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Abstract 

A large scale experiment was carried out to accumulate colour difference 

discrimination data for lighting stimuli which were simulated on a display. 

Twenty six colour centres were selected and twenty one pairs of chromaticity 

difference were prepared surrounding each colour centre. Each pair was 

assessed using ratio method against a grey and a black background by a 

group of 20 normal colour vision observers. Both white and coloured lighting 

stimuli were used; corresponding to specifications for the solid state white 

lighting products and part of the MacAdam colour centres respectively. The 

latter defined the fundamental research for visual sensitivities known as just 

noticeable difference (JND).  

The results were used to test colour spaces and chromaticity diagrams as 

well as to evaluate colour difference predictions of various colour difference 

formulae and colour appearance models. It was found that u'v' chromaticity 

diagram can represent colour discrimination data for lighting colour stimuli 

more uniformly. Moreover, CIELUV colour difference formula performed 

better in predicting colour differences for lighting stimuli; especially when 

using black background. It performed better than CIEDE2000 and CAM02-

UCS formulae, which were derived based on surface colours, even though it 

has been shown in the previous studies that these perform well when 

simulating surface colours on display. These points also support that the 

experimental arrangement could potentially be used to simulate light sources 

(luminaires) in order to evaluate them as lighting stimuli. Furthermore, the 

visual results obtained against the black background can mostly be 

predicted better by the models than those against the grey background for 

lightning stimuli. 
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Chapter 1.  
Introduction  

1.1. Background 

Even though extensive research in colour difference for surface colours has 

been done, there is still no sufficient evidence to confirm a colour space that 

represents colour difference and chromaticity for the lighting stimuli or light 

sources as visually perceived. Actually, there is non-uniformity in the results 

of colour difference equations and colour spaces when used in different 

applications. Research has shown that other colour spaces and formulae are 

appropriate for surface colours and other for lighting stimuli. Additionally, 

various studies have made apparent the influence of parametric effects in 

the colour difference evaluation and appearance. A research by Cui et al. 

has shown that it is possible to simulate surface stimuli on a display (Cui et 

al., 2001b; Cui et al., 2001a). Moreover, in the same study, different sample 

arrangements and backgrounds have been seen to have great impact on the 

colour appearance of stimuli. For example, adding a one pixel black dividing 

line between two colour patches can significantly affect chromatic 

differences. Therefore, sample arrangement and background could be 

employed as a method to simulate light sources on a display as well. The 

results from simulated surface stimuli studies could be used for comparison 

and reveal whether the experimental arrangement could alter the results. 

Additionally, other studies have shown that it might be better to use the u’v’ 

chromaticity diagram for specifying colour tolerance of white light sources 

(Luo et al., 2015). However, this should also be investigated for coloured 

lighting stimuli.  

1.2. Aims of Thesis  

In lighting industry, the Planckian locus is normally used as a reference for 

specifying the colour of white light sources. ANSI has defined in one of its 

standards, the specifications of solid state lighting products at specified 
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whites around the Plankian locus (ANSI, 2008). However, coloured lighting 

products are gaining popularity and new sources such as light-emitting 

diodes (LED) which include a variety of colours are becoming dominant. 

LED luminaires consist of many individual small LEDs, therefore lighting 

manufacturers aim for uniform colour distribution of light among the 

individual LEDs. Consequently, the colour of each LED needs to be 

controlled so that no obvious colour difference appears in the luminaire. 

Therefore, both white and coloured lighting stimuli were investigated in this 

Ph.D. project. Moreover, MacAdam colour discrimination ellipses are highly 

associated with coloured lighting and for long used to specify just noticeable 

differences (MacAdam, 1942; MacAdam, 1943). However, there are a few 

points to be considered regarding the MacAdam data. They were obtained 

by only one observer using aperture mode visual colorimeter. Therefore, the 

data should be verified using technologies of real light sources or similar 

reproduction media. So, part of this work is to verify the MacAdam ellipses. 

Moreover, the objective of MacAdam’s experiment was colour matching 

whereas this study focuses on colour difference judgement. The nature of 

the results is quite different. The MacAdam’s experimental results show how 

the distribution of matching targets and their differences are just noticeable. 

While the results of this study are colour discrimination and the used colour 

differences are more clearly visible.  

Previous studies have also shown that CIEDE2000 might not be appropriate 

colour difference formula for evaluating lighting stimuli (Luo et al., 2015). 

CIEDE2000 has been developed from various surface colour datasets (Cui 

et al., 2001b; Cui et al., 2001a; Luo et al., 2001). And it has been shown to 

outperform all the other formulae in estimating colour difference using 

surface colours. On the other hand, MacAdam and CIELUV are labelled as 

appropriate for lighting stimuli. Therefore, one other aim of this study is to 

verify this common notion by investigating lightning stimuli. So, one of the 

objectives is to clarify whether it is possible to simulate lighting sources 

(luminaires) as lightning stimuli effectively on display. And consequently, 

compare these with results from simulated surface stimuli on display and 

other lighting stimuli.  
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Colour stimuli are also affected by various viewing conditions under which 

are observed and thus various parametric effects have been investigated in 

the past. Additionally, some of them have even been modelled in colour 

appearance models. With this concept in mind, colour appearance models 

should perform better than colour spaces or formulae. The data of this study 

should reveal this hypothesis by using two different backgrounds.   

 

Hence, a summary of the objectives of this study is given below: 

• To understand the performance of MacAdam ellipses to fit coloured 

lighting stimuli,  

• To investigate the performance of various colour difference metrics for 

predicting lighting stimuli, and 

• To understand the parametric effect on evaluating perceived lighting 

stimuli including change of background and luminance of colour centre. 

1.3. Thesis Overview 

Following the current chapter which introduce the research problem; Chapter 

2 is an overview of the theory and previous relevant work to this Ph.D. 

project. Topics of colour fundamentals, colour difference formulae, colour 

appearance models, parametric effects, colour management and colour 

discrimination studies are discussed.  

Chapter 3 describes the details of the experimental setup and specifications 

of equipment used. The characteristics and measurement results of the 

display are presented. In addition, the process for the selection of colour 

centres and sampling are discussed. Finally, evaluation of observer data is 

presented.  

Chapter 4 contains the data and results from the ellipse fitting. In this 

chapter, the data and results concerning the uniformity of colour spaces and 

performance are discussed. Comparisons based on different parametric 

effects and datasets are also included.  

Chapter 5 investigates the performance of colour difference formulae and 

colour appearance models using the visual data gathered from this study. 
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The most prominent ones were considered; i.e. CIELAB, CIELUV, 

CIEDE2000, CIECAM02, and CAM02-UCS.  

Finally, Chapter 6 summarises the main conclusions of this study and 

possible future work.  
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Chapter 2.  
Literature Review 

All the related literature was reviewed and summarised in this chapter. It 

includes colorimetry to describe CIE tools for colour specification, colour 

difference and colour appearance. This is followed by colour management, 

focused on the methods for display characterisation; and psychophysical 

methods for scaling colour differences. Colour discrimination ellipses’ 

characteristics and fitting methods, together with lighting standard and 

statistical analysis were reviewed. Finally, the colour fundamentals and 

background theory related to this research are discussed. A glossary of 

useful related terminology is given in Appendix A. 

2.1. Colour Fundamentals 

Colour is a phenomenon that does not exist without the human visual 

system. It is the result of three factors: a light source, an object and an 

observer. Light sources render wavelengths, objects absorb and scatter 

them according to their physical properties; and observers perceive the 

colour due to their visual system comprised of the brain and eyes. However, 

the perceived colour is described as the:  

“attribute of visual perception consisting of any combination of 

chromatic and achromatic content. This attribute can be described by 

chromatic colour names such as yellow, orange, brown, red, pink, green, 

blue, purple, etc., or by achromatic colour names such as white, grey, black, 

etc., and qualified by bright, dim, light, dark, etc., or by combinations of such 

names” (CIE, 1987).  

As colour has many applications, systems for its specification and 

communication have been developed over the years. Colour specification 

systems could be categorised into colour order systems and numerically 

based specification; with the latter being the CIE system. Colour order 

systems are composed of colour atlases in which samples are systematically 

arranged based on certain criteria and colour attributes related to the 
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purpose of the system. These systems are ideal for quick and easy 

reference since they are logically arranged. However, they are constrained 

by the medium and materials used for their creation. Well-known examples 

of such systems are the Munsell and the Pantone systems. However, for the 

purposes of this research, the CIE system and colorimetry were applied.  

2.1.1. CIE Colorimetry 

The acronym CIE stands for the International Commission on Illumination 

(Commission Internationale de l’ Éclairage) which was founded in 1913 in 

order to standardise and research light and colour issues (CIE, 2011). The 

CIE has published many standards and technical reports about the basics of 

colour science and has defined the CIE colour specification system.  

2.1.1.1. Standard Illuminants and Sources  

There is no colour without light; but more than this, colour rendering 

depends on the characteristics of the light source. Sources are the physical 

light sources and simulators able to reproduce the relative spectral power 

distribution (SPD) defined as the standard illuminants (Schanda, 2007 p. 

44). The illuminants are determined by their relative SPD (CIE, 2004a; 

Schanda, 2007). There are various illuminants recommended by the CIE to 

describe incandescent light, sunlight and fluorescent light in order to be used 

as reference for industrial applications. Some of the standard illuminants are 

the: illuminant A, illuminant C, illuminant D50, illuminant D65; and a series of 

illuminants F for representing different fluorescent lamps. Newer electric 

lamps such as the solid state lighting products (LED technologies) will be 

discussed in section 2.5.  

The illuminant A is  

“defined over the spectral region from 300 nm to 830 nm” (CIE, 

2004a). This illuminant is “intended to represent typical, domestic, tungsten-

filament lighting. Its relative spectral power distribution is that of a Planckian 

radiator at a temperature of approximately 2856 K. CIE standard illuminant A 

should be used in all applications of colorimetry involving the use of 

incandescent lighting, unless there are reasons for using a different 

illuminant.” (CIE, 2006).  
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The illuminant D65 is  

“intended to represent average daylight and has a correlated colour 

temperature of approximately 6500 K. CIE standard illuminant D65 should 

be used in all colorimetric calculations requiring representative daylight, 

unless there are specific reasons for using a different illuminant. Variations 

in the relative spectral power distribution of daylight are known to occur, 

particularly in the ultraviolet spectral region, as a function of season, time of 

day, and geographical location. However, CIE standard illuminant D65 

should be used pending the availability of additional information on these 

variations.” (CIE, 2006).  

The illuminant C is “intended to represent average daylight with a correlated 

colour temperature of approximately 6800 K” (CIE, 2004a).  

The illuminants notated with the letter D represent a series of illuminants of 

different daylight phases (Schanda, 2007 pp. 43-44). The illuminants D50, 

D55 and D75 represent correlated colour temperature (CCT) of 5000 K, 

5500 K and 7500 K respectively. The illuminant D50 is usually used by the 

graphic arts industry because its SPD resembles to a certain extent both 

daylight and incandescent light.  

2.1.1.2. Standards of Reflectance 

For standardisation purposes, the reliability of the measuring instruments is 

examined and instruments such as colorimeters and spectrophotometers are 

calibrated against a perfect reflecting diffuser (Schanda, 2007 pp. 57-58). 

According to CIE, a perfect reflecting diffuser is a reference material to relate 

reflectance. Many materials have been tested for their appropriateness as a 

standard of reflectance. For a material to be appropriate for such use, it must 

reflect light in all directions and with equal intensity, i.e. to resemble an ideal 

Lambertian surface (Grum and Becherer, 1979 p.37). Such materials are 

divided into two groups: (1) smoked magnesium oxide, pressed powder of 

magnesium oxide, and pressed powder of barium sulphate; and (2) various 

glasses, ceramic tiles, and plastics (Schanda, 2007 pp. 57-58). The former 

group has a distribution closer to the Lambertian surface but it is more 

delicate. On the other hand, the latter group is less ideal but it is more 

reliable.   
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2.1.1.3. Geometric Conditions 

The position of observer and light source from the specimen is also 

standardised. The viewing conditions are related to the angle, the course of 

the light beams and the type of instrument used for the measurement. There 

are CIE- recommended geometries for both reflection and transmission 

measurements (CIE, 2004a). Table 2.1-1 summarises the geometries for 

reflection measurements.  

Table 2.1-1 Summary of CIE geometry conditions 

Symbol Illuminating Viewing 
Specular 

Gloss 
Geometry 

45° α : 0° 45°  ring 0° Included Normal 

45° x : 0° 45°  beam 0° Included Normal 

0° : 45° α 0° 45° ring Included Normal 

0° : 45° x 0° 45° beam Included Normal 

di : 8° Diffuse 8° Included 
Integrating 

sphere 

de : 8° Diffuse 8° Excluded 
Integrating 

sphere 

8° : di 8° Diffuse Included 
Integrating 

sphere 

8° : de 8° Diffuse Excluded 
Integrating 

sphere 

d : d Diffuse Diffuse 
Included all 

angles 

Integrating 

sphere 

d : 0° Diffuse 0° 
Strict 

Excluded 

Integrating 

sphere 
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2.1.1.4. Standard Colorimetric Observers 

There are two standard colorimetric observers defined for different 

applications (CIE, 2004a). The first one was defined in 1931 by relation to 

the colour matching functions 𝒙𝒙�(𝝀𝝀),𝒚𝒚�(𝝀𝝀),𝒛𝒛�(𝝀𝝀) and is used for small viewing 

fields. The second one was defined in 1964 for larger visual fields by 

normalizing the above colour matching functions. The two standards are 

summarised in Table 2.1-2. For ease of reference, they are usually 

annotated with the number of degrees accompanied by the reference 

illuminant. For example, D50/2 is CIE 1931 standard colorimetric observer 

under D50 illuminant.  

Table 2.1-2 CIE Standard colorimetric observers 

Description Observer 
Visual 
Field 

Diameter 
Viewing 
Distance 

CIE 1931 Standard 

Colorimetric Observer 
2° observer 1° - 4° 17 mm 0.5 m 

CIE 1964 Standard 

Colorimetric Observer 
10° observer > 4° 90 mm 0.5 m 

 

2.1.1.5. Tristimulus Values and Chromaticity Coordinates 

The tristimulus values represent the CIE specification system as they 

describe how much of additive stimuli are needed so as to specify a 

particular stimulus. The tristimulus values notated as X, Y, Z are related to 

the CIE 1931 standard colorimetric system, while the X10, Y10, Z10 to the CIE 

1964 standard colorimetric system (CIE, 2004a). For each system, the 

calculation of tristimulus values for a wavelength (𝝀𝝀) is given in Equation 

2.1-1; where 𝑆𝑆(𝜆𝜆) is the relative SPD, 𝑅𝑅(𝜆𝜆) is the reflectance factor, and 

𝒙𝒙�(𝝀𝝀),𝒚𝒚�(𝝀𝝀),𝒛𝒛�(𝝀𝝀) are the colour matching functions.  

Chromaticity describes “the colour quality of a colour stimulus definable by 

its chromaticity coordinates, or by its dominant (or complementary) 

wavelength and its purity taken together” (ASTM, 2009). So, the chromaticity 

coordinates are the “ratio of each of a set of three tristimulus values to their 
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sum” (CIE, 1987). For the chromaticity coordinates, the functions in Equation 

2.1-2 apply. These are applied for both CIE 1931 and CIE 1964 standard 

colorimetric systems by using the respective tristimulus values. Therefore, 

the xy chromaticity diagram can be defined for each colorimetric observer. 

The drawback of the xy chromaticity diagram is that equal distances in the 

space do not represent equally perceived chromaticity difference (Wright, 

1941).   

Equation 2.1-1 Tristimulus values 

𝑋𝑋 = 𝑘𝑘 �𝑆𝑆(𝜆𝜆)
 

𝜆𝜆
 𝑅𝑅(𝜆𝜆)  �̅�𝑥(𝜆𝜆) 𝑑𝑑𝜆𝜆 

𝑌𝑌 = 𝑘𝑘 �𝑆𝑆(𝜆𝜆)
 

𝜆𝜆
 𝑅𝑅(𝜆𝜆)  𝑦𝑦�(𝜆𝜆) 𝑑𝑑𝜆𝜆 

𝑍𝑍 = 𝑘𝑘 �𝑆𝑆(𝜆𝜆)
 

𝜆𝜆
 𝑅𝑅(𝜆𝜆)  𝑧𝑧̅(𝜆𝜆) 𝑑𝑑𝜆𝜆 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒  𝑘𝑘 = 100   ⁄ �𝑆𝑆(𝜆𝜆)
 

𝜆𝜆
 𝑦𝑦�(𝜆𝜆) 𝑑𝑑𝜆𝜆  

  

𝑋𝑋10 = 𝑘𝑘10  �𝑆𝑆(𝜆𝜆)
 

𝜆𝜆
 𝑅𝑅(𝜆𝜆)  �̅�𝑥10(𝜆𝜆) 𝑑𝑑𝜆𝜆 

𝑌𝑌10 = 𝑘𝑘10  �𝑆𝑆(𝜆𝜆)
 

𝜆𝜆
 𝑅𝑅(𝜆𝜆)  𝑦𝑦�10(𝜆𝜆) 𝑑𝑑𝜆𝜆 

𝑍𝑍10 = 𝑘𝑘10  �𝑆𝑆(𝜆𝜆)
 

𝜆𝜆
 𝑅𝑅(𝜆𝜆)  𝑧𝑧1̅0(𝜆𝜆) 𝑑𝑑𝜆𝜆 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒  𝑘𝑘10 = 100   ⁄ �𝑆𝑆(𝜆𝜆)
 

𝜆𝜆
 𝑦𝑦�10(𝜆𝜆) 𝑑𝑑𝜆𝜆  

  

Equation 2.1-2 Chromaticity coordinates xy 

𝑥𝑥 = 
𝑋𝑋

𝑋𝑋 + 𝑌𝑌 + 𝑍𝑍
 

𝑦𝑦 = 
𝑌𝑌

𝑋𝑋 + 𝑌𝑌 + 𝑍𝑍
 

𝑧𝑧 = 
𝑍𝑍

𝑋𝑋 + 𝑌𝑌 + 𝑍𝑍
 

1 = 𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧 
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2.1.1.6. Luminance Factor 

Luminance is a photometric quantity that describes the luminous intensity 

which is projected by a unit area in a given direction (Grum and Becherer, 

1979; Hunt, 1998). The descriptor luminous describes “measures evaluated 

in terms of spectral power weighted by the 𝑉𝑉(𝜆𝜆) function” (Hunt, 1998 p. 

323). The 𝑉𝑉(𝜆𝜆) function describes the spectral luminance efficiency which is 

the basis of photometry, i.e. weighted functions to transform radiometric 

values into photometric values. As luminance factor is defined the “ratio of 

the luminance to that of the perfect diffuser identically illuminated” (Hunt, 

1998 p. 323). Yet, the Y tristimulus value is also associated with the 

luminance of the stimulus when evaluated purely in candelas per square 

metre. As it is the common, it can be treated so as to represent the 

percentage of luminance factor. For that, the ratio Y/Yn can be used to 

normalise the XYZ values. In this ratio, Yn is the Y value of the reference 

white or reference transparent specimen appropriately.  

2.1.1.7. Uniform Colour Spaces 

The CIE 1976 uniform chromaticity scale diagram - UCS diagram or else u’v’ 

chromaticity diagram - derives from the CIE 1976 colour spaces (CIE, 

2004a; CIE, 2009). It is an evolution of the xy chromaticity diagram and its 

chromaticity coordinates u’v’ are given by Equation 2.1-3. In contrast to the 

xy chromaticity diagram, the chromaticity differences are more equally 

distanced, thus making it a more uniform space. This attempt was made in 

order to create a chromaticity diagram where MacAdam ellipses would be 

formed as circles. However, there is still no perfect linear transformation. A 

nonlinear transformation of the xy chromaticity diagram was performed by 

Farnsworth that transformed the MacAdam ellipses into circles; however, 

this space is not practical as it is limited to the examined colour centres 

(Farnsworth, 1958).   

 

 



- 28 - 

Equation 2.1-3 Chromaticity coordinates u’v’ 

𝑢𝑢′ = 
4𝑋𝑋

𝑋𝑋 + 15𝑌𝑌 + 3𝑍𝑍
 =  

4𝑥𝑥
−2𝑥𝑥 + 12𝑦𝑦 + 3

 

𝑣𝑣′ = 
9𝑌𝑌

𝑋𝑋 + 15𝑌𝑌 + 3𝑍𝑍
 =  

9𝑦𝑦
−2𝑥𝑥 + 12𝑦𝑦 + 3

 

  

2.1.2. Colour Difference Formulae 

Through the years a great variety of colour difference formulae have been 

developed in order to achieve a much more realistic estimation of colour 

difference when calculating colour difference between a reference and a 

testing sample. Since 1976, when CIELAB and CIELUV formulae were 

developed, great progress has been made (Luo, 2002). After 1976, more 

advanced formulae have been built based on a certain structure by altering 

the CIELAB formula (Luo et al., 2001). This structure is shown in Equation 

2.1-4, where ΔL*, ΔC* and ΔH* are the differences for lightness, chroma and 

hue respectively as calculated by CIELAB. The kL, kC and kH are parametric 

factors for each attribute, the SL, SC and SH are the respective weighting 

functions for each attribute and ΔR is an interactive term for hue and chroma 

differences. Among the advanced formulae are CMC (ℓ:c), CIE94 and 

CIEDE2000. However, CIELAB still remains the basic industry standard, 

even though different systems have been developed based on different 

applications. It should also be noted that the aforementioned formulae have 

been developed based on datasets accumulated by surface mode samples.  

Equation 2.1-4 Generic structure of colour difference formulae 

∆𝐸𝐸 = ��
𝛥𝛥𝛥𝛥∗

𝑘𝑘𝐿𝐿 𝑆𝑆𝐿𝐿
�
2

+  �
𝛥𝛥𝛥𝛥∗

𝑘𝑘𝐶𝐶  𝑆𝑆𝐶𝐶
�
2

+  �
𝛥𝛥𝛥𝛥∗

𝑘𝑘𝐻𝐻 𝑆𝑆𝐻𝐻
�
2

+  ∆𝑅𝑅   

   
 

2.1.2.1. CIELAB and CIELUV Formulae 

The CIELAB and CIELUV formulae are based on the CIELAB and CIELUV 

colour spaces respectively (Luo, 2002). CIELAB and CIELUV are CIE 1976 
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uniform colour spaces, they have an identical lightness scale L* and 

opponent colour axes – a* and b* for CIELAB, and u* and v* for CIELUV 

which are formed differently in three dimensional space. For these metrics, a 

reference white XYZn is required to compensate for the viewing conditions of 

the field. CIELAB is mainly used by industries occupied with subtractive 

colour reproduction, while the CIELUV is recommended for additive colour 

reproduction. In Equation 2.1-5, the main functions are given for both 

formulae (CIE, 2007; CIE, 2009). The symbols hab – huv stand for the hue 

angle in degrees, and Cab* – Cuv* stand for the chroma attribute. Lightness, 

hue and chroma represent the perceived colour attributes, and their 

differences are calculated between the batch and the standard. For instance, 

by using   𝛥𝛥𝑎𝑎∗ =  𝑎𝑎𝐵𝐵∗ − 𝑎𝑎𝑆𝑆∗ , where B stands for the batch and S for the 

standard, and the remaining factors are computed accordingly.  
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Equation 2.1-5 CIELAB and CIELUV formulae 
∆𝐸𝐸∗𝑎𝑎𝑎𝑎 = �(𝛥𝛥𝛥𝛥∗)2 + (𝛥𝛥𝑎𝑎∗)2 +  (𝛥𝛥𝑏𝑏∗)2 

𝛥𝛥∗ = 116 𝑓𝑓 (𝑌𝑌 𝑌𝑌𝑛𝑛⁄ ) − 16 
𝑎𝑎∗ = 500 [ 𝑓𝑓(𝑋𝑋 𝑋𝑋𝑛𝑛⁄ ) − 𝑓𝑓(𝑌𝑌 𝑌𝑌𝑛𝑛⁄ ) ] 

𝑏𝑏∗ = 200 [ 𝑓𝑓(𝑌𝑌 𝑌𝑌𝑛𝑛⁄ ) − 𝑓𝑓(𝑍𝑍 𝑍𝑍𝑛𝑛⁄ ) ] 
  

   where 𝐼𝐼 = X Xn 𝑜𝑜𝑒𝑒 ⁄ Y Yn 𝑜𝑜𝑒𝑒  Z Zn respectively ⁄  ⁄  
for 𝐼𝐼 > (6 29⁄ )3 
 𝑓𝑓(𝐼𝐼) = √𝐼𝐼3  
for 𝐼𝐼 ≤ (6 29⁄ )3 
 𝑓𝑓(𝐼𝐼) = (841/108) 𝐼𝐼 + 4 29⁄  

  
∆𝐸𝐸∗𝑢𝑢𝑢𝑢 = �(𝛥𝛥𝛥𝛥∗)2 + (𝛥𝛥𝑢𝑢∗)2 + (𝛥𝛥𝑣𝑣∗)2 

  
𝑢𝑢′ = 4𝑋𝑋 (𝑋𝑋 + 15𝑌𝑌 + 3𝑍𝑍)⁄ = 4𝑥𝑥 (−2𝑥𝑥 + 12𝑦𝑦 + 3)⁄  
𝑣𝑣′ = 9𝑌𝑌 (𝑋𝑋 + 15𝑌𝑌 + 3𝑍𝑍)⁄ = 9𝑦𝑦 (−2𝑥𝑥 + 12𝑦𝑦 + 3⁄ ) 

𝑢𝑢∗ = 13 𝛥𝛥∗ (u′ −  𝑢𝑢𝑛𝑛′) 
𝑣𝑣∗ = 13 𝛥𝛥∗ (v′ −  v𝑛𝑛′) 

  
ℎa𝑎𝑎 = tan−1(𝑏𝑏∗ a∗⁄ ) 
𝛥𝛥∗a𝑎𝑎 = �a∗2 + 𝑏𝑏∗2 

  
ℎ𝑢𝑢𝑢𝑢 = tan−1(𝑣𝑣∗ 𝑢𝑢∗⁄ ) 
𝛥𝛥∗𝑢𝑢𝑢𝑢 = �𝑢𝑢∗2 + 𝑣𝑣∗2 

  

2.1.2.2. CIEDE2000 Formula 

The CIEDE2000 formula was also based on CIELAB and it has been proven 

to outperform the other colour difference formulae of its time for the majority 

of the available surface mode datasets (Luo et al., 2001). The investigation 

has proved that CIEDE2000 corrects fundamental problems of the CIELAB 

(Luo, 2002). These corrections are: (1) lightness weighting function SL which 

corrects the prediction of lightness difference; (2) chroma weighting function 

SC for normalisation; (3) hue weighting function SH; (4) interactive term RT 

which compensates for chromatic corrections in the blue region; and (5) 

factor (1+G) to correct achromatic shades.  
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The CIEDE2000 is given in Equation 2.1-6. The L*, a* and b* values are 

calculated using CIELAB formula.  

Equation 2.1-6 The CIEDE2000 formula 

∆𝐸𝐸00 = ��
∆𝛥𝛥′

𝑘𝑘𝐿𝐿 𝑆𝑆𝐿𝐿
�
2

+  �
∆𝛥𝛥′

𝑘𝑘𝐶𝐶  𝑆𝑆𝐶𝐶
�
2

+  �
∆𝛥𝛥′

𝑘𝑘𝐻𝐻 𝑆𝑆𝐻𝐻
�
2

+ 𝑅𝑅𝑇𝑇  �
∆𝛥𝛥′

𝑘𝑘𝐶𝐶  𝑆𝑆𝐶𝐶
�  �

∆𝛥𝛥′

𝑘𝑘𝐻𝐻 𝑆𝑆𝐻𝐻
� 

 𝛥𝛥′ = 𝛥𝛥∗ 
 a′ = (1 + 𝐺𝐺) a∗ 
 𝑏𝑏′ = 𝑏𝑏∗ 
 𝛥𝛥′ = �a′2 + 𝑏𝑏′2 

 ℎ′ = tan−1(𝑏𝑏′ a′⁄ ) 

  𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐺𝐺 = 0.5 ×�1 −�
𝛥𝛥a𝑎𝑎∗����

 7

𝛥𝛥a𝑎𝑎∗����
 7 + 25

� 

 ∆𝛥𝛥′ = 𝛥𝛥2′ − 𝛥𝛥1′   
 ∆𝛥𝛥′ = 𝛥𝛥2′ − 𝛥𝛥1′ 
 ∆𝛥𝛥′ = 2 �𝛥𝛥2′𝛥𝛥1′ ∙ sin(∆ℎ′ 2⁄ ) 
 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒  ∆ℎ′ = ℎ2′ − ℎ1′  
   

 𝑆𝑆𝐿𝐿 = 1 + ( 0.015 (𝛥𝛥′� − 50)2  �20 + (𝛥𝛥′� − 50)2⁄  ) 
𝑆𝑆𝐶𝐶 = 1 + 0.045 𝛥𝛥′��� 
𝑆𝑆𝐻𝐻 = 1 + 0.015 𝛥𝛥′��� 𝑇𝑇 

  𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒  𝑇𝑇 = 1 − 0.17 cos�ℎ′� − 30°� + 0.24 cos�2 ℎ′� � + 
        0.32 cos�3ℎ′� + 6°� − 0.20 cos�4ℎ′� − 63°�  

𝑅𝑅𝑇𝑇 = − sin(2 ∆𝜗𝜗) 𝑅𝑅𝐶𝐶 

∆𝜗𝜗 = 30 𝑒𝑒𝑥𝑥𝑒𝑒 �−�ℎ′� − 275° 25⁄ �
2
� 

𝑅𝑅𝐶𝐶 = 2 �𝛥𝛥̅′7 𝛥𝛥̅′7 + 257⁄  
  

2.1.3. Colour Difference Datasets 

For the assessment of colour difference, many experiments have been 

conducted in order to optimise the colour difference formulae. Over the 

years, plethora of experimental datasets have been composed based on 

different viewing conditions, materials, psychophysical methodology and 

other parametric criteria. Some of the most important datasets have been 
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compiled for surface mode small perceptibility colour differences. A 

summary of these is given in Table 2.1-3. 

The BFD-perceptibility dataset is a combined set of experimental data from 

various research groups (Cheung and Rigg, 1986; Luo and Rigg, 1986; 

Strocka et al., 1983; Witt, 1987; Witt and Doring, 1983). Different colour 

centres and methodology were followed by each group. Luo-Rigg combined 

13 datasets of different published experiments into one integrated dataset, 

which was used to derive the BFD (ℓ:c) colour difference equation (Luo and 

Rigg, 1986; Luo and Rigg, 1987a; Luo and Rigg, 1987b). A common colour 

centre between the Luo-Rigg study and each examined dataset was used in 

their experiments so as to ensure reliability of the data. BFD (ℓ:c) equation 

was the set point of the advanced colour difference formulae; having 

interactive term for hue and chroma. It was also found by Luo and Rigg that 

there is not much difference between acceptability and perceptibility data as 

far as it concerns chromaticity differences.  

The RIT-DuPont dataset was mainly used to derive the CIE94 colour 

difference formula, which was aiming to predict colour differences for 

industrial applications (Alman et al., 1989; Berns et al., 1991). Finally, for the 

derivation of the CIEDE2000 formula, the following most reliable colour 

discrimination datasets were used: Luo and Rigg, RIT-DuPont, Leeds (Kim 

and Nobbs) and Witt dataset (Alman et al., 1989; Berns et al., 1991; Kim and 

Nobbs, 1997; Luo et al., 2001; Luo and Rigg, 1986; Witt, 1999). 

 
  



- 33 - 

Ta
bl

e 
2.

1-
3 

C
la

ss
ic

al
 e

xp
er

im
en

ta
l d

at
as

et
s 

fo
r a

ss
es

si
ng

 c
ol

ou
r d

iff
er

en
ce

 

Table 2.1-3  Classical experimental datasets for assessing colour difference  
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2.1.4. Colour Appearance Overview 

Appearance is defined as “the collected visual aspects of an object or a 

scene” (ASTM, 2009). Therefore, many attributes in the viewing field 

influence the perceived appearance, such as size, shape, colour, texture, 

gloss, transparency, opacity, light source, luminance, background, etc 

(ASTM, 2009; CIE, 1993). There are several colour appearance phenomena 

which have been identified to change perceived appearance, such as the 

Hunt effect and the Stevens effect (Fairchild, 2005; Luo and Li, 2007).  

2.1.4.1. Viewing Field  

As it was previously mentioned, colour appearance is influenced by 

whatever is in the visual field. The visual field is defined by the following: (1) 

the stimulus; (2) the proximal field; (3) the background; (4) the adapting field; 

and (5) the surround (CIE, 2004b; Fairchild, 2005; Hunt, 1998). These are 

illustrated in Figure 2.1-1 and their definitions are given below. 

 

 

Figure 2.1-1 CIE Viewing field 
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The stimulus is “a colour subtending roughly 2° in the centre of the field of 

view” (CIE, 2004b). “A 2° visual field represents a diameter of about 17 mm 

at a viewing distance of 0.5 m” (CIE, 2004a).  The CIE 1931 standard 

colorimetric observer can be used when the stimulus is between 1° - 4° (CIE, 

2004a).  

The proximal field is “the immediate environment of the stimulus, extending 

for about 2° from the edge of the stimulus in all, or most, directions” 

(Fairchild, 2005 p. 137). Local contrast effects can be modelled by using this 

definition. However, it is very difficult to specify it in practice and as a result it 

is considered as part of the background. This is the reason that it is not 

defined separately in the CIECAM02 technical report.   

The background is the environment around the stimulus, “extending for 

about 10° from the edge of the proximal field in all, or most, directions” 

(Hunt, 1998 p. 209). Nevertheless, as it was previously mentioned, if the 

proximal field can be considered as part of the background, then it is 

assumed that the environment of the background extends from the edge of 

the stimulus.  

The adapting field is “everything in the visual field outside the stimulus” (CIE, 

2004b). This includes the total environment: the proximal field, the 

background, and the surround, “and extending to the limit of vision in all 

directions (Hunt, 1998 p. 209).  

The surround is “the field outside the background” (Hunt, 1998 p. 209). It 

describes effects such the surround illuminance, veiling flare from displays, 

etc (Fairchild, 2005 p. 138).  

2.1.4.2. Colour Appearance Attributes 

Colour appearance attributes can become a little ambiguous because they 

describe things that people see. For this reason, their definitions have been 

given by the CIE International Lighting Vocabulary as following (CIE, 1987).  

Brightness is the “attribute of a visual sensation according to which an area 

appears to emit more or less light”. It describes an absolute attribute of light.  

Lightness is defined as “the brightness of an area judged relative to the 

brightness of a similarly illuminated area that appears to be white or highly 
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transmitting”. It is affected by the illumination and viewing conditions of the 

area or object. 

Colourfulness is the “attribute of visual sensation according to which the 

colour of an area appears to be more or less chromatic”. “Colourfulness 

describes the intensity of the hue in a given colour stimulus” (Fairchild, 2005 

p. 87). When luminance level is increased, colourfulness is increased as 

well.  

Chroma is defined as the “colourfulness of an area judged as a proportion of 

the brightness of a similarly illuminated area that appears white or highly 

transmitting”. “Chroma is likely to change if the colour of the illumination is 

varied” (Fairchild, 2005 p.87).  

Saturation is defined as the “colourfulness of an area judged in proportion to 

its brightness. For given viewing conditions and at luminance levels within 

the range of photopic vision, a colour stimulus of a given chromaticity 

exhibits approximately constant saturation for all luminance levels, except 

when the brightness is very high”.  

Hue is the “attribute of a visual sensation according to which an area 

appears to be similar to one of the perceived colours, red, yellow, green, and 

blue, or to a combination of two of them”.  

2.1.4.3. Colour Appearance Phenomena 

There are many colour appearance phenomena but not all of them have 

been modelled within a single colour appearance model. Several related 

studies have been summarised by Fairchild, Johnson et al and Luo et al, 

which are presented below (Fairchild, 2005; Johnson and Fairchild, 2003; 

Luo and Li, 2007). 

Chromatic adaptation is the most important phenomenon (Johnson and 

Fairchild, 2003 pp. 149-159; Luo and Li, 2007 pp. 271-273). The human 

visual system adapts its sensitivity according to the viewing conditions; 

according to the amount of light in the scene. Apart from the adaptation to 

the luminance level, the visual system is also adjusted to the overall 

illumination perceived from a scene which represents the relative perception 

of colours. So, colour appearance can be preserved under different light 
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sources when an individual is looking them successively. This is highly 

understandable when considering that a white patch under different 

illuminants retains a white appearance regardless of the colour of the 

illuminant. Cognitive mechanisms, such as memory of colour also contribute 

to chromatic adaptation by provoking an individual’s knowledge of 

appearance.  

The Hunt Effect describes how colourfulness and chroma increase when 

luminance is increased (Fairchild, 2005; Johnson and Fairchild, 2003; Luo 

and Li, 2007). In bright conditions, colourfulness appears increased and it 

decreases systematically with the illumination level. Hunt investigated this 

effect by haploscopic matching experiments applying different viewing 

conditions in luminance levels.  

The Stevens Effect shows that the perceived contrast increases when the 

luminance level in the adapting field also increases (Fairchild, 2005; 

Johnson and Fairchild, 2003; Luo and Li, 2007). This signifies that dark and 

light colours will appear darker and lighter respectively as luminance 

increases. Stevens conducted experiments with neutral patches for which 

observers assessed brightness using magnitude estimation method under 

different viewing conditions.  

The Surround Effect (or else Bartleson - Breneman equations) explains the 

phenomenon where an image’s contrast alters according to the changes 

from bright to dim and dark surround luminance (Fairchild, 2005; Johnson 

and Fairchild, 2003; Luo and Li, 2007). Under dark surround, dark image 

areas appear lighter while lighter areas remain unaffected. Bartleson and 

Breneman conducted matching and scaling experiments with complex 

images under 3 different surround luminance levels. 

The Helmholtz - Kohlrausch Effect describes brightness change caused by 

an increase in luminance and chromaticity (Fairchild, 2005; Luo and Li, 

2007). This signifies that at “constant luminance, perceived brightness 

increases with increasing saturation” (Fairchild, 2005 p.119).  

When a grey scale is displayed at certain chromatic illuminations, the lighter 

patch will exhibit part of the source’s hue and the darker one will appear the 
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complementary hue of the source. This is known as the Helson - Judd effect 

(Fairchild, 2005; Luo and Li, 2007).  

A particular category of phenomena are those linked to the spatial structure 

of the stimuli (Fairchild, 2005; Johnson and Fairchild, 2003). Related to 

simultaneous contrast, there are also phenomena such as the crispening 

and spreading. Simultaneous contrast “causes the colour of a stimulus to 

shift in colour appearance when the colour of the background changes” 

(Johnson and Fairchild, 2003 p. 141). Crispening describes that perception 

of colour difference between a pair of stimuli is increased when colour of 

background is similar to the colour of stimuli (Fairchild, 2005; Johnson and 

Fairchild, 2003). Lightness contrast effect is a type of simultaneous contrast 

which describes that “perceived lightness increases when colours are 

viewed against a darker background and vice versa” (Luo and Li, 2007 

p.276). This reveals that the impact is detected more in lightness and hue. 

Spreading is simultaneous contrast phenomenon for stimuli with high spatial 

frequency (Fairchild, 2005; Johnson and Fairchild, 2003).  

Bezold - Brücke hue shift and Abner effect are similar phenomena 

concerning hue shift which is caused by changes in luminance and 

colorimetric purity respectively (Fairchild, 2005; Johnson and Fairchild, 

2003). The former refers to hue shift when luminance changes and the latter 

to hue shift when white is additively mixed with monochromatic light. 

2.1.4.4. Parametric Effects  

In the 1993 CIE report for parametric effects, many effects had been 

reviewed (CIE, 1993). These are divided into observer based uncertainty 

and various physical parameters. Moreover, guidelines for the investigation 

of parametric effects has been defined by CIE to coordinate research based 

on five proposed colour centres (Robertson, 1978). Observer based 

uncertainty effects are considered the variation of colour matching, the 

duration of observation, and the variation of judgements of constant stimuli. 

Physical parameters are as following: (1) sample size, (2) sample 

separation, (3) texture, (4) colour of background, (5) luminance level, (6) 

surround lightness and colour, (7) method of observing, and (8) size of 
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colour difference. So far, only four have been determined of having the 

greatest impact and being modelled within the latest colour appearance 

models; see section 2.1.5.1 (Luo and Li, 2007; Fairchild, 2005). 

There are various studies that have investigated the parametric effects. Cui 

et al (Cui et al., 2001b) conducted a series of experiments using a CRT 

display. Sample size, background, frame of sample, width of separation and 

colours of separation were the factors taken into account. Grey scale 

method was used for the psychophysical experiments and the group of 

observers gave acceptable variation. The performance of colour difference 

formulae was evaluated and chromaticity ellipses for different datasets were 

compared. One of the essential findings was that there was small difference 

between surface stimuli and simulated surface stimuli on display (Cui et al., 

2001b). However, it should be noted that the sample arrangement and 

positioning was the same as they would have usually been presented in 

surface mode. As far it concerns the parametric effects studied, it was found 

that the frame had the largest effect in colour difference, with impact about 

23%. The smallest effect was given by the separation's colour and sample 

size with an impact about 6% and 7% respectively. Moreover, the width of 

separation gave a range of 8% to 18 % impact according to changes from 

grey to no colour of separation. A change into a coloured background 

affected the results by 14% between achromatic and coloured backgrounds 

which was constant. Finally, it was concluded by the researchers that 

perceive colour difference is primarily affected by changes in lightness and 

chromaticity. 

Finally, in another series of studies by Xiao et al, it was also found that the 

experimental setup affects the colour appearance (Xiao et al., 2011; Xiao et 

al., 2010).  

2.1.5. Colour Appearance Models 

Colour appearance models are mathematical models that integrate the 

following elements: (1) colorimetric features (uniform colour space and 

colour difference formula); (2) predictors of colour appearance attributes, (3) 

chromatic adaptation; and (4) luminance adaptation (Fairchild, 1995; 

Fairchild, 2005). Over time, several colour appearance models have been 



- 40 - 

developed such as Hunt’s model, LLAB, RLAB, Nayatani’s et al. model, and 

CIECAM97s (CIE, 2004b; Fairchild, 2005; Hunt, 1998; Luo et al., 1996). The 

CIECAM97s was a key stage in the development of colour appearance 

models. It was the first appearance model to be published by the CIE and it 

included the latest advancements of the time (Fairchild, 2005). 

2.1.5.1. CIECAM02 Model  

CIECAM02 is an evolution of the CIECAM97s and CIE’s current 

recommendation for colour management systems (CIE, 2004b). Its basic 

structure is illustrated in Figure 2.1-2. The CIECAM02 model was tested in 

order to ensure improved chromatic adaptation, improved performance in its 

lightness scale, improved prediction of chroma for the almost neutral 

colours, gamut volumes that represent surround conditions and improved 

fitting of saturation results (Luo and Li, 2007 p. 271). CIECAM02’s complete 

forward model and colour difference formula are given in Appendix B. 

The input parameters to the model are listed as follow: (1) XYZ values of 

stimulus; (2) XYZ values of white point; (3) luminance of adapting field LA; 

(4) luminance of background Yb; and (5) surround conditions. LA and Yb are 

often reduced by 20% and they are used in cd/m2 (CIE, 2004b). Reduction is 

normally applied for stimuli viewed inside a viewing cabinet. Moreover, 

luminance of the background can be directly set equal to 20 cd/m2 for typical 

surface mode reference conditions. For surround conditions, coefficients 

have been defined for dark, dim and average surround to be used in the 

model as given in Table 2.1-4. To find the corresponding surround condition, 

the surround ratio must be calculated; which is ratio of luminance of the 

surround white against the luminance of the medium’s white (CIE, 2004b). 

When surround ratio is zero, less than 0.2 or greater/equal to 0.2, the 

surround is determined as dark, dim or average respectively. While, the 

luminance of the adapting field LA is defined by the white point luminance LV 

and the background luminance Yb as in Equation 2.1-7. 
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Equation 2.1-7 Equation for the estimation of luminance of the 
adapting field for CIECAM02 based models 

𝛥𝛥𝐴𝐴 = (𝛥𝛥𝑉𝑉 ∙ 𝑌𝑌𝑎𝑎) / 100  

   

Table 2.1-4 CIECAM02 surround coefficients 

Viewing conditions 
(surround) c NC F 

Average 0.69 1.0 1.0 

Dim 0.59 0.9 0.9 

Dark 0.525 0.8 0.8 

 

The colour appearance phenomena modelled in CIECAM02 are listed as 

follow: (1) chromatic adaptation; (2) Hunt effect; (3) Stevens effect; (4) 

surround effect; and (5) lightness contrast effect (Luo and Li, 2007). The 

model processes chromatic adaptation by using the chromatic and 

luminance adaptation transform CAT02 (CIE, 2004b; Luo and Li, 2007).   

The output data are opponent colour coordinates a and b and colour 

appearance predictors; which are: (1) brightness Q; (2) lightness J; (3) 

colourfulness M; (4) chroma C; (5) saturation s; (6) hue composition H, and 

(7) hue angle h. Some of these output data are used for the calculation of 

colour difference ΔECAM02.  
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Figure 2.1-2 Structure of CIE colour appearance models 
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2.1.5.2. CAM02-SCD, CAM02-LCD and CAM02-UCS Colour Spaces 

CAM02-SCD, CAM02-LCD and CAM02-UCS are uniform colour spaces for 

which the abbreviations SCD, LCD and UCS originate from the names of the 

datasets used to derive them; i.e. small colour difference data, large colour 

difference data and uniform colour space respectively (Luo et al., 2006). 

These datasets were used in order to develop colour difference formulae 

and spaces based on the CIECAM02. CAM02-UCS is considered to perform 

better in overall, even though it did not outperform the other two. Moreover, 

CAM02-SCD and CAM02-UCS were shown to be more uniform than 

CIELAB and CIECAM02.  

The opponent colour coordinates ab and the colour appearance predictors 

are calculated using CIECAM02. However, some of them are derived from 

different equations as seen in Equation 2.1-8. Consequently, the colour 

difference ΔECAM02 also alters. For each colour space, the same colour 

difference formula is used but with different coefficients as given in Table 

2.1-5 

Equation 2.1-8 CAM02-SCD, CAM02-LCD and CAM02-UCS formulae 

∆𝐸𝐸′ = �(∆𝐽𝐽′ 𝐾𝐾𝐿𝐿⁄ )2 + ∆𝑎𝑎′2 + ∆𝑏𝑏′2 

𝐽𝐽′ = 
(1 + 100 𝑐𝑐1) 𝐽𝐽

1 + 𝑐𝑐1 𝐽𝐽
 

𝑎𝑎′ = 𝑀𝑀′ cos(ℎ) 

𝑏𝑏′ = 𝑀𝑀′ sin(ℎ) 

𝑀𝑀′ = (1 𝑐𝑐2⁄ ) ln(1 + 𝑐𝑐2 𝑀𝑀) 
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Table 2.1-5 Coefficients for the calculation of colour difference 
ΔECAM02 for the respective uniform colour spaces 

 CAM02-LCD CAM02-SCD CAM02-UCS 

𝑲𝑲𝑳𝑳 0.77 1.24 1.00 

𝒄𝒄𝟏𝟏 0.007 0.007 0.007 

𝒄𝒄𝟐𝟐 0.0053 0.0363 0.0228 
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2.2. Colour Management 

The term colour management describes many paradigms and applications. 

In this section, an insight to colour management will be presented, and a 

glossary in Appendix A.2 has been compiled based on the most important 

terminology.   

2.2.1. Colour Management Overview 

Nowadays, cross-media reproduction is commonplace, whether it concerns 

personal or professional usage. Cross-media reproduction means the use of 

a range of media/devices for the reproduction of an original (Kipphan, 2001). 

However, due to the characteristics and limitations of the media and data 

used, there is need for colour management procedures so as to reproduce 

consistent colour across every medium.  

There are different levels of colour management according to the user’s 

needs and requirements. These could be categorised as follows: (1) end-

users with little or no knowledge about colour management; (2) advanced 

users like designers and photographers; and (3) professional users with 

high-end production needs. Nowadays, personal computers have embedded 

colour management modules to certify that basic colour controlling is 

conducted for the majority of end-users; for instance, the Windows Color 

System (WCS) of Microsoft Windows (Green, 2010 p.53). On the other 

hand, designers and photographers need to see the right colour on their 

screens. Therefore, it is important to have well calibrated and characterised 

displays. Finally, high-end users have needs covering a wide range of 

applications and diverse viewing conditions.  

In the 1970s and 1980s, high-end users handled colour in a closed loop way 

(Green, 1999; Sharma, 2004). This means that all the devices (i.e. monitors, 

software, scanners, printers, etc) had to be from the same manufacturer in 

order to consistently work (Sharma, 2004 p. 5). These were the closed loop 

systems in which a single colour conversion for each path was needed; as 

illustrated in Figure 2.2-1. Unfortunately, these systems had to operate in a 

fixed workflow.  
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Figure 2.2-1 Closed loop system (Sharma, 2004) 

 

Figure 2.2-2 Open loop system (Sharma, 2004) 
 

Technological evolution has introduced desktop publishing, different image 

sources and a variety of printing devices; which required inter-operability 

between devices of different vendors (Green, 1999; Sharma, 2004; Wallner, 

2002). Therefore, open systems were established and as a result the need 

for colour management. The design of open systems needs a colour 

management system in order to perform colour transformations between the 

different devices by using an independent colour space as a hub; see Figure 

2.2-2 (Green, 1999 p. 167; Fraser et al., 2005 p. 82). So, there is a need for 

a device profile to describe the colour reproduction behaviour of the device 

and a colour space for the transformations. The basic CMS architecture is 

illustrated in Figure 2.2-3. Calibration of the device is also critical in order to 

remove any uncertainties that could debase the system.  



- 47 - 

 

Figure 2.2-3 Basic colour management system architecture (Green, 
1999 p.167) 

 
In the beginning, manufacturers of colour imaging systems developed their 

own colour management systems, but it was soon realised that there should 

be a common framework and a device description profile format (Green, 

1999 p. 168). For this purpose, the International Color Consortium (ICC) 

association was launched by a group of manufacturers in order to coordinate 

and set the architecture of the these systems.  

2.2.2. Colour Management Steps  

The procedure for the implementation of colour management depend on the 

type of media; i.e. analogue or digital imaging systems (Giorgianni et al., 

2003). However, among the important factors to set, there are three vital 

steps that should be configured according to the given workflow: (1) 

calibration; (2) characterisation; (3) colour encoding (Fraser et al., 2005; 

Giorgianni et al., 2003; Sharma, 2004). These steps help so as to 

accomplish proper colour transformations and as a result successful colour 

management.  

Calibration is the process by which the device is adjusted to its most 

optimum working condition or to the required settings for a given workflow 

(Bala, 2003 pp. 272-273). This is done in order to keep the device in a 

known state and so as to maintain the same quality as long as the device is 

used under these specific settings. Sometimes, measurements are taken in 
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order to create correction functions for required features. In the long term, by 

calibrating again to this condition may correct problems created by instability 

of the device. A classic example of calibration is to balance the rendering of 

a greyscale on display by controlling appropriately each RGB channel in 

order to create a tone reproduction curve for each signal. However, 

depending on the case and equipment, re-rendering the greyscale could 

result in luminance discrepancies, which can result in chromaticity shift.  

Characterisation is the process by which “the relationship between device-

dependent and device-independent colour representations for a calibrated 

device” is described (Bala, 2003 p. 273). According to the cross-media 

reproduction system used, characterisation can refer to the building of a 

descriptive profile (Sharma, 2004 p. 34). Characterisation models are more 

difficult to make and are always comprised of a forward and inverse model 

(Bala, 2003 pp. 273-275). The forward model “defines the response of the 

device to a known input”, while the inverse model finds an equivalent for an 

unknown input in order to get appropriate corrected response. The forward 

and inverse models operate differently for input and output devices. Forward 

models can be obtained either physically by describing the way that colour is 

handled from the device; or empirically by building a mathematical function 

or interpolation relationship. 

Colour encoding can be explained as the appropriate digital colour 

representation in order to undertake correct colour conversion from one 

colour space to another in a given workflow (Giorgianni et al., 2003 p. 240-

244; Sharma, 2004 p. 34). Colour encoding is essential in digital imaging 

systems as it determines the colour transformations from an input device to 

an output device (Giorgianni et al., 2003). A simplified illustration of a colour 

imaging system is given in Figure 2.2-4. Since modern imaging systems are 

combined in many ways between each other, colour encoding specification 

should be defined to determine the attributes of the transformation. An 

example of colour encoding specification is given in Figure 2.2-5. In digital 

imaging systems, this colour encoding is applied by a software application 

(e.g. Photoshop), a system-level software (e.g. WCS) and a CMM (e.g. 

Adobe CMM) (Sharma, 2004 p. 35). Different types of colour management 
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systems require different methods of colour encoding (Giorgianni et al., 2003 

pp. 242-244).  

 

Figure 2.2-4  A simple colour imaging system (Giorgianni and Madden, 
1998 p.182) 

 

 

Figure 2.2-5  Example of colour encoding specification (Giorgianni and 
Madden, 1998 p.188) 
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2.2.3. Colour Management Paradigms 

There are three types of colour management paradigms according to the 

purpose of the colour imaging system (Giorgianni et al., 2003 pp. 242-244). 

Firstly, there is the “input-driven” paradigm; where the goal is the output 

image to match the input image. Such an example is colour copiers where 

copied image is expected to be similar to the original. Secondly, there is the 

“encoding driven” paradigm; for which colour encoding is based on 

colorimetric decrease of colour differences caused by the characteristics of 

the input devices. For instance, colours in prepress systems might be 

encoded based on the characteristics of a specific printing medium. 

Additionally, the ICC colour management system operates according to this 

paradigm. Finally, there is the “output driven” which also has colorimetric 

base but the goal is to match other output or to exploit capabilities of the 

output device for optimal results. This implies a colour re-rendering which 

mainly does not represent the actual colour encoding. Applications of this 

paradigm are proofing and digital photofinishing systems.  

2.2.4. Device Characterisation 

Characterisation describes the performance of a device and it must occur 

after calibration. The correlation of calibration and characterisation is clearly 

illustrated in Figure 2.2-6. Over the years, many characterisation models 

have been developed in order to deal with the market’s needs, various 

technologies and media, as well as the evolution of colour appearance 

models. For example, characterisation models that “perform error 

minimisation in colour appearance coordinates” (Green, 2010 p. 8).  
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.  

Figure 2.2-6 Calibration and characterisation process for input and 
output devices (Bala, 2003 p.273) 

 

2.2.4.1. Display Characterisation  

There are different display technologies and these could be roughly 

categorised into cathode ray tube (CRT), liquid crystal display (LCD), plasma 

and LED panels. The characteristics of each display technology have led to 

the development of various characterisation models in order to meet the 

requirements and criteria of appropriate reproduction.  

The characterisation models can be divided into analytically invertible, not 

analytically invertible and look-up table methods (Thomas and Hardeberg, 

2013; Thomas et al., 2008). In the first category, there are physical models 

which often work under specific assumptions. Such models are the 

piecewise linear assuming chromaticity constancy model (PLCC), GOG and 

GOGO. While in the non-analytically invertible models belong numerical 

models which need optimisation of measured parameters to work. Some 

examples are the piecewise linear assuming variation in chromaticity (PLVC) 

and S-curve polynomial functions. Finally, for the look-up tables, there are 

standardised methods such as the ICC profiling system, and different types 
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of interpolation methods among the look-up data. Due to interpolation errors, 

three-dimensional lookup table models tend to give larger colour difference 

between measured and predicted CIELAB values for dark neutral colours 

than for lighter neutral colours (Kanamori, 2001). In trilinear interpolation, 

abnormal results might also occur (Weed and Cholewo, 2003).  

The PLCC model is based on an approximation of an f function by applying 

a linear interpolation between measurements (Post and Calhoun, 1989). 

This is followed by a colorimetric transformation between the luminance 

responses of the primaries and a matrix of their chromaticities. However, this 

method is based on the assumption of having absolute additivity and 

chromaticity constancy. This model was applied in this study with the 

addition of black point correction during the process.  
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2.3. Visual Psychophysics 

2.3.1. Introduction to Psychophysics 

Gustav Theodor Fechner was the first to specify psychophysics as “an exact 

science of the functional relations of dependency between body and mind” 

(Torgerson, 1958 p.v). Psychophysical methods are used in order to put 

subjective attributes into units of measurement (Fairchild, 2005 p.36). For 

the investigation of colour appearance, visual experiments are necessary so 

as to examine human perception.  

Humans tend to judge an aroused stimulus of a reproduction copy by 

comparing it with a memory stimulus of an original (Hunt, 2004 p.32). In 

Figure 2.3-1, Hunt explains diagrammatically this procedure of comparison. 

However, there are variations in the memory stimuli due to different viewing 

conditions at each observation situation. Such variations can affect hue, 

lightness and colourfulness.  

 

Figure 2.3-1 Visual appreciation mechanisms of human perception 
(Hunt, 2004 p.33) 

 

Visual adaptation is called the function by which “the visual system adjusts 

its operating level to the prevailing light level” (Norton and Corliss, 2002 

p.77). The visual system adapts to the light conditions because of the eyes’ 
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characteristics: (1) the photoreceptors’ operation, i.e. rods and cones 

function; (2) the ability to modify the concentration of photopigments; and (3) 

the ability to alter its sensitivity, i.e. neural responsiveness (Norton and 

Corliss, 2002 pp.76-77). In particular, dark adaptation is the “decrease in 

threshold luminance [increased sensitivity] as a function of time in darkness” 

(Norton and Corliss, 2002 pp.77-78). Experiments have shown that after 

changing from an adapted lighting condition to a dark one, there is a fast 

reduction of threshold luminance in the cones which tends to stabilise within 

the first 3 minutes. Then, until the 11th - 12th minute, there is little reduction 

and afterwards “the cones approach their lowest threshold level”. This is also 

illustrated in Figure 2.3-2. 

 

Figure 2.3-2 Typical dark adaptation curve (Norton and Corliss, 2002 
p.78) 

 
The visual system has the ability to detect and identify objects from patterns 

of light and dark (Norton et al., 2002 pp.138-141). This indicates that in 

terms of spatial vision, humans can easily spot differences in luminance. 

Relative luminance describes these differences by comparing the reflected 

light from one area against another area. Because this ratio stays constant 

under every luminance level, it is easily recognisable by the visual system. 
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So the most important factor in this process is the relative luminance. A 

phenomenon characterised by this principle is simultaneous contrast.  

2.3.2. Psychophysical Methods 

As previously mentioned, psychophysical methods have been developed in 

order to assign numerical values to visual perception. There are several 

psychophysical methods designed for visual experiments relating to the 

investigation of colour appearance and image quality. Terms for the most 

common psychophysical methods are given in Appendix A.3. 

Psychophysical experiments can be divided into four basic categories: (1) 

thresholds and matching; (2) measuring differences; (3) direct ratio scaling; 

and (4) multidimensional scaling (Bartleson and Grum, 1984; ASTM, 2003b). 

Each category consists of methods for investigating different types of 

attributes. Examples of psychophysical methods are: paired comparison, 

rank ordering, categorical sort, magnitude estimation, etc. Some methods 

can even be combined so as to produce more specific results. “The choice 

of the best method for a particular application may be difficult to make, and 

interpretation of the rating scales produced by the numerical analyses is 

frequently ambiguous” (ISO, 2005). 

There are also two viewing techniques; having the observer’s eyes under the 

same viewing conditions or under different ones. For instance, binocular or 

else haploscopic memory matching where each eye is adapted to different 

test areas. “The two eyes are situated in slightly different positions, thus 

receiving slightly different images of the same external objects” (Baird, 1970 

p. 209). Each eye is adapted under different viewing conditions and the 

objective is to determine threshold of stimuli (Bartleson and Grum, 1984).  

2.3.2.1. Ratio Scaling   

In general, there are four types of one-dimensional scales: nominal, ordinal, 

interval and ratio (Engeldrum, 2000; Stevens, 1946). In nominal scales, the 

numbers are used as a distinguishing mean rather than as a mathematical 

property; thus they express equality among the numbers. Ordinal scales use 

descriptions to define the scaling. Thus, observers monotonically evaluate 
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an attribute in terms of greater than or less than the specified attribute. 

Interval scales are like ordinal scales with the difference that equal distances 

within anywhere in the scale have the same significance. Finally, ratio scales 

are similar to interval scales but with a zero point or origin. The Table 2.3-1 

summarises the transformations that can be applied in the described scales.  

Table 2.3-1   Stevens’ classification of scale types and possible 
transformations 

 Permissible Transformations  

Nominal  𝑦𝑦 = 𝑓𝑓(𝑥𝑥), any one-to-one transformation 

Ordinal  𝑦𝑦 = 𝑔𝑔(𝑥𝑥), any monotonic transformation  

Interval  𝑦𝑦 = 𝑎𝑎 𝑥𝑥 + 𝑏𝑏, any linear transformation  

Ratio  𝑦𝑦 = 𝑎𝑎 𝑥𝑥, any constant scale factor  

 

“Psychometric scaling is the generation of rulers” used to measure the 

human response (Engeldrum, 2000 p. 43). In colour psychophysical 

experiments, there are various techniques that produce ratio scales; i.e. ratio 

estimation, ratio production, magnitude estimation and magnitude production 

(Wyszecki, 1982). In ratio estimation, the observer evaluates a test stimulus 

by referring to a standard stimulus. While in ratio production method, the 

observer has to adjust the test stimulus so as to produce a predefined ratio 

between a given standard stimulus and the test stimulus. Similarly, in 

magnitude estimation method, the observer evaluates the perceived 

magnitude of a test stimulus for perceived attributes such as colourfulness. 

Whereas, in magnitude production, the observer produces a magnitude in 

order to match the magnitude of a given attribute.  

In this study, ratio estimation is used. The observer is given two pairs of 

stimuli. The one pair is a standard colour pair with predefined colour 

difference of one unit and the other one is a testing pair whose colour 

difference is to be evaluated in terms of a ratio against the standard pair 

(Elamin, 1983). This has been used by other studies for colour discrimination 

research  (Cheung and Rigg, 1986; Elamin, 1983).   
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2.4. Colour Discrimination Ellipses 

Colour discrimination ellipses were introduced by a series of experiments by 

MacAdam in which the main purpose was to define the matching accuracy of 

an observer in different locations of the CIE 1931 chromaticity diagram 

(MacAdam, 1942). The ellipses were plotted as distances of standard 

deviations based on the assessments.  

Since then, ellipses have been extensively used for colour difference 

evaluation as they represent the visual perceptible colour difference. The 

datasets described in section 2.1.3 have been employed for the optimisation 

of colour difference formulae in many cases. Description of the MacAdam 

experiment, derivation of colour discrimination ellipses and other related 

studies are discussed in this section. 

2.4.1. Geometrical Properties of Ellipses 

An ellipse is defined as a set of all points in a plane (Sullivan, 2012; Young, 

2007). The sum of their distances from two fixed points is constant. The two 

fixed points are called foci and the line crosses them is the major axis. The 

midpoint of the major axis is the centre and the line which crosses the centre 

and is perpendicular to the major axis is the minor axis. The two points that 

intersect with the major axis are the vertices of the ellipse. These attributes 

are illustrated in Figure 2.4-1.  

 

Figure 2.4-1 Graphical representation of ellipse 
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Commonly, to describe the characteristics of an ellipse the following 

parameters in a plane are used: the semi-major axis (A), the semi-minor axis 

(B), the ratio of the semi-major and semi-minor axes (A/B), and the 

orientation angle (θ) from the x axis.  

2.4.2. The MacAdam Experiments on Visual Sensitivities 

MacAdam used a custom made colorimeter to conduct a colour matching 

experiment (MacAdam, 1942). The targeted colours were attained by using 

layers of filters which were uniformly illuminated by a single light source 

which approximated the standard illuminant C, i.e. average daylight. The 

testing field was displayed at 2º and the surrounding field at 42º. The 

luminance of the testing and surrounding field was 15 millilamberts and 7.5 

millilamberts respectively. This approximately corresponds to luminance of 

48 cd/m2 and 24 cd/m2 respectively. The testing field was placed in the 

centre of a bipartite arrangement, and therefore it was divided into the 

reference and matching components by a vertical biprism edge. By using an 

artificial pupil, the observer viewed the fields monocularly. 

Ellipses were derived from the standard deviations of the numerous colour 

matching observations of the specified colour centres as they appear in 

Figure 2.4-2, enlarged 10 times (MacAdam, 1942). Because these were 

found to have systematic variation within the xy chromaticity diagram, it was 

later shown that they can be resulted by differential geometry and each 

ellipse can be represented by the Equation 2.4-1, where dx and dy are the 

differences for each pair of centre and any point in chromaticity coordinates, 

and g11, g12, and g22 are constant coefficients (MacAdam, 1943). This is a 

bivariate equation, so it only describes the chromaticity, since luminance 

factor was fixed. In later studies of Silberstein with MacAdam, more 

coefficients were derived in order to combine the luminance factor in the 

original equation (Silberstein, 1946; Silberstein and Macadam, 1945). 

Therefore, differences can also be represented in ellipsoids and described 

by the Equation 2.4-2. In these studies, the six coefficients were defined and 

indicate the probability of a match in the area around the colour centre in 

terms of xyz coordinates. Furthermore, in a study of Brown and MacAdam, it 



- 59 - 

was shown that these equations can also be applied to primaries RGB 

values, tristimulus values XYZ and chromaticity-luminance attributes (Brown 

and MacAdam, 1949). In a later work, the equation was adapted for CIELAB 

colour space as well resulting in the Equation 2.4-3 (Melgosa et al., 1997). 

 

Figure 2.4-2  MacAdam colour discrimination ellipses in the CIE 1931 
chromaticity diagram (MacAdam, 1942) 

 

Equation 2.4-1 Representation of the known standard deviations of 
the MacAdam ellipses 

1 = 𝑔𝑔11𝑑𝑑𝑥𝑥2 + 2𝑔𝑔12𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 + 𝑔𝑔22𝑑𝑑𝑦𝑦2 
  

Equation 2.4-2 Representation of colour difference for ellipsoids in 
chromaticity and luminance 

𝛥𝛥𝑆𝑆2 = 𝑔𝑔11𝛥𝛥𝑥𝑥2 + 2𝑔𝑔12𝛥𝛥𝑥𝑥 𝛥𝛥𝑦𝑦 + 𝑔𝑔22𝑑𝑑𝑦𝑦2 + 2𝑔𝑔23𝛥𝛥𝑦𝑦 𝛥𝛥𝑌𝑌 + 𝑔𝑔33𝛥𝛥𝑌𝑌2 + 2𝑔𝑔13𝛥𝛥𝑥𝑥 𝛥𝛥𝑌𝑌 
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Equation 2.4-3 Representation of colour difference for ellipsoids in 
CIELAB values 

𝛥𝛥𝐸𝐸2 = 𝑏𝑏11𝛥𝛥𝑎𝑎∗
2 + 2𝑏𝑏12𝛥𝛥𝑎𝑎∗𝛥𝛥𝑏𝑏∗ + 𝑏𝑏22𝛥𝛥𝑏𝑏∗

2 + 2𝑏𝑏23𝛥𝛥𝑏𝑏∗𝛥𝛥𝛥𝛥∗ + 𝑏𝑏33𝛥𝛥𝛥𝛥∗
2 + 2𝑏𝑏13𝛥𝛥𝑎𝑎∗𝛥𝛥𝛥𝛥∗ 

  

There is great variation in size and orientation in the ellipses resulted from 

MacAdam experiment. This shows that the just distinguishable colour 

difference seen from an actual observer has varied tolerance in the different 

areas of the xy chromaticity diagram. The derived ellipses in Figure 2.4-2 

indicate the just noticeable chromaticity difference. The different orientations 

and sizes indicate the different magnitudes of visual colour difference across 

the xy chromaticity diagram. For instance, there is larger tolerance in the 

green area but very small in the blue area. Furthermore, it was also showed 

that one unit of distance in the xy chromaticity diagram does not respond to 

equal amount of chromaticity difference.  

One of the main problematic points of the MacAdam experiment is that the 

results were based on only one observer. Even though, the observer was 

trained and conducted over 25.000 observations, the data could still be 

considered lopsided. On another point, the luminance of the surrounding 

field was based on the chromaticity of illuminant C which is rather obsolete 

nowadays.  

Another point for consideration is that the filters used within the colorimeter 

were single layers or combinations of many in order to produce the required 

colours. The colorimetric data and transmittance of these filters were 

calculated mostly by taking measurements with a spectrophotometer. As 

MacAdam reported, the filters had very low luminous transmittances and as 

a result, the measurements cannot be guaranteed as sufficiently accurate. 

Moreover, the spectrophotometric data acquired were for each filter 

separately and the combined final versions were mostly computed by these 

discrete measurement data. Additionally, MacAdam compared visually the 

relative luminous transmittances of the filters by using the colorimeter with 

different observers. With the addition of an opaque plate, the colorimeter 

could function as a polarisation photometer. Two filters of adjacent 

chromaticity were compared side by side. These were heterochromatic 

comparisons but they were considered satisfactory as having sufficiently 
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similar chromaticity. A systematic variation between the observed and 

calculated luminous transmittances was found. However, these variations 

were not compensated. It is a possibility that these systematic variations and 

the inconsistency in the accuracy of measurements could relate to other 

variations in the study or to have variously influenced the data.  

The observer created the desired matching stimulus by adjusting a single 

control knob. This means that the matching process was not based on 

adjusting trichromatic primaries as in other contemporaneous studies (Guild, 

1931; Wright, 1941). Therefore, the matching was not based on amounts of 

reference stimuli (like in the colour matching functions), but variations of 

colour along straight lines in the xy chromaticity diagram which were 

intersecting in a common fixed chromaticity centre. These lines were 

predefined by the available filters and constructed combinations. Hence, the 

standard deviations that corresponded to the visual colour differences were 

specified by the distances of the colour centre and the matching point in the 

chromaticity diagram.  

2.4.3. Parameters of Ellipses 

In 1943, MacAdam published a paper in which the differential geometry that 

represents the standards deviations of the initial experiment data was 

analysed (MacAdam, 1943). MacAdam collaborated with Silberstein to 

create the equations that can be used to construct the ellipses (MacAdam, 

1943; Silberstein, 1938). According to these, the constant coefficients g11, 

g12, and g22 (or alternatively b11, b12, and b22) discussed in the previous 

section can be calculated by using the parameters of the ellipses as given in 

Equation 2.4-4 (MacAdam, 1943).  

Equation 2.4-4 Calculation of ellipse’s coefficients from parameters 

𝑔𝑔11 = cos2 𝜃𝜃
A2 +

sin2 𝜃𝜃
B2  

𝑔𝑔12 = �
1

A2 −
1

B2� sin𝜃𝜃 cos𝜃𝜃 

𝑔𝑔22 = sin2 𝜃𝜃
A2 +

cos2 𝜃𝜃
B2  
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Similarly, the inverse process is possible in order to calculate the parameters 

of the ellipses by using the coefficients as given in Equation 2.4-5 

(MacAdam, 1943).  

Equation 2.4-5 Calculation of ellipse’s parameters from coefficients 

Α = 
1

�𝑔𝑔22 + 𝑔𝑔12 cot𝜃𝜃
 

Β = 
1

�𝑔𝑔11 − 𝑔𝑔12 cot 𝜃𝜃 
 

𝜃𝜃 = 
1
2

tan−1 �
2𝑔𝑔12

𝑔𝑔11 − 𝑔𝑔12
� 

  

2.4.4. Aperture Mode Studies on the Precision of Colour Matching  

After MacAdam’s work on visual sensitivities, other important studies in this 

field area followed. In a later study by Brown and MacAdam colour matching 

in additive mixture was tested (Brown and MacAdam, 1949). A new 

binocular colorimeter with three control knobs was used. The testing field 

was again 2° but the surrounding field was dark and the common light 

source had chromaticity of CCT 2850 K. The two fields were viewed 

monocularly, and two observers were recruited in this experiment. Moreover, 

combined chromaticity and luminance differences were examined, thus 

visual differences were expressed in ellipsoids. It was found that there was 

some overall resemblance with the MacAdam’s observer data. However, 

when colour centres were individually checked, the ellipses differed 

considerably for many occasions. 

In 1957, Brown did another experiment in colour matching with twelve 

observers (Brown, 1957). The same colorimeter used in the MacAdam 

experiment was employed. The testing field had been altered to 10° 

matching field and a near white surrounding field with daylight chromaticity. 

For this study, twelve observers participated. Colour centres with varied 

luminance were examined and ellipsoids were resulted by weighted 

averages. Ellipses changed orientation less consistently with the 

chromaticity when compared with the results of the single observer from the 
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MacAdam study. Brown also claimed that there is a learning effect by the 

observers when experiments last for prolonged periods.  

In 1971, Wyszecki and Fielder used another colorimeter and arrangement 

for colour matching (Wyszecki and Fielder, 1971a; Wyszecki and Fielder, 

1971b). The 7° testing field with fixed luminance of 12 cd/m2 consisted of 

two hexagonal fields of 3° each for the reference and matching parts. A 

white surrounding field extended to 40° with fixed luminance of 6 cd/m2. The 

fields were viewed binocularly and three observers participated in the 

experiments. Repeatability experiments showed that the matching ellipses of 

the same observer were considerably not repeatable when obtained from 

different timed occurrences. So, each observer might result in different ratio 

of the semi-major and semi-minor axes (A/B) and orientation under different 

circumstances although the same viewing conditions are maintained. 

Wyszecki and Fielder also compared the data from all the previous studies 

and it was concluded that there was in overall resemblance with the Brown-

MacAdam and Brown ellipses, but there were significant variations with the 

MacAdam ellipses. Moreover, even though the experimental arrangement 

was different, the orientation and shape of the averaged ellipses were not 

dissimilar from the previous studies. The change was merely tracked on the 

absolute size of the ellipses.   

2.4.5. Fitting of Ellipses  

During the years, plethora of algorithms have been developed for the 

calculation of ellipse’s coefficients. Since it has been shown through 

differential geometry that just noticeable colour difference can be 

systematically described by ellipses, these can be calculated by the resulted 

formulae. To some extent the algorithm depends on the format of the 

experimental data. The least-square method has often been used in 

previous studies. To calculate the coefficients, a minimisation process is 

applied to the sum of the square of differences between the visual data and 

the calculated colour difference. This is expressed by the Equation 2.4-6. 

This was further modified by Alder et al, as shown in Equation 2.4-7, where 

N is the amount of pairs in a set (Alder et al., 1982). The factor e represents 
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an error estimation that was included in order to give a more meaningful 

quantity. This factor have also been further modified in other studies (Luo, 

1986; Luo and Rigg, 1986). 

Equation 2.4-6 Least-square minimisation  

𝑆𝑆2 = �(𝛥𝛥𝑉𝑉𝑖𝑖 − 𝛥𝛥𝐸𝐸𝑖𝑖)2
𝑁𝑁

𝑖𝑖=1

 

  

Equation 2.4-7 Least-square minimisation with meaningful quantity  

𝑒𝑒 = �𝑆𝑆
2

𝑁𝑁
  

  
In more recent studies, STRESS measure can be used in same way in order 

to apply the minimisation process (Luo et al., 2015). For this study, this 

measure was applied and it is introduced in section 2.6.2. 
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2.5. Lighting Standards  

Light emitting diodes’ (LEDs) popularity and range of technologies has been 

increasing the recent years. Nowadays, there are both inorganic and organic 

light emitting diodes (OLED) with a great variety of semiconductors (Coaton 

and Marsden, 1997; Khanna, 2014). The key feature of this technology is 

that electrical energy is converted directly into lightning. The LED 

technologies have improved over the years and their application has been 

extended from signs and indicators to indoor lighting products and displays. 

The LED market and interest is growing because of LED’s lower energy 

consumption, high efficacy and wider range of produced hues of light. 

Lighting products of this technology have now found applications in traffic 

lighting, vehicles, flash lights, indoor and outdoor lighting arrangements to 

name but a few. Even though, specifications for the chromaticity of solid 

state lightning products exist for centres around the Planckian locus, there is 

no specification for coloured lightning. Coloured lightning is of high interest 

because of this LED technology, and the potential to be used in applications 

such as room lighting design. Moreover, the lighting industry uses a lot the 

colour discrimination data derived by the MacAdam experiment to specify 

the chromaticity of their manufactured products; see Figure 2.5-1.  

The American National Standards Institute is a private non-profit 

organisation that develops and publishes standards for products, processes 

and other methodologies (ANSI, 2015). Among the others, there are also 

standards for the specification of chromaticity of lightning products. There 

are norms for different types of lighting products. The ANSI C78.377 

standard specifies the chromaticities of solid state lighting products around 

the Planckian locus (ANSI, 2008). The chromaticities are specified in xy and 

u’v’ chromaticity coordinates, as well as CCT distance from the Planckian 

locus. Additionally, a Δuv tolerance of ±0.006 between the target and 

reproduced products is defined. The chromaticities for the solid state 

lightning products around the Planckian locus are presented in Table 2.5-1, 

where nominal refers to the communicated CCT information about the 

chromaticity of a lighting product. Finally, the chromaticities are also 

represented graphically in Figure 2.5-1. 
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Figure 2.5-1 Graphical representation of chromaticity of SSL products 
in xy chromaticity diagram (ANSI, 2008) 

 

Table 2.5-1 Chromaticity specification for solid state lighting products 

Nominal CCT  x y 

2700 K 0.4578 0.4101 

3000 K 0.4338 0.4030 

3500 K 0.4073 0.3917 

4000 K 0.3818 0.3797 

4500 K 0.3611 0.3658 

5000 K 0.3447 0.3553 

5700 K 0.3287 0.3417 

6500 K 0.3123 0.3282 
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2.6. Statistical Methods and Measures of Fit  

2.6.1. General Statistics  

The coefficient of variation (CV) reveals the uniformity among data (Rees, 

2001; Sanders and Smidt, 2000). CV is computed according to Equation 

2.6-1 where σ is the standard deviation and μ is the mean. Then, it is 

multiplied by 100 in order to give the result as a percentage.  

Equation 2.6-1 Coefficient of variation – CV  

CV = 
𝜎𝜎
µ

 ×  100 

  
Confidence coefficient refers to “the probability of correctly including the 

population parameter being estimated in the interval that is produced” 

(Sanders and Smidt, 2000 p.246). Once the confidence coefficient has been 

estimated, the confidence intervals are determined as plus and minus values 

of the confidence coefficient. Usually, a confidence level of 95% is sufficient; 

which gives confidence bound z* value of 1.96 – probability critical value for 

standard normal distribution. So, 95% confidence interval for known 

standard deviation σ can be estimated using Equation 2.6-2 for population n.  

Equation 2.6-2 Estimation of confidence interval – CI 

lower point x� − z∗
𝜎𝜎
√n

  

upper point x� + z∗
𝜎𝜎
√n

 

  
Correlation coefficient is a statistical method to summarise datasets. It is 

also known as the Pearson product-moment correlation coefficient (r or R). 

The correlation coefficient is calculated by the formula in Equation 2.6-3 and 

for perfect agreement it should result equal to one. An adapted version for 

colour difference evaluation has been used over the years in order to relate 

calculated and visual colour difference. However, previous studies have 

shown that there are instances in which it tends to become quite inconsistent 

when combined with other statistic measures (Guan and Luo, 1999).  
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Equation 2.6-3 Correlation coefficient – r 

𝑒𝑒 = 
∑  𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖 − 𝑛𝑛𝑥𝑥𝑦𝑦𝑛𝑛
𝑖𝑖=1

�(∑  𝑥𝑥𝑖𝑖2 − 𝑛𝑛𝑥𝑥2𝑛𝑛
𝑖𝑖=1 )(∑  𝑦𝑦𝑖𝑖2 − 𝑛𝑛𝑦𝑦2)𝑛𝑛

𝑖𝑖=1

  

  
Another important statistical measure that has been used a lot in colour 

difference evaluation is the performance factor PF/3 (Cui et al., 2001a; 

Garcia et al., 2007; Guan and Luo, 1999; Luo and Rigg, 1987a). PF/3 

actually combines other statistical measures - such as the aforementioned 

correlation coefficient - into one measure. It was introduced in an attempt to 

diminish different measures leading to different conclusions. The formula is 

given in Equation 2.6-4. The statistical measures combined are the: gamma 

– factor (γ), coefficient of variation (CV), and VAB. These indices have 

different properties such as range and symmetry for the input data. 

Moreover, when combined, they do not provide symmetry and cannot 

indicate statistical significance using F-tests.  

Equation 2.6-4 Performance factor – PF/3 

𝑃𝑃𝑃𝑃/3 = 100 �𝛾𝛾 − 1 + 𝑉𝑉𝐴𝐴𝐵𝐵 + 𝛥𝛥𝑉𝑉
100� �

3
�   

  

2.6.2. Standardized Residual Sum of Squares (STRESS)  

García et al. adapted an index of multidimensional scaling for the 

investigation of the relationship between the perceived and measured colour 

difference; the standardized residual sum of squares – STRESS (Garcia et 

al., 2007). They examined the performance of this index against other 

statistical measurements usually used in colour related research. The 

method seems to overall perform better than older indexes, such as the 

PF/3. Moreover, STRESS can be used to estimate the statistical significance 

of the colour difference for a given set. It is also relatively simpler to apply, 

given the fact that performance factor PF/3 combines three different 

statistical measures. Another advantage of STRESS is that it can be used 

for various types of datasets, such as to compare the correlation of visual 
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responses of different observers for a specific colour sample. Thus, it is 

gradually implemented in various colour studies.  

There are different versions of the formula; which are given in Equation 

2.6-5, and it has been proven that they give same results. 𝑃𝑃1, 𝑃𝑃2 and 𝑃𝑃3 are 

logical scaling factors that minimise the STRESS, ∆𝐸𝐸  is the measured 

difference (or other dataset), ∆V  is the perceived difference (or other 

dataset), 𝑤𝑤𝑖𝑖  are weights for every pair of samples and 𝑓𝑓  is scaling factor 

between ∆𝐸𝐸 and ∆𝑉𝑉. The scaling factor F gives the slope that illustrates the 

correlation between the two datasets, and of course scales datasets 

accordingly. By multiplying STRESS values by 100, results are represented 

conveniently in percentage range from 0 to 100. In terms of evaluation of 

STRESS values, zero indicates perfect agreement. 

Equation 2.6-5 Standardized residual sum of squares – STRESS 

𝑆𝑆𝑇𝑇𝑅𝑅𝐸𝐸𝑆𝑆𝑆𝑆 = �
∑(∆𝐸𝐸𝑖𝑖 − 𝑃𝑃1 ∆𝑉𝑉𝑖𝑖)2

∑𝑃𝑃1
2 ∆𝑉𝑉𝑖𝑖2

 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒  𝑃𝑃1 = ∑∆𝐸𝐸𝑖𝑖2

∑∆𝐸𝐸𝑖𝑖 ∆𝑉𝑉𝑖𝑖
 

𝑜𝑜𝑒𝑒  𝑆𝑆𝑇𝑇𝑅𝑅𝐸𝐸𝑆𝑆𝑆𝑆 = �
∑�𝑃𝑃2 ∆𝐸𝐸𝑖𝑖 − ∆𝑉𝑉𝑖𝑖�

2

∑∆𝑉𝑉𝑖𝑖2
 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒  𝑃𝑃2 = 
∑∆𝐸𝐸𝑖𝑖 ∆𝑉𝑉𝑖𝑖
∑∆𝐸𝐸𝑖𝑖2

=
1
𝑃𝑃1

 

𝑜𝑜𝑒𝑒  𝑆𝑆𝑇𝑇𝑅𝑅𝐸𝐸𝑆𝑆𝑆𝑆 = �
∑(∆𝐸𝐸𝑖𝑖 − 𝑃𝑃3 ∆𝑉𝑉𝑖𝑖)2

∑∆𝐸𝐸𝑖𝑖2
 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒  𝑃𝑃3 = 
∑∆𝐸𝐸𝑖𝑖 ∆𝑉𝑉𝑖𝑖
∑∆𝑉𝑉𝑖𝑖2

 

𝑊𝑊𝑒𝑒𝑖𝑖𝑔𝑔ℎ𝑡𝑡𝑒𝑒𝑑𝑑 𝑛𝑛𝑜𝑜𝑒𝑒𝑛𝑛𝑎𝑎𝑛𝑛𝑖𝑖𝑧𝑧𝑒𝑒𝑑𝑑 𝑆𝑆𝑇𝑇𝑅𝑅𝐸𝐸𝑆𝑆𝑆𝑆 = �
∑𝑤𝑤𝑖𝑖(∆𝐸𝐸𝑖𝑖 − 𝑓𝑓 ∆𝑉𝑉𝑖𝑖)2

∑𝑤𝑤𝑖𝑖 (𝑓𝑓 ∆𝑉𝑉𝑖𝑖)2  
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2.6.3. Colour Uncertainties   

In colour science, there are statistics that are related with the evaluation of 

colour difference repeatability and error, i.e. the dEE and MCDM.  

To evaluate the correlation between two pairs of colours, the relative colour 

difference dEE is calculated. This can be used to indicate the accuracy of 

reproduction for a pair of colours; therefore it represents the relative 

accuracy between the targeted and measured pairs. It can show the shift in 

chromaticity when comparing two pairs of colours and the proportions of this 

difference. It is computed by calculating the colour differences for both 

measured and targeted pairs respectively. These can be calculated by using 

CIELAB values as shown in Equation 2.6-6, where differences subscripted 

by M and T refer to the measured and targeted pair respectively. Each 

colour difference attribute was calculated with values for each pair 

accordingly, where the subscripts C and Si denote the colour centre and 

each sample respectively.  

Equation 2.6-6 Relative colour difference – dEE 

𝑑𝑑𝐸𝐸𝐸𝐸 = �(𝛥𝛥𝛥𝛥𝑀𝑀∗ − 𝛥𝛥𝛥𝛥𝑇𝑇∗ )2 + (𝛥𝛥𝑎𝑎𝑀𝑀∗ − 𝛥𝛥𝑎𝑎𝑇𝑇∗ )2+ (𝛥𝛥𝑏𝑏𝑀𝑀∗ − 𝛥𝛥𝑏𝑏𝑇𝑇∗ )2 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝛥𝛥𝛥𝛥𝑀𝑀∗ = 𝛥𝛥𝐶𝐶∗ − 𝛥𝛥𝑆𝑆𝑖𝑖∗   𝑎𝑎𝑛𝑛𝑑𝑑 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑟𝑟𝑡𝑡 𝑡𝑡𝑜𝑜 𝑏𝑏𝑒𝑒 𝑐𝑐𝑜𝑜𝑛𝑛𝑒𝑒𝑢𝑢𝑡𝑡𝑒𝑒𝑑𝑑 𝑎𝑎𝑐𝑐𝑐𝑐𝑜𝑜𝑒𝑒𝑑𝑑𝑖𝑖𝑛𝑛𝑔𝑔𝑛𝑛𝑦𝑦   

  
A method for analysing colour difference distribution is the mean of colour 

difference from the mean – MCDM (Nadal et al., 2011; Berns, 2000). MCDM 

is practical when stability of the reproduction for a colour is under 

investigation over a period of time. CIELAB values can be used for 

calculating the colour differences. The MCDM can be calculated as in 

Equation 2.6-7, where 𝛥𝛥𝑖𝑖∗ is an individual measurement, 𝛥𝛥∗�  the mean of all 

measurements, N the total amount of measurements, and accordingly for 

the rest of the factors.  

Equation 2.6-7 Mean of colour difference from the mean – MCDM 

𝑀𝑀𝛥𝛥𝑀𝑀𝑀𝑀 = 
∑ �(𝛥𝛥𝑖𝑖∗ − 𝛥𝛥∗� )2 + (𝑎𝑎𝑖𝑖∗ − 𝑎𝑎∗���)2+ �𝑏𝑏𝑖𝑖∗ − 𝑏𝑏∗����

2
𝑖𝑖

𝑁𝑁
�
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2.7. Conclusion 

The fundamentals for this Ph.D. project were reviewed in this chapter and 

the following became clear. The experimental design should be based on 

MacAdam’s colour centres and viewing conditions so as to investigate the 

fitted ellipses for a larger amount of observers. It was also found that there is 

lack of a colour evaluation tool for assessing light sources of coloured 

lighting products. Moreover, MacAdam ellipses have been widely used in the 

lighting industry despite of the discrepancies found in previous studies. The 

method of assessing colour differences for accumulating data has been 

used frequently in the past and important datasets of ellipses have been 

produced in this way. Therefore, it can be consider a good method for 

acquiring and examining colour discrimination ellipses for the most relevant 

colour spaces such as xy, u’v’, CIELAB, and CAM02-UCS. 
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Chapter 3.  
Experimental  

An experiment was designed in order to investigate small colour differences 

in chromaticity of lighting stimuli on a display. Colour centres from the 

MacAdam colour matching experiment were reproduced under specific 

criteria. The experiment was designed in order to generate a scale that will 

express the actual visual chromaticity discrimination. In order to investigate 

the colour centres as light sources, they were represented on the display 

against a black background as circular patches. To reproduce the original 

MacAdam experiment, a neutral background with the same luminance was 

also assessed.  

3.1. Measuring Instrumentation 

Spectroradiometers measure irradiance or radiance, i.e. radiometric 

quantities such as spectral power distribution (Hunt, 1998 p. 100; 

MacDonald, 1997 p.415). They can be used both for measuring self-

luminous and surface stimuli. The most common ones are the tele-

spectroradiometers (TSR) which measure radiant flux in distance. Tele-

spectroradiometers’ key elements are the telescope, the monochromator 

and the detector. A tele-spectroradiometer was used for colour measuring in 

this study since this type of instrument is accurate and consistent. Another 

advantage is that the measured spectral data can be used to calculate many 

other values. Last but not least, TSR captures colour data at the same 

viewing conditions as perceived by the observers, so the data can be 

correlated to the viewing conditions.  

A Konica Minolta CS1000S TSR was used and run by the Minolta CS-S1w 

software. The instrument has wavelength range of 380 to 780 nm, luminance 

range 0.01 to 80,000 cd/m2 (for Illuminant A), and repeatability tolerance of 

0.1% + 1 digit for luminance and ± x=0.0002, ± y=0.0002 for chromaticity. 

The TSR was fixed on a tripod at the same viewing conditions intended for 

the experiments, i.e. distance 50 cm from the screen and dark room 
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conditions (ASTM, 2003a). The instrument was set to measure light sources 

at 2o observer because of the small angular field of the individual colour 

patches (CIE, 2004a; ASTM, 2008). Furthermore, in light and lighting 

applications, light sources tend to be evaluated at 2o observer. The TSR had 

been calibrated by the manufacturer and it has been tested in the laboratory 

via the standardised method to ensure its repeatability and reliability. 

Additionally, a quick test in consecutive measurements using displayed grey 

tones in the experimental monitor with a second available TSR showed that 

both instruments had similar and stable colour difference between them. 

3.2. Visual Display 

Over the years, many technologies of visual display units have been 

developed for computer systems. The most known ones are: cathode ray 

tube displays (CRT), liquid crystal displays (LCD), plasma display panels 

(PDP), and light-emitting diode displays (LED). Nowadays, the market’s 

main interest is in LCD and LED panels, which are used for televisions, 

computer monitors and mobile devices. 

For a display to be used in a visual experiment, it must be evaluated to 

ensure certain criteria are met and characterised to control colour. The ISO 

12646 standard describes some of the test methods that can be applied to 

evaluate colour displays for colour proofing (ISO, 2008). As for the 

characterisation method, a one-dimensional lookup table method with 

colorimetric transformation was applied. The results for both evaluation and 

characterisation model are presented at the following sections.  

The EIZO ColorEdge CG220 was the display used in the experiments 

(EIZO, 2005). It is a 22.2” display with TFT colour LCD panel with its own 

calibration software and measurement instrument, i.e. ColorNavigator 

software and Eye-One instrument. The display has intrinsic native resolution 

of 1920 X 1200 pixels and it was used as such. Moreover, it has Adore RGB 

colour space capability and 14-bit processing circuit for rendering colour. 

Firstly, the display was calibrated with target white point at 6500 CCT using 

the display’s calibration system. D65 illuminant was mainly chosen as a 

target in order to resemble the average daylight illuminant used in the 
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MacAdam experiment. The display was set at 100 cd/m2, because high 

luminance was required as much as possible in order to reproduce colour 

patches as light sources. However, this was the highest stable condition that 

could be achieved for the specific monitor. Other settings included adjusting 

the gamma at 2.20 with priority over grey balance (for which the other 

available option was contrast priority) plus setting the minimum black level. 

This process was done once and all the experiments were carried with the 

same calibration profile. That’s because the Eye-One is not a high end 

instrument and might not be repeatable among different calibrations. 

Therefore, even the slightest change can lead to a different rendering of the 

greyscale, which consequently could affect the reproduction of all colours. 

Moreover, ColorNavigator and i1 Display calibrator operate as a black box 

and therefore are not appropriate for further monitoring or evaluation. After 

that, stability and evaluation of the display was monitored with TSR 

measurements.  

Validation data from the calibration process are given in Table 3.2-1. The 

colour difference of the validation data for a basic RGB target scale resulted 

in ΔE*ab of 0.97 units and ΔE2000 of 0.50 units; with ΔE*ab 0.38 units and 

ΔE2000 0.57 units for the gray parts of the scale.   

Table 3.2-1 Calibration validation data from ColorNavigator 

 Target Result 

Brightness 100 cd/m2 100.2 cd/m2 

Black Level Minimum  0.34 cd/m2 

White Point 6500 K 6485 K 

3.2.1. Evaluation  

The results over a set of testing methods and long term stability are 

presented in this section. For this study, the most important attribute of the 

display was the long term stability. As small colour chromaticity differences 

were investigated, it was important to have consistent and constant 

reproduction of colour. A big variation in reproduction could potentially affect 
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the data collected by the observations. During the course of sample 

preparation and experiments, the display was measured at the start and end 

of the workday. An 18 steps greyscale and the basic RGBCMY colours were 

being measured each time.  

A visual inspection of a displayed greyscale gradient was also conducted in 

order to ensure that smooth transition of colours was possible and there 

were not any abrupt leaps in the reproduction of luminance by the display. 

3.2.1.1. Short Term Stability 

Short term stability is important for testing the performance of a display over 

a day’s use. Measurements were taken in specified time intervals and the 

colour differences between each interval are plotted against time. Figure 

3.2-1 presents the colour differences in CIELAB units for measurements 

taken every 30 minutes for a total duration of 7.5 hours from the moment the 

display was turned on. It can be seen that the display has large colour 

difference during the first periods but it stabilises over time. Moreover, it 

needs considerable time to stabilise, so this attribute was taken into account 

during the experiments. For instance, the display was not turned off or 

experiments did not start until it stabilised at the target conditions.  
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Figure 3.2-1 Short term stability of EIZO display for peak white  
 

3.2.1.2. Medium Term Stability 

Before using the display for the experiment, the medium range stability was 

also examined. For a period of 34 hours, the basic colours were measured 

every few varied time intervals. The colour differences in CIELAB for this 

time span were calculated and plotted in Figure 3.2-2 for the peak white. 

Considering that small fluctuations due to the LCD technology are normal, 

these colour differences can be considered negligible since they almost 

have constant value throughout and remain below ΔE*ab of 0.4 units. It is 

clear that there is great colour difference only once the display was turned 

on. But once it was warmed up, it remained stable over long period. The 

same trend appeared again during the short term stability test.  
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Figure 3.2-2 Medium term stability of EIZO display for peak white  
 

3.2.1.3. Long Term Stability  

For the evaluation of the long term stability, the MCDM measure was used 

as it can show the repeatability of many measurements. The whole set of 

measurements during the experimental period were used to calculate this 

metric. A grey scale and the primaries RGBCMY were measured before and 

after the experiments in a daily basis. Their L*a*b* values were input to a 

Matlab function so as to store, update and calculate colour difference on 

daily basis. This process was also important for monitoring whether the 

display was stable at its initial characterisation state. If the performance of 

the display were to change, then the reproduction of the experimental pairs 

would be highly affected. The mean MCDM for the whole experimental 

period corresponds to 0.25 CIELAB units. This value indicates great long 

term stability for the display.  

3.2.1.4. Uniformity of Luminance and Angular Dependency  

The uniformity of luminance examines the variation of luminance at different 

locations of the display as shown in Figure 3.2-3; defined by the ISO 12646 

standard (ISO, 2008). In Figure 3.2-4, the range of luminance measured on 

these different locations of the display is illustrated accordingly; while the 
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locations of measurement are marked at the centre of the circles. By plotting 

the luminance in a surface graph, it can be seen that there was some 

variance but the usable area was within acceptable values.  

 

Figure 3.2-3 Positions for measurement of uniformity on the display 
(ISO, 2008) 
 
 

 

Figure 3.2-4 Uniformity of luminance for EIZO display  
 

The angular dependency describes differences when changing the viewing 

angle for measuring the same spot. LCD displays are usually angular 

dependent therefore it needs to be taken into account when colour 
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difference is important. Figure 3.2-5  shows that there was an apparent 

change in luminance from different angles. Therefore, it was later decided to 

use a chin rest to maintain position of observer at the same spot.  

 

 

Figure 3.2-5 Angular dependency for EIZO display  

3.2.2. Characterisation  

The EIZO display was calibrated as described above and the measurements 

for building the characterisation model were taken. The model was based on 

the description given in section 2.2.4.1. The characterisation model is 

described graphically in Figure 3.2-6 and Figure 3.2-7. The response curves 

of the model are given in Figure 3.2-8 in a normalised scale. In this figure, it 

can be seen that the display does not have a typical strong S-shaped LCD 

display response; i.e. it can reproduce smooth tones well both in high and 

very low luminance levels. In this study, this was a desirable feature since 

the goal was the reproduction of high luminance white and coloured lighting 

stimuli.  
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Figure 3.2-6 Forward characterisation model for EIZO display 
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Figure 3.2-7 Reverse characterisation model for EIZO display 
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Figure 3.2-8 Response curve for the EIZO display 
 

For the evaluation of the characterisation model’s performance, the Macbeth 

colour checker chart input data (CCC), an 18 steps greyscale and the basic 

RGBCMY colours were used. The Macbeth colour checker chart input data 

are defined in xyY; these were converted into XYZ and then into RGB using 

the characterisation model of the display (Pascale, 2006). The colour 

difference between measured and predicted values was calculated. These 

results are given in Table 3.2-2 and Table 3.2-3. The performance for the 

testing set was clearly better and close to unity. The model performed 

sufficiently and it was used for calculating the required RGB values for 

representing the colour stimuli during the experimental sessions.  
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Table 3.2-2 Performance of EIZO display characterisation model using 
the testing set 

Testing Set ΔE*ab ΔE2000 

Red  0.1 0.1 
Green  0.3 0.1 
Blue 0.2 0.0 
Cyan 0.7 0.3 
Magenta  0.3 0.1 
Yellow  1.4 0.6 
White  2.1 2.7 
Grey 240 2.3 3.1 
Grey 225 2.7 3.6 
Grey 210 2.8 3.9 
Grey 195 2.3 3.2 
Grey 180 2.0 2.9 
Grey 165 1.9 2.7 
Grey 150 1.7 2.3 
Grey 135 1.5 1.9 
Grey 120 1.3 1.6 
Grey 105 1.5 1.9 
Grey 90 1.3 1.6 
Grey 75 1.1 1.1 
Grey 60 1.0 0.9 
Grey 45 1.1 1.0 
Grey 30 0.8 0.8 
Grey 15 0.3 0.4 
Black  0.0 0.0 
Mean  1.3 1.5 
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Table 3.2-3 Performance of EIZO display characterisation model using 
the colour checker chart 

Colour Checker Chart  ΔE*ab ΔE2000 
dark skin 0.8 0.7 
light skin 2.3 1.5 
blue sky 1.5 1.3 
foliage 0.9 0.7 
blue flower 1.8 1.4 
bluish green 3.9 1.8 
orange 0.5 0.5 
purplish blue 1.5 1.1 
moderate red 1.4 0.9 
purple  0.9 0.7 
yellow green  2.5 1.2 
orange yellow 0.4 0.3 
blue 1.4 0.6 
green  1.9 1.0 
red 0.7 0.4 
yellow  1.8 1.1 
magenta 1.8 1.2 
cyan  1.8 1.3 
white 9.5 (.05 D)  4.8 5.4 
neutral 8 (.23 D) 3.8 4.2 
neutral 6.5 (.44 D) 2.8 3.3 
neutral 5 (.70 D) 1.5 1.6 
neutral 3.5 (1.05 D) 1.3 1.2 
black 2 (1.05 D) 1.0 1.0 
Mean 1.8 1.4 

 

Another point to be addressed is that if there is flare from a display, then the 

chromaticity constancy is out of balance (Katoh et al., 2001). The more flare 

there is, the more the impact in the stimuli. In LCD displays, glare mostly 

results by effluence of light from the crystals of the panel. The display had a 

small flare impact that was initially addressed with a black offset correction 

within the characterisation model (Thomas and Hardeberg, 2013). In a later 

stage, colour difference correction was applied so as to indirectly fix any hue 

shifts caused by the display’s infrastructure. 
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3.3. Preparation of Colour Centres, Backgrounds and 
Reference Pair 

The process of selection of colour centres, their sampling pairs and specified 

characteristics will be discussed in this section; as well as the selection of 

the backgrounds and details of the experimental conditions. In Appendices C 

and D, the normalised measured data for the colour centres and 

backgrounds are given. Regarding the range of colour centres, white and 

coloured lighting stimuli were needed as explained before. Another essential 

point is that the MacAdam colour discrimination ellipses are for long 

associated with just noticeable difference. Additionally, they are mainly used 

in the lighting industry.  

The colour centres of the MacAdam colour matching experiment correspond 

to luminance of 48 cd/m2. They were represented as light stimuli in a visual 

colorimeter with high luminance. However, the display’s colour gamut 

constrained the amount of reproducible MacAdam centres. From the total of 

25 colour centres from the MacAdam experiment, five were reproducible 

with the same luminance. Therefore, a reduction of luminance into 18.5 

cd/m2 was decided. This corresponds to lightness L* of 50 units and further 

reduction was avoided in order to not drop below a mid-range lightness 

level. Yet, 11 colour centres of the initial MacAdam centres were 

reproducible. The colour centres could possibly be brought in gamut by 

reducing further the luminance or reducing the saturation. Since chromaticity 

differences were investigated, the second option was discarded because it 

would dramatically change the chromaticity of the original colour centres. 

Moreover, the effect of luminance variation in the ellipse size has been 

studied before and it is expected that the ellipse gets larger in the xy 

chromaticity diagram when the Y value increases from low to high (Chong, 

1974; Luo and Rigg, 1986). Although a considerable influence or trend had 

not been determined at much higher Y values.   

With reference to the interest on the LED lighting stimuli, white light colour 

centres were chosen from the ANSI C78.377 standard which specifies the 

chromaticities of solid state lighting products around the Planckian locus 

(ANSI, 2008). The selected white light stimuli correspond to nominal CCT of 
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2700, 3000, 3500, 4000, 5000 and 6500 Kelvin (K). Similar colour centres 

were used in previous similar study, so they were a good selection for 

comparison purposes (Luo et al., 2015).  

Regarding the background, two decisions were made. The first one was the 

grey background which was used at the MacAdam experiment, i.e. 

luminance of 24 cd/m2 and chromaticity close to the illuminant C (MacAdam, 

1942). This corresponds to lightness L* of 56 units and it has the half 

luminance of the MacAdam colour centres. Moreover, grey background has 

been used before to simulate surface colours and therefore it can be used to 

relate any colour difference influence from the background (Berns, 1991; Cui 

et al., 2001b; Cui et al., 2001a). The second one was a black background; 

which was based on the idea of simulating light sources on a display as they 

would appear in a dark room or during night. For the same reason, circular 

colour patches were chosen so as to resemble light source as stimuli. This 

way of simulating lighting sources on a display was also attempted by Luo et 

al in previous study (Luo et al., 2015).  

For the grey background, the chromaticity coordinates defined for the 

illuminant C were processed at the same luminance as the surrounding field 

of the MacAdam experiment, i.e. 24 cd/m2. Illuminant C was chosen 

because the test field of the MacAdam experiment was illuminated by a light 

source with a chromaticity similar to the illuminant C.  

The reference pair was based on a reference pair used in a previous study 

and likewise processed (Luo et al., 2015). A green hue reference pair was 

chosen so as to make it easier for the observer to assess its colour 

difference. Moreover, this reference pair was very close to one of the 

MacAdam colour centres in this gamut area. It was chosen so as to have 

only lightness difference of ΔL* 6 units, and the same chromaticity for both 

patches. This was intended to make the perceived colour difference as clear 

as possible, and to use an independent attribute, lightness difference, as the 

anchoring pair to judge all chromatic differences. Moreover, in many other 

studies, ratio method or grey scale method have been used in similar 

investigations, and lightness differences for the reference pairs have given 

good results. The reference pair’s target L*a*b* values are given in Table 
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3.3-1 and the responding RGB values were calculated through the 

characterisation model.  

Table 3.3-1 Target L*a*b* values for the reference pair 

L* a* b* 
75.25 -28.05 19.88 
69.00 -28.05 19.88 

   
In the subsequent sub-sections, the following basic steps for the preparation 

of the colour centres and samples will be analytically discussed: 

Step 1: Processing of the colour centres to find the ones within gamut.  

Step 2: Sampling for creating the colour pairs of centres. 

Step 3: Measurements and examination of the reproduction of all pairs. 

Step 4: Application of corrections to the reproducible colour pairs.   

3.3.1. Processing of the Colour Centres and Sampling 

The colour centres were processed by using the xy chromaticity coordinates 

as given in MacAdam’s paper (MacAdam, 1942). For using them into the 

characterisation model, they were converted into XYZ by using the 

luminance for the testing field of the MacAdam experiment. Therefore, the 

colour centres had a given luminance of 48 cd/m2; which corresponds to L* 

value of 75 units. In Appendices C and D, the normalised measured data of 

the colour pairs for each background are presented. 

The distribution of the samples around the colour centres is very important in 

order to later acquire good ellipses. The starting point was the assumption 

that equal distances in a colour space respond to equal colour differences. 

Sampling was acquired within uv’ chromaticity diagram in a semi-circular 

manner with 0.007 units of difference tolerance (Δuv’ = 0.007). Twenty-one 

points were sampled surrounding each colour centre. These were evenly 

spaced at 9° degree apart; from 0° to 180° while including both starting and 

ending points. Since ellipses are symmetrical shapes, this sampling was 

chosen to increase accuracy of fitted ellipses. Furthermore, the sampling 

was done semi-circularly because ellipses are radial shapes and therefore 



- 88 - 

similar in their mirror axis. Studies in semi-circle sampling have been 

contacted before as such by Brown (Brown, 1952).  

There were a few reasons why sampling was done in u’v’ chromaticity 

diagram. Firstly, the concern was to evaluate chromaticity, therefore it was 

desired that there would be no lightness changes among the samples but 

only chromaticity. Secondly, the uv’ is currently the most uniform 

chromaticity diagram so equal distances should theoretically result in equally 

perceived colour differences in most parts. Even though studies have 

practically shown that the diagram is not uniform throughout its whole extent, 

it was considered a good space to use for the sampling as it is also a space 

for additive stimuli such as light. Thirdly, there was not a specific target white 

reference, thus use of CIELAB was not necessary. Moreover, CIELAB has 

been used many times before and that did not affect the fitting of the data 

(Berns et al., 1991; Luo and Rigg, 1986). Fourthly, the Planckian locus was 

not used as a reference because it relates to white light stimuli. With LED 

technologies in the lighting industry being able to produce coloured light 

sources, the use of the Planckian locus does not suffice the need for a wide 

variety of chromatic areas.  

As introduced, the first step was to determine the in-gamut colour centres 

from the initial set of MacAdam centres. The known MacAdam xyY values 

were transformed into XYZ, so as to be colorimetrically transformed into 

RGB through the display’s characterisation model. At this stage, if colour 

centres had RGB values equal to 255 or 0, there were excluded. Being on 

the margins of the colour gamut would not make it accurately reproducible. 

Moreover, the sampled points would be clearly out-of-gamut. After the 

sampling, the sampled points were also tested for being within gamut or 

close to the margins. An example of the sampling for a given colour centre is 

illustrated in Figure 3.3-1.  
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Figure 3.3-1 Example of sampling in the u’v’ chromaticity diagram for 
the colour centre with u’v’ chromaticity coordinates of 0.1309 and 
0.5137 respectively 

 

While testing the in-gamut colour centres, it was also noticed that there were 

not representative colour centres for the farthest blue and green region of 

the gamut. Therefore, two colour centres were added as extras in order to 

investigate the problematic blue and green area. The blue area has proven 

problematic in other studies such as in the development of the colour 

difference formula for CIEDE2000. These were chosen in relation to the 

existing out-of-gamut colour centres, so as to fall inside the device’s colour 

gamut. Thus, the second step of the process was completed. 

A simple numbering system was applied for identification of the MacAdam 

colour centres by using numbers from 1 to 25 for the initial set of centres. 

The numbering system did not change after the exclusion of the out-of-

gamut colours. In this way, it would be easier to see which colour centres 

were being used in both luminance setups. For the white light stimuli, the 

letter W and numbers from 1 to 6 were denoted. To define the luminance 

setup, colour centres were also followed by the value of the processing 

luminance, i.e. 48 or 18.5 cd/m2. In the Table 3.3-2, summary of the colour 
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centre naming system, together with the corresponding xyY and u’v’ values 

are given.  

Table 3.3-2 Experimental colour centres – Naming and xyY u’v’ values  

 
x y Y u' v' 

1_18 0.2580 0.4500 18.5 0.1309 0.5137 
1_48 0.2580 0.4500 48 0.1309 0.5137 
10_18 0.3900 0.2370 18.5 0.3081 0.4212 
12_18 0.3440 0.2840 18.5 0.2406 0.4469 
12_48 0.3440 0.2840 48 0.2406 0.4469 
13_18 0.2280 0.2500 18.5 0.1645 0.4058 
19_18 0.5270 0.3500 18.5 0.3430 0.5125 
23_18 0.2780 0.2230 18.5 0.2172 0.3920 
24_18 0.3000 0.1630 18.5 0.2755 0.3368 
25_18 0.4720 0.3990 18.5 0.2759 0.5247 
25_48 0.4720 0.3990 48 0.2759 0.5247 
3_18 0.2800 0.3850 18.5 0.1586 0.4908 
3_48 0.2800 0.3850 48 0.1586 0.4908 
5_18 0.4750 0.3000 18.5 0.3363 0.4779 
8_18 0.3800 0.4980 18.5 0.1850 0.5455 
8_48 0.3800 0.4980 48 0.1850 0.5455 
B_48 0.2000 0.3000 48 0.1290 0.4355 
G_48 0.2500 0.6000 48 0.1031 0.5567 
W1_48 0.4578 0.4101 48 0.2614 0.5268 
W2_48 0.4338 0.4030 48 0.2490 0.5205 
W3_48 0.4073 0.3917 48 0.2366 0.5120 
W4_18 0.3818 0.3797 18.5 0.2248 0.5031 
W4_48 0.3818 0.3797 48 0.2248 0.5031 
W5_48 0.3447 0.3553 48 0.2097 0.4864 
W6_18 0.3123 0.3282 18.5 0.1979 0.4678 
W6_48 0.3123 0.3282 48 0.1979 0.4678 

 

The colour centres № 11 and 20 of the original MacAdam set were excluded 

even though they were reproducible because they were very close and 

visually similar to the colour centres W4 and W6 respectively; see Figure 

3.3-2. Since colour centres № 11 and 20 were reproducible at both 

luminance levels, colour centres W4 and W6 were also processed at both 48 

and 18.5 cd/m2. Moreover, they could be used in comparisons as 

representatives of the white light stimuli set. The white colour centres are 
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defined in the ANSI standard and the same ones have been used in 

previous study with the same psychophysical method (Luo et al., 2015). 

Therefore, these could be used for comparison reasons.  

 

Figure 3.3-2  First selection of colour centres in the u’v’ chromaticity 
diagram  
 

The third step of the process was to measure and examine the reproduction 

of all colour centres and assigned pairs. Consequently, the converted RGB 

colour centres were displayed and measured on screen. After the 

measurements, the delta analysis showed discrepancies between the target 

and measured colour stimuli by calculating the relative colour difference of 

the pairs. These discrepancies were corrected in order to match the target 

colour centre and pairs as much as possible. These errors can be observed 

in the reproduction plots which will be presented in section 3.3.2.  
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These reproduction problems could have potentially been caused by either 

the characterisation model or other quantisation errors, as it was explained 

before. The fact that some colour centres had less smooth distribution of 

samples is an indication of quantisation error. This can also be an indication 

that the characterisation model did not operate well in some chromatic 

areas. Most of the colour centres were corrected with an indirect correction 

of hue shift in CIELAB, and very badly reproducible colour pairs were 

excluded from the set.  

Therefore, the forth step of the process for the correction of the hue shifts 

was applied as follows. The measured xyY data were transformed back to 

XYZ and subsequently into CIELAB values. The differences between the 

measured and target L*a*b* were computed and a new corrected target was 

assigned by subtracting the aforementioned differences from the original 

target. The correction equations are described by Equation 3.3-1. 

Afterwards, the new targets were transformed back to XYZ and RGB 

through the display characterisation model in order to be re-measured and 

re-evaluated. The final selection of target colour centres can be viewed in 

Figure 3.3-3 and Figure 3.3-4. The colour centres that appear both at 48 and 

18.5 cd/m2 are plotted with asterisks.  

Equation 3.3-1 Correction method for the hue shifts between 
measured and target colours 

𝛥𝛥𝛥𝛥∗ = 𝛥𝛥∗𝑛𝑛𝑒𝑒𝑎𝑎𝑟𝑟𝑢𝑢𝑒𝑒𝑒𝑒𝑑𝑑 −  𝛥𝛥∗ 𝑡𝑡𝑎𝑎𝑒𝑒𝑔𝑔𝑒𝑒𝑡𝑡  
𝛥𝛥a∗ = a∗𝑛𝑛𝑒𝑒𝑎𝑎𝑟𝑟𝑢𝑢𝑒𝑒𝑒𝑒𝑑𝑑 −  a∗ 𝑡𝑡𝑎𝑎𝑒𝑒𝑔𝑔𝑒𝑒𝑡𝑡 
𝛥𝛥𝑏𝑏∗ = 𝑏𝑏∗𝑛𝑛𝑒𝑒𝑎𝑎𝑟𝑟𝑢𝑢𝑒𝑒𝑒𝑒𝑑𝑑 −  𝑏𝑏∗ 𝑡𝑡𝑎𝑎𝑒𝑒𝑔𝑔𝑒𝑒𝑡𝑡 

Corrected Target:  

𝑁𝑁𝑒𝑒𝑤𝑤 𝛥𝛥∗ = 𝑎𝑎𝑏𝑏𝑟𝑟 ( 𝛥𝛥𝛥𝛥∗ − 𝛥𝛥∗ 𝑡𝑡𝑎𝑎𝑒𝑒𝑔𝑔𝑒𝑒𝑡𝑡) 
𝑁𝑁𝑒𝑒𝑤𝑤 a∗ = a∗ 𝑡𝑡𝑎𝑎𝑒𝑒𝑔𝑔𝑒𝑒𝑡𝑡 − 𝛥𝛥a∗ 

 𝑁𝑁𝑒𝑒𝑤𝑤 𝑏𝑏∗ = 𝑏𝑏∗ 𝑡𝑡𝑎𝑎𝑒𝑒𝑔𝑔𝑒𝑒𝑡𝑡 − 𝛥𝛥𝑏𝑏∗ 
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Figure 3.3-3 Target colour centres in the xy chromaticity diagram – 
solid and dashed line for the 48 and 18.5 cd/m2 luminance gamut  
For the colour representation of the xy chromaticity diagram, a Matlab 
function from the colour toolbox of Westland and Ripamonti was 
applied (Westland and Ripamonti, 2004). Each colour having 
luminance at both 48 and 18.5 cd/m2, it is marked with asterisks. 
 

After confirming the reproduction quality of the process, the process was 

applied to every pair. During all measurements, each colour centre was 

measured twice and its mean value was used in the processing to ensure its 

reproduction accuracy. The full process can be graphically represented in 

Figure 3.3-5.  
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Figure 3.3-4 Target colour centres in the u’v’ chromaticity diagram – 
solid and dashed line for the 48 and 18.5 cd/m2 luminance gamut 
For the colour representation of the u’v’ chromaticity diagram, a Matlab 
function for the xy chromaticity diagram from the colour toolbox of 
Westland and Ripamonti was adjusted (Westland and Ripamonti, 
2004). Each colour having luminance at both 48 and 18.5 cd/m2, it is 
marked with asterisks.  

 

  xyY  u’v’Y  XYZ  RGB display 

  xyY measured  XYZ  CIELAB  correction method  XYZ  RGB 

Figure 3.3-5  Colorimetric transformations for the processing of colour 
stimuli  
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3.3.2. Performance of Reproduction of Pairs  

For evaluating the repeatability in the reproduction of the pairs, the dEE 

measure was applied. This represents the relative colour difference of a pair 

against another and it is convenient to use in order to reveal the difference 

between the target and reproduced colour pairs. The distribution of the 

samples surrounding the colour centre is very important when assessing 

colour differences as this could potentially reflect on the fitted ellipses. 

Additionally, the experiment was based on the samples having equal 

distances from the colour centre as much as possible. Therefore, a couple of 

the in-gamut colour centres had been excluded from the set when it was 

evaluated that their distribution was too scattered to be reliable. Distribution 

of samples for scattered and/or problematic colour centres was investigated 

twice with re-measurements, so as to ensure that it was not due to changes 

in the display performance. It was found that the performance was similar in 

every case. This was also another reassuring attribute of the display’s 

repeatability. Measurements of the colour stimuli were examined for both 

backgrounds respectively.  

In the following series of plots; Figure 3.3-6 to Figure 3.3-31; there are four 

sets of plotted points for each colour centre of the experimental data. The 

target colour pairs are marked with grey triangles, the measured pairs 

against the black background before the correction are in purple squares, 

the corrected measured pairs against the black background are in yellow 

circles, and the corrected measured pairs against the grey background are 

in green circles. On the top right corner of the figure, the target colour centre 

in u’v’ values and luminance are recorded.  
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Figure 3.3-6  Reproduction of colour centre 1_48 

 

 

Figure 3.3-7  Reproduction of colour centre 3_48 
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Figure 3.3-8  Reproduction of colour centre 8_48 

 

 

Figure 3.3-9  Reproduction of colour centre 12_48 
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Figure 3.3-10  Reproduction of colour centre 25_48 

 

 

Figure 3.3-11  Reproduction of colour centre 1_18.5 
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Figure 3.3-12  Reproduction of colour centre 3_18.5 

 

 

Figure 3.3-13  Reproduction of colour centre 5_18.5 
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Figure 3.3-14  Reproduction of colour centre 8_18.5 

 

 

Figure 3.3-15  Reproduction of colour centre 10_18.5 
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Figure 3.3-16  Reproduction of colour centre 12_18.5 

 

 

Figure 3.3-17  Reproduction of colour centre 13_18.5 
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Figure 3.3-18  Reproduction of colour centre 19_18.5 

 

 

Figure 3.3-19  Reproduction of colour centre 23_18.5 
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Figure 3.3-20  Reproduction of colour centre 24_18.5 

 

 

Figure 3.3-21  Reproduction of colour centre 25_18.5 
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Figure 3.3-22  Reproduction of colour centre B_48 

 

 

Figure 3.3-23  Reproduction of colour centre G_48 
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Figure 3.3-24  Reproduction of colour centre W1_48 

 

 

Figure 3.3-25  Reproduction of colour centre W2_48 
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Figure 3.3-26  Reproduction of colour centre W3_48 

 

 

Figure 3.3-27  Reproduction of colour centre W4_48 
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Figure 3.3-28  Reproduction of colour centre W5_48 

 

 

Figure 3.3-29  Reproduction of colour centre W6_48 
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Figure 3.3-30  Reproduction of colour centre W4_18.5 

 

 

Figure 3.3-31  Reproduction of colour centre W6_18.5  
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Delta analysis was performed in order to inspect the absolute and relative 

colour differences of the pairs. For monitoring the performance of the 

reproduction, measurements and delta analysis were carried out three times 

during the whole experimental period. At the beginning; which was also how 

the data were set for the experiments; in the middle and at the end of the 

experimental period. Repeatability in the reproduction of the colour stimuli 

was essential for this experiment and the results of the analysis were 

satisfactory. The performance of reproduction is reported in CIELAB units for 

the following corrected data: absolute colour difference between the target 

and measured colour centre, mean absolute colour difference between the 

targets and measured samples, and mean relative colour difference dEE for 

the whole set of pairs of a colour centre. The data of the delta analysis are 

given in Table 3.3-3 and Table 3.3-4; where the aforementioned colour 

differences are given.  

Even though, some colour centre had higher dEE than the average, they 

were included in the dataset as they had smooth distribution of pair samples 

and good overall performance. It can be said that the majority of colour 

stimuli gave good reproduction results and their samples’ distribution 

resulted in decent shaped semi-circles. Any variation in the proportion of the 

distant between the pairs was acceptable despite the small colour difference 

variations. These variations might be related to possible quantisation errors 

from the characterisation model and the instinctive infrastructure of the 

display. Moreover, it can be observed that the absolute differences are 

slightly higher against the grey background than the black one, but the 

relative colour difference dEE stays unaffected.  

In conclusion, the reproduction was highly satisfactory and repeatable 

throughout the experimental period. The mean relative colour difference dEE 

remained approximately the same during the three times that the 

measurements were taken. In detail, for the whole group of colour stimuli a 

mean dEE of 0.6 CIELAB units for either black or grey background was 

achieved for the whole experimental period. The stable reproduction of the 

colour stimuli can assure that the obtained data are reliable.  
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3.4. Visual Assessment Method  

The direct ratio scaling method was used in the experiments. For this 

purpose, custom-made software written in C++ was used in order to display 

the colour stimuli. The ratio method has been used by many researchers at 

the University of Bradford such as explained well in section 2.3.2.1. Another 

reason for using ratio scaling was because the colour stimuli were to be 

presented on a display. As seen, the stability and repeatability of the display 

were very good. However, there was still some amount of instability which 

makes it inappropriate to represent extremely small differences. It has been 

shown that the display was stable over time, therefore differences were 

negligible. So, it can be considered that the perceived colour differences 

were actually chromaticity differences.  

The observer had the task to judge the colour difference between two pairs 

of colours which were presented in two different rows (top and bottom row). 

One pair was the reference pair and was marked with a circular pointer on 

its right as an indicator. The other pair was the testing pair. Observers had to 

evaluate the colour difference in terms of ratio against the reference pair, 

which had a given colour difference of one value. Then, observer had to 

enter his score value by using a scroll bar at the bottom of the screen. The 

software arrangement is illustrated in Figure 3.4-1 and Figure 3.4-2 for the 

grey and black background respectively. Each colour stimulus had a field 

size of about 4°. 

In total, 28 colour centres formed this study’s dataset; of which 2 were 

assessed twice for the control of observer variability. For this role, colour 

centre № 12 was selected since it was less saturated. As also explained, 21 

samples were paired with each colour centre and two different backgrounds 

were decided. These correspond to a total of 1176 assessments for each 

observer. Therefore, the experiment was divided in a total of 5 sessions; 2 

sessions with black background (230 assessments each session), 2 

sessions with grey background (230 assessments each session), and 1 

session half way with black background and the other half of the session 

with grey background (256 assessments for this session). This amount of 

sessions was chosen in order to avoid eye fatigue and observer boredom 
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which could potentially influence the data. Each session’s duration lasted 

between 30 to 40 minutes for most observers. In Appendices C and D, the 

mean ratio values by the observers’ assessments against the grey and black 

background respectively for each colour centre are given. 

 

 

Figure 3.4-1 Stimuli arrangement against the grey background  
 

The reference and testing pair were arranged into two rows but their 

locations were interchanged between the top and bottom row during the 

experiment. So as to prevent automatic responds from the participant, and 

the eye retina to get accustomed from staring the reference pair at the same 

location for long time. Similarly, the left and right side of the pairs were also 

interchanged. Of course, for each observer a different order of assessment 

was created and the experiments took place in dark room conditions in 

which the observers had to adapt before starting the experiment.  
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Finally, a chin rest was used in order to look at the display for two reasons. 

Firstly, to maintain the same viewing distance for all the sessions and 

observers. Secondly, to avoid colour shifts by looking the display at a 

different angle. LCD displays are often angular dependant and as seen in 

the evaluation section, the EIZO display was also affected by it.  

 

 

Figure 3.4-2 Stimuli arrangement against the black background 
 

3.4.1. Observer Instructions  

The following instructions were given to each observer prior to the 

experiments. Moreover, during the first session, a short training session with 

a few colour centres was conducted in order to teach the participants how to 

use the ratio scale and ensure that the observer had fully understand the 

assessment method. This should decrease fluctuations in the data caused 

by inaccuracies or misinterpretation of an oral description in the beginning of 
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the experiment. The training data were not recorded and the observers were 

starting the actual experiment once they felt familiar with the scaling.  

“Please sit comfortably in front of the screen and look at the display from the 

chin rest position. During the experiment, feel free to take a break whenever 

is needed. Your task is to judge the colour difference between two pairs of 

colours (between top and bottom pair). 

The pair marked by a cursor on its right is the REFERENCE PAIR and it has 

a named colour difference of ONE. The other pair is named TEST PAIR. 

Your task is to judge the colour difference of the TEST PAIR in terms of a 

ratio against the colour difference of the REFERENCE PAIR. Please adjust 

the scroll bar at the bottom of the screen to enter your score. 

For example: If the TEST PAIR has larger colour difference than the 

REFERENCE PAIR, the score will be larger than one, e.g. 1.1, 1.5 or 1.7, 

etc. If the TEST PAIR has smaller colour difference than the REFERENCE 

PAIR, the score will be less than one, e.g. 0.8, 0.5, or 0.2, etc.” 

3.5. Observer Variability 

Twenty participants with normal colour vision took part in the experiments. 

Observers were tested by using Ishihara colour plates in order to determine 

their colour vision ability. The group of observers had an average age of 

30.5 years and were of mixed ethnicity. The majority had experience 

participating in colour psychophysical experiments. There were 12 female 

and 8 male observers in the group. 

The STRESS measure of fit was used for the evaluation of the group of 

observers. The STRESS formulae introduced in section 2.6.2 was adapted 

appropriately for the visual dataset in order to reveal the relationship 

between each individual’s assessments and the group as a whole. The 

higher the values, the more biased the experimental data.  

3.5.1. Intra- Observer Variability  

The estimation of the intra-observer variability is represented by the 

Equation 3.5-1. The variability between the first and second time that the 
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same colour pair was accessed by the same observer was calculated. This 

measure represents the repeatability of each observer’s judgements. 

However, to consider only two samples, the STRESS was calculated 

between the mean of the two assessments and each of the two 

assessments separately. Subsequently, the mean of these two STRESS 

values was computed. If STRESS value turns equal to zero then the 

observer had given the same response each time assessing the same pair 

of stimuli.  

Equation 3.5-1 STRESS representation for intra- observer 
variability  

𝑆𝑆𝑇𝑇𝑅𝑅𝐸𝐸𝑆𝑆𝑆𝑆 = 
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3.5.2. Inter- Observer Variability  

The estimation of the inter-observer variability is represented by Equation 

3.5-2. The average visual difference of the group of observers for each pair 

against the visual difference of each individual observer was calculated 

accordingly. This measure represents the accuracy of the group of 

observers. It reflects how much the assessments between different 

observers vary. The smaller the value, the more observers give similar 

responses.  

Equation 3.5-2 STRESS measure for inter- observer variability 

𝑆𝑆𝑇𝑇𝑅𝑅𝐸𝐸𝑆𝑆𝑆𝑆 = 
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3.5.3. Observer Variability Evaluation  

The results for both inter- and intra- variability are summarised in Table 

3.5-1. In a first examination, it can be seen that the group of observer had 

reasonable variability and they performed consistently for both backgrounds. 

Firstly, in terms of intra- and inter- variability, intra- variability was 

considerably smaller than inter- variability; which is reasonable given the fact 

that the former represents variation between two repeated assessments and 

the latter variation between many observers and different type of colour 

pairs. It is expected inter- variability to be larger within acceptable margins. 

Secondly, there was little variation between the results for the two different 

backgrounds. However, there seems that the grey background assessments 

were less consistent than the black background ones. Overall, the mean of 

28.8 and 15.7 STRESS units for the observer inter- and intra- variability is 

typical for this type of experiments. Cui et al had an observer variation of 

37% in PF/3 values for their study in colour difference evaluation (Cui et al., 

2001a). Given that PF/3 values tend to be larger than STRESS, then these 

STRESS values are reasonable. Finally, in the evaluation of white light 

sources with similar setup by Luo et al, the STRESS values against black 

background were 14.9 and 9.3 for the inter- and intra- variability respectively. 

Although, the corresponding inter- and intra- variability for the black 

background data of the current experiment were somewhat larger, it should 

be noted that many more colours were investigated here which may lead to 

higher discrepancies in the responses (Luo et al., 2015). 
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Table 3.5-1 Observer uncertainty in STRESS units 
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Background: Black Grey Both 

Observer 1 17.4 7.1 23.6 5.1 24.9 6.1 
Observer 2 12.3 7.6 16.6 8.3 15.4 8.0 
Observer 3 45.8 26.0 29.7 11.7 41.3 18.8 
Observer 4 29.9 21.6 32.3 18.2 31.3 19.9 
Observer 5 15.8 8.6 16.5 9.6 17.2 9.1 
Observer 6 32.4 22.5 52.7 38.7 42.4 30.6 
Observer 7 22.3 13.2 22.8 13.5 22.5 13.3 
Observer 8 25.3 16.9 26.9 16.4 26.4 16.6 
Observer 9 53.7 28.5 38.5 25.7 48.9 27.1 
Observer 10 13.7 7.1 16.9 7.4 15.0 7.2 
Observer 11 37.7 23.8 43.9 25.6 40.2 24.7 
Observer 12 13.8 7.1 19.9 8.9 17.3 8.0 
Observer 13 19.7 10.0 38.1 21.4 28.4 15.7 
Observer 14 19.4 14.4 30.1 16.3 24.6 15.4 
Observer 15 18.0 10.6 19.5 10.5 20.5 10.5 
Observer 16 11.0 3.7 38.7 23.4 25.1 13.6 
Observer 17 18.6 15.2 19.4 10.0 24.3 12.6 
Observer 18 28.4 11.2 36.7 15.4 35.2 13.3 
Observer 19 44.1 34.0 47.4 27.6 45.4 30.8 
Observer 20 17.2 9.5 40.4 15.6 29.4 12.5 

Mean 24.8 14.9 30.5 16.5 28.8 15.7 

 

Another point to be addressed is that the ratio method is sometimes accused 

for giving the tendency to observers of consistently making assessments 

close to the ground value of 1; i.e. observers to underestimate the perceived 

colour differences. In order to examine this probability, the observers’ 

assessments were tested in terms of range and magnitude; the results of 
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which are given in Table 3.5-2. In this table, the maximum and minimum 

assessments of each observer for each background and both backgrounds 

(not average values but of the whole set) are reported. For each observer, 

the mean for the whole set of his assessments was calculated accordingly. 

Additionally, the range of the assessments is given in a form of ratio 

between the maximum and minimum values.  

Firstly, by examining these results, it can be seen that the mean ratio 

responses of all observers for the black and grey background data differ 

significantly with mean values of 0.98 and 0.74 respectively. This indicates 

that although replies against the black background may have been in 

average close to the value of 1, the same trend was not apparent against the 

grey background. This implies that the group as a whole did not 

underestimate the colour differences.  

Secondly, by inspecting each observer individually, the ratio of responses 

(maximum to minimum) for each observer varies satisfactorily. Even though 

there was variety in the range of assessments, there was none with 

significantly small range of responses, i.e. maximum and minimum 

assessments being between 0.9 and 1.1. However, there were a few 

observers that their responses may be observed critically. Observer №1 had 

similar mean value and range for both backgrounds. However, by closely 

examining the values for each colour centre separately, it was found that 

even though the observer had smaller range of colour differences, he/she 

had different ranges for each colour centre. Therefore, it can be considered 

that the observer was not utterly affected by the psychophysical scaling 

method used. The same applies for the Observers № 2, 5, 9 and 15 in 

different levels of degree.  
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Table 3.5-2 Observer variation in the ratio assessments 

  Black Background  Gray Background  Both Background  
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1 1.5 0.7 1.14 2 1.5 0.8 1.17 2 1.5 0.7 1.16 2 
2 1.4 0.7 1.01 2 1.2 0.6 0.87 2 1.4 0.6 0.94 2 
3 2.0 0.1 0.54 20 1.3 0.1 0.56 13 2.0 0.1 0.55 20 
4 1.8 0.2 0.89 9 2.0 0.1 0.57 20 2.0 0.1 0.73 20 
5 1.7 0.5 1.07 3 1.4 0.5 0.92 3 1.7 0.5 0.99 3 
6 3.0 0.1 1.34 30 2.5 0.1 0.60 25 3.0 0.1 0.97 30 
7 2.1 0.5 1.04 4 1.6 0.5 0.79 3 2.1 0.5 0.92 4 
8 2.6 0.6 1.04 4 1.5 0.3 0.71 5 2.6 0.3 0.87 9 
9 2.2 0.1 0.55 22 1.5 0.1 0.54 15 2.2 0.1 0.55 22 
10 1.5 0.7 1.08 2 1.6 0.5 0.79 3 1.6 0.5 0.93 3 
11 2.5 0.2 0.91 13 3.0 0.1 0.68 30 3.0 0.1 0.80 30 
12 1.3 0.8 1.02 2 1.4 0.5 0.86 3 1.4 0.5 0.94 3 
13 2.2 0.4 1.32 6 2.1 0.1 0.78 21 2.2 0.1 1.05 22 
14 1.5 0.4 0.97 4 2.2 0.1 0.78 22 2.2 0.1 0.88 22 
15 1.8 0.6 1.03 3 2.7 0.2 0.92 14 2.7 0.2 0.97 14 
16 1.3 0.5 0.99 3 2.0 0.1 0.63 20 2.0 0.1 0.81 20 
17 1.8 0.4 1.14 5 2.0 0.6 1.21 3 2.0 0.4 1.18 5 
18 2.1 0.3 1.00 7 1.0 0.1 0.48 10 2.1 0.1 0.74 21 
19 1.7 0.1 0.50 17 1.6 0.1 0.37 16 1.7 0.1 0.43 17 
20 2.0 0.5 1.04 4 2.0 0.1 0.52 20 2.0 0.1 0.78 20 
μ   0.98    0.74    0.86  

 

3.6. Conclusion 

One part of the experiments has been designed to simulate the MacAdam 

experiment, and the other part to simulate lighting stimuli in the dark. The 

display has been evaluated and characterised to reproduce the pairs 

accurately. The psychophysical experiment was conducted with high 

accuracy and attention to detail so as to exclude any attribute that could 

affect the chromaticity of the pairs. The experiment was divided into five 

sessions; each of which lasted an average of 35 minutes.  
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Chapter 4.  
Colour Discrimination Ellipses 

The experimental data accumulated as described in Chapter 3, and given in 

Appendices C and D, are analysed here. Colour discrimination ellipses were 

fitted into difference colour spaces. Their performance was compared 

according to ellipse parameters and resulted patterns.  

4.1. Fitting Ellipses 

The methodology of fitting ellipses to the data was based on the techniques 

mentioned in chapter 2. The experimental data were fitted into ellipses for 

four different spaces; CIELAB, u’v’, xy and CAM02-UCS. As it is expected, 

each colour centre has different ellipses due to the characteristics of each 

space. The CIELAB colour space was included as it has been used in many 

other studies before, and the colour difference formula is widely used. It was 

developed by fitting the Munsell value scale (McLaren, 1976). The CAM02-

UCS was chosen as a promising uniform colour space based on results of 

previous research (Luo et al., 2006). It was derived for surface colours, and 

it takes into account different illuminants, luminance levels, viewing 

conditions and backgrounds within the calculation formula. Finally, the u’v’ 

and xy chromaticity diagrams were chosen as being purely chromaticity 

spaces, and the ones mainly used when defining chromaticity. The Equation 

4.1-1 gives the formula for fitting the data in CIELAB. Only chromaticity data 

were used in the fitting formula. The luminance difference was considered 

negligible, and the estimation of ellipses instead of ellipsoids was of most 

interest. So, only the relevant g11, g12 and g22 coefficients were calculated. In 

this context, the insignificant contribution of the cross terms Δa*ΔL* and 

Δb*ΔL* to the overall colour difference has been illustrated before (Luo, 

1986).  

For each colour space, the formula for fitting the ellipses was adjusted to the 

input colour data relevant to the space. Therefore, a*b*, u’v’, xy and a’b’ 

chromaticity coordinates were accordingly input to the ellipse formula. The 
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g11, g12 and g22 coefficients in the equation were optimised until a minimum 

STRESS value was found to best fit the measured data and the 

experimental visual data. The same method with different statistical metric 

has been used in other studies as well, such as by Luo and Rigg, Guan and 

Luo, Cui et al. and other (Cui et al., 2001b; Guan and Luo, 1999; Luo and 

Rigg, 1986).  

Equation 4.1-1 Experimental data fitting ellipse formula 

𝛥𝛥𝐸𝐸𝑝𝑝2 = 𝑔𝑔11𝛥𝛥𝑎𝑎∗
2 + 2 𝑔𝑔12𝛥𝛥𝑎𝑎∗𝛥𝛥𝑏𝑏∗ + 𝑔𝑔22𝛥𝛥𝑏𝑏∗

2 

  
Subsequently, the parameters describing the ellipses were calculated 

according to the Equation 2.4-5 formulae, which use the g11, g12 and g22 

coefficients to estimate the semi-major axis (A), the semi-minor axis (B), and 

the orientation angle (θ). Firstly, the axis A indicates the magnitude of the 

colour space. For a colour space fitted well to the experimental data, the A 

values for all ellipses should be constant. This implies that all ellipses have 

similar size. Secondly, the ratio A to B (from now on written as ratio A/B) 

indicates the shape of the ellipse; therefore it is used to evaluate the 

uniformity of the colour space under investigation. If the ratio A/B is equal to 

one, then instead of ellipses the result is circles. This potentially means 

equal colour difference in all directions. It is the ideal scenario, and one of 

the aims for the design of a uniform colour space. If the ratio A/B is larger 

than one, then the ellipse is long. In this case, the orientation angle is quite 

an important factor as it indicates the variation of colour difference towards 

divergent directions. If there is a systematic change in the directions of the 

orientation angle, then it indicates a bad space and formula.  

The STRESS that was calculated for fitting ellipses in each respective 

space, can also been used to evaluate the experimental error. This value 

should be similar among the colour spaces used to fit the data in order to 

regard the experimental design as reliable. By examining the results, it was 

found that the mean STRESS values were similar for each colour space for 

both backgrounds. The average STRESS values for all the four colour 

spaces were 7.98 and 7.61 for the grey and the black background data 

respectively. This resulted in 7.80 units for all colour spaces and both 
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backgrounds. As mentioned a zero value of STRESS would be a perfect fit 

between two datasets. In this case, it would represent an “ideal” colour 

difference equation. Hence, a value of 7.80 units in a scale between 0 and 

100 is considerably low. It indicates that no matter which spaces were 

tested, ellipse equation fitted well to the data. Moreover, the STRESS value 

was systematically slightly smaller for all four colour spaces against the 

black background experimental data. This indicates that the ellipses for the 

experimental data were better fitted for the black background data than for 

the grey background data. This is further verified in Table 3.5-1, in which the 

inter-observer variability for the grey background data is larger than the one 

for black background data, i.e. 31 and 25 STRESS values, respectively.  

Table 4.1-1 to Table 4.1-4 give the results discussed above for CIELAB, u’v’, 

xy, and CAM02-UCS against the grey background. While, Table 4.1-5 to 

Table 4.1-8 give the results against the black background respectively. The 

naming guide given in Table 3.3-2 for the colour centres is a useful 

reference for the colours hues and target colour centres. In the following 

sections, the results will be compared and contrasted based on the different 

background, different luminance of colour centres, and different sub-sets. It 

is reminded that for an ideal colour space, all the experimental ellipses 

should be constant sized circles, i.e. to all have semi-major axes A close to a 

constant value, and all A/B values to be close to one. A larger ellipse 

indicates a larger noticeable colour difference. This also means to have a 

larger tolerance (less strict) in the respective chromatic area of the space. 

For example, if two ellipses are having the same perceived colour difference, 

but computed colour difference of 1 and 5 units in the grey and yellow 

chromatic area respectively, this means that the tolerance of the grey area 

ellipse is much tighter (more strict) than that of the yellow area ellipse. 
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Table 4.1-1 Colour coordinates, STRESS and ellipse parameters for 
CIELAB colour space against the grey background  

Grey Background 
     CIELAB a* b* STRESS A A/B θ 

1_18 -42.96 12.99 6.31 1.138 1.28 136 
1_48 -58.76 19.35 10.14 1.780 1.86 159 
10_18 55.79 -19.61 10.05 1.258 1.50 135 
12_18 23.04 -11.96 8.04 0.434 1.36 144 
12_48 32.90 -16.07 7.88 1.346 1.62 143 
13_18 -4.00 -32.34 8.03 0.884 1.42 152 
19_18 46.49 31.25 11.73 1.500 1.85 115 
23_18 26.09 -35.72 8.45 1.629 2.05 140 
24_18 68.49 -56.16 9.85 1.458 1.83 145 
25_18 20.54 33.52 6.98 1.720 2.25 94 
25_48 29.20 47.25 4.88 1.235 1.80 106 
3_18 -23.76 3.61 7.21 1.202 1.40 143 
3_48 -33.15 5.55 6.11 1.868 1.47 163 
5_18 51.93 8.31 8.25 1.348 1.54 112 
8_18 -18.62 39.90 8.92 1.591 2.02 110 
8_48 -27.18 56.28 6.26 2.063 1.97 100 
B_48 -42.65 -30.19 8.07 1.060 1.79 163 
G_48 -92.14 55.46 7.14 1.268 1.32 100 
W1_48 20.97 47.28 5.91 1.177 1.80 98 
W2_48 16.23 38.72 5.78 1.352 1.71 99 
W3_48 10.85 29.83 11.56 1.100 1.21 98 
W4_18 6.01 14.35 6.86 1.366 1.67 114 
W4_48 8.05 20.58 6.80 1.678 1.44 117 
W5_48 2.68 7.30 7.56 1.131 1.25 113 
W6_18 -0.56 -4.90 7.72 1.546 1.93 131 
W6_48 0.75 -6.70 7.17 1.365 1.63 140 
Mean 

  
7.83 1.365 1.65 

 STRESS 

   

23.31 16.33 
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Table 4.1-2 Colour coordinates, STRESS and ellipse parameters for 
u’v’ chromaticity diagram against the grey background  

Grey Background 
     u'v' u' v' STRESS A A/B θ 

1_18 0.1320 0.5113 6.08 0.874 1.18 109 
1_48 0.1327 0.5132 9.85 1.543 1.60 151 
10_18 0.3063 0.4217 11.20 1.008 1.14 37 
12_18 0.2391 0.4468 8.04 0.371 1.09 14 
12_48 0.2414 0.4471 7.77 1.006 1.11 135 
13_18 0.1652 0.4074 8.69 1.061 1.26 72 
19_18 0.3412 0.5111 11.04 1.123 1.49 160 
23_18 0.2169 0.3936 8.65 1.106 1.38 102 
24_18 0.2746 0.3381 10.57 0.951 1.12 64 
25_18 0.2730 0.5234 7.86 0.914 1.39 36 
25_48 0.2760 0.5245 4.94 0.838 1.34 166 
3_18 0.1593 0.4898 6.81 1.041 1.15 118 
3_48 0.1588 0.4907 6.18 1.635 1.24 164 
5_18 0.3347 0.4763 9.71 1.039 1.16 10 
8_18 0.1873 0.5434 8.78 1.018 1.32 140 
8_48 0.1854 0.5448 6.35 1.170 1.09 148 
B_48 0.1298 0.4359 7.45 0.697 1.15 115 
G_48 0.1038 0.5560 7.80 1.086 1.10 169 
W1_48 0.2609 0.5265 5.67 0.753 1.26 8 
W2_48 0.2490 0.5201 5.41 0.899 1.16 16 
W3_48 0.2355 0.5123 11.95 1.156 1.41 10 
W4_18 0.2260 0.5014 6.80 0.999 1.13 96 
W4_48 0.2262 0.5025 6.73 1.332 1.06 162 
W5_48 0.2102 0.4867 7.56 1.060 1.17 46 
W6_18 0.1966 0.4674 8.27 1.230 1.51 104 
W6_48 0.1988 0.4671 7.37 1.077 1.21 118 
Mean 

  
7.98 1.038 1.24 

 STRESS 

   

22.82 11.58 
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Table 4.1-3 Colour coordinates, STRESS and ellipse parameters for xy 
chromaticity diagram against the grey background  

Grey Background 
     xy x y STRESS A A/B θ 

1_18 0.2576 0.4435 6.08 1.173 1.77 75 
1_48 0.2605 0.4478 10.15 1.031 1.57 102 
10_18 0.3888 0.2379 11.31 1.518 2.02 34 
12_18 0.3424 0.2843 8.02 0.475 1.61 41 
12_48 0.3452 0.2841 7.86 1.234 1.55 50 
13_18 0.2296 0.2517 8.30 0.962 1.63 48 
19_18 0.5233 0.3484 11.21 1.071 1.59 51 
23_18 0.2787 0.2248 8.70 1.133 1.71 56 
24_18 0.3000 0.1642 10.64 1.335 1.88 32 
25_18 0.4667 0.3977 7.83 1.355 2.25 39 
25_48 0.4719 0.3985 5.04 0.864 1.57 53 
3_18 0.2801 0.3827 6.64 1.296 1.61 69 
3_48 0.2802 0.3848 6.09 1.563 1.24 71 
5_18 0.4716 0.2982 9.88 1.517 1.97 37 
8_18 0.3806 0.4906 9.13 1.186 1.86 75 
8_48 0.3796 0.4958 6.11 1.595 1.81 66 
B_48 0.2013 0.3004 7.65 0.750 1.30 73 
G_48 0.2507 0.5968 7.68 1.403 1.68 81 
W1_48 0.4568 0.4097 5.58 0.911 1.71 45 
W2_48 0.4333 0.4023 5.28 0.950 1.80 47 
W3_48 0.4064 0.3929 11.58 1.130 1.53 38 
W4_18 0.3813 0.3760 6.91 1.431 1.96 56 
W4_48 0.3829 0.3781 6.90 1.755 1.67 54 
W5_48 0.3456 0.3556 7.54 1.440 1.80 47 
W6_18 0.3103 0.3279 8.05 1.623 2.11 65 
W6_48 0.3129 0.3267 7.25 1.297 1.63 63 
Mean 

  
7.98 1.231 1.72 

 STRESS 

   

23.32 12.81 
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Table 4.1-4 Colour coordinates, STRESS and ellipse parameters for 
CAM02-UCS colour space against the grey background  

Grey Background 
     CAM02-UCS a' b' STRESS A A/B θ 

1_18 -25.80 7.44 7.27 1.054 1.57 77 
1_48 -31.06 9.87 8.85 0.752 1.06 90 
10_18 32.16 -8.70 10.46 0.920 1.18 79 
12_18 16.21 -7.68 7.71 0.353 1.09 78 
12_48 20.78 -9.11 8.49 0.957 1.13 120 
13_18 -11.15 -23.15 8.10 0.625 1.69 173 
19_18 28.40 15.68 11.58 1.441 2.30 132 
23_18 11.21 -22.95 8.51 0.928 1.48 16 
24_18 28.90 -25.08 9.67 1.378 1.95 32 
25_18 13.12 18.29 6.94 0.918 1.91 115 
25_48 16.48 22.89 4.82 1.406 2.03 133 
3_18 -18.40 2.20 8.83 1.074 1.27 75 
3_48 -22.90 3.09 7.10 1.555 1.24 47 
5_18 32.20 5.01 8.66 1.064 1.62 117 
8_18 -11.54 22.53 8.33 1.350 1.69 125 
8_48 -14.88 27.98 6.57 1.259 1.44 111 
B_48 -29.69 -18.45 7.11 1.280 1.51 134 
G_48 -38.10 23.89 7.51 1.668 2.04 83 
W1_48 11.98 23.37 5.80 0.821 1.73 127 
W2_48 9.99 20.17 5.68 0.776 1.61 127 
W3_48 7.36 16.58 11.26 0.651 1.31 150 
W4_18 4.82 9.42 7.00 1.535 1.60 130 
W4_48 5.94 12.35 6.97 1.472 1.51 140 
W5_48 2.14 5.29 7.46 0.988 1.21 151 
W6_18 -2.59 -5.62 11.56 1.066 1.46 126 
W6_48 -1.53 -7.18 9.37 0.997 1.31 144 
Mean 

  
8.14 1.088 1.53 

 STRESS 

   

28.37 20.15 
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Table 4.1-5 Colour coordinates, STRESS and ellipse parameters for 
CIELAB colour space against the black background  

Black Background 
     CIELAB a* b* STRESS A A/B θ 

1_18 -43.85 13.50 6.92 1.153 1.34 158 
1_48 -59.19 19.79 8.36 1.901 1.82 161 
10_18 56.69 -19.73 9.16 0.639 1.50 136 
12_18 23.42 -11.88 7.11 1.186 1.37 122 
12_48 33.33 -16.03 7.22 1.741 1.81 143 
13_18 -3.67 -32.94 8.80 0.757 1.60 149 
19_18 47.28 32.55 9.97 0.982 1.68 115 
23_18 26.54 -35.97 7.80 1.436 1.88 150 
24_18 69.33 -56.58 9.28 0.914 2.05 148 
25_18 21.10 35.03 4.94 0.812 2.10 95 
25_48 29.71 48.15 5.41 1.372 1.77 102 
3_18 -24.13 3.89 7.70 1.292 1.33 154 
3_48 -33.22 5.53 6.96 1.830 1.33 162 
5_18 52.76 8.82 9.52 1.642 1.61 112 
8_18 -19.01 41.68 8.15 1.758 1.81 109 
8_48 -27.45 57.43 5.00 1.222 1.64 98 
B_48 -43.10 -30.31 8.81 2.213 1.88 164 
G_48 -93.37 56.79 6.13 1.061 1.14 111 
W1_48 21.28 48.28 5.02 0.982 1.77 95 
W2_48 16.62 39.57 5.71 0.923 1.50 100 
W3_48 11.08 30.38 12.57 0.942 1.19 73 
W4_18 6.37 14.95 7.60 1.212 1.39 124 
W4_48 8.26 21.14 6.02 1.289 1.40 129 
W5_48 2.88 7.48 8.07 0.451 1.27 128 
W6_18 -0.45 -4.71 5.74 1.009 1.41 128 
W6_48 0.93 -6.60 5.74 1.294 1.55 141 
Mean 

  
7.45 1.231 1.58 

 STRESS 

   

31.69 16.00 
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Table 4.1-6 Colour coordinates, STRESS and ellipse parameters for 
u’v’ chromaticity diagram against the black background  

Black Background 
     u'v' u' v' STRESS A A/B θ 

1_18 0.1305 0.5124 6.82 1.040 1.17 148 
1_48 0.1321 0.5138 8.04 1.607 1.57 154 
10_18 0.3082 0.4210 10.15 0.509 1.14 32 
12_18 0.2399 0.4467 7.28 1.069 1.24 59 
12_48 0.2419 0.4470 7.08 1.214 1.22 133 
13_18 0.1649 0.4055 8.90 0.973 1.25 93 
19_18 0.3446 0.5123 8.65 0.763 1.61 165 
23_18 0.2172 0.3925 8.04 0.957 1.16 130 
24_18 0.2754 0.3366 9.70 0.521 1.06 112 
25_18 0.2753 0.5250 5.50 0.450 1.32 26 
25_48 0.2770 0.5250 5.73 0.848 1.34 174 
3_18 0.1586 0.4903 7.24 1.118 1.08 155 
3_48 0.1585 0.4906 6.94 1.624 1.12 173 
5_18 0.3376 0.4768 11.09 1.154 1.12 7 
8_18 0.1870 0.5454 7.79 1.149 1.35 154 
8_48 0.1851 0.5457 5.38 0.827 1.28 173 
B_48 0.1292 0.4356 8.43 1.327 1.18 125 
G_48 0.1028 0.5571 6.34 1.102 1.30 170 
W1_48 0.2615 0.5272 5.06 0.617 1.33 11 
W2_48 0.2497 0.5208 5.62 0.698 1.30 5 
W3_48 0.2359 0.5128 12.97 1.112 1.63 13 
W4_18 0.2271 0.5022 7.08 1.018 1.16 163 
W4_48 0.2266 0.5030 5.86 1.120 1.24 160 
W5_48 0.2104 0.4868 7.79 0.401 1.07 22 
W6_18 0.1967 0.4676 6.24 0.877 1.20 80 
W6_48 0.1989 0.4671 5.87 0.995 1.15 120 
Mean 

  
7.52 0.965 1.25 

 STRESS 

   

30.48 12.03 
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Table 4.1-7 Colour coordinates, STRESS and ellipse parameters for xy 
chromaticity diagram against the black background  

Black Background 
     xy x y STRESS A A/B θ 

1_18 0.2562 0.4470 6.87 1.158 1.49 81 
1_48 0.2601 0.4496 8.29 1.290 1.50 103 
10_18 0.3899 0.2367 10.27 0.752 1.99 34 
12_18 0.3431 0.2839 7.27 1.488 2.03 42 
12_48 0.3455 0.2838 7.24 1.390 1.52 56 
13_18 0.2282 0.2495 8.94 0.706 1.51 57 
19_18 0.5283 0.3491 8.85 0.641 1.45 47 
23_18 0.2783 0.2235 8.20 1.041 1.35 47 
24_18 0.2998 0.1628 9.78 0.682 1.64 33 
25_18 0.4717 0.3998 5.49 0.624 2.02 40 
25_48 0.4738 0.3991 5.88 0.870 1.56 48 
3_18 0.2795 0.3841 7.26 1.307 1.43 65 
3_48 0.2797 0.3847 6.87 1.743 1.33 62 
5_18 0.4750 0.2981 11.28 1.769 1.99 39 
8_18 0.3828 0.4963 8.11 1.273 1.63 76 
8_48 0.3804 0.4983 4.98 0.809 1.48 66 
B_48 0.2003 0.3002 8.61 1.341 1.26 79 
G_48 0.2498 0.6018 6.19 1.139 1.52 90 
W1_48 0.4585 0.4107 4.86 0.709 1.69 42 
W2_48 0.4351 0.4032 5.68 0.762 1.57 45 
W3_48 0.4074 0.3936 12.54 1.094 1.60 29 
W4_18 0.3837 0.3772 7.29 1.140 1.53 55 
W4_48 0.3840 0.3789 6.06 1.105 1.45 59 
W5_48 0.3460 0.3557 7.91 1.191 1.62 50 
W6_18 0.3107 0.3283 6.08 1.328 1.86 54 
W6_48 0.3130 0.3267 5.77 1.201 1.58 61 
Mean 

  
7.56 1.098 1.60 

 STRESS 

   

27.85 12.96 
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Table 4.1-8 Colour coordinates, STRESS and ellipse parameters for 
CAM02-UCS colour space against the black background  

Black Background 
     CAM02-UCS a' b' STRESS A A/B θ 

1_18 -29.88 8.74 7.36 1.080 1.38 69 
1_48 -33.12 10.59 7.30 0.969 1.07 69 
10_18 35.63 -9.58 9.86 0.466 1.21 80 
12_18 18.04 -8.54 6.68 0.901 1.39 86 
12_48 21.23 -9.37 8.17 1.112 1.21 132 
13_18 -13.17 -26.18 9.40 0.422 1.79 164 
19_18 31.31 17.91 9.49 0.571 2.23 133 
23_18 12.22 -25.86 8.39 1.222 2.06 15 
24_18 31.82 -27.73 9.25 0.778 1.92 29 
25_18 14.33 21.27 5.02 0.471 1.85 119 
25_48 16.65 24.12 5.64 0.925 1.93 132 
3_18 -21.71 2.85 8.44 1.197 1.28 61 
3_48 -24.72 3.37 7.67 1.765 1.35 56 
5_18 35.66 5.84 10.47 1.226 1.79 118 
8_18 -13.94 26.14 7.74 1.042 1.45 128 
8_48 -16.38 29.49 5.59 0.665 1.17 113 
B_48 -31.76 -18.99 8.05 1.499 1.58 135 
G_48 -40.44 25.23 6.77 1.270 1.75 80 
W1_48 11.83 24.71 4.88 0.620 1.65 127 
W2_48 9.83 21.44 5.74 0.694 1.53 136 
W3_48 6.99 17.68 12.30 0.865 1.24 166 
W4_18 5.04 11.28 7.72 1.073 1.56 147 
W4_48 5.48 13.36 6.22 1.120 1.68 149 
W5_48 1.36 5.90 9.15 0.959 1.42 156 
W6_18 -4.15 -5.95 9.83 0.826 1.08 103 
W6_48 -3.03 -7.17 8.52 0.899 1.21 143 
Mean 

  
7.91 0.948 1.53 

 STRESS 

   

31.52 19.83 
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4.2. Comparing Visual Results 

By averaging the visual differences for each colour centre it is possible to 

compare and contrast the average magnitude. In Table 4.2-1 the mean 

visual difference for pairs of each colour centre and background are given. 

The smallest value in each row is underlined, while in each column is in 

bold. As can be seen, the visual ratio assessment was smaller for roughly all 

colour centres against the grey background. Moreover, different colour 

centres gave the smallest visual colour difference in each background. For 

the grey background data, it was the farthest green colour, while for the 

black background data, it was a purple colour. The mean ratio indicates that 

grey background has a much larger discrepancy in visual difference between 

different colour centres than that of black background, i.e. by a factor of 2.0 

and 1.4 respectively. These results agree well with the results presented in 

Table 3.5-2, where observer variation and range of the ratio assessments 

are summarised.  

  



- 133 - 

Table 4.2-1  Mean visual differences for each colour centre and 
background  

Colour Centre Grey  Black 
1_18 0.65 1.00 
1_48 0.73 0.98 
10_18 0.59 0.87 
12_18 0.78 0.95 
12_48 0.73 0.95 
13_18 0.61 0.88 
19_18 0.65 1.00 
23_18 0.68 0.86 
24_18 0.59 0.82 
25_18 0.62 1.00 
25_48 0.76 1.13 
3_18 0.76 1.04 
3_48 0.84 0.98 
5_18 0.62 0.96 
8_18 0.67 0.92 
8_48 0.68 1.00 
B_48 0.63 0.84 
G_48 0.55 0.90 
W1_48 0.76 1.12 
W2_48 0.79 1.08 
W3_48 0.79 1.05 
W4_18 0.75 1.09 
W4_48 0.89 1.09 
W5_48 0.90 1.03 
W6_18 1.11 1.06 
W6_48 0.97 0.99 

Mean 0.73 0.98 
Ratio 
(max/min) 2.02 1.37 

 

4.3. Comparing Chromaticity Ellipses 

Firstly, the ellipses’ size in overall was investigated. The area of an ellipse is 

given by the multiplication of 𝜋𝜋𝜋𝜋𝜋𝜋, using the semi-major (A) and semi-minor 

axis (B). Similarly, the size is calculated by the square root of the ellipse 

area. The sizes for each colour space and background are summarised in 

Table 4.3-1; where the bold and underlined values correspond to the 

maximum and minimum values for each column and space respectively. 
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Visualisations of the ellipses are illustrated in Figure 4.3-1 and Figure 4.3-2 

for CIELAB, in Figure 4.3-3 and Figure 4.3-4 for u’v’ chromaticity diagram, in 

Figure 4.3-5 and Figure 4.3-6 for xy chromaticity diagram, and in Figure 

4.3-7 and Figure 4.3-8 for CAM02-UCS; against the grey and black 

background accordingly.  

Table 4.3-1 Size of ellipses for each colour space and background 

 

CIELAB u'v' xy CAM02-UCS 

Background: Grey  Black Grey  Black Grey  Black Grey  Black 
1_18 1.78 1.77 1.43 1.70 1.56 1.68 1.49 1.63 
1_48 2.31 2.50 2.16 2.27 1.46 1.87 1.29 1.66 
10_18 1.82 0.92 1.67 0.85 1.89 0.95 1.50 0.75 
12_18 0.66 1.79 0.63 1.70 0.66 1.85 0.60 1.35 
12_48 1.87 2.29 1.70 1.95 1.75 2.00 1.60 1.79 
13_18 1.32 1.06 1.68 1.54 1.34 1.02 0.85 0.56 
19_18 1.96 1.34 1.63 1.07 1.50 0.94 1.68 0.68 
23_18 2.01 1.86 1.67 1.58 1.54 1.59 1.35 1.51 
24_18 1.91 1.13 1.59 0.90 1.73 0.94 1.75 1.00 
25_18 2.03 0.99 1.38 0.70 1.60 0.78 1.18 0.61 
25_48 1.63 1.83 1.28 1.30 1.22 1.24 1.75 1.18 
3_18 1.80 1.99 1.72 1.91 1.81 1.94 1.69 1.87 
3_48 2.73 2.82 2.60 2.72 2.49 2.68 2.47 2.69 
5_18 1.93 2.29 1.71 1.94 1.92 2.22 1.48 1.62 
8_18 1.99 2.31 1.57 1.75 1.54 1.77 1.84 1.53 
8_48 2.60 1.69 1.99 1.29 2.10 1.18 1.86 1.09 
B_48 1.40 2.86 1.15 2.17 1.16 2.11 1.84 2.12 
G_48 1.96 1.76 1.84 1.71 1.92 1.64 2.07 1.70 
W1_48 1.55 1.31 1.19 0.95 1.24 0.97 1.11 0.86 
W2_48 1.83 1.34 1.48 1.08 1.26 1.08 1.08 0.99 
W3_48 1.78 1.53 1.73 1.54 1.62 1.53 1.01 1.38 
W4_18 1.87 1.82 1.66 1.68 1.81 1.63 2.15 1.52 
W4_48 2.48 1.93 2.30 1.78 2.41 1.63 2.13 1.53 
W5_48 1.79 0.71 1.74 0.69 1.90 1.66 1.59 1.43 
W6_18 1.97 1.51 1.78 1.42 1.98 1.73 1.56 1.41 
W6_48 1.89 1.84 1.73 1.65 1.80 1.69 1.55 1.45 
Ratio 
(max/min) 

4.14 4.03 4.13 3.95 3.75 3.44 4.13 4.81 

Mean 1.88 1.74 1.65 1.53 1.66 1.55 1.56 1.38 
Sum 48.90 45.20 43.00 39.82 43.23 40.30 40.50 35.93 

STRESS 20.69 30.04 21.90 30.46 22.58 28.47 25.97 32.61 
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The colour centre 12_18 (a dark purple colour) appeared to consistently 

have the smallest ellipse size in every colour space when against the grey 

background. There are a few things to be considered for this. The specific 

colour centre was not saturated but yet it has a dark purple hue. Due to its 

colour, it could appear having less lightness against the grey background 

possibly due to the crispening effect, i.e. if the colour pair to be assessed is 

close to the lightness of the background, its colour difference will be 

enlarged (Fairchild, 2005). What is also to be noted is the large difference of 

size between the black and grey background ellipses for this colour centre in 

contrast to the range of the majority of the colour centres. The fact that this 

colour centre was assessed twice for the repeatability examination does not 

relate with the resulted smallest ellipse. Because the colour centre 12_48 

(the same hue as 12_18, but much lighter) was also assessed twice for the 

same reason but was not affected similarly. Likewise the majority of the 

colour centres, colour centre 12_48 has a similar colour difference 

magnitude between the grey and black background.  

Another colour centre that had such a large difference between the black 

and grey background assessments was the colour centre 25_18 (a dark 

orange colour) but with the opposite effect. This colour centre has much 

smaller ellipse size while assessed against the black background instead. In 

terms of hue colour, colour centres 12_18 and 25_18 do not relate, so this 

could either be due to the crispening effect or the non-uniformity of the 

specific chromatic space areas. 

On the other hand, the colour centres with the smallest ellipse size against 

the black background varied for each colour space. Except of CIELAB and 

u’v’ chromaticity diagram for which they coincide with the colour centre 

W5_48. This was a greatly neutral white light colour centre with CCT of 5000 

K, so there can be less visible chromaticity change around the centre; 

especially against black background for which the contrast is high.  

The colour centre 3_48 (a light bluish green colour) had by majority the 

largest ellipses in every background and colour space. This colour centre 

has similar colour with the reference pair; therefore it could be possible that 

the observers compared their differences more clearly. On the other hand, in 
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relation to the respective mean raw ratio assessment, this colour centre has 

a value close to one for the black background data, so the observers could 

have associated it with the colour difference of the reference pair. 

Historically, colours in the green area of the xy chromaticity diagram appear 

to have larger ellipses due to the non-uniformity of the space (MacAdam, 

1942; Macadam, 1944). Therefore, this indicates that for these colour 

spaces, there is still non-uniformity in this colour region. 
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Figure 4.3-1 Ellipses in CIELAB a*b* diagram against the grey 
background (enlarged 3 times) 

 

 

Figure 4.3-2 Ellipses in CIELAB a*b* diagram against the black 
background (enlarged 3 times) 
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Figure 4.3-3 Ellipses in u’v’ chromaticity diagram against the grey 
background (compressed 80 times) 

 

 

Figure 4.3-4 Ellipses in u’v’ chromaticity diagram against the black 
background (compressed 80 times) 



- 139 - 

 

Figure 4.3-5 Ellipses in xy chromaticity diagram against the grey 
background (compressed 80 times) 

 

 

Figure 4.3-6 Ellipses in xy chromaticity diagram against the black 
background (compressed 80 times) 
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Figure 4.3-7 Ellipses in CAM02-UCS a’b’ diagram against the grey 
background (enlarged 3 times) 

 

 

Figure 4.3-8 Ellipses in CAM02-UCS a’b’ diagram against the black 
background (enlarged 3 times) 
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4.3.1. Uniformity of Colour Spaces 

To examine the uniformity of a colour space for which ellipses have been 

fitted, there are a few useful values. As introduced before, the semi-major 

axes A should be a constant, and the ratio A/B of the axis shows the shape 

of the formed ellipse. Firstly, let’s discuss about the ratio A/B. If the ratio A/B 

is equal to one, then a circle is formed instead of an ellipse. The ideal would 

be to have a colour space which would represent chromaticity differences as 

equal sized circles. That means that the semi-major axis A should be 

constant and the ratio A/B equal to unity. Since no colour space so far has 

resulted in the ideal, it is at least desired that the ellipses are as close as 

possible to the ideal. Moreover, by examining the STRESS values for the 

entire resulted ellipses, the uniformity and distribution of these data can be 

evaluated.  

In the tables introduced at section 4.1, the ratio A/B and STRESS values (as 

well standard deviation) have been given for the whole group of colour 

centres. Furthermore, the results of ratio A/B values are summarised in 

Table 4.3-2 in terms of groups; i.e. whole set, coloured stimuli and white light 

stimuli. In this table, the smaller value is indicated with bold values 

horizontally and underlined ones vertically. As can be seen, the u’v’ 

chromaticity diagram has the smallest mean ratio A/B among the colour 

spaces examined. This means that its ellipses were mostly circular. 

Moreover, the ratio A/B was similar for the different groups of colour centres 

as well as the whole set; which indicates that u’v’ chromaticity diagram can 

serve as a good uniform space for either coloured or white lighting stimuli. 

Moreover, it has almost no difference between the grey and black 

backgrounds, which implies that it might be a better space for evaluating 

only chromaticity as it is required in the lightning industry.  

This is strengthened by the low variation between the ratio A/B values within 

the data. In Table 4.3-3, the STRESS values are summarised, and it can be 

concluded that there were more circular-like ellipses in the u’v’ chromaticity 

diagram. The STRESS values for the ratio A/B were similar in distribution 

and in accordance with the results for the mean ratio A/B. Moreover, by 

inspecting the plotted ellipses, it can be concluded that most ellipses were 
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more equal sized circles against the grey background in u’v’ chromaticity 

diagram (Figure 4.3-3). 

Table 4.3-2 Mean ratio A/B for each colour space and data group 

Mean Ratio A/B  
(№ of colour centres) CIELAB u'v' xy CAM02-UCS 

Grey All (26)  1.65 1.24 1.72 1.53 
Black All (26) 1.58 1.25 1.60 1.53 
Grey Coloured (18) 1.68 1.24 1.70 1.57 
Black Coloured (18) 1.65 1.25 1.59 1.58 
Grey White (8) 1.58 1.24 1.77 1.47 
Black White (8) 1.43 1.26 1.61 1.42 
 

Table 4.3-3 Mean STRESS values of ratio A/B for each colour space 
and data group 

STRESS of Ratio A/B 
(№ of colour centres) CIELAB u'v'  xy CAM02-UCS 

Grey All (26)  16.3 11.6 12.8 20.2 
Black All (26) 16.0 12.0 13.0 19.8 
Grey Coloured (18) 16.4 11.7 13.8 22.3 
Black Coloured (18) 15.7 11.7 14.9 20.7 
Grey White (8) 15.1 11.2 9.7 11.3 
Black White (8) 11.6 12.6 6.9 14.4 
 

Complementary to this, the STRESS values that correspond to the semi-

major axes (A) values are summarised in Table 4.3-4. Again bold and 

underlined values indicate the smallest value in rows and columns 

respectively. There is more variation in relation to the magnitude of the 

ellipses. Although for the comparison and evaluation of the ellipses each 

parameter is important, all components should be considered in overall. The 

fact that a parameter might performed better than another, it does not mean 

that the former has an overall better performance than the latter. The u’v’ 

chromaticity diagram has more uniformity among its values that describe the 

size of the ellipses. For the whole dataset, it varied the least when grey 

background was used and it was the second best when black background 

was used. It has also resulted in very good uniformity for the group of white 

lightning stimuli against the grey background. The xy chromaticity diagram 
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had the least varying size when black background was used for the whole 

set of stimuli. While, the CAM02-UCS gave the smallest variation for the 

group of white light stimuli against the black background; which could be due 

to the improved prediction of chroma that it is included in the model for the 

neutral colours. Lastly, CIELAB space had the least uniformity for the group 

of white light stimuli against the grey background.  To conclude, in 

combination with the mean ratio A/B, the u’v’ chromaticity diagram gives a 

better uniformity of space in overall.   

Table 4.3-4 Mean STRESS values of semi-major axis A for each colour 
space and data group 

STRESS of A  
(№ of colour centres) CIELAB u'v' xy CAM02-UCS 

Grey All (26)  24.5 23.9 24.5 30.2 
Black All (26) 34.1 32.6 29.6 33.9 
Grey Coloured (18) 27.8 26.9 25.2 30.6 
Black Coloured (18) 33.3 32.7 33.0 37.8 
Grey White (8) 15.1 17.3 23.1 30.6 
Black White (8) 27.0 30.3 20.4 19.5 
 

In order to summarise the findings and make conclusions, Table 4.3-5 can 

be advised. There is a clear trend that STRESS values for the semi-major 

axes (A) and size were larger against the black background. For an ideal 

uniform colour space, STRESS should be equal to zero. The larger the 

value, the poorer the performance of the colour space is. By examining the 

STRESS values for the semi-major axes A and size, CAM02-UCS 

performed the worst while the other three spaces have similar ranges. This 

shows that the ellipses for the black background data have greater variation 

than the ones for the grey background data. In terms of ratio A/B, the 

STRESS values should be zero in order to represent circles. By examining 

the STRESS of ratio A/B, the u’v’ chromaticity diagram performed the best, 

followed by the xy chromaticity diagram, the CIELAB, and lastly the CAM02-

UCS.  

The u’v’ chromaticity diagram might have larger STRESS values for both the 

semi-major axes A and ellipse size than the xy chromaticity diagram, but the 

ratio A/B is considerably smaller. Therefore, that makes it a more uniform 
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space, even though it results to bigger variation of magnitude between 

different colours. That is because as explained, the overall performance is a 

combination of all ellipse parameters. 

Table 4.3-5 Summary of ellipse parameters and statistical metrics 

 
CIELAB u'v' xy CAM02-UCS 

 
Grey  Black Grey  Black Grey  Black Grey  Black 

Size         
Mean  1.88 1.74 1.65 1.53 1.66 1.55 1.56 1.38 
STRESS 20.7 30.0 21.9 30.5 22.6 28.5 26.0 32.6 
A         
Mean  1.365 1.231 1.038 0.965 1.231 1.098 1.088 0.948 
STRESS  23.3 31.7 22.8 30.5 23.3 27.8 28.4 31.5 
A/B         
Mean  1.65 1.58 1.24 1.25 1.72 1.60 1.53 1.53 
STRESS  16.3 16.0 11.6 12.0 12.8 13.0 20.2 19.8 

 Both Backgrounds       
Size         
Mean  1.81  1.59  1.61  1.47  
STRESS  25.4  26.2  25.5  29.3  
A         
Mean  1.298  1.001  1.164  1.018  
STRESS  27.5  26.6  25.6  29.9  
A/B         
Mean  1.62  1.24  1.66  1.53  
STRESS  16.2  11.8  12.9  20.0  
 

These data comply with the results from the study which was conducted for 

white light stimuli only (Luo et al., 2015). In both studies, u’v’ chromaticity 

diagram outperformed the other colour spaces. The fact that the sampling 

was conducted in u’v’ chromaticity diagram, it could be used to question this 

conclusion. However, there are a few points to support otherwise. Firstly, in 

previous studies, CIELAB space has been used for the selection of colour 

pairs (Berns et al., 1991; Cheung and Rigg, 1986; Luo and Rigg, 1986). 

However, this has not worked in favour of the CIELAB space; which seems 

to underperform in comparison with other formulae. Secondly, the group of 

observers gave consistent results (small observer variability) while 

conducting the experiment. Additionally, they did many sessions in order to 

complete the full experiment; which gave them experience in assessing 
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colour difference using the ratio method; and the majority of the group had 

already experience in colour psychophysical experiments.  

4.3.2. Background Effect 

Overall, by comparing the semi-major axis A and sizes of the data between 

the grey and black background, there is the trend that ellipses were longer 

and larger against the grey background. However, there are also some 

exceptions. According to the present results, the ellipses were smaller 

against the black background. This implies that observers were more 

sensitive while evaluating colour differences against a black background 

than against a grey background. This stricter tolerance against the black 

background is also supported by the larger variation of ellipse sizes for the 

black background data. 

For the examined colour spaces, the instances that gave larger ellipse size 

against the black background were the colour centres 1_48, 12_18, 12_48, 

3_18, 3_48, 5_18, and B_48. Among them, the majority belong to the green 

area and the rest have red and purple hues. However, the mean 

assessments in Table 4.2-1 show that observers perceived larger colour 

difference when the colour pairs were assessed against the black 

background. This suggests that the discrepancy at these patterns is due to 

the characteristics of the colour space for these chromatic areas. The only 

exception that a colour centre had larger perceived colour difference against 

the grey background was the colour centre W6_18 of the white light stimuli 

set. It is potential that this greyish colour centre has been affected by the 

crispening effect when it was evaluated against the grey background. Colour 

centres of similar shades with the background were also the W5_48 and 

W6_48. From these, W5_48 was assigned larger colour difference while 

evaluated against the black background; while the W6_48 was assigned 

very similar value for both backgrounds.  

Many observers had stated during the experiments that they could assess 

the colour difference more comfortably against with the grey background 

than with the black. However, the visual colour differences seem larger 

against the black background. This indicates some discrepancy in the 
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perceived contrast between the backgrounds. Furthermore, the results show 

smaller variability against the black background. Grey background may be 

more comfortable due to causing less eye fatigue, but it is less consistent.  

The qualitative comparison of the ellipses between the two backgrounds is 

illustrated in Figure 4.3-9 for u’v’ chromaticity diagram.  Chromaticity ellipses 

against the black and grey background are plotted in black and magenta 

colour respectively. There is similar shape (ratio A/B) between the black and 

grey background. The majority of the grey ellipses are larger against the 

grey background. Similar patterns were formed for the ellipses of the other 

spaces tested, as seen in Figure 4.3-10 to Figure 4.3-12 for xy chromaticity 

diagram, a*b* diagram of the CIELAB and a’b’ diagram of the CAM02-UCS 

respectively when plotted with same centre. 

 

Figure 4.3-9 Ellipses against the grey and black background in u’v’ 
chromaticity diagram  
Ellipses in black correspond to the black background; ellipses in 
magenta correspond to the grey background  
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Figure 4.3-10 Ellipses against the grey and black background in 
xy chromaticity diagram  
Ellipses in black correspond to the black background; ellipses in 
magenta correspond to the grey background  
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Figure 4.3-11 Ellipses against the grey and black background in 
a*b* diagram  
Ellipses in black correspond to the black background; ellipses in 
magenta correspond to the grey background  
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Figure 4.3-12 Ellipses against the grey and black background in 
a’b’ diagram (CAM02-UCS) 
Ellipses in black correspond to the black background; ellipses in 
magenta correspond to the grey background  

 

4.3.3. Effect Due to Luminance of Colour Centres  

As seen, some colour centres were processed at a luminance of 18.5 cd/m² 

or 48 cd/m²; while a set of colour centres were processed and assessed at 

both luminance levels. For instance, colour centres 12_48 and 12_18. The 

luminance of 48 cd/m² and 18.5 cd/m² correspond to lightness L* of 75 units 

which is the same used in the MacAdam experiment and lightness L* of 50 

units for a mid-grey.  
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When comparing the average size of the colour centres assessed at both 

luminance levels, it can be seen that the colour centres with luminance 48 

cd/m² have considerably larger size ellipses for either background and 

colour space; see Table 4.3-6. Due to the ability to easily see colour 

difference in darker stimuli, it is reasonable that the tolerance is stricter 

(smaller ellipses) for the colour centres with darker luminance. Additionally, 

the colour centres with luminance 48 cd/m² have systematically larger size 

ellipses against the grey background, which is also supported by the results 

for the background effect. In contrast, the majority of the colour centres with 

luminance 18.5 cd/m² have larger ellipse size against the black background. 

So, this implies that the effect might be enhanced by the background 

luminance.  

Table 4.3-6 Mean ellipse size per luminance group for the colour 
centres that were assessed at both luminance levels  

Size CIELAB u'v' xy CAM02-UCS 

 
Grey  Black Grey  Black Grey  Black Grey  Black 

18.5 cd/m² 1.73 1.74 1.45 1.55 1.57 1.63 1.50 1.42 
48 cd/m² 2.22 2.13 1.97 1.85 1.89 1.75 1.81 1.63 

Ratio 
(max/min) 1.28 1.22 1.35 1.19 1.21 1.08 1.20 1.15 

 

Moreover, when comparing the average size of the colour centres at 

luminance of 18.5 cd/m² and 48 cd/m² for the total dataset, it can be seen 

that the colour centres with luminance 48 cd/m² have again larger size 

ellipses for either background and colour space, even though the ratio 

(max/min) is smaller. The results are summarised in Table 4.3-7. In fact, this 

is to be expected, given the variety of colours in the set. However, in this 

case, the ratio (max/min) between the two backgrounds seems to be in 

similar range for either background between the two luminance levels of 

colour centres.  
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Table 4.3-7 Mean ellipse size per luminance group for the dataset  

Size CIELAB u'v' xy CAM02-UCS 

 
Grey  Black Grey  Black Grey  Black Grey  Black 

18.5 cd/m² 1.77 1.60 1.55 1.44 1.61 1.46 1.47 1.24 
48 cd/m² 1.99 1.88 1.76 1.62 1.72 1.64 1.64 1.53 

Ratio 
(max/min) 1.12 1.17 1.14 1.13 1.07 1.12 1.12 1.24 

 

In Figure 4.3-13 and Figure 4.3-14, the effect of the colour centre’s 

luminance in u’v’ chromaticity diagram is illustrated for the grey and black 

background data respectively. Ellipses were plotted with the same centre in 

order to compare and contrast the size effect and orientation. Especially, the 

ellipses against the grey background show that the colour centres with 

luminance 48 cd/m² have larger ellipses than the darker ones. This agrees 

well with the ellipse size factor (ESF) developed by Luo et al; which 

describes the increase of ellipse size when the luminance Y is increasing 

(Luo and Rigg, 1986). Moreover, it had been found that there was no strong 

trend for luminance higher than 50. Here, the effect is particularly clear for 

the coloured stimuli, but not so strong against the black background.   
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Figure 4.3-13 Ellipses of colour centres with different luminance 
against the grey background in u’v’ chromaticity diagram 
Ellipses in black are for the colour centres with luminance 18.5 cd/m²; 
ellipses in green are for the colour centres with luminance 48 cd/m². 
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Figure 4.3-14 Ellipses of colour centres with different luminance 
against the black background in u’v’ chromaticity diagram 
Ellipses in black are for the colour centres with luminance 18.5 cd/m²; 
ellipses in green are for the colour centres with luminance 48 cd/m². 

 

In Figure 4.3-15 to Figure 4.3-20, the respective ellipses for the xy 

chromaticity diagram, a*b* diagram of the CIELAB, and a’b’ diagram of the 

CAM02-UCS are given. The xy chromaticity diagram and a*b* diagram have 

similar performance with the u’v’ chromaticity diagram as described above. 

However, for the CAM02-UCS, there is no clear trend in the ellipse size 

related to the colour region. Even though the quantitative results from the 

ellipse size calculation showed that the colour centres with luminance 48 

cd/m² against the grey background have larger ellipse size, the qualitative 

results from the ellipse plots do not show a systematic change in the size 

distribution. This implies that the input parameters of the CAM02-UCS model 

adjust the colour appearance attributes at certain extend. 
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Figure 4.3-15 Ellipses of colour centres with different luminance 
against the grey background in xy chromaticity diagram 
Ellipses in black are for the colour centres with luminance 18.5 cd/m²; 
ellipses in green are for the colour centres with luminance 48 cd/m². 
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Figure 4.3-16 Ellipses of colour centres with different luminance 
against the black background in xy chromaticity diagram 
Ellipses in black are for the colour centres with luminance 18.5 cd/m²; 
ellipses in green are for the colour centres with luminance 48 cd/m². 
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Figure 4.3-17 Ellipses of colour centres with different luminance 
against the grey background in a*b* diagram 
Ellipses in black are for the colour centres with luminance 18.5 cd/m²; 
ellipses in green are for the colour centres with luminance 48 cd/m². 
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Figure 4.3-18 Ellipses of colour centres with different luminance 
against the black background in a*b* diagram 
Ellipses in black are for the colour centres with luminance 18.5 cd/m²; 
ellipses in green are for the colour centres with luminance 48 cd/m². 
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Figure 4.3-19 Ellipses of colour centres with different luminance 
against the grey background in a’b’ diagram (CAM02-UCS) 
Ellipses in black are for the colour centres with luminance 18.5 cd/m²; 
ellipses in green are for the colour centres with luminance 48 cd/m². 
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Figure 4.3-20  Ellipses of colour centres with different luminance 
against the black background in a’b’ diagram (CAM02-UCS) 
Ellipses in black are for the colour centres with luminance 18.5 cd/m²; 
ellipses in green are for the colour centres with luminance 48 cd/m². 
 

4.4. Comparing with MacAdam Ellipses 

The experimental ellipses fitted in the xy chromaticity diagram for the grey 

background data can be compared with the MacAdam experimental ellipses. 

The grey background data have the same luminance and chromaticity setup 

conditions as the MacAdam experiment. Qualitative comparison is presented 

in Figure 4.4-1; where ellipses from both datasets have been plotted 

together. For the purpose of meaningful comparison, the current 

experimental ellipses have been scaled accordingly to the MacAdam dataset 

using a scaling factor based on the area πAB of the ellipses.  
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From a first look, there seems to be great similarity in ellipse orientation, i.e. 

they radiate from blue towards the direction of the dominant wavelengths. 

However, their sizes do not increase from the smallest blue area towards the 

green area as in the MacAdam data. To the contrary, the current ellipses are 

a lot more rounded and of more consistent size regardless of the area of the 

xy chromaticity diagram. For the black background data, the ellipse 

orientation is again similar; see Figure 4.3-6. However, the pattern of size 

variation seems to be discontinued.  

 

Figure 4.4-1 MacAdam ellipses against current experimental ellipses 
for the grey background data in xy chromaticity diagram 
Marked in black are the original MacAdam ellipses; marked in orange 
are the current ellipses with luminance 48 cd/m2; marked in green are 
the current ellipses with luminance 18.5 cd/m2 
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Additionally, a quantitative analysis between the ellipse sizes of the two 

datasets was performed. The results in Table 4.4-1 show the ellipse size for 

each centre and their variance in STRESS units which equals 32. The 

values support the visual representation of the ellipses. 

Table 4.4-1 Scaled ellipse sizes for MacAdam and respective current 
data 

    
Size 

Name x y Y 
MacAdam  

(103) 
Current  

1_48 0.2580 0.4500 48 5.60 3.19 
1_18 0.2580 0.4500 18.5 5.60 3.42 
3_48 0.2800 0.3850 48 4.34 5.46 
3_18 0.2800 0.3850 18.5 4.34 3.97 
8_48 0.3800 0.4980 48 4.07 4.60 
8_18 0.3800 0.4980 18.5 4.07 3.38 

12_48 0.3440 0.2840 48 2.55 3.84 
12_18 0.3440 0.2840 18.5 2.55 1.45 
25_48 0.4720 0.3990 48 3.75 2.68 
25_18 0.4720 0.3990 18.5 3.75 3.50 

5_18 0.4750 0.3000 18.5 3.17 4.20 
10_18 0.3900 0.2370 18.5 2.80 4.15 
13_18 0.2280 0.2500 18.5 2.96 2.92 
19_18 0.5270 0.3500 18.5 3.26 3.29 
23_18 0.2780 0.2230 18.5 2.04 3.37 
24_18 0.3000 0.1630 18.5 2.34 3.78 

      
    

STRESS 32.34 
 

4.5. Comparing with Previous White Light Stimuli  

The experimental conditions against the black background were well 

matched with the previous study of white light sources by Luo et al (Luo et 

al., 2015). The colour centres for both studies were based on the ANSI 

C78.377 standard. In Figure 4.5-1, the corresponding ellipses are plotted 

together in the uv’ chromaticity diagram; scaled to the Luo et al. data. The 

resulted ellipses have similar shapes but different orientations. This indicates 

that the data from both studies agree well between them. The difference in 

the orientation could have potentially been caused by the difference in the 

selection of samples. In the current study, samples were taken semi-

circularly around the colour centres; while in the previous study they were 
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taken circularly. Another difference between the two datasets is that there 

was small difference between the target luminance of the stimuli. In the 

previous study, the pairs had a slightly varied luminance between 52 to 54 

cd/m2. 

 

Figure 4.5-1 Ellipses of white light stimuli by Luo et al. against current 
black background data in u’v’ chromaticity diagram  
Ellipses in black are for the Luo et al. while light data; ellipses in 
magenta are for the current white light data.  

 

In Table 4.5-1, the respective ellipse sizes for the two datasets have been 

calculated by scaling the current data to the previous Luo et al. data. The 

sizes reflect well the plotted ellipses as well. Moreover, the variation 

between the datasets has a relatively reasonable STRESS of 30 units.  
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Table 4.5-1 Scaled ellipse sizes for Luo et al and current white light 
stimuli  

  
103 Size  

u' v' Luo et al.  Current  
0.2614 0.5268 10.20 7.28 
0.2490 0.5205 10.31 8.33 
0.2366 0.5120 9.57 11.86 
0.2248 0.5031 10.03 13.68 
0.2097 0.4864 9.46 5.29 
0.1979 0.4678 9.51 12.64 

    
  

STRESS  30.23 
 

4.6. Conclusions 

All experimental data were fitted into colour discrimination ellipses using 

different formulae and spaces. Ellipses were compared in terms of their 

parameters and plots for each colour space. The results are summarised 

below. 

In terms of semi-major axis (A), the u’v’ chromaticity diagram had the 

smallest mean length, even though its STRESS value was not the smallest. 

This corresponds to smaller magnitude of perceived visual difference but 

with greater variation between the chromatic regions. In terms of ratio A/B, 

the u’v’ chromaticity diagram had the smallest values for both the mean ratio 

A/B and STRESS. Therefore, in overall, it can be considered that it largely 

outperformed the others in terms of space uniformity. This means that it 

resulted to the most equal perceived colour differences for its fitted ellipses 

in the various regions. 

Concerning the background effect, it does not seem to be great difference 

between the grey and black background in terms of space uniformity. Each 

space seemed to generally have a similar performance with small variations. 

Nevertheless, it appears that the ellipses against the grey background were 

in overall larger. Therefore, it can be considered that there is a larger 

tolerance for this background. However, concerning the colour centres with 

different luminance, there is a clear trend that the colour centres with larger 

luminance have larger ellipses.   
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Chapter 5.  
Testing Colour Difference Formulae and Models  

The performance of different formulae and spaces were tested using the 

visual data of the experiments. The colour metrics examined are: xy 

chromaticity diagram, CIELAB, CIELUV, CIEDE2000, CIECAM02, and 

CAM02-UCS. Results were investigated in overall and in terms of 

background. A significance test was also conducted to compare and contrast 

the formulae performance.   

5.1. Introduction  

The first step was the calculation of colour difference using the formulae and 

models as described in Chapter 2. For the formulae for which a reference 

white was needed for the calculations, the display’s normalised white peak 

was used. While using colour appearance models, the viewing parameters 

relative to each background were applied. The measurement data for each 

background were respectively used for inputting the luminance of 

background Yb, and estimating the luminance of adapting field LA; and 

setting the surround conditions as dark.  

The second step was to use statistical metrics to determine the correlation 

between the visual and computed colour difference. For this Ph.D. study, 

STRESS was extensively used and the version for this case is given in 

Equation 5.1-1. The third step was to use an F-test in order to test the 

significance of the difference in the results when comparing the formulae 

between each other. 

Equation 5.1-1 STRESS formula for colour difference evaluation 
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As discussed before, a larger ellipse corresponds to a larger perceived 

colour difference in the area. But also, a small ellipse size can correspond to 

a relatively large perceived colour difference (Cui et al., 2001b). Thus, the 

tolerance of perceived colour difference varies according to the colour space 

and chromatic area. While investigating the ellipse patterns, it was important 

to reveal formed trends in each plane. However, the actual performance of 

each colour difference metric in predicting colour difference is better 

understood by evaluating the statistical relationship against the visual 

difference. Additional conclusions can be drawn, if the measure of fit of the 

ellipses is compared with the data analysis for the formulae performance. 

Therefore, the STRESS values of ellipse fitting can be used for correlation. 

Table 5.1-1 is a summarised version of the STRESS values for the ellipse 

fitting in each space. The smallest values in each row are bold and in each 

column are underlined. These values indicate that the visual data fitted the 

colour difference metrics examined well. 

Table 5.1-1 STRESS units for the ellipse fitting  

STRESS CIELAB u'v' xy CAM02-UCS 

Grey All 7.83 7.98 7.98 8.14 
Black All 7.45 7.52 7.56 7.91 
Grey Coloured 8.02 8.21 8.24 8.14 
Black Coloured 7.62 7.73 7.80 7.85 
Grey White 7.42 7.47 7.39 8.13 
Black White 7.06 7.06 7.02 8.04 

     
5.2. Performance of Colour Difference Metrics  

For each colour centre, the STRESS measure was used to statistically 

determine the performance of the colour difference metrics and the results 

are given in Table 5.2-1 and Table 5.2-2 for the grey and black background 

data respectively. STRESS was also calculated for each and every colour 

pair of the dataset as a whole, and it is given by the term ‘total’ in these 

tables. This measure is the most important when evaluating the aptitude of 

the colour difference formula in predicting visual differences. A synoptic table 
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is also given in Table 5.2-3 in order to easily compare the differences 

between the backgrounds in total.  

Table 5.2-1 Performance of colour difference metrics in STRESS units 
against the grey background  

Grey Background 
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1_18 11.0 8.2 14.0 8.8 16.3 18.8 
1_48 23.8 19.1 9.2 15.1 9.3 18.2 
10_18 17.0 10.7 17.4 11.6 11.7 24.0 
12_18 13.6 9.0 8.7 8.5 8.5 17.9 
12_48 17.6 8.6 12.5 11.8 9.6 17.4 
13_18 13.3 11.2 27.2 14.5 18.6 18.9 
19_18 22.2 19.9 33.3 19.4 26.0 19.8 
23_18 25.5 14.7 10.7 9.7 13.5 18.4 
24_18 22.8 11.3 11.3 15.8 22.8 25.0 
25_18 25.7 10.9 29.0 20.9 23.6 25.0 
25_48 20.1 11.2 27.6 15.9 21.5 17.0 
3_18 13.6 9.0 10.8 7.8 11.3 17.8 
3_48 14.5 10.1 7.7 10.5 10.2 11.1 
5_18 15.7 11.1 26.5 11.9 17.2 22.3 
8_18 25.0 13.7 10.3 26.3 18.0 22.8 
8_48 24.3 7.2 14.4 26.3 14.2 21.5 
B_48 20.5 9.2 24.7 10.5 15.2 12.5 
G_48 11.9 7.4 21.7 21.2 22.7 19.2 
W1_48 20.2 10.9 22.8 17.0 18.6 19.0 
W2_48 18.7 8.1 22.8 15.3 17.2 19.0 
W3_48 13.6 17.0 21.0 12.0 14.0 17.9 
W4_18 17.9 8.0 25.0 14.9 16.5 23.1 
W4_48 13.3 6.5 24.4 11.2 14.7 17.4 
W5_48 11.1 9.4 19.9 8.3 9.7 22.5 
W6_18 23.6 16.2 24.1 16.7 17.4 27.4 
W6_48 17.0 9.7 22.2 12.3 13.1 18.6 
Total 34.9 22.5 34.2 27.1 24.3 35.9 
Mean 18.8 11.5 19.8 14.9 16.1 20.3 
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Table 5.2-2 Performance of colour difference metrics in STRESS units 
against the black background 

Black Background 

 C
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1_18 12.6 8.8 10.3 7.3 12.3 13.9 
1_48 22.8 18.2 7.4 13.9 7.8 15.1 
10_18 16.5 10.1 16.4 11.1 10.7 22.6 
12_18 13.7 10.4 11.8 9.6 12.9 22.5 
12_48 20.2 9.8 14.2 14.0 10.6 16.6 
13_18 18.7 12.1 28.5 13.9 20.0 17.1 
19_18 18.6 21.6 30.2 16.7 23.3 15.0 
23_18 23.0 9.1 16.2 15.4 20.6 13.1 
24_18 26.7 9.6 10.9 16.8 21.5 20.0 
25_18 22.4 9.9 26.9 18.1 21.3 20.7 
25_48 19.7 11.8 25.8 15.0 20.0 16.4 
3_18 12.1 8.6 8.6 9.2 11.0 13.7 
3_48 12.0 8.5 10.1 10.2 13.0 12.0 
5_18 17.7 11.1 28.1 13.8 19.2 23.1 
8_18 21.3 14.2 8.9 23.1 14.9 17.7 
8_48 17.5 11.6 15.7 19.6 8.0 14.5 
B_48 22.7 10.4 26.3 12.6 16.9 12.1 
G_48 7.7 10.4 18.4 16.7 18.1 15.7 
W1_48 19.2 12.2 21.0 15.7 16.8 17.5 
W2_48 14.8 10.8 21.8 11.5 14.8 15.9 
W3_48 13.9 21.1 20.2 12.9 13.7 19.5 
W4_18 12.9 8.4 27.3 12.2 15.9 15.4 
W4_48 12.1 9.0 27.8 12.1 17.3 14.0 
W5_48 11.6 8.1 25.2 10.6 13.5 18.0 
W6_18 13.3 8.6 16.1 8.0 8.8 21.5 
W6_48 15.0 7.4 20.9 10.3 11.0 17.5 
Total 28.4 19.6 39.4 24.9 30.3 28.7 
Mean 17.3 11.5 19.8 13.9 15.7 17.4 
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Table 5.2-3 Summarised performance of colour difference formulae 
and colour spaces in STRESS values for each background 
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Grey  34.9 22.5 34.2 27.1 24.3 35.9 
Black  28.4 19.6 39.4 24.9 30.3 28.7 
 

5.3. Statistical Significance of Difference between Colour 
Difference Metrics 

To determine the significance of difference found among the colour 

difference metrics, an F-test was performed. As introduced in Chapter 2, the 

STRESS measure can be used to calculate the statistical significance. The 

STRESS formula in combination with a statistical distribution F-test can be 

used to investigate a formulated null hypothesis.  

For the testing the statistical significance between each colour difference 

formula, a two-tailed hypothesis was defined. It was based on the residual 

error variance VA,B, which in this case can be calculated by the STRESS 

between two formulae A and B as illustrated in Equation 5.3-1. The null 

hypothesis H0 and the hypothesis against H1 were defined as: (a) H0: VA=VB 

(formula A and B without significant difference, (b) H1: VA ≠ VB (formula A 

and B with significant difference). The FC value represents the lower critical 

value of the two-tailed hypothesis. It expresses the probability of the 

hypothesis, and it was calculated with 95% confidence level and 545 

degrees of freedom. Degrees of freedom were calculated as N minus 1, 

where N is the amount of samples in the population. So, if a formula A is 

significantly better than formula B, then F<FC applies. If formula A is 

significantly worse than formula B, then F>1/FC applies. If formula A is equal 

to formula B, then F=1 applies.  
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Equation 5.3-1 F-test between two different colour difference 
formulae  

𝑃𝑃 = 
VA
VB

=
∑�∆𝑉𝑉𝑖𝑖 − αA∆𝐸𝐸𝜋𝜋,𝑖𝑖 �

2

∑�∆𝑉𝑉𝑖𝑖 − αB∆𝐸𝐸𝜋𝜋,𝑖𝑖 �
2  =  

𝑆𝑆𝑇𝑇𝑅𝑅𝐸𝐸𝑆𝑆𝑆𝑆𝜋𝜋2

𝑆𝑆𝑇𝑇𝑅𝑅𝐸𝐸𝑆𝑆𝑆𝑆𝜋𝜋2
 

  

The FC was calculated as described above with a value of 0.845 for the 

amount of 546 samples used for each background. Accordingly, the 1/FC 

was found equal to 1.183. Table 5.3-1 and Table 5.3-2 summarise the 

statistical significance with these critical points for the grey and black 

background data respectively. The bold values show that the metric in the 

column performs significantly better than the corresponding metric in the 

row. Similarly, the underlined values show that the metric in the column 

performs significantly worse than the corresponding metric in the row. The 

rest of the values show very little or no significant difference. The findings 

from these tests will be discussed in the following section.  

Table 5.3-1 Statistical Significance of difference between colour 
difference metrics for the grey background data (F-test) 
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CIELAB 
 

0.416 0.960 0.603 0.485 1.058 
CIELUV 2.406 

 
2.310 1.451 1.166 2.546 

CIEDE2000 1.041 0.433 
 

0.628 0.505 1.102 
CIECAM02 1.658 0.689 1.593 

 
0.804 1.755 

CAM02-UCS 2.063 0.857 1.981 1.244 
 

2.183 
xy 0.945 0.393 0.908 0.570 0.458 

 
Mean 1.623 0.558 1.550 0.899 0.684 1.729 
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Table 5.3-2 Statistical Significance of difference between colour 
difference metrics for the black background data (F-test) 
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0.476 1.925 0.769 1.138 1.021 
CIELUV 2.100 

 
4.041 1.614 2.390 2.144 

CIEDE2000 0.520 0.247 
 

0.399 0.591 0.531 
CIECAM02 1.301 0.620 2.504 

 
1.481 1.329 

CAM02-UCS 0.879 0.418 1.691 0.675 
 

0.897 
xy 0.979 0.466 1.885 0.753 1.115 

 
Mean 1.156 0.446 2.409 0.842 1.343 1.184 

 

5.4. Discussion of Findings 

In this section, the results from the performance test for the colour difference 

metrics by using the STRESS measure and the significance of these 

resulted differences are discussed for each space and formula individually 

and in overall. 

5.4.1. The xy Chromaticity Diagram 

The idea of relating distance with colour difference is very old, and it has 

been thoroughly investigated in many studies together with studies about 

alteration of the xy chromaticity diagram to fix the non-uniformity (Davidson, 

1951). It has been long shown that equal distances in different parts of the 

xy chromaticity diagram do not represent equal perceived colour differences 

(MacAdam, 1942; Wright, 1941). The xy chromaticity diagram is not 

nowadays used for calculation of colour difference but it is still used as a 

chromaticity diagram. Therefore, it was also tested in this study. 

The xy chromaticity diagram did not fit the data very well. Especially, for the 

grey background data, it has the largest STRESS value. The significance 

test also indicates that it performs worse than CIELUV, CIECAM02 and 
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CAM02-UCS for this background as well. Yet, it performed significantly 

better than CIEDE2000 against the black background. This space was 

based on matching highly saturated colours, so it would be expected to 

perform a little better for MacAdam colour centres which were also matched 

using this space as reference.  

5.4.2. The CIELAB Colour Space and Formula 

The CIELAB was developed as a uniform colour space based on the 

Munsell scaling (McLaren, 1976). It is also one of the colour spaces 

considered for surface colours. It did not perform the worst but it seems to 

be at similar performance with the xy chromaticity diagram in terms of 

STRESS units. The same as the xy chromaticity diagram, it also performed 

significantly worse than CIELUV, CIECAM02 and CAM02-UCS for the grey 

background data, and significantly better than CIEDE2000 for the black 

background data. Both xy chromaticity diagram and CIELAB have also the 

same ratio/analogy between their results for the grey and black background 

data.  

5.4.3. The CIELUV Colour Space and Formula 

The CIELUV relates to the u’v’ chromaticity diagram and it is has a formula 

recommended for prediction of colour difference for additive reproduction 

stimuli. For the chromaticity coordinates, the u*v* values were combined with 

the lightness L* attribute. The formulae and space gave the smallest 

STRESS value in the set of formulae examined. These results confirm the 

colour discrimination ellipses as well. The formula predicted the visual 

differences more accurately for both backgrounds. Especially, against the 

black background, it gave the smallest STRESS value. These results also 

agree with the results from the study by Luo et al. about the performance of 

the formula in evaluating white light sources (Luo et al., 2015). Furthermore, 

the statistical test signifies that it performed significantly better than all the 

other tested metrics for both backgrounds. The only showed instance that 

there was no significant difference with another formula is with the CAM02-

UCS against the grey background. Even though the STRESS value for the 
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CIELUV was the smallest, the CAM02-UCS gave the next smallest STRESS 

value against the grey background. 

5.4.4. The CIEDE2000 Formula 

From previous studies, it has been seen that CIEDE2000 might not be good 

colour difference formula for evaluating lighting stimuli; as it has been 

developed by surface colours. However, it can be seen that the formula had 

its best performance while against the grey background. This implies that the 

experimental arrangement against the grey background did simulate surface 

mode at a certain extent, and therefore this formula performed better against 

the grey background conditions. At the same time, the formula had the 

largest STRESS value in the set; with a value of 39 STRESS units against 

the black background. The significance test also showed that the 

CIEDE2000 performed either significantly worse or without significant 

difference from the other metrics for both backgrounds. 

5.4.5. The CIECAM02 Colour Space and Model  

The CIECAM02 model followed the CIELUV in performance of predicted 

colour differences in terms of STRESS units. Firstly, there seems to be a 

discrepancy in the discrimination ellipses, and the STRESS values of the 

ellipse fitting were slightly larger than the rest. However, in terms of STRESS 

units, the CIECAM02 compensates well the viewing conditions and colour 

appearance of the lighting stimuli against the black background. The 

significance test also indicates that it performed significantly better than 

CIELAB, CIEDE2000 and xy chromaticity diagram, which agrees well with 

results from other studies. More interestingly, CIECAM02 also performed 

significantly better than CAM02-UCS against the black background, but 

worse than CAM02-UCS against the grey background. This implies that the 

background effect for these two formulae has large impact, even though they 

are both related colour appearance models. 
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5.4.6. The CAM02-UCS Colour Space and Model 

The CAM02-UCS had smaller STRESS units from the CIECAM02 against 

the grey background but the opposite was true against the black 

background. Having a STRESS value of 24 units for the grey background 

data, the CAM02-UCS seems to satisfy the expectation of performing well 

for surface colours. The significance test results also indicate that it 

performed significantly better than other formulae against the grey 

background. The only instance again that it showed no significant difference 

against the grey background is with the CIELUV formula. However, the 

opposite was again true for the black background data. 

5.4.7. Overall  

As discussed before, Cui et al. used a CRT monitor to display and evaluate 

colour pairs with the grey scale method (Berns, 1991; Cui et al., 2001b; Cui 

et al., 2001a). It was shown that surface colours can be represented on a 

display with this type of experiment and parametric settings. In the study by 

Cui et al., the colour stimuli were represented by square patches, different 

frames and separations. Moreover, it was an essential study for the 

development of the colour difference formula CIEDE2000. In this study, 

CIELUV formula outperformed the others; including CIEDE2000. Firstly, the 

CIEDE2000 can perform well for surface colours but not for lighting stimuli. 

Secondly, it suggests that the colour stimuli arrangement for this experiment 

could have potentially great impact in the outcome. This arrangement was 

chosen in order to simulate light sources (luminaires) on the display. The 

fact that a colour space such as CIELUV has outperformed the others 

strengthens the notion for using the metric for additive colour reproduction 

stimuli; such as lighting.  

Another reason that the colour appearance models did not perform as 

expected could be the difference between the viewing field of the experiment 

and the defined one in the CIE specifications. In the CIE colour appearance 

models, it is specified that the stimulus expands at 2 degrees from the centre 

of the viewing field. While in the experiment, the stimuli were of about 4 

degrees each. 
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The results showed an overall better performance for the CIELUV for both 

backgrounds and the significance test also supported the performance 

results. However, CAM02-UCS performed greatly for the data against the 

grey background, which implies that the grey background successfully 

simulates surface colour stimuli for the current data.   

5.5. Background Differences 

For comparing the performance of each formula and colour space in terms 

of background, the Table 5.2-3 can be advised. In this table, performance is 

summarised in STRESS values for the total of colour assessments and it 

can be easily derived which metric performed better for which background. 

In overall, it is clear that the CIELUV formula and space performed better 

than the other ones for both backgrounds. More specifically, it performed 

better by a large margin than the others. This indicates that CIELUV and u’v’ 

chromaticity diagram can be used for better predicting lighting stimuli and 

specifying chromaticity tolerances for both white and coloured light sources.  

Moreover, for the majority of metrics, the black background had largely 

smaller STRESS values (underlined values in each column of the Table 

5.2-3). Except for the CIEDE2000 and CAM02-UCS, for which the influence 

of the background caused them to perform better against the grey 

background. Given the fact that CIEDE2000 and CAM02-UCS colour space 

have been developed from surface colour datasets, these results support 

that the experimental arrangement against the grey background has been 

sufficiently correlated with surface mode stimuli. Therefore, both performed 

better under conditions that can simulate surface colours. In conclusion, 

these two are not recommended for lighting stimuli, but they are more 

appropriate for surface colours.  

5.6. Conclusions  

Six colour spaces/ formulae were examined: xy chromaticity diagram, 

CIELAB, CIELUV, CIEDE2000, CIECAM02, and CAM02-UCS. From these, 

CIELUV colour space performed better than the others by predicting 

perceptual colour difference more accurately. Moreover, the results showed 
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a slightly better performance against the black background than the grey 

background. This indicates that the simulation of light sources (luminaires) 

on a display could be successful. 
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Chapter 6.  
Conclusions  

6.1. Objectives and Summary  

As presented in the introductory chapter the main objectives were:  

• To understand the performance of MacAdam ellipses to fit the coloured 

lighting stimuli,  

• To investigate the performance of various colour difference metrics for 

predicting lighting stimuli, and 

• To understand the parametric effect on evaluating perceived lighting 

stimuli including change of background and luminance of colour centre. 

Different colour difference formulae and colour appearance models with their 

respective colour spaces and chromaticity diagrams have been investigated 

for predicting lighting stimuli. The above objectives have been met and the 

results were divided into two parts: colour discrimination ellipses and colour 

difference evaluation.  

The following conclusions can be drawn: 

1.  The results from the colour discrimination ellipses have shown that 

u’v’ chromaticity diagram can represent chromaticity differences more 

uniformly for the lighting stimuli. In more detail, the ratio A/B of the u’v’ 

chromaticity diagram had values closer to one for both backgrounds, and the 

STRESS values of ratio A/B was also the smallest. Because the majority of 

ellipse parameters (ratio A/B, semi-major axis A, and size) for the u’v’ 

chromaticity diagram lead to more equal sized circles, it was therefore 

concluded that it outperformed the others in terms of space uniformity by a 

large margin.  

2. Even though, the chromaticity ellipses did not appear to have a strong 

difference between the grey and black background data in terms of shape 

and orientation, the ellipses against the grey background were generally 

larger in every tested space. So, it could be said that in terms of space 
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uniformity, the data of the black background fitted the ellipses better. 

Observers perceived larger colour difference against a black background, 

i.e. there was a smaller tolerance against the black background.  

3. Concerning the colour centres having different lightness, the trend of 

colours with higher luminance to have larger ellipses was confirmed; 

agreeing with other studies. Moreover, this effect seems to be amplified if 

the luminance of the background is also high. 

4. The MacAdam experimental ellipses were proven really useful in the 

study of colour spaces and formulae but they are not recommended to be 

used as it is. Even though there seems to be some resemblance of the 

current ellipses with the MacAdam ones, the current ellipses do not 

systematically change size with the chromaticity region. In spite the fact that 

the current ellipses have at most cases similar orientation with MacAdam 

ellipses. However, the current ellipse were more circular and of more 

constant shape. 

5. The following colour difference formulae and colour spaces have 

been investigated in terms of colour difference evaluation: xy chromaticity 

diagram, CIELAB, CIELUV, CIEDE2000, CIECAM02, and CAM02-UCS. The 

CIELUV space and formulae performed better by confirming the pattern 

found by the analysis of the discrimination ellipses. It was followed by 

CIECAM02 and CAM02-UCS metrics, then CIELAB and xy chromaticity 

diagram, with the worst being the CIEDE2000. This implies that CIEDE2000 

is a good fit for the surface colour stimuli but not for lighting stimuli, as it was 

expected. However, CAM02-UCS space also performed very well against 

the grey background data; which implies that for this space the simulation of 

surface mode stimuli was possible. At the same time, it can be supported by 

the results that the simulation of the lighting sources (luminaires) on the 

display as light sources was quite successful since some formulae which are 

based on surface mode datasets performed poorly. The fact that the colour 

difference formulae performed better against the black background also 

suggests that it the stimuli might also be observed as lighting sources 

(luminaires) with the current experimental arrangement. However, there is 

still no strong evidence for this conclusion.   
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6.2. Future Work  

This work provided interesting insights in the contemporary colour difference 

metrics and discrimination ellipses. A unique dataset of lighting stimuli was 

acquired and the difference between surface and lighting stimuli was made 

evident. Yet, only four colour difference formulae were fitted into ellipses and 

the five colour spaces were evaluated in terms of colour difference. Other 

colour difference spaces and formulae could also be examined. Moreover, a 

greater variety of colours, as well as lightness differences could be 

examined with further experiments.  

Future work could involve another set of experiments by using a custom 

lighting apparatus in order to examine further if the simulation of lighting 

stimuli on display is possible, and to what extend the specific arrangement of 

samples affects the perception of colour stimuli as light sources.   

The present study reveals that there is a difference in evaluating colour 

differences between the surface and light colours. The present results 

suggest that u'v' chromaticity diagram and CIELUV are more suitable to be 

used in the lighting industry. However, there is a need to verify the present 

display data by using real light sources; especially with high dynamic range 

LED luminaires. 
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List of Abbreviations 

  

ANSI  American National Standards Institute 

CCT Correlated Colour Temperature 

CIE 
Commission Internationale de l’ Éclairage  
(International Commission on Illumination) 

CMM Colour Management Module 

CMS Colour Management System 

CRT Cathode Ray tube 

FPD Flat Panel Display 

GMA Gamut Mapping Algorithms 

ICC International Color Consortium 

ISO International Organization for Standardization 

JND Just Noticeable Difference 

LED Light-Emitting Diode 

LCD Liquid Crystal Display 

LUT Lookup table 

PCS Profile Connection Space 

SPD Spectral Power Distribution or S(λ) 

SSL Solid State Lighting  

TRC Tone Reproduction Curve 

TSR Tele-Spectroradiometer 

WCS Windows Color System 
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Appendix A 
Glossary 

A.1 Colour Fundamentals  

Colour 

matching 

functions 

“the amounts, in any trichromatic system, of the three 

reference colour stimuli needed to match by an additive 

mixture monochromatic components of an equal energy 

spectrum” (ASTM, 2009). Symbols: �̅�𝑒(𝜆𝜆), �̅�𝑔(𝜆𝜆),𝑏𝑏�(𝜆𝜆)  for 

RGB, �̅�𝑥(𝜆𝜆),𝑦𝑦�(𝜆𝜆), 𝑧𝑧̅(𝜆𝜆)  for CIE 1931 XYZ and 

�̅�𝑥10(𝜆𝜆),𝑦𝑦�10(𝜆𝜆), 𝑧𝑧1̅0(𝜆𝜆) for CIE 1964.  

Correlated 

colour 

temperature -  

Tcp, CCT 

“temperature of the Planckian radiator whose perceived 

colour most closely resembles that of a given stimulus 

seen at the same brightness and under specified viewing 

conditions” (CIE, 1987). 

Device-

dependent  

colour space 

“colour space defined by the characteristics of a real or 

idealized imaging device. Device-dependent colour 

spaces having a simple functional relationship to CIE 

colorimetry can also be categorized as colorimetric 

colour spaces. For example, additive RGB colour spaces 

corresponding to real or idealized CRT displays can be 

treated as colorimetric colour spaces” (ISO, 2004). 

Illuminant  “radiation with a relative spectral power distribution 

defined over the wavelength range that influences object 

colour perception” (CIE, 1987). 

Integrating 

sphere 

“an optical device used either to collect flux reflected or 

transmitted from a specimen into a hemisphere or to 

provide isotropic irradiation of a specimen from a 

complete hemisphere, consisting of an approximately 

spherical cavity with apertures (ports) for admitting and 

detecting flux, and usually having additional apertures 
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over which sample and reference specimens are placed 

and for including or excluding the specularly 

components” (ASTM, 2009).  

Luminous flux 

– Unit: lm 

“quantity derived from radiant flux Φe by evaluating the 

radiation according to its action upon the CIE standard 

photometric observer. For photopic vision 

is the spectral 

distribution of the radiant flux and V(λ) is the spectral 

luminous efficiency” (CIE, 1987). 

Plankian 

radiator (or 

else 

Blackbody, or 

Full radiator) 

“Thermal radiator that absorbs completely all incident 

energy whatever the wavelength, the direction of 

incidence, or the polarization. This radiator has, for any 

wavelength and in any direction, the maximum spectral 

concentration of radiance for a thermal radiator in the 

thermal equilibrium at a given temperature” (Grum and 

Becherer, 1979 p.25).  

Reflectance – 

ρ 

“ratio of the reflected radiant or luminous flux to the 

incident flux in the given conditions” (ASTM, 2009). 

Reflectance 

factor – R(λ) 

“ratio of the flux reflected from the specimen to the flux 

reflected from the perfect reflecting diffuser under the 

same geometric and spectral conditions of 

measurement” (ASTM, 2009). 

Relative   

spectral power 

distribution – 

S(λ)  

“ratio of the spectral power distribution of a source or 

illuminant to a fixed reference value” (ISO, 2009). 

Spectral power 

distribution – 

SPD 

“specification of an illuminant by the spectral composition 

of a radiometric quantity, such as radiance or radiant 

flux, as a function of wavelength” (ASTM, 2009). 

Specular Gloss “ratio of flux reflected in specular direction to incident flux 

for a specified angle of incidence and source and 
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receptor angular apertures” (ASTM, 2009). 

Tristimulus 

values – X,Y, Z 

and X10, Y10, 

Z10 

“amounts of the three reference colour stimuli, in a given 

trichromatic system, required to match the colour of the 

stimulus considered. In the CIE standard colorimetric 

systems, the tristimulus values are represented by the 

symbols X, Y, Z and X10, Y10, Z10.” (CIE, 1987).   

Uniform colour 

space 

“schematic arrangement of colours in space in which 

spatial internals between points correspond to visual 

differences between colours represented by those 

points” (ASTM, 2009). 
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A.2 Colour Management  

Calibration “operation of establishing that the measured values 

agree with the values specified by a standard or a 

characterization process” (ISO, 2008). 

Characterisation “process of relating device-dependent colour values to 

device-independent colour values” (ISO, 2008).  

Colour 

management 

The “communication of the associated data required for 

unambiguous interpretation of colour content data, and 

application of colour data conversions, as required, to 

produce the intended reproductions” (ISO, 2010). This 

implies the entire procedure from the capture of the 

stimulus to the reproduction in any output device. 

Colour 

Management 

System - CMS 

It generally describes “software dedicated to handling 

device-to-device conversion of colours. The ICC-based 

model for a CMS consists of four components: a PCS, 

device profiles, a CMM, and a set of rendering intents” 

(Fraser et al., 2005). 

Colour encoding It is a “generic term for a quantized digital encoding of a 

colour space, encompassing both colour space 

encodings and colour image encodings” (ISO, 2004). 

Colour space 

encoding 

 “digital encoding of a colour space, including the 

specification of a digital encoding method, and a colour 

space value range” (ISO, 2004). 

Colour image 

encoding 

 “digital encoding of the colour values for a digital image, 

including the specification of a colour space encoding, 

together with any information necessary to properly 

interpret the colour values such as the image state, the 

intended image viewing environment and the reference 

medium” (ISO, 2004) 

Colour rendering This term is often used in colour management as it 

describes the “mapping of image data representing the 
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colour-space coordinates of the elements of a scene to 

output-referred image data representing the colour-space 

coordinates of the elements of a reproduction” (ISO, 

2004). 

Colour re-

rendering 

This is the opposite of colour rendering. It is the 

“mapping of picture-referred image data appropriate for 

one specified real or virtual imaging medium and viewing 

conditions to picture-referred image data appropriate for 

a different real or virtual imaging medium and/or viewing 

conditions” (ISO, 2004). 
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A.3 Psychophysical Methods 

 

Magnitude 

Estimation 

Method 

“psychophysical method involving the assignment of a 

numerical value to each test stimulus that is proportional to 

image quality; typically, a reference stimulus with an 

assigned numerical value is present to anchor the rating 

scale” (ISO, 2005).   

Categorical  

Sort Method 

“psychophysical method involving the classification of a 

stimulus into one of several ordered categories, at least 

some of which are identified by adjectives or phrases that 

describe different levels of image quality or attributes 

thereof” (ISO, 2005).   

Pair 

Comparison 

Method 

“psychophysical method involving the choice of which of 

two simultaneously presented stimuli exhibits greater or 

lesser image quality or an attribute thereof, in accordance 

with a set of instructions given to the observer” (ISO, 

2005). 

Quality Ruler 

Method 

“psychophysical method that involves quality or attribute 

assessment of a test stimulus against a series of ordered, 

univariate reference stimuli that differ by known numbers 

of just noticeable differences”  (ISO, 2005). 

Rank Ordering 

Method 

“psychophysical method involving the arrangement by an 

observer of a series of stimuli in order of increasing or 

decreasing image quality or an attribute thereof, in 

accordance with the set of instructions provided” (ISO, 

2005). 

Triplet 

Comparison 

“psychophysical method that involves the simultaneous 

scaling of three test stimuli with respect to image quality or 

an attribute thereof, in accordance with a set of instructions 

given to the observer” (ISO, 2005). 
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Appendix B 
CIECAM02 Forward Model 

𝛥𝛥𝐸𝐸𝐶𝐶𝐴𝐴𝑀𝑀02 = �∆𝐽𝐽2 + ∆𝑎𝑎2 + ∆𝑏𝑏2 

� 
𝑅𝑅
𝐺𝐺
𝜋𝜋

 � = 𝑴𝑴𝐶𝐶𝐴𝐴𝑇𝑇02  � 
𝑋𝑋
𝑌𝑌
𝑍𝑍

 � 

𝑴𝑴𝐶𝐶𝐴𝐴𝑇𝑇02 = �
0.7328 0.4296 −0.1624
−0.7036 1.6975 0.0061
0.0030 0.0136 0.9834

� 

𝑀𝑀 = 𝑃𝑃 �1 − (1 3.6⁄ )𝑒𝑒−�𝐿𝐿𝐴𝐴+42� 92⁄
� 

𝑅𝑅𝐶𝐶 = ��𝑌𝑌𝑊𝑊   𝑀𝑀 𝑅𝑅𝑊𝑊� � + (1 − 𝑀𝑀)� 𝑅𝑅 

𝐺𝐺𝐶𝐶 = ��𝑌𝑌𝑊𝑊   𝑀𝑀 𝐺𝐺𝑊𝑊� � + (1 − 𝑀𝑀)� 𝐺𝐺 

𝜋𝜋𝐶𝐶 = ��𝑌𝑌𝑊𝑊   𝑀𝑀 𝜋𝜋𝑊𝑊� � + (1 − 𝑀𝑀)� 𝜋𝜋 

𝑘𝑘 = 1 (5 𝛥𝛥𝐴𝐴 + 1)⁄  
𝑃𝑃𝐿𝐿 = 0.2 𝑘𝑘4 (5 𝛥𝛥𝐴𝐴) + 0.1 (1 − 𝑘𝑘4)2  �5 𝛥𝛥𝐴𝐴

3  
𝑛𝑛 = 𝑌𝑌𝑎𝑎 𝑌𝑌𝑤𝑤⁄  

𝑁𝑁𝑎𝑎𝑎𝑎 = 𝑁𝑁𝑐𝑐𝑎𝑎 = 0.725 (1 𝑛𝑛⁄ )0.2 
𝑧𝑧 = 1.48 + √𝑛𝑛 

� 
𝑅𝑅′
𝐺𝐺′
𝜋𝜋′

 � = 𝑴𝑴𝐻𝐻𝐻𝐻𝐻𝐻  𝑴𝑴𝐶𝐶𝐴𝐴𝑇𝑇02
−1 � 

𝑅𝑅𝐶𝐶
𝐺𝐺𝐶𝐶
𝜋𝜋𝐶𝐶

 � 

𝑴𝑴𝐻𝐻𝐻𝐻𝐻𝐻 = �
0.38971 0.68898 −0.07868
−0.22981 1.18340 0.04641
0.00000 0.00000 1.00000

� 

𝑴𝑴𝐶𝐶𝐴𝐴𝑇𝑇02
−1 = �

1.096124 −0.278869 0.182745
0.454369 0.473533 0.072098
−0.009628 −0.005698 1.015326

� 

𝑅𝑅𝑎𝑎′ = 
400 (𝑃𝑃𝐿𝐿 𝑅𝑅′ 100⁄ )0.42

27.13 + (𝑃𝑃𝐿𝐿 𝑅𝑅′ 100⁄ )0.42 + 0.1 

𝐺𝐺𝑎𝑎′ = 
400 (𝑃𝑃𝐿𝐿 𝐺𝐺′ 100⁄ )0.42

27.13 + (𝑃𝑃𝐿𝐿 𝐺𝐺′ 100⁄ )0.42 + 0.1 
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𝜋𝜋𝑎𝑎′ = 
400 (𝑃𝑃𝐿𝐿 𝐺𝐺′ 100⁄ )0.42

27.13 + (𝑃𝑃𝐿𝐿 𝐺𝐺′ 100⁄ )0.42 + 0.1 

𝑎𝑎 = 𝑅𝑅𝑎𝑎′ − 12 𝐺𝐺𝑎𝑎′ 11 + 𝜋𝜋𝑎𝑎′ 11⁄⁄  

𝑏𝑏 = (1 9⁄ ) (𝑅𝑅𝑎𝑎′ + 𝐺𝐺𝑎𝑎′ − 2 𝜋𝜋𝑎𝑎′ ) 

ℎ = tan−1(𝑏𝑏 𝑎𝑎⁄ ) 

 Red Yellow Green Blue Red 

𝑖𝑖 1 2 3 4 5 

ℎ𝑖𝑖 20.14 90.00 164.25 237.53 380.4 

𝑒𝑒𝑖𝑖 0.8 07 1.0 1.2 0.8 

𝛥𝛥𝑖𝑖 0.0 100.0 200.0 300.0 400.0 
 

𝑒𝑒𝑡𝑡 = 1
4� �cos�ℎ  𝜋𝜋 180� + 2� + 3.8� 

𝛥𝛥 = 𝛥𝛥𝑖𝑖 +
100 (ℎ′ − ℎ𝑖𝑖) 𝑒𝑒𝑖𝑖⁄

(ℎ′ − ℎ𝑖𝑖) 𝑒𝑒𝑖𝑖⁄ + (ℎ𝑖𝑖+1 − ℎ′) 𝑒𝑒𝑖𝑖+1⁄  

𝜋𝜋 = [2 𝑅𝑅𝑎𝑎′ + 𝐺𝐺𝑎𝑎′ + (1 20⁄ ) 𝜋𝜋𝑎𝑎′ − 0.305] 𝑁𝑁𝑎𝑎𝑎𝑎 

𝐽𝐽 = 100 (𝜋𝜋 𝜋𝜋𝑤𝑤⁄ )𝑐𝑐 𝑧𝑧 

𝑄𝑄 = (4 𝑐𝑐⁄ ) �𝐽𝐽 100⁄  × (𝜋𝜋𝑤𝑤 + 4) 𝑃𝑃𝐿𝐿0.25 

𝑡𝑡 = 
(50000 13⁄ ) 𝑁𝑁𝑐𝑐 𝑁𝑁𝑐𝑐𝑎𝑎 𝑒𝑒𝑡𝑡 √𝑎𝑎2 + 𝑏𝑏2

𝑅𝑅𝑎𝑎′ + 𝐺𝐺𝑎𝑎′ + (21 20⁄ ) 𝜋𝜋𝑎𝑎′
 

𝛥𝛥 = 𝑡𝑡0.9 �𝐽𝐽 100⁄  × (1.64 + 0.29𝑛𝑛)0.73 

𝑀𝑀 = 𝛥𝛥 𝑃𝑃𝐿𝐿0.25 

𝑟𝑟 = 100 �𝑀𝑀 𝑄𝑄⁄   

𝑎𝑎𝐶𝐶 = 𝛥𝛥 cos(ℎ) 
𝑏𝑏𝐶𝐶 = 𝛥𝛥 sin(ℎ) 
𝑎𝑎𝑀𝑀 = 𝑀𝑀 cos(ℎ) 
𝑏𝑏𝑀𝑀 = 𝑀𝑀 sin(ℎ) 
𝑎𝑎𝑠𝑠 = 𝑟𝑟 cos(ℎ) 
𝑏𝑏𝑠𝑠 = 𝑟𝑟 sin(ℎ) 
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Appendix C 
Experimental Data against the Grey Background  

  
Xo Yo Zo 

    
 

White 95.19 100.00 97.12 
    

 
Black  0.801 0.850 0.880 

    
 

Gray  22.98 23.57 27.80 (fullscreen) 
  Centre Sample Xc Yc Zc Xs Ys Zs Ratio 

1_18 1.01 10.53 18.13 12.21 10.95 17.82 11.84 0.695 
1_18 1.02 10.53 18.13 12.21 10.90 17.80 11.58 0.64 
1_18 1.03 10.53 18.13 12.21 10.92 18.08 11.33 0.685 
1_18 1.04 10.53 18.13 12.21 10.86 18.04 11.03 0.71 
1_18 1.05 10.53 18.13 12.21 10.83 18.03 10.87 0.705 
1_18 1.06 10.53 18.13 12.21 10.68 17.97 10.71 0.75 
1_18 1.07 10.53 18.13 12.21 10.60 17.94 10.72 0.67 
1_18 1.08 10.53 18.13 12.21 10.67 18.23 10.57 0.715 
1_18 1.09 10.53 18.13 12.21 10.71 18.25 10.76 0.695 
1_18 1.10 10.53 18.13 12.21 10.57 18.18 10.76 0.67 
1_18 1.11 10.53 18.13 12.21 10.44 18.20 10.76 0.615 
1_18 1.12 10.53 18.13 12.21 10.28 18.12 10.76 0.615 
1_18 1.13 10.53 18.13 12.21 10.20 18.19 10.76 0.61 
1_18 1.14 10.53 18.13 12.21 10.19 18.07 10.94 0.565 
1_18 1.15 10.53 18.13 12.21 9.89 17.91 10.92 0.68 
1_18 1.16 10.53 18.13 12.21 9.89 17.91 10.92 0.63 
1_18 1.17 10.53 18.13 12.21 9.95 18.04 11.07 0.645 
1_18 1.18 10.53 18.13 12.21 10.01 18.07 11.38 0.585 
1_18 1.19 10.53 18.13 12.21 9.97 18.05 11.65 0.57 
1_18 1.20 10.53 18.13 12.21 9.84 17.97 11.89 0.615 
1_18 1.21 10.53 18.13 12.21 10.11 18.11 12.43 0.615 
 

  



- 195 - 

Centre Sample Xc Yc Zc Xs Ys Zs Ratio 
1_48 1.01 27.16 46.70 30.42 28.18 46.68 29.93 0.695 
1_48 1.02 27.16 46.70 30.42 28.16 46.69 29.66 0.715 
1_48 1.03 27.16 46.70 30.42 27.94 46.56 28.61 0.71 
1_48 1.04 27.16 46.70 30.42 28.00 46.94 28.69 0.665 
1_48 1.05 27.16 46.70 30.42 27.68 46.79 28.19 0.715 
1_48 1.06 27.16 46.70 30.42 27.60 46.76 27.78 0.73 
1_48 1.07 27.16 46.70 30.42 27.36 46.83 27.32 0.81 
1_48 1.08 27.16 46.70 30.42 27.36 46.86 27.18 0.815 
1_48 1.09 27.16 46.70 30.42 27.10 46.71 27.30 0.825 
1_48 1.10 27.16 46.70 30.42 26.76 46.55 27.15 0.755 
1_48 1.11 27.16 46.70 30.42 26.54 46.43 27.13 0.715 
1_48 1.12 27.16 46.70 30.42 26.36 46.48 27.10 0.8 
1_48 1.13 27.16 46.70 30.42 26.25 46.92 27.31 0.82 
1_48 1.14 27.16 46.70 30.42 26.13 46.89 27.80 0.715 
1_48 1.15 27.16 46.70 30.42 25.91 46.88 28.18 0.725 
1_48 1.16 27.16 46.70 30.42 25.54 46.69 28.64 0.685 
1_48 1.17 27.16 46.70 30.42 25.41 46.60 28.61 0.615 
1_48 1.18 27.16 46.70 30.42 25.42 46.52 29.46 0.7 
1_48 1.19 27.16 46.70 30.42 25.53 46.68 29.93 0.635 
1_48 1.20 27.16 46.70 30.42 25.31 46.43 30.34 0.65 
1_48 1.21 27.16 46.70 30.42 25.32 46.45 31.16 0.8 
10_18 10.01 29.52 18.07 28.35 30.35 18.18 27.87 0.585 
10_18 10.02 29.52 18.07 28.35 30.06 18.03 27.56 0.62 
10_18 10.03 29.52 18.07 28.35 30.17 18.23 27.62 0.62 
10_18 10.04 29.52 18.07 28.35 30.20 18.25 27.52 0.56 
10_18 10.05 29.52 18.07 28.35 29.74 18.07 27.01 0.6 
10_18 10.06 29.52 18.07 28.35 29.35 17.88 26.68 0.555 
10_18 10.07 29.52 18.07 28.35 29.26 17.83 26.23 0.62 
10_18 10.08 29.52 18.07 28.35 29.24 18.10 26.28 0.585 
10_18 10.09 29.52 18.07 28.35 29.40 18.19 26.29 0.56 
10_18 10.10 29.52 18.07 28.35 29.33 18.19 26.72 0.57 
10_18 10.11 29.52 18.07 28.35 29.33 18.14 26.74 0.585 
10_18 10.12 29.52 18.07 28.35 29.08 18.07 26.27 0.63 
10_18 10.13 29.52 18.07 28.35 29.19 18.26 26.69 0.575 
10_18 10.14 29.52 18.07 28.35 28.86 18.09 26.66 0.615 
10_18 10.15 29.52 18.07 28.35 28.68 17.86 26.71 0.6 
10_18 10.16 29.52 18.07 28.35 28.75 18.03 27.00 0.59 
10_18 10.17 29.52 18.07 28.35 28.85 18.08 27.47 0.56 
10_18 10.18 29.52 18.07 28.35 28.47 17.88 27.46 0.64 
10_18 10.19 29.52 18.07 28.35 28.48 17.88 27.58 0.605 
10_18 10.20 29.52 18.07 28.35 28.72 18.15 28.37 0.6 
10_18 10.21 29.52 18.07 28.35 28.69 17.98 28.66 0.615 
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Centre Sample Xc Yc Zc Xs Ys Zs Ratio 
12_18 12.01 21.75 18.06 23.71 22.49 18.11 23.70 0.64 
12_18 12.01 21.75 18.06 23.71 22.49 18.11 23.70 0.67 
12_18 12.02 21.75 18.06 23.71 22.47 18.10 23.49 0.66 
12_18 12.02 21.75 18.06 23.71 22.47 18.10 23.49 0.735 
12_18 12.03 21.75 18.06 23.71 22.22 17.94 22.36 0.87 
12_18 12.03 21.75 18.06 23.71 22.22 17.94 22.36 0.8 
12_18 12.04 21.75 18.06 23.71 22.30 18.17 22.40 0.8 
12_18 12.04 21.75 18.06 23.71 22.30 18.17 22.40 0.78 
12_18 12.05 21.75 18.06 23.71 22.04 18.04 22.39 0.905 
12_18 12.05 21.75 18.06 23.71 22.04 18.04 22.39 0.77 
12_18 12.06 21.75 18.06 23.71 21.94 17.81 22.18 0.845 
12_18 12.06 21.75 18.06 23.71 21.94 17.81 22.18 0.815 
12_18 12.07 21.75 18.06 23.71 21.99 18.02 22.01 0.78 
12_18 12.07 21.75 18.06 23.71 21.99 18.02 22.01 0.89 
12_18 12.08 21.75 18.06 23.71 21.70 18.03 21.61 0.95 
12_18 12.08 21.75 18.06 23.71 21.70 18.03 21.61 0.81 
12_18 12.09 21.75 18.06 23.71 21.77 18.06 21.98 0.76 
12_18 12.09 21.75 18.06 23.71 21.77 18.06 21.98 0.72 
12_18 12.10 21.75 18.06 23.71 21.60 18.16 21.66 0.895 
12_18 12.10 21.75 18.06 23.71 21.60 18.16 21.66 0.875 
12_18 12.11 21.75 18.06 23.71 21.71 18.43 21.74 0.97 
12_18 12.11 21.75 18.06 23.71 21.71 18.43 21.74 0.91 
12_18 12.12 21.75 18.06 23.71 21.49 18.10 22.03 0.82 
12_18 12.12 21.75 18.06 23.71 21.49 18.10 22.03 0.79 
12_18 12.13 21.75 18.06 23.71 21.58 18.35 22.07 0.855 
12_18 12.13 21.75 18.06 23.71 21.58 18.35 22.07 0.9 
12_18 12.14 21.75 18.06 23.71 21.49 18.31 22.27 0.79 
12_18 12.14 21.75 18.06 23.71 21.49 18.31 22.27 0.8 
12_18 12.15 21.75 18.06 23.71 21.50 18.31 22.45 0.775 
12_18 12.15 21.75 18.06 23.71 21.50 18.31 22.45 0.685 
12_18 12.16 21.75 18.06 23.71 21.34 18.22 22.44 0.695 
12_18 12.16 21.75 18.06 23.71 21.34 18.22 22.44 0.735 
12_18 12.17 21.75 18.06 23.71 21.06 18.14 22.42 0.89 
12_18 12.17 21.75 18.06 23.71 21.06 18.14 22.42 0.715 
12_18 12.18 21.75 18.06 23.71 21.12 18.17 22.80 0.76 
12_18 12.18 21.75 18.06 23.71 21.12 18.17 22.80 0.71 
12_18 12.19 21.75 18.06 23.71 21.29 18.27 23.55 0.655 
12_18 12.19 21.75 18.06 23.71 21.29 18.27 23.55 0.745 
12_18 12.20 21.75 18.06 23.71 21.28 18.19 23.55 0.695 
12_18 12.20 21.75 18.06 23.71 21.28 18.19 23.55 0.66 
12_18 12.21 21.75 18.06 23.71 21.35 18.23 23.94 0.685 
12_18 12.21 21.75 18.06 23.71 21.35 18.23 23.94 0.67 
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Centre Sample Xc Yc Zc Xs Ys Zs Ratio 
12_48 12.01 56.81 46.75 61.01 58.06 46.50 60.42 0.74 
12_48 12.01 56.81 46.75 61.01 58.06 46.50 60.42 0.66 
12_48 12.02 56.81 46.75 61.01 58.09 46.78 59.83 0.725 
12_48 12.02 56.81 46.75 61.01 58.09 46.78 59.83 0.685 
12_48 12.03 56.81 46.75 61.01 57.50 46.16 59.33 0.71 
12_48 12.03 56.81 46.75 61.01 57.50 46.16 59.33 0.7 
12_48 12.04 56.81 46.75 61.01 57.29 46.37 58.49 0.755 
12_48 12.04 56.81 46.75 61.01 57.29 46.37 58.49 0.74 
12_48 12.05 56.81 46.75 61.01 57.21 46.32 57.97 0.705 
12_48 12.05 56.81 46.75 61.01 57.21 46.32 57.97 0.7 
12_48 12.06 56.81 46.75 61.01 57.04 46.73 57.56 0.735 
12_48 12.06 56.81 46.75 61.01 57.04 46.73 57.56 0.685 
12_48 12.07 56.81 46.75 61.01 56.75 46.55 57.12 0.745 
12_48 12.07 56.81 46.75 61.01 56.75 46.55 57.12 0.695 
12_48 12.08 56.81 46.75 61.01 56.36 46.57 56.71 0.67 
12_48 12.08 56.81 46.75 61.01 56.36 46.57 56.71 0.73 
12_48 12.09 56.81 46.75 61.01 56.19 46.70 56.76 0.695 
12_48 12.09 56.81 46.75 61.01 56.19 46.70 56.76 0.725 
12_48 12.10 56.81 46.75 61.01 55.68 46.42 56.72 0.75 
12_48 12.10 56.81 46.75 61.01 55.68 46.42 56.72 0.7 
12_48 12.11 56.81 46.75 61.01 55.38 46.33 56.67 0.69 
12_48 12.11 56.81 46.75 61.01 55.38 46.33 56.67 0.695 
12_48 12.12 56.81 46.75 61.01 55.31 46.52 56.04 0.665 
12_48 12.12 56.81 46.75 61.01 55.31 46.52 56.04 0.78 
12_48 12.13 56.81 46.75 61.01 55.24 46.63 56.69 0.745 
12_48 12.13 56.81 46.75 61.01 55.24 46.63 56.69 0.73 
12_48 12.14 56.81 46.75 61.01 54.94 46.68 57.11 0.785 
12_48 12.14 56.81 46.75 61.01 54.94 46.68 57.11 0.83 
12_48 12.15 56.81 46.75 61.01 54.74 46.61 57.56 0.77 
12_48 12.15 56.81 46.75 61.01 54.74 46.61 57.56 0.775 
12_48 12.16 56.81 46.75 61.01 54.79 46.38 58.03 0.885 
12_48 12.16 56.81 46.75 61.01 54.79 46.38 58.03 0.685 
12_48 12.17 56.81 46.75 61.01 54.70 46.55 58.98 0.72 
12_48 12.17 56.81 46.75 61.01 54.70 46.55 58.98 0.67 
12_48 12.18 56.81 46.75 61.01 54.87 46.64 59.85 0.74 
12_48 12.18 56.81 46.75 61.01 54.87 46.64 59.85 0.72 
12_48 12.19 56.81 46.75 61.01 54.33 46.33 60.00 0.85 
12_48 12.19 56.81 46.75 61.01 54.33 46.33 60.00 0.74 
12_48 12.20 56.81 46.75 61.01 54.46 46.19 60.55 0.76 
12_48 12.20 56.81 46.75 61.01 54.46 46.19 60.55 0.75 
12_48 12.21 56.81 46.75 61.01 54.73 46.32 61.64 0.81 
12_48 12.21 56.81 46.75 61.01 54.73 46.32 61.64 0.82 
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Centre Sample Xc Yc Zc Xs Ys Zs Ratio 
13_18 13.01 16.68 18.28 37.66 17.23 18.15 36.95 0.75 
13_18 13.02 16.68 18.28 37.66 17.17 18.12 36.59 0.63 
13_18 13.03 16.68 18.28 37.66 17.13 18.10 36.37 0.73 
13_18 13.04 16.68 18.28 37.66 17.04 18.06 35.96 0.635 
13_18 13.05 16.68 18.28 37.66 16.94 18.26 36.03 0.585 
13_18 13.06 16.68 18.28 37.66 16.94 18.27 36.05 0.56 
13_18 13.07 16.68 18.28 37.66 16.79 18.19 35.59 0.57 
13_18 13.08 16.68 18.28 37.66 16.57 18.24 35.13 0.58 
13_18 13.09 16.68 18.28 37.66 16.64 18.27 35.58 0.51 
13_18 13.10 16.68 18.28 37.66 16.41 18.16 35.63 0.54 
13_18 13.11 16.68 18.28 37.66 16.31 18.18 35.54 0.535 
13_18 13.12 16.68 18.28 37.66 16.29 18.38 35.66 0.57 
13_18 13.13 16.68 18.28 37.66 16.13 18.11 35.15 0.56 
13_18 13.14 16.68 18.28 37.66 16.10 18.09 35.61 0.55 
13_18 13.15 16.68 18.28 37.66 15.99 18.03 36.05 0.57 
13_18 13.16 16.68 18.28 37.66 15.89 18.17 36.07 0.66 
13_18 13.17 16.68 18.28 37.66 15.74 18.09 36.04 0.67 
13_18 13.18 16.68 18.28 37.66 15.73 18.09 36.76 0.69 
13_18 13.19 16.68 18.28 37.66 15.87 18.16 36.73 0.66 
13_18 13.20 16.68 18.28 37.66 15.78 18.11 37.03 0.65 
13_18 13.21 16.68 18.28 37.66 15.77 18.10 37.04 0.61 
19_18 19.01 27.26 18.15 6.69 27.87 18.18 6.52 0.56 
19_18 19.02 27.26 18.15 6.69 27.59 18.02 6.27 0.57 
19_18 19.03 27.26 18.15 6.69 27.66 18.23 6.14 0.625 
19_18 19.04 27.26 18.15 6.69 27.63 18.22 5.98 0.57 
19_18 19.05 27.26 18.15 6.69 27.29 18.03 5.76 0.645 
19_18 19.06 27.26 18.15 6.69 27.09 18.07 5.76 0.64 
19_18 19.07 27.26 18.15 6.69 27.24 18.15 5.38 0.595 
19_18 19.08 27.26 18.15 6.69 27.06 18.05 5.56 0.745 
19_18 19.09 27.26 18.15 6.69 26.81 18.07 5.40 0.635 
19_18 19.10 27.26 18.15 6.69 26.82 18.07 5.40 0.685 
19_18 19.11 27.26 18.15 6.69 26.58 18.10 5.39 0.7 
19_18 19.12 27.26 18.15 6.69 26.58 18.11 5.38 0.755 
19_18 19.13 27.26 18.15 6.69 26.56 17.94 5.39 0.635 
19_18 19.14 27.26 18.15 6.69 26.30 17.94 5.55 0.665 
19_18 19.15 27.26 18.15 6.69 26.34 17.95 5.75 0.695 
19_18 19.16 27.26 18.15 6.69 26.51 18.23 5.80 0.675 
19_18 19.17 27.26 18.15 6.69 26.15 18.04 6.00 0.65 
19_18 19.18 27.26 18.15 6.69 26.20 18.07 6.16 0.685 
19_18 19.19 27.26 18.15 6.69 26.22 18.08 6.31 0.715 
19_18 19.20 27.26 18.15 6.69 26.20 17.90 6.68 0.59 
19_18 19.21 27.26 18.15 6.69 26.20 17.90 6.68 0.64 
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Centre Sample Xc Yc Zc Xs Ys Zs Ratio 
23_18 23.01 22.56 18.19 40.20 23.12 18.04 39.78 0.76 
23_18 23.02 22.56 18.19 40.20 23.04 18.01 39.39 0.725 
23_18 23.03 22.56 18.19 40.20 23.11 18.20 39.47 0.765 
23_18 23.04 22.56 18.19 40.20 23.05 18.17 39.13 0.82 
23_18 23.05 22.56 18.19 40.20 22.74 18.02 38.58 0.73 
23_18 23.06 22.56 18.19 40.20 22.74 18.11 38.52 0.735 
23_18 23.07 22.56 18.19 40.20 22.61 18.05 38.52 0.675 
23_18 23.08 22.56 18.19 40.20 22.62 18.24 38.15 0.69 
23_18 23.09 22.56 18.19 40.20 22.40 17.94 37.52 0.675 
23_18 23.10 22.56 18.19 40.20 22.04 17.93 37.56 0.575 
23_18 23.11 22.56 18.19 40.20 22.04 18.09 37.47 0.645 
23_18 23.12 22.56 18.19 40.20 21.77 17.94 37.44 0.55 
23_18 23.13 22.56 18.19 40.20 21.77 17.96 38.09 0.575 
23_18 23.14 22.56 18.19 40.20 21.86 18.17 38.15 0.555 
23_18 23.15 22.56 18.19 40.20 21.63 18.05 38.61 0.66 
23_18 23.16 22.56 18.19 40.20 21.90 18.19 38.63 0.615 
23_18 23.17 22.56 18.19 40.20 21.85 18.37 39.21 0.725 
23_18 23.18 22.56 18.19 40.20 22.16 18.53 39.58 0.655 
23_18 23.19 22.56 18.19 40.20 21.91 18.40 39.56 0.68 
23_18 23.20 22.56 18.19 40.20 21.97 18.42 39.98 0.78 
23_18 23.21 22.56 18.19 40.20 21.93 18.20 40.27 0.75 
24_18 24.01 32.81 17.96 58.59 33.77 18.14 58.05 0.6 
24_18 24.02 32.81 17.96 58.59 33.71 18.12 57.56 0.665 
24_18 24.03 32.81 17.96 58.59 33.60 18.10 57.64 0.56 
24_18 24.04 32.81 17.96 58.59 33.52 18.16 57.00 0.635 
24_18 24.05 32.81 17.96 58.59 33.52 18.27 56.65 0.575 
24_18 24.06 32.81 17.96 58.59 33.19 18.10 57.04 0.585 
24_18 24.07 32.81 17.96 58.59 32.89 18.02 56.12 0.565 
24_18 24.08 32.81 17.96 58.59 32.82 18.10 56.67 0.515 
24_18 24.09 32.81 17.96 58.59 32.72 18.05 56.17 0.55 
24_18 24.10 32.81 17.96 58.59 32.40 17.98 56.10 0.585 
24_18 24.11 32.81 17.96 58.59 32.18 17.96 56.07 0.545 
24_18 24.12 32.81 17.96 58.59 32.25 18.13 56.15 0.53 
24_18 24.13 32.81 17.96 58.59 32.37 18.18 56.71 0.51 
24_18 24.14 32.81 17.96 58.59 31.75 17.98 56.11 0.585 
24_18 24.15 32.81 17.96 58.59 31.90 17.94 57.13 0.605 
24_18 24.16 32.81 17.96 58.59 31.75 17.98 57.08 0.61 
24_18 24.17 32.81 17.96 58.59 31.93 18.06 57.09 0.645 
24_18 24.18 32.81 17.96 58.59 32.05 18.12 57.73 0.575 
24_18 24.19 32.81 17.96 58.59 31.86 17.92 57.78 0.62 
24_18 24.20 32.81 17.96 58.59 32.13 18.16 58.22 0.625 
24_18 24.21 32.81 17.96 58.59 32.22 18.09 58.80 0.6 
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Centre Sample Xc Yc Zc Xs Ys Zs Ratio 
25_18 25.01 21.58 18.39 6.27 21.78 18.11 5.81 0.61 
25_18 25.02 21.58 18.39 6.27 21.75 18.10 5.62 0.62 
25_18 25.03 21.58 18.39 6.27 21.76 18.11 5.62 0.605 
25_18 25.04 21.58 18.39 6.27 21.71 18.10 5.28 0.57 
25_18 25.05 21.58 18.39 6.27 21.71 18.10 5.28 0.585 
25_18 25.06 21.58 18.39 6.27 21.66 18.24 5.30 0.6 
25_18 25.07 21.58 18.39 6.27 21.62 18.21 5.15 0.63 
25_18 25.08 21.58 18.39 6.27 21.33 18.25 4.96 0.57 
25_18 25.09 21.58 18.39 6.27 21.29 18.24 4.78 0.685 
25_18 25.10 21.58 18.39 6.27 21.34 18.26 4.96 0.645 
25_18 25.11 21.58 18.39 6.27 21.08 18.20 4.77 0.695 
25_18 25.12 21.58 18.39 6.27 20.90 18.11 4.93 0.66 
25_18 25.13 21.58 18.39 6.27 20.99 18.28 5.16 0.72 
25_18 25.14 21.58 18.39 6.27 20.94 18.14 5.15 0.575 
25_18 25.15 21.58 18.39 6.27 21.01 18.28 5.38 0.575 
25_18 25.16 21.58 18.39 6.27 20.75 18.13 5.37 0.655 
25_18 25.17 21.58 18.39 6.27 20.82 18.18 5.63 0.61 
25_18 25.18 21.58 18.39 6.27 20.84 18.19 5.80 0.64 
25_18 25.19 21.58 18.39 6.27 20.88 18.21 6.00 0.535 
25_18 25.20 21.58 18.39 6.27 20.94 18.25 6.22 0.545 
25_18 25.21 21.58 18.39 6.27 20.99 18.29 6.39 0.59 
25_48 25.01 54.78 46.26 15.05 56.53 46.62 15.03 0.65 
25_48 25.02 54.78 46.26 15.05 56.46 46.58 14.64 0.67 
25_48 25.03 54.78 46.26 15.05 56.36 46.79 14.16 0.635 
25_48 25.04 54.78 46.26 15.05 55.73 46.25 13.22 0.71 
25_48 25.05 54.78 46.26 15.05 55.60 46.41 13.11 0.765 
25_48 25.06 54.78 46.26 15.05 55.64 46.65 12.74 0.81 
25_48 25.07 54.78 46.26 15.05 55.08 46.43 12.68 0.81 
25_48 25.08 54.78 46.26 15.05 54.70 46.24 12.10 0.875 
25_48 25.09 54.78 46.26 15.05 54.79 46.57 11.88 0.88 
25_48 25.10 54.78 46.26 15.05 54.42 46.35 12.11 0.78 
25_48 25.11 54.78 46.26 15.05 54.13 46.36 12.13 0.83 
25_48 25.12 54.78 46.26 15.05 54.14 46.56 12.13 0.855 
25_48 25.13 54.78 46.26 15.05 54.00 46.51 12.34 0.805 
25_48 25.14 54.78 46.26 15.05 53.60 46.29 12.67 0.78 
25_48 25.15 54.78 46.26 15.05 53.36 46.18 13.06 0.775 
25_48 25.16 54.78 46.26 15.05 53.50 46.55 13.25 0.765 
25_48 25.17 54.78 46.26 15.05 53.38 46.47 13.83 0.725 
25_48 25.18 54.78 46.26 15.05 53.38 46.47 14.64 0.74 
25_48 25.19 54.78 46.26 15.05 53.55 46.56 14.77 0.73 
25_48 25.20 54.78 46.26 15.05 53.68 46.64 15.32 0.72 
25_48 25.21 54.78 46.26 15.05 53.61 46.28 15.61 0.64 
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Centre Sample Xc Yc Zc Xs Ys Zs Ratio 
3_18 3.01 13.29 18.16 16.00 13.97 17.98 15.69 0.94 
3_18 3.02 13.29 18.16 16.00 13.87 17.93 15.21 0.92 
3_18 3.03 13.29 18.16 16.00 13.70 18.10 14.80 0.885 
3_18 3.04 13.29 18.16 16.00 13.71 18.11 14.81 0.805 
3_18 3.05 13.29 18.16 16.00 13.74 18.32 14.46 1 
3_18 3.06 13.29 18.16 16.00 13.42 17.99 14.43 0.895 
3_18 3.07 13.29 18.16 16.00 13.38 17.96 14.24 0.785 
3_18 3.08 13.29 18.16 16.00 13.43 18.17 14.46 0.78 
3_18 3.09 13.29 18.16 16.00 13.39 18.14 14.28 0.875 
3_18 3.10 13.29 18.16 16.00 12.93 17.90 14.25 0.675 
3_18 3.11 13.29 18.16 16.00 13.17 18.09 14.24 0.74 
3_18 3.12 13.29 18.16 16.00 12.82 17.91 14.23 0.74 
3_18 3.13 13.29 18.16 16.00 12.87 18.19 14.47 0.74 
3_18 3.14 13.29 18.16 16.00 12.86 18.18 14.46 0.72 
3_18 3.15 13.29 18.16 16.00 12.79 17.91 14.63 0.565 
3_18 3.16 13.29 18.16 16.00 12.70 17.86 14.63 0.62 
3_18 3.17 13.29 18.16 16.00 12.81 18.15 14.67 0.62 
3_18 3.18 13.29 18.16 16.00 12.72 18.09 15.33 0.585 
3_18 3.19 13.29 18.16 16.00 12.81 18.14 15.77 0.595 
3_18 3.20 13.29 18.16 16.00 12.69 18.08 16.03 0.695 
3_18 3.21 13.29 18.16 16.00 12.57 17.78 15.98 0.685 
3_48 3.01 34.07 46.79 40.74 35.69 46.48 40.04 0.925 
3_48 3.02 34.07 46.79 40.74 35.67 46.74 39.46 0.9 
3_48 3.03 34.07 46.79 40.74 35.35 46.54 39.04 0.945 
3_48 3.04 34.07 46.79 40.74 35.15 46.78 38.57 0.78 
3_48 3.05 34.07 46.79 40.74 35.03 46.43 38.19 0.925 
3_48 3.06 34.07 46.79 40.74 34.75 46.56 37.69 0.985 
3_48 3.07 34.07 46.79 40.74 34.74 46.94 37.63 0.925 
3_48 3.08 34.07 46.79 40.74 34.36 46.73 37.18 0.895 
3_48 3.09 34.07 46.79 40.74 34.13 46.88 37.25 0.875 
3_48 3.10 34.07 46.79 40.74 33.71 46.41 36.75 0.955 
3_48 3.11 34.07 46.79 40.74 33.61 46.61 36.78 0.97 
3_48 3.12 34.07 46.79 40.74 33.44 46.52 37.21 0.77 
3_48 3.13 34.07 46.79 40.74 33.16 46.44 37.14 0.845 
3_48 3.14 34.07 46.79 40.74 32.94 46.66 37.58 0.865 
3_48 3.15 34.07 46.79 40.74 32.88 46.62 38.23 0.785 
3_48 3.16 34.07 46.79 40.74 32.81 46.58 38.67 0.71 
3_48 3.17 34.07 46.79 40.74 32.75 46.81 38.71 0.655 
3_48 3.18 34.07 46.79 40.74 32.63 46.74 39.54 0.67 
3_48 3.19 34.07 46.79 40.74 32.67 46.75 39.82 0.73 
3_48 3.20 34.07 46.79 40.74 32.49 46.66 40.12 0.75 
3_48 3.21 34.07 46.79 40.74 32.71 46.75 41.31 0.84 
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Centre Sample Xc Yc Zc Xs Ys Zs Ratio 
5_18 5.01 28.28 17.88 13.80 29.13 18.13 13.84 0.55 
5_18 5.02 28.28 17.88 13.80 29.07 18.16 13.44 0.535 
5_18 5.03 28.28 17.88 13.80 28.85 18.00 12.97 0.555 
5_18 5.04 28.28 17.88 13.80 28.81 18.03 12.70 0.595 
5_18 5.05 28.28 17.88 13.80 28.82 18.04 12.69 0.555 
5_18 5.06 28.28 17.88 13.80 28.60 18.06 12.64 0.55 
5_18 5.07 28.28 17.88 13.80 28.54 18.02 12.34 0.62 
5_18 5.08 28.28 17.88 13.80 28.35 18.08 12.39 0.64 
5_18 5.09 28.28 17.88 13.80 28.14 18.06 12.39 0.68 
5_18 5.10 28.28 17.88 13.80 28.10 18.04 12.15 0.745 
5_18 5.11 28.28 17.88 13.80 28.18 18.22 12.19 0.73 
5_18 5.12 28.28 17.88 13.80 28.22 18.22 12.42 0.625 
5_18 5.13 28.28 17.88 13.80 27.90 18.06 12.16 0.69 
5_18 5.14 28.28 17.88 13.80 27.71 18.04 12.40 0.705 
5_18 5.15 28.28 17.88 13.80 28.01 18.12 12.73 0.64 
5_18 5.16 28.28 17.88 13.80 27.80 18.09 12.73 0.69 
5_18 5.17 28.28 17.88 13.80 27.85 18.11 13.01 0.635 
5_18 5.18 28.28 17.88 13.80 27.56 17.95 13.24 0.58 
5_18 5.19 28.28 17.88 13.80 27.59 17.88 13.46 0.55 
5_18 5.20 28.28 17.88 13.80 27.69 18.01 13.85 0.645 
5_18 5.21 28.28 17.88 13.80 27.68 18.01 13.85 0.54 
8_18 8.01 13.96 18.00 4.73 14.37 17.90 4.59 0.62 
8_18 8.02 13.96 18.00 4.73 14.37 17.97 4.48 0.64 
8_18 8.03 13.96 18.00 4.73 14.04 17.79 4.08 0.6 
8_18 8.04 13.96 18.00 4.73 14.24 17.89 3.88 0.645 
8_18 8.05 13.96 18.00 4.73 14.31 18.13 3.90 0.655 
8_18 8.06 13.96 18.00 4.73 14.05 18.00 3.81 0.575 
8_18 8.07 13.96 18.00 4.73 13.96 17.75 3.67 0.66 
8_18 8.08 13.96 18.00 4.73 13.83 17.88 3.68 0.635 
8_18 8.09 13.96 18.00 4.73 13.80 17.86 3.55 0.55 
8_18 8.10 13.96 18.00 4.73 13.81 18.16 3.59 0.65 
8_18 8.11 13.96 18.00 4.73 13.80 18.15 3.59 0.61 
8_18 8.12 13.96 18.00 4.73 13.83 18.17 3.72 0.595 
8_18 8.13 13.96 18.00 4.73 13.90 18.38 3.75 0.61 
8_18 8.14 13.96 18.00 4.73 13.71 18.27 3.85 0.61 
8_18 8.15 13.96 18.00 4.73 13.51 18.17 3.94 0.71 
8_18 8.16 13.96 18.00 4.73 13.36 18.18 4.14 0.745 
8_18 8.17 13.96 18.00 4.73 13.23 18.11 4.13 0.695 
8_18 8.18 13.96 18.00 4.73 13.42 18.22 4.36 0.72 
8_18 8.19 13.96 18.00 4.73 13.35 18.20 4.65 0.835 
8_18 8.20 13.96 18.00 4.73 13.35 18.20 4.65 0.775 
8_18 8.21 13.96 18.00 4.73 13.41 18.23 4.96 0.89 
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Centre Sample Xc Yc Zc Xs Ys Zs Ratio 
8_48 8.01 35.77 46.72 11.75 37.20 46.45 11.31 0.755 
8_48 8.02 35.77 46.72 11.75 37.15 46.46 10.94 0.73 
8_48 8.03 35.77 46.72 11.75 36.81 46.49 10.17 0.705 
8_48 8.04 35.77 46.72 11.75 36.71 46.43 9.82 0.74 
8_48 8.05 35.77 46.72 11.75 36.58 46.64 9.69 0.665 
8_48 8.06 35.77 46.72 11.75 36.18 46.38 9.25 0.78 
8_48 8.07 35.77 46.72 11.75 36.16 46.39 9.09 0.675 
8_48 8.08 35.77 46.72 11.75 36.06 46.80 8.77 0.76 
8_48 8.09 35.77 46.72 11.75 35.73 46.70 8.74 0.67 
8_48 8.10 35.77 46.72 11.75 35.17 46.44 8.52 0.61 
8_48 8.11 35.77 46.72 11.75 35.00 46.26 8.73 0.625 
8_48 8.12 35.77 46.72 11.75 34.72 46.21 8.72 0.7 
8_48 8.13 35.77 46.72 11.75 34.76 46.23 8.94 0.63 
8_48 8.14 35.77 46.72 11.75 34.75 46.49 9.14 0.56 
8_48 8.15 35.77 46.72 11.75 34.53 46.69 9.55 0.685 
8_48 8.16 35.77 46.72 11.75 34.34 46.59 9.54 0.705 
8_48 8.17 35.77 46.72 11.75 34.33 46.49 9.84 0.62 
8_48 8.18 35.77 46.72 11.75 34.36 46.59 10.69 0.63 
8_48 8.19 35.77 46.72 11.75 34.12 46.37 11.32 0.62 
8_48 8.20 35.77 46.72 11.75 34.17 46.42 11.54 0.645 
8_48 8.21 35.77 46.72 11.75 34.31 46.49 12.18 0.71 
B_48 B.01 30.92 46.13 76.52 32.75 46.30 76.19 0.695 
B_48 B.02 30.92 46.13 76.52 32.59 46.23 75.40 0.67 
B_48 B.03 30.92 46.13 76.52 32.63 46.40 75.37 0.67 
B_48 B.04 30.92 46.13 76.52 32.11 46.10 74.15 0.715 
B_48 B.05 30.92 46.13 76.52 31.92 46.05 73.77 0.63 
B_48 B.06 30.92 46.13 76.52 31.91 46.52 72.76 0.595 
B_48 B.07 30.92 46.13 76.52 31.68 46.52 72.69 0.705 
B_48 B.08 30.92 46.13 76.52 31.39 46.38 72.11 0.635 
B_48 B.09 30.92 46.13 76.52 31.14 46.27 72.13 0.57 
B_48 B.10 30.92 46.13 76.52 30.66 46.32 71.80 0.595 
B_48 B.11 30.92 46.13 76.52 30.43 46.21 71.81 0.55 
B_48 B.12 30.92 46.13 76.52 30.31 46.50 72.17 0.665 
B_48 B.13 30.92 46.13 76.52 30.03 46.28 72.65 0.625 
B_48 B.14 30.92 46.13 76.52 29.64 46.07 72.63 0.59 
B_48 B.15 30.92 46.13 76.52 29.52 46.35 73.35 0.595 
B_48 B.16 30.92 46.13 76.52 29.11 45.80 73.78 0.61 
B_48 B.17 30.92 46.13 76.52 29.44 46.30 74.92 0.565 
B_48 B.18 30.92 46.13 76.52 29.25 46.25 74.93 0.57 
B_48 B.19 30.92 46.13 76.52 29.14 46.19 76.04 0.62 
B_48 B.20 30.92 46.13 76.52 29.31 46.65 76.26 0.66 
B_48 B.21 30.92 46.13 76.52 29.30 46.23 77.02 0.65 
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Centre Sample Xc Yc Zc Xs Ys Zs Ratio 
G_48 G.01 19.32 46.01 11.76 20.83 46.19 11.61 0.525 
G_48 G.02 19.32 46.01 11.76 20.72 46.15 10.95 0.51 
G_48 G.03 19.32 46.01 11.76 20.65 46.35 10.16 0.605 
G_48 G.04 19.32 46.01 11.76 20.65 46.39 10.01 0.57 
G_48 G.05 19.32 46.01 11.76 20.55 46.49 9.75 0.625 
G_48 G.06 19.32 46.01 11.76 20.25 46.19 9.56 0.575 
G_48 G.07 19.32 46.01 11.76 20.23 46.34 9.20 0.56 
G_48 G.08 19.32 46.01 11.76 20.01 46.23 8.98 0.585 
G_48 G.09 19.32 46.01 11.76 19.47 45.95 8.95 0.515 
G_48 G.10 19.32 46.01 11.76 19.52 46.19 8.78 0.55 
G_48 G.11 19.32 46.01 11.76 19.36 46.59 8.85 0.54 
G_48 G.12 19.32 46.01 11.76 19.17 46.49 8.84 0.605 
G_48 G.13 19.32 46.01 11.76 18.89 46.50 9.22 0.64 
G_48 G.14 19.32 46.01 11.76 18.79 46.44 9.43 0.56 
G_48 G.15 19.32 46.01 11.76 18.61 46.20 9.57 0.475 
G_48 G.16 19.32 46.01 11.76 18.17 45.98 9.71 0.535 
G_48 G.17 19.32 46.01 11.76 18.16 46.11 10.12 0.5 
G_48 G.18 19.32 46.01 11.76 18.24 46.18 10.92 0.525 
G_48 G.19 19.32 46.01 11.76 18.17 46.11 11.55 0.535 
G_48 G.20 19.32 46.01 11.76 18.25 46.16 11.94 0.505 
G_48 G.21 19.32 46.01 11.76 18.07 46.07 12.13 0.485 
W1_48 W1.01 51.89 46.54 15.17 53.29 46.43 14.78 0.675 
W1_48 W1.02 51.89 46.54 15.17 52.89 46.36 14.22 0.625 
W1_48 W1.03 51.89 46.54 15.17 53.26 46.77 13.71 0.72 
W1_48 W1.04 51.89 46.54 15.17 52.83 46.56 13.22 0.75 
W1_48 W1.05 51.89 46.54 15.17 52.50 46.38 13.03 0.755 
W1_48 W1.06 51.89 46.54 15.17 51.95 46.12 12.42 0.76 
W1_48 W1.07 51.89 46.54 15.17 51.72 46.27 12.22 0.785 
W1_48 W1.08 51.89 46.54 15.17 51.32 46.08 11.92 0.845 
W1_48 W1.09 51.89 46.54 15.17 51.39 46.32 11.93 0.77 
W1_48 W1.10 51.89 46.54 15.17 51.43 46.50 11.72 0.805 
W1_48 W1.11 51.89 46.54 15.17 50.89 46.22 11.69 0.92 
W1_48 W1.12 51.89 46.54 15.17 50.90 46.22 11.93 0.895 
W1_48 W1.13 51.89 46.54 15.17 50.76 46.37 12.23 0.82 
W1_48 W1.14 51.89 46.54 15.17 50.71 46.59 12.85 0.785 
W1_48 W1.15 51.89 46.54 15.17 50.60 46.31 12.81 0.82 
W1_48 W1.16 51.89 46.54 15.17 50.19 46.32 13.23 0.76 
W1_48 W1.17 51.89 46.54 15.17 50.29 46.37 13.71 0.705 
W1_48 W1.18 51.89 46.54 15.17 50.39 46.43 14.25 0.695 
W1_48 W1.19 51.89 46.54 15.17 50.23 46.33 14.79 0.74 
W1_48 W1.20 51.89 46.54 15.17 50.31 46.37 15.15 0.685 
W1_48 W1.21 51.89 46.54 15.17 50.44 46.45 15.77 0.7 
 

  



- 205 - 

Centre Sample Xc Yc Zc Xs Ys Zs Ratio 
W2_48 W2.01 49.68 46.13 18.86 51.62 46.57 18.72 0.705 
W2_48 W2.02 49.68 46.13 18.86 51.17 46.35 18.15 0.73 
W2_48 W2.03 49.68 46.13 18.86 51.11 46.32 17.66 0.755 
W2_48 W2.04 49.68 46.13 18.86 50.82 46.43 16.85 0.835 
W2_48 W2.05 49.68 46.13 18.86 50.76 46.38 16.63 0.77 
W2_48 W2.06 49.68 46.13 18.86 50.45 46.22 16.24 0.81 
W2_48 W2.07 49.68 46.13 18.86 50.37 46.43 16.05 0.795 
W2_48 W2.08 49.68 46.13 18.86 49.89 46.25 15.77 0.85 
W2_48 W2.09 49.68 46.13 18.86 50.04 46.77 15.82 0.77 
W2_48 W2.10 49.68 46.13 18.86 49.64 46.14 15.76 0.87 
W2_48 W2.11 49.68 46.13 18.86 49.26 46.36 15.79 0.765 
W2_48 W2.12 49.68 46.13 18.86 49.10 46.43 16.06 0.835 
W2_48 W2.13 49.68 46.13 18.86 48.88 46.30 16.26 0.8 
W2_48 W2.14 49.68 46.13 18.86 49.04 46.58 16.67 0.81 
W2_48 W2.15 49.68 46.13 18.86 48.64 46.39 16.66 0.885 
W2_48 W2.16 49.68 46.13 18.86 48.72 46.46 16.88 0.79 
W2_48 W2.17 49.68 46.13 18.86 48.48 46.34 17.27 0.775 
W2_48 W2.18 49.68 46.13 18.86 48.66 46.43 18.18 0.72 
W2_48 W2.19 49.68 46.13 18.86 48.39 46.23 18.67 0.805 
W2_48 W2.20 49.68 46.13 18.86 48.44 46.28 18.86 0.725 
W2_48 W2.21 49.68 46.13 18.86 48.55 46.34 19.46 0.76 
W3_48 W3.01 47.94 46.35 23.68 49.73 46.13 23.86 0.825 
W3_48 W3.02 47.94 46.35 23.68 49.62 46.08 23.32 0.83 
W3_48 W3.03 47.94 46.35 23.68 49.64 46.54 22.72 0.835 
W3_48 W3.04 47.94 46.35 23.68 49.23 46.33 22.16 0.72 
W3_48 W3.05 47.94 46.35 23.68 49.16 46.44 21.46 0.815 
W3_48 W3.06 47.94 46.35 23.68 48.87 46.49 21.24 0.795 
W3_48 W3.07 47.94 46.35 23.68 48.83 46.46 21.10 0.77 
W3_48 W3.08 47.94 46.35 23.68 47.91 46.36 20.78 0.755 
W3_48 W3.09 47.94 46.35 23.68 47.73 45.93 20.39 0.93 
W3_48 W3.10 47.94 46.35 23.68 47.64 46.24 20.77 0.78 
W3_48 W3.11 47.94 46.35 23.68 47.75 46.50 20.83 0.865 
W3_48 W3.12 47.94 46.35 23.68 47.50 46.35 20.80 0.765 
W3_48 W3.13 47.94 46.35 23.68 47.17 46.19 20.80 0.83 
W3_48 W3.14 47.94 46.35 23.68 47.25 46.42 21.26 0.75 
W3_48 W3.15 47.94 46.35 23.68 47.18 46.81 21.54 0.775 
W3_48 W3.16 47.94 46.35 23.68 46.97 46.73 21.91 0.77 
W3_48 W3.17 47.94 46.35 23.68 46.63 46.05 22.71 0.705 
W3_48 W3.18 47.94 46.35 23.68 46.37 45.92 22.70 0.74 
W3_48 W3.19 47.94 46.35 23.68 46.57 46.04 23.68 0.715 
W3_48 W3.20 47.94 46.35 23.68 46.34 45.94 23.89 0.725 
W3_48 W3.21 47.94 46.35 23.68 46.65 46.57 24.33 0.79 
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Centre Sample Xc Yc Zc Xs Ys Zs Ratio 
W4_18 W4.01 18.20 17.95 11.59 18.71 18.10 11.01 0.73 
W4_18 W4.02 18.20 17.95 11.59 18.73 18.11 11.01 0.7 
W4_18 W4.03 18.20 17.95 11.59 18.52 17.99 10.86 0.685 
W4_18 W4.04 18.20 17.95 11.59 18.56 18.18 10.69 0.615 
W4_18 W4.05 18.20 17.95 11.59 18.39 18.10 10.69 0.7 
W4_18 W4.06 18.20 17.95 11.59 18.35 18.05 10.48 0.645 
W4_18 W4.07 18.20 17.95 11.59 18.29 17.86 10.46 0.635 
W4_18 W4.08 18.20 17.95 11.59 18.29 18.02 10.15 0.735 
W4_18 W4.09 18.20 17.95 11.59 18.06 17.87 10.11 0.705 
W4_18 W4.10 18.20 17.95 11.59 18.12 18.11 10.11 0.78 
W4_18 W4.11 18.20 17.95 11.59 18.02 18.10 10.14 0.715 
W4_18 W4.12 18.20 17.95 11.59 18.12 18.29 10.18 0.825 
W4_18 W4.13 18.20 17.95 11.59 18.02 18.24 10.52 0.695 
W4_18 W4.14 18.20 17.95 11.59 18.06 18.26 10.70 0.68 
W4_18 W4.15 18.20 17.95 11.59 17.77 18.10 10.69 0.745 
W4_18 W4.16 18.20 17.95 11.59 17.76 18.10 10.69 0.845 
W4_18 W4.17 18.20 17.95 11.59 17.49 17.96 10.68 0.925 
W4_18 W4.18 18.20 17.95 11.59 17.41 17.91 11.01 0.915 
W4_18 W4.19 18.20 17.95 11.59 17.46 17.94 11.34 0.88 
W4_18 W4.20 18.20 17.95 11.59 17.52 17.96 11.61 0.905 
W4_18 W4.21 18.20 17.95 11.59 17.69 18.05 11.87 0.79 
W4_48 W4.01 46.63 46.04 29.12 48.21 46.44 28.88 0.755 
W4_48 W4.02 46.63 46.04 29.12 48.01 46.34 27.82 0.835 
W4_48 W4.03 46.63 46.04 29.12 48.07 46.60 27.54 0.72 
W4_48 W4.04 46.63 46.04 29.12 47.75 46.44 27.38 0.77 
W4_48 W4.05 46.63 46.04 29.12 47.58 46.54 26.50 0.885 
W4_48 W4.06 46.63 46.04 29.12 47.34 46.41 26.51 0.795 
W4_48 W4.07 46.63 46.04 29.12 47.24 46.84 26.44 0.91 
W4_48 W4.08 46.63 46.04 29.12 47.00 46.24 26.15 0.76 
W4_48 W4.09 46.63 46.04 29.12 46.80 46.61 25.48 0.89 
W4_48 W4.10 46.63 46.04 29.12 46.15 46.25 25.42 0.905 
W4_48 W4.11 46.63 46.04 29.12 45.93 46.36 25.49 0.875 
W4_48 W4.12 46.63 46.04 29.12 45.81 46.29 26.19 0.895 
W4_48 W4.13 46.63 46.04 29.12 45.48 46.25 26.20 1 
W4_48 W4.14 46.63 46.04 29.12 45.72 46.80 26.49 0.975 
W4_48 W4.15 46.63 46.04 29.12 45.23 46.11 26.38 0.915 
W4_48 W4.16 46.63 46.04 29.12 45.18 46.07 27.39 0.855 
W4_48 W4.17 46.63 46.04 29.12 45.01 46.44 27.46 1.08 
W4_48 W4.18 46.63 46.04 29.12 45.11 46.48 27.95 1.04 
W4_48 W4.19 46.63 46.04 29.12 45.29 46.57 28.78 0.96 
W4_48 W4.20 46.63 46.04 29.12 45.06 46.45 28.97 1 
W4_48 W4.21 46.63 46.04 29.12 44.99 45.96 29.56 0.835 
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Centre Sample Xc Yc Zc Xs Ys Zs Ratio 
W5_48 W5.01 45.04 46.34 38.93 46.46 46.31 38.49 0.835 
W5_48 W5.02 45.04 46.34 38.93 46.33 46.27 37.62 0.93 
W5_48 W5.03 45.04 46.34 38.93 46.50 46.54 38.11 0.775 
W5_48 W5.04 45.04 46.34 38.93 46.34 46.55 37.17 0.775 
W5_48 W5.05 45.04 46.34 38.93 46.08 46.45 36.62 0.87 
W5_48 W5.06 45.04 46.34 38.93 46.20 46.95 36.28 0.795 
W5_48 W5.07 45.04 46.34 38.93 45.68 46.26 35.59 0.945 
W5_48 W5.08 45.04 46.34 38.93 45.50 46.60 35.63 0.83 
W5_48 W5.09 45.04 46.34 38.93 45.12 46.54 35.44 0.91 
W5_48 W5.10 45.04 46.34 38.93 44.90 46.70 35.47 0.895 
W5_48 W5.11 45.04 46.34 38.93 44.53 46.51 35.45 0.89 
W5_48 W5.12 45.04 46.34 38.93 44.36 46.81 35.50 0.825 
W5_48 W5.13 45.04 46.34 38.93 44.19 46.31 35.43 0.955 
W5_48 W5.14 45.04 46.34 38.93 43.96 46.56 36.17 0.875 
W5_48 W5.15 45.04 46.34 38.93 43.75 46.47 36.66 0.965 
W5_48 W5.16 45.04 46.34 38.93 43.80 46.46 37.05 0.955 
W5_48 W5.17 45.04 46.34 38.93 43.36 46.23 37.20 1.005 
W5_48 W5.18 45.04 46.34 38.93 43.48 46.31 37.68 0.975 
W5_48 W5.19 45.04 46.34 38.93 43.36 46.28 38.61 0.89 
W5_48 W5.20 45.04 46.34 38.93 43.16 46.19 38.99 1.03 
W5_48 W5.21 45.04 46.34 38.93 43.53 46.35 39.58 1.035 
W6_18 W6.01 17.11 18.08 19.94 17.64 17.82 19.66 1.36 
W6_18 W6.02 17.11 18.08 19.94 17.56 17.94 19.37 1.375 
W6_18 W6.03 17.11 18.08 19.94 17.48 17.89 18.97 1.265 
W6_18 W6.04 17.11 18.08 19.94 17.49 17.89 18.99 1.225 
W6_18 W6.05 17.11 18.08 19.94 17.66 18.31 18.73 1.475 
W6_18 W6.06 17.11 18.08 19.94 17.45 17.88 18.68 1.37 
W6_18 W6.07 17.11 18.08 19.94 17.28 18.11 18.37 1.185 
W6_18 W6.08 17.11 18.08 19.94 17.29 18.11 18.37 1.195 
W6_18 W6.09 17.11 18.08 19.94 17.29 18.20 18.35 1.11 
W6_18 W6.10 17.11 18.08 19.94 17.06 18.08 18.33 1.095 
W6_18 W6.11 17.11 18.08 19.94 16.99 18.03 18.00 1.13 
W6_18 W6.12 17.11 18.08 19.94 16.78 18.15 18.33 0.855 
W6_18 W6.13 17.11 18.08 19.94 16.78 18.15 18.33 0.83 
W6_18 W6.14 17.11 18.08 19.94 16.85 18.17 18.69 0.825 
W6_18 W6.15 17.11 18.08 19.94 16.68 18.09 18.80 0.735 
W6_18 W6.16 17.11 18.08 19.94 17.01 18.51 18.89 0.795 
W6_18 W6.17 17.11 18.08 19.94 16.80 18.40 18.88 0.91 
W6_18 W6.18 17.11 18.08 19.94 16.69 18.33 19.47 1.005 
W6_18 W6.19 17.11 18.08 19.94 16.74 18.35 19.79 1.145 
W6_18 W6.20 17.11 18.08 19.94 16.79 18.38 20.01 1.225 
W6_18 W6.21 17.11 18.08 19.94 16.85 18.41 20.35 1.15 
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Centre Sample Xc Yc Zc Xs Ys Zs Ratio 
W6_48 W6.01 44.28 46.25 51.01 45.82 46.17 50.46 1.005 
W6_48 W6.02 44.28 46.25 51.01 45.68 46.11 49.70 0.855 
W6_48 W6.03 44.28 46.25 51.01 45.80 46.64 49.02 0.99 
W6_48 W6.04 44.28 46.25 51.01 45.31 46.39 49.00 1.005 
W6_48 W6.05 44.28 46.25 51.01 45.11 46.40 48.10 0.91 
W6_48 W6.06 44.28 46.25 51.01 44.81 46.52 47.53 0.975 
W6_48 W6.07 44.28 46.25 51.01 44.47 46.35 47.21 0.975 
W6_48 W6.08 44.28 46.25 51.01 44.57 46.82 46.89 1.055 
W6_48 W6.09 44.28 46.25 51.01 44.34 46.72 46.90 0.985 
W6_48 W6.10 44.28 46.25 51.01 43.84 46.04 46.60 0.905 
W6_48 W6.11 44.28 46.25 51.01 43.58 46.28 46.61 0.995 
W6_48 W6.12 44.28 46.25 51.01 43.59 46.58 46.91 0.875 
W6_48 W6.13 44.28 46.25 51.01 43.20 46.51 46.96 0.955 
W6_48 W6.14 44.28 46.25 51.01 43.22 46.67 46.94 0.9 
W6_48 W6.15 44.28 46.25 51.01 43.05 46.53 47.55 0.99 
W6_48 W6.16 44.28 46.25 51.01 42.87 46.46 48.18 0.895 
W6_48 W6.17 44.28 46.25 51.01 42.42 46.21 48.58 1.035 
W6_48 W6.18 44.28 46.25 51.01 42.78 46.62 49.87 1.01 
W6_48 W6.19 44.28 46.25 51.01 42.85 46.66 50.28 0.975 
W6_48 W6.20 44.28 46.25 51.01 42.68 46.57 50.67 1.015 
W6_48 W6.21 44.28 46.25 51.01 42.71 46.36 51.34 1.105 
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Appendix D 
Experimental Data against the Black Background  

  
Xo Yo Zo 

    
 

White 95.11 100.00 97.28 
    

 
Black  0.319 0.354 0.331 (fullscreen) 

  
 

Gray  22.78 23.37 27.56 
    Centre Sample Xc Yc Zc Xs Ys Zs Ratio 

1_18 1.01 10.32 18.01 11.96 10.73 17.67 11.56 0.92 
1_18 1.02 10.32 18.01 11.96 10.69 17.66 11.31 0.9 
1_18 1.03 10.32 18.01 11.96 10.72 17.95 11.05 1.045 
1_18 1.04 10.32 18.01 11.96 10.65 17.91 10.73 1.09 
1_18 1.05 10.32 18.01 11.96 10.62 17.88 10.58 1.1 
1_18 1.06 10.32 18.01 11.96 10.46 17.86 10.41 1.07 
1_18 1.07 10.32 18.01 11.96 10.38 17.82 10.41 1.015 
1_18 1.08 10.32 18.01 11.96 10.44 18.08 10.28 1.175 
1_18 1.09 10.32 18.01 11.96 10.47 18.10 10.45 1.205 
1_18 1.10 10.32 18.01 11.96 10.34 18.04 10.45 1.05 
1_18 1.11 10.32 18.01 11.96 10.21 18.05 10.46 1.065 
1_18 1.12 10.32 18.01 11.96 10.05 17.96 10.45 1.1 
1_18 1.13 10.32 18.01 11.96 9.99 18.07 10.46 0.995 
1_18 1.14 10.32 18.01 11.96 9.96 17.91 10.64 0.98 
1_18 1.15 10.32 18.01 11.96 9.64 17.73 10.62 0.92 
1_18 1.16 10.32 18.01 11.96 9.64 17.73 10.62 0.985 
1_18 1.17 10.32 18.01 11.96 9.72 17.90 10.77 0.875 
1_18 1.18 10.32 18.01 11.96 9.78 17.92 11.11 0.905 
1_18 1.19 10.32 18.01 11.96 9.75 17.92 11.40 0.87 
1_18 1.20 10.32 18.01 11.96 9.63 17.86 11.64 0.895 
1_18 1.21 10.32 18.01 11.96 9.91 18.00 12.20 0.76 
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Centre Sample Xc Yc Zc Xs Ys Zs Ratio 
1_48 1.01 26.96 46.59 30.09 28.00 46.67 29.61 0.82 
1_48 1.02 26.96 46.59 30.09 27.98 46.72 29.33 0.89 
1_48 1.03 26.96 46.59 30.09 27.76 46.57 28.28 0.905 
1_48 1.04 26.96 46.59 30.09 27.78 46.90 28.33 0.905 
1_48 1.05 26.96 46.59 30.09 27.48 46.77 27.83 1.005 
1_48 1.06 26.96 46.59 30.09 27.42 46.76 27.48 0.945 
1_48 1.07 26.96 46.59 30.09 27.16 46.74 27.01 1.04 
1_48 1.08 26.96 46.59 30.09 27.13 46.73 26.81 1.14 
1_48 1.09 26.96 46.59 30.09 26.91 46.61 27.00 1.05 
1_48 1.10 26.96 46.59 30.09 26.52 46.43 26.79 1.065 
1_48 1.11 26.96 46.59 30.09 26.33 46.31 26.76 1.05 
1_48 1.12 26.96 46.59 30.09 26.17 46.53 26.78 1.005 
1_48 1.13 26.96 46.59 30.09 26.05 46.86 27.01 1.11 
1_48 1.14 26.96 46.59 30.09 25.93 46.82 27.51 1.02 
1_48 1.15 26.96 46.59 30.09 25.72 46.86 27.85 0.99 
1_48 1.16 26.96 46.59 30.09 25.32 46.64 28.31 0.925 
1_48 1.17 26.96 46.59 30.09 25.21 46.57 28.31 0.925 
1_48 1.18 26.96 46.59 30.09 25.21 46.44 29.21 0.835 
1_48 1.19 26.96 46.59 30.09 25.31 46.61 29.60 0.95 
1_48 1.20 26.96 46.59 30.09 25.12 46.37 30.07 1.02 
1_48 1.21 26.96 46.59 30.09 25.07 46.34 30.82 1 
10_18 10.01 29.59 17.96 28.33 30.40 18.08 27.80 0.805 
10_18 10.02 29.59 17.96 28.33 30.14 17.95 27.47 0.905 
10_18 10.03 29.59 17.96 28.33 30.24 18.13 27.52 0.98 
10_18 10.04 29.59 17.96 28.33 30.25 18.13 27.40 0.84 
10_18 10.05 29.59 17.96 28.33 29.82 17.99 26.95 0.845 
10_18 10.06 29.59 17.96 28.33 29.42 17.79 26.61 0.77 
10_18 10.07 29.59 17.96 28.33 29.30 17.72 26.12 0.865 
10_18 10.08 29.59 17.96 28.33 29.28 17.99 26.18 0.895 
10_18 10.09 29.59 17.96 28.33 29.46 18.08 26.19 0.87 
10_18 10.10 29.59 17.96 28.33 29.39 18.09 26.65 0.815 
10_18 10.11 29.59 17.96 28.33 29.38 18.03 26.66 0.87 
10_18 10.12 29.59 17.96 28.33 29.09 17.94 26.16 0.99 
10_18 10.13 29.59 17.96 28.33 29.21 18.14 26.58 0.89 
10_18 10.14 29.59 17.96 28.33 28.94 18.01 26.60 0.885 
10_18 10.15 29.59 17.96 28.33 28.75 17.76 26.65 0.815 
10_18 10.16 29.59 17.96 28.33 28.83 17.95 26.94 0.89 
10_18 10.17 29.59 17.96 28.33 28.92 17.99 27.39 0.855 
10_18 10.18 29.59 17.96 28.33 28.52 17.78 27.36 0.855 
10_18 10.19 29.59 17.96 28.33 28.52 17.77 27.48 0.85 
10_18 10.20 29.59 17.96 28.33 28.80 18.08 28.34 0.9 
10_18 10.21 29.59 17.96 28.33 28.73 17.87 28.58 0.92 
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Centre Sample Xc Yc Zc Xs Ys Zs Ratio 
12_18 12.01 21.69 17.95 23.58 22.47 18.02 23.57 0.94 
12_18 12.01 21.69 17.95 23.58 22.47 18.02 23.57 0.91 
12_18 12.02 21.69 17.95 23.58 22.42 18.01 23.34 0.985 
12_18 12.02 21.69 17.95 23.58 22.42 18.01 23.34 0.95 
12_18 12.03 21.69 17.95 23.58 22.15 17.82 22.19 1.11 
12_18 12.03 21.69 17.95 23.58 22.15 17.82 22.19 0.97 
12_18 12.04 21.69 17.95 23.58 22.23 18.03 22.22 1 
12_18 12.04 21.69 17.95 23.58 22.23 18.03 22.22 0.98 
12_18 12.05 21.69 17.95 23.58 21.98 17.91 22.21 1.015 
12_18 12.05 21.69 17.95 23.58 21.98 17.91 22.21 0.96 
12_18 12.06 21.69 17.95 23.58 21.90 17.73 22.01 1.01 
12_18 12.06 21.69 17.95 23.58 21.90 17.73 22.01 0.99 
12_18 12.07 21.69 17.95 23.58 21.92 17.89 21.85 0.99 
12_18 12.07 21.69 17.95 23.58 21.92 17.89 21.85 0.94 
12_18 12.08 21.69 17.95 23.58 21.68 17.94 21.46 0.985 
12_18 12.08 21.69 17.95 23.58 21.68 17.94 21.46 0.965 
12_18 12.09 21.69 17.95 23.58 21.74 17.97 21.82 0.94 
12_18 12.09 21.69 17.95 23.58 21.74 17.97 21.82 0.87 
12_18 12.10 21.69 17.95 23.58 21.53 18.05 21.51 1.015 
12_18 12.10 21.69 17.95 23.58 21.53 18.05 21.51 0.98 
12_18 12.11 21.69 17.95 23.58 21.62 18.27 21.54 1.125 
12_18 12.11 21.69 17.95 23.58 21.62 18.27 21.54 0.975 
12_18 12.12 21.69 17.95 23.58 21.40 17.97 21.86 0.93 
12_18 12.12 21.69 17.95 23.58 21.40 17.97 21.86 0.88 
12_18 12.13 21.69 17.95 23.58 21.48 18.19 21.90 0.975 
12_18 12.13 21.69 17.95 23.58 21.48 18.19 21.90 0.995 
12_18 12.14 21.69 17.95 23.58 21.42 18.16 22.09 0.88 
12_18 12.14 21.69 17.95 23.58 21.42 18.16 22.09 0.88 
12_18 12.15 21.69 17.95 23.58 21.43 18.16 22.27 0.81 
12_18 12.15 21.69 17.95 23.58 21.43 18.16 22.27 0.91 
12_18 12.16 21.69 17.95 23.58 21.24 18.06 22.27 0.855 
12_18 12.16 21.69 17.95 23.58 21.24 18.06 22.27 0.875 
12_18 12.17 21.69 17.95 23.58 20.96 17.97 22.22 1.08 
12_18 12.17 21.69 17.95 23.58 20.96 17.97 22.22 0.965 
12_18 12.18 21.69 17.95 23.58 21.05 18.01 22.74 0.955 
12_18 12.18 21.69 17.95 23.58 21.05 18.01 22.74 0.95 
12_18 12.19 21.69 17.95 23.58 21.19 18.10 23.37 0.875 
12_18 12.19 21.69 17.95 23.58 21.19 18.10 23.37 1.015 
12_18 12.20 21.69 17.95 23.58 21.22 18.05 23.37 0.845 
12_18 12.20 21.69 17.95 23.58 21.22 18.05 23.37 0.87 
12_18 12.21 21.69 17.95 23.58 21.30 18.09 23.85 0.92 
12_18 12.21 21.69 17.95 23.58 21.30 18.09 23.85 0.81 
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Centre Sample Xc Yc Zc Xs Ys Zs Ratio 
12_48 12.01 57.07 46.87 61.22 58.31 46.60 60.57 0.945 
12_48 12.01 57.07 46.87 61.22 58.31 46.60 60.57 0.975 
12_48 12.02 57.07 46.87 61.22 58.32 46.83 59.92 1.015 
12_48 12.02 57.07 46.87 61.22 58.32 46.83 59.92 0.995 
12_48 12.03 57.07 46.87 61.22 57.81 46.32 59.46 1.06 
12_48 12.03 57.07 46.87 61.22 57.81 46.32 59.46 0.865 
12_48 12.04 57.07 46.87 61.22 57.48 46.40 58.63 0.92 
12_48 12.04 57.07 46.87 61.22 57.48 46.40 58.63 1.05 
12_48 12.05 57.07 46.87 61.22 57.41 46.36 58.10 0.98 
12_48 12.05 57.07 46.87 61.22 57.41 46.36 58.10 0.88 
12_48 12.06 57.07 46.87 61.22 57.31 46.86 57.69 1.015 
12_48 12.06 57.07 46.87 61.22 57.31 46.86 57.69 0.915 
12_48 12.07 57.07 46.87 61.22 57.04 46.72 57.38 0.865 
12_48 12.07 57.07 46.87 61.22 57.04 46.72 57.38 0.93 
12_48 12.08 57.07 46.87 61.22 56.66 46.69 56.88 0.96 
12_48 12.08 57.07 46.87 61.22 56.66 46.69 56.88 0.915 
12_48 12.09 57.07 46.87 61.22 56.41 46.75 56.90 0.875 
12_48 12.09 57.07 46.87 61.22 56.41 46.75 56.90 0.935 
12_48 12.10 57.07 46.87 61.22 55.92 46.48 56.84 0.925 
12_48 12.10 57.07 46.87 61.22 55.92 46.48 56.84 0.955 
12_48 12.11 57.07 46.87 61.22 55.58 46.41 56.79 0.85 
12_48 12.11 57.07 46.87 61.22 55.58 46.41 56.79 0.885 
12_48 12.12 57.07 46.87 61.22 55.62 46.71 56.32 1.01 
12_48 12.12 57.07 46.87 61.22 55.62 46.71 56.32 1.025 
12_48 12.13 57.07 46.87 61.22 55.58 46.80 56.92 0.93 
12_48 12.13 57.07 46.87 61.22 55.58 46.80 56.92 0.94 
12_48 12.14 57.07 46.87 61.22 55.35 46.99 57.39 0.92 
12_48 12.14 57.07 46.87 61.22 55.35 46.99 57.39 0.93 
12_48 12.15 57.07 46.87 61.22 55.06 46.84 57.72 0.96 
12_48 12.15 57.07 46.87 61.22 55.06 46.84 57.72 1.005 
12_48 12.16 57.07 46.87 61.22 55.07 46.51 58.27 0.87 
12_48 12.16 57.07 46.87 61.22 55.07 46.51 58.27 0.905 
12_48 12.17 57.07 46.87 61.22 54.98 46.74 59.17 0.935 
12_48 12.17 57.07 46.87 61.22 54.98 46.74 59.17 0.96 
12_48 12.18 57.07 46.87 61.22 55.12 46.81 60.03 0.885 
12_48 12.18 57.07 46.87 61.22 55.12 46.81 60.03 0.935 
12_48 12.19 57.07 46.87 61.22 54.73 46.59 60.22 0.985 
12_48 12.19 57.07 46.87 61.22 54.73 46.59 60.22 0.995 
12_48 12.20 57.07 46.87 61.22 54.86 46.38 60.77 0.955 
12_48 12.20 57.07 46.87 61.22 54.86 46.38 60.77 1.01 
12_48 12.21 57.07 46.87 61.22 55.10 46.49 61.89 0.975 
12_48 12.21 57.07 46.87 61.22 55.10 46.49 61.89 0.92 
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Centre Sample Xc Yc Zc Xs Ys Zs Ratio 
13_18 13.01 16.60 18.15 37.98 17.12 18.02 36.93 0.88 
13_18 13.02 16.60 18.15 37.98 17.11 18.04 36.67 0.985 
13_18 13.03 16.60 18.15 37.98 17.04 18.01 36.31 0.96 
13_18 13.04 16.60 18.15 37.98 16.96 17.96 35.96 1.04 
13_18 13.05 16.60 18.15 37.98 16.81 18.12 36.08 0.96 
13_18 13.06 16.60 18.15 37.98 16.81 18.13 36.08 1.01 
13_18 13.07 16.60 18.15 37.98 16.66 18.05 35.66 0.795 
13_18 13.08 16.60 18.15 37.98 16.44 18.08 35.13 0.83 
13_18 13.09 16.60 18.15 37.98 16.55 18.13 35.72 0.75 
13_18 13.10 16.60 18.15 37.98 16.29 18.00 35.72 0.745 
13_18 13.11 16.60 18.15 37.98 16.18 18.07 35.63 0.8 
13_18 13.12 16.60 18.15 37.98 16.16 18.24 35.73 0.755 
13_18 13.13 16.60 18.15 37.98 16.00 17.99 35.16 0.84 
13_18 13.14 16.60 18.15 37.98 15.99 17.98 35.72 0.77 
13_18 13.15 16.60 18.15 37.98 15.85 17.90 36.07 0.79 
13_18 13.16 16.60 18.15 37.98 15.72 17.99 36.07 0.87 
13_18 13.17 16.60 18.15 37.98 15.58 17.92 36.06 0.895 
13_18 13.18 16.60 18.15 37.98 15.58 17.92 36.79 0.965 
13_18 13.19 16.60 18.15 37.98 15.72 18.00 36.82 0.925 
13_18 13.20 16.60 18.15 37.98 15.63 17.95 37.10 0.925 
13_18 13.21 16.60 18.15 37.98 15.64 17.95 37.10 0.975 
19_18 19.01 27.27 18.02 6.32 27.91 18.06 6.17 0.825 
19_18 19.02 27.27 18.02 6.32 27.60 17.90 5.89 0.88 
19_18 19.03 27.27 18.02 6.32 27.66 18.07 5.77 0.835 
19_18 19.04 27.27 18.02 6.32 27.63 18.05 5.61 0.985 
19_18 19.05 27.27 18.02 6.32 27.36 17.91 5.40 1.005 
19_18 19.06 27.27 18.02 6.32 27.12 17.95 5.41 0.985 
19_18 19.07 27.27 18.02 6.32 27.32 18.05 5.02 1.08 
19_18 19.08 27.27 18.02 6.32 27.07 17.92 5.19 1 
19_18 19.09 27.27 18.02 6.32 26.80 17.91 5.02 1.045 
19_18 19.10 27.27 18.02 6.32 26.82 17.91 5.03 1.015 
19_18 19.11 27.27 18.02 6.32 26.70 18.07 5.05 1.085 
19_18 19.12 27.27 18.02 6.32 26.70 18.06 5.04 1.15 
19_18 19.13 27.27 18.02 6.32 26.62 17.82 5.01 1.18 
19_18 19.14 27.27 18.02 6.32 26.36 17.85 5.20 1.1 
19_18 19.15 27.27 18.02 6.32 26.40 17.88 5.39 1.055 
19_18 19.16 27.27 18.02 6.32 26.52 18.08 5.44 1.09 
19_18 19.17 27.27 18.02 6.32 26.15 17.89 5.63 1.085 
19_18 19.18 27.27 18.02 6.32 26.19 17.91 5.80 0.98 
19_18 19.19 27.27 18.02 6.32 26.20 17.91 5.93 0.87 
19_18 19.20 27.27 18.02 6.32 26.19 17.77 6.32 0.83 
19_18 19.21 27.27 18.02 6.32 26.21 17.79 6.32 0.93 
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Centre Sample Xc Yc Zc Xs Ys Zs Ratio 
23_18 23.01 22.47 18.05 40.22 23.02 17.89 39.84 0.92 
23_18 23.02 22.47 18.05 40.22 22.94 17.86 39.41 0.88 
23_18 23.03 22.47 18.05 40.22 23.00 18.03 39.48 0.955 
23_18 23.04 22.47 18.05 40.22 22.94 18.00 39.10 0.905 
23_18 23.05 22.47 18.05 40.22 22.61 17.83 38.53 0.83 
23_18 23.06 22.47 18.05 40.22 22.65 17.99 38.52 0.935 
23_18 23.07 22.47 18.05 40.22 22.55 17.96 38.58 0.835 
23_18 23.08 22.47 18.05 40.22 22.51 18.09 38.16 0.855 
23_18 23.09 22.47 18.05 40.22 22.34 17.83 37.64 0.95 
23_18 23.10 22.47 18.05 40.22 21.95 17.78 37.67 0.845 
23_18 23.11 22.47 18.05 40.22 22.00 17.98 37.63 0.885 
23_18 23.12 22.47 18.05 40.22 21.72 17.83 37.60 0.87 
23_18 23.13 22.47 18.05 40.22 21.69 17.84 38.18 0.765 
23_18 23.14 22.47 18.05 40.22 21.76 18.05 38.24 0.755 
23_18 23.15 22.47 18.05 40.22 21.55 17.92 38.64 0.785 
23_18 23.16 22.47 18.05 40.22 21.78 18.05 38.66 0.89 
23_18 23.17 22.47 18.05 40.22 21.73 18.20 39.20 0.875 
23_18 23.18 22.47 18.05 40.22 22.04 18.36 39.62 0.865 
23_18 23.19 22.47 18.05 40.22 21.80 18.23 39.59 0.82 
23_18 23.20 22.47 18.05 40.22 21.90 18.28 40.06 0.85 
23_18 23.21 22.47 18.05 40.22 21.87 18.09 40.33 0.765 
24_18 24.01 32.85 17.84 58.87 33.84 18.04 58.28 0.915 
24_18 24.02 32.85 17.84 58.87 33.80 18.01 57.94 0.89 
24_18 24.03 32.85 17.84 58.87 33.61 17.96 57.94 0.96 
24_18 24.04 32.85 17.84 58.87 33.55 18.02 57.30 0.94 
24_18 24.05 32.85 17.84 58.87 33.53 18.12 56.92 0.9 
24_18 24.06 32.85 17.84 58.87 33.25 17.97 57.33 0.83 
24_18 24.07 32.85 17.84 58.87 32.90 17.89 56.36 0.81 
24_18 24.08 32.85 17.84 58.87 32.84 17.96 56.92 0.74 
24_18 24.09 32.85 17.84 58.87 32.74 17.91 56.40 0.775 
24_18 24.10 32.85 17.84 58.87 32.48 17.91 56.38 0.835 
24_18 24.11 32.85 17.84 58.87 32.23 17.85 56.32 0.8 
24_18 24.12 32.85 17.84 58.87 32.30 18.00 56.40 0.77 
24_18 24.13 32.85 17.84 58.87 32.41 18.06 56.91 0.775 
24_18 24.14 32.85 17.84 58.87 31.78 17.87 56.34 0.81 
24_18 24.15 32.85 17.84 58.87 31.93 17.81 57.33 0.755 
24_18 24.16 32.85 17.84 58.87 31.78 17.87 57.35 0.795 
24_18 24.17 32.85 17.84 58.87 31.95 17.95 57.31 0.795 
24_18 24.18 32.85 17.84 58.87 32.09 18.02 58.00 0.73 
24_18 24.19 32.85 17.84 58.87 31.87 17.78 58.04 0.79 
24_18 24.20 32.85 17.84 58.87 32.17 18.04 58.46 0.845 
24_18 24.21 32.85 17.84 58.87 32.25 17.96 59.02 0.84 
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Centre Sample Xc Yc Zc Xs Ys Zs Ratio 
25_18 25.01 21.52 18.24 5.86 21.79 18.10 5.43 0.85 
25_18 25.02 21.52 18.24 5.86 21.74 18.02 5.23 0.88 
25_18 25.03 21.52 18.24 5.86 21.74 18.03 5.23 0.9 
25_18 25.04 21.52 18.24 5.86 21.69 18.00 4.87 1.055 
25_18 25.05 21.52 18.24 5.86 21.68 18.00 4.87 1.02 
25_18 25.06 21.52 18.24 5.86 21.58 18.11 4.89 0.98 
25_18 25.07 21.52 18.24 5.86 21.55 18.09 4.76 1.01 
25_18 25.08 21.52 18.24 5.86 21.25 18.10 4.55 1.06 
25_18 25.09 21.52 18.24 5.86 21.22 18.08 4.36 1.145 
25_18 25.10 21.52 18.24 5.86 21.26 18.11 4.55 1.05 
25_18 25.11 21.52 18.24 5.86 21.00 18.04 4.36 1.19 
25_18 25.12 21.52 18.24 5.86 20.81 17.94 4.53 1.12 
25_18 25.13 21.52 18.24 5.86 20.94 18.14 4.77 1.115 
25_18 25.14 21.52 18.24 5.86 20.84 17.96 4.74 1.055 
25_18 25.15 21.52 18.24 5.86 20.95 18.13 4.98 0.97 
25_18 25.16 21.52 18.24 5.86 20.67 17.98 4.97 1.005 
25_18 25.17 21.52 18.24 5.86 20.74 18.03 5.24 1.045 
25_18 25.18 21.52 18.24 5.86 20.75 18.03 5.41 0.93 
25_18 25.19 21.52 18.24 5.86 20.81 18.07 5.62 0.88 
25_18 25.20 21.52 18.24 5.86 20.86 18.09 5.83 0.885 
25_18 25.21 21.52 18.24 5.86 20.91 18.14 6.01 0.89 
25_48 25.01 55.22 46.51 14.82 56.94 46.88 14.79 0.965 
25_48 25.02 55.22 46.51 14.82 56.90 46.86 14.42 0.97 
25_48 25.03 55.22 46.51 14.82 56.69 46.95 13.88 0.96 
25_48 25.04 55.22 46.51 14.82 56.18 46.52 12.93 1 
25_48 25.05 55.22 46.51 14.82 55.96 46.59 12.80 1.035 
25_48 25.06 55.22 46.51 14.82 55.96 46.78 12.44 1.1 
25_48 25.07 55.22 46.51 14.82 55.47 46.61 12.39 1.2 
25_48 25.08 55.22 46.51 14.82 55.02 46.39 11.77 1.225 
25_48 25.09 55.22 46.51 14.82 55.14 46.78 11.61 1.365 
25_48 25.10 55.22 46.51 14.82 54.84 46.60 11.81 1.285 
25_48 25.11 55.22 46.51 14.82 54.53 46.54 11.82 1.295 
25_48 25.12 55.22 46.51 14.82 54.59 46.92 11.84 1.225 
25_48 25.13 55.22 46.51 14.82 54.48 46.93 12.11 1.28 
25_48 25.14 55.22 46.51 14.82 54.14 46.70 12.42 1.135 
25_48 25.15 55.22 46.51 14.82 53.79 46.54 12.81 1.185 
25_48 25.16 55.22 46.51 14.82 53.89 46.76 12.97 1.215 
25_48 25.17 55.22 46.51 14.82 53.72 46.67 13.58 1.165 
25_48 25.18 55.22 46.51 14.82 53.77 46.70 14.42 1.045 
25_48 25.19 55.22 46.51 14.82 53.92 46.76 14.53 1.04 
25_48 25.20 55.22 46.51 14.82 54.03 46.82 15.14 1.03 
25_48 25.21 55.22 46.51 14.82 53.96 46.56 15.34 0.98 
 

  



- 216 - 

Centre Sample Xc Yc Zc Xs Ys Zs Ratio 
3_18 3.01 13.11 18.02 15.78 13.79 17.85 15.45 1.19 
3_18 3.02 13.11 18.02 15.78 13.72 17.82 15.05 1.25 
3_18 3.03 13.11 18.02 15.78 13.60 18.03 14.63 1.085 
3_18 3.04 13.11 18.02 15.78 13.60 18.03 14.63 1.09 
3_18 3.05 13.11 18.02 15.78 13.60 18.20 14.20 1.25 
3_18 3.06 13.11 18.02 15.78 13.23 17.85 14.16 1.02 
3_18 3.07 13.11 18.02 15.78 13.19 17.82 14.00 1.26 
3_18 3.08 13.11 18.02 15.78 13.22 18.01 14.18 1.145 
3_18 3.09 13.11 18.02 15.78 13.19 17.98 14.03 1.185 
3_18 3.10 13.11 18.02 15.78 12.76 17.77 14.02 0.99 
3_18 3.11 13.11 18.02 15.78 12.99 17.95 14.00 1.16 
3_18 3.12 13.11 18.02 15.78 12.63 17.75 13.97 1.03 
3_18 3.13 13.11 18.02 15.78 12.69 18.08 14.20 1.055 
3_18 3.14 13.11 18.02 15.78 12.70 18.09 14.21 1 
3_18 3.15 13.11 18.02 15.78 12.61 17.77 14.37 0.96 
3_18 3.16 13.11 18.02 15.78 12.49 17.70 14.36 0.925 
3_18 3.17 13.11 18.02 15.78 12.62 18.04 14.41 0.925 
3_18 3.18 13.11 18.02 15.78 12.56 17.99 15.16 0.865 
3_18 3.19 13.11 18.02 15.78 12.63 18.03 15.53 0.795 
3_18 3.20 13.11 18.02 15.78 12.51 17.96 15.80 0.865 
3_18 3.21 13.11 18.02 15.78 12.38 17.63 15.74 0.87 
3_48 3.01 33.93 46.67 40.71 35.54 46.39 39.83 1.04 
3_48 3.02 33.93 46.67 40.71 35.52 46.69 39.21 1.085 
3_48 3.03 33.93 46.67 40.71 35.22 46.50 38.84 0.985 
3_48 3.04 33.93 46.67 40.71 34.99 46.70 38.35 1.03 
3_48 3.05 33.93 46.67 40.71 34.85 46.32 37.91 1.06 
3_48 3.06 33.93 46.67 40.71 34.57 46.47 37.42 1 
3_48 3.07 33.93 46.67 40.71 34.56 46.85 37.34 1.025 
3_48 3.08 33.93 46.67 40.71 34.33 46.77 37.04 1.055 
3_48 3.09 33.93 46.67 40.71 33.96 46.73 37.03 1.01 
3_48 3.10 33.93 46.67 40.71 33.54 46.33 36.54 1.035 
3_48 3.11 33.93 46.67 40.71 33.41 46.45 36.57 1.02 
3_48 3.12 33.93 46.67 40.71 33.24 46.36 37.01 0.975 
3_48 3.13 33.93 46.67 40.71 33.00 46.35 36.96 1.075 
3_48 3.14 33.93 46.67 40.71 32.79 46.65 37.36 0.89 
3_48 3.15 33.93 46.67 40.71 32.70 46.58 38.00 0.94 
3_48 3.16 33.93 46.67 40.71 32.72 46.60 38.54 0.905 
3_48 3.17 33.93 46.67 40.71 32.58 46.70 38.61 0.845 
3_48 3.18 33.93 46.67 40.71 32.48 46.63 39.29 0.78 
3_48 3.19 33.93 46.67 40.71 32.53 46.65 39.69 0.95 
3_48 3.20 33.93 46.67 40.71 32.35 46.54 39.93 0.97 
3_48 3.21 33.93 46.67 40.71 32.59 46.67 41.18 0.855 
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Centre Sample Xc Yc Zc Xs Ys Zs Ratio 
5_18 5.01 28.34 17.78 13.54 29.20 18.04 13.58 0.875 
5_18 5.02 28.34 17.78 13.54 29.16 18.07 13.18 0.835 
5_18 5.03 28.34 17.78 13.54 28.96 17.92 12.68 0.865 
5_18 5.04 28.34 17.78 13.54 28.90 17.94 12.43 0.915 
5_18 5.05 28.34 17.78 13.54 28.90 17.95 12.44 0.89 
5_18 5.06 28.34 17.78 13.54 28.68 17.97 12.40 1.01 
5_18 5.07 28.34 17.78 13.54 28.61 17.94 12.06 0.925 
5_18 5.08 28.34 17.78 13.54 28.50 18.05 12.13 1.035 
5_18 5.09 28.34 17.78 13.54 28.19 17.95 12.10 0.97 
5_18 5.10 28.34 17.78 13.54 28.16 17.94 11.86 0.975 
5_18 5.11 28.34 17.78 13.54 28.24 18.12 11.90 1.075 
5_18 5.12 28.34 17.78 13.54 28.30 18.14 12.15 1.04 
5_18 5.13 28.34 17.78 13.54 27.96 17.97 11.88 1.08 
5_18 5.14 28.34 17.78 13.54 27.81 17.98 12.12 1.05 
5_18 5.15 28.34 17.78 13.54 28.09 18.03 12.48 0.97 
5_18 5.16 28.34 17.78 13.54 27.90 18.03 12.47 1.005 
5_18 5.17 28.34 17.78 13.54 27.92 18.04 12.70 0.97 
5_18 5.18 28.34 17.78 13.54 27.67 17.89 12.97 0.93 
5_18 5.19 28.34 17.78 13.54 27.71 17.82 13.20 0.925 
5_18 5.20 28.34 17.78 13.54 27.75 17.92 13.57 0.845 
5_18 5.21 28.34 17.78 13.54 27.75 17.92 13.58 0.88 
8_18 8.01 13.79 17.88 4.35 14.18 17.74 4.21 0.775 
8_18 8.02 13.79 17.88 4.35 14.18 17.81 4.09 0.895 
8_18 8.03 13.79 17.88 4.35 13.89 17.64 3.72 0.9 
8_18 8.04 13.79 17.88 4.35 14.05 17.73 3.50 0.88 
8_18 8.05 13.79 17.88 4.35 14.14 18.02 3.52 0.875 
8_18 8.06 13.79 17.88 4.35 13.92 17.91 3.41 0.865 
8_18 8.07 13.79 17.88 4.35 13.81 17.60 3.28 0.93 
8_18 8.08 13.79 17.88 4.35 13.66 17.78 3.30 0.82 
8_18 8.09 13.79 17.88 4.35 13.63 17.75 3.16 0.94 
8_18 8.10 13.79 17.88 4.35 13.65 18.03 3.20 0.905 
8_18 8.11 13.79 17.88 4.35 13.65 18.03 3.20 0.965 
8_18 8.12 13.79 17.88 4.35 13.67 18.04 3.34 0.82 
8_18 8.13 13.79 17.88 4.35 13.73 18.23 3.36 0.91 
8_18 8.14 13.79 17.88 4.35 13.52 18.12 3.46 0.865 
8_18 8.15 13.79 17.88 4.35 13.32 18.02 3.56 0.91 
8_18 8.16 13.79 17.88 4.35 13.18 18.02 3.78 1.01 
8_18 8.17 13.79 17.88 4.35 13.06 17.98 3.78 1 
8_18 8.18 13.79 17.88 4.35 13.23 18.07 3.97 0.98 
8_18 8.19 13.79 17.88 4.35 13.17 18.05 4.27 1.025 
8_18 8.20 13.79 17.88 4.35 13.16 18.05 4.27 0.945 
8_18 8.21 13.79 17.88 4.35 13.24 18.10 4.58 1.035 
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Centre Sample Xc Yc Zc Xs Ys Zs Ratio 
8_48 8.01 35.75 46.83 11.40 37.13 46.53 10.95 0.94 
8_48 8.02 35.75 46.83 11.40 37.11 46.55 10.63 0.945 
8_48 8.03 35.75 46.83 11.40 36.81 46.53 9.91 0.93 
8_48 8.04 35.75 46.83 11.40 36.70 46.47 9.50 1.095 
8_48 8.05 35.75 46.83 11.40 36.53 46.77 9.33 0.99 
8_48 8.06 35.75 46.83 11.40 36.14 46.51 8.89 1.06 
8_48 8.07 35.75 46.83 11.40 36.17 46.62 8.75 1 
8_48 8.08 35.75 46.83 11.40 36.05 46.82 8.43 1.105 
8_48 8.09 35.75 46.83 11.40 35.71 46.78 8.39 1.125 
8_48 8.10 35.75 46.83 11.40 35.13 46.51 8.18 1.12 
8_48 8.11 35.75 46.83 11.40 34.91 46.24 8.38 1.01 
8_48 8.12 35.75 46.83 11.40 34.70 46.30 8.39 1.055 
8_48 8.13 35.75 46.83 11.40 34.74 46.32 8.58 0.99 
8_48 8.14 35.75 46.83 11.40 34.72 46.60 8.78 0.95 
8_48 8.15 35.75 46.83 11.40 34.51 46.82 9.22 0.99 
8_48 8.16 35.75 46.83 11.40 34.36 46.76 9.21 1.1 
8_48 8.17 35.75 46.83 11.40 34.36 46.70 9.52 0.93 
8_48 8.18 35.75 46.83 11.40 34.37 46.77 10.38 0.9 
8_48 8.19 35.75 46.83 11.40 34.16 46.60 10.97 0.925 
8_48 8.20 35.75 46.83 11.40 34.21 46.65 11.21 0.955 
8_48 8.21 35.75 46.83 11.40 34.36 46.75 11.88 0.94 
B_48 B.01 30.89 46.30 77.03 32.71 46.37 76.66 0.965 
B_48 B.02 30.89 46.30 77.03 32.56 46.34 75.95 0.885 
B_48 B.03 30.89 46.30 77.03 32.65 46.65 75.94 0.835 
B_48 B.04 30.89 46.30 77.03 32.13 46.34 74.74 0.935 
B_48 B.05 30.89 46.30 77.03 31.89 46.25 74.25 0.93 
B_48 B.06 30.89 46.30 77.03 31.85 46.60 73.25 0.895 
B_48 B.07 30.89 46.30 77.03 31.66 46.69 73.20 0.805 
B_48 B.08 30.89 46.30 77.03 31.41 46.58 72.62 0.785 
B_48 B.09 30.89 46.30 77.03 31.13 46.44 72.61 0.865 
B_48 B.10 30.89 46.30 77.03 30.65 46.53 72.27 0.86 
B_48 B.11 30.89 46.30 77.03 30.43 46.44 72.28 0.86 
B_48 B.12 30.89 46.30 77.03 30.30 46.68 72.69 0.95 
B_48 B.13 30.89 46.30 77.03 30.06 46.53 73.27 0.77 
B_48 B.14 30.89 46.30 77.03 29.63 46.27 73.18 0.73 
B_48 B.15 30.89 46.30 77.03 29.50 46.56 73.88 0.745 
B_48 B.16 30.89 46.30 77.03 29.10 46.01 74.28 0.75 
B_48 B.17 30.89 46.30 77.03 29.44 46.50 75.41 0.815 
B_48 B.18 30.89 46.30 77.03 29.22 46.43 75.47 0.82 
B_48 B.19 30.89 46.30 77.03 29.10 46.36 76.50 0.86 
B_48 B.20 30.89 46.30 77.03 29.32 46.89 76.89 0.795 
B_48 B.21 30.89 46.30 77.03 29.31 46.45 77.66 0.875 
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Centre Sample Xc Yc Zc Xs Ys Zs Ratio 
G_48 G.01 19.19 46.24 11.40 20.66 46.27 11.22 0.815 
G_48 G.02 19.19 46.24 11.40 20.57 46.29 10.59 0.82 
G_48 G.03 19.19 46.24 11.40 20.51 46.52 9.81 0.805 
G_48 G.04 19.19 46.24 11.40 20.50 46.55 9.67 0.9 
G_48 G.05 19.19 46.24 11.40 20.37 46.60 9.39 1 
G_48 G.06 19.19 46.24 11.40 20.11 46.36 9.23 1.045 
G_48 G.07 19.19 46.24 11.40 20.08 46.48 8.87 1.005 
G_48 G.08 19.19 46.24 11.40 19.85 46.36 8.63 0.96 
G_48 G.09 19.19 46.24 11.40 19.30 46.08 8.60 0.985 
G_48 G.10 19.19 46.24 11.40 19.39 46.45 8.46 1.035 
G_48 G.11 19.19 46.24 11.40 19.18 46.73 8.51 0.99 
G_48 G.12 19.19 46.24 11.40 19.01 46.64 8.50 0.955 
G_48 G.13 19.19 46.24 11.40 18.72 46.68 8.89 0.94 
G_48 G.14 19.19 46.24 11.40 18.64 46.67 9.11 0.845 
G_48 G.15 19.19 46.24 11.40 18.43 46.33 9.25 0.91 
G_48 G.16 19.19 46.24 11.40 18.00 46.10 9.37 0.855 
G_48 G.17 19.19 46.24 11.40 17.99 46.28 9.79 0.92 
G_48 G.18 19.19 46.24 11.40 18.08 46.38 10.61 0.785 
G_48 G.19 19.19 46.24 11.40 18.00 46.29 11.21 0.755 
G_48 G.20 19.19 46.24 11.40 18.10 46.38 11.63 0.755 
G_48 G.21 19.19 46.24 11.40 17.88 46.24 11.80 0.79 
W1_48 W1.01 52.27 46.83 14.91 53.61 46.61 14.49 0.975 
W1_48 W1.02 52.27 46.83 14.91 53.28 46.63 13.91 0.935 
W1_48 W1.03 52.27 46.83 14.91 53.59 46.99 13.38 1 
W1_48 W1.04 52.27 46.83 14.91 53.20 46.80 12.88 1.06 
W1_48 W1.05 52.27 46.83 14.91 52.89 46.66 12.66 1.02 
W1_48 W1.06 52.27 46.83 14.91 52.35 46.39 12.09 1.22 
W1_48 W1.07 52.27 46.83 14.91 52.06 46.48 11.87 1.185 
W1_48 W1.08 52.27 46.83 14.91 51.69 46.30 11.61 1.225 
W1_48 W1.09 52.27 46.83 14.91 51.77 46.59 11.63 1.31 
W1_48 W1.10 52.27 46.83 14.91 51.75 46.70 11.36 1.265 
W1_48 W1.11 52.27 46.83 14.91 51.18 46.40 11.36 1.295 
W1_48 W1.12 52.27 46.83 14.91 51.21 46.41 11.62 1.2 
W1_48 W1.13 52.27 46.83 14.91 51.06 46.57 11.89 1.27 
W1_48 W1.14 52.27 46.83 14.91 51.02 46.78 12.53 1.11 
W1_48 W1.15 52.27 46.83 14.91 50.92 46.54 12.49 1.12 
W1_48 W1.16 52.27 46.83 14.91 50.47 46.50 12.90 1.18 
W1_48 W1.17 52.27 46.83 14.91 50.56 46.55 13.39 1.11 
W1_48 W1.18 52.27 46.83 14.91 50.63 46.57 13.94 1.025 
W1_48 W1.19 52.27 46.83 14.91 50.49 46.48 14.48 1.055 
W1_48 W1.20 52.27 46.83 14.91 50.57 46.53 14.86 0.96 
W1_48 W1.21 52.27 46.83 14.91 50.69 46.60 15.46 0.995 
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Centre Sample Xc Yc Zc Xs Ys Zs Ratio 
W2_48 W2.01 49.98 46.32 18.58 51.92 46.75 18.42 1.05 
W2_48 W2.02 49.98 46.32 18.58 51.53 46.56 17.85 0.885 
W2_48 W2.03 49.98 46.32 18.58 51.43 46.50 17.44 0.98 
W2_48 W2.04 49.98 46.32 18.58 51.05 46.59 16.52 1.11 
W2_48 W2.05 49.98 46.32 18.58 51.01 46.55 16.35 0.99 
W2_48 W2.06 49.98 46.32 18.58 50.70 46.40 15.92 1.125 
W2_48 W2.07 49.98 46.32 18.58 50.51 46.50 15.71 1.155 
W2_48 W2.08 49.98 46.32 18.58 50.12 46.39 15.42 1.195 
W2_48 W2.09 49.98 46.32 18.58 50.32 46.96 15.50 1.14 
W2_48 W2.10 49.98 46.32 18.58 49.82 46.26 15.41 1.16 
W2_48 W2.11 49.98 46.32 18.58 49.57 46.57 15.45 1.275 
W2_48 W2.12 49.98 46.32 18.58 49.30 46.56 15.75 1.18 
W2_48 W2.13 49.98 46.32 18.58 49.12 46.46 15.98 1.16 
W2_48 W2.14 49.98 46.32 18.58 49.30 46.81 16.41 1.085 
W2_48 W2.15 49.98 46.32 18.58 48.88 46.57 16.38 1.145 
W2_48 W2.16 49.98 46.32 18.58 48.94 46.64 16.56 1.075 
W2_48 W2.17 49.98 46.32 18.58 48.64 46.47 17.00 1 
W2_48 W2.18 49.98 46.32 18.58 48.82 46.56 17.89 1.085 
W2_48 W2.19 49.98 46.32 18.58 48.57 46.38 18.42 1.04 
W2_48 W2.20 49.98 46.32 18.58 48.63 46.44 18.60 0.915 
W2_48 W2.21 49.98 46.32 18.58 48.74 46.51 19.23 0.945 
W3_48 W3.01 48.12 46.49 23.50 49.99 46.26 23.68 1.055 
W3_48 W3.02 48.12 46.49 23.50 49.83 46.18 23.13 1.08 
W3_48 W3.03 48.12 46.49 23.50 49.92 46.71 22.55 0.98 
W3_48 W3.04 48.12 46.49 23.50 49.46 46.48 21.99 0.975 
W3_48 W3.05 48.12 46.49 23.50 49.35 46.54 21.26 1.01 
W3_48 W3.06 48.12 46.49 23.50 49.08 46.65 21.05 1.035 
W3_48 W3.07 48.12 46.49 23.50 49.05 46.63 20.91 1.01 
W3_48 W3.08 48.12 46.49 23.50 48.17 46.55 20.57 1.12 
W3_48 W3.09 48.12 46.49 23.50 47.97 46.09 20.20 1.085 
W3_48 W3.10 48.12 46.49 23.50 47.84 46.39 20.58 1.015 
W3_48 W3.11 48.12 46.49 23.50 47.90 46.61 20.61 1.075 
W3_48 W3.12 48.12 46.49 23.50 47.66 46.47 20.58 1.135 
W3_48 W3.13 48.12 46.49 23.50 47.42 46.36 20.59 1.13 
W3_48 W3.14 48.12 46.49 23.50 47.56 46.68 21.08 1.145 
W3_48 W3.15 48.12 46.49 23.50 47.39 47.00 21.36 1.14 
W3_48 W3.16 48.12 46.49 23.50 47.19 46.90 21.74 1.06 
W3_48 W3.17 48.12 46.49 23.50 46.85 46.29 22.54 1.015 
W3_48 W3.18 48.12 46.49 23.50 46.53 46.09 22.51 1.045 
W3_48 W3.19 48.12 46.49 23.50 46.76 46.24 23.47 0.92 
W3_48 W3.20 48.12 46.49 23.50 46.56 46.13 23.69 1.035 
W3_48 W3.21 48.12 46.49 23.50 46.87 46.75 24.18 0.925 
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Centre Sample Xc Yc Zc Xs Ys Zs Ratio 
W4_18 W4.01 18.08 17.77 11.27 18.62 17.92 10.67 0.955 
W4_18 W4.02 18.08 17.77 11.27 18.62 17.93 10.68 1.085 
W4_18 W4.03 18.08 17.77 11.27 18.45 17.84 10.51 0.98 
W4_18 W4.04 18.08 17.77 11.27 18.47 18.03 10.33 0.99 
W4_18 W4.05 18.08 17.77 11.27 18.23 17.91 10.31 0.905 
W4_18 W4.06 18.08 17.77 11.27 18.19 17.87 10.12 1.04 
W4_18 W4.07 18.08 17.77 11.27 18.14 17.67 10.12 1.06 
W4_18 W4.08 18.08 17.77 11.27 18.14 17.86 9.80 1.15 
W4_18 W4.09 18.08 17.77 11.27 17.93 17.71 9.77 1.085 
W4_18 W4.10 18.08 17.77 11.27 18.08 18.07 9.83 1.195 
W4_18 W4.11 18.08 17.77 11.27 17.93 18.01 9.84 1.145 
W4_18 W4.12 18.08 17.77 11.27 17.96 18.10 9.85 1.22 
W4_18 W4.13 18.08 17.77 11.27 17.86 18.04 10.17 1.175 
W4_18 W4.14 18.08 17.77 11.27 17.89 18.06 10.35 1.085 
W4_18 W4.15 18.08 17.77 11.27 17.63 17.91 10.33 1.13 
W4_18 W4.16 18.08 17.77 11.27 17.63 17.91 10.34 1.14 
W4_18 W4.17 18.08 17.77 11.27 17.38 17.79 10.33 1.27 
W4_18 W4.18 18.08 17.77 11.27 17.22 17.70 10.67 1.205 
W4_18 W4.19 18.08 17.77 11.27 17.28 17.72 11.01 1.085 
W4_18 W4.20 18.08 17.77 11.27 17.33 17.74 11.29 1.03 
W4_18 W4.21 18.08 17.77 11.27 17.59 17.88 11.55 0.99 
W4_48 W4.01 46.88 46.26 28.96 48.44 46.65 28.72 0.905 
W4_48 W4.02 46.88 46.26 28.96 48.23 46.53 27.67 0.96 
W4_48 W4.03 46.88 46.26 28.96 48.26 46.76 27.37 0.975 
W4_48 W4.04 46.88 46.26 28.96 47.97 46.62 27.22 1 
W4_48 W4.05 46.88 46.26 28.96 47.83 46.76 26.36 1.06 
W4_48 W4.06 46.88 46.26 28.96 47.56 46.65 26.37 1.01 
W4_48 W4.07 46.88 46.26 28.96 47.50 47.09 26.27 1.13 
W4_48 W4.08 46.88 46.26 28.96 47.24 46.50 25.97 1.105 
W4_48 W4.09 46.88 46.26 28.96 47.09 46.83 25.52 1.115 
W4_48 W4.10 46.88 46.26 28.96 46.39 46.43 25.41 1.14 
W4_48 W4.11 46.88 46.26 28.96 46.13 46.50 25.50 1.155 
W4_48 W4.12 46.88 46.26 28.96 46.01 46.43 26.00 1.13 
W4_48 W4.13 46.88 46.26 28.96 45.69 46.47 26.00 1.15 
W4_48 W4.14 46.88 46.26 28.96 45.91 46.93 26.29 1.2 
W4_48 W4.15 46.88 46.26 28.96 45.44 46.36 26.22 1.14 
W4_48 W4.16 46.88 46.26 28.96 45.37 46.28 27.23 1.015 
W4_48 W4.17 46.88 46.26 28.96 45.14 46.54 27.26 1.145 
W4_48 W4.18 46.88 46.26 28.96 45.24 46.58 27.79 1.285 
W4_48 W4.19 46.88 46.26 28.96 45.40 46.65 28.66 1.095 
W4_48 W4.20 46.88 46.26 28.96 45.18 46.54 28.79 1.12 
W4_48 W4.21 46.88 46.26 28.96 45.14 46.13 29.45 1.065 
 

  



- 222 - 

Centre Sample Xc Yc Zc Xs Ys Zs Ratio 
W5_48 W5.01 45.14 46.42 38.93 46.63 46.45 38.50 0.925 
W5_48 W5.02 45.14 46.42 38.93 46.48 46.39 37.58 1.05 
W5_48 W5.03 45.14 46.42 38.93 46.65 46.64 38.14 1.01 
W5_48 W5.04 45.14 46.42 38.93 46.49 46.69 37.14 1.08 
W5_48 W5.05 45.14 46.42 38.93 46.28 46.67 36.60 1.025 
W5_48 W5.06 45.14 46.42 38.93 46.37 47.08 36.27 0.98 
W5_48 W5.07 45.14 46.42 38.93 45.83 46.42 35.51 1.095 
W5_48 W5.08 45.14 46.42 38.93 45.71 46.73 35.56 1.05 
W5_48 W5.09 45.14 46.42 38.93 45.33 46.74 35.38 1.08 
W5_48 W5.10 45.14 46.42 38.93 45.07 46.86 35.40 1.08 
W5_48 W5.11 45.14 46.42 38.93 44.64 46.65 35.38 0.975 
W5_48 W5.12 45.14 46.42 38.93 44.56 46.98 35.44 1.01 
W5_48 W5.13 45.14 46.42 38.93 44.39 46.52 35.37 0.99 
W5_48 W5.14 45.14 46.42 38.93 44.20 46.78 36.24 1.19 
W5_48 W5.15 45.14 46.42 38.93 44.06 46.74 36.73 1.03 
W5_48 W5.16 45.14 46.42 38.93 44.02 46.65 37.01 1.055 
W5_48 W5.17 45.14 46.42 38.93 43.61 46.45 37.26 1 
W5_48 W5.18 45.14 46.42 38.93 43.67 46.47 37.66 0.995 
W5_48 W5.19 45.14 46.42 38.93 43.49 46.38 38.59 0.995 
W5_48 W5.20 45.14 46.42 38.93 43.30 46.31 38.97 0.94 
W5_48 W5.21 45.14 46.42 38.93 43.71 46.51 39.63 1.045 
W6_18 W6.01 16.96 17.91 19.70 17.51 17.70 19.49 1.235 
W6_18 W6.02 16.96 17.91 19.70 17.37 17.72 19.14 1.09 
W6_18 W6.03 16.96 17.91 19.70 17.30 17.68 18.73 1.115 
W6_18 W6.04 16.96 17.91 19.70 17.30 17.68 18.73 1.155 
W6_18 W6.05 16.96 17.91 19.70 17.49 18.09 18.45 1.14 
W6_18 W6.06 16.96 17.91 19.70 17.25 17.66 18.38 1.21 
W6_18 W6.07 16.96 17.91 19.70 17.11 17.90 18.11 1.185 
W6_18 W6.08 16.96 17.91 19.70 17.10 17.89 18.10 0.985 
W6_18 W6.09 16.96 17.91 19.70 17.14 18.04 18.09 1.025 
W6_18 W6.10 16.96 17.91 19.70 16.91 17.91 18.09 1 
W6_18 W6.11 16.96 17.91 19.70 16.86 17.89 17.78 1.025 
W6_18 W6.12 16.96 17.91 19.70 16.63 18.02 18.10 0.965 
W6_18 W6.13 16.96 17.91 19.70 16.62 18.02 18.09 1.04 
W6_18 W6.14 16.96 17.91 19.70 16.69 18.05 18.43 0.905 
W6_18 W6.15 16.96 17.91 19.70 16.51 17.95 18.56 0.955 
W6_18 W6.16 16.96 17.91 19.70 16.82 18.32 18.64 1.015 
W6_18 W6.17 16.96 17.91 19.70 16.60 18.21 18.62 1.04 
W6_18 W6.18 16.96 17.91 19.70 16.54 18.18 19.23 1.09 
W6_18 W6.19 16.96 17.91 19.70 16.59 18.18 19.58 1.01 
W6_18 W6.20 16.96 17.91 19.70 16.64 18.21 19.78 1.04 
W6_18 W6.21 16.96 17.91 19.70 16.71 18.25 20.12 1.11 
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Centre Sample Xc Yc Zc Xs Ys Zs Ratio 
W6_48 W6.01 44.45 46.40 51.16 46.09 46.39 50.66 0.93 
W6_48 W6.02 44.45 46.40 51.16 45.95 46.36 49.86 0.985 
W6_48 W6.03 44.45 46.40 51.16 45.97 46.73 49.10 1.03 
W6_48 W6.04 44.45 46.40 51.16 45.51 46.50 49.11 1 
W6_48 W6.05 44.45 46.40 51.16 45.40 46.65 48.26 0.94 
W6_48 W6.06 44.45 46.40 51.16 44.98 46.68 47.70 0.97 
W6_48 W6.07 44.45 46.40 51.16 44.59 46.47 47.23 0.92 
W6_48 W6.08 44.45 46.40 51.16 44.72 46.95 46.97 1.02 
W6_48 W6.09 44.45 46.40 51.16 44.46 46.81 46.99 1.04 
W6_48 W6.10 44.45 46.40 51.16 43.99 46.21 46.71 1.02 
W6_48 W6.11 44.45 46.40 51.16 43.82 46.48 46.79 0.87 
W6_48 W6.12 44.45 46.40 51.16 43.67 46.67 47.03 1.025 
W6_48 W6.13 44.45 46.40 51.16 43.27 46.57 46.98 0.935 
W6_48 W6.14 44.45 46.40 51.16 43.32 46.81 47.01 1.04 
W6_48 W6.15 44.45 46.40 51.16 43.20 46.72 47.86 0.965 
W6_48 W6.16 44.45 46.40 51.16 43.03 46.61 48.32 1.04 
W6_48 W6.17 44.45 46.40 51.16 42.55 46.36 48.77 0.96 
W6_48 W6.18 44.45 46.40 51.16 42.86 46.72 49.99 1.03 
W6_48 W6.19 44.45 46.40 51.16 42.94 46.76 50.42 1.025 
W6_48 W6.20 44.45 46.40 51.16 42.81 46.69 50.86 1.035 
W6_48 W6.21 44.45 46.40 51.16 42.86 46.51 51.52 1.065 
 

 


	Acknowledgements
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	List of Equations
	Chapter 1.  Introduction
	1.1. Background
	1.2. Aims of Thesis
	1.3. Thesis Overview

	Chapter 2.  Literature Review
	2.1. Colour Fundamentals
	2.1.1. CIE Colorimetry
	2.1.1.1. Standard Illuminants and Sources
	2.1.1.2. Standards of Reflectance
	2.1.1.3. Geometric Conditions
	2.1.1.4. Standard Colorimetric Observers
	2.1.1.5. Tristimulus Values and Chromaticity Coordinates
	2.1.1.6. Luminance Factor
	2.1.1.7. Uniform Colour Spaces

	2.1.2. Colour Difference Formulae
	2.1.2.1. CIELAB and CIELUV Formulae
	2.1.2.2. CIEDE2000 Formula

	2.1.3. Colour Difference Datasets
	2.1.4. Colour Appearance Overview
	2.1.4.1. Viewing Field
	2.1.4.2. Colour Appearance Attributes
	2.1.4.3. Colour Appearance Phenomena
	2.1.4.4. Parametric Effects

	2.1.5. Colour Appearance Models
	2.1.5.1. CIECAM02 Model
	2.1.5.2. CAM02-SCD, CAM02-LCD and CAM02-UCS Colour Spaces


	2.2. Colour Management
	2.2.1. Colour Management Overview
	2.2.2. Colour Management Steps
	2.2.3. Colour Management Paradigms
	2.2.4. Device Characterisation
	2.2.4.1. Display Characterisation


	2.3. Visual Psychophysics
	2.3.1. Introduction to Psychophysics
	2.3.2. Psychophysical Methods
	2.3.2.1. Ratio Scaling


	2.4. Colour Discrimination Ellipses
	2.4.1. Geometrical Properties of Ellipses
	2.4.2. The MacAdam Experiments on Visual Sensitivities
	2.4.3. Parameters of Ellipses
	2.4.4. Aperture Mode Studies on the Precision of Colour Matching
	2.4.5. Fitting of Ellipses

	2.5. Lighting Standards
	2.6. Statistical Methods and Measures of Fit
	2.6.1. General Statistics
	2.6.2. Standardized Residual Sum of Squares (STRESS)
	2.6.3. Colour Uncertainties

	2.7. Conclusion

	Chapter 3.  Experimental
	3.1. Measuring Instrumentation
	3.2. Visual Display
	3.2.1. Evaluation
	3.2.1.1. Short Term Stability
	3.2.1.2. Medium Term Stability
	3.2.1.3. Long Term Stability
	3.2.1.4. Uniformity of Luminance and Angular Dependency

	3.2.2. Characterisation

	3.3. Preparation of Colour Centres, Backgrounds and Reference Pair
	3.3.1. Processing of the Colour Centres and Sampling
	3.3.2. Performance of Reproduction of Pairs

	3.4. Visual Assessment Method
	3.4.1. Observer Instructions

	3.5. Observer Variability
	3.5.1. Intra- Observer Variability
	3.5.2. Inter- Observer Variability
	3.5.3. Observer Variability Evaluation

	3.6. Conclusion

	Chapter 4.  Colour Discrimination Ellipses
	4.1. Fitting Ellipses
	4.2. Comparing Visual Results
	4.3. Comparing Chromaticity Ellipses
	4.3.1. Uniformity of Colour Spaces
	4.3.2. Background Effect
	4.3.3. Effect Due to Luminance of Colour Centres

	4.4. Comparing with MacAdam Ellipses
	4.5. Comparing with Previous White Light Stimuli
	4.6. Conclusions

	Chapter 5.  Testing Colour Difference Formulae and Models
	5.1. Introduction
	5.2. Performance of Colour Difference Metrics
	5.3. Statistical Significance of Difference between Colour Difference Metrics
	5.4. Discussion of Findings
	5.4.1. The xy Chromaticity Diagram
	5.4.2. The CIELAB Colour Space and Formula
	5.4.3. The CIELUV Colour Space and Formula
	5.4.4. The CIEDE2000 Formula
	5.4.5. The CIECAM02 Colour Space and Model
	5.4.6. The CAM02-UCS Colour Space and Model
	5.4.7. Overall

	5.5. Background Differences
	5.6. Conclusions

	Chapter 6.  Conclusions
	6.1. Objectives and Summary
	6.2. Future Work

	References
	List of Abbreviations
	Appendix A Glossary
	A.1 Colour Fundamentals
	A.2 Colour Management
	A.3 Psychophysical Methods

	Appendix B CIECAM02 Forward Model
	Appendix C Experimental Data against the Grey Background
	Appendix D Experimental Data against the Black Background

