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Abstract

In a meta-analysis, di�erences in the design and conduct of studies may cause vari-

ation in e�ects beyond what is expected from chance alone. This additional variation

is commonly known as heterogeneity, which is incorporated into a random-e�ects

model. The heterogeneity variance parameter in this model is commonly estimated

by the DerSimonian-Laird method, despite being shown to produce negatively biased

estimates in simulated data. Many other methods have been proposed, but there

has been less research into their properties.

This thesis compares all methods to estimate the heterogeneity variance in both

empirical and simulated meta-analysis data. First, methods are compared in 12,894

empirical meta-analyses from the Cochrane Database of Systematic Reviews (CDSR).

These results showed high discordance in estimates of the heterogeneity variance

between methods, so investigating their properties in simulated meta-analysis data

is worthwhile. A systematic review of relevant simulation studies was then conducted

and identi�ed 12 studies, but there was little consensus between them and conclusions

could only be considered tentative.

A new simulation study was conducted in collaboration with other statisticians. Res-

ults con�rmed that the DerSimonian-Laird method is negatively biased in scenarios

where within-study variances are imprecise and/or biased. On the basis of these res-

ults, the REML approach to heterogeneity variance estimation is recommended. A

secondary analysis combines simulated and empirical meta-analysis data and shows

all methods usually have poor properties in practice; only marginal improvements

are possible using REML.

In conclusion, caution is advised when interpreting estimates of the heterogeneity

variance and con�dence intervals should always be presented to express its uncer-

tainty. More promisingly, the Hartung-Knapp con�dence interval method is robust to

poor heterogeneity variance estimates, so sensitivity analysis is not usually required

for inference on the mean e�ect.
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Chapter 1

Introduction
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1.1 Principles of systematic reviews and

meta-analysis

A systematic review collates and synthesises all relevant evidence for a given research

question using transparent and comprehensive procedures. Health researchers may

be inundated with information in the absence of a systematic review [51], so may

be unconsciously selective and potentially come to biased conclusions. A systematic

review can identify gaps in knowledge, so that research can be more focused on areas

where little is known or evidence in inconclusive. They allow those making changes

to health policy to make better judgements based on all available evidence and can

provide conclusive answers that would not be possible using individual studies.

Guidance for conducting a systematic review has been published by the Cochrane

Collaboration [51], Cooper and Hedges [19] and the Centre for Reviews and Dissem-

ination (University of York, UK) [13]. These guidance documents recommend the

following common steps. First, a research question should be identi�ed and formu-

lated which is focused and concise, giving the review a clear aim. The next step is to

carry out a search of all literature that may provide relevant evidence in answering

the research question. Evidence is then appraised and selected for inclusion based

on explicit criteria decided at the planning stage of the systematic review. Exclusion

criteria may include, for example, the exclusion of literature in a foreign language or

studies that are not randomised controlled trials. The PRISMA statement (Preferred

Reporting Items for Systematic reviews and Meta-Analyses) advises the inclusion of

a �ow diagram in the �nal report that documents all searching and screening steps

[76]. Finally, evidence is synthesised in a manageable and digestible way that allows

readers to consider conclusions made by the reviewer and also investigate how these

conclusions were drawn [13, 71].

Glass [32] coined the term meta-analysis, referring to the statistical collation of

results of related studies for the purpose of integrating the �ndings. Since the aims

of a meta-analysis complement those of a systematic review, they are frequently
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included as a component of a systematic review. However, these two approaches

to evidence synthesis can also exist in isolation [4]. A meta-analysis is a statistical

synthesis or summary of studies, most commonly producing an 'average' result across

the studies. It is an increasingly popular type of analysis in medical research [69, 112],

and has also been used in other areas including social [31] and education research

[1].

Many of the reasons to conduct a meta-analysis stem from the reasons to conduct a

systematic review; they help to understand what is often a large and diverse base of

evidence. Furthermore, a meta-analysis usually has greater power to detect a stat-

istically signi�cant result than any one of the included studies [13]. A meta-analysis

can also help to reduce bias in a systematic review because of the transparency of

its method; this is particularly true if methods are de�ned up-front and justi�ed in

a review protocol.

1.2 The Cochrane Database of Systematic Reviews

(CDSR)

One of the most notable contributing factors in the increase of published systematic

reviews and meta-analyses is the formation of Cochrane (formerly The Cochrane

Collaboration). The collaboration was founded in 1993 [36] and has grown such that

there are now over 15,000 contributing members and have produced and continue

to maintain over 3000 open-access systematic reviews [51]. The main aim of col-

laboration is to provide researchers, or anyone with personal health concerns with

high-quality resources for making informed health decisions. Their systematic re-

views are published in the Cochrane Database of Systematic Reviews (CDSR) along

with review protocols and editorials. Meta-analyses are often are often included

within the reviews to statistically combine study results. Data from meta-analyses

published by the collaboration are used in thesis, as noted in the front matter.
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1.3 Types of study-level data

In this section, I de�ne the type of study-level data required for meta-analysis.

Ideally, this can be extracted directly from published papers, but this isn't always

possible. Methods for meta-analysis using these data are given from section 1.5

onwards.

Required study-level data usually consist of an estimate of some parameter and its

variance, denoted by θ̂i and σ̂
2
i respectively for a given study i. This parameter is

commonly referred to as an e�ect size. In a health research setting, this parameter

often represents a measure of the di�erence between two groups, such as an active

treatment groups and a control/placebo group. For example, a study may meas-

ure the risk of myocardial infarction in a group of patients receiving intravenous

magnesium and in a control group [114]. In this case, θ̂i represents an estimated

di�erence in the risk between these groups [46]. To increase generality, I refer to

them as groups one and two in this thesis. A number of measures can be used to

calculate θ̂i depending on the type of study outcome, such as an odds ratio for a

binary outcome, or a standardised mean di�erence for a continuous outcome. I show

how these measures, among others, are calculated in the following two sections.

1.3.1 Summarising continuous outcome data

In studies with a continuous outcome, data from each group can be summarised by

its mean, standard deviation and sample size. µ̂1i and µ̂2i denote the observed means,

ŝd1i and ŝd2i denote the observed standard deviations and n1i and n2i denote the

sample sizes in groups 1 and 2 respectively. The mean di�erence and the standardised

mean di�erence are two commons ways to measure the di�erence in µ̂1i and µ̂2i, which

are calculated as follows.
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1.3.1.1 Mean di�erence (MD)

The mean di�erence (MD) can be calculated by [8]:

θ̂i = µ̂1i − µ̂2i

If we assume the equal variances of µ̂1i and µ̂2i, the variance of θ̂i is:

σ̂2
i =

n1i + n2i

n1in2i

· S2
i

where

S2
i =

(n1i − 1) ŝd21i + (n2i − 1) ŝd22i
n1i + n2i − 2

(1.1)

Alternatively, without making the equal-variances assumption:

σ̂2
i =

ŝd21i
n1i

+
ŝd22i
n2i

1.3.1.2 Standardised mean di�erence (SMD)

If MDs are comparable but on di�erent scales, it is not advisable to combine them

in a meta-analysis in their current form. For example, the continuous outcome of

physical functioning could be measured in rehabilitation studies using measures based

on di�erent questionnaires with di�erent scoring methods [130]. To address this

problem and allow studies to be pooled more meaningfully, we calculate standardised

mean di�erences (SMD) [8]:

θ̂i =
µ̂1i − µ̂2i

Si
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where Si is the estimated standard deviation of the mean di�erence (see formula 1.1)

an assumes equal variances between groups.

When θ̂i is on the SMD scale, a good approximation of its variance is:

σ̂2
i =

n1i + n2i

n1in2i

+
θ̂2i

n1i + n2i

Hedges [43] proved that the SMD measure has positive bias in studies with small

sample sizes and therefore suggested applying a correction factor; the bias corrected

θ̂i becomes Ji · θ̂i and σ̂2
i becomes J2

i ·σ̂2
i where Ji = 1−3/ (4 (n1i + n2i − 2)− 1). The

correction factor has since become widely used and suggested in many meta-analysis

texts [8, 19, 42, 128].

Continuous study outcomes are usually on the same scale, so the unstandardised

mean di�erence (MD) is more commonly used in practice [19, 88].

1.3.2 Summarising binary outcome data

In studies with a binary outcome, data can be presented in the form of a contingency

table (e.g. table 1.1). From this data, we can derive measures that compare the event

probability between groups such as the relative risk or odds ratio.

Event No event Total

Group 1 ai bi n1i = ai + bi
Group 2 ci di n2i = ci + di
Total ai + ci bi + di Ni = ai + bi + ci + di

Table 1.1: Standard contingency table notations for a study i with a binary
outcome

1.3.2.1 Relative risk (RR)

The risk of an event in groups one and two are ai/n1i and ci/n2i. The relative

risk (RR) is a comparison between the two groups and is thus (ai/n1i) / (ci/n2i)
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[8]. This measure is transformed onto the log scale for meta-analysis to make the

e�ect estimate within a given study conform approximately to a normal sampling

distribution. Normality of study estimates is one of the assumptions in the standard

meta-analysis models introduced in section 1.5.1. The log RR (θ̂i) and its variance

(σ̂2
i ) in each study are therefore:

θ̂i = log

(
ai/n1i

ci/n2i

)

σ̂2
i =

1

ai
− 1

n1i

+
1

ci
− 1

n2i

θ̂i and σ̂
2
i cannot be calculated in the above formulae when zero events are observed

in one or both groups. Throughout this thesis, a continuity correction is applied

when required by adding 0.5 to ai, bi, ci and di [10]. Other methods are available for

dealing with zero events [113].

1.3.2.2 Odds ratio (OR)

The odds of an event in study groups one and two are ai/bi and ci/di. From this,

the odds ratio (OR) is (ai/bi) / (ci/di). As with RRs, ORs are transformed onto the

log scale:

θ̂i = log

(
ai/bi
ci/di

)

σ̂2
i =

1

ai
+

1

bi
+

1

ci
+

1

di

As for RR, a continuity correction is required when zero events are observed.
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The OR measure has superior statistical properties over RR [5, 19]. First, estimated

ORs don't change when the cause and e�ect is reversed (i.e. if the study groups

become the event of interest and vice versa). Second, logistic regression methodology

of binary data has developed using the odds ratio measure, so this gives added

convenience when conducting a logistic regression analysis [5]. Finally, ORs follow

the normal distribution more closely than RRs when transformed to the log scale.

These are perhaps some of the reasons why it is the most commonly used measure

in systematic reviews of health research (see chapter 4 for a summary of outcome

measures used in meta-analyses from Cochrane reviews).

1.4 Heterogeneity of true study e�ects

Studies brought together in a meta-analysis usually di�er to some extent in how

they are designed and conducted. Therefore, observed study e�ects (θ̂i) in a meta-

analysis often have a higher dispersion than what is expected from their observed

variances (σ̂2
i ) alone. This extra variability is known as heterogeneity and is the

central theme of this thesis. Meta-analyses containing heterogeneous studies should

not only combine studies into an average result, they should also estimate and explore

the plausible range of study e�ects [8, 48]. This is particularly necessary, for instance,

in a meta-analysis where the intervention is proven e�ective on average but may be

harmful in certain cases.

The Cochrane handbook suggests causes of heterogeneity can be split into two cat-

egories; methodological and clinical [51]. Methodological heterogeneity is the variab-

ility caused by di�erences in study design and risk of bias. Clinical heterogeneity is

the variability caused by di�erences in the participants, interventions and outcomes

studied. Clinical and methodological heterogeneity are both observed because of

di�erences in the study design and its conduct. The key di�erence is that for clinical

heterogeneity, di�erences in study design uncover heterogeneity that is ultimately

attributable to variation of intervention e�ects in real settings. Thus, Glasziou and
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Sanders [33] alternatively de�nes these two distinct categories of heterogeneity as

arti�cial and real. The former is considered nuisance heterogeneity, exploring this

can tells us little about how an intervention works outside of the study setting.

The causes of heterogeneity can be numerous and diverse, which often makes identi-

fying them infeasible in practice. Alternatively, they may simply be unknown. To

address the presence of heterogeneity in such cases, we may (1) refrain from pool-

ing the studies together in a meta-analysis if extent of heterogeneity is too great,

(2) choose to ignore it or (3) account for this extra variability in the analysis stage

[51]. The latter two can be accomplished by implementing �xed and random-e�ects

models respectively, which I introduce in the next section.

In some cases, researchers may hypothesise that quanti�ed study characteristics ex-

plain all or a proportion of the observed heterogeneity. These characteristics can be

used to carried out a sub-group analysis or added as a covariate in the meta-analysis

model [112, 115]. This can be accomplished by implementing a meta-regression

model, which I also introduce in the next section. Meta-regression typically only

works with few study characteristics because meta-analyses in health research con-

tain few studies [115].

1.5 Meta-analysis models

I �rst introduce the �xed-e�ect model in section 1.5.1 which makes the assump-

tion that study e�ects are homogeneous. In section 1.5.2, the random-e�ects model

includes an added variance parameter to taken into account any observed, but un-

explained, heterogeneity. I show in section 1.5.3 how study covariates can be added

random e�ects model when some heterogeneity can be explained. In section 1.5.4, I

introduce the Bayesian approach to random-e�ects models.
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1.5.1 The standard �xed-e�ect model

The term '�xed-e�ect' refers to the fact that all studies in the meta-analysis are as-

sumed to be estimating a common parameter value θ. Meta-analysis models usually

assume observed study e�ects in a meta-analysis conform to the normal distribution:

θ̂i ∼ N
(
θ, σ2

i

)
where θ is the true �xed summary e�ect size in the meta-analysis and σ2

i is the true

variance in studies i = 1, ..., k.

1.5.2 The standard random-e�ects model

A random-e�ects model accounts for the possibility that θ̂i are estimates of di�erent

true study e�ect parameters θi:

θ̂i ∼ N
(
θi, σ

2
i

)
In this model, the distribution of θi has a mean θ and a heterogeneity variance

denoted by τ 2. Some meta-analysis methods assume the normal distribution for θi:

θi ∼ N
(
θ, τ 2

)
A crucial, but sometimes overlooked distinction [89], from a �xed-e�ect model is that

θ̂ is an estimate of the average from a distribution of study e�ects [48].
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1.5.3 Modelling with covariates

Study-level variables may be available that explain a proportion of the total het-

erogeneity. In this case, a meta-regression can be carried out by adding these as

parameters in the random-e�ects model:

θ̂i ∼ N
(
θi, σ

2
i

)

θi ∼ N

(
θ +

m∑
j=1

βj, τ
2

)

where βij is the jth variable in a model containing m covariates.

In this model, τ 2 can be considered the residual variance of the true e�ects. The

same methods are available to estimate τ 2 in both models, which are introduced in

section 1.7.1 and detailed comprehensively in chapter 2.

1.5.4 Bayesian models

A Bayesian approach to meta-analysis may be taken using any of the above models

[106, 111]. The distinguishing feature of a Bayesian model is that parameters are

considered random quantities so we want to estimate its distribution rather than its

value. The approach also involves combining the meta-analysis data with our prior

beliefs about the parameters. For example, if we assume the random-e�ects model

with no covariates, we can select prior distributions for the parameter values τ 2 and

θ. These prior distributions can be speci�ed based on expert opinion or on similar

meta-analyses in the same research �eld [49, 120]. Prior distributions can also be

vague if researchers can deduce little about the parameter value prior to conducting

the meta-analysis.
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Applying Bayes theorem results in the following joint posterior distribution, where

ϕ is the vector of parameters of interest (e.g. τ 2 and θ):

P (ϕ | data) ≈ P (ϕ)P (data | ϕ)

P (ϕ | data) is the posterior distribution based on a combination of the prior distri-

bution, P (ϕ), and the observed data P (data | ϕ).

Running a Bayesian analysis with many model parameters can be complicated and

involves high-dimensional integration. However, it is becoming easier with recent

technological advances. The posterior distribution is calculated using Markov Chain

Monte Carlo (MCMC) methods. MCMC works by simulating from the high dimen-

sional joint probability distribution, most commonly for the parameters θ and τ 2, to

�nd a solution. Gibbs Sampling is used often in practice and is known to work well

in this setting [111].

1.6 The inverse-variance method

One of the main aims of a meta-analysis is to combine studies and produce an

average estimate for θ. Studies typically vary in terms of size and assuming studies

are all of equal quality, larger studies tend to estimate the parameter with more

precision. The inverse-variance method is commonly used to combine studies in a

meta-analysis, which gives more precise studies a larger weighting and thus more

in�uence on the average e�ect size. Using this method, θ and its variance can be

estimated by:

θ̂ =

∑k
i=1 ŵiθ̂i∑k
i=1 ŵi

(1.2)
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V ar
(
θ̂
)

=
1∑k
i=1 ŵi

(1.3)

Study weights can only be estimated from the data and are denoted by ŵi, which

are calculated by the reciprocal of V ar
(
θ̂i

)
. If we assume a common e�ect, like the

�xed-e�ect model in section 1.5.1, the within-study variance is assumed to account

for all the variability of θ̂i and therefore ŵi = 1/σ̂2
i . If we allow for random e�ects,

like the random-e�ects model in section 1.5.2, ŵi = 1/ (σ̂2
i + τ̂ 2).

Con�dence intervals for θ are commonly calculated using the Wald-type method [25]

based on the above variance (1.3):

[
θ̂ − Φ−1

(
1− α

2

)
·
√
V ar

(
θ̂
)
, θ̂ + Φ−1

(
1− α

2

)
·
√
V ar

(
θ̂
)]

(1.4)

where Φ−1
(
1− α

2

)
is the

(
1− α

2

)
th percentile of the normal distribution and α is

the signi�cance level. α is usually 0.05, leading to a 95% con�dence interval.

Other con�dence interval methods are available, which I describe in chapter 3. Al-

ternative methods exist for combining studies that are speci�c to meta-analysis of

binary data, including Peto [81] and Mantel-Haenszel methods [75]. These methods

can only estimate the summary e�ect if common e�ects are assumed, but hetero-

geneity can still be estimated and incorporated in the con�dence interval for the

summary e�ect [128].

1.7 Quantifying heterogeneity

I now outline a common method to estimate the heterogeneity variance parameter,

τ 2, as de�ned in the standard random-e�ects model in section 1.5.2. Then, I intro-

duce the I2 statistic, which estimates the proportion of study e�ect inconsistency

that is attributable to heterogeneity.
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1.7.1 Estimating the heterogeneity variance

A common approach to estimating the heterogeneity variance parameter, τ 2, is that

proposed by DerSimonian and Laird [25]. The method is based on the Q-statistic:

Q =
k∑
i=1

ŵi(θ̂i − θ̂)2

Q is also used as a test statistic for the presence of heterogeneity, a p-value for this

test is derived by referring Q to the χ2-distribution with k− 1 degrees of freedom. If

σ̂2
i adequately account for the total observed variance and θ̂i are normally distributed

around θi, then E [Q] = k − 1, i.e. the expected value of χ2
k−1.

The DerSimonian-Laird method to estimate τ 2 is based on Q:

τ̂ 2 = max

0,
Q− (k − 1)∑k
i=1 ŵi −

∑k
i=1 ŵ

2
i∑k

i=1 ŵi


The numerator is a standardised measure of the extent that Q exceeds its expec-

ted value under the common e�ect assumption. This measure is converted to the

same scale as θ̂ by the denominator. The method estimates τ 2 with no distribution

assumption for θi.

When Q < k − 1, heterogeneity variance estimates are truncated at zero as shown

in the formula above. Other methods to estimate τ 2 are available; these are detailed

in chapter 2.

1.7.2 The I2 statistic

I2 represents the proportion of the total variance that can be attributed to hetero-

geneity of true study e�ects and is more intuitive to interpret than τ 2. This is derived

by transforming the Q-statistic [47]:
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I2 =
Q− (k − 1)

Q
· 100% (1.5)

Unlike τ 2, I2 is independent of the scale of measurement (i.e. I2 can be compared

between meta-analyses with SMD and OR outcome measures). An alternative for-

mula for I2 is also given in the original paper [47], where its interpretation becomes

more apparent:

I2 =
τ̂ 2

τ̂ 2 + σ̂2
· 100% (1.6)

where σ̂2 is an estimate of the typical within-study variance:

σ̂2 =
(k − 1)

∑k
i=1 ŵi(∑k

i=1 ŵi

)2
−
∑k

i=1 ŵ
2
i

and ŵi = 1/σ̂2
i

σ̂2 is a measure mainly proposed to calculate I2 via formula 1.6 and represents the

estimated within-study variance if studies have equal σ2
i . In reality, σ2

i vary from

study-to-study and therefore formula 1.6 is not considered a true de�nition of I2 [8].

I2 is more commonly calculated from Q-based formula 1.5 for this reason and because

of its convenient relationship with the DerSimonian-Laird method for estimating τ 2.

1.8 Prediction intervals

A prediction interval is used to measure the spread of true e�ect sizes (θi) in a meta-

analysis with heterogeneous studies [48]. The interval can also predict the e�ect

size of a new study to be included in the meta-analysis, hence the name 'prediction

interval'. The prediction interval, as proposed by Higgins et al. [48], is:
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[
θ̂ − t1−(α/2)

k−2 ·
√
τ̂ 2 + V

(
θ̂
)
, θ̂ + t

1−(α/2)
k−2 ·

√
τ̂ 2 + V

(
θ̂
)]

where θ̂ is estimated as in equation 1.2 with random-e�ects weights and t
1−(α/2)
k−2

represents the
(
1− α

2

)
th percentile of the t-distribution with k−2 degrees of freedom.

α is usually 0.05, leading to a 95% prediction interval.

The interval should not be confused with the con�dence interval for θ̂, which I

introduced in section 1.5.1.

1.9 Fixed e�ect vs. random-e�ects models

Using a �xed-e�ect model is appropriate when there is a contextual reason to believe

study results are homogeneous. However, there is usually doubt whether the common

e�ect assumption holds due to di�erences in study design or sampling population.

Until recently, a common approach in such cases was to test for the presence of

heterogeneity using the method based on the Q-statistic (section 1.7.1). The decision

to use a �xed e�ect or random-e�ects model is then based on whether evidence for

heterogeneity is statistically signi�cant. However, simulation studies show this test

has low power in meta-analyses typically seen in practice [44, 57] and therefore its use

has been discouraged [8, 51]. A stronger argument against this test for heterogeneity

is that meta-analyses are likely to contain heterogeneous studies even if there is no

evidence from their results [40, 112].

The random-e�ects model is advocated when studies are potentially heterogeneous.

The model reduces to the �xed-e�ect model when the heterogeneity variance is es-

timated to be zero, which occurs frequently using the DerSimonian-Laird method

in practice [64]. The random-e�ects model is commonly used in meta-analysis and

leads to more conservative results than the �xed-e�ect model when the heterogen-

eity variance parameter is positive by producing wider con�dence intervals of the

summary e�ect [8].
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The random-e�ects model is not without criticisms. True study e�ect sizes are as-

sumed to be normally distributed, which is unlikely given that bias (e.g. publication

bias) is often present but undetectable [109]. Second, small studies are sometimes

given a disproportionately high weight when studies are pooled using the inverse

variance method [46]; small and large studies can have almost equal weight if the

heterogeneity variance is comparatively high. Finally, estimating the heterogeneity

variance parameter in a random-e�ects model presents many additional problems,

as I will detail in the next section and address in the rest of this thesis.

1.10 An overview of the thesis

1.10.1 An overview of problems associated with heterogeneity

variance estimation

Estimates of the heterogeneity variance in a random e�ects meta-analysis are usually

imprecise [48, 120]. This is mainly because there are rarely su�cient numbers of

studies contained in meta-analyses of health interventions [21]. Additional problems

are apparent in meta-analyses with binary outcome measures such as the log odds

ratio [78]. Binary outcome e�ect measures are correlated with their variance but the

random-e�ects model assumes they are independent. Also, studies with rare events

have large within-study variances, may require a continuity correction and contribute

less to the summary e�ect [3].

Aside from the general problems of estimating the heterogeneity variance, the Der-

Simonian and Laird method in particular has been criticised. Simulation studies

show the method underestimates heterogeneity variance when the underlying level

of heterogeneity is high [78, 79, 124]. The method's bias is thought to be attributed

to a failure of the methods only assumption: within-study variances used to calculate

study weights are assumed to be known. The method has been proven theoretically
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unbiased when this assumption holds [7, 124], but within-study variances can usually

only be estimated in practice.

An estimate of the heterogeneity variance is required to calculate many other com-

monly reported statistics in meta-analysis, such as the summary e�ect and its con-

�dence interval. The Wald-type method for producing these con�dence intervals has

been shown in simulation studies to be arti�cially narrow [61, 96]. The two main

reasons for this are: (1) As already mentioned, DerSimonian-Laird on average un-

derestimates the heterogeneity variance and (2) the Wald-type method assumes the

heterogeneity variance is known, but is usually estimated and imprecise [96].

Alternative methods have since been proposed to estimate the heterogeneity variance

and con�dence interval of the summary e�ect. Some of these methods show more

promising results in simulated data [16, 37, 40, 74, 93, 100, 102]. However, most of

these studies are not comprehensive and recommend con�icting alternative methods.

Therefore, there is currently no overall consensus as to which methods should be used

in frequentist random-e�ects meta-analysis.

1.10.2 Focus of the thesis

My thesis reviews and compares methods to estimate the heterogeneity variance

as de�ned in the standard random-e�ects model in section 1.5.2. This model in

particular contains no covariates and assumes all observed between-study variance

is random and cannot be explained. However, heterogeneity estimation methods

can readily be applied to a random-e�ects model with covariates, so I discuss in the

conclusion chapter whether my �ndings can be applied in this context. I focus almost

solely on heterogeneity estimation in the frequentist framework, but allow exceptions

for Bayesian methods that do not require complex integration and inexplicit prior

distributions.

I focus speci�cally on methods for two-stage meta-analysis. A two-stage meta-

analysis refers to the methods outlined in this chapter. It is de�ned as 'two-stage' be-
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cause study summary data must �rst be extracted/derived before the meta-analysis is

conducted. An alternative to a two-stage meta-analysis is a one-stage meta-analysis

of individual participant data (IPD) [90, 104]. Many IPD meta-analyses combine

each study dataset and perform a meta-analysis in one step, which allows for a full

exploration of the study data [8]. However, the approach is usually more time-

consuming and therefore not as common as the two-stage approach [119].

1.10.3 Aims

Expanding on the last section, the aims are to:

1. Conduct a comprehensive review of heterogeneity variance estimation methods

currently available in the literature.

2. Assess the level of agreement between di�erent heterogeneity variance methods

in practice.

3. Compare the relative performance of methods in simulated data to establish

which method(s) have the best properties.

4. Investigate the absolute performance of methods in simulated data to establish

if and when all methods perform poorly.

5. Investigate whether any characteristics of meta-analyses can explain the prop-

erties of methods.

6. Recommend methods for random-e�ects meta-analysis and propose alternative

strategies when all methods perform poorly.

In all chapters of this thesis where heterogeneity variance estimators are compared,

I compare not only their estimates but their impact on the summary e�ect estimate

and its con�dence interval. As a consequence, the properties of methods to calculate

these statistics are investigated as a secondary aim.
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1.10.4 Structure of the thesis

The introductory chapters continue with a review of methods in two-stage random-

e�ects meta-analysis. Chapter 2 contains a comprehensive review of heterogeneity

variance estimation methods. Con�dence interval methods for the summary e�ect

follow in chapter 3. The latter is not intended to be a complete review, but an

introduction to the con�dence interval methods I have selected to use throughout

the rest of the thesis.

To address the second aim of the thesis, chapter 4 compares methods in 12,894 em-

pirical meta-analyses extracted from the Cochrane Database of Systematic Reviews

(CSDR). Chapter 5 then reports a systematic review of previous studies that com-

pare the properties of heterogeneity variance estimators in simulated meta-analysis

data. Findings from this systematic review show that aims 3-5 have not been suf-

�ciently addressed in the literature and so a further simulation study was required.

Chapter 6 details the protocol of a further simulation study, designed in light of the

limitations of current evidence identi�ed in the systematic review. Chapters 7 and

8 then present the results from this simulation study.

Finally, chapter 9 concludes the thesis by summarising the main �ndings and dis-

cusses their implications for methods in random-e�ects meta-analysis. I make re-

commendations informed by �ndings from this thesis and from a review of the wider

evidence base. Limitations of the heterogeneity variance methods and any limita-

tions caused by scope of the thesis are discussed along with opportunities for further

research.
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Chapter 2

Methods for estimating the

heterogeneity variance
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2.1 Introduction

An estimate of the heterogeneity variance is often used to gauge inconsistency between

study e�ects and is required to conduct a random-e�ects meta-analysis. I described in

chapter 1 the DerSimonian-Laird method, commonly used to estimate the heterogen-

eity variance. This method has been widely criticised in the literature for producing

negatively biased estimates [78, 101, 124] and therefore, many other methods have

since been proposed. I present a comprehensive review of heterogeneity estimation

methods in this chapter, highlight any methodological similarities and �nish with an

example to show these similarities in the context or a real meta-analysis.

This chapter was written concurrently with a systematic review of methods for es-

timating the heterogeneity variance that I co-authored [122]. I provided amendments

after it was initially drafted by the �rst author. Methods in this paper were identi�ed

in a formal search of the PubMed database by the �rst author (Areti Angeliki Ver-

oniki); the details of this search are given in appendix 9.5. All articles identi�ed in

this search are referenced in this chapter, which otherwise represents my own work.

The heterogeneity variance estimators in this chapter fall within a number of distinct

approaches. I �rst introduce the method of moments approach in section 2.2, which

consists of the DerSimonian-Laird estimator and a number of others. The maximum

likelihood approach is introduced in section 2.5 and the Bayesian approach in section

2.6.

A number of estimators are proposed that only allow for positive heterogeneity

variance estimates. These are proposed with the ethos described by Hartung and

Makambi [40]: �...it may sometimes be di�cult, in many applications, to accept

zero as an estimate of the between-study variance when it is well known that there

is some variation (albeit small) between groups/studies under consideration. This

makes it desirable to derive a positive estimator for between-study variance�. These

positive estimators include Hartung-Makambi (section 2.3.1), those belonging to the

Sidik-Jonkman approach (section 2.3.2) and all Bayesian estimators (section 2.6).

22



I introduce acronyms for each estimator in this chapter, which are used in the rest of

the thesis. Table 2.1 on page 43 details all acronyms for reference. Also note, I use

the general notation ŵi for estimated study weights but these vary from estimator-

to-estimator; I specify their functional form in each section.

Methods in this chapter were programmed in R (3.2.3) for use in all analyses in the

rest of this thesis. I coded all methods that were not already available in the R

package metafor [126].

2.2 Method of moments approach

This uni�ed approach to heterogeneity estimation was initially proposed by Kacker

[59], then DerSimonian and Kacker [24] explained the approach within a meta-

analysis context. DerSimonian-Laird, Cochran's ANOVA and Paule-Mandel are

estimators that pre-date this approach but have since been recognised within this

uni�ed identity [24]. I explain the commonality between these estimators before

introducing them individually in sections 2.2.1 - 2.2.5.

The approach is based on the generalised Q-statistic:

QMM =
k∑
i=1

wi

(
θ̂i − θ̂

)2

θ̂ =
k∑
i=1

(
wiθ̂i

)
/

k∑
i=1

wi (2.1)

where k denotes the number of studies in the meta-analysis and study weights are

denoted by wi

We assume wi takes no speci�c form for the general method of moments approach

and may be known or estimated from the study data. Therefore, θ̂ is a generic
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weighted average of study e�ects θ̂i. QMM becomes the Q-statistic introduced in

chapter 1 when ŵi = 1/σ̂2
i is substituted for wi.

The aim of this section is to derive a general method of moments formula for the

heterogeneity variance. First, recall that V ar
(
θ̂i

)
is made of the two variance com-

ponents σ2
i + τ 2 in a random-e�ects model and θ̂ is calculated as in equation 2.1. If

we take the expected value of the unweighted squared error for a given study i [59]:

E
[(
θ̂i − θ̂

)
2
]

= V ar
(
θ̂i − θ̂

)
= V ar

(
θ̂i

)
+ V ar

(
θ̂
)
− 2Cov

(
θ̂i, θ̂

)
=

(
σ2
i + τ 2

)
+

∑k
i=1w

2
i (σ2

i + τ 2)(∑k
i=1wi

)
2
− 2wi (σ

2
i + τ 2)∑k

i=1wi

Therefore, the expected value of QMM is:

E

[
k∑
i=1

wi

(
θ̂i − θ̂

)
2

]
=

∑
k
i=1E

[
wi

(
θ̂i − θ̂

)
2
]

=
k∑
i=1

w2
i

(
σ2
i + τ 2

)
+

∑k
i=1w

2
i (σ2

i + τ 2)∑
wi

− 2

∑k
i=1w

2
i (σ2

i + τ 2)∑
wi

=
k∑
i=1

w2
i

(
σ2
i + τ 2

)
−
∑k

i=1w
2
i (σ2

i + τ 2)∑
wi

To derive a formula for the estimated heterogeneity variance (τ̂ 2), equate the expec-

ted value to its observed value:

k∑
i=1

wi

(
θ̂i − θ̂

)
2 =

k∑
i=1

wiσ
2
i + τ̂ 2

k∑
i=1

wi −
∑k

i=1w
2
i σ

2
i∑k

i=1wi
− τ̂ 2

∑k
i=1w

2
i∑k

i=1wi

= τ̂ 2

(
k∑
i=1

wi −
∑k

i=1w
2
i∑k

i=1wi

)
+

k∑
i=1

wiσ
2
i −

∑k
i=1w

2
i σ

2
i∑k

i=1wi
⇐⇒
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τ̂ 2 =

∑k
i=1wi

(
θ̂i − θ̂

)
2 −

(∑k
i=1wiσ

2
i −

∑k
i=1 w

2
i σ

2
i∑k

i=1 wi

)
∑k

i=1wi −
∑k
i=1 w

2
i∑k

i=1 wi

(2.2)

The approach assumes that σ2
i are known and these are usually replaced by estimates

σ̂2
i in the above formula [6]. All method of moments estimators can be derived from

the formula 2.2, but with wi taking di�erent functional forms.

None of the proposed study weights ensure τ̂ 2 > 0 in formula 2.2. Therefore, for

all method of moments estimators, τ̂ 2 is truncated to zero whenever it would oth-

erwise be negative. Method of moments estimators make no assumption about the

distribution of θi, unlike most other methods introduced in this chapter [62, 93, 94].

2.2.1 DerSimonian-Laird (DL)

The DerSimonian-Laird (DL) estimator [25] was introduced in the introduction

chapter. I showed that DL is derived from the Q-statistic, which is the same as

QMM with study weights ŵi = 1/σ̂2
i . With these weights, the method of moments

formula 2.2 derived earlier for τ̂ 2 becomes:

τ̂ 2DL = max

0,

∑k
i=1 (1/σ̂2

i )
(
θ̂i − θ̂DL

)
2 − (k − 1)∑k

i=1 (1/σ̂2
i )−

∑k
i=1(1/σ̂2

i )
2∑k

i=1(1/σ̂2
i )


where θ̂DL =

∑k
i=1

(
ŵiθ̂i

)
/
∑k

i=1 ŵi

Kontopantelis et al. [64] introduced an alternative DL estimator (DLP), with a cut-o�

value of 0.01 to ensure all estimates are positive.
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2.2.2 Cochran's ANOVA (CA)

Cochran's ANOVA (CA) estimator [18] was proposed in 1954 before being introduced

into the random-e�ects meta-analysis context by Hedges and Olkin [42]. Kacker [59]

then showed CA is part of the general method of moments approach. CA assigns

equal weight to each study, most commonly wi = 1/k [24], but any positive constant

would produce identical heterogeneity variance estimates.

Weights wi = 1/k are substituted into formula 2.2:

τ̂ 2CA = max

{
0,

1

k − 1

k∑
i=1

(
θ̂i − θ̂CA

)
2 − 1

k

k∑
i=1

σ̂2
i

}
(2.3)

where θ̂CA =
∑k

i=1 θ̂i/k

Cochran [18] originally derived the estimator by rearranging θ̂'s variance components:

τ 2 = V ar
(
θ̂
)
− σ2

σ2 denotes the typical within-study variance, estimated assuming equal variances:

σ̂2 =
∑k

i=1 σ̂
2
i /k. V ar

(
θ̂
)
is estimated using the unweighted formula for a sampling

variance. This equates to formula 2.3 above.

2.2.3 Non-parametric Bootstrap DerSimonian-Laird (DLB)

Kontopantelis et al. [64] proposed a bootstrap version of the standard DL estimator

(DLB) to reduce the number of zero τ 2 estimates. A bootstrap estimate of τ 2 is

calculated in four steps:
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1. k studies are sampled randomly with replacement (the same number as in the

meta-analysis)

2. τ̂ 2DL is calculated for the sample.

3. 1-2 is repeated 10,000 times in order to derive a distribution for τ̂ 2DL. Note,

fewer samples may be required if k is small.

4. The mean of this distribution is the bootstrap estimate of τ 2.

The bootstrap method could trivially be applied to other τ 2 estimators [26].

2.2.4 Paule-Mandel (PM)

The Paule-Mandel estimator (PM) [80] was originally proposed in the more general

context of combining measurements from di�erent experiments. The method has

since been introduced into the meta-analysis framework [9, 24].

Weights of each study take the form ŵi = 1/ (σ̂2
i + τ̂ 2PM). A non-closed form expres-

sion for τ̂ 2PM can be derived by substituting these weights ŵi into formula 2.2:

τ̂ 2PM =

∑k
i=1 ŵi(θ̂i − θ̂PM)2 −

(∑k
i=1 ŵiσ

2
i −

(∑k
i=1 ŵ

2
i σ

2
i

)
/
(∑k

i=1 ŵi

))
∑k

i=1 ŵi −
(∑k

i=1 ŵ
2
i

)
/
(∑k

i=1 ŵi

) (2.4)

where θ̂PM =
∑k

i=1

(
ŵiθ̂i

)
/
∑k

i=1 ŵi

As the heterogeneity variance parameter is included in the study weights, τ̂ 2PM is

found by a process of iteration until convergence. The initial estimate of τ̂ 20 = 0 is

commonly used to begin the process. If at any step the estimate is negative, then

set τ̂ 2PM = 0. Rukhin et al. [94] demonstrated that there is always just one solution

and the process always converges irrespective of the initial estimate.
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Alternatively, a neater expression than formula 2.4 can be derived if we substitute

ŵi into QMM . Since ŵi are random-e�ects weights that account for the total study

variance, we constrain QMM to asymptotically follow the χ2
k−1-distribution with ex-

pected value k − 1 on the assumption that θ̂i are normally distributed around θi.

Equating QMM in this case to this expected value:

k∑
i=1

(
θ̂i − θ̂PM

)2
σ̂2
i + τ̂ 2PM

= k − 1

However, �nding τ̂ 2PM using this expression involves an iterative process that is less

intuitive [24, 80].

PM is also known as the empirical Bayes estimator because they were thought to be

separate methods until Rukhin [93] noted their equivalence. Despite this alternative

name, PM is not an empirical Bayes approach to heterogeneity variance estimation.

It gets this name from Morris [77], who used the PM heterogeneity variance estimator

in an empirical Bayes approach to estimate θ.

2.2.5 Two-step versions of Paule-Mandel (PMCA & PMDL)

DerSimonian and Kacker [24] introduced two alternative versions of PM that do not

require complete iteration to convergence. They use the same random-e�ects study

weights as PM but iteration is restricted to two-steps with initial estimates τ̂ 20 = τ̂ 2CA

and τ̂ 20 = τ̂ 2DL. For the former, the general method of moments formula 2.2 becomes

the following closed form expression:

τ̂ 2PMCA
=

∑k
i=1 ŵi(θ̂i − θ̂CA)2 −

(∑k
i=1 ŵiσ

2
i −

(∑k
i=1 ŵ

2
i σ

2
i

)
/
(∑k

i=1 ŵi

))
∑k

i=1 ŵi −
(∑k

i=1 ŵ
2
i

)
/
(∑k

i=1 ŵi

) (2.5)
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where ŵi = (σ̂2
i + τ̂ 2CA) −1 and θ̂CA is de�ned in section 2.2.2

For the latter two-step estimator, weights are ŵi = (σ̂2
i + τ̂ 2DL) −1 and θ̂DL is de�ned

in section 2.2.1.

The main criticism of PMCA and PMDL is that restricting PM to two iterative steps

is unnecessary and not considered statistically optimal. PM heterogeneity variance

estimates can easily be computed using reliable iterative techniques widely available

in many statistical software packages.

2.3 Non-truncated moments-based approaches

2.3.1 Hartung-Makambi (HM)

As mentioned in section 2.2, method of moments estimators allow for negative es-

timates of the heterogeneity variance and should be truncated at zero. Hartung

and Makambi [40] proposed a correction to τ̂ 2DL so that τ̂ 2 is always positive and

truncation is not required. Recall that:

τ̂ 2DL = max

{
0,
Q− (k − 1)

c

}

where c =
∑k

i=1 ŵi −
(∑k

i=1 ŵ
2
i /
∑k

i=1 ŵi

)
, ŵi = 1/σ̂2

i and Q is the statistic de�ned

in chapter 1.

τ̂ 2DL is negative and must be truncated to zero when Q < (k − 1). The estimator is

derived by taking the �rst term of τ̂ 2DL (Q/c), which is always positive and applying a

positive multiplicative correction factor denoted by ε. This correction factor accounts

for the bias introduced as a result of excluding the term (k − 1) /c. The estimator

takes the form τ̂ 2HM = ε ·Q/c, where:
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ε =
Q

2 (k − 1) +Q

and therefore:

τ̂ 2HM = ε · Q
c

=
Q

2 (k − 1) +Q

(
Q

c

)
=

Q2

c (2 (k − 1) +Q)

It is not clear in the original paper [40] why ε takes this form or the extent that Q/c

is biased before a correction factor is applied.

2.3.2 Sidik-Jonkman (SJ)

This method was �rst introduced by Sidik and Jonkman [101] and yields only positive

estimates. The method is derived from the standard formula for V ar
(
θ̂
)
(formula

1.3 in the introduction chapter) with study weights de�ned as:

ŵi =
1

(σ̂2
i /τ̂

2) + 1
=

τ̂ 2

σ̂2
i + τ̂ 2

V ar
(
θ̂
)
can be re-expressed in terms of the new weights ŵi:

V ar
(
θ̂
)

=
τ̂ 2∑k
i=1 ŵi

(2.6)

This method also uses an alternative weighted estimator of V ar
(
θ̂
)
proposed by

Hartung [38]:

V arHK

(
θ̂
)

=

∑k
i=1 ŵi

(
θ̂i − θ̂

)2
(k − 1)

∑k
i=1 ŵi
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If we equate V arHK

(
θ̂
)
and V ar

(
θ̂
)
from equation 2.6, then:

τ̂ 2 =
1

k − 1

k∑
i=1

1

(σ̂2
i /τ̂

2) + 1

(
θ̂i − θ̂

)2
The formula above is naturally iterative, so Sidik and Jonkman [101] proposed a

two-step process with initial estimate τ̂ 20 = 1
k

∑k
i=1

(
θ̂i − θ̂CA

)2
. The SJ estimator is

de�ned as:

τ̂ 2SJ =
1

k − 1

k∑
i=1

1

(σ̂2
i /τ̂

2
0 ) + 1

(
θ̂i − θ̂SJ

)2
(2.7)

where θ̂SJ is the weighted least squares estimate of θ with weights ŵi = 1/ ((σ̂2
i /τ̂

2
0 ) + 1)

and θ̂CA is the unweighted estimate of θ from section 2.2.2.

Study weights ŵi are unde�ned when τ̂ 20 = 0, which occurs in the unlikely case when

all θ̂i are equal. In this case, set τ̂ 2SJ = 0.

Sidik and Jonkman [101] noted that alternative τ̂ 20 estimates may lead to an es-

timator with better properties. Therefore, Sidik and Jonkman [102] proposed τ̂ 20 =

max (0.01, τ̂ 2CA) in a follow-up paper; I denote the resulting estimator as SJCA. As

with the original estimator, τ̂ 2SJCA is a two-step estimator that is simple to compute

and always results in a positive estimate of the heterogeneity variance.

These estimators have methodological similarities with PM, introduced in section

2.2.4. Their weights are equivalent to the PM random-e�ects study weights, multi-

plied by the constant τ̂ 2; this transformation ensures SJ estimators are positive.

2.4 Hunter-Schmidt (HS)

The Hunter-Schmidt estimator (HS) [53] is derived by expressing the variance com-

ponents for θ̂ as V ar
(
θ̂
)

= τ 2+σ2. A 'typical' within-study variance from all studies
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i is denoted by σ2. Weighted unbiased estimators of V ar
(
θ̂
)
and σ2 are substituted

into the variance components to derive the estimator of heterogeneity:

τ̂ 2HS = max

0,

∑k
i=1 ŵi

(
θ̂i − θ̂

)
2∑k

i=1 ŵi
−
∑k

i=1 ŵiσ
2
i∑k

i=1 ŵi

 (2.8)

with �xed-e�ect weights ŵi = 1/σ̂2
i

Using these weights, the estimator can be re-expressed as [96]:

τ̂ 2HS = max

0,

∑k
i=1 ŵi

(
θ̂i − θ̂

)
2 − k∑k

i=1 ŵi

 (2.9)

Other weights that have been proposed include [124]; (1) wi = 1/ (n1i + n2i) where

n1i and n2i are the sample sizes in groups one and two of study i and (2) wi = 1/k.

A method for deriving the CA estimator (see section 2.2.2) also directly involves

splitting the variance components, the only di�erence being that CA uses unweighted

estimates of V ar
(
θ̂
)
and σ2.

2.5 Maximum likelihood approach

Maximum likelihood and restricted maximum liklelihood (REML) estimators can

both be derived from a log-likelihood function derived from the probability density

function of θ̂i ∼ N (θ, σ2
i + τ 2) [37]. Hence, it is assumed that θi and θ̂i are normally

distributed around the central parameter θ, unlike the estimators in the method of

moments approach.
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2.5.1 Maximum likelihood (ML)

The log likelihood function for the maximum likelihood estimator is:

lML

(
θ, τ 2

)
= −1

2

k∑
i=1

ln
(
2π
(
σ2
i + τ 2

))
− 1

2

k∑
i=1

(θi − θ)
σ2
i + τ 2

2

(2.10)

The maximum likelihood estimate of τ 2 is the value that maximises lML (θ, τ 2).

The maximum can be found by partially di�erentiating lML with respect to τ 2 and

equating this to zero. This leads to:

τ̂ 2ML = max

0,

∑k
i=1 ŵ

2
i

((
θ̂i − θ̂ML

)2
− σ̂2

i

)
∑k

i=1 ŵ
2
i

 (2.11)

where ŵi = (σ̂2
i + τ̂ 2ML) −1 and θ̂ML is the maximum likelihood estimate of θ. The

formula for θ̂ML is derived by partially di�erentiating lML with respect to θ:

θ̂ML =

∑k
i=1 ŵiθ̂i∑k
i=1 ŵi

(2.12)

Maximum likelihood estimates are calculated by solving (2.11) and (2.12) simultan-

eously and iteratively, starting with an initial estimate τ̂ 20 . There are many iter-

ative methods used in maximum likelihood including the Newton-Raphson method,

Fisher's scoring algorithm and the simplex algorithm [58]. If at any step τ̂ 2 < 0, then

the process of iteration stops and we evaluate τ̂ 2ML = 0. For any iteration method,

convergence is not guaranteed [64]. In this thesis, I use τ̂ 20 = τ̂ 2CA and use Fisher's

scoring algorithm.

The method assumes that within-study variances and θ are known, when in reality

they must be estimated from study data [102]. Cheung [14] suggested this is likely

to lead to an underestimate of τ 2.
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2.5.2 Restricted maximum likelihood (REML)

To derive the REML estimator of τ 2, the log-likelihood function (2.10) is trans-

formed so that it excludes the summary e�ect parameter θ [41]. In doing so, REML

avoids making the assumption that θ is known and is therefore thought to be an

improvement on the ML estimator [124]. This produces the following log-likelihood

function:

lREML

(
τ 2
)

= −k
2
ln (2π)− 1

2

k∑
i=1

ln
(
σ2
i + τ 2

)
− 1

2

k∑
i=1

(
θ̂i − θ̂

)
σ2
i + τ 2

2

− 1

2
ln

(
k∑
i=1

1

σ2
i + τ 2

)

To derive a formula for τ̂ 2, we partially di�erentiate lREML with respect to τ 2 and

setting this di�erential to zero. This results in the following equation:

τ̂ 2REML = max

0,

∑k
i=1 ŵ

2
i

((
θ̂i − θ̂REML

)2
− σ̂2

i

)
∑k

i=1 ŵ
2
i

+
1∑k
i=1 ŵi


where θ̂REML =

∑k
i=1

(
ŵiθ̂i

)
/
∑k

i=1 ŵi and ŵi = (σ̂2
i + τ̂ 2REML) −1

τ̂ 2REML is found by the same iterative process as τ̂ 2ML from section 2.5.1 and conver-

gence is also not guaranteed.

2.5.3 Approximate restricted maximum likelihood (ARML)

The approximate restricted maximum likelihood (ARML) estimator, is thought to

give similar estimates as REML [2, 77, 124]. Heterogeneity variance estimates are

calculated by iteration and the following formula:
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τ̂ 2ARML = max

0,

∑k
i=1 ŵ

2
i

k
k−1

((
θ̂i − θ̂ARML

)2
− σ̂2

i

)
∑k

i=1 ŵ
2
i


where the weights are de�ned as ŵi = (σ̂2

i + τ̂ 2ARML) −1.

ARML is a simpli�ed version of REML, with the additional assumption that sampling

variances σ2
i for all studies are equal. Regardless, the process of �nding τ̂ 2ARML

involves iteration and has no obvious bene�t over REML. When all σ2
i are equal, both

give identical estimates and only di�er slightly otherwise although this is di�cult to

prove algebraically [124].

2.6 The Bayesian approach

I described the general framework for Bayesian meta-analysis in the introduction

chapter (section 1.5.4). Bayesian heterogeneity variance estimators are based on this

model and allow for prior beliefs of model parameters to be combined with meta-

analysis data. This is the de�ning di�erence from the frequentist estimators outlined

in the rest of this chapter. I introduce the full Bayesian approach in section 2.6.1.

Following this, I introduce a series of semi-Bayesian τ 2 estimators that are more

simple to compute including approximate Bayes (AB), empirical Bayes (EB), Bayes

modal (BM) and estimators proposed by Rukhin [93].

2.6.1 Full Bayesian

The full Bayesian approach estimates the heterogeneity variance simultaneously with

all other parameters of interest in the model. In doing so, it can account for un-

certainty of these parameters [106]. In a Bayesian random-e�ect model with no

covariates, we can de�ne prior distributions for τ 2 and θ:
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τ 2 ∼ p1(ϕ1)

θ ∼ p2(ϕ2)

where p1 and p2 are the chosen probability distributions with �xed parameter vectors

ϕ1 and ϕ2.

Prior distributions and their �xed parameters vary between meta-analyses in practice

and are chosen based on external evidence, expert opinion or they are vague to re�ect

a lack of prior knowledge [111]. Therefore, it is not possible to de�ne a distinct full

Bayesian method. Possible assumed distributions for τ 2 include the inverse gamma,

uniform or normal [66, 88]. A normal distribution for θi is often assumed and is

therefore the chosen prior distribution for θ [111].

The aim of this approach is to calculate a joint posterior distribution for τ 2 and θ by

combining prior distributions with meta-analysis data. The posterior distribution is

derived by Markov Chain Monte Carlo (MCMC) methods such as Gibb's sampler

[106]. This requires specialist software such as WinBUGS [72]. From the joint

posterior distribution, expected values and credibility intervals for τ 2 and θ can be

extracted.

2.6.2 Approximate Bayes Estimator (AB)

The approximate Bayes estimator (AB) was originally proposed within the context

of sequential meta-analysis [50]. It does not require any form of Gibbs sampling or

process of iteration and is therefore more simple to compute than full Bayes.

The prior for τ 2 follows the inverse-gamma distribution Γ−1 (η, λ), with parameters

η and λ de�ning the shape and spread of the distribution respectively and zero

probability of τ 2 < 0. The inverse-gamma distribution has the following p.d.f:
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p
(
τ 2; η, λ

)
=

λη

Γ (η)

(
τ 2
) −η−1exp

(
− λ

τ 2

)

where Γ represents the gamma function.

The underlying e�ects of each study i are assumed known, i.e. σ2
i = 0. Higgins

et al. [50] suggest this has minimal impact on τ̂ 2. By making this assumption, it

follows that the posterior distribution will also be an inverse-gamma distribution with

parameters η = η0 + (k/2) and λ = λ0 + (kτ 2/2) [35] . τ 2 in this case represents the

heterogeneity variance from the data, for which Higgins et al. [50] suggests using the

DL estimate (section 2.2.1). A posterior estimate of τ 2 can be derived by substituting

the formulas for the posterior parameters η and λ into the formula for the mean of

an inverse-gamma distribution:

τ̂ 2AB =
λ

η − 1
=

2λ0 + kτ̂ 2DL
2 (η0 − 1) + k

The prior distribution for τ 2 has mean λ0/ (η0 − 1), implying the expected value of

λ0 is τ̂
2
0 (η0 − 1). This can be substituted into the formula for τ̂ 2AB above:

τ̂ 2AB =
2τ 20 (η0 − 1) + kτ̂ 2DL

2 (η0 − 1) + k

This last step is carried out because it is often easier to de�ne a prior value for

τ 20 than the spread parameter λ0. To calculate τ̂ 2AB, we must provide two of three

prior values for τ 20 , η0 and λ0. In the context of sequential meta-analysis in the

original publication [50], τ 20 is the estimate of τ 2 from the previous update to the

meta-analysis. Outside of this context, τ 20 can represent our best estimate from prior

beliefs.
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2.6.3 Bayes modal (BM)

Bayes Modal (BM) can estimate τ 2 numerically without the need for MCMC meth-

ods. It imposes a gamma prior distribution for τ [16, 17]:

p (τ ; η, λ) =
1

Γ (α)
τα−1e−λτ

α and λ are the shape and scale parameters de�ned from prior information. Chung

et al. [16] suggest using α = 2 and λ ≈ 0 for a vague prior. The gamma distribution

is chosen because it has the property p (τ = 0; η, λ) = 0 for any α or λ, thus avoid-

ing zero estimates of τ 2 from the posterior. The density function of the posterior

distribution can be derived if we assume an improper uniform prior for θ:

p (τ, θ) = lML

(
θ, τ 2

)
+ (α− 1) logτ − λτ + c

where c is an unde�ned constant and lML (θ, τ 2) is the log-likelihood function (2.10).

Software packages are available to �nding estimates of (τ, θ) that maximise the above

equation such as lmer in R and gllamm in Stata [17]. The BM estimator can al-

ternatively be considered a maximum likelihood approach with a penalty imposed to

avoid zero estimates; the above log-likelihood is that of lML (θ, τ 2) with added terms

[17].

2.6.4 Rukhin's approach

Rukhin [93] proposed two semi-Bayesian heterogeneity variance estimators. These

di�er from estimators derived from a more typical Bayesian approach, which involves

specifying prior distributions for the unknown parameters and requires MCMCmeth-

ods �t observed data to the model. Rukhin's estimators are more simple to compute

and only require a �xed prior estimate of τ 2, denoted τ̂ 20 .
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Rukhin's estimators are derived from a generalised version of method of moments

from section 2.2. He �rst explicitly derives the formula for V ar (τ̂ 2) under this uni�ed

approach. Then, his general formula �nds τ̂ 2 such that V ar (τ̂ 2) is locally minimised

around the prior estimate of τ 2. I refer the reader to the original paper for a detailed

derivation of this approach [93]. The general formula for Rukhin's heterogeneity

variance estimators is:

τ̂ 2RB =

∑k
i=1

(
θ̂i − θ̂

)2
k + 1

+

(∑k
i=1 (n1i + n2i)− k

)(
2kτ̂ 20 − (k − 1)

∑k
i=1 σ̂

2
i

)
(∑k

i=1 (n1i + n2i)− k + 2
)
k (k + 1)

(2.13)

where n1i and n2i are the sample sizes in intervention groups one and two, θ̂ =∑k
i=1

(
θ̂iŵi

)
/
∑k

i=1 ŵi and ŵi = (σ̂2
i + τ̂ 20 )

−1
.

Rukhin [93] proposed two formulae for τ̂ 20 :

1. τ̂ 20 = 0, which leads to following heterogeneity variance estimator (B0):

τ̂ 2B0 =

∑k
i=1

(
θ̂i − θ̂

)2
k + 1

+

(∑k
i=1 (n1i + n2i)− k

)
(k − 1)

(∑k
i=1 σ̂

2
i

)
(∑k

i=1 (n1i + n2i)− k + 2
)
k (k + 1)

2. τ̂ 20 = 0.5 (k − 1)
∑k

i=1 (σ̂2
i ) /k, which leads to (BP):

τ̂ 2BP =

∑k
i=1

(
θ̂i − θ̂

)2
k + 1

For a given k, τ̂ 2BP is a �xed proportion of the total sample variance V ar
(
θ̂
)

=

(k − 1)−1∑k
i=1

(
θ̂i − θ̂

)2
. There is little logic for this relationship, so BP is unlikely

to have good properties. Rukhin [93] suggested this prior for τ 2 only to simplify the

general formula 2.13.
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Another estimator, which forms a part of the same approach, assumes σ2
i to be

known. This estimator is given by the formula:

τ̂ 2SB =

∑k
i=1

(
θ̂i − θ̂

)2
k + 1

+
2τ̂ 20 k − (k − 1)

∑k
i=1 σ̂

2
i

k (k + 1)

Prior estimates τ̂ 20 must be speci�ed to calculate τ̂ 2SB, but Rukhin [93] made no

speci�c suggestions.

2.7 Malzahn, Böhning and Holling (MBH)

Malzahn et al. [74] proposed a τ 2 estimator that makes no assumption on how θi are

distributed. The estimator can only be applied to SMD meta-analyses, the outcome

measure I introduced in section 1.3.1. First, formulae for the typical variance of θi

are derived under both �xed-e�ect and random-e�ects assumptions. An estimate of

τ 2 is then derived by taking the di�erence between the two variances, this results in:

τ 2MBH =

(
1

k − 1

) k∑
i=1

(1−Ki)
(
θ̂i − θ̂CA

)2
− 1

k

k∑
i=1

(
n1i + n2i

n1in2i

)
− 1

k

k∑
i=1

(
Kiθ̂

2
i

)

where Ki = 1 − ((Ni − 2) /NiJ
2
i ), Ni = n1i + n2i − 2, θ̂CA =

∑k
i=1 θ̂i/k and Ji =

1−3/ (4Ni − 1). Ji is the bias correction factor proposed by Hedges [43] and already

introduced in section 1.3.1.

2.8 Alternative within-study variance estimates

All heterogeneity variance estimators in this chapter are dependent on within-study

variances. So far in this chapter, I assumed within-study variances have been calcu-

lated by conventional means as introduced in chapter 1. Two other methods have
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been proposed to improve within-study variance estimates, which then in theory lead

to improved heterogeneity variance estimates. All alternative methods identi�ed and

presented in this section can only be applied to binary outcome meta-analyses.

2.8.1 Bhaumik et al (2012)

Bhaumik et al. [3] proposed an alternative method of calculating within-study vari-

ances in meta-analyses with an odds ratio outcome measure and rare events. The

method works by allowing studies to borrow strength from the other studies in a

meta-analysis and in doing so assumes within-study variances are equal. Within-

study variances are estimated by the following:

σ̂2
i =

1

n1i + 1

[
exp

(
−odds2 − θ̂CA +

τ̂ 2

2

)
+ 2 + exp

(
odds2 + θ̂CA +

τ̂ 2

2

)]
+

1

n2i + 1
[exp (−odds2) + 2 + exp (odds2)]

where odds2 are the observed odds of an event in the group 2 of study i, θ̂CA is

the equally-weighted combined e�ect estimate as in section 2.2.2 with a continuity

correction to deal with zero events 2.2.2.

In the original paper [3], τ̂ 2 is calculated using the PM estimator from section 2.2.4.

However, these alternate estimates of σ2
i could be applied to any other τ 2 estimator.

2.8.2 Berkey et al (1995) and Knapp & Hartung (2003)

Berkey et al. [2] proposed a smoothed estimator of the within-study variances in

meta-analyses with a relative risk outcome measure. The idea was introduced to

reduce correlation between the relative risk estimate and the within-study variances:
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σ̂2
i =

1

k · n1i

k∑
i=1

(
n1i − ai
ai

)
+

1

k · n2i

k∑
i=1

(
n2i − ci
ci

)

where ai and ci are the number of events in treatment groups 1 and 2 respectively.

Knapp and Hartung [61] proposed an adapted version that includes a continuity

correction:

σ̂2
i =

1

k · n1i

k∑
i=1

(
n1i − ai + 0.5

ai + 0.5

)
+

1

k · n2i

k∑
i=1

(
n2i − ci + 0.5

ci + 0.5

)

These estimators cannot be applied to other binary outcome meta-analyses, where

the outcome is for example an odds ratio [86].

2.9 A summary of methods

In this chapter, I reviewed methods for estimating the heterogeneity variance in a

random-e�ects meta-analysis. A complete list of methods is given in table 2.1.

The estimators share many methodological aspects in common and can be grouped

into the following categories. Method of moments estimators are derived from a

generalised Q-statistic with weights that depend on the speci�c estimator being

used. Other moments based estimators include HM, SJ and SJCA, which were de-

veloped so that the heterogeneity variance is positive in all meta-analyses. Max-

imum likelihood estimators are derived from maximising the log-likelihood function

of a random-e�ects model assuming normality; these estimators include ML, REML

and its approximate version (ARML). Bayesian estimators are derived from Bayes

rule of conditional probabilities and take into account prior beliefs about the model

parameters. Alternative methods for estimating the within-study variances in sec-

tion 2.8 are not strictly heterogeneity variance estimators, but have been proposed

to improve its estimates indirectly.
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Estimator Acronym Section

Method of moments approach (section 2.2)

DerSimonian-Laird DL 2.2.1

Positive DerSimonian-Laird DLP 2.2.1

Cochran's ANOVA CA 2.2.2

Paule-Mandel PM 2.2.4

Two-step Cochran's ANOVA PMCA 2.2.5

Two-step DerSimonian-Laird PMDL 2.2.5

Other non-truncated moments-based approaches (section 2.3 and 2.4)

Hartung-Makambi HM 2.3.1

Sidik-Jonkman SJ 2.4

Sidik-Jonkman (CA initial estimate) SJCA 2.3.2

Hunter-Schmidt HS 2.4

Maximum likelihood approach (section 2.5)

Maximum Likelihood ML 2.5.1

Restricted Maximum Likelihood REML 2.5.2

Approximate Restricted Maximum Likelihood ARML 2.5.3

Bayesian approach (section 2.6)

Full Bayes FB 2.6.1

Approximate Bayes AB 2.6.2

Bayes modal BM 2.6.3

Rukhin (zero prior) B0 2.6.4

Rukhin (simple) BP 2.6.4

Rukhin (alternate) SB 2.6.4

Bootstrap approach

Bootstrap DerSimonian-Laird DLB 2.2.1

SMD outcome only

Malzahn, Böhning and Holling MBH 2.7

Table 2.1: Summary of heterogeneity variance estimators

Some heterogeneity variance estimates are easier to compute than others. Many

can be expressed explicitly, such as DL, and are therefore simple to compute. PM

and estimators derived from the maximum likelihood approach require a process

of iteration to converge to a solution; this is because they de�ne random-e�ects

study weights that include the heterogeneity variance parameter. Alternatives to

PM have been proposed that that restrict the process of iteration to two-steps; those

proposed under the method of moments approach in section 2.2.5 and Sidik and

Jonkman estimators in section 2.3.2. The full Bayesian method requires MCMC
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simulation methods to converge to a solution. Researchers have often favoured the

more simple methods [64, 95, 101]. However, I believe reliable iterative methods

should not be considered inferior to simple methods on this basis alone, particularly

when software packages exist that automate the process and always converge to the

optimal estimate for the given method.

Heterogeneity variance estimators introduced in this chapter require statistical as-

sumptions, of which many are unlikely to hold. A frequent assumption is that within-

study variances are known, when in practice they can only be estimated from the

study data. When estimated within-study variances account for more than the ob-

served total variance (i.e. when they are overestimated), methods such as DL produce

a heterogeneity variance estimate truncated to zero as it would otherwise be negative.

Only the full Bayesian method in section 2.6.1 does not require this assumption.

The maximum likelihood estimators assume that true study e�ects are normally

distributed. The validity of this assumption has been questioned in medical meta-

analyses [11, 28, 48]. The assumption is particularly questionable in the presence

of publication or reporting bias [92] or in binary outcome meta-analyses with small

study sample sizes [116]. A typical check for normality, such as that proposed by

Egger et al. [27], often lacks su�cient power [11]. We also typically make the as-

sumption of normally distributed e�ects in the Bayesian approach, but other more

�exible distributions can be assumed.

2.10 Example meta-analysis

I present a meta-analysis of studies comparing hawthorn extract with placebo for

treatment of chronic heart failure [82] to put the methods outlined in this chapter

into context. The primary outcome is 'maximum work load' measured in METS

(metabolic equivalents), which captures the amount of oxygen consumed and groups

are compared by a mean di�erence (the outcome measure introduced in section 1.3.1).
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The results of each study are presented graphically in the form of a forest plot in

�gure 2.1. All studies had positive e�ect estimates in favour of hawthorn extract but

only Zapfe [129] was statistically signi�cant at the 5% level.

Figure 2.1: Forest plot with �ve studies in a meta-analysis evaluating
hawthorn extract for chronic heart failure

Table 2.2 shows estimates of the heterogeneity variance according to most methods

introduced in this chapter along with the associated estimate of I2 (calculated using

formula 1.6 in the last chapter). Estimates of the heterogeneity variance ranged from

0 (using Cochran's ANOVA method) up to 24.56 (using Rukhin's simple estimator,

BP). Corresponding I2 estimates range from 0% to 53.1%. All other estimators

derived from the method of moments approach, except Cochran's ANOVA, have

relatively similar τ 2 estimates (DL, DLP, PM, PMCA, PMDL). Sidik and Jonkman

estimators (SJ and SJCA) has wildly di�erent estimates despite being methodolo-

gically similar; this is perhaps because SJCA uses the small initial estimate derived

from Cochran's ANOVA, which results in a �nal estimate of CA's truncated value.

HM is also a non-truncated estimator and has a relatively large heterogeneity vari-

ance estimate (τ 2 = 11.14). There is a large di�erence between ML and REML

heterogeneity variance estimates, despite their methodological similarity.

I use the same meta-analysis as an example in the next chapter, to show how dif-
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ferences in heterogeneity estimates impact on the summary e�ect and its con�dence

interval.

Estimator τ̂ 2 Î2 Estimator τ̂ 2 Î2

DL 6.56 23.2 ML 1.27 5.5
DLP 6.56 23.2 REML 9.31 30.0
CA 0 0.0 ARML 7.16 24.8
PM 5.88 21.3 AB ** 6.56 23.2

PMCA 6.56 23.2 BM 5.48 20.2
PMDL 5.78 21.1 B0 2.47 10.2
HM 11.14 33.9 BP 24.56 53.1
SJ 13.93 39.1 DLB 4.39 16.8

SJCA 0.01 0.1 MBH * - -
HS 0.80 3.6

Table 2.2: Heterogeneity variance estimates derived from di�erent methods
and associated I2 estimates

*Malzahn, Böhning and Holling's estimator (MBH) could not be calculated as
study e�ects are not on the standardised scale

**Approximate Bayes estimate based on τ 2 = 0 and η = 1 priors.

2.11 Conclusions

In this chapter, I reviewed methods for estimating the heterogeneity variance in

a random-e�ects meta-analysis. I described how they are derived, their formulae,

methodological similarities and weaknesses. I identi�ed 20 distinct methods for het-

erogeneity variance estimation. Some of these methods have only recently been

proposed, such as those by Rukhin [93]; these are unlikely to have been compared

extensively with pre-existing methods in simulated or empirical data.

I have previously mentioned the weaknesses of the commonly used DerSimonian-

Laird method that have been brought to light in the literature [78, 79, 124]. The

numerous alternatives as outlined in this chapter suggests there may exist one or

more methods with better properties. It is imperative that the properties of these
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estimators are better understood so that informed recommendations can be made

for frequentist random-e�ects meta-analysis.
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Chapter 3

Methods for con�dence intervals of

the summary e�ect
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3.1 Introduction

The impact of using a heterogeneity variance estimator in random-e�ects meta-

analysis extends beyond its point estimate. In order to perform a comprehensive

comparison of heterogeneity variance estimators in this thesis, I also compare these

estimators in terms of their impact on the summary e�ect and its con�dence interval.

I focus only on the inverse variance method for calculating estimates of the summary

e�ect, as described in section 1.6 of the introduction chapter.

Selected con�dence interval methods are introduced in this chapter that will be used

throughout the rest of this thesis; a comprehensive review is not required because

these methods are not the main focus. Con�dence interval methods introduced in this

chapter include Wald-type (section 3.2), t-distribution (section 3.3) and Hartung-

Knapp con�dence intervals (section 3.4). The Wald-type con�dence interval is cur-

rently reported as standard in meta-analyses in Cochrane reviews [51]. The other

two methods are included because they have shown promising results in simulation

studies [61, 93, 96] and are methodologically diverse. None of the chosen methods

are theoretically related to a speci�c heterogeneity variance estimator, meaning any

heterogeneity variance estimate can be used to derive a con�dence interval. This is

a key characteristic given the aims of this thesis. Other methods can be found in the

literature [11, 12, 37, 45, 83, 96]. For example, the pro�le likelihood method [37] is

based on the same log-likelihood function as the maximum likelihood heterogeneity

variance estimator.

All con�dence interval methods included in this chapter can be adapted for both

random and �xed-e�ect meta-analysis. Given the focus of this thesis, I present

these methods assuming random-e�ects. The methods can also be adapted for any

con�dence level; I present their generalised form in this chapter but I focus on the

95% con�dence level in the rest of this thesis.

Many con�dence interval methods are also available to express uncertainty around

the heterogeneity variance estimate [60, 125]. These methods will not be considered
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as the scope of this thesis is limited to the impact on point estimates of the hetero-

geneity variance, subsequent summary estimates and their con�dence intervals.

3.2 Wald-type con�dence interval

The Wald-type con�dence interval is most commonly used in meta-analysis, and is

previously described in the introduction chapter (section 1.6). Recall [25, 100]:

[
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(
1− α

2

)
·
√
V arW

(
θ̂
)
, θ̂ + Φ−1

(
1− α

2

)
·
√
V arW

(
θ̂
)]

Φ−1
(
1− α

2

)
is the

(
1− α

2

)
th percentile of the normal distribution and, for a 95%

con�dence interval, set α = 0.05. V arW

(
θ̂
)
is the variance of the summary e�ect

and is calculated by the formula:

V arW

(
θ̂
)

=
1∑k

i=1 (ŵi)
(3.1)

where ŵi = 1/ (σ̂2
i + τ̂ 2) and k is the number of studies in the meta-analysis.

This con�dence interval method assumes that study e�ect estimates (θ̂i) follow a nor-

mal distribution [12]. Also, the method assumes τ 2 and σ̂2
i are known, but estimates

of these parameters are used in practice [11, 96].

3.3 t-distribution con�dence interval

The t-distribution con�dence interval for the summary e�ect addresses the small

sampling bias of the Wald-type con�dence interval, and is therefore thought to im-

prove coverage [28]:
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tk−1

(
1− α

2

)
is the

(
1− α

2

)
th percentile of the t-distribution with k − 1 degrees of

freedom. V arW

(
θ̂
)
is the same variance estimate as for the Wald-type con�dence

interval and makes all the same assumptions.

3.4 Hartung-Knapp con�dence interval

The Hartung-Knapp method [38�40] also relies on a t-distribution with k−1 degrees

of freedom and uses an alternative weighted variance of θ. I stated the formula for

this weighted variance in the last chapter, as it was used to derived SJ estimators of

the heterogeneity variance (section 2.3.2). Its formula can be derived as follows.

If we make the assumption that random-e�ects weights ŵi = 1/ (σ̂2
i + τ̂ 2) are known,

then:

θ̂ − θ√
1/
∑k

i=1 ŵi

∼ N (0, 1)

and

k∑
i=1

ŵi

(
θ̂i − θ̂

)2
∼ χ2

k−1

Since these two variables are independent (as proven by Hartung [38] and Sidik and

Jonkman [100]), and by de�nition of the t-distribution, we can derive:

N (0, 1)√
χ2
k−1/ (k − 1)

=

(
θ̂ − θ

)/√
1/
∑k

i=1 ŵi√∑k
i=1 ŵi

(
θ̂i − θ̂

)2/
(k − 1)

∼ tk−1 (3.3)
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Given that
(
θ̂ − θ

)/√
V ar

(
θ̂
)
∼ tk−1, we can equate this to equation 3.3 above

and derive the following formula for the weighted variance:

V arHK

(
θ̂
)

=

∑k
i=1 ŵi

(
θ̂i − θ̂

)2
(k − 1)

∑k
i=1 ŵi

and thus the Hartung-Knapp con�dence interval is:
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(3.4)

This method is the equivalent to the t-distribution method in the last section, but

the variance is multiplied by a scaling factor as explained by Sidik and Jonkman

[100]. In many cases, the scaling factor can be < 1, which leads to a narrower

con�dence interval that the Wald-type method. A variation on this method have

been proposed to deal with this problem by constraining the scaling factor to be ≥ 1

[61]. Throughout this thesis, the original Hartung-Knapp method without constraint

will be used.

As with the other two con�dence intervals in this chapter, the variance components

are assumed to be known and study e�ects normally distributed.

3.5 Example meta-analysis

I now revisit the example meta-analysis from section 2.10 comparing hawthorn ex-

tract with placebo for increasing maximum workload in patients with chronic heart

failure. I present its summary e�ect and 95% con�dence interval according to all com-

binations of heterogeneity variance and summary e�ect con�dence interval estimation
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methods (16 heterogeneity variance methods and 3 con�dence interval methods). All

results of this meta-analysis are plotted in �gure 3.1.

The heterogeneity variance estimate was zero according to Cochran's ANOVAmethod

and more than zero for all other methods (see section 2.10). A narrower con�dence

interval is observed when Cochran ANOVA's zero estimate is used as shown in �gure

3.1. Similarly, Rukhin's simple estimator (BP) estimated the highest heterogeneity

variance (τ̂ 2 = 24.56) and lead to the widest con�dence intervals. Summary e�ects

are fairly consistent between methods, but con�dence interval widths di�er more

signi�cantly when Wald-type and t-distribution methods are used. Hartung-Knapp

con�dence intervals appear more robust to changes in the heterogeneity variance

estimate. Only Wald-type con�dence intervals produced a statistically signi�cant

result at the 5% level.

3.6 Concluding remarks

In this chapter, I described three con�dence intervals proposed for the summary

e�ect in random-e�ects meta-analysis; namely Wald-type [25], t-distribution [28]

and Hartung-Knapp con�dence intervals [38].

The Wald-type con�dence interval for the summary e�ect is most commonly used

in meta-analysis. This method, coupled with the DerSimonian-Laird estimator of

the heterogeneity variance, is often referred to as the DerSimonian-Laird approach

to random-e�ects meta-analysis [25]. However, I associate DerSimonian-Laird solely

with the heterogeneity variance estimator in this thesis. Wald-type con�dence inter-

vals, and the other two methods introduced in this chapter, can be calculated with

any heterogeneity variance estimator.

In this chapter, I also presented these methods in the context of a real meta-analysis

to show the choice of methods can lead to di�erent con�dence interval estimates. I
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Figure 3.1: The summary e�ect and 95% con�dence interval for all
combinations of heterogeneity variance and con�dence interval methods
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compare heterogeneity variance estimators in more empirical meta-analysis data in

the next chapter.
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Chapter 4

An empirical comparison of

heterogeneity variance estimators
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4.1 Introduction

In this chapter, I assess the impact of using di�erent heterogeneity variance es-

timators on published meta-analyses, using empirical data derived from a complete

snapshot of the Cochrane Database of Systematic Reviews (CDSR) up to 2008 [107].

Because the Cochrane Collaboration's Review Manager software [87] is used to write

all Cochrane reviews, the data are formatted in a highly consistent way. Results

from each study of each meta-analysis could therefore be extracted, including type

of outcome, sample size, 2Ö2 tables for dichotomous outcomes, and means with

standard deviations for continuous outcomes. Extraction of the data is described

in more detail elsewhere [21]. Permission to use the dataset for this analysis was

granted by Rebecca Turner, who is acknowledged in the front matter of this thesis.

These data allowed me to look at (1) the magnitude of di�erences in heterogeneity

variance estimates in practice, (2) the impact of the choice of heterogeneity variance

estimator on conclusions and (3) the extent to which recommendations of the best

heterogeneity variance estimator are required. I also examine two selected examples

from the dataset, where di�erences between estimation methods are particularly

prominent.

This chapter expands on a previous empirical study to compare statistical inference

between heterogeneity variance estimators [117]. Limitations of the previously pub-

lished study were as follows. First, estimates were compared from only �ve methods

(DL, CA, HM, SJ and REML) so I compare many more (as detailed in section 4.2.1).

Second, estimates were transformed to the scale of the D2 statistic [127] and com-

pared on this scale as a measure of agreement. The D2 statistic is a measure of the

degree of heterogeneity and, much like the I2 statistic, takes values between 0% and

100%. The issue is the D2 statistic is rarely used in practice, so I compare estim-

ates on the scale of the I2 statistic (more details and reasoning are given in section

4.2.4). Furthermore, the previous study is based on 920 meta-analyses; I conduct

my analysis on 12,894 empirical meta-analyses to gain more precise estimates of
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agreement.

4.2 Methods

4.2.1 Included methods for estimating the heterogeneity vari-

ance

I present a comparison of seven methods for estimating the heterogeneity variance

in a meta-analysis: DerSimonian-Laird (DL) [25], Cochran's ANOVA (CA) [59],

Paule-Mandel (PM) [80], Hartung-Makambi (HM) [40], Sidik-Jonkman (SJ) [101],

maximum likelihood (ML) [37] and restricted maximum-likelihood (REML) [41].

These seven estimators were selected from the comprehensive list in chapter 2 because

of their popularity and availability in statistical software. DL is derived from the

method of moments approach to heterogeneity variance estimation and is the most

frequently used heterogeneity variance estimator in practice. It is the default method

in the Stata command metan and is currently the only method implemented in

RevMan software [22]. CA assigns equal weightings to studies and represents a

simple alternative to DL. PM assigns random-e�ects weights to studies, which are

considered the statistically optimal weights in the method of moments approach [24].

REML is the default method in the R package metafor [126]. ML is a widely-used

approach to statistical parameter estimation and is therefore also included in this

analysis. In contrast to these estimators, HM and SJ were selected as non-truncated

estimators that always estimate a positive heterogeneity variance.

I stated in chapter 2 that the PM estimator can theoretically be interpreted as a

simple approximation of the REML approach in speci�c situations [94]. The extent

of agreement between PM and REML estimates has not been investigated in other

empirical studies [117] so both estimators are included and compared here.

Results in this chapter are representative of a comparison of all heterogeneity variance
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estimators. To demonstrate this, many of the estimators not included in the main

text are given in �gure B.1 in the appendix. This �gure shows a comparison between

two included methods (DL and REML) and many that are excluded (PMCA, PMDL,

HS, SJCA and ARML). I also exclude Bayesian methods that rely on a subjective

choice of prior distribution because of di�culties de�ning these distributions out of

context. Rukhin's estimators [93] are excluded because simulations results later in

this thesis show they have poor properties. The estimator proposed by Malzahn,

Böhning and Holling [74] is excluded because it can only be used in meta-analyses

with a standardised mean di�erence outcome measure. I exclude bootstrapping

because the approach could theoretically be applied to any heterogeneity variance

estimator.

4.2.2 Empirical study dataset

A complete re-analysis of all meta-analyses in the CDSR dataset was possible from

the study-level data available. I re-conducted all meta-analyses of dichotomous or

continuous outcomes containing at least three studies. Those containing two stud-

ies were excluded from the results because it is arguably inappropriate to estimate

heterogeneity in such cases. E�ect estimates and standard errors were calculated

for all studies from basic summary statistics. I calculated the log odds ratios for

all dichotomous outcome meta-analyses and standardised mean di�erences for all

continuous outcome meta-analyses. Hedges' g method was used to estimate stand-

ardised mean di�erence e�ects, which corrects for bias caused by small sample sizes

[8] and is detailed in section 1.3.1.

4.2.3 Summary statistics

I used four summary statistics to compare the seven estimation methods: (i) the

estimated heterogeneity variance, (ii) the estimated summary e�ect from a random-

e�ects meta-analysis, (iii) the estimated standard error of the summary e�ect, and
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(iv) the p-value for this result. These statistics were chosen because they are the

key statistics used to draw inference from a meta-analysis and may be a�ected by

the estimated heterogeneity variance. Furthermore, by comparing standard errors,

I can also compare the widths of con�dence intervals of the summary e�ect because

con�dence interval formulae for all included methods are otherwise independent of

τ̂ 2.

I calculated standard errors and hence p-values for the overall summary e�ect (i.e.

summary statistics (iii) and (iv) above) using both Wald and Hartung-Knapp meth-

ods (i.e. two of the three methods outlined in chapter 3). The Wald method is the

currently used as standard in Cochrane meta-analyses [51] and was introduced in

section 1.6. The Hartung-Knapp method uses an alternative weighted standard er-

ror of the summary e�ect and derives a p-value from the t-distribution. This method

was introduced in section 3.4 and derived from the same approach as the Hartung-

Knapp con�dence interval for the summary e�ect. I omitted p-values based on the

t-distribution method outlined in section 3.3 because they are based on the same

formula for the variance as the Wald-type method and therefore results would be be

similar.

4.2.4 Data analysis

I illustrate pair-wise agreement between results from di�erent estimation methods

using Bland-Altman plots [5], thereby illustrating how the discrepancy between two

methods depends on the underlying value of the parameter (estimated as the average

result across the two methods). Pair-wise plots are arranged in a matrix to facilitate

simultaneous comparison of each method with all others. Bland-Altman plots are

used to examine the �rst three of our four summary statistics (heterogeneity variance,

summary e�ect and precision of summary e�ect). I superimpose non-parametric 80%

reference ranges on the same plots to illustrate the spread of agreement. To calculate

the 80% reference ranges, I split meta-analyses into groups of 200 according to their
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order on the x-axis and calculated the 10th and 90th percentiles of the discrepancies.

The plotted reference range is a smoothed line between the calculated percentiles.

Bland-Altman plots traditionally present raw di�erences between parameter estim-

ates on the y-axis, but precisions of the summary e�ect are compared as a ratio for

two reasons: (1) They naturally conform to a log-normal distribution. (2) By includ-

ing precision of the summary e�ect in this analysis, I can also compare the widths of

summary e�ect con�dence intervals and these comparisons are more meaningful on

the ratio scale. For example, a con�dence interval that is half the width of another

is half as likely to include the null value with all else being equal. Heterogeneity

variance estimates also have a skewed distribution in practice [21], but I apply a

transformation as detailed below and present raw di�erences.

I sought to measure discrepancies between heterogeneity variance (τ 2) estimates on

an appropriate scale that would maximise the generalisability of the results and be

intuitively interpretable. The most obvious option is to present the raw di�erences

of τ 2 estimates, but the scale of these di�erences is too dependent on the average

τ 2 estimate (as shown in appendix A.1). Therefore, I transformed τ 2 estimates to

the scale of the I2 statistic and present their raw di�erences (see equation 1.6 for I2

in the introduction chapter). I consider this a transformation because all parameter

estimates other than the heterogeneity variance estimate τ 2 remain �xed between

methods. Di�erences in I2 statistics re�ect only di�erences in values of τ 2.

The summary e�ect and its standard error depend on the scale of measurement.

Therefore, I multiplied standardised mean di�erences and standard errors from each

continuous meta-analysis by a value of 1.81 to obtain a result that is approximately

comparable to a log odds ratio [15]. The I2 statistic and p-values for the sum-

mary e�ect are independent of the scale of measurement and so do not require a

transformation. I carried out separate analyses on continuous and binary outcome

meta-analyses, but since I found no di�erence between the results I present results

with all meta-analyses combined.
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I compared p-values of the summary e�ect by tabulating categories of levels of statist-

ical signi�cance. First, p-values were dichotomised at the 5% level to explore agree-

ment for the threshold most commonly applied in practice. Second, p-values were

categorised to represent a wider range of levels of statistical signi�cance: p ≤ 0.01,

0.01 < p ≤ 0.05, 0.05 < p ≤ 0.1 and p > 0.1. I considered p-values that di�er by at

least 2 categories on this �ner scale to be su�ciently di�erent to change inference. I

recognise the limitations of using statistical signi�cance to draw inferences [110, 117],

but also appreciate their widespread use.

In a secondary analysis, I explored whether the level of agreement between hetero-

geneity variance estimates can be explained by two meta-analysis characteristics;

the number of studies (k) and the total information (V ). Hardy and Thompson [37]

de�nes the total information as V =
∑k

i=1 ŵi , which takes into account the number

and sizes of studies. Hardy and Thompson [37] found using simulations that the

power to detect heterogeneity (using the Q-statistic from section 1.7.1) depends on

these characteristics, so I explored whether they also a�ect the level of agreement

between heterogeneity variance estimators. I illustrate their e�ects using the same

plots of pair-wise agreement as for the main analysis, but with the the number of

studies and total information on the x-axes.

4.3 Results

A summary of the characteristics of meta-analyses in the CDSR is presented in

section 4.3.1. Heterogeneity variance estimators are compared in sections 4.3.2 to

4.3.5 for each of the four summary statistics. In section 4.3.6, I show whether the

level of agreement between heterogeneity variance estimates is a�ected by two meta-

analysis characteristics.
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4.3.1 A summary of CDSR meta-analyses

The 2008 version of the CDSR contains 22,453 meta-analyses, of which I excluded

9559 (42.6%). 8641 meta-analyses were excluded because they contain fewer than

three studies and the remaining 918 meta-analyses were excluded because the type of

outcome measure is missing or something other than binary or continuous. A total

of 12,894 meta-analyses from 1817 systematic reviews are included in these analyses.

Type of outcome Outcome measure N (%)

binary odds ratio 3295 (26%)

relative risk 5568 (43%)

risk di�erence 116 (1%)

continuous standardised mean di�erence 948 (7%)

mean di�erence 2967 (23%)

Total 12,894

Table 4.1: The original outcome measures of included meta-analyses from the
CDSR

8979 (70%) included meta-analyses have a dichotomous outcome and 3915 (30%)

have a continuous outcome (as shown in table 4.1). I calculated odds ratio outcome

measures for all binary outcome meta-analyses in this analysis, of which 3295 (37%)

use this measure in the original publication. For continuous meta-analyses, I calcu-

lated a standardised mean di�erence outcome measure, of which 948 (24%) originally

used this measure.

Figure 4.1 shows the numbers of studies contained in included meta-analyses from

the CDSR dataset. Having excluded those that contain fewer than three studies,

the median number of studies is 4 (inter-quartile range 3-7) and 11,009 (85.4%)

meta-analyses contain fewer than 10 studies.

Figure 4.2 shows the distribution of DL estimates of the heterogeneity variance and

I2 statistics for both dichotomous outcomes (based on odds ratios) and continuous

outcomes (based on standardised mean di�erences). The DL method estimated τ̂ 2 =

0 for 4395 (49%) dichotomous outcome meta-analyses and 1315 (33.6%) continuous-

outcome meta-analyses.
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Figure 4.1: The numbers of studies included in all 2,894 meta-analyses

4.3.2 Agreement between heterogeneity variance estimates

I present in �gure 4.3 Bland-Altman plots of pair-wise agreement between heterogen-

eity variance estimates, expressed on the I2 scale, for the seven estimation methods:

Cochran's ANOVA (CA), DerSimonian-Laird (DL), Paule-Mandel (PM), Hartung-

Makambi (HM), Sidik-Jonkman (SJ), ML and REML. The plots show the di�erence

between two I2 statistics for a particular pair of methods on the y-axes as a measure

of agreement. 80% reference ranges are shown by the thick red lines. Because I2

values depend both on between-study variance and within-study variance, the ho-

rizontal positioning of the meta-analyses on this scale is a�ected by both of these:

meta-analyses to the left have either low heterogeneity or high within-study vari-

ance (or both), and those to the right have high heterogeneity or low within-study

variance.

There is a relatively high level of agreement between DL and PM estimates of I2, with

perfect agreement when estimates of the heterogeneity variance are zero. In few cases

do DL and PM estimates of I2 di�er by more than 25% in absolute value. There is

also relatively high agreement between SJ and HM estimates when I2 < 25% because

neither method produces zero heterogeneity variance estimates. SJ estimates of I2
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Figure 4.2: The distribution of τ2 and I2 estimates for OR and standardised
mean di�erence meta-analyses calculated from the DL method.

Frequencies expressed as a percentage.

are generally larger than other estimates. REML has low agreement with both DL

and PM estimators when I2 < 75%. ML generally produces lower I2 estimates than

other methods in all comparisons. Apart from the reasonable agreement observed

between DL and PM, all other comparisons show a low level of agreement where in

many cases one method estimates I2 = 0% and the other estimates I2 > 50%. In

particular, CA I2 estimates have low agreement with all other I2 estimates. Points

which make up straight diagonal lines seen in most plots show where one estimate

is I2 = 0% and the other is positive; extreme di�erences in I2 estimates occur more

frequently in these cases. There appears to be less agreement between estimates

when the average I2 (x-axis) is around 50% and a high level of agreement close to

0% or 100%; this however is largely because absolute di�erences in I2 estimates have

a limited range when the average is close to the upper and lower limits of I2.
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Figure 4.3: Bland-Altman scatter plots comparing I2 estimates from di�erent
heterogeneity variance methods.
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Figure 4.4: Bland-Altman scatter plots comparing summary e�ect estimates
using di�erent heterogeneity variance estimation methods.

θ estimates represent log odds ratios, including standardised mean di�erences in
continuous outcome meta-analyses converted to the same scale
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4.3.3 Agreement between summary e�ects

Figure 4.4 shows Bland-Altman plots of the pair-wise agreement between summary

e�ects. These are expressed as log odds ratios, calculated either from a dichotom-

ous outcome meta-analysis or from a continuous outcome meta-analysis after being

transformed to the log odds ratio scale as detailed in the methods section. Summary

e�ects agree most between DL, PM and REML heterogeneity variance estimators.

However, the level of agreement is high for all pair-wise comparisons, in most cases

di�ering by a negligible amount. Some 80% reference ranges appear to show poor

agreement far from the null value; this is most likely because extreme summary

e�ects are few in number and as such have considerable impact on the reference

range. The agreement of summary e�ects between REML and all other heterogen-

eity variance estimators appear to depend on whether the summary e�ect is positive

or negative. None of the methods depend on the direction of e�ect, so such e�ects

are due to chance alone or due to di�erences in characteristics of meta-analyses with

positive and negative e�ects.

4.3.4 Agreement between precision of the summary e�ect

Figure 4.5 shows Bland-Altman plots of the level of agreement between standard

errors of the summary e�ect. The upper-right panel displays agreement of Wald

standard errors and the lower-left displays agreement of Hartung-Knapp weighted

standard errors. Agreement is measured as a ratio of standard errors (equivalently

a ratio of con�dence interval widths), and plotted on the log-scale.

Results suggest that changing the heterogeneity variance estimator can possibly halve

or double the size of Wald standard errors. These standard errors agree most for

the pair-wise comparisons DL v PM and DL v HM. The SJ estimator in most meta-

analyses produced higher standard error than other heterogeneity variance estim-

ators; this is expected given that the SJ estimate of I2 was higher than other I2
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Figure 4.5: Bland-Altman scatter plots comparing summary e�ect estimates
and standard errors using di�erent heterogeneity variance estimation methods.

(1) Lower-left panel: Comparing Hartung-Knapp weighted standard errors (2)
Upper-right panel: Comparing the Wald standard errors (di�erences presented on

the log scale in all plots)
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estimates in almost all meta-analyses. The ML estimator in most meta-analyses

produces a lower standard error than other heterogeneity variance estimators; this

is expected given than results in section 4.3.2 show that ML tends to produce lower

I2 estimates than other estimators. All comparisons show poor agreement.

Hartung-Knapp standard errors have much higher agreement than Wald standard

errors, a change in the heterogeneity variance estimator can lead to a 25% reduction

or 50% increase in the standard error. Agreement of these standard errors is highest

between DL, PM and REML estimators. Also, SJ and HM estimators have high

agreement, even though agreement between their Wald standard errors is relatively

low. ML and SJ estimators typically produce low and high Hartung-Knapp standard

errors respectively (as they do for Wald standard errors).

4.3.5 Agreement between p-values

Tables 4.2 and 4.3 show pair-wise agreement between p-values of the summary e�ect

when di�erent heterogeneity variance estimators are used. The p-values in table 4.2

are derived from the Wald-statistic and p-values in table 4.3 are derived from the t-

statistic; methods for deriving these p-values are given in section 4.2.2. The lower-left

panels of both tables present agreement between p-values split into two categories:

p ≤ 0.05 and p > 0.05. The upper-right panels present agreement between p-values

split into �ner categories: p ≤ 0.01, 0.01 < p ≤ 0.05, 0.05 < p ≤ 0.1 and p > 0.1.

Results in table 4.2 suggest that choice of heterogeneity variance estimation method

can have an e�ect on inference when p-values are derived from the Wald-statistic.

Statistical signi�cance of these p-values at the 5% level is discordant between at

least two heterogeneity variance estimators in 10.3% of meta-analyses. The lowest

agreement in statistical signi�cance at the 5% level is observed between SJ and ML

with 8.6% of meta-analyses having discordant p-values. The highest agreement is

observed between DL and REML and between PM and REML methods; 2% of

meta-analyses were discordant.
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When p-values from the Wald-statistic are split into �ner categories (also in table

4.2), there were di�erences of two or more categories between at least two hetero-

geneity variance estimators in 6.2% of meta-analyses. 1.4% of meta-analyses had

p-values di�ering by 3 categories. P-values derived from SJ and ML heterogeneity

variance estimators had the lowest agreement; 4.7% of meta-analyses di�ered by at

least 2 p-value categories for this comparison and all where ML gave the lowest p-

value. The highest agreement was observed between DL and HM methods; 0.6% of

meta-analyses di�ered by at least 2 p-value categories and 0.05% of meta-analyses

di�ered by 3 categories. There is also a high level of agreement between DL and

PM methods; this is consistent with the level of agreement observed in terms of the

other measures, including I2, the summary e�ect and standard error.

Results from table 4.3 show p-values based on the t-statistic have much higher agree-

ment between heterogeneity variance estimators. Statistical signi�cance at the 5%

level is discordant between at least two heterogeneity variance estimators in 3.7%

of meta-analyses - roughly two-thirds less than the proportion of Wald-statistic p-

values. Comparisons with low and high agreement are consistent between Wald-

statistic and t-statistic p-values. The lowest agreement is observed between SJ and

ML methods; 3.3% of meta-analyses have discordant statistical signi�cance at the

5% level between these methods. The highest agreement is observed between DL

and REML with discordance at the 5% level in 0.5% of meta-analyses.

When p-values derived from the t-statistic are split into �ner categories (as shown

in the upper-left panel of table 4.3 ), only 1.1% of meta-analyses had p-values that

are discordant by two or more categories between any two estimators; almost six

times fewer meta-analyses than p-values derived from the Wald-statistic. Again, the

comparison between SJ and ML shows the lowest agreement, with p-values of 0.9%

of meta-analyses discordant by two or more categories. In many other pair-wise

comparisons, 0.1% or fewer meta-analyses are discordant by two or more categories.
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4.3.6 Factors to explain the level of agreement between het-

erogeneity variance estimates

Figure 4.6 shows pairwise agreement between I2 estimates plotted against the num-

ber of studies (in the upper-right panel) and total information (in the lower-left

panel).

Results show that the general level of agreement between I2 estimates is not cor-

related with how many studies there are in the meta-analysis. However, rare and

extreme I2 di�erences of close to 100% only occur in meta-analyses with fewer than

20 studies. The only exception is the comparison between ML and REML; di�er-

ences between ML and REML estimates of I2 are close to zero when there are 40

or more studies. For all other comparisons it appears the scatter of meta-analyses

is showing a trend, but this is because most meta-analyses contain few studies and

are situated to left hand side of the graph giving the appearance of less agreement

between I2 estimates.

When di�erences in I2 are plotted against the total information, results show there

is no trend in any of the comparisons. Extreme di�erences in I2 close to 100% occur

much less when the total information is high, but this can only be attributed to

a high power to detect heterogeneity and therefore fewer zero I2 estimates derived

from the truncated estimators CA, DL, PM, ML and REML.

4.4 Examples

I selected two examples from the CDSR dataset, speci�cally chosen with widely

di�erent estimates of the heterogeneity variance to show how such di�erences may

lead to di�erent conclusions.

Example 1. Omega-3 fatty acids for prevention and treatment of cardiovascular

disease

75



Figure 4.6: Bland-Altman scatter plots comparing di�erences in I2 estimates
against (upper-right panel) the number of studies and (lower-left panel) the

total information
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Figure 4.7: Forest plot of a meta-analysis of seven studies, with combined
e�ects illustrated from various methods of heterogeneity variance estimation

Wald-type con�dence intervals for the summary e�ect presented.
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The forest plot in �gure 4.7 shows a meta-analysis of trials comparing the e�ect of

high and low doses of omega-3 fatty acids in relation to systolic blood pressure (SBP)

at the end of the study [52]. Seven studies were combined, originally by the random-

e�ects inverse variance method with a DL estimate of the heterogeneity variance

and summary e�ect con�dence interval calculated using the Wald-type and Hartung-

Knapp methods. The systematic review was used to inform guidance from The US

Food and Drug Administration [29], although SBP was a secondary rather than a

primary outcome. DL estimated I2 as 32.3% with I2 estimates ranging from the ML

estimate of 0% to the SJ estimate of 70.6%. Estimates of the overall mean di�erence

were a�ected by di�erences in heterogeneity variance estimates, ranging from -1.09 to

-0.59. The Wald-type 95% con�dence interval around the pooled e�ect when the SJ

estimate of the heterogeneity variance is used is 2.37 times the size of the equivalent

con�dence interval derived using the ML estimate. By contrast, the Hartung-Knapp

method produced con�dence intervals with a up to 1.6 times di�erence in width (SJ

vs ML also). All summary e�ects were not statistically signi�cant with p-values

ranging from 0.371 to 0.590. Therefore, choice of heterogeneity variance estimator

did not a�ect inferences despite notably di�erent estimates.

Example 2. Interventions used to improve control of blood pressure in patients with

hypertension

The second example is from a systematic review of interventions to improve control

of blood pressure in patients with hypertension [34]. Figure 4.8 shows the forest plot

of a meta-analysis comparing educational interventions directed at the physician

versus a control group. The outcome of the meta-analysis is whether the patient

was able to control their blood pressure, and intervention groups are compared in

the form of an odds ratio. The Cochrane systematic review containing this meta-

analysis has informed health practice: it has been used in a NICE guideline for

treating hypertension [91] and is referenced in a related Cochrane review [84]. The

original �xed-e�ect analysis suggests a statistically signi�cant result in favour of

active intervention (p < 0.001). The I2 statistic varied considerably between the CA
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Figure 4.8: Forest plot of a meta-analysis of six studies, with combined e�ects
illustrated from various methods of heterogeneity variance estimation

Wald-type con�dence intervals for the summary e�ect presented.
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estimate of 0% and the DL estimate of 60.5%. When an inverse-variance random-

e�ects approach is used to combine the studies, results vary considerably with p-

values ranging between < 0.001 and 0.148, even though there are minimal di�erences

between pooled e�ect estimates. Therefore, using the Wald-type method, conclusions

of this meta-analysis might change considerably depending on whether �xed- or

random-e�ects are assumed as well as on which method of heterogeneity variance

estimation is chosen. Conclusions are more robust using the Hartung-Knapp method.

4.5 Discussion

I have shown that there is considerable inconsistency in �ndings of meta-analyses

when di�erent methods are used to estimate heterogeneity variance in a random-

e�ects model. In some cases, I2 estimates di�ered by more than 50% in absolute

value. In extreme cases, one method can produce an I2 statistic of 0% while a dif-

ferent method can produce an I2 close to 100%. Extreme inconsistencies mostly

occurred when one method estimated I2 = 0%. Some methods are more consistent

with each other, such as the DerSimonian-Laird (DL) and Paule-Mandel (PM) estim-

ators. These methods give perfectly consistent results where I2 = 0%, but absolute

di�erences in I2 may still be up to 25%. Sidik-Jonkman (SJ) and Hartung-Makambi

(HM) estimates had high agreement for low levels of heterogeneity and in few cases

di�erences in I2 exceeded 50%; this was likely due to both methods producing no I2

estimates of 0%.

PM has been described as a simpli�ed version of REML. Rukhin et al. [94] there-

fore suggested these methods should produce similar estimates of the heterogeneity

variance, yet our results show low agreement between them. Rukhin et al addressed

the simpler situation of a single sample of normally distributed observations arising

in each study and estimated the within-study variance using REML methods rather

than the maximum likelihood approach usually used for two-group studies such as
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clinical trials [8, 124]. These di�erences may explain the low agreement between the

methods.

While estimates of heterogeneity may be very di�erent, this does not translate into

substantial di�erences in the summary e�ect estimates. It can, however, lead to

very di�erent con�dence intervals for the summary e�ect estimates, and hence to

di�erent p-values. Di�erences in p-values showed that conclusions of a meta-analysis

may di�er in a small number of cases, but frequently enough to cause concern. P-

values derived from the commonly-used Wald-statistic were discordant at the 5%

signi�cance level in 10.3% of meta-analyses between at least two of the seven het-

erogeneity variance estimators. If the DL random-e�ects approach was used in all

meta-analyses, 3.1% of meta-analyses would have had di�erent conclusions (by at

least two p-value categories) when at least one of the other heterogeneity variance

estimates is used. If p-values were derived from the Hartung-Knapp method [38],

conclusions would have changed much less frequently; p-values were discordant at

the 5% level in 3.7% of meta-analyses between any two heterogeneity variance es-

timators. These results are consistent with an empirical study comparing DL with

other heterogeneity variance estimators [117].

In a secondary analysis, I found the number of studies and total information in

a meta-analysis has little impact on the level of agreement between heterogeneity

variance estimates. Therefore, di�erences between estimates are not caused by lack

of data, but perhaps by inherent di�erences between the heterogeneity estimation

methods. The meta-analysis examples given in section 4.4 have a high level of dis-

agreement between many summary statistics, but have no noticeable characteristics

that would explain such disagreement. These �ndings suggest that large di�erences

between heterogeneity variance estimates are possible in meta-analyses of all sizes.

My use of the CDSR dataset means that this analysis has some limitations. The

dataset contained on average seven meta-analyses per systematic review and results

within each systematic review are likely to be correlated, meaning heterogeneity

variance estimates are not independent. Also, the dataset included meta-analyses
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that were not really meta-analyses, in that the studies were presented together in

a forest plot but not synthesised in the original publication. These `meta-analyses'

may have di�erent characteristics from those that did combine the results and are

likely to be more heterogeneous. Therefore, there may be a di�erence between the

range of heterogeneity variance estimates in our analysis and the range reported in

actual Cochrane reviews. Finally, the limitation of using empirical data is that the

true heterogeneity variance is unknown and I cannot infer which method produces

the closest estimate to the true value. Simulated data is required for this purpose,

which I use predominantly in the rest of this thesis.

4.6 Conclusion

Di�erences across methods suggests the need for further research into the properties

of the heterogeneity variance estimators, such as whether they give biased results.

This can only be achieved through simulation rather than empirical meta-analysis

data. Therefore, in the next chapter, I conducted a systematic review of simulation

studies that compare heterogeneity variance estimators.

In summary, the choice of heterogeneity variance estimator can a�ect the results

of a meta-analysis, including estimates of the degree of heterogeneity, the standard

error of the summary e�ect and less frequently the statistical signi�cance of results.

The use of a single estimate of the heterogeneity variance may therefore lead to

inappropriate conclusions in some meta-analyses. When conducting a random-e�ects

meta-analysis, researchers should be aware that the choice of heterogeneity variance

estimator may alter the conclusions drawn from the analysis. Sensitivity analysis

using a wide range of plausible heterogeneity variances may be advised.
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Chapter 5

A review of simulation studies to

compare heterogeneity variance

estimators
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5.1 Introduction

In the last chapter, I presented an empirical comparison of heterogeneity variance es-

timators using meta-analysis data derived from the Cochrane Database of Systematic

Reviews. Results showed considerable disagreement between heterogeneity variance

estimates derived from many di�erent methods, including DerSimonian-Laird [25].

Di�erences between these estimates may have led to discordant conclusions in a

small, but noteworthy proportion of meta-analyses. These �ndings provide motiva-

tion for further investigation of the properties of heterogeneity variance estimators

in this chapter and for the rest of my thesis.

I present in this chapter a systematic review of studies that compare heterogeneity

variance estimators in simulated meta-analysis data. In studies based on simulated

data, the properties of methods can be investigated. In this review, I aim to (1)

identify whether there is consistent evidence across simulation studies, (2) under-

stand how di�erent heterogeneity methods impact on estimation of the heterogeneity

variance itself, the meta-analytic summary e�ect and its con�dence interval, (3) po-

tentially recommend method(s) for estimating heterogeneity in practice without the

need for further simulation studies; and (4) to identify areas where further simulation

research may be required.

In section 5.2, I detail the methods I used to search and select simulation studies for

inclusion in my review. I present a summary of the identi�ed studies in section 5.3,

including summaries of their designs in sections 5.3.1 - 5.3.4 and results from their

simulations in section 5.3.5. The discussion and conclusion are in sections 5.4 and

5.5.
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5.2 Methods

5.2.1 Search Strategy

I searched the databases MEDLINE, Web of Science Core Collection and JSTOR on

8th Nov 2014. Details of the search strategy are given in appendix C.1. For each of

the included papers I examined reference lists and performed a citation search using

Google Scholar. Search results were restricted to those written in English.

5.2.2 Eligibility criteria

I included papers if:

1. results were presented from simulated meta-analysis data;

2. simulated data were generated from a random-e�ects model with at least one

scenario with τ 2 > 0; and

3. results compared the performance of more than one heterogeneity variance

estimator.

Papers were excluded if they contained only the following types of simulated data:

1. network meta-analyses;

2. one-stage individual participant data (IPD) meta-analyses;

3. meta-analyses of diagnostic accuracy studies; or

4. meta-regression, if covariates were responsible for all heterogeneity present.
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5.2.3 Data extraction

I extracted details of the methods used to simulate data from each study. This

included parameter values for the heterogeneity variance, summary e�ect and cov-

ariates for simulations of meta-regression data. Other method details include the

type of outcome measure (e.g. odds ratio), the number of studies in each meta-

analysis and the distributions for generating study e�ects and study sample sizes.

Findings from simulation results relating to the performance of each heterogeneity

variance estimator were collated and summarised. I also extracted raw study results

(where available) to attempt a formal synthesis, but this was not feasible due to

di�erences in the design of the included studies. Instead, I graphically present selec-

ted results from studies in which raw results were provided. Recommendations from

the concluding sections of each paper were extracted, including which heterogen-

eity variance estimator(s) the authors thought performed best and any other general

recommendations for heterogeneity variance estimation.

5.3 Results

5.3.1 Search Results

The database search returned 1,472 matches in MEDLINE, 1,918 matches in Web

of Science Core Collection and 530 matches in JSTOR with a total of 3,225 non-

duplicate matches. Ten publications met the eligibility criteria. I identi�ed a further

two from searching reference lists and citations [79, 102], leading to a total of 12

included simulation studies, which are listed in table 5.1. Among the 12 simulation

studies, eight proposed new methods for heterogeneity estimation and then conduc-

ted a simulation study to compare the methods with existing methods. Sidik and

Jonkman conducted two simulation studies [101, 102] and proposed new methods in

each; their 2007 study was intended to supersede the earlier 2005 study. The remain-
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ing four publications were simulation studies that only compared existing methods

[78, 79, 96, 124].

5.3.2 Simulation methods and parameter values

Table 5.1 details methods that were used to simulate meta-analysis data in each

study. Six (50%) studies simulated meta-analyses containing studies with a binary

outcome, four of which used an odds ratio e�ect measure and two used a relative risk

e�ect measure. Four (33%) studies simulated continuous outcome meta-analyses, all

of which used a standardised mean di�erence e�ect measure, and one study also

used the `unstandardised' mean di�erence [124]. In both binary and continuous

meta-analyses, study sample sizes were most commonly generated from a uniform

distribution [78, 79, 101, 102]. The within-study variance of each study was then

derived from these sample sizes. Only three (25%) studies simulated sample sizes or

within-study variances using more than one set of parameter values [79, 93, 124].

Three (25%) studies simulated meta-analysis data with a generic e�ect measure

[17, 64, 93]. These studies allow investigation of the properties of the estimators

without con�ation with estimation of speci�c outcome measures. Generic study ef-

fects in these three studies were simulated directly from the random-e�ects model.

Chung et al. [16] and Kontopantelis et al. [64] used known within-study variances to

calculate heterogeneity variance estimates, while Rukhin [93] used within-study vari-

ances estimated from simulated participant-level data. These within-study variances

are rarely known in practice and therefore results from Chung et al. [16] and Kon-

topantelis et al. [64] represent the performance of heterogeneity variance estimators

under ideal conditions.

All simulation studies presented results for a range of heterogeneity variance para-

meters, including zero in all but one case [64]. All studies except Kontopantelis et al.

[64] gave no reasoning for their choice of parameter values or simply stated they

chose values to re�ect real meta-analyses in practice. In these studies, there was
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Reference 
𝝉2 parameter 

values 

Scen-

ario 

Corresponding mean 𝑰2 (%) 

 

Knapp and Hartung 

(2003) 
0, 0.05, 0.1, 0.2, 0.3 

𝑝1𝑖 =
0.05   

𝑝1𝑖 =
0.1   

Panityakul et al (2013)  0 to 0.5 (by 0.05) 

Small 

studies  

Large 

studies  

Bhaumik et al (2012)  
0, 0.2, 0.4, 0.6, 0.8, 1, 

1.2 

𝑝1𝑖 =
0.004   

𝑝1𝑖 =
0.996   

Sidik and Jonkman 

(2005)  
0, 0.10, 0.25, 0.5, 

0.75, 1, 1.25, 1.50, 2 
- 

 

Sidik and Jonkman 

(2007) 
0 - 0.5 (by 0.1) and 

0.5 - 1.75 (by 0.25) 
- 

 

Novianti et al (2014) * 

0, 0.5, 1, 1.5 (OR) - 
 

0, 0.0122, 0.0244, 

0.0366 (SMD) 
- 

 

Malzahn et al (2000)  0, 0.09, 0.25, 1, 4 - 
 

Sanchez-Meca and 

Marin-Martinez (2008)  
0, 0.04, 0.08, 0.16, 

0.32 
- 

 

Viechtbauer (2005)  

0, 0.001, 0.025, 0.05, 

0.1 (SMD) 

Small 

studies  

Large 

studies  

0, 0.125, 0.25, 0.5, 1 

(MD) 

Small 

studies  

Large 

studies  

Chung et al (2013) * 0, 0.01, 0.05, 0.1, 0.2 - 
 

Kontopantelis et al 

(2013) * 
0.01, 0.03, 0.1 - 

 

Rukhin (2013) 0 - 2 (by 0.1) - 
 

 

Table 5.2: Underlying ranges of I2 in each publication

* Similar I2 values are also reported in the original articles. I2 values in
Kontopantelis et al. [64] di�er from those in the table because they used estimates of
I2 based on the formula dependent on the Q statistic (see formula 1.5). I2 values in

Chung et al. [16] di�er because they were calculated individually for all k.
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inconsistency between the ranges of heterogeneity variances; Viechtbauer [124] used

parameter values up to 0.1 and Malzahn et al. [74] used parameter values up to 4

to simulate SMD meta-analyses. Kontopantelis et al. [64] chose parameter values

that correspond to a range of low, moderate and high I2 (as de�ned in the study). I

derived the range of underlying I2 values for all simulation studies and present them

in table 5.21. There was low consistency between the range of I2: seven studies

(58%) contained only meta-analyses with non-zero underlying I2 values greater than

40%. Nevertheless, I use the terms 'low', 'moderate' and 'high' heterogeneity in the

rest this review as they were used in the original publications.

Over all publications identi�ed in this review, meta-analyses were simulated that

contain 2 - 100 studies. Six (50%) publications include simulated meta-analyses with

fewer than 10 studies and �ve (42%) publications include simulated meta-analyses

with 50 or more studies.

5.3.3 Performance measures

Performance measures reported from each simulation study are listed in Table 5.3.

Ten studies compared bias of heterogeneity variance estimators. Nine compared the

variance, e�ciency or MSE; I de�ne these three performance measures as measures

of variability of heterogeneity variance estimates, and refer to them as such in the

rest of this paper. For details on how these measures are calculated, see appendix

C.2.

Many of the studies reported performance measures to quantify the impact of hetero-

geneity variance estimators on other commonly reported statistics in meta-analysis.

Three reported the performance of estimates of the summary e�ect [93, 96, 101]. Six

compared the coverage of 95% con�dence intervals for the summary e�ect. Konto-

pantelis et al. [64] also reported performance of con�dence interval for the summary

1I2calculated from the formula I2 = 100 · τ2/
(
τ2 + σ2

)
, where σ2 is the typical variance and

derived from 1000 replications of each simulated scenario.
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Simulation study 

Heterogeneity variance Summary effect 
Confidence interval 

for mean effect 

B
ia

s 

M
ea

n
 S

q
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a
re

d
 

E
rr

o
r 

(M
S

E
) 

V
a

ri
a

n
ce

 

E
ff

ic
ie

n
cy

 

P
ro

b
a

b
il

it
y

 o
f 

ze
ro

 e
st

im
a
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B
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s 

M
ea

n
 S

q
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d
 

E
rr

o
r 

(M
S

E
) 

C
o

v
er

a
g

e 

E
rr

o
r 

in
te

rv
a

l 
 

Knapp and Hartung (2003) ✔  ✔     ✔  

Panityakul  et al (2013) ✔ ✔        

Bhaumik et al (2012) ✔         

Sidik and Jonkman (2005) ✔ ✔    ✔ ✔ ✔  

Sidik and Jonkman (2007) ✔ ✔        

Novianti et al (2014) ✔  ✔        

Malzahn et al (2000) ✔  ✔       

Sanchez-Meca and Marin-Martinez (2008)      ✔  ✔  

Viechtbauer (2005) ✔ ✔  ✔      

Chung et al (2013) ✔ ✔   ✔   ✔  

Kontopantelis et al (2013) ✔    ✔   ✔ ✔ 

Rukhin (2013)  ✔     ✔ ✔  

Total 10 6 3 1 2 2 2 6 1 

Table 5.3: Summary of performance measures reported in the 12 included
simulation studies

e�ect in terms of mean error interval estimates, that is, the average ratio between

observed and actual 95% con�dence interval widths.

Given the range of reported performance measures, I present the performance of

heterogeneity variance estimators in three sections: properties of the point estimate

of heterogeneity in section 5.3.5, properties of the point estimate of the summary

e�ect in section 5.3.6 and properties of con�dence intervals for the summary e�ect

in section 5.3.7.

5.3.4 Heterogeneity variance estimators

Table 5.4 shows which heterogeneity variance estimators were compared in each sim-

ulation study. DerSimonian-Laird was included in all 12 studies. Other estimators

frequently included were Cochran's ANOVA (CA), restricted maximum likelihood

(REML), maximum likelihood (ML), Paule-Mandel (PM) and Sidik-Jonkman (SJ).
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Rukhin's Bayesian estimators (RU, B0, BP, SB) were only included in two simulation

studies only with a generic outcome measure [64, 93]. Methods including the boot-

strap DerSimonian-Laird (DLB), positive DerSimonian-Laird (DLP), two of Rukhin's

estimators (RU, SB) and Bayes Modal (BM) have only been compared in the one

study in which they were initially proposed. For details on each heterogeneity vari-

ance estimator, see chapter 2. I frequently refer to heterogeneity variance estimators

by their acronyms in the rest of this chapter; the acronym de�nitions are given in

table 5.4.

5.3.5 Performance of point estimators of the heterogeneity

variance

In this section, I summarise the properties of heterogeneity variance estimators iden-

ti�ed in this review in terms of bias, variability (e.g. mean squared error), and

the proportion of zero estimates they produce. Estimators are summarised together

when they are slight variations of the same method or have similar properties. This

section excludes the Hartung and Makambi estimator, which has only been compared

in terms of performance measures relating to the summary e�ect and its con�dence

interval [96] (see sections 5.3.6 and 5.3.7 for these results).

Selected results are presented in �gures 5.1 and 5.2; these were recreated from the raw

study results in the supplementary material of Novianti et al. [78] to back up some

of the �ndings in this section. These raw study results included the performance

measures bias and variance, but I present bias and mean squared error. The mean

squared error is a more meaningful measure of performance than the variance and

could be derived from the raw results given.

I present those compared in many simulation studies �rst, beginning with the DerSimonian-

Laird estimator.
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5.3.5.1 DerSimonian-Laird (DL)

Performance of the DL estimator is documented in all 12 publications, which gener-

ally suggest that DL is negatively biased when the level of heterogeneity is moderate

to high. The negative bias is more prominent when within-study variance estimates

are imprecise, such as in SMD meta-analyses with small study sample sizes [74] and

in binary outcome meta-analyses [79, 102], particularly when there are few events

occurring in each study [3]. This negative bias can be observed in �gure 5.1 (top

right), where heterogeneity is high and meta-analyses have an OR outcome measure.

Minimal negative bias was observed in continuous outcome meta-analyses with mod-

erate study sample sizes [124] and binary outcome meta-analyses with large study

samples sizes [61]. When within-study variances are known, Kontopantelis et al.

[64] showed that DL becomes asymptotically unbiased as the number of studies in a

meta-analysis increase; Viechtbauer [124] previously noted this in theory. Novianti

et al. [78] showed that DL remains biased in binary outcome meta-analyses as the

number of studies increases. In terms of mean squared error (MSE), DL performs re-

latively poorly in scenarios where negative bias is also observed [102]. In continuous

and generic outcome meta-analyses, DL has a relatively low MSE and comparable

performance to REML [16, 124].

Kontopantelis et al. [64] proposed a bootstrap version of DL (DLB), with the aim

of reducing the proportion of zero heterogeneity variance estimates. DLB had the

least number of zero estimates out of all methods that allowed zero estimates. In

small meta-analyses (2-3 studies), DLB has the highest positive bias of all estimators

compared and comparable bias in meta-analyses with 5-10 studies [64].

Kontopantelis et al. [64] also proposed a positive version of DL (DLP), which trun-

cates heterogeneity variance estimates below 0.01. DLP was one of the least biased

estimators when the level of heterogeneity was low-to-moderate. However, this result

may be misleading because 0.01 is also the lowest heterogeneity variance parameter

value chosen in this study.
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5.3.5.2 Cochran's ANOVA (CA)

CA has a small positive bias under most simulated conditions and remains positively

biased even when the level of heterogeneity is high, unlike many other estimators

such as DL, PM and REML [78, 79]. This can be observed in �gure 5.1. Chung

et al. [16] and Sidik and Jonkman [102] showed CA had the highest MSE out of all

estimators compared, because of its large bias. Chung et al. [16] also found that

CA had the highest percentage of zero estimates despite its positive bias in the

same simulated conditions. It was, however, the least biased estimator considered

by Panityakul et al. [79] when study sample sizes are small.

5.3.5.3 Paule-Mandel (PM), and its variants (PMCA and PMDL)

PM was compared in six simulation studies, with �ve reporting bias and �ve report-

ing some measure of variability (see table 5.3). Novianti et al. [78] showed that PM

performs well in terms of bias in SMD outcome meta-analyses, although it is com-

parable with many other estimators including CA, DL, PMDL, SJ, SJCA and REML.

PM was compared with self-proposed Bayesian estimators by Rukhin [93], in simu-

lated generic outcome meta-analyses (see section 5.3.5.9 for performance of Bayesian

estimators); results showed that PM has a lower MSE when the level of heterogeneity

is low, but has a larger MSE than all Rukhin's Bayesian estimators for moderate to

large levels of heterogeneity. In binary outcome meta-analyses [78, 79, 102], PM is

negatively biased for high levels of heterogeneity but to a lesser extent than DL and

REML, and approximately unbiased when study sample sizes are large (between 100

and 300 per group) [79]. Sidik and Jonkman [102] showed that PM is comparable

with SJCA and both perform well in terms of bias and MSE. PM performs well overall

but some of the most comprehensive simulation studies that included many estim-

ators did not include PM [64, 124]. In particular, there is relatively little evidence

for PM in continuous outcome meta-analyses.

PMCA and PMDL estimators are two-step versions of PM that use CA and DL as
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Figure 5.1: Mean bias from selected simulation results in Novianti et al. [78]
including simulated meta-analyses of type SMD and OR.

The following parameters remain constant throughout these results:
n1i, n2i ∼ U(20, 200), n1i = n2i, pi ∼ U(0.05, 0.65) and θ = 0.5

initial estimates respectively. Kontopantelis et al. [64] included both PMCA and

PMDL in their comparisons, Novianti et al. [78] and Bhaumik et al. [3] included

PMDL only. Results showed that PMCA and PMDL have a level of bias comparable

with PM (see �gure 5.1). No publication reported the variability of PMCA or PMDL

estimates (although Novianti et al. [78] included the variance of estimates as raw

supplementary data).

5.3.5.4 Restricted maximum likelihood (REML) and its approximation

(ARML)

REML was included in seven simulation studies: six reported bias in heterogeneity

variance estimates and �ve reported some measure of variability (see Table 5.3 for

details). In meta-analyses with moderate study sample sizes, REML becomes neg-

atively biased as the level of heterogeneity increases, but to a lesser extent than DL
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Figure 5.2: Mean squared error from selected simulation results in Novianti
et al. [78] including simulated meta-analyses of type SMD and OR.
The following parameters remain constant throughout these results:

n1i, n2i ∼ U(20, 200), n1i = n2i, pi ∼ U(0.05, 0.65) and θ = 0.5

or ML [78, 79, 102] as shown in �gure 5.1 (top right). For low levels of heterogen-

eity and when studies are homogeneous, REML and DL have similar levels of bias

[102]. For large study sample sizes (between 100 and 300 per group), Panityakul

et al. [79] showed REML to be approximately unbiased, performing better in terms

of bias than the other estimators compared, including CA, DL, PM, SJ and ML.

Viechtbauer [124] also showed that, when studies typically have a large sample size,

REML has a lower MSE than the other estimators compared including CA, DL, HS

and ML.

Knapp and Hartung [61] compared the approximate restricted maximum likelihood

(ARML) in terms of bias and variance in simulated OR meta-analyses. For all levels

of heterogeneity above zero, ARML had a greater negative bias than DL and PM.

ARML had the lowest variance of the three estimators compared, but this may be

as a consequence of its negative bias.
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5.3.5.5 Maximum likelihood (ML)

ML was included in six studies, of which �ve reported bias of heterogeneity variance

estimates and three reported some measure of variability (see Table 5.3 for details).

ML tends to underestimate the heterogeneity variance and is one of the least posit-

ively biased estimators when there is no underlying heterogeneity. ML has a negative

bias particularly when there are fewer than 10 studies in the meta-analysis [16] and

produces more zero estimates when there are fewer than �ve studies [16]. As a con-

sequence of the negative bias, ML performs well in terms of MSE when the level of

heterogeneity is low.

5.3.5.6 Hunter-Schmidt (HS)

HS was included in two studies [96, 124], of which only one reported bias and some

measure of variability (variance) [124]. Viechtbauer [124] stated that the performance

of HS is comparable with ML in terms of bias and MSE and grouped their results

together.

5.3.5.7 Sidik- Jonkman estimators (SJ and SJCA)

SJ is a two-step non-truncated heterogeneity variance estimator that only produces

positive estimates of heterogeneity and was included in six simulation studies. Five

publications reported bias and four reported some measure of variability. Results

from all simulation studies showed that SJ is positively biased for small to moderate

levels of heterogeneity and when study sample sizes are below 200 [78, 102]; this is

illustrated in all scenarios in �gure 5.1. For meta-analyses containing studies with

larger sample sizes (between 100 and 300 per group), SJ has relatively a small amount

of positive bias [79]. SJ's positive bias has been demonstrated in OR [78, 102], SMD

[78] and generic [64] outcome meta-analyses and can be attributed to SJ being a non-

truncated estimator that only produces positive heterogeneity variance estimates.
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SJCA is derived from the same two-step approach as SJ but uses CA as an initial

heterogeneity variance estimate for the �rst iterative step. Three studies compared

SJCA with SJ and found that SJCA has less positive bias when the level of hetero-

geneity is low [64, 78, 102]. SJ and SJCA have a comparable MSE in all the reported

results by Sidik and Jonkman [102].

5.3.5.8 Malzahn, Bohning and Holling (MBH)

MBH was included in two studies and can only be used in meta-analyses with a

SMD outcome measure. Malzahn et al. [74] compared MBH with DL and CA in

terms of bias and MSE. However, the results of this simulation were not given: the

paper states only that MBH has a smaller MSE than CA. Sanchez-Meca and Marín-

Martínez [96] only compared MBH in terms of performance measures relating to the

overall summary e�ect and its con�dence intervals.

5.3.5.9 Bayesian estimators: Bayesian modal (BM) and Rukhin's estim-

ators (RU, B0, BP, SB)

Chung et al. [16] was the only study to include the Bayesian modal estimator (BM),

and did so in simulated generic outcome meta-analyses. BM is a non-truncated

estimator that only produces positive estimates. Therefore results showed that BM

is more positively biased than CA, DL, ML and REML for low levels of heterogeneity

and a larger MSE. For moderate to high levels of heterogeneity, BM has low bias

comparable with DL and REML and performs better in terms of MSE.

Rukhin proposed a series of Bayesian heterogeneity variance estimators that only

produce positive estimates, and compared them with CA, DL and PM in terms of

MSE. All Rukhin's estimators have comparable MSE when the level of heterogeneity

is moderate to high, which is lower than CA, DL and PM. When the level of het-

erogeneity is low, PM performs better than Rukhin's estimators in terms of MSE.
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Kontopantelis et al. [64] also compared the bias of B0 and BP with many other es-

timators and found that BP had the highest positive bias of all estimators compared.

B0 and BP remained positively biased in large meta-analyses containing 20 studies.

5.3.6 Performance of estimators of the summary e�ect

Three studies included performance measures relating to point estimates of the sum-

mary e�ect [93, 96, 101]. All of these calculated summary e�ects by the standard

inverse variance method, where study weights are dependent on heterogeneity vari-

ance estimates calculated by a number of methods. Sidik and Jonkman [101] and

Rukhin [93] found that estimates of the summary e�ect were unbiased, had small

MSE and had a high level of agreement across all heterogeneity estimation methods.

Sanchez-Meca and Marín-Martínez [96] showed θ̂ has a negligible amount of bias for

all heterogeneity variance estimators compared.

5.3.7 Performance of con�dence intervals for the summary

e�ect

Six studies reported performance measures relating to 95% con�dence intervals for

the summary e�ect [16, 61, 64, 93, 96]. All of these used coverage as a performance

measure. Three of these studies calculated Wald-type con�dence intervals and re-

ported that these are sensitive to which heterogeneity variance estimators are used

and to the level of heterogeneity. For low levels of heterogeneity, coverages are above

the nominal level of 95% and fall to 85-90% for moderate to high levels of hetero-

geneity. Coverage probabilities for t-distribution con�dence intervals were reported

in two studies and are also sensitive to level of heterogeneity but to a lesser extent

than Wald-type con�dence intervals [96]. Coverage of t-distribution con�dence in-

tervals with Hartung-Knapp variance estimates was reported in three studies; results
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showed this con�dence interval method is not sensitive to which method of hetero-

geneity estimation is used and maintains coverages close to the nominal 95% for all

simulated scenarios [61, 93, 96].

5.3.8 Performance of heterogeneity variance estimators using

other methods to estimate the within-study variance

Two studies investigated whether using alternatives to the usual study variance es-

timation methods help improve estimation of heterogeneity [3, 61]. I de�ne the usual

study variances as those calculated by methods described in chapter 1.

Knapp and Hartung [61] proposed a method for calculating within-study variances

that reduces the correlation with study e�ects and found that using this method

reduces the negative bias of DL and REML estimators. Results showed that using

this method makes little di�erence to the coverage of con�dence intervals for the

summary e�ect.

Bhaumik et al. [3] proposed an alternative Paule-Mandel estimator, which calculates

estimates of the heterogeneity variance using PM with other within-study variance

estimates. Precision of these variance estimates in improved by borrowing strength

from other studies in the meta-analysis. Results showed that PM heterogeneity vari-

ance estimates using this alternative method have less negative bias than DL, PMDL

and PM that use usual within-study variance estimates. The method can easily be

applied with any heterogeneity variance estimator, but only PM was considered in

this paper. The method can be applied only to odds ratio e�ects.

5.3.9 A summary of recommendations

Table 5.5 summarises recommendations made in the 12 publications. Ten make clear

recommendations about which heterogeneity variance estimator(s) should be used in
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practice. DL was included in all 12 simulation studies and was recommended twice:

by Sidik and Jonkman [102] and Malzahn et al. [74]. However, in these studies,

DL is compared only with SJ [74, 102] and CA [74], and in both publications is

recommended only when the level of heterogeneity is low.

Three independent studies made recommendations from a comparison of only pre-

existing estimators; two of these studies recommended PM [78, 79] over all other

estimators compared. The other independent study, Viechtbauer [124], recommen-

ded REML in continuous outcome meta-analyses but did not include PM in the

study. Novianti et al. [78] also stated that REML is a good alternative to PM in

simulated SMD meta-analyses, but is not recommended in OR meta-analyses due to

negative bias comparable with DL. Other estimators were recommended in the same

publication where the estimator was initially proposed, including SJCA [102], BM

[16], MBH [74], DLB [64], B0 and BP [93]. Sidik and Jonkman [101] recommended

their own SJ estimator, but a later (2007) recommendation of SJCA supersedes this.

SJ is included in three other simulation studies [64, 78, 79] and is not recommended

in any. There may have been a con�ict of interest in these non-independent studies.

Furthermore, many of these compared a small subset of methods, in few simulated

scenarios with a limited range of heterogeneity levels (see table 5.2).

5.4 Discussion

Many papers have reported that the DerSimonian-Laird estimator of heterogeneity

is negatively biased for moderate to large levels of heterogeneity, and suggest that

better-performing heterogeneity variance estimators are available. In this review of

comparative simulation studies, I found that the Paule-Mandel estimator generally

performs well, is easy to compute and was speci�cally recommended in three pub-

lications from results based on both continuous and binary outcome meta-analyses

[3, 78, 79]. REML was also recommended on the basis of two simulation studies

of continuous outcome meta-analyses [78, 124]. However, computing REML estim-
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Reference 

Effect 

meas-

ure  1 

Heterogeneity var-

iance estimators 2 
Recommendations / conclusions 3 

Knapp and 

Hartung (2003) 
RR 

DL, ARML, PM* (with 

and without using a 

smoothed within-study 

variance estimates) 

No heterogeneity estimator recommended. Neither the 

smoothed or usual within-study variances are 

recommended. Smoothed are no better than 'usual' for 

calculating CIs of the summary effect. 

Panityakul et al 

(2013)  
RR 

CA, DL, PM, SJ, ML, 

REML 

PM recommended. Avoid CA and SJ because of positive 

bias. 

Bhaumik et al 

(2012)  
OR 

DL, PMDL, PM (PM 

with an without using 

alternative within-study 

variance estimates) 

PM with alternative within-study variance estimates 

recommended for meta-analyses with OR effect 

measure. 

Sidik and 

Jonkman (2005)  
OR 

DL, SJ SJ recommended. DL preferred over SJ for low levels of 

heterogeneity. SJ recommended for Wald-type 

confidence intervals of the summary effect 

Sidik and 

Jonkman (2007) 
OR 

CA, DL, SJ, SJCA, ML, 

REML, PM* 

SJ where 'high levels of heterogeneity, SJCA or PM when 

low or moderate. SJCA preferred over PM because SJCA 

is easier to compute. Avoid DL, ML and REML (to a 

lesser extent) due to negative bias. 

Novianti et al 

(2014) 

OR & 

SMD 

CA, DL, PMDL, PM, SJ, 

SJCA, REML 

PM and PMDL recommended in meta-analyses with OR 

and SMD outcome measures. REML recommended as a 

valid alternative only in SMD meta-analyses. 

Malzahn et al 

(2000)  
SMD 

CA, DL, MBH MBH recommended. DL recommended only for low 

levels of heterogeneity and sample sizes are 'large'. 

Sanchez-Meca 

and Marin-

Martinez (2008)  

SMD 

CA, DL, HM, HS, SJ, 

ML, REML, MBH. 

No heterogeneity estimator recommended. Simulation 

study focuses on confidence intervals for the summary 

effect 

Viechtbauer 

(2005)  

SMD 

& MD 

CA, DL, HS, ML, 

REML (no estimator 

was truncated) 

REML recommended. Avoid HS and ML due to 

negative bias and avoid FE meta-analysis. 

Chung et al 

(2013)  
G 

CA, DL, ML, REML, 

BM  

BM recommended. Avoid FE meta-analysis. 

Kontopantelis et 

al (2013)  
G 

CA, DL, DLP, DLB, 

PMCA, PMDL, SJ, SJCA, 

ML, REML, B0, BP 

DLB recommended (to decrease the number of zero 

heterogeneity estimates). Avoid FE meta-analysis. 

Sensitivity analysis advised, particularly when a meta-

analysis contains few studies. 

Rukhin (2013) G 

CA, DL, PM, RU, B0, 

BP, SB  

B0 or SB recommended for t-distribution CIs for the 

summary effect. BP recommended as a point estimate of 

the heterogeneity variance. 

Table 5.5: A summary of recommendations from the 12 included publications
1 RR=relative risk; OR=odds ratio; SMD=standardised mean di�erence;

MD=mean di�erence; G=generic. 2 Full names of estimators are given in table
5.4. 3 CI=con�dence interval. *Publication refers to the empirical Bayes estimator,

but this is equivalent to the Paule and Mandel estimator (PM) [93].
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ates involves a process of iteration that does not converge in a small proportion of

meta-analyses [64]. Other recommended estimators included SJCA, DLb, MBH, BM,

B0, SB and BP, but recommendations came from the same publication where the

method was originally proposed and therefore may be unduly in�uenced by con�ict-

ing interests; these estimators have been compared in few other simulation studies.

Studies show summary e�ect estimates are unbiased with low MSE, irrespective of

which heterogeneity variance estimate is used. Wald-type con�dence intervals of the

summary e�ect are currently reported as standard in meta-analyses in Cochrane re-

views, yet studies indicate that coverage depends highly on the heterogeneity variance

estimate, and coverage can be as low as 85-90%. Sanchez-Meca and Marín-Martínez

[96] recommended t-distribution con�dence intervals with Hartung-Knapp variance

estimates; this method has coverage closer to the nominal 95% and is not sensitive

to the heterogeneity variance estimate used. A simulation study not included in this

review (because only con�dence interval methods were compared) has also called for

wide-spread use of the Hartung-Knapp method [55].

There is still no overall consensus on which heterogeneity variance estimator to use

in meta-analysis, in part because recommendations are based on subjective inter-

pretation of the results and a trade-o� between many performance measures. For

example, ML and HS generally have low MSE, but only as a consequence of their

negative bias. Viechtbauer [124] recommended REML as a compromise between

bias and MSE and Novianti et al. [78] recommended PM based on bias alone. I sum-

marised author's recommendations in section 5.3.9 in an attempt to make practical

and collaborative conclusions, but my �ndings suggest that further research is still

required.

This review has identi�ed a number of limitations of the design of the simulation

studies. All studies compared only a subset of all heterogeneity variance estimators

available. This limits the conclusions of this review because, for example, PM and

BM are not directly compared in any study and both have been recommended by

di�erent authors. Results described in section 5.3.8 suggest that using alternative
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estimates of within-study variances improves estimation. However, evidence is based

on meta-analyses with study e�ects generated from equal event probabilities, which

represents optimal conditions for performance of these methods. Finally, most sim-

ulation studies generated study sample sizes from only one distribution. Those that

simulated from a range of distributions [79, 93, 124] suggest the range of sample

sizes in a meta-analysis a�ects the performance of these methods. More research is

needed to investigate this e�ect.

Although the main limitations of this review stem from limitations in the evidence

base, methods for this review could be improved in a number of ways. Relevant

articles could have been missed from the online search by only including articles

containing the word 'meta-analysis'. For example, simulation studies could have

been carried out in the context of 'multiple laboratory experiments', given this is

the context in which some of the estimators in chapter 2 are derived (CA and PM).

Relevant articles may have been missed by restricted the search to English language

only. Furthermore, the process of selecting of articles for inclusion could have been

double checked by an independent reviewer to minimise the chance of human error.

In general, I found that simulations did not re�ect the observed characteristics of

meta-analyses in practice. 86% of meta-analyses from Cochrane reviews contain

fewer than 10 studies [21], yet half of the reviewed simulation studies contained only

meta-analyses with at least 10 studies [16, 61, 93, 96, 124]. Also, heterogeneity vari-

ance parameter values did not re�ect the full range of levels of heterogeneity. For

instance, seven studies contained only meta-analyses with non-zero underlying I2

values greater than 40% [16, 61, 64, 74, 78, 101, 102]. Findings from this review

suggest that properties of methods depend more strongly on I2 than the heterogen-

eity variance parameter. I2 depends on both the heterogeneity variance and the

within-study variances.

Given that Cochrane meta-analyses typically contain few studies [21], heterogen-

eity variance estimates are imprecise regardless of the estimation method. As such,

Kontopantelis et al. [64] suggested that a sensitivity analysis is required to test how
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robust meta-analysis �ndings are to changes in this estimate. Other included simu-

lation studies focused only on comparing the relative performance of estimators. In

meta-analyses with few studies, there is little power to detect heterogeneity [16, 64]

so truncated heterogeneity variance estimators produce a high number of zero estim-

ates. Therefore, Chung et al. [16] recommended the non-truncated estimator, BM,

and Kontopantelis et al. [64] recommended DLB, which produces a lower number of

zero estimates in comparison with DL. Meta-analyses containing a truly homogen-

eous group of studies and therefore zero heterogeneity is thought to be untenable in

practice [48].

5.5 Conclusion

This review suggests there are better-performing heterogeneity variance estimators

than the commonly used DerSimonian and Laird method. On the basis of the current

evidence, the Paule-Mandel estimator may be the best alternative to calculate point

estimates of heterogeneity and for calculating con�dence intervals for the summary

e�ect. Many recently proposed estimators including BM, DLb, B0, SB and BP show

promise, however, more research is required to compare them with a wider range of

heterogeneity variance estimators before they can be recommended.

There are four main reasons why my recommendations based on this review are not

conclusive: (1) many recommendations have been based on simulation studies pro-

posing a new estimator, and so may have con�icts of interest, (2) they are based

only on comparisons of a small subset of all heterogeneity estimation methods avail-

able, (3) they are based on simulated meta-analyses that do not re�ect those found

in typical systematic reviews and (4) they do not address su�ciently the practical

situation that in many meta-analyses all heterogeneity variance estimates are very

imprecise. Further independent simulation studies are needed to address these lim-

itations. In the following chapters, I detail the design and present results of such

108



as simulation study. The study is designed in light of the identi�ed limitations of

existing simulation studies from this review.
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Chapter 6

Methods for a new simulation study
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6.1 Introduction

In the last chapter, I conducted a systematic review of previous studies that com-

pared heterogeneity variance estimators in simulated meta-analysis data. Studies

were in agreement that the DerSimonian-Laird estimator [25] of the heterogeneity

variance is negatively biased in certain scenarios. Most studies advocated an altern-

ative estimator, most commonly the Paule-Mandel estimator [80]. However, studies

gave many other con�icting recommendations and therefore my systematic review

was inconclusive overall. I suggested many reasons why studies came to con�icting

conclusions, two of these reasons are: (1) most studies compared a small number of

existing methods with those newly proposed and (2) recommendations were based on

subjective trade-o� between many performance measures. To address these issues,

I propose to conduct a new simulation study that is collaborative and compares a

comprehensive list of pre-existing heterogeneity variance estimators.

A study protocol was produced prior to simulating any meta-analysis data. This pro-

tocol was sent to a number of collaborators, who commented edited and approved

the �nal protocol. These collaborators are: Mark Simmonds1, Julian Higgins2, Dan

Jackson3, Jack Bowden3, Areti Angeliki Veroniki4, Evangelos Kontopantelis5 and

Wolfgang Viechtbauer6. The protocol includes simulation methods for both binary

and continuous outcome meta-analyses, the heterogeneity variance estimators com-

pared and performance measures used to compare them. A summary of the design

1Centre for Reviews and Dissemination, University of York, York, YO10 5DD, UK

2School of Social and Community Medicine, University of Bristol, Bristol, UK

3School of Social and Community Medicine, University of Bristol, Bristol, UK

4Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, East Building.
Toronto, Ontario, M5B 1T8, Canada

5Centre for Health Informatics, Institute of Population Health, University of Manchester,
Manchester, UK

6Department of Psychiatry and Psychology, Maastricht University, The Netherlands
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of this new simulation study is presented here in this chapter, the original agreed

document is in appendix D.3.

6.2 Aims

The aims of is simulation study are a subset of the main aims of this thesis (declared

on page 19), namely:

1. Compare the relative performance of heterogeneity variance estimators in sim-

ulated data to establish which method(s) have the best properties.

2. Investigate the absolute performance of estimators in simulated data to estab-

lish if and when all methods perform poorly.

3. Investigate whether any characteristics of meta-analyses can explain the prop-

erties of estimators.

4. Recommend methods for random-e�ects meta-analysis and propose alternative

strategies when all estimators perform poorly.

6.3 Heterogeneity variance estimators

Methods for estimating the heterogeneity variance in a random-e�ects model have

been identi�ed in chapter 2. For each simulated meta-analysis, heterogeneity variance

estimates are calculated from the following 14 methods:

1. Cochran's ANOVA (CA) [18]

2. DerSimonian-Laird (DL) [25]

3. Paule-Mandel (PM) [80]
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4. Two-step DerSimonian-Laird (PMDL) [24]

5. Two-step Cochran's ANOVA (PMCA) [24]

6. Hartung-Makambi (HM) [40]

7. Hunter-Schmidt (HS) [53]

8. Sidik-Jonkman (SJ) [101]

9. Sidik-Jonkman with Cochran's ANOVA initial estimate (SJCA) [102]

10. Maximum likelihood (ML) [37]

11. Restricted maximum likelihood (REML) [124]

12. Rukhin's estimator with zero prior (B0) [93]

13. Rukhin's simple estimator (BP) [93]

14. Malzahn, Böhning and Holling (MBH) [74]

Some of the estimators available (as detailed in chapter 2) are excluded from this

study. Rukhin's optimal unbiased estimator (RU) [93], Rukhin's estimator with al-

ternative prior (SB) [93] and positive-DerSimonian-Laird (DLp) [64] have been shown

to be inferior to other estimators in the systematic review of simulation studies in the

previous chapter. Bayesian methods that rely on a subjective choice of prior distribu-

tion are excluded because of di�culty in objectively comparing them to frequentist

methods. Methods that use alternative methods to estimate the within-study vari-

ances are excluded; these methods are beyond the scope of the thesis. Bootstrapping

could be theoretically applied to any heterogeneity variance estimator so any vari-

ation of this approach is excluded.
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6.4 Performance measures

Heterogeneity variance estimators are compared in terms of the following three

primary performance measures:

1. Mean and median bias of the heterogeneity variance estimate

2. Mean and median squared error of the heterogeneity variance estimate

3. Proportion of zero estimates of the heterogeneity variance estimate

Furthermore, heterogeneity variance estimators are compared in terms of the fol-

lowing secondary performance measures relating to estimation of the mean of the

random-e�ects distribution and its con�dence interval. These are required to per-

form a comprehensive comparison of heterogeneity variance estimators, evaluating

them not only as a point estimate of heterogeneity, but also on other meta-analysis

statistics.

1. Mean absolute bias in estimate of the summary e�ect *

2. Mean squared error of estimate of the summary e�ect *

3. Coverage of 95% con�dence intervals for the summary e�ect for the three con-

�dence interval methods (i.e. the proportion of times the underlying summary

e�ect falls inside the 95% con�dence interval) *

4. Power to detect a signi�cant summary e�ect using the three con�dence interval

methods **

5. Mean of the error-interval estimation of e�ect using the three con�dence inter-

val methods **

6. Variance of the error-interval estimation of e�ect using the three con�dence

interval methods **
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* The mean e�ect is calculated by the weighted inverse variance method (on page

1.6 in the introduction).

** Con�dence intervals are estimated using the three methods detailed in chapter

3. Namely, Wald-type [25], t-distribution [28] and Hartun-Knapp [38] con�dence

intervals. These methods are only a subset of all the con�dence interval methods

available, but since they relate only to the secondary performance measures, these

three methods are su�cient for this simulation study. All these methods are in-

dependent of the choice of heterogeneity variance estimator so any combination of

methods can be applied. All combinations are considered in this simulation study.

Bias and error are summarised using both the mean and median in performance

measures 1 and 2, all previous simulation studies only used the mean. The median

may be more appropriate because errors of heterogeneity variance estimates do not

conform to the normal distribution. Sidik and Jonkman [102] noted that mean

negative bias causes an arti�cially low mean squared error so we investigate whether

the median has this same issue. Error-interval estimation (performance measures

8 and 9) is a ratio between the width of the estimated con�dence interval and the

true con�dence interval, as de�ned by a previous simulation study [64]. The range of

performance measures is comprehensive and includes measures of bias and variability

of estimates of τ 2, the summary e�ect and con�dence intervals of the summary e�ect.

Measures of performance relating to con�dence intervals for τ 2 are excluded as it is

beyond the scope of the thesis. Details of how to calculate each included performance

measure are in appendix C.2.

6.5 Simulation methods

We simulate meta-analysis data by the following main steps:

� A meta-analysis dataset is generated for speci�ed parameter values using the

methods outlined in this section.
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� Heterogeneity variance estimates are calculated for the given meta-analysis

using methods listed in section 6.3.

� Steps 1 and 2 are repeated 5,000 times and performance measures are calculated

(see section 6.4)

� Steps 1-3 are repeated for all combinations of parameter values. The parameter

values are given in table 6.1 on page 121.

All steps are carried out in R [85]. Bespoke code is used to calculate estimates of the

heterogeneity variance and given in appendix D.2. Estimates from this code were

compared with estimates produced by the metafor package in R for all methods

included in this package (CA, DL, HS, SJ, ML and REML). For all other methods,

checks were made against estimates from example meta-analyses in published meth-

odology papers [3, 24, 73, 96, 101, 102]. Bespoke code was also written for Wald-type

and Hartung-Knapp con�dence interval methods for the summary e�ect and checked

against the metafor package (see appendix D.3). Heterogeneity variance estimators

are compared using the same simulated datasets to eliminate some of the sampling

error.

ML and REML are iterative and fail to converge to a solution in a small number

of cases [64], but this is primarily due the chosen iteration algorithm rather than

the estimator [126]. In this study the default iteration algorithm in metafor is used,

namely, Fishers scoring method with Cochran's ANOVA the initial estimate [126].

Simulated meta-analyses that cause such failures are not replaced and instances

recorded and presented in the results. Heterogeneity variance estimates for each

meta-analysis and performance measures for each combination of parameter values

are stored for the analysis.
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6.5.1 Simulating true study e�ects

For studies i = 1, ..., k in each meta-analysis, �rst simulate true study e�ects (θi)

such as a log odds ratio or standardised mean di�erence from some distribution D:

θi ∼ D
(
θ, τ 2

)
where θ is the true summary e�ect parameter and τ 2 the heterogeneity variance

parameter of D.

The standard random-e�ects model (on page 12 in chapter 1) assumes a normal

distribution for D, but θi are also simulated from skew-normal distributions with

moderate and high skew to test if the methods are robust when this assumption is

violated. Distributions for D and parameter values for θ and τ 2 are listed in sec-

tion 6.6. For each study i, study e�ect estimates θ̂i are then generated to simulate

within-study sampling error. The process for doing so depends on the type of out-

come of studies in each meta-analysis. In this study, two types of meta-analyses are

simulated: (1) continuous outcome meta-analyses with a standardised mean di�er-

ence e�ect measure; and (2) dichotomous outcome meta-analyses with an odds ratio

e�ect measure, as detailed in sections 6.5.2 to 6.5.3.

6.5.2 Standardised mean di�erence (SMD) meta-analyses

To simulate observed standardised mean di�erence study e�ects, we use the following

steps for each study i:

� Generate sample sizes for each group, denoted by n1i and n2i from one of a

number of distributions as detailed in section 6.6.

� Generate n1i observations from N (0, σ2
1) and n2i observations from N (θi, σ

2
2),

to represent participant-level data. Without loss of generality, variances are

assumed equal by setting σ2
1 = σ2

2 = 1.
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� Calculate the sample means (Z1i and Z2i) and standard deviations (ŝd1i and

ŝd2i) of these observations.

� Calculate the standardised mean di�erence θ̂i and variance σ̂2
i using Hedge's g

method (described on page 4 in chapter 1).

I chose to simulate meta-analyses with this outcome measure because study e�ects

are standardised and can be compared between meta-analyses.

6.5.3 Odds ratio meta-analyses

To simulate odds ratio study e�ects for each study i, I used the following steps:

� Generate the true average probability of an event across the two study groups,

denoted by pi. p1i and p2i are found from solutions to the simultaneous equa-

tions:

pi =
p2i + p1i

2

θi = log

(
p2i (1− p1i)
p1i (1− p2i)

)

pi are generated from one of a number of distributions as detailed in

section 6.6, which represent where events are common and rare.

� Generate sample sizes for each intervention group, denoted by n1i and n2i, from

one of a number of distributions in section 6.6.

� The numbers of events in the study groups are generated from the binomial

distributions B (n1i, p1i) and B (n2i, p2i). Cell counts in a 2x2 contingency table

can then be derived.
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� Add 0.5 to all cell counts if there is any zero in the table. If there are zero

events in both arms then exclude this study from the synthesis. When fewer

than 2 studies remain after exclusions, the meta-analysis is withdrawn from

the simulations without replacement. This is the current standard method

for dealing with zero cell counts, but we recognise there may be other, better

performing methods [10, 30].

� Calculate the sample log odds ratio, θ̂i and its variance σ̂2
i using formulae on

page 6 in chapter 1.

Meta-analyses with this outcome measure wer simulated for two reasons: (1) The

systematic review of previous simulation studies (chapter 5) suggested heterogeneity

variance estimators perform worse in this setting compared with standardised mean

di�erence meta-analyses and (2) the odds ratio is one of the more common outcome

measures in binary outcome meta-analyses [120].

6.6 Parameter values

Performance of the heterogeneity variance estimators are assessed for all combina-

tions of parameter values and distributions given in table 6.1, for standardised mean

di�erence and for odds ratio meta-analyses. There are a total of 960 standardised

mean di�erence meta-analyses and 15,360 simulated scenarios for odds ratio meta-

analyses. Parameter values were chosen to represent the range of values observed in

published meta-analyses. Further details and a justi�cation for these values are in

sections 6.6.1 to 6.6.6 that follow.

6.6.1 Number of studies

Figure 4.1 on page 57 shows the number of studies typically included in CDSR

meta-analyses and is used to inform parameter values for k. The number of studies
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Parameter Value/distribution

k Number of
studies in
the meta-
analysis

2, 3, 5, 10, 20, 30, 50, 100

I2 Mean I2 for
each
scenario

0%, 15%, 30%, 45%, 60%, 75%, 90%, 95%

θ Summary
e�ect

0.5 for SMD meta-analyses; 0, 0.5, 1.1 and
2.3 for log odds ratio meta-analyses
(corresponding to ORs of 1, 1.65, 3 and 10)

θi Distribution
of true
study e�ects

(a) θi ∼ N (θ, τ 2)(standard random-e�ects
model)

(b) Normal distribution with moderate
skew: θi ∼ SN (θ, τ 2, γ = 0.7)

(c) Normal distribution with high skew:
θi ∼ SN (θ, τ 2, γ = 0.95)

τ 2 takes parameter values that satisfy the
I2 values above

n1i,
n2i

Study
sample sizes

(a) Small studies: n1i = 20

(b) Small to medium sized studies:
n1i ∼ U (20, 200)

(c) Medium sized studies: n1i = 200

(d) Small and large studies:
n11, ..., n1m = 20 and
n1m, ..., n1k ∼ U (1000, 2000) where m is the
integer half way between 1 and k (when k is
odd, one study is be generated from one of
the two distributions at random)

(e) Large studies: n1i ∼ U (1000, 2000)

In all scenarios, sample sizes are equal
between groups (n1i = n2i)

Parameters only applying to odds ratio meta-analyses

pi Average
probability
of event
across study
groups

(a) pi = 0.5

(b) pi ∼ U (0.1, 0.5)

(c) pi = 0.05

(d) pi = 0.01

Table 6.1: Set of parameter values and distributions to simulate meta-analyses
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per meta-analysis in this simulation study range between 2 and 100. Meta-analyses

with two studies are excluded from the analysis of CDSR in chapter 57, but these

are included in the simulations. For completeness, meta-analyses with up to 100

studies are included, although Cochrane meta-analyses typically containing much

fewer studies [21].

6.6.2 Heterogeneity variance parameter values

6.6.2.1 Method to derive heterogeneity variance parameter values

To ensure that heterogeneity variance (τ 2) parameter values represent the full range

of inconsistency, τ 2 are de�ned so that they correspond to true I2 between 0% and

95% (see table 6.1 for the full range of I2). It is necessary for τ 2 values to vary

between scenarios so that I2 remain roughly constant. Also, there is di�culty in

de�ning τ 2 using this method because I2 are likely to vary to some extent due to

sampling error in a given scenario. Therefore, we de�ne τ 2 such that it produces

meta-analyses with the desired true I2 on average over 5,000 repetitions. We use

trial and error to �nd the τ 2 that satisfy this de�nition.

The following formula is used to calculate the underlying I2 of each repetition (similar

to that introduced in chapter 1):

I2 =
τ 2

τ 2 + σ2
· 100%

where σ2 is the 'true' typical study variance:

σ2 =
(k − 1)

∑k
i=1 1/σ2

i(∑k
i=1 1/σ2

i

)2
−
∑k

i=1 (1/σ2
i )

2
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Preliminary analysis found that I2 is insensitive to changes in k and the distribution

of study e�ects, so τ 2 values are consistent between these scenarios. τ 2 values di�er

between all other parameters.

Threshold values are de�ned for I2 to help interpret the results: 15% and 30%

represent low inconsistency; 45% and 60% represent moderate inconsistency; and

75%, 90% and 95% represent considerable inconsistency. These threshold values

roughly correspond to the guidelines in the Cochrane handbook [51], but modi�ed

merely so they correspond to simulated I2 values. Recall that I2 is a measure of

heterogeneity relative to typical within study variances and so loosely represents the

degree of overlap between study e�ect con�dence intervals.

6.6.2.2 A summary of heterogeneity variance parameter values

Having applied this method, the derived τ 2 parameter values are given in table D.1

in the appendix. As expected, heterogeneity parameters are smallest in scenarios

where within-study variances are also small. That is, in the scenarios containing

standardised mean di�erence meta-analyses with large studies, where a heterogeneity

parameter of 0.0256 produces meta-analyses with a mean I2 of 95%. Conversely,

heterogeneity parameters are largest in the scenarios with odds ratio meta-analyses

containing small studies, in which a heterogeneity parameter of 15.6 produces a mean

I2 of 95%.

Underlying I2 vary in any given scenario because they depend on the sampled true

study e�ects and within-study variances. In meta-analyses with small and large

study sizes, there are large di�erences in underlying I2 within the same scenario; the

5th and 95th percentiles of I2 have absolute di�erences of up to 50%. The di�erences

are smaller in all other distributions of study sizes, in which 5th and 95th percentiles

of I2 have di�erences of up to 20%. Variation in I2 within a given scenario is not

considered a major issue for this analysis, since this method is used only to de�ne
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heterogeneity parameter values. The ranges of I2 values in each scenario is shown in

table D.2 in the appendix.

6.6.3 Summary e�ect

To reduce the number of scenarios, standardised mean di�erence meta-analyses are

only simulated where θ = 0.5. Three previous simulation studies simulated meta-

analyses with multiple true SMD e�ects and all suggested that the value of θ has

little bearing on any performance measure [78, 96, 124]. Odds ratio meta-analyses

are simulated with a range of summary e�ects; 0, 0.5, 1.1 and 2.3 (corresponding

to odds ratios of 1, 1.65, 3 and 10). Results may be a�ected by the underlying

odds ratio, particularly when the odds ratio is extremely large or small, as shown

previously in the simulation study by Bhaumik et al. [3]. An extreme underlying

odds ratio causes imbalance in the event probabilities between groups, which can

lead to one or both groups having rare events and this could a�ect results.

6.6.4 Distribution of true study e�ects

True study e�ects (θi) are generated from three distributions. In all scenarios, θi are

sampled from distributions with mean θ and variance τ 2. First, θi are generated from

the normal distribution which is assumed in the standard random-e�ects model and

represents optimal conditions where estimators may perform best (scenario a). Some

heterogeneity estimation methods such as Paule-Mandel do not assume normality of

true e�ects and therefore it is hypothesised such estimators are more robust under

non-normal conditions [24]. Second, θi are sampled from two skew-normal distribu-

tions (scenarios b and c) with 0.7 and 0.95 skew parameter values; this represents

moderate and high negative skew as illustrated in �gure 6.1. Kontopantelis et al. [64]

previously looked at performance of heterogeneity variance estimators under skew-

normal conditions, and de�ned this similar level of skew as `moderate' and 'high'.

This distribution is de�ned elsewhere [68].
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Figure 6.1: Probability density function of skew-normal distribution

Note that the variance di�ers depending on the simulation scenario, but this is only
the scaling parameter.

6.6.5 Study sample sizes

Study sample sizes are generated in �ve ways to represent small-to-medium study

sizes (scenario a), small equally-sized studies (scenario b), medium equally-sized

studies (scenario c), small and large studies (scenario d) and large studies only

(scenario e). These scenarios are chosen to represent meta-analyses with a range of

study sizes and also a range of di�erences between study size. The systematic review

of simulation studies in chapter 5 suggests that performance of heterogeneity variance

estimators may be dependent on study sample sizes, but evidence is currently limited

[55].

6.6.6 Average probability of event across study groups

Binary outcome meta-analyses are generated from a range of underlying event rates.

In scenario a, the underlying average event rate is 0.5 to represent the ideal scenario

with event rates sampled as far from the asymmetric tails of the binomial distribution

as possible. Scenario b represents a situation where event rates are variable between

studies but not so rare as to be considered a big contributing factor to poor estimates
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of summary e�ects and standard errors. Scenarios c and d represent situations where

the average underlying event rate is homogeneous and rare. It is not necessary to

simulate meta-analyses where the event of interest is extremely common (e.g. 0.95) as

the resulting odds ratios are the inverse of those obtained with extremely uncommon

event rates.

6.7 An overview of the simulation study

The systematic review of previous simulation studies in the last chapter found con-

�icting recommendations. Four reasons for this were suggested, which we address

in this new study. (1) There was con�ict of interest in most studies because they

compared existing methods with those newly proposed. To address this, we only

compare pre-existing methods in our study. (2) Most studies only compared a small

subset of the methods available, so we include a comprehensive list. (3) Simulations

were often not representative of real meta-analyses, so we de�ne parameter values

for simulations based on meta-analyses seen in practice. (4) Studies don not address

that all methods are very imprecise in typical meta-analyses. They failed to address

this issue because their results were focused on the relative performance of methods.

We consider both relative and absolute performance in this simulation study.

Meta-analyses are simulated with odds ratio and standardised mean di�erence study

e�ects to capture properties of heterogeneity variance estimators for a represent-

ative range of outcome measures. Novianti et al. [78] was the only study identi-

�ed in my systematic review that simulated both binary and continuous outcomes.

participant-level data is simulated to ensure simulated data is representative of real

meta-analyses. Generating participant-level data will also ensure the issues with het-

erogeneity estimation speci�c to certain types of outcome measures is captured. One

issue is that estimated odds ratio and standardised mean di�erence study e�ects are

correlated with their variances [3, 8]. This is a particularly large issue in all binary

outcome meta-analyses with rare events [3].
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Our methods for simulating meta-analysis data di�er from most other previous sim-

ulation studies in two key ways. First, we de�ne underlying τ 2 parameter values

that correspond to a consistent range of underlying I2 values. We de�ne a range

of I2 between 0% and 95% to ensure the corresponding range of τ 2 represents zero,

low, moderate and high inconsistency in study e�ects for all scenarios. Only Konto-

pantelis et al. [64] has previously taken a similar approach. No guidelines exist for

interpreting τ 2 estimates because the measure cannot be compared between meta-

analyses, but the Cochrane Collaboration have issued rough guidelines on interpret-

ing I2 values [51]. Second, all previous studies de�ned the event probability of the

control group for simulating binary outcome meta-analyses. Conversely, we de�ne

the average event probability between both study groups. In doing so, the rarity of

the event is more independent of the study e�ect sizes.

Results are presented from these simulated meta-analyses in the following two chapters.

In the next chapter, we explore comprehensively the performance of all included het-

erogeneity variance estimators. Scenarios are identi�ed where all estimators perform

poorly, when they perform well and in such cases which estimators perform better

than others. I then investigate how the �ndings from this analysis apply to real

meta-analyses in chapter 8 by combining with empirical data. Methods for analysis

of this simulated meta-analyses data are detailed in the two chapters that follow.
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Chapter 7

Main simulation study results
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7.1 Introduction

The last chapter detailed the design of a new simulation study to compare hetero-

geneity variance estimators in random-e�ects meta-analysis. Details included the

methods for simulating meta-analysis data, which heterogeneity variance estimators

are compared and the performance measures used for comparisons. The study is

designed based on �ndings from a systematic review of previous simulation studies

in chapter 5 and input from other collaborators. In this chapter, the results of this

study are presented.

A number of heterogeneity variance estimators are excluded from the main results

because they are clearly inferior to other estimators; section 7.2 explains the reasons

for these exclusions. Also, given the scale of this study, it was only possible to

present a subset of all simulated scenarios and performance measures. Reasons for

choosing this subset are given in sections 7.3 and 7.4. These exclusions of estimators

and results were based on a preliminary exploration of all study results, which are

presented more fully in volume II of this thesis.

The main results are given in section 7.5 and split into three parts. First, results that

compare estimators in terms of performance measures relating to point estimates of

the heterogeneity parameter are presented in section 7.5.1. Mean bias and mean

squared error performance measures in this section are plotted on the proportional

scale to the heterogeneity variance parameter whenever τ 2 > 0. In other words,

mean bias is plotted as a proportion of the true parameter value rather than abso-

lute di�erence from the truth. Similarly, for a proportional mean squared error of

(for example) 100%, the average squared error is equal to τ 2. This is so that results

can be compared more easily between scenarios of di�erent τ 2 and to help inter-

pretation. Raw mean bias and mean squared error is presented whenever τ 2 = 0.

After results from the primary performance measures, those relating to estimation

of the summary e�ect are presented in section 7.5.3 and �nally, those relating to the

con�dence interval for the summary e�ect are in section 7.5.4. Within each section,
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selected results are presented to give a representative picture of all simulated scen-

arios and a summary explains how they can be generalised to all scenarios. Results

are interpreted from two viewpoints; (1) as a relative comparison of the performance

of heterogeneity variance estimators reveal those that perform best and (2) as a gen-

eral comparison of performance between scenarios to summarise where all estimators

perform well/poorly.

7.2 Heterogeneity variance estimators excluded from

the main analysis

We excluded Rukhin's estimator with zero prior (B0), Rukhin's simple estimator

(BP) [93] and that proposed by Malzahn, Böhning and Holling (MBH) [74] in a

preliminary analysis. These estimators are not compared in the main results because

they clearly have inferior properties and would distract the reader away from those

with more reasonable properties.

To justify these exclusions, �gure 7.1 presents two selected graphs from the simu-

lation results including all heterogeneity variance estimators. The y-axes present

proportional mean bias (left) and proportional mean squared error (right). These

results are from scenarios of standardised mean di�erence meta-analyses with small-

to-medium study sizes and heterogeneity variance of 0.0299 (which represents a mean

I2 of 60%). The �gure shows B0 has considerable negative bias and BP has consid-

erable positive bias when there are more than 5 studies. MBH has a higher mean

squared error than all other estimators included in the main results, particularly

when the number of studies is low.

The 12 remaining heterogeneity variance estimators are compared extensively in the

main results in section 7.5 using graphs similar to those in �gure 7.1.
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Figure 7.1: Proportional mean bias (left-hand-side) and proportional mean
squared error (right-hand-side) in selected scenarios with B0, BP and MBH

heterogeneity variance estimators included.

Scenarios containing standardised mean di�erence meta-analyses (θ = 0.5) with
small-to-medium study sizes and a mean I2 of 60%.

7.3 Simulated scenarios not presented in full

Standardised mean di�erence and odds ratio meta-analyses data were generated for

all combinations of parameter values as detailed in the last chapter. Results were

produced from a total of 16,320 meta-analysis scenarios, of which only a represent-

ative subset could be presented in full in this chapter. The scenarios chosen are

di�erent for each performance measure; reasons for selection are detailed in each

section of the results. Only scenarios with normally distributed study e�ects are

presented in this chapter because results from skew-normal distributions were not

meaningfully di�erent indicating that heterogeneity variance estimators and con�d-

ence interval methods are robust to skew-normal e�ects. Scenarios with an e�ect

size of 0.5 (standardised mean di�erence/log-odds ratio) are presented in most of

this chapter given that results for the most part were representative of other e�ect

sizes. In section 7.5.2, results from other e�ect sizes are presented to show where

di�erences were observed.
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7.4 Selected performance measures

Only a subset of the performance measures originally considered (as listed in the last

chapter) are included in the main results. Preliminary analysis showed some failed

to capture anything of interest and some showed comparable results. Therefore, �ve

performance measures of those originally speci�ed are included in this chapter. The

mean bias, mean squared error and proportion of zero estimates are included that

all relate directly to point estimates of the heterogeneity variance. Also included are

bias of the summary e�ect estimate and coverage of 95% con�dence intervals of the

summary e�ect. Con�dence intervals are calculated by Wald-type [25], t-distribution

[28] and Hartung-Kanpp [38] methods.

Performance measures not reported are listed in table F.1 of the appendix along with

the reasons for exclusion. Selected results to show why these performance measures

are excluded are given in �gures F.1 to F.6 in the same appendix.

7.5 Results

7.5.1 Properties of heterogeneity variance parameter estim-

ates

In this section of the results, heterogeneity variance estimators are compared in

terms of performance measures that relate directly to estimation of the heterogeneity

parameter (τ 2). These performance measures are mean bias, mean squared error and

the proportion of zero heterogeneity variance estimates.

A subset of results are presented from standardised mean di�erence and odds ratio

meta-analyses containing small studies, small-to-medium sized studies and small and

large studies. This subset of results were chosen as they represent both a range of

study sizes and also a range of di�erences in study size. For odds ratio meta-analyses,
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we present those containing studies with event probability simulated from a uniform

distribution between 0.1 to 0.5. These scenarios represent meta-analyses where rare

events impact the results but not so considerably that all estimators perform poorly.

Scenarios of meta-analyses with mean I2 values of 0%, 30%, 60% and 90%, which

represent the full range of inconsistency between studies.

Figures 7.2 - 7.7 (pages 136 - 141) show the mean bias, mean squared error and pro-

portion of zero heterogeneity variance estimates in standardised mean di�erence and

odds ratio meta-analyses separately. The properties of each estimator are described

in separate the sections that follow, based on these �gures.

7.5.1.1 DerSimonian-Laird (DL)

In scenarios of standardised mean di�erence meta-analyses, DL is negatively biased

when study e�ects have high I2 and study sample sizes are small (as shown in �gure

7.2, plot A4). This negative bias increases as the number of studies increases and

reaches up to -20%. These scenarios have a τ 2 parameter of 0.991, so in absolute

terms the mean bias is up to -0.19. In all the other standardised mean di�erence

scenarios in this �gure, DL is positively biased in meta-analyses containing fewer

than 10-20 studies and roughly unbiased for those with more studies. DL has similar

bias to many estimators including PMCA, PMDL and REML in scenarios with small

studies and small-to-medium studies. In meta-analyses with small and large studies

(plots C1-C4), DL is one of the least biased estimators and distinctly lower than PM

and PMCA.

Mean bias in scenarios of odds ratio meta-analyses with event probabilities between

0.1 and 0.5 is shown in �gure 7.3. In these scenarios, DL's negative bias is observed

to a greater extent than in standardised mean di�erence scenarios and includes those

with small-to-medium sized studies and high I2. Results suggest that in odds ratio

meta-analyses, larger sample sizes are required than in standardised mean di�er-

ence meta-analyses to avoid DL's negatively biased estimates. Alternatively, study
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event probabilities closer to the ideal 0.5. As with standardised mean di�erence

meta-analyses, DL is one of the least biased estimators in odds ratio meta-analyses

containing small and large studies (plots C1-C4).

DL is compared in terms of mean squared error in �gures 7.4 and 7.5. DL has a

relatively low mean squared error in the same scenarios as when the estimator is

negatively biased. However, this is a consequence of how mean squared error is

measured and so this isn't necessarily a good property. Also, DL also has relatively

low mean squared error in scenarios containing small-to medium and small and large

studies. In scenarios with small equally-sized studies, DL has mean squared error

comparable with many other estimators including CA, PM, PMCA, PMDL, SJCA and

REML.

DL consistently has one of the lowest proportions of zero heterogeneity variance

estimates of all estimators that require truncation. However, this is a similar pro-

portion as other weighted method of moments estimators including PM, PMCA and

PMDL.

7.5.1.2 Cochran's ANOVA (CA)

CA tends to produce higher estimates of the heterogeneity variance than most other

estimators in scenarios of both standardised mean di�erence and odds ratio meta-

analyses. As such, CA is roughly unbiased in scenarios with typically high I2 when

most other estimators are negatively biased. However, CA is one of the most pos-

itively biased estimators for up to moderate I2. CA's positive bias is particularly

prominent in scenarios with small and large studies (�gures 7.2 and 7.3, plots C1-

C4). It is to be expected that CA performs poorly when there are large di�erences

in study size, given that the estimator assigns equal study weights. CA's positive

bias is slightly greater in odds ratio meta-analyses with event probability 0.1 to 0.5

than in standardised mean di�erence meta-analyses.
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Figure 7.2: Mean bias of heterogeneity variance estimates in standardised
mean di�erence outcome meta-analyses

Scenarios containing small studies (A1-A4), small-to-medium studies (B1-B4) and
small and large studies (C1-C4). E�ect size θ = 0.5.

Bias is presented on the proportional scale when τ 2 > 0.
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Figure 7.3: Mean bias of heterogeneity variance estimates in odds ratio
meta-analyses with event probability 0.1 to 0.5

Scenarios containing small studies (A1-A4), small-to-medium studies (B1-B4) and
small and large studies (C1-C4). E�ect size θ = 0.5.

Bias is presented on the proportional scale only when τ 2 > 0.
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Figure 7.4: Mean squared error of heterogeneity variance estimates in
standardised mean di�erence meta-analyses

Scenarios containing small studies (A1-A4), small-to-medium studies (B1-B4) and
small and large studies (C1-C4). E�ect size θ = 0.5.

Mean squared error is presented on the proportional scale only when τ 2 > 0.
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Figure 7.5: Mean squared error of heterogeneity variance estimates in odds
ratio meta-analyses with event probability 0.1 to 0.5

Scenarios containing small studies (A1-A4), small-to-medium studies (B1-B4) and
small and large studies (C1-C4). E�ect size θ = 0.5.

Mean squared error is presented on the proportional scale only when τ 2 > 0.
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Figure 7.6: Proportion of zero heterogeneity variance estimates in
standardised mean di�erence meta-analyses

Scenarios containing small studies (A1-A4), small-to-medium studies (B1-B4) and
small and large studies (C1-C4). E�ect size θ = 0.5.

HM, SJ, SJCA are not included as they only produce positive τ 2 estimates.
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Figure 7.7: Proportion of zero heterogeneity variance estimates in odds ratio
meta-analyses with event probability 0.1 to 0.5

Scenarios containing small studies (A1-A4), small-to-medium studies (B1-B4) and
small and large studies (C1-C4). E�ect size θ = 0.5.

HM, SJ and SJCAare not included as they only produce positive τ 2 estimates.
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CA also has a higher mean squared error than most other estimators when there

are large di�erences in study sizes (7.4, plots C1-C4). Its mean squared error is

comparable with most other estimators when study sizes are the same (7.4, plots

A1-A4). These �ndings apply to both standardised mean di�erence and odds ratio

meta-analyses (�gure 7.5).

CA produces a comparatively high proportion of zero estimates in meta-analyses

containing small and large studies. Only HS and ML have a higher proportion and

only in meta-analyses with up to 5 studies.

7.5.1.3 Paule-Mandel (PM)

PM has a mean bias similar to PMCA, PMDL and REML in scenarios of standardised

mean di�erence meta-analyses that contain small or small-to-medium sized studies

(�gure 7.2, plots A1-A4 and B1-B4). In these scenarios, PM is roughly unbiased

when I2 is high or the meta-analysis has more than 20 studies and positively biased

otherwise. In scenarios with small and large studies (�gure 7.2, plots C1-C4), PM's

mean bias is distinct from all other estimators and has a higher positive bias than ML,

HS, DL, PMDL, HM and REML. PM's relatively high positive bias in these scenarios

is particularly prominent where meta-analyses contain �ve or fewer studies.

PM has a similar mean bias relative to other estimators in odds ratio meta-analyses

with study event probabilities between 0.1 to 0.5 (�gure 7.3). The key di�erences

are that PM has small levels of negative bias in scenarios containing small studies.

For example, in plot A3 for moderate I2 and τ 2 = 0.858, PM has bias of up to -20%

compared with DL's bias of up to -40%.

PM's mean squared error is comparable with PMCA, PMDL and REML in both

standardised mean di�erence and odds ratio meta-analyses with small equally-sized

studies (�gures 7.4 and 7.5). In scenarios with small-to-medium and small and large

studies, PM has a higher mean squared error than more than half of all estimators

compared, namely ML, HS, DL, PMDL, HM and REML.
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PM produces an almost identical proportion of zero estimates as DL, PMCA, PMDL

and REML (�gures 7.6 and 7.7). When I2 is low PM produces zero estimates of

heterogeneity for meta-analyses containing up to 100 studies when I2 is low. For

meta-analyses with high I2, PM produces no zero estimates when there are 10 or

more studies.

7.5.1.4 Two-step Cochran's ANOVA (PMCA)

PMCA is a two-step version of PM that uses CA as an initial estimate of heterogeneity.

As such, PMCA's mean bias and mean squared error are equal to, or somewhere

between, CA and PM in all scenarios.

PMCA has similar bias to CA and PM (and also REML) in scenarios of standardised

mean di�erence and odds ratio meta-analyses that contain small or small-to-medium

sized studies (�gure 7.2 and 7.3, plots A1-A4 and B1-B4). For standardised mean

di�erence and odds ratio meta-analyses with small and large studies (plots C1-C4),

PMCAhas a more distinct mean bias, slightly lower than CA and much higher than

PM. Only CA, SJ and SJCA have more positive bias in these scenarios. PMCA also

has a distinct mean squared error in scenarios with small and large studies; slightly

higher than PM and considerably less than CA.

PMCA produces an almost identical proportion of zero estimates as DL, PMDL and

REML.

7.5.1.5 Two-step DerSimonian-Laird (PMDL)

In most scenarios, properties of PMDL are similar to both DL and PM. Results di�er

in standardised mean di�erence and odds ratio meta-analyses with small studies and

high I2 in which PMDL and PM are roughly unbiased and DL is negatively biased.

Also, PMDLand DL have relatively low positive bias and low mean squared error

in scenarios containing small and large studies, where PM's positive bias and mean
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squared error are higher. Thus, results overall show PMDL has the best properties

of DL and PM.

PMDL produces an almost identical proportion of zero estimates as DL, PMCA and

REML.

7.5.1.6 Maximum likelihood (ML) and Hunter-Schmidt (HS)

ML has similar properties to HS in terms of all performance measures. ML and

HS produce the lowest estimates of all the estimators compared, particularly when

there are �ve or fewer studies in the meta-analysis. As such they are the least

positively biased estimators for zero to low I2 values and have the highest negative

bias for moderate and high I2. For example, in standardised mean di�erence meta-

analyses with small-to-medium study sizes and a τ 2 range of 0 to 0.194 (�gure 7.2,

plots B1-B4), ML and HS have minimal positive bias for zero and low I2 and a

mean bias as low as -60% for moderate to high I2. ML and HS have the lowest

mean squared errors in all meta-analyses as a consequence of their comparatively

low heterogeneity variance estimates (�gures 7.4 and 7.5) and the highest proportion

of zero heterogeneity variance estimates (�gures 7.6 and 7.7). These �ndings apply

to both standardised mean di�erence meta-analyses and odds ratio meta-analyses

with study event probabilities 0.1 to 0.5.

7.5.1.7 REML

REML has similar properties to DL in most scenarios. In a small number of scenarios

where DL is negatively biased, REML is also negatively biased but often to a much

lesser extent. Recall, these scenarios include standardised mean di�erence meta-

analyses with small studies and high I2 (�gure 7.2, plot A4) and to a greater extent in

odds ratio meta-analyses containing up to medium-sized studies and from moderate

I2 (�gure 7.3, plots A3, A4 and B4). REML has relatively low bias and low mean

squared error, as does DL, in scenarios containing small and large studies.
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REML has similar properties to DL and PMDL in most scenarios. The main di�erence

is in odds ratio meta-analyses where estimates are negatively biased, DL often has

the highest negative bias, followed by REML and PMDL has the least; this can be

observed most prominently in �gure 7.3 (plot A3). Di�erences in bias between REML

and DL are also observed in standardised mean di�erence meta-analyses with small

studies and high I2 (�gure 7.2, plot A4). REML has relatively low bias and low

mean squared error, as does DL and PMDL, in scenarios containing small and large

studies (�gures 7.2 and 7.3, plots C1-C4).

7.5.1.8 Hartung-Makambi (HM)

Recall that HM is a transformation of the DL estimator that only produces positive

estimates of the heterogeneity. In meta-analyses with small or small-to-medium

study sizes and zero or low I2, HM tends to produce relatively high estimates of

heterogeneity and therefore has relatively high positive bias. HM tends to produce

comparatively low estimates when I2 is moderate or high and has more negative bias

DL in these scenarios. For example, in scenarios of standardised mean di�erence

meta-analyses with small studies, high I2 and a τ 2 parameter value of 0.991 (�gure

7.2, plot A4), HM's negative mean bias is up to -25% and DL's negative mean bias

reaches -20%. In contrast, HM is one of the least biased estimators in meta-analyses

containing small and large studies, with similar bias as DL.

HM has a lower mean squared error than all estimators except HS and ML estimators,

but these estimators have much more considerable negative bias. Surprisingly, HM

has low mean squared error in scenarios with meta-analyses that have zero to low

I2, where HM has a relatively high positive bias. HM has a particularly low mean

squared error, similar to DL, in meta-analyses with small and large studies because

HM in these scenarios has relatively low bias.
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7.5.1.9 Sidik-Jonkman (SJ)

SJ typically produces one of the highest estimates of the heterogeneity variance in

both standardised mean di�erence and odds ratio meta-analyses. As such, SJ has

considerable positive bias for meta-analyses with up to typically moderate I2. For

example, in standardised mean di�erence meta-analyses containing small-to-medium

sized studies and low I2 (�gure 7.2, plot B2), SJ has mean bias of more than 100%

when almost all other estimators are roughly unbiased. It is to be expected that

SJ has positive bias for low I2, given that it only produces positive heterogeneity

variance estimates. However, SJ's positive bias is much higher than other positive

estimators including SJCA and HM. In meta-analyses with high I2 values, SJ has a

relatively low bias similar to CA, SJCA, PMCA, PMDL and REML. SJ's bias remains

constant as the number of studies in meta-analyses increase, while the bias of most

other estimators converge to zero.

SJ also has a relatively high mean squared error in meta-analyses with up to moderate

I2 values and a mean squared error similar to most other estimators when I2 is high.

7.5.1.10 Sidik-Jonkman (CA initial estimate) (SJCA)

Recall that SJCA is a two-step heterogeneity variance estimator based on the same

approach as SJ and as such only produces positive estimates. In standardised mean

di�erence and odds ratio meta-analyses with up to moderate I2, SJCA becomes more

positively biased as typical study sizes increase. In meta-analyses with small studies

(as shown in �gures 7.2 and 7.3, plots A1-A4), SJCA is one of the least biased

estimators, with bias similar to many of the truncated methods including DL, PM

and REML. In meta-analyses with medium-sized studies, its bias is comparable with

SJ and for meta-analyses with large studies SJCA has the highest positive bias of

all estimators compared (the results of these scenarios are shown in the results in

volume II of this thesis). SJCA is roughly unbiased in meta-analyses with high I2

similar to CA, SJ, PMCA, PMDL and REML.
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In scenarios where SJCA has positive bias, it also have relatively high mean squared

error (i.e. in meta-analyses with large studies).

7.5.1.11 A summary of all simulated scenarios

Table 7.1 summarises the simulation results across all scenarios of standardised mean

di�erence and odds ratio meta-analyses. The table is colour-coded to show scenarios

where the properties of all estimators are similar in terms of all three perform-

ance measures reported thus far; (1) proportional mean bias, (2) proportional mean

squared error and (3) proportion of zero heterogeneity variance estimates.

All estimators have substantial negative mean bias in odds ratio meta-analyses with

an event probability of up to 0.05, except when all studies are large (i.e. those with

sample sizes of 2000 per study group). All estimators also have considerable negative

bias in odds ratio meta-analyses with common events and small studies (i.e. those

with sample sizes of 20 per study group). In all other scenarios when there is a

su�cient number of studies, many of the estimators have reasonable properties.

We derived two other key observations from table 7.1. First, heterogeneity variance

estimators generally have worse properties in scenarios containing small study sizes

and in odds ratio meta-analyses with low event probabilities. Second, the properties

of heterogeneity variance estimators are similar between standardised mean di�erence

meta-analyses and the equivalent odds ratio meta-analyses when events are common.

The exception is in meta-analyses containing small studies; all heterogeneity variance

estimators are considerably biased in odds ratio meta-analyses with high I2 where

many are unbiased in the equivalent standardised mean di�erence scenario (as shown

in �gures 7.2 and 7.3, plot A4).
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0
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5 All estimators have substantial negative bias 

for moderate to high I2 .

0
.0

1 All estimators have substantial negative bias for all I2  and rarely 

estimate τ2 above 0.

Table 7.1: A summary of the properties of heterogeneity variance estimators
for all scenarios of standardised mean di�erence and odds ratio meta-analyses

with e�ect size 0.5.

are scenarios where all estimators have considerable negative bias. Some
estimators are reasonably unbiased in all other scenarios (if there are enough

studies).
* Mean bias presented in �gure 7.2, mean squared error in �gure 7.4 and

proportion of zero estimates in 7.6
** Mean bias presented in �gure 7.3, mean squared error in �gure 7.5 and

proportion of zero estimates in 7.7
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7.5.2 Properties of heterogeneity variance estimates for vary-

ing e�ect sizes

The results presented thus far come from simulated scenarios with a log odds ratio

and standardised mean di�erence of θ = 0.5 (this corresponds to an odds ratio

of 1.65). Meta-analyses were also simulated with other log odds ratio e�ect sizes;

θ = 0, 1.1, 2.3 (i.e. odds ratios of 1, 3 and 10). Results were generally consistent

between e�ect sizes except in scenarios with meta-analyses containing only small

studies (a selection of these results are presented in �gure 7.8). In scenarios with

rare events and small sample sizes, all methods have high negative bias regardless of

the odds ratio e�ect size (therefore, the summary in table 7.1 can be generalised to

all e�ect sizes in these scenarios).

In �gure 7.8, mean bias is presented in meta-analyses with small studies and various

underlying log odds ratios (θ = 0.5, 1.1, 2.3). Odds ratio meta-analyses with θ = 0

are not presented in this chapter because results are roughly consistent to θ = 0.5

in all scenarios. All methods have more negative bias in the scenarios with a large

e�ect size (C1-C3) than for low (A1-A4) and moderate (B1-B4) e�ect sizes. This

may be partly due to a di�erence in τ 2 parameter values between these scenarios,

given that results are consistent when τ 2 = 0. REML is more negatively biased

relative to other estimators in meta-analyses with a small e�ect size than with a

large e�ect size. However, the di�erence in REML between e�ect sizes is marginal.

HM is generally more robust to changes in e�ect size than other estimators, but still

has considerable positive bias in scenarios of up to low heterogeneity.

Mean bias is the only performance measure presented in this section. However, this

measure gives an understanding of the properties of methods according to other

performance measures. Generally, results di�er between e�ect sizes only in meta-

analyses with small studies and where the event is not rare across both study groups

(but could become rare in one of more study groups if the e�ect size is extreme

enough). Appendix F.7 shows mean squared error of heterogeneity variance estimates
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Figure 7.8: Mean bias of heterogeneity variance estimates in odds ratio
meta-analyses containing small studies and with event probability 0.1 to 0.5

Scenarios with an underlying summary odds ratio of 1.65 (A1-A4), 3 (B1-B4) and
10 (C1-C3).

Bias is presented on the proportional scale only when τ 2 > 0.
There was no such τ 2 that produced a mean I2 of 90% when θ = 2.3, so these

scenarios are not presented.
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Figure 7.9: Mean bias of the summary e�ect estimates in odds ratio
meta-analyses with rare events.

Scenarios presented are all with moderate I2 (a mean of 60%) and (A1)
Small-to-medium study sizes with an average event probability of 0.05; (B1) Small

and large study sizes with an average event probability of 0.05; (A2)
Small-to-medium studies with an average event probability of 0.01; (B2) Small and

large studies with an average event probability of 0.01.
θ = 0.5 and represents the underlying log odds ratio.

for the equivalent scenarios as in �gure 7.8.

7.5.3 Properties of estimates of the summary e�ect

This section presents a comparison of heterogeneity variance estimators in terms of

mean bias of the summary e�ect estimates. All meta-analyses were simulated with

a true summary e�ect of 0.5, which represents either a standardised mean di�erence

or a log odds ratio.

Results show that summary e�ect estimates of θ = 0.5 are almost unbiased in all scen-

arios of standardised mean di�erence meta-analyses and odds ratio meta-analyses
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with common events. However, summary e�ect estimates are negatively biased to-

wards the null value of zero in odds ratio meta-analyses with rare events. In these

scenarios, heterogeneity variance estimators also have considerable negative bias (see

table 7.1). This indicates that the problem is not solely related to heterogeneity vari-

ance estimation, but problems with two-stage meta-analysis and perhaps the choice

of continuity correction that a�ects all methods. Results from selected scenarios are

presented in �gure 7.9 of odds ratio meta-analyses with a rare event probability (0.01

and 0.05) and a mean I2 of 60%. These scenarios were selected to show negative

bias of summary e�ect estimates to varying degrees.

Estimators that produce larger estimates of the heterogeneity variance such as SJ,

typically with positive bias, produce summary e�ect estimates with the lowest bias in

scenarios with small-to-medium study sizes (plots A1 and A2). The opposite result is

shown in plots B1 and B2 where studies are small and large; ML and HS produce the

lowest estimates of heterogeneity and the least biased summary e�ect estimates. This

is perhaps because larger heterogeneity variance estimates give studies more equal

weight and this can reduce bias caused imprecise within-study variance estimates (as

observed in plots A1 and A2). However, when there are large di�erences between

study sizes, giving studies more equal weight can increase bias of the summary e�ect

estimates (as observed in plots B1 and B2).

For scenarios with event probability 0.05, considerable negative bias in summary

e�ect estimates is observed only when study sizes are small (as shown in plot A2).

When the event probability is 0.01, considerable negative bias is observed in all odds

ratio meta-analyses except when all studies are large. This can be observed in the

full results in volume II of this thesis.
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7.5.4 Coverage of 95% con�dence intervals for the summary

e�ect

Con�dence intervals of the summary e�ect in this section are compared in terms of

coverage. Con�dence interval methods include Wald-type [25], t-distribution [28] and

that proposed by Knapp and Hartung [38].

A representative subset of scenarios are presented before generalising the results to all

scenarios. Results presented are from (1) standardised mean di�erence meta-analyses

with small-to-medium studies (�gure 7.10), (2) odds ratio meta-analyses with small-

to-medium studies and 0.05 event probability (�gure 7.11) and (3) odds ratio meta-

analyses with small and large studies and event probability 0.1 to 0.5 (�gure 7.12).

The �rst scenarios represent ideal conditions and the �nal two scenarios represent

conditions where methods generally perform more poorly. Scenarios of odds ratio

meta-analyses with common events are excluded because results were consistent with

the equivalent standardised mean di�erence meta-analyses. Results are plotted for

τ 2 parameters that produce mean I2 values of 0%, 30%, 60% and 90%. However, a

mean I2 of 90% was unattainable in some scenarios so these results are not included.

Results are given separately for each con�dence interval method in sections 7.5.4.1 -

7.5.4.3 that follow, based on �gures 7.10 to 7.12.

7.5.4.1 Wald-type con�dence interval

The Wald-type 95% con�dence interval is not robust to various simulated scen-

arios. Figure 7.10 shows coverage for scenarios of standardised mean di�erence

meta-analyses with small-to-medium studies. In these scenarios, coverage can di�er

by up to 5% between heterogeneity variance estimators, up to 30% between numbers

of studies and up to 20% between heterogeneity values. Coverage varies between 96-

100% when studies are homogeneous and can be as low as 65% when the mean I2 is

90% (τ 2 = 0.187) and meta-analyses have two or three studies. When heterogeneity
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is present, its coverage tends towards the nominal value of 95% as the number of

studies increases.

In scenarios of odds ratio meta-analyses and an event probability of 0.05 (�gure 7.11),

coverage is above 90% when there are 20-30 studies. For meta-analyses with lower

or higher numbers of studies, coverage is as low as 85%. In �gure 7.12, derived from

odds ratio meta-analyses with small and large studies, di�erences in coverage between

heterogeneity variance estimators is up to 25%. For example, when τ 2 = 0.038 (mean

I2 is 90%) and there are two or three studies in the meta-analysis, HS and ML has

coverage as low as 60% while SJ and HM produce a con�dence interval with coverage

85%.

In all scenarios, heterogeneity variance estimators that produce high estimates with

positive bias (i.e. SJ, HM) tend to produce Wald-type con�dence intervals with a

higher coverage. Therefore these estimators work best with this con�dence interval

method when I2 is high, given that coverage is typically low in these scenarios. By

similar logic, HS and ML produce the lowest estimates of heterogeneity and generally

work best with this method when I2 is low. However, in meta-analyses with small

and large studies (�gure 7.12), CA produces the lowest coverage despite having

positively biased heterogeneity variance estimates in these same scenarios. Perhaps

this is because CA is the only estimator that assigns equal study weight and had

high mean squared error in these scenarios.

7.5.4.2 t-distribution con�dence interval

Coverage of the t-distribution 95% con�dence interval is generally more robust to

changes in the mean I2, as shown in �gure 7.10 in standardised mean di�erence meta-

analyses. In these scenarios, however, coverage can di�er by up to 5% depending on

the heterogeneity variance estimator used and the number of studies. When there

are 20 studies or more, 95% t-distribution con�dence intervals have coverage 94-

97%, but perform poorly with coverages close to 100% when there are fewer than 20
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Figure 7.10: Coverage of 95% con�dence intervals of the summary e�ect in
standardised mean di�erence meta-analyses with small-to-medium studies

Coverage of Wald-type (plots A1-A4), t-distribution (plots B1-B4) and
Hartung-Knapp (plots C1-C4) con�dence intervals presented. E�ect size θ = 0.5.
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Figure 7.11: Coverage of 95% con�dence intervals of the summary e�ect in
odds ratio meta-analyses with small-to-medium studies and an average event

probability of 0.05.

Coverage of Wald-type (plots A1-A3), t-distribution (plots B1-B3) and
Hartung-Knapp (plots C1-C3) con�dence intervals presented.

There was no such τ 2 that produced a mean I2 of 90% so these scenarios are not
presented. E�ect size θ = 0.5.
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Figure 7.12: Coverage of 95% con�dence intervals of the summary e�ect in
odds ratio meta-analyses with small and large studies and an average event

probability of 0.1 to 0.5.

Coverage of Wald-type (plots A1-A3), t-distribution (plots B1-B3) and
Hartung-Knapp (plots C1-C3) con�dence intervals presented.

There was no such τ 2 that produced a mean I2 of 90% so these scenarios are not
presented. E�ect size θ = 0.5.
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studies.

In odds ratio meta-analyses with event probability 0.05 (�gure 7.12), the key di�er-

ence is that coverage does not converge to 95% as the number of studies increases.

Instead coverage remains close to 100% for meta-analyses with up to 10 studies and

becomes as low as 85% in meta-analyses with 100 studies. In meta-analyses with

small and large studies (�gure 7.12), there is a greater di�erence between heterogen-

eity variance estimators; SJ has coverage close to 100% in all these scenarios and CA

produce a con�dence interval with coverage as low as 80%.

The heterogeneity variance estimator that works best with this con�dence interval

method varies considerably between scenarios, so it is di�cult to select one overall.

7.5.4.3 Hartung-Knapp con�dence interval

The Hartung-Knapp con�dence interval for the summary e�ect has better coverage

that the other two methods in all scenarios. This method has coverage 94-96% in

standardised mean di�erence meta-analyses presented in �gure 7.10 and insensitive

to the choice of heterogeneity variance estimator. However, the Hartung-Knapp

method's coverage can be far from optimal in other scenarios. In odds ratio meta-

analyses with event probability 0.05 (�gure 7.12), coverage decreases as the number

of studies in the meta-analysis increases and can reach as low as 86%. In odds ratio

meta-analyses with small and large studies, coverage is variable between estimators;

HS and ML can produce coverage of 86% while SJ has coverage close to 95%.

The choice of heterogeneity has little impact on coverage in standardised mean dif-

ference meta-analyses with small-to-medium studies (�gure 7.10), so all are equally

good candidates to be used with this con�dence interval method. In the other scen-

arios presented, coverage is too variable to select the best estimator overall.
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For all confidence interval methods 
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and dark grey(see figure).
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All estimators and all confidence interval methods have

poor coverage.

Z-type and t-distribution: Both methods have similar 

coverage. All estimators have close to 100% coverage 

when k=2 and falls to below 70% for k=100. 

Knapp-Hartung: Close to 95% coverage for all estimators 

and k=10, but <85% for low and high k.

Table 7.2: A summary of coverage for all scenarios of standardised mean
di�erence and odds ratio meta-analyses with e�ect size 0.5

Scenarios with the same background shading show where coverage results are
consistent for each con�dence interval method

* Coverage presented in �gure 7.10. ** Coverage presented in �gure 7.11. ***
Coverage presented in �gure 7.12

Recall, k denotes the number of studies in the meta-analysis

7.5.4.4 A summary of coverage in all simulated scenarios

Table 7.2 summarises coverage of all three con�dence interval methods in all scenarios

of standardised mean di�erence and odds ratio meta-analyses. The table is colour-

coded to show where results are similar for each con�dence interval method. All

con�dence interval methods could be summarised in one table because scenarios

that can be grouped are consistent between methods.

All methods performed at their worst in scenarios of odds ratio meta-analyses with

rare events (probability 0.05 or 0.01) and smaller study sizes. Methods also have poor

coverage, but to a lesser extent, in meta-analyses with small and large studies. The
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cause of poor coverage in these scenarios is that heterogeneity variance estimators

have much greater variation in mean bias and therefore coverage also varies more

between heterogeneity variance estimators. Coverage in standardised mean di�erence

meta-analyses is consistent with the equivalent odds ratio meta-analyses if the event

is common.

In all scenarios the Hartung-Knapp method has substantially better coverage and

consistently produces con�dence intervals with coverage close to 95% in standardised

mean di�erence meta-analyses and most odds ratio meta-analyses with common

events.

7.5.5 Convergence of ML and REML estimates of heterogen-

eity

ML and REML rarely failed to converge to a heterogeneity variance estimate. Fewer

than 0.02% of meta-analyses failed to converge and only in meta-analyses with few

studies and large di�erences in study sizes. A summary of these results are given in

appendix D.3 (tables F.2 and F.3).

7.5.6 An overview of the results

Results showed that properties of estimates of the heterogeneity variance are depend-

ent on the level of heterogeneity, number of studies in the meta-analysis, distribution

of sample sizes, the probability of the event outcome and to a lesser extent the size

of the e�ect in binary outcome meta-analyses. Estimates of the summary e�ect,

and to a lesser extent, con�dence intervals of the summary e�ect are more robust to

changes in the heterogeneity variance estimate.
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7.5.6.1 Properties of estimates of the heterogeneity variance

Three performance measures that related to estimation of the heterogeneity variance

are presented in this chapter; mean bias, mean squared error and proportion of zero

estimates.

B0, BP and MBH generally have the worst properties and as such were not presented

in the main results of this chapter. B0 and BP have the highest positive bias of all

estimators compared and MBH has the highest mean squared error. The main

results also show that estimates calculated from SJ, SJCA, HS and ML generally

have poor properties and should not be used in any meta-analysis. SJ also has

considerable positive bias in meta-analyses for up to moderate levels of heterogeneity.

SJCA has relatively low bias and mean squared error in meta-analyses with small

studies but has considerable positive bias in meta-analyses with large studies. This

is perhaps because SJCA is a non-truncated two-step estimator with a minimum

initial τ 2 estimate of 0.01; this value represents high inconsistency in meta-analyses

with large studies and is therefore not an appropriate cut-o�. HS and ML have

similar performance and are negatively biased in all meta-analyses when there are

few studies in a meta-analysis, particularly when the mean I2 is high.

CA, PMCA, HM can also be excluded from consideration as there are alternative

methods that have equal or better properties. CA and PMCA have a bias and mean

squared error comparable with many other estimators when study sizes are equal-

sized but they have increasing positive bias and mean squared error as the di�erence

between study sizes increase. HM is shown to have similar properties as DL but has

more positive and negative bias when the I2 is low and high respectively.

The remaining four methods with reasonable properties are DL, PMDL, PM and

REML. These are estimators that are shortlisted for possible recommendation in

the conclusions of this chapter. DL is one of the best performing estimators in

meta-analyses with large di�erences in study size. PM and PMDL in most scenarios

have similar properties and are more robust to imprecise within-study variances.
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PMDL performs better than PM with similar properties to DL when there are large

di�erences in study size. REML generally has low mean squared error and a relatively

low negative bias where DL has considerably more. However, in very few meta-

analyses, the iterative method failed to produce a REML estimate (see section 7.5.5).

7.5.6.2 Properties of estimates of the summary e�ect

Mean bias and mean squared error of the inverse-variance summary e�ect estim-

ates were presented in this chapter. In scenarios of standardised mean di�erence

meta-analyses and of odds ratio meta-analyses with common events, results show

summary e�ect estimates are approximately unbiased for all heterogeneity variance

estimators. Estimates of the odds ratio summary e�ect are biased towards the null

value when studies are simulated with a low event probability of 0.05 and 0.01, where

all heterogeneity variance estimators also have considerable negative bias.

7.5.6.3 Properties of 95% con�dence intervals of the summary e�ect

In section 7.5.4, coverage is presented as the only performance measure that relates

to estimation of 95% con�dence intervals for the summary e�ect. Coverage of Wald-

type [25], t-distribution [28] and Hartung-Knapp [38] con�dence interval methods

were presented.

The Hartung-Knapp con�dence interval has more optimal coverage than Z-type and

t-distribution con�dence intervals in nearly all scenarios. This method has coverage

close to the nominal 95% in most scenarios of standardised mean di�erence meta-

analyses or odds ratio meta-analyses with common events and robust to the choice

of heterogeneity variance estimator. However, in odds ratio meta-analyses with rare

events or when di�erences between study sizes are large, coverage probabilities of all

con�dence interval methods decrease to as low as 85%.
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7.6 Discussion

The DerSimonian-Laird (DL) estimator cannot be recommended for wide-spread use

in random e�ects meta-analysis, given that it has substantial negative bias in odds

ratio meta-analyses with small studies and rare events. This �nding can perhaps

be explained by DerSimonian-Laird's �xed-e�ect study weights that are based solely

on estimated within-study variances; these variances are imprecise and likely to be

biased under such conditions. This negative bias of DerSimonian-Laird estimates

has also been observed in previous simulation studies [3, 74, 78, 102] as identi�ed in

the systematic review in chapter 5. Viechtbauer [124] and Böhning et al. [7] stated

that DerSimonian-Laird is asymptotically unbiased when within-study variances are

known. Finding from this study also show DerSimonian-Laird has good properties

in meta-analyses with large di�erences in study size and could be recommended,

among other estimators, in this setting.

One of the primary aims was to investigate when it is appropriate to rely on one

estimate of the heterogeneity variance. Results show all estimators are imprecise

and often fail to detect high levels of heterogeneity in meta-analyses containing fewer

than 10 studies. Chapter 4 reported that only 14% on meta-analyses in the Cochrane

Database of Systematic Reviews (CDSR) contain 10 studies or more, so it is rarely

appropriate to rely on one estimate of heterogeneity in this setting. All estimators

have poor properties even in meta-analyses containing high numbers of studies when

study sizes are small or the event of interest is rare (as shown in table 7.1). How

frequently these scenarios occur in practice is investigated in the next chapter.

Estimates of the summary e�ect and its Hartung-Knapp con�dence interval are of

less cause for concern, performing well even for low numbers of studies. However,

caution must still be applied when dealing with meta-analysis datasets with rare

events, where summary e�ects are biased and any of the included con�dence inter-

val methods can have coverage as low as 85%. These �ndings agree with a previous

simulation study [55], in which the Hartung-Knapp method (using the DL heterogen-
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eity variance estimate only) was compared with other con�dence interval methods

for both continuous and binary outcome measures. The results in this chapter also

show the Hartung-Knapp method is robust to changes in the heterogeneity variance

estimate, except in meta-analyses with large di�erences in study size.

Results are in disagreement with some previous simulation studies. In all cases,

this can be attributed to di�erences in parameter values and other di�erences in

study design. SJ, MBH, B0 and BP performed well in previous simulations and

have been recommended by their respective authors, yet this study shows they have

poor properties. SJ performed well in simulations conducted by Sidik and Jonkman

[101], yet simulations in this study shows they have considerable positive bias in

meta-analyses of up to moderate I2. This was not observed by Sidik and Jonkman

[101] because meta-analyses were only simulated with high I2. MBH has high mean

squared error in meta-analyses with few studies, but Malzahn et al. [74] only sim-

ulated meta-analyses with 15 studies. B0 and BP were recommended because they

have low mean squared error in meta-analyses with few studies. These methods are

considerably biased, but bias was not included as a performance measure in the ori-

ginal study [93]. Furthermore, PM has been recommended based on the results of

three previous simulation studies [3, 78, 79], but these studies did not simulate meta-

analyses with moderate-large di�erences in study size, where PM has considerable

positive bias.

Meta-analysis data were simulated from �ve distributions of study sample sizes.

These distributions produced small, medium and large equally-sized studies and

studies with moderate and large di�erences in size. DL and HM use �xed-e�ect

study weights and have the best properties in meta-analyses with large di�erences in

study size. PM, which uses random-e�ects weights, has better properties when stud-

ies are equal-sized. A possible explanation of these �ndings is that random-e�ects

weights can be unduly similar in small and large studies when the heterogeneity

variance estimate is large [46]. The two-step PMDL estimator can be considered a

robust compromise between DL and PM, since it uses �xed-e�ect study weights in
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the �rst step and random-e�ects study weights in the second. Other estimators were

recommended over PMDLin two previous simulation studies [3, 64], but neither sim-

ulated meta-analyses with large di�erences in study size and neither reported the

mean squared error of heterogeneity variance estimates.

There are two main advantages to the design of this simulation study over previous

studies. First, a comprehensive set of heterogeneity variance estimators are compared

in a wide range of scenarios and reported a wide range of performance measures. Pre-

vious simulation studies gave con�icting recommendations because their results only

gave a limited picture. Second, meta-analyses were simulated using τ 2 parameter

values that varied between scenarios and de�ned such that meta-analyses represent

a consistent and wide range of I2 values. Results suggest that properties of hetero-

geneity variance estimators are more comparable between scenarios with the same

I2, rather than the same τ 2. The I2 statistic also takes into account the 'typical'

within-study variances and is a measure of inconsistency between studies. Previous

simulation studies set τ 2 parameter values in many cases with little knowledge of

whether they constitute low, moderate or high levels of heterogeneity.

The limitations of this simulation study are as follows. First, only a subset of all

con�dence interval methods for the summary e�ect are included. Results show the

Hartung-Knapp method is a more robust than the Z-type method to changes in the

heterogeneity variance estimator, but no conclusive recommendations can be made

going forward. Other methods exist such as the pro�le likelihood method [37], which

has also been shown as a better alternative to the Z-type method in simulated meta-

analysis data [45] and recommended elsewhere [20]. Second, a continuity correction

of 0.5 was applied wherever simulated studies with a binary outcome contained zero

events, but other better-performing methods are available [113]. This choice may

have impacted the results in scenarios where the event is rare, but was chosen in

this study because it is widely used. For each scenario, the probability that a study

has zero events was calculated retrospectively and shown in the table F.4 of the

appendix. Finally, the �ve distributions from which sample sizes were drawn can't
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be considered representative of all distributions observed in practice; study sample

sizes are unlikely to conform to a de�ned distribution.

Summarising the properties of a comprehensive list of heterogeneity variance es-

timators, compared over many combinations of parameter values was the biggest

challenge of this study. By simulating meta-analyses from a wide range parameter

values, inevitably there are scenarios that re�ect meta-analyses rarely observed in

practice. For example, most meta-analyses contain very few studies [21], but meta-

analyses with up to 100 studies were simulated in order to show results over the full

range of possible meta-analysis sizes. When interpreting results and drawing con-

clusions, equal consideration was given to rare and common scenarios. In the next

chapter, results from a secondary analysis of the simulation data is presented using

novel analysis methods that take into account the characteristics of meta-analyses

in the Cochrane Database of Systematic Reviews (CDSR).

7.7 Conclusions

The DerSimonian-Laird two-step estimator (PMDL) and REML have similar prop-

erties in both standardised mean di�erence and odds ratio two-stage meta-analyses.

REML is recommended over PMDL on the basis of these results because it's already

widely known, available in most statistical software packages, and rarely fails to

converge using Fisher's scoring algorithm. PMDL is recommended as an alternative

when convergence fails. The Hartung-Knapp con�dence interval for the summary

e�ect is generally recommended over other Wald-type and t-distribution methods

compared in this study, but other methods not included may have better coverage in

meta-analyses with rare events. To be consistent, we recommend the same REML

estimate of the heterogeneity variance to calculate this con�dence interval. However,

this is inconsequential given how robust this con�dence interval is to changes in the

heterogeneity variance method in most scenarios. REML, or indeed any other single

estimate of heterogeneity, should not be relied on to gauge the extent of heterogen-
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eity in most meta-analyses. However, this single estimate can be used calculate a

reliable Hartung-Knapp con�dence interval for the summary e�ect.
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Chapter 8

Properties of heterogeneity variance

estimators in meta-analyses of

Cochrane reviews
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8.1 Introduction

In the last chapter, I simulated meta-analysis data that represented a wide range of

meta-analyses occurring in practice. Results from all these simulations were presen-

ted and considered when drawing conclusions. However, this analysis approach did

not account for the possibility that some simulation scenarios may be more rep-

resentative of real meta-analyses than others. Those that represent meta-analyses

more frequently occurring in practice should arguably have more bearing on the

conclusions.

In this chapter, I implement a novel and systematic method of focusing more on

these scenarios representative of real meta-analyses. I combine the �ndings from

my simulated meta-analysis data with empirical data from the Cochrane Database

of Systematic Reviews (CDSR) [21]. This CDSR dataset was used to perform an

empirical comparison of heterogeneity variance estimators in chapter 4. I include the

same 12,894 meta-analyses as I did in chapter 4. Recall that CDSR meta-analyses

containing fewer than three studies are excluded; studies in these 'meta-analyses'

are unlikely to have been synthesised and therefore it's unlikely an estimate of the

heterogeneity variance was presented.

The principle aim of this analysis is to provide a clear and concise summary of the

simulation results to lead into the concluding chapter. I also aim to: (1) describe the

absolute performance of heterogeneity variance estimators in meta-analyses in prac-

tice; (2) distinguish between the heterogeneity variance estimators that I identi�ed

in the last chapter as having reasonable but similar properties; and (3) show the po-

tential consequence of using heterogeneity variance estimators with poor properties.

8.2 Methods

To summarise the performance of heterogeneity variance estimators expected in

CDSR meta-analyses, analysis was carried out in three steps. First, I mapped each
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CDSR meta-analysis to a simulated scenario with the closest matching character-

istics. The methods for this process are detailed in the next section. Second, I

calculated the total number of CDSR meta-analyses matched to each scenario. Fi-

nally, by combining these frequencies and the simulation results, I derive a predicted

distribution of each estimators performance in CDSR meta-analyses. The perform-

ance measures included in this chapter are given in section 8.2.2, the heterogeneity

variance estimators included are detailed in section 8.2.3 and analysis methods are

in section 8.2.4.

8.2.1 Mapping empirical to simulated meta-analyses

I mapped every included CDSR meta-analysis to a simulated scenario with the closest

matching characteristics. Six meta-analysis characteristics are considered in this

process: (1) the type of outcome measure, (2) the number of studies, (3) the level of

inconsistency between study e�ects (estimated by I2), (4) the summary e�ect, (5)

the distribution of study sample sizes and (6) the average event probability in each

study (binary outcome meta-analyses only). I mapped all meta-analyses to scenarios

with normally distributed study e�ects because results show that all heterogeneity

variance estimators are robust to non-normal e�ects. CDSR meta-analyses with a

binary outcome were matched with one of 2,560 simulated scenarios of OR meta-

analyses. Those with a continuous outcome were matched with one of 160 simulated

scenarios of SMD meta-analyses. Matching criteria for all other characteristics are

given in table 8.1.

I used the Sidik-Jonkman (SJ) estimate of I2 in CDSR meta-analyses (see section

2.3.2). SJ was chosen because it only produces positive heterogeneity variance estim-

ates, which is advantageous for two reasons. First, the distribution of SJ estimates

of I2 is likely to be more realistic of the underlying distribution, given that truncated

methods produce an unrealistic proportion of zero estimates (see chapter 4). Second,

it minimises the number of meta-analyses matching with scenarios where I2 = 0%.

The reason this is bene�cial is made clear in section 8.3.2.
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Parameter Parameter value/distribution Empirical matching criteria

Number of

studies in the

meta-analysis

(k)

2, 3, 5, 10, 20, 30, 50, 100 The closest value. When k is

equidistant between two scenarios

(i.e. if k = 4), the meta-analysis is

matched to one of the two closest

at random.

Mean I2 for

each scenario

0%, 30%, 60%, 90% The closest I2 estimate. SJ is used

to estimate I2 in CDSR

meta-analyses using formula 1.6 for

I2 (chapter 1). e.g. SJ estimates of

I2 from 15% to 45% mapped to the

scenario with I2 = 30%

Summary

e�ect (θ)

In SMD meta-analyses, θ = 0.5. In

log-odds ratio meta-analyses,

θ = 0, 0.5, 1.1, 2.3

The closest absolute θ estimate. All

SMD meta-analyses matched to

θ = 0.5.

Distribution of

true study

e�ects (θi)

(a) Normal distribution, (b) normal

distribution with moderate skew and

(c) normal distribution with high skew

All CDSR meta-analyses matched

to scenario (a).

Study sample

sizes (n1i,

n2i)*

(a) Small studies: n1i = 20 n1i + n2i < 50 for all studies

(b) Small to medium sized studies:

n1i ∼ U (20, 200)

n1i + n2i < 500 for all studies; and

n1i +n2i < 50 for at least one study

(c) Medium sized studies: n1i = 200 50 ≤ n1i + n2i < 500 for all studies

(d) Small and large studies:

n11, ..., n1m = 20 and

n1m, ..., n1k ∼ U (1000, 2000) where m is

the integer half way between 1 and k

(when k is odd, one study is be

generated from one of the two

distributions at random)

n1i + n2i ≥ 500 for at least one
study; and

n1i +n2i < 50 for at least one study

(e) Large studies: n1i ∼ U (1000, 2000) n1i + n2i ≥ 50 for all studies; and

n1i + n2i ≥ 500 for at least one

study

Parameters only applying to odds ratio meta-analyses

Average event

probability in

study (pi)

(a) pi = 0.5 pi ≥ 0.1 and sd(pi) < 0.05 ** �

(b) pi ∼ U (0.1, 0.5) pi ≥ 0.1 and sd(pi) ≥ 0.05 ** �

(c) pi = 0.05
0.025 ≤ pi < 0.1 **

(d) pi = 0.01
pi < 0.025 **

Table 8.1: Matching criteria for simulated and empirical CDSR meta-analysis
data

*In all scenarios, sample sizes are equal between groups (n1i = n2i)

** In CDSR meta-analyses, pi is estimated by the proportion of events in both groups combined

(i.e. pi = (ai + ci) / (n1i + n2i) using the notation from section 1.3.2 in the introduction chapter)
� The cut-o� value of 0.05 for the standard deviation is roughly half way between the standard

deviations of scenarios (a) and (b) respectively172



Study sample sizes and event probabilities are simulated from various distributions,

so matching CDSR meta-analyses to these is more di�cult. Empirical study sample

sizes are unlikely to come from some natural distribution and I generated study

sample sizes from a limited number of distributions. I took a pragmatic approach

to address this issue and de�ne matching criteria in table 8.1. These criteria were

simple to implement and I believe lead to reasonably unbiased results. Nevertheless,

I applied caution when interpreting the results because of the limitations of these

methods.

8.2.2 Performance measures

I predict the performance of CDSR meta-analyses according to four of the �ve per-

formance measures reported in the previous chapter of simulation results, namely:

� Proportional bias of heterogeneity variance estimates

� Proportional mean squared error (MSE) of heterogeneity variance estimates

� Mean bias of the summary e�ect estimates

� Coverage of 95% con�dence intervals of the summary e�ect

Performance measures relating directly to the heterogeneity variance parameter are

presented on the proportional scale so that results can be combined between scenarios

with di�erent parameter values. The scenarios with homogeneous study e�ects (i.e.

τ 2 = 0) cannot be presented on the proportional scale, so they are excluded from the

analysis of these measures. Coverage is presented for all con�dence interval methods

included in the previous chapter of simulation results; Wald-type, t-distribution and

Hartung-Knapp methods. The proportion of zero estimates of the heterogeneity

variance is not reported in this analysis but was reported in the previous chapter.

I excluded this measure because results would be analogous with the proportion of

observed of zero estimates from CDSR meta-analyses in chapter 4.
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8.2.3 Included estimators of the heterogeneity variance

I compared six heterogeneity variance estimators in this analysis that were chosen

based on simulated results in the last chapter. DerSimonian-Laird (DL), Paule-

Mandel (PM), the two step Paule-Mandel (PMDL) and restricted maximum likeli-

hood (REML) were included because they have the best properties overall. Sidik-

Jonkman (SJ) and maximum likelihood (ML) were also included because these pro-

duce heterogeneity variance estimates with the most positive and negative bias re-

spectively. SJ and ML were included to show the potential consequence of using

estimators with poor properties and highlight the added bene�t of using estimators

with more reasonable properties.

8.2.4 Analysis methods

I present the results in two parts. First, I summarise how many CDSR meta-analyses

are matched to each scenario based on the criteria de�ned in section 8.2.1. This

summary is in the form of a heat map that highlights the key scenarios that are

likely to be most representative of CDSR meta-analyses. The heat map is presented

in such a way that it can be directly compared with results tables 7.1 and 7.2 in

the last chapter. These tables summarise the scenarios that cause problems with

heterogeneity variance estimation.

Second, I present the distribution of performance in CDSR meta-analyses accord-

ing to each of the included four measures. These could alternatively be described

as a weighted distribution of performance, with weights de�ned as the number of

CDSR meta-analyses matched to each scenario. Distributions were derived for the

six heterogeneity variance estimators and compared in the same plot and results of

OR and SMD meta-analyses are presented separately. These distributions are not

naturally smooth given the �nite number of scenarios they are based on. Therefore,

to plot them clearly, I de�ned appropriate intervals for each measure and calculate
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the proportion of CDSR meta-analyses mapped to scenarios within each interval.

The proportion in each interval are shown on the y-axis of each plot. Performance

measures are presented on the x-axes on appropriate log-scales to focus on the region

that represents optimal performance (e.g. where MSE is close to zero).

8.3 Results

I present the number of CDSR meta-analyses matched to each scenario in section

8.3.1 to show which simulated scenarios are most representative of real meta-analyses.

The main results of the analysis follow in section 8.3.2 onwards.

8.3.1 The proportion of CDSRmeta-analyses matched to each

simulated scenario

The proportion of CDSR meta-analyses that match to each simulated scenario are

given in �gure 8.1 in the form of a heat map. Each combination of sample size

distribution and probability of event (in OR meta-analyses only) are presented in

separate blocks. Within each block I present combinations of simulated I2 values

(I2 = 0%, 30%, 60%, 90%) and numbers of studies (3,5,10,20,30). Scenarios of meta-

analyses containing 2 studies are excluded because these empirical meta-analyses

were from the results (as they were in chapter 4, when the same data was used).

Scenarios of meta-analyses containing 50 and 100 studies were excluded because

they only account for 0.5% of SMD and OR meta-analyses. The number of meta-

analyses matched to each summary e�ect parameter are not presented in the heat

map to make the �gure more concise. Overall, 4092 (45.6%) odds ratio meta-analyses

were matched to θ = 0, 3354 (37.4%) to θ = 0.5, 1249 (13.9%) to θ = 1.1 and 284

(3.2%) to θ = 2.3.

CDSR meta-analyses are distributed fairly uniformly between scenarios with mean

I2 values of 0%, 30%, 60% and 90%. However, fewer meta-analyses are matched
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Figure 8.1: A heat map of CDSR meta-analyses falling into each simulated
scenario

Percentages represent the proportion of meta-analyses matched to each block, out of
the total of SMD or OR meta-analyses.
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with scenarios where I2 = 0% (i.e. where the SJ method produces I2 < 15%)

because the Sidik-Jonkman only produces positive heterogeneity variance estimates;

1911 (21.3%) OR meta-analyses and 727 (18.6%) SMD meta-analyses are matched

to these scenarios. I2 are estimated in CDSR meta-analyses, so this is only a rough

representation of the distribution of underlying I2.

In the last chapter of results, I found that all heterogeneity estimation methods

have considerable negative bias in meta-analyses with rare events, except where all

study sizes are large. The heat map shows these scenarios represent 2,094 (23.3%)

odds ratio meta-analyses (as shown in blocks 16-19 and 21-24 on the heat map).

229 (2.6%) of odds ratio meta-analyses are matched to scenarios with small studies

and common events (blocks 6 and 11), where heterogeneity variance estimators have

considerable negative bias when there is a high level of inconsistency between study

e�ects. The remaining scenarios represent all 3,915 (100%) SMD meta-analyses and

6,656 (74.1%) OR meta-analyses, where most heterogeneity variance estimators have

low bias, at least when the e�ect size is not extreme and there are su�cient numbers

of studies. However, of these meta-analyses, 1650 (42.1%) SMD meta-analyses and

2739 (39.8%) OR meta-analyses are represented by the scenarios with only three

studies. All heterogeneity variance estimates are imprecise and most have small to

moderate positive bias in these scenarios.

8.3.2 Performance of heterogeneity variance estimators in CDSR

meta-analyses

In this section, I present the predicted distributions of performance in CDSR meta-

analyses. I present proportional bias and MSE of the heterogeneity variance estim-

ators in sections 8.3.2.1 and 8.3.2.2. For these analyses, I excluded scenarios where

I2 = 0% as results cannot be presented on the proportional scale. Only a small

number of CDSR meta-analyses matched with these scenarios, as shown in section

8.3. I present bias of the summary e�ect in section 8.3.2.3 and coverage of 95%
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con�dence intervals of the mean e�ect in section 8.3.2.4.

8.3.2.1 Predicted bias of the heterogeneity variance

Figure 8.2 shows the predicted distribution of proportional bias of heterogeneity

variance estimators in CDSR meta-analyses. The x-axis is plotted on a log scale so

that it expands around the point where bias is zero, i.e. the optimal bias. Results

for other performance measures in this analysis are presented with x-axes on similar

scales.

Figure 8.2 predicts that reasonably unbiased estimates of the heterogeneity variance

are produced in few CDSR meta-analyses using any of the estimators compared.

DL, PMDL and REML are likely to produce the highest proportion of reasonably

unbiased estimates; these methods are predicted to derive estimates with less than

10% bias (positive or negative) in roughly 40% of OR meta-analyses and 60% of

SMD meta-analyses. Slightly fewer PM estimates are predicted to have bias under

10%; 35.9% of OR meta-analyses and 48.5% of SMD meta-analyses. However, these

results suggest PM would produce the least negatively biased estimates of these four

estimators in OR meta-analyses. This is because PM has marginally less bias in

scenarios with rare events, where it is not recommended to rely on a single estimate

of heterogeneity.

As expected from the results of the last chapter, results predict that ML and SJ have

considerable bias in most CDSR meta-analyses. results predict that ML estimates

are negatively biased by more than 10% in 95.9% of OR meta-analyses and 90.8%

of SMD meta-analyses. Similarly, SJ is predicted to be positively biased (>10%) in

82.2% of OR meta-analyses and 70.4% of SMD meta-analyses.

Results predict that all estimators except ML would produce a much higher propor-

tion of positively biased estimates than negatively biased. These estimators have

positive bias in meta-analyses containing few studies, which represent most CDSR

meta-analyses. It is widely noted that DL has negative bias in certain scenarios,
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but the �gure shows that in OR meta-analyses, 40.4% of DL estimates would be

positively biased and only 15.2% negatively biased by more than 10%. Less than 1%

of DL estimates in SMD meta-analyses have negative bias more than 10%.

8.3.2.2 Predicted mean squared error of the heterogeneity variance

The predicted distributions of proportional MSE are given in �gure 8.4 for each of

the six included heterogeneity variance estimators. The means of these distributions

are given in table 8.2. The proportional MSE of heterogeneity variance estimates

in OR meta-analyses is typically around 0.4-0.5, which shows estimates in these

meta-analyses are usually imprecise. The proportional MSE in OR meta-analyses is

typically four times higher than in SMD meta-analyses; given the di�erence in scale

between OR and SMD outcome measures, they are expected to be only 1.81 times

higher [15]. This 'additional' error can be attributed to scenarios with rare events.

These results con�rm what was already noted in the last chapter; methods that

produce a higher proportion of negatively biased heterogeneity variance estimates

(i.e. ML and to a lesser extent DL) have a lower MSE. Of the four estimators included

with reasonable properties (DL, PM, PMDL and REML), PM has the highest MSE

because it produces the least negatively biased estimates.

8.3.2.3 Predicted bias of summary e�ect estimates

Figure 8.3 shows the predicted distribution of bias of the summary e�ect in CDSR

meta-analyses. Recall, the summary e�ect represents a log odds ratio in binary

outcome meta-analyses and a standardised mean di�erence in continuous outcome

meta-analyses. As expected from the results of the last chapter, bias of the summary

e�ect is consistent between all heterogeneity variance estimators compared. Results

predict that roughly 10% of OR meta-analyses produce summary e�ects that have

small to moderate bias towards the null value. All SMD meta-analyses produce

reasonably unbiased summary e�ect estimates.
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Figure 8.2: Predicted distribution of proportional bias of the heterogeneity
variance estimators

x-axis presented on the log scale for bias >0 and the reverse-log scale for bias<0.
Log scales are in base 10.
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Figure 8.4: Predicted distribution of proportional MSE of heterogeneity
variance estimates

x-axis presented on the log scale with base 10.

Heterogeneity variance estimator
Outcome type DL PM PMDL REML SJ ML

OR 0.358 0.500 0.429 0.408 0.638 0.203
SMD 0.103 0.129 0.118 0.118 0.133 0.060

Table 8.2: The average proportional MSE of heterogeneity variance estimates
in CDSR meta-analyses

These summary statistics are derived from the same results as in �gure 8.4
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Figure 8.3: Predicted distribution of bias of the summary e�ect (θ)

x-axis presented on the log scale for bias >0 and the reverse-log scale for bias<0.
Log scales are in base 10.

8.3.2.4 Predicted coverage of 95% con�dence intervals of the summary

e�ect

Coverage of 95% con�dence intervals of the summary e�ect are shown in �gure 8.5.

Con�dence intervals are calculated by Wald-type, t-distribution and Hartung-Knapp

methods are presented in the same �gure, separately for OR and SMD meta-analyses.

Figure 8.5 shows the Wald-type con�dence interval method rarely produces con�d-

ence intervals with coverage close to 95%. ML produces a lower Z-type coverage than
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Figure 8.5: Predicted distribution of the coverage of summary e�ect
con�dence intervals; Wald-type, t-distribution and Hartung-Knapp.

x-axis presented on the log scale for coverage >95% and the reverse-log scale for
coverage<95%. Log scales are in base 5.
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SJ because of a large di�erence in bias between these methods. All other included

heterogeneity variance estimators with reasonable properties (DL, PM, PMDL and

REML) show almost identical results. For these estimators, coverage is between

93% and 97% in 30% of OR meta-analyses and 35% of SMD meta-analyses. Cover-

age is below 93% in 57% of OR meta-analyses and 67% of SMD meta-analyses and

substantially low (less than 85%) in 6.3% of OR meta-analyses and 11.4% of SMD

meta-analyses. As shown in the last chapter of results, low Z-type coverage tends to

come from meta-analyses with low numbers of studies and high underlying I2.

For t-distribution con�dence intervals, the predicted distribution of coverage is also

similar between the heterogeneity variance estimators compared. Most meta-analyses

produce t-distribution con�dence intervals far above the nominal 95% level. 68% of

OR meta-analyses and up to 65% of SMD meta-analyses have coverage above 97%.

High coverage of the t-distribution con�dence interval is observed in meta-analyses

with low numbers of studies (as shown in the last chapter).

Hartung-Knapp con�dence intervals typically perform much better than the other

two con�dence interval methods. Coverage is almost identical for the four heterogen-

eity variance estimators. 88% of OR meta-analyses and 95% of SMD meta-analyses

have coverage between 93% and 97%. A small proportion of OR meta-analyses have

coverage below 93%; these results come from scenarios with small studies and rare

events.

8.4 Discussion

One of the main criticisms of the DL method is that it produces negatively biased

heterogeneity variance estimates. This has been shown in the last chapter and in

previous simulation studies identi�ed in chapter 5. Results from this analysis sug-

gests this negative bias is of concern in many meta-analyses from Cochrane reviews.

However, less expectedly, the DL method is is predicted to be positively biased in
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twice as many meta-analyses; results show 40% of CDSR meta-analyses have charac-

teristics that produce DL heterogeneity variance estimates with positive bias of more

than 10%. This is because DL is positively biased in meta-analyses containing few

studies and these simulated scenarios constitute most CDSR meta-analyses. The

predicted bias of other heterogeneity variance methods is only marginally better.

I included three other methods in this analysis that showed reasonable properties

in the last chapter; Paule-Mandel (PM), two-step DerSimonian-Laird (PMDL) and

REML. These methods would produce heterogeneity variance estimates with only

marginally improved properties in meta-analyses in practice.

I compared heterogeneity variance estimators in terms of bias of the summary e�ect

and my conclusions are in agreement with those in the last chapter. The predicted

level of bias is consistent between all included heterogeneity variance estimators.

Results suggest that summary e�ect estimates are approximately unbiased in all

CDSR meta-analyses with a SMD outcome measure. 12% of meta-analyses with a

log odds ratio outcome measure have negative bias greater than 0.1.

Finally, I compared heterogeneity variance estimators in terms of coverage of 95%

con�dence intervals of the summary e�ect, where con�dence intervals were calculated

from Wald-type, t-distribution and Hartung-Knapp methods. Predicted coverage is

fairly consistent between heterogeneity variance estimators for all three con�dence

interval methods. Coverage of Wald-type and t-distribution con�dence intervals are

typically much further from the nominal 95% than anticipated in the last chapter.

Wald-type con�dence intervals are predicted to have coverage below 85% in up to 15%

of SMD meta-analyses and up to 8% of OR meta-analyses. This con�dence interval

method typically performs better in OR meta-analyses, perhaps because more of

these meta-analyses were matched to simulated meta-analyses with larger studies.

t-distribution con�dence intervals are predicted to have very poor performance in

most CDSR meta-analyses, with coverage of over 97%. Hartung-Knapp con�dence

intervals showed results that were anticipated from the last chapter; they would

perform well in most meta-analyses but should be used with caution in OR meta-
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analyses with small studies and rare events.

This analysis provides a clear summary or the simulation results but can never

replace the comprehensive exploration of results in chapter 7. The analysis method

I used here can be considered practical and pragmatic but not without criticisms.

First, matching the CDSR distributions of study sample sizes and event probabilities

to simulation scenarios was problematic. It is unlikely that the simulations are

representative of the CDSR meta-analyses in this respect. Second, by presenting

bias and MSE of heterogeneity variance estimates on the proportional scale, I made

the following implausible assumption: the consequence of a heterogeneity variance

estimate with 100% error is the same regardless of the underlying parameter value.

Finally, I excluded scenarios where studies were homogeneous (τ 2 = 0) because

results could not presented on the proportional scale. This is likely to have lead to an

underestimate of the proportion of positively biased heterogeneity variance estimates.

Furthermore, ML performs well in meta-analyses with homogeneous study e�ects,

so these results will have exaggerated MLs negative bias. These issues are not likely

to have a�ected my conclusions, given that I made them while also considering my

results from the last chapter. Limitations of the simulation study in chapter 7 also

apply here, given it is based on the same data. Most notably, I used a continuity

correction of 0.5 for odds ratio meta-analyses with zero events, though other methods

have been shown to perform better [113]. Other continuity corrections or methods

could have improved the predicted performance of heterogeneity variance estimators

in these results.

8.5 Conclusions

The REML heterogeneity variance estimator, recommended based on the results

from the last chapter, has a similar predicted performance to the other three estim-

ators with reasonable properties (DL, PM and PMDL). The overriding conclusion of

this analysis is that heterogeneity variance estimates in meta-analyses of Cochrane
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reviews are most likely imprecise and biased. Meta-analyses rarely have character-

istics in practice that allow for a single reliable point estimate of the heterogeneity

variance. A more substantial improvement in the 95% con�dence interval of the sum-

mary e�ect is usually possible if the Hartung-Knapp method is used over Wald-type

or t-distribution methods. The method used to calculate the heterogeneity variance

estimate is unlikely make a substantial impact on coverage of the Hartung-Knapp

con�dence interval. A single estimate of the summary e�ect and its random-e�ects

con�dence interval is usually su�cient even in meta-analyses with few studies and

sensitivity analysis is usually not required in this respect. In random-e�ects meta-

analyses, conclusions should not be drawn directly from a single point estimate of

heterogeneity without �rst considering its uncertainty and likely level of bias.
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Chapter 9

Discussion and conclusions
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9.1 Introduction

There is often heterogeneity across studies in a meta-analysis that cannot be ex-

plained by known study characteristics. It is therefore common to assume a random-

e�ects model, which includes an additional study variance component known as the

heterogeneity variance parameter. This parameter is commonly estimated by the

DerSimonian-Laird method [25]. Prior to conducting this research, simulation stud-

ies found that DerSimonian-Laird produces negatively biased estimates in certain

scenarios [78, 79, 102, 124]. This estimator continues to be the default method

for random-e�ects meta-analysis, partly because there is no consensus over which

method, if any, should be used in its place. In this thesis, I reviewed available

methods for heterogeneity variance estimation, investigated their properties in em-

pirical and simulated meta-analysis data and made recommendations for future meta-

analyses in health research.

A chapter-by-chapter summary of the content and main �ndings of this thesis is

given in section 9.2. In section 9.3, I discuss the applicability of the �ndings from

my research and its limitations. I make �nal conclusions in section 9.5.

9.2 Thesis summary

Chapters 1 to 3 are introductory chapters that detail all statistical methods for

random-e�ects meta-analysis that are relevant to the rest of the thesis. In chapter

1, I introduced the concept of meta-analysis and methods for statistically combin-

ing studies to provide a summary e�ect. In chapter 2, I presented a comprehensive

methodological review of heterogeneity variance estimators. I drew attention to

methodological connections between methods and, in the case of Paule-Mandel and

empirical Bayes, found they are identical and only expressed in di�erent terms. In

chapter 3, I introduced a number of methods for estimating the con�dence interval of
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the mean e�ect; it was deemed relevant to introduce these methods because I com-

pare heterogeneity variance estimators in terms of their impact on these con�dence

intervals in many later chapters.

After collating and reviewing the relevant methods, I investigated empirically whether

choosing a method other than DerSimonian-Laird signi�cantly changes the hetero-

geneity variance estimate and conclusions of a meta-analysis. I compared a wide

selection of methods in 12,894 meta-analyses from the Cochrane Database of Sys-

tematic Reviews (CDSR). Results showed high discordance between heterogeneity

variance estimates between most methods, with di�erences on the scale of the I2

statistic of up to 50%. I investigated whether meta-analysis characteristics, such as

study sizes and sparsity of data, could have an impact on these di�erences. I found

no convincing patterns, which suggests that di�erences are related to di�erences in

the methods that apply regardless of the meta-analysis characteristics. Estimated

summary e�ects derived from di�erent heterogeneity estimation methods showed

a much higher level of agreement. However, there was discordance in the level of

statistical signi�cance of the mean e�ect between methods in a small percentage of

meta-analyses. Findings from this empirical analysis gave motivation for the rest of

the thesis.

Next, in chapter 5, I presented the results of a systematic review of simulation

studies that compare heterogeneity variance estimators. I identi�ed twelve simula-

tion studies that matched the inclusion criteria, but only four could be considered

comprehensive and unbiased [78, 79, 96, 124]. The other eight simulation studies

recommended their own newly proposed estimator and often compared them with

very few other methods. I found the Paule-Mandel (PM) estimator performed well in

both binary and continuous outcome meta-analyses and was recommended based on

the �ndings of three simulation studies [3, 78, 79]. However, inconsistency between

recommendations of other simulation studies, and a number of limitations in their

designs, meant that a new simulation study was justi�ed.

The design of a new simulation study is presented in chapter 6 and addresses the
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limitations found in other previous simulation studies. To minimise the con�ict of

interest that was present in many previous studies, many collaborators gave input

into the study design and only pre-existing estimators are compared. The main

results of this simulation study are presented in chapter 7. Findings con�rm the

DerSimonian-Laird is negatively biased in binary outcome meta-analyses with rare

events and/or where meta-analyses contain small studies; within-study variances

are imprecise and often biased in these scenarios. The Paule-Mandel estimator,

recommended most frequently in previous simulation studies, has better properties

than DerSimonian-Laird overall and is negatively biased only in the most extreme

cases where all methods perform poorly. However, results of this study revealed that

Paule-Mandel estimates have higher positive bias in meta-analyses with moderate

to large di�erences in study size. This can be attributed to Paule-Mandel's random-

e�ects study weights, which can assign a relatively large weight to small studies. The

two-step DerSimonian-Laird estimator or REML are a good compromise between

these two methods.

A secondary analysis of the simulated data is presented in chapter 8. Results of

this analysis predicted the likely properties of heterogeneity variance estimators in

meta-analyses from the CDSR dataset. Findings from this analysis suggest that

heterogeneity variance estimates are likely to be biased and imprecise in most meta-

analyses in practice regardless of which method is used. The two-step DerSimonian-

Laird estimator o�ers only a minimal improvement over DerSimonian-Laird. More

promisingly, in most meta-analyses, estimates of the mean e�ect are unbiased and

its Hartung-Knapp con�dence interval has coverage close to the nominal 95%.

9.3 Discussion

I consider my thesis to have thoroughly examined the properties of heterogeneity

variance estimators in frequentist meta-analyses. I assessed their properties in a wide

range of scenarios in both binary and continuous outcome data, summarised using
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odds ratio and standardised mean di�erence measures respectively. These measures

make up only 37% and 24% of binary and continuous outcome CDSR meta-analyses

respectively (see chapter 4), but I believe my �ndings apply to other measures. The

relative risk is used in 62% of CDSR meta-analyses with a binary outcome, and my

review of previous simulation studies (chapter 5) suggests properties in these meta-

analyses are comparable with odds ratio meta-analyses. My �ndings can also apply

to meta-analyses that use a (unstandardised) mean di�erence measure, which make

up 76% of continuous outcome CDSR meta-analyses. Viechtbauer [124] conducted

a simulation study of both standardised and unstandardised mean di�erence meta-

analyses and found properties were reasonably consistent between the two measures.

Findings in this thesis may suggest how heterogeneity variance estimators perform

in meta-analyses of other types of data. For time-to-event outcomes, study results

may be expressed in terms of hazard ratios, which can be interpreted as the relative

risk of an event occurring per unit of time [112, 118]. Therefore, they share many of

the same properties of relative risks in non-time-to-event data [65]. Standard errors

of hazard ratios are large when few events are observed and therefore, the size of the

study is correlated with the hazard ratio. It is not possible to identify the number

of meta-analyses in the CDSR dataset with time-to-event outcomes, however, Davey

et al. [21] suggests the proportion could be up to 4%. It is possible that the issues

identi�ed for odds ratio meta-analyses with rare events, as observed in my simulation

study, are also present for meta-analyses of hazard ratios. A new simulation study

would be required to con�rm this.

Methods for meta-analyses of diagnostic accuracy studies are more diverse because

test performance depends on the de�ned threshold value [23, 112]. However, for a

given threshold, study results can be presented as a binary 2x2 contingency table

that includes the number of true and false-positives and negatives [23]. Likelihood

ratios or diagnostic odds ratios can be derived from these tables. Findings in this

thesis from binary outcome meta-analyses may be applied to meta-analyses of these

summary statistics. Studies can be summarised in other ways, such as sensitivity,
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speci�city, or through the whole Receiver Operating Curve (ROC), in which proper-

ties of the heterogeneity variance are likely to be di�erent. The number of diagnostic

accuracy meta-analyses in the CDSR dataset is likely to be small [70]. No simulation

studies that compare heterogeneity variance estimators in time-to-event or diagnostic

accuracy meta-analyses were identi�ed in the systematic review in chapter 5.

I compared methods to estimate the heterogeneity variance in meta-analyses of ag-

gregate data throughout this thesis. Individual participant data (IPD) can also be

combined in a meta-analysis in one or two stages. A two-stage approach calculates

study-level aggregate data from IPD, so my results can trivially be applied in this

setting. Other IPD meta-analyses use a one-stage approach [104], which involves

multi-level modelling and the calculating the heterogeneity variance simultaneously

with all other parameters in the model. This may be preferred over the aggregate

two-stage approach because it allows subject-level covariates to be added into the

model and a more thorough investigation into the causes of heterogeneity [105]. Of

the heterogeneity variance estimators mentioned in this thesis, only the maximum

likelihood, REML and Bayesian methods can be applied in this setting. Methods

are also available to combine study-level 2x2 contingency tables in binary outcome

meta-analyses [103, 121], which generally use REML methods for heterogeneity vari-

ance estimation. This approach may lead to improved estimates of the heterogeneity

variance in meta-analyses with sparse data, but there currently been little simulation

research in this area.

I introduced a number of Bayesian approaches to heterogeneity variance estimation

in chapter 2. Those that require a subjective prior distribution were not compared

in further chapters because of di�culties in de�ning them in simulated data and

empirical meta-analysis data out of context. Bayesian methods naturally avoid zero

heterogeneity variance estimates and may also increase precision in meta-analyses

with few studies, which constitute most meta-analyses in Cochrane reviews. Turner

et al. [120] and Rhodes et al. [88] de�ne informed prior distributions for binary and

continuous outcome meta-analyses respectively. These priors are based on previous

194



meta-analyses from the CDSR dataset and de�ned separately for each disease area.

A full Bayesian approach is likely to lead to improved estimates of the heterogeneity

variance when reliable and informative priors are available. However, this is not

always the case, particularly in disease areas with few previous meta-analyses [88].

Random-e�ects meta-analysis, and most heterogeneity variance methods, are built on

the assumption of normally distributed e�ects [48]. However, my simulation results,

and those from Kontopantelis et al. [64], show heterogeneity variance methods are

robust to all but the most extreme distributions of study e�ects. Publication bias is

potentially more of an issue for heterogeneity variance estimation. In meta-analyses

with publication bias, the size of the study e�ects are correlated with study size.

This issue was deemed beyond the scope of this thesis. Assessing the properties of

heterogeneity variance methods in simulated meta-analyses with publication bias is

problematic. Studies could be systematically excluded to simulate publication bias

but this would not preserve the parameters of the underlying distribution. Methods

will inevitably perform poorly in the presence of signi�cant publication bias, but this

is understandable.

A continuity correction of 0.5 was applied to all binary outcome meta-analyses with

zero events in my simulation study. This correction factor was chosen because it's

widely used and the default method in the software Revman [87]. Other methods

for dealing with zero events are available [10, 30]. In particular, a one-stage logistic

regression modelling approach has been shown to produce less biased odds ratio

estimates than the methods I used [113]. The decision to use this correction factor

may have a�ected results in scenarios with rare outcomes. However, it is unlikely

that using a di�erent correction factor would have a�ected conclusions, particularly

in scenarios with extremely rare events where all heterogeneity variance estimates

had considerable negative bias.

Table 9.1 summarises the heterogeneity variance estimation methods available in

the main statistical software packages at the time of writing. I include the four

estimators that have the most reasonable properties (DerSimonian-Laird, two-step
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DerSimonian-Laird, Paule-Mandel and REML) and full Bayes. WinBUGS [87] is the

only software in which the DerSimonian-Laird estimator is not available; this is only

because WinBUGS is software that specialises in Bayesian methods. DerSimonian-

Laird is the only available estimator in Revman [87] and is the software used to

conduct all Cochrane systematic reviews. The two-step DerSimonian-Laird estimator

(PMDL) is not readily available in any statistical software. The packages meta [99]

and metafor [126] in R [85] can produce PMDL estimates only by restricting the

Paule-Mandel iterative process to two steps. PMDL is not available in any software

package because it is widely considered as a simpli�ed version of Paule-Mandel, and

therefore assumed to have inferior properties.

9.4 Further work

I have identi�ed several limitations that came to light during the conduct of my

research and discussed them in the last section. They were not addressed in this

thesis mainly because of time and length constraints and were arguably inevitable

given the scale of the problem of heterogeneity variance estimation in meta-analysis. I

now suggest potential areas for further research to address many of these limitations.

9.4.1 Logistic regression models for meta-analysis

I discussed logistic regression methods in the last section that can be used to com-

bine 2x2 contingency table data in binary outcome meta-analyses [103, 121]. This

method makes full use of study data that is often readily available from these study's

published results. There are a limited number of heterogeneity variance estimation

methods available for use in combination with this method, but one of which is

REML, which I showed has reasonable properties in aggregate data meta-analyses.

A simulation study would be of bene�t to compare the properties heterogeneity
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variance estimates derived from this method (using REML) and aggregate data es-

timation methods (using REML and the two-step DerSimonian-Laird heterogeneity

variance estimators).

9.4.2 Distributions of study size

In the simulation study in chapters 6 - 8, meta-analyses were generated with study

sizes derived from �ve di�erent distributions representing a variety of sizes and also

a wide variety of di�erences in study size. These could not be considered a compre-

hensive selection of distributions, but had a substantial impact on the the properties

of estimators. A new simulation study would be of bene�t for further exploration

in a wider variety of distributions. Distributions that are yet to be explored and

may reveal interesting results include; (1) few small studies and many large studies,

(2) many large studies and few small studies, (3) uniformly distributed from small

to large, (4) negatively skewed (producing more large studies than small), and (5)

positively skewed (producing more small studies than large).

9.4.3 Wider strategies for heterogeneity variance estimation

in problem meta-analyses

I showed in the last chapter that heterogeneity variance estimates are usually im-

precise and biased in meta-analyses in practice. Therefore, we can rarely rely on a

single estimate when making inference on the degree of heterogeneity and a wider

strategy in these scenarios is required. I recommend sensitivity analysis in these

meta-analyses, but further research may be required to investigate the potential

impact of di�erent sensitivity analysis strategies.
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9.4.4 Con�dence intervals for the heterogeneity variance

Finally, it is imperative that con�dence intervals for the heterogeneity variance are

reported as standard in meta-analyses to express the uncertainty around their estim-

ates. Many con�dence intervals are available for this purpose [122], so a systematic

review may be required to �nd if there is consensus over which con�dence interval

method has the best properties. Recommendations from this research would form

part of the wider strategy for addressing the issue imprecise estimates, as I mentioned

above.

9.4.5 Implementation in statistical software

Finally, to encourage the use of the two-step DerSimonian-Laird estimator in future

meta-analyses, its code must be implemented into statistical software packages and

ideally be the default option. My recommendation di�ers from the recommendations

of other comprehensive simulation studies [78, 79, 124], and an editorial letter to Co-

chrane [123]; these recommend the iterative Paule-Mandel estimator and/or REML

for use in practice. Therefore, it may take time for the dissemination of my research

to impact on meta-analysis methods in statistical software.

9.5 Conclusion

DerSimonian-Laird is the most commonly used method to estimate the heterogeneity

variance in meta-analysis, and produces negatively biased estimates in meta-analyses

of binary data with rare events and/or meta-analyses containing only small studies.

The Paule-Mandel estimator produces estimates with negative bias only in extreme

cases where all meta-analysis method fail, and where conducting the meta-analysis at

all is questionable. However, Paule-Mandel produces estimates with a higher positive

bias than DerSimonian-Laird in meta-analyses with moderate to large di�erences in
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study size. The two-step DerSimonian-Laird estimator and REML are shown in my

simulation study to have the best properties of both these methods. I recommend

REML given that it is already widely known and available in most statistical software

packages. I recommend the Hartung-Knapp con�dence interval for the summary

e�ect and advise caution when making inference on this only in binary outcome

meta-analyses with rare events.

More importantly, heterogeneity variance estimates derived from any method in a

two-stage meta-analysis are usually imprecise and either negatively or positively

biased in practice. I recommend the reporting of con�dence intervals for the hetero-

geneity variance estimate and I2. Recent studies have found these con�dence inter-

vals are rarely reported in practice [56], which can mislead researchers into thinking

the level of heterogeneity is known. I recommend sensitivity analyses, particularly if

the researcher believes conclusions could change solely based on a change is the level

of heterogeneity present. Sensitivity analysis are rarely required for inference on the

the summary e�ect alone if the Hartung-Knapp con�dence interval method is used.

My thesis has demonstrated many of the problems inherent in estimating hetero-

geneity in a meta-analysis. The DerSimonian-Laird approach has been criticised in

the past, and I recommend that the REML or two-step DerSimonian-Laird estim-

ators be used instead. The use of the Hartung-Knapp con�dence interval could also

provide a more realistic interpretation of uncertainly of the summary e�ect in het-

erogeneous meta-analyses. None of these methods are perfect however, and caution

should always be exercised when estimating heterogeneity or I2, particularly when

there are few studies or events are rare. In such circumstances comparing several

estimates of heterogeneity may be useful. This work highlights the fact that our

response to heterogeneity should not begin and end with performing a single ran-

dom e�ects analysis; we should always seek to investigate potential causes of any

identi�ed heterogeneity.
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Recommendations:

� There is no method likely to produce an accurate estimate of the heterogeneity

variance in most two-stage meta-analyses in Cochrane reviews. Therefore, a

con�dence interval for this estimate should always be reported.

� REML heterogeneity variance estimates generally have the most reasonable

properties, so this method is recommended. Two-step DerSimonian-Laird is a

good alternative when iteration for REML fails to converge.

� The Hartung-Knapp con�dence interval method for the summary e�ect is re-

commended over Wald-type methods.
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Appendix A: Supplementary material

from chapter 2
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A.1 Search strategy

The following search criteria was designed to identify methods to estimate the het-

erogeneity variance parameter and its con�dence interval in Veroniki et al. [122]. My

thesis does not compare con�dence interval methods for this parameter, so papers

that relate solely to these methods were excluded from my review. PubMed was

searched to identify research articles and references of each article were scanned for

additional relevant literature. The following search criteria was used:

((heterogen*[Title/Abstract]) OR (*consisten*[Title/Abstract]) OR (between

- study variance*[Title/Abstract]) OR (between - trial variance*[Title/Abstract]))

AND (meta - analys*[Title/Abstract]) AND ((random e�ect*[Title/Abstract])

OR (mixed e�ect*[Title/Abstract]) OR (meta - regress*[Title/Abstract]))

AND ((distribution) OR ( prior) OR (prediction) OR (estimat*) OR

(overall treatment e�ect*) OR (summary treatment e�ect*) OR (pooled

e�ect*) OR (con�dence interval*) OR (bias*) OR (error*) OR (power)

OR (simulation*) OR (coverage probability*) OR (mean square* AND

error*))
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Appendix B: Supplementary material

from chapter 4
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Figure B.1: Bland-Altman scatter plots comparing I2 estimates from di�erent
heterogeneity variance methods excluded from the main results
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Figure B.2: Bland-Altman scatter plots comparing τ2 estimates from di�erent
heterogeneity variance methods.
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Appendix C: Supplementary material

from chapter 5
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C.1 Search strategy

We searched MEDLINE and the Web of Science core collection using the following

strategy:

1. meta-* OR heterogen* [Title]

2. random e�ect* OR random-e�ect* OR mixed e�ect* OR meta-regress* OR

sequential meta-analys* [Title/Abstract]

3. compar* OR simulat* OR mean square* OR bias* OR estimat* [Title/Ab-

stract]

4. between-trial OR (between-study OR heterogen* OR *consisten* OR DerSi-

monian* [Title/Abstract]

5. cancer OR stroke OR blood OR arthritis OR alcohol OR depress* OR infect*

OR diabetes OR disease* OR illness* OR surviv* OR smok* OR risk OR

vitamin* OR therapy OR surgery [Title]

6. (#1 AND #2 AND #3 AND #4) NOT #5

To reduce the number of applied meta-analyses from the search results, publications

with selected common medical terms in the title were excluded (#5). The search

strategy needed to be adapted for JSTOR for two reasons: (1) There is a limit to

the number of search terms that can be used and (2) Only 10% of publications in

the database include abstracts and so "Title/Abstract" terms were searched within

the full text instead. The JSTOR search strategy was as follows:

1. meta anal* [Title]

2. random e�ect* [Full Text]

3. compar* OR simulat* OR mean square* OR bias* [Full Text]
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4. heterogen* [Full Text]

5. #1 AND #2 AND #3 AND #4
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C.2 Performance measures in simulated data

Measure Notation Details

Measures relating to τ2

Bias bias
(
τ̂2
)

E
[
τ̂2
]
− τ2

MSE MSE
(
τ̂2
)

E
[(
τ̂2 − τ2

)2]

Variance V ar
(
τ̂2
)

E
[(
τ̂2 − E

[
τ̂2
])2]

E�ciency e
(
τ̂2
)

I
−1−
F

var (τ̂2)

where I
−1−
F is Fishers information:

I
−1−
F = 2

[
k∑
i=1

1(
τ2 + σ2

i

)]−1

Proportion of

zero estimates

P (τ̂2 = 0) The proportion of zero estimates of τ̂2

Measures relating to θ

Bias bias
(
θ̂
)

E
[
θ̂
]
− θ

MSE MSE
(
θ̂
)

E

[(
θ̂ − θ

)2]

Measures relating to con�dence intervals for θ

Coverage cov (CIx) The proportion of con�dence intervals for x̂ that contain x

Error interval

estimation

EI (CIx) A ratio between the observed and the true con�dence interval
widths. For example, in the case when x = θ, then

EI (CIθ) =
upperCIθ − lowerCIθ

3.92

√(∑k
i=1

(
τ2 + σ̂2

i

)−1
)−1

Table C.1: Performance measures in simulated data
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Appendix D: Supplementary material

from chapter 6
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D.1 Tables of τ 2 parameter values

Outcome

measure
Study sizes

Event

prob

I
2
=

1
5
%

I
2
=

3
0
%

I
2
=

4
5
%

I
2
=

6
0
%

I
2
=

7
5
%

I
2
=

9
0
%

I
2
=

9
5
%

τ2

OR small 0.5 0.067 0.178 0.344 0.633 1.33 4.5 15.6

small-to-medium 0.5 0.0144 0.0333 0.0655 0.122 0.244 0.78 1.67

medium 0.5 0.0067 0.0174 0.0333 0.056 0.122 0.367 0.78

small and large 0.5 0.0025 0.0066 0.0144 0.023 0.0756 0.356 0.78

large 0.5 0.0001 0.0023 0.00456 0.0082 0.0166 0.045 0.01

small 0.1 to 0.5 0.0944 0.233 0.445 0.856 1.89 20 -

small-to-medium 0.1 to 0.5 0.0178 0.0433 0.0855 0.1545 0.322 1.11 2.3

medium 0.1 to 0.5 0.0089 0.0233 0.0433 0.078 0.156 0.45 1.11

small and large 0.1 to 0.5 0.0036 0.0084 0.0178 0.0356 0.0945 0.456 1.22

large 0.1 to 0.5 0.0012 0.0023 0.00589 0.0107 0.0222 0.0645 0.134

small 0.05 0.422 1.156 2.56 7.56 - - -

small-to-medium 0.05 0.0755 0.189 0.378 0.745 1.78 - -

medium 0.05 0.034 0.0967 0.189 0.356 0.756 3.44 -

small and large 0.05 0.0144 0.0345 0.0745 0.167 0.433 2.3 -

large 0.05 0.0053 0.0133 0.0255 0.0445 0.089 0.23 0.56

small 0.01 2.78 14.5 - - - - -

small-to-medium 0.01 0.378 1.11 2.45 6.7 - - -

medium 0.01 0.12 0.45 1.067 2.44 7.8 - -

small and large 0.01 0.0656 0.178 0.34 0.1 3.67 - -

large 0.01 0.0245 0.0622 0.122 0.233 0.478 1.78 -

SMD small - 0.0178 0.0444 0.0845 0.156 0.322 0.1 2.44

small-to-medium - 0.0035 0.00856 0.0156 0.023 0.056 0.12 0.34

medium - 0.0018 0.00444 0.00844 0.01545 0.0311 0.089 0.12

small and large - 0.0007 0.00156 0.00344 0.00744 0.0189 0.089 0.12

large - 0.0002 0.0006 0.0011 0.0021 0.0042 0.0133 0.0256

Table D.1: τ2 parameter values for each simulated scenario.

τ 2consistent between numbers of studies and distributions of study e�ects. I2 = 0%
is not included in this table, because it always corresponds to τ 2 = 0. Parts of the
table marked with a dash are where there is no such τ 2 that produces meta-analyses

with the given mean I2
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Outcome

measure
Study sizes

Event

prob

I
2
=

1
5
%

I
2
=

3
0
%

I
2
=

4
5
%

I
2
=

6
0
%

I
2
=

7
5
%

I
2
=

9
0
%

I
2
=

1
9
5
%

90% reference range of underlying I2

OR small 0.5 14 - 15 30 - 31 44 - 46 59 - 61 73 - 76 88 - 92 91 - 97

small-to-medium 0.5 10 - 20 20 - 36 33 - 53 48 - 67 64 - 81 86 - 93 92 - 96

medium 0.5 15 - 15 30 - 30 45 - 45 59 - 60 74 - 75 90 - 90 95 - 95

small and large 0.5 1 - 20 3 - 40 6 - 58 13 - 75 27 - 88 63 - 97 78 - 99

large 0.5 14 - 17 27 - 32 42 - 48 57 - 63 72 - 77 89 - 91 94 - 95

small 0.1 to 0.5 12 - 17 25 - 34 40 - 49 54 - 65 69 - 80 60 - 97 -

small-to-medium 0.1 to 0.5 9 - 20 20 - 36 32 - 54 48 - 68 62 - 81 84 - 93 92 - 97

medium 0.1 to 0.5 12 - 17 26 - 34 40 - 49 55 - 64 70 - 78 88 - 92 93 - 96

small and large 0.1 to 0.5 1 - 22 3 - 40 6 - 59 10 - 74 24 - 88 59 - 97 78 - 99

large 0.1 to 0.5 12 - 18 24 - 34 39 - 50 53 - 65 70 - 79 87 - 92 94 - 96

small 0.05 13 - 16 25 - 34 35 - 52 28 - 72 - - -

small-to-medium 0.05 10 - 19 19 - 36 34 - 53 47 - 68 60 - 82 - -

medium 0.05 15 - 16 29 - 31 43 - 47 58 - 62 71 - 77 84 - 93 -
small and large 0.05 1 - 20 3 - 39 6 - 57 12 - 75 25 - 88 58 - 98 -

large 0.05 13 - 17 27 - 33 42 - 49 57 - 63 72 - 77 89 - 92 93 - 96

small 0.01 10 - 19 3 - 45 - - - - -

small-to-medium 0.01 9 - 19 18 - 38 28 - 55 30 - 74 - - -

medium 0.01 14 - 16 27 - 32 38 - 50 47 - 67 47 - 84 - -

small and large 0.01 1 - 20 3 - 40 6 - 58 12 - 77 19 - 91 - -

large 0.01 13 - 16 27 - 33 41 - 48 56 - 63 70 - 78 86 - 92 -

SMD small - 15 - 15 29 - 30 44 - 46 60 - 61 74 - 76 89 - 91 94 - 96

small-to-medium - 9 - 19 20 - 36 33 - 53 46 - 67 64 - 80 85 - 93 92 - 96

medium - 15 - 15 30 - 30 45 - 45 60 - 60 75 - 75 89 - 90 95 - 95

small and large - 1 - 21 3 - 39 6 - 57 12 - 74 26 - 88 63 - 97 79 - 99

large - 13 - 16 27 - 33 42 - 48 57 - 63 73 - 77 89 - 91 94 - 95

Table D.2: 90% reference range of underlying I2 values for each simulated
scenario.

τ 2consistent between numbers of studies and distributions of study e�ects. I2 = 0%
is not included in this table, because it corresponds only to τ 2 = 0. Parts of the

table marked with a dash are where there is no such τ 2 that produces meta-analyses
with the given mean I2
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D.2 R code for all heterogeneity variance estimators

#######################################################################

# R code for calculating all heterogeneity estimates in one function #

#######################################################################

#######################################

#list of arguments and their meanings #

#######################################

#xi - vector of effect estimates for each study. If the outcome is

# odds ratio (for example), we assume that xi is already converted to

# log odds -ratios. log argument can be used to convert output back onto

# the original scale after all heterogeneity estimates have been

# calculated

#

#sei - vector of standard errors for each study.

#

#hetest - vector of heterogeneity estimators that you would like to be

# calculated. The default is NULL , which means all estimates are

# calculated.

#

#signiftau2 - number of significant figures to round tau2 estimates

# (inc confidence intervals)

#

#maxit - maximum number of iterations allowed where the process of

# estimating tau2 involved iteration

#

#output - TRUE if output is displayed , FALSE otherwise (stops too much

# output when we are running the program iteratively)

#

#tau2.0 - starting value of iterative estimators

#

### PARAMETERS SPECIFIC TO AB... note that 2 out of 3 are required to

# calculate the estimate:

#eta - shape parameter of the prior distribution

#lambda - spread parameter of the prior distribution

#tau2prior - prior estimate of heterogeneity

#

### PARAMETERS SPECIFIC TO HS2

#Ntot - total sample size in meta -analysis (over both treatment groups)

#

### PARAMETERS SPECIFIC TO IPM (nci and nti are also used for the MBH

### estimator)

#nci - sample size of the control group

#nti - sample size of the treatment group
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#eci - number of events in the control group

#

### PARAMETERS SPECIFIC TO DLp

#DLpos - truncation value as an alternative to zero with the original

# DL estimator

#

### PARAMETERS SPECIFIC TO DLb

#bsamp - number of bootstrap samples

#

#PARAMETERS SPECIFIC TO MBH

#corrbias - corrects xi for bias if TRUE , only functional for MBH

# estimator (using the method of Malzahn et al 2000)

#

#######################################

#list of estiamtors and their acornyms#

#######################################

##### General MoM approaches

#CA - Cochran 's ANOVA

#DL - DerSimonian -Laird

#PM - Paule Mandel

#CA2 - Two step PM with CA initial estimate

#DL2 - Two step PM with DL initial estimate

#IPM - Improved Paule -Mandel (binary outcome data only) - uses arguments

# eci , nci and nti

#DLp - Positive DerSimonian -Laird estimate , with truncation at 0.01

#DLb - bootstrap version of DerSimonian -Laird

#### Other approaches

#HM - Hartung Makambi

#HS - Hunter Schmidt (original estimator using FE weightings)

#SJ - Sidik Jonkman

#SJ2 - An improvement on Sidik Jonkman

#MBH - Malzahn , Bohning and Holling (from original paper Malzahn 2000)

#### Maximum Likelihood approaches

#ML - Maximum Likelihood

#REML - Restricted Maximum Likelihood

#ARML - Approximate Restricted Maximum Likelihood

#### Bayesian Approaches

#EB - Empirical Bayes

#AB - Approximate Bayes

#B0 - Rukhin Bayes with zero prior (with correction for sum(n))

#BP - Rukhin Bayes with simple prior
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hetest <- function(xi=lSS , sei=seSS , Ntot=NULL , nci=NULL , nti= NULL ,

eci=NULL , eta=NULL , lambda=NULL , tau2prior=NULL , DLpos =0.01,

bsamp =5000, SMD=FALSE , hetest=NULL , signiftau2 =6, maxit =100,

tau2 .0=NULL , trunc=TRUE , output=TRUE) {

#if no specific set of estimates is required , calculate them all...

if (is.null(hetest )) hetest <- c("CA","DL","PM","IPM","CA2",

"DL2","DLp","DLb","HM","HS","SJ","SJ2","MBH","ML","REML",

"ARML","AB","B0","BP")

#clear the variables that may have been defined previously when this

#function was run so that we can start again fresh

CA_est <-DL_est <-PM_est <-IPM_est <-CA2_est <-DL2_est <-as.numeric(NA);

DLp_est <-DLb_est <-HM_est <-HS_est <-SJ_est <-SJ2_est <-as.numeric(NA);

MBH_est <-ML_est <-REML_est <-ARML_est <-AB_est <-B0_est <-as.numeric(NA);

B0K_est <-BP_est <-as.numeric(NA);

#assume equal sample sizes in arms

if (!is.null(Ntot) & is.null(nci) & is.null(nti)) {

Ntot <- nci + nti

}

if (!is.null(Ntot) & is.null(nci) & is.null(nti)) {

nci <- nti <- round(Ntot/2,digits =0)

}

Kest <- length(hetest) # number of estimates to be calculated

esti <- 1

#^a counter so that we can create a dataset with a separate estimate

#on each row the first specified estimate will be in row 1 ... etc.

#### specifying all output vectors before replacing the values with

#### actual estimates.

name <- rep(NA,Kest)

tau2 <- rep(NA,Kest)

#theta not needed for output , just for the process of calculating some

#of the tau2 estimates

theta <- rep(NA ,Kest)

#bias correction if the meta -analysis has an SMD outcome measure

#keep unadjusted SMDs for MBH estimator

if (SMD) {

xi_unadj <- xi

sei_unadj <- sei
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J <- 1- (3/(4*( Ntot -2) - 1))

xi <- xi*J

sei <- sqrt((sei ^2)*(J^2))

}

K <- length(xi) #K=number of studies in the meta -analysis

vi <- sei^2 #variance of each study

wFEi <- 1/vi

FEtheta <- sum(xi*wFEi)/sum(wFEi)

#DerSimonian Laird

if ('DL ' %in% hetest) {

name[esti] <- "DL"

DLw <- 1/vi

theta[esti] <- sum(xi*(DLw))/ sum((DLw))

DLtausq1 <- sum(DLw*((xi-theta[esti ])^2)) - (sum(DLw*vi)) +

(sum((DLw ^2)*vi)/sum(DLw))

DLtausq2 <- sum(DLw) - (sum(DLw ^2)/ sum(DLw))

if (trunc) DL_est <- tau2[esti]<- max(0,DLtausq1/DLtausq2)

else DL_est <- tau2[esti]<- DLtausq1/DLtausq2

esti <- esti + 1

}

#DerSimonian Laird

if ('DLp ' %in% hetest) {

name[esti] <- "DLp"

DLw <- 1/vi

theta[esti] <- sum(xi*(DLw))/ sum((DLw))

DLtausq1 <- sum(DLw*((xi-theta[esti ])^2)) - (sum(DLw*vi)) +

(sum((DLw ^2)*vi)/sum(DLw))

DLtausq2 <- sum(DLw) - (sum(DLw ^2)/ sum(DLw))

if (trunc) DLp_est <- tau2[esti]<- max(DLpos ,DLtausq1/DLtausq2)

else DLp_est <- tau2[esti]<- DLtausq1/DLtausq2

esti <- esti + 1

}

#DerSimonian Laird

if ('DLb ' %in% hetest) {

name[esti] <- "DLb"

DLw <- 1/vi

theta[esti] <- sum(xi*(DLw))/ sum((DLw))

#number of possible combinations given the number of studies
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#if K=9 then there are 24310 possible combinations , much more

#samples than would ever be needed. so no need to calculate perm

if (K<9) perm <- factorial (2*K - 1) / (factorial(K)* factorial(K-1))

else perm <- bsamp -1

#if the number of combinations is small , then no need to do all

#bootstraps , just take complete sample ...

if (perm <= bsamp) {

comb_DLb <- combinations(n=K, r=K, repeats.allowed=TRUE)

no_samples <- perm

}

#if the number of combinations is large then just do a sample ...

else {

comb_DLb <- t(replicate(bsamp ,sample (1:K,K,replace = TRUE )))

no_samples <- bsamp

}

DLb_est2 <- rep(NA,times=no_samples)

for (i in 1: no_samples) {

studycomb <- comb_DLb[i,]

theta_b <- sum(xi[studycomb ]*( DLw[studycomb ]))/

sum((DLw[studycomb ]))

DLtausq1_b <- sum(DLw[studycomb ]*((xi[studycomb]-theta_b )^2)) -

(sum(DLw[studycomb ]*vi[studycomb ])) +

(sum((DLw[studycomb ]^2)*vi[studycomb ])/ sum(DLw[studycomb ]))

DLtausq2_b <- sum(DLw[studycomb ]) - (sum(DLw[studycomb ]^2)/

sum(DLw[studycomb ]))

if (trunc) DLb_est2[i] <- max(0, DLtausq1_b/DLtausq2_b)

else DLb_est2[i] <- DLtausq1_b/DLtausq2_b

}

DLb_est <- tau2[esti]<- mean(DLb_est2)

esti <- esti + 1

}

#Cochran ANOVA

if ('CA ' %in% hetest | 'ML' %in% hetest | 'REML ' %in% hetest) {

#to calculate REML , we need a starting value of tau2_ML , or else

#there may be more than 1 solution.

CAw <- rep(1/K,times=K)

theta[esti] <- sum(xi*CAw)/sum(CAw)

CAtausq1 <- sum(CAw*((xi-theta[esti ])^2)) - (sum(CAw*vi)) +

(sum((CAw ^2)*vi)/sum(CAw))

CAtausq2 <- sum(CAw) - (sum(CAw ^2)/ sum(CAw))
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CA_est <- max(0,CAtausq1/CAtausq2)

if ('CA ' %in% hetest ){

if (trunc) tau2[esti]<- max(0,CAtausq1/CAtausq2)

else tau2[esti]<- CAtausq1/CAtausq2

name[esti] <- "CA"

esti <- esti + 1

}

}

#Paule Mandel

if ('PM ' %in% hetest) {

quant <- df <- K-1

#degrees of freedom and expected mean under the fixed effects

#assumption

PMtau2out <- 1

# just set an initial value for PM estimate for output

if (is.null(tau2 .0)) PMtausq <- 0 #initial estimate of tau2

else PMtausq <- tau2.0

PMit <- 1 #iteration number

PM_F <- 1 #just to get the iteration started. F=0 => convergence

while (PM_F !=0){

#first calculate the the pooled effect based on present

#estimate of tausq

PMw = 1/(sei^2+ PMtausq)

PMyW = sum(xi*PMw)/sum(PMw)

#equation comes from DerSimonian and Kacker 2007

Q1 <- sum(PMw*(xi -PMyW )^2) #generalised Q statistic

Q2 <- sum((PMw ^2)*(xi-PMyW )^2) #denominator from delta

#quant=statistic coming from the chisq dist regardless of data.

#mean/CI bound etc

if (trunc) PM_F <- max(Q1 -quant ,0)

else PM_F <- Q1-quant

delta <- PM_F/Q2 #what to add onto the next tausq estimate

if (PM_F !=0) PMtausq <- PMtausq + delta

PMit <- PMit + 1

if (PM_F ==0) {

PMtau2out <-PMtausq

}
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if (PMit== maxit) {

PM_F <- 0

if (output ==TRUE)

cat("PM estimator: Maximum Number of iterations reached

without convergence\n")

}

}

name[esti] <- "PM"

if (PMit== maxit) PM_est <- tau2[esti] <- NA

else PM_est <- tau2[esti] <- PMtau2out

PMw <- 1/(vi + tau2[esti])

theta[esti] <- sum(xi*PMw)/sum(PMw)

esti <- esti + 1

}

#Paule Mandel (with improved standard errors)

if ('IPM ' %in% hetest) {

quant <- df <- K-1

#degrees of freedom and expected mean under the

#fixed effects assumption

if (is.null(tau2 .0)) IPMtausq <- 0 #initial estimate of tau2

else IPMtausq <- tau2.0

IPMdiff <- 1

IPMit <- 1 #iteration number

#counter for number of negative estimates

negcount <- 0

#calculations needed to calculate standard errors , but that don 't

#change for each iteration

oddsc <- log(eci/(nci -eci)) # odds in control group

thetaCA <- sum(xi)/K # un-weighted average

while (IPMdiff !=0){

IPMtausq_prev <- IPMtausq

#first calculate the standard errors according to the alternative

#formula proposed by Bhaumik (depends on tau2 estimate so needs to

#be calculated for each iteration)

sei_IPM <-
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((exp(-oddsc - thetaCA + (IPMtausq /2)) + 2 +

exp(oddsc + thetaCA + (IPMtausq /2)))/( nci + 1)) +

((exp(-oddsc) + 2 + exp(oddsc ))/( nti + 1))

#calculate the the pooled effect based on present estimate of

#tausq

IPMw = 1/( sei_IPM ^2+ IPMtausq)

IPMyw = sum(xi*IPMw)/sum(IPMw)

#equation comes from DerSimonian and Kacker 2007

Q1 <- sum(IPMw*(xi-IPMyw )^2) #generalised Q statistic

Q2 <- sum(IPMw*( sei_IPM ^2)) - (sum((IPMw ^2)*( sei_IPM ^2)) /

sum(IPMw))

Q3 <- sum(IPMw) - (sum(IPMw ^2) / sum(IPMw))

IPMtausq <- (Q1 - Q2) / Q3

if (trunc) {

if(IPMtausq >=0) IPMdiff <- round(abs(IPMtausq - IPMtausq_prev),

digits=signiftau2)

else {

negcount <- negcount + 1

#if iteration is negative more than once then REML=0

#final est

if (negcount >=2) IPMdiff <-0

IPMtausq <-0

}

}

else IPMdiff <- round(abs(IPMtausq - IPMtausq_prev),

digits=signiftau2)

IPMit <- IPMit + 1

if (IPMit==maxit) {

IPMdiff <- 0

if (output ==TRUE)

cat("IPM estimator: Maximum Number of iterations reached

without convergence\n")

}

}

name[esti] <- "IPM"

if (IPMit ==maxit) IPM_est <- tau2[esti] <- NA

else IPM_est <- tau2[esti] <- IPMtausq

IPMw <- 1/(vi + tau2[esti])
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theta[esti] <- sum(xi*IPMw)/sum(IPMw)

esti <- esti + 1

}

#Cochran ANOVA initial estimate with PM weightings

if ('CA2 ' %in% hetest) {

name[esti] <- "CA2"

if (trunc) CAtau2 <- max( 0 , (1/(K-1))* sum((xi -(sum(xi)/K))^2) -

(1/K)*sum(vi) )

else CAtau2 <- (1/(K -1))* sum((xi -(sum(xi)/K))^2) - (1/K)*sum(vi)

CA2w <- 1/( CAtau2 + vi)

theta[esti] <- sum(xi*CA2w)/sum(CA2w)

CA2wtausq1 <- sum(CA2w *((xi -theta[esti ])^2)) - (sum(CA2w*vi)) +

(sum((CA2w ^2)*vi)/sum(CA2w))

CA2wtausq2 <- sum(CA2w) - (sum(CA2w ^2)/ sum(CA2w))

if (trunc) CA2_est <- max(0,tau2[esti]<- CA2wtausq1/CA2wtausq2)

else CA2_est <- tau2[esti]<- CA2wtausq1/CA2wtausq2

esti <- esti + 1

}

#DerSimonian Laird initial estimate with PM weightings

if ('DL2 ' %in% hetest) {

name[esti] <- "DL2"

DLw <- 1/(vi)

DLtheta <- sum(xi*DLw)/sum(DLw)

if (trunc) DLtau2 <- max( 0 , (sum(DLw*((xi -DLtheta )^2)) - K + 1)/

( sum(DLw) - (sum(DLw ^2)/ sum(DLw)) ) )

else DLtau2 <- (sum(DLw*((xi -DLtheta )^2)) - K + 1) /

( sum(DLw) - (sum(DLw ^2)/ sum(DLw)) )

DL2w <- 1/( DLtau2 + vi)

theta[esti] <- sum(xi*DL2w)/sum(DL2w)

DL2tausq1 <- sum(DL2w *((xi -theta[esti ])^2)) - (sum(DL2w*vi)) +

(sum((DL2w ^2)*vi)/sum(DL2w))

DL2tausq2 <- sum(DL2w) - (sum(DL2w ^2)/ sum(DL2w))

if (trunc) DL2_est <- max(0,tau2[esti]<- DL2tausq1/DL2tausq2)

else DL2_est <- tau2[esti]<- DL2tausq1/DL2tausq2

esti <- esti + 1

}

#Hartung Makambi

if ('HM ' %in% hetest) {

name[esti] <- "HM"

HMQ <- sum ((1/vi)*((xi-FEtheta )^2))

HM_est <- tau2[esti] <- (HMQ^2) / ((2*(K-1)+ HMQ)*( sum(1/vi)-

(sum ((1/vi)^2)/ sum(1/vi))))
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esti <- esti + 1

}

#Hunter Schmidt (original estimator using FE weightings)

if ('HS ' %in% hetest) {

name[esti] <- "HS"

if (trunc) HS_est <- tau2[esti] <- max(0 ,

(sum(wFEi*(xi - FEtheta )^2) - K) / (sum(wFEi)) )

else HS_est <- tau2[esti] <- (sum(wFEi*(xi - FEtheta )^2) - K) / (sum(wFEi))

esti <- esti + 1

}

#Sidik Jonkman

if ('SJ ' %in% hetest) {

name[esti] <- "SJ"

#### ESTIMATE OF TAU2

#calculate the pooled estimate

SJtheta_0 <- sum(xi)/K

#Cochrans equally weighted estimate of the pooled result

SJtau2_0 <- (1/K)*sum((xi - SJtheta_0 )^2)

#if all estimates are identical then we cannot go any further in

#the calculation and our estimate is zero

if (SJtau2_0 >0) {

#SJ weightings based on initial estimate of tau2 (SJtau2_0)

SJw <- 1/( (vi/SJtau2_0 )+1)

#Random effects pooled estimate based on the above weightings

SJtheta_1 <- sum(xi*SJw)/sum(SJw)

SJ_est <- tau2[esti] <- (1/(K -1)) * sum( SJw * (xi-SJtheta_1 )^2 )

}

else SJ_est <- tau2[esti] <- 0

#pooled effect estimate

SJw2 <- 1/( (vi/tau2[esti ])+1)

theta[esti] <- sum(SJw2 * xi) / sum(SJw2)

esti <- esti + 1

}

#Improved Sidik Jonkman
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if ('SJ2 ' %in% hetest) {

name[esti] <- "SJ2"

#### ESTIMATE OF TAU2

#calculate the pooled estimate

SJ2theta_0 <- sum(xi)/K

#if all estimates are identical then tau2 is zero

if (sum((xi - SJ2theta_0 )^2) >0) {

#variance components method (general form of hedges olkin)

SJ2tau2_0 <- max( 0.01 , ((1/(K -1))*( sum((xi - SJ2theta_0 )^2))) -

((1/K)*(sum(vi))) )

#SJ2 weightings based on initial estimate of tau2 (SJ2tau2_0)

SJ2w <- 1/( (vi/SJ2tau2_0 )+1)

#Random effects pooled estimate based on the above weightings

SJtheta_1 <- sum(xi*SJ2w)/sum(SJ2w)

SJ2_est <- tau2[esti] <- (1/(K -1)) *

sum( SJ2w * (xi -SJtheta_1 )^2 )

}

else SJ2_est <- tau2[esti] <- 0

#pooled effect estimate

SJ2w2 <- 1/( (vi/tau2[esti ])+1)

theta[esti] <- sum(SJ2w2 * xi) / sum(SJ2w2)

esti <- esti + 1

}

#Malzahn , Bohning , Holling estimator (as given in the original

#Malzahn et al 2000 paper) only for SMD effects

if ('MBH ' %in% hetest) {

name[esti] <- "MBH"

if (SMD) {

Ni <- nci + nti - 2

Hi <- sqrt(Ni/2)*( gamma ((Ni/2) -0.5)/ gamma(Ni/2))

di <- xi/Hi

thetaMBH <- sum(di)/K #equal weighted mean effect

Ki <- 1 - ((Hi )^2*((Ni -2)/Ni))

MBH_est <- (sum((1-Ki)*((di-thetaMBH )^2))/(K-1)) -

((1/K)*sum((nci + nti)/(nci*nti ))) -
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((1/K)*sum(Ki*(di ^2)))

if (trunc) MBH_est <- tau2[esti]<- max(0,MBH_est)

else tau2[esti]<- MBH_est

} else MBH_est <- tau2[esti] <- NA

esti <- esti + 1

}

#Maximum Likelihood

if ('ML ' %in% hetest) {

name[esti] <- "ML"

#difference between this iteration and previous to assess when we

#have convergence set MLdiff !=0 initially to get the process of

#iteration going

MLdiff <- 1

#counter for number of iterations

MLit <-0

#counter for number of negative estimates

negcount <- 0

#first set initial estimate of tau2 and theta

#(fixed effect estimates)

if (is.null(tau2 .0)) MLtau2 <- CA_est

else MLtau2 <- tau2.0

MLtheta <- sum(xi*wFEi)/sum(wFEi)

while(MLdiff !=0){

#estimate of between study heterogeneity

MLtau2_prev <- MLtau2 #record of previous step

if (-min(vi)>=MLtau2) MLtau2 <- -min(vi)+(10^ - signiftau2)

MLtau2 <- sum( ((xi-MLtheta )^2 - vi) / (vi+MLtau2 )^2 ) /

sum( 1 / (vi+MLtau2 )^2 )

#estimate for pooled effect

MLtheta_prev <- MLtheta #record of previous step

MLtheta <- sum( xi / (vi+MLtau2) ) / sum( 1 / (vi+MLtau2) )

if (trunc) {

if(MLtau2 >=0) MLdiff <- round(abs(MLtau2 - MLtau2_prev),

digits=signiftau2)

else {

negcount <- negcount + 1
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# if iteration is negative more than once then REML=0 final est

if (negcount >=2) MLdiff <-0

MLtau2 <-0

MLtheta <-sum(xi*wFEi)/sum(wFEi)

}

}

else MLdiff <- round(abs(MLtau2 - MLtau2_prev),digits=signiftau2)

MLit <- MLit + 1

if (MLit== maxit) {

MLdiff <- 0

if (output ==TRUE)

cat("ML estimator: Maximum Number of iterations reached

without convergence\n")

}

}

if (MLit== maxit) ML_est <- tau2[esti] <- NA

else ML_est <- tau2[esti] <- MLtau2

#pooled effect estimate

MLw2 <- 1/( (vi/tau2[esti ])+1)

theta[esti] <- sum(MLw2 * xi) / sum(MLw2)

esti <- esti + 1

}

#Restricted Maximum Likelihood

if ('REML ' %in% hetest) {

name[esti] <- "REML"

#first set initial estimate of tau2 and theta

#(fixed effect estimates)

if (is.null(tau2 .0)) REMLtau2 <- CA_est

else REMLtau2 <- tau2.0

REMLtheta <- FEtheta

#difference between this iteration and previous to assess when we

#have convergence set diff !=0 initially to get the process of

#iteration going
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REMLdiff <- 1

#counter for number of iterations

REMLit <- 0

#counter for number of negative estimates

negcount <- 0

#process of iteration , stop when there is no difference between the

#last two steps

while(REMLdiff !=0){

#estimate of between study heterogeneity

REMLtau2_prev <- REMLtau2 #record of previous step

tau2_p1 <- sum ((1/(( vi+REMLtau2_prev )^2))*(((xi-REMLtheta )^2)-vi))

tau2_p2 <- sum (1/(( vi+REMLtau2_prev )^2))

tau2_p3 <- sum (1/(vi+REMLtau2_prev ))

REMLtau2 <- (tau2_p1/tau2_p2 )+(1/ tau2_p3)

if (trunc) {

if(REMLtau2 >=0) REMLdiff <- round(abs(REMLtau2 - REMLtau2_prev),

digits=signiftau2)

else {

negcount <- negcount + 1

#if iteration is negative more than once then REML=0 final est

if (negcount >=2) REMLdiff <- 0

REMLtau2 <- 0

REMLtheta <- FEtheta

}

}

else REMLdiff <- round(abs(REMLtau2 - REMLtau2_prev),

digits=signiftau2)

REMLit <- REMLit + 1

if (REMLit ==maxit) {

REMLdiff <- 0

if (output ==TRUE)

cat("REML estimator: Maximum Number of iterations reached

without convergence\n")

}

#this is just to update theta , rather than because this has

#anything to do with convergence of this outcome

#estimate for pooled effect

REMLtheta_prev <- REMLtheta #record of previous step
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REMLtheta <- sum( xi / (vi+REMLtau2) ) / sum( 1 / (vi+REMLtau2) )

}

if (REMLit ==maxit) REML_est <- tau2[esti] <- NA

else REML_est <- tau2[esti] <- REMLtau2

#pooled effect estimate

theta[esti] <- REMLtheta

esti <- esti + 1

}

#Approximate Restricted Maximum Likelihood

if ('ARML ' %in% hetest) {

name[esti] <- "ARML"

#first set initial estimate of tau2 and theta

#(fixed effect estimates)

ARMLtau2 <- 0

ARMLtheta <- FEtheta

#difference between this iteration and previous to assess when we

#have convergence

#set diff !=0 initially to get the process of iteration going

ARMLdiff <- 1

#counter for number of iterations

ARMLit <-0

#process of iteration , stop when there is no difference between

#the last two steps

while(ARMLdiff !=0){

#estimate of between study heterogeneity

ARMLtau2_prev <- ARMLtau2 #record of previous step

tau2_p1 <- sum (1/(( vi+ARMLtau2_prev )^2))

tau2_p2 <- sum( (1/((vi+ARMLtau2_prev )^2)) *

( ((K/(K-1)) * (xi-ARMLtheta )^2) - vi ) )

ARMLtau2 <- tau2_p2/tau2_p1

if (trunc) {

if(ARMLtau2 >=0) ARMLdiff <-
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round(abs(ARMLtau2 - ARMLtau2_prev),digits=signiftau2)

else {

ARMLdiff <- 0

ARMLtau2 <- 0

ARMLtheta <- FEtheta

}

}

else ARMLdiff <- round(abs(ARMLtau2 - ARMLtau2_prev),

digits=signiftau2)

ARMLit <- ARMLit + 1

if (ARMLit ==maxit) {

ARMLdiff <- 0

cat(" Maximum Number of iterations reached without

convergence\n")

}

#this is just to update theta , rather than because this has

#anything to do with convergence of this outcome

#estimate for pooled effect

ARMLtheta_prev <- ARMLtheta #record of previous step

ARMLtheta <- sum( xi / (vi + ARMLtau2) ) /

sum( 1 / (vi + ARMLtau2) )

}

ARML_est <- tau2[esti] <- ARMLtau2

#pooled effect estimate

theta[esti] <- ARMLtheta

esti <- esti + 1

}

#Approximate Bayes

if ('AB ' %in% hetest) {

#check that 2 of the prior parameters are specified , otherwise

#return an error

countarg <- 0

if (!is.numeric(lambda )) countarg <- countarg + 1

if (!is.numeric(eta)) countarg <- countarg + 1

if (!is.numeric(tau2prior )) countarg <- countarg + 1
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if (countarg ==1) {

name[esti] <- "AB"

# set up output data

require(rmeta)

require(pscl)

#calculate both eta and lambda parameters if they are not

#both specified

if (is.null(lambda )) lambda <- tau2prior *(eta -1)

else if (is.null(eta)) eta <- (lambda/tau2prior )+1

# Compute approximate Bayes estimate of heterogeneity variance

# from DerSimonian -Laird estimate and prior distribution

tau2DL <- meta.summaries(xi,sei ,method =" random ") $tau2

AB_est <- tau2[esti] <- tau2AB <-

max ((2 * lambda + K * tau2DL )/(2 * eta + K - 2), 0)

esti <- esti + 1

}

else {cat(" ERROR: AB estimate cannot be calculated as prior

parameters have been specified incorrectly \n")}

}

#Rukhin (zero prior)

if ('B0 ' %in% hetest) {

name[esti] <- "B0"

#just assume fixed effects mean , this is the way Kontopantelis

#did it also doesnt specify what n_i is given that the estimator

#is proposed in the context where there isn 't 2 treatment groups

#per study , N=nci + nti as used by Kontopantelis

#not exactly the same formula as in Rukhin 2012, because there

#is a mistake , this is the corrected

#formula similar to that used by Konto 2012

B0theta <- theta[esti] <- FEtheta

B0_est <- tau2[esti] <- ( sum((xi-B0theta )^2)/(K+1) ) -

(( (sum(nci+nti)-K)*(K-1)* sum(vi) ) /

( K*(K+1)* sum(nci+nti -K+2) ))

#this is possible if the denominator is zero (rare )...

if (is.infinite(B0_est )) B0_est <- tau2[esti] <- NA

esti <- esti + 1

}

#Rukhin (simple prior)
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if ('BP ' %in% hetest) {

name[esti] <- "BP"

#just assume fixed effects mean for now , paper doesn 't specify

BPtheta <- theta[esti] <- FEtheta

BP_est <- tau2[esti] <- sum((xi-BPtheta )^2)/(K+1)

esti <- esti + 1

}

#Bayes Modal estimator

if ('BM ' %in% hetest) {

}

#### data frame for reporting all output

#first round off the estimate to specified number of decimal

#places by signiftau2 arguament

tau2 <- signif(tau2 , digits=signiftau2)

out <-data.frame(name ,tau2)

if (output ==TRUE) print(out)

#### output that can be used after function has been run

#create an output frame that can be used when iterating through this

#function multipe times

#the above dataframe is better when only calculating estimates for

#one meta -analysis

res <- list(CA_est ,DL_est ,PM_est ,IPM_est ,CA2_est ,DL2_est ,DLp_est ,

DLb_est ,HM_est ,HS_est ,SJ_est ,SJ2_est ,MBH_est ,ML_est ,REML_est ,

ARML_est ,AB_est ,B0_est ,BP_est)

names(res) <- c("CA","DL","PM","IPM","CA2","DL2","DLp","DLb","HM",

"HS","SJ","SJ2","MBH","ML","REML","ARML","AB","B0","BP")

return(res)

#we can refer to the estimates outside of this function by <funct name >$<est name >

}

D.3 R code for con�dence interval methods of the

summary e�ect

#######################################################################

# R code for calculating all confidence interval estimates #

#######################################################################

#######################################

#list of arguments and their meanings #

#######################################
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#

#hetests - vector of heterogeneity estimates

#xi - effect estimates of the studies in the meta -analysis

#sei - standard errors of the effect estimates

#CIest - names of the confidence intervals to be calculated

#signif - significance level set for the confidence intervals ,

# the default is 0.05 (i.e. 95% CI)

#output - if TRUE then output results into the R console

#signifCI - numer of significant figues to round off the CI bounds

#hetnames - names of the heterogeneity estimators (corresponding to

# the heterogeneity estimates in hetests argument)

#

#######################################

#list of estiamtors and their acornyms#

#######################################

#####so far just includes the CI methods that are used in the

##### simulation study

#

#Z - Z-type confidence interval

#T - t-distribution confidence interval

#HK - Hartung -Knapp confidence interval

#make sure I keep this update and consistent with the estimators

#available in the het_est.R program

CIests <- function(hetests , xi, sei , CIest=c("Z","T","HK"),

signif =0.05 , output=TRUE , signifCI=4, hetnames=c("CA","DL","PM",

"IPM","CA2","DL2","DLp","DLb","HM","HS","SJ","SJ2","MBH","ML",

"REML","ARML","AB","B0","BP")) {

if (length(hetests )!= length(hetnames ))

stop(" Number of tau2 estimator names doesn 't match the number

of estimates given ")

#calculate mean effects

thetaests <- rep(NA,times=length(hetests ))

for(i in 1: length(hetests )) {

thetaests[i] <- sum(xi*(1/( sei^2 + hetests[i])))/

sum (1/( sei^2 + hetests[i]))

}

#number of studies

nostudies <- length(sei)

#create a blank matrix where all the results will go...

CImat <-matrix(NA,nrow=length(CIest)*2,ncol=length(hetnames ))
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colnames(CImat) <- hetnames

#define row names ...

rownammat <- rep(NA,times=nrow(CImat))

for (i in 1:nrow(CImat )) {

#if i is even

if (i %% 2 == 0) rownammat[i] <- paste(CIest[i/2],"_ub",sep ="")

else rownammat[i] <- paste(CIest[(i/2)+0.5] ," _lb",sep ="")

}

rownames(CImat) <- rownammat

#Z-type CI

if ('Z' %in% CIest) {

for (i in 1: length(hetnames )) {

CImat["Z_lb",hetnames[i]] <- thetaests[i] -

qnorm(1-( signif /2))* sqrt (1/sum (1/( hetests[i]+( sei ^2))))

CImat["Z_ub",hetnames[i]] <- thetaests[i] +

qnorm(1-( signif /2))* sqrt (1/sum (1/( hetests[i]+( sei ^2))))

}

}

#t-type CI

if ('T' %in% CIest) {

for (i in 1: length(hetnames )) {

CImat["T_lb",hetnames[i]] <- thetaests[i] -

qt(1-( signif /2), df=nostudies -1)*

sqrt (1/sum (1/( hetests[i]+(sei ^2))))

CImat["T_ub",hetnames[i]] <- thetaests[i] +

qt(1-( signif /2), df=nostudies -1)*

sqrt (1/sum (1/( hetests[i]+(sei ^2))))

}

}

#Hartung -Knapp CI

if ('HK ' %in% CIest) {

for (i in 1: length(hetnames )) {

varHK <- sum ((1/( hetests[i]+(sei ^2)))*((xi -thetaests[i])^2))/

((nostudies -1)* sum (1/( hetests[i]+(sei ^2))))

CImat["HK_lb",hetnames[i]] <- thetaests[i] -

qt(1-( signif /2), df=nostudies -1)* sqrt(varHK)

CImat["HK_ub",hetnames[i]] <- thetaests[i] +

qt(1-( signif /2), df=nostudies -1)* sqrt(varHK)

}

}

if (output ==TRUE) print(CImat)
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CImat <<- round(CImat ,digits=signifCI)

}
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Appendix E: Simulation study

protocol
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Protocol amendments

� Generic meta-analyses are no longer included because the results are almost

identical to SMD meta-analyses. The only di�erence between the two meta-

analysis types is that within-study variances are based on the underlying study

e�ects, as opposed to the observed study e�ects.

� I simulate 5,000 meta-analyses per scenario, not 10,000 as stated in the original

protocol.

� Scenarios 4 and 5 for the study sample size distributions have been changed.

Originally, these two scenarios were:

(4) n1 = 20 and n2, ..., nk ∼ U (1000, 2000)

(5)n1 ∼ U (1000, 2000) and n2, ..., nk ∼ 20.

I changed them to:

(4) Small and large studies: n11, ..., n1m = 20 and n1m, ..., n1k ∼

U (1000, 2000) where m is the integer half way between 1 and

k (when k is odd, one study is be generated from one of the

two distributions at random)

(5) Large studies: n1i ∼ U (1000, 2000)

I took this decision because the original mixture distributions were de-

pendent on the number of studies k.

� The analysis plan originally stated �Typical con�dence intervals for τ 2 will also

be presented, which will help show scenarios where τ 2 estimates are imprecise�.

This will not be included as there is no way of e�ectively displaying these on

the graphs and would divert attention away from the main results.

The protocol that follows in this appendix is the original protocol agreed between

collaborators.
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Background

Heterogeneity is an important consideration in any meta-analysis, as its presence can

have a considerable impact on the conclusions reached. All meta-analyses should ex-

amine the extent of heterogeneity across studies. There are various ways of doing

this, and of addressing heterogeneity in the statistical synthesis. A common ap-

proach, often advocated when an adequate explanation cannot be identi�ed for a

moderate amount of between-study variation, is to use a random-e�ects model. As

part of a random-e�ects meta-analysis, a heterogeneity variance parameter (τ 2) is

estimated. This parameter may be used to quantify heterogeneity even if a synthesis

is not performed.

Several methods have been proposed to estimate τ 2, the most commonly used be-

ing the DerSimonian- Laird method [25]. However, simulation studies suggest this

method underestimates heterogeneity variance in dichotomous outcome meta-analyses

[78, 102]. Other heterogeneity estimation methods include Paule-Mandel's method

[24, 80], which falls under the same method of moments approach as DerSimonian-

Laird. Estimators have also been proposed based on maximum-likelihood (ML) [37]

and restricted maximum likelihood (REML) [124] approaches. These estimators al-

low for negative estimates of heterogeneity variance and must be truncated to zero

in such cases. Hartung-Makambi [40], Sidik-Jonkman [101] and the improved Sidik-

Jonkman [102] estimators are designed to provide only positive estimates so that

truncation is not required.

A recent empirical study (at the Centre for Reviews and Dissemination in York)

on meta-analyses from the Cochrane Database of Systematic Reviews (CDSR) com-

pared �ve methods including DerSimonian-Laird method, Paule-Mandel, Hartung-

Makambi, Sidik-Jonkman and REML [67]. For each method, I2 statistics were cal-

culated as an estimate of the level of heterogeneity using the generalised formula

proposed by Higgins and Thompson [47]. The study found that estimates of I2

derived from di�erent methods can be highly discordant. Di�erences between τ 2
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estimates can lead to I2 values that di�er in absolute terms by more than 50%.

Discrepancies between heterogeneity variance estimates can also lead to discordant

conclusions on the summary e�ect; the empirical study showed that 7.4% of Cochrane

meta-analyses have discordant statistical signi�cance at the 5% level depending on

which heterogeneity estimation method is used (out of �ve methods that were com-

pared). The disagreement between heterogeneity variance estimates can be partly

attributed to the low number of studies typically found in meta-analyses of health-

care interventions: those in the Cochrane Database of Systematic Reviews contain

a median of just 3 studies (inter-quartile range 2 to 6)(Davey et al., 2011). When

conducting a meta-analysis, it is therefore important to make an informed decision

when choosing which heterogeneity estimation method to use and whether to rely

on one point estimate alone.

Twelve simulation studies assessing the performance of heterogeneity variance es-

timators have been identi�ed from a preliminary review of the literature, which are

summarised in chapter 5. Of these studies, four compare a wide selection of estim-

ators over a wide range of simulated scenarios (Novianti et al., 2014, Viechtbauer,

2005, Sidik and Jonkman, 2007, Kontopantelis et al., 2013). One study (Viecht-

bauer, 2005) recommends REML, one study (Novianti et al., 2014) recommend

Paule-Mandel and Sidik and Jonkman (Sidik and Jonkman, 2007) recommend their

own methods. Kontopantelis et al. suggested that the bootstrap alternative to the

standard DerSimonian-Laird method performs better but mainly recommends con-

ducting sensitivity analyses; in most meta-analyses, there is insu�cient data to rely

on one estimate of heterogeneity alone. DerSimonian-Laird, Cochran's ANOVA and

REML were the only estimators included in all four of the main studies. The study

by Kontopantelis et al. [64] was the only main study to include Bayesian estimators

from Rukhin [93]. Only the study by Novianti et al. [78] included the Paule-Mandel

method in its comparisons. Aside from the four most comprehensive studies, other

simulations have been identi�ed in the literature in which only a small selection of

heterogeneity variance estimators are compared [2, 3, 11, 61, 74, 79, 93, 96, 101].
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Previous simulation studies have made con�icting recommendations for heterogen-

eity estimation and as such there is currently no overall consensus. This can be

partly attributed to di�erences between studies in the e�ect sizes used to determine

what makes a good heterogeneity variance estimator. Performance of heterogeneity

variance estimators in previous studies have been assessed mainly in terms of bias,

variance or some measure of precision. Bias is a measure of how much the heterogen-

eity parameter is under or overestimated. Measures of precision include the mean

squared error (MSE) and e�ciency, which quantify the expected deviation from the

true parameter value. Recommendations made by Viechtbauer [124] were based a

trade-o� between minimising bias and maximising e�ciency, as is the case in most

other simulation studies. In contrast, the study by Novianti et al. [78] made recom-

mendations based only on which method has the lowest bias. Previous studies have

aimed to provide a simple recommendation that can easily be applied in practice,

yet their results suggests no estimator is clearly best under all conditions.

Comprehensive simulation studies are needed to examine methods for estimating het-

erogeneity variance and for incorporating these into random-e�ects meta-analyses.

The current study primarily addresses the �rst part of this, namely the choice of

variance estimator. There are con�icting recommendations about this issue in the

current literature, and a number of speci�c questions need answering to inform a

consensus recommendation. Existing simulation studies compare the performance

of heterogeneity variance estimators mainly on meta-analyses with uniformly dis-

tributed study sample sizes. No simulation study compares multiple distributions

of study sample sizes. IntHout et al. [55] suggests the performance of heterogeneity

methods in meta-analysis varies depending on the distribution of study sizes. Re-

search where true treatment e�ects are simulated from a non-normal distribution is

also limited to a comparison between e�ect (θ) estimation methods, but not speci�c-

ally heterogeneity variance estimators [62, 63]. The two main limitations of current

recommendations are: (1) they are only based on a comparison of a small subset of all

heterogeneity estimation methods available (2) they do not address su�ciently the

practical situation that in many meta-analyses all heterogeneity variance estimates
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are very imprecise.

This study aims to address the limitations of the current research, comparing the

performance of heterogeneity variance estimators using simulated meta-analysis data

that resemble conditions that may occur in practice. Empirical meta-analysis data

taken from a 2008 snapshot of the Cochrane Database of Systematic Reviews (CDSR)

will be used to inform parameter values for simulations [21]. A comprehensive selec-

tion of heterogeneity estimation methods will be compared, as identi�ed in a recent

review yet to be published [122].

Aims

The principal aim of this study is to make clear recommendations for meta-analyses

in a wide range of realistic situations about which heterogeneity variance estimator

(if any) is most appropriate to use. Recommendations will be informed by how

heterogeneity variance estimators perform in simulated meta-analyses and agreed

between collaborators of the study. Parameter values used to simulate meta-analyses

through a random-e�ects model will cover the full range of possible scenarios observed

in practice. The study will answer the following questions:

� In what situations do all estimators perform poorly, where relying on one point

estimate of heterogeneity is not recommended?

� In what situations does one estimator outperform all others and perform well

enough to provide a reasonable point estimate of heterogeneity?

� In what situations do most heterogeneity variance estimators perform equally

well?

� Are there any estimators that we can exclude entirely?

� Are there characteristics of the meta-analysis that explain the poor estimation?
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Heterogeneity variance estimators

Methods for estimating the heterogeneity variance (τ 2) in a random-e�ects model

were identi�ed from a comprehensive review of heterogeneity methods [122]. For

each simulated meta-analysis, estimates of τ 2 will be calculated from the following

14 methods:

� Cochran's ANOVA [18] (also known as Hedges-Olkin [42])

� DerSimonian-Laird [25]

� Paule-Mandel [80]

� Two-step DerSimonian-Laird [24]

� Two-step Cochran's ANOVA [24]

� Hunter-Schmidt [53]

� Maximum likelihood [37]

� Restricted maximum likelihood [124]

� Hartung-Makambi [40]

� Sidik-Jonkman [101]

� Improved Sidik-Jonkman [102]

� Rukhin with zero prior [93]

� Rukhin's simple estimator [93]

Details of how to estimate τ 2 from all these methods are given in chapter 2. A small

number of methods were excluded, as listed on page113 with reasons for exclusion.
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Con�dence intervals for the summary e�ect

In order to perform a comprehensive comparison of heterogeneity variance estimat-

ors, their performance must be evaluated not only as a point estimate of heterogeneity

(τ 2). This study also investigates the impact using a given heterogeneity variance es-

timator to calculate a summary e�ect and con�dence interval of the summary e�ect.

Many methods of calculating the con�dence interval have been proposed. Because

inference on the mean of the random-e�ects distribution is not the main focus of the

simulation study, only a small subset of con�dence interval methods available will

be included:

� Wald-type [25]

� t-distribution (with number of studies -1 degrees of freedom) [28]

� Hartung-Knapp [38]

All these methods are independent of the choice of heterogeneity variance estim-

ator. Therefore, any combination of methods can be applied in practice and all

combinations are considered in this simulation study. 95% con�dence intervals will

be calculated for all analyses. Details of each con�dence interval method are given

in chapter 3.

Many methods are also available to calculate a con�dence interval for τ 2. These

methods will not be considered as the scope of this study is limited to the impact of

using point estimates of heterogeneity.

Performance measures

Heterogeneity variance estimators will be compared in terms of the following 11

performance measures:
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� Median and mean absolute bias in estimate of τ 2 *

� Median and mean squared error of estimate of τ 2 *

� Proportion of zero estimates of τ 2

� Mean absolute bias in estimate of the mean treatment e�ect }

� Mean squared error of estimate of the mean treatment e�ect }

� Coverage of the 95% con�dence interval for the mean treatment e�ect** (i.e.

the proportion of times the underlying mean treatment e�ect falls inside the

95% con�dence interval)

� Power to detect a signi�cant summary e�ect

� Mean and variance of the error-interval estimation of e�ect �

*Previous studies have used the mean squared error to measure performance, but

τ 2 and estimation errors do not conform to the normal distribution. Performance

measures based on the mean make heterogeneity variance estimators with negative

bias appear better as underestimates are more likely to be negative and therefore

truncated at zero. Therefore, median bias and squared errors will also be presented.

} Mean treatment e�ect calculated by the weighted inverse variance method

**Con�dence interval coverages will also be compared against the coverage of each

con�dence interval method based on the true value of the heterogeneity variance.

� Error-interval estimation is a ratio between the width of the estimated con�dence

interval and the true con�dence interval, as de�ned by a previous simulation study

[64]. The formula is given in the original paper.

A good estimator is unbiased, has a low MSE and a summary e�ect con�dence

interval with coverage close to 95%. Details of how to calculate all performance

measures are given in appendix C.2
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Simulation methods

Analysis will be undertaken using simulated data produced from the following steps:

1. A meta-analysis dataset is generated for speci�ed parameter values using the

methods outlined on page 248.

2. Heterogeneity variance estimates are calculated for the given meta-analysis

using methods on page 244.

3. Steps 1 and 2 are repeated 10,000 times and performance measures are calcu-

lated (see page 245)

4. Steps 1-3 are repeated for all combinations of parameter values. The parameter

values are given on page 252.

All steps will be carried out in R [85]. The metafor package in R [126] will be

used to calculate estimates of heterogeneity from methods coded in this package,

and bespoke code for those that are not. Methods available in metafor to estimate

τ 2 include Cochran's ANOVA, DerSimonian-Laird, Hunter-Schmidt, Sidik-Jonkman,

maximum likelihood and REML. Wald-type and Hartung-Knapp con�dence interval

methods for the mean treatment e�ect are also available in metafor. Heterogeneity

methods will be compared using the same simulated datasets to eliminate some of the

sampling error. Maximum likelihood and REML heterogeneity variance estimators

are iterative and fail to converge to a solution in a small number of cases [64],

but this is primarily due the chosen iteration algorithm rather than the estimator

[126]. In this study, the default iteration algorithm in metafor will be used - Fishers

scoring method with Cochran's ANOVA the initial estimate [126]. Simulated meta-

analyses that cause such failures will not be replaced, and instances recorded so that

the characteristics of the simulated data can be examined. Heterogeneity variance

estimates for each meta-analysis and performance measures for each combination of

parameter values will be stored for the analysis. The simulation code has already
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been written according to the methods described in this version of the protocol and

is available on request.

Simulating meta-analyses

For studies i = 1, . . . , k in each meta-analysis, true treatment e�ects (θi such as a log

odds ratio or standardized mean di�erence), are simulated from some distribution

D1:

θi ∼ D1

(
θ, τ 2

)
where θ is the mean parameter and τ 2 the heterogeneity variance parameter of D1

De�ned distributions for D1 with parameter values θ and τ 2 used to simulate meta-

analyses are detailed on page 252. For each θi sampled from D1, estimates of θi

(denoted by θ̂i) are then generated to simulate within-study sampling error. The

process for doing so depends on the type of outcome of studies in each meta-analysis.

In this study, three types of meta-analyses will be simulated: (1) Generic e�ect sizes

with known variance; (2) continuous outcome meta-analyses with a standardised

mean di�erence e�ect measure; and (3) dichotomous outcome meta-analyses with an

odds ratio e�ect measure, as detailed on pages 248 to 250.

Generic e�ect sizes (with known variance)

Estimates of θi are simulated from a normal distribution:

θ̂i ∼ N(θi, σ
2
i )

where θi is the mean parameter and σ2
i is the sampling variance parameter.
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σ2
i are calculated based on the sample size of each study. We assume equal sample

sizes between intervention groups and denote the sample size for each group by ni:

σ2
i =

2

ni
+

θ2i
4ni

ni are generated from one of a number of distributions as detailed on page 252. The

formula for σ2
i above is the approximate variance of a standardised mean di�erence

with sample sizes equal between arms and θ = 0 [8]. By using this formula to derive

σ2
i , simulation results from outcome-independent meta-analyses can be directly com-

pared with standardised mean di�erence meta-analyses where ni are simulated from

the same distributions. Results from outcome-independent meta-analyses will rep-

resent the performance of heterogeneity variance estimators under ideal conditions,

where standard errors are known and performance is not a�ected by the choice of

e�ect measure.

Standardised mean di�erence meta-analyses

For each study i with simulated true e�ect θi:

1. Generate sample sizes for each intervention group, denoted by ni, from one of

a number of distributions as detailed on page 252.

2. Generate ni observations from N(0, σ2
T i) and ni observations from N(θi, σ

2
Ci),

to represent patient-level data in the treatment and control groups respectively.

Without loss of generality, we set σ2
T i = σ2

Ci = 1.

3. Calculate the sample mean and standard deviation of these observations for

the treatment and control groups.

4. Calculate the sample SMD and standard error of the study, denoted by θ̂i,

using Hedge's g method [8]:
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θ̂i =
ZT i − ZCi

si
J

where si is the pooled variance and J is an adjustment to correct for bias:

si =

√
(ni − 1) ŝd2T i + (ni − 1) ŝd2Ci

2ni − 2

J = 1− 3/ (8nI − 9)

5. Calculate the variance of θ̂i:

σ̂2
i =

(
2

ni
+

θ̂2i
4ni

)
· J2

Hedge's g method calculates a pooled standard deviation assuming equal variances

between treatment groups, which is the case in this simulation study.

Odds ratio meta-analyses

Meta-analyses with an odds ratio e�ect measure are simulated for two reasons: (1)

Previous simulation studies [78] suggest heterogeneity variance estimators perform

worse in this setting compared with SMD meta-analyses and (2) the odds ratio is the

most common outcome measure in binary outcome meta-analyses [120]. It has been

suggested this is partly because σ2
i are estimated poorly when the event of interest

is rare [3]. For each study i with simulated true e�ect θi:

1. Generate the true average probability of an event across the control and treat-

ment groups, denoted by pi. pi is drawn from the distributions detailed on

page 252. pT i and pCi are found from solutions to the simultaneous equations:
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pi =
pT i + pCi

2

ORi =
pT i (1− pCi)
pCi (1− pT i)

Solving the equations leads to the following formula for pT i and pCi:

pCi =
1

2 (ORi − 1)
·
[
2piORi −ORi − 2pi − 1

−
√

(ORi − 2piORi + 2pi + 1)2 + 8pi (ORi − 1)

]

pTi = 2pi − pCi

2. Generate sample sizes for each intervention group, denoted by ni, from one of

a number of distributions as detailed on page 252.

3. The numbers of events in the control and treatment groups are generated from

the binomial distributions B(nCi, pCi) and B(nT i, pT i). nCi and nT i are the

sample sizes of the treatment and control groups and will be assumed equal for

this study (nCi = nT i = ni). Cell counts in a 2x2 contingency table can then

be derived.

4. Add 0.5 to all cell counts if there is any zero in the table. If there are zero

events in both arms then exclude this study from the synthesis. If there are

fewer than 2 studies remaining after exclusions then the meta-analysis will be

withdrawn from the simulations without replacement.

5. Calculate the sample OR on the log scale, θ̂i and its variance [8].
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Parameter values

Performance of the heterogeneity variance estimators will be assessed for all com-

binations of parameter values and distributions given in table E.1 for outcome-

independent, standardised mean di�erence and odds ratio meta-analyses. There

will be a total of 840 simulated scenarios for outcome-independent meta-analyses,

840 standardised mean di�erence meta-analyses and 3360 simulated scenarios for OR

meta-analyses. Each scenario will have 10,000 simulated datasets. It is estimated

that each scenario will take 5 minutes to simulate given the computing power avail-

able and a total of 17 days to simulate all data. Justi�cation of each parameter and

distribution is given in this section.

Parameter values were chosen to represent the range of values observed in published

meta-analyses.

(1) Figure E.1 is taken from a recent empirical study at the Centre for Reviews and

Dissemination (CRD) in York and shows the number of studies in meta-analyses from

the Cochrane Database of Systematic Reviews up to 2008. Note, the �gure excludes

meta-analyses with fewer than 3 studies, calculating an estimate of heterogeneity

was considered inappropriate in meta-analyses with two studies. The distribution

in �gure E.1 was used to inform parameter values for k. The number of studies per

meta-analysis in simulations will range between 2 and 100, although 95% of meta-

analyses in the Cochrane database contain fewer than 16 studies; this is to account

for meta-analyses with a higher number of studies in other �elds.

(2) Parameter values of τ 2 were chosen based on the distribution of τ 2 predicted in

meta-analyses from Cochrane reviews. Two empirical studies used Bayesian methods

derive a distribution for τ 2 based on meta-analyses with an odds ratio outcome

[120] and standardised mean di�erence outcome [88]. The studies showed similar

distributions of τ 2 between the two outcomes types. Therefore, the same parameter

values will be used to simulate meta-analyses of all outcomes. Using these predictive

distributions for τ 2 is more appropriate than a distribution of τ 2 estimates which
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Parameter Value/distribution
1 k Number of

studies in
the meta-
analysis

2, 3, 5, 10, 20, 30, 50, 100

2 I2 Level of het-
erogeneity

0%, 15%, 30%, 45%, 60%, 75%, 90%, 95%

3 θ Mean of the
random-
e�ects

0.5

4 θi Distribution
of true
study e�ects

(1) θi ∼ N (θ, τ 2)(standard random-e�ects
model)

(2) Normal distribution with moderate
skew: θi ∼ SN (θ, τ 2, γ = 0.7)

(3) Normal distribution with high skew:
θi ∼ SN (θ, τ 2, γ = 0.95)

τ 2 takes parameter values that satisfy the
I2 values above and θ = 0.5

5 ni Sample size
in each
intervention
group (1:1
allocation
ratio)

(1) ni = 20

(2) ni ∼ U (20, 200)

(3) ni = 200

(4) n1 = 20 and n2, ..., nk ∼ U (1000, 2000)

(5)n1 ∼ U (1000, 2000) and n2, ..., nk ∼ 20

In all scenarios, sample sizes are equal
between groups (n1i = n2i)

Parameters only applying to odds ratio meta-analyses

6 pi Average
probability
of event
across
treatment
and control
groups

(1) pi = 0.5

(2) pi ∼ U (0.1, 0.5)

(3) pi = 0.05

(4) pi = 0.01

Table E.1: Set of parameter values and distributions to simulate
meta-analyses

is more dependent on which heterogeneity estimation method is used. Preliminary

simulations show that the chosen parameter values for τ 2 result in generic meta-

analyses with I2 values that span the full I2 range from 0% up to nearly 100%. This
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dataset of Cochrane reviews is described in detail elsewhere [21].

Figure E.1: Histogram of the numbers of studies in meta-analyses in the
Cochrane Database of Systematic Reviews (CDSR)

(3) To reduce the number of scenarios, we will only simulate meta-analyses where

θ = 0.5. The choice is immaterial for simulation of generic e�ect sizes, and previous

simulation studies have suggested that the parameter value chosen for true summary

e�ect (θ) has little bearing on performance measures including bias and variance of

heterogeneity variance estimators [78, 102].

(4) True treatment e�ects θi will be generated from three distributions. In all scen-

arios, θi are sampled from distributions with mean θ and variance τ 2. First, θi will be

generated from the normal distribution which is assumed in the standard random-

e�ects model and represents optimal conditions where estimators may perform best

(scenario 1). Some heterogeneity estimation methods such as Paule-Mandel do not

assume normality of true e�ects and therefore it is hypothesised such estimators will

be more robust under non-normal conditions [24]. Second, θi will be sampled from

a skew normal distribution (scenario 2) with a 0.8 skew parameter value; this rep-

resents a moderate negative skew as illustrated in �gure E.2. A simulation study

[62, 63] previously looked at performance of heterogeneity variance estimators under

skew-normal conditions, and de�ned this similar level of skew as `moderate'. This
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distribution is de�ned elsewhere [68]. Third, θi will be generated from a bimodal

distribution with studies drawn from two normal distributions of unequal means;

this represents a scenario where some dichotomous factor is responsible for some of

the heterogeneity present. The means of the two normal distributions were chosen

so that the resulting mixture distribution has mean θ = 0 and variance τ 2. The level

of bi modality is dependent on the parameter value of τ 2 [98]. Kontopantelis et al.

[64] conducted a simulation study of non-normal treatment e�ects and showed, of

the heterogeneity variance estimators compared, that the performance of methods

were moderately robust to various distributions of e�ects.

Figure E.2: Probability density function of skew-normal distribution

Note that the variance di�ers depending on the simulation scenario, but this is only
the scaling parameter.

(5) Study sample sizes (ni) will be generated from �ve di�erent distributions to

represent a wide range of distributions. Distributions include small equally sized

studies (scenario 1), medium equally sized studies (scenario 2), uniform variation of

small to medium size studies (scenarios 3), one large study with all other studies

small (scenario 4) and one small study with all other studies large (scenario 5). A

recent simulation study suggests that the performance of heterogeneity estimation

methods may be dependent on the distribution of study sizes; this study however,

only compared two heterogeneity methods [55]. Other previous studies simulated

sample sizes from one distribution only; namely a uniform [78, 102], normal [124] or

255



χ2 distribution [64].

(6) Binary outcome meta-analyses will be generated from a range of underlying

event rates. In scenario 1, the underlying average event rate will be 0.5 to represent

the ideal scenario with event rates sampled as far from the asymmetric tails of the

binomial distribution as possible. Scenario 2 represents a situation where event rates

are variable between studies but not so rare as to be considered a big contributing

factor to poor estimates of treatment e�ects and standard errors. Scenarios 3 and

4 represent situations where the average underlying event rate is homogeneous and

rare. It is not necessary to simulate meta-analyses where the event of interest is

extremely common (i.e. pi = 0.95 or 0.99) as the resulting odds ratios are the

inverse of those obtained with extremely uncommon event rates.

Analysis

Primary analysis

Heterogeneity variance estimators will be compared in terms of the performance

measures de�ned on page 245 and will be presented graphically for each simulated

scenario. Graphs will be produced for each performance measure to compare the

results of the 14 heterogeneity variance estimators. For each scenario, typical I2

values will be presented to show the level of heterogeneity the scenario represents.

Typical con�dence intervals for τ 2 will also be presented, which will help show scen-

arios where τ 2 estimates are imprecise. 95% con�dence intervals will be calculated

by the Q-pro�le method [9]. If estimators are judged to have similar performance,

they may be grouped together to simplify results. Also, if the results are similar

between di�erent parameter values, the results from such scenarios will be combined

together.

Maximum likelihood and REML estimators may in some meta-analyses fail to con-

verge [62, 63]. Therefore for each scenario, the percentage of failures will be tabulated
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and results of which will be taken into account when making recommendations. If

other iterative heterogeneity variance estimators fail to converge, results of such

failures will also be presented.

Secondary analysis

The range of simulation scenarios in this study aims to be representative of all meta-

analyses from Cochrane systematic reviews. A secondary analysis will identify which

scenarios from this study occur most in reviews published in the Cochrane Database

of Systematic Reviews up to 2008 [21]. This will identify the importance of results

of each scenario and also help inform recommendations. As the level of heterogen-

eity can only be estimated in real meta-analyses, we will use distributions of the

underlying level of heterogeneity derived using Bayesian techniques in two empirical

studies [88, 120] to assess how frequently each τ 2 parameter value occurs in practice.

Distributions derived from the two studies were based separately on OR outcome

[120] and SMD outcome meta-analyses [88]. Both studies assume that τ 2 = 0 are

untenable in real meta-analyses and therefore the distribution has zero probability of

such values. As a consequence, we make this assumption in our analysis. Only scen-

arios where true treatment e�ects have been simulated from the normal distribution

will be included in this analysis (scenario 1, see page 252); identifying non-normal

e�ects in real meta-analyses would be di�cult given most meta-analyses contain few

studies. Results will be presented as a list of scenarios in the order of scenarios most

likely to occur in practice to the least.

Simulated meta-analyses will be selected for further investigation where heterogen-

eity variance estimates are particularly discordant. These meta-analyses will be

explored to identify characteristics that may have caused discordance.
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Recommendations

We aim to make recommendations about the best choice of heterogeneity variance

estimator in a meta-analysis with any given observed characteristics and make re-

commendations as a general strategy. Recommendations based on the results of this

study are likely to be made mainly on a subjective compromise between the res-

ults from all performance measures and the practicality of such recommendations.

Simple estimators will be recommended over iterative estimators where the di�erence

in performance in negligible. An estimator will be recommended in all scenarios to

provide a point estimate of heterogeneity in the primary random e�ects model. How-

ever, making conclusions based a single point estimate will only be recommended

when the estimate is su�ciently precise, alternative approaches will be recommended

otherwise. A decision tree may be formulated if it is appropriate to do so that can

be used in a given meta-analysis. The process of interpreting and summarising the

results of this study will involve all collaborators to make this study as systematic

as possible. Any relevant discussions will also be documented as part of the results.
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Appendix F: Supplementary material

from chapter 7
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Figure F.1: Proportional median bias (left-hand-side) and proportional mean
bias (right-hand-side) of the heterogeneity variance in selected scenarios to

show why median bias is excluded from the main results.

Scenarios containing standardised mean di�erence meta-analyses with
small-to-medium study sizes and I2 of 0%.

Figure F.2: Proportional median squared error (left-hand-side) and
proportional mean squared error (right-hand-side) of the heterogeneity

variance in selected scenarios to show why median squared bias is excluded
from the main results.

Scenarios containing standardised mean di�erence meta-analyses with
small-to-medium study sizes and I2 of 0%.
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Figure F.3: Mean squared error of the summary e�ect in selected scenarios to
show why this measure is excluded from the main results.

Scenarios containing standardised mean di�erence meta-analyses with
small-to-medium study sizes and I2 of 0%.

Figure F.4: Power to detect a statistically signi�cant summary e�ect in
selected scenarios to show why this measure is excluded from the main results.

Scenarios containing standardised mean di�erence meta-analyses with
small-to-medium study sizes and I2 of 0%.
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Figure F.5: Mean error of the error-interval estimation of e�ect in selected
scenarios to show why this measure is excluded from the main results.

Scenarios containing standardised mean di�erence meta-analyses with
small-to-medium study sizes and I2 of 0%.

Figure F.6: Variance error of the error-interval estimation of e�ect in
selected scenarios to show why this measure is excluded from the main results.

Scenarios containing standardised mean di�erence meta-analyses with
small-to-medium study sizes and I2 of 0%.
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Figure F.7: Mean squared error of heterogeneity variance estimates in odds
ratio meta-analyses containing small studies and with event probability 0.1 to

0.5

Scenarios with an underlying summary odds ratio of 1.65 (A1-A4), 3 (B1-B4) and
10 (C1-C4).

MSE is presented on the proportional scale only when τ 2 > 0.
There was no such τ 2 that produced a mean I2 of 90% when θ = 2.3, so these

scenarios are not presented.
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Study sizes

small small to medium medium small and large large

N
u
m
b
e
r
o
f
st
u
d
ie
s
(k
)

2 0 (0) 0 (0) 0 (0) 4.2 (<0.01) 0 (0)

3 0 (0) 0 (0) 0 (0) 4.2 (<0.01) 0 (0)

5 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

10 0 (0) 4.2 (<0.01) 2.1 (<0.01) 0 (0) 0 (0)

20 0 (0) 8.3 (<0.01) 0 (0) 0 (0) 0 (0)

30 0 (0) 2.1 (<0.01) 0 (0) 0 (0) 0 (0)

50 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

100 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Table F.2: The percentage of scenarios and meta-analyses in which ML failed
to converge

Numbers outside the round brackets represent the percentage of scenarios where at
least one meta-analysis failed to converge to a ML estimate (out of a total of 48).

Numbers inside the round brackets represent the percentage of failed ML
convergence in scenarios that contain failures.

Study sizes

small small to medium medium small and large large

N
u
m
b
e
r
o
f
st
u
d
ie
s
(k
)

2 0 (0) 0 (0) 0 (0) 31 (0.02) 0 (0)

3 0 (0) 6 (<0.01) 2 (<0.01) 83 (0.02) 0 (0)

5 2 (<0.01) 2 (<0.01) 0 (0) 15 (<0.01) 0 (0)

10 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

20 0 (0) 4 (<0.01) 0 (0) 0 (0) 0 (0)

30 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

50 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

100 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Table F.3: The percentage of scenarios and meta-analyses in which REML
failed to converge

Numbers outside the round brackets represent the percentage of scenarios where at
least one meta-analysis failed to converge to a REML estimate (out of a total of
48). Numbers inside the round brackets represent the percentage of failed REML

convergence in scenarios that contain failures.
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Performance

measure

Reason for exclusion Figures of

selected results

Median bias of the

heterogeneity variance

estimate

The median is not meaningful

in the many scenarios when

>50% of heterogeneity variance

estimates are zero.

Figure F.1, shown in
comparison with
results of mean bias.

Median squared error

of the heterogeneity

variance estimate

Figure F.2, shown in
comparison with
results of mean
squared error.

Mean squared error of

estimate of the

summary e�ect

Preliminary analysis showed

all heterogeneity variance

estimators have almost

identical mean squared

errors. Therefore, the only

observation that can be made

is that mean squared error

decreases as the number of

studies/size of studies

increase, but this is to be

expected and trivial.

Figure F.3

Power to detect a

signi�cant summary

e�ect

Preliminary analysis showed

all heterogeneity variance

estimators have almost

identical power. Therefore,

the only observation that can

be made is that power

increases as the number of

studies/size of studies

increase, but this is to be

expected and trivial.

Figure F.4

Mean of the
error-interval
estimation of e�ect

Preliminary analysis showed

this measure is highly

correlated with mean squared

error of the heterogeneity

variance. This is perhaps

because a high mean squared

error causes more variability

in con�dence interval widths.

Figure F.5

Variance of the
error-interval
estimation of e�ect

Figure F.6

Table F.1: Excluded performance measures and reasons for exclusion
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Abbreviations

CDSR Cochrane Database of Systematic Reviews

FDA Food and Drug Administration

HK Hartung-Knapp (con�dence interval method)

IPD Individual Participant Data

MD Mean Di�erence

NICE National Institute for Clinical Excellence

OR Odds Ratio

RD Risk Di�erence

ROC Receiver Operating Curve

RR Relative Risk

SMD Standardised Mean Di�erence

The following are abbreviations used for heterogeneity variance estimation methods:

CA Cochran's ANOVA

DL DerSimonian-Laird

DLP Positive DerSimonian-Laird

PM Paule-Mandel

PMCA Two-step Cochran's ANOVA

PMDL Two-step DerSimonian-Laird

HM Hartung-Makambi

HS Hunter-Schmidt
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SJ Sidik-Jonkman

SJCA Improved Sidik-Jonkman

ML Maximum Likelihood

REML Restricted Maximum Likelihood

ARML Approximate Restricted Maximum Likelihood

FB Full Bayes

AB Approximate Bayes

BM Bayes modal

B0 Rukhin (zero prior)

BP Rukhin (simple)

SB Rukhin (alternate)

DLB Bootstrap DerSimonian-Laird

MBH Malzahn, Böhning and Holling
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