

Stochastic processes and
probability theory in
music
Monika Jadwiga Galla

Master’s by Research

University of York

Music

December 2015

2

Abstract

This dissertation examines the connections between music and mathematics

with particular reference to Markov chains and generative grammars. The main purpose

of this study is to investigate how mathematical concepts can help to control, create and

analyse music material. The core part of this study is software that allows one to

compose music with Markov Chains and generative grammars. The study will explore

the on-going influence of such tools on composers and their relationship to musical

sources and inspirations.

An in-depth analysis of existing literature, music material and composition tools

was conducted. Using comparative case studies, this research explored the significant

role of mathematics in music in the twentieth and twenty-first centuries. The evolving

role of stochastic concepts in music was presented. The next step was to develop a

useful tool that would allow composers to apply Markov chains and generative

grammars in their compositions. The web application that resulted was called

Stochastic Composer. To evaluate this application five composers were invited to test

it. The results include over one hundred samples of music material that were later

analysed and used to improve the software.

This dissertation offers insight into applications of various mathematical

concepts in music. The Stochastic Composer software, available online, proved to be a

useful tool in a compositional process.

3

Table of Contents

Abstract .. 2

Table of Contents ... 3

List of Figures .. 5

List of Tables .. 8

List of accompanying material ... 9

Acknowledgements [ENG] .. 10

Acknowledgements [PL] – Podziękowania ... 11

Author's declaration .. 12

Overview ... 13

1. Markov Chains .. 15

1.1. Introduction ... 15

1.2. Basic principles of Markov chains... 16

1.2.1. Properties of Markov chains ...18

1.2.2. Hidden Markov Models ..23

1.2.3. Example ..24

1.2.4. Markov Decision Process (MDP) ...26

1.3. Music .. 27

1.3.1. Possible applications ..27

1.3.2. Prediction ..27

1.3.3. Composition ...33

1.4. Summary ... 42

2. Generative grammars ... 44

2.1. Introduction ... 44

2.2. Basic concept of generative grammars ... 45

2.2.1. Chomsky Hierarchy ..48

2.3. Grammars in music .. 50

2.3.1. Overview ..50

2.3.2. Composing using generative grammars ...51

2.3.3. Generative Grammar Definition Language ..51

2.3.4. Generative theory of tonal music ...53

2.3.5. Web Grammars ...57

4

2.3.6. Stochastic grammars ...61

2.3.7. Problem of termination ...64

2.4. Summary ... 64

3. Stochastic Composer ... 65

3.1. Introduction ... 65

3.2. Software design description ... 68

3.2.1. Web Application Concept ..68

3.2.2. Server side ..69

3.2.3. Database ...71

3.2.4. User Interface ...72

3.2.5. Deployment ..73

3.2.6. MusicXML ...73

3.3. Algorithm Implementation .. 76

3.3.1. Music Notation ...76

Markov Chains ..77

3.3.2. Generative Grammars ...81

3.3.3. Navigation ..84

3.3.4. Markov Chains ...87

3.3.5. Generative Grammars ...90

3.4. Results .. 95

3.4.1. Markov Chains ...95

3.4.2. Generative Grammars ...107

3.5. Summary ... 121

Final remarks ... 122

Bibliography ... 123

5

List of Figures

Figure 1: Simple melody with missing note .. 16

Figure 2: Completed melody from Figure 1 .. 16

Figure 3: Soft Kitty: melody .. 17

Figure 4: Soft Kitty Transition Matrix .. 18

Figure 5: Soft Kitty - transition graph ... 18

Figure 6: Closed and open classes, absorbing event .. 19

Figure 7: A chain with only transient classes, and hence not a Markov chain 20

Figure 8: A null recurrent Markov chain (n) .. 21

Figure 9: A positive recurrent Markov chain ... 21

Figure 10: A transient Markov chain .. 21

Figure 11: Markov chain with period 3 .. 22

Figure 12: Markov chain with period 2 .. 23

Figure 13: A Markov chain with period 1, an aperiodic Markov chain 23

Figure 14: HMM example: a pianist as a neighbour ... 25

Figure 15: Results of the experiment (Brooks, Hopkins, Neumann, & Wright, 1957, p.

181) .. 28

Figure 16: Constructed Markov chain (Verbeurgt, Dinolfo, & Fayer, 2004b) 29

Figure 17: A piece written on the basis of Bach’s 'Air’ using patterns 29

Figure 18: A piece written on the basis of Bach’s 'Air' using a typical Markov chain

approach ... 30

Figure 19: Harmonization using HMM ... 31

Figure 20: Original harmonization by Bach .. 32

Figure 21: Harmony generates with MDP .. 33

Figure 22: Matrix for chromatic degrees in Demonstration 4 by C. Ames 35

Figure 23: Charles Ames, Demonstration 4 .. 36

Figure 24: A toroidal space (Virtual Math Museum) .. 38

Figure 25: Chord generation (McAlpine, Hoggar, & Miranda, 1999, p. 26) 38

Figure 26: Sample state space (I) (Jones K. , 1980, p. 98) ... 40

Figure 27: Sample state space (II), (Jones K. , 1980, p. 112) .. 40

Figure 28: Sample state space for clarinet (Jones K. , 1980, p. 121) 41

Figure 29: Result of Grammar 1 presented as parse ... 48

Figure 30: Chomsky Hierarchy .. 49

Figure 31: Analysis of bars 9-16 from Andante from Haydn's Symphony no 94 55

file:///C:/Users/Daniel/Dropbox/Projects/MonikaApp/Documentation/thesis%20MG%2005%20WB.docx%23_Toc438192827

6

Figure 32: Time-span reduction ... 56

Figure 33: Time-span reduction ... 56

Figure 34: Music representation of the outcome of Grammar 4 60

Figure 35: Stochastic Composer - Software Structure .. 69

Figure 36: Stochastic Composer - Database Structure ... 72

Figure 37: MusicXML Example - Score .. 74

Figure 38: Music XML - Simple Example .. 75

Figure 39: Stochastic Composer - Music Notation Classes ... 76

Figure 40 - Stochastic Composer - Markov Chain Generation Algorithm 79

Figure 41 - Stochastic Composer - Markov Chain Prediction/Simulation Algorithm

 .. 80

Figure 42 - Stochastic Composer - Grammar Outcome Generation Algorithm 83

Figure 43 - Stochastic Composer - Gaussian Kernel Example 83

Figure 44: Welcome screen in Stochastic Composer .. 84

Figure 45: Learning Centre options .. 85

Figure 46: Compose section .. 85

Figure 47: My Compositions .. 86

Figure 48: Composition Details ... 86

Figure 49: Details of the composition ... 87

Figure 50: Melody created in Stochastic Composer .. 87

Figure 51: Markov chain details .. 88

Figure 52: Markov chain generated output ... 88

Figure 53: Saving output in a database .. 89

Figure 54: My compositions section ... 89

Figure 55: Details of Markov chain composition ... 89

Figure 56: Start Symbol ... 90

Figure 57: Adding new production rule ... 91

Figure 58: Successful validation ... 91

Figure 59: Generated Output ... 92

Figure 60: Stochastic Production Rule ... 92

Figure 61: Probability of the rules are not equal to 1 ... 93

Figure 62: Production rules in web grammars ... 93

Figure 63: Combined stochastic and web production rules ... 94

Figure 64: Stochastic Composer - Example MC1 .. 95

file:///C:/Users/Daniel/Dropbox/Projects/MonikaApp/Documentation/thesis%20MG%2005%20WB.docx%23_Toc438192830

7

Figure 65: Stochastic Composer - Example MC1 - loop .. 96

Figure 66: Stochastic Composer –Example - MC2 .. 96

Figure 67: Stochastic Composer –Example - MC3 .. 97

Figure 68: Stochastic Composer - Example - MC 4 ... 100

Figure 69: Stochastic Composer - Example - MC 5 Input .. 102

Figure 70: Stochastic Composer –Example – MC5a .. 102

Figure 71: Stochastic Composer –Example – MC5b .. 103

Figure 72: Stochastic Composer –Example – MC5c .. 105

Figure 73: Stochastic Composer - GSC1 - Sample 1 .. 108

Figure 74: Stochastic Composer - GSC1 - Sample 2 .. 108

Figure 75: Stochastic Composer - GSC1 - Sample 3 .. 109

Figure 76: Stochastic Composer - GSC1 - Sample 4 .. 109

Figure 77: Stochastic Composer - GSC1 - Sample 5 .. 110

Figure 78: Stochastic Composer - GSC2 - Sample 1 .. 112

Figure 79: Stochastic Composer - GSC2 - Sample 2 .. 112

Figure 80: Stochastic Composer - Production Rule Probability Distribution for Note

'A' .. 114

Figure 81: Stochastic Composer - GSC3 - Sample 1 .. 116

Figure 82: Stochastic Composer - GSC3 - Sample 2 .. 116

Figure 83: Stochastic Composer - GSC - Markov chain from generative grammar116

8

List of Tables

Table 1: Comparison of recurrent and transient states .. 20

Table 2: Possible generations of Grammar 1 .. 46

Table 3: Possible generations by Grammar 2 ... 47

Table 4: Sample LHS transition matrix in GGDL .. 52

Table 5: Assigning probabilities to Grammar 5 ... 62

Table 6: Production rules for a Soft Kitty Grammar .. 63

Table 7: Production rules for Grammar 8 ... 64

Table 8: Problem of termination .. 64

Table 9: Stochastic Composer - Example MC1 .. 95

Table 10: Stochastic Composer - Example - MC2 ... 96

Table 11: Stochastic Composer –Example - MC3 ... 97

Table 12: Stochastic Composer - Example - MC 4 - Transition Diagram................ 101

Table 13: Stochastic Composer - Example - MC5a - Transition diagram 102

Table 14: Stochastic Composer –Example – MC5b – Transition diagram............... 103

Table 15: Stochastic Composer –Example – MC5c – Transition diagram 105

Table 16: Stochastic Composer - GSC2 - Sample 1 - Generations 112

Table 17: Stochastic Composer - GSC2 - Sample 2 - Generations 112

Table 18: Stochastic Composer - GSC3 - Markov Chain from generative grammar -

Transition diagram .. 117

9

List of accompanying material

A cloud based composition software is available at:

http://stochasticcomposition.azurewebsites.net/

http://stochasticcomposition.azurewebsites.net/

10

Acknowledgements [ENG]

Firstly, I would like to express my sincere gratitude to my supervisor William

Brooks for his continuous support through my Master’s study and related research—

for his patience, motivation, and immense knowledge. His guidance helped me in all

the time of research and writing of this thesis. I could not imagine having a better

supervisor and mentor for my MRes study.

My sincere thanks also goes to my beloved husband, Daniel Pecynski, for his

invaluable help in creating the Stochastic Composer programme, the hours spent

explaining programming and software terminology, stimulating discussions and

motivation. While the responsibility for the final product is mine alone, without his

precious support it would not have been possible to conduct this research.

Special thanks also go to all my composer friends for participating in the testing

of Stochastic Composer, and especially for their enthusiasm. And thanks also go to all

the participants in my survey, for their enthusiastic involvement in my research as well

as insightful suggestions and comments.

Last but not least, I would like to thank my parents for supporting me spiritually

throughout writing this thesis and my life in general. Thank you for your support and

unconditional love. Even though we are thousands of miles apart, you were always

there whenever I needed you. You can take all the credit for what I have achieved thus

far and what I will achieve in the future.

11

Acknowledgements [PL] – Podziękowania

Przede wszystkim chciałabym wyrazić szczerą wdzięczność mojemu

Profesorowi Williamowi Brooks za jego nieustanne wsparcie podczas studiów i badan,

za jego cierpliwość, motywacje i olbrzymia wiedze. Jego wskazówki niezwykle

pomogły mi w trakcie pisania tej pracy. Nie mogłam sobie wyobrazić lepszego

promotora i mentora dla moich badań.

Ogromne podziękowania należą się również mojemu mężowi, Danielowi

Pecyńskiemu, za nieoceniona pomoc podczas tworzenia programu Stochastyczna

Composer, za godziny poświęcone tłumaczeniu mi programowania i procesu tworzenia

aplikacji, za niezliczone dyskusje i zaangażowanie. Bez jego cennego wsparcia ta praca

nie byłaby możliwa.

Specjalne podziękowania kieruje również do moich przyjaciół kompozytorów

za udział w testowaniu Stochastic Composer, za ich entuzjazm, a także wnikliwe

sugestie i uwagi, a także wszystkim, którzy wzięli udział w ankiecie przeze mnie

organizowanej za ich zaangażowanie i ciekawe komentarze, które pomogły mi w

badaniach.

Na koniec chciałabym podziękować moim rodzicom i babciom za wspieranie

mnie duchowo przez cale moje życie, a szczególnie podczas pisania tej pracy. Dziękuje

Wam za wsparcie i bezwarunkowa miłość. Mimo ze jesteście tysiące mil, zawsze

byliście obecni gdy Was potrzebowałam. To Wam zasługuje wszystko, co do tej pory

osiągnęłam i co osiągnę w przyszłości.

12

Author's declaration

I hereby declare that I am the sole author of this thesis, except where referenced.

Parts of this thesis were previously published in:

Galla-Pecynska, Monika. Markov Chain Application in Creating and Understanding Music.
Proceedings of the 1st Sound Ambiguity Conference. 2014.

The interpretations put forth are based on my reading and understanding of the original

texts and they are not published anywhere in the form of books, monographs or articles.

The other books, articles and websites that I have made use of are acknowledged at the

respective places in the text. This work has not been submitted for another award at

this, or any other institution.

13

Overview

This thesis investigates and analyses stochastic processes and probability-theory

influences on compositional processes and also explores new methods and tools of

analysis developed through mathematic research.

The choice of the subject was dictated by the author’s interest in both musical

and mathematical concepts. The author studied at the University of Technology in

Wroclaw (Poland), where she obtained a Bachelor’s and a Master’s degree in

Management. During her studies she investigated mainly game theory and database

processing. At the same time, in Poland, she obtained a Bachelor’s degree in

Composition and Music Theory at Wroclaw Academy of Music. Her final thesis was

entitled Game Theory in Iannis Xenakis’ Works. This thesis constitutes a natural

development of the author’s research interests.

The work consists of two parts. The first contains two theoretical chapters:

Markov chains and Generative grammars. These contain comprehensive literature

overviews with relevant examples for each of the subjects discussed. In this part the

author focuses mainly on the theoretical bases of general stochastic processes, Markov

chains, and generative grammars. The study examines the influence of these both on

compositional processes and on musical works themselves. In addition to theory,

certain experiments are illustrated using appropriate musical examples. This part also

offers an overview of technological developments created by and for composers as well

as music theoreticians, and it explores their possible applications.

The second part is focused mainly on creating and developing already existing tools,

which use stochastic processes, for music purposes. This part consist of chapter 3 and

the associated Stochastic Composer software, available at

http://stochasticcomposition.azurewebsites.net. The objective in this part was to create

a complete suite of tools that allows the composition and analysis of music using

Markov chains and generative grammars. This is how the web application Stochastic

Composer was conceived. The application allows composers to create and design their

own generative grammars and to connect these with other stochastic processes.

Stochastic Composer allows a user not only to compose but also to consider music

prediction based on Markov chains. The user needs to provide a necessary amount of

http://stochasticcomposition.azurewebsites.net/

14

musical material; then the program will analyse the sample and calculate the Markov

chain of the required order. The analysis can be then used to generate music material

that will conform to a greater or lesser degree to the music of the composer or style in

question. In particular, the Markov and generative grammar tools can be used in

tandem: a composer can generate material from a generative grammar and then develop

it independently by the use of Markov analysis and composition. This approach to

composition and analysis concludes with examples of possible program outputs.

15

1. Markov Chains

1.1. Introduction

On 23rd January 1913 Andrei Andreyevich Markov presented his analysis of

the first 20,000 letters of Pushkin’s Eugene Onegin in an address to the Imperial

Academy of Sciences in St. Petersburg. While his findings did not explain the beauty

or story behind Pushkin’s poem, he started a new chapter in probability theory that is

now known as Markov chains. In his publication Markov wrote: ‘Let us finish the

article and the whole book with a good example of dependent trials, which

approximately can be regarded as a simple chain’ (Markov, 1913, cited in Basharin,

Langville, & Naumov, 2004, p.16). The example contained a study of a sequence of

20,000 letters in A. S. Pushkin’s poem Eugeny Onegin and revealed that the stationary

vowel probability equals p = 0.432, the probability of a vowel following a vowel is p1

= 0.128, and the probability of a vowel following a consonant is p2 = 0.663. These

simple calculations, with great attention to detail, are now recognised as the first

application of Markov chains.

The 1913 publication also contained results of Markov’s other tests: he studied

a sequence of 100,000 letters in S. T. Aksakov’s novel The Childhood of Bagrov, the

Grandson. In this case he achieved the following results: vowel probability p = 0.449,

probability of a vowel following a vowel p1 = 0.552, and probability of a vowel

following a consonant p2 = 0.365 (Basharin, Langville, & Naumov, 2004). Over a

hundred years later Markov Chains have been applied successfully to sociology

(Kemeny, Snell, & Knapp, 2011); to physics, to simulate the collective behaviour of

systems created of many interacting particles (Hayes, 2013); to biology, for the purpose

of analysing DNA sequences (Schbath , Prum , & de Turckheim, 1995; Almagor, 1983);

or even to analyze baseball (Pankin). Significant work has been done in the field of

information theory, with C. Shannon’s paper ‘A Mathematical Theory of

communication’ at the forefront (Shannon, 1948). After Lejaren Hiller’s composition

of the Illiac Suite (1956) Markov chains have also become a remarkable part of

stochastic composition and have occupied an important place in twentieth-century

understandings of music.

16

1.2. Basic principles of Markov chains

As Markov showed in 1913, it is possible to predict whether the next speech

sound will be a vowel or a consonant. Later studies confirmed his results, and they show

that in some cases it is possible to predict precisely even the next letter. For example,

in the English language the letter following Q will always be U. Similarly, for a given

three-letter word that starts with the letters WA, one can predict the whole word: it can

be war, was, way or wag. Such prediction is not limited only to the English language;

an interesting study of eleven languages was conducted by E. B. Newman (1951).

Similar rules seem to apply to music. Even a non-musician (who may, however,

be unaware of this) listening to a tonal piece will anticipate a form of tonic as a

resolution after a dominant. In a simple music example (Figure 1) one can expect,

among several different possibilities, that the next note would be f1:

Figure 1: Simple melody with missing note

Figure 2: Completed melody from Figure 1

The answer given in Figure 2 is only one among many possibilities; however, one can

predict with assurance that the next note will not be c♯2 or e♭1.

On the basis of these linguistic and music examples it is possible to formulate

an intuitive definition for a Markov chain: when certain events occur, one can predict

that a specific event is more or less likely to follow. The formal definition is presented

below:

Let Xo,X1, ... be a sequence of random variables with possible outcomes Xt = xt

∈ S. Then the sequence is called a Markov chain, if

M1. The state space S is finite or countable;

M2. For any t ∈ N,

𝑃(𝑋𝑡+1 = 𝑗 |𝑋0 = 𝑖0, 𝑋1 = 𝑖1, … , 𝑋𝑡 = 𝑖𝑡) = 𝑃(𝑋𝑡+1 = 𝑗 |𝑋𝑡 = 𝑖𝑡)

(Beran, 2004, p. 176).

The elements of S are called states and the equation is usually described as the Markov

property of the Markov chain Xt ,t  N.

17

The change from one event to the next is commonly referred as a transition, and

it therefore must follow the rule

𝑝𝑖,𝑗 ≥ 0, ∑ 𝑝𝑖,𝑗

𝑚

𝑗=1

= 1

for each i= 1,2,…, m.

The transition probabilities can be presented in a transition matrix, which can

be presented in two ways:

 A row stochastic matrix (right stochastic matrix), where each row sums to 1.

 A column stochastic matrix (left stochastic matrix), where each column sums to

1.

A special type of matrix is a double matrix, where both rows and columns sum to 1.

The two types of matrices differ only in their visual representation, and so for the

purposes of this thesis only row (right) stochastic matrices will be used.

If the transition probabilities are the same at every step (so they are independent

of the time step t) then the chain is said to be homogeneous.

𝑝𝑖,𝑗 = 𝑃 (𝑋𝑡 = 𝑗 |𝑋𝑡−1 = 𝑖) = 𝑃 (𝑋1 = 𝑗 |𝑋0 = 𝑖)

Another possible representation of Markov Chains is in a transition graph, where each

transition is represented as an arrow.

An example

Consider the kindergarten song “Soft Kitty,”1 shown in Figure 3.

Figure 3: Soft Kitty: melody

The state space S contains 5 states (c, d, e, f, g), so it is finite and countable. A

quick analysis of the event predecessors produced a transition matrix, shown in figure

4, and the transition graph shown in Figure 5.

1 This is the Polish melody Wlazł kotek na płotek, written in the nineteenth century by

S.Moniuszko as a three-voice canon (with slightly faster tempo and rhythm) and first

published in O. Kolberg’s book Dzieła wszystkie in 1871 (Kolberg 1961).

18

Figure 4: Soft Kitty Transition Matrix

Figure 5: Soft Kitty - transition graph

The number of past events that are taken into consideration at each stage is

known as the order of chain. In the ‘Soft Kitty’ example, only an event’s immediate

predecessor was taken into consideration when calculating the transition matrix; thus

this is a first-order Markov chain.

1.2.1. Properties of Markov chains

If there is a positive transition from state a to state b then b is said to be

accessible from a (notated as ab). In the ‘Soft Kitty’ example, state (pitch) e is

accessible from state (pitch) d. This relation is transitive; i. e., if de and ef, then

df. When two states are accessible from each other they are said to communicate

(notated as ). In the previous example states (notes) c and d communicate with each

other (cd). A less obvious example is the communication between states e and f:

19

if 𝑒 → 𝑓 , 𝑓 → 𝑔 and 𝑔 → 𝑒, then 𝑓 → 𝑒 ⇒ 𝑒 ↔ 𝑓

That is, as can be seen on the transition graph, f is accessible from e. Because g is

accessible from f and e is accessible from g, then e is accessible from f. Because e and

f are accessible from each other they are said to communicate.

States that communicate are in an equivalence relation, which means that the

relation is:

 Reflective: cd

 Symmetric: dc if and only if cd

 Transitive: if cd and da, then ca.

It is possible to split each chain into groups of events that communicate only with each

other; these are equivalence classes of events. While events from one class cannot

communicate with events from another class, they can be accessible from them. It can

be easily seen that the ‘Soft Kitty’ example contains only one communication class: all

events communicate with each other.

If every state in a class C has the property

𝑖 ∈ 𝐶, 𝑖 → 𝑗 ⇒ 𝑗 ∈ 𝐶

then C is said to be a closed class. If, in a class C, iC and j C with ij then C is said

to be open. In other words there is a possibility of escape from this class, while there is

no escape from a closed class. A state i is called absorbing if (i) forms a closed class;

once the Markov chain enters this state it is impossible to leave it. In Figure 6 the class

{a,b,c} is open—there is a possible escape. The class {g,h} is closed, while the event

{e} is an absorbing event.

Figure 6: Closed and open classes, absorbing event

20

Every state is either transient or recurrent. If, after achieving some state i, the

chain will, with probability 1, return to state i, then the state is said to be recurrent. On

the contrary, if when the chain achieves some state i, there is a positive probability

(0<p<1) that the chain will never return to the state, then the state is said to be transient.

All states that communicate (so belonging to one class) with a recurrent state are also

recurrent and form a recurrent class. All states that communicate (so belonging to one

class) with a transient state are also transient and form a transient class. Every Markov

chain must contain at least one recurrent class. Figure 7 illustrates a chain with only

transient classes, which is therefore not a Markov chain. A Markov chain with only one

recurrent class is said to be irreducible. That means that regardless of the starting state

it is possible to reach any other state in a finite number of steps. The ‘Soft Kitty’

example contains one recurrent class, so it is irreducible.

Figure 7: A chain with only transient classes, and hence not a Markov chain

It is possible to distinguish between positive recurrent and null recurrent

Markov chains. If the probability of returning to state i is 1 and the expected recurrent

time is finite, then the chain is positive recurrent. If a probability of return to state i is

1 but the expected recurrent time is infinity, then the chain is said to be a null recurrent.

It is very important to distinguish null recurrent states from transient states. Transient

states may be never visited again, while null recurrent states will certainly be visited

again, but in an infinite amount of time (Table 1).

Table 1: Comparison of recurrent and transient states

Name Probability of return to state Time

Positive recurrent 1 <

Null recurrent 1 

Transient <1 <

21

Figure 8: A null recurrent Markov chain (n)

Figure 9: A positive recurrent Markov chain

Figure 10: A transient Markov chain

Figure 8 presents a null recurrent Markov chain. The number of states is n, where n.

Although starting from state 1 it is certain that eventually the chain will return to state

1, this may be achieved only after an infinite length of time. In contrast, the positive

recurrent Markov chain presented in Figure 9 will return to its starting state in a finite

length of time. Figure 10 presents a transient Markov chain: starting from state 1 it is

22

not certain that the chain will return to the state 1, since it may get stuck in the closed

class {5,6}.

Periodicity

The period of a chain is defined as k, when

𝑘 = 𝐺𝐶𝐷 {𝑛: 𝑃(𝑋𝑛 = 𝑖 |𝑋0 = 𝑖) >0},

where GCD states for greatest common divisor. In other words the return to state i will

occur after a multiple of k steps. When a state can be revisited in irregular numbers of

steps—that is, when k=1—the state is said to be aperiodic. If a state occurs in regular

time steps—that is, when k>2—then the state is said to be periodic, with period k. A

Markov chain is aperiodic if every state is aperiodic. The period of the states in a class

is a property of that class; that is, all states that communicate (so they are from the same

communicating class) share the same period. It follows that an irreducible Markov

chain needs only one aperiodic state to imply that all states are aperiodic. In the example

presented in Figure 11 the period is k=3, while the example presented in Figure 12 has

the period k=2. Figure 13 presents a chain with period k=1, which means that the chain

is aperiodic.

Figure 11: Markov chain with period 3

23

Figure 12: Markov chain with period 2

Figure 13: A Markov chain with period 1, an aperiodic Markov chain

Markov chains are described in greater detail in Brzezniak and Zastawniak

(1999), Jones and Smith (2001), and Romanovsky (1970).

1.2.2. Hidden Markov Models

As described above, Markov chains are often said to be too restrictive and not

sufficient to address some problems. An extended version of the Markov concept—

Hidden Markov Models (HMM)—seems to offer one solution. In a hidden Markov

model, a sequence of M observations, O1 to OM, is generated by a sequence of hidden

N states, S1 to SN. Hidden states, as the name suggests, cannot be observed directly.

Transitions between hidden states are assumed to form a first order Markov chain. The

transition probabilities are defined as: A= {aij}, where aij = P(qt + 1 = Sj | qt = Si), with

24

the initial state probabilities π = {π i}, where πi = P(q1 = Si). The observation

probabilities are defined as B = {bj(k)}, where bj(k) = P(vt = Ok | qt = Sj). A HMM, then,

can be represented as M=(A, B, ). It is important to note that a HMM requires not just

one matrix but two: the first, as in the previous model, to determine the transition

probabilities, and the second to determine the output probabilities.

1.2.3. Example

Suppose that person X has a neighbour who is a pianist. The pianist usually

plays piano repertoire that goes with her mood: when she is melancholy she plays

Chopin, when she is happy she plays Mozart, when she is sad she plays Tchaikovsky.

Person X can then make assumptions about the pianist’s mood based on the repertoire

that he can hear through the wall. In this case the sounds can be described as

observations, while the real mood of the artist will be hidden. Figure 14 contains a

transition graph for this. The initial probabilities π are shown in blue, with solid lines;

transition probabilities a are shown in orange colour, with plain lines; and observation

probabilities are shown in three different colours, green, black and violet (depending

on the hidden state), with dotted lines.

25

Figure 14: HMM example: a pianist as a neighbour

HMMs can be used in three ways:

The evaluation problem. Given the HMM M=(A, B, ) and the observation

sequence O=o1 o2 ... oK , calculate the probability that model M has generated sequence

O. In this instance the model is given. The aim is to calculate the probability that the

26

given sequence O will be generated. Assuming that we know the pianist's model, what

is the probability that the given sequence will be played?

Decoding problem. Given the HMM M=(A, B, ) and the observation sequence

O=o1 o2 ... oK , calculate the most likely sequence of hidden states si that produced this

observation sequence O. In this instance, given an observation sequence O, the aim is

to find the underlying sequence of states that led to the given sequence O—that is, the

sequence of moods experienced by the pianist.

 Learning problem. Given some training observation sequences O=o1 o2 ... oK

and general structure of HMM (numbers of hidden and visible states), adjust M=(A, B,

) to maximize the probability. O=o1...oK denotes a sequence of observations

ok{v1,…,vM}. Here, we are given several observation sequences; the question is how

to adjust transition probabilities and initial states of the pianist —in other words, how

to correct the model of the pianist’s choices.

1.2.4. Markov Decision Process (MDP)

Markov decision processes are ‘models for sequential decision making when

outcomes are uncertain’ (Puterman, 2009, p. XV). Each model is described as a four-

tuple:

S – finite state space, with all possible states.

A – finite action space.

P (sʹ′|s, a) – state transition function. This describes how the next state sʹ′

depends on the previous state s and action a. The probabilities can be presented in a

probability table.

C – cost or contribution of taking an action a in state s.

At a particular time t, state s is a description of the system. From that point it is possible

to take an action from a set of possible actions. After that the system may change from

state s to state sʹ′. The probability of reaching state sʹ′ from state s by taking action a is

described as P. P is a mapping from S x A x S into a real number from 0 to 1. MDPs

are connected with the so-called Markov assumption, which states that the next state

depends only on the previous state and action, and not on states and actions in the past.

Markov decision processes are widely used in risk management, economics,

optimization, robotics, and manufacturing.

27

1.3. Music

1.3.1. Possible applications

Markov chains have successfully been used in music for the last sixty years. In

part, this is because every monophonic melody can be described as a sequence of steps

within a finite state space. States can be pitches, chords, rhythmic values, etc. Because

of this Markov chains are mainly used in:

• Classification

• Prediction

• Composition

Classification entails using Markov chains to recognize the composer or style

of a piece unknown to the user and computer. This application is extensively discussed

in (Pollastri & Simoncelli, 2001); (Liu & Selfridge-Field, 2002); (Wołkowicz, Kulka,

& Kešelj, 2007); and (Kaliakatsos-Papakostas, Epitropakis, & Vrahatis, 2001).

1.3.2. Prediction

Prediction is usually grounded on an analysis-synthesis theory. To create a new

sequence of events one first analyses sample sequences, generalising from the results.

Then synthesis is used to create new structures of the same class as the original group

of samples. Using this approach can result in problems. For example, the sample may

be too small, so that generalisation is not possible. Or the sample members may be so

homogeneous that it is not possible to create a new sequence that is not identical with

an existing one. The main action is usually training of already existing compositions.

One of the first attempts at prediction with Markov chains was made in 1957 by

a group of researchers from Harvard University (Brooks et al. 1957). They chose 37

hymn tunes from different composers and centuries. All began on the last beat of a four-

beat measure, were four measures long, and contained no durations shorter than an

eighth-note. Every duration was renotated as summed eighth-notes, so that each hymn

could be characterised as a 64-event series. The next step was to conceive each sample

as a series of octograms that begin on each successive eighth-note. Thus each hymn

yielded 64 octograms, and the entire 37 hymns yielded 2368 octograms. It emerged that

only 1701 distinct octograms appeared, with only 1531 distinct heptagrams. This

approach allowed them to use Markov chains up to the eighth order.

28

In synthesising melodies, metrical constraints had to be applied to force the

output into the predetermined metrical structure. One rule was, for example, that the

two main phrases both had to end on a dotted half-note; another was that the first note

of every measure should be struck, not held. These rules acted as gates or sieves: if a

note violated a rule, it was discarded and another note was generated. Moreover, if the

next fifteen notes did not satisfy the rules the whole hymn was discarded and a new one

begun. In the result, after 6000 starts only 600 synthesised hymns were generated.

Figure 15: Results of the experiment (Brooks, Hopkins, Neumann, & Wright, 1957, p. 181)

29

Figure 15 presents some results from this experiment. As was predicted,

melodies synthesised using a first-order chain (m=1) appear to be random; but this

decreases as the order increases. For m=8, the synthesised material was from the same

class as the sample. Indeed, further investigation revealed that in most of the

synthesised hymns nearly 50% of the melody could be found verbatim in the sample.

In a few cases a new hymn was identical to one of the inputs.

This experiment confirmed the problems noted earlier. Using a low order will

lead to apparent randomness, but using an order which is too high will produce an

output that is extremely similar to the sample. As one of the first experiments to apply

Markov chains, this created a basis for new approaches in prediction.

A more recent experiment attempts to overcome these problems (Verbeurgt,

Fayer, & Dinolfo , 2004a; Verbeurgt, Dinolfo, & Fayer, 2004b). Instead of using higher

orders the aim is to recognize the patterns that occur the most often in the sequence.

For example, in a simple melody

CDEDCDEFG

The pattern CDE occurs twice, so it is possible to consider it as a characteristic of this

melody. On that basis it is possible to create an event space for this melody in which

almost every event will be a single note but one event will be the recognized pattern:

Figure 16: Constructed Markov chain (Verbeurgt, Dinolfo, & Fayer, 2004b)

The results of this experiment are very promising. Figure 17 presents a piece

written with Bach’s ‘Air’ as the training material:

Figure 17: A piece written on the basis of Bach’s 'Air’ using patterns

30

A contrasting example, produced with a ‘typical’ Markov chain approach, without the

use of patterns, is presented in Figure 18.

Figure 18: A piece written on the basis of Bach’s 'Air' using a typical Markov chain approach

It is worth noting that the training material (the Bach) was not transposed into a single

octave, whereas in the previous experiment it was. This is why in the second example

large interval jumps are so common. However, applying the method of pattern

recognition helps to avoid this problem, and smooth transitions between notes can be

observed. It is also worth pointing out that both pieces respect the common music theory

concept of key, in that most of the notes are in the key, with a few accidental notes

occurring to create variety.

Both experiments demonstrate the limitations of Markov chains. Because the

training corpus consists of existing compositions, low-order chains or limited pattern

recognition will produce random results, and high-order chains or extensive pattern

recognition will just reproduce already existing phrases.

Different results can be obtained when Hidden Markov Models are used. HMMs

are usually used not to predict the entire composition, as in the previous examples, but

rather to add another dimension to the existing composition, such as a harmonisation.

This too is achieved through training by means of existing music material from a chosen

composer or music period.

One of the first attempts was made by Farbood and Schoner (2001), who

conducted an interesting experiment in order to create Palestrina-style counterpoint.

(However, they do not describe their work as HMM.) A set of species counterpoint

31

rules in the form of probability tables are implemented, and then the probabilities are

estimated from a sample of counterpoint examples. The results are determined by a

first-order Markov chain, although sometimes a second-order system is applied. The

results of the experiment are very promising; the program was able to generate solutions

identical to examples from a counterpoint book (the authors used Jeppesen (1931)).

On the other hand Allan and Williams (2004) proposed a HMM where all the

melody notes are treated as visible states, while chords correspond to the hidden states.

Then a melody line can be described as sequence of observed states, and a sequence of

hidden events creates a possible harmonization for this melody. It is important to note

that during training the hidden states of chords and harmonic symbols are actually

visible; that is, the learning process is taken directly from observation of the data set.

The training process included 121 chorales in major keys and 108 in minor keys; the

generated sample covered 81 and 72 chorales in major and minor keys respectively.

The two figures show the harmonization of chorale BWV 48 as designed by HMM

(Figure 19) and by Bach (Figure 20).

Figure 19: Harmonization using HMM

32

Figure 20: Original harmonization by Bach

This model appears to be better fitted for prediction purposes: instead of looking

at single events, this model takes into account both melody and the surrounding chord.

The problems seem to be primarily with voice-leading: large jumps, especially in the

bass line, and similar motion in all parts in measures 4 and 7.

Another approach to harmonisation used a Markov decision process (MDP) (Yi

i Goldsmith, 2007). Harmonisation in this case is limited to only basic harmonic

functions, seven in major scales and thirteen in minor scales. Each state includes two

adjacent chords; and because of this, it is possible to evaluate the connection between

two successive chords. Harmony is, of course, usually focused on chord sequences

longer than two chords, but for practicality a small and manageable MDP was needed.

The research may be extended in the future. The choice of the chord is described as an

action. If the chosen chord does not conform to the principles of harmony, a penalty is

given, which can be described as an increase in cost or decrease in contribution. An abc

notation is used in this model, which makes it possible for non-musicians to use the

program. In addition, it is possible to generate harmonisations from classical theory or

from a specific collection of music, like pieces by one composer or from one music-

period. Figure 21 presents an example of harmonisation made with this software.

33

Figure 21: Harmony generates with MDP

The program is, according to the authors, designed for amateur music lovers.

There is a large group of people who would like to harmonise a melody heard on the

radio or TV but, because of their lack of theoretical knowledge, are unable to do so.

Indeed, the generated harmony is rather superficial, as it is based on a limited range of

functions; so the program would be of little value for professional musician. However,

an extended version of this approach may provide a very useful tool for more advanced

harmonisation.

1.3.3. Composition

An interesting use of Markov chains is presented by Charles Ames (Ames,

1989). In this one of the most important features is a waiting probability: the

‘probability that the jth event of a Markov chain will reside in some state k, given that

the j - 1st event also resides in state k’ (Ames, 1989, p. 186). Ames used Markov chains

in Demonstration 4 (Figure 23), which is one of a series of eleven didactic studies from

1983/1984. In this piece music composed by a computer is presented in a wider context.

Demonstration 4 is based on a program with one short loop. The loop generates either

a note or a rest. The composing program controls four elements: average duration,

articulation, register and chromatic degree. The average duration is calculated on the

basis of a four-state matrix, where the states are respectively 2, 3, 5 and 9 expressed in

sixteenth notes, while each rest is considered as half of these values. The matrix

designed for this element assigns the highest probability to the states on the diagonal;

this results in retaining the same note duration for an average time of two measures.

34

The most interesting detail is that as the note value increases the probability decreases

but still remains the highest one.

The second element that the program controls is the specification of rests and

notes in the output composition. As in the previous matrix, here also the diagonal

probabilities are the highest; in fact they are exactly 0.91 for all possible outcomes. It

is worth pointing out that this is the highest probability weighting in all four matrices;

because of this it is expected that articulation will be the most consistent aspect of the

whole composition. The third factor is register; Ames specified seven registers. To

avoid excessive jumps between registers, in this case the diagonal probabilities are

again the highest and set at 0.66 exactly. The jumps, if allowed, are skewed to the

closest registers. The last parameter that is controlled by the Ames’ program determines

the chromatic degrees. Those are controlled by a first-order Markov chain, which is

presented in the matrix in Figure 22.

35

Figure 22: Matrix for chromatic degrees in Demonstration 4 by C. Ames

The outcome of this program is presented in Figure 23. As was expected,

articulation changes the least rapidly, while average duration fluctuates in a moderate

way.

36

Figure 23: Charles Ames, Demonstration 4

The most interesting results have been obtained when Markov chains are

combined with other algorithmic tools. A fascinating approach has been taken by

Eduardo Miranda and his research team (McAlpine, Hoggar i Miranda, 1999). They

used cellular automata, which are discrete, dynamic systems in that that they change

their features over time. Cellular automata are often described as arrays of cells. Each

cell can be in one of a finite number of possible states. A specific automata will have

an initial configuration that develops over time according to some rules of evolution.

37

One of the most famous examples is The Game of Life, created by John Horton Conway

in 1970 (Gardner, 1970). In this there are four main rules:

1. Any live cell with fewer than two live neighbours dies, as if caused by

under-population.

2. Any live cell with two or three live neighbours lives on to the next

generation.

3. Any live cell with more than three live neighbours dies, as if by

overcrowding.

4. Any dead cell with exactly three live neighbours becomes a live cell, as

if by reproduction.

Miranda also used a different cellular automaton, The Demonic Cyclic Space.

The evolution rules for this specify:

A cell which is in state j at timestep t will dominate any neighbouring cells which

are in state j - 1, so that they increase their state to j at timestep t+ 1.

This automaton is randomized at the beginning, but after a number of steps the

cells will self-organize to a pattern. One interesting feature of both The Game of Life

and The Demon Cyclic Space is that they both have a toroidal nature, shown in Figure

24. That means that the right edge of the automata space wraps around to meet the left

edge and the top edge of the automata space wraps around to meet the bottom edge. For

reasons of clarity, however, the automata are presented in planar spaces, where it is

possible to track the wrapping of cells in one’s own mind.

38

Figure 24: A toroidal space (Virtual Math Museum)

On the basis of these two cellular automata Miranda created CAMUS (Cellular

Automata Music). Notes, temporal positions, and durations were created according to

neighbouring cells, as in The Game of Life. The main limitation of the original CAMUS

was the rhythm generator. The output sequences were usually irregular and difficult to

listen to, while note durations sounded completely random. Miranda therefore chose

first-order Markov chains to control rhythms. This solution, combined with three-

dimensional extensions of cellular automata, is the core of the successor to CAMUS:

CAMUS 3D. Three coordinates (x, y, z) from The Game of Life are used to create pitch.

As an example, the coordinates in Figure 25 are (5, 5, 2); if these are interpreted as

semitones, they create the chord shown. A transition probability matrix, which was used

to calculate precise note durations, was created by the composer in the pre-

compositional process. This approach represents an interesting conjunction of

determinate and indeterminate tools. Automata are wholly determinate: that is, if the

initial cells are held constant, the output will be always the same. The reverse is true for

stochastic processes like Markov chains: starting from the same transition matrix,

varying results will be produced. CAMUS 3D is available on the CD accompanying

Miranda’s book (2001).

Figure 25: Chord generation (McAlpine, Hoggar, & Miranda, 1999, p. 26)

39

A different approach was presented by Kevin Jones in his PhD dissertation

(1980) and in his later article (1981). In TEXT YEARS for choir a special text is prepared

to generate distinctive textures. Jones noticed that in the English language certain

letters, especially vowels, are read differently depending on their context. For example,

one knows how to pronounce ‘o’ only if one knows the whole surrounding context:

Open /ˈəʊ.pən/

Who /huː/

Mother /ˈmʌð.ər/

Moreover, an English native speaker knows how to pronounce even made-up words. In

Jones example (1980, p. 100):

moso; noosoop; kolokos; moalo

As simple probabilistic solutions were inadequate, according to the composer,

a first-order Markov chain was used to create sonic textures. The foundations were

short, contrasting fragments of text that were then used to create suitable matrices. To

achieve the desired effect a special program was written to facilitate calculation.

However, it is important to note that Jones’s program is not applicable only to letters;

in fact, one can use any sequence of symbols, including notes.

In another attempt, Jones formulated state space S in an interesting way. In the

examples presented in Figure 26, Figure 27 and Figure 28 events vary from single notes

40

to chords and/or small motives. In this way single states characterise not only pitch but

also rhythm and density.

Figure 26: Sample state space (I) (Jones K. , 1980, p. 98)

Figure 27: Sample state space (II), (Jones K. , 1980, p. 112)

41

Figure 28: Sample state space for clarinet (Jones K. , 1980, p. 121)

Jones does not follow generally accepted terminology; he describes the number

of states as the order of the chain and the order of the chain as the dimension of the

chain. For example, in Jones’s terminology a third-order Markov chain will be

described as a 3-dimensional Markov.

42

1.4. Summary

As can be seen, Markov chains have played an important role in twentieth- and

twenty-first-century music, and they will continue to do so. The examples presented are

only some of the initial attempts to apply Markov-chain concepts to composition and

prediction, but they helped establish a basis for a stochastic approach to music.

Thereafter larger concepts could be implemented, and these offer new opportunities

that combine Markov chains with other processes, determinate and indeterminate, and

also with the composer’s own creativity. However, the utility of Markov chains, and at

the same time their limitation, lies in repeatability. With respect to tonal music, for

example, if a high enough order is applied the output will be mistake-free, assuming

the provided sample was itself free of errors. But in this case the output will only contain

repetitions of already known phrases. One can shape the program to produce pieces

without a single mistake, but we will never be able to come up with something new. In

this way Markov chains are similar to even the most developed calculation programs.

The definition of Markov chains itself implies one of the possible problems in

their application to music.

 Let Xo, X1, ... be a sequence of random variables with possible outcomes Xt =

xt ∈ S. Then the sequence is called a Markov chain, if

M1. The state space S is finite or countable;

M2. For any t ∈ N,

𝑃(𝑋𝑡+1 = 𝑗 |𝑋0 = 𝑖0, 𝑋1 = 𝑖1, … , 𝑋𝑡 = 𝑖𝑡) = 𝑃(𝑋𝑡+1 = 𝑗 |𝑋𝑡 = 𝑖𝑡)

In a science like physics or biology, it is relatively easy to use a Markov model

for the purpose of describing a well-known process. In fact, the state space S is usually

obvious—for example, the chromosomes X and Y, the elements of DNA, etc. The rules

underlying the problem being studied are usually well known, and thus it is relatively

easy to find appropriate probabilities. Even in the field of linguistics Markov chains

seem to give better results than in music. To explain why one must first realise that

Markov chains are applied to a specific type of language, one that is defined by a finite

set of rules. In the next chapter we will consider some of these rules and their

implications for music. For the present it suffices to note that music does not always

conform to such a clear definition. Thus it is not possible to apply Markov chains to the

whole of music. It is not even possible to describe a single state space S; and it is

impossible even to enumerate the number of spaces needed: duration, pitch, instrument,

43

or . . . something else? The rules for music composition only apply to a specific period

or style; present-day Western music will be regulated differently from music from

ancient China. Thus the first steps in applying Markov chains to music must be to define

the space(s) and to establish boundaries for the model by setting a finite number of rules

within this space. This can only happen if the application is preceded by analysis and

prediction within the chosen area, setting constraints according to the musical era or a

chosen composer’s style. A slightly different approach must be taken if a composer

decides to apply Markov chains to create compositions of his own. But this case, too,

requires a pre-defined, bounded space with specified rules and elements. Any

spontaneous invention of new conditions or the introduction of new elements requires

the entire process to be restarted from the beginning.

44

2. Generative grammars

2.1. Introduction

In the 1960s linguistics—the scientific study of language—was a special interest of

researchers. As a result many new fields were developed. Sociolinguistics was

introduced by William Labov and Basil Bernstein (Meyerhoff, 2011), while Systemic

Functional Linguistics (SFL) was developed by Michael Halliday (Halliday, 2003). The

1960s are also considered to be the beginning of modern psycholinguistics and the

moment when generative grammars were introduced. In 1957 Noam Chomsky wrote:

From now on I will consider a language to be a set (finite or infinite) of sentences, each

finite in length and constructed out of a finite set of elements. All natural languages in

their spoken or written form are languages in this sense (Chomsky, 2002, p. 13).

This concept was developed over the next few decades and is still an inspiration

for other scientists and artists. The novelty of generative grammars lay in the new

approach developed by Chomsky. He tried to look at linguistics from a mathematical

and logical perspective. Recently Oenbring (2009, p. 93) commented that ‘Chomksy

looked outside linguistics proper to formal symbolic logic for a set of methods to

ground his concerns in the study of language.’

The formal definition states that generative grammars are grammars designed

for the purpose of describing language by means of a set of logical rules. Those rules

need to be capable of generating the infinite number of possible sentences of that

language and providing them with the correct structural description. Chomsky defined

generative grammar in the following way:

By a generative grammar I mean simply a system of rules that in some explicit and

well-defined way assigns structural descriptions to sentences. Obviously, every speaker

of a language has mastered and internalized a generative grammar that expresses his

knowledge of his language. This is not to say that he is aware of the rules of the

grammar or even that he can become aware of them, or that his statements about his

intuitive knowledge of the language are necessarily accurate. (Chomsky, Aspects of

the Theory of Syntax, 1969, p. 8)

This linguistic model has developed into a powerful tool widely used in mathematics,

psycholinguistics, IT, and music theory and composition. In order to provide a deep

understanding of generative grammars and their types some definitions have to be

presented.

45

2.2. Basic concept of generative grammars

An alphabet is a finite and nonempty set of symbols. For example, the English alphabet

contains 26 letters (symbols) and the basic music alphabet contains 7 symbols {a, b, c,

d, e, f, g}, while the binary alphabet contains only two symbols {0,1}. The set without

any symbols—an empty set, —is not, by definition, an alphabet. However, it is

possible to create an alphabet with a single empty symbol, notated as {ε}. A string is a

finite and ordered sequence of symbols chosen from an alphabet. The number of

symbols within a string is called the length of the string. A finite, infinite, or empty set

of strings from an alphabet is called a language.

A formal grammar is a finite set of rules that describe how to generate correct

sentences in a formal language. A set of sentences that can be generated by grammar

rules constitutes a formal language—if the sentence cannot be created by the

grammatical rules it is not a sentence from the described formal language. A grammar

can only generate strings; it cannot generate or assign meaning to the generated

sentences.

A grammar is formally defined as a tuple (VN, VT, P, S), where:

 VN is a finite, non-empty set of symbols called variables or non-terminals, each

of which then can be replaced by another non-terminal or terminal symbol.

 VT is a finite set of terminal symbols, which are unalterable; it is not possible to

rewrite a terminal symbol, it terminates any derivation. Each terminal symbol

is an actual word from the specified language.

 P is a set of production rules. The production symbol is an arrow . Each

production rule contains a non-terminal symbol that is being described by this

rule. This variable is called the head of the production and it is usually on the

left side of the arrow. On the right side of the arrow is a string of zero or more

terminals and non-terminals, called the body of the production.

 S is the start symbol; it is a specially distinguished symbol in VN and is

sometimes called the sentence symbol.

Starting with S, after a finite number of steps according to the production rules, one

will achieve a string that contains terminal symbols only. A string is said to be in the

language that the grammar generates if it contains only terminal symbols that are

derived from the starting symbol S.

46

In terms of a formal grammar the alphabet V is the set of all symbols, terminal

and non-terminal: V=VNVT. The set of terminal symbols can be described as the

terminal alphabet and set of non-terminal symbols can be described as the non-terminal

alphabet. Those sets are disjoint: VNVT=. Non-terminals are usually represented by

upper-case letters (A, B, C), while terminals are represented by lower-case letters (a, b,

c). This nomenclature will be used in the present work.

Grammar 1

Consider the following grammar G:

G1 = (VN, VT, P, A), where

Vn:= {A, B, C},

VT= {d, e, f},

P :

I AdA

II AeCB

III BC

IV CfC

V Cdef

The following generations are then possible (Table 2):

Table 2: Possible generations of Grammar 1

Generation Result Rule

1. AeCB II rule

2. eCBeCC III rule

3. eCCefCC IV rule

4. efCCeffCC IV rule

5. effCCeffdefC V rule

6. effdefCeffdefdef V rule

As can be observed in the Grammar 1, after the sixth generation the outcome

includes only terminal symbols. It can be also seen that the first production rule has

been omitted in this example, while the fourth and fifth production rules have been used

twice. After six generations a string effdefdef is achieved. It contains only terminal

symbols, all of which belong to VT; hence this string belongs to the language produced

by grammar Grammar 1.

47

If it is possible in grammar G to derive sentence S in more than one way then

the grammar G is said to be ambiguous; otherwise it is said to be unambiguous.

Consider the following Grammar 2:

Grammar 2

G2 = (VN, VT, P, A), where

Vn:= {A, B, C},

VT= {d, e, f},

P :

I AaBC

II BC

III Bb

IV CbC

V Cc

It is possible to achieve the sentence abc in two ways:

Table 3: Possible generations by Grammar 2

I solution II solution

AaBC I rule AaBC I rule

aBCabC III rule aBCaCC II rule

abCabc V rule aCCabC IV rule

 abCabc V rule

As can be observed, in Grammar 2 it is possible to create the sentence abc in two

different ways. Hence, the described grammar is ambiguous.

Every grammar can be used in two ways: to generate a sentence or to parse an

existing sentence. Generation starts from the start symbol S and chooses one production

rule each time there is a choice. Parsing, on the contrary, starts from the bottom level

and assigns non-terminal symbols to each terminal according to the production rules.

The result of parsing is the starting symbol and a top-level production rule.

The easiest way to present a derivation is by derivation tree, called also a parse

tree. Each leaf of the tree corresponds to a terminal, while each internal node

corresponds to a non-terminal. While a parse tree shows each derivation, it does not

48

encode the order they were applied. In Figure 29 the same sentence from grammar 1

effdefdef is derived; however, it is not possible to know what was the order of the

generations.

2.2.1. Chomsky Hierarchy

There are four main types of grammars, distinguished by Noam Chomsky

(1956). The types present different levels of restrictions and together form The Chomsky

Hierarchy. Each grammar on each level is part of a grammar on the previous level, as

presented in Figure 30. In this way all four types of grammars create one connected set.

C

C

C

e

C

f f d e f d e f

B

A

Figure 29: Result of Grammar 1 presented as parse

49

Figure 30: Chomsky Hierarchy

Type-0 Grammar – unrestricted grammar

As the name suggests, in this grammar there are no restrictions on production rules.

Because of this, each production rule only needs to take the form 𝛼 → 𝛽, where α,β 

(VT  VN)*. Languages generated by type-0 grammars represent all languages that can

be recognised by a Turing machine. Languages created by type-0 grammars are

sometimes called recursively enumerable languages.

Type-1 Grammar – context-sensitive grammar (CSG)

Each production rule in a type-1 grammar has the form 𝛼𝐴𝛽 → 𝛼𝛾𝛽, where α,β,γ  (VT

 VN)*, γ≠ and AVN. The production rule S exists only if S does not appear on

the right hand side of any production rule. A language produced by such a grammar is

Type 0 -
Unrestricted

Grammar

Type 1 - Context
Sensitive Grammar

(CSG)

Type 2 - Context
Free Grammar

(CFG)

Type 3 - Regular
Grammar

50

called a context-sensitive language. Languages produced by type-1 grammars represent

all languages that can be recognized by a linear bounded automaton.

Type-2 Grammar – context-free grammar (CFG)

Each production rule in a type-2 grammar takes the form 𝐴 → 𝛼, where AVN and α 

(VT  VN)*. A language produced by such a grammar is called a context-free language.

The languages defined by type-2 grammars are recognized by push-down automata.

Type-3 Grammar – regular grammar

Each production rule in a type-3 grammar can take one of two forms:

a) Right-linear, where: AγB or Aγ, where A, BVN and γ  VT*.

b) Left-linear, where: ABγ or Aγ, where A, BVN and γ  VT*.

While the right-linear and left-linear forms are equivalent to each other, it is forbidden

to mix the two within one grammar. The production rule S exists only if S does not

appear on the right hand side of any production rule. A language produced by such a

grammar is called a regular language. Languages produced by type-3 grammar

represent all languages that can be recognized by a finite-state automaton.

2.3. Grammars in music

2.3.1. Overview

Based on the concept of generative grammar one can wonder if it is possible to apply

similar rules in music. Indeed, according to Steedman, music can be presented as a

grammar:

 The idea that there is a grammar of music is probably as old as the idea of grammar

itself, and the idea that there should be formal grammars of music followed equally

hard upon the Chomskean application to natural languages of the formal techniques

used to analyse logical and mathematical languages […] (Steedman, 1996, p. 306).

The possibility of using a grammar to represent music occurred also to Noam

Chomsky. In 1979, during the Immanuel Kant Lectures in Philosophy at the Stanford

University, he asked the question ‘is music a language?’ and immediately answered it:

‘it all depends on one's definitions, and ultimately it is an unnecessary question; one

shouldn’t be diverted by it’ (Roads & Wieneke, 1979, p. 48) .

The main interest in using generative grammars in music started back in the

51

1970s. From that period forward this concept has been widely used in algorithmic

composition as well as in music analysis.

2.3.2. Composing using generative grammars

Consider the following Grammar 3:

Grammar 3

G3=<VN, VT, P, A>, where VN={A, B, C, D, E, F, G} and VT={a, b, c, d, e, f, g}

P consists of the following production rules:

I. AaA,

II. AcdC,

III. AafE

IV. BbG

V. BD

VI. CcD

VII. CG

VIII. DdB

IX. DdF

X. FacB

XI. GdABf

In Grammar 3 VT contains seven terminal symbols that might be considered as

equivalent to notes. Then, instead of composing with notes, a composer is able to

compose with relevant production rules within the grammar. The grammar then

becomes an easy-to-use compositional tool.

The use of generative grammars as a compositional tool has been developed by

many researchers over the past few decades. McComrak (1996) applied string-rewriting

grammars based on L-systems into music composition. An extensive survey of the

application of generative grammars in music is provided by Roads in his article

‘Grammars as Representations for Music’ and in AI Methods in Algorithmic

Composition: A Comprehensive Survey (Fernández i Vico, 2014)

2.3.3. Generative Grammar Definition Language

An interesting approach has been undertaken by S.R. Holtzman (1981). He created the

52

Generative Grammar Definition Language (GGDL) compiler, which is provided with

special features designed for musical language. It can be used for both music research

and composition. Holtzman based his GGDL on all four types of Chomsky’s hierarchy

(0-3). In GGDL the simplest production rule takes the following form:

 [LHS A .B .C .D]

This means that the LHS (left hand side) may be replaced by A, B, C, or D. The

assignment is random. Holztman introduces also a shriek, which takes the form of an

exclamation mark (!) following an arrow:

 [LHS ! A .B .C .D]

The above transformation reflects the influence of serialism in requiring that no symbol

can be chosen a second time before all other symbols have been chosen.

A third possible rule includes a transition matrix. The generations are then

dependent on a row of transition probabilities that states the probability of the

production, followed by other possible outcomes that may be generated.

Table 4: Sample LHS transition matrix in GGDL (Holtzman, 1981, p. 52)

[LHS 

 (A 1 0 1 0)

 (B 0 1 0 0)

 (C 1 1 0 0)

 (D 1 1 1 1)]

When the transition probability equals 1 it means that the given transition is possible,

and when the transition probability equals 0 the given transition is not possible. This

should not be confused with a stochastic distribution of probabilities. In Table 4 it is

possible to achieve C from either A or D; however, the probabilities of those transitions

will be the same and, in this case, equal 50%.

Holztman’s compositional procedure includes three stages:

1. Generation: an abstract structure is created based on the rewriting rules.

2. Transformation: the structure is subjected to musical transformations, like

inversion or transposition.

3. Mapping: the result of the second stage is then mapped into sounds.

One of the possible applications of GGDL is to produce and describe existing pieces.

53

In his article (1981, p. 53) Holztman described a set of compositional rules that was

able to produce, among many other structures, the pitch structure of Schoenberg’s

‘Trio’ from Suite für Klavier, op. 25 (1925). He also created his own compositions, like

After Artaud.

2.3.4. Generative theory of tonal music

Probably the most famous musical application of generative grammars is the Generative

Theory of Tonal Music (GTTM). Created by Fred Lerdahl and Ray Jackendoff, this

music analysis theory was introduced in 1983. This early approach to the grammatical

analysis of tonal music is believed to have had a massive impact on later algorithmic

composition. The aim of the authors is to present a theory of music as a ‘formal

description of the musical intuitions of a listener who is experienced in a musical idiom’

(Lerdahl & Jackendoff, 1985, p. 1) By,‘musical intuition’ the authors mean the

unconscious knowledge that a listener brings to an auditory experience. An experienced

listener, who may never have studied music, is able to identify a piece as an example

of a specific idiom or genre. Of course such a listener is just an idealisation; it is

impossible to find two people with the same ways of hearing music. But the closer a

description is to the experience of the ideal listener, the more it can be presumed that

the description is of the most ‘natural’ way to hear a piece.

Researchers through the centuries have tried to trace the connections between

music and language, their properties and origins; however, the results, in the form of

speculative writings, have proved to be insufficient. The problem was caused in part by

attempts to literally transfer linguistic units into music. Researchers tried to find the

musical equivalent of nouns, verb, or synonyms. Those efforts were characterised by

Lerdahl and Jackendoff as an ‘old and largely futile game’ (Lerdahl & Jackendoff,

1985, p. 5).

The GTTM is focused on two domains only: pitch and metrical structure. Four types

of analysis, all concentrated on hierarchical aspects, are presented:

1. A Grouping Structure organizes the music space into groups. According to the

authors this is the most intuitive and basic type of understanding and can be

compared to the visual arts. It is also worth pointing out that grouping rules are

idiom-independent, which means that even if the listener’s knowledge of the

idiom is relatively small, it will be still possible to assign grouping structures to

pieces in that idiom. The result of the grouping structure analysis is a

54

hierarchical segmentation of a piece into motives, phrases, periods.

2. The Metrical Structure describes how a listener assigns a metrical structure to a

given music space. This type of analysis focuses on stressed and unstressed

beats on different hierarchical levels. The result of a comprehensive analysis of

this type is a grid, where each row belongs to a distinguished metrical level.

3. Time-span Reduction is mostly based on the information gained from grouping

and metrical analysis. Based on this, the importance of individual events is

evaluated. The result of this analysis can be presented as a time-span tree, where

each event must contain a dedicated head, which is the most structurally

important event.

4. Prolongation Reduction is intended to show the tension and relaxation of the

musical piece. As for the time-span reduction, here also the result of the analysis

is presented in a form of a tree.

All those types of analysis are formalized by three categories of rules (Lerdahl &

Jackendoff, 1985, p. 9):

1. Well-formedness rules, which specify possible structural descriptions.

2. Preference rules, which, for any specific experience of a particular piece by a

particular experienced listener, define the possible structural descriptions,

3. Transformational rules, which exist to analyse special events, like elisions.

It is worth pointing out that preference rules, which play a major part in GTTM, do not

correspond to linguistic theory. On the other hand, transformational rules, which are

the core of linguistic theory, are significantly less important. The approach to the rules

is one of the biggest differences between the uses of generative grammars in linguistics

and in GTTM.

 As an illustration, consider the example presented in Figure 31, which contains

an analysis of bars 9-16 from the Andante from Haydn’s Symphony no 94.

55

 9

Figure 31: Analysis of bars 9-16 from Andante from Haydn's Symphony no 94

The grouping structure is presented on three levels: half-note level, quarter-note level

and eighth-note level. However, in bar 16 the half-note level is equivalent to the

previous quarter-note level. Indeed, when considering the dynamics and articulation in

this particular bar, which can be even named “the title bar”, it is clear that it is not

possible to create a larger group than a quarter-note group. In the GTTM, GRP 1 states:

“Avoid analyses with very small groups—the smaller, the less preferable” (Lerdahl &

Jackendoff, 1985, p. 345). According to this, one pitch in the normal flow of music

should not constitute a group. However, GTTM allows exceptions in this matter, when

the pitch is strongly isolated or functions as a motive itself. Without doubt both events

in bar 16 are strongly isolated, and because neither can be grouped with any other

adjacent events they can be treated as an exception. The metrical structure is also

presented on three levels, with the whole eight bars as one structure at the highest level.

56

9

Figure 33: Time-span reduction

The time-span reduction provides the hierarchy of the example, as presented on

Figure 32. The event in bar 16 is recognised as being the most structurally important,

and thus it is the head of the whole eight-bar phrase.

Reception

One of the most interesting perspectives on GTTM was provided only recently,

in (Katz & Pesetsky, 2011). The authors admit that the theory developed a quarter-

century earlier by Jackendoff and Lerdahl still ‘remains the best-developed proposal of

its type, unrivaled in comprehensiveness and insight’ (2011, p. 1). They point out,

however, that although GTTM was inspired by generative linguistics, its creators

admitted that ‘the generative music theory developed here does not look much like

generative linguistics’ (Lerdahl & Jackendoff, 1985, p. 307).

Katz and Pesetzky provide an extensive discussion in which they explain that

in their opinion music and language are identical in almost every aspect. As has been

noted earlier, there are no linguistic equivalents for a dominant chord, nor are there

musical equivalents for nouns and verbs; however, the similarity between the two

domains resides in their common syntactic components. In other words, music and

language differ in their extrinsic construction, but the assumptions and rules behind

those constructions are shared between the two domains. This approach allowed Katz

and Pesetzky to form the following thesis:

Identity Thesis for Language and Music

All formal differences between language and music are a consequence of

differences in their fundamental building blocks (arbitrary pairings of sound

and meaning in the case of language; pitch-classes and pitch-class

Figure 32: Time-span reduction

57

combinations in the case of music). In all other respects, language and music

are identical (2011, p. 3).

The authors point out the main differences between GTTM and linguistic theory, which

they believed were caused by different approaches to formalization and notation that

were taken by researchers in those two domains. Afterwards the major similarities are

shown—for example, the analogy between prolongational reduction and time-span

reduction in music and linguistic syntax and prosody in language—which confirm the

hypothesis.

2.3.5. Web Grammars

As has been seen, grammars can be used for the analysis of classical music. They can

be also very useful tools for composing melodies, but they cannot be used to define

vertical relationships in music. This is because of their purely linear structure. To

describe both vertical and horizontal relationships web grammars are used.

The structure of a web grammar is the same as for a string grammar; it is

expressed as a tuple (VN, VT, P, S). However, the production rules are expressed

differently. In a string grammar every production rule has the form AγB, which

express the linear character of the grammar. The rule means that γ and then B replace

A. In web grammars production rules take the form Aγ/B, where “/” means that A is

replaced by γ and at the same time by B. The vertical character of this type of grammar

is easy to see in a graphical representation of the rule, which is called a web diagram:

A

Instead of the usual vertical result, as was the case for traditional parse trees, this

diagram expresses both the horizontal and the vertical aspects of the transition.

Jones (1980, p. 245) noticed that in compositional applications the terminal

event space could be expressed as a sequence of traditional notes. With web grammars,

unlike string grammars, it is possible to compose music sequences with both vertical

and horizontal relationships. Consider the following Grammar 4:

Grammar 4

G4 = (VN, VT, P, A), where

Vn:= {A, B, C, D, E, F, G},

γ

B

58

VT= {a, b, c, d, e,f,g},

P :

Rule

I Aa/B

II Aa

III BB/D

IV BbG

V Ba/F

VI CBc

VII Cc/f

VIII Dd/DE

IX Dd/f

X EACE/e

XI Ee

XII Ff

XIII Gg

Generation 1: A

Rules: 1

Generation 2:

Rule: 3

a

B

a

D

B

59

Generation 3:

Rules: IV and VIII

Generation 4

Rules: IX and XIII

a

b g

d

E

d

f

a

b g

d

d

f

a

b G

d

D E

A C E

e

60

Generation 5

Rule: X

Generation 6

Rules: II, VII, XI

A web approach is important primarily because it allows one to create both

vertical and horizontal relationships between terminals, which is vital when one uses

generative grammars as a compositional tool. The graphical representation of the

Grammar 4 in the above example is easily transferable into music, as shown in Figure

34:

Figure 34: Music representation of the outcome of Grammar 4

While earlier, one-dimensional approaches to generative grammars allowed only the

creation of melodies, now it is possible to create polyphonic pieces. Another application

might be to use another set of terminals—for example, a set of instruments—and create

polyphonic music with instrumentation at the same time.

Of course it is possible to create a web grammar with three or more dimensions.

A slash with superscripts is then used: /1, /2, /3. However, it is generally thought that

only grammars of two or three dimensions can be easily created and analyzed.

a

b g

d

d

f

a e

e

c

f

61

Web grammars are comprehensively described in (Pfaltz i Rosenfeld, 1969))

and, with relevant music examples, in (Jones K. , 1980) (Jones K. , 1981).

2.3.6. Stochastic grammars

Consider the following Grammar 5:

Grammar 5

G5 = (VN, VT, P, A), where VN={A, B, C, D} and VT={x, y, z}

P consists of the following production rules:

I. AxB,

II. ByB,

III. ByC

IV. BzC

V. Cx

VI. CD

VII. Dz

Many unique structures may be created on the basis of this grammar. However, one

may wonder on what grounds the rules are chosen. It is possible to make an assumption

that in all the grammars thus far discussed the probability of applying of each rule was

equal:

𝐷 =
1

∑ 𝑃

However, this equal, random selection from the production rules is sometimes

insufficient. If there is a need for a better control of the choice of production rules,

stochastic grammars may be applied.

A stochastic grammar is described as a quintuple:

G = (VN, VT, P, S, D),

where VN, VT, S are defined as in string grammars, P is the set of production rules, and

D is the set of probabilities associated with production rules. Although stochastic

grammars can be created from all four types of grammars in Chomsky’s hierarchy, they

are mostly used as extensions of context-free grammars (type-2 in Chomsky’s

classification). They are then called probabilistic context-free grammars (PCFG).

Consider the string given above (Grammar 5).

62

As presented there, each production rule originating from the same state has

equal probability (for example from state B, each rule has probability of 1/3). It is

possible to convert this grammar into a stochastic grammar by assigning probabilities

to the production rules.

Table 5: Assigning probabilities to Grammar 5

 Rule Probability

1) AxB 1

2) ByB 0.2

3) ByC 0.3

4) BzC 0.5

5) Cx 0.7

6) CD 0.3

7) Dz 1

An example of a stochastic grammar follows (Grammar 6).

Grammar 6

G6 = (VN, VT, P, A, D), where VN={A, B, C, D}, VT={,x, y, z}, D = (1, 0.2, 0.3, 0.5,

0.7, 0.3, 1)

It is worth noting that the usual rule must apply to the probabilities:

∑ 𝑝𝑖

7

𝑖=1

∈ 𝐷 = 4 = |𝑉𝑛|

Stochastic grammars can be also derived from Markov Chains. Consider the following

Markov-chain transition matrix, taken from the ‘Soft Kitty’ example above (chapter 1,

figure 3):

 C D E F G

C 1

D 1
2⁄ 1

3⁄ 1
6⁄

E 2
5⁄ 3

5⁄

F 1
2⁄ 1

4⁄ 1
4⁄

G 1
2⁄ 1

2⁄

The following production rules can be derived from this matrix:

63

Table 6: Production rules for a Soft Kitty Grammar

I. CcD

II. DdC

III. DdD

IV. DdE

V. EeE

VI. EeF

VII. FfD

VIII. FfF

IX. FfG

X. GgE

XI. GgG

To allow for termination of this grammar an additional rule must be added:

XII. Dc

Using this transition matrix, and taking into account the twelfth rule (of termination), it

is possible to create a stochastic grammar having the following form:

Grammar 7

G7 = (VN, VT, P, G, D), where:

VN={C, D, E, F, G},

VT={c, d, e, f, g},

P:

 Rule Probability

1) CcD 1
2) DdC 1

3⁄

3) DdD 1
3⁄

4) DdE 1
6⁄

5) Dc 1
6⁄

6) EeE 2
5⁄

7) EeF 3
5⁄

8) FfD 1
2⁄

9) FfF 1
4⁄

10) FfG 1
4⁄

11) GgE 1
2⁄

12) GgG 1
2⁄

D = (1, 1 3⁄ , 1 3⁄ , 1 6⁄ , 1 6⁄ , 2 5⁄ , 3 5⁄ , 1 2⁄ , 1 4⁄ , 1 4⁄ , 1 2⁄ , 1 2⁄)

As has been previously noted, the sum of probabilities must equal the number of VN:

∑ 𝑝𝑖

12

𝑖=1

∈ 𝐷 = 5 = |𝑉𝑛|

64

2.3.7. Problem of termination

Regardless whether grammars are being used for analysis or for composition, it

is extremely important to design the appropriate probabilities. A major issue is the

termination of the grammar. When the probabilities are assigned in a random or reckless

way it is very likely that the grammar will generate structures indefinitely. Consider the

following Grammar 8:

Grammar 8

G8 = (VN, VT, P, A, D), where VN={A, B, C}, VT={a, b, c }, D = (1, 0.8, 0.2, 0.6, 0.4).

The production rules consist of the set:

Table 7: Production rules for Grammar 8

 Rule Probability

1) AaB 1

2) BABAC 0.8

3) BbC 0.2

4) CA 0.6

5) Cc 0.4

Termination is possible after only one generation; the probability of termination then

is 1*0.2*0.4 = 0.08. The next possible termination is after five generations, as

presented on Table 8:

Table 8: Problem of termination

Generation Result Rules

1. AaB 1

2. ABAC 2

3. aBbCaBc 1, 3, 1, 5

4. abCbcabCc 3, 5, 3

5. abcbcabcc 5, 5

The probability of termination in this case is 0.00016384. If termination is not

accomplished at this point every further possibility of termination will have a

probability approaching 0.

2.4. Summary

The purpose of this chapter was to provide an overview of different types of

generative grammars and their possible application in music. As can be observed,

65

generative grammars were a central interest for many researchers in the last century,

with Noam Chomsky leading the field. Because generative grammars have been applied

mainly in linguistics, they follow Markov chains in their musical uses; nevertheless, it

has been shown that they can be successfully applied in music.

While both Markov chains and generative grammars play important roles in the

contemporary music, it should be noted that generative grammars have significantly

more importance in the field of music theory. GTTM proved to be an important part of

twentieth century music analysis, but evolving criticism has led to new developments

in recent decades.

For composition, generative grammars have proved to be a useful tool. Their main

advantage over Markov chains is that they allow the creation of not only horizontal but

also vertical relationships, as was shown in the discussion of Web Grammars. This

feature is especially important for composition as it allows for the generation of chords

as well as melodies. Combining this with the intelligent design of relevant probabilities

can give exceptional results.

It has to be noted that any grammar, even if perfectly designed, will ultimately not

replace a composer. A generative grammar can be a great source for diverse and

abundant music material; however, decision about the value and quality of what is

produced remains the responsibility of the composer.

3. Stochastic Composer

3.1. Introduction

There are many applications currently available that allow one to use

mathematical concepts in the composition process. An interesting website is maintained

by Karlheinz Essl; there anyone can access a comprehensive suite of compositional

tools (Essl, 2015). Among many available applications, one finds Lexikon-Sonate, an

‘interactive, realtime composition environment for musical composition and live

performances’. This software uses algorithms that have been developed by the author

since 1985. Essl considers Lexikon-Sonate to be a musical installation that can be also

use as a computer instrument for live performances. An interesting feature is that once

started, the program can run for years without repeating itself. Another software that is

worth noting is Amazing Maze, an application that also uses algorithms created by Essl.

66

This software can be used to create ‘an astounding sonic cosmos by manipulating

instrumental sound particles in time and space’. An interesting feature is the option to

run the process either through live user-interaction or automatically.

An important software package is the award-winning Common Music, created

by Rick Taube (Taube, 2015). This music composition system ‘transforms high-level

algorithmic representations of musical processes and structure into a variety of control

protocols for sound synthesis and display. Its main user application is Grace (Graphical

Realtime Algorithmic Composition Environment) a drag-and-drop, cross-platform app

implemented in JUCE (C++) and S7 Scheme’. It is worth noting that while the first

version of the software was created in 1989, the program is constantly improved and

updated, with the most recent release in 2014.

FractMus 2000 is another interesting product available currently on the market

(Díaz-Jerez, 2015). Created by Spanish pianist and composer Gustavo Diaz-Jerez, it

provides a comprehensive set of tools to support composition process. Among twelve

algorithms available one finds number theory, chaotic dynamics, fractals and cellular

automata. One of the interesting features of this software is the property that each voice

can use any algorithm independently from the others.

A good website that provides an extensive list of available applications is

Conceptual Algorithmic Music (GDG, 2015). One can find there a list of available

programs that support compositional process for Windows, Max and Linux platforms.

While many applications are listed, none of them allow a person to use and combine

Markov chains and generative grammars on such a large scale as Stochastic Composer.

Additional software that is already available for use is mostly based on MIDI

files, as distinguished from Stochastic Composer, which is based on analysis of musical

scores described in more graphical way. Both the generative-grammar and the Markov-

chain sections focus on the score itself and on the notes and connections between them.

Those note values (Octave, Pitch, Step) are then directly translated into values used in

algorithms that traditionally are applied to mathematical variables. A second major

difference is that Stochastic Composer abandons the use of MIDI files to represent the

music, replacing them with XML files, which are digital representations of musical

scores.

One common denominator across the spectrum of such tools is also found in

Stochastic Composer: the software does not actually ‘compose’, but serves merely as a

67

set of tools. These can sometimes be very sophisticated, but they do not usurp the

compositional aspects of the work. For example, in FractMus 2000 the composer writes

a code in a language defined for the application purpose; similarly, in the Stochastic

Composer generative-grammar module, the composer creates production rules that are

in fact the programming language of the application. Therefore it is fair to say that in

all cases it the computer does not generate music; it generates an answer for a specific

set of input variables that are defined by the composer. In most cases the output of the

software can then be imported into music-editing software for further processing and

analysis and, as all the authors hope, become an inspiration as the composer develops

the work.

The scope of this project was to create software that would allow users to compose

using Markov-Chain and Generative-Grammar stochastic processes. The main

requirement was that the software would have to be easily available to multiple users

on various platforms (for instance, on both MAC and Windows computers). Moreover,

the software would need to export results to music notation software as well as offering

a basic rendering of a composition on the user interface. In order to create a composition

the user should need no more than a minimal understanding of the stochastic processes,

focusing rather on the potential musical outcome of the software and leaving all

mathematical calculations to the digital process itself.

These requirements were satisfied by implementing a solution based on a web

application concept that could be delivered to composers through simple web browsers.

Using a web browser for software distribution meant that access to the application could

also be shared between users, as it could be accessed on users’ preferred hardware, even

on mobile devices like tablets or smart phones. The software allows a user to further

edit the downloaded compositions and use them in any musical notation software that

supports .XML file format. Every composition created can be downloaded in the .XML

format, which can then be further processed in Finale, Sibelius or other notation

packages.

The next section describes the technical aspects of the implementation and

deployment as well as the technologies used to achieve the final outcome.

68

3.2. Software design description

3.2.1. Web Application Concept

The concept of a web application implies creating client-server applications in

which the client side of the application runs in the web-browser. This means that the

user interface for the application is delivered to a user via an internet connection, but

the core algorithms are executed on a server.

Using such an approach gives a developer the convenience of using a web-

browser as a medium and saves the need of distributing and installing software for the

end users. In the case of Stochastic Composer, that approach allowed easy distribution

to both MAC and Windows users without the necessity of writing or duplicating any

code. The Stochastic Composer follows a classical structure of dividing the web

application into the following tiers (Figure 35):

 Client Layer – user interface

 Presentation Layer – server access layer, by which the user interface sends

commands to the server

 Business Logic Layer – implementation of all the algorithms and data

processing

 Data Access Layer – implementation of database access

 Database – storage for users and their compositions (data)

69

Figure 35: Stochastic Composer - Software Structure

Following that structure allowed changes and development to be carried out

without disturbing the end-user. Every time the end-user accesses the application the

browser obtains the new version from the server. That means that any changes to the

Client Layer can be carried out and implemented without affecting the functionality of

the server and the database; changes to the algorithms or the database do not affect

clients and, thanks to delivery via a web-browser, no update is required.

3.2.2. Server side

As mentioned in the previous paragraph the key elements of the software reside

on the server. Stochastic Composer based its server side on the .NET Framework, a

solution developed by Microsoft that is a key component of all modern windows-based

software solutions. Version 4.5.2 was used for the main web applications and

70

accompanying software libraries, which were coded using C# as development

language.

The whole server side, consistent with one of the .NET Framework core

principles, is based on an object-oriented programming (OOP) model, which organises

the code around objects and classes. Objects are very often real-life data examples that

contain both data and procedures that can be executed on those objects. Classes are

definitions of the data types and methods that are used to create further objects.

In case of Stochastic Composer the simplest example is a Musical Score (class

-> score) that has a Title (a simple property) and multiple Parts (list of part objects). A

Part is, in turn, built of measures (objects), each of which is created of multiple measure

elements (notes, rests, etc.).

The server side was built from a few components that form the core of the

Stochastic Composer application:

 Domain – The domain class library contains class definitions for all relevant

objects used in the software. Classes define the music notation (notes, pitch,

score, measure, etc.) and also include software-oriented classes (Markov-chain

nodes and transitions, or grammar production rules). In the domain library, the

structure of all those classes is defined, but no actual code is executed.

 Data Access – The data access library contains database access definitions and

database formulas for creating the database using a ‘Code First’ approach. Such

an approach creates the whole database structure during the first run of the

software and allows for easier maintenance of the database in line with the OOP

concept. In addition, the data access library contains all the static helper classes

(for example, the ‘MathHelper’ class contains a definition of the Gaussian

Kernel used to assign notes to a specific octave).

 Grammar Manager – This library is the core of the business logic for generative

grammars. Its classes contain procedures for creating and maintaining

production rules and for their validation, as well as for the generation of all types

of grammars supported.

 Stochastic Composer – This is the server application that integrates all class

libraries and provides the business logic and access for all application

components. This is the brain of the whole software package, as it is responsible

for hosting all the server tiers of the application. It is built based on ASP.NET,

71

which is responsible for serving data to the client sessions as well as executing

code from the Grammar Manager and Data Access libraries. This section also

hosts all client-based code for the User Interface, which is served to the user’s

web-browser through HTTP protocol.

 Unit Test – This is the last library included in the project and contains the code

that is used purely for testing the server-side procedures.

To summarise, all the components of the server application combine to create a core

structure on which the whole software is based.

3.2.3. Database

Microsoft SQL Server is used as a database for Stochastic Composer. That database

(Figure 36) is used to store:

 User data (passwords [in coded format], usernames, and privileges);

 Composition data (XML outcomes, titles and descriptions) for both created and

uploaded compositions;

 Grammar or Markov-chain details that allow for analysis of compositions

created using the software.

72

Figure 36: Stochastic Composer - Database Structure

Storing compositions on the server is important and allows the author of this

thesis to analyse outcomes generated by other composers as well as permitting the

composers themselves to see and download the pieces composed by use of the software.

The database stores all user information as well and allows for maintenance of user

permissions and access to compositions created by them, simultaneously protecting

access to other composers’ work.

3.2.4. User Interface

As previously described, the user interface was delivered to the user by means of a

web browser. The development of the web-browser interface required implementing

two core functionalities:

 Serving views to the user where requested

 Executing user actions within the browser before sending data back to the server

In order to develop a fully functional user interface and deliver it via a web browser the

traditional HTML had to be extended by providing dynamic content and a capability

73

for handling complex data structures (compositions, chains, grammars). The user

interface was therefore based on AngularJS, a software framework developed originally

by Google that allows for creation of single-page applications (web pages that allow a

user to navigate through them without the need to refresh the browser view).

Using the above tools allowed the author to create a fully working user

interface that operates within the end-user’s browser. By using SPAs (single-page

applications), which provide a user experience more like a desktop, a user feels more

like operating a normal software application, rather than a navigating a web page.

In addition, the user interface is designed to be responsive, which means that

interface elements change position, shape, and size to fit different size screens,

making it ideal for mobile devices like smart phones or tablets.

3.2.5. Deployment

The Stochastic Composer was deployed in Microsoft Cloud (previously named

Microsoft Azure) as a web service. Deployment in the cloud allows multiple users to

be given instant access to the software. The application was deployed under the domain

http://stochasticcomposition.azurewebsites.net.

Deploying the application in the cloud also guarantees uninterrupted access,

compared to deployment on a home-based server, and immediate exposure on the

internet.

3.2.6. MusicXML

One of the biggest challenges in developing the software was choosing the

format in which the compositions generated by the software can be downloaded and,

more importantly, displayed on the web page.

The key problem was that the generated outcome had to be available to multiple

users with different music backgrounds, using multiple and varied music-notation

applications. After in-depth research MusicXML was chosen as the main distribution

method. MusicXML was designed for sharing sheet music files between applications.

This relatively new standard is supported by over two hundred different music

applications and makes it possible to easily share sheet music among composers and

artists. The software accepts and generates music scores in accordance with version 3.0

of the format.

http://stochasticcomposition.azurewebsites.net/

74

The simple melody presented in Figure 37 consists of one measure and four

notes. The XML file (Figure 38) contains a heading that summarises the document type.

The <score-partwise> modifier starts a new score. Every XML field has to have a

closure, so at the end of the file the score also ends with </score-partwise>. This XML

standard is consistent across all files.

This particular file has one part that contains one measure with 4 notes (G, F, E

and D). Every component of the score that is required to reopen this score properly in

different software is therefore saved into an XML file, which is stored in the database

and can be downloaded by the user.

The basic components are presented below:

 <note> – Note structure

 <pitch> – part of the note describing pitch (contains <step>, <alter> and

<octave>)

 <type> – type of the note , for example ‘whole’, ‘16th’

Figure 37: MusicXML Example - Score

75

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE score-partwise PUBLIC "-//Recordare//DTD MusicXML 3.0 Partwise//EN"
"http://www.musicxml.org/dtds/partwise.dtd">
<score-partwise version="3.0">
 <part-list>
 <score-part id="P1">
 <part-name>Melody</part-name>
 </score-part>
 </part-list>
 <part id="P1">
 <measure number="1">
 <attributes>
 <divisions>256</divisions>
 <key>
 <fifths>0</fifths>
 <mode>major</mode>
 </key>
 <time>
 <beats>4</beats>
 <beat-type>4</beat-type>
 </time>
 <clef>
 <sign>G</sign>
 <line>2</line>
 </clef>
 </attributes>
 <note>
 <pitch>
 <step>G</step>
 <alter>0</alter>
 <octave>4</octave>
 </pitch>
 <duration>64</duration>
 <type>quarter</type>
 </note>
 <note>
 <pitch>
 <step>F</step>
 <alter>0</alter>
 <octave>4</octave>
 </pitch>
 <duration>64</duration>
 <type>quarter</type>
 </note>
 <note>
 <pitch>
 <step>E</step>
 <alter>0</alter>
 <octave>4</octave>
 </pitch>
 <duration>64</duration>
 <type>quarter</type>
 </note>
 <note>
 <pitch>
 <step>D</step>
 <alter>0</alter>
 <octave>4</octave>
 </pitch>
 <duration>64</duration>
 <type>quarter</type>
 </note>
 </measure>
 </part>
</score-partwise>

Figure 38: Music XML - Simple Example

76

MusicXML is therefore a universal sheet music distribution method, and it was

successfully integrated into Stochastic Composer.

3.3. Algorithm Implementation

3.3.1. Music Notation

One of the more important components of the Stochastic Composer was

presenting music notation in a form that could be used for stochastic algorithms. Notes

are not directly translatable into values that traditionally can be used in Markov Chains

or in Grammars, and because of this some artificial restrictions were created.

The diagram in Figure 39 presents a basic class diagram of all the key music-

notation components. At the centre of the algorithms the class Note was used as an

entry-level object that is adjusted and processed for use across the whole project. It is

important to remember that Note is not reserved only for sounded pitches but can also

represent a rest (by setting the IsRest field to true).

Figure 39: Stochastic Composer - Music Notation Classes

 Markov Chains and Generative Grammars each required a different approach

in analysing what Note parameters are used in algorithmic calculations:

 a Markov Chain uses most of the note parameters to create a Node;

those include:

77

 Type of Note (including rest)

 Step

 Alteration

 Octave

 Number of Dots

 Generative Grammars required a much more conservative

approach and used only:

 Step

 Alteration

Markov Chains

The Markov-chain implementation contains three major classes:

 MarkovChain – the main container for all object components (Nodes and

Transitions)

 Node – the class holding Node information, including notes forming the Node

and all Transitions, with their probabilities

 Transition – an object holding information about the Start and Finish Node, as

well as the probability of the transition

There are two main methods applied in the Markov-chain algorithm:

 Chain Generation

 Prediction/Simulation

Figure 40 presents a simplified flowchart for a chain generated from a melody. The

generation algorithm creates nodes and transitions between the necessary nodes and

assigns probabilities to the transitions it creates. Transitions have to be recalculated

after every note as the total value for the connection changes. The number of notes used

in each node is determined by the Order value, which is provided by the user. After a

whole melody is processed an additional transition to a ‘Final’ note is created, and the

chain is generated.

In Figure 41 one can see the prediction/simulation algorithm. The only difference

between predicting and simulating is in the selection of the first node. In prediction, the

whole melody is added to the outcome, which means that the last node will complete

the current melody. The generation algorithm uses a random number generator, which

78

chooses a value from 0 to 1. That value is then mapped to a range, and the transition

which is assigned to that range is selected. Such an approach is possible because the

sum of probabilities always equals 1, and the size of each range is proportional to the

probability value.

79

Figure 40 - Stochastic Composer - Markov Chain Generation Algorithm

80

Figure 41 - Stochastic Composer - Markov Chain Prediction/Simulation Algorithm

81

3.3.2. Generative Grammars

Generative grammars are implemented in a way that allows for three types of

grammars:

 Linear

 Stochastic

 Web

Each type follows the same implementation structure:

 Grammar – the main container for all object components

 ProductionRule – a class holding notes forming Left, Right and Conditional

Right sides (for Web Grammar only)

There are two major operations that are carried out in generative grammars:

 Validation

 Outcome generation

Validation of the grammar is executed before the user is allowed to run the

grammar; it checks that the following conditions are met. Grammars that are not valid

cannot be used, since the outcome wouldn’t be populated.

 Check that a Start Symbol is defined

 Check that all Production Rules have the Right Side defined

 Check that all non-terminal notes have at least one production rule defined

 Check that there is at least one terminal note defined

 Check that in the right side of the production rule non-terminal notes do not

appear after terminal notes

 For Stochastic/Web Grammars an additional check of the sum of probabilities

is made. (The sum of all probabilities for a given non-terminal note must equal

1.)

The outcome generation algorithm, presented in Figure 42, uses an approach similar

to the Markov-chain algorithm, in that it uses a random number generator for selecting

a rule to be applied in the next generation. Replacing all the symbols in a single

generation triggers a series of checks to confirm that a further generation is required. In

addition, for Web Grammars, the algorithm is more complex, since a proper search

through grammar generations is required; so a Binary Search Tree is created, which

guarantees that every symbol in the grammar will be accessed in a given generation.

82

The Max Generation parameter is used to prevent the algorithm from entering into

an infinite loop.

83

Figure 42 - Stochastic Composer - Grammar Outcome Generation Algorithm

At the end of the algorithm, the last generation is modified by a Gaussian Kernel

selection to determine the Octave for each of the Notes. The user selects the focus of

the Gaussian Kernel, which is a discrete version of the Gaussian distribution.

Figure 43 - Stochastic Composer - Gaussian Kernel Example

Linear and Stochastic grammars generate a Music XML outcome, but web

grammars are significantly more complex to be presented as part of a score, so only a

text output is returned.

84

3.3.3. Navigation

To use the program one needs to register on the website by providing a username,

password, and email address. It is also necessary to agree that generated compositions

might be used for the data in this thesis.

 After registration and login in a welcome screen appears (Figure 44).

Figure 44: Welcome screen in Stochastic Composer

There are three main tabs offered to the user:

 Learning Centre

 Compose

 My compositions

It is also possible to navigate from a bottom panel, where can be found buttons that

redirect the user to specific Learning Centre and Compose sections.

By clicking on the first tab – Learning Centre – the following options can be found

(Figure 45):

 Markov Chains

 Grammars

 Tutorial

85

Figure 45: Learning Centre options

By clicking on the first two options one will be able to learn more about theoretical

aspects of Markov Chains and Generative Grammars in music. The overview of

Markov Chains covers the foundations of the concept, principal terms (like the order of

a chain), and also provides linguistic and music examples. The overview of Generative

Grammars includes essential definitions, which also cover stochastic and web

grammars, together with relevant examples. The Tutorial part contains the following

sections:

1. Tutorials:

 Finale – Export XML

 Sibelius – Export XML

 Markov Chain – Compose

 Generative Grammars – Compose

2. Examples:

 Linear Grammar

 Stochastic Grammar

 Web Grammar

 Using Markov Chains and Grammars together

The next tab – Compose – allows the user to navigate to composition sections

for Markov Chains and Generative Grammars as well as to return to the Learning

Centre (Figure 46):

Figure 46: Compose section

86

My Compositions contains all the material created and uploaded by the user (Figure

47):

Figure 47: My Compositions

Every composition has a unique ID, title, and created date. The column ‘Generation

type’ specifies if the composition was created with Markov Chains or Grammars, or

was a simple upload. On the right-hand side a list of possible actions is available:

 Download – to save composition in XML format

 Details – to view composition. Clicking on this option allows the user to make

changes to the values previously provided (Figure 48)

 Edit – to change the name

 Delete – to remove the composition from the database

Figure 48: Composition Details

Clicking on ‘Details’ presents the details of the composition (Figure 49):

87

Figure 49: Details of the composition

By clicking the blue Compose button it is possible to make use of an existing

composition for further processing.

3.3.4. Markov Chains

Markov chains allow the user to upload an existing melody from an XML file or

to create a new melody in the software itself. The following elements can be selected:

 Pitch, with alterations

 Octave

 Length

It is also possible to insert rests by checking the IsRest box. An example of a

melody created in the software can be found in Figure 50.

Figure 50: Melody created in Stochastic Composer

88

After creating or uploading a melody it is possible to generate a chain by simply

clicking on the green Generate Chain button. All the nodes and transition probabilities

are presented in a tabular form, as seen in Figure 51 .

Figure 51: Markov chain details

By clicking on the Compose button one can select from two options:

 Simulate new melody

 Predict next notes

Before simulating a new melody it is necessary to select a maximum number of

generations and the starting node. This is to avoid an infinite loop. After the output is

generated it is possible to save it to the database and/or to download it in XML

format, as shown in Figure 52.

Figure 52: Markov chain generated output

When choosing to Save to Database, it is necessary to add the Title of the

composition and an optional description, as presented in Figure 53.

89

Figure 53: Saving output in a database

By navigating next to the Compositions section one can view and edit material

already created by selecting Details next to the chosen composition (Figure 54).

Figure 54: My compositions section

The Details of the composition include the generated outcome presented in staff

notation, as well as a table with transitions and nodes (Figure 55).

Figure 55: Details of Markov chain composition

By clicking on the Compose button one can return to the original input to modify it.

90

3.3.5. Generative Grammars

With the Stochastic Composer software it is possible to create one of three types of

grammars:

 Linear Grammar

 Stochastic Grammar

 Web Grammar

Linear Grammar

When Linear Grammar is selected one must first decide on a starting symbol

(Figure 56). It is necessary to provide the pitch and any needed alterations.

Figure 56: Start Symbol

The next step is to create production rules (Figure 57). It is necessary to include

at list one production rule that includes the Start Symbol; otherwise the grammar would

not be valid and the program will return an error. The program uses a type-3 right linear

grammar, which means that it is not possible to create a rule with non-terminal symbols

after terminals (for example, CCgC).

91

Figure 57: Adding new production rule

The next step is to validate the grammar. If all the production rules have been

constructed correctly and at least one production rule contains the start symbol, the

validation is successful and the Analyse Grammar section is presented (Figure 58). On

the left hand side, in the Details section, a list of terminal and non-terminal symbols is

displayed, together with the start symbol and grammar type. In the main section a

summary of the rules is presented. The rules can be changed by clicking on the Create

Grammar tab. In the Analyse Grammar section one also sets the maximum number of

generations and selects the octave on which the Gaussian Kernel will be focused.

Figure 58: Successful validation

92

To finally generate the output one needs to hit the Compose button. The

outcome of each generation will be then displayed (Figure 59). At this stage it is

possible to download the result or to save it to the database. After saving a result to the

database one can still return to the grammar itself to modify it.

Figure 59: Generated Output

Stochastic Grammar

The major difference between a stochastic and a linear grammar is the inclusion

of a probability for production rules that have the same left side (Figure 60).

Figure 60: Stochastic Production Rule

93

It is important to remember that the probability must equal 1; otherwise it will

not be possible to validate the grammar. On Figure 61 the probabilities for symbol B

sum to 0.9; therefore this grammar will not be validated.

Figure 61: Probability of the rules are not equal to 1

Of course it is possible to combine linear and stochastic grammars. If there is

only one possible rule for a particular non-terminal symbol, the probability of this rule

should be set to 1, making it equivalent to a linear production rule.

Web grammars

Web grammars allow the user to create not only horizontal but also vertical

relationships with the symbols. It is possible to create a web grammar that also uses

stochastic production rules. To define the type of rule desired, one simply chooses the

relevant option from the drop down list, as presented in Figure 62.

Figure 62: Production rules in web grammars

94

It is also possible to apply probabilities to the set of rules. Thus it is possible to create

a grammar in which production rules can be in one or more dimensions, depending on

the applied probability. This situation is illustrated in Figure 63.

Figure 63: Combined stochastic and web production rules

95

3.4. Results

Five young composers were invited to test the Stochastic Composer software. The

invitation resulted in 130 samples produced by the application. Overall, the Markov

chain was significantly more popular, generating 102 samples. The whole experiment

was conducted over the course of a month, during which minor bugs reported by the

participants were fixed. During the registration process each of the participants was

required to agree that the material produced would be analysed and presented in this

thesis. The application is still available to anyone interested.

3.4.1. Markov Chains

As mentioned before, Markov chains were used significantly more often than

Generative Grammars. A possible reason is that, while chains do allow a user to

generate and analyse music material, they are less complex than generative grammars.

There are two methods of adding new material, and both were used: adding notes

manually notes and uploading xml files.

Example 1

Figure 64: Stochastic Composer - Example MC1

Table 9: Stochastic Composer - Example MC1

Index Node Transitions

0  C4 quarter Dots: 1  1 ===> E4♭ eighth

1  E4♭ eighth  0.5 ===> C4 quarter Dots: 1

 0.5 ===> F5 16th

2  F5 16th  1 ===> E4♭ 16th

3  E4♭ 16th  1 ===> G5 16th

4  G5 16th  1 ===> F4 32nd

5  F4 32nd  1 ===> A5 32nd

6  A5 32nd  1 ===> C5 eighth

7  C5 half Dots: 1  1 ===> C5 eighth

8  C5 eighth  0.5 ===> C5 half Dots: 1

 0.5 ===> REST eighth

9  REST eighth  1 ===> FIN

The first example, presented in Figure 64 and Table 9, uses a first order Markov

chain. In this simple example nine different nodes were generated. Most of them have

96

only one possible transition. Two nodes – E4♭ eighth and C5 eighth – have two

possible transitions: for E4♭, ‘C4 quarter Dots: 1’ and ‘F5 16th’; and for C5 eighth,

‘C5 dotted half’ and ‘REST eighth’. The probability of each alternative was set to 0.5.

It is possible to enter a loop between the 7th and 8th note, as shown in Figure 65.

Figure 65: Stochastic Composer - Example MC1 - loop

The generations are moving between ‘C half Dot’ and ‘C eighth’. After a C

eighth note, a C dotted half note occurs three times, while eighth note rest appears only

once. It is important to note that even if the probability of each transition is equal to 0.5,

in such a small sample this probability may not be reflected. It can be expected that the

bigger the produced outcome is, the better will be the reflection of the probabilities of

transitions.

Example 2

Figure 66: Stochastic Composer –Example - MC2

In a second example the presented outcome (Figure 66) contains only two different

pitches, but some interesting relationships can be found in the transition diagram (Table

10).

Table 10: Stochastic Composer - Example - MC2

Index Node Transitions

0  C4 quarter

 A4 quarter

 1 ===> A4 quarter

1  A4 quarter

 A4 quarter

 0.6666666666666666 ===> C4 quarter

 0.3333333333333333 ===> A4 quarter

2  A4 quarter  0.5 ===> A4 quarter

97

 C4 quarter  0.5 ===> FIN

In this second-order Markov chain it is possible to distinguish three possible

nodes that consist only of quarters A4 and C4. The generated material was started from

node no 1. One might wonder why the piece ended on A4, since the transition diagram

includes an ending on C4 with probability equal 0.5. The given ending results from the

initial set up, in which the maximum generations was set to be 10. Therefore the process

ended after ten generations, regardless of the last transition.

Example 3

A third example was created by third-order Markov chains (Figure 67 and Table 11):

Figure 67: Stochastic Composer –Example - MC3

Table 11: Stochastic Composer –Example - MC3

Index Node Transitions

0  D5 quarter

 E5 eighth

 D5 quarter

 1 ===> D5 quarter

1  E5 eighth

 D5 quarter

 D5 quarter

 1 ===> B4 16th

2  D5 quarter

 D5 quarter

 B4 16th

 1 ===> F4 16th

3  D5 quarter

 B4 16th

 F4 16th

 1 ===> D4 eighth

4  B4 16th

 F4 16th

 D4 eighth

 1 ===> D4 eighth

5  F4 16th

 D4 eighth

 D4 eighth

 1 ===> A4 eighth

6  D4 eighth

 D4 eighth

 1 ===> E4 eighth

98

 A4 eighth

7  D4 eighth

 A4 eighth

 E4 eighth

 1 ===> A4 eighth

8  A4 eighth

 E4 eighth

 A4 eighth

 1 ===> B4 eighth

9  E4 eighth

 A4 eighth

 B4 eighth

 1 ===> D4 eighth

10  A4 eighth

 B4 eighth

 D4 eighth

 1 ===> G4 quarter

11  B4 eighth

 D4 eighth

 G4 quarter

 1 ===> REST quarter

12  D4 eighth

 G4 quarter

 REST quarter

 1 ===> D6 eighth

13  G4 quarter

 REST quarter

 D6 eighth

 1 ===> D6 eighth

14  REST quarter

 D6 eighth

 D6 eighth

 1 ===> B4 quarter

15  D6 eighth

 D6 eighth

 B4 quarter

 1 ===> REST eighth

16  D6 eighth

 B4 quarter

 REST eighth

 1 ===> F4 16th

17  B4 quarter

 REST eighth

 F4 16th

 1 ===> REST half Dots: 2

18  REST eighth

 F4 16th

 REST half Dots: 2

 1 ===> G4 16th

19  F4 16th

 REST half Dots: 2

 G4 16th

 1 ===> A4 16th

20  REST half Dots: 2

 G4 16th

 A4 16th

 1 ===> F4 16th

21  G4 16th

 A4 16th

 F4 16th

 1 ===> G4 16th

22  A4 16th

 F4 16th

 G4 16th

 1 ===> A4 16th

23  F4 16th

 G4 16th

 A4 16th

 1 ===> B4 16th

24  G4 16th

 A4 16th

 B4 16th

 1 ===> D5 quarter

25  A4 16th  1 ===> D5 16th

99

 B4 16th

 D5 quarter

26  B4 16th

 D5 quarter

 D5 16th

 1 ===> D5 eighth

27  D5 quarter

 D5 16th

 D5 eighth

 1 ===> D5 quarter

28  D5 16th

 D5 eighth

 D5 quarter

 1 ===> D5 16th

29  D5 eighth

 D5 quarter

 D5 16th

 1 ===> G5 16th

30  D5 quarter

 D5 16th

 G5 16th

 1 ===> E5 half

31  D5 16th

 G5 16th

 E5 half

 1 ===> E5 eighth

32  G5 16th

 E5 half

 E5 eighth

 1 ===> E5 quarter

33  E5 eighth

 E5 half

 E5 eighth

 1 ===> E5 quarter

34  E5 half

 E5 eighth

 E5 quarter

 1 ===> E5 eighth

35  E5 eighth

 E5 quarter

 E5 eighth

 1 ===> E5 half

36  E5 quarter

 E5 eighth

 E5 half

 0.5 ===> E5 eighth

 0.5 ===> D5 eighth

37  E5 eighth

 E5 half

 D5 eighth

 1 ===> D5 quarter

38  E5 half

 D5 eighth

 D5 quarter

 1 ===> D5 eighth

39  D5 eighth

 D5 quarter

 D5 eighth

 1 ===> C5 half

40  D5 quarter

 D5 eighth

 C5 half

 1 ===> B4 eighth

41  D5 eighth

 C5 half

 B4 eighth

 1 ===> B4 quarter

42  C5 half

 B4 eighth

 B4 quarter

 1 ===> B4 eighth

43  B4 eighth

 B4 quarter

 B4 eighth

 1 ===> A4 eighth

100

44  B4 quarter

 B4 eighth

 A4 eighth

 1 ===> A4 half Dots: 1

45  B4 eighth

 A4 eighth

 A4 half Dots: 1

 1 ===> A4 eighth

46  A4 half Dots: 1

 A4 eighth

 D5 eighth

 1 ===> D5 half Dots: 1

47  A4 eighth

 D5 eighth

 D5 half Dots: 1

 1 ===> D5 eighth

48  D5 eighth

 D5 half Dots: 1

 D5 eighth

 1 ===> A4 eighth

49  D5 half Dots: 1

 D5 eighth

 A4 eighth

 1 ===> A4 half Dots: 1

50  D5 eighth

 A4 eighth

 A4 half Dots: 1

 1 ===> A4 eighth

51  A4 eighth

 A4 half Dots: 1

 A4 eighth

 0.6666666666666666 ===> D5 eighth

 0.3333333333333333 ===> FIN

This example consists of a Markov chain of the third order with 51 nodes. While

this example seems to be more complex than the previous ones, it is worth noticing that

only nodes 36 and 51 contain more than one possibility. Therefore it was expected that

the outcome of this generation would be almost the same as the input.

Example 4

In example 4, the input material provided as a sample was exactly the same as

in example 3. The main difference is the order of chain, which was 1. The outcome is

presented in Figure 68 and Table 12:

Figure 68: Stochastic Composer - Example - MC 4

101

Table 12: Stochastic Composer - Example - MC 4 - Transition Diagram

Index Node Transitions

0  E4 eighth  1 ===> A4 eighth

1  D4 eighth  0.3333333333333333 ===> D4 eighth

 0.3333333333333333 ===> A4 eighth

 0.3333333333333333 ===> G4 quarter

2  G4 quarter  1 ===> REST quarter

3  REST quarter  1 ===> D6 eighth

4  D6 eighth  0.5 ===> D6 eighth

 0.5 ===> B4 quarter

5  REST eighth  1 ===> F4 16th

6  REST half Dots: 2  1 ===> G4 16th

7  F4 16th  0.3333333333333333 ===> D4 eighth

 0.3333333333333333 ===> REST half Dots: 2

 0.3333333333333333 ===> G4 16th

8  G4 16th  1 ===> A4 16th

9  A4 16th  0.5 ===> F4 16th

 0.5 ===> B4 16th

10  B4 16th  0.5 ===> F4 16th

 0.5 ===> D5 quarter

11  D5 16th  0.5 ===> D5 eighth

 0.5 ===> G5 16th

12  G5 16th  1 ===> E5 half

13  E5 quarter  1 ===> E5 eighth

14  E5 eighth  0.2 ===> D5 quarter

 0.4 ===> E5 quarter

 0.4 ===> E5 half

15  E5 half  0.6666666666666666 ===> E5 eighth

 0.3333333333333333 ===> D5 eighth

16  D5 quarter  0.16666666666666666 ===> E5 eighth

 0.16666666666666666 ===> D5 quarter

 0.16666666666666666 ===> B4 16th

 0.3333333333333333 ===> D5 16th

 0.16666666666666666 ===> D5 eighth

17  C5 half  1 ===> B4 eighth

18  B4 quarter  0.5 ===> REST eighth

 0.5 ===> B4 eighth

19  B4 eighth  0.3333333333333333 ===> D4 eighth

 0.3333333333333333 ===> B4 quarter

 0.3333333333333333 ===> A4 eighth

20  D5 half Dots: 1  1 ===> D5 eighth

21  D5 eighth  0.2857142857142857 ===> D5 quarter

 0.14285714285714285 ===> C5 half

 0.2857142857142857 ===> D5 half Dots: 1

 0.2857142857142857 ===> A4 eighth

22  A4 half Dots: 1  1 ===> A4 eighth

23  A4 eighth  0.125 ===> E4 eighth

 0.125 ===> B4 eighth

 0.375 ===> A4 half Dots: 1

 0.25 ===> D5 eighth

 0.125 ===> FIN

As can be observed in transition diagram (Table 12), this chain allows much

more differentiation, which results in a richer outcome. Examples 3 and 4 perfectly

102

illustrate the need to consider very carefully the order of a Markov chain. One needs to

be aware of the extremely thin line that is separates randomness from repetitiveness

when generating material with a Markov chain.

Example 5

The last example was created with the XML upload shown in Figure 69.

Figure 69: Stochastic Composer - Example - MC 5 Input

With this input three samples were created that differ only in the order of the

Markov chain and the starting node.

The first sample started from node 0 and utilised a first-order Markov chain

(Table 13 and Figure 70).

Figure 70: Stochastic Composer –Example – MC5a

Table 13: Stochastic Composer - Example - MC5a - Transition diagram

Index Node Transitions

0  B3 eighth  1 ===> C4 eighth

1  C4 eighth  0.5 ===> B3 eighth

 0.5 ===> E4♭ eighth

2  E4♭ eighth  0.3333333333333333 ===> G4 quarter

 0.3333333333333333 ===> A4 quarter

 0.3333333333333333 ===> B4♭ quarter

3  G4 quarter  0.5 ===> REST quarter

 0.5 ===> B4♭ quarter

4  B4♭ quarter  1 ===> A4 quarter

5  B4♭ eighth  0.6666666666666666 ===> A4 eighth

 0.3333333333333333 ===> A4 quarter

103

6  A4 eighth  0.75 ===> B4♭ eighth

 0.25 ===> G4 eighth

7  G4 eighth  1 ===> F4# quarter

8  F4# quarter  1 ===> REST quarter

9  E4♭ quarter  1 ===> D5 quarter

10  D5 quarter  1 ===> F5# quarter

11  F5# quarter  1 ===> A4 quarter

12  A4 quarter  0.6 ===> REST quarter

 0.2 ===> G4 quarter

 0.2 ===> D4 quarter

13  D4 quarter  1 ===> REST quarter

14  REST quarter  0.25 ===> C4 eighth

 0.25 ===> A4 eighth

 0.125 ===> E4♭ quarter

 0.25 ===> REST quarter

 0.125 ===> FIN

In the output some randomness can be observed but there is a strong reflection

of the half-tone motive. Also interesting appears to be the rhythmic domain, with

some rhythmic shifts off the beat.

The second sample was based on a second-order Markov chain and started

from node 4 (Figure 71 and Table 14):

Figure 71: Stochastic Composer –Example – MC5b

Table 14: Stochastic Composer –Example – MC5b – Transition diagram

Index Node Transitions

0  E4♭ eighth

 G4 quarter

 1 ===> REST quarter

1  G4 quarter

 REST quarter

 1 ===> C4 eighth

2  E4♭ eighth

 A4 quarter

 1 ===> REST quarter

3  REST quarter

 C4 eighth

 1 ===> B3 eighth

4  C4 eighth  1 ===> C4 eighth

104

 B3 eighth

5  B3 eighth

 C4 eighth

 1 ===> E4♭ eighth

6  C4 eighth

 E4♭ eighth

 0.3333333333333333 ===> G4 quarter

 0.3333333333333333 ===> A4 quarter

 0.3333333333333333 ===> B4♭ quarter

7  E4♭ eighth

 B4♭ quarter

 1 ===> A4 quarter

8  A4 quarter

 G4 quarter

 1 ===> B4♭ quarter

9  G4 quarter

 B4♭ quarter

 1 ===> A4 quarter

10  B4♭ quarter

 A4 quarter

 0.5 ===> G4 quarter

 0.5 ===> REST quarter

11  B4♭ eighth

 A4 quarter

 1 ===> REST quarter

12  A4 quarter

 REST quarter

 0.3333333333333333 ===> C4 eighth

 0.6666666666666666 ===> A4 eighth

13  REST quarter

 A4 eighth

 1 ===> B4♭ eighth

14  A4 eighth

 B4♭ eighth

 0.6666666666666666 ===> A4 eighth

 0.3333333333333333 ===> A4 quarter

15  B4♭ eighth

 A4 eighth

 0.5 ===> B4♭ eighth

 0.5 ===> G4 eighth

16  A4 eighth

 G4 eighth

 1 ===> F4# quarter

17  G4 eighth

 F4# quarter

 1 ===> REST quarter

18  F4# quarter

 REST quarter

 1 ===> E4♭ quarter

19  REST quarter

 E4♭ quarter

 1 ===> D5 quarter

20  E4♭ quarter

 D5 quarter

 1 ===> F5# quarter

21  D5 quarter

 F5# quarter

 1 ===> A4 quarter

22  F5# quarter

 A4 quarter

 1 ===> D4 quarter

23  A4 quarter

 D4 quarter

 1 ===> REST quarter

24  D4 quarter

 REST quarter

 1 ===> REST quarter

25  REST quarter

 REST quarter

 0.5 ===> REST quarter

 0.5 ===> FIN

The resemblance to the original sample is more evident here. As can be seen on the

transition diagram presented in Table 14 this chain still allows some randomness, but

the result recalls the original input to a great extent.

The last sample was based on a third-order Markov chain and starts from node

0 (Table 15 and Figure 72).

105

Figure 72: Stochastic Composer –Example – MC5c

Table 15: Stochastic Composer –Example – MC5c – Transition diagram

Index Node Transitions

0  C4 eighth

 E4♭ eighth

 G4 quarter

 1 ===> REST quarter

1  E4♭ eighth

 G4 quarter

 REST quarter

 1 ===> C4 eighth

2  G4 quarter

 REST quarter

 C4 eighth

 1 ===> B3 eighth

3  C4 eighth

 E4♭ eighth

 A4 quarter

 1 ===> REST quarter

4  E4♭ eighth

 A4 quarter

 REST quarter

 1 ===> C4 eighth

5  A4 quarter

 REST quarter

 C4 eighth

 1 ===> B3 eighth

6  REST quarter

 C4 eighth

 B3 eighth

 1 ===> C4 eighth

7  C4 eighth

 B3 eighth

 C4 eighth

 1 ===> E4♭ eighth

8  B3 eighth

 C4 eighth

 E4♭ eighth

 0.3333333333333333 ===> G4 quarter

 0.3333333333333333 ===> A4 quarter

 0.3333333333333333 ===> B4♭ quarter

9  C4 eighth

 E4♭ eighth

 B4♭ quarter

 1 ===> A4 quarter

10  E4♭ eighth

 B4♭ quarter

 A4 quarter

 1 ===> G4 quarter

11  B4♭ quarter

 A4 quarter

 G4 quarter

 1 ===> B4♭ quarter

12  A4 quarter

 G4 quarter

 B4♭ quarter

 1 ===> A4 quarter

13  G4 quarter

 B4♭ quarter

 A4 quarter

 1 ===> REST quarter

106

14  B4♭ quarter

 A4 quarter

 REST quarter

 1 ===> A4 eighth

15  B4♭ eighth

 A4 eighth

 B4♭ eighth

 1 ===> A4 quarter

16  A4 eighth

 B4♭ eighth

 A4 quarter

 1 ===> REST quarter

17  B4♭ eighth

 A4 quarter

 REST quarter

 1 ===> A4 eighth

18  A4 quarter

 REST quarter

 A4 eighth

 1 ===> B4♭ eighth

19  REST quarter

 A4 eighth

 B4♭ eighth

 1 ===> A4 eighth

20  A4 eighth

 B4♭ eighth

 A4 eighth

 0.5 ===> B4♭ eighth

 0.5 ===> G4 eighth

21  B4♭ eighth

 A4 eighth

 G4 eighth

 1 ===> F4# quarter

22  A4 eighth

 G4 eighth

 F4# quarter

 1 ===> REST quarter

23  G4 eighth

 F4# quarter

 REST quarter

 1 ===> E4♭ quarter

24  F4# quarter

 REST quarter

 E4♭ quarter

 1 ===> D5 quarter

25  REST quarter

 E4♭ quarter

 D5 quarter

 1 ===> F5# quarter

26  E4♭ quarter

 D5 quarter

 F5# quarter

 1 ===> A4 quarter

27  D5 quarter

 F5# quarter

 A4 quarter

 1 ===> D4 quarter

28  F5# quarter

 A4 quarter

 D4 quarter

 1 ===> REST quarter

29  A4 quarter

 D4 quarter

 REST quarter

 1 ===> REST quarter

30  D4 quarter

 REST quarter

 REST quarter

 1 ===> REST quarter

31  REST quarter

 REST quarter

 REST quarter

 1 ===> FIN

107

It can be observed that the most interesting results were obtained when using the first-

order Markov chain. While the organisation of the melody still recalls the original

sample, the rhythm is much more interesting. With the increasing orders of the chain

one notices that the outcome starts to resemble the original material, in both melodic

and rhythmic aspects. In this example it is possible to note how important it is to

consider an appropriate order for a Markov chain to achieve satisfactory results.

3.4.2. Generative Grammars

As stated before, generative grammars appeared to be less popular among the

participants in the experiment. This is probably due to their complexity. To achieve

satisfactory results the grammar needs to be carefully designed.

Overall 28 samples were created. Interestingly, some of the participants decided

to combine grammars with Markov chains or Gaussian distribution on a larger scale

that was imagined when making Stochastic Composer.

Example 1

In the first example a grammar was created from the motive BACH. The start

symbol of this grammar is A#. It was chosen in order to distinguish the start symbol

from the rest of non-terminal symbols, while the integrity of the grammar is still

preserved, as the A# is enharmonically B♭. (Please note that the Stochastic Composer

uses English nomenclature, while the BACH motive was created in German note

names; therefore BACH is expressed here as B♭ACB, where B is replaced by B♭and

H is replaced by B.)

The grammar in question has the following structure:

GSC1 = (VN, VT, P, A#), where

Vn:= { B♭, A, C, B, A#},

VT= {b♭, a, c, b},

P :

Type Left Side Right Side Probability

Stochastic A# B♭ A C B 1

Stochastic A A A 0.2

Stochastic A a 0.4

Stochastic A c B 0.2

Stochastic A C B 0.2

108

Stochastic B B B 0.2

Stochastic B b 0.4

Stochastic B b♭ A 0.2

Stochastic B B♭ A 0.2

Stochastic C C C 0.2

Stochastic C c 0.4

Stochastic C b B♭ 0.2

Stochastic C B B♭ 0.2

Stochastic B♭ B♭ B♭ 0.2

Stochastic B♭ b♭ 0.4

Stochastic B♭ A C 0.2

Stochastic B♭ a C 0.2

Several generations were created with this grammar; some examples can be found in

Figure 73 to Figure 77.

Figure 73: Stochastic Composer - GSC1 - Sample 1

Figure 74: Stochastic Composer - GSC1 - Sample 2

109

Figure 75: Stochastic Composer - GSC1 - Sample 3

Figure 76: Stochastic Composer - GSC1 - Sample 4

110

Figure 77: Stochastic Composer - GSC1 - Sample 5

Sample 1 was focused on the fourth octave, while samples 2, 3, 4 and 5 were

focused on the fifth octave. The main difference is in the length of the samples. While

the grammar remained the same, it can be easily noticed that the second sample is the

shortest, with only 8 generations, while the first, third and fourth samples were created

after 15, 17, and 25 generations respectively. This is due to the fact that even a

probability of 0.4 can cause the grammar to quickly convert to terminal symbols. The

most interesting is the last, fifth sample, where the grammar never terminated. The

maximum number of generations was set to 30 and this is the point at which the

outcome ended. It is important to notice that some of the symbols remained non-

terminal; but due to the limitation of the maximum number of generations, these were

converted automatically to the relevant terminal symbols:

Generation

30

b♭5 c7 b4 b♭6 a6 b4 b4 a6 c6 a6 c6 b4 b4 b♭5 b♭5 a6 a6 a6 b5 a6 c6 c6 b4 b

♭6 c7 b♭5 a6 b♭5 b♭5 a6 b5 a6 C5 b♭5 c7 b♭6 b♭6 A7 a6 C5 b4 c6 b♭

6 A7 B♭6 A5 b♭5 a6 b4 b♭5 c7 b4 b♭5 a6 b4 b♭5 b♭5 a6 b5 b♭5 b♭

111

5 a6 c6 b4 b♭5 b♭5 c6 b5 a6 b5 b♭5 b4 b♭5 b4 a6 b♭6 a6 a6 b5 b♭

5 c6 a6 c6 b♭5 c6 c6 b♭6 c7 a6 B5 B♭5 c7 B♭6 A5 a6 b5 b♭5 c6 c6 b4 b4 b♭

5 a6 a6 c6 a6 b♭5 c6 c7 b4 c6 b♭5 a6 a6 b4 c7 b♭6 a6 a6 b4 b♭

5 b5 a6 b5 c7 b4 b♭5 a6 b♭5 c6 b5 b♭5 b4 a6 a6 b4 b4 b♭5 B♭5 B♭6 b♭

6 a6 a6 b4 a6 c6 c6 b♭6 a6 b4 b4 b♭6 a6 b♭5 b4 b5 a6 b5 b♭5 c7 b4 b♭6 c7 b

♭6 c6 b4 c6 b4 b4 b♭6 c7 b4 c7 b♭6 c7 B♭6 A5 b♭5 c6 c7 b♭5 C5 B5 b♭

6 A7 b4 c6 a6 b♭6 c6 b5 b♭5 b5 a6 c6 b4 b♭5 b♭5 a6 b4 a6 c6 c7 b4 b♭6 c7 b

♭5 a6 a6 c6 b♭5 b♭5 a6 c7 b4 a6 b4 b4 b♭5 b4

Example 2

The second example is based on the same terminal and non-terminal symbols, but it

differs from example 1 in the values of the probabilities in the production rules. Overall

the probabilities were designed to favour terminal symbols, so it was expected that the

samples would be shorter than in the previous example.

GSC2 = (VN, VT, P, A#), where

Vn:= {B, A, C, H, A#},

VT= {b, a, c, h},

P :

Type Left Side Right Side Probability

Stochastic A# B♭ A C B 1

Stochastic A A A 0.1

Stochastic A a 0.7

Stochastic A c B 0.1

Stochastic A C B 0.1

Stochastic B B B 0.1

Stochastic B b 0.7

Stochastic B b♭ A 0.1

Stochastic B B♭ A 0.1

Stochastic C C C 0.1

Stochastic C c 0.7

Stochastic C b B♭ 0.1

Stochastic C B B♭ 0.1

Stochastic B♭ B♭ B♭ 0.1

Stochastic B♭ b♭ 0.7

Stochastic B♭ A C 0.1

112

Stochastic B♭ a C 0.1

This grammar was run twice. The first run, after six generations (Table 16), led to a

two-bar sample (Figure 78):

Figure 78: Stochastic Composer - GSC2 - Sample 1

Table 16: Stochastic Composer - GSC2 - Sample 1 - Generations

Grammar Run State\Melody

0 A#0

1 B♭0 A0 C0 B0

2 b♭6 a6 b5 B♭5 b4

3 b♭6 a6 b5 A3 C4 b4

4 b♭6 a6 b5 a6 C2 C5 b4

5 b♭6 a6 b5 a6 b5 B♭5 c4 b4

6 b♭6 a6 b5 a6 b5 b♭6 c4 b4

The second run produced the original BACH motive (Figure 79):

Figure 79: Stochastic Composer - GSC2 - Sample 2

This outcome was achieved after just two generations (Table 17). This is an excellent

example to show how important it is to carefully design production rules and

probabilities to achieve desired results.

Table 17: Stochastic Composer - GSC2 - Sample 2 - Generations

Grammar Run State\Melody

0 A#0

1 B♭0 A0 C0 B0

2 b♭3 a5 c5 b4

Example 3

The last example applied, to a large extent, Gaussian distributions. The sets of terminal

and non-terminal symbols compromise only 7 symbols – notes without any alterations.

The interesting aspects of this grammar are the production rules, which favour the

closest possible notes with the relevant probabilities:

GSC3 (VN, VT, P, A), where

113

Vn:= {a, b, c, d, e, f, g},

VT= {A, B, C, D, E, F, G},

P :

Type Left Side Right Side Probability

Stochastic A a 0.382925

Stochastic A B C 0.24173

Stochastic A C E 0.060598

Stochastic A D G 0.0062095

Stochastic A E B 0.0062095

Stochastic A F D 0.060598

Stochastic A G F 0.24173

Stochastic B b 0.382925

Stochastic B C D 0.24173

Stochastic B D F 0.060598

Stochastic B E A 0.0062095

Stochastic B F C 0.0062095

Stochastic B G E 0.060598

Stochastic B G A 0.24173

Stochastic C c 0.382925

Stochastic C D E 0.24173

Stochastic C E G 0.060598

Stochastic C F B 0.0062095

Stochastic C G D 0.0062095

Stochastic C A F 0.060598

Stochastic C B A 0.24173

Stochastic D d 0.382925

Stochastic D E F 0.24173

Stochastic D F A 0.060598

Stochastic D G C 0.0062095

Stochastic D A E 0.0062095

Stochastic D B G 0.060598

Stochastic D C B 0.24173

Stochastic E e 0.382925

Stochastic E F G 0.24173

Stochastic E G B 0.060598

Stochastic E A D 0.0062095

Stochastic E B F 0.0062095

Stochastic E C A 0.060598

Stochastic E D C 0.24173

Stochastic F f 0.382925

Stochastic F G A 0.24173

Stochastic F A C 0.060598

Stochastic F B E 0.0062095

Stochastic F C G 0.0062095

Stochastic F D B 0.060598

Stochastic F E D 0.24173

Stochastic G g 0.382925

Stochastic G A B 0.24173

Stochastic G B D 0.060598

Stochastic G C F 0.0062095

Stochastic G D A 0.0062095

Stochastic G E C 0.060598

Stochastic G F E 0.24173

114

As can be observed, the highest probabilities always generate a terminal symbol

from a non-terminal symbol, where both terminal and non-terminal symbol are

represented by the same letter. The next most likely favour the closest notes. For

example, from A it is most probable to generate a. The next most likely outcome is BC

or GF – the notes that are closest to A. The third most likely results in FD and CE, and

the least probable are EB and DG, since E and D are the furthest notes possible in the

grammar. In addition the distance between possible notes increases with decreased

probability. The probability distribution (an approximation) is shown in Figure 80.

Figure 80: Stochastic Composer - Production Rule Probability Distribution for Note 'A'

From this grammar two samples were produced, presented in Figure 81 and Figure

82.

115

116

Figure 81: Stochastic Composer - GSC3 - Sample 1

Figure 82: Stochastic Composer - GSC3 - Sample 2

From the first sample, which is significantly longer and more complicated, a Markov

chain was created. The next step was to create a new melody based on this chain

(Figure 83):

Figure 83: Stochastic Composer - GSC - Markov chain from generative grammar

The transition diagram can be found in Table 18:

117

Table 18: Stochastic Composer - GSC3 - Markov Chain from generative grammar - Transition diagram

Index Node Transitions

0  A2 quarter  1 ===> F3 quarter

1  F3 quarter  1 ===> E5 quarter

2  C5 quarter  1 ===> A4 quarter

3  E6 quarter  0.3333333333333333 ===> E5 quarter

 0.3333333333333333 ===> C3 quarter

 0.3333333333333333 ===> G1 quarter

4  G3 quarter  1 ===> C6 quarter

5  C6 quarter  1 ===> G6 quarter

6  B6 quarter  1 ===> E5 quarter

7  E4 quarter  1 ===> F5 quarter

8  C2 quarter  1 ===> D4 quarter

9  G5 quarter  1 ===> B4 quarter

10  D4 quarter  0.4 ===> C4 quarter

 0.06666666666666667 ===> C3 quarter

 0.13333333333333333 ===> E6 quarter

 0.06666666666666667 ===> F4 quarter

 0.06666666666666667 ===> E5 quarter

 0.06666666666666667 ===> A5 quarter

 0.06666666666666667 ===> B6 quarter

 0.06666666666666667 ===> G1 quarter

 0.06666666666666667 ===> B4 quarter

11  G4 quarter  0.15 ===> E5 quarter

 0.45 ===> A5 quarter

 0.1 ===> C7 quarter

 0.05 ===> F4 quarter

 0.2 ===> D5 quarter

 0.05 ===> E3 quarter

12  E3 quarter  0.2222222222222222 ===> A3 quarter

 0.1111111111111111 ===> G4 quarter

 0.2222222222222222 ===> E5 quarter

 0.1111111111111111 ===> C2 quarter

 0.1111111111111111 ===> G1 quarter

 0.1111111111111111 ===> F4 quarter

 0.1111111111111111 ===> G6 quarter

13  G1 quarter  1 ===> F5 quarter

14  F5 quarter  0.4444444444444444 ===> E3 quarter

 0.05555555555555555 ===> C3 quarter

 0.05555555555555555 ===> G6 quarter

 0.05555555555555555 ===> D4 quarter

 0.05555555555555555 ===> B5 quarter

 0.05555555555555555 ===> A3 quarter

 0.05555555555555555 ===> B4 quarter

 0.1111111111111111 ===> F4 quarter

 0.05555555555555555 ===> D5 quarter

 0.05555555555555555 ===> E5 quarter

15  C7 quarter  1 ===> B3 quarter

16  B3 quarter  0.4166666666666667 ===> C3 quarter

 0.25 ===> D5 quarter

 0.08333333333333333 ===> G6 quarter

 0.16666666666666666 ===> B4 quarter

 0.08333333333333333 ===> E5 quarter

17  B4 quarter  0.13333333333333333 ===> G4 quarter

 0.5333333333333333 ===> A3 quarter

118

 0.13333333333333333 ===> C3 quarter

 0.06666666666666667 ===> B3 quarter

 0.06666666666666667 ===> F4 quarter

 0.06666666666666667 ===> G5 quarter

18  A4 quarter  0.8 ===> B5 quarter

 0.2 ===> F4 quarter

19  A5 quarter  0.07692307692307693 ===> C3 quarter

 0.15384615384615385 ===> B4 quarter

 0.15384615384615385 ===> F4 quarter

 0.07692307692307693 ===> G6 quarter

 0.15384615384615385 ===> E5 quarter

 0.23076923076923078 ===> C4 quarter

 0.07692307692307693 ===> F5 quarter

 0.07692307692307693 ===> D5 quarter

20  C4 quarter  0.09090909090909091 ===> G4 quarter

 0.09090909090909091 ===> E6 quarter

 0.09090909090909091 ===> F4 quarter

 0.09090909090909091 ===> B4 quarter

 0.09090909090909091 ===> D5 quarter

 0.09090909090909091 ===> D4 quarter

 0.18181818181818182 ===> B5 quarter

 0.09090909090909091 ===> C7 quarter

 0.09090909090909091 ===> F5 quarter

 0.09090909090909091 ===> C3 quarter

21  C3 quarter  0.13157894736842105 ===> G6 quarter

 0.07894736842105263 ===> F4 quarter

 0.07894736842105263 ===> A3 quarter

 0.13157894736842105 ===> D5 quarter

 0.05263157894736842 ===> E5 quarter

 0.18421052631578946 ===> B5 quarter

 0.05263157894736842 ===> D4 quarter

 0.02631578947368421 ===> A2 quarter

 0.07894736842105263 ===> C3 quarter

 0.07894736842105263 ===> G4 quarter

 0.02631578947368421 ===> C2 quarter

 0.02631578947368421 ===> C5 quarter

 0.05263157894736842 ===> C7 quarter

22  B5 quarter  0.08108108108108109 ===> G6 quarter

 0.1891891891891892 ===> F4 quarter

 0.13513513513513514 ===> C3 quarter

 0.10810810810810811 ===> A3 quarter

 0.05405405405405406 ===> F5 quarter

 0.10810810810810811 ===> B5 quarter

 0.08108108108108109 ===> G1 quarter

 0.05405405405405406 ===> D5 quarter

 0.02702702702702703 ===> B4 quarter

 0.10810810810810811 ===> E5 quarter

 0.02702702702702703 ===> A4 quarter

 0.02702702702702703 ===> A5 quarter

23  E5 quarter  0.03636363636363636 ===> B5 quarter

 0.01818181818181818 ===> F5 quarter

 0.2 ===> D5 quarter

 0.01818181818181818 ===> G4 quarter

 0.16363636363636364 ===> F4 quarter

 0.09090909090909091 ===> A3 quarter

 0.09090909090909091 ===> E5 quarter

119

 0.09090909090909091 ===> C3 quarter

 0.14545454545454545 ===> G6 quarter

 0.01818181818181818 ===> C4 quarter

 0.05454545454545454 ===> D4 quarter

 0.01818181818181818 ===> E4 quarter

 0.01818181818181818 ===> C7 quarter

 0.03636363636363636 ===> A4 quarter

24  F4 quarter  0.07692307692307693 ===> B5 quarter

 0.11538461538461539 ===> G6 quarter

 0.17307692307692307 ===> G4 quarter

 0.057692307692307696 ===> D5 quarter

 0.28846153846153844 ===> E5 quarter

 0.07692307692307693 ===> A3 quarter

 0.038461538461538464 ===> F4 quarter

 0.019230769230769232 ===> F5 quarter

 0.07692307692307693 ===> C3 quarter

 0.019230769230769232 ===> C7 quarter

 0.019230769230769232 ===> B4 quarter

 0.019230769230769232 ===> G3 quarter

 0.019230769230769232 ===> D4 quarter

25  G6 quarter  0.2 ===> F4 quarter

 0.1 ===> D5 quarter

 0.075 ===> B4 quarter

 0.2 ===> A3 quarter

 0.1 ===> G6 quarter

 0.025 ===> C4 quarter

 0.05 ===> B5 quarter

 0.025 ===> C7 quarter

 0.025 ===> F5 quarter

 0.05 ===> E5 quarter

 0.025 ===> D4 quarter

 0.025 ===> A5 quarter

 0.025 ===> G4 quarter

 0.05 ===> C3 quarter

 0.025 ===> G1 quarter

26  A3 quarter  0.18421052631578946 ===> B5 quarter

 0.02631578947368421 ===> F5 quarter

 0.10526315789473684 ===> D5 quarter

 0.15789473684210525 ===> F4 quarter

 0.15789473684210525 ===> G6 quarter

 0.07894736842105263 ===> C3 quarter

 0.15789473684210525 ===> E5 quarter

 0.02631578947368421 ===> E4 quarter

 0.05263157894736842 ===> A3 quarter

 0.02631578947368421 ===> G4 quarter

 0.02631578947368421 ===> C7 quarter

27  D5 quarter  0.021739130434782608 ===> A4 quarter

 0.08695652173913043 ===> C3 quarter

 0.15217391304347827 ===> D5 quarter

 0.13043478260869565 ===> F4 quarter

 0.08695652173913043 ===> B5 quarter

 0.17391304347826086 ===> E5 quarter

 0.021739130434782608 ===> E4 quarter

 0.06521739130434782 ===> G6 quarter

 0.043478260869565216 ===> B4 quarter

 0.043478260869565216 ===> D4 quarter

120

 0.043478260869565216 ===> B3 quarter

 0.043478260869565216 ===> C2 quarter

 0.021739130434782608 ===> A3 quarter

 0.021739130434782608 ===> G4 quarter

 0.021739130434782608 ===> A5 quarter

 0.021739130434782608 ===> REST half Dots: 1

28  REST half Dots: 1  1 ===> FIN

This example presents an interesting combination of the two main techniqutes that

constitute the core of this thesis. One can try to create several different grammars with

different probabilities and then convert them into Markov chains to create interesting

music material that can be later used in a composition.

121

3.5. Summary

This chapter has described the Stochastic Composer program, the process of

creating this application, as well as a tutorial about its use, and an analysis of the sample

results. The outcomes presented here constitute only a small amount of the material that

was generated. At the end of the testing process 130 samples had been produced by five

composers from different background and musical tastes.

It must be made clear that this application was not intended to produce a finished

composition. Its main purpose was to generate material with a controllable degree of

consistency that could be later used by a composer. The only constraint is the

composer’s creativity and ingenuity in creating different chains and grammars.

There are several possible improvements to the program. The main one is to

incorporate rhythmic elements on a larger scale. One might want to generate chains, for

example, only in the rhythmic sphere. Another possible improvement would be to add

triplet divisions in the Markov-chain section. Currently the programme only accepts

whole notes, half notes, quarters, eighth, sixteenth and thirty-second notes and the

dotted variations. In the future it is hoped to add the possibility of working with more

note lengths, to make more complex rhythms possible.

Another possible development, though very challenging, is to provide a preview of

outcomes from web grammars in staff notation. This requires resolving several

questions, like which layer is supposed to be the higher in the hierarchy, or how the

rhythm should be created. This will be attempted in the next update of the program.

Stochastic Composer received an especially warm welcome from all the

participants. Some of them declared their intention to use the program after the

experiment. This will be possible, and the author of this thesis will provide support

whenever needed.

122

Final remarks

The purpose of this study was to analyse how stochastic processes and

probability theory can be used in music. As part of the thesis the author created software

that provides tools for composing and analysing stochastic music.

The study was approached by separating the thesis into two parts. The first

focuses purely on theoretical aspects of the topic, while the second describes practical

experiments carried out by using bespoke software – Stochastic Composer, which was

also created as part of the thesis.

In part one, the first theoretical chapter concentrates on basic principles of

Markov Chains and analyses the uses of chains in music. The second theoretical chapter

is devoted to generative grammars. This chapter first outlines the terminology and

provides insight into the mathematical and linguistic origins of the grammars. Providing

such in-depth analysis of both processes was crucial to understanding them before

turning to the design of the Stochastic Composer.

Chapter three documents the process of creating the software and describes the

algorithms that reside in the core of the program. The application is an integral part of

the thesis and was created based on the information obtained from first two chapters.

Five young composers were asked to use and test the programme, and their results were

also presented and analysed in this third chapter.

 Music generated by means of the stochastic processes that were implemented in

the web application is a proof-of-concept and demonstrates that the topics underlying

the whole thesis are not merely theoretical considerations but can be of practical use.

The application balances automatic processes with personal taste; although the

examples generated are created by the software, it is the user who determines how the

application will work. The crucial part in creating musical material is to set the rules

that the application will apply; thus it is the user-composer who has the decisive hand

in determining the output of the process.

 The Stochastic Composer, therefore, constitutes a useful compositional tool that

produces output based on stochastic processes and probability theory without requiring

a composer to have extensive knowledge of these particular fields of mathematics. As

always, however, the application can be further developed and improved. The results

of the tests have been very promising and prove that this kind of software can be an

important tool in a composer’s workshop.

123

Bibliography

Allan, M., & Williams, C. K. (2004). Harmonising Chorales by Probabilistic

Inference. Neural Information Processing Systems Conference.

Almagor, H. (1983). A Markov analysis of DNA sequences. Journal of theoretical

biology, 104(4), 633-645.

Ames, C. (1989). The Markov Process as a Compositional Model: A Survey and

Tutorial. Leonardo, 22(2), 175-187.

Basharin, G., Langville, A., & Naumov, V. (2004, July). The life and work of AA

Markov. Linear Algebra and its Applications, 386, 3-26.

Beran, J. (2004). Beran, Jan. Statistics in musicology (Vol. 12). CRC Press.

Brooks, F., Hopkins, A., Neumann, P., & Wright, W. (1957, September). An

Experiment in Musicial Composition. Electronic Computers, IRE

Transactions on, 175-182.

Brzezniak, Z., & Zastawniak, T. (1999). Basic stochastic processes: a course through

exercises. Springer.

Chomsky, N. (1956). Three models for the description of language. IT-2, pp. 113-124.

IRE Transactions on Information Theory.

Chomsky, N. (1969). Aspects of the Theory of Syntax. MIT Press.

Chomsky, N. (1979). Immanuel Kant Lectures in Philosophy. Stanford University.

Chomsky, N. (2002). Syntactic structures. Walter de Gruyter.

Díaz-Jerez, G. (2015, 11). FraztMus. Retrieved from

http://www.gustavodiazjerez.com/

Essl, K. (2015, 11). Karlheinz Essl. Composer / Performer. Retrieved from

http://www.essl.at/software.html

Farbood, M., & Schoner, B. (2001). Analysis and synthesis of Palestrina-style

counterpoint using Markov chains. Proceedings of the International Computer

Music Conference.

Fernández, J., & Vico, F. (2014). AI methods in algorithmic composition: a

comprehensive survey.

Gardner, M. (1970). Mathematical games: The fantastic combinations of John

Conway’s new solitaire game “life”. Scientific American, 120-123.

GDG. (2015, 11). Conceptual Algorithmic Music. Retrieved from http://conceptual-

algorithmic-music.blogspot.co.uk.

124

Halliday, M. (2003). Introduction: On the "architecture" of human language. In J.

Webster (Ed.), On Language and Linguistics. (Vol. 3). London and New

York: Continuum.

Hayes, B. (2013). First links in the Markov chain. American Scientist, 101(2), 92-97.

Hiller, L., & Isaacson, L. (1956). Illiac suite, for string quartet. University of Illinois

at Urbana-Champaign .

Hiller, L., & Isaacson. , L. M. (1979.). Experimental Music; Composition with an

electronic computer. Greenwood Publishing Group Inc.

Holtzman, S. R. (1981). Using generative grammars for music composition.

Computer Music Journal, 5(1), 51-64.

Jeppesen, K. (1931). Counterpoint: the polyphonic vocal style of the sixteenth

century. New York: Dover Publications.

Jones, K. (1980). Computer assisted application of stochastic structuring techniques

in musical composition and control of digital sound synthesis systems.

London: City University.

Jones, K. (1981, Summer). Compositional Applications of Stochastic Processes.

Computer Music Journal, 5(2), 45-61.

Jones, P., & Smith, P. (2001). Stochastic processes. Arnold.

Kaliakatsos-Papakostas, M. A., Epitropakis, M. G., & Vrahatis, M. N. (2001).

Weighted Markov Chain model for musical composer identification.

Applications of Evolutionary Computation. (pp. 334-343). Springer Berlin

Heidelberg.

Katz, J., & Pesetsky, D. (2011). The identity thesis for language and music. Retrieved

06 20, 2014, from URL http://ling. auf. net/lingBuzz/000959

Kemeny, J. G., Snell, J. L., & Knapp, A. (2011). Markov Chains.

Kolberg, O. (1961). Dziela wszystkie, tom I: Piesni ludu polskiego. Kraków: PWM,

Ludowa Spółdzielnia Wydawnicza.

Lerdahl, F., & Jackendoff, R. (1985). A generative theory of tonal music. MIT press.

Liu, Y.-W., & Selfridge-Field, E. (2002). Modeling Music as Markov Chains:

Composer Identification.

Markov, A. A. (1913). Primer statisticheskogo issledovaniya nad tekstom “Evgeniya

Onegina”. Izvestiya Akademii Nauk.

125

McAlpine, K., Hoggar, S., & Miranda, E. (1999). Making Music with Algorithms: A

Case-Study System. Computer Music Journal, 23(2), 19-30.

McCormack, J. (1996). Grammar Based Music Composition. In R. J. Stocker,

Complex Systems 96: From Local Interactions to Global Phenomena (pp. 320-

336). ISO Press.

Meyerhoff, M. (2011). Introducing sociolinguistics. Taylor & Francis.

Miranda, E. R. (2001). Composing music with computers (Vol. 1). Taylor & Francis.

Newman, E. B. (1951). The pattern of vowels and consonants in various languages.

The American journal of psychology, 369-379.

Nierhaus, G. (2009). Algorithmic Composition. Paradigms of Automated Music

Generation. Vien: SpringerWienNewYork.

Oenbring, R. (2009). Scientific Rhetoric and Disciplinary Identity: A Critical

Rhetorical History of Generative Grammar. ProQuest.

Pankin, M. D. (n.d.). Baseball as a Markov Chain. Retrieved March 10, 2014, from

http://www.pankin.com/markov/intro.htm.

Pfaltz, J., & Rosenfeld, A. (1969). Web grammars. Proceedings of the 1st

international joint conference on Artificial intelligence. Morgan Kaufmann

Publishers Inc.

Pollastri, E., & Simoncelli, G. (2001). Classification of melodies by composer with

hidden markov models. Web Delivering of Music, 2001. Proceedings. First

International Conference.

Puterman, M. L. (2009). Markov decision processes: discrete stochastic dynamic

programming (Vol. 414). John Wiley & Sons.

Roads, C., & Wieneke, P. (1979). Grammars as representations for music. Computer

Music Journal, 48-55.

Romanovsky, V. I. (1970). Discrete Markov Chains. (E. Seneta, Trans.) Groningen:

Wolters-Noordhoff.

Schbath , S., Prum , B., & de Turckheim, E. (1995). Exceptional motifs in different

Markov chain models for a statistical analysis of DNA sequences. Journal of

Computational Biology, 2(3), 417-437.

Shannon, C. E. (1948). A Mathematical Theory of Communication. The Bell System

Technical Journal, 27, 379-423.

126

Steedman, M. (1996). The blues and the abstract truth: Music and mental models. In

Mental models in cognitive science (pp. 305-318). Psychology Press.

Taube, R. (2015, 11). Common Music. Retrieved from

http://commonmusic.sourceforge.net/

Verbeurgt, K., Dinolfo, M., & Fayer, M. (2004b). Extracting Patterns in Music for

Composition via Markov Chains. In Innovations in Applied Artificial

Intelligence. 17th International Conference on Industrial and Engineering

Applications of Artificial Intelligence and Expert Systems, IEA/AIE 2004,

Ottawa, Canada, May 17-20, 2004. Proceedings (pp. 1123-1132). Ottawa:

Springer Berlin Heidelberg.

Verbeurgt, K., Fayer, M., & Dinolfo , M. (2004a). A Hybrid Neural-Markov

Approach for Learning to Compose Music by Example.

Virtual Math Museum. (n.d.). Retrieved 04 2, 2014, from

http://virtualmathmuseum.org/Surface/torus/torus.html

Wołkowicz, J., Kulka, Z., & Kešelj, V. (2007). N-gram-based approach to composer

recognition. Warsaw: Warsaw University of Technology.

Yi, L., & Goldsmith, J. (2007). Automatic Generation of Four-part Harmony.

Proceedings of the Conference on Uncertainty in Artificial Intelligence.

