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Abstract

Wireless sensor networks (WSNs) comprise of tens, hundreds or thousands of low

powered, low cost wireless nodes, capable of sensing environmental data such as

humidity and temperature. Other than these sensing abilities, these nodes are

also able to locate themselves. Different techniques can be found in literature to

localise wireless nodes in WSNs. These localisation algorithms are based on the

distance estimates between the nodes, the angle estimates between the nodes or

hybrid schemes. In the context of range based algorithms, two prime techniques

based on the time of arrival (ToA) and the received signal strength (RSS) are

commonly used. On the other hand, angle based approach is based on the angle

of arrival (AoA) of the signal. A hybrid approach is sometimes used to localise

wireless nodes. Hybrid algorithms are more accurate than range and angle based

algorithms because of additional observations.

Modern WSNs consist of a small group of highly resourced wireless nodes with

known locations called anchor nodes (ANs) and a large group of low resourced

wireless nodes known as the target nodes (TNs). The ANs can locate themselves

through GPS or they may have a predetermined location given to them dur-

ing network deployment. Based on these known locations and the range/angle

estimates, the TNs are localised.

Since hybrid algorithms (a combination of RSS, ToA and AoA) are more ac-
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Abstract

curate than other algorithms, a major portion of this thesis will focus on these

approaches. Two prime hybrid signal models are discussed: i) The AoA-RSS

hybrid model and ii) the AoA-ToA hybrid signal model. A hybrid AoA-ToA

model is first studied and is further improved by making the model unbiased and

by developing a new weighted linear least squares algorithm for AoA-ToA sig-

nal (WLLS-AoA-ToA) that capitalise on the covariance matrix of the incoming

signal. A similar approach is taken in deriving a WLLS algorithm for AoA-RSS

signal (WLLS-AoA-RSS). Moreover expressions of theoretical mean square error

(MSE) of the location estimate for both signal models are derived. Performances

of both signal models are further improved by designing an optimum anchor selec-

tion (OAS) criterion for AoA-ToA signal model and a two step optimum anchor

selection (TSOAS) criterion for AoA-RSS signal model. To bound the perform-

ance of WLLS algorithms linear Cramer Rao bounds (LCRB) are derived for both

models, which will be referred to as LCRB-AoA-ToA and LCRB-AoA-RSS, for

AoA-ToA and AoA-RSS signal models, respectively.

These hybrid localisation schemes are taken one step further and a cooperative

version of these algorithms (LLS-Coop) is designed. The cooperation between the

TNs significantly improves the accuracy of final estimates. However this comes at

a cost that not only the ANs but the TNs must also be able to estimate AoA and

ToA/RSS simultaneously. Thus another version of the same cooperative model

is designed (LLS-Coop-X) which eliminates the necessity of simultaneous angle-

range estimation by TNs. A third version of cooperative model is also proposed

(LLS-Opt-Coop) that capitalises the covariance matrix of incoming signal for

performance improvement. Moreover complexity analysis is done for all three

versions of the cooperative schemes and is compared with its non cooperative

counterparts.

In order to extract the distance estimate from the RSS the correct knowledge
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Abstract

of path-loss exponent (PLE) is required. In most of the studies this PLE is

assumed to be accurately known, also the same and fixed PLE value is used for all

communication links. This is an oversimplification of real conditions. Thus error

analysis of location estimates with incorrect PLE assumptions for LLS technique

is done in their respective chapters. Moreover a mobile TN and an unknown

PLE vector is considered which is changing continuously due to the motion of

TN. Thus the PLE vector is first estimated using the generalized pattern search

(GenPS) followed by the tracking of TN via the Kalman filter (KF) and the

particle filter (PF). The performance comparison in terms of root mean square

error (RMSE) is also done for KF, extended Kalman filter (EKF) and PF.
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1 Introduction

Wireless communications is one of the greatest engineering achievements of the

past few decades. From a market growth point of view to our daily lives, from

social interaction to our professional progress, every aspect of our lives is in-

fluenced by advancement in wireless communications. With the advent of new

technologies, the applications of wireless communication has increased signific-

antly. Internet browsing, video telephony, electronic mails are some of the few

achievements of wireless communication that play a vital role in our daily life.

However, in the last two decades, new technologies such as global positioning

system (GPS) and local positioning service (LPS) have become very popular and

localisation in these systems promises many new applications.

Localisation systems have its roots in the military circles. During world war 2,

two localisation systems, the Decca and the LORAN (Long Range Navigation)

were developed, which were followed by the development of two more systems, the

Omega and the GPS. Other positioning systems include, the Russian CHAYKA

[2] and GLONASS [3], the British Gee, and GALILEO [4], a European navigation

system named after the Italian astronomer Galileo Galilei.

1



1.1 Wireless Sensor Networks

1.1 Wireless Sensor Networks

A WSN comprises of inexpensive, low powered wireless nodes networked together

via a communication channel [5]. The wireless nodes must have sensing capabilit-

ies such as sensing temperature, humidity and velocity, depending upon network’s

application [6], [7]. WSN will play a key role in many future applications.

A typical WSN consist of a number of wireless nodes. Each node must be

equipped with a radio transceiver. The size, cost, power and number of these

nodes are network and application dependent. The physical dimensions of these

node may vary from grain sized nodes to the size of a football. The cost of a

single wireless node is of vital importance as the number of nodes in the network

can vary from a few nodes, as in robot tracking systems to several thousands,

as in forest fire detection systems. Fig. 1.1 shows a typical WSN configuration

which generally consists of one or more coordinators, tens, hundreds or thousands

of sensor nodes and a server (laptop in this case).

Coordinator

Sensor Nodes

Server

Figure 1.1: WSN configuration.

Localisation in wireless sensor networks: One of the most im-

portant feature of WSN is location aware WSN. In many applications, the data

received by the base station will be useless if the location from where the data
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1.1 Wireless Sensor Networks

is transmitted is not known. For example, if the sensors sense fire in a forest,

the exact location of the transmission source is vital for the fire fighters to take

control of the situation. Similarly, in avalanche rescue the exact location of the

victims is required by the rescue team.

1.1.1 Range Based Localisation

Range based localisation [8], works on the principle of trilateration. Distance

between two nodes can be estimated via RSS or ToA. For a two dimensional

networks, atleast 3 ANs are required to determine the TN’s location (4 ANs are

required for 3-dimensional localisation). Each AN defines a circle (a sphere in

3-D case), where the center of the circle is the AN’s location and the radius of

the circle is the distance between AN and TN. The TN’s location is the point

of intersection of these circles. This is shown in Fig.1.2, where di represents the

distance between ith AN and the TN and is given by

AN1

AN2

AN3

AN1
AN2

AN1 d1Cos 1

d1

d2

d3
d1

θ1 θ2

θ1

Range based localization Hybrid localization

Angle based localization

ANs

TN

d1Sin 1

Figure 1.2: Range, angle and hybrid based approach for positioning assuming
exact distances and angles.
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di =
√

(x− x̄i)2 + (y − ȳi)2, i = 1, 2, 3. (1.1)

where (x̄i, ȳi) are the coordinates of ith AN and (x, y) are the TN’s coordinates.

1.1.2 Angle Based Localisation

In angle based localisation [9], each AN defines a line rather then a circle. The

point of intersection of two lines, points to the TN’s location. Hence in angle

based localisation, atleast two ANs are required for localisation. This is shown

in fig.1.2 where θi represents the AoA at ith AN and is given by

θi = arctan
[

(y − ȳi)
(x− x̄i)

]
, i = 1, 2. (1.2)

1.1.3 Hybrid Localisation

In some scenarios both range and angle of arrival are available [10], [11]. In these

hybrid cases, localisation requires only one AN. However to improve localisation

accuracy more ANs can be added to the network. In this case, an AN defines a

line of fixed length. One end of the line represents the AN’s position, while the

TN is situated on the other end for which the coordinates are to be estimated.

If the slope (AoA) and the magnitude (ToA or RSS) of this line is available,

then the TN’s coordinates can be easily calculated using simple trigonometric

equations. This scheme is represented in fig.1.2. The x and y coordinated of the

TN are calculated using (1.3) and (1.4)

x = xi + di cos θi (1.3)
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y = yi + di sin θi (1.4)

1.2 Applications of Localisation Systems

The applications of wireless location systems are widespread and are increasing

rapidly. Localisation of wireless sensors will play a significant role in the inter-

net of things paradigm in the coming years. The requirements of a localisation

system depend on the applications. Previously, localisation systems were only

used for military purposes e.g. aircraft detection\localisation. With the advent

of new technologies, the applications of localisation systems grew significantly.

Localisation of wireless nodes have a wide variety of applications now a days.

From military point of view to environmental domain, these systems are now an

integrated part of our daily life. Some applications are discussed briefly here.

1.2.1 Health and Safty

Patient monitoring is one of the most important application of wireless sensor

networks. Traditional monitoring systems need the patients to be wired to the

system, which limits the mobility of the patients. In [12], a system MEDiSN

is proposed in which sensors, which records the vital signs are attached to the

patient’s body. In case of an emergency an alarm is raised which alerts the

medical staff.

Wireless location systems can be used in avalanche rescue systems. The main

problem in rescuing avalanche victims is the lack of precise knowledge of the

position of the victim. In [13], numerous experiments are performed in which
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vital sign are detected in an avalanche scenario.

1.2.2 Tracking

Tracking may be of wildlife, humans or robots. In case of wildlife tracking,

animals are tagged with sensors. These sensors record data like the animal’s

movement. These nodes will record the data for a very long period of time, thus

a power hungry device like GPS chip fail to perform in this case. A system is

developed for this purpose known as ZebraNet [14]. In another case, smart robots

are tagged with location sensors, through which they can localise themselves and

avoid collisions.

1.2.3 Security

Security of a restricted area can be improved by WSN. For example individu-

als in a building are tagged with a specialised sensors. The sensor alerts and

send the location of the trespasser to the security when he/she enters a restric-

ted/hazardous area.

1.2.4 Military

WSN has a high number applications in military domain. Soldiers in the battle-

field are tagged with sensors which send health/physical conditions and location

to the base. Another military application can be localisation of acoustic objects

like moving vehicles, and snipers [15].
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1.2.5 Logistics

An important application of WSN is in logistics. Boxes in a factory, a grocery

store or a warehouse are tagged with sensors. These sensors monitor the tem-

perature, humidity and pressure etc and notifies the staff about the location of a

box with abnormal condition. Thus boxes with abnormal or expired content are

removed before further damage is done to other boxes.

1.2.6 Other Domains

WSN localisation has various other applications. For example, it can be used

in interactive gaming in which a users wears ornaments like gloves with sensors

while the gaming console can read data from the sensor and locate its position,

thus creating a wireless interface between user and console. A perfect example

is PlayStation eye. It is also used in movie industry where animation of a hu-

man being are duplicated to fine resolution. In this case sensors are attached to

key points of human body which records the movements of human body parts

which can be reproduced as computer graphics. Similarly, WSNs can be used in

agriculture monitoring [16], cattle herding [17], industrial process monitoring etc.

1.3 Classification of Localisation Systems

Classification of localisation systems can be based on a number of parameters.

Following [18] and [19], some of these classifications are as follows
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1.3.1 Classification based on signal type

Different types of signals can be utilised for localisation, some of which are men-

tioned here.

1.3.1.1 Radio signals

One of the most widely used signal for localisation is the radio signal [20], [21].

High localisation accuracy is achieved in the presence of LOS signals. Radio

waves can travel longer distances and are thus ideal for large networks. Local-

isation using radio waves are highly affected by electromagnetic phenomenon like

reflection, diffraction and scattering and is also dependent on the centre frequency

of the signal. However numerous techniques are developed to counter the effects

of these electromagnetic phenomenons. Since radio waves travel with the speed

of light, the transceivers used for location estimation must be equipped with high

frequency clocks.

1.3.1.2 Ultrasound Waves

With relatively low propagation speed compared to radio waves, ultrasound waves

eliminate the requirement of high frequency clocks on the transceivers. This

however comes at a cost, as ultrasound waves are not suitable for long range

propagation. Thus localisation systems based on ultrasound waves [22], [23] will

fail at large transmitter-receiver separation. Consequently, a powerful transmitter

is required for transmission of ultrasound waves at larger distances.
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1.3.1.3 Infrared signals

Infrared signals (IR) require very low power transmitters. However the require-

ment of LOS signal makes infrared signal an unsuitable candidate for indoor

localisation [24], [25]. On the other hand, these signals are affected by sunlight,

hence are not suitable for outdoor localisation either, even in the case of a perfect

LOS signal. Due to these reasons IR signals are rarely used for localisation.

1.3.2 Classification based on Range and Angle

Localisation systems can be classified based on the type of estimated parameter.

These parameters can be range based like time of arrival (ToA) and received

signal strength (RSS) or angle based i.e., angle of arrival (AoA) or it can be a

hybrid between any of these.

1.3.2.1 Time of Arrival

Localisation via ToA [26], [27] is based on the time, the signal takes to propagate

from transmitter to receiver. Hence propagation speed of the signal plays a vital

role in these systems. ToA shows better accuracy than RSS at the cost of system

complexity and cost of synchronized clocks on all transceivers. If the speed of

signal, c and time of flight, TToF is known, then distance, d can be calculated by

using the formula

d = cTToF . (1.5)

ToA is further classified into two type

• One way time of arrival (OW-ToA)
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• Two way time of arrival (TW-ToA)

OW-ToA : OW-ToA is the simplest form of ToA, however it requires highly

synchronized clocks on all nodes, as a small off-set in clocks can decreases the

accuracy of the system significantly. Fig. 1.3 shows the line diagram of OW-ToA.

In Fig. 1.3, t1 is the transmit time and t2 is the receive time of the signal. TToF

is the time the signal takes to propagate from node A to node B. TToF in this

case is given by [8]

TToF = t2 − t1. (1.6)

Putting values in (1.5), we obtain the distance as

d = c (t2 − t1) . (1.7)
TW-ToA : Fig. 1.4 shows the mechanism of TW-ToA [28]. Let t1 be the

transmit time at node A and t2, the receive time at node B. An acknowledge

(ACK) is sent by node B at t3 which is received by node A at t4. In TW-ToA

the signal covers twice the distance between the two transceivers. The distance

equation is given by

d = (cToF )
2 , (1.8)

where

ToF = t4 − TReply − t1, (1.9)
and TReply is the processing time node B takes to send the ACK signal. Putting

(1.9) in (1.8) [29], we obtain

d = c (t4 − TReply − t1) /2. (1.10)
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T
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t2

t1

Node A

Transmitter

Node B

Receiver

TToF

Figure 1.3: Time-line diagram of OW-ToA.

1.3.2.2 Received Signal Strength

Localisation based on RSS acts on the principle of signal attenuation as it propag-

ates through the channel [30], [31]. This attenuation is directly proportional to

distance between transmitter and receiver. RSS based localisation eliminates the

necessity of synchronized high frequency clocks on the transceivers. This makes

it one of the most attractive method for localisation in wireless sensor networks

(WSNs).

In RSS based techniques, the transmitter transmits a signal with a fixed refer-

ence power, Pt which is known to the receiver. The receiver measure the power

of the received signal and based on the attenuation in signal power, estimates

the distance between transmitter and receiver. For free space propagation, the

Friis formula gives the relation between the attenuation and distance between
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Figure 1.4: Time-line diagram of TW-ToA.

transmitter and receiver [32]. The measured power Pr is given by

Pr = PtGtGrλ
2

(4πd)2 (1.11)

where Gt and Gr are the transmitter and the receiver gains, respectively and λ is

the signal’s wavelength. An inverse relation between distance and received power

is seen from (1.11). This is shown using real data in Fig. 1.5 using the NXP Jennic

evaluation kit [33]. The relation between Pr and Pt as shown in (1.11) is valid

only for free space propagation. In real world the received power is corrupted by
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multipath and shadowing. Multipath occurs as a result of non line of sight (NLoS)

propagation of the signal. As a result the receiver receives multiple copies of the

same signal that may interfere constructively or destructively. Shadowing occurs

due to the hindrance of the signal by trees, walls etc. This multipath effect can

be mitigated by taking the average of the received power over a sufficient window.

The average power is given by [34]

Pavg = P0 − 10α log
(
d

d0

)
(1.12)

where Pavg is the average power in deciBells (dBs), P0 is the power received at

reference distance d0, which is usually taken as 1m for indoor scenarios and it

depends on the antenna’s characteristics. α is the path loss exponent (PLE)

associated with the communication link and is environment dependent. The

shadowing effect is generally modelled as a random process. The average power

is log-normally distributed or Gaussianly distributed if the power is taken in dBs

i.e pavg ∼N
(
Pavg, σ

2
shadowing

)
.

Figure 1.5: Relation between distance and RSS [1].
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1.3.2.3 Angle of Arrival

Localisation based on the arrival angle [35], [36] of the signal requires additional

hardware. This hardware can be a multiple element array of antennas [37] or

an antenna with high directivity capable of physical rotation [35]. In the former

case, the angle of arrival is estimated based on the phase difference of the signal

at each element of the array and by using techniques like Multiple Signal Classi-

fication (MUSIC) [38] or estimation of signal parameters via rotational invariance

techniques (ESPRIT) [39]. Equ. (1.13) shows the the relationship between phase

difference and angle of arrival of the signal for two element array [40].

φ1 − φ2 = 2π~d sin θ
λ

(1.13)

where φ1 − φ2 represents the phase difference of the signals received by each

element of the antenna array. ~d is the distance between elements, λ represents

the wavelength of the signal and θ is the angle of arrival of the signal. In the later

case, the angle is estimated based on the rotation of a directed beam of radiation.

Thus when the antenna is facing in the direction of the incoming signal, maximum

power is received.

1.3.2.4 Hybrid Models

Localisation based on the utilisation of range and angle simultaneously is referred

to as hybrid localisation [41], [42], [43]. High accuracy is achieved with these

models as the number of measurements per sensor increases as compared to non-

hybrid case.
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1.3.3 Cooperative and non-cooperative localisation systems

This classification of localisation systems is based on the cooperation between the

target nodes (TNs) [44], [45]. In cooperative localisation TNs can communicate

with each other while this communication link is not available in non-cooperative

localisation systems [18], [34].

1.3.4 Centralized and distributed localisation systems

In centralized localisation systems, the data is transferred to a base station (BS)

before processing [46], while in distributed localisation systems, the data pro-

cessing is done at the node level [47].

1.3.5 Single-hop and multi-hop localisation systems

Single-hop localisation system [48] are based on the data transmission directly

from transmitter to receiver while in a multi-hop system [49], data is received by

receiver via a number of hops.

1.3.6 Range based and Range free localisation systems

In range based localisation the absolute distance between the nodes is estimated

[50]. This makes the system more accurate but the TN must have a long commu-

nication range to reach the anchor nodes (ANs). On the other hand, in range free

localisation, the absolute distance is not estimated, but is based on the number

of hops for communication between two nodes [51]. This makes the system less

complex but it requires a highly dense network. Range free localisation shows

poor performance in case of less dense networks.
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1.4 Factors Affecting WSN Localisation

1.4.1 Cost

One of the most important factor in localisation systems is the cost of the network.

Since the network can be composed of hundreds of nodes, the cost of individual

node is of primary concern.

1.4.2 Computational complexity

Another factor of key importance is the computational complexity of localisation

systems. Nodes in WSNs are often low on resources, which makes them unable

to perform tasks that require a high computational power.

1.4.3 Robustness

Nodes used in a localisation system may be placed in harsh environments. These

nodes must overcome heat, humidity and other extreme weather conditions. In

some scenarios these nodes may be dropped from an aircraft, hence they must be

shock resistant. Thus, these wireless nodes must be robust to survive in extreme

conditions.

1.4.4 Size and weight

The size and weight of a wireless node varies from system to system. In a weather

station usually bulky nodes are installed [52]. However a small and light node is

an appealing feature of a good localisation system. Specially in situations where

the node has to be attached to the body of a human, an animal or a small robot

[53].
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1.4.5 System deployment

System deployment may be pre-determined or it may be random [54]. Whatever

the case is, installation of nodes should be simple. System maintenance also effects

the systems performance. Maintenance should be easy and should not require

high level of expertise. In an ideal case, the the system should be maintenance

free.

1.4.6 Accuracy of location estimates

Accuracy of the location estimates is another prime performance metric of a loc-

alisation system. It is measured as the difference between actual node’s location

and estimated node’s location.

1.5 Major Contributions

The main contributions in this thesis are as follows:

• Unbiased linear least squares (LLS) estimators for positioning are proposed

based on hybrid AoA-ToA and hybrid AoA-RSS signals.

• Analytical expressions for the mean square error (MSE) for both unbiased

hybrid estimators.

• Weighted linear least squares (WLLS) algorithms are proposed that en-

hances the performance of the proposed unbiased LLS estimators.

• An optimal ANs selection criteria is designed for AoA-ToA signal model and

a two step optimal ANs selection criteria is designed for AoA-RSS signal

model to further enhance the performance.
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• Linear Cramer-Rao Bound (LCRB), a benchmark, for the WLLS is derived

for both hybrid signal models.

• Cooperative LLS algorithm is developed using hybrid AoA-ToA and AoA-

RSS signal models.

• Performance of cooperative LLS algorithm is enhanced by proposing an

optimized cooperative LLS using both hybrid signals.

• Complexity analysis is done for cooperative LLS, optimized cooperative

LLS, non-cooperative LLS using hybrid signal models.

• Analytical expression for the MSE of location estimate using incorrect PLEs

is derived for LLS algorithm using AoA-RSS signal model.

• A joint PLE-coordinate estimator is proposed using hybrid AoA-RSS signal

model using generalized pattern search technique (GenPS) and tracking of

a wireless node is performed using the Kalman filter (KF) and particle filter

(PF).

• A Comparative study of target tracking with KF, extended Kalman filter

(EKF) and PF using RSS measurements is presented.

1.6 Thesis Outline

Following the introduction, classification of positioning systems, some perform-

ance metrics and some applications were discussed, the rest of the thesis is or-

ganized as follows:

Chapter 2 A hybrid AoA-ToA signal model for localisation is presented. An

unbiased LLS solution and a WLLS solution (WLLS-AoA-ToA), based on the

noise covariance is proposed. To analyse the performance of LLS algorithm, a

18



1.6 Thesis Outline

theoretical MSE expression is derived. Further optimisation to LLS is achieved

by designing an optimal ANs selection criteria (OAS). Finally in order to lower

bound the performance of WLLS-AoA-ToA, a LCRB is derived (LCRB-AoA-

ToA).

Chapter 3 An unbiased LLS solution is presented for hybrid AoA-RSS signal

model for localisation. Followed by the proposal of WLLS solution (WLLS-AoA-

RSS) that is based on the noise covariance matrix of AoA-RSS signal. Moreover a

two step optimal ANs selection (TSOAS) is designed to further enhance the per-

formance of LLS. A novel PLE vector estimator based on GenPS is also proposed.

Finally, to lower bound WLLS-AoA-RSS, a LCRB is derived (LCRB-AoA-RSS).

Chapter 4 In this chapter, a cooperative version of hybrid AoA-ToA and hybrid

AoA-RSS signal model for localisation is presented. A LLS solution is presented

(LLS-Coop) which is modified in resource constraint networks (LLS-Coop-X). An

enhanced version of the algorithm (LLS-Opt-Coop) is also proposed. Analysis of

the system in terms of partial connectivity is done followed by the complexity

analysis of the algorithms.

Chapter 5 Chapter 5 deals with the localisation and tracking of a mobile TN

using the RSS and the AoA-RSS signal model. In order to examine the effect

of erroneous PLE vector on localisation accuracy, a theoretical MSE expression

for incorrect PLE is derived for the AoA-RSS signal model. After the estimation

of PLE vector with GenPS, an extensive performance comparison of tracking of

mobile TN with KF and PF is presented. Finally, the performance evaluation of

tracking using the RSS observation is also presented using KF, EKF and PF.
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Chapter 6 Chapter 6 presents the conclusion and future aspects of the research

presented in this thesis.

Appendices All mathematical derivations are presented in appendices section.

These include the derivation of covariance matrix and Fisher Information matrix

(FIM) of the unbiased AoA-ToA signal model, the covariance matrix and FIM

of the unbiased AoA-RSS signal model, the covariance matrix of the AoA-RSS

signal model with incorrect PLE values and all the expectation taken in this

thesis which are given in table. 2.1.
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2 Enhanced Positioning Using

Angle of Arrival and Time of

Arrival Measurements

The material of this chapter is presented in

i) M. W. Khan, Naveed Salman, A. H. Kemp “Enhanced Hybrid Positioning in

Wireless Networks I: AoA-ToA,” IEEE International Conference on Telecommu-

nications and Multimedia (TEMU), pp. 86-91, July 2014.

ii) M. W. Khan, Naveed Salman, A. H. Kemp, L. Mihaylova “Optimised Localisa-

tion Using Angle of Arrival-Time of Arrival Measurements in Wireless Networks,”

(Submitted to IEEE sensor journal).

2.1 Overview

Localisation of wireless nodes introduce many new applications and present new

challenges for scientists and engineers in the field of wireless communication.

Scientists are working on new methods to improve the accuracy of localisation.

Some of these methods are based on the utilisation of hybrid signals. In this

chapter, a new unbiased hybrid AoA-ToA signal model is presented for static
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nodes. The mathematical expression for overall bias is derived and is verified via

Monte Carlo simulation. In order to analyse the performance of the LLS solution

for the proposed model, the analytical MSE expression is derived. To improve the

performance of LLS, weights are given to individual communication links. These

weights are based on the noise covariance of the signal, thus the noise covariance

matrix is first derived and a new unbiased WLLS algorithm (WLLS-AoA-ToA) is

proposed. Further improvement is achieved via an optimal AN selection algorithm

(OAS), which selects only those ANs for positioning that guarantees to improve

the accuracy of localisation. In order to lower bound the performance of WLLS-

AoA-ToA, the LCRB is derived (LCRB-AoA-ToA). Finally, the notion of critical

distance in hybrid localisation systems is introduced. Through simulation, it

is shown that the theoretical MSE accurately predicts the system performance.

Furthermore, the improved performance of WLLS-AoA-ToA methods over the

LLS is also demonstrated via Monte Carlo simulation.

The rest of the chapter is organized as follows: Section II presents the LLS

solution to previously developed ToA, RSS, AoA and hybrid signal models. In

section III, the new unbiased hybrid AoA-ToA signal model is presented, math-

ematical verification of unbiasness is done and the theoretical MSE and the noise

covariance matrix are derived. Optimisation techniques are presented in section

IV, by first proposing a WLLS-AoA-ToA solution and then by OAS design. To

lower bound the performance of WLLS-AoA-ToA, the LCRB-AoA-ToA is derived

in section V followed by the introduction of critical distance in section VI. All

proposed algorithm, derivations and estimators are verified via extensive Monte

Carlo simulation in section VII. A summary of the chapter is presented in section

VIII.
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Eτ [τ ] = 0

Eτ [τ 2] = σ2
τ

Eτ (cos τ) = exp
(
−σ2

τ

2

)
Eτ [cos 2τ ] = exp (−2σ2

τ )

Eτ [sin τ ] = 0

Eτ [sin 2τ ] = 0

Eτ
[
exp

(
τ
ab

)]
= exp

(
σ2
τ

2(ab)2

)
Eτ

[
exp

(
2τ
ab

)]
= exp

(
2σ2
τ

(ab)2

)
Table 2.1: Expectation used in this thesis.

2.2 System Models

For ease of understanding some terms and equations already explained in chapter

1 are re written in this chapter. We also specify the following notation for future

use: Rn is a set of n dimensional real number, (.)T is the transpose operator,

Tr(M) is the trace of matrix M , E(.) refers to the expectation operator. For

later use we also define the expectations given in table 1, by considering τ as a

Gaussian random variable with zero mean and σ2
τ variance, i.e., τ ∼ N (0, σ2

τ ) ,

also a and b are assumed to be constants. The proof of all the expectations taken

in this thesis is given in appendix I.

Some commonly used range and angle based localisation techniques based on

LLS are first reviewed. We consider a 2-D network (extension to its 3-D form is

straight forward) composed of a TN with unknown coordinates u=[x y]T ∈ R2

and N ANs where [x̄i ȳi]T ∈ R2 are the coordinates of ith AN.
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2.2.1 Linear Least Squares Solution for ToA Based System.

If only range estimates are available as in ToA and RSS based system, the min-

imum AN requirement is 3 for 2-D localisation and 4 for 3-D localisation. The

range, d̂T,i estimated via ToA, between ith AN and the TN is given by [55]

d̂T,i = di + ni, (2.1)

where di =
√

(x− x̄i)2 + (y − ȳi)2 is the true distance and ni is the noise which

is a modeled as zero mean Gaussian random variable with variance σ2
ni
, i.e.,

ni ∼ N
(
0, σ2

ni

)
. Clearly (2.1) is not linear in terms of x and y and can be solved

for x and y by high complexity methods like maximum likelihood and Gause

Newton that are based on individual readings from the sensor. An alternative

solution is the LLS technique for which (2.1) needs to be linearised first. This

linearisation technique was first presented in [56]. Let d̂2
T,i be the 2-D noisy

distance estimated via ToA, i.e.,

d̂2
T,i ≈ (x− x̄i)2 + (y − ȳi)2, (2.2)

To linearize (2.2), a reference AN is selected with estimated distance, d̂2
T,r from

TN.

d̂2
T,r ≈ (x− x̄r)2 + (y − ȳr)2, (2.3)

where (x̄r, ȳr) are the coordinates of reference AN. Each distance equation (2.2)

for i = 1, ..., N (i 6= r) is now subtracted from the reference distance (2.3). Thus

we have

[
(x− x̄r)2 + (y − ȳr)2

]
−
[
(x− x̄i)2 + (y − ȳi)2

]
= d̂2

T,r − d̂2
T,i

for i = 1, ..., N (i 6= r) . (2.4)

This reference AN can be randomly chosen or a special criteria can be developed

to select it as in [57]. (2.4) can be written as
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[
x2 + x̄2

r − 2xx̄r + y2 + ȳ2
r − 2yȳr

]
−
[
x2 + x̄2

i − 2xx̄i + y2 + ȳ2
i − 2yȳi

]
= d̂2

T,r−d̂2
T,i,

(2.5)

which can be simplified to

(x̄i−x̄r)x+ (ȳi−ȳr) y = 0.5
[(
x̄2
i +ȳ2

i

)
−
(
x̄2
r+ȳ2

r

)
+d̂2

r−d̂2
i

]
. (2.6)

Equ. (2.6) is linear in terms of x and y. In matrix form (2.6) can be written as

AToAu = 0.5b̂ToA, (2.7)

where

AToA =



x̄1 − x̄r ȳ1 − ȳr

x̄2 − x̄r ȳ2 − ȳr
... ...

x̄(N−1) − x̄r ȳ(N−1) − ȳr


∈ R(N−1)×2, u =

 x

y

 ∈ R2×1,

b̂ToA =



(x̄2
1 + ȳ2

1)− (x̄2
r + ȳ2

r) + d̂2
r − d̂2

1

(x̄2
2 + ȳ2

2)− (x̄2
r + ȳ2

r) + d̂2
r − d̂2

2
...

(x̄2
(N−1) + ȳ2

(N−1))− (x̄2
r + ȳ2

r) + d̂2
r − d̂2

(N−1)


∈ R(N−1)×1. (2.8)

The LLS solution to (2.7) can be obtained as

û = 0.5
(
A†ToAb̂ToA

)
, (2.9)

where A†ToA is the Moore Penrose pseudo inverse of matrix AToA, i.e., A†ToA =(
AT

ToAAToA
)−1

AT
ToA.
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2.2.2 Linear Least Squares Solution for RSS Based System.

RSS based localisation systems [58], are of low complexity compared to ToA based

system as no additional hardware is required for its implementation. However

this comes at a cost of low estimation accuracy as the performance of RSS based

system is inferior to the performance of a ToA based system. This is because

noise in range estimate, calculated from the received power is distance dependant.

Another drawback of RSS based systems is the knowledge of the value of the path

loss exponent (PLE) for each communication link. Joint PLE and coordinates

estimation will be presented in chapter 3 and chapter 5. For now, we assume

that the PLE vector is known. Furthermore we assume a same PLE value for all

communication links.

The RSS based ranging works on the principle of signal strength attenuation

as it propagates through the channel. The ith range estimates via RSS will be

represented by dR,i and can be extracted from the received path loss as [59]

Li = L0 + 10αi log10
di
d0

+ w̌i, (2.10)

where Li is the received path loss at the ith AN, L0 is the path loss at a reference

distance d0 usually taken as 1m, αi is the PLE associated with ith AN, di is the

true distance between ith AN and TN and w̌i represents the log normal shadowing

which is modeled as a Gaussian random variable with mean zero and variance

σ2
w̌i
, i.e., w̌i ∼ N

(
0, σ2

w̌i

)
. The path loss is the difference between the observed

power at the AN and transmit power at the TN and can be represented as

Li = 10 log10 P − 10 log10 Pi, (2.11)

where P is the transmit power of the TN which is known to all ANs and Pi is

the received power at ith AN. The path loss zi from d0 to di, observed at ith AN

can be represented as
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ẑi = γαi ln di + w̌i, (2.12)

where γ = 10
ln 10 . RSS based range estimate from (2.12) can be obtained as

d̂R,i ≈ exp
(
ẑi
γαi

)
. (2.13)

Equ. (2.13) represents the biased distance estimate via RSS. To make the model

unbiased we introduce an unbiasing constant βi. The idea of unbiasing constant

in RSS based localisation systems was first coined in [60]. Taking the unbiasing

constant in (2.13), and then taking the expectation operator with respect to w̌i,

results in the true distance estimate, i.e.,

Ew̌i

[
βi exp

(
ẑi
γαi

)]
= di, (2.14)

where di is the true distance between AN and TN and βi = exp
(
−

σ2
w̌i

2(γαi)2

)
. Thus

the unbiased range, estimated via RSS is given as

d̂R,i = βidi exp
(
w̌i
γαi

)
. (2.15)

Equ. (2.15) can be written in vector form as d̂R = β � d �
[
exp

(
1
γα

(w)
)]
,

where d̂R is the erroneous observation vector given by d̂R =
[
d̂R,1, . . . , d̂R,N

]T
,

α is the PLE vector given as α = [α1, . . . , αN ]T , d is the true distance vector

given as d = [d1, . . . , dN ]T , w is the noise vector representing shadowing, given

as w = [w̌1, . . . , w̌N ]T and �represents the Schur product. Clearly, (2.15) is non

linear in terms of x and y. Thus we linearise it using a similar approach as was

used for ToA based system, i.e., we subtract the square of a selected reference

distance from square of all other distances. Thus we obtain
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[
(x− x̄r)2 + (y − ȳr)2

]
−
[
(x− x̄i)2 + (y − ȳi)2

]
= β2

r exp
(

2ẑr
γαr

)
−β2

i exp
(

2ẑi
γαi

)
,

(2.16)

which can be simplified to

(x̄i−x̄r)x+(ȳi−ȳr) y = 0.5
[(
x̄2
i +ȳ2

i

)
−
(
x̄2
r+ȳ2

r

)
+β2

r exp
(

2ẑr
γαr

)
−β2

i exp
(

2ẑi
γαi

)]
.

(2.17)

Equ. (2.17) can be written in matrix form as

ARSSu = 0.5bRSS, (2.18)

where

ARSS =



x̄1 − x̄r ȳ1 − ȳr

x̄2 − x̄r ȳ2 − ȳr
... ...

x̄N−1 − x̄r ȳN−1 − ȳr


∈ R(N−1)×2, u =

 x

y

 ∈ R2×1, (2.19)

bRSS =



β2
r exp

(
2ẑr
γαr

)
− β2

1 exp
(

2ẑ1,t
γα1

)
− εr + (x̄2

1 + ȳ2
1)

β2
r exp

(
2ẑr
γαr

)
− β2

2 exp
(

2ẑ2
γα2

)
− εr + (x̄2

2 + ȳ2
2)

...

β2
r exp

(
2ẑr
γαr

)
−β2

N−1 exp
(

2ẑN−1
γαN−1

)
−εr+(x̄2

N−1 + ȳ2
N−1)N−1


∈ R(N−1)×1,

(2.20)

where εr = (x̄2
r + ȳ2

r) . The LLS solution to (2.18) is obtained as

û = 0.5
(
A†RSSb̂RSS

)
, (2.21)

where A†RSS is Moore Penrose pseudo inverse of matrix ARSS.
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2.2.3 Linear Least Squares Solution for AoA Based System.

The AoA impinging at ith AN, transmitted from TN is given as [37]

θ̂i = arctan
[

(y − ȳi)
(x− x̄i)

]
+mi, (2.22)

where mi is the noise in angle estimate which is modelled as zero mean Gaus-

sian random variable with variance σ2
mi
, i.e., mi ∼ N

(
0, σ2

mi

)
. (2.22) can be

represented as

x tan θi − y = x̄i tan θi − ȳi, (2.23)

which can be written in matrix form as

ÂAoAu = b̂AoA, (2.24)

where

ÂAoA =



tan θ̂1 −1

tan θ̂2 −1
... ...

tan θ̂N −1


∈ RN×2, u =

 x

y

 ∈ R2×1, (2.25)

b̂AoA =



x̄1 tan θ̂1 − ȳ1

x̄2 tan θ̂2 − ȳ2

...

x̄N tan θ̂N − ȳN


∈ RN×1. (2.26)

The LLS solution to (2.24) is obtained as

û = Â†AoAb̂AoA, (2.27)

where Â†AoA is the Moore Penrose inverse of ÂAoA.
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2.2.4 LLS solution for Hybrid AoA-ToA Based Systems

When both range and bearing are available, global location of a TN can be

estimated with one AN only. Indeed, to improve accuracy, more ANs can be

introduced. The requirement of only a single AN for localisation makes hybrid

signal models an attractive feature in localisation schemes. In this subsection, we

explain one the most commonly used hybrid model that is based on the AoA-ToA

signal model.

Let d̂T,i be the noisy range, estimated via ToA of the signal given by (2.1). In

matrix form, (2.1) can be written as d̂T = d + n, where d̂T =
[
d̂T,1, . . . , d̂T,N

]T
and d = [d1, . . . , dN ]T while n = [n1, . . . , nN ]T is the noise vector. Similarly for

angle estimate (2.22) can be written in vector form as θ̂ = f + m, where θ̂ =[
θ̂1, . . . , θ̂N

]T
and f = [arctan [(y−ȳ1)/(x−x̄1)] , . . . , arctan [(y−ȳN)/(x−x̄N)]]T

and m = [m1, . . . ,mN ]T is the noise vector. With both range and angle estimates

available, the x and y coordinates of the TN can be calculated using simple

trigonometric equations [41].

x =x̄i + d̂T,i cos θ̂i (2.28)

y =ȳi + d̂T,i sin θ̂i (2.29)

As can be seen, (2.28) and (2.29) are linear in terms of x and y. Thus the

linearising steps involved in ToA and RSS based localisation systems are not

required. Equ. (2.28) and (2.29) can be written in matrix form for N ANs as

Au = t̂u,

where
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A =



11 0
... ...

1N 0

0 11

... ...

0 1N



∈ R2N×2, u =

 x

y

 ∈ R2×1, t̂u =

 m̂x

m̂y

 ∈ R2N×1 (2.30)

m̂x =


x̄1 + d̂T,1 cos θ̂1

...

x̄N + d̂T,N cos θ̂N

 , m̂y =


ȳ1 + d̂T,1 sin θ̂1

...

ȳN + d̂T,N sin θ̂N

 . (2.31)

The standard LLS solution is then given by

û = A†t̂u, (2.32)

where A† is the Moore Penrose inverse of matrix A.

2.2.4.1 Bias Calculation

For the LLS estimator explained in previous section, the bias can be calculated

as [61]

Bias = Em,n (û)− u, (2.33)

where û is the noisy estimate, u is the noise free estimate and the expectation is

taken w.r.t noise vector m and n. Equ. (2.33) can be written as

Bias = Em,n
(
A†t̂u

)
−A†t. (2.34)
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Where t represents the noise free observation matrix. Equ. (2.34) is further

simplified to

Bias = A†Em,n
(
t̂u
)
− t (2.35)

Bias = A† [κ (x) κ (y)]T , (2.36)

where κ (x) = Em,n (m̂x)−mx and κ (y) = Em,n (m̂y)−my. Then the ith term

of κ (x) is given by

κ (x)i = Emi,ni [x̄i + (dT,i + ni) cos (θi +mi)− x̄i − dT,i cos θi]

= Emi,ni [dT,i cos (θi +mi) + ni cos (θi +mi)− dT,i cos θi]

=[dT,i cos θiEmi (cosmi)+dT,i sin θiEmi (sinmi)+Eni (ni) cos θi

× Emi (cosmi) + Eni (ni) sin θiEmi (sinmi)− dT,i cos θi] (2.37)

= dT,i cos θi [exp (−σ2
mi/2)− 1] for i = 1, ..., N. (2.38)

Similarly the ith term of κ (y) is given by

κ (y)i = dT,i sin θi [exp (−σ2
mi/2)− 1] for i = 1, ..., N.

Equ. (2.38) is obtained from (2.37) by using the expectations which are given in

table. 2.1

According to (2.38), the estimator presented in (2.32) is biased. In order to render

(2.32) unbiased, we introduce an unbiasing constant, δ, in (2.28) and (2.29) which

reduces (2.33) to zero. The new unbiased LLS estimator is explained next.

2.3 The New unbiased Hybrid AoA-ToA Estimator

In this section, we present an unbiased version of hybrid AoA-ToA estimator

presented in the previous section. We mathematically verify that the estimator
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is unbiased. Furthermore, to analyse the performance of LLS solution we derive

the theoretical MSE expression for the estimator.

2.3.1 Hybrid AoA-ToA Signal Model

The formulation for the LLS technique presented in section 2.2.4, produces biased

estimates of the unknown vector u. The formulation of unbiased hybrid LLS

estimator is similar to that in section 2.2.4, other than the fact that we introduce

an unbiasing constant to (2.28) and (2.29). In order to counter the effect of

the bias, for known variances, the modified LLS formulation for static nodes, is

proposed below.

x = x̄i + d̂T,i cos θ̂iδT,i (2.39)

y = ȳi + d̂T,i sin θ̂iδT,i (2.40)

where δT,i is the unbiasing constant associated with ith link for AoA-ToA signal

model and is given by

δT,i = exp
(
σ2
mi

2

)
. (2.41)

By the introduction of (2.41) in (2.39) and (2.40), the estimator produces un-

biased estimates of the unknown vector u, i.e., (2.34) reduces to zero. Equ. (2.39)

and (2.40) can be written in matrix form as Au = t̂ where A and u are given by

(2.30) and t̂ =
[̂
tx, t̂y

]T
for

t̂x =


x̄1 + d̂T,1 cos θ̂1δT,1

...

x̄N + d̂T,N cos θ̂NδT,N

 , t̂y =


ȳ1 + d̂T,1 sin θ̂1δT,1

...

ȳN + d̂T,N sin θ̂NδT,1

 . (2.42)

The LLS solution for the unbiased AoA-ToA signal model is given by

û = A†t̂, (2.43)
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where A† is the Moore Penrose pseudo inverse of A.

2.3.1.1 Bias Calculation

In this subsection, we show that the new unbiased AoA-ToA LLS estimator pro-

duces unbiased estimates of the unknown vector u. Following similar formulation

as in 2.2.4.1 we calculate the bias as

Bias = Em,n
(
A†t̂

)
−A†t, (2.44)

which after some mathematical manipulation can be written as

Bias = A† [κ (x) κ (y)]T , (2.45)

for κ (x) = Em,n
(
t̂x
)
− tx and κ (y) = Em,n

(
t̂y
)
− ty .Then the ith term of κ (x)

is given by

κ (x)i =Emi,ni [x̄i + (dT,i + ni) cos (θi +mi) δT,i − x̄i − dT,i cos θi]

=Emi,ni [dT,i cos (θi +mi) δT,i + ni cos (θi +mi) δT,i − dT,i cos θi]

= [dT,i cos θiEmi (cosmi) δT,i+ dT,i sin θiEmi (sinmi) δT,i + Eni (ni) cos θi

× Emi (cosmi) δT,i + Eni (ni) sin θiEmi (sinmi) δT,i − dT,i cos θi] .

(2.46)

After taking the expectations in (2.46) and plugging the value of δT,i, (2.46)

reduces to

κ (x)i = dT,i cos θi exp
(
−
σ2
mi

2 +
σ2
mi

2

)
− dT,i cos θi

κ (x)i = 0,

which proves that the estimated vector u is unbiased. Similarly by replacing the

cos function in (2.46) with a sin function it can be shown that κ (y)i is 0 for all

i = 1, ..., N .
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2.3.2 Theoretical MSE for AoA-ToA based LLS

In order to analyse the performance of the unbiased AoA-ToA signal based estim-

ator, the theoretical MSE is derived. For a LLS estimator the theoretical MSE is

given by.

MSE(u) = Tr
{
Em,n

[
(û− u) (û− u)T

]}
, (2.47)

which can be simplified to

MSE(u) = Tr
{
Em,n

[(
A†t̂−A†t

) (
A†t̂−A†t

)T ]}
= Tr

{
Em,n

[(
A†t̂−A†t

)(
t̂
(
A†
)T
− t

(
A†
)T)]}

= Tr
{
A†Em,n

[(
t̂− t

) (
t̂− t

)] (
A†
)T}

= Tr
{
A†CAT (u)

(
A†
)T}

,

where CAT (u) is the noise covariance for AoA-ToA signal model, i.e.,

CAT (u) = Em,n
[(

t̂− t
) (

t̂− t
)]
. (2.48)

The matrix CAT (u) can be partitioned into separate submatrices as

CAT (u) =

 Cx
AT Cxy

AT

Cxy
AT Cy

AT

 ∈ R2N×2N , (2.49)

where

Cx
AT = E

[(
t̂x − tx

) (
t̂x − tx

)T ]
∈RN×N Cxy

AT = E
[(

t̂x − tx
) (

t̂y − ty
)T ]
∈RN×N

Cxy
AT = E

[(
t̂x − tx

) (
t̂y − ty

)T ]
∈RN×N Cy

AT = E
[(

t̂y − ty
) (

t̂y − ty
)T ]
∈RN×N

(2.50)

For i = j, Cx
AT, Cy

AT and Cxy
AT are given as follows
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Cx
ATii =

(
d2
T,i

2 +
σ2
ni

2

)
exp

(
σ2
mi

)
+
(
d2
T,i

2 cos (2θi) +
σ2
ni

2 cos (2θi)
)

exp
(
−σ2

mi

)
− (dT,i cos θi)2 (2.51)

Cy
ATii =

(
d2
T,i

2 +
σ2
ni

2

)
exp

(
σ2
mi

)
−
(
d2
T,i

2 cos (2θi) +
σ2
ni

2 cos 2θi
)

exp
(
−σ2

mi

)
− (dT,i sin θi)2 (2.52)

Cxy
ATii =

(
d2
T,i + σ2

ni

)
cos θi sin θi exp

(
−σ2

mi

)
− d2

T,i cos θi sin θi. (2.53)

For i 6= j, i.e., Cx
ATij = Cy

ATij = Cxy
ATij = 0. The derivation of these equations is

provided in appendix II A.

2.4 Performance Enhancements

In order to improve positioning accuracy we propose two enhancements to LLS

approach: i) WLLS-AoA-ToA and ii) OAS algorithm.

2.4.1 WLLS-AoA-ToA

In order to achieve a higher accuracy of localisation a WLLS-AoA-ToA algorithm

is presented in this section that utilize the noise covariance matrix. The noise

covariance matrix stores all the information about the link quality, thus a noisy

link is given less weight than a less noisy link. The WLLS-AoA-ToA solution is

obtained by minimising the cost function.

εw =
(
t̂−Au

)T
C−1

AT (u)
(
t̂−Au

)
, (2.54)

where C−1
AT is the inverse of the covariance matrix given by (2.49). The minimum

of (2.54) can be obtained by taking its derivative with respect to u, equating it
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to zero and then solving it for u, i.e.,

0 = δ

δu
(
t̂−Au

)T
C−1

AT (u)
(
t̂−Au

)
0 = δ

δu
(
t̂T − uTAT

) (
C−1

AT (u) t̂−C−1
AT (u) Au

)
0 = δ

δu
(
t̂TC−1

AT (u) t̂− t̂TC−1
AT (u) t̂Au− uTATC−1

AT (u) t̂ + uTATC−1
AT (u) Au

)
(2.55)

After taking the derivative, we obtain

0 = −t̂TC−1
AT (u) t̂A−ATC−1

AT (u) t̂ + 2ATC−1
AT (u) Au

0 =− 2ATC−1
AT (u) t̂ + 2ATC−1

AT (u) Au

ATC−1
AT (u) Au =ATC−1

AT (u) t̂

u =
(
ATC−1

AT (u) A
)−1

ATC−1
AT (u) t̂.

The covariance matrix depends on the real values of distances and angles, which

are not available. Thus their estimated values are used in the covariance matrix.

Hence the estimated covariance matrix, i.e., C−1
AT (û) is used. Now the WLLS-

AoA-ToA solution is obtained as

ûWLLS = A‡t‡, (2.56)

where

A‡ =
[
ATC−1

AT (û) A
]−1

AT and t̂‡ = C−1
AT (û) t̂.

The OAS is a LLS based approach, so WLLS will be better than OAS. However,

The WLLS requires the covariance matrix which is not easy to calculate for some

signal models. In such scenarios OAS can be used.

2.4.2 OAS Algorithm

Conventionally with the addition of more ANs to the system, the accuracy of

localisation is improved. However this is not always the case. Some ANs that are
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situated at a longer distance from the TN and/or receives signal after multiple

reflection actually deteriorate the overall performance of the system. Hence an

optimal subset of ANs can achieve better accuracy than using all ANs. Thus

in this section, an optimal AN selection algorithm is designed that guarantees

enhanced accuracy. This optimum combination of ANs is based on the theoretical

MSE of LLS. The optimum combination, Copt is the one that minimizes the MSE

on localisation. Let C be any combination of ANs, then Copt is obtained as

Copt = arg min
C
{MSE(û)} . (2.57)

Thus a small number of ANs (in some cases even one AN) can achieve superior

performance than using all ANs.

2.5 LCRB-AoA-ToA

The LCRB characterizes the best possible accuracy that can be achieved by an

unbiased estimator. In order to lower bound the performance of the WLLS-

AoA-ToA, the LCRB-AoA-ToA is derived in this section. For a two dimensional

system the MSE bound is given by [61]

MSE (u) ≥ [I (u)]11 + [I (u)]22
det [I (u)] , (2.58)

where [I (u)] is the Fisher information matrix (FIM) whose elements are given by

[I (u)]kl =
[
∂µt (u)
∂uk

]
C−1

AT (u)
[
∂µt (u)
∂ul

]

+ 1
2Tr

[(
C−1

AT (u) ∂CAT (u)
∂uk

C−1
AT (u) ∂CAT (u)

∂ul

)]
, for k, l = 1, 2.

(2.59)

where µt is the mean of observation vector t̂, and ∂µt(u)
∂u1

is the derivative w.r.t x,

i.e.,
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Function Derivative w.r.t x Derivative w.r.t y

d2
T,i

2

(
x− x̄i

) (
y − ȳi

)
(
σ2
ni

2

)
0 0(

d2
T,i

2 cos2θi
)

sin 2θi
(
y − ȳi

)
+cos 2θi

(
x− x̄i

)
cos 2θi

(
y − ȳi

)
− sin 2θi

(
x− x̄i

)
(
σ2
ni

2 cos 2θi
)

σ2
ni

sin 2θi (y−ȳi)
d2
T,i

−σ2
ni

sin 2θi (x−x̄i)
d2
T,i(

dT,i cos θi
)2

2
(
x− x̄i

)
0

d2
T,i cos θi sin θi (y − ȳi) (x− x̄i)

cos θi sin θi sin2 θi

(
y−ȳi

)
d2
T,i
− cos2 θi

(
y−ȳi

)
d2
T,i

cos2 θi
(x−x̄i)
d2
T,i
− sin2 θi

(x−x̄i)
d2
T,i

Table 2.2: Derivate of covariance matrix for AoA-ToA.

∂µt (u)
∂x

= [11, 12, · · · 1N , 01, 02, · · · 0N ]T ,

and ∂µt(u)
∂u2

is the derivative of the mean of observation vector w.r.t y, i.e.,

∂µt (u)
∂y

= [01, 02, · · · 0N , 11, 12, · · · 1N ]T .

Similarly ∂CAT(u)/∂u1 is the derivative of the covariance matrix w.r.t x, i.e.,

∂CAT (u)
∂u1

= ∂

∂x

 Cx
AT Cxy

AT

Cxy
AT Cy

AT

 , (2.60)

and ∂CAT(u)/∂u2 is the derivative w.r.t y, i.e.,

∂CAT (u)
∂u2

= ∂

∂y

 Cx
AT Cxy

AT

Cxy
AT Cy

AT

 . (2.61)

The derivatives involved in (2.60) and (2.61) are given in table. 2.2, the complete

derivation of which is given in appendix II-B.
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Putting the values of table. 2.2 in (2.60) and (2.61), we get

∂

∂x
Cx

AT = (x− x̄i) exp
(
σ2
mi

)
+
[
sin 2θi (y − ȳi) +cos2θi (x−x̄i)

+ σ2
ni

sin (2θi)
(y − ȳi)
d2
T,i

]
exp

(
−σ2

mi

)
− 2(x − x̄i). (2.62)

∂

∂y
Cx

AT = (y − ȳi) exp
(
σ2
mi

)
+
[
cos 2θi (y − ȳi)− sin 2θi(x−x̄i)

− σ2
ni

sin 2θi
(x− x̄i)
d2
T,i

]
× exp

(
−σ2

mi

)
. (2.63)

∂

∂x
Cy

AT = (x− x̄i) exp
(
σ2
mi

)
−
[
sin 2θi (y − ȳi) + cos 2θi (x− x̄i)

+ σ2
ni

sin 2θi
(y − ȳi)
d2
T,i

]
× exp

(
−σ2

mi

)
. (2.64)

∂

∂y
Cy

AT = (y − yi) exp
(
σ2
mi

)
+
[
cos 2θi (y − ȳi)− sin 2θi(x−x̄i)

− σ2
ni

sin 2θi
(x− x̄i)
d2
T,i

]
exp

(
σ2
mi

)
− 2 (y−ȳi) . (2.65)

∂

∂x
Cxy

AT = (x− x̄i)
[
exp

(
−σ2

mi

)
− 1

]
+
[
cos2 θi

(y − ȳi)
d2
T,i

− sin2 θi
(y − ȳi)
d2
T,i

]

×
[
σ2
ni

exp
(
−σ2

mi

)]
. (2.66)

∂

∂y
Cxy

AT =
[
(y − ȳi)

[
exp

(
−σ2

mi

)
− 1

]
+
[
cos2 θi

(x− x̄i)
d2
T,i

− sin2 θi
(x− x̄i)
d2
T,i

]

×
[
σ2
ni

exp
(
−σ2

mi

)]
. (2.67)

The derivation of (2.62) to (2.67) is given in appendix II-B.

40



2.6 Critical Distance Analysis

2.6 Critical Distance Analysis

In this section, we introduce the idea of the critical distance for hybrid systems.

The error in the angle estimates is distance dependent, however, distance estim-

ates based on the delay follow an additive noise model [62], [63] and is independent

of the true distance between the nodes. We refer to the critical distance, dc as

the distance at which the error in location estimates due to noise in angle meas-

urement equates the error due to noise in delay estimates. We derive a critical

distance expression for a given noise variance in angle and distance.

At the critical distance, the MSE of location estimate due to noise in angle meas-

urement is equal to the MSE due to the noise in distance measurement. Thus, at

the critical distance,

MSEn (u) = MSEm (u) , (2.68)

where MSEn (u) represents the MSE of AoA-ToA signal model due to noise in

the distance measurement only and is given by1

MSEn (u) = Tr
(
A†Cn(u)A†T

)
, (2.69)

where

Cn (u) =

 σ2
n cos2 θ σ2

n cos θ sin θ

σ2
n cos θ sin θ σ2

n sin2 θ

 . (2.70)

On the other hand, MSEm (u) represents the MSE of AoA-ToA signal model due

to the noise in the angle measurements only and is given by

MSEm (u) = Tr
[
A†Cm (u)A†T

]
, (2.71)

where

Cm (u) = d2
cC̄ (u),

1MSEm (u) and MSEn (u) are for one AN in this case.
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and

C̄ (u) =

 0.5δ2
T + 0.5 cos (2θ) δ−2

T − cos2 θ cos θ sin θδ2
T − cos θ sin θ

cos θ sin θδ2
T − cos θ sin θ 0.5δ2

T − 0.5 cos (2θ) δ−2
T − sin2 θ

 .
(2.72)

Putting (2.69) and (2.71) in (2.68), we obtain

d2
cTr

[
A†C̄ (u) A†T

]
= Tr

[
A†Cn(u)A†T

]
. (2.73)

For one AN, A† is a 2× 2 identity matrix. Thus (2.73) leads to

d2
cTr

[
C̄ (u)

]
= Tr [Cn(u)] . (2.74)

Putting elements of C̄ (u) and Cn(u) in (2.74) and then taking the trace, results

in

dc =
√
σ2
n/ (δ2

T − 1). (2.75)

Numerical Example We take σ2
n = 7 m2 and σ2

m = 0.07 rad, then δ2
T = 1.0723.

Using these values in (2.75) we get

dc =
√

7/ (1.0723− 1) = 9.8 m. (2.76)

This result will be verified by Monte Carlo simulation in the following section.

2.7 Simulation Results

Performance evaluation is done in this section via Monte Carlo simulation. The

reason to use Monte Carlo simulation is to show that the derived close form

solutions are correct. All simulations are run independently ` number of times

and the noise variance of all communication links is considered same. We take a

network of 300 m × 200 m dimension with subsets of 4 ANs at fixed and known
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Figure 2.1: Network deployment.

locations and subsets of 30 TNs taken at random positions. A same network

deployment, shown in Fig. 2.1 is considered for all simulation in each chapter.

Though, the performance of the proposed algorithms will be different in different

network scenarios, the proposed techniques will always outperform its previous

counterparts. Though, the performance of the proposed algorithms will be differ-

ent in different network scenarios, the proposed techniques will always outperform

its previous versions.

Figure 2.2 demonstrates the performance of the hybrid signal model via theoret-

ical MSE for LLS, Monte Carlo simulation for LLS and Monte Carlo simulation

for WLLS-AoA-ToA. It is evident from the figure that the theoretical MSE ac-

curately predicts the system performance for LLS and that the WLLS-AoA-ToA

outperforms the LLS solution.

In Fig. 2.3 the performance is evaluated for different combinations of ANs. It

is observed that the combination [A,C,D] of ANs given in Fig.2.1, gives us the

better accuracy than using all ANs simultaneously as shown by the combination

[A,B,C,D]. For clarity purpose the performance achieved by some combinations

is not shown in the figure.
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The LCRB is compared with WLLS-AoA-ToA solution in Fig. 2.4. It is demon-

strated that the LCRB presented in section 5 tightly bounds the performance of

the WLLS-AoA-ToA solution. For comparison the LLS solution is also presented

in the figure.

The critical distance expression was derived in section 2.6 and a numerical ex-

ample was presented. Via Monte Carlo simulation, the LLS solution is obtained

for AoA-ToA signal model for different values of d, once with noise in angle es-

timates only and then with noise in distance estimates only which is represented

by the bold and dashed curve in Fig 2.5, respectively. It is observed that both

of these curves coincide when the distance between AN and TN is 9.8 m. Which

agrees with the critical distance obtained numerically. Hence, verifying that our

derivation for critical distance expression is correct.
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2.8 Summary

In this chapter some of the most commonly used techniques and signal models

used for localisation were reviewed. These include ToA based, RSS based, AoA

based and hybrid signal models. A new unbiased LLS estimator based on the

AoA-ToA signal model was presented and the theoretical MSE expression for

LLS was derived. Furthermore, performance enhancement was achieved by pro-

posing a weighting strategy based on the noise covariance matrix of the signal

and a WLLS-AoA-ToA algorithm was presented. Also by designing an optimal

AN selection criteria the accuracy of estimation is further improved, hence OAS

algorithm is proposed. Moreover to lower bound the performance of the WLLS-

AoA-ToA algorithm, the LCRB-AoA-ToA is derived which tightly bounds the

performance of WLLS-AoA-ToA algorithm. Finally the notion of critical distance

is introduced and a critical distance equation is derived mathematically and is

verified via simulation. Performance enhancement to LLS by WLLS-AoA-ToA

and OAS algorithm is shown via Monte Carlo simulation.

Distance estimation can also be achieved via RSS, thus a hybrid AoA-RSS signal
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model is presented in the next chapter.
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3 Enhanced Positioning Using

Angle of Arrival and Received

Signal Strength Measurements

The material of this chapter is presented in

i) Naveed Salman, M. W. Khan, A. H. Kemp “Enhanced Hybrid Positioning in

Wireless Networks II: AoA-RSS,” IEEE International Conference on Telecommu-

nications and Multimedia (TEMU), pp. 92-97, July 2014.

ii) M. W. Khan, N. Salman, A. H. Kemp, L. Mihaylova “Positioning with

Hybrid Measurements in Wireless Sensor Networks,” (Submitted to MDPI Sensor

journal).

Overview

• In this chapter, we introduce an AoA-RRS signal based approach for static

nodes localisation. A LLS estimator is designed, which is further improved

by presenting a WLLS-AoA-RSS algorithm based on the noise covariance

matrix of the signal. Furthermore, a new zone based two steps optimal ANs

selection, TSOAS, scheme is designed to enhance the LLS performance. In

order to imitate a more realistic environment, no assumption about the
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knowledge of the PLE vector is considered. Thus a joint PLE-coordinate

estimation is done for AoA-RSS signal model. Moreover to lower bound the

performance of WLLS-AoA-RSS algorithm, a LCRB for AoA-RSS signal

model, LCRB-AoA-RSS, is derived. All results and algorithms are verified

by simulation.

The rest of the chapter is organised as follows: Section I presents the unbiased

AoA-RSS signal model for which an LLS estimator is proposed. Mathematical

calculation of bias and theoretical MSE expression for LLS is also presented in

section I. Performance enhancement is achieved by proposing: i) WLLS-AoA-

RSS, ii) TSOAS in section II. Section III proposes a novel PLE estimator which

is followed by the derivation of LCRB in section IV. All algorithms and deriv-

ations are verified via Monte Carlo simulation in section V. Finally, section VI

summarizes chapter 3.

3.1 Hybrid AoA-RSS Signal Model

An unbiased hybrid AoA-RSS signal model is presented in this section. A LLS

approach is designed to obtain the TN’s coordinates and the bias for LLS ap-

proach is calculated. In order to predict the performance of the hybrid model a

theoretical MSE based on LLS approach is also derived.

3.1.1 LLS solution for Hybrid AoA-RSS Signal Model

The formulation of LLS solution for hybrid AoA-RSS signal model is similar

to the formulation of LLS solution for AoA-ToA signal model other than the

fact that the range is estimated from the received power of the signal and the

unbiasing constant is different because of the introduction of the shadowing effect

49
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in the range estimation. Using the same notations as in chapter 2, the x and y

coordinates of the TN, based on angle estimates and range estimates from the

received power are given as

x = x̄i + d̂R,i cos θ̂iδR,i (3.1)

y = ȳi + d̂R,i sin θ̂iδR,i, (3.2)

where d̂R,i is given by (2.13) and the term δR,i represents the unbiasing constant

for AoA-RSS signal, associated with ith AN and is given by

δR,i = exp
(
σ2
mi

2 −
σ2
w̌i

2 (γαi)2

)
. (3.3)

In matrix form (3.2) and (3.1) are given as Au = r̂ where A and u are given by

A =



11 0
... ...

1N 0

0 11

... ...

0 1N



∈ R2N×2, u =

 x

y

 ∈ R2×1, (3.4)

and r̂ is the erroneous observation matrix given by r̂ = [̂rx, r̂y]T , where

r̂x =


x̄1 + d̂R,1 cos θ̂1δR,1

...

x̄N + d̂R,N cos θ̂NδR,N

 , r̂y =


ȳ1 + d̂R,1 sin θ̂1δR,1

...

ȳN + d̂R,N sin θ̂NδR,1

 . (3.5)

The standard LLS solution is then obtained as

û = A†r̂, (3.6)

where A† is the Moore Penrose pseudo inverse of matrix A.
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3.1.1.1 Bias Calculation

The total bias in the LLS estimator, (3.6), is given as

Bias = Ew,m
(
A†r̂

)
−A†r, (3.7)

where r̂ represent the noisy observations and r represent noise free observation

vector, w and m are noise vectors associated with range estimate and angle

estimate, respectively. Equ. (3.7) can be written as, Bias = A† [κ (x) κ (y)]T ,

where κ (x) = Ew,m (r̂x) − rx and κ (y) = Ew,m (r̂y) − ry. Then the ith term of

κ (x) is given by

κ (x)i =Ew̌i,mi
[
x̄i + di exp

(
w̌i
γαi

)
cos (θi +mi) δR,i − x̄i − di cos θi

]
.

=Ew̌i,mi
[
di exp

(
w̌i
γαi

)
cos (θi +mi) δR,i − di cos θi

]
. (3.8)

=diEw̌i
[
exp

(
w̌i
γαi

)]
cos θiEmi [cosmi] δR,i

+ diEw̌i

[
exp

(
w̌i
γαi

)]
sin θiEmi [sinmi] δR,i − di cos θi. (3.9)

=di cos θi exp
(

σ2
w̌i

2 (γαi)2 −
σ2
w̌i

2 (γαi)2 +
σ2
mi

2 −
σ2
mi

2

)
− di cos θi. (3.10)

κ (x)i =0. (3.11)

Equ. (3.9) is obtained from (3.8) by using the compound angle formula cos (A + B) =

cos A cos B + sin A sin B. Finally, (3.10) is obtained by plugging the value of δR,i

and by taking the expectations given in table. 2.1. Similarly, by replacing the

cos function in (3.8) with a sin function it can be shown that κ (y)i = 0 for all

i = 1, ..., N .

3.1.2 Theoretical MSE for AoA-RSS based LLS

For performance analysis we derive the theoretical MSE expression for the LLS

algorithm using AoA-RSS signal model. The theoretical MSE for LLS solution
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using AoA-RSS signal can be expressed as

MSE(u) = Tr
{
Ew,m

[
(û− u) (û− u)T

]}
. (3.12)

Plugging (3.6) in (3.12) and after some mathematical manipulation we obtain

MSE (u) = Tr
{
A†CAR (u)

(
A†
)T}

, (3.13)

where CAR (u) = Ew,m [(r̂− r) (r̂− r)] , which can be partitioned into submatrices

as

CAR (u) =

 Cx
AR Cxy

AR

Cyx
AR Cy

AR

 ∈ R2N×2N , (3.14)

where

Cx
AR =E

[
(r̂x − rx) (r̂x − rx)T

]
∈RN×N Cxy

AR =E
[
(r̂x − rx) (r̂y − ry)T

]
∈RN×N

Cyx
AR =E

[
(r̂x − rx) (r̂y − ry)T

]
∈RN×N Cy

AR =E
[
(r̂y − ry) (r̂y − ry)T

]
∈RN×N

(3.15)

which for i = j are given as follows

Cx
ARii=

d2
R,i

2 exp
(
σ2
w̌i

(γαi)2 +σ2
mi

)
+
d2
R,i

2 cos 2θi exp
(
σ2
w̌i

(γαi)2−σ
2
mi

)
−(dR,i cos θi)2 .

(3.16)

Cy
ARii=

d2
R,i

2 exp
(
σ2
w̌i

(γαi)2 +σ2
mi

)
−
d2
R,i

2 cos 2θi exp
(
σ2
w̌i

(γαi)2−σ
2
mi

)
−(dR,i sin θi)2 .

(3.17)

Cxy
ARii =d2

R,i cos θi sin θi
[
exp

(
σ2
w̌i

(γαi)2 − σ
2
mi

)
− 1

]
. (3.18)

For i 6= j, i.e., Cx
ARij = Cy

ARij = Cxy
ARij = 0. The derivation of these expressions

is given in appendix III.
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3.2 Performance Enhancement

A more reliable estimator based on hybrid AoA-RSS signal model is presented,

called the WLLS-AoA-RSS and is based on the noise covariance, (3.14), of the

signal. Furthermore, a novel two step optimal ANs selection scheme, TSOAS, is

also presented that enhances the performance of the LLS algorithm.

3.2.1 WLLS-AoA-RSS

Performance of LLS solution for hybrid AoA-RSS signal model can be improved

by utilizing the information stored in the noise covariance matrix. We use the

covariance matrix in a similar fashion as presented in section 2.3.3 and propose

a WLLS-AoA-RSS algorithm. The cost function for WLLS-AoA-RSS is given by

εw = (r̂−Au)T C−1
AR (u) (r̂−Au) , (3.19)

where C−1
AR (u) is the inverse of the estimated noise covariance matrix for AoA-

RSS signal model. It is noted that C−1
AR (u) depends on the real values of distances

and angles, which are not available. Thus we use the noisy estimated values in

(3.19) and use the estimated covariance matrix, C−1
AR (û) . The WLLS-AoA-RSS

solution is then given by

uWLLS = A-r̂-,

where

A- =
[
ATC−1

AR (û) A
]−1

AT and r̂- = C−1
AR (û) r̂.

A second iteration can be performed in which the range and angle estimated from

the TN’s coordinates obtained from the first iteration are used in the covariance

matrix. However, the insignificant performance improvement is not worth the

increase in computational complexity of the algorithm.
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3.2.2 TSOAS Algorithm

Due to unequal error associated with estimates from different ANs, some ANs

may actually deteriorate the positioning accuracy. These ANs may be positioned

at a large distance from the TN, may receive signals through multiple paths or

may have a poor geometric dilution of precision (GDOP). This scenario is more

obvious in a networks where some TNs are outside the convex hull defined by

the ANs. Thus, for different TNs in a network there exist an optimal subset

of ANs that guarantees optimal accuracy. In this section, we presents TSOAS,

a two step optimal AN selection scheme; a pre processing step, called the zone

detection, that select different subset of ANs for different TNs followed by the

optimal localisation step, where TNs are localized with their respective optimal

subsets of ANs.

Step 1: Zone Detection: During this pre processing step the whole network

is divided into a grid. The complexity of this step depends on the resolution of

the grid and the total number of ANs. However this step needs to be performed

only once. Each point on the grid acts as a pseudo TN (PTN). For each of these

PTNs the localisation error is calculated for all combinations of ANs using the

theoretical MSE presented in the previous section. The combination that shows

the lowest MSE is selected as an optimal combination for that point. Thus using

this technique, a particular combination is selected for different points on the

grid. In this way the whole network is divided into different regions called zones,

where each zone has its own optimal subset of ANs that shows the lowest MSE.

For the network considered in this chapter, the zones are shown in Fig. 3.3. The

optimum combination of ANs for a PTN is calculated by

Ck
opt = arg min

C
{MSE(û)} .

where C represents any combination and Ck
opt is the optimal combination for kth
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3.3 Path Loss Exponents (PLEs) Estimation

PTN.

Step II: Optimal Localisation: The second step is also two folds. Firstly a

rough estimate of the location of the TN is obtained using all ANs. This rough

estimate is necessary to detect the zone where the TN belongs. Once the zone is

detected, the location of this TN is refined by localising it again, this time using

the optimal combination of ANs for its respective zone.

3.3 Path Loss Exponents (PLEs) Estimation

In order to extract the distance estimate from received path-loss the correct know-

ledge of PLE associated with each link is necessary. In most of the studies, the

PLEs are assumed to be known and are considered to be the same for all links

[64], [65]. However, even a small error in PLE vector produces significant error in

the final estimate of the coordinates. Recently, some studies propose joint PLE

and coordinates estimation [66], [67]. However a same PLE value for all com-

munication links is considered, which is an oversimplification of real conditions.

Assuming that ANs and TNs are static, we consider a static but different PLE

value for each communication link. For a mobile TN, the PLEs are not static.

This scenario is studied in chapter 5. We use the derivative free optimisation

technique called generalised pattern search (GenPS) to estimate the PLE vector.

These PLE values are then utilised for localisation. According to (2.13), (3.1)

and (3.2) can be written as

x = x̄i + exp
(
ẑi
γαi

)
cos θ̂iδR,i for i = 1, . . . , N (3.20)

y = ȳi + exp
(
ẑi
γαi

)
sin θ̂iδR,i for i = 1, . . . , N (3.21)

In matrix form, (3.20) and (3.21) can be written as
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3.3 Path Loss Exponents (PLEs) Estimation

Au = rα, (3.22)

where A and u are given by (3.4) and rα = [rx,α, ry,α]T , where

rx,α =


x̄1 + exp

(
ẑ1
γα1

)
cos θ̂1δR,1

...

x̄N + exp
(
ẑN
γαN

)
cos θ̂NδR,N

 , ry,α =


x̄1 + exp

(
ẑ1
γα1

)
sin θ̂1δR,1

...

x̄N + exp
(
ẑN
γαN

)
sin θ̂NδR,N


From (3.22), the cost function for unknown PLE vector can be written as

Ψ (u,α) =‖ Au− r̂α ‖2, (3.23)

where α is the PLE vector given by α = [α1, . . . , αN ]T . The LLS solution to u

is given by u = A†rα. Putting u in (3.23) we get

Ψ (α) =
[
r̂α
(
I2N −AA†

)
r̂Tα
]
, (3.24)

where I2N is the identity matrix of dimension 2N . Equ. (3.24) is unknown only

in α which can solved by minimising

α̂ = arg min
α
{Ψ (α)} . (3.25)

Brute force method can be used to solve (3.25), which is computationally in-

efficient specially at higher number of ANs. We thus use GenPS technique to

minimize (3.25). The GenPS technique is explained in the next subsection.

3.3.1 Generalized Pattern Search

GenPS belongs to a family of derivative-free optimisation technique, originally

proposed in [68]. GenPS iteratively updates α such that

Ψ (αk) < Ψ (αk−1) , (3.26)
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3.3 Path Loss Exponents (PLEs) Estimation

where k is the step number. Each iteration consist of an optional search step1

and a compulsory poll step. During the search step any finite strategy can be

employed to choose αk, as long as the condition in (3.26) is satisfied. When

search step fails, poll step is invoked during which Ψ is evaluate at all the points

adjacent to αk−1, i.e., Ψ is evaluated on a mesh Mk, cenetered at αk−1. The

meshMk can be mathematically represented as

Mk = {αk + ∆kDz : z ∈ Zq} ,

where ∆k is the mesh size parameter that define how far are the neighboring

points of αk. D is a finite set of direction that positively span RN and gives the

directions of the neighboring points. Each direction d̄j∀j = 1, ..., q must be a

product of Gzj, where G ∈ RN×N is a non singular generating matrix which for

the present problem is an identity matrix G = IN , which means that zj ∈ ZN is

an integer vector and belongs to the matrix D. These conditions are necessary

for the convergence theory [69].

At the kth poll, the cost function is evaluated at neighboring poll points given

by Pk =
{
αk + ∆kd̄, d̄ ∈ Dk

}
. Thus at (k + 1)th iteration if the cost function

value, i.e., Ψ (αk+1) is lower than Ψ (αk), then the step size is increased by

∆k+1 = ξ∆k for any scalar ξ > 1 and αk+1 is accepted, i.e., Mk+1 is centered

at αk+1. Otherwise if Ψ (αk+1) > Ψ (αk) for all the poll points then the step

size is decreased by ∆k+1 = 1
ξ
∆k and αk+1 = αk. The algorithm is repeated until

a stopping condition is reached e.g., Ψ
(
αk+1

)
−Ψ

(
αk
)
< τ , where τ is some

small value. The step by step procedure of GenPS is explained in algorithm 1.

1For the present problem of PLE estimation, we don’t employ the optional search step.
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3.4 LCRB-AoA-RSS

Algorithm 3.1
Generalized Pattern Search
for k = 1, ...

i. Initialize α0 ∈ [2, 5], ∆0,τ, ξ, ν.
ii. Evaluate Ψ (αk+1) with all poll points from poll
set

{
αk + ∆kd̄, d̄ ∈ D

}
.

iii-a. If improved poll point is found, accept αk+1, set
∆k+1 = ξ∆k.
iii-b. If improved poll point cannot be found, set
αk+1 = αk, set ∆k+1 = ∆k

ξ
.

Repeat until Ψ (αk+1)−Ψ (αk) < τ.
end

3.4 LCRB-AoA-RSS

The CRB characterizes the best possible accuracy of an unbiased estimator. Con-

ventional localisation CRBs, bounds the performance of ML type algorithms as

they are based on individual readings from ANs. On the contrary, the LLS and

WLLS-AoA-RSS formulation is based on observation vector, in the present model,

r̂. In order to lower bound the performance of WLLS-AoA-RSS we derive the

LCRB-AoA-RSS. The maximum accuracy of the two dimensional localisation is

characterized by the MSE bound:

MSE (u) ≥ [I (u)]11 + [I (u)]22
det [I (u)] , (3.27)

where [I (u)] is the Fisher information matrix (FIM) whose elements are given

by (3.28) [61]. We consider the elements of vector r̂ to be with a Gaussian

distribution. This assumption is necessary for the closed form derivation of the

LCRB-AoA-RSS.

[I (u)]ij =
[
∂µ (u)
∂ui

]
C−1

AR (u)
[
∂µ (u)
∂uj

]

+ 1
2Tr

[(
C−1

AR (u) ∂CAR (u)
∂ui

CAR
−1 (u) ∂CAR (u)

∂uj

)]
, for i, j = 1, 2.

(3.28)
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3.4 LCRB-AoA-RSS

where µ(u) is the mean of observation vector and ∂µ(u)
∂u1

is the derivative of the

observation vector w.r.t x.

∂µ (u)
∂x

= [11, 12, · · · 1N , 01, 02, · · · 0N ]T ,

and ∂µ(u)
∂u2

is the derivative of the mean of the observation vector w.r.t y.

∂µ (u)
∂y

= [01, 02, · · · 0N , 11, 12, · · · 1N ]T

Similarly for the covariance matrix of AoA-RSS signal, i.e., CAR (u) , the deriv-

atives w.r.t x and y are given by

∂CAR (u)
∂u1

= ∂

∂x

 Cx
AR Cxy

AR

Cxy
AR Cy

AR

 (3.29)

and

∂CAR (u)
∂u2

= ∂

∂y

 Cx
AR Cxy

AR

Cxy
AR Cy

AR

 (3.30)

The derivates of individual terms in (3.29) and (3.30) are given in table. 3.1, the

derivation of which is similar to the derivation of terms in table. 2.2 given in

appendix II-B.

Using the derivates in table. 3.1 in (3.29) and (3.30) we obtain

∂

∂x
Cx

ARii = (x− x̄i) exp
(
σ2
wi

(γαi)2 + σ2
mi

)
+
[
(y − ȳi) sin 2θi + (x− x̄i) cos 2θi

]

× exp
(
σ2
wi

(γαi)2 − σ
2
mi

)
− 2 (x− x̄i) . (3.31)
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3.4 LCRB-AoA-RSS

Function Derivative w.r.t x Derivative w.r.t y

d2
R,i

2

(
x− x̄i

) (
y − ȳi

)
(
d2
R,i

2 cos2θi
)

sin 2θi
(
y − ȳi

)
+cos 2θi

(
x− x̄i

)
cos 2θi

(
y − ȳi

)
− sin 2θi

(
x− x̄i

)
(
dR,i cos θi

)2
2
(
x− x̄i

)
0

d2
R,i cos θi sin θi (y − ȳi) (x− x̄i)

Table 3.1: Derivate of covariance matrix.

∂

∂y
Cx

ARii = (y − ȳi) exp
(
σ2
wi

(γαi)2 + σ2
mi

)
+
[
(y − ȳi) cos 2θi − (x− x̄i) sin 2θi

]

× exp
(

σ2
w

(γαi)2 − σ
2
mi

)
. (3.32)

∂

∂x
Cy

ARii = (x− x̄i) exp
(
σ2
wi

(γαi)2 + σ2
mi

)
−
[
(y − ȳi) sin 2θi + (x− x̄i) cos 2θi

]

× exp
(
σ2
wi

(γαi)2 − σ
2
mi

)
. (3.33)

∂

∂y
Cy

ARii = (y − ȳi) exp
(

σ2
wi

(γαi)2 + σ2
mi

)
−
[
(y − ȳi) cos 2θi−(x− x̄i) sin 2θi

]

× exp
(

σ2
wi

(γαi)2 − σ
2
mi

)
− 2 (y − ȳi) . (3.34)

∂

∂x
Cx,y

ARii = (y − ȳi)
[
exp

(
σ2
wi

(γαi)2 − σ
2
mi

)
− 1

]
. (3.35)

∂

∂y
Cx,y

ARii = (x− x̄i)
[
exp

(
σ2
wi

(γαi)2 − σ
2
mi

)
− 1

]
. (3.36)
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Figure 3.1: Network Deployment.

3.5 Simulation Section

This section, reports simulation results which evaluate the performance of the

proposed techniques. Subsets of 8 ANs are considered at fixed and known pos-

itions and 30 TNs taken at random and unknown positions. All simulation are

run ` number of times independently. The network deployment is shown in Fig.

3.1 and is considered for all simulation in this chapter. Though, the performance

of the proposed algorithms will be different in different network scenarios, the

proposed techniques will always outperform its previous versions.

Figure 3.2, compares the performance of WLLS-AoA-RSS and LLS estimator

for AoA-RSS signal. The angle noise variance is kept fixed at σ2
m = 4 deg and

the Avg. RMSE is plotted across shadowing noise variance and different PLEs.

The x-axis of the figure represents the shadowing variance, σ2
w and the y-axis

represents the different values of the PLE. As can be seen the WLLS-AoA-RSS

show much better performance than LLS estimator.

In Fig.3.3, the network is divided into a number of different zone. Each zone have

its own optimal subset of ANs. Each color represents a different combination of
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Figure 3.2: Performance comparison between LLS and WLLS-AoA-RSS. σ2
m =

40 , ANs = [AN1 ,...,AN8] , ` = 2500.

ANs. It is evident from the figure that using all ANs for all TNs does not show

optimal accuracy. The optimal combinations of ANs for the zones shown in

Fig.3.3 are given in table. 3.2.

Figure 3.4 shows the Avg. RMSE obtained while using optimal subsets of ANs for
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Figure 3.3: Division of network into different zone based theoretical MSE.
AN = [2, 4, 6, 8].
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Zones Optimal AN combination
Zone 1 i = 2, 8
Zone 2 i = 2, 4
Zone 3 i = 6, 8
Zone 4 i = 4, 6
Zone 5 i = 2, 4, 8
Zone 6 i = 2, 6, 8
Zone 7 i = 2, 4, 6
Zone 8 i = 4, 6, 8
Zone 9 i = 2, 4, 6, 8

Table 3.2: Optimal combinations of ANs for zones shown in Fig. 3.3.

their respective zones, which is compared with the Avg. RMSE obtained while

using all ANs simultaneously. It is evident from the figure that selecting optimal

subsets improve the accuracy significantly.

Figure 3.5 plots the analytical MSE with the Avg. RMSE obtained by simulation.

It is observed from the figure that the analytical MSE derived in section 3.1.2

coincides with the Monte Carlo simulation obtained for LLS hybrid AoA-RSS

signal model.
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Figure 3.6 demonstrates the performance of the hybrid AoA-RSS signal model

based on the LLS approach when the PLE vector is estimated via GenPS. Each

AN-TN link is associated with a different PLE, which is taken at random between

2-5. The LLS using erroneous PLEs is also plotted for comparison, i.e., when

ᾱi = αi + pi, where ᾱi is the erroneous PLE and pi is the error associated with

the true PLE αi. pi is considered to be with Gaussian distribution with the

standard deviation σpi , i.e., pi ∼ N
(
0, σ2

pi

)
. For this simulation, σpi has a value

of 0.2. It is observed that even such a small error in the PLE vector produces

considerable error in the final estimate of the location of the TN, while localisation

using estimated PLEs, produces considerably better estimates.

Comparison of the LLS, WLLS-AoA-RSS with its corresponding LCRB-AoA-RSS

is given in Fig. 3.7. In this case, the PLE is kept fixed at 2.5. The Avg. RMSE of

all TNs is plotted across both noise variances. Again it can be seen from Fig. 3.7

that the WLLS-AoA-RSS outperforms the LLS model and that LCRB-AoA-RSS

tightly bounds WLLS-AoA-RSS.
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3.6 Summary

3.6 Summary

A hybrid AoA-RSS signal model was presented in this chapter. A LLS, WLLS-

AoA-RSS estimators were designed for the mentioned signal model. Optimisa-

tion was achieved by designing a two step zone based optimal ANs combination

scheme. A novel estimator for the estimation of the PLE vector is also proposed,

that utilises the GenPS algorithm. Finally, to bound the performance of the

WLLS-AoA-RSS algorithm a LCRB-AoA-RSS is derived that tightly bounds the

performance of WLLS-AoA-RSS technique. The simulation results confirms the

analysis presented in this chapter.

To take the hybrid signal models one step further, cooperative communication

links between TNs are established. Thus in the next chapter, a new cooperat-

ive localisation scheme is presented based on both hybrid AoA-ToA and hybrid

AoA-RSS signal models. Optimisation, computational complexities and different

realistic scenarios like unhybrid TNs with hybrid ANs and partial connectivity is

also discussed in the next chapter
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4 Optimised Localisation with

Cooperation In Wireless

Networks

The material of this chapter is presented in

i) M. W. Khan, Naveed Salman, A. H. Kemp “Cooperative Positioning Using

Angle of Arrival and Time of Arrival,” in Sensor Signal Processing for Defence

(SSPD), pp.1-5, 8-9 Sept. 2014.

ii) M. W. Khan, Naveed Salman, A. H. Kemp, L. Mihaylova “Optimized Hy-

brid Localisation with Cooperation in Wireless Sensor Networks,” IET Signal

Processing (Accepted, awaiting publication).

4.1 Overview

• Two hybrid signal models namely, the AoA-ToA and the AoA-RSS signal

models were introduced in the last two chapters. LLS, WLLS and two

optimal ANs selection schemes were also proposed for the mentioned signal

models. In this chapter, a cooperative version of the hybrid signal models

is presented for static nodes. Cooperative LLS estimators are proposed and
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4.2 Cooperative Localisation

optimisation is achieved by utilizing the noise covariance matrices. This

chapter also explores a more realistic scenario in which only ANs are capable

of hybrid angle and range estimation while TNs, which usually are low

on resources are capable of distance estimation only. Also networks with

limited connectivity is considered and the effect of limited connectivity on

estimation accuracy is studied. Furthermore the complexity comparison is

done for non-cooperative LLS, cooperative LLS and optimised cooperative

LLS.

4.2 Cooperative Localisation

In large scale networks some TNs may be situated in an area where they can not

be reached by the ANs. Localisation of such nodes presents a serious problem

in positioning systems. One way to resolve the issue is to use TN to TN com-

munication [70], [71], i.e., some TN can act as pseudo-anchors to localise out of

range TNs. Furthermore this cooperation between TNs improves the localisation

accuracy as more measurements are available for estimation. Cooperative local-

isation is studied in [72] for RSS, [73] for ToA, [74] for AoA and in [75], [76] for

hybrid signal models.

4.3 Cooperative Hybrid Localisation

For future use we define the following parameters: Let θ̂ij and d̂ij be the measured

angle and distance between ith AN and jth TN, respectively. On the other hand,

let D̂jk be the measured distance between jth and kth TN, and Φ̂jk is the AoA

impinging at jth TN from kth TN. Furthermore, we use the notation of x̄i and ȳi

for the x and y coordinate of ith AN while xj and yj for the x and y coordinates
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of jth TN. Incorporating the readings from kth TN together with readings from

the ANs, the x and y coordinates of jth TN is estimated as [77]

x̂j = x̄i + d̂ik cos θ̂ikδik − D̂jk cos Φ̂jkδjk for i = 1, . . . , N

k = 1, . . . ,M (4.1)

ŷj = ȳi + d̂ik sin θ̂ikδik − D̂jk sin Φ̂jkδjk for i = 1, . . . , N

k = 1, . . . ,M (4.2)

where δij and δjk are the bias reducing constants for AoA-ToA and AoA-RSS

signal, respectively. It should be noted that for j = k, the terms
(
D̂jk cos Φ̂jkδjk

)
and

(
D̂jk sin Φ̂jkδjk

)
are equal to zero. Hence (4.1) and (4.2) reduces to

x̂j = x̄i + d̂ij cos θ̂ijδij for i = 1, . . . , N (4.3)

ŷj = ȳi + d̂ij sin θ̂ijδij for i = 1, . . . , N (4.4)

Equ. (4.3) and (4.4) are the same as (2.40), (2.39) and (3.2), (3.1) for AoA-ToA

and AoA-RSS, repectively, which is the estimated location from the readings of

the AN only while (4.1) and (4.2) represents the estimated location from the

readings of ANs and TNs simultaneously. In (4.1) and (4.2) the terms d̂ik cos θ̂ik

and d̂ik sin θ̂ik are the projections of d̂ik on the x and y−axis, respectively from

which the projections D̂jk cos Φ̂jk and D̂jk sin Φ̂jk are subtracted, respectively,

constituting the cooperation step. These operations can be understood from Fig.

4.1 in which the geometry of the ith AN and that of jth and kth TN is illustrated.

To write (4.1) and (4.2) in matrix form we first define the vectors in table. 4.1:
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Y 

X 

Figure 4.1: AN and TN geometry

Equ. (4.1) and (4.2) can then be represented in matrix form as

Acû = b̂, (4.5)

where b̂=[bx1 , ...,bxN ,by1 , ...,byN ]T , where

bxj =



Ax + d1 cosθ1δ1 − ďj1 cos Φj1δj1

Ax + d2 cosθ2δ2 − ďj2 cos Φj2δj2
...

Ax + dN cosθNδN − ďjN cos ΦjNδjN


,

byj =



Ay + d1 sin θ1δ1 − ďj1 sin Φj1δj1

Ay + d2 sin θ2δ2 − ďj2 sin Φj2δj2
...

Ay + dN sin θNδN − ďjN sin ΦjNδjN


.

The LLS solution for the linear system is given by

û = A†cb̂, (4.6)

where A†c is the Moore–Penrose pseudo inverse of Ac and is given by A†c =(
AT

c Ac
)−1

AT
c . Matrix A†c can be calculated directly without taking the pseudo
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Table 4.1: Notation.

Vector Description Mathematical form Dimension (RX)

Eκ Column vector of κ ones. Eκ = [11, 12, . . . , 1κ]T Rκ×1

Ac Averaging matrix, composed
2M EMN vectors on the

diagonal.

A=diag[EMN , . . . ,EMN ] R2NM2×2M

u Unknown vector, composed
of x and y coordinates of M

TNs.

u = [x1, . . . xM , y1, . . . yM ]T R2M×1

Ax Column vector composed of
the x coordinates of N ANs

Ax = [x̄1, . . . , x̄N ]T RN×1

Ay Vector composed of the y
coordinates of N AN

Ay = [ȳ1, . . . , ȳN ]T RN×1

dk Range vector, composed of
noisy distance estimates

between N ANs and kth TN

dk =
[
d̂1k, . . . , d̂Nk

]T
RN×1

ďjk Column vector, composed of
noisy distance between jth

TN to kth TN

ďjk = D̂jkEN RN×1

θj Gradient vector, composed of
noisy angle estimates from

jth TN to N ANs

θj =
[
θ̂1j , . . . , θ̂Nj

]T
RN×1

Φjk Gradient vector, composed of
noisy angle estimate from kth

TN to jth TN

Φjk = Φ̂jkEN RN×1

δj Unbiasing vector, composed
of unbiasing constants

associated with jth TN and
N AN

δj = [δ1j , . . . , δNj ]T RN×1

δjk Unbiasing vector, composed
of unbiasing constants

associated with jth TN and
kth TNs

δjk = δjkEN RN×1
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inverse if the number of TNs and ANs are known, i.e.,

A†c = diag [η,η, · · · ,η] ∈ R2M×2NM2
, (4.7)

where η is a row matrix of MN elements, the value of each element is given by
1

MN
. This cooperative LLS estimator (4.6) shall be referred to as LLS-Coop in

the rest of the thesis.

4.3.1 Distributed Approach

If only one or a subset of all the TNs is desired to be localised while capitalising

on the cooperation with all TNs but avoiding the complexity of the centralised

algorithm as in the previous case, a distributed approach can be employed. The

distributed cooperative localisation, localizes a single TN (This can be easily

extended to estimate the location of a subset of all TNs) and reduces the com-

plexity of the system without affecting the accuracy of localisation. The location

estimate of the jth TN is given by

Ajûj = b̂j,

where

Aj = diag [EMN ,EMN ] ∈ R2MN×2, uj = [xj, yj]T ∈ R2×1, b̂j =
[
bxj ,byj

]T
∈ R2MN×1.

The LLS solution is then given by

ûj = A†jb̂j

for A†j = diag [η,η] ∈ R2×2MN .
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4.3.2 Cooperative Hybrid AoA-ToA

From here onwards, for cooperative hybrid AoA-ToA, d̂ij, D̂ij and δij will be

represented by d̂T,ij, D̂T,ij and δT,ij respectively, and are given by

d̂T,ij = dij + nij, D̂T,jk = Djk + njk, δT,ij = exp
(
σ2
mij

2

)
,

where dij =
√

(x̄i − xj)2 + (ȳi − yj)2 and Djk =
√

(xj − xk)2 + (yj − yk)2, nij

and njk represent the zero mean Gaussian errors in distance estimates, i.e., nij ∼

N
(
0, σ2

nij

)
and njk ∼ N

(
0, σ2

njk

)
. The angle measurement θ̂ij from the jth TN

to ith AN is given by

θ̂ij = arctan
[

(yj − ȳi)
(xj − x̄i)

]
+mij, (4.8)

where mij represents the zero mean Gaussian error in angle estimates, i.e., mij ∼

N
(
0, σ2

mij

)
. On the other hand, the angle measurement between from kth to jth,

i.e., Φ̂jk can be obtained in one of the following ways.

Case 1 . If all TNs are capable of estimating their relative angles then Φ̂jk can

be modeled as

Φ̂jk = arctan
[

(yk − yj)
(xk − xj)

]
+mjk, (4.9)

where mjk represents the zero mean Gaussian noise in angle estimate, i.e., mjk ∼

N
(
0, σ2

mjk

)
.

Case 2. In many cases, only the AN are capable of AoA measurements while

the TNs are low in resources and hence can only estimate their relative distances,

in other words the TNs are not hybrid then for the formulation in (4.5), Φ̂jk can

be estimated as follows

Φ̂jk = arctan
[

(ŷk − ŷj)
(x̂k − x̂j)

]
, (4.10)

where the (ŷk − ŷj) and (x̂k − x̂j) in (4.10) are estimated using (1.5) and (1.7)

respectively. The accuracy of estimation deteriorate in this case as the number
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of observations decreases. These systems where the TNs are not hybrid will be

referred to as LLS-Coop-X.

4.3.3 Cooperative Hybrid AoA-RSS

For hybrid AoA-RSS d̂ij, D̂jk and δij are represented by d̂R,ij, D̂R,ij and δR,ij

respectively and are estimated from the RSS measurements as in [78].

d̂R,ij = dij exp
(
wij
γα

)
, D̂R,jk = Djk exp

(
wjk
γα

)
, δR,ij = exp

(
σ2
mij

2 −
σ2
wij

2 (γα)2

)
,

where wij is the zero mean Gaussian random variable representing the shadowing

effects, i.e., wij ∼ N
(
0, σ2

wij

)
, where θ̂ij and Φ̂jk are the same for both models

given by (4.8), (4.9) and (4.10).

4.4 Cooperative LLS Optimisation

In this section we improve the performance of the LLS by preparing an optimisa-

tion step. In order to localise node j with coordinates (xj, yj), the cooperation

steps with TN k with coordinates (xk, yk) are represented by (4.1) and (4.2), where

d̂ik cos θ̂ik is the projection of d̂ik on the x−axis and d̂ik sin θ̂ik is the projection on

y−axis. In the formulation (4.1) and (4.2), the projection of D̂jk, i.e., D̂jk cos Φ̂jk

and D̂jk sin Φ̂jk are subtracted from d̂ik cos θ̂ik and d̂ik sin θ̂ik respectively for all

M ANs. Since the combined error in hybrid distance and angle measurements is

inherently distance dependent, step (4.1) and (4.2), may introduce large error if

some ANs are positioned far away from the TS. Thus, instead of using all ANs, a

pair of optimal ANs could be selected that guarantees minimum error or the ANs

with the least error in the projection d̂ik cos θ̂ik and d̂ik sin θ̂ik. In this section, we

propose an optimisation scheme that will select such a pair of ANs. Let the total
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number of ANs be represented by the set AN = {AN1,AN2, · · · ,ANM}, then the

number of 2-subsets ANsub ⊂ AN is given by the permutation with repetition, i.e.,

M2. Then to localise the jth TN in cooperation with the kth TN, the first optimal

anchor ANopt(1) of ANsub is selected as the one that minimizes the approximate

variance of the projection d̂ik cos θ̂ik such that

ANopt(1) = arg min
AN∈AN

{cx,k} , (4.11)

and the second anchor ANopt(2) is selected as the one that minimizes the projection

d̂ik sin θ̂ik such that

ANopt(2) = arg min
AN∈AN

{cy,k} . (4.12)

cx,k and cy,k represent the approximate variance of the respective projections of

d̂ik. They are represented by ct
x,k and cty,k and given by (4.13) and (4.14) for

AoA-ToA respectively. On the other hand, they are represented by cR
x,k and cRy,k

and given by (4.15) and (4.16) for AoA-RSS respectively. Since the actual value

of the distance in (4.13)-(4.16) is unknown its measured value is used. It should

be noted that the same AN could serve as the optimal AN to minimize both

(4.11) and (4.12). The LLS estimator with this optimisation shall be referred to

as LLS-Opt-Coop.

4.5 Complexity Analysis

This section present the complexity analysis of the proposed algorithms. Follow-

ing [79], the CPU cycle count is used to compare the computational complexities

by considering the individual cycle counts for addition (ADD), multiplication

(MUL), and comparison (CMP) operations. Thus using cycle count 1, 3 and 1

for ADD, MUL and CMP, respectively, the complexities of LLS-NoCoop, LLS-

Coop and LLS-Opt-Coop are given in table 4.2. For LLS-NoCoop the complexity
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ct
x,k =

(
d2
T,ik

2 +
σ2
nik

2

)
exp

(
σ2
mik

)
+
(
d2
T,ik

2 cos 2θik+
σ2
nik

2 cos 2θik

)
exp

(
−σ2

mik

)
−(dT,ik cos θik)2

(4.13)

cty,k=
(
d2
T,ik

2 +
σ2
nik

2

)
exp

(
σ2
mik

)
−
(
d2
T,ik

2 cos 2θik+
σ2
nik

2 cos 2θik

)
exp

(
−σ2

mik

)
−(dT,ik sin θik)2

(4.14)

cR
x,k =

d2
R,ik

2 exp
(
σ2
wik

(γα)2 +σ2
mik

)
+
d2
R,ik

2 cos 2θik exp
(
σ2
wik

(γα)2−σ
2
mik

)
− (dR,ik cos θik)2

(4.15)

cRy,k =
d2
R,ik

2 exp
(
σ2
wik

(γα)2 +σ2
mik

)
−
d2
R,ik

2 cos 2θik exp
(
σ2
wik

(γα)2−σ
2
mik

)
− (dR,ik sin θik)2

(4.16)

shown in table 4.2 is for all N TNs localised individually without cooperation.

The CMP operator is only used in LLS-Opt-Coop to compare the approximate

variances given by (4.13), (4.14) and (4.15), (4.16) for AoA-ToA and AoA-RSS

signal models, respectively. The number of comparison required for each model

are 2MN . Number of cycles counts for calculating approximate variance is given

by App. Var in table 4.2. For complexity analysis given in 4.2, 4 ANs and 5 TNs

are considered. Table 4.2 shows that the CPU cycle count for LLS-NoCoop is the

lowest, followed by LLS-Coop and then LLS-Opt-Coop.

4.6 Partial Connectivity

Full connectivity can not always be achieved in large networks due to limited

communication range of resource constraint sensor nodes. Hence the assumption

of full connectivity becomes unrealistic in large networks. This section explores

the issue of partial connectivity in cooperative hybrid networks. In this scenario

a TNA(TN that is to be localised) first broadcasts a location request message
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Table 4.2: Computation complexity.

Operation
MUL ADD

CMP
CPU cycles (M = 3, N = 5)

AoA-ToA AoA-RSS AoA-ToA AoA-RSS AoA-ToA AoA-RSS

LLS-NoCoop

NA
A† 1 1 0 0 3 3

b 22MN 26MN 10MN 12MN 1140 1350

A†b 4MN 4MN (4MN − 2N) (4MN − 2N) 230 230

LLS-Coop

NA
A† 2 2 0 0 6 6

b 22N(M+N−1) 26N(M+N−1) 10N (M +N − 1) 12N (M +N − 1) 2660 3150

A†b 4MN3 4MN3
(

4MN3 − 2N
) (

4MN3 − 2N
)

5990 5990

LLS-Opt-Coop

2MN

A† 1 1 2 2 5 5

b 22N(M+N−1) 26N(M+N−1) 10N (M +N − 1) 12N (M +N − 1) 2660 3150

A†b 4N2(M+N−1) 4N2(M+N−1) 4N2(M+N−1)−2N 4N2(M+N−1)−2N 2790 2790

App. Var 74MN 62MN 36MN 24MN 3870 3150

CMP - - - - 30 30

(LOC request), which is picked up by other TNs, ANs or in most cases both.

The second step is, if an AN receives the LOC request it measures the range

and the angle of the impinging signal and sends the measurements back to TNA.

On the other hand if other TNs receive the LOC request it them have to check

for the availability of ANs in its own range. If no ANs are available, the LOC

request is discarded by the TNs. In case of availability of one or more ANs, the

measurements (AN-TNA and TN-TNA observations) are passed to TNA. If the

LOC request is not picked by any sensor node, then TNA is out of communication

range of the network and cannot be localised. These steps can be understood from

Fig. 4.2. A pseudocode for the localisation of TNA is given in Algorithm 4.1.

4.7 Simulation Results

We consider a 120m×120m network with 4 ANs at (20, 20) , (20, 100) , (100, 20)

and (100, 100) while 30 TNs are arbitrarily deployed at random locations within
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Algorithm 4.1 Pseudocode for localisation of TNA.
PROGRAM : Partial connectivity

1. TNA broadcasts LOC

2. Pause(time)

3. IF TNA receive measurements from ANs or TNs.

4. identify transmitter

5. IF transmitters are only ANs

6. Localise via (4.3) and (4.4) only.

7. ELSE IF transmitters are TNs

8. Localise via (4.1) and (4.2) only.

9. ELSE IF transmitters are ANs and TNs.

10. Localise via(4.1), (4.2), (4.3) and (4.4).

11. ENDIF

12. ELSE

13. TNA is outside the networks range.

14. END
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Figure 4.2: Flowchart for localisation of TNA in case of full and partial
connectivity.

and outside the convex hull of the network. All the simulations are run inde-

pendently ` number of times. The network deployment is shown in Fig. 4.3 and

is considered for all simulation in this chapter. Though, the performance of the

proposed algorithms will be different in different network scenarios, the proposed

techniques will always outperform its previous versions.

In Fig. 4.4, the hybrid AoA-ToA algorithms are compared. For simplicity, the

same noise variance in distance and angle measurements is used for all AN-TN

and TN-TN links i.e σ2
nij

= σ2
njk

= σ2
n and σ2

mij
= σ2

mjk
= σ2

m. The performance

in terms of the average root means square error (Avg. RMSE) is compared while

the variance in distance and angle estimates is increased gradually. It is seen

that the performance of the LLS estimator with no cooperation (LLS-NoCoop) is

worst of all. Considerable performance improvement is observed with cooperation

between the TNs; with the LLS-Opt-Coop estimator showing the lowest RMSE.
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Figure 4.3: Network deployment.

Next is the LLS-Coop when both TNs and ANs are hybrid. While performance

degradation is observed for LLS-Coop-X, i.e., when the TNs are not hybrid.

Fig. 4.5 presents the performance of AoA-RSS hybrid systems, the RMSE in

location estimates is compared when the shadowing variance and the angle error

variance is incremented in the links. Shadowing variance is kept the same for

all links, i.e., σ2
wij

= σ2
wjk

= σ2
w. Altogether the performance is worse than

the AoA-ToA case, this is due to the fact that the RSS distance estimates are
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Figure 4.4: Performance comparison between LLS-NoCoop, LLS-Coop, LLS-
Coop-X, LLS-Opt-Coop hybrid AoA-ToA localisation. ANs=4, TNs=30, ` =
1500.
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Figure 4.5: Performance comparison between LLS-NoCoop, LLS-Coop, LLS-
Coop-X, LLS-Opt-Coop hybrid AoA-RSS localisation. ANs=4, TNs=30, ` =
1500, αi∀i = 2.5.

more erroneous then the ToA distance estimates, especially at longer inter-node

distance. The PLE value considered is 2.5, and is the same for all links. A similar

trend as in Fig. 4.4 is observed in this case, with LLS-Opt-Coop performing

the best followed by LLS-Coop and then LLS-Coop-X while the LLS-NoCoop

performs the worst.

Fig. 4.6 shows the performance of LLS-Coop for AoA-ToA signal model when the

network is not fully connected. It is noted that full connectivity does not give the

best performance. This is because the angle noise variance is distance dependent,

hence in case of full connectivity the noisy links with far away sensor nodes are

also utilised which degrades the overall performance of the system. However the

difference in accuracy is not significant.

A similar trend is seen in Fig. 4.7 where the performance of LLS-Coop for AoA-

RSS model is compared for different connectivity ranges. In this case both angle

and range noise variance are distance dependent. A full connectivity does not

show the best performance in this case either.

81



4.7 Simulation Results

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

2

2.5

3

3.5

4

4.5

5

5.5

σ
2
n
(m2)

 

 
1 1.5 2 2.5 3 3.5 4

2

2.5

3

3.5

4

4.5

5

5.5

σ
2
m
(deg)

A
vg

.
R
M
SE

(m
)

 

 

70 m
100 m
Full connectivity

Figure 4.6: Performance comparison for LLS-Coop AoA-ToA model with partial
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4.8 Summary

This chapter presented a novel cooperative version of hybrid signal based loc-

alisation. Two hybrid signal, i.e., AoA-ToA and AoA-RSS are under focus. To

achieve localisation, a cooperative LLS estimators based on both hybrid signals

were designed. A distributed approach was presented, which can be used when

a subset of TNs are required to be localised. In order to demonstrate a more

realistic environment, non hybrid TNs were considered. Furthermore, full con-

nectivity is not always achieved in practical scenarios, therefore the case of partial

connectivity was considered. For all algorithms presented, computational com-

plexities was calculated. Finally all algorithms proposed were verified via Monte

Carlo simulations. Accurate results are demonstrated.

In the next chapter, a moving TN will be considered. Tracking algorithms based

on Kalman filter (KF), extended Kalman filter (EKF) and particle filter (PF) will

be designed and a thorough performance comparison for the mentioned filters will

be presented.
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5 Tracking of Mobile Wireless

Nodes.

The material of this chapter is presented in

i) M. W. Khan; A. H. Kemp; N. Salman; L. Mihaylova, “Tracking of wireless

mobile nodes in the presence of unknown path-loss characteristics,” 18th Inter-

national Conference on Information Fusion (Fusion 2015) , pp.104-111, 6-9 July

2015.

ii) M. W. Khan; N. Salman; A. M. Khan; A.Ali; A. H. Kemp, “A Comparat-

ive Study of Target Tracking With Kalman Filter, Extended Kalman Filter and

Particle Filter Using Received Signal Strength Measurements,” IEEE Interna-

tional Conference on Emerging Technologies (ICET), pp. 1-6, 2015.

5.1 Overview

• In the previous chapters, different localisation algorithms for static TNs

were developed. TNs are not always static in practical scenarios. Thus new

algorithms need to be designed for the mobility of the TNs. Some highly

celebrated techniques for tracking of mobile TNs are based on the Kalman

filter (KF) [80], [81], the extended Kalman filter (EKF) [82], [83] and the
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particle filter (PF) [84], [85]. Two system models are under focus in this

chapter, for tracking purpose: i) the RSS signal model and ii) the hybrid

AoA-RSS signal model. In order to analyse the impact of using incorrect

PLE on location estimate, a theoretical MSE expression is derived. Further-

more, a continuously changing PLE vector is considered and is estimated

at each time step and then utilised in AoA-RSS signal model for tracking

purpose. Performance comparison is done for tracking of wireless node us-

ing hybrid AoA-RSS signal model with estimated PLE vector and by using

RSS of the signal only.

5.2 Signal Models for Moving Target Node

Applications of a mobile TN include, robot tracking, wildlife tracking, pets, eld-

erly and toddler tracking [86], [87]. Tracking of these mobile TNs present new

challenges for researchers. The motion of TNs can be represented by its position,

velocity and acceleration [88]. Different types of motion models are studied in

literature. These include random walk, the constant velocity model and the con-

stant acceleration model [89]. In this thesis, the constant velocity model is con-

sidered [90]. However to demonstrate a more realistic scenario, sudden changes in

the direction of the motion of the TN are accepted. In the following subsections,

two signal models that will be used with KF, EKF and PF are explained. These

signal model are RSS based and Hybrid AoA-RSS based. It should be noted that

these signal models were explained in previous chapters for static TNs. In this

chapter, they are revisited again for mobile TN. It should also be noted that as

the TN is moving, the observation model is dynamic and changes at every time

step. Thus, the subscript t will represent the observations at time step t.
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5.2.1 The RSS Signal Model

In this chapter, we consider a two dimensional network consisting N static ANs

with known locations, ūi = [x̄i, ȳi]T (ūi ∈ R2) for i = 1, ..., N and a TN which

has unknown coordinates, ut = [xt, yt]T (ut ∈ R2) and velocity, vt = [vx, vy]T , at

time step t. At any time step, a minimum of 3 distance estimates, di,t are required

to track a TN in 2-D. These distance estimates can be readily extracted from the

received path-loss as

Li,t = L0 + 10αi,t log10
di,t
d0

+ w̌i,t, (5.1)

where Li,t is the received path-loss at ith AN, L0 is the path-loss at reference

distance d0 usually taken as 1m, αi,t is the PLE associated with ith AN at time

step t, which for the RSS signal model is assumed to be known for all ANs,

di,t is the true distance between ith AN and TN at time step t, given by di,t =√
(xt − x̄i)2 + (yt − ȳi)2 and w̌i,t represents the log normal shadowing which is

modelled as Gaussian random variable with mean zero and variance σ2
w̌i,t
, i.e.,

w̌i,t ∼ N
(
0, σ2

w̌i,t

)
. The path-loss is the difference between the observed power

at the AN and transmit power at the TN and can be represented as

Li,t = 10 log10 P − 10 log10 Pi,t, (5.2)

where P is the transmit power at TN which is known to all ANs and Pi,t is the

received power at ith AN. The path-loss zi,t from d0 to di,t at time step t, observed

at ith AN can be represented as

ẑi,t = γαi,t ln di,t + w̌i,t, (5.3)

where γ = 10
ln 10 . Equ. (5.3) can be presented in matrix form as

ẑt = zt + wt, (5.4)

where ẑt = [ẑ1,t, ..., ẑN,t]T , zt = [γα1,t ln d1,t, ..., γαN,t ln dN,t]T and wt = [w̌1,t, ..., w̌N,t]T .
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Since (5.4) is non linear in terms of xt and yt, the KF can not be implemented

directly. It should be noted that the EKF is directly applied to the Taylor series

expansion of observation model presented by (5.4).

Linearisation of Observation Model: For a ToA based system, the linearisa-

tion idea was first given in [56]. We follow a similar approach here to linearise

(5.4). After some mathematical manipulation (5.3) can be written as

exp
(

2ẑi,t
γαi,t

)
≈ d̂2

i,t. (5.5)

Equ. (5.5) represents the biased distance estimate via RSS at time step t. To

make the model unbiased we introduce an unbiasing constant 1/βi,t, such that

E

[
1
βi,t

exp
(

2ẑi,t
γαi,t

)]
= d2

i,t, (5.6)

where βi,t = exp
( 2σ2

w̌i,t

(γαi,t)

)
. To linearise (5.6), we subtract the distance equation of

ith AN, d2
i,t for i = 1, ..., N −1 (i 6= r) from the distance equation of reference AN

d2
r,t. This reference AN can be chosen at random or some special criteria can be

designed to select the optimum reference AN. The selection of optimum reference

AN and the idea of unbiasing constant, 1
βi,t

, is detailed in [60]. We have

[
(xt − x̄r)2 + (yt − ȳr)2

]
−
[
(xt − x̄i)2 + (yt − ȳi)2

]
= 1
βr,t

exp
(

2ẑr,t
γαr,t

)
− 1
βi,t

exp
(

2ẑi,t
γαi,t

)
, (5.7)

which can be simplified to

(x̄i − x̄r)xt + (ȳi − ȳr) yt = 0.5
[
εi − εr

+ 1
βr,t

exp
(

2ẑr,t
γαr,t

)
− 1
βi,t

exp
(

2ẑi,t
γαi,t

)]
, (5.8)

where εr = (x̄2
r + ȳ2

r) and εi = (x̄2
i + ȳ2

i ). (5.8) can be written in matrix form as

ARSSut = 0.5rt, (5.9)
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where

ARSS =



x̄1 − x̄r ȳ1 − ȳr

x̄2 − x̄r ȳ2 − ȳr
... ...

x̄N−1 − x̄r ȳN−1 − ȳr


, ut =

 xt

yt

 (5.10)

rt=



1
βr,t

exp
(

2ẑr,t
γαr,t

)
− 1

β1,t
exp

(
2ẑ1,t
γα1,t

)
− εr + ε1

1
βr,t

exp
(

2ẑr,t
γαr,t

)
− 1

β2,t
exp

(
2ẑ2,t
γα2,t

)
− εr + ε2

...
1
βr,t

exp
(

2ẑr,t
γαr,t

)
− 1

β(N−1),t
exp

(
2ẑ(N−1),t
γα(N−1),t

)
−εr+εN−1


(5.11)

With (5.10) and (5.11), the KF can be implemented. It should be noted that for

a total of N measurements from N ANs, we can utilise only (N − 1) observation

as given by the dimension of (5.11). Which means that some of the information

is lost during the linearisation steps.

5.2.2 The Hybrid AoA-RSS Signal Model

The hybrid AoA-RSS signal model was introduced in chapter 3 for static nodes.

Here we detail it in the context of mobile nodes. With both distance and angle

measurements at hand, the coordinates of the TN at the tth time step can be

computed as follows

x̂t = x̄i + d̂i,t cos θ̂i,tδi,t, (5.12)

ŷt = ȳi + d̂i,t sin θ̂i,tδi,t, (5.13)

The estimated distance d̂i,t is given by(5.5). On the other hand, the estimated

angle of arrival at time step t, θ̂i,t, is given by

θ̂i,t = arctan
(

(yt − ȳi)
(xt − x̄i)

)
+mi,t, (5.14)
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where mi,t is the zero mean Gaussian random variable representing the noise in

angle estimate, i.e., mi,t ∼ N
(
0, σ2

mi,t

)
. With the above observations, (5.12) and

(5.13) can be written in a vector form as

Aut = b̂t, (5.15)

where A† is the Moore–Penrose pseudo-inverse of A and A = diag (e1, e1), where

e1 is a column vector of N ones. The observation matrix b̂ is given by

b̂t =
[
b̂x,t b̂y,t

]T
, (5.16)

b̂x,t=


x̄1 + d̂1,t cos θ̂1,tδ1,t

...

x̄N + d̂N,t cos θ̂N,tδN,t

, b̂y,t=


ȳ1 + d̂1,t sin θ̂1,tδ1,t

...

ȳN + d̂N,t sin θ̂N,tδN,t

,

where δi is the unbiasing constant for the hybrid AoA-RSS signal and is given by

δi,t = βi,tρi,t, (5.17)

and ρi,t = exp (σ2
mi,t/2).

5.3 Theoretical MSE for Erroneous PLEs

In this section, we derive the theoretical MSE to observe the impact of incorrect

PLE assumption on location estimation while using AoA-RSS signal model [91].

First, we use the observed path-loss (5.3) to extract the range between AN and

TN when the true values of PLEs are not known. For ease of understanding we

will drop the subscript t in this section. Using the erroneous PLE values we have

from (5.3)

zi
γα̌i

= αi
α̌i

ln di + w̌i
γα̌i

, (5.18)
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where α̌i is the incorrect PLE for the ith AN, i.e., α̌i =αi+ei, and ei represents the

error in PLE associated with ith AN. Taking exponential on both side of (5.18),

the unbiased distance estimate using and erroneous PLE is obtained as

ďi = dκii exp
(
w̌i
γα̌i

)
Λi, (5.19)

where κi = αi/α̌i and Λi = exp
(
−

σ2
w̌i

2(γα̌i)2

)
.

For the aforementioned hybrid AoA-RSS signal model, (5.19) is taken as the

distance estimate in (5.16), i.e., we use ďi instead of d̂i. Also the unbiasing

constant δi is changed to δ̌i = Λiρi, where δ̌i represents the unbiasing constant

with incorrect PLE. Thus, (5.12) and (5.13) are written as follows

x̂t = x̄i + ďi cos θ̂i,tδ̌i

ŷt = ȳi + ďi sin θ̂i,tδ̌i

which in matrix form is written as

uα = A†b̂α,

where

b̂α =
[
b̂x,α b̂y,α

]

b̂x,α=


x̄1 + ď1 cos θ̂1,tδ̌1

...

x̄N + ďN cos θ̂N,tδ̌N

, b̂y,α=


ȳ1 + ď1 sin θ̂1δ̌1

...

ȳN + ďN sin θ̂N δ̌N

,

The theoretical MSE is then given by [61]

MSE = Tr
{
Ew,m

[
(ǔα − uα) (ǔα − uα)T

]}
, (5.20)

where ǔα is the estimated location using noisy angle estimates and noisy range
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estimates with incorrect PLEs, while uα is the ground truth. Thus (5.20) can be

simplified to

MSE (u) = Tr
{
A†Cα (u)A†T

}
, (5.21)

where Cα (u) = Ew,m

[(
b̌α − bα

) (
b̌α − bα

)T
]
, for bα representing the noise-

free observation, b̌α representing the noisy observation and incorrect PLEs and

Ew,m is the expectation w.r.t. shadowing noise and noise associated with angle

estimates. The covariance Cα (u) , can be partitioned into separate sub-matrices

as follows

Cα (u) =

 Cα (x) Cα (xy)

Cα (xy) Cα (y)

 , (5.22)

where

Cα (x) = Ew,m

[(
b̂x,α − bx,α

) (
b̂x,α − bx,α

)T ]
∈RN×N (5.23)

Cα (y) = Ew,m

[(
b̂y,α − by,α

) (
b̂y,α − by,α

)T ]
∈RN×N (5.24)

Cα (xy) = Ew,m

[(
b̂x,α − bx,α

) (
b̂y,α − by,α

)T ]
∈RN×N (5.25)

Cα (x), Cα (y) and Cα (xy) reduces to (5.26), (5.27) and (5.28), respectively, for

i = j and (5.29), (5.30) and (5.31), respectively for i 6= j. Derivation is given in

Appendix IV.

5.4 Target Tracking

A detailed performance comparison is presented in this section between KF, EKF

and PF, first using RRS measurements and then AoA-RSS signal model. The

PF performance will be analysed for different number of particles. As already

mentioned a constant velocity model is considered. However to imitate a more

realistic environment sudden changes in direction of TNs are considered.
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Algorithm 5.1

Cα (x)ii = d2κi
i

(
σ2
w̌i

(γα̌i)2 + σ2
mi

)
+ d2κi

i

2 cos (2θi) exp
(

σ2
w̌i

(γα̌i)2 − σ
2
mi

)
+ (di cos θi)2 − 2didκii cos2 θi (5.26)

Cα (y)ii = d2κi
i

(
σ2
w̌i

(γα̌i)2 + σ2
mi

)
− d2κi

i

2 cos (2θi) exp
(

σ2
w̌i

(γα̌i)2 − σ
2
mi

)
+ (di sin θi)2 − 2didκii sin2 θi (5.27)

Cα (xy)ii = d2κi
i cos θi sin θi exp

(
σ2
w̌i

(γα̌i)2 − σ
2
mi

)
−2dκii cos θi sin θi+d2

i cos θi sin θi

(5.28)

Cα (x)ij =
(
dκii d

κj
j − dκii dj − did

κj
j + didj

)
cos θi cos θj (5.29)

Cα (y)ij =
(
dκii d

κj
j − dκii dj − did

κj
j + didj

)
sin θi sin θj (5.30)

Cα (xy)ij =
(
dκii d

κj
j − dκii − d

κj
j + didj

)
cos θi sin θj (5.31)
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5.4.1 The Kalman Filter

The KF, named after Rudolf E Kalman, a Hungarian researcher, is an algorithm

that is based a sequence of noisy observations and is used to estimate unknown

parameters which in tracking of wireless nodes are positions and velocities of the

nodes. It is observed that the estimate based on the series of observation produce

better estimates than those based on individual readings. For its simplicity the

KF is one of the most widely used tracking algorithm. However the requirement

of linear observation models corrupted with Gaussian noise for its implementation

is one of the drawbacks of KF. KF is based on the fact that the state of the system

at time step t is evolved from the state of the system at t− 1. The KF involves

alternative predict and update steps. Thus starting from an initial guess state s0

and initial error covariance matrix W0 the KF propagates the first two moments,

i.e., mean and covariance of the state vector st at every time step.

Consider a linear dynamic system where the state and observation model is rep-

resented by the following equations

st = S s(t−1) + qt, (5.32)

pt = Hst + mt, (5.33)

where S represents the transition matrix and is dependent on the motion of

the TN, pt is the measurements received from the sensors,H is the data matrix

and is dependent on the observation model in question (In this thesis we use

RSS and AoA-RSS observation models), s(t−1) is the state vector at previous

time step, i.e., the position and velocity of TN at previous time step, rt is the

process noise due to modeling error which is assumed to be zero mean Gaussian

process with covariance Qt, i.e., rt ∼ N (0,Qt) , mt is the measurement noise that

is assumed to be zero mean Gaussian random process with covariance Ct, i.e.,
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mt ∼ N (0,Ct). Then the prediction and measurement update steps involved in

KF’s implementation are as follows

5.4.1.1 Prediction

The first step involve the prediction of the state one step ahead based on the

motion model. Thus starting from the initial state ŝ0 and initial error covariance

matrix W0, and using a constant velocity model the KF updates ŝ0 and W0

according to following equations.

spt = S ŝ(t−1) + εt, (5.34)

W̄t = S W(t−1)S + Qt, (5.35)

where εt is a random noise simulating the modeling error at time step t, spt is the

predicted state at time step t, given by spt = [xpt , ypt , vx, vy], xp and yp are the

predicted coordinates, vx and vy are the velocities in x and y directions. W̄t is

the predicted error covariance and S is called the transition matrix given by

S =



1 0 Ts 0

0 1 0 Ts

0 0 1 0

0 0 0 1


, (5.36)

where Ts is the time interval between two time steps. The value of Ts may

change between states, however for simplicity we assume a constant time step

which makes matrix S a constant matrix.

5.4.1.2 Measurement Update

In the measurement update step, the predicted state vector and the error cov-

ariance are refined based on the observation model (5.33) and the measurements
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from the sensors. The state vector is updated according to

ŝt = spt + Kt (pt −Hspt ) . (5.37)

where Kt is the Kalman gain, a weighting matrix that determines how reliable

are the measurements from the sensors as compared with the predicted state.

The Kalman gain makes this decision based on the predicted error covariance

(W̄t) and the measurement error covariance (Ct). So, for example in scalar

parameter estimation, a Kalman gain of 0.5 suggests that the predicted state and

the measurements are equally realiable. Thus the final output estimate will be a

simple average of both. The Kalman gain at time step t is given by

Kt = W̄tHT
(
H W̄t HT + Ct

)
. (5.38)

The error covariance is also dependent on Kalman gain and is update according

to

Wt = (I4 −KtH) W̄t. (5.39)

The complete derivation of KF filter is detailed in [92]. The data matrix H and

the observation vector pt for KF are defined next.

RSS Signal Model: For RSS based systems, the observation model is given by

(5.19), thus pt is equivalent to rt. The data matrix for RSS based measurement

model is given by ARSS in (5.19). However, in order for H to have correct

dimensions, to be used in (5.37), (5.38) and (5.39), the data matrix H is given

by H = [ARSS Z] where Z is a zero matrix of dimension (N − 1) × 2. The

only purpose of adding the zero matrix, Z to the data matrix, H is to make H

dimensionally consistent with other matrices used in KF.

AoA-RSS Signal Model: For AoA-RSS signal model, the observation model

is given by 5.15. Thus, the observation vector, pt is equivalent to bt. The data

matrix, H=
[
A Z̄

]
, where Z̄ is a zero matrix of dimension 2N×2, and is included
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in data matrix, H to make it dimensionally consistent with other matrices used

in filtering process.

5.4.2 Extended Kalman Filter

For EKF no compulsion of linear transition or linear observation model is re-

quired. The EKF approximates the non linear model with the first order Taylor

series expansion of the observation model. Thus considering a non linear dynam-

ical system of the form

st = f
(
s(t−1)

)
+ rt, (5.40)

pt = g (st) + mt. (5.41)

Equ. (5.40) and (5.41) represents the state transition and observation model,

respectively. Where f (.) and g (.) are non linear differentiable functions. The

prediction and measurement update steps are presented as follows

5.4.2.1 Prediction

The state vector is predicted according to the following equation

spt = f
(
ŝ(t−1)

)
+ εt. (5.42)

The function f (.) can be directly used to compute the predicted state. However

the same is not true for error covariance prediction. Thus the partial derivative

of f (.) is used instead. The predicted error covariance for the non linear system

is given as

M̄ = Jf

∣∣∣∣∣∣
ŝ(t−1)

M(t−1) JTf

∣∣∣∣∣∣
ŝ(t−1)

+ Qt, (5.43)
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where Jf |ŝ(t−1)
is the Jacobian of f (s) evaluated at ŝ(t−1), i.e., ∂f

∂s

∣∣∣
ŝ(t−1)

. In most

scenarios the state transition model is linear, which is also the case in constant

velocity model. Thus (5.34) will be used to predict the state while using EKF.

5.4.2.2 Measurement Update

The predicted error covariance is used at the measurement update stage to calcu-

late the Kalman gain. The Kalman gain and the measurements from the sensors

are then utilised to refine the predicted state vector. The predicted state vector

is updated by

ŝt = spt + Kt (pt − g (spt )) , (5.44)

and the Kalman gain is computed as

Kt = M̄tBT
(
B M̄t BT + Ct

)
, (5.45)

where B =
[
Jg|spt

]
and Jg|spt is the Jacobian of g (s) evaluated at spt . The error

covariance matrix is updated as

Mt = (I4 −KtB) M̄t. (5.46)

The complete derivation of EKF and smoothing equations is given in [93].

For RSS Signal Model: For RSS signal model, pt is equivalent to zt in 5.4 and

B =
[
Jg|spt Z

N×2

]
and Jg|spt is the Jacobian of g (s) evaluated at spt and is given

by

Jg

∣∣∣∣∣∣
spt

=


γα1,t(xpt−x̄1)

dp1,t

γα1,t(ypt−ȳ1)
dp1,t

... ...
γαN,t(xpt−x̄N)

dpN,t

γαN,t(ypt−ȳN)
dpN,t

 , (5.47)

where dpi =
(
(xpt − x̄i)2 + (ypt − ȳi)

)
.
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5.4.3 Particle Filter

Though computationally more expensive, the PF unlike KF does not require the

noise to be Gaussian or the observation model to be linear. The PF is a recursive

sequential Monte Carlo estimator that approximates the posterior density of the

state vector with randomly drawn points also called particles and updates the

state vector as new observations become available. The accuracy of the filter is

directly and computational cost is inversely proportional to the number of particle

Ns used.

According to Bayesian statistics the posterior state probability density function

(PDF) is given as

p
(
st | p(1:t)

)
=
p (pt | st) p

(
st | s(t−1)

)
p
(
pt | p(t−1)

) p
(
s(1:t−1) | p(1:t−1)

)
, (5.48)

where p(1:t) = (p1,p2, ...,pt) are the observations upto time step t. The posterior

PDF can be approximated by Ns particle in two dimension sj,t for j = 1, ..., Ns.

Each particle is associated with weight wj,t.

p
(
sj1:t | p1:t

)
= ΣNs

j=1 w
j
t δ
(
s1:t −sj(1:t)

)
. (5.49)

The particles are generated from the proposal density also called importance

function g (s1:t | p1:t) and the weights are given by

wjt = p (s1:t | p1:t)
g (s1:t | p1:t)

. (5.50)

The proposal density is chosen as

g (s1:t | p1:t) = g (st | st−1,pt) g
(
s1:(t−1) | p1:(t−1)

)
, (5.51)

then from (5.48)-(5.51) we get

wjt ∝
p
(
pt | sjt

)
p
(
sjt | sj(t−1)

)
g
(
sjt | sj(t−1),p

j
(t−1)

) wj(t−1). (5.52)
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A special criteria can be designed to select the proposal density [94]. However

a straightforward approach is to select the prior as the proposal density, i.e.,

g
(
sjt | sj(t−1),pt

)
= p

(
sjt | sj(t−1)

)
which reduces (5.52) to

wjt = p
(
pt | sjt

)
wj(t−1). (5.53)

The marginalized density of the state vector is given by

p (st | pt) = ΣNs
j=1w

j
t δ
(
st − sjt

)
. (5.54)

Degeneracy of Particle Filters: One of the drawback of PF is degeneracy

of the particles. During degeneracy a large portion of particles are given negli-

gible weights. Thus only those particles with significant weights called effective

particles contributes in approximating the posterior PDF. This scenario can be

avoided by the process of resampling. When the number of effective particle

Neff drops below a predefined threshold Nthr, a resampling procedure is invoked.

During resampling, Ns particles are selected from effective particles with repeti-

tion, where the probability of selecting a particle is directly proportional to its

weight. These selected particles are then given equal weights of 1/Ns. The number

of effective particles can be calculated according to the following equation.

Neff = 1
ΣNs
j=1 (wj)2 . (5.55)

5.5 PLE Estimation

A novel PLE estimator was presented in chapter 3, where static TNs and thus

a static PLE vector was considered. However when the TN is moving the PLE

vector changes continuously. We consider a varying PLE vector and then use

GenPS algorithm to estimate the PLE vector at every time step, before employing

KF or PF for tracking. The GenPS algorithm is explained in section 3.3. However
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Algorithm 5.2 : Initialization and GenPS
for time step t = 1,...

for i = 1, ..., N
estimate the path-loss ẑi,t and the AoA θ̂i,t.

end
for k = 1, ...
i. Initialize α0 ∈ [2 5], ∆0,τ, ξ, ν.
ii. Evaluate cost function with all poll points from poll
set

{
αk + ∆kd̄, d̄ ∈ D

}
.

iii-a. If improved poll point is found, accept αk+1, set
∆k+1 = ξ∆k.
iii-b. If improved poll point cannot be found, set
αk+1 = αk, set ∆k+1 = ∆k

ξ
.

Repeat until Ω
(
αk+1

)
− Ω

(
αk
)
< τ.

end
Goto algorithm 2 or algorithm 3.

end

in this section we give a step by step procedure to estimate PLE vector in the

context of tracking via KF or PF. The steps involved in PLE estimation, KF and

PF are given in algorithm 5.2, 5.3 and 5.4.

5.6 Simulation Results

Through extensive Monte Carlo simulation we analyse the perofrmance of all

filters discussed in this chapter using RSS signal model and AoA-RSS signal

model with estimated PLE vectors. All simulation are run for ` number of times

independently for η Monte Carlo runs.

5.6.1 Performance Analysis for RSS Signal Model

A 2-D network of dimension 60×60 metres is considered with a single TN moving

with a constant velocity of 1 m/s. To make the scenario more realistic the TN

encounters sudden changes in direction. For simplicity the noise variance, and
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5.6 Simulation Results

Algorithm 5.3 : Kalman Filter
Generate initial state s0 and initial Covariance matrix W0.
i. Prediction.
Predict v̄t by propagating s0 through the motion model.

s̄t = Sŝt−1 + rt

Predict W̄t by

W̄t = SWt−1ST + Q

ii. Measurement update
Estimate Kalman gain

Kt = W̄tHT
(
HW̄tHT + C

)
Update the predicted state vector and predicted error covariance matrix.

ŝt = s̄t + Kt

(
b̂t −Hp̄t

)

Wt = (I4 −KtH) W̄t

Set t = t+ 1. Go to Algorithm 1.
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5.6 Simulation Results

Algorithm 5.4 : Particle Filter
Initialization:
Generate samples

{
sj∗0 ∼ N (µ0, σ

2
0)
}
, j = 1, ..., Ns. Set wj∗0 = 1

Ns
.

i. Prediction:
For j = 1, ..., Ns, predict according to

sjt = p
(
st | sj∗t−1

)
ii. Weight update
Update the weights according to

wjt = p
(
bt | sjt

)
wjt−1

Normalize weights by

w̃jt = wjt

ΣNs
j=1w

j
t

iii. Estimate Output
The state is estimated by the mean of posterior i.e

ŝt = E [p (st | bt)]
or

ŝt = 1
Ns

ΣNs
j=1w̃

j
ts
j
t

resample if required. Set t = t+ 1 and wjt = 1
Ns
. Go to algorithm 1.

102



5.6 Simulation Results

10 20 30 40 50 60 70
10

20

30

40

50

60

70

m

m

 

 

ANs
True Path

PF (Ns = 200)

EKF
KF

Figure 5.1: True trajectory comparison with estimated trajectory via KF, EKF
and PF. N = 8, Ns = 200, Nthr = Ns/4, αi,t = 2.5 ∀ i ∧ t, Ts = 1 sec, σ2

w̌i,t
=

0.5 dB ∀ i ∧ t.

PLE values are considered fixed and same for all ANs.

Fig. 5.1 shows the true trajectory of the TN along with the estimated trajectory

with KF, EKF and PF. The number of particle used for this demonstration are

kept fixed at Ns = 200. From Fig. 5.1 it can be clearly seen that the EKF outper-

forms the the KF by a high margin. Moreover the PF has superior performance

than the EKF. This superior performance of PF is presented more clearly in the

next demonstration.

In Fig. 5.2, the performance of the filters are compared in terms of root mean

square error (RMSE). The superior performance of EKF over KF is evident from

Fig. 5.2. It is also observed that the PF’s performance is approximately the same

as EKF for small number of particles. However PF outperforms EKF for large

number of particles. The rise and fall in the RMSE of KF is due to the selection of

random reference AN as explained in section 5.2.1. As the TN moves away from

the reference AN, the reference distance increases and the performance of the

filter deteriorate and improves again when the TN moves towards the reference
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Figure 5.2: RMSE comparison between the KF, EKF and the PF. η = 200,
N = 8, Ns = 100, Nthr = Ns/4, αi,t = 2.5∀ i ∧ t, Ts = 1 sec, σ2

w̌i,t
= 0.5 dB∀ i ∧ t.

AN.

The accuracy of PF is directly proportional to number of particle considered. In

Fig. 5.3 the performance of PF is compared for different number of particles. It

is observed that the performance of PF improves with higher number of particles.

Fig. 5.4 shows the particle distribution across the network. Initially no prior

information about the TN’s position is available. Thus the Initial particles are

randomly distributed throughout the network at t = 1. At t = 2 a sudden

decrease in number of effective particles is observed. This is because most of the

particles at t = 1 are given negligible weights due their random and incorrect

positions. At t = 10 most of the particles have converged at the true position of

the TN. A similar behavior is observed at t = 30.

5.6.2 Performance Analysis for AoA-RSS Signal Model

A fully connected 2-dimensional network of 150m× 150m with a single TN, with

constant velocity, changing directions and unknown coordinates is considered.

104



5.6 Simulation Results

50 70 90 110 130 150

1

1.5

2

2.5

3

Time Step (s)

R
M
SE

(m
)

 

 

PF (Ns = 15)

PF (Ns = 25)

PF (Ns = 50)

PF (Ns = 500)

Figure 5.3: RMSE comparison of PF using different number of particles. η =
200, N = 8, Ns = [15, 25, 50, 500], Nthr = Ns/4, αi,t = 2.5 ∀ i ∧ t, Ts = 1 sec,
σ2
w̌i,t

= 0.5 dB ∀ i ∧ t.
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Figure 5.4: Distribution of particles across the network at different time steps.
N = 8, Ns = 500, Nthr = Ns/4, αi,t = 2.5∀ i ∧ t, Ts = 1 sec, σ2

w̌i,t
= 0.5 dB∀ i ∧ t.
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Figure 5.5: Performance comparison between simulation and analytical MSE.
ANs = [0 0, 0 50]T , ei = α̌i − αi, α1 = 2.5, α2 = 3, N = 2, σ2

w̌i
= 1 dB∀ i,

σ2
mi

= 10 ∀ i, ` = 500.

In Fig.5.5, the theoretical RMSE and simulation RMSE of location estimates are

compared in a scenario where erroneous PLE values are used. For simplicity only

two ANs are considered. Two different values of PLE, i.e., α1 = 2.5 and α2 = 3

are considered for each AN-TN link. The error e1 = α̌1 − α1 and e2 = α̌2 − α2 in

the PLEs are shown on the x and y axis, while the z coordinates represents the

RMSE in location estimate. The shadowing variance is σ2
w̌i

= 1 dB ∀ i while the

error in angle estimates is σ2
mi

= 10 ∀ i. The simulation results are averaged over

ε = 500 independent runs. It is clear from the plot that even a small error in PLEs

has a significant impact on localisation accuracy. Futhermore, it is evident from

Fig. 5.5 that the theoretical MSE accurately predicts the system performance.

Fig. 5.6 shows the true trajectory of TN’s motion and performance comparison

of tracking via KF for erroneous PLE values and estimated PLEs. The true

values of the PLEs are considered to be changing at every time step and drawn

randomly from a uniform distribution, i.e., α ∈ U [2 5] . The erroneous PLEs are

generated by adding a random noise with a Gaussian distribution of variance σ2
α
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Figure 5.6: Performance comparison of KF using erroneous PLEs and estim-
ated PLEs. Ts = 1 sec, σ2

mi
= 50 ∀ i, σ2

w̌i
= 5 dB ∀ i, α ∈ U [2 5] , σ2

α = 0.2,
∆0 = 0.1, v = 10, ξ = 2, τ = 3, η = 1, N = 4.

and mean zero at every time step. However, it is assumed that the realization of

the added noise does not change within each time step. For Fig. 5.6, σ2
α = 0.2.

The estimated angle and the shadowing variance is kept fixed at σ2
mi

= 50 and

σ2
w̌i

= 5 dB ∀ i respectively. The GenPS algorithm estimates the PLEs before

the filtering process at every time step of Ts = 1s, the parameters of the GenPS

algorithm are given at the bottom of Fig. 5.6. It is evident from the trajectories

in Fig. 5.6 that KF with PLE estimation via GenPS performs considerably better

than the KF with incorrectly assumed PLEs.

Fig. 5.7 keeps the same parameters as in Fig. 5.6 and compares the RMSE at

every time step using KF with an erroneous and estimated PLE vector. The

RMSE values are an average over η = 30 independent runs. A performance

improvement of 25%-30% is observed when using estimated PLEs.

Fig. 5.8 shows the true trajectory of the motion of the TN, the estimated traject-

ory with PF using erroneous PLEs and the trajectory of the PF with estimated

PLEs. The estimated angle and the shadowing variance is kept fixed at σ2
mi

= 50
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Figure 5.7: RMSE comparison of tracking via KF using estimated and erroneous
PLE values. Ts = 1 sec, σ2

mi
= 50 ∀ i, σ2

w̌i
= 5 dB ∀ i, α ∈ U [2 5] , σ2

α = 0.5,
∆0 = 0.1, v = 10, ξ = 2, τ = 3, η = 30, N = 4.

∀ i and σ2
w̌i

= 5 dB ∀ i respectively. Similar to Fig. 5.6 and Fig. 5.7, α ∼ U [2 5]

and α̌ ∼ U [2 5] . For the PF, we consider Ns = 2000 particles. Following the

pattern set by the KF in Fig. 5.6 and 5.7, the PF with PLE estimation exhibits

superior performance to the same with erroneous PLEs.

Keeping the parameters the same as in Fig. 5.8, Fig. 5.9 compares the RMSE

between of the PF with and without PLE estimation. The simulations are run

η = 30 times. For both cases, two different sets of particles, i.e., Ns = 1000

and Ns = 2000 are used. It is seen that the performance of PF with incorrect

PLEs does not vary with different Ns values, this is because the incorrect PLEs

induces such a large error in the observation vector that the PF does not converge

even with a large numbers of particles. On the other hand, it is seen that while

estimating the PLEs with GenPS, 30%-35% improvement in accuracy is achieved.

Fig. 5.10 compares the performance of both KF and PF using GenPS for PLE

estimation. Two different values of the number of particles, i.e., Ns = 1000,

and 2000 are taken for PF tracking. Also two sets of shadowing variance and
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Figure 5.8: Performance comparison of tracking via PF while using erroneous
and estimated PLE values. Ts = 1 sec, Ns = 2000, Nthr = Ns/4, σ2

mi
= 50 ∀ i,

σ2
w̌i

= 5 dB ∀ i, α ∈ U [2 5] , σ2
α = 0.2, ∆0 = 0.1, v = 10, ξ = 2, τ = 3, η = 1.
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Figure 5.9: RMSE in location estimate utilizing PF, using estimated and erro-
neous PLE values. Ts = 1 sec, σ2

mi
= 50 ∀ i, σ2

w̌i
= 5 dB ∀ i, Nthr = Ns/10,

α ∈ U [2 5] , σ2
α = 0.5, ∆0 = 0.1, v = 10, ξ = 2, τ = 3, η = 30.
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Figure 5.10: Performance comparison between PF and KF using estimated
PLE. Ts = 1 sec, Nthr = Ns/10, α ∈ U [2 5] , σ2

α = 0.5 ∆0 = 0.1, v = 10,
ξ = 2, τ = 3, η = 30.

angle noise variance, i.e., σ2
w̌i

= 5 dB, σ2
mi

= 50 and σ2
w̌i

= 10 dB, σ2
mi

= 100 are

considered for both KF and PF. In both scenarios the PF performs better than

the KF.

5.7 Summary

In this chapter we analysed the performance of some of the most widely used

tracking filters to date. These are KF, EKF and PF. Two signal models were

under focus, RSS and AoA-RSS. The RSS reading from the ANs are non linear

in nature. Thus its linearised version is used for tracking via KF and a Taylor

series expansion of the non linear observation model is used for EKF. It is shown

that EKF performs considerably better than KF, while the PF outperforms the

EKF for RSS signal model. Furthermore throughout literature the PLE vector,

which is essential for range estimation via RSS is assumed to be known. To

demonstrate the effect of incorrect PLE vector on location coordinates of the
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TN, a theoretical MSE expression is derived for AoA-RSS signal model. Then

using the GenPS method the PLE vector is estimated at every time step before

employing KF, EKF or PF for tracking of wireless node. Similarly for AoA-

RSS signal model with estimated PLEs, EKF dominates KF in terms of RMSE

performance and PF outperforming EKF.
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6 Conclusions and Future Work

6.1 Conclusions

This thesis focused on improving the estimation accuracy of localisation in WSN.

A major portion of the thesis covers the utilisation of hybrid signal models with

range and bearing measurement. A number of enhanced algorithms based on

hybrid signals are proposed. The thesis also focuses on tracking of wireless node,

in a network with unknown path-loss characteristics and presents a thorough per-

formance analysis of target tracking via KF, EKF and PF based on the received

strength of the signal.

With the increasing demand of accurate positioning system, hybrid signal based

localisation is getting considerable attention. Thus, in this thesis a highly celeb-

rated hybrid signal model is studied that is based on the AoA and the ToA of

the signal. The hybrid estimator is improved by rendering the model unbiased

and improving the estimation accuracy. In order to analyse the LLS estimator’s

performance utilising the hybrid AoA-ToA signal, a theoretical MSE expression is

derived that accurately predicts the system performance. It is observed that the

system performance in terms of RMSE is different while using different combina-

tions of ANs. Thus, by designing an optimal AN selection step, called OAS that

is based on the theoretical MSE, the combination of ANs that shows minimum
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error is chosen for localisation.

Due to different level of noise and different AN-TN separations associated with

different links, some ANs are more reliable than other. Thus weights are given to

ANs which are directly proportional to the link quality. The covariance matrix

stores all the information of signal quality. Hence the noise covariance matrix is

first derived and a WLLS-AoA-ToA algorithm is proposed which is more accurate

than the LLS estimator.

Finally, in order to lower bound the performance of WLLS-AoA-ToA algorithm,

LCRB-AoA-ToA, which is used extensively in literature as a benchmark for sys-

tem performance, is derived.

The estimation of ToA of the signal requires the nodes to be equipped with

synchronised high frequency clocks. Of course this will increase the over all cost

of the network. Since the RSS is already available at the receiving node without

any additional hardware, it can be utilised to estimate the range, rather than

using ToA. Thus another hybrid signal that is based on AoA and RSS of the

signal is studied. Following a similar trend as for AoA-ToA signal model, first

the theoretical MSE for LLS solution is derived that accurately predicts the LLS

performance. This is followed by deriving the noise covariance matrix for AoA-

RSS signal model, to be utilised in the WLLS-AoA-RSS algorithm.

Due to bad GDoP and because some TNs may be placed outside the convex

hull defined by the ANs, some ANs may actually deteriorate the overall accuracy

of estimation. In order to utilise these ANs in an optimum fashion, a two step

optimised AN selection algorithm, called TSOAS, is designed. In TSOAS, the

whole network is divided into different zones and then for each zone an optimal

combination of ANs is selected that has the lowest MSE for that particular zone.

This optimal combination is selected on the basis of theoretical MSE. In the
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second step, all TNs are localised with their respective optimal combination of

ANs which depends on the zone the TN lies in.

The extraction of range from RSS requires the correct knowledge of PLE val-

ues associated with each link. In order to consider a more realistic environment,

the PLE vector is estimated before localisation, rather than assuming that it is

known. This is done with the help of GenPS algorithm, a derivative free op-

timisation technique. Together with WLLS-AoA-RSS algorithm a more realistic

and accurate estimator is obtained. Finally to lower bound the performance of

WLLS-AoA-RSS algorithm a LCRB-AoA-RSS is derived.

In large networks a good number of TNs fails to communicate with ANs because

of their distant position from the ANs. These out of range TNs are totally

dependent on neighbouring TNs to localise themselves. Thus the hybrid schemes

are taken one step further and cooperative links are established between the

TNs. Three cooperative localisation schemes are proposed i) LLS Coop ii) low

complexity LLS Coop and iii) optimised LLS Coop. Significant performance

improvement is observed when cooperative links are established between the TNs.

But to implement such networks all TNs must be capable of distance and angle

estimation. This significantly increase the overall cost of the network. For this

reason a low complexity LLS Coop is proposed which eliminates the need for

hybrid TNs. Cooperative localisation algorithms are usually computationally

more expensive than non cooperative algorithms. In order to analyse the increase

in computational load, a complexity analysis is presented between LLS, LLS

Coop, low complexity LLS Coop and optimised LLS Coop.

In order to estimate range from RSS, the value of the PLE is required. In order

to realise the impact of using incorrect PLE on estimation accuracy, a theoretical

MSE expression is derived for LLS while using erroneous PLE values. To make
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the scenario more realistic a mobile TN is considered which make the PLE vector

change continuously. Then using GenPS, the PLE vector is first estimated, which

followed by the tracking of mobile TN using the KF or the PF. A significant

improvement is observed in the accuracy when utilising the estimated PLE vector

rather than erroneous PLE vector, even if a very small error is added to the true

PLE values. This is followed by an extensive performance comparison between

KF, EKF and PF based on the RSS of the signal. It is observed that the accuracy

of PF is the best subject to high number of particles, followed by the EKF and

followed by the KF. It is also observed that for small number of particles (around

25-50), the performance of PF is similar to the EKF.

6.2 Future Work

Although localisation of wireless nodes has been a well studied subject, there still

remains room for further research. Some current trends and topics for future

research are highlighted below.

Divergence due to bad GDOP

It is observed that the performance of a positioning system deteriorate signific-

antly when the TNs are outside the convex hull defined by the ANs. Optim-

isation methods such as Gauss-Newton fails to converge in these scenarios while

LLS based algorithm shows an unacceptable accuracy. This problem can be ad-

dressed with other optimisation methods like genetic algorithms (GA), simulated

annealing (SA), Markov chain Monte-Carlo (MCMC) and GenPS. Further stud-

ies are required for the efficiency of these methods for location of nodes outside

the convex hull.
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Multiple TN Localisation and Tracking

Tracking of a mobile wireless node has been studied extensively in literature.

However tracking of multiple nodes is a fairly new area of research. Some recent

studies propose multiple objects tracking that are based on video captured from a

stationary camera. This require significant image processing. However Multiple

node tracking using RF signals is an open area of research.

Optimum AN positioning for a moving TN

The optimum AN selection presented in this thesis is highly dependent on the

GDOP of AN and TN. If a TN is moving then the GDOP will change continuously.

Thus a particular AN can perform optimally at one instance but not at other

instance due the motion of TN. An algorithm can be developed based on the

motion of ANs in which the ANs can change their position according to the

positions of TNs.

Hybrid RSS-ToA

We already have RSS information available in a ToA based localisation system.

Thus in order to improve performance both measurement can be utilised simul-

taneously. Very little work has been done on this issue. Both RSS based and ToA

based systems perform differently in different scenario for example ToA based sys-

tem are found to be more accurate than RSS based system at higher inter node

distances while RSS based localisation systems are preferred at small inter node

distances. Thus one can be used instead of the other depending upon the nature

of the network. Or perhaps some weighting strategy can be devised to give dif-

ferent weights to RSS and ToA measurement based on their performance in a
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particular network.

Additive and Multiplicative Noise

Two types of noise models for distance estimate (for ToA) are available in literat-

ure. The additive noise model which is independent of the actual distance between

the nodes and the multiplicative noise model which is distance dependent. Ex-

tensive range estimates on real time systems are required to obtain conclusive

results on the type of noise model that best fits the range estimates [95].
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7 Appendices

This section presents the derivations of all the mathematical expressions discussed

in this thesis. These include: The derivations of all the expectation taken in

table. 2.1, derivation of covariance matrix for AoA-ToA signal model, derivation

of covariance matrix for AoA-RSS signal model, Derivation of FIM for AoA-ToA

and AoA-RSS signal model and derivation of covariance matrix for AoA-RSS

signal model with incorrect PLE assumption.

Appendix I

This appendix presents the derivation of all the expectations taken in table. 2.1.

Let τ be a Gaussian random variable with zero mean and σ2
τ variance i.e. τ ∼

N (0, σ2
τ ) , also a and b are assumed to be constants.

• Eτ (cos τ) = exp
(
−σ2

τ

2

)
Eτ (cos τ) can be written in the form of its infinite series as

Eτ

[
cos τ

]
=1−Eτ

[
τ 2

2!

]
+Eτ

[
τ 4

4!

]
−Eτ

[
τ 6

6!

]
+ · · · , (7.1)
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where (7.1) is Maclaurin series expansion of the cos function. Taking the expec-

tation of individual terms.

Eτ

[
cos τ

]
= 1− σ2

τ

2 + σ4
τ

8 −
σ6
τ

48 + · · · (7.2)

Equation (7.2) is power series expansion of exp
(
−σ2

τ

2

)
. Thus,

Eτ

[
cos τ

]
= exp

(
−σ

2
τ

2

)
. (7.3)

_____________________________________________

• Eτ [cos 2τ ] = exp (−2σ2
τ )

Expanding Eτ [cos 2τ ] with Maclaurin series

Eτ [cos 2τ ] =1−Eτ
[
(2τ)2

2!

]
+Eτ

[
(2τ) 4

4!

]
−Eτ

[
(2τ) 6

6!

]
+· · ·

Eτ [cos 2τ ] =1−Eτ
[
4τ 2

2

]
+Eτ

[
16τ 4

24

]
−Eτ

[
64τ 6

720

]
+· · ·

Eτ [cos 2τ ] =1−2Eτ
[
τ 2
]
+ 2

3Eτ
[
τ 4
]
− 4

45Eτ
[
τ 6
]
+· · ·. (7.4)

The second, fourth and sixth moment of a Gaussain random variable, τ , is given
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by σ2
τ , 3σ4

τ and 15σ6
τ , respectively. Putting in (7.4) we get,

Eτ [cos 2τ ] =1−2σ2+ 2
3
(
3σ4

)
− 4

45
(
15σ6

)
+· · ·

Eτ [cos 2τ ] =1−2σ2+2σ4− 4
315σ6 +· · ·. (7.5)

Equation (7.5) is power series expansion of exp (−2σ2
τ ) . Thus,

Eτ [cos 2τ ] = exp
(
−2σ2

τ

)
. (7.6)

_____________________________________________

• Eτ

[
sin τ

]
= 0

Eτ

[
sin τ

]
can be written in the form of its infinite series as

Eτ

[
sin τ

]
= Eτ

[
τ − τ 3

3! + τ 5

5! −
τ 7

7! + · · ·
]

(7.7)

since all odd moments of a Gaussian random variable are zero, thus

Emi

[
sinmi

]
= 0. (7.8)

_____________________________________________
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• Eτ

[
sin 2τ

]
= 0

Eτ

[
sin 2τ

]
can be written in the form of its infinite series as

Eτ

[
sin 2τ

]
= Eτ

[
2τ − 8τ 3

3! + 32τ 5

5! −
128τ 7

7! + · · ·
]

Since all odd moments of a Gaussian random variable are zero, thus

Eτ

[
sin 2τ

]
= 0. (7.9)

_____________________________________________

• Eτ
[
exp

(
τ
ab

)]
= exp

(
σ2
τ

2(ab)2

)
Mathematically the expectation can be presented as

Eτ

[
exp

(
τ

ab

)]
=
ˆ ∞
−∞

exp
(
τ

ab

) 1
σ2
τ

√
2π

exp
(
− τ 2

2σ2
τ

)
dτ.

=
ˆ ∞
−∞

1
σ2
τ

√
2π

exp
(
−
τ 2 − τ

ab
(2σ2

τ )
2σ2

τ

)
dτ.

By completing squares,
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Ewi

[
exp

(
τ

ab

)]
=
ˆ ∞
−∞

1
σ2
τ

√
2π

exp

−τ 2− τ
ab

(2σ2
τ )+

(
σ2
τ

(ab)

)2

2σ2
τ


exp

 1
2σ2

τ

(
σ2
τ

(ab)

)2
 dτ,

or

Eτ

[
exp

(
τ

ab

)]
=
ˆ ∞
−∞

1
σ2
τ

√
2π

exp

−
(
τ − σ2

τ

(ab)

)2

2σ2
τ

exp
(

σ2
τ

2 (ab)2

)
dτ. (7.10)

The first portion of (7.10) (in red) is the probability density function whose

integral is equal to 1, hence we conclude

Eτ

[
exp

(
τ

ab

)]
= exp

(
σ2
τ

2 (ab)2

)
. (7.11)

Appendix II-A: Derivation Of Covariance Matrix For

AoA-ToA Signal

This appendix presents the covariance matrix derivation.

Derivation of Equation (2.51). From (2.50), we have Cx
AT = E

[(
t̂x − tx

)
(
t̂x − tx

)T]
, putting the value of t̂x and tx for i = j, we get
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Cx
ATii = Emi,ni

((dT,i + ni

)
cos
(
θi +mi

)
δT,i − dT,i cos θi

)
2



Cx
ATii = Emi ,ni

((dT,i + ni

)2
cos2

(
θi +mi

))
δ2
T,i+

(
dT,i cos θi

)2

− 2δT,i
(
dT,i cos θi

)(
dT,i + ni

)
cos
(
θi +mi

) (7.12)

Cx
ATii = Emi,ni

(d2
T,i + n2

i + 2dT,ini
)(

0.5 + 0.5
(

cos 2θi cos 2mi

− sin 2θi sin 2mi

))
δ2
T,i +

(
dT,i cos θi

)2

− 2δT,i
(
d2
T,i + dT,ini

)
(

cos2 θi cosmi − cos θi sin θi sinmi

) (7.13)

(7.13) is obtained from (7.12) by using the identity cos2 (a) = 0.5 + 0.5 cos (2a) .

Also using the expectations (7.8) and (7.9), (7.14) is obtained.

Cx
ATii =

[(d2
T,i

2

)
+
(d2

T,i

2

)
cos 2θiEmi

(
cos 2mi

)
+ Eni

(
n2
i

2

)
+ Eni

(
n2
i

2

)

Emi

(
cos 2mi

)]
δ2
T,i +

(
dT,i cos θi

)2
− 2δT,i

(
dT,i cos θi

)2
Emi

(
cosmi

)
.

(7.14)

Finally by using (7.3) and (7.6), we conclude the proof by obtaining (2.51).

_____________________________________________

For non-diagonal terms of Cx
AT = E

[(
t̂x − tx

) (
t̂x − tx

)T ]
, i.e. i 6= j, putting the

123



Appendices

value of t̂x and tx we get

Cx
ATij = Emij ,nij

((dT,j+ni) cos
(
θi+mi

)
δT,i−dT i cos θi

)

×
((
dT,j + nj

)
cos
(
θj +mj

)
δT,j − dT,j cos θj

)

Cx
ATij = Emij ,nij

((dT,idT,j + dT,inj + dT,jni + ninj

)(
cos θi cosmi + sin θi sinmi

)
(
cosθj cosmj + sinθj sinmj

)
δT,ij

)((
dT,idT,j + dT,jni

)(
cosθi cosθj

cosmi + sinθi cosθj sinmi

)
δT,i

)
−
((
dT,idT,j + dT,inj

)(
cosθi cosθj

cosmj + sin θi cos θj sinmj

)
δT,j

)
+ dT,idT,j cos θi cos θj

, (7.15)

where δT,ij = δT,iδT,j. Taking expectations in (7.15), we obtain

Cx
ATij =dT,idT,j cos θi cos θj − dT,idT,j cos θi cos θj

− dT,idT,j cos θi cos θj + dT,idT,j cos θi cos θj

=0.

The derivation of Cy
AT is similar to Cx

AT other than that x coordinates are replaced

by y i.e cos function is replaced by sin .

_____________________________________________

Derivation of Equation (2.53). From (2.50), we have Cxy
AT = E

[(
t̂x − tx

)
(
t̂y − ty

)T]
, putting the value of t̂x , tx , t̂y and ty for i = j, we get
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Cxy
ATii = Emi,ni

((dT,i + ni

)
cos
(
θi +mi

)
δT,i − dT,i cos θi

)

×
((
dT,i + ni

)
sin
(
θi +mi

)
δT,i − dT,i sin θi

)

Cxy
ATii = Emi,ni

((dT,i + ni

)2
cos
(
θi +mi

)
sin
(
θi +mi

))
δ2
T,i −

(
dT,i

(
dT,i + ni

)

cos
(
θi +mi

)
sin θi

)
δT,i−

(
dT,i

(
dT,i + ni

)
sin
(
θi +mi

)
cos θi

)
δT,i

+ d2
T,i cos θi sin θi

. (7.16)

Using the identities cos (a+ b) = cos (a) cos (b) − sin (a) sin (b), sin (a+ b) =

sin (a) cos (b)+cos (a) sin (b), cos2 a−sin2 a = cos 2a and then taking expectation,

(7.8), (7.16) is obtained.

Cxy
ATii =

(d2
T,i + Eni

[
n2
i

])
cos θi sin θiEmi

[
cos 2mi

]δ2
T,i

−

d2
T,i cos θiEmi

[
cosmi

]
sinθi

δT,i−
d2

T,i sinθiEmi

[
cosmi

]
cos θi

δT,i
+ d2

T,i cos θi sin θi

Finally, using expectation (7.3) and (7.6) we conclude the proof by obtaining

(2.53).

_____________________________________________

For non-diagonal terms of Cxy
AT = E

[(
t̂x − tx

) (
t̂y − ty

)T ]
, putting the value of

t̂x , tx , t̂y and ty for i 6= j.
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Cxy
ATij = Emij ,nij

((dT,i + ni

)
cos
(
θi +mi

)
δT,i − dT,i cos θi

)

×
((
dT,j + nj

)
sin
(
θj +mj

)
δT,j − dT,j sin θj

)

Cxy
ATij = Emij ,nij

((dT,idT,j+dT,inj+dT,jni+ninj)(cos θi cosmi−sin θi sinmi

)
(
sin θj cosmj+cos θj sinmj

)
δT,ij

)
−
((
dT,idT,j + dT,jni

)
(
cosθi sinθj cosmi +sinθi sinθj sinmi

)
δT,i

)
−
((
dT,idT,j+dT,inj

)
(
cosθi sinθj cosmj+cosθi cosθj sinmj

)
δT,j

)
+dT,idT,j cos θi sin θj

.
(7.17)

Taking expectations in (7.17), weget

Cxy
ATij =dT,idT,j cos θi sin θj − dT,idT,j cos θi sin θj

− dT,idT,j cos θi sin θj + dT,idT,j cos θi sin θj

=0.

_____________________________________________
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Appendix II-B: Derivation Of FIM For AoA-ToA

Signal

This appendix presents the derivation of elements of F.I.M. for AoA-ToA signal

model.

Taking derivative of (2.51), (2.52) and (2.53) w.r.t x i.e.

∂Cx
AT

∂x
=
 ∂
∂x

(
d2
T,i

2

)
+ ∂

∂x

(
σ2
ni

2

) exp
(
σ2
mi

)
+
[
∂

∂x

(
d2
T,i

2 cos2θi
)

+ ∂

∂x

(
σ2
ni

2 cos 2θi
)]

× exp
(
−σ2

mi

)
− ∂

∂x

[(
dT,i cos θi

)2
]

(7.18)

∂Cy
AT

∂x
=
 ∂
∂x

(
d2
T,i

2

)
+ ∂

∂x

(
σ2
ni

2

) exp
(
σ2
mi

)
−

 ∂
∂x

(
d2
T,i

2 cos2θi
)

+ ∂

∂x

(
σ2
ni

2 cos 2θi
)

× exp
(
−σ2

mi

)
− ∂

∂x
(dT,i sin θi)2 , (7.19)

∂Cxy
AT

∂x
= ∂

∂x

(
d2
T,i cos θi sin θi

)[
exp

(
−σ2

mi

)
−1
]
+ ∂

∂x

(
cos θi sin θi

)[
σ2
ni

exp
(
−σ2

mi

)]
.

(7.20)

The derivates in (7.18), (7.19) and (7.20) are given below
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1. ∂

∂x

(
d2
T,i

2

)
=1

2
∂
(
d2
T,i

)
∂x

=1
2

(
∂

∂x
(x− x̄i)2 +����

���:
0∂

∂x
(y − ȳi)2

)

=1
2

(
2 (x− x̄i)

∂

∂x
(x− x̄i)

)

= (x− x̄i)

∂

∂x

(
d2
T,i

2

)
= (x− x̄i)

2. ∂

∂x

(
d2
T,i

2 cos2θi
)

=
d2
T,i

2
∂

∂x
cos2θi + cos2θi

∂

∂x

d2
T,i

2

=−
d2
T,i

2 sin 2θi
∂

∂x
(2θi) +cos 2θi

(
x− x̄i

)
=−

d2
T,i

2 sin 2θi2
∂

∂x
arctan

(
y − ȳi
x− x̄i

)
+ cos 2θi

(
x− x̄i

)
(7.21)

=− d2
T,i sin 2θi

 1
1 +

(
y−ȳi
x−x̄i

)2

 ∂

∂x

(
y − ȳi
x− x̄i

)
+ cos 2θi

(
x− x̄i

)

(7.22)

where (7.22) is obtained from (7.21) by using the derivative of inverse tangent

function i.e. ∂
∂x

arctan f (x) = 1
1+f(x)2

∂
∂x
f (x) .

∂

∂x

(
d2
T,i

2 cos2θi
)

=− d2
T,i sin 2θi

(x− x̄i)2

(x− x̄i)2 + (y − ȳi)2

(
− y − ȳi

(x− x̄i)2

)
+cos 2θi

(
x− x̄i

)

= (y − ȳi) sin (2θi) + cos
(

2θi
)(
x− x̄i

)
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∂

∂x

(
d2
T,i

2 cos2θi
)

= (y − ȳi) sin (2θi) + cos
(
2θi
)(
x− x̄i

)

3. ∂

∂x

(
σ2
ni

2 cos 2θi
)

=
σ2
ni

2
∂

∂x
cos
(

2θi
)

=−
σ2
ni

2 sin 2θi
∂

∂x
(2θi)

=− σ2
ni

sin 2θi
∂

∂x
arctan

(
y − ȳi
x− x̄i

)

=− σ2
ni

sin 2θi

 1
1 +

(
y−ȳi
x−x̄i

)2

 ∂

∂x

(
y − ȳi
x− x̄i

)

=− σ2
ni

sin 2θi
(

(x− x̄i)2

(x− x̄i)2 + (y − ȳi)2

)(
− (y − ȳi)

(x− x̄i)2

)

=σ2
ni

sin
(

2θi
)(y − ȳi)

d2
T,i

.

∂

∂x

(
σ2
ni

2 cos 2θi
)

= σ2
ni

sin
(

2θi
)(y − ȳi)

d2
T,i
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4. ∂

∂x
(dT,i cos θi)2 = ∂

∂x

(
dT,i

(1
2 + 1

2 cos 2θi
))

= ∂

∂x

(
d2
T,i

2

)
+ ∂

∂x

(
d2
T,i

2 cos 2θi
)

= ∂

∂x

(
d2
T,i

2

)
+
(
d2
T,i

2
∂

∂x
cos 2θi + cos 2θi

∂

∂x

d2
T,i

2

)

=
(
x− x̄i

)
+ sin 2θi

(
y − ȳi

)
+ cos 2θi

(
x− x̄i

)

=
(
x− x̄i

)1 + cos 2θi + sin 2θi

(
y − ȳi

)
(
x− x̄i

)


=
(
x− x̄i

)
(1 + cos 2θi + sin 2θi tan θi)

=
(
x− x̄i

)(
1 +

(
cos2 θi − sin2 θi

)
+ 2 sin θi cos θi

sin θi
cos θi

)

=
(
x− x̄i

) (
cos2 θi + cos2 θi + 2 sin2 θi

)
=2
(
x− x̄i

)
.

∂

∂x
(dT,i cos θi)2 = 2

(
x−x̄i

)
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5. ∂

∂x

(
d2
T,i cos θi sin θi

)

=d2
T,i cos θi

∂

∂x
sin θi+sin θi

∂

∂x
d2
T,i cos θi

=− d2
T,i cos2 θi

(
y − ȳi
d2
T,i

)
+sin θi

(
d2
T,i

∂

∂x
cos θi + cos θi

∂

∂x
d2
T,i

)

=− cos2θi (y − ȳi)+sinθi
(
d2
T,i sinθi

(
y − ȳi
d2
T,i

)
+2 cosθi (x− x̄i)

)

=− cos2 θi (y − ȳi) + sin2 θi (y − ȳi) + 2 cos θi sin θi (x− x̄i)

= (y − ȳi)
(
− cos2 θi + sin2 θi + 2 cos θi sin θi cot θi

)
= (y − ȳi)

(
− cos2 θi + sin2 θi + 2 cos θi sin θi

cos θi
sin θi

)

= (y − ȳi)
(
− cos2 θi + sin2 θi + 2 cos2 θi

)
= (y − ȳi)

(
sin2 θi + cos2 θi

)
= (y − ȳi)

∂

∂x

(
d2
T,i cos θi sin θi

)
= (y − ȳi)

6. ∂

∂x
(cos θi sin θi) = cos θi

∂

∂x
sin θi + sin θi

∂

∂x
cos θi

= cos2 θi
∂

∂x
θi − sin2 θi

∂

∂x
θi

=− cos2 θi

(
y − ȳi

)
d2
T,i

+ sin2 θi

(
y − ȳi

)
d2
T,i

Taking derivative of (2.51), (2.52) and (2.53) w.r.t y i.e.
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∂Cx
AT

∂y
=
[
∂

∂y

(
d2
T,i

2

)
+ ∂

∂y

(
σ2
ni

2

)]
exp

(
σ2
mi

)
+
[
∂

∂y

(
d2
T,i

2 cos 2θi
)

+ ∂

∂y

(
σ2
ni

2 cos2θi
)]

× exp
(
−σ2

mi

)
− ∂

∂y

[
(dT,i cos θi)2

]
(7.23)

∂Cy
AT

∂y
=
 ∂
∂y

(
d2
T,i

2

)
+ ∂

∂y

(
σ2
ni

2

) exp
(
σ2
mi

)
−

 ∂
∂y

(
d2
T,i

2 cos 2θi
)

+ ∂

∂y

(
σ2
ni

2 cos2θi
)

× exp
(
−σ2

mi

)
− ∂

∂y
(dT,i sin θi)2 (7.24)

∂Cxy
AT

∂y
= ∂

∂y

(
d2
T,i cos θi sin θi

)[
exp

(
−σ2

mi

)
−1
]
+ ∂

∂y

(
cos θi sin θi

)[
σ2
ni

exp
(
−σ2

mi

)]
.

(7.25)

The derivates in (7.18), (7.24) and (7.25) are given below

7. ∂

∂y

(
d2
T,i

2

)
=1

2
∂
(
d2
T,i

)
∂y

=1
2


��

�
��

��*
0

∂

∂y
(x− x̄i)2 + ∂

∂y
(y − ȳi)2


=1

2

(
2 (y − ȳi)

∂

∂y
(y − ȳi)

)

= (y − ȳi)
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∂

∂y

(
d2
T,i

2

)
= (y − ȳi)

8. ∂

∂y

(
d2
T,i

2 cos 2θi
)

=
d2
T,i

2
∂

∂y
cos2θi + cos2θi

∂

∂y

d2
T,i

2

=−
d2
T,i

2 sin 2θi
∂

∂y
(2θi) +cos 2θi

(
y − ȳi

)

=−
d2
T,i

2 sin 2θi2
∂

∂y
arctan

(
y − ȳi
x− x̄i

)
+ cos 2θi

(
y − ȳi

)

=− d2
T,i sin 2θi

 1
1+

(
y−ȳi
x−x̄i

)2
 ∂

∂y

(
y − ȳi
x− x̄i

)
+ cos 2θi

(
y − ȳi

)

=− d2
T,i sin 2θi

(x− x̄i)2

d2
T,i

(
1

(x− x̄i)

)
+ cos 2θi

(
y − ȳi

)

=− (x− x̄i) sin 2θi + cos 2θi
(
y − ȳi

)

∂

∂y

(
d2
T,i

2 cos 2θi
)

= cos 2θi
(
y − ȳi

)
− (x− x̄i) sin 2θi
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9. ∂

∂y

(
σ2
ni

2 cos 2θi
)

=
σ2
ni

2
∂

∂y
cos 2θi

= −
σ2
ni

2 sin 2θi
∂

∂y
(2θi)

= −σ2
ni

sin 2θi
∂

∂y
arctan

(
y − ȳi
x− x̄i

)

= −σ2
ni

sin 2θi

 1
1 +

(
y−ȳi
x−x̄i

)2

 ∂

∂y

(
y − ȳi
x− x̄i

)

= −σ2
ni

sin 2θi
(

(x− x̄i)2

(x− x̄i)2 + (y − ȳi)2

)(
1

(x− x̄i)

)

= σ2
ni

sin
(

2θi
)(x− x̄i)

d2
T,i

.

∂

∂y

(
σ2
ni

2 cos 2θi
)

= σ2
ni

sin
(

2θi
)(x− x̄i)

d2
T,i

10. ∂

∂y
(dT,i cos θi)2 = ∂

∂y

(
dT,i

(1
2 + 1

2 cos 2θi
))

= ∂

∂y

(
d2
T,i

2

)
+ ∂

∂y

(
d2
T,i

2 cos 2θi
)

= ∂

∂y

(
d2
T,i

2

)
+
(
d2
T,i

2
∂

∂y
cos 2θi + cos 2θi

∂

∂y

d2
T,i

2

)

=
(
y − ȳi

)
− sin 2θi

(
x− x̄i

)
+ cos 2θi

(
y − ȳi

)

=
(
y − ȳi

)1− sin 2θi

(
x− x̄i

)
(
y − ȳi

) + cos 2θi


=
(
y − ȳi

)
(1− sin 2θi cot θi + cos 2θi)

Using double angle identity i.e. sin 2θi = sin θi cos θi and cos 2θi = cos2 θi− sin2 θi
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we get

∂

∂y
(dT,i cos θi)2 =

(
y − ȳi

)(
1− 2 sin θi cos θi

cos θi
sin θi

+ cos2 θi − sin2 θi

)

=
(
y − ȳi

) (
1− sin2 θi + cos2 θi − 2 cos2 θi

)
=
(
y − ȳi

) (
2 cos2 θi − 2 cos2 θi

)
=0.

∂

∂y
(dT,i cos θi)2 = 0

11. ∂

∂y

(
d2
T,i cos θi sin θi

)
=d2

T,i cos θi
∂

∂y
sin θi + sin θi

∂

∂y
d2
T,i cos θi

=d2
T,i cosθi

(
cosθi

∂

∂y
θi

)
+sinθi

(
d2
T,i

∂

∂y
cosθi+cosθi

∂

∂y
d2
T,i

)

=d2
T,i cos2 θi

∂

∂y
arctan

(
y − ȳi
x− x̄i

)
+ sin θi

(
−d2

T,i sin θi
∂

∂y
θi

+ 2 cos θi (y − ȳi)
)

=d2
T,i cos2 θi

 1
1 +

(
y−ȳi
x−x̄i

)2

 ∂

∂y

(
y − ȳi
x− x̄i

)
− d2

T,i sin2 θi

×

 1
1 +

(
y−ȳi
x−x̄i

)2

 ∂

∂y

(
y − ȳi
x− x̄i

)
+ 2 cos θi (y − ȳi)
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=d2
T,i cos2θi

(
(x− x̄i)2

d2
T,i

)( 1
x− x̄i

)
− d2

T,i sin2θi

(
(x− x̄i)2

d2
T,i

)

×
( 1
x− x̄i

)
+ 2 cos θi (y − ȳi)

= (x− x̄i) cos2 θi − (x− x̄i) sin2 θi + 2 cos θi (y − ȳi)

= (x− x̄i)
(

cos2 θi − sin2 θi + 2 cos θi
(y − ȳi)
(x− x̄i)

)

= (x− x̄i)
(
cos2 θi − sin2 θi + 2 cos θi tan θi

)
= (x− x̄i)

(
cos2 θi − sin2 θi + 2 cos θi

sin θi
cos θi

)

= (x− x̄i)
(
cos2 θi − sin2 θi + 2 sin θi

)

Using double angle identity i.e. cos2 θi − sin2 θi = 1− 2 sin θi we get

∂

∂y

(
d2
T,i cos θi sin θi

)
= (x− x̄i) (1− 2 sin θi + 2 sin θi)

= (x− x̄i)

∂

∂y

(
d2
T,i cos θi sin θi

)
= (x− x̄i)
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12. ∂

∂y

(
cos θi sin θi

)
= cos θi

∂

∂y
sin θi + sin θi

∂

∂y
cos θi

= cos θi
(

cos θi
∂

∂y
θi

)
− sin θi

(
(sin θi)

∂

∂y
θi

)

= cos2 θi

(
x− x̄i
d2
T,i

)
− sin2 θi

(
x− x̄i
d2
T,i

)

∂

∂y

(
cos θi sin θi

)
= cos2 θi

(
x− x̄i
d2
T,i

)
−sin2 θi

(
x− x̄i
d2
T,i

)
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Appendix III: Derivation Of Covariance Matrix For

AoA-RSS Signal

This appendix presents the covariance matrix derivation for AoA-RSS signal

model

Derivation of Equation (3.16). From (3.15), we have Cx
AR =E

[
(r̂x − rx) (r̂x − rx)T

]
,

putting the value of r̂x and rx for i = j, we get

Cx
ARii =Ew̌i ,mi

(dR,i exp
(
w̌i
γα

)
cos
(
θi+mi

)
δR,i − dR,i cos θi

)2


=Ew̌i ,mi

((dR,i exp
(
w̌i
γα

))2

cos2
(
θi+mi

))
δ2
R,i+

(
dR,i cos θi

)2
− 2δR,i

(
dR,i cos θi

)
(
dR,i exp

(
w̌i
γα

))
cos
(
θi +mi

) (7.26)

=Ew̌i,mi

d2
R,i exp

(2w̌i
γα

)(
0.5 + 0.5

(
cos 2θi cos 2mi − sin 2θi sin 2mi

))
δ2
R,i

+
(
dR,i cos θi

)2
− 2δR,i

(
d2
R,i exp

(
w̌i
γα

))(
cos2 θi cosmi − cos θi sin θi sinmi

)
(7.27)

Equ. (7.27) is obtained from (7.26) by using the identity cos2 (t) = 0.5 +

0.5 cos (2t) . Also using the expectation Emi [sin (mi)] = 0 and Emi [sin (2mi)] = 0,

(7.28) is obtained.
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Cx
ARii =

d2
R,i

2 Ew̌i

[
exp

(2w̌i
γα

)]
+
d2
R,i

2 Ew̌i

[
exp

(2w̌i
γα

)]
cos 2θi × Emi

[
cos2mi

]δ2
R,i

+
(
dR,i cos θi

)2
− 2δR,i

(dR,i cos θi
)2
Ew̌i

[
exp

(
w̌i
γα

)]
Emi

[
cosmi

]
(7.28)

Taking the expectation in (7.28), which are given in table. 2.1, we conclude the

proof by obtaining (3.16).

For the non diagonal terms of Cx
AR =E

[
(r̂x − rx) (r̂x − rx)T

]
, i.e. i 6= j we have

Cx
ARij =Ew̌ij ,mij

(dR,i exp
(
w̌i
γα

)
cos
(
θi +mi

)
δR,i − dR,i cos θi

)
(
dR,j exp

(
w̌j
γα

)
cos
(
θj +mj

)
δR,j − dR,j cos θj

)

Cx
ARij=Ew̌ij ,mij

(dR,idR,j exp
(
w̌i
γα

)
exp

(
w̌j
γα

))(
cos θi cosmi+sin θi sinmi

)
(
cos θj cosmj+sinθj sinmj

)
δij

(dR,idR,j exp
(
w̌i
γα

))(
cosθi cosθj cosmi

+sinθi cosθj sinmi

)
δR,i

−
(dR,idR,j exp

(
w̌j
γα

))(
cos θi cos θj cosmj

+ sin θi cos θj sinmj

)
δR,j

+ dR,idR,j cos θi cos θj


where δR,ij = δR,iδR,j. taking expectation

139



Appendices

Cx
ARij =dR,idR,j cos θi cos θj − dR,idR,j cos θi cos θj − dR,idR,j cos θi cos θj

+ dR,idR,j cos θi cos θj

=0

The derivation of (3.17) is similar to (3.16), other than the fact that x coordinate

is replaced with y coordinate i.e. cos function is replaced with sin function.

_____________________________________________

Derivation of Equation (3.18). From (3.15), we have Cx
AR =E

[
(r̂x − rx) (r̂y − ry)T

]
,

putting the value of r̂x , rx , r̂y and ry for i = j, we get

Cxy
ARij=Ew̌i,mi

(dR,i exp
(
w̌i
γα

)
cos
(
θi+mi

)
δR,i − dR,i cos θi

)
(
dR,i exp

(
w̌i
γα

)
sin
(
θi +mi

)
δR,i − dR,i sin θi

)
=Ew̌i,mi

(dR,i exp
(
w̌i
γα

))2

cos
(
θi +mi

)
sin
(
θi +mi

)
δ2
R,i − dR,i

(
dR,i exp

(
w̌i
γα

))

cos
(
θi +mi

)
sin θiδR,i − dR,i

(
dR,i exp

(
w̌i
γα

))
sin
(
θi +mi

)
cos θiδR,i

+d2
R,i cos θi sin θi

 (7.29)

Expanding (7.29), and then using double angle identity cos2 t− sin2 t = cos (2t) ,

and also E [sin (mi)] = 0, we obtain
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Cxy
ARij =Ew̌i ,mi

(d2
R,i exp

(2w̌i
γα

)
cos θi sin θi cos 2mi

)
δ2
R,i −

(
d2
R,i exp

(
w̌i
γα

)

cos θi cosmi sin θi
)
δR,i −

(
d2
R,i exp

(
w̌i
γα

)
sin θi cosmi cos θi

)
δR,i

+ d2
R,i cos θi sin θi

 (7.30)

Finally, using expectations in (7.30), we conclude the proof by obtaining (3.18)

from (7.30).

For the non diagonal terms of Cxy
AR =E

[
(r̂x − rx) (r̂y − ry)T

]
, i.e. i 6= j we have

Cxy
ARij =Ew̌ij ,mij

(dR,i exp
(
w̌i
γα

)
cos
(
θi +mi

)
δR,i − dR,i cos θi

)
(
dR,j exp

(
w̌j
γα

)
sin
(
θj +mj

)
δR,j − dR,j sin θj

)
=Ew̌ij ,mij

(dR,idR,j exp
(
w̌i
γα

)
exp

(
w̌j
γα

))(
cos θi cosmi − sin θi sinmi

)
(
sin θj cosmj+cos θj sinmj

)
δij

−
(dR,idR,j exp

(
w̌i
γα

))(
cos θi sin θj cosmi

+ sin θi sin θj sinmi

)
δR,i

−
(dR,idR,j exp

(
w̌j
γα

))(
cos θi sin θj cosmj

+ cos θi cos θj sinmj

)
δR,j

+ dR,idR,j cos θi sin θj

 (7.31)

Taking expectations in (7.31), we obtain
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Cxy
ARij = dR,idR,j cos θi sin θj − dR,idR,j cos θi sin θj − dR,idR,j cos θi sin θj

+ dR,idR,j cos θi sin θj

=0
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Appendix IV: Derivation of covariance matrix for

AoA-RSS Signal Model with Incorrect PLE Values.

This appendix presents the derivation of noise covariance matrix for AoA-RSS

signal model with incorrect PLE vector.

Derivation of Equation (5.26). From (5.23), we have Cα (x) =Ew,m

[(
b̂x,α − bx,α

)
(
b̂x,α − bx,α

)T]
∈RN×N , putting the value of b̂x,α and bx,α for i = j, we get

Cα (x)ii =Ew̌i,mi

(dκii exp
(
w̌i
γα̌i

)
cos (θi +mi) δ̌i − di cos θi

)2


=Ew̌i ,mi

d2κi
i exp

(2w̌i
γα̌i

)
cos2(θi +mi) δ̌2

i +
(
di cos θi

)2

− 2δ̌i
(
di cos θi

)(
dκii exp

(
w̌i
γα̌i

))
cos (θi +mi)

 (7.32)

=Ew̌i,mi
[
d2κi
i exp

(2w̌i
γα̌i

)(1
2 + 1

2 cos (2θi + 2mi)
)
δ̌2
i +

(
di cos θi

)2

− 2δ̌ididκii exp
(
w̌i
γα̌i

)
cos (θi +mi) cos θi (7.33)

Equation (7.33) is obtained from (7.32) by using trigonometric half angle identity,

cos2 (t) = 0.5 + 0.5 cos (2t). Also using trigonometric sum-difference formula,

cos (A + B) = cos A cos B + sin A sin B, (7.34) is obtained

Cα (x)ii =Ew̌i,mi
[
d2κi
i exp

(2w̌i
γα̌i

)(1
2 + 1

2

(
cos 2θi cos 2mi + sin 2θi sin 2mi

))
δ̌2
i

+
(
di cos θi

)2

−2δ̌ididκii exp
(
w̌i
γα̌i

)(
cos2 θi cosmi + sin θi sinmi

)
(7.34)

Finally taking the expectations in (7.34) which are given in table. 2.1 and derived
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in appendix I, we conclude the proof by obtaining (5.26).

For non diagonal terms i.e. i 6= j we have from (5.23)

Cα (x)ij =Ew̌ii,mi

(dκii exp
(
w̌i
γα̌i

)
cos (θi+mi) δ̌i − di cos θi

))
(
d
κj
j exp

(
w̌j
γα̌j

)
cos (θj+mj) δ̌j − dj cos θj

))

Cα (x)ij = Ew̌i,mi

dκii exp
(
w̌i
γα̌i

)
d
κj
j exp

(
w̌j
γα̌j

)
cos (θi+mi) δ̌i cos (θj+mj) δ̌j

− dκii exp
(
w̌i
γα̌i

)
dj cos θj cos (θi+mi) δ̌i − dκjj exp

(
w̌j
γα̌j

)

cos (θj+mj) δ̌jdi cos θi + di cos θidj cos θj

 (7.35)

Using sum-difference formula (7.35) can be expanded as

Cα (x)ij =dκii d
κj
j Ew̌i

[
exp

(
w̌i
γα̌i

)]
Ew̌j

[
exp

(
w̌j
γα̌j

)](
cos θiEmi

[
cosmi

]
cos θj cosmj

+ cos θiEmj

[
cosmi

]
sin θjEmj

[
sinmj

]
+ sin θiEmi

[
sinmi

]
cos θj

Emj

[
cosmj

]
+ sin θiEmi

[
sinmi

]
sin θjEmj

[
sinmj

])
δ̌iδ̌j − dκii dj

Ew̌i

[
exp

(
w̌i
γα̌i

)]
cos θiEmi

[
cosmi

]
cos θj δ̌i − dκjj diEw̌j

[
exp

(
w̌j
γα̌j

)]

cos θjEmj

[
cosmj

]
cos θiδ̌j + didj cos θi cos θj. (7.36)

Taking expectation in (7.36), we conclude the proof by obtaining (5.29). The

derivation of (5.27) and (5.28) is similar except that b̂x,α is replaced with b̂y,α.
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