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• X-array: 1D array where solitons are arranged along the x direction. The E-kx

spectrum does not form a single straight line and the ensemble is thought to be an

array of separate solitons rather than a single bound state.

• Y-array: 1D array where solitons are arranged along the y direction.

5.1 Setup

In order to excite a single dissipative soliton, a continous wave (CW) laser generates a pump

spot of size ∼ 70µm which acts as a reservoir of polaritons: this is necessary to maintain the

polariton population due to the short photonic lifetime of the microcavity. The reservoir is

in a bistable regime so that high and low density states can exist in neighbouring regions

of the spot. The pump initialises the system in the low density state. A soliton can be

generated by a pulsed writing beam (WB) of size ∼ 8µm which excites a localised region of

the bistable pump spot into the high density state. This wavepacket propagates across the

spot, self-focussing into a soliton [7].

In order to excite an x-array or a soliton train, a similar setup is used but the WB is

elongated along the propagation direction. The injected wavepacket breaks up into multiple

solitons whose width is again determined by the healing length (see Equation 2.7 in §2.4.1).

Soliton trains can be generated when the WB is outside the bistable region so that the

excited wavepacket propagates for ∼20 µm before hitting the bistable pump spot, while

x-arrays are excited when the WB overlaps with the bistable region of the pump spot. A

y-array can be excited by elongating the WB perpendicular to the propagation direction. It

should be noted that the pump and WB never have the same k vector in these experiments

(see §3.3 for details of the setup).

Figure 5.1: Setup: Following the method used by Sich et al [7], a continuous wave pump (red)
is used to maintain a reservoir of polaritons, compensating photonic losses due to a short cavity
lifetime. A wavepacket is injected by a pulsed writing beam (blue) and interacts with the pump
polaritons to form a soliton. Here, the writing beam is elongated along the propagation direction
(x) to trigger multiple peaks.

It has been shown that the polarisations of the pump and WB influence that of the

excited solitons [123] (see §2.4.1). Stable solitons have circular polarisation and can be trig-

gered using a circularly polarised WB as long as the pump is either co-circularly polarised
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with the WB or has linear polarisation (in which case some component will be co-circularly

polarised). Here, all experiments were carried out with the pump and WB co-circularly

polarised to generate the most stable structures and suppress the polarisation degree of

freedom. Unless stated otherwise, these experiments were carried out in a reflection config-

uration (see §3.3.1).

5.2 Multi-peak Patterns Along X

In this section, I describe observations of multi-peak states where bright peaks form a line

along the propagation direction, travelling across the pump one after the other. They were

generated by elongating the WB along the direction of propagation of the soliton (Fig. 5.1).

Multi-peak patterns with different characteristics were generated by changing the relative

position of the pump and the WB and optimising parameters such as the WB energy.

5.2.1 Soliton Trains

Figure 5.2: Soliton train, realspace Here, the realspace intensity profiles for a single soliton
(left column), a 2-peak soliton train (middle column) and a 4-peak soliton train (right column) are
presented. Top row: Streak camera traces showing intensity as a function of time and position.
The horizontal dashed line indicates the time at which the images in the second row are taken while
the vertical dashed line shows the position at which the profile in the bottom row is taken. Second
row: Two-dimensional spatial intensity map, taken at the time indicated in the top row. Bottom
row: Intensity as a function of time at the x position shown in the top row, integrated over y.

Here, the generation of trains of up to four solitons by varying the WB size is demon-

strated. It is further shown that the E-kx spectrum of a parametric soliton train is similar

to that of a single soliton, consisting of a single straight line albeit with a different intensity
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profile. Soliton trains were excited by placing the WB ∼ 20 µm outside the bistable region

of the pump spot. The pump laser energy was set to 807.0 nm (1.5364 eV, 3.3 meV higher

than the LPB at k=0) at a power of 300 mW. For a single soliton, the pump kx vector was

set at kp = 2.3 µm−1. The pump k vector was optimised for different soliton patterns, taking

values between 2.0-2.4 µm−1 and ensuring that the pump spot was in the bistable regime in

all cases. The WB energy, kx vector and power were also optimised for each soliton train,

although the kx vector of the WB was higher than that of the pump for all measurements,

typically by ∼ 0.3µm−1. In these multi-peak patterns, the solitons propagate at the same

velocity, maintaining the same regular spacing over the propagation path as illustrated in

the streak camera traces in the top row of Figure 5.2.

Previous observations of bright solitons show localisation in both the x and y directions

[7]. This result is replicated for soliton trains, where streak camera traces of the intensity

as a function of x and t (top row) are taken at different positions of y. These images are

combined to reconstruct the two dimensional realspace images shown in the second row of

Figure 5.2 ( see §3.3.5). Two dimensional spatial images demonstrate localisation along y,

however for larger soliton trains the total x-width of the train is wider than the detection

window so not all peaks are visible. An alternative way of viewing the propagating array is

to look at the intensity as a function of time at a given x position: successive solitons passing

that position give intensity maxima in the temporal profile. As this is no longer limited by

the width of the detection window, all peaks in the train can be seen in a single image.

Intensity profiles over time at x = 30 µm and integrated over y are shown in the bottom row

of Figure 5.2, illustrating the formation of patterns containing up to four solitonic peaks.

Spectra of soliton trains

Further evidence that solitons in a train are bound together comes from the E-kx dispersions

shown in Figure 5.3, where (e-h) show the spectra corresponding to the arrays in (a-d). All

four spectra exhibit linear dispersion of the soliton emission at all kx-vectors down to zero in

strong contrast to the dispersion of the lower polariton branch, which is parabolic at k ≈ 0.

The single line E-kx spectrum indicates that all solitons in the train have the same energy

and k distribution, so could be bound.

The intensity profiles show two main peaks at around 1.5335 eV and 1.5352 eV. It should

be noted that energies higher than this are cut out as the emission is filtered in k space to

block the pump and WB laser reflections (see §3.3.5), but it is expected that there would

be a full peak near the pump state as well as an additional idler peak at a higher k vector.

For the two-soliton train, the spectral filtering may have cut a little more as the high energy

peak is not visible here.

Spectral narrowing vs number of solitons

The lower energy spectral peak becomes narrower and more pronounced with an increasing

number of solitons (Figure 5.3i), which has been predicted theoretically [125]. In obser-

vations of the transition to an OPO condensate, similar spectral narrowing was seen and

was attributed to the appearance of macroscopic coherence [58]. Similarly, this narrow-

ing of peaks in energy-momentum space for soliton trains is an indication of the onset of
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Figure 5.3: Soliton train dispersions. (a-d) Streak camera traces in realspace showing (a)
a single soliton and (b-d) soliton trains of 2-4 peaks. (e-h) Intensity in E-kx space at ∼ 30 ps
taken at ky=0 within ∆ky = 0.1 µm−1 for the soliton structures shown in (a-d). The white dashed
line shows the approximate position of the LPB. (i) Normalised intensity profiles as a function of

energy, integrated over kx, so I(E) =
∫ 2µm−1

0
I(E, kx)dkx. The top trace shows the profile for a

single soliton (a, e), the second is for the two peak structure (b,f), the third is the 3 peak structure
(c,g) and the bottom trace is the 4 peak structure (d,h). Grey dashed lines and text show the
approximate width of the low energy peak.

spatio-temporal coherence across the soliton train, which could be caused by phase-locking

of spectral harmonics of adjacent solitons. This matches what would be expected theoreti-

cally as the system moves towards a regime of continuous generation of solitonic pulses: the

spectrum for an infinite array of solitons should be delta-function like peaks at the pump,

signal and idler states [125, 126]. Phase-locking could occur between neighbouring peaks be-

cause the tails of solitons overlap in real-space, so polaritons residing at different k-vectors in

one soliton could stimulate parametric scattering to spectral harmonics of adjacent solitons.

Due to the sequential nature of the data acquisition, intensity fluctuations could appear

between data points at different k vectors. It is possible that the intensity modulation

observed in the energy spectrum is caused by these environmental fluctuations, however

these should be averaged out as the intensity versus energy profiles are integrated over many

measurements. As an extra check that the observed intensity modulation was a real feature

of the soliton emission, a lower resolution data set was taken (Fig. 5.4). As fewer steps
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were required, this measurement was four times faster than the data shown in Fig 5.3(e-h),

reducing the effect of a drift in the environmental conditions. Nevertheless, a similar trend

is seen where the spectral peaks narrow with an increasing number of solitons in an array,

providing firmer evidence that this is a real feature of the emission.

Figure 5.4: Soliton train dispersions, low resolution (a-c) Streak camera traces in realspace
showing (a) a single soliton and (b-c) soliton trains of multipeak structures. (d-f) Intensity in E-kx

space for the soliton structures shown in (a-c). (g) Normalised intensity profiles as a function of
energy, integrated over kx. The top trace shows the profile for a single soliton (a,d), the middle one
is for the two-peak train (b,e) and the bottom trace is for the structure in (c,f). Grey dashed lines
and text show the approximate width of the low energy peak.

Spectral width vs spatio-temporal width

For single solitons, such as the one shown in Figure 5.3(a,e), the temporal width ∆t of the

peak should be inversely proportional to the energy width ∆E of the spectral peak due to

the fourier relationship between these two quantities. Similarly, the spatial width ∆x should

be inversely proportional to the breadth of populated k vectors ∆k, again due to a fourier

relationship. For gaussian intensity profiles, the peak widths are related by

∆x∆k = 4ln2

∆E∆t = ~ 4ln2
(5.1)

(see Appendix A).

The spectrum shown in Figure 5.3e covers an energy range ∆E ≈ 2 meV and a k range

∆k ≈ 1.5 µm−1. While the spectral intensity profile shown in Figure 5.3e is clearly not
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gaussian, Equation 5.1 can still be used to give a rough estimate of the expected relationships.

This spectrum should correspond to a wavepacket with a temporal width of ∆t ≈ 1 ps and

a spatial width of ∆x ≈ 2 µm. Note that the value of ∆x matches the theoretical soliton

width calculated previously for a bright dissipative soliton [7]: this was estimated from

cavity parameters for a sample from the same wafer as the one used in this chapter.

Figure 5.5: Soliton widths: Histogram showing the fitted widths of all soliton peaks recorded
in the data set for Fig 5.6.

However, the recorded soliton trace shown in Figure 5.3a is ∼5 times broader that these

calculated values, having a temporal width of 5.0 ± 0.3 ps and a spatial width of 10 ± 1 µm.

These wide peaks are typical of the solitons observed experimentally, both for single solitons

and soliton arrays, as illustrated by the histogram in Figure 5.5. This broadening could be

due to the limited resolution of the detection optics, in particular the 2 ps time resolution

of the streak camera (see §3.3.6). In addition, there may be errors introduced by fitting

the soliton intensity profile with a gaussian to find the width: the soliton’s spatial intensity

profile is expected to have an asymmetric shape with a low density tail (see Figure 2.13 in

§2.4).

An alternative explanation is that a multi-hump soliton is excited, which would consist of

multiple narrow peaks that cannot be resolved in this experimental setup. Stable multi-hump

solutions have been found in numerical simulations published alongside these experimental

results [8] and reproduced in Figure B.1 in §B.1. Previous simulations by Egorov et al have

shown that it may be possible to excite more complex structures by optimising the excitation

conditions. For example, one solution was found where groups of 3 closely spaced solitons

are separated by a distance of the same order as the width of the group rather than the

width of the soliton (reproduced in Figure 2.14d). As the individual soliton peaks would

be too narrow to resolve, such a structure would look like an array of wider peaks in an

experimental observation.

5.2.2 Power Dependence of Peak Positions

If the WB is elongated along the x direction and its power is gradually increased, the

number of solitons in the train increases. However, a systematic study reveals that the
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spacing between bright peaks is not fixed, but instead varies with WB power. For the data

set presented in Figure 5.6, all experimental parameters were kept constant apart from the

WB power.

Figure 5.6: Soliton train, power dependence. Outer columns: streak camera traces showing
the emission intensity as a function of x position and time as the WB power is increased. Middle
column: Line plots showing the intensity profile across the soliton wavefront for the traces in the
outer columns. The intensity profiles are integrated over the soliton trajectory as illustrated in
Figure 5.7 and explained towards the end of §5.2.2. Bottom: positions of the peak centres in the
soliton array as a function of WB power, taken from plots of the intensity profile across the soliton
wave-front.

Figure 5.6 illustrates the behaviour of a soliton train as a function of WB power. At the

lowest power, only one soliton is excited but as the power is increased, this separates into

two peaks which then spread apart. Further peaks appear in between the original two as

the power is increased further. A selection of patterns are shown in the outer columns of

Fig 5.6 as streak camera traces. During this measurement, fluctuations in laser intensity on

the timescale of ∼1s broadened the measured soliton traces and could start to obscure the

observed peak pattern. Clearer peak patterns could be obtained using a shorter integration

time, although this reduced the signal to noise ratio.

As shown in the outer columns of Figure 5.6, the solitons in the train propagated at a

constant velocity of v ≈ 2.2 µm ps−1 and maintained a constant separation over the whole

propagation path, indicating the formation of stable soliton patterns. This meant that
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instead of selecting one horizontal position and looking at the intensity profile, the intensity

profile could be integrated over the whole propagation path, thus increasing the signal to

noise ratio. The resulting profiles are shown in the middle column of Figure 5.6 for the x-t

traces in the outer columns. This data processing is illustrated in Figure 5.7.

Figure 5.7: Integration over soliton path. (a) Example of a soliton trace, taken from Fig 5.6.
(b) Soliton trace is rotated by an angle θ = 63◦, aligning the propagation trajectory with the matix
columns. (c) The emission in (b) is integrated over the matrix rows to give an intensity profile.
(d) An array of gaussians is fitted to the intensity profile in (c). Peak centres are marked by grey
dashed lines. Peak separations in pixels ∆p can be converted to separations in micrometers ∆x or
picoseconds ∆t using (∆x,∆t)=( (∆p/cosθ)*X, (∆p/sinθ)*T) where X and T are the scale factors
to convert streak camera pixels to µm or ps.

Figure 5.6 shows the power dependence of the positions of soliton peaks relative to the

middle of the corresponding soliton patterns. The positions of soliton peaks are defined as

x = 1/T
∫ T

0
(x(t) − x0(t))dt (this integration is illustrated in Figure 5.7), where x(t) is the

trace of the soliton peak of interest. x0(t) is the middle between the two outer solitons x1(t),

x2(t) in each pattern, i.e x0(t) fits 1/2(x1(t) + x2(t)). The soliton velocity v ≈ 2.2 µm/ps

and T is the propagation time of each soliton within the observation window. While it

would have been preferable to define the pattern relative to some fixed reference, this was

not possible as no reference was visible: the WB emission was blocked (see §3.3.1) and it

was later established that a systematic temporal drift between measurements at different

powers meant that the position of the soliton trace within the detection window could also

not be used as a reference.

The peak separation could also be tuned by varying other excitation parameters. In

Figure 5.8, the kx vector of the WB is increased leading to an increasing temporal separation

between the solitons in the array. Here, all experimental parameters were kept constant apart

from the WB k vector. It may be that optimising the WB excitation in this way results in

a more efficient injection of polaritons into the microcavity, increasing the effective area of

the WB.

5.2.3 X-Arrays

In contrast to soliton trains, x-arrays were excited when the WB overlapped with the bistable

region of the pump spot. The formation of multi-peak patterns is illustrated by the spatio-

temporal traces shown in Figure 5.9(a-c). There is a clear separation between peaks, however

the array appears to be less stable than the soliton trains presented in §5.2.1. Solitons in

some of these structures are seen to move at slightly different speeds, so they can approach

one another and merge (e.g. Figs. 5.9c). This could be because the presence of the WB

within the pump spot significantly modifies the intensity distribution, making the potential
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Figure 5.8: Peak separation, change kWB. Top row: spatio-temporal traces of a multi-peak
array as the kx vector of the WB is increased (indicated in white text). Bottom row: intensity as
a function of time at x=30 µm. The temporal separation of the peaks is indicated by grey dashed
lines and text.

within the pump spot less uniform while the WB pulse is present. Solitons generated at

the high intensity centre of the gaussian WB could have a stronger initial acceleration than

those generated at the lower intensity edges due to increased polariton-polariton repulsion.

Comparison with Trains

A comparison of the E-kx dispersion of these x-arrays with that of a single soliton and that

of the LPB can give further insight. In the case of a single soliton (Figure 5.10a) or a

soliton train (Figure 5.10b), a straight line dispersion is seen extending from the k vector

of the WB (kWB) to k=0 while in arrays (Fig. 5.10 (c,d)) the spectrum tends to consist of

several shorter lines which may appear over different k vector ranges and can have different

energies. The sections still appear more linear than the LPB, suggesting that the peaks

maintain a solitonic character, but as they have different gradients this can result in the

solitons propagating at different speeds.

In realspace, the trains look similar to the x-arrays, although they now all travel at the

same speed and the soliton trajectory tends to be straighter, indicating that the pattern

is less influenced by sample inhomogeneities. One explanation for this is that in the train

the soliton peaks are bound, sharing a wavefunction which covers a larger spatial area

compared to that occupied by an unbound soliton in an x-array. The wavefunction may

be influenced by the average potential background over this area, effectively smoothing the

effects of defects. This is similar to the motional narrowing (see §4.4.5 in [5]) of a quantum

particle moving through a disordered medium. The disorder creates some variation in the

background potential giving it some broad linewidth, but the particle linewidth is narrower

than this as it is influenced by the potential averaged over its path rather than the absolute

potential at each point along its path.
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Figure 5.9: X-arrays. Left column: spatio-temporal traces from the streak camera. Right
column: corresponding E-kx dispersion. The number of solitons in an array increases in each row.

Figure 5.10: Comparison of dispersions Energy-kx spectra for (a) a single soliton (b) a soliton
train and (c,d) a horizontal soliton array. (c) and (d) show the same data, but on (c) lines have
been added as a guide to the eye showing that this spectrum may be constructed from several line
segments with different gradients.
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5.2.4 Nucleation of Arrays

In most of the data sets presented in this chapter, the evolution of a smooth wavepacket

excited by the WB into a multi-peak pattern along x was not recorded due to the limited field

of view of the detection optics. However, in some observations of x-arrays, this break-up is

visible as the initial wavepacket was excited very close to the edge of the detection window,

which imaged the bistability region of the pump. In Figure 5.11(a,b), streak camera images

of two-peak x-soliton arrays where the nucleation of solitons is visible are shown. As these

are taken from different data sets, several experimental parameters (laser powers, detuning

of lasers from LPB etc) will have changed between them which could be why the soliton

widths are different in the two cases. Note that separate soliton peaks form at different

times out of the broad polariton background around the edge of the bistability region. In

Fig. 5.11a the second soliton appears within ∼ 7 ps after the emergence of the first one,

while on Fig. 5.11b the second soliton is created ∼ 20 ps after the first one.

Figure 5.11: Nucleation of Arrays Streak camera traces of an x-soliton array (a,b) or train
(c) imaged at different positions. x ∼ 30 µm is the centre of the pump beam, t = 0 ± 5 ps is
the approximate time of arrival of the WB. The traces were taken for different WB powers: (a) at
Pwb = 2P0 and (b) at Pwb = 7P0, where P0 = 0.1 mW is the threshold for single soliton formation.
(c) A blended streak camera trace of an x-soliton array, composed of two streak camera traces offset
35 µm along the x-axis and the same position along y, taken with WB power Pwb = 3P0.

Figure 5.11c shows the evolution of a soliton train, where the WB was positioned ∼20 µm

from the edge of the bistability region. Here, a second image was recorded where the imaging

window was moved by 35 µm to observe the emission at earlier time including the time of

WB arrival. In this case, dim emission at the point of the WB excitation can be seen,

even though the WB is blocked (see Figure 3.5), due to scattering of the laser beam. It

should be noted that all real-space images are formed only from a portion of the emission

with k-vectors below 2 µm−1, since higher k-vectors are blocked to avoid saturation of the

detectors by the pump and WB reflections. Therefore polaritons resonantly injected by the

pump and WB are not detected, but only polaritons which scatter to lower k-vectors are

observable experimentally.

Surprisingly, the break-up of the WB pulse starts to occur before it reaches the bista-
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bility zone, however similar behaviour has also been observed in numerical simulations (see

Appendix B Fig. B.2). It is believed that the break-up occurs due to a combination of two

factors. Firstly, the difference in the k-vectors of the pump and WB leads to interference of

the two beams, hence modulating the excitation power along the x-axis. Secondly, polaritons

injected by the WB outside the bistability region but still within the pump spot may induce

the onset of polariton-polariton scattering from the pump state to the soliton harmonics,

causing break-up before the wavepacket reaches the bistability area as in Fig. 5.11c, or right

at the beginning of the bistability area, as in Fig. 5.11(a, b).

5.2.5 Nonlinear Wavepackets in Microwires

Similar behaviour was observed in a new sample (§3.1.3) designed for use in a transmission

configuration (see Methods §3.3). The microcavity was modified by etching the top DBR

to form wire-shapes mesas, as for Chapter 6. Measurements of self-focussing wavepackets

supported by the CW pump were repeated in a wire of width 4 µm and length 100 µm. Here,

the WB k vector was again higher than the pump but the WB energy was much higher than

the energy of the LPB, instead being closer in energy to the exciton reservoir (Figure 5.12c).

With these parameters, wavepackets could be excited which would only propagate significant

distances when the CW pump spot was present. The propagation length here is significantly

extended due to the long cavity lifetime, resulting in reflections of the wavepacket from the

ends of the 100 µm wire (Figure 5.12).

Figure 5.12: Nonlinear wavepackets measured in a wire: (a,b) Streak camera trace showing
emission intensity as a function of position and time. In (a), both the pulsed WB and the CW
pump are present while in (b), only the pulsed WB is used. (c) E-ky spectrum of a wire aligned
with long axis along x. The energy of the CW pump is marked with a white dashed line while the
energy of the pulsed WB is marked with a green dashed line.

When the WB was quasi-resonant with the LPB as for most results presented in this

chapter, the emission was dominated by wavepackets that would propagate regardless of

whether or not a pump was used due to the higher Q factor of this new sample. These

non-linear wavepackets are studied in great detail in Chapter 6.

It would be expected that a dissipative soliton should not propagate with the opposite k
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vector to the CW pump, but in Figure 5.12 the reflected wavepacket propagates unhindered.

The emission intensity also drops over time, which appears to be due to photonic losses from

the cavity and potentially inelastic collisions with the end of the wire. While this would

be expected for nonlinear wavepackets with no pump as presented in Chapter 6, for the

dissipative solitons presented in the rest of this chapter, the soliton intensity should be

maintained by the pump [7]. Once excited, the wavepacket in Figure 5.12 thus behaves

more like those investigated in Chapter 6, suggesting that the role played by the CW pump

is less significant at later times.

It could be that this experiment represents an alternative method for exciting the self-

focussing wavepackets investigated in Chapter 6 using a non-resonant pulse WB to trigger

a wavepacket in the CW resonant pump, rather than using a resonant pulsed WB with no

CW pump. This alternative excitation was not investigated here, but could be pursued in

future experiments as relaxing the requirements for the pulsed WB may make the excitation

scheme easier to realise in a polariton device.

5.3 Y-Arrays

It has previously been observed [7] that the soliton size in the y direction (perpendicular to

the propagation direction) is independent of the size of the WB. In previous observations

[7], the WB diameter was 7 µm but the excited wavepacket was seen to shrink to 5 µm in

the y direction, a size which was maintained during further propagation. This behaviour is

similar to that seen in the x (propagation) direction, although the mechanisms of formation

are different in the two directions (see §2.4.1). Previously in this chapter I have shown that

if the WB is elongated along the x direction to more than double the soliton size, the excited

wavepacket breaks up into a soliton train or x-array. In this section, I explore the effects of

elongating the WB in the y direction.

Observation

If the WB is extended to ∼ 30 µm along the y-axis and ∼ 7 µm along the x-axis, the beam

profile can be made to break into an array of localised wavepackets, forming a y-array. As

the WB power is gradually increased, the number of wavepackets in the pattern increases

(Figure 5.13). The number of peaks created depends, as for the soliton trains (§5.2.1), on

the effective spot size of the WB. Peaks are spaced by ∼ 8 µm, are of the size (FWHM) of

∼ 7 µm and travel along the x direction within the pump bistability area. The number of

solitons can also be tuned by adjusting the WB energy, where the system appears to move

through some resonance (Fig. 5.14).

Due to the instability of the system (small fluctuations in laser intensity could trigger

the entire pump spot into the high density state on the bistability curve), fast measurements

of the variation along the y-axis were preferable. In order to quickly determine the pattern,

images of the intensity as a function of y position and time were recorded on the streak

camera. To do this, the emission had to be rotated so that the y axis was aligned with the

horizontal streak camera slit (see Figure 3.4). This was done by adding a Dove prism before

the imaging lens in the setup at the expense of potentially introducing some distortion in
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Figure 5.13: Y-arrays. (a) 2D images of one- to four-peak arrays obtained for different WB
powers P0, 1.2P0, 1.7P0 and 2.9P0 where P0 = 230 µW, at time t = 20 ps after the WB pulse. These
images are reconstructed by combining streak camera traces showing the intensity as a function of
x and time, taken at different positions along y as explained in §3.3.5. The right hand image is the
profile of the four-peak array along the y axis, integrated over x. (b) Intensity as a function of y
and t. Each image is only one streak camera trace, taken by rotating the emission using a Dove
prism to align the y-axis on the sample with the horizontal slit on the streak camera. Examples are
shown of arrays containing one to four peaks.

the imaging. Several data sets were taken with this rotated configuration, including those

shown in Figures 5.13b, 5.14, 5.15 and 5.16.

Dynamics

By recording emission from different points along the soliton propagation path, the dynamics

of array formation can be studied. In Figure 5.15, the WB power and energy were optimised

to generate y-arrays of one to four solitons, as shown in the bottom row. For each array,

the intensity profile along y integrated over x is shown as a function of time. The apparent

propagation along the y direction over time is an experimental artifact indicating that the

emission was not fully rotated by the Dove prism to align the y axis with the horizontal slit.

The intensity profile evolves over time: both the three and four soliton arrays start off

as a single bright peak with a broader background, which then evolves into multiple peaks

of comparable intensities. Once a pattern is formed, it continues to evolve with some peaks

merging (for example, Fig 5.15c, at (y,t) = (20 µm, 30 ps)) and others separating (for

example Fig 5.15b, a new peak emerges at (y,t) = (35 µm, 35 ps)). These y-arrays are

therefore less stable than the soliton trains presented in §5.2.1 in which the peak separation

remains constant over the propagation path.
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Figure 5.14: Y-arrays, decrease WB energy. Intensity vs y and t traces are recorded. The
emission is rotated to align the y-axis with the detection slit so that the presence of a pattern in this
direction can be deduced from a single trace. White text shows how the WB energy was changed
between each measurement.

Independence of pattern and sample disorder

The initial shape of the y-array depends strongly on that of the WB, with additional peaks

being created on the “sides” of the WB as the excitation power is increased. In order to check

that the pattern was induced by the WB shape rather than disorder on the sample, the array

pattern was recorded firstly as the WB was kept stationary and the sample was moved and

secondly as the WB was moved over the sample (Figure 5.16). In these experiments the slice

along y which was imaged on the streak camera was fixed relative to the centre of the pump

excitation spot, which was also fixed in the laboratory frame. This data provides direct

comparisons between soliton array profiles for different positions of the WB and sample

without the need to conduct scans along the y axis as for Fig 5.13.

In the first experiment, the array stayed in the same position relative to the pump and

detection window while the pattern was not significantly altered as the sample was moved,

indicating that the shape of the array does not depend on localised defects on the sample. In

the second experiment, the pattern was translated as the WB was moved across the sample

and detection window, showing that it is determined by the WB.

The break-up of the wavepacket into a y-array has been investigated numerically by

Andrey Gorbach and Dmitry Skryabin (presented in [8], reproduced in §B.2 in Appendix

B). It is shown that in a Gaussian wavepacket the curvature of the wavefront is different at

different spatial positions leading to a variation in the front velocity across the wavepacket.

This can result in the break-up of an initially smooth beam profile, an effect which is

amplified when there is a difference in k vector between the pump and WB, which is the

case in these experiments (see Figure 3.5). An alternative mechanism for y-array formation

could be laser-beam filamentation, described in §5.4.1.
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Figure 5.15: Dynamics of y-arrays. Intensity vs y and t traces are recorded for different
positions along x. The WB power and energy are optimised to generate y soliton arrays with (a)
one (b) two (c) three and (d) four peaks. Top row: emission intensity as a function of y-position
and time, integrated over x. Each row is separately normalised to make the pattern more visible.
Bottom row: emission intensity as a function of x and y at 25ps (marked by grey dashed line)

Figure 5.16: Independence of Pattern and Sample: Intensity vs y and t traces are recorded
with the emission rotated to align the y-axis with the detection slit. White lines show intensity vs y
position integrated over 70 <t< 110ps: here there is only emission from the CW pump spot whose
intensity distribution matches any disorder over the sample. Changes in the sample position can
therefore be deduced from changes in this background intensity profile. Note that the horizontal
axis in these images corresponds to the y axis on the sample. Left: WB position is kept constant
while the sample position is moved vertically and horizontally. The position of each trace in the
figure maps the position of the sample when each trace was taken. The sample is moved by ∼ 10 µm
between each image. Right: The sample position is kept constant while the WB position is moved
vertically by ∼ 10 µm.
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5.4 Discussion

5.4.1 Soliton Separation

As shown in §5.2.2, the separation between solitons in an x-array or train can be tuned by

optimising the excitation conditions, particularly the WB power. It might be expected that

the solitons in a train should have a well defined, uniform spacing; this would be the case

for most of the parametric trains proposed by Egorov et al [126]. However, it is shown in

that paper that adjusting the system parameters can result in more complex behaviours, for

instance a structure is shown where groups of 3 closely spaced solitons are separated by a

distance similar to the width of the group rather than the width of the soliton (reproduced

in Figure 2.14d).

Another factor which could be involved in wavepacket break-up is phase matching. When

the first part of the WB wavepacket hits the pump spot, the first soliton starts to form and

its phase is set. As the next part of the wavepacket approaches and the second soliton starts

to form, its phase could be influenced by that of the first soliton due to overlap with the

tail in its wavefunction. The phase of the first soliton may inhibit the formation of further

solitons if the phase difference is too large, so there is a gap where no solitons form due to

destructive interference. This could result in the observation of soliton groups.

Numerical modelling has shown ([8], reproduced in Appendix B) that the irregular soliton

spacing as well as the increasing separation with power can be replicated if an angle is

introduced between the pump and the WB, suggesting some interference effect. In this

experiment, there is always a finite angle between the two laser beams as the mirror used to

direct the pump to the sample would block the WB if the angle were the same (see Figure 3.5

in §3.3.1). These simulations were carried out by collaborators A. Gorbach and D. Skryabin.

Analogies with other soliton systems

In general, soliton solutions can be found analytically by solving the Non-linear Schrödinger

Equation (see §2.3). So-called “fundamental” solitons have a single peak with a sech ampli-

tude profile, however higher order solutions can be found if the injected intensity is increased.

At higher powers, these high-order solitons can split into several fundamental solitons in a

process known as “soliton fission” (see §2.3.3, §2.3.4). For arrays produced in this way,

neighbouring solitons can have different energies, something which has been observed pre-

viously in optical fibers. It is possible that the polariton soliton arrays presented here are

analogous to these structures: the soliton trains (§5.2.1) may be examples of higher order

solitons sharing a single line E-k spectrum; while x-arrays (§5.2.3) could occur as a result of

soliton fission, where neighbouring solitons can have different spectra.

In optical systems with a nonlinear refractive index, laser break-up or filamentation can

be seen when the laser power exceeds the expected power for soliton formation [2]. In

experiments by Bennink et al [99] where a laser beam is passed through an atomic vapour,

laser break-up resulted in the formation of a pattern of three spots. As the laser power

was increased from zero, the initial spot broke into three peaks which moved apart. At the

highest powers, new spots appeared at the centre point of the pattern. In their paper, they

show that this behaviour matches simulations based on non-linear self-action effects. While
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this system is very different from the microcavity soliton system discussed in this thesis,

it shows similar behaviour to what is seen here. In particular, the increasing separation of

solitons in a train as the WB power is increased (§5.2.2) is replicated. This supports the

suggestion that the nonlinearity leading to soliton formation could also cause the breakup

of a wavepacket at high excitation powers.

5.4.2 Relationship of Pump and WB

It is believed that localisation of these solitons in the y direction arises from some interaction

of the triggered wavepacket with the pump (§2.4.1), a result which will be verified in §6.7.

The results in this chapter reveal further effects arising from this interaction.

The experimental setup used here has the limitation that the pump and the WB cannot

have the same k vector. Simulations have shown that even a small angle between the two

laser can account for some of the results presented here. Y-arrays (§5.3) can arise from

a break-up of the propagating wavefront due to the inhomogenous intensity profile of the

triggering WB, a process which is enhanced if the laser beams have different k vectors.

In addition, the increasing separation between solitons in a train with WB power can be

replicated in numerical simulations by introducing a similar relative angle of around 3◦. By

contrast, if the pump and WB were parallel, the number of peaks in a soliton train would

increase with WB power, but the separation between them would remain the same. These

simulations, carried out by Andrey Gorbach and Dmitry Skryabin, are published in [8] and

reproduced in Appendix B.

If adjacent solitons in an x-array have different energies, the relative phase between

them will evolve over time. However for a soliton train, the single line dispersion whose

peaks narrow with an increasing number of soliton peaks suggests that the whole array may

be coherent with a constant phase relation between adjacent peaks. Experimentally, the

relative position of the writing beam and pump spot were found to determine whether an

excited soliton pattern would evolve into a soliton train (single dispersion line, §5.2.1) or an

x-array (multiple line segments in the dispersion, §5.2.3). However, moving the WB by a

few microns in the pump spot did not affect the pattern that was formed along the y axis

(Fig. 5.16). This could be because the distance moved was too small to affect it, especially

as the WB was only moved around within the pump spot rather than being moved to some

distance away from it.

The writing beam hits the sample at an angle, so that photons from one side of the

extended WB arrive at the sample surface before those at the other side. There is therefore

a phase gradient across the writing beam and as a result, there is a phase gradient imprinted

across the excited wavepackets (so the first one is phase shifted compared to the last one).

If the WB is positioned outside the bistability region of the pump, adjacent wavepackets

can interact (the soliton wavefunction has a tail as illustrated in Figure 2.13 in §2.4, so the

tail of the first will overlap with the peak of the second) and can lock their phases with each

other. This is effectively a bound state of wavepackets which is excited into a multi-hump

soliton when it hits the bistability region. If, however, the WB is positioned within the

bistable region of the pump, there is no time for interactions and phase-locking to occur

between wavepackets, so individual solitons may be excited rather than one multi-hump
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bound state. There is no requirement for the individual solitons to have the same energy,

resulting in different spectral lines.

5.4.3 Mechanisms for Soliton Formation

As discussed previously (§2.4.1), the final soliton size is determined by the interplay between

the coulomb repulsion due to polariton-polariton interactions and the attraction arising

from the polaritons’ negative effective mass. However, there are other aspects to consider,

for example the observed soliton spectrum extends to k vectors close to zero where the

polariton effective mass is positive, calling into question how much the negative effective

mass will contribute once the soliton has formed and continues to propagate. This situation

contrasts with that of gap solitons (Chapter 4, [81]) where only states with negative effective

mass are populated.

Before an attempt is made to trigger a soliton, the system is initialised with a continuous

wave pump quasi-resonant with the LPB at a high k vector, where the polariton efffective

mass is negative. The pump power is tuned so that the system is in a bistable regime where

the polariton density can be high or low. When the WB trigger pulse arrives, it injects

polaritons quasi-resonant with a slightly different point on the lower polariton branch. In

realspace, this injected wavepacket triggers a small region of the bistable pump spot into

the high density state: this is the wavepacket which is observed to evolve into a soliton.

Looking at the E-kx spectrum, the polariton population injected by the WB can start

to stimulate the scattering of polaritons out of the pump state and into the WB states (the

WB has a broader linewidth so excites a few polariton states). This is a parametric process

(see §2.2.1 for more details), so as the WB states are populated, states with an equal and

opposite energy and k separation from the pump spot also become populated. In this way,

the linear soliton spectrum starts to form. The triggered wavepacket evolves into a soliton

with a well defined size: this often meant that the wavepacket shrank in experiments as

the WB size was chosen to be larger than the expected soliton size. Both the interplay

of negative effective mass and coulomb repulsion and the fact that parametric scattering

broadens the k space spectrum can contribute to the initial shrinking of the soliton.

Because the soliton spectrum is linear, once the soliton forms it will maintain its shape

as the curvative of the dispersion tends to zero so that components at different energies

propagate at the same speed. Linearisation of the spectrum also increases the effective

mass, which is inversely proportional to the curvature, making it harder to change the

propagation speed of each component. The rate of scattering between polaritons in different

states should be much lower than scattering between polaritons in the same state due to the

reduced spectral overlap between them. This could inhibit fast relaxation of the polaritons

to the curved lower polariton branch, helping to maintain the linear spectrum.

It is clear that the linear spectrum helps the soliton to maintain its size, although it is

less clear why this spectrum is chosen in the first place. The triggered OPO process that is

thought to populate the spectrum is probably largely responsible, combined with the fact

that the broad linear spectrum stabilises the shape-maintaining soliton favoured by balancing

the energy terms. However, there are also parallels to be drawn with superfluid behaviour,

where excitations of the superfluid have a linear dispersion known as a Bogoliubov spectrum
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(see §2.2.4). Similar linearisation of the spectrum has previously been seen in a propagating

polariton condensate excited by a triggered OPO (TOPO) process [69]. As my system also

starts with a system primed to trigger an OPO induced condensate but then uses TOPO to

populate states away from k=0, there could be a preference for exciting a linear Bogoliubov

like dispersion.

5.5 Conclusions

In this chapter, I have build on previous studies of bright polariton solitons [7, 123] to

generate multi-peak soliton patterns. Arrays of solitons can be triggered both along and

perpendicular to the direction of propagation by elongating the WB along the x and y direc-

tions respectively. Increasing the effective area of the WB by changing its power increases

the number of peaks in the excited array.

Y-soliton arrays (peaks arranged perpendicular to the propagation direction) can form

despite the polaritons’ positive effective mass in this direction. The pattern is not determined

by disorder in the sample. Simulations presented in [8] (reproduced in Appendix B) offer a

possible explanation, where variations in velocity over the array wavefront lead to break-up

into several localised peaks. This effect is enhanced when the CW pump and pulsed WB

have different k vectors, as is the case in my experimental setup.

In the x direction (peaks arranged along the propagation direction), two regimes of

patterns can form. X-arrays have multiple peaks but these can have different widths and

move at different velocities, resulting in an irregular pattern with spectra consisting of

several distinct linear components. By contrast, soliton trains form regular patterns where

each soliton moves with the same velocity. The E-kx spectrum of a soliton train is linear,

with spectral peaks which narrow as the number of solitons is increased, suggesting that the

solitons form a bound, coherent state. As it is possible to move between these two regimes

simply by changing the relative position of the pump and WB, the variation in behaviour

is attributed to a difference in the interactions within the triggered wavepacket before and

after it encounters the CW pump spot.

The peak separation in x-arrays and trains is not fixed, but can be tuned by optimising

the WB power and energy. This tunability of the soliton repetition rate could make soliton

arrays an attractive candidate for providing a clock signal on a polariton device, capable of

operating with 100GHz repetition rate. This could be particularly useful if soliton arrays

could be triggered using only continuous wave sources. The current work of generating

multiple solitons with each laser pulse could be built on to generate solitons in a CW

environment as suggested in §7.1.4.
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Chapter 6

Nonlinear Wavepackets in

Microwires

In this chapter, observations of nonlinear polariton wavepackets in quasi one-dimensional

microcavity structures (microwires) are presented. While in Chapter 5 polaritons lost from

the system are replaced by a continuous wave pump, in this set of experiments only the

pulsed writing beam (WB) is used. These observations of dynamics with no CW pump are

made possible by the longer lifetime of the polaritons in the sample used in this chapter

(up to ∼30 ps instead of ∼5 ps) due to the increased photonic lifetime. Once a wavepacket

is triggered, the polariton number decreases exponentially over the propagation path as

photons escape from the cavity.

The dynamics of these wavepackets are investigated, looking at changes in energy, real-

space size and k-space distribution over the propagation path §6.2. With the right excitation

conditions, the wavepackets initially shrink in real-space; this self-focussing is an indication

of soliton-like behaviour. The self-focussing is seen with excitation at k vectors above the

point of inflection of the lower polariton branch (LPB) where the injected polaritons have

negative effective mass. This matches the conditions which would be required for bright

soliton formation (see §2.4).

Wavepacket arrays (§6.3) can be generated by increasing the excitation power in a similar

manner to the generation of soliton arrays (Chapter 5). The phase across the array is studied

(§6.4), revealing the evolution of phase discontinuities between peaks during propagation as

higher excitation powers are used. Photon counting statistics and pair correlations in the

wavepacket emission are measured, revealing that the occupied states exhibit non-classical

behaviour which may correspond to amplitude squeezing (§6.5).

Similar dynamics are seen in “short” wires, where the wavepacket reflects from the end

of a wire during propagation (§6.6). In a planar cavity, self-focussing is observed along

the propagation direction but the wavepacket spreads in the perpendicular direction (§6.7),

supporting the theory that the mechanism for localisation in the perpendicular direction for

dissipative solitons (§2.4.1) involves interactions with the continuous wave pump.
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Figure 6.1: Effect of wire width (a) Intensity of wire emission as a function of wire width. (b)
Polariton lifetime in wires of different widths.

Figure 6.2: Sample Lifetime: Two data sets showing emission intensity as a function of time.
Here, the polariton lifetime τ appears to change as a function of WB power. The sample is excited
with a WB at a k vector above the point of inflection (these are the data sets at powers P0 and P3

shown in §6.3)

6.1 Sample characterisation

The samples used in this chapter are quasi-1D structures. These are made by taking a

planar cavity and partially etching the top DBR to define mesas (see §3.1.3). The wires

used here are typically a few microns wide and either 1000 µm (“long wires”, used for most

of this chapter) or 100 µm (“short wires”, used in §6.6) long. All of the “long wires” used

in this chapter had a width of 5 µm. These are multi-mode structures but while decreasing

the wire width increases the mode spacing and so decreases the number of occupied modes,

if the wire width is too small the observed emission becomes dim and the polariton lifetime

drops (see Fig 6.1). This could be due to increased losses from the side walls as surface

roughness on the walls becomes more significant as the wire width decreases. The case of

narrow wires is similar to the case of small micropillars where non-radiative relaxation can

occur on the walls of the pillar. This is particularly significant if the pillar is smaller than

the diffusion length of the carriers (typically micrometers) [5]. The polariton lifetime ranges

between ∼15-30 ps as the excitation conditions, such as the WB power, are varied (see, for

example, Figure 6.2).

Details of the wafer are given in §3.1.3, while Energy-k spectra for the different samples

used in this chapter are illustrated in Figure 6.3. In these measurements, the wire was

excited non-resonantly with a HeNe laser. When required, energy as a function of both kx

and ky could be measured by moving the imaging lens to select different values of kx, then

reconstructing the full spectrum from a series of measurements (§3.3.5). The samples used
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Figure 6.3: E-k spectra of samples (a) Dispersion for planar cavity. (b,c) Dispersions for
1 mm long, 5 µm wide wires along the length (b) and across the width (c) of the wire. (d-f)
Dispersions for 100 µm long wires. (d) shows the dispersion along the length of a 4 µm wide wire
while (e) is taken across the width of a 4 µm wide wire. (f) is the dispersion across the width of an
8 µm wide wire.

in this chapter are all taken from the same wafer, but have different detunings and mesa

shapes as explained in §3.1.3.

6.2 Dynamics of Self-focussing Wavepackets

In this section, I look at how the shape, E-kx spectrum and k distribution of a wavepacket

changes as it is injected in the non-linear regime, propagates along a wire and finally collapses

to a dispersive wavepacket in the linear regime. The cases where only the lowest confined

mode of the wire is excited (§6.2.1) and when two wire modes are excited (§6.2.2) are both

investigated. These non-linear wavepackets are found to show soliton-like behaviour; in

particular, when excited with a beam of large area, they are seen to self-focus during their

initial propagation. This contrasts with the case where polaritons are injected in the linear

(low power) regime, where the wavepackets never shrink, but instead spread slightly as they

propagate as shown in Figure 6.4.

The expected full width of a soliton w can be approximated by doubling the healing

length of a quantum fluid. This can be found by equating the kinetic energy due to dispersion

with the potential energy due to polariton-polariton interactions and the resulting soliton

width is given by w(t) = 2~(
√

2MgN(t))−1 where M is the effective mass of the polariton, g

is the interaction coefficient for the polariton-polariton interaction and N(t) is the polariton

density at a given time t [7]. The width of a soliton would therefore be determined by

its environment (M from polariton dispersion, gN(t) from polariton-polariton interactions)

rather than the size of the WB that triggers it. In the experiments presented in this chapter,

N(t) decreases exponentially with time as photons escape the cavity, reducing the overall

123



CHAPTER 6. NONLINEAR WAVEPACKETS IN MICROWIRES

Figure 6.4: Dynamics, linear regime. (a) Wavepacket width (FWHM) vs time. Black dashed
lines indicate the times at which (c-e) are recorded. (b) Wavepacket width vs 1/

√
N where N =∫ 120ps

t
I(t)dt and I is the emission intensity (measured in counts registered on the streak camera.

Note that this is proportional to rather than equal to the number of photons emitted from the sample
due to gain in the streak camera in normal operation). (c-e) realspace images, E-kx dispersions
and k-maps at different times during the wavepacket’s propagation. The white dashed lines show
the position of the lower polariton modes and the dispersions are shown here with a logarithmic
colour scale
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polariton population and changing w. If a wavepacket is excited by a WB with a width

larger than w, it could be said to exhibit soliton-like behaviour if it initially shrinks, but

then subsequently expands in proportion to 1/
√
N(t).

6.2.1 Single mode

The lowest order wire mode was resonantly excited using a WB at kx = 2.22 µm−1 with

an excitation power of 200 µW. An initially broad wavepacket with a width of ∼ 20 µm is

injected as shown in Fig. 6.5c. The evolution of the size of the wavepacket as it propagates is

shown in Fig. 6.5a. The wavepacket initially shrinks in size, reaching a FWHM of 9 µm after

50 ps before growing to a width of 13 µm. The approximately linear increase in size with
1√

(N(t))
in the range 0.0015 < 1√

(N(t))
< 0.005 is consistent with soliton-like behaviour, as

explained in the introduction to this section. At later times (t > 100 ps) and lower emission

intensities 1√
(N(t))

> 0.005, the wavepacket size stays roughly constant. The change in

relationship between the wavepacket size and 1√
(N(t))

indicates that the wavepacket is no

longer in the non-linear (soliton-like) regime and a dispersive wavepacket is formed instead.

At these low polariton densities, the Coulomb repulsion is low, reducing the expected spread

of the wavepacket.

In Fig 6.5(c-e), two-dimensional realspace images of the wavepacket at different times

are compared with the E-kx spectra measured at the same points after excitation. The

realspace images show the shrinking and subsequent expansion of the wavepacket already

described. As the wavepacket shrinks in realspace, the range of states occupied on the E-kx

spectrum broadens. The blueshift in energies at early times compared to the marked lower

polariton branch is due to the Coulomb interactions between the polaritons injected at high

densities. The marked LPB was measured using non-resonant excitation. At later times,

the polariton density drops, redshifting the spectrum back towards the marked LPB.

Plotting the emission intensity for the E-kx spectra on a logarithmic colour scale reveals

that the polariton density is modulated along the spectrum, as emphasised in the intensity

profile superposed on Figure 6.5d. Five peaks are visible with an average separation of

0.27 ± 0.02 µm−1. This modulation could arise from the parametric scattering mechanism

which is believed to be what populates the soliton-like spectrum, which will be further

discussed in §6.2.5. A series of delta function peaks with this spacing corresponds to a

realspace modulated pattern with peaks of width 9 ± 1µm separated by 23 ± 1 µm

(see Appendix A). Although an extra peak was not observed in realspace, there could a

contribution to the dispersion from a dim tail propagating behind the main self-focussing

peak.

6.2.2 Multi mode

As the WB is broad in k space, it can be tuned into resonance with multiple modes of the

wire to resonantly excite a multimode wavepacket. This can be done by decreasing the k

vector compared to the single mode case while keeping the WB energy constant. The results

are shown in Fig. 6.6 where the WB was at kx = 2.11 µm−1 and had an excitation power

of 100 µW.
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Figure 6.5: Dynamics, single mode wavepacket. (a) Wavepacket width (FWHM) vs time.
Black dashed lines indicate the times at which (c-e) are recorded. (b) Wavepacket width vs 1/

√
N

where N =
∫ 120ps

t
I(t)dt and I is the emission intensity. Very low intensity (t>90ps) data is

excluded as this would otherwise dominate the plot, obscuring the nonlinear region of interest. (c-
e) realspace images and E-kx dispersions at different times during the wavepacket’s propagation.
The white dashed lines show the position of the lower polariton modes and the dispersions are
shown here with a logarithmic colour scale. The yellow line in (d) shows the intensity profile of the
E-kx spectrum along kx, integrated over energy.
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Initially, a broad wavepacket (width ∼ 30 µm) is excited by the pulsed writing beam

(WB) with emission coming from multiple wire modes as can be seen in the dispersion and

k-maps at early times. As for the single mode case §6.2.1, the dispersion is blueshifted

due to Coulomb repulsion between the polaritons. Due to this multi-mode excitation, the

wavepacket appears to “snake” between the walls of the wire (y direction) as it propagates in

the x direction. During the first ∼40 ps after the arrival of the WB, the excited wavepacket

shrinks in size as would be expected for a soliton.

The wavepacket shrinks to a minimum width of ∼ 12 µm (note that while the main peak

looks ∼ 8 µm wide, the width shown here is the FWHM which may appear extended due

to the lower density tail). The emission is now concentrated in the lowest energy mode of

the wire and the range of occupied energy states in this mode is slightly extended. The

“snaking” between the wire walls is reduced. It is thought that the evolution from a multi-

mode structure to a single-mode structure is due to an initially higher density in the lower

mode, which stimulates scattering from the higher mode to the lower mode. Between 40

and 80 ps, the wavepacket size increases (Fig 6.6a). This corresponds to the linear section

of Fig 6.6b and is consistent with solitonic behaviour, where the soliton width would be

proportional to 1√
(N(t))

.

At later times (t > 80ps), the wavepacket continues to spread but this no longer has the

same relationship with N(t) (Fig 6.6a,b). This indicates that the polariton population is

now too low to be in the non-linear soliton-like regime and a dispersive wavepacket is formed

instead. The E-kx spectrum narrows and occupies states on the lower polariton branch.

6.2.3 Excitation Conditions

The nonlinearity in this system comes from polariton-polariton interactions (see §2.1.1), so

nonlinear effects will be stronger with higher excitation powers as these will inject higher

polariton densities. The self-focussing illustrated in §6.2.1 and §6.2.2 may have a similar

origin to the self-focussing seen in the formation of bright dissipative polariton solitons

§2.4.1. If this is the case, this should only be seen when the polaritons are injected at high

k vectors where they have negative effective mass.

The change in wavepacket size over the first 40 ps is measured as a function of k vector

and power (Fig. 6.7(a-c)). First, the power is fixed at 60 µW and the excitation k vector is

varied (Fig. 6.7a). At high k vectors, the wavepacket initially shrinks after it is excited,(Fig.

6.7d) but at low k vectors the wavepacket size stays roughly constant, or even spreads slightly

(Fig. 6.7e). The change between a spreading and a self-focussing wavepacket occurs when

the excitation k vector goes above ∼ 2 µm−1, which is approximately the point of inflection

of the lower polariton branch.

In order to verify the change in behaviour as the point of inflection is crossed, the

wavepacket spread as a function of power was measured for two k vectors, one on either

side of the point of inflection. For the low k vector (Fig. 6.7b), the spread increases with

excitation power as might be expected due to the increase in polariton-polariton repulsion.

At the high k vector (Fig. 6.7c), for all powers apart from the very lowest (linear regime,

non-linear effects are negligible), the spread is negative i.e. the wavepacket shrinks. The

jump in width between 85 µW and 250 µW is attributed to the presence of an extra peak
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Figure 6.6: Dynamics, multimode wavepacket. (a) Wavepacket width (FWHM) vs time.
Black dashed lines indicate the times at which (c-e) are recorded. (b) Wavepacket width vs 1/

√
N

where N =
∫ 120ps

t
I(t)dt and I is the emission intensity. Very low intensity (t>90ps) data is

excluded as this would otherwise dominate the plot, obscuring the nonlinear region of interest. (c-
e) realspace, k-space and E-kx dispersion at different times during the wavepacket’s propagation.
The white lines show the position of the lower polariton branches corresponding to the wire modes.
The dispersions are shown here with a logarithmic colour scale
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Figure 6.7: Power and k dependence (a) Wavepacket spread (width at 40 ps minus width at
0 ps) vs excitation k at a fixed power of 60 µW. The negative spread at high k vector corresponds
to a shrinking wavepacket. (b) Wavepacket spread as a function of power at k = 1.6 µm−1. (c)
Wavepacket spread as a function of power at k = 2.2 µm−1. (d-f) Intensity vs x and time, integrated
over y. Each row is individually normalised so the shape of the intensity profiles at different times
can be compared rather than the relative intensity, which decays exponentially with time. Note
that these images are constructed from four measurements as only emission from a limited window
could be recorded in each measurement. This results in discontinuities in the resulting image, but
the overall behaviour can be observed. (d) Excitation at high k vector, self-focussing wavepacket.
(e,f) Excitation at low k vector giving a spreading wavepacket, both when the excitation power is
the same as in case (d) and when it is much higher.

as a wavepacket array is formed, increasing the FWHM which is measured across the entire

structure. These multi-peak structures will be investigated further in §6.3.

6.2.4 Dynamics of E-k profiles

In order to get a better picture of the energy changes as the wavepacket evolves, the intensity

profiles of the dispersions over time were plotted in Figure 6.8. A smooth drop in energy is

observed over the propagation path for both single mode and multimode excitation. This

drop in energy could arise from the redshift of the energy states as the polariton density

decreases resulting in a drop in Coulomb repulsion. Surface roughness along the walls of

the wire could also play a role as polaritons could scatter inelastically from the edges (see

§6.3.2). Looking at the intensity vs kx profile, it can be seen that for multi-mode excitation,

the higher k (lower order) wire mode maintains the same central k vector over all time.

The second mode is quickly depopulated, although it could play a role in the subsequent

broadening of the k spectrum at around 50 ps by providing an alternative relaxation path.

For the single mode case, the central k vector appears to shift to a higher k vector at

later times. This is a little unexpected: as will be shown in §6.3, at higher powers the k

spectrum will tend to shift towards lower k vectors. As the shift observed here corresponds

to a change in the measurement position, it could be an artifact of the experiment, although

the smoothness of the transition in the intensity vs energy profile suggests that this is not
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the case. A shift to higher k vectors can occur due to the redshift of the LPB as the polariton

density drops. While here the polariton energy is seen to drop, if it is falling slower than the

LPB (for example, due to getting trapped at the bottleneck region), the LPB states which

the polaritons are resonant with start to shift to higher k vector. A similar shift has been

observed in polariton condensates in the literature [36], where it enhances the acceleration

of polaritons away from a high density pump spot, see §2.2.2.

Figure 6.8: Dispersion profiles, long wires. At each time, the E-kx dispersion is constructed
as a 2D image. The emission intensity is then integrated over all recorded kx vectors to find the
intensity vs energy profile, or integrated over all energies to get the intensity vs kx profile. The
profiles are then normalised. This was repeated at each time to show the continuous evolution of the
dispersion. Here, data is shown for long wires for single mode (corresponding to the data in §6.2.1)
and multimode (§6.2.2) excitation. As the wavepacket propagation distance is larger than the field
of view of the imaging optics, the measurement was taken in three stages looking at different points
along the propagation length. For this reason, there are discontinuities along the time axis where
the data sets are joined, indicated by white dashed lines.

6.2.5 Secondary parametric scattering

It is thought that the extended wavepacket spectrum is populated by the parametric scat-

tering (§2.2.1) of polaritons from a high density pump state to a series of signal and idler

states [7]. Further scattering from the signal and idler states could broaden the spectrum,

however the more excitonic polaritons at high energy have higher losses, for example due

to inhomogeneous broadening of the exciton component by disorder in the quantum wells.

The losses in the higher k idler states may be too great to allow time for further scattering

events, although these might be possible at lower k vectors where the polariton lifetime is

longer. This could lead to a migration of the emission to lower E-kx states over time, as

illustrated in Fig 6.9.

This cascade of parametric scattering events could lead to a regular modulation in k,

particularly if the original pump state acts as the idler for a secondary scattering event. Such

modulation has been seen in some of the experimental data in both long wires (presented

in Fig 6.5d) and short wires (will be presented in Fig 6.26).
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Figure 6.9: Secondary parametric scattering: schematic diagram. Calling the WB state P,
an OPO process can populate states S1 and I by scattering two polaritons out of state P. State I
has a short lifetime, so loses polaritons quickly. State S1 has a long lifetime and can act as a second
pump state for a further OPO event. Two polaritons in S1 can then scatter to populate S2 at a
lower k vector and I2 at a higher k vector (I2 could correspond to P).

6.3 Wavepacket Arrays

By steadily increasing the WB power, more peaks can be generated with each laser pulse

(see I(x,t) traces in Fig. 6.10) in a similar manner to the soliton trains and horizontal

arrays presented in Chapter 5. Stable arrays of two and sometimes three peaks travelling

at the same speed can be excited. As the power increases, the spread in occupied E-kx

states also increases (Fig. 6.11). The extended spectrum appears to be linear for all but the

highest powers, indicating that all spectral components propagate at the same speed, as is

required for a non-dispersive wavepacket. As multiple peaks appear in the realspace slices, a

corresponding modulation appears in the intensity profile of the E-kx spectrum. For power

P3, the broad peaks in k space (more obvious in the 2D kmap images) are separated by

0.8 ± 0.1 µm−1, corresponding to a peak separation in realspace of 8 ± 1 µm.

At very high excitation powers, the regular wavepacket array structure breaks down.

E-kx states on the LPB are populated rather than states on a linear dispersion, resulting in

realspace peaks propagating at different velocities and forming spreading structures. Rather

than being evenly distributed around the WB state, the emission tends to relax to the low

energy, low k side of the WB.

The drop to lower energies could have several contributions. It is already known that

increased polariton-polariton scattering at high densities aids relaxation to low k vectors, for

example by enabling polaritons to relax past the bottleneck region where they can become

trapped at low densities. Inelastic scattering with the rough sidewalls of the microwire could

play a role: it will be shown in §6.6.1 that reflection of a wavepacket from the end of a wire

can be an inelastic process, so it is reasonable to suggest that interactions with the side walls

can also result in a loss of energy. It is believed that parametric scattering of polaritons out
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Figure 6.10: Arrays, increase power, realspace. The 2D images show the intensity as a
function of position x and time t, integrated over the width y of the wire . Each row is separately
normalised in order to emphasise the intensity profile at each time rather than the relative intensities
at different times. In the line plots, the solid blue line shows the intensity profile over x at a time in
the middle of the 2D plots (∼50 ps in most cases) while the black dashed line shows the intensity
profile a few ps after the arrival of the triggering WB for comparison. The powers used were:
P0 = 8 µW, P1 = 50 µW, P2 = 85 µW, P3 = 250 µW, P4 = 530 µW, P5 = 870 µW, P6 = 1.3 mW,
P7 = 28 mW.
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Figure 6.11: Arrays, increase power, k-space For each power, the top image shows the
intensity as a function of energy and kx while the bottom image shows the emission intensity as
a function of the 2-dimensional in-plane k vector. All plots use a logarithmic colour scale. The
powers used are the same as those in Fig 6.10
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of the WB state contributes to the broadening of the E-kx spectrum. Secondary scattering

events from highly occupied states combined with longer polariton lifetimes at lower k vectors

could also result in a shift to lower energies as discussed in §6.2.5.

6.3.1 Array dynamics

The formation of a wavepacket array triggered by a single WB pulse is illustrated in Fig 6.12.

As for the case of a single self-focussing wavepacket, the initially broad injected wavepacket

shrinks in size while the range of occupied k states broadens slightly. For this data set, the

excitation conditions are the same as for the data set presented in §6.2.2 except that the

excitation power was increased from 100 µW to 150 µW.

With the larger polariton number, a second peak starts to form in the tail after around

35 ps. As this happens, the energy-kx dispersion broadens to cover a k range of ∼ 2 µm−1,

modulated into three peaks: this can be seen in both the E-kx dispersion images and the

2-dimensional k space images. Over time, the second realspace peak becomes brighter than

the first. Eventually the first peak disappears, becoming part of the spreading background

surrounding the central peak. In k space, the high kx peak disappears or becomes too faint

to detect.

The dynamics of the E-k dispersions as the power is increased (Fig 6.13) could give

some insight into the mechanisms involved. It should be noted that the states with high

populations dominate these plots, which have a linear intensity scale. Fig 6.11 shows that

there is dim emission over a larger energy range which is not examined here. The cases of

powers P0 (linear wavepacket), P1 and P2 (single self-focussing wavepackets) are similar to

those discussed in §6.2.4. The drift to lower energies over time could be due to the redshift

of the lower polariton branch as the polarition density drops.

As the power is increased to P3 and beyond, some new behaviour emerges. During the

main nonlinear region (middle section, ∼ 40−80 ps), the range of occupied energies increases

while the centre energy drops. The intensity profile over energy is not smoothly varying but

instead forms three peaks for powers P3-P5 and two peaks for P6. It appears that polaritons

are transferred from the highest energy state to the lower energy states as only the lowest

energy peak remains at later times.

The regular intensity modulation over energy could be due to the fact that there are

now multiple wavepackets passing through the imaged area at different times: the fourier

transform of an array of temporally separated peaks should give an array of peaks separated

in energy. For power P5, the energy peaks are separated by ∼ 0.3 meV, corresponding to a

separation in time of 14 ps. The high intensity wavepacket peaks observed in Fig 6.10 are

only separated by ∼ 5 ps, however there are some dim additional peaks seen ∼ 12 ps before

the main peaks which could be the cause of this modulation in the energy-intensity profile.

Looking at the occupied k vectors, the k range broadens and the intensity profile becomes

modulated in the middle section but maintains a similar central k vector over time. At the

highest power P7, the emission broadens and drops to lower energies and lower k vectors,

moving to states in the positive effective mass region of the lower polariton branch.

134



CHAPTER 6. NONLINEAR WAVEPACKETS IN MICROWIRES

Figure 6.12: Dynamics of wavepacket arrays: Left column: normalised intensity profiles
(along x, integrated over the wire width y) at different times after the arrival of the trigger WB.
Rows: 2D images showing the emission intensity distribution in real space, energy and kx, and
in-plane k space. Each row corresponds to a different time as indicated by the label above the
realspace image. The E-kx and k plots are shown with logarithmic colour scales.
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Figure 6.13: Dispersion profiles - these are plotted in the same way as those presented in
§6.8. The intensity profile at each time pixel is individually normalised in order to keep the pattern
visible as the emission intensity drops. White dashed lines show where data sets are joined. The
dispersions are the same as those presented in Fig. 6.11.
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6.3.2 Continuum

In optical fibres, the formation of high order solitons using large excitation powers has been

linked to the population of a supercontinuum (see §2.3.4), where the spectral width of the

input pulse can be broadened by a factor of up to 15 [92]. This observation was seen when

the input pulse was excited close to the boundary between spectral regions with normal

dispersion and those with anomalous dispersion. Mechanisms contributing to this were

found to include perturbation by high order dispersion terms (particularly the third order

term) and Raman scattering processes where energy was transferred to the fibre medium

[174].

Similarities can be found with the self-focussing polariton wavepackets investigated here.

The wavepacket is injected just above the point of inflection which marks the boundary be-

tween normal dispersion (where the curvature of the E-k spectrum is negative) and anoma-

lous dispersion (where the curvature of the E-k spectrum is positive). High order terms are

thought to dominate the polariton dispersion at this point (see Figure 2.11b, reproduced

from [94]) . Energy losses could be introduced by the roughness of the microwire sidewalls,

introducing localised defects and opening up new scattering channels compared with the

ideal case [38].

The observations of a supercontinuum in optical fiber systems can be compared with

the broadening seen at high power (P7) in Figures 6.11 and 6.13. While the pulse in fiber

systems can be broadened by a factor of 15 to cover ∼ 500 nm, in this polariton system

the broadening is limited by the spectral extent of the lower polariton branch: it can be see

in Fig 6.11 that at the highest powers, the lowest available states are occupied so further

spreading is inhibited. Similarly, there would be a boundary at the high energy side as

lower polariton branch states cannot exceed the exciton energy. Nevertheless, significant

broadening of the injected wavepacket spectrum by a factor of ∼5 is seen in this polariton

system at high power.

Aside from the difference in the extent of spectral broadening, other aspects of the

behaviour of the high power polariton system and the fiber supercontinuum system are more

closely linked. In both cases, the width of the populated spectrum increases with power.

The spread across the boundary between regions with normal and anomalous dispersion

results in radiation of a dispersive wavepacket [95, 96] which appears as a broad background

peak in the realspace streak camera images presented here (see, for example, Fig 6.21) or a

tail as seen by an asymmetric peak in the intensity profile (see, for example, powers P1 and

P2 in Fig 6.10). Interactions between the solitonic and dispersive wavepackets are thought

to contribute to the supercontinuum formation in a fiber system [174].

A precursor to the supercontinuum regime is expected to be soliton fission, where each

spatially separated soliton occupies a different region of the dispersion. While this was not

explicitly measured here, the variation in velocity of the wavepackets shown for power P7 in

Fig 6.10) suggests that each one may populate a different part of the spectrum (Fig. 6.11)

as the changing gradient of the E-k curve represents a changing group velocity between

different spectral regions. The clear analogy between observations in optical fibers and the

results presented in §6.3 suggest that at high powers, the system could be moving from a

soliton-like regime into a continuum-like regime.
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6.3.3 Wavepacket collision

It might be expected that these soliton-like wavepackets could be made to collide by injecting

two wavepackets propagating in opposite directions using two writing beams. This was

attempted, but the colliding wavepackets appear to have no effect on each others’ speed or

trajectory (Fig. 6.14a). This could be because the interaction time between them is only

a few picoseconds while the time taken for the wavepacket to fully self-focus is ∼ 30ps (see

§6.2 Dynamics). This suggests that the interaction time may be too short to significantly

influence the shape of the wavepacket, as the mechanisms which determine this are much

slower.

Experiments in the literature of collisions between cold atom solitons [106] showed that

while the solitons passed through one another, they were seen to interact as they collided.

A single density minimum was seen when the solitons had a phase difference of π, indicated

that they never overlap due to repulsion. A density maximum was seen for solitons which

were in-phase, which are expected to have attractive interactions so can occupy the same

spatial position (see §2.3.3).

Figure 6.14: Wavepacket collisions. (a) Collisions between single self-focussing wavepackets.
(b,c) Interference of wavepacket arrays.

Here, although the soliton-like wavepackets are not seen to collide as particles, interfer-

ence patterns can be seen where they overlap. In the case of a single wavepacket, interference

fringes are seen with modulation along the x direction but no modulation along the time di-

rection (Fig. 6.14a). When wavepacket arrays collide, more complex fringe patterns emerge

(Fig. 6.14(b,c)) where some of the fringes appear to be shifted across the gap between the

peaks in a manner which looks like a fork-like dislocation, reminiscent of the signature of

vortices in polariton condensates [72, 52, 175]. While these phase structures appear complex

at first glance, it is thought that they can arise from phase jumps between the individual

peaks in at least one of the wavepacket arrays. Rather than looking at the interference of

two wavepacket arrays, the phase across one wavepacket can be examined by interfering its

emission with a reference beam with a constant phase across its spatial profile, as presented

in §6.4.

6.4 Phase profiles

The phase across a wavepacket array is measured by interfering the emission with a reference

beam, which should ideally have a flat phase profile. The reference beam is made by splitting

off a small portion of the WB, expanding it and combining it with the emission using a beam
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splitter (see §3.4.2). The relative phase between the reference beam and the emission can

be scanned by moving the position of the piezo mirror.

Examples of the x vs t traces obtained for this measurement are shown in Fig. 6.15(a-d).

Figure 6.15a shows the trace for a wavepacket in the linear regime, showing vertical interfer-

ence fringes. A similar image is obtained for a single self-focussing wavepacket (Fig.6.15b)

but for the nonlinear wavepacket arrays in Fig.6.15(c,d), the fringes are no longer uniform

in the vertical direction. Instead, a checkerboard pattern starts to emerge, indicating a

variation in relative phase in time as well as position. The early phase jumps appear to

coincide with minima in the intensity profile (the images are less clear at later times due to

the lower intensity). The fringe pattern is revealed more clearly in Figure 6.15(e-h) where

a background has been subtracted as described in §3.4.2. Similar data is shown in Figure

6.15(m-p), but with a different relative phase between the emission and the reference beam.

To take a closer look at the phase profile, I look at fringe amplitudes along the x direction

(Fig. 6.15(i-l)). By comparing the profiles at different time pixels, the spatial period of the

fringes at different points in the wavepacket array can be compared. In the case of the

linear wavepacket (Fig. 6.15, first column), neither the fringe position nor the fringe period

changes at different times. For a single nonlinear wavepacket (Fig. 6.15, second column),

the fringe period doesn’t change over the selected lines, but the positions of the maxima and

minima clearly shift over time.

For the arrays however, the apparent period of the interference fringes can be increased

as the line along x crosses from one wavepacket to the next. In Fig. 6.15k, the green line

has its first minimum at x∼14 µm, as does the red line. However, while the red line then

increases to a maximum and decreases to a second minimum (x∼19 µm), the green line

increases to a maximum and then stays bright until the edge of the frame. The red line

covers emission from within a single wavepacket peak, while the green line crosses between

wavepackets, passing through intensity maxima in both. Similarly in Fig. 6.15l, the green

line has a maximum and minimum followed by a minimum and maximum while the blue

and red lines, which are again mainly contained within a single wavepacket peak, show

alternating maxima and minima. This suggests that there is a phase jump between the

wavepacket peaks for both of these arrays. For Fig 6.15l, the phase jump seems to be ∼ π

as the interference minimum in the second wavepacket lies directly below the interference

maximum in the first, forming a checkerboard pattern. In Fig 6.15k, the magnitude of the

phase jump appears to be lower as the minimum in the second wavepacket is offset compared

to the maximum of the first.

6.4.1 Temporal Evolution

Figure 6.16 shows the evolution of a wavepacket array and the phase structure within it. As

the reference beam is more extended in time than in space when compared to the emission,

the relationship between the emission intensity profile and the phase can be seen more clearly

when the fringe amplitude profile is taken along t. Each row shows the results of probing

the wavepacket array at a different time after the arrival of the WB.

Figure 6.16a) shows the situation ∼13 ps after the arrival of the WB. The excited

wavepacket is still broad and the phase over the main wavepacket is roughly constant,
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Figure 6.15: Phase profiles. (a-d) Streak camera traces showing the interference of the emission
and a reference beam for (a) a linear wavepacket, (b) a single self-focussing wavepacket, and (c,d)
wavepacket arrays. (e-h) Grey scale image: streak camera slices, zoomed into the interference region
with the background subtracted. Dashed lines: these illustrate the times along which amplitude
profiles are taken along x and plotted in figures (i-l). Vertical dashed (dotted) lines in (k,l) highlight
the maxima (minima) along the first and third profiles. (m-p) are similar to (e-h), but are taken
with a different relative phase. Amplitude profiles are overlaid on the images.
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Figure 6.16: Phase Time Dependence. Each row shows data taken at a different time along
the propagation path. The y axis here is the time in ps since the arrival of the WB at t=0. Left
column: Streak camera trace. The dashed line indicates the x position along which the wavepacket
intensity profile (black line in the right column) is taken. Middle column: streak camera trace
zoomed into the interference region with the background subtracted as for Fig 6.15. The dashed
line indicates the x position along which the fringe amplitude profile (red line in the right column) is
taken. Right column: Intensity vs time profiles. Black line: normalised intensity profile across the
wavepacket array. The profile is shifted in time to indicate the approximate profile at the position
of the reference beam. Red line: normalised amplitude profile across the fringe pattern. The red
dashed vertical line indicates a fringe amplitude of zero.
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as can be deduced from the vertical fringes in the middle column. There is some linear

phase gradient at the end of the wavepacket resulting in a kink in the fringes. In the profiles

plotted in the right column, it can be seen that the peak in the black line (temporal width

of the wavepacket emission) has a similar duration to that in the red line (temporal width

of the interference fringe). The images in Figure 6.16(b, c) have similar features. As the

emission peak narrows, so does the fringe peak, indicating that the fringe period is linked

to the duration of individual wavepackets in the array. The overall phase gradient increases

and in Figure 6.16(c), the interference maximum at the end of the array becomes quite

pronounced: there is a clear phase difference between the main wavepacket peak and the

lower density tail that follows it.

By Fig. 6.16d), which is ∼32 ps after the WB, two peaks can be resolved in the emission,

indicating the formation of an array. The peak positions correspond well with extrema in

the fringe profile: for this slice, the first wavepacket has a fringe minimum while the second

has a fringe maximum. The low density tail again has a fringe minimum. The period of the

interference fringes has clearly decreased compared to Figure 6.16a), but as the reference

beam is the same, this shows that the phase profile across the emission profile has changed

significantly. Figures 6.16(e,f) show similar patterns with the fringe extrema tracking the

wavepacket intensity maxima as they start to spread apart.

In Fig. 6.16g, a third bright peak may be resolvable along with a fourth interference

extremum. As the emission intensity drops, the features become harder to resolve with most

peaks smeared out in Fig. 6.16h), however the interference fringe pattern clearly maintains

the structure established at earlier times. The fringe extrema do not always exactly coincide

with the intensity peaks any more. It may be that the separate wavepackets in the array

have broadened and merged while maintaining a steep phase gradient.

6.4.2 Power dependence

The power dependence of the phase profile across a wavepacket array is presented in Fig.

6.17. The only parameter which was changed between these data sets was the excitation

power, indicated in the left hand column for each row. These data sets are measured under

similar conditions to those in §6.3 for powers P1, P3, P4 and P5.

For the single self-focussing wavepacket (Fig 6.17, 40µW), the phase profile is fairly

uniform with maybe a small linear phase gradient. As the excitation power is increased,

the phase gradient becomes steeper, covering four amplitude extrema at the highest power

compared with one maximum at the lowest power. However, while the phase profile is quite

different between the second and fourth rows, the array intensity profile is similar: in both

cases, two peaks are resolvable, although in the fourth row they are slightly more separated.

In many of the results shown so far in this section, it has been observed that sharp changes

in phase tend to occur at the edges of individual wavepacket peaks, however in the second

row of Fig 6.17, it can be seen that there will not always be a sharp change in phase at

such a boundary. The two main peaks have similar phases while the tail has the opposite

phase. Increasing the power further results in phase changes around all of the wavepacket

boundaries, or an increased overall phase gradient, as observed previously. This observation

suggests that these arrays can be stable both when the adjacent wavepackets are in phase
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and when there is a phase jump between them.

Figure 6.17: Power dependence of phase pattern.. The phase pattern is monitored as the
excitation power is increased. Each row shows data for a different WB power as indicated in the
annotation in the left column. In all columns, vertical dashed lines indicate the x position along
which an intensity or amplitude profile is taken. Horizontal dashed lines indicate the positions of
minima in the emission intensity profile, marking the boundaries of individual wavepackets in the
array. Left column: streak camera trace. Second column: streak camera trace zoomed into the
interference region with the background (right column) subtracted as for Fig 6.15. Third column:
Intensity vs time profiles. Red line: normalised amplitude profile across the fringe pattern shown
in the second column. The red dashed line indicates a fringe amplitude of zero. Thick black line:
normalised intensity profile of the wavepacket array taken from the “background” image in the
right column along the same line as the fringe profile is taken. Thin black line: normalised intensity
profile across the wavepacket array along the line indicated in the left column. The profile is shifted
in time to indicate the approximate profile at the position of the reference beam. Right column:
Background image taken by averaging 101 phase steps (see §3.4.2).

To check that the change in power did not affect the phase profile across the reference

beam or the initially excited wavepacket, the phase across the emission ∼ 10 ps after the

arrival of the WB was measured. This is shown in Fig. 6.18. Neither the phase pattern nor

the emission intensity profile changes much at this time as the excitation power is increased:

as expected from §6.4.1, the phase profile evolves at later times as the wavepacket array

emerges.
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Figure 6.18: Power dependence of phase pattern at early times. The data in this figure
is taken from the same set as that in Fig. 6.17, but the emission is measured at an earlier time,
before significant self-focussing is observed.
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6.4.3 Discussion of phase observations

As shown in Fig 6.15, a change in the phase gradient or a phase jump can be introduced at

the edges of the nonlinear wavepackets which is not present for a wavepacket in the linear

regime (i.e. with a low excitation power). In the case of wavepacket arrays, the phase profile

can exhibit dislocations when moving from one peak to the next although as shown in Fig.

6.17, it is also possible to have multi-peak structures without a phase jump between the

peaks. This suggests that two regimes of nonlinear wavepacket arrays can be generated:

one in which a phase jump is seen between adjacent peaks and one in which neighbouring

peaks have the same phase. The case where the phase is the same appears to occur at lower

excitation power and where the peaks in the array are more closely spaced. The phase profile

is not imprinted when the wavepacket is injected by the WB even at high power (§6.4.2),

but evolves as the wavepacket array emerges (§6.4.1).

The arrays of non-linear wavepackets investigated here can be compared with soliton

arrays, both those investigated in a dissipative polariton system (Chapter 5) and those

investigated in other systems such as optical fibres (§2.3.3). It was noted in §5.4 that two

regimes of soliton array appeared to be generated: one in which the solitons shared the

same linear E-kx spectrum, implying coherence across the array and a second where it was

suggested that neighbouring solitons may occupy different spectral regions and coherence

may not be maintained across the array. It was suggested that these regimes could be

analogous to structures observed in optical fibers, namely higher order solitons and arrays

of fundamental solitons (§2.3.3).

Similarly, two regimes of nonlinear wavepacket arrays are seen here: one at lower power

where neighbouring wavepackets are in phase and one at a higher power where a phase shift

can evolve between neighbouring peaks as they propagate. Analogies can again be drawn,

where the in-phase arrays may correspond to higher order soliton solutions and the out-of-

phase arrays may correspond to the case of soliton fission, which is expected to occur at

higher excitation powers. Theoretically, neighbouring peaks in a stable pattern of solitons

are expected to be π out of phase [97, 176, 177]. Pairs of solitons which are in-phase are

expected to attract creating an unstable pattern. Phase shifts have sometimes been seen

to evolve between temporal solitons which are injected into optical fibers in phase, thus

stabilising the pattern [102] (see §2.3.3). There are clear similarities between these reported

observations and the evolution of phase jump presented in §6.4.1

6.5 Quantum properties

The quantum properties of the polariton states can be examined by looking at the photon

emission statistics (the ratio between the variance and the mean number of photons detected

in a certain time interval) and the correlations between pairs of emitted photons, as explained

in §2.5. Both of these properties can be measured using the photon counting mode of the

streak camera (see §3.4.3). To look at correlations, the g(2)(p) function between emission

excited by consecutive laser pulses p (defined by Equation 3.2 in §3.4.3) are measured. This

can be done with different excitation conditions, for example by changing the WB power

and k vector (Figure 6.19, top row).
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Once the polaritons have been injected by the WB, they continue to emit over ∼120 ps.

However as the wavepacket is propagating and the detection window is limited, each mea-

surement only records emission over an interval of ∼ 15 ps. The detected interval can be

changed by moving the objective lens in order to collect emission from different points along

the propagation path. This approach can be used to look for changes in the g(2)(p) function

as the wavepacket propagates, as shown in the bottom row of Figure 6.19 and Figure 6.20.

It is expected that g(2)(p 6= 0) = 1 as the emission of polaritons triggered from different

laser pulses should be independent. The deviation from 1 for this background can therefore

be taken as an indication of the error in the measurement.

Experimental observations of g(2)(p)

Bar plots of g(2)(p) for different excitation conditions are shown in the top row of Figure

6.19, while the bottom row shows the evolution of g(2)(p) over the propagation path of a

non-linear self-focussing wavepacket. For a continuous wave (CW) laser, g(2)(p) ∼ 1 for all

p as expected for a coherent source. For low power excitation, g(2)(0) > 1, so the light is

bunched as expected for the thermalised emission excited in the linear regime. Bunching is

often observed in signals which are spectrally filtered as the wavelength of the emission can

jitter around the central value, so can be blocked by a narrow spectral filter at times when

the deviation in wavelength is large. The resulting time varying intensity corresponds to

bunched emission, as explained in §2.5.3. Here, the laser pulse is spectrally filtered both by

the pulse shaper and by the microcavity, which transmits light much more efficiently when

it is resonant with a cavity mode (photonic or polaritonic).

For high power excitation, a dip in the g(2)(p) value is seen at p=0. This is the case

whether the wavepacket is excited at 2.2 µm−1 (high k, above the point of inflection of the

E-kx dispersion, self-focussing regime) or 1.6 µm−1 (low k, below the point of inflection,

dispersive wavepacket). For the high k case, the emission has g(2)(0) = 0.979. This value

is both less than 1 and less than the mean value of g(2)(p 6= 0) (mean µ = 1.001, standard

deviation σ = 0.001), thus meeting both conditions for antibunching (see §2.5.3). Similarly,

the low k case has g(2)(0) = 0.981 which is lower than the background of g(2)(p 6= 0) (

µ = 1.003, σ = 0.002) so is also antibunched.

The evolution of the g(2)(p) ∼ 1 over the wavepacket propagation path is shown in the

bottom row of Figure 6.19. This data set is the same as that in the top right image of Fig.

6.19 but looks at different times. In the interval 4-17 ps, some light from the WB may be

collected along with the wavepacket emission (the WB pulse duration is ∼10 ps). As in the

case of the CW laser, the WB is expected to have g(2)(0) = 1 (or g(2)(0) > 1 due to spectral

filtering) so this contribution could increase the measured value of g(2)(0) at this time. In

the time interval 25-37 ps, no contribution from the WB will be present, revealing that the

wavepacket emission is antibunched (this is the high power, high k vector set described in the

previous paragraph). At later times, the antibunching is no longer seen with g(2)(0) ≥ 1.

At low intensities, the error in the g(2) is higher due to the low number of recorded counts.
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Figure 6.19: g(2)(p) correlations between photons emitted in pulses p1 and (p1 − p), averaged
over pulses p1. The pulses p have durations of ∼13 ps, and are separated by ∼12 ns. Top row:
g(2)(p) for different excitation conditions for emission ∼30 ps after the arrival of the WB. The left
plot shows emission from a wavepacket in the nonlinear regime (high excitation power) at a high k
vector (2.2 µm−1). For the second plot, the excitation power has been reduced to instead inject a
wavepacket in the linear regime. In the third plot, the excitation power is high but the k vector has
been reduced (to 1.6 µm−1), so the wavepacket is in a non-linear regime but does not self-focus in
realspace as the excited polaritons have a positive effective mass. The right plot shows the g(2)(τ)
for a CW laser, which is expected to be 1. The time intervals τ are ∼ 50 ps long and are separated
by ∼12 ns. Bottom row: g(2)(p) for wavepacket emission collected within different time intervals
after the arrival of the WB, as indicated by the labels on the plots. The wavepacket is injected at
kx = 2.2 µm−1

with an excitation power of 110 µW.

Mechanisms for anti-bunching

In anti-bunched light, the number of photon pairs emitted simultaneously is lower than what

would be expected for coherent light (such as a laser beam) of the same intensity (see §2.5.3).

Experimentally, this corresponds to the case where g(2)(0) < 1 and g(2)(0) <g(2)(|p| � 0), so

the detection of one photon in a given time interval makes it less likely that a second photon

will be detected in the same time interval. It could be imagined that removing photons from

the beam might reduce the value of g(2)(0) as the number of photon pairs would be reduced.

Care needs to be taken as this would also reduce the normalisation factor, so that randomly

removing photons from the beam (such as by having a low detection efficiency) should have

no overall effect on the value of g(2)(0).

However, systematically selecting one photon in a pair can reduce g(2)(0) to give anti-

bunching behaviour. This has been seen, for example, in a photonic Optical Parametric

Amplifier configuration [178]. As shown in §2.2.1, in this configuration particles injected

into a pump state are usually scattered into signal and idler states, stimulated by some

population injected into either of the final states. By controlling the phase between the

injected populations, the particles can instead be made to scatter from the signal and idler

states into the central pump state. Particles in the signal state can therefore be paired with

those in the idler state which have a higher energy and k vector. If the emission is spectrally

filtered so that only photons from the signal state are recorded, the normalised pair count
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is then reduced.

Here, as much emission as possible is collected from the microcavity and directed towards

the streak camera, but some filtering is applied in k space by the detection optics. For

example, the emission is spread over a broad range of k vectors in the y direction (see, for

example, Figure 6.6) but the horizontal slit in front of the streak camera (see Figure 3.4)

only collects emission from ∼ 1
3 of the occupied ky vectors, even when additional telescope

lenses are added to the collection optics to shrink the k space image. In addition to filtering

by the optical setup, the change in polariton character between different points on the LPB

can also affect the likelihood of detecting emission from those states. For the negatively

detuned sample used here, polaritons with lower energy are more photonic while those with

higher energy are more excitonic. Polaritons are only detected when they emit photons from

the cavity, so if a photonic polariton is paired with an excitonic one, it is less likely that

the excitonic polariton will be detected at all. Photonic polaritons which are detected will

then appear to be unpaired, which will reduce the value of g(2)(0) and correspond to an

observation of antibunching.

The slight antibunching in some of the data sets indicates non-classical behaviour. One

interpretation of the observation of antibunching is that the polaritons may occupy squeezed

states, behaviour which has been seen before in systems with a Kerr-like non-linearity (see

§2.5.1). While the measurement of quadrature squeezed states would require a new ex-

periment using homodyne detection [151], a signature of amplitude squeezed states is sub-

Poissonian statistics (see §2.5.2). As each photon detection is recorded individually by the

streak camera (§3.4.3), the photon statistics (mean µ and variance σ2) can be extracted

from the data used to calculate g(2)(p).

Further Observations of Non-classical behaviour

Figure 6.20: Quantum statistics. For all three plots, statistics and correlations relating to
different excitation conditions are represented by the different marker shapes shown in the legend
of (a). The star marker is for the set excited at 110 µW with a high k vector (2.2 µm−1): the circle
is for the set excited at high k with power 208 µW : the triangle is excited at 110 µW with a lower
k vector (1.6 µm−1) and the square shows data for the CW laser. g(2)(p) for these sets is shown in
Fig. 6.19. The black dashed lines indicate unity: values less than 1 show non-classical behaviour.
(a) Ratio between the measured variance and mean number of photons detected in each time bin.
(b) Blue points are the same as those in (a) while red points show the ratio between the variance
and mean corrected according to equations 2.11 and 2.12 in §2.5.2. (c) Solid markers show g(2)(0)
values while unfilled markers shown the mean of g(2)(p 6= 0) with the standard deviation indicated
by the error bars.

The ratio between the variance and mean for the different data sets is shown in Fig 6.20a.
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The values less than 1 exhibited by the high excitation power data sets at ∼ 30 ps have sub-

Poissonian statistics (see §2.5.2), suggesting that the polariton states are indeed amplitude

squeezed (see §2.5.1). Although this effect is very small, it should be noted that the statistics

will be modified by a low detection efficiency as this randomly samples the emission, making

it tend towards Poissonian statistics (µ/σ2 = 1). Figure 6.20c shows g(2)(0) for the same

data sets, revealing that the data sets exhibiting sub-Poissonian statistics correspond to

those with antibunching behaviour.

As described in §2.5.2 the measured mean and variance are modified by the detector

efficiency according to equations 2.11 and 2.12. Corrected ratios are plotted in Fig 6.20b

where the detection efficiency η is taken to be 3%, the quantum efficiency of the streak

camera at 830 nm (taken from the manufacturer’s test report). The correction amplifies

deviations of the ratio from unity but does not change the nature of the statistics (e.g. from

sub-Poissonian to super-Poissonian). The actual detection efficiency will be much lower as

losses through the optical setup have not been taken into account.

Another factor which can make the detected statistics tend towards the Poissonian case

is if the length of the time bin τ is less that the average gap between photons T: as shown

in Fig 2.19 in §2.5.2, this can lead to an increase in the ratio of variance and mean even in

the case of a regular stream of single photons. The ratio τ
T is the mean number of photons

per bin, which varied between 0.2 and 0.4 in the sub-Poissonian measurements shown here.

The deviation of the statistics from the Poissonian case is likely to be significantly reduced

in this measurement due to optical losses, a low detection efficiency and a short time bin.

6.6 Nonlinear Wavepackets in Short Wires

In order to make use of self-focussing wavepackets in different polaritonic devices, it is

desirable that they can be reliably excited in a range of environments. Their robustness can

be tested by attempting to excite them under slightly different conditions and observing

their dynamics. In this section, I present observations of wavepackets excited in shorter

wires, where they reflect multiple times from the wire ends during their propagation. More

wire widths were available on this sample, so the effect of doubling the wire width was also

investigated. It will be shown that the behaviour seen in long wires, such as self-focussing in

realspace accompanied by broadening and linearisation of the E-kx spectrum, is replicated

here.

While most experiments in this Chapter are carried out with a pulsed laser emitting

pulses with a duration of ∼ 3 ps, the results in this section and in §6.7 are carried out with a

laser emitting pulses with a duration of ∼ 300 fs. In all cases, the laser pulses are lengthened

to a duration of 5-10 ps using a pulse shaper (see §3.3.3), so the laser pulse duration is not

expected to significantly affect the dynamics of the injected polaritons. This assertion will

be verified in §6.6.4.

149



CHAPTER 6. NONLINEAR WAVEPACKETS IN MICROWIRES

6.6.1 Dynamics of single wavepackets

Self focussing

The microwire is excited on one end with a pulsed writing beam (WB) with an in-plane k

vector of 2.6 µm−1 in quasi-resonance with the fundamental mode of the lower polariton

branch. Its subsequent spatial dynamics are illustrated in Figure 6.21. Initally, a spatially

broad wavepacket is excited. This travels at a velocity of ∼3 µm ps−1. As the wavepacket

propagates, its size along the direction of propagation reduces from ∼30 µm to ∼10 µm

while travelling a distance of ∼200 µm. At this time, the intensity profile is dominated

by the narrow soliton-like peak, but a broader background can also be seen, which may

correspond to a dispersive wavepacket as it appears to spread even at early times. The

narrower peak remains visible for a further ∼200 µm (∼ 60 ps), but is eventually dominated

by the dispersive wavepacket as the intensity drops.

The polaritons appear to form two wavepackets: one with emission at k vectors above

the point of inflection, corresponding to the self-focussing wavepacket; and a second with

emission from the positive effective mass region at lower k vectors, corresponding to a

dispersive wavepacket. The interaction between these components may contribute to further

broadening in the E-k spectrum, as discussed in §6.3.2.

Mode occupation

As the microwires are multi-mode, the wavepacket can contain polaritons occupying several

modes. In order to study this, a wider wire of width 8 µm was used in order to reduce the

energy separation between the modes, enabling the simultaneous excitation of the ground

state and the next few excited modes with a single WB pulse. The transition to soliton-like

behaviour appears to correspond to a change in the mode occupation. When a wavepacket

is excited at high power, it initially occupies multiple modes of the wire as can be seen

from k-maps (Fig. 6.22). The multimode occupation can also be deduced from a “snaking”

motion of the wavepacket, where it move between the edges of the wire as it propagates

along the wire. In some cases, the wavepacket appears to jump from one edge to the other

while the intensity in the middle of the wire remains low, suggesting that here only a higher

order mode is occupied. Once the wavepacket self-focusses, the propagation path stays in

the middle of the wire rather than snaking between the edges. The corresponding k map

has a single maximum, indicating the occupation of a single nonlinear mode. For low power

excitation, the wavepacket again initially occupies multiple low order modes of the wire but

as time goes on, the higher order modes become populated. This can be deduced from

patterns in the realspace emission and can also be directly observed from k-maps.

The k maps are energy-integrated 2-dimensional measurements of the far-field emission.

For a cartoon picture of what the k-map shows, it is useful to consider the E-kx and E-

ky dispersion relations as shown in Figure 6.23. Due to confinement by the narrow wire

in the y-direction, quantised modes are seen. These have associated sinusoidal intensity

distributions as indicated in Figure 6.23a. Each of these modes corresponds to a lower

polariton branch with a shifted cavity mode when viewed along kx (Figure 6.23b). In this

experiment, polaritons are excited at high energy and k vector as indicated by the dark red

circle in Figure 6.23b. Polaritons scattering out of these initial states can scatter to other
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Figure 6.21: Self focussing. (a) Spatio-temporal trace of the self-focussing wavepacket, plotting
using a logarithmic color scale. This image is constructed from two streak camera traces, each
covering a time range of ∼ 90 ps. (b-d) Comparison of the wavepacket profiles at different times.
The blue curve corresponds to the wavepacket intensity profile after 72 ps while the red curves
show the normalised profiles at 13 ps, 135 ps and 155 ps for comparison. (b) shows a reduction in
wavepacket width during the initial self-focussing period. (c) shows that a soliton-like peak persists
after a further 60 ps, although there is also a broader background attributed to an additional
spreading wavepacket. Finally, (d) shows the spreading wavepacket dominating the profile at later
times when the intensity has dropped.

branches, maintaining their energy even as their momentum changes. In the case where a

large proportion of the polariton population maintains its energy, the energy-integrated k-

map measurement actually corresponds to a high energy cut of the E-k spectrum as indicated

by the red band in (Figure 6.23b) due to the higher occupation of these states. It should be

noted that in this energy band, the mode with the highest kx component corresponds to the

lowest energy mode which has only 1 maximum in the y direction. Modes which are lower

in kx have more intensity maxima along ky.

Dispersion

As the wavepacket self-focusses in realspace, the E-kx dispersion (Figure 6.24) broadens from

a k bandwidth of ∼0.5 µm−1 to a bandwidth of greater than 1.5 µm−1 (the E-kx dispersion

may extend beyond the angular range of the objective lens). The emission spectrum was

compared with the lower polariton branch measured using non-resonant excitation (§6.1).

Rather than following the curve of the lower polariton branch, the wavepacket spectrum is

linear, indicating that the group velocity of polaritons at each k vector is the same allowing

the wavepacket to hold its shape. This is most obvious for high k vectors in Figure 6.24c

where the LPB is significantly curved. The intensity profile along the dispersion curve
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Figure 6.22: Mode occupation. The top row shows 2D realspace images of the wavepacket
in the wire at two excitation powers and times while the bottom row shows the corresponding k
maps. The left two columns show data for a high excitation power (6P0) showing how an initially
broad wavepacket self-focusses while polaritons accumulate mostly in a single nonlinear mode at
later times despite occupying multiple modes at early times. The right two columns show data for
low excitation power (P0 = 90 µW) where the wavepacket remains broad and the polaritons scatter
to occupy more wire modes as they propagate.

appears to have 3 broad peaks (the one at highest k vector may be partially cut off). I

attribute this to the fact that the dispersion is generated by parametric scattering of the WB

states into a range of signal and idler state pairs. Similar behaviour was seen in microwires

8 µm wide and 4 µm wide (only the 4 µm results are shown in Figure 6.24, but data for the

8 µm wire can be seen in Figure 6.29).

In order to get a better picture of the energy changes as the wavepacket evolves, the

intensity profiles of the dispersions over time were plotted. In the case of short wires (Fig

6.25), the wavepacket reflects from the ends of the 100 µm long wire resulting in sharp

change in k vector as the wavepacket changes direction. By comparing the I vs kx plots

with the I vs energy plots, it can be seen that for each wavepacket reflection in the 8 µm

wire and the first reflection in the 4 µm wire, a sharp loss of energy occurs. The reflection

of these wavepackets from the end is therefore an inelastic collision.

For the narrower wire, sharp changes in energy are not seen for subsequent reflections

although there is a smooth drop in energy over the propagation time. The change to a more

elastic collision could be due to the fact that as the polaritons approach the bottleneck region

of the dispersion (described in §2.2.2) they cannot easily drop to lower energy states on the

LPB. For the wider wire, the wire modes are more closely spaced, so higher wire modes may

provide an alternative route for polaritons to scatter to lower energies. The energy redshift

could also result from a loss of polaritons, which may either escape from the wire wall or

may become trapped at the end of the wire. This trapping at the end of the wire was seen

more often in the case of wider wires (not shown), so would provide a plausible explanation

for higher redshifts in wide wires after the point of reflection.

Here, the drop in energy over time is accompanied by a decrease in the k vector. This

could be as a result of the polaritons scattering between LPB branches, particularly as

the evolution in k appears to come in discrete jumps rather than a continuous shift. The

interpretation of these results is complicated by the reflections from the ends of the wire
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Figure 6.23: Cartoon E-kx and E-ky dispersion relations explaining the shape of the measured
k-maps. The filled blue areas in (a) indicate the approximate intensity distribution for different
modes quantised in the y direction. (b) shows multiple lower polariton branches appearing in the x
direction where an energy shift is applied to the cavity mode due to quantisation in the y direction.
The dark red circle indicates the approximate energy and k vector of the WB while the lighter
red band indicates states with similar energies but different k vectors. It should be noted that in
this energy band, the mode with the highest kx component corresponds to the lowest energy mode
which has only one maximum in the y direction. Modes which are lower in kx have more intensity
maxima along ky.

Figure 6.24: E-kx dispersion (a, b) show the spectrum of the polaritons injected into a 4 µm
wide wire by the WB at early time while (c, d) show the spectrum of the self-focussed wavepacket.
(a,c) show the intensity of the emission as a function of kx and E using a logarithmic colour scale.
(b,d) show the intensity profile along the line of the dispersion as a function of kx (using a linear
intensity scale). The single peak at early time centred around 2.9 µm−1 in (b) is replaced at later
times by 3 peaks at 2.0 µm−1, 2.7 µm−1 and 3.3 µm−1 (d). These peaks are attributed to signal,
pump and idler states in a parametric process with the asymmetry of pump-signal and pump-idler
separations attributed to the truncation of the high k side of the idler peak.
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as well as by the fact that the lower polariton branches change shape as their population

decreases.

Figure 6.25: Dispersion profiles, short wires. At each time,the E-kx dispersion is constructed
as a 2D image. The emission intensity is then integrated over all recorded kx vectors to find the
intensity vs energy profile, or integrated over all energies to get the intensity vs kx profile. The
profiles are then normalised. This was repeated at each time to show the continuous evolution of
the dispersion. White dashed lines show the approximate times where the wavepacket is reflected
from the end of the wire as a guide to the eye. Here, data is shown for short wires of two widths,
where more modes are accessible for the wider wire. The sharp changes in k vector (sign change)
correspond to reflections of the wavepacket from the end of the wire.

6.6.2 Wavepacket arrays

The generation of wavepacket arrays has been studied in long wires in §6.3. Some examples

of arrays observed in short wires are shown in Figure 6.26. As for the case of a single

self-focussing wavepacket in a short wire with a width of 4 µm (Fig 6.24 in §6.6.1), the

dispersion is broad and linear although much of the emission is dim reducing the visibility of

any intensity modulation. There does appear to be a slight modulation with peaks separated

by 0.6 ± 0.1 µm−1 corresponding to a peak separation in realspace of 10.5 ± 1.5 µm (see

Appendix A) which is comparable to the peak separation in the images shown. For the

8 µm wire the separation between realspace peaks is clearer, particular in the 2D spatial

images in Figure 6.26. Correspondingly, the intensity modulation seen along the dispersion

is much stronger and more peaks are visible. This moduation has a smaller period of around

0.35 ± 0.03 µm−1 corresponding to a realspace peak separation of 17.9 ± 1.7 µm. This is

in agreement with the 2D realspace measurement shown, where the wavepacket separation

is ∼ 18± 2 µm.

In short wires, it is hard to continuously image the propagation of the wavepacket array

as there will be times when the first and last peaks in the array are propagating in opposite

directions as one reflects. In addition, inelastic collisions with the end of the wire as shown

in Fig 6.25 could introduce extra complications in the dynamics. Measurements made in

this system do however demonstrate the robustness of the nonlinear arrays investigated in

long wires with no reflection from the end (§6.3)

6.6.3 Excitation conditions

The k vector and energy of the WB were simultaneously varied in order to quasi-resonantly

excite the same lower polariton branch mode at different k vectors as shown in Fig. 6.27a.
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Figure 6.26: Wavepacket arrays, short wires: Multipeak structures in wires of two widths
(4 µm and 8 µm). These are short wires, so the polaritons have reflected from the wire ends
twice before these images are taken. For each wire width, the top left image shows a 2D realspace
image at a time when the train is near the middle of the wire while the bottom image shows the
intensity profile as a function of position x and time t, integrated over the width of the wire (i.e.
this integrates over streak camera slices taken at different vertical positions). The right hand image
shows the intensity as a function of energy and kx plotted using a logarithmic colour scale.

Once the k vector was selected, the energy was optimised to excite the narrowest wavepacket

(not the brightest, so the laser is not actually resonant). The WB is small in realspace so it

is correspondingly broad in k-space, spanning a range of ∼0.8 µm−1: the quoted excitation

k values correspond to the centre k vector. The WB power was 210 µW which should be

sufficient to excite self-focussing wavepackets. The degree of self-focussing is assessed by

measuring the minimum width reached by the wavepacket during its propagation.

The dependence of the degree of self-focussing on the excitation kx vector is shown in

Figure 6.27b. The excited wavepacket remains broad at low k vectors although its width

decreases slowly. Between ∼2.1 µm−1 and ∼2.4 µm−1 , the wavepacket width decreases

rapidly before the width saturates after ∼2.4 µm−1. Using the parameters measured for

the planar cavity (Rabi splitting, exciton energy), the point of inflection is expected to be

at ∼2.3 µm−1 (green dashed line in Figure 6.27b.). This agreement between the kx vectors

where self-focussing is observed and the theoretical value for the point of inflection of the

E-kx dispersion is consistent with the behaviour that would be expected for a soliton, which

would only form when the polaritons are injected with negative effective mass.

In addition to the initial shrinking of the wavepacket, soliton formation would be char-

acterised by the occupation of a broad range of k vectors. Both of these parameters were

measured for these wavepackets as a function of WB power and found to have non-linear

dependencies as shown in Fig. 6.28. The range of occupied k vectors at different powers

is shown in Fig. 6.28a. Example spectra at low (50 µW) and high (450 µW) powers are

shown in Fig. 6.28(c,d). Here, the k breadth is estimated by eye by looking at the spectrum

intensity vs kx integrated over energy. Instead of taking the FWHM, I look at the range

over which any signal, even if it is very small, is seen.

For the lowest power, the breadth corresponds roughly to the k range of the WB spot.

As the WB power is increased, more k states are occupied until there is a jump in k breadth

when the measured WB power is between 250 and 300 µW. After this point, the k breadth
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Figure 6.27: Dependence of self-focussing on excitation k vector. (a) E-kx position of
the WB for each measurement (blue dots) in relation to the LPB (red dashed line). The blue error
bars indicate the energy range of the WB while the grey error bars indicate the k range of the WB.
(b) Wavepacket width vs excitation kx. The wavepacket width shown here is the smallest width
which the wavepacket reaches. The grey x-error bars indicate the range of k vectors which make
up the WB while the y-error bars indicate errors from the fit to the wavepacket width. The green
dashed line indicates the approximate k vector of the point of inflection of the LPB.

is saturated. For Fig. 6.28b, the wavepacket width shown is the smallest size that the

wavepacket reached as indicated on the example streak camera traces shown in Fig. 6.28(e,f).

The data point at the lowest power is similar to the size of the wavepacket triggered by the

WB for all powers. As the WB power is increased, the minimum wavepacket size drops until

it saturates when the WB power is ∼ 250µW.

6.6.4 Femtosecond vs Picosecond Laser Pulses

As discussed in §3.3.3, higher excitation powers can be achieved when the pulsed laser is in

the picosecond regime rather than the femtosecond regime. The femtosecond regime does

also have its advantages: the range of energies which can be selected in the pulse shaper is

broader for shorter laser pulses. This makes it easier to study k dependent behaviour, such

as that shown in Figure 6.27, as the WB can be more easily tuned into quasi-resonance with

the lower polariton branch at the different k vectors.

The laser pulse passes through a pulse shaper so the WB is 5-10ps long when it reaches

the sample regardless of whether the initial laser pulse was 3 ps or 300 fs . The laser regime

might therefore be expected to have a negligible effect on the end results, however this is

worth verifying as the intensity distribution over the WB energies may not be the same

in the two cases (see Fig. 3.9 in §3.3.3). For a femtosecond laser pulse, the pulse shaper

selects ∼ 6% of the laser energies so the intensity profile may be roughly a top hat. On the

other hand if the laser pulse is already 3 ps long, the pulse shaper selects ∼ 50% of the laser

energies so the gaussian intensity distribution of the original laser pulse may persist in the

WB.

The effect of changing the laser pulse duration is examined in Fig. 6.29, considering the

realspace images, E vs kx spectra and intensity vs (kx, ky) maps. The left two columns show

the broad wavepackets injected by the two laser pulses while the right two columns show the

wavepackets at later times, once they have self-focussed. The same sample (an 8x100 µm

wire) is used in both experiments although other experimental parameters may have changed
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Figure 6.28: Power dependence of soliton-like behaviour characterised by (a) the widest occu-
pied range of k vectors as a function of power and (b) the smallest wavepacket width as a function
of power. (c,d) E-kx spectra at 50 µW and 450 µW. Solid lines show the intensity profile of the
spectrum along kx, integrated over energy. Dashed lines indicate the range of k at over which there
is some signal (this may be more visible in the 2-dimensional image rather than the 1-dimensional
intensity profile): this is the width plotted in (a). (e,f) Streak camera traces at (e) 50 µW and (f)
400 µW. Solid line shows the intensity profile over x taken at the time indicated by the dashed line.
The widths in (b) are found by fitting a gaussian to these profiles. Logarithmic colour scales are
used in (c-f) to increase the visibility of dim emission.

slightly as the two data sets were taken at different times. For example, the k maps in Fig.

6.29(j,l) are rotated compared to those in (i,k) as the sample has been remounted between

experiments and the wire may not lie perfectly along x in the laboratory frame. Despite

this, the two data sets show similar features.

In both sets a wide wavepacket is initially injected which snakes between the walls in the

y direction (Fig. 6.29(a,b)). As can be seen from the k-maps (Fig. 6.29(i,j)), three modes

of the wire are initally excited. Looking at the dispersions (Fig. 6.29(e,f)), some emission is

seen from two modes with the fundamental mode being the brightest. The horizontal line

in (e) comes from residual laser scatter.

At later times, the injected wavepacket self-focusses into a much narrower wavepacket

(Fig. 6.29(c,d)). The snaking of the main peak is reduced although it is not completely

eliminated, especially in the dim tail. The dispersions (Fig. 6.29(g,h)) broaden along a

diagonal line in E-kx space and in both cases, modulation of the intensity profile is seen

along the line, although the period of modulation is different in the two cases. The k-maps

(Fig. 6.29(k,l)) show that in both cases the emission at large ky is reduced and the wire

mode pattern of nodes and antinodes becomes less obvious. A broader k range is occupied

in case (k). The main features of the wavepacket dynamics are similar for the two laser

configurations while small differences could be as a result of changes in other experimental

parameters. The variation in the laser pulse does not therefore appear to have a significant

effect on the excitation of self-focussing wavepackets.
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Figure 6.29: Change laser pulse (a,e,i) Realspace, dispersion and kmap for the wavepacket
injected by a picosecond laser pulse. (b,f,j) show the injected wavepacket for a femtosecond laser
pulse. (c,g,k) Self-focussed wavepacket, 70 ps after injection by a picosecond laser pulse . (d,h,l)
Self-focussed wavepacket, 70 ps after injection by a femtosecond laser pulse. These measurements
were made on a wire with a width of 8 µm.
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6.7 Planar cavities

The behaviour of self-focussing wavepackets in a planar structure was also studied. In the

propagation direction, they were seen to show similar self-focussing behaviour to both the

wavepackets in microwires studied in this chapter and dissipative solitons in planar cavities

[7].

In realspace, these wavepackets self focus in the x direction but defocus (spread out)

in the y direction, as shown in Figure 6.30. If the WB power is reduced, the wavepackets

remain roughly the same size in the x direction but still spread in the y direction (Fig. 6.31).

Self-focussing only occurs at high power, as was the case in microwires (§6.2.3).

The y-spreading in the low power case is less than that in the high power case, which

is attributed to the increased repulsive polariton-polariton interactions for higher polariton

densities. For the low power case, the lack of spreading in the x-direction compared to the

y-direction is attributed to the shape of the LPB. The phase velocity of different components

of the wavepacket is proportional to the gradient of the E-k curve at that point. The more

variable the gradient, i.e. the bigger the curvature, the larger the variation in propagation

speeds of all the components, so spreading should increase with the curvature of the disper-

sion. The kx component of the wavepacket is high where the curvature is small, but the ky

component is at the bottom of the LPB where the curvature is large. More spreading would

therefore be expected in the y direction than the x direction.

Figure 6.30: Planar cavity: Dynamics. (a-d) 2-dimensional realspace images at different
times after the arrival of the WB. The WB power here is 720 µW. (e,f) Width of the wavepacket
in the x (e) and y (f) directions vs time. These are calculated in the same way as the plots in Fig
6.6a.

The dependence of self-focussing behaviour on the excitation kx vector was measured

in the same way as has been described for wavepackets in microwires. The results for the

planar cavity are shown in Figure 6.31g. Self-focussing wavepackets are formed when the

WB kx vector is centred at ≥ 2.3 µm-1, which is comparable to the point of inflection of the

lower polariton branch at this detuning (∼2.2 µm-1, see Figure 6.31h).
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Figure 6.31: Planar cavity: Excitation conditions. (a-f) Evolution of the wavepacket shape
with time when the excitation power is 40 µW. The data is plotted in the same way as for Fig
6.30. (g) Wavepacket width in the x direction as a function of the excitation kx vector. The
wavepacket width shown here is the smallest width which the wavepacket reaches. The grey x-error
bars indicate the range of kx vectors which make up the WB while the y-error bars indicate errors
from the fit to the wavepacket width. The green dashed line indicates the approximate kx vector of
the point of inflection of the LPB. (h) E-kx position of the WB for each measurement (blue dots)
in relation to the LPB (red dashed line). The blue error bars indicate the energy range of the WB
while the grey error bars again indicate the k range of the WB. The point of inflection is indicated
by a green dash-dot line.
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For the case of dissipative solitons (Chapter 5), theory suggests that localisation in the y

direction arises from some interaction with the pump §2.4.1. The result shown here with no

CW pump where self-focussing only occurs in the propagation direction and the wavepacket

spreads significantly in the perpendicular direction gives strong experimental support for

this theory.

6.8 Polariton Interaction Coefficient

Polariton-polariton interactions result in a blueshift in the polariton energy of U = gN where

N is the polariton number density and g is the interaction coefficient. While the blueshift

is relatively easy to measure (by comparing the measured dispersion with that recorded for

low power non-resonant excitation), the number density N is much harder to estimate.

An attempt has been made to estimate the interaction coefficient g using the data set

at power P2 in §6.3. At the highly populated k vector of kx = 2.2 µm−1, the energy of the

polariton state is blue-shifted by ∼0.4 meV compared to the polariton dispersion measured

under non-resonant excitation, so U can be taken to be 0.4 meV.

Simply measuring the excitation laser power does not give a good idea of the polariton

number as it is not clear how efficient the excitation is. Instead, N was calculated by

estimating the emission power. As this was too low to be directly measured with a power

meter, I compared the recorded emission intensity measured on the streak camera with

the recorded intensity of a laser pulse sent through the same optics with identical streak

camera settings. The total emission intensity integrated over the whole propagation path was

compared to the total intensity of the laser pulse, again integrated over the pulse duration.

In this way, the number of photons calculated to be in the laser pulse was directly comparable

to the number of photons emitted by the soliton and detected by the streak camera. The

laser power was increased to a level which was measurable using a power meter, then a

known level of attenuation was applied until the correct laser intensity was recorded on the

streak camera. The attenuated laser power (corresponding to the polariton emission power)

could then be deduced from these measurements.

The average power of the attenuated laser beam was found to be ∼50 nW. This was

a continuous wave measurement of a pulsed emission source: the power is actually con-

centrated in pulses of ∼10 ps with a separation of 12 ns, so the power in each pulse was

∼ 50 µW. The energy in each pulse is 50 µW*10 ps = 3000eV, corresponding to ∼ 2000

photons with energy 1.5 eV in each laser pulse. This should be approximately equal to the

number of photons collected from each excited wavepacket.

Here, only the photons emitted through the bottom (substrate side) DBR of the micro-

cavity were collected. It was not possible to collect from both sides simultaneously so it is

not possible to determine the total number of photons emitted. Similar experiments with

the sample orientation reversed gave similar emission intensities, although the number of

injected polaritons may be different in the two cases as the excitation efficiency may not be

the same through both DBRs. As there are more DBR pairs on the back mirror than on

the front, it is expected that more photons were emitted through the front mirror so were

not collected in this experiment. To give an order of magnitude estimate, I assumed that

1.5 times as many photons were emitted from the top DBR compared to those collected
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through the bottom (this is expected to be a low estimate), giving an approximate number

of 5000 photons per polariton wavepacket.

The wavepacket width reached a minimum of ∼ 10 µm and was confined in a wire

of width ∼ 5 µm, giving an approximate area of 50 µm2. The number density would

then be 5000 photons
50 µm2 = 100 µm−2. The sample used contains three quantum wells (see

§3.1.3) so, assuming that the excitons are evenly distributed between the three quantum

wells, the number density N within each well would be ∼ 33µm−2. I can now calculate an

upper limit of the polariton-polariton interaction coefficient within each well, assuming that

the blueshift is dominated by interactions within each well rather than between wells, as

g = U/N = 0.4 meV
33 µm−2 = 12 µeV µm2. This compares well with previous measurements of g

in a microcavity, which found values of 2-10 µeVµm2 [179].

6.9 Summary and Conclusions

The dynamics of the nonlinear wavepackets investigated in §6.2.1 and §6.2.2 show features

which are characteristic of soliton formation. In particular, the shape of the wavepacket is

not determined by that of the writing beam that triggers it. When triggered with a WB

of width ∼ 20 µm, the wavepacket initially shrinks to ∼ 10 µm and then starts to grow

as polaritons are lost from the system and the interaction energy within the wavepacket is

decreased. The observed dependence of the wavepacket width on the polariton density is

consistent with the trend expected theoretically for bright polariton solitons (see §2.4.1).

If the polariton density drops below a certain threshold, polariton-polariton interactions

become negligible. The observation that shrinking of the wavepacket is not seen in this

linear regime (§6.2.3) confirms the role played by polariton-polariton interactions in the

self-focussing wavepackets. A similar effect was seen in observations of bright dissipative

polariton solitons [7].

Due to the repulsive interactions between polaritons, bright solitons would only be stable

if there is some source of attraction to prevent the expansion of the high density wavepacket.

Theoretically, the negative effective mass of polaritons on the LPB at high k vector should

provide sufficient attraction to generate stable solitons [94] as has been observed experimen-

tally [7]. The wavepackets investigated in this chapter have a clear dependence on k vector

and will only shrink in size when polaritons are injected with negative effective mass, above

the point of inflection of the LPB (§6.2.3). The spectrum of energy vs kx broadens as the

wavepacket shrinks, as seen in observations of bright dissipative polariton solitons [7]. This

is particularly pronounced when only the fundamental mode of the wires is excited (Fig 6.5)

or at higher excitation powers §6.4.2, possibly due to a higher polariton-polariton scattering

rate as there is greater spectral overlap between the occupied polariton states.

While this soliton-like behaviour is not seen at low excitation k vectors or low powers,

it does appear to be robust against other small changes in the sample or the excitation

conditions. This was studied extensively in §6.2.3 and §6.6 where self-focussing wavepackets

were generated at a range of k vectors and powers and with laser pulses with different

energy-intensity profiles (illustrated in Fig 3.9, data presented in Fig 6.29). If the injected

wavepacket is multi-mode, the self-focussing wavepacket appears to form in a single mode

although a dispersive tail can also form in other wire modes. This robustness to multi-mode
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excitation makes the choice of wire width non-critical: similar behaviour is observed in wires

with widths of 4 µm (e.g. Fig 6.28), 5 µm (all of the long wire data presented in this chapter)

and 8 µm (e.g. Fig 6.22).

The wavepacket dynamics also appear to be robust against defects in the wires: even a

reflection from the end of the wire (which could be described as a particularly large defect)

in which energy is lost (as shown in Fig 6.25) does not hinder the self-focussing and may

even aid in the broadening of the E-kx spectrum, as discussed in §6.3.2. Self-focussing along

the x direction is even seen when the wire is removed completely and the wavepacket is

injected into a planar cavity (§6.7), an observation that supports the theoretical description

of the role played by the CW pump in the localisation of dissipative solitons perpendicular

to the propagation direction [125] (see §2.4.1).

In the dissipative regime where soliton formation in a planar cavity is supported by

a continuous wave pump, multi-peak soliton patterns have been observed as described in

Chapter 5. Similar observations have been presented for these wire samples in §6.3 where

multiple peaks are generated as the excitation power increases. There appear to be different

regimes of wavepacket arrays, partly characterised by differences in the phase profile across

the array (§6.4.2). Arrays excited at lower powers had a smoothly varying phase while

discontinuities in the phase profile were seen between the peaks of arrays excited with higher

powers. The pattern with no phase jump between the peaks consists of narrower peaks which

are more closely spaced that the higher power regime. It has been predicted theoretically

that single solitonic wavepackets can be brought together to form a stable pattern, but only

if there is a phase jump of π between them [97, 176, 177]. It could be that the lower power

pattern is analogous to a single multi-peak parametric soliton of the sort simulated in [125, 8]

while at higher powers, two completely separate soliton-like wavepackets form and a phase

jump evolves between them, maintaining the stability of the pattern.

6.9.1 Conclusions

The formation of soliton-like self-focussing wavepackets in quasi one-dimensional microcav-

ities has been extensively studied. In this chapter, I have shown that these non-linear

wavepackets can be generated and will propagate in quasi-one dimensional microwires for

> 100 µm. With a cavity with a sufficiently high Q factor, this can be achieved without

a continuous wave pump to replenish the supply of polaritons as was required for obser-

vations of bright dissipative solitons both in the literature [7, 123] and in Chapter 5. The

self-focussing behaviour is robust against small changes in excitation conditions, provided

that the injected wavepacket has sufficient density and is quasi-resonant with the negative

effective mass region of the lower polariton branch.

By modifying the excitation conditions, multiple wavepackets can be generated by each

laser pulse. Wavepacket arrays show a range of behaviour, varying from one regime where

the individual peaks are closely spaced, propagating with the same velocity and with no

phase jump between peaks; to a second regime of wider wavepackets which can move apart

from each other and have a phase jump of π between neighbouring peaks.

Measurements of the quantum properties of the polariton emission show anti-bunching

and sub-Poissonian statistics, revealing non-classical behaviour of the occupied states. The
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slight anti-bunching suggests that these states are amplitude squeezed, although further

experiments would be required to fully characterise these quantum properties.
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Chapter 7

Conclusions

In this thesis, I have investigated the dynamics of nonlinear wavepackets and pattern for-

mation in several microcavity structures.

In Chapter 4, a tunable periodic potential was applied to a planar microcavity using

Surface Acoustic Waves (SAWs), which can be thought of as reservoirs of coherent phonons

with the energy and momentum of the SAW. The absorption of these phonons during an

Optical Parameteric Oscillator (OPO) scattering event was demonstrated by looking for

energy differences between macroscopically occupied “signal” states forming at well defined

non-zero k vectors. It was suggested that reflections of the SAW from features on the sample

can contribute to pattern formation in the emission spot. It has been shown elsewhere [81]

that the studied signal states correspond to gap soliton states, forming in band gaps that

appear at the edge of the Mini Brillouin Zone defined by the periodic potential. The size of

each gap soliton decreased with increasing SAW amplitude and arrays of these wavepackets

could form in a sufficiently large emission spot.

In Chapter 5, patterns of bright dissipative polariton solitons were studied in planar

microcavities, building on previous observations of single solitons by Sich et al [7]. It was

found that by elongating the pulsed writing beam, coherent arrays of soliton peaks formed

along the propagation direction. Similarly, arrays could form perpendicular to the propaga-

tion direction although it was emphasized that the localisation mechanisms were different

in these two directions. While localisation along the propagation direction is due to inter-

play between repulsive polariton-polariton interactions and negative effective mass (similar

to the Gap soliton case), this mechanism is not valid in the transverse direction where the

effective mass is positive. Localisation mechanisms for this direction have been proposed

theoretically elsewhere and are thought to be stabilised by parametric scattering from the

continuous wave pump [125]. This is supported by observations of wavepackets localised

only in the propagation direction when the pump was removed (presented in §6.7).

In Chapter 6, the dynamics of nonlinear wavepackets in microwire structures were inves-

tigated. These could be more practical than a planar cavity for use in a polariton circuit

as the wires could be used to route the signals around other devices on the chip where

necessary. In contrast to Chapter 5, no CW pump was used in these experiments as the

polariton lifetime in this sample was long enough to observe the evolution of a wavepacket

without needing to replenish losses. No localisation mechanism in the transverse direction
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was required as the polaritons were already confined within the wire. Soliton-like behaviour

was seen, where self focussing was observed along the propagation direction when a polariton

wavepacket was injected with negative effective mass. The energy spectrum broadened about

the WB energy, which was attributed to the population of states by parametric scattering

processes. Measurements of the quantum properties of these nonlinear wavepackets revealed

non-classical behaviour where the polaritons appeared to occupy amplitude squeezed states.

Multi-peak patterns were observed as the WB power was increased, accompanied by

discontinuities in phase between the peaks for higher power cases. It appeared that as

the power was increased, the structure evolved from a single peak soliton-like solution to a

multi-peak soliton-like solution (analogous to higher order optical solitons) where the peaks

remain in phase. With a further increase in power, the peaks separated (analogous to soliton

fission) and a phase jump evolved between them as expected theoretically for a stable array

of separate solitons. This was accompanied by a broadening of the energy spectrum in a

similar manner to supercontinuum generation observed in optical fibers [92].

7.1 Future directions

7.1.1 Quantum Properties in Microwires

The initial measurements of the quantum properties of nonlinear wavepackets in microwires

presented in §6.5 show promising results, suggesting an amplitude squeezing of the wavepacket

states. However, further investigation is required to fully characterise this behaviour. Losses

can be reduced in the collection path by using fewer optical elements, for example by fo-

cussing the emission straight onto the streak camera instead of directing it through the

spectrometer. Increasing the detection efficiency in this way should give a clearer observa-

tion of sub-Poissonian photon statistics. Accumulating data over a longer period of time

should also help to reduce the errors in the result as more emission events would be recorded.

With an improved setup, it may be possible to characterise the degree of squeezing in the

different types of nonlinear wavepacket observed in wires and look for the parameters which

optimise the level of squeezing. While the streak camera measurements reveal the presence of

amplitude squeezed states, quadrature squeezing may also be observable using a homodyne

detection setup [156]. Squeezed states can be advantageous in quantum circuits as the

noise in a measurement of the parameter of interest is reduced (at the expense of increasing

the noise in the conjugate parameter). In additional, these states can be implemented in

quantum information systems based on continuous variables [157].

7.1.2 Polariton Polarisation in Microwires

While the polarisation properties of nonlinear wavepackets in microwires has not been inves-

tigated here, this could prove to be an important degree of freedom to control for polariton

device applications. Many of the proposed polariton devices described in the literature

(see §2.6) define logical states by the presence of polaritons with a given polarisation. A

wavepacket with a given circular polarisation could be used to switch a multi-stable state

initialised at low intensity to a high density state whose polarisation matches that of the

incident wavepacket [88, 134].
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It is expected that quasi-one dimensional wires will have an energy splitting between

states linearly polarised along the wire and those polarised across the wire, rotating the

pseudo-spin (mapped onto the circular polarisation) of polaritons propagating through the

wire [139]. Theoretical work [136] has suggested how this could be used in a “NOT” gate,

where the polarisation state is inverted during propagation through a wire. The microwires

used in Chapter 6 did not show a significant polarisation splitting, so further investigation

is required to determine whether the wavepacket polarisation evolves during propagation

through these structures. It may be possible to increase the polarisation splitting by applying

strain along one wire axis on demand [180], thereby inverting the polarisation state when

required.

7.1.3 Dissipative Solitons in Microwires

Control of the polarisation properties of dissipative solitons in planar cavities has already

been achieved [123], however as the trajectory and speed of these solitons is determined by

the pump spot, it is not possible to collide them together, as may be required for logic gate

applications. Using a microwire with a Y-splitter configuration, it may be possible to guide

solitons together for use in a logic gate as has been proposed theoretically by Cancellieri et al

[141]. Such a structure could be used to investigate collisions between solitons with different

polarisations, which would be expected to annihilate. In addition to adding functionality

to a polariton device, such collisions could be used to measure the interaction constant

between polaritons with opposite spin, making it an interesting device from a fundamental

physics point of view. An experimental realisation of bright dissipative solitons in microwire

structures such as Y-splitters could therefore be a productive direction to pursue further.

7.1.4 Continuous Wave Soliton Generation

A useful extension of the soliton arrays studied in Chapter 5 would be to generate an array of

soliton pulses using a continuous wave writing beam. The observed splitting of an elongated

pulsed WB into several peaks indicates that this may be possible, however it is not easy to

detect with the current experimental setup. Time resolved measurements of solitons on the

streak camera are triggered when a pulse is emitted from the laser, but this is not available

with continuous wave excitation. As an intermediate step, a pulsed laser emitting 100 ps

pulses could be used for the excitation: this would still trigger the streak camera, but is

much longer than the typical duration of a soliton pulse (∼5 ps). This could be described as

quasi-continuous wave excitation and would clearly demonstrate the feasibility of generating

a soliton train on a polaritonic chip for use as a clocking device in a circuit.

7.1.5 Dark Solitons in Microwires

Dark polariton solitons have been investigated in planar microcavites [55] and theoretical

suggestions have been made for generating trains of dark solitons in a microwire using a

continuous wave pump [144]. These dark trains would have a similar functionality to their

bright counterparts, so could also be implemented as a clocking device.
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Observations of “collisions” between bright soliton-like wavepackets propagating in op-

posite directions in a microwire showed little interaction between the wavepackets (§6.3.3).

This was attributed to the short interaction time as the wavepackets quickly propagated

past one another. Dark solitons are stable with a positive polariton effective mass, so can

be excited over a larger range of low energy k vectors than bright solitons, allowing more

control over their propagation speed. Soliton-soliton interactions may be observable in a

dark soliton system as the interaction time can be increased by exciting slower solitons.

The ability to manipulate the state of one soliton with another would open up the possibil-

ity of constructing soliton-based logic gates, enhancing the potential functionality of these

non-dispersive wavepackets as information bits in a polaritonic circuit.
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Appendix A

Fourier Transform Relations

In this Appendix, I present the feature sizes for variables related by a fourier tranform, for

example, the expected width in k-space of a gaussian wavepacket with a given realspace

width.

A.1 Gaussian Wavepacket

Start with a wavepacket with a Gaussian distribution of k vectors centred at k vector k0:

ψ(k) = A0e
−α(k−k0)2

The Fourier transform of this is

ψ(x) =

(
1

2πα

) 1
4

eik0xA0e
− x24α

The measured quantities are I(k) = |ψ(k)|2 and I(x) = |ψ(x)|2

I(k) = A2
0e
−2α(k−k0)2

I(x) =

(
1

2πα

) 1
2

A2
0e
− x22α

Comparing these with the formula for a Gaussian distribution

I(q) = C0e
− q−q0

2σ2q

widths σk = 1√
4α

and σx =
√
α can be extracted. These widths are related by

σxσk =
1

2

Experimentally, the full width half maximum (wq = 2
√

(2ln2)σq) is the measured quantity.

These are related by

wxwk = 4ln2 (A.1)
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A.2 Multiple Peaks

Regular multi-peak structures along x can be represented by a series of N delta functions

separated by distance D

ψ(x) ∝
N−1∑
m=0

δ(x−mD)

The corresponding k space distribution is given by the Fourier transform

ψ(k) ∝
∞∫
−∞

N−1∑
m=0

δ(x−mD)e−ikxdx

= 1 + e−ikD+e−i2kD+...+e−iNkD

Summing the geometric progression gives

ψ(k) ∝ 1− e−iNkD

1− e−ikD

= e−i
(N−1)kD

2
sin(NkD2 )

sin(kD2 )

The measured quantity I(k) = |ψ(k)|2 is given by

I(k) ∝
sin2(NkD2 )

sin2(kD2 )
(A.2)

In the case of two peaks, this simplifies to

ψ(k) ∝ e−i kD2 cos(
kD

2
)

I(k) ∝ cos2(
kD

2
)

Equation A.2 has primary maxima when k = 2mπ
D (for integer m) and minima for k = 2mπ

ND

for m 6= N

For a realspace peak separation of D, the peak separation in k space (d) is therefore given

by

d =
2π

D
(A.3)

with a peak width (∆d, separation between minima on either side of the primary maximum)

of

∆d =
4π

ND
(A.4)
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Appendix B

Simulations of Dissipative

Soliton Patterns

Many of the experimental results presented in Chapter 5 have been reproduced numerically

by Andrey Gorbach and Dmitry Skryabin based at the University of Bath. These simulations

are presented alongside the experimental results in the paper [Chana et al, Phys Rev Lett,

115, 256401 (2015)] [8] and are reproduced in this appendix for ease of comparison.

B.1 Soliton Trains

For numerical investigation of the system, we used Gross-Pitaevskii equations describing

coupled TE and TM cavity modes interacting with the spin dependent polariton field [7]

and looked for quasi-circularly polarised soliton solutions moving in the direction of the pump

momentum (i.e. along the x-axis) [7]. The model is described in §B.1.1. Previously [7, 123]

it has proved to include all the important features necessary to numerically reproduce the

experimental conditions. The soliton existence range in terms of the pump intensity, |Ep|2,

is well approximated by the bistability interval of the intracavity field [7].

We have computed the bifurcation diagram showing a sequence of stable multi-peak

solitons (Fig. B.1(a)). The diagram shows that for every given pump intensity (horizontal

axis) within the bistability range, stable soliton solutions with different numbers of peaks

can be excited (vertical axis). An example of a five-hump soliton is shown in Fig. B.1(b).

In our time-dependent modelling we assumed a Gaussian profile of the WB. With an in-

creasing WB intensity, there is an increasing number of peaks in stable multi-peak soliton

solutions(Fig B.1(c, d)).

In practice, the profile of the pump is Gaussian and therefore conditions for the soliton

formation are met only within a certain radius around the pump centre, where the pump

intensity is large enough to bring the cavity into the bistable regime.

In Fig. B.1(b) we compare profiles found in the case of an infinite flat pump with those

moving through the Gaussian pump. One can see that in both cases the peak widths

and peak spacings are closely matched. The peak amplitudes, however, differ as the latter

structure does not spend sufficient time inside the bistability range to fully stabilise itself.

171



APPENDIX B. SIMULATIONS OF DISSIPATIVE SOLITON PATTERNS

Figure B.1: (a) Snake-like bifurcation diagram for multi-peak solitons in the case of infinite flat
pump. E(x) is the electric field amplitude, Ebg is the amplitude of the homogeneous solution (in the
tails of the soliton), and Ep is the pump amplitude.The homogeneous solution is bistable in the range
0.052 < Ep < 0.070. (b) The red line is an example of the exact five-peak x-soliton array solution
found for an infinite flat pump with amplitude Ep = 0.06; the black line is the five-peak x-soliton
array generated in the numerical modelling reproducing the experimental conditions of Gaussian
pump profile; the blue line shows the Gaussian profile of the pump field. (c, d) Spatio-temporal
dynamics (grey-scale is |E|2) resulting in the formation of the single-peak (c) and four-peak (d) x-
soliton array. The pump field has a Gaussian profile with amplitude Ep = 0.06, the corresponding
boundaries of the bistability region (as in (a)) are indicated by vertical dashed lines. The WB
amplitude is Ewp = 0.1 (c), and Ewp = 0.12 (d). (e, f) Grey-scale profiles of multi-peak structures
recorded in numerical simulations after 25 ps as a function of the WP power. In (e) kwp = kp, while
in (f) the WB momentum is offset by 3◦ (∆k ≈ 0.4 µm−1).
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Fig. B.1(f) shows how the number and relative position of peaks varies with the WB

power for slightly offset momenta of the pump and WB beams. Fig. B.1(f) is in good

qualitative agreement with the experimental observations in Fig. 5.6. With increasing WB

power there is an increase in both the number of peaks and the spacings between the solitons

up to 10-20 µm. In numerical simulations minimising the difference between kwp and kp

(preferably to zero) facilitates the generation of a regular pattern of peaks, while in the

experiment kwp − kp ≈ 0.4 µm−1 due to physical constraints of the setup.

The solitons are formed by scattering polaritons from the pump state to populate the

soliton spectrum. The characteristic time of polariton scattering is approximately given by

h/(gN), where g is the interaction constant and N is the density (then gN is the blueshift).

For a blueshift of 0.3 meV, about 13 ps are needed to fully populate the spectrum and form

a soliton. The scattering can only occur once the trigger WB reaches the pump bistabil-

ity area. For a Gaussian pump spot, solitons will only form after they have propagated

a certain distance through the pump spot irrespective of how far away the WB is placed

(Fig. B.1(c, d)). For this reason, when the WB power is high enough to excite a x-soliton

array, the solitons in the array tend to appear at different times, see Fig. B.1(d). In the ex-

periment, however, we observe that solitons start to form earlier, sometimes before reaching

the bistability area (see §5.2.4). This was replicated in the modified simulations presented

in §B.1.2.

B.1.1 Numerical Model

Numerical studies were performed using mean-field equations describing the evolution of

slowly varying amplitudes of the circularly polarized cavity mode E and of the corresponding

excitonic field ψ:

∂tE − i
~

2mc

(
∂2
x + ∂2

y

)
E + (γc − iδc)E =

= iΩRψ + Ep(x, y)eikpx + Ew(x, y, t)eikwxx+ikwyy+iφ , (B.1)

∂tψ + (γe − iδe)ψ + ig|ψ|2ψ = iΩRE. (B.2)

Here mc = 0.27 · 10−34 kg is the effective cavity photon mass, ~ΩR = 4.9867 meV is the

Rabi splitting, ~γc = ~γe = 0.2 meV are the cavity photon and the exciton coherence decay

rates, δe = −1.84 meV, δc = −2.34 meV and g > 0 is the nonlinear parameter. Ep(x, y)

is the pump amplitude with the momentum kp, the corresponding angle of incidence is

θ = arcsin[κλp/(2π)]. Ewp is the writing pulse amplitude. The corresponding two non-

zero in-plane components of the momentum kwx and kwy take into account mis-alignment

between the pump and the writing pulse, and φ is the phase difference between the pump

and the writing pulse.

For the case of the homogeneous pump Ep(x, y) = const and Ew(x, y, t) ≡ 0 the soliton

solutions are sought in the form E = A(x − vt)eikpx, ψ = Q(x − vt)eikpx. The soliton

profiles and the velocity v are found self-consistently by solving the Eqs. (B.1)-(B.2) using

Newton-Raphson iterations [94].
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In our simulations of the soliton excitation the system of Eqs. (B.1)-(B.2) has been solved

directly using the split-step method [94].

B.1.2 Nucleation of Arrays

Figure B.2: (a) Numerical simulation of the equivalent trace taken from Fig. B.1f at WP power
0.115 and (b) the same trace but taking into account k-space filtering to block the WB reflection.

In most of the data sets presented in Chapter 5, the evolution of a smooth wavepacket

excited by the WB into a multi-peak pattern along x was not recorded due to the limited field

of view of the detection optics. However, some cases where this early emission was recorded

are presented in §5.2.4. In particular, Figure 5.11c shows that the break-up of the WB

pulse can start to occur before it reaches the bistability zone. This surprising observation

was replicated in the numerical simulations presented in Figure B.2. It is believed that

the break up occurs due to a combination of the two factors. Firstly, the difference in the

k-vectors of the pump and WB leads to interference of the two, modulating the excitation

power along the x-axis. Secondly, the onset of polariton-polariton interactions and scattering

in close proximity of the bistability area may trigger the break-up before the wavepacket

reaches the bistability area.

B.2 Y-arrays

Previous simulations have shown that if the k vector of the pump and WB are the same

and the WB is considered to be a top hat, the wavepacket from the WB focussed to a single

soliton even if the WB is extended perpendicular to the propagation direction [125]. Here,

it is shown that by changing the WB shape to a gaussian, the soliton wavefront was shown

to be curved and could break up into several solitons.

In order to explain the mechanism of pattern formation along the y direction, we first

take a single hump one dimensional soliton localised along the x direction and infinitely

extended along y and performed its linear stability analysis. This demonstrates that it is

stable with respect to any transverse instabilities, which could lead to filamentation along

the y direction. If, however, we limit the extent of the soliton stripe by imposing a Gaussian
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Figure B.3: Numerical modelling of y-arrays. Numerically modelled transverse distribution
of the intracavity optical intensity after 15 ps of propagation under the conditions when the WB was
elongated along the y-coordinate. In case (a), the pump and WB hit the sample at the same angle
while in case (b) an angle of 3 degrees is introduced between the WB and the pump, introducing a
difference in k vector of ∼ 0.4 µm−1. Figures (a,b) are obtained for a single WB phase, while in the
experiments we average over all possible WB phases. A phase averaged numerical result is shown
in Figure c where the pattern is broadened but some intensity modulation along the y direction is
maintained.
Note that figure (a) was not included in the paper, figure (b) was included in an arXiv version of
the paper [arXiv:1407.7713v1], while figure (c) was taken from the published paper.

profile in the y direction, then the change in the curvature of the soliton front leads to

changes of the front velocity across the beam profile. This in turn leads to the breakup of

the wavefront and the formation of y-soliton arrays, as in experiment. The latter process

develops faster and is more pronounced if a small angle between the pump and WP beams

in y plane is introduced (see Figure. B.3). In this case the interference between the WP and

pump beams creates initial modulation of polariton density across the y direction, which

assist the break-up of polariton wavepacket into a y-soliton array.
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