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Abstract
Detection, tracking and event analysis are areas of video analysis which have great

importance in robotics applications and automated surveillance. Although they have been
greatly studied individually, there has been little work on performing them jointly where
they mutually influence and improve each other. In this thesis we present a novel approach
for jointly estimating the track of a moving object and recognising the events in which it
participates.

The contributions are divided into three main chapters. In the first, we will introduce
our geometric carried object detector which allows to detect a generic class of objects. This
detector primarily uses geometric shape models instead of using pre-trained object class
models and does not solely rely on protrusion regions.

The second main chapter presents our spatial consistency tracker which incorporates
events at a detection level within a tracklet building process. This tracker enforces spatial
consistency between objects and other pre-tracked entities in the scene.

Finally, in the third main chapter we present our joint tracking and event analysis
framework posed as maximisation of a posterior probability defined over event sequences
and temporally-disjoint subsets of tracklets. In this framework events are incorporated at
a tracking level, where tracking and event analysis mutually influence and improve each
other.

We evaluate the aforementioned framework using three datasets. We compare our
detector and spatial consistency tracker against a state-of-the-art detector by providing
detection and tracking results. We evaluate the tracking performance of our joint tracking
and event analysis framework using tracklets from two state of the art trackers, and
additionally our own from our spatial consistency tracker; we demonstrate improved
tracking performance in each case due to jointly incorporating events within the tracking
process, while also subsequently improving event recognition.
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Chapter 1

Introduction

When a person is asked to observe and describe a scene, no matter how complex the
environment, they can easily transform the visual information into a sequence of meaningful
abstractions. In nearly all cases, these abstract definitions of the scene can be described in
terms of interactions between one or more entities and objects. Whether it is two people
talking to each other, a car over taking another car, a person carrying their briefcase to
work or even a single person waiting, these entities and objects are, or will interact with
others at a certain point in time.

The field of scene understanding in computer vision aims to tackle this challenge for an
observing machine, allowing it to understand and describe such interactions from a video.
The Oxford dictionary defines the word interaction as a “reciprocal action or influence”
[67]. That is, the interacting parties are bound to each other and are equally involved in
the interaction, where they also mutually influence each other. Therefore, for a machine
to understand and describe an interaction, it must answer three questions (i) who are the
parties involved? (ii) what is the nature of the interaction? and (iii) how are they influencing
each other?

The area of Tracking in computer vision aims to solve the first question, i.e. the who.
Here, the goal is to identify the objects and entities that are interacting with each other.
This is usually done by detecting or segmenting the objects and entities in the scene and
tracking them throughout the video.

The areas of Activity Recognition and Event Analysis aim at solving the second question,
i.e. the nature of the interaction. These areas attempt to identify the interaction that is

1



Chapter 1 2 Introduction

Figure 1.1: Examples of the three types of interaction between entities and objects, namely
entity-entity, object-entity and object-object interactions. Each row highlights examples of
the aforementioned interactions based on the relationship between the entities and objects,
namely one-to-one, many-to-one and many-to-many.

occurring between the interacting objects and entities. This typically involves labelling parts
of the video in terms of the occurring interactions (also referred to as activities or events),
e.g. talking, over taking, carrying or waiting based on the interaction examples previously
provided. In this work, as illustrated in Figure 1.1, we categorise these interactions into
three main groups namely entity-entity, object-entity and object-object interactions.

In the examples provided in Figure 1.1, an entity is primarily, but not limited to, a
person performing an interaction while an object can be anything that is interacted with.
However, in the object-object case, an object may take the role of interacting with another
object, e.g. robots interacting with a motionless child in the Pull example. Based on this
example and other interactions not involving an interacting person, since the term activity

is primarily focused on a participating person, to capture all types of interactions we will
henceforth use the general term events, which we will use interchangeably with the term
interaction. Additionally in Figure 1.1, the entities or objects participating in such events
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may have a one-to-one, many-to-one or a many-to-many relationship. It is also worth noting
that a many-to-many relation may be composed of shorter atomic one-to-one relations.

The last question, how two parties influence each other to perform an interaction, is
answered by analysing both the tracking solution of question one and the event analysis
solution of question two. Areas of Machine Learning and Knowledge Representation

aim at solving this problem by taking into account the distinct behaviour of the tracking
solution of the two parties with respect to each other. Their mutual influence on one another
determines the interaction they undergo, which is defined by a label as part of the solution
to the second question.

In this thesis we explore and investigate the benefits of incorporating the knowledge
of interactions within tracking. We tackle each of the aforementioned three questions and
provide a single framework that simultaneously solves both the tracking and the event
analysis problem. Most importantly however, this framework incorporates the learnt distinct
behaviour of the tracking solution and the characteristic properties of each interaction in
order to mutually influence and improve both the tracking and the event analysis solutions.
In the next section we present our main goal.

1.1 Goal

The main goal of the work presented in this thesis is tracking in the context of interaction.
This goal primarily focuses on incorporating the knowledge of events into object tracking.
More specifically, we use a tracking solution to obtain an event solution, and then use
the event solution to improve the tracking solution. We approach this goal based on the
following methodology:

1. We capture and model the nature of each event based on the notions of consistency
and inconsistency.

2. We then use these learnt event models to perform event analysis and exploit the
knowledge of events in order to improve the outcome of tracking.

3. We then use the improved outcome, i.e. the tracks, to improve event analysis.

4. Finally event analysis would be applied on tracks they aim to improve and tracking
would be applied by taking into account the events they have produced.

In the next section we provide a brief summary of our approach in accomplishing and
solving the above goals.
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Detections

Tracklet 
Building

Spatial 
Consistency

Tracking
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Figure 1.2: The three main frameworks of this thesis namely (a) Geometric Carried Object
Detector (b) Spatial Consistency Tracker and (c) Joint Tracking and Event Analysis. Dotted
arrows represent the link between the output of one framework to the input of another. The
solid arrows represent internal links between elements within a framework and the notion
of influence between them.

1.2 Approach

In this thesis, our approach is primarily focused on incorporating interactions of the
object-entity type within the tracking solution. However, our work is not limited to such
interactions and can in theory be applied to other aforementioned types presented in Figure
1.1. We also particularly focus on event-based tracking for domains which tend to contain
generic objects for which it is not straightforward to train class specific object detectors.
Therefore, the task of object tracking becomes especially challenging in domains such
as carried objects, as false, partial and missing detections are highly prevalent [24, 28].
This leads to false tracks, and also tracks that are heavily fragmented. We observe this
phenomenon when we apply state-of-the-art trackers by Andriyenko et al. [4] and Pirsiavash
et al. [63].

Therefore, to overcome the goals described in Section 1.1 in such domains, we apply
the following three frameworks, illustrated in Figure 1.2, each of which focuses on a
particular part of the tracking in the context of interaction goal:

(a) Geometric Carried Object Detector: As a requirement for tracking generic objects
which are hard to model, we require an object detector to initially detect such
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objects. We therefore propose our own object detector that uses simple geometric
shape models to provide detections for a large range of carried object types. These
detections are then used as input in the next framework.

(b) Spatial Consistency Tracker: To minimise the effects of false positives and max-
imise the affects of true positives detections within the final third framework, the role
of the second framework is to locally connect detections and form tracklets. More
importantly however, this is done while taking into account the spatially consistent
behaviour between the object and entity performing the interactions to improve the
quality of tracklets. These tracklets are then used as input in the next framework.

(c) Joint Tracking and Event Analysis: The final framework incorporates both the
tracking and the event analysis aspects, where they both mutually influence and
improve each other. In this framework events are modelled in terms of both consis-
tency and inconsistency and are directly used to improve the quality of object tracks,
satisfying the goals set in Section 1.1.

It is worth noting that any of the three aforementioned frameworks are not limited to
each other, and may take detections or tracklets as input from any other state-of-the-art
approaches. In the next section we describe the challenges that the above frameworks
tackle and overcome.

1.3 Challenges

There are various challenges that require to be overcome to accomplish the outlined goal in
this thesis. In this section we present the challenges faced in this work from the point of
view of (i) object detection and (ii) joint tracking and event analysis:

(i) Challenges in object detection:
In order to localise and segment an object in an image frame, one may face various
challenges. Focusing on carried object detection, these challenges include, but are not
limited to:

• Object Variety: Objects used in everyday interactions can vary significantly in type
whether it is with respect to their size, shape, colour or any patterns they may have.
This makes it particularly challenging to learn models for each object type.
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• Occlusion: Due to the nature of interactions, objects and entities are in close prox-
imity, greatly increasing the chance of occlusion. This makes detectors unable to
detect objects for intervals of varying length, depending on the interaction.

• Lighting Conditions: Changes in the weather or automatic brightness adjustments
on cameras are examples of slow or sudden changes in lighting respectively. This
change can heavily effect the performance of object detectors that rely heavily on
colour and edges.

• Clothing: Items of clothing introduce various complexities into object detection
whether it is due to the wide range of patterns on clothing or the creases that naturally
emerge on clothes during movement.

• Anatomical Differences: If one would like to attempt to detect objects by initially
finding the person interacting with it, this may not be straight forward due to physical
differences between people.

• Camera Angle: Whether it is a top down, bird’s-eye or human height level viewpoint,
the camera angle in which data is recorded can significantly effect the performance
of an object detector.

• Motion Blur: Sudden movement of objects may cause motion blur, depending on
camera settings, making it harder to find features for object detection.

• Scene Depth: In the real world objects continue to have the same size when moved
around. However, in the image plane, when an object moves further into the scene it
changes size due to scene depth and is harder to detect if the detector does not take
this into account.

(ii) Challenges in joint tracking and event analysis:
While traditionally track-based event analysis has been performed after the tracking process
has been completed, incorporating event analysis within tracking introduces various chal-
lenges. Firstly, event based tracking is a circular problem. This problem involves inferring
events using reasonable tracks, and then using these events to subsequently improve the
tracks. Due to this challenge, event based tracking has been rarely approached [93, 5, 17].
This becomes even more challenging due to the prevalence of false and fragmented tracks
in domains containing generic objects, as a result of using a large number of false positives
detections in the tracking process.

Secondly, in attempting to solve the circular problem, one must take into account that
there are challenging cases where there might not be a suitable event analysis solution



Chapter 1 7 Introduction

which the tracker can exploit. This could happen either in the early stages of the tracking
process where a suitable tracking solution has not been found, leading to an unsuitable
event analysis solution, or even if a suitable tracking solution is found, the event analysis
aspect is unable to find a suitable solution. Such cases, as a result of jointly combining
tracking and event analysis, must be considered and taken into account.

Finally, and most importantly, to jointly perform tracking and event analysis one must
overcome the challenge of finding a suitable way for the tracker and the event analysis
technique to communicate through in which they can mutually influence and improve one
another.

1.4 Thesis Overview

Current state-of-the-art approaches for detecting and tracking a generic class of objects,
such as carried objects, primarily employ methods that heavily depend on using protrusion
to detect such objects [37, 24], or perform object detection without necessarily localising
them [57, 82]. In this thesis, while we propose our own carried object detector that
overcomes the limitations of other works and the challenges previously described, we
take an additional step and approach object tracking differently, that is, to incorporate
event analysis within the object tracking process. The novelty and significance of the work
presented in this thesis is described below.

1.4.1 Novelty and Significance

This thesis introduces a novel approach in combining object detection, tracking and event
analysis. The following include the novel and significant contributions of this work.

• A novel carried object detector that localises carried objects and is not heavily
dependant on protrusion or modelling the entity interacting with it.

• Our detector uses generic shape models and does not require training for specific
object models and may be used to detect a large variety of carried object types.

• We present a novel framework for building object tracklets which suppresses false
positives while promoting and incorporating the true positive detections deemed weak
by detectors within the tracking process. This is done by exploiting and capturing
the spatially consistent behaviour between the interacting object and entity.
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• We jointly perform object tracking and event analysis within a single novel frame-
work. In this approach tracks and events mutually influence and improve each
other.

• We model events in terms of spatial consistency and inconsistency and provide a
solution to the circular nature of the problem while using a single objective function
where tracking and event analysis can communicate.

1.4.2 Outline

The rest of the thesis is organised as follows:

Chapter 2: Related work
In this chapter we provide a full literature review on any work related to carried object
detection and tracking. We also present related work within the areas of tracking and
contextual tracking. Since these areas are very large, we primarily focus on only describing
state-of-the-art approaches.

Chapter 3: Geometric Carried Object Detector
While there have been various approaches to carried object detection, in this chapter we
present our novel approach to detecting carried objects. We provide a step-by-step de-
scription of our detector, starting with the use of edges and finishing with object boundaries.

Chapter 4: Spatial Consistency Tracker
As the first step to incorporate the notion of interaction within object tracking, in this chap-
ter we describe our Spatial Consistency Tracker (SCT). This tracker uses the object-entity
interaction and models their behaviour via a spatial consistency map. The influence of
this map on the tracklet building process of SCT aids in suppressing false positives while
promoting weak true positive detections within the tracking process.

Chapter 5: Joint Tracking and Event Analysis
To accomplish the main goal of combining and jointly performing tracking and event
analysis, this chapter describes the novel framework that achieves this goal. It includes
details on how events were modelled and incorporated within the tracking process. The
benefits of our Joint Tracking and Event Analysis (JTEA) framework are highlighted in
this chapter by describing the optimisation process that applies this framework.
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Chapter 6: Evaluation
We evaluate our carried object detector, our SCT framework and out JTEA framework
in this chapter by presenting quantitative and qualitative results. The evaluations are per-
formed on various datasets, one of which was created and made publicly available. We
compare our framework against various state-of-the-art approaches to evaluate for both
detection and tracking.

Chapter 7: Conclusion and Future Work
The final chapter provides a summary of the work presented in this thesis and a final
conclusion on their novelty and significance. Moreover, we also provide potential future
extensions and research directions in order to expand on the frameworks presented.
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Related Work

Video analysis, as part of scene understanding, is one of the oldest and most widely
applied fields within computer vision. The higher computation power of machines and
the availability of inexpensive and high-quality cameras has resulted in a rapid increase
of applications within this field. As a result, the process of being able to automatically
understand information from videos has significantly improved over the past couple of
decades.

While the influence of the above technological advancements has greatly effected the
rapid growth of video analysis, the demand for this field has also been a major contributing
factor. The need for a robot to understand what it sees due to advancements in robotics,
the demand for more accurate and robust security measures in the area of automated
surveillance or biometric recognition against any possible threats, the need for automatic
annotation and retrieval of videos in the area of scene understanding due to the rapidly
expanding multimedia databases and many more, are all reasons why video analysis has
been of great importance and has been given much attention in recent years.

According to a survey paper by Yilmaz et al. [101], video analysis consists of three
key steps, (i) the detection of interesting moving objects, (ii) the tracking of such objects
from frame to frame and (iii) the analysis of object tracks to recognise their behaviour. The
contributions of this thesis which are presented in Chapters 3, 4 and 5, employ techniques
from each of the aforementioned key steps. As a result, the related literature for each of the
key steps have been presented in this chapter.

Section 2.1 presents the related work of the first step of video analysis, object detection.

10
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As described in Chapter 1, rather than presenting related literature on object detection,
we only focus and provide a full literature review on carried object detection. Therefore
Section 2.1 highlights the successful trends that have emerged in the young but rapidly
growing literature on carried object detection and the challenges within this domain.

For the second step, tracking, Section 2.2 initially provides a general overview of
various types tracking while finally focusing on a few approaches that are most relevant to
our approach.

As part of the third step, analysis of object tracks, our work aims at incorporating
context within tracking. However, we primarily focus on event context in order to improve
the tracking of the carried objects. Rather than providing a literature review of work in
the field of event analysis, in Section 2.3.2 we describe the few existing approaches that
incorporate event analysis within their tracking process. We also present other types of
context employed to improve detection and tracking in Section 2.3.1.

Finally, based on the aim of this thesis to jointly perform tracking and event analysis, in
section 2.3 we also describe related work which improve the process of tracking by using
events or any other type of context.

2.1 Carried Object Detection

Carried object detection can be divided into three main types of approaches, namely (i)
protrusion based, (ii) model based and (iii) classification based. In the following sections,
related work on each of the aforementioned types is provided. At the end of each section a
discussion of the benefits and limitations of the approaches is given.

2.1.1 Protrusion Based

The earliest approach to carried object detection aims at initially identifying the person
and background regions and then attempting to explain the remaining regions in terms of
carried objects. These remaining regions are referred to as protrusion regions which are
regarded as the part of foreground that is different from the person region.

This approach was first incorporated in Backpack by Haritaoglu et al. [37]. Illustrated
in Figure 2.1, the authors place a global shape constraint requiring the human body shape
to be symmetric around the body axis. This leads to a symmetric human model which will
be used to obtain outlier regions based on non-symmetric regions of the person silhouette
and the model. Using periodic motion detection [22], outliers from arms and legs tend to be
periodic, while continuous outliers from sufficiently large carried objects can be detected
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Figure 2.1: Backpack [37]: Examples of symmetry based segmentation of potential
carried objects with initial detected head location, computed symmetry axis and final
non-symmetric region segmentation. Combined with periodicity analysis these regions
may be considered as carried object regions.

due to continued symmetry constraint violations. These continuous outlier regions are
segmented and defined as a carried object.

A similar approach to the above is taken by BenAbdelkader and Davis [6], additionally
however, they use the gait of a person to incorporate spatio-temporal constraints that are
satisfied if a person is naturally walking, but not if a person is carrying an object. They
show that since the gait of the person can vary significantly whether the person is walking
or carrying an object [44], this knowledge can be used for carried object detection.

Lee and Elgammal [49] also use a protrusion based approach while incorporating a
pose preserving dynamic shape model technique. This technique supports pose-preserving
shape reconstruction for various people, views and body poses. An iterative estimation of
this model allows for a better estimation of outliers (protrusion) in addition to accurate
body pose.

The most recent extension of protrusion based approaches introduces refinements such
as 3-D exemplar temporal templates corresponding to different viewpoints of a walking
person together with spatial priors in recent work by Damen and Hogg [23, 24]. Illustrated
in Figure 2.2, the foreground blobs obtained from background subtraction are centred and
aligned providing a temporal template. An exemplar temporal template is then transformed
(translation, scaling and rotation) to best match the obtained temporal template. By
comparing the temporal and exemplar template, protruding regions are found. A Markov
random field with a trained spatial prior is then used to segment carried objects.

A few approaches have improved on the Damen and Hogg approach. Yuan et al. [103]
use Principal Component Analysis (PCA) and exhaustive search for temporal template
matching and perform a fuzzy clustering method to classify protruding pixels. Tzanidou



Chapter 2 13 Related Work

Figure 2.2: The pipeline of segmenting the carried object region in Damen and Hogg [24].
By comparing the temporal template of a person with a best matched exemplar template,
protrusion regions are found which lead to carried object detections.

et al. [89, 90] use colour information and movement direction to improve detection and
additionally perform baggage type classification.

Discussion
While the above protrusion based approaches reasonably find protruding carried objects,
they are unable to find the object if it is on the person region. The approaches also
rely heavily on fitting person models to silhouettes and may additionally require camera
parameters.

2.1.2 Model Based

Unlike previous protrusion based approaches, a supervised approach is adopted by Branca
et al. [12], demonstrating that pre-trained object-class models for specific types of objects
may be useful in domains where the variety of carried objects is relatively small, known
in advance, are of sufficient size and there is limited clutter in the background. In their
work, they use patterns on the person region, represented via coefficients of their wavelet
decomposition, and classify these patterns using a supervised three layer neural network.

A different approach is taken by Chuang et al. [18] where they detect a carried object by
comparing histograms of before and after a person possessing an object. In this approach
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(a) (b) (c)

Figure 2.3: Carried object detection using ratio histograms [18]. Colour profile of the
carried object is obtained by comparing the foreground of the person with and without the
object.

they obtain the colour profile of the carried object and then use a Gaussian mixture model
to segment the object from its background. Sample images illustrating this approach are
presented in Figure 2.3.

Chayanurak et al. [16] use a star skeleton approach for carried object detection il-
lustrated in Figure 2.4. To obtain the star skeleton, Figure 2.4a from left to right, they
initially obtain a Delaunay triangle mesh of the human shape, similar to [19], and extract
a triangle-based skeleton which provides the centroid of the person. They then obtain a
distance from the centroid to each human contour point. After smoothing the distances,
they obtain local maxima or peak points. Each of these peak points (or limbs) is then
connected to the centroid, creating the star skeleton.

Each limb is then tracked throughout the video sequence in terms of its x and y positions
against time resulting in graphs shown in Figure 2.4b. Based on this graph, any tracked
limb with a motion less than a certain threshold is classified as a carried object. In order
to determine the boundary of the carried object, the silhouettes feature information based
on sink curves adjacent to the tracked points are used. Examples of these adjacent sink
curves are illustrated in Figure 2.4c, which define the bounding box of the carried objects
displayed in Figure 2.4d.

Although this approach is not based on protrusion, it can only obtain carried object
detections that are outside of the person region. Moreover, this approach is not suitable in
cases where the carried object is moving relative to the person (e.g. swinging or putting



Chapter 2 15 Related Work

(a) Obtaining star skeleton. (b) Tracking the limbs of the
star skeleton.

(c) Finding the sink curves of the detecting
carried object limb.

(d) Boundary of the carried ob-
ject limb based on the sink
curves.

Figure 2.4: Chayanurak et al. [16] carried object detection using star skeleton.

down) as the object limb will have high motion.
A recent multi-model based carried object detector is developed by Dondera et al. [28].

Illustrated in Figure 2.5, they use three types of detectors, namely (i) optical flow-based
protrusion, (ii) segmentation-based colour contrast and (iii) occlusion boundary-based
moving blob detectors, and combine them under a minimally supervised framework. Their
approach to carried object detection is to disambiguate between the obtained regions (from
the aforementioned detectors) corresponding to body parts/noise versus those that are
carried objects, based on the context of the human silhouette.

The optical flow-based protrusion detector (Figure 2.5a) builds a carried probability

mask that reflects how close the motion of a pixel is to the average motion within a human
bounding box. This gives rise to potential protruding carried objects.

The segmentation-based colour contrast detector (Figure 2.5b) uses mean shift cluster-
ing on the foreground mask. This provides numerous segmentations of potential objects of
which their colours stand out against the human silhouette.

As occlusion is highly prevalent in carried object detection, the last detector, occlusion
boundary-based moving blob detector (Figure 2.5c), aims at detecting occlusion boundaries
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(a) Optical flow-based pro-
trusion detector

(b) Segmentation-based colour
contrast detector

(c) Occlusion boundary-
based moving blob detector

Figure 2.5: Dondera et al. [28] carried object detector with minimal supervision. In this
work the authors combine three types of detectors under a MIL framework

that cover an occluded object. To obtain these regions they apply the work of Sundaram
et al. [80] and obtain occlusion boundaries defined as a group of pixels where the flow
forward of a frame is inconsistent with the flow back into the frame, or where the flow
gradient has a large magnitude.

Each of the regions obtained from the above detectors is then given to a Support Vector
Machine (SVM) classifier to filter out non carried object regions. This classifier uses two
types of features characterizing (i) the shape of a region and (ii) the relation of the region
to the human silhouette. This is accomplished within a Multiple Instance Learning (MIL)
framework to learn a model for carried object regions where human track intervals are
labelled as carry (carried object is present) and walk (carried object is not present).

Discussion
Object detection based on trained models are effective when one knows what object types
to expect. However, in surveillance or long term applications within robotics, it is difficult
to predict what kind of objects will be present in the scene. Therefore the aforementioned
approaches are limited to detecting only the objects they train for and expect beforehand.
Moreover, in some approaches the modelling heavily depends on the person region, colour
and protrusion.
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Figure 2.6: Three types of Gabor representations used by Tao et al. [82], namely orientation,
scale and total for classification of the carrying object status.

2.1.3 Classification Based

Indirect approaches for carried object detection are also employed where a pre-trained
appearance model of person without carried objects have been built and person carrying

objects are detected as anomalies, but without localising the object. One of the earliest of
these approaches is by Nanda et al. [57] where they use a two layer neural network for
binary object classification of (i) pedestrian or (ii) pedestrian with shape outliers.

Tao et al. [82] take a similar approach, instead however, they use a Gabor gait based
representation as their features. Rather than using standard representations of gait images,
as illustrated in Figure 2.6, they introduce and use three types of Gabor representations,
namely orientation, scale and total gait representation. They then apply a general tensor
discriminant analysis for classification to solve the carrying status problem.

Qi et al. [64] also perform classification to detect whether a person is carrying an object
or not. However, unlike previous classification approaches they localise the carried object
by finding the out-most point in the human contour.

Various alternative classification approaches are adopted by Senst et al. [71, 72, 73]
which heavily focus and take advantage of the motion of the person. In [71] they define a
periodicity dependency (PD) descriptor that describes the spatial dependency of human
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(a) (b)

Figure 2.7: The use of periodicity dependency by Senst et al. [71] for carried object
detection.

motion, such as synchronous arm and leg motion. Illustrated in Figure 2.7, the movement
of different body parts are highly dependant on each other due to the kinematic chain
formed by the human body. By dividing the bounding box of the person into various
blocks, a spatial map of self-similarities between the blocks using the PD descriptor can be
obtained. Each block may have one of three signal types; (i) blocks containing body parts
exhibiting a cyclic motion have a periodic signal, (ii) blocks with static body parts have
a quasi-linear signal and (iii) blocks containing the carried objects have a cyclic motion,
however with minor amplitude compared to blocks with body extremities. They then
classify each frame based on the descriptors by providing a binary class, and then use a
voting system to classify the entire sequence, whether a person is carrying an object or not.

In [72], Senst et al. use motion statistics based on optical flow to classify whether a
person is carrying an object. They use a Gaussian mixture motion model (GMMM) and
define descriptors based on speed and direction, independent of motion, to detect carried
objects as regions not fitting in the motion description model of an average walking person.
In [73] they take a similar optical flow based approach while incorporating Lagrangian
Dynamics for the purpose of modelling the appearance of pedestrians.

Discussion
Classification approaches provide a suitable alternative approach to detecting carried
objects. However, the majority of these approaches cannot localise the object which makes
the task of tracking and event analysis more challenging.
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Figure 2.8: Taxonomy of tracking methods [101].

2.2 Tracking

The goal of the object tracker is to generate the trajectory of an object over time by locating
its position in every frame of the video. Described by Yilmaz et al. [101], tracking requires
two tasks, (i) detecting the object and (ii) establishing correspondence between the object
instances across frames. These two tasks can be performed either separately or jointly. If
done separately, object detection is initially completed and then the tracker corresponds
the obtained object detections across frames. If done jointly, the object locations and
the correspondence is jointly estimated by iteratively updating object location and region
information from previous frames.

Figure 2.8 presents a taxonomy of tracking methods [101]. Here object tracking is
divided into three main categories namely point tracking, kernel tracking and silhouette

tracking. Each of these categories contain a large body of work where it would not
be possible to cover all in this thesis. Since we use our own external detector to provide
detections, in this thesis we pursue a tracking by detection approach which follows similarly
to point tracking. Our approach is in agreement with the majority of recent tracking
approaches [60, 33, 96, 51, 2, 13]. Trackers that simultaneously perform detection are not
always able to handle re-initialisation when a target has been lost and may additionally
face excessive drift [21, 4]. Therefore similar to our approach, we primarily focus on point
tracking where we present a few of the relevant work within this category.

In point tracking, object detections in consecutive frames are represented by points and
the tracking problem is formulated as the correspondence between them. Although there
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Figure 2.9: Object representations categorised by Yilmaz et al. [101]. (a) Centroid, (b)
multiple points, (c) rectangular patch, (d) elliptical patch, (e) part-based multiple patches,
(f) object skeleton, (g) complete object contour, (h) control points on object contour and (i)
object silhouette.

are various other ways in representing objects, as illustrated in Figure 2.9, the points we
refer to define the centre of the bounding box representing the object detection. Tracking
through point correspondence is a complex and challenging problem due to the presence of
occlusions, missed detections, entries and exits of objects. Point correspondence methods
are divided into two categories, namely deterministic and statistical methods. While
deterministic [70, 92] and statistical methods [14, 74, 79] have been in use since the 1980s,
we focus on more recent related work.

One of the most widely used tracking algorithms is the globally-optimal greedy algo-
rithm developed by Pirsiavash et al. [63]. This work, following the min-cost flow algorithm
of [104], formulates the problem of tracking multiple objects in terms of using a cost func-
tion that requires estimating the number of object tracks in the scene, as well as their birth
and death states. In this approach, they use a greedy successive shortest-path algorithm
where the optimal interpretation of a video with k + 1 tracks can be derived by locally
modifying the solution of k tracks. This process is illustrated in Figure 2.10 where an initial
3-track estimate is present on the left image. With the knowledge that an additional object is
also present, they modify the 3-track estimate using a shortest-path/min-flow computation
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that pushes the flow from a source to a terminal, as illustrated in the middle image. The
solution can then reverse flow along existing tracks to change their segments, producing
the 4-track estimate in the right hand side image. Therefore, to find a globally optimal
solution, using the network model illustrated in Figure 2.11, a greedy algorithm based on
dynamic programming is applied that sequentially instantiates tracks using shortest path
computations on the flow network.

Figure 2.10: Tracking process of Pirsiavash et al. [63] where they derive an optimal
interpretation of a video with k + 1 tracks by locally modifying the solution of k tracks.
In this example they use a 3-track estimate and obtain a 4-track estimate by using a
shortest-path computation that pushes the flow from a source (s) to a terminal (t).

Figure 2.11: The network model of Zhang et al. [104] used by Pirsiavash et al. [63] to find
a globally optimal solution. This is done by applying a greedy algorithm based on dynamic
programming that sequentially instantiates tracks using shortest path computations on the
flow network. Each space-time location is represented by a pair of nodes connected by a
red edge. Possible transitions between locations are represented by blue edges. To enable
tracks to start and end at any spatio-temporal point in the video, each node is connected to
both a start node (s) and a terminal node (t).
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Figure 2.12: The tracking process of partitioning observations in image (a) into tracks in
image (b) [59]. The number in each observation node represent its frame number.

Figure 2.13: The set of moves applied in the Markov chain Monte Carlo data association
tracker by Oh et al. [59] to create or modify track partitions of observations.

Similar to point tracking one may consider the point correspondence problem as a data
association problem. The Markov chain Monte Carlo data association (MCMCDA) algo-
rithm by Oh et al. [59] produces a tracking solution by partitioning observations into tracks,
as illustrated in Figure 2.12. MCMCDA accomplishes this partitioning by approximating
the optimal Bayesian filter using a Markov chain Monte Carlo (MCMC) sampling instead
of the traditional Bayesian approaches where the optimal filtering prediction is found by
summing over all possible associations, weighted by their probabilities [20, 68].

To create or modify new track partitions in the MCMCDA approach various MCMC
moves are applied. These moves, illustrated in Figure 2.13, are chosen randomly based on
a distribution. In a simulated annealing approach, a new track partitioning is obtained as a
result of applying a certain move where it may be accepted depending on the maximum

a posteriori (MAP) estimate and the MCMC acceptance probability. While MCMC has
a long history of being used in tracking [62, 8] other notable approaches incorporating
MCMC to solve the data association problem include Khan et al. [43] which use MCMC
within a particle filter and Yu et al. [102] which take spatio-temporal information into
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Figure 2.14: The discrete-continuous tracking process of Andriyenko et al. [4]. Given a
set of unlabelled object detections in (a) and a set of possible trajectory hypotheses in (b)
this tracking process assigns labels for all detections, presented in (c), and re-estimates
the trajectories, presented in (d). This process alternates between discrete and continuous
tracking where they are performed jointly using an energy minimisation approach.

account.
Another approach to tracking is the discrete-continuous optimisation approach by

Andriyenko et al. [4]. This work aims at tackling both the discrete and continuous
challenges within tracking. The discrete case addresses the data association problem of
tracking where each detection is labelled as belonging to a certain track or being a false
positive. In the discrete case however the tracker is limited to a discrete space of detections
and may be limited in accuracy. The continuous case approaches tracking as finding object
trajectories in a continuous space, where a trajectory is not necessarily limited to detection
locations and is able to more accurately represents the object with respect to its motion and
velocity.

While there has been various work in literature tackling the discrete [3, 7] and continu-
ous [50, 97] problems individually, very few have approached combining both approaches.
While the aforementioned MCMC approaches [43, 58, 59] to some extent bridge the gap
between discrete and continuous aspects, they are limited in terms of the expressiveness
of their underlying model. Therefore the state-of-the-art approach by Andriyenko et al.
[4] formulates data association (discrete aspect) and trajectory estimation (continuous
aspect) jointly as a minimisation of a consistent discrete-continuous energy, building upon
the energy minimisation approach of Delong et al. [26]. The tracking process alternates
between discrete and continuous tracking.

As illustrated in Figure 2.14, given a set of unlabelled object detections (a) and a
set of possible trajectory hypotheses in (b), the tracking process of Andriyenko et al.
assigns labels for all detections (c) and re-estimates the trajectories, presented in (d).
The label assignment of detections is performed using an energy minimisation approach
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considering labelling costs. The trajectory fitting aspect is performed by fitting B-splines
to the labelling assignment through an energy minimisation which takes into account how
well the trajectory fits the assignments.

Discussion
The aforementioned trackers are very suitable techniques for tracking objects that are to
some extent reliably detected. However, when we apply them within the domain of carried
objects which contain a large number of partial detections and false positives with a variety
of detection strengths, they produce a large number of false positive short tracks (also
referred to as tracklets). This is due to the trackers not being built for the purpose of carried
object tracking. However, there are other approaches to tracking which take context into
account to improve the tracking process in such or similar domains. In the next section we
provide a few of these approaches.

2.3 Context Based Detection & Tracking

In this section we present related work which have incorporated context within the tracking
process. We divide contextual information into two groups, namely scene and event context,
each described in the following sections.

2.3.1 Scene Context

Some of the earliest work on incorporating context within detection include the use of
graphical models such as Markov random fields (MRF) and conditional random fields
(CRF). In these approaches, during detection, information about pixels surrounding a
scanning-window detection is taken into account and thus incorporating contextual in-
formation. This type of approach is seen in the work of Torralba [86] and Wolf et al.
[95] where they build a representation of context from low level features and use them to
facilitate object detection.

Similarly Shotton et al. [75] propose textons features that model shape, texture and
context in a CRF to segment an image into semantic categories by exploiting context. An
example of this work is illustrated in Figure 2.15, where for an image (a) they obtain a
texton map (b). Then, based on the feature pair of a white rectangle r and a grass texton
patch t (c), they obtain feature responses based on locations i. In this example i1 (d) obtains
the highest response since the white rectangle covers a blue region which conforms to the
blue grass texton t. Therefore the algorithm proposed by Shotton et al. learns that cow
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Figure 2.15: An example of the approach of Shotton et al. [75] to incorporate context
within detection. For an image (a) they obtain a texton map (b). Based on a feature pair of
a white rectangle r and a grass texton patch t (c), they obtain feature responses based on
locations i. In this example i1 (d) obtains the highest response since the white rectangle
covers a blue region which conforms to the blue grass texton t. using this approach the
algorithm learns that cow pixels tend to be surrounded by grass.

pixels tend to be surrounded by grass, improving the segmentation of a cow.
Another approach to using context by Kumar et al. [48] combines local and global

contexts in a hierarchical field framework. In this hierarchy, the local context captures
short range interaction at a pixel level, similar to the approach of Shotton et al., while the
global context captures a long range of interactions where groups of pixels that correspond
to regions or objects are modelled with respect to one another. Kumar et al. show that this
unified approach of modelling context at different levels is beneficial in tackling problems
of image labelling and contextual object detection.

There has been various other approaches where scene context has been used in terms
of the relationship between the scene and the object [65, 87, 66]. In a related approach,
Russell et al. [69] perform object recognition by obtaining a 2D scene gist by computing
global statistics and obtaining representations of an image, providing the context of an
object. A gist, defined by [31], generally refers to an abstract representation of the scene
that spontaneously activates memory representations of scene categories. Therefore, in this
work by finding the gist of a target image, they find different objects in the target image
based on other matched images that have a similar gist. As illustrated in Figure 2.16, given
an input image (a), Russell et al. use the gist feature introduced by Oliva et al. [61] to
find matching images, presented in (b), that have a similar gist as the input image. Using
a probabilistic model, they transfer object labels from the best matching images onto the
input image to detect objects within it (c).

A similar holistic approach is used by Li et al. [52] where semantic scene context for
object detection is exploited for event classification, where object and scene categorisations
are integrated. Spatial context along with co-occurrence of objects are used as contexts
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Figure 2.16: The approach of Russell et al. [69] for gist based contextual object recognition
of a target image (a). Using scene gist they match the target image to other images that
have a similar gist (b). They then use the labels in the best matching images and transfer
them onto the target image.

in approaches by Galleguillos et al. [32] and Heitz et al. [38]. These work also follow
the trend of previous approaches, the relative location between objects are modelled using
pairwise features.

Geometric scene structures such as surface and viewpoint have also been shown to
provide suitable contextual information for improving object recognition. Liu et al. [54]
integrate a multi-view object representation with a unified spatio-temporal context model.
The spatial context features include surface and viewpoint while the temporal context
captures probability maps and local object trajectory predictions as prior probabilities.
Another approach is to model factors such as the interdependence of objects, surface and
camera viewpoint and to use them in an iterative fashion in order to refine each other as
presented by Hoiem et al. [39].

In their earlier work, Hoiem et al. [40] provide geometric context by estimating scene
structures from a single image. In this approach, as illustrated in Figure 2.17, given an
input image (a), they obtain superpixels (b) and create multiple potential groupings of the
superpixels. Given these groupings they then classify and label each image pixel, illustrated
in figure 2.17 (d), as being (i) part of the ground plane, (ii) belonging to a surface that sticks
up from the ground, e.g. a building or (iii) being part of the sky. In the work by Divvala
et al. [27], aforementioned types of contexts in addition to new ones such as geographic
context are combined within images for object detection.

In literature however, contextual information has been mostly used for filtering the
detections prior to tracking or filtering the tracks post tracking, rather than influencing
the linking during the tracking process itself. For example, Stalder et al. [77] focus on
filtering tracks using contextual information such as a viewpoint filter, foreground filter
and trajectory-like filter. In the next section we present related work where event context
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Figure 2.17: Geometric context labels proposed by Hoiem et al. [40]. For an input image
(a) they obtain superpixels (b) in which they obtain carious groupings for (c). In (d) they
then assign one of three labels to each image pixel, (i) being part of the ground plane, (ii)
belonging to a surface that sticks up from the ground or (iii) being part of the sky.

has been used within the tracking process.

2.3.2 Event Context

Very few works have combined tracking and event detection. Li et al. [53] incorporate
object-level spatio-temporal relationships, as context using a dynamic MRF to improve
the inference of object categories and additionally improve tracking. These relationships
provide a notion of events. This approach has three key concepts; (i) spatial relationships
are incorporated between object categories such that co-inference enhances accuracy, (ii)
temporal context is used to gather object evidence and to track objects continuously and (iii)
key objects (such as humans) are robustly detected using other state-of-the-art approaches
to reduce inference space for other objects and to improve the recognition.

These key concepts are illustrated in Figure 2.18, where given a video sequence Li
et al. initially obtain key object detections (humans). Using a dynamic MRF, rather than
using nodes to represent a pixel or a superpixel as is common in other contextual object
recognition techniques, each node represents a hypothetical object in a single frame. Spatial
and temporal relationships are modelled by intra-frame and inter-frame edges between
object nodes respectively. To avoid building excessive false hypothetical object nodes
within the MRF, the detected key objects provide contextual guidance for finding other
objects.

In another approach, Wang et al. [93] join pedestrian tracking and event detection into
a single optimisation problem. Their events describe human motion with respect to the
viewpoint (left, right, away or towards the camera) which are extrinsic rather than intrinsic
events, i.e. events are defined with respect to the viewpoint rather than the actors. Using a
maximum a posteriori (MAP) optimisation they perform simultaneous tracking and event
detection by means of Monte Carlo sampling similar to [41, 29, 35].
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Figure 2.18: Object recognition and tracking using spatio-temporal context by Li et al. [53]

In a similar approach Choi et al. [17] jointly perform person tracking and activity
recognition under a unified framework. The different types of person activities, namely
atomic, interaction and collective, are modelled within a three level hierarchical structure.
Their activity model does not solely rely on person tracklets and additionally takes as input
external features such as appearance properties and context descriptors at various levels of
the hierarchy. While they demonstrate the obtained person tracks are improved as a result
of incorporating activities within their unified framework, their is no indication that the
activities are also subsequently improved.

The work by Barbu et al, [5] focuses on simultaneous object detection, tracking, and
event recognition. In their framework the tracking aspect is conditioned to event models.
However event recognition and tracking are not optimised jointly; tracking requires event
knowledge, and only running the optimisation for each event class allows to compare the
results of event choice.

Discussion
Whether context is used in detection or tracking, it significantly improves the quality of
detections and tracks produced. This is particularly the case for event based context which
has gained attention in recent literature. However, each tracker incorporating this type of
context is limited to one or both of the following features; (i) the events that are used are
relative to the camera and do not contain any notion of interaction between an entity and



Chapter 2 29 Related Work

an object, and (ii) tracking and event analysis are not performed jointly, that is, tracks are
not improved by the events that they produce and vice versa.

2.4 Conclusions

In this chapter we presented related work in the areas of carried object detection, tracking
and context based detection and tracking. In each case we described the strengths and
limitations of the related approaches. Here we present a conclusion on how the presented
related work affected the design of our three main frameworks.

The related work on carried object detection showed that model based approaches are
limited to only a certain number of objects types. It is therefore important for our detector
to detect a generic class of objects, thereby leading to using geometric shape models at the
core of our geometric carried object detector. The knowledge of protruding regions and
areas belonging to a person provide a great indication on the location of the object. We
therefore also incorporate this knowledge within our detector, however, we do not heavily
rely on them.

Based on the related work on tracking, both our spatial consistency tracker and the
tracker in our joint tracking and event analysis framework follow a similar approach to
the Markov chain Monte Carlo data association algorithm by Oh et al. [59] where our
optimisation uses moves to accomplish its goal. Since the discrete-continuous tracker
by Andriyenko et al. [4] showed the importance of obtaining trajectories by considering
both the discrete and continuous space, we initially construct tracklets using our spatial
consistency tracker in the discrete space and finally form trajectories in the continuous
space using the tracker in our joint tracking and event analysis framework, both of which
take context into account. Moreover, the optimisation of each our trackers is posed as a
maximum a posteriori (MAP) optimisation similar to many of the related work.

While we have worked on incorporating scene context within tracking [85], in this
thesis we primarily focus on event based context. We overcome the limitations of other
event based contextual trackers by simultaneously performing tracking and event analysis
jointly within one objective function, where our notion of events fully capture interactions
between entities and objects. Similar to the key objects used in the work by Li et al. [53],
we capture interactions between an object relative to reference entities.

Based on these concepts, in the following chapters we present our geometric carried
object detector, our spatial consistency tracker and our joint tracking and event analysis
framework.



Chapter 3

Geometric Carried Object Detector

3.1 Introduction

Detection and tracking of carried objects is an important component of vision systems
whether these are surveillance systems that aim to detect events such as leaving, picking
up or handing over luggage, or robots that learn to perform better in indoor environments
by analysing events involving humans interacting with carried objects. Despite significant
progress in object detection and tracking, the task of detecting and tracking carried objects
well enough to be able to use them for activity analysis is still a challenging problem.
This task is elusive due to the wide range of objects that can be carried by a person and
the different ways in which carried objects relate to the person(s) interacting with it e.g.
carrying, dropping, throwing or exchanging.

In this chapter we describe our novel geometric carried object detector. We generalise
the definition of a carried object as any particular object that an entity has interacted with in
the scene, therefore not being limited to only when it is carried. This detector is specifically
designed to overcome many limitations of other state-of-the-art detectors, as outlined in
Chapter 2, and uses geometric shape models to characterise carried objects. The key
concept of this detector is to allow for the detection of a generic class of objects, regardless
of their shape and structure, effectively removing the need to train specific object models.

In the following sections we present our geometric carried object detector. We initially
describe the process of obtaining object boundaries followed by a cost function used to

30
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Figure 3.1: Foreground extraction process.

evaluate each boundary in measuring its suitability as an object. We finally describe the
process of obtaining object detections based on the obtained boundaries.

3.2 Detection of Foreground and Protrusion

We consider a video I consisting of a time series of images I = {I1, ..., I t, ..., IN} in which
we represent their corresponding sequence of foreground masks as F = {f 1, ..., f t, ...fN}.
Each foreground mask f t is a binary image of ones and zeros where the zeros correspond to
the background regions of the image and the ones correspond to foreground regions in the
image, also indicating person and object silhouettes. As illustrated in Figure 3.1, to obtain
each foreground mask f t, we initially subtract the foreground’s corresponding frame I t

from a single frame containing only the background (which we assume to be the first frame
I1) followed by taking the absolute value, resulting in a difference image I = |I1-I t|.

We then obtain a gray-scale image I′ from the difference image I by assigning each
pixel at (i, j) in the gray-scale image, the maximum value of the corresponding pixels
in each of the RGB channels of I i.e. I′ij = max(Irij, I

g
ij, Ibij). A binary mask I′′ is then

constructed by assigning I′′ij = 1 if the value of I′ij is greater than the mean intensity of I′,
and I′′ij = 0 otherwise. This thresholding mostly removes noise from background motion.
We apply various morphological operations [36] by initially filling any holes in the mask,
followed by a closing operation to fill any remaining open regions on the boundary of
the mask. Finally, we perform dilation to slightly increase the mask so that any edges on
the person or object boundary are guaranteed to be on the foreground mask. As a result
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Figure 3.2: Process of obtaining the protrusion mask.

of applying the aforementioned stages on an image I t, we obtain a foreground mask f t

illustrated in Figure 3.1.
In addition to foreground masks, we also obtain protrusion regions which rely on having

person tracks. We therefore obtain person tracks by initially obtaining person detections by
applying Felzenzwalb et al. [30] part-based object detector with the VOC release version
5 [34]. We then apply a state-of-the-art tracker by Pirsiavash et al. [63] on the person
detections to obtain person tracks.

We obtain a protrusion mask for each detected person bounding box in a person track
in two steps, as illustrated in Figure 3.2. First, we apply the articulated pose estimation
code by Yang et al. [100] within each person bounding box where the size of each box has
been slightly expanded. From this we obtain various smaller bounding boxes that are body
part estimates inside the bounding box of the person. We define a person mask as the union
of regions covered by these body part bounding boxes. We subtract the person mask from
the foreground mask and consider any remaining regions of the subtracted mask as regions
in the protrusion mask.

In the next section we formally define and describe our method for carried object
detection which makes use of the obtained foreground, person tracks and protrusion masks.

3.3 Carried Object Detection

Edges play an important role in our carried object detector as the detector primarily relies
on edges to obtain carried object detections. However, edges in their original form may
contain too much noise, are jittery and are not straight forward to work with. To avoid
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Figure 3.3: Two examples of obtaining edge lines from edges. In each case the left image
shows the edges obtained by using the Quick Shift algorithm in green. The right image
shows edge lines in blue where a red dot is the start or end of the edge line.

these issues we convert edges to edge lines. We initially obtain edges by either using an
edge detector, e.g. Canny [15], or a segmentation algorithm that provides boundaries, e.g.
Quick Shift [91]. Edge lines are then obtained by applying Kovesi’s edgelink function [46]
version 2007, which links connected edge points to form lines. If the edge point hits a
junction (an edge point is connected to multiple edge points) or deviates too much from the
line, the line is broken and a new line is created. Results of applying edge lines from edges
are illustrated in Figure 3.3 for two examples. We now describe the formal description of
our carried object detector on these edge lines.

Given a set of edge lines L, we represent the power set of these edge lines as P(L).
We then denote L = P(L) as the set of all possible permutations of edge lines in L. The
goal of our carried object detector is to provide the subset of L ⊆ L, where each l ∈ L
is a set of edge lines that can be ordered and linked into a chain defining the boundary
of an object given a target shape model. The conformity of candidate chains to a target
shape model is measured by exceeding a fixed threshold for a cost function. We consider
two target models of shapes, namely convex and elongated objects. Rather than searching
exhaustively through L, we use an efficient level-wise mining method that approximates L,
generating most boundaries l ∈ L but not all l ∈ L.

We represent the boundary b of a potential object as a polygon obtained from the chain
of edges in l. For an l to be a member of L, i.e. l ∈ L, its boundary b must have a
cost higher than a certain threshold. This cost is obtained by normalising the cost C(b)

over all detections and is based on various other costs, which we would like to maximise
individually, that are defined by the following:
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C(b) = Cg(b,Θg) Cc(b) Cp(b) (3.1)

The first factor, Cg(b,Θg), measures the conformance of the edge lines l of a boundary
b to a given shape model Θg. In other words, the polygon of the edge lines l representing
an object boundary must conform to a certain geometric shape model. In Figure 3.4, the set
of edge lines that have a more convex shape obtain a higher and better cost. The geometric
shape property is described in section 3.5.

The second factor, Cc(b), calculates the connectivity of the edge lines forming the edge
chain. In an ideal case, for a chain covering the boundary of an object, all edge lines in l
meet, creating a closed chain. Cc(b) calculates a connectivity cost by taking the ratio of the
length of the edge lines in l over the length of its connected form which includes the length
of both interpolated and non-interpolated edge lines. If the edge chain is closed, a ratio of
one will be obtained and if not, the ratio will be closer to, but not less than, 0.5. A high and
low cost edge chain based on connectivity is illustrated in Figure 3.4.

The third factor, Cp(b), measures the proportion of an object’s boundary that overlaps
with the protrusion mask described in Section 3.2. This measure is beneficial as protruding
regions are more likely to only belong to an object, whereas non-protruding regions may
belong to either an object or a person region. In Figure 3.4, the white mask represents
protrusion and the red lines represent the chain of edge lines defining the boundary of an
object. We can observe that in the top case the red chain overlaps more with the protrusion
region and obtains a better cost, while the bottom case overlaps less and obtains a lower
cost.

The protrusion measure Cp(b) is obtained by Equation 3.2, calculating the ratio of the
area of intersection between the object boundary and the protrusion mask, over the area
of the boundary of the object. More specifically, we represent the object boundary as a
mask. This mask is obtained from a polygon that is created from the object’s edge chain.
The process of obtaining the object mask is described in section 3.4. Therefore to obtain
the intersection area, we find the are of the overlapping mask between the object and the
protrusion masks.

Cp(b) =
Area(object ∩ protrusion)

Area(object)
(3.2)

After obtaining all boundaries b in L and their corresponding costs from C(b) in
Equation 3.1, we normalise all the costs to a range between 0.01 and 0.99, and treat them
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Figure 3.4: High cost (good) and low cost (bad) examples of each of the factors in Equation
3.1. Solid lines represent edge lines and dotted lines represent the interpolated edge lines,
together forming a chain that defines the polygon of an object and its boundary. The first
column represents the cost of conforming to a shape model where the convex polygon
(top) obtains a better cost while the concave polygon obtains a less and poor cost. The
second column measure the connectivity cost of the object function. Since the top polygon
has more edge lines covering the boundary of the polygon rather than interpolated edge
lines, it obtains a better cost. In the bottom case however the interpolated edge lines
are much longer, leading to a low cost. The third column represents the protrusion cost
in the objective function. The top example obtains a better cost as the boundary of the
object covers more protrusion regions (white pixels), while the bottom case covers less and
subsequently obtains a lower cost.

as detection likelihoods in future computations. The cost of each term in Equation 3.1 is
not weighted and the product follows a linear distribution.

In the next section we describe the process of obtaining the ordering of the edge chains
from the set of edge lines l and their corresponding polygon.

3.4 Object Mask

To measure the conformance of a boundary b to a shape model or its measure of protrusion
from a person, i.e. first and third factors in Equation 3.1, we require an estimate of the
object region in terms of the edge lines l that define the boundary b. We represent this
object region as a mask which is obtained in three steps, the creation of (i) an edge chain
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Figure 3.5: Creating edge chains by finding the best ordering of its edges.

from edges in l (ii) a polygon from the edge chain and (iii) a convex hull from the polygon.

3.4.1 Edge Chain

In the first step, we must construct an edge chain that defines the boundary of the object
which will be later used to create a polygon. As a result, given a set of edge lines l, the
creation of edge chains is constrained by the ordering of edge lines that form a polygon
conforming to a certain shape model. Although the ordering of elements already present
in l gives a notion of how to connect the edges together to form the chain, this ordering
of edge lines does not facilitate the ordering in which the edge line’s start and end points
should be connected to each other. Therefore, the main goal of edge chain creation is to
find the best order of edge lines in l to be connected with respect to their start and end
points such that the resulting polygon would produce high conformity to a geometric shape
model.

To solve the problem of finding the best order of edge lines, the problem can be posed
as finding the order in which various points (start and end points of each edge line) can be
connected to each other, with the constraint that some points must be connected to each
other (due to their edge connections) and the resulting ordering produces high conformity
to a shape model. Here we describe the process of finding this ordering for a specific
geometric shape model that prefers highly convex polygons (this geometric shape model
and others are described in Section 3.5).

Figure 3.5 illustrates the process in which we construct our edge chains. Given a set of
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Figure 3.6: Additional examples of edge chain ordering.

edge lines, blue lines in (a), the first step to finding a polygon is to find the centre of all the
start and end edge points. We then draw a line from this centre point to the start point of
the first edge line in l, as illustrated with a red line in (b). In the second step we draw a line
from each edge point to the centre point as displayed with green dotted lines in (c). Using
the red line as reference, we obtain the angle between each green line to the red line. All of
the obtained angles are displayed on each green line in (c). In the final step we enforce the
constraint of building a highly convex shape edge chain. The ordering of the edge lines
is based on their rotational position relative to the obtained centre point. As a result the
edge line with a start or end point that has the shortest angle is the first edge in the chain
followed by the next edge point with the shortest angle and similarly for other edges. The
result of this ordering can be seen in (d) where each edge point is assigned a number in
yellow indicating their order in the chain. Numbers are slightly displaced to avoid overlap.

This approach to ordering produces an edge chain more naturally defining a boundary
rather than allowing edge points to be connected to points on the other side of the centre
point and then coming back. By simply linearly connecting each of the points based on
their number, an edge chain is obtained. In Figure 3.6 various other examples of ordering
is presented.

In the next section we describe how the ordered chain of edge lines is used to produce
a polygon and a convex hull representing the object mask.

3.4.2 Polygon and Convex Hull

In order to calculate various measures based on the shape of an object, we must define an
object region. As illustrated in Figure 3.7, we obtain this region by linearly interpolating
the points in the edge chain ordering, resulting in a polygon. We then obtain a mask of this
polygon and use it to represent our object mask. Similarly we obtain a convex hull mask
from the polygon using the standard convexity measure and approach described by Zunic
et. al [105].
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Figure 3.7: Example of an ordered set of edge line, the corresponding polygon leading to
an object mask with a non convex shape and the convex hull of the polygon.

In the next section, we describe the geometric shape property term Cg(b,Θg) of Equation
3.1 which makes use of the polygon and convex hull to measure the conformity of an object
mask to a shape model.

3.5 Geometric Shape Properties

We regard an object boundary b as more likely to be a carried object if the shape of the
detection region (defined by the object mask) conforms to any of the pre-defined generic
geometric shape properties (Figure 3.8). The term Cg(b,Θg) in equation 3.1 measures this
conformity with respect to a single shape model in the set of geometric shape models
Θg. The carried object detector runs for each of the shape models in Θg independently
providing a set of object detections L for each case.

In this work we describe two types of shape models, namely convex and elongated.
While we present examples of both models, we primarily apply our framework on the
convex shape model as it covers the most variety of carried objects. We consider a convex
shape model with parameter θcon ∈ Θg and an elongated shape model with parameter
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Figure 3.8: Examples of using geometric shape models for carried object detection. Green
segments represent edges from the Canny edge detector and the white chain lines represent
the convex/elongated objects found in the level-wise mining procedure.

θel ∈ Θg. The choice of these shape models are based on the fact that most carried objects
have a shape that is approximately convex (e.g. briefcases, backpacks, boxes and petrol
cans) and many are elongated (e.g. objects with an elongated part such as shovels, rifles
and brooms). These two types of shape models allow us to cover a wide range of object
types.

We evaluate the cost of a boundary for a convex model Cg(b, θcon) by computing a
degree of convexity based on the areas of the polygon of an object boundary b and the
polygon’s convex hull (hull), which were described in section 3.4.2:

Cg(b, θcon) =
Area(b)

Area(hull)
(3.3)

To evaluate the cost of a boundary for an elongated model Cg(b, θel), we compute a
degree of parallelism between candidate sets of edge lines l which can be partitioned into
two non-overlapping proximal groups of approximately co-linear edge lines, gi and gj . We
initially describe the method of obtaining a group g, followed by our elongated measure
which uses parallelism.

In order to obtain an approximately co-linear group of edge lines g, we must use a
suitable measure that calculates co-linearity. In the literature, there have been various
approaches to calculating a co-linearity measure between two edge lines [56, 88] which
primarily focus on combining angle and distance parameters between the edge lines.

In this work however, for every line E1 and E2 in a chain of edges forming the
boundary b, we define their co-linearity measure as a sum of angles between them. As
illustrated in Figure 3.9, we calculate each angle ψ between two lines. The first line is
created by connecting the starting point P1 on one edge line to either the first or second
point on the second edge line (P1 or P2 ). This line is illustrated as red in Figure 3.9. We
assign the second line as the second edge line. Since there are two starting points (one on
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Figure 3.9: The four different angles ψ used to obtain a co-linearity measure between two
edge lines E1 and E2. Each edge line has a start point P1 and an end point P2. Red lines
are used to connect two green edge point to each other. An angle ψ is obtained between
the red edge line and a black edge line between two green points.

each edge line) and there are two points on each edge line to connect to, we obtain four
combinations of line pairs leading to four angles. If an angle is greater than 90 degrees, we
subtract it from 180 (illustrated using a gray line). After taking the sum of all angles, if
the sum is less than a threshold and closer to zero, we consider the edge lines to be highly
co-linear and use them as a co-linear group of edge lines g.

To obtain a final co-linearity measure for a chain of edge lines that has more than two
edges, we take the average co-linearity measure between every pair of consecutive edge
lines in the chain. We use the same co-linearity threshold to define a group g.

After obtaining various co-linear groups, by using parallel and proximal properties, we
define and calculate our elongatedness measure as the following product:

Cg(b, θel) = N (Z(g1, g2)|θa) N (D1(g1, g2)|θd) (3.4)

In Equation 3.4, N (Z(g1, g2)|θa) measures the degree of parallelism using the normal
distributionN with a model θa based on the angle between the two co-linear groups g1 and
g2 calculated by function Z. The second term in the product, N (D1(g1, g2)|θd), measures
the closeness between the two groups by using the normal distribution N with a model
θd in terms of their shortest Euclidean distance to each other, calculated by function D1.
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Therefore by using Equation 3.4, co-linear groups of edge lines that are highly parallel and
in close proximity obtain a higher and better cost for Cg(b, θel).

To find object boundaries b ∈ L for both convex and elongated shape models using the
aforementioned convexity and elongatedness measures, we must search through various
combinations of edges l ∈ L. However, if the size of L is very large, it becomes computa-
tionally expensive to perform an exhaustive search through each l ∈ L to find L. Therefore,
in the next section we describe a heuristic level-wise mining approach to search for and
approximate the set L of candidate edge chains, avoiding the creation of L.

3.6 Edge-based Level-wise Mining

In order to avoid the computation of all possible combinations of edges to obtain L, we
require a search procedure to build L without computing all elements in L. This search
procedure must construct various length edge chains l ∈ L and must do so within a
significantly reduced search space of constructing L when compared to building the set of
all edges L. We therefore incorporate an edge-based level-wise mining search procedure
which constructs edge chains l at each level of this procedure. The constructed edge chains
are then merged to create longer edge chains in future levels. This approach approximates
the process of obtaining L ⊆ L as it produces most of all edge chains l ∈ L and l ∈ L
while removing edge chains where l /∈ L and l ∈ L and avoiding any future combinations
of them in the level-wise mining search space.

This notion of using item sets of each level to be merged forming those of the next level
was initially introduced by Agrawal et al. [1] and further developed and used in a variety of
areas [55, 9, 81]. In this section we describe our approach of using the level-wise mining
technique and applying it on an edge-based approach. We start by describing its general
framework followed by its procedure and finally, the constraints that each l must satisfy to
be accepted in L.

Framework: At each level k in our level-wise mining procedure, we create a set Lk
containing chains of edges l, where each l ∈ Lk has a length of k edge lines. Each edge
line subset l at a level k is constructed by taking two distinct candidate k − 1 subsets from
the set Lk−1 and merging them if they share k − 2 edge lines. The new subset l is accepted
as a level k candidate set if it satisfies certain constraints, e.g. highly conforming to a
geometric shape model (Cg(b,Θg) in equation 3.1). If not, it will not be added to the Lk set
and cannot take part in the creation of Lk+1.



Chapter 3 42 Geometric Carried Object Detector

Figure 3.10: The level-wise mining procedure applied on two sets of edges from L. The
first row showcases finding a long chain of convex set of edges l as a potential object.
The bottom row showcases a set of edge lines that do not produce a long chain of edges
as the level-wise mining progresses to each level k due to constraints. The effects of the
constraints can be seen between each level. In the first column a number represents a
specific edge line. In all other columns a letter represents an edge set ID where an edge line
near a letter belongs to that specific edge set. An edge can be a member of multiple sets.

Procedure: Illustrated in Figure 3.10, we start the level-wise mining process at level
k = 1, where we initially assign the given set of all edge lines L to L1. To construct L2,
at k = 2, we assume every pair of edge lines from L1 share a common edge and merge
them as one set in L2 , if the constraints are satisfied. To construct any Lk where k ≥ 3,
we follow the generic process previously outlined for the level-wise mining procedure at
each level k.

After the level-wise mining process has completed running for all k levels, where
1 ≤ k ≤ K, we construct the set of all possible edge chains as L = {Lk ∪ ... ∪ LK} for
any k ≥ λk. The value λk is a set number representing the shortest allowed length an edge
chain l can have to be considered an object. If any two edge chains li ∈ L and lj ∈ L exist
such that li ⊂ lj , the edge chain li is removed to avoid repetitive shorter detections in L.

Constraints: As previously mentioned, each l must satisfy certain constraints to be
accepted in a Lk. These constraints are namely (i) distance, (ii) angle and (iii) the geometric
shape model described in Section 3.5. For the distance constraint, if two edge lines are
to be considered for merging, the shortest distance between the two lines has to be less
than a threshold (less than 20% of the human height). For the angle constraint, the angle
between the two edges must not be very sharp and has to be larger than a certain angle



Chapter 3 43 Geometric Carried Object Detector

threshold (< 30). For the shape model constraint, the shape of l, i.e. the polygon, must
highly conform to the shape model (> 95% convexity).

As the number of combinations (possible merges) in each level of the level-wise
mining can become extremely large, the distance and angle constraints remove a very
large combination of edges that are either too far away from each other to be on the same
object or are unlikely to shape the boundary of the object due to their extreme sharp angles.
Removing these combinations early in the level-wise mining process greatly increases
speed and efficiency in later levels. After k ≥ 3 however, there is no need to enforce
the distance and angle constraints as they have already been enforced in level k = 2, in
which their effect will continue on in future levels of the level-wise mining procedure.
Therefore the distance and angle constraints are only enforced in level k = 2 and are not
used in future levels, resulting only in a single constraint being enforced in future levels,
the geometric shape model.

In Figure 3.10 we illustrate the level-wise mining procedure for two cases. The top row
showcases the first where the level-wise mining process for each k is presented, resulting
in finding a long chain of convex set of edge lines l as a potential object. The bottom row
showcases the second case which results in this process not finding a suitable set at k = K
due to many edge lines not satisfying constraints. In each case, the first column represents
the set of edges from L, where the level-wise mining is being applied to only the edge
lines in a particular row. A number in the first column indicates a specific edge line. This
number will be used to refer to specific edge lines from hereafter. In all other columns a
letter refers to the ID of a specific edge set l. From hereafter, a subset ID is represented in
bold, e.g. T, to avoid confusion with other notations in this thesis. It must be noted that
the alphabetical ordering of the letters has no meaning and they could have been randomly
assigned. Therefore, if an edge line has an edge set ID next to it, it is a member of that
specific edge set. Moreover, a single edge line can be a member of multiple sets. We can
observe that at k = 1, each edge line is assigned an l ID. At level k = 2 many merges
are accepted as they satisfy the three aforementioned constraints. In the top row, we can
observe the set l with an ID of M being created by merging the sets A and B together. As a
result, set ID M contains edge lines 1 and 2.

There are also a few cases where constraints are not satisfied. Edge set IDs F and G are
not merged at k = 2 as the angle between them is too sharp. Edge set IDs D and E are also
not merged as the distance between them is too large. In level k = 3, we can observe the
merging of length two edge chains l from k = 2, producing length three edge chains. For
example, in the bottom row, edge sets with IDs R and S at k = 2 are merged since they
share a k − 2 edge, i.e. edge number 9, resulting in edge set ID X at k = 3. However, the
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merging is not allowed for edge set IDs S and T as their merged chain does not satisfy the
shape model constraint of having a convex shape.

As previously described, the level-wise mining process continues until it reaches k = K
and outputs an L by taking the union of all Lk where k ≥ λk. In Figure 3.10 we can
observe that at the end of the level-wise mining process, the last column for the top row,
a length five edge chain l is found while no suitable edge chains for the bottom case is
created.

In the next section we describe how we remove certain edge lines from the set of all
edge lines L, reducing the number of combinations in the level-wise mining.

3.7 Reduction of Edge Lines

In section 3.3, we described our carried object detector where it starts with a given set of
edge lines L. It is natural however to obtain an extremely large number of edge lines from
the aforementioned techniques. The size of this set of edge lines, L, will directly affect
the computational speed of the level-wise mining procedure described in section 3.6. As
a result, the larger L is for each frame of a video, the more combinations the level-wise
mining has to go through.

Therefore, it will be very beneficial to remove edge lines from the set L that are most
likely not on an object boundary. This reduction will greatly reduce the search space in
the level-wise mining, leading to an increase in computationally efficiency and less false
positive chains l.

In order to apply the carried object detector and to reduce the number of edge lines,
the carried object detector is run on two types of regions, (i) the foreground region a
person is covering and (ii) all other connected foreground regions not covered by a person.
The following approaches are then used to reduce the number of edge lines in L, where
examples of each are illustrated in Figures 3.11 and 3.12. The approaches that require a
person are only applied on the first case where the foreground region is covered by a per-
son. The person’s bounding box is also slightly extended to cover potential protrusion cases.

Edge Enhancement: One of the most important types of edges that need to be removed
are edges that do not form any particular boundary and are inside boundaries themselves.
Therefore to avoid including these types of edges in the level-wise mining process, before
running an edge detector, we apply the Image Edge Enhancing Coherence Filter Toolbox,
developed by Kroon et al. [47], on any image region we want to find a carried object.
This toolbox performs anisotropic non-linear diffusion filtering which reduces the image
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(a) (b) (c) (d) (e) (f) (g)

Figure 3.11: The process of obtaining candidate carried object detections. (a) We first
obtain the image corresponding to the person detection; (b) We then apply the Edge
Enhancing [47] method to enhance edges corresponding to natural boundaries; (c) We
apply foreground extraction on b (background shown in green); (d) We apply colour based
segmentation to c; (e) We identify the two largest segments (given in red) in d, which tend
to correspond to regions on the person. The carried object is more likely to be present
in the non-person regions (shown in green); (f) Using the regions identified in e, many
of the line segments belonging to the person are removed (coloured with cyan); (g) The
result of applying level-wise mining to the remaining edges (coloured yellow in f ) to obtain
candidate carried object regions (coloured in green).

noise (edges) within boundaries, while preserving the outer edges of the boundaries and
additionally enhancing these edges by smoothing along them.

As a result of applying this approach, when edge extraction is run after this stage, we
obtain significantly less edges within boundaries of carried objects and stronger edges
defining the same boundaries. For a sample image Figure 3.11 (a), the affects of applying
the edge enhancement technique is illustrated in Figure 3.11 (b). It can be observed that
regions with more natural boundaries are present while regions within boundaries or with
no specific boundary have been smoothed out by the filter.

Person Edges: Another edge type that contributes towards the majority of edges in L are
person edges. These edges, whether they are on or around the boundary of the person
region, are the main source of false positive chains of edges. Moreover, they also require a
much larger computation time in the level-wise mining procedure compared to the edges on
the carried object which are much fewer in number. Therefore, it would be very beneficial
to remove these person edges from L in a conservative manner.

To accomplish this, we initially remove the background region from the edge enhanced
image, as illustrated in Figure 3.11 (c). We then perform colour segmentation by applying
a graph cut based algorithm developed by Boykov et al. [11] incorporating more recent
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libraries of min-cut max-flow energy minimisation algorithms of [45, 10]. Based on the
obtained colour segments, Figure 3.11 (d), we define the person region as the union of the
top two largest segments, illustrated as the red region in Figure 3.11 (e). We have found
that the two largest regions provide a reasonable estimate of finding the person region.

Two types of edges are removed from the obtained person region; (i) edges that are
solely inside the person region (inside the red region of Figure 3.11 (d)) and (ii) edges
that are on the boundary of the person region and the background region (on the shared
boundary of the red and blue regions). Any edge that is on or within the boundary of the
potential carried object region (green) is kept. The effect of identifying person edges is
illustrated in Figure 3.11 (f) where removed person edge lines and kept edge lines are
displayed in cyan and yellow respectively.

Person Parts: Although the method of finding person edges may remove a large number
of edge lines from the set L, there may be certain person body parts that are not large
enough segments to be removed. Certain parts may also highly follow the geometric shape
models outlined in section 3.5, such as the head of a person which is highly convex and is
sometimes detected as a carried object.

Since we run a pose estimator as part of the process to obtain a protrusion region, as
described in Section 3.2, the location of the person’s body parts are known. In our approach,
we removed any edges that are on the head body part as the pose estimator was reasonably
accurate in finding it. However, we found that it was not accurate enough to find the feet of
the person. Accurately finding the feet would have been beneficial as many edges on the
feet region form false positives which may build up along the legs. If a pose estimator is
highly accurate, the feet regions may also be removed, however, as any other body part
region such as the legs or the torso may be covered by the carried object, the removal of
edges on such regions may lead to removing edge lines on the carried object and should
therefore be avoided.

Edge Length: Since certain textures or items in the image may produce edge lines with
very short lengths, it would be very beneficial to remove these short edges lines to speed
up the level wise mining process. However, due to the depth of the image the length of a
very short edge line may vary. Therefore, for each edge line, we calculate a ratio based on
the length of the edge line over the height of the person that the detector is running for. If
this ratio is less than a certain threshold (less than 5% of the human height), that edge line
will be removed from L.
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Colour Contrast: Even though the edge enhancement step smooths and eventually leads
to removal of edges within a boundary, certain strong edges may remain inside these
boundaries. These strong edges are mostly due to the creases on shirts or trousers or caused
by a shadow on a part of a region while the other part is bright. To avoid including such
edge lines in L, for each edge line, we compute a similarity measure based on the colour
profile of the two sides of the edge line. For each side, we obtain a rectangular region with
a fixed width parallel to the edge line. We then obtain and concatenate the RGB values in
the two rectangles on either side of the edge line. We then calculate the standard deviation
of each concatenated colour channel and calculate a Euclidean norm based on the three
colour channel values. If this value is less than a certain threshold (< 20), even though it is
a strong edge, we remove this edge line as the colour profile of the two sides of the edge
are similar, and it is therefore not on a true boundary and merely lies within one.

By applying the above approaches we significantly reduce the number of edge lines in
L, enabling us to generate a smaller set of edge chains in the level-wise mining process,
while significantly removing false positives and greatly improving computational efficiency.
However, the main reason in using the aforementioned approaches in a pre-processing
stage is to clean up the data (edge lines), in a conservative manner, before starting our
detector. An example of this is illustrated in Figure 3.12 (e) where numerous short edge
lines are removed, indicated by a blue colour. Figures 3.11 (g) and 3.12 (g) illustrate the
final set of edge chains l obtained from the level-wise mining procedure. Here each set is
represented by a different colour and may be overlapped by another set.

After obtaining all object boundaries by completing the level-wise mining process,
we represent an object boundary b as an object detection d by fitting a minimum enclos-
ing rectangle to the polygon of the object boundary. In Figure 3.13 we present sample
boundaries obtained as a result of applying our geometric carried object detector. The
images include examples for both convex and elongated shape models before they are
converted into rectangular object detections. These boundaries are obtained from a variety
of datasets and highlight the fact that our approach can localise the boundary of an object
and subsequently its mask accurately, due to the direct use of edge lines. The last two
images present examples for the elongated shape model while all other images are for the
convex case. In Chapter 6 Section 6.4 we perform experiments to evaluate the quality of
our obtained detections. These detections will be used in future chapters as part of the
tracking process where we only focus on the convex shape model.
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Figure 3.12: Illustration of non-person based pre-processing steps that reduce the number
of edge lines (person-based are illustrated in Figure 3.11). Given an image (a) we obtain
edges displayed with a green colour in (b). We then create edge lines that are displayed in
(c) as red. White edge lines in (d) are as a result of applying the Colour Contrast approach
to filter out edge lines that have a similar colour profile on both sides of their lines. Any
short length edge lines are also removed presented as blue lines in (e). We then use any
remaining red edge lines in (e) to perform level-wise mining in (f) where the yellow lines
represents an edge line being a member of at least one edge chain. Any red edges in (f)
means that they never became a member of a set in the level-wise mining process as they
could not be merged with any other edge line to form a chain. Finally in (g) we present
the edge chain boundaries created by the level-wise mining approach where some may
be overlapping others. Note that if other preprocessing approaches related to the person,
illustrated in Figure 3.11, were also used, additional edge lines would have been removed
including the ones on the head.
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Figure 3.13: Example output boundaries of our carried object detector across different
datasets. Each boundary is displayed as a connected chain in red or blue for a better contrast
with respect to the object colour or background.

3.8 Conclusion

In this chapter we present our novel approach to detecting carried objects. Our geometric
carried object detector overcomes many limitations of other state-of-the-art detectors,
outlined in section 2.1, such as not being limited to protrusion regions, not heavily relying
on person models and most importantly being able to localise the boundary of the object
accurately. It obtains these object boundaries by using edges in the scene and uses a
level-wise mining heuristic to provide chains of edges. These edge chains define the object
polygon which defines the object region. We then use this object region to represent the
corresponding object detection by fitting a minimum enclosing rectangle to the object
polygon. We also described various methods of reducing false positives in our detector and
making it more efficient.

In the next chapter we describe how as a result of applying our detector, we use the
obtained detections to locally connect them by incorporating spatial consistency.



Chapter 4

Tracking through Spatial Consistency

4.1 Introduction

In this chapter we present our Spatial Consistency Tracker (SCT). The goal of this tracker
is to obtain a set of tracklets T , maximising the number of true positive tracklets and
minimising the false positive ones by means of spatial consistency. In addition to our
target object, we also assume that there are entities in the scene that interact with our target
object (typically a person or an aspect of the scene). We refer to these objects as reference

entities and assume they have already been tracked. Therefore to achieve the above goal,
the SCT tracker takes advantage of relationships based on spatial consistency between the
target object tracklets and reference entities inR. Encoding relationships at this early stage
can remove a large number of false positive tracklets from T , which will set the space of
forming the object track hypothesis ω in Chapter 5. This becomes especially important
for carried objects as they can vary dramatically in size, shape and colour, leading to a
significant rise in false positives in addition to weak and partial detections due to high levels
of occlusion. This makes tracking systems prone to false tracks and heavy fragmentation,
as evidenced by applying state-of-the-art trackers to these detections.

To better capture true positive tracklets, we use spatially consistent events (e.g. carry,
static), relative to an entity, to enforce a strong spatial prior distribution (represented as a
heatmap) that encodes spatial consistency between an object and a reference entity. It must
be noted that only spatial consistency can capture true positive tracklets, as only they follow

50
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a consistent behaviour relative to their interacting entities during a spatially consistent
event. This is not true however for spatially inconsistent events (e.g. drop, pickup), as in
addition to true positives during these events, false positives also follow an inconsistent
behaviour.

Therefore the SCT tracker mainly targets tracklets that undergo a spatially consistent
event, however, it is not limited to such tracklets and merely gives more attention to them
and can construct any tracklet that may be during any event. In the next section we present
our SCT tracker and describe this attention driven mechanism.

4.2 Formulation

Other than the target object track that we would like to search for and find, there are other
objects or entities in the scene that interact with our target moving object, referred to as
reference entities. We assume all reference entities have already been tracked, where the
reference entity tracks, or simply reference tracks, are provided in a given set of tracksR.
Here, an individual reference track r ∈ R is a time series of bounding boxes represented
as r = {..., rt, ...}. Each rt represents a reference entity detection for a certain time t.

In this work, we make the simplifying assumption that spatially consistent events are the
only events that govern the relationship between a reference entity r and an associated set of
target object tracklets T . That is, if an object tracklet τ ∈ T , where τ = {da, ..., dt, ..., dz}
(a and z define the start and end frames of the tracklet respectively and t is a particular
time frame during this interval), is associated with a reference track r, then there exists a
bijective relationship between the corresponding detections dt ∈ τ and rt ∈ r. We also
assume that the object tracklets are independent of each other.

Given a set of detections L from a detector, the process of which was described in
Chapter 3, in addition to the set of tracklets T , we denote a set VT = {d ∈ L|∀τ ∈ T , d /∈
τ} which consists of all other detections in L that are not a member of a tracklet. In an
ideal case, the set VT will only contain true negative detections. To compute the set VT , we
assign it any remaining detections from subtracting all detections in the subsets in T from
L.

Our task is to find a set of object tracklets T that are associated with reference tracks in
R. Accordingly, we formulate our task as finding a subset of object tracklets T ∗R from the
set of all possible tracklets T that maximises the following objective function:
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T ∗R = arg max
T ⊆T

∏
d∈VT

(1-C(d))
∏
τ∈T

[
Cr(τ,R; θc)Cs(τ ; Θs)

]
(4.1)

In the above equation, (1-C(d)) calculates the boundary cost of all detections d ∈ VT ,
i.e. detections that are not part of an object tracklet. This boundary cost is obtained using
the same cost function in Equation 3.1, described in the previous chapter in Section 3.3. By
using (1-C(d)) the objective function prefers to keep detections with low boundary costs
(< 0.5) in VT and prevent them from becoming a member of a tracklet τ . This is further
described in section 4.3.

The second cost Cr(τ,R; θc) captures the object-entity relationships between tracklets
τ ∈ T and reference entity tracks inR that are characteristic of certain events based on a
spatial consistency model θc. This cost will be further described in section 4.2.1.

The third cost Cs(τ ; Θs) parametrised by a smoothness model Θs regards a tracklet τ
being more likely if the sequence of object detections constituting this tracklet are smooth
with respect to motion and appearance. These measures are further described in section
4.2.2.

4.2.1 Object-Entity Relationship

A novel way of characterising objects given that certain events occur as a result of entities
interacting with them, is that they follow an entity’s trajectory, with a temporally continuous
and characteristically consistent spatial relationship with respect to that entity. As a result,
we regard a candidate object tracklet τ ∈ T as more likely to be an object associated
with a reference entity r ∈ R, if the tracklet τ follows the trajectory of r with a spatially
consistent behaviour that is characteristic of certain events.

It must be noted that in our SCT tracker, for any time t, each detection dt is only
in relation with one reference entity detection rt. This knowledge of which detection
is in relation to which entity is provided by our detector, Chapter 3, since the detector
runs and provides detections for each entity in the scene, therefore knowing which entity
each detection came from and is in relation to. We therefore capture this object-entity
relationship in the second cost Cr(τ,R; θc) of Equation 4.1 which is expanded as follows:

Cr(τ,R; θc) =
∏
dt∈τ

C(dt)(1−Ch(dt,rt;θc)) (4.2)
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Figure 4.1: The process of building a heatmap H with tracklets τ1 and τ2 (red bounding
boxes), relative to a person track r (blue bounding box). The relative location of each
object detection is represent by an arrow which is drawn from the centre of the person (blue
circle) to the centre of the object detection (red circle). All relative locations are then used
in the heatmap H where each detection gives a vote to each offset pixel relative to a person.
The total value of votes are indicated by a number in heatmap H . We can observe that due
to spatial consistency between the person and the object, true positive object detections
give rise to more votes while sporadic false positives do not.

Similar to the first term, C(dt) is the boundary cost of a detection dt ∈ τ . The cost
Ch(dt, rt; θc) calculates a measure for an object τ to be spatially consistent with an entity r,
where each of their corresponding detections, at frame t, must be spatially consistent. This
measure of consistency is captured through a spatial consistency model θc. To quantify this
model, we propose a voting measure that counts the number of times the relative position of
a pixel with respect to the centroid of an entity’s detection falls within an object detection.

As illustrated in Figure 4.1, let ∆xrt ,∆yrt be the offset of a pixel relative to the
centroid (xrt , yrt) of the entity’s bounding box rt at time t, i.e. (xrt + ∆xrt , yrt + ∆yrt)

is the absolute position of the pixel relative to the image frame I t. We define a function
δ(∆xrt ,∆yrt , d

t) as follows:

δ(∆xrt ,∆yrt , d
t) =

1, if (xrt + ∆xrt , yrt + ∆yrt) ∈ dt

0, if (xrt + ∆xrt , yrt + ∆yrt) 6∈ dt
(4.3)

The function δ(∆xrt ,∆yrt , dt) outputs a 1 or a 0 depending on whether the relative
offset (∆xrt ,∆yrt) is a member of detection dt or not respectively. By using the above
definition, we define a spatial consistency map H for each r, where the value of H at each
relative offset position (∆xrt ,∆yrt) is obtained by:
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H(∆xrt ,∆yrt) = σ(

∑
τ∈T

∑
dt∈τ

δ(∆xrt ,∆yrt , d
t)

|r|
, θc) (4.4)

Given a set of tracklets T associated with a set of entity tracksR, the intensity values
in H measure the number of votes for each relative offset pixel (∆xrt ,∆yrt) given by the
tracklets in T . Since we expect objects to have a consistent relative location with respect
to the entities (due to the nature of the specified events) and noise to be more randomly
distributed, the spatial consistency map captures the locations relative to the entities where
objects are most likely to exist. This is as a result of these locations receiving higher votes
in the heatmap due to the repeated presence of potential carried objects even though they
may be sparsely detected in the video.

After all votes for each offset position (∆xrt ,∆yrt) is calculated, we obtain a value
for the total number of votes. We normalise this value by the length of the correspond-
ing relative entity, i.e. the duration of its frames, resulting in a ratio. A value is then
estimated for each offset position ratio using a generalised logistic function σ which is
calculated based on Equation 4.5 with an input x and a spatial consistency model θc

defining its parameters. Any θ model for the generalised logistic function has parameters
θ = {A,B,C,K,M,Q, v}. The advantage of using the heatmap to model the object-
person relationship can be observed in Figures 4.1, 4.2 and 4.3.

σ(x, θ) = A+
K − A

(C +Q ∗ e−B(x−M)))1/v
(4.5)

As a result of using Equation 4.4, we obtain a spatial consistency map H where each
offset position relative to the centre of H (which corresponds to the centre of an entity’s
bounding box) has a value between 0.01 and 0.99 representing the likelihood of a pixel
belonging to an object region, relative to an entity. This spatial consistency map can be
visualised as a heatmap which is illustrated in Figure 4.2. The warm region represents
the most likely location where an object may be, relative to the entity interacting with it.
This heatmap distribution tends to get closer to the true distribution of the objects relative
location with respect to an entity (e.g. for the object and person in Figure 4.2) as more
tracklets are built, as further described in section 4.3.

We therefore regard a detection dt as more likely to be an object, if the objects bounding
box covers pixels with high intensity values in the heatmap. We model the heatmap cost

Ch(dt, rt; θc) of equation 4.2 as:
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Figure 4.2: An illustration of the spatial distribution of a heatmap for a person being learned
as the optimisation progresses. As more tracklets are built by the optimisation, the more
accurate the heatmap becomes in its distribution. This distribution approximates the true
relative position of an object to the person, where they can be seen in the leftmost image.

Ch(dt, rt; θc) =

∑
(x,y)∈dt

H(x-xrt , y-yrt)

|dt|
(4.6)

Therefore, to calculate the heatmap cost of a detection dt ∈ τ based on the above
equation, for each pixel (x,y) in the bounding box of dt, we obtain the pixel’s corresponding
H value. We then take the average of all pixel H values by dividing by the total number of
pixels, i.e. |dt|. We use the resulting average value as an estimate of the heatmap cost for a
detection dt.

Due to the depth of the scene or inaccuracies of person detections, the track of an entity,
e.g. a person, may vary in height or width over time. By obtaining the heatmap using
these varying sized person detections, the relative location of the object to the person is not
always consistent and the offset may be misaligned for other offsets over time. Therefore
to obtain an accurate heatmap, we normalise and map each bounding box of a person track
to a fixed size, while at the same time apply the same mapping to the object bounding box
to preserve the object-entity relationship.

To perform this normalisation, as illustrated in Figure 4.3, we obtain a fixed sized
bounding box to map all person detections to. We obtain this bounding box by taking
the average width and height of all detections in a person track, represented by rµw and rµh
respectively. This average bounding box is illustrated as green in Figure 4.3. For each
bounding box in a person track rt (blue bounding box) with a width and height of rtw and rth,
we obtain a width and height ratio of α = rtw/r

µ
w and β = rth/r

µ
h respectively. Based on the

object-person relative offset ∆xrt and ∆yrt , we calculate a new offset for the object relative
to the average bounding box as ∆xrµ = α ∗∆xrt and ∆yrµ = β ∗∆yrt . Since the width
and height, dtw and dth of the bounding box of the object also changes due to this mapping,
we calculate the new width and height of the object as dµw = dtw ∗ α and dµh = dth ∗ β. From
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Figure 4.3: The process of mapping a person bounding box to a normalised person bounding
box. The mapping is also applied to the object to preserve the object-person relationship.
By comparing the normalised heatmap to the un-normalised heatmap, we can observe
that the normalisation process greatly enhances the relative consistency as the normalised
heatmap obtains a more localised distribution representing the true location of the object.

Figure 4.3 we can observe the result of this mapping where the mapped object-person
relationship is preserved and is similar to the original object person relationship. Therefore,
as a result of the aforementioned mapping, the normalised heatmap in Figure 4.3 obtains a
more consistent and localised distribution, capturing the true location of the object relative
to the person, while the un-normalised heatmap has a wider distribution.

The main goal of creating the heatmap and using the heatmap cost in the objective
function is to promote true positive detections that have low detection costs into the tracking
process. In addition to this, the heatmap also acts as an attention driven mechanism in the
spatial consistency tracker. It does this by making the tracker focus more on true positive
detections that are closer to the true location of the object (captured by the heatmap), while
focusing less on false positive detections and subsequently mostly suppressing them. The
role of the heatmap in SCT is described in greater detail in section 4.3.

4.2.2 Tracklet Suitability

The third term of equation 4.1, Cs(τ ; Θs), calculates a cost based on the suitability of a
tracklet, which is estimated in terms of three measures, namely (i) shape continuity, (ii)
distance and (iii) path continuity. We therefore expand Cs(τ ; Θs) in terms of these measures
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as the following:

Cs(τ ; Θs) =
∏

dt,dt-1,dt-2∈τ

Csc(dt, dt-1; θsc) Cdm(dt, dt-1; θdm) Cpc(dt, dt-1, dt-2; θpc) (4.7)

In order to build more suitable tracklets, we prefer connecting detections that are
more similar in shape with regards to their bounding boxes. Therefore, the first term
Csc(dt, dt-1; θsc) measures shape continuity. This measure calculates the shape similarity of
the bounding box of a detection dt ∈ τ against the bounding box of its previous detection
dt-1 ∈ τ . The amount of change is calculated by initially centring the two bounding boxes
on top of each other and then calculating the following measure:

Csc(dt, dt-1; θsc) = σ(
Area(dt ∩ dt-1)
Area(dt ∪ dt-1)

, θsc) (4.8)

In the above equation, the generalised logistic function σ with parameter values θsc

estimates the shape continuity cost of two consecutive detections dt, dt-1 ∈ τ , based on the
ratio of the area of their overlapping regions over the area of their union region. The higher
this ratio is, the more similar their shapes are, leading to a higher cost.

Another suitable measure for building tracklets is the distance between consecutive
detections in a tracklet. This measure should give higher cost to consecutive detections that
are closer to each other, while penalising detections that are further away from each other
with lower costs. Therefore, the second term Cdm(dt, dt-1; θdm) calculates this distance
measure based on the following equation:

Cdm(dt, dt-1; θdm) = σ(D2(d
t, dt-1), θdm) (4.9)

In the above equation, we estimate the distance cost by using a generalised logistic
function σ with parameter values θdm, based on the Euclidean distance between detections
dt and dt-1, calculated by function D2, illustrated in Figure 4.4 (a). If the distance is
relatively short, a higher cost will be obtained.

Another important measure for a suitable track is that it is smooth and continuous
with respect to its trajectory and path. As a result we calculate the path continuity cost
Cpc(dt, dt-1, dt-2; θpc) based on the following equation:
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Figure 4.4: Examples of distance functionsD2 andD3 used as part of the tracklet suitability
measures. The distance is the length of the solid black line, obtained based on the centre
points of detection d.

Cpc(dt, dt-1, dt-2; θpc) = σ(D3(d
t, dt-1, dt-2), θpc) (4.10)

The path continuity cost is estimated in the above equation using a generalised logistic
function σ with parameter values θpc, based on the shortest distance between a point dt-1

to the line between points dt and dt-2, calculated from function D3, illustrated in Figure
4.4 (b). The shorter this distance is the smoother the path will be.

Using the objective function in Equation 4.1 which expands into the above aforemen-
tioned terms, we construct the optimal set of tracklets based on spatial consistency within
an optimisation procedure, as described in the next section.

4.3 Spatial Consistency Optimisation

We now describe the optimisation procedure for the Spatial Consistency Tracker (SCT).
The optimal solution of the optimisation problem with the objective function in equation
4.1, T ∗R, emerges as a result of iterations involving cyclic interactions between two main
components of the objective function. We define the first component, Cs(τ ; Θs) in equation
4.1, as the cost dealing with the spatio-temporal continuity and suitability of a tracklet τ in
the tracking process. The second component, Cr(τ,R; θc), is defined as the heatmap cost
that models the object-entity spatial consistency relationship via the heatmap.

As illustrated in Figure 4.5, the cyclic nature between the aforementioned two compo-
nents emerges during the SCT optimisation when longer tracklets are built from detections
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Figure 4.5: The architecture of our framework and examples of iterations in the optimisation
process of our spatial consistency tracker as a result of applying the aforementioned
framework. The cyclic nature between tracking and the heatmap emerges as more tracklets
are built in the tracking stage resulting in a more accurate heatmap over more iterations,
which in turn promotes more detections (red) for the tracking process.

in the first component, and as a result more detections from these tracklets will be avail-
able to contribute to the building of the heatmap in the second component, which in turn,
the second component will promote more detections to be used in the first component.
Therefore, due to this cyclic nature of our optimisation, longer and smoother tracklets of
an object are built in each iteration, where subsequently each tracklet is also more spatially
consistent to their interacting entity, while simultaneously contributing more tracklets to
the creation of the heatmap, leading to more detections being promoted in the next iteration
for creating longer and more spatially consistent tracklets.

Given a set of object detections L, the SCT optimisation process is initialised with an
initial empty hypothesis T 0 = ∅ which subsequently leads to the set of unused detections
VT being assigned all detections in L, i.e. VT = L, since no detection is a member of a
tracklet τ . Using T 0 we obtain an initial cost based on the objective function in Equation
4.1. Since the objective function takes the product of a large number of values between
zero and one, which result in a very small value, for implementation purposes we take the
logarithm of the objective function which provides costs that are in a more suitable scale to
work with.

The optimisation process starts with the initial hypothesis T 0 and applies a sequence
of moves to detections (whether they are part of a tracklet or not) to iteratively obtain a
sequence of hypothesised tracklet sets (T 1, ..., T j, ...), based on a gradient descent based
approach. Therefore, the objective function is used at each iteration j in the optimisation to
decide whether to accept the new hypothesis T j or to persist the previous hypothesis T j−1.
In each iteration the move to be applied is chosen uniformly at random. The detection it is
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applied to however is sampled based on a distribution calculated from the combined costs
of detection and heatmap C(dt)(1−Ch(dt,rt;θc)) in Equation 4.2, for each detection.

This distribution enforces the previously described attention mechanism in the tracking
optimisation. Initially as the heatmap distribution is uniform, a detection is sampled
primarily based on their corresponding detection costs. However, as the optimisation
progresses the heatmap captures the true location of the object. The distribution obtained
from the combination of the detection and the non-uniform heatmap cost gives more
attention to detections that have a high heatmap cost. With this approach in sampling, a
true positive with a low detection cost but a high heatmap cost may be sampled over a false
positive detection with a high detection cost but a low heatmap cost, leading to the tracker’s
attention shifting from potential false positives to more true positives.

After a detection is sampled, we apply a move to the sampled detection and change the
hypothesis T j to create a new hypothesis T j+1. In total there are 6 moves, illustrated in
Figure 4.6, which are namely (i) Birth, (ii) Death, (iii) Merge, (iv) Replace, (v) Split and
(vi) Crossover. Each of these moves is described below:

(i) Birth: A sampled detection d from VT becomes a length one tracklet in T . In
Figure 4.6, first row and left to right, a green detection in VT becomes a tracklet τ1
as a result of a birth move.

(ii) Death: A sampled detection d from any tracklet τ in T becomes a detection in VT . If
the tracklet is not of length one, the tracklet is broken into two tracklets. In Figure 4.6,
first row and right to left, the tracklet τ1 becomes a green detection in VT as a result
of a death move.

(iii) Merge: A detection d from all subset tracklets in T is sampled. The tracklet
τ = {da, ..., dt, ..., dz} of the corresponding sampled detection dt is found. The first
sampled detection is changed to the last detection in the tracklet, dz. The detection
dz exists at frame z and based on this, a second detection is sampled from frame
z + 1. The second sampled detection’s tracklet, τ ′ is found. Tracklets τ and τ ′ are
merged and replaced as a new single tracklet τ ′′ = τ ∪ τ ′ in T . In Figure 4.6, second
row and left to right, tracklet τ1 is merged with tracklet τ2, creating a longer tracklet
τ1 by assigning it all detections from τ2.

(iv) Split: A detection d is sampled and its tracklet τ = {da, ..., dt, ..., dz} is found. τ is
then split at the sample detection dt and is replaced in T by the two new resulting
tracklets τ1 = {da, ..., dt} and τ2 = {dt+1, ..., dz}. In Figure 4.6, second row and
right to left, tracklet τ1 is split into two shorter tracklets τ1 and τ2.
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(v) Replace: A detection d1 is sampled and its tracklet τ1 is found, leading to a sampled
detection dt1. A second detection d2 is sampled from all detections in frame t and its
tracklet τ2 is found, leading to a sampled detection dt2. If d2 was sampled from VT
and isn’t part of a tracklet, we assume it is a length one tracklet. d1 then replaces d2
in τ2 and d2 replaces d1 in τ1. In Figure 4.6, third row and in both directions, we can
observe tracklet τ2 swapping a single detection with tracklet τ1.

(vi) Crossover: A detection d1 is sampled and its tracklet τ1 is found. A second detection
d2 is sampled from detections in existing tracklets that temporally overlap with τ1.
Similarly the tracklet of d2, τ2 is found. Based on the overlapping regions of τ1 and
τ2, as illustrated in Figure 4.6, there are four cases to perform crossover on τ1 and τ2.
The fourth case however has two potential ways of performing the crossover move
and if it occurs, one of the two ways is chosen uniformly at random. The last case in
Figure 4.6 provides examples of applying a crossover move based on the different
ways two tracklets τ1 and τ2 can overlap.

The SCT optimisation generally starts by creating and accepting new length one
tracklets as a result of applying the Birth move on detections that have detection costs
higher than 0.5. This start in the optimisation is due to the way a detection cost is used in
the objective function of Equation 4.1. For example, if a detection d ∈ VT has a cost of
0.8, since the objective function calculates 1-C(d) for any detection in VT , detection d’s
contribution in calculating the objective function will be 0.2. However, if a Birth move
creates a new tracklet τ ∈ T out of detection d, the objective function calculates the
likelihood of d as C(d) which results in a value of 0.8. Since by calculating the objective
function, the 0.8 will lead to a higher overall hypothesis cost when compared to 0.2, the
new hypothesis obtained by applying the Birth move will be accepted.

If the detection cost was 0.3 however, the reverse of this occurs since before applying
a birth move, we will have a 0.7 while after we obtain a 0.3. Therefore the optimisation
will reject the new hypothesis with a lower cost and continues to apply another move on
the previous hypothesis. This may change however in later iterations of the optimisation
when an accurate heatmap is obtained, where after applying a Birth move to the same
detection that has a low detection likelihood of 0.3, but has a high heatmap cost of 0.8,
the resulting hypothesis cost changes to 0.3(1−0.8) = 0.78 rather than the previous 0.3.
Therefore this hypothesis with a detection that has a low detection cost will be accepted
since the detection was promoted based on the heatmap.
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Figure 4.6: Examples of moves used in the SCT optimisation procedure. Each row
showcases the affect of a move being applied to a set of unused detections in VT and a set
of tracklets in T .
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Similarly, the optimisation applies other moves to iteratively create new hypotheses,
where the cyclic nature between the two aforementioned components of the objective
function leads to building longer tracklets that tend to better approximate true object
tracklets. After a large number of iterations (8000), we terminate the optimisation process
and regard the final set of tracklets of length more than one as the optimal set of objects
tracklets T ∗.

4.4 Conclusion

In this chapter we present a novel approach to locally linking detections together that
belong to a domain of generic object types which produce a larger number of false positives.
The Spatial Consistency Tracker framework that incorporates this linking process uses
context from the scene to suppress false positive detections while promoting true positives
that were deemed weak by the detector. This framework primarily focuses on gathering
and exploiting context that arises from the relationship between the object and the entity
interacting with it. We model this relationship using spatial consistency in the heatmap
which directly influences the detections as part of the tracklet building process. This results
in a set of tracklets that represent the object with a more spatially consistent behaviour with
respect to the entity interacting with it.

In the next chapter we present a framework which searches for the object trajectory
using the obtained tracklets while incorporating event analysis jointly as part of the tracking
process.
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Joint Tracking and Event Analysis

5.1 Introduction

When an object is being interacted with by an entity, it undergoes various changes in its
trajectory depending on the nature of the interaction. These changes can be temporally
categorised based on the motion of the trajectory, specially when considered relative to the
interacting entity’s trajectory. Using these relative relationships, one can describe how the
object is interacted with in the scene at each frame. This description can be represented as
a sequence of labels describing the interaction that occurs.

These labels provide the knowledge of which state an object is in at each frame. We
define an event as a label that represents the state an object is going through. In other
words, an event is an instance of a particular interaction between an object and an entity.
Since each event describes the motion of the object trajectory and is unique in terms of its
representation, one can use the knowledge of events as a type of context to aid in finding
the trajectory of the object.

In this chapter we introduce our Joint Tracking and Event Analysis (JTEA) framework
for tracking objects. The main novelty of JTEA is the improvement of object tracking
by incorporating events to enforce spatio-temporal constraints on the tracking solution.
Moreover, as a result of improved tracks, event recognition is also subsequently improved.

We formulate our JTEA approach under one objective function where tracking and
event analysis are jointly performed, as described in the next section.

64
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5.2 Formulation

We assume a tracker has produced a set of tracklets T that provide potential constituents
for a single moving object within the target scene. Although there may be more than
one, we are only interested in finding a single moving object. We again assume that there
are reference entitiesR interacting with our target moving object that have already been
tracked. The goal is to find the optimal object track consisting of a continuous sequence
of tracklets, influenced by spatio-temporal relationships modelled by events between the
target object and the reference object tracks inR.

Each tracklet τ ∈ T is a contiguous sequence of detections d, each represented by
their minimal enclosing rectangle. A candidate track Tω is defined by a subset of tracklets
ω ⊆ T such that there is no temporal overlap between tracklets in ω (we assume subsets
are disjoint in what follows). The track Tω is a time series of the detections that make up
the tracklets of ω, linearly interpolated between the end of one tracklet and the start of the
next if any frame gaps exist.

For a track Tω we also obtain a corresponding sequence of event states defined as
S = {s1, s2, ..., s||Tω ||}, where throughout this chapter ||.|| denotes the number of elements
in a given sequence or set. Each event state s takes an event type, defined in the set of event
types E = {1, 2, ..., E}, where E represents the total number of events we are interested in
finding.

Our objective is to find an optimal set of tracklets ω∗ ⊆ T and an associated optimal
sequence of event states S∗ from the set of all possible event sequences S, expressed as:

(ω∗, S∗) = argmax
ω⊆T ,S∈S

P (ω, S|R, T ,Θst) (5.1)

= argmax
ω⊆T ,S∈S

P (ω|S,R, T ,Θst)P (S|R, T ) (5.2)

In Equation 5.1 the term P (ω, S|R, T ,Θst) evaluates the probability of each hypothesis
set of tracklets ω and a sequence of event states S, given reference tracksR, tracklet set T
and a set of parameters Θst. The conditional probability for ω, P (ω|S,R, T ,Θst), is defined
in Equation 5.3 and is a product of three parts, namely spatial, temporal and Gaussian

observation. The first two penalise non-smooth tracks and large gaps between tracklets,
and the third is an event-state dependent Gaussian observation density over position and
velocity. Although the spatial (smoothness) term may seem redundant alongside the
Gaussian observation density, it is not localised to the current time instant by virtue of its
construction with a smoothing function F , and we have found that it improves performance.
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The employed smoothing function F is a moving average filter with a span of η .

P (ω|S,R, T ,Θst) = (5.3)( ∏
i=1:||Tω ||

σ(|T iω − F (Tω)i|, θs)︸ ︷︷ ︸
Spatial

)(
σ(

∑
τj∈ω
||τj||)

||Tω||
, θt)︸ ︷︷ ︸

Temporal

)( ∏
i=1:||Tω ||

N (Xi|µsi ,Σsi)︸ ︷︷ ︸
Gaussian observation

)

The spatial and temporal terms express the probability of a trajectory from ω, inde-
pendent of the reference track R and capture standard tracking measures. The spatial

term measures the degree of spatial association between temporally consecutive detections
T iω ∈ Tω. It is calculated by taking the product of probabilities of a generalised logistic
function σ with parameters θs, based on the absolute euclidean distances between each
detection T iω and F (Tω)i. σ returns a value of one for shorter distances and decreases to
zero for larger distances. F is a smoothing function applied to Tω and F (Tω)i returns the
smoothed corresponding point of T iω. This term penalises the use of outlier tracklets.

The temporal term penalises the gaps between the tracklets that make up the track Tω.
We obtain this measure by applying a generalised logistic function σ with parameters θt,
on the ratio of non-interpolated detections from tracklets in ω over the total length of the
track Tω. The larger the ratio, σ returns a value closer to one and if smaller, a value closer
to zero. This measure promotes the use of observed tracklets over interpolated points.

The Gaussian observation term is where the events are taken into account. It enforces a
prior distribution, based on bilateral relations between object track Tω and reference tracks
R. We calculate these relations using a function Q with which we obtain an observation
matrix X i.e. X = Q(Tω,R). We therefore calculate the Gaussian observation term as a
product of the probabilities obtained from the normal distribution of individual observations
X with respect to multiple event types E , modelled by a mean µs and a covariance matrix
Σs for an event s. The Gaussian observation term is further described in section 5.3.

For the second term in Equation 5.2, P (S|R, T ), we assume S is independent ofR and
T and define as a Markov chain on the state sequence. Thus, this term and the Gaussian
observation term in Equation 5.3 effectively define a Hidden Markov Model (HMM), which
is then coupled with the smoothness and gap-penalty terms to give the overall probability.
The HMM captures the event analysis aspect of our framework, a method which is popular
in event recognition work [76, 78, 98, 99, 94]. This HMM provides a measure of how likely
pairs of an object track and reference tracks of possessive entities, conform to a model
sequence of event states. Modelling the HMM is further described in the next section.
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5.3 Modelling Events

We define our HMM model, illustrated in Figure 5.1, by a set of discrete events E , an event
variable sn ∈ E at time n, transition probabilities between events Pu|q = Psn=u|sn−1=q ,
1 < u, q < |E|, prior probabilities for the initial event Ps1=u and output probabilities for
each event Pu(X) = Psn=u(X).

... ...

Figure 5.1: Our HMM model with observations X and event state variables s

The observation matrix X is composed of relative position and velocity relations, each
captured in both horizontal and vertical directions, between the target object Tω and the
reference entityR. ThusX has 4×||R|| dimensions. These relative relations are calculated
using functionQ which takes the centre of the minimum enclosing rectangles of detections
in both object and entity tracks as input.

We estimate the parameters of the HMM using maximum likelihood. For this we use a
training dataset that is labelled with ground truth for the reference entity track, target object
track and the events. Therefore to model each event type e ∈ E , we obtain an observation
matrix constructed by Q where only detections from the object and entity tracks are used
that undergo the specific event e. Using these observations we model a Gaussian defined by
a mean and a full covariance matrix µe and Σe respectively for each event state e. Modelled
event Gaussians for two entities, namely person and scene, are illustrated in Figure 5.2
which capture object-scene (OS) and object-person (OP) relations for position (pos) and
velocity (vel).

We also create a transition matrix based on the occurrence of an event u following an
event q for all frames in the videos. Similarly we learn a prior for the occurrence of an
event u. We therefore represent our HMM model as the set of Gaussians for each event,
the transition matrix, and the prior.

Thus, to test a hypothesis track Tω, given a set of reference tracksR, we can construct a
new observation matrix similar to above. By applying a Viterbi algorithm using this matrix
and the above HMM model, we obtain an HMM measure for the Gaussian observation

term along with a generated sequence of events for P (S). We further describe the HMM
model and the events used in Section 6.5.1.2.
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Figure 5.2: Gaussian observation densities in the HMM model for each event, based
on the object-scene (OS) and object-person (OP) for position (pos) and velocity (vel)
relations, in horizontal (x) and vertical (y) dimensions. For relative position, the image
frame coordinates are set between zero and one, and for relative velocity the direction
and magnitude of events is captured relative to the (0, 0) coordinate, defining absolute
consistency relative to the interacting entity. For example, in the bottom row, the object-
person velocity relation for the carry event is highly consistent at (0, 0), meaning the object
follows the person consistently; while for the raise event is mostly horizontally consistent,
however, it is vertically inconsistent in an upward direction.
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5.4 Optimisation

The optimisation process is similar to Oh et al. [59] approach and the optimisation process
outlined in the previous chapter in section 4.3, where we apply a set of moves, namely
add, remove and replace, to construct successive track hypotheses. Given a set of object
tracklets T , obtained from any tracker, we initialise our object track Tω by including only
the first and last observed tracklets of T in our track hypothesis ω and obtain an initial
probability using the objective function in Equation 5.2. Note that if these two tracklets are
not suitable and do not belong to the optimal track hypothesis ω∗, they may be removed

or replaced in the optimisation. In each iteration of the optimisation, a tracklet τ ∈ T is
randomly sampled, weighted by a normalised distribution of tracklet lengths.

A new hypothesis can be constructed in three ways depending on the sampled tracklet
τ and the set of tracklets in ω: (i) if τ ∈ ω, we construct a new hypothesis by removing it
from ω; (ii) if τ /∈ ω and it does not temporally overlap with any other tracklets in ω, we
add it to ω and (iii) if it does temporally overlap, we replace any overlapping tracklets with
τ in ω. Based on the moves above, at each iteration we construct a new track hypothesis Tω.
If the probability of Tω (by Equation 5.2) is higher than the previous iteration’s probability,
we use the new hypothesis as the current best track hypothesis, if not, we continue with
the previous best track hypothesis. Examples of two iterations in the JTEA optimisation
process are illustrated in Figure 5.3.

By using this hill climbing approach, using a stopping criterion of a fixed number of
iterations, the optimisation terminates and outputs the track hypothesis with the highest
probability. Although this approach may only reach a local optimum, in practice we have
found that the trajectories are suitable to represent the path of the object, as evidenced by
our experiments in Chapter 6.

Events play a significant role in the Joint Tracking and Event Analysis (JTEA) op-
timisation as they are constructed from the track hypothesis in each iteration using the
HMM, and they affect the suitability of new hypothesis tracks in future iterations through
the objective function. This influence of events on the suitability of the track hypotheses
primarily affects and is directed at the tracklets that are to be used in the hypothesis. As a
result, the influence of the HMM emerges in the optimisation by choosing tracklets that
enable the object track hypothesis to have a higher conformity to a sequence of modelled
events when compared to other hypotheses consisting of other tracklets.

Illustrated in Figure 5.3, we present two consecutive iterations within our JTEA op-
timisation. Given a set of tracklets T , at an iteration n, a temporally-disjoint subset ω
is obtained and a contiguous track Tω is produced by linearly interpolating across any
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Iteration 

carry putdown pickup carry

Iteration

carry putdown pickup carrystatic

:

:

Figure 5.3: We illustrate two consecutive iterations within the Joint Tracking and Event
Analysis optimisation. Given a set of tracklets T , at each iteration, a temporally-disjoint
subset ω is selected and a contiguous track Tω is produced by linearly interpolating across
any gaps. The Viterbi path S of event labels in the HMM is inferred from Tω (arrow up),
leading to an HMM measure (arrow down) and combined with the spatio-temporal factors
in Equation 5.3 to give an overall probability. In the next iteration, a change to the subset
ω is made and the overall probability re-computed. In this case, the new configuration is
accepted since the probability is increased.

gaps between tracklets in ω. This hypothesis track is then given to the HMM (arrow
up). The Viterbi path S of event labels in the HMM is inferred from Tω and reference
tracks inR, leading to an HMM measure (arrow down) which is then combined with the
spatio-temporal factors in Equation 5.3 to give an overall probability for the objective
function. In the example provided in Figure 5.3, at iteration n, due to the motion in the
middle of the trajectory Tω, the HMM predicts a pickup immediately following a putdown.
As it is unlikely to immediately pick up an object after it has been put down, the events
produced from the trajectory do not conform to the model within the HMM and as a result
a low HMM measure is given to the objective function. In this example, to consider the
next iteration, we assume that this trajectory hypothesis is accepted at iteration n.

In the next iteration, n + 1, a change to the subset ω is made as a result of applying
a replace move. This produces a new hypothesis trajectory and the overall probability
re-computed. In this case, the new trajectory produces events that better confirm to the
modelled events in the HMM (emergence of the static event), thus obtaining a better HMM
measure. As a result the new configuration is accepted over the hypothesis in the previous
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iteration, since its probability from the objective function is increased.
As more and more tracklets are used as a result of the influence of the HMM to create

improved object tracks with a higher conformity to modelled events, the improved tracks
in turn improve the event sequence predicted in the HMM, subsequently improving the
event analysis performed by the HMM. Thus through a joint optimisation tracking and
event analysis influence and improve each other.

5.5 Conclusion

In this chapter we presented a framework for jointly performing tracking and event analysis
where they mutually influence and improve each other. Given a set of tracklets, this
framework aims at finding the most optimal object trajectory by taking into account the
events that it produces. These events are outputted using a Hidden Markov Model along
with an event measure which captures the conformity of the behaviour between the object
track and an entity track, relative to ideal modelled interactions.

In the presented framework both tracking and event analysis terms are used within
a single objective function as part of an optimisation where the tracks and events are
iteratively improved. The improvement of tracks is primarily due to the influence of their
events and the improvement of events are due to improved tracks.

In the next chapter we perform a quantitative and qualitative evaluation of the three
frameworks outline in Chapters 3, 4 and this chapter which describe our Geometric Carried
Object Detector, our Spatial Consistency Tracker and our Joint Tracking and Event Analysis
frameworks respectively.



Chapter 6

Evaluation

6.1 Introduction

In this chapter we perform evaluations on each of the three main approaches presented in
chapters 3, 4 and 5, namely our carried object detector, spatial consistency tracker and our
joint tracking and event analysis framework respectively.

To accomplish this we use three datasets described in Section 6.2. We then describe our
experimental setup in Section 6.3. We then provide qualitative and quantitative evaluations
on each of the aforementioned chapters in sections 6.4 and 6.5.

6.2 Datasets

In order to evaluate the frameworks and approaches outlined in previous chapters, we
use three datasets, namely PETS2006, MINDSEYE2012 and MINDSEYE2015. The
PETS2006 dataset was chosen as a benchmark dataset and used for a baseline comparison
to other state-of-the art approaches. A more complex dataset was also required leading to
the use of the MINDSEYE2012 dataset which allows for a more in depth set of experiments.
In order to evaluate both tracking and event analysis aspects of our joint tracking and event
analysis framework proposed in Chapter 5, we created the new MINDSEYE2015 dataset.
Each of these datasets is described in more detail in the following sections.

72
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Figure 6.1: Sample images from the PETS2006 dataset. Target carried objects are indicated
with a yellow rectangle.

6.2.1 PETS2006

The PETS2006 benchmark dataset was originally created with the goal of detecting left
luggage in a train station scenario. This dataset consists of seven sets of videos, each set
consisting of videos captured from four different cameras. The use of this dataset was
later extended by Damen and Hogg [23], henceforth DHD, to detect carried objects on or
around people. In this work only the third camera was used, due to its viewpoint, leading
to seven videos with an average of 3000 frames. Each video was captured at 25 frames per
second with a resolution of 720x576 where ground truth for many of the carried objects
are provided. This dataset has become the benchmark of carried object detection and we
apply our work to this dataset to compare against other state of the art approaches. Figure
6.1 illustrates examples of the PETS2006 dataset where carried objects are indicated with a
yellow bounding box.

The ground-plane homography estimation of PETS2006 was provided as part of the
dataset, which was needed to run the baseline state-of-the-art carried object detector of
DHD. In order to extend the evaluation, a much larger number of person tracks were ob-
tained when compared to the available person tracks from the dataset. These person tracks
were obtained by first applying background subtraction (in the same manner as described in
Section 3.2) to obtain foreground segmentations. By fitting a minimal enclosing rectangle
to each connected foreground segmentation, the segmentations where then treated as person
detections. By applying the off-the-shelf tracker by Pirsiavash et al. [63], person tracks
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were obtained.
Although the benchmark PETS2006 dataset used in the literature is suitable for evaluat-

ing the performance of carried object detectors, most objects within this dataset are of the
same type, there is only a single viewpoint and since it is an indoor scene, it does not have
the challenges of outdoor scenarios. We therefore perform a more in depth evaluation of
our framework on the MINDSEYE2012 dataset, as described in the next section.

6.2.2 MINDSEYE2012

To better evaluate our carried object detector and our spatial consistency tracker against
other state-of-the-art approaches, we use the challenging MINDSEYE2012 dataset. This
Dataset consists of 70 outdoor video clips created by a third party from the Mind’s Eye
project Year 2 dataset [25], where each video consists of either a person carrying an object
or walking through the scene without one. The complexity of this dataset results from
variations in camera settings, environmental factors such as changes in lighting conditions
(e.g. brightness due to weather), camera blur, shadows, moving trees, grass and cloths in
the background, various person trajectories relative to the camera (e.g. walking in front of
or towards the camera) and most importantly a much larger variety of carried object types.
The videos were captured at 30 frames per second with a resolution of 1280x720 with an
average length of 200 frames for each video.

The person tracks and ground truth carried object tracks were provided with the dataset
while the ground-plane homography estimation required for running DHD was done for
each camera setting. Figure 6.2 illustrates sample images from the MINDSEYE2012
dataset.

6.2.3 MINDSEYE2015

Carried object detection datasets, like PETS2006 and MINDSEYE2012, typically include
only people walking with or without carried objects. Our joint tracking and event anal-
ysis framework however is designed and expected to perform when people interact with
objects in a variety of ways as described in Chapter 5. For this reason, we created the
MINDSEYE2015 dataset, by selecting a subset of videos from the Mind’s Eye Year 2
dataset [25], where in each video, the carried object undergoes a variety of interactions
performed by the entities in the scene. It must be noted that the subset of videos used in
MINDSEYE2015 are different to the subset used in the MINDSEYE2012 and that they do
not have any videos in common.
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Figure 6.2: Sample images from the MINDSEYE2012 dataset. The top three rows of
images illustrate frames of people with carried objects which are indicated with a yellow
rectangle. The fourth row provides examples of people not carrying objects. These
examples also illustrate the challenges of the dataset, e.g. shadows, background motion,
lighting conditions and the different scenarios the videos are captured from.
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MINDSEYE2015 consists of 15 videos (5 recordings captured from 3 different view-
points), each lasting approximately 6000 frames. These videos were converted to a
resolution of 640x360 at 20 frames per second. Excluding frames where no event occurs
(empty scenes), there are approximately over 45 minutes of interactions between objects
and entities. The videos are taken from three different viewpoints, illustrated in Figure 6.3,
which allows a better evaluation of the capabilities of our approach in dealing with object
occlusions. The viewpoints offer different types of challenges to a tracker: viewpoint C1
has medium levels of object occlusion and medium levels of scene depth; viewpoint C2
has medium levels of object occlusion (when the object is held in front of the person) and
high levels of scene depth; viewpoint C3 has high levels of object occlusion (depending on
which side of the person the object is carried) and low levels of scene depth.

Videos in the dataset show a variety of people interacting with various different objects.
In the majority of frames there are at most one person and one object, but there are cases
of more or less than one person or object present in the scene. It is also worth noting that,
since the dataset was captured outdoors, the movement of trees and cloths on the table, as
well as the change in brightness of the video due to clouds and distance of the person to the
camera cause challenges for object detectors.

We have defined various events to allow for a full description of the scene with regards
to the state of the carried object, from the start of its appearance to its disappearance. These
events are further described in Section 6.5.1.2.

Ground truth for person tracks, carried object tracks and events are fully annotated.
This dataset has been made publicly available [84] with all ground truth annotations. It also
provides the carried object detections, tracklets, final tracks and automatic person tracks
obtained from applying the frameworks outlined in previous chapters. Since the videos in
this dataset are very long, we divide each video into clips defined by the start and end of
each ground truth carried object track. Therefore each clip has a target carried object to be
tracked.

6.3 Experimental Setup

In this section we describe the parameter settings and the evaluation measures used in
evaluating the different frameworks presented in the previous chapters.



Chapter 6 77 Evaluation

(a) C1 (b) C2 (c) C3

Figure 6.3: Sample images from the MINDSEYE2015 dataset. Each row illustrates an
interaction between the same object and person at an exact moment in time from the three
different viewpoints of C1, C2, and C3. The different viewpoints are not synchronized and
the videos only temporally overlap for each row of viewpoints. Various types of occlusion,
e.g. partial or full occlusion, can also be observed in the example images where the target
object is localised by a yellow bounding box.
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Figure 6.4: Distributions of different models used by the generic logistic function.

6.3.1 Parameter Settings

Throughout Chapters 4 and 5, various θ where employed as part of various objective
functions, defining the model of the generic logistic function, in terms of its parameters
in Equation 4.5. The primary role of these models and the generic logistic function was
to normalise the costs of different terms in the objective functions to a value between
zero and one, often incorporating a non-linear distribution. In Table 6.1 we define the
employed models in this thesis by the generic logistic function by numerically presenting
their parameter values. We also present each model’s graphical representation illustrating
its distribution in Figure 6.4.

θ description A B C K M Q v

θc Spatial consistency model 0.01 7 1 0.99 0.5 0.5 0.5
θpc Path continuity model 1 0.3 1 0.01 40 0.4 0.4
θsc Shape continuity model 0.001 20 1 1 0.7 0.01 0.5
θdm Distance model 1 0.3 1 0.01 30 0.4 0.4

Table 6.1: Various parameters of models used by the generic logistic function.
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Figure 6.5: Generic logistic function parameter learning for distance and path continuity
models using ground truth object tracks.

The spatial consistency model θc follows a distribution that is approximately linear,
however we penalise objects that are less convex, i.e. < 0.5. slightly heavier and promote
objects that are more, i.e. > 0.5, as illustrated in Figure 6.4. For the shape continuity model
θsc, we consider an overlap ratio value of 0.5 as the centre of the distribution where similar
to before we penalise and promote other ranges in the distribution, albeit more heavily.

The parameters in the distance and path continuity models were based on learnt distri-
butions from the ground truth, as illustrate in Figure 6.5. For the distance model, Figure 6.5
(a) displays a histogram of Euclidean distances between consecutive detections in ground
truth object tracks. The red line illustrates the half-normal distribution fitting to the data.
We can observe that the distribution covers distance values of up to 20. This indicates that
longer distances are unlikely distances between consecutive true positive detections in an
object track. As a result we set the generic logistic function parameters for the distance
model θdm, Figure 6.4, such that distances less than 20 obtain a high (good) cost. After the
value of 20 however, the distribution cost slowly drops until 40 so that we do not heavily
penalise object tracks that may have imperfect true positive object detections, as they may
naturally arise from the detector.

We obtain a similar histogram for the path continuity model where the distribution
converges at a value of 10. However, since the ground truth tracks are highly smooth
with respect to their trajectories, in practice we found that tracks obtained from imperfect
detections are not as smooth. Therefore to take this into account, we increased the value of
the distance of an ideal smooth trajectory from 10 to a value of 30 in the path continuity
model in Figure 6.4. Simalar to the distance model, the distribution is gradually reduced as
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the distance increases. It must be noted that values of zero were removed when creating
the histograms as they would have been highly dominant in the distribution. All other θ
models in this thesis follow a linear distribution.

In our experiments, the parameters presented in Table 6.1 and all other parameters
and thresholds presented in this thesis were tuned on a subset of the Mind’s eye Year
2 evaluation videos, non of which exist in the MINDSEYE2012 and MINDSEYE2015
datasets. Values of these parameters and thresholds are independent from any particular
selection of subset. This is because general geometric properties such as the convexity
model θcon are invariant across samples from any dataset. Moreover, as the focus and
use of our carried object detector is to prove a concept, that is to illustrate the benefits of
employing a generic model as part of an object detector, only the convex shape model is
investigated throughout the experiments in this chapter. We also set the span parameter for
the smoothing function, described in Section 5.2, to η = 5.

In order to run any of the state-of-the-art approaches employed as part of experiments
described in this chapter, default parameter settings of each approach were used as it is
often considered most suitable for general uses.

6.3.2 Evaluation Measures

The evaluation measures used in this chapter concentrates on the tracking performance and
is thus done with respect to the spatio-temporal localisation of object detections in object
tracks, based on a frame by frame comparison to ground truth.

Therefore, to evaluate and measure the tracking performance of a certain approach
based on the experiments outlined in this chapter, we primarily use the F1 score as a
measure for comparison. We calculate the F1 score using Equation 6.1:

F1 =
2 ∗ True Positive

2 ∗ True Positive + False Positive + False Negative
(6.1)

In the above equation, we define a detection d as being a true positive if its overlap
measure with its corresponding frame ground truth detection dgt is more than a certain
threshold γ. We define this overlap measure as the following:

Overlap Measure =
Area(d ∩ dgt)
Area(d ∪ dgt)

(6.2)

In the related work, Damen and Hogg [24] and Dondera et al. [28] have used 0.15 and
0.2 as values for the threshold γ respectively. That is, they consider a detection as a true
positive if it has an overlap measure of more that 0.15 or 0.2. In our evaluation we report
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tracking results on the full range of overlap thresholds, i.e. 0.01 < γ < 1. This allows for
a more accurate evaluation on the different detectors and the quality of the detections that
they output.

In the following sections we present various experiments incorporating the afore-
mentioned parameter settings and evaluation measures as part of evaluating different
frameworks presented in this thesis.

6.4 Evaluation of Detection and Tracklet Building

In this section we perform experiments to evaluate the suitability of our geometric carried
object detector and Spatial Consistency Tracker, based on the datasets outlined in Section
6.2 and the experimental settings outlined in Section 6.3.

These experiments consist of two aspects, first of which is a quantitative analysis
in Section 6.4.1, where we evaluate our Spatial Consistency Tracker (SCT) against the
state-of-the-art protrusion based Damen and Hogg [24] carried object detector (DHD). This
quantitative evaluation is performed in terms of the tracklets produced by both approaches.
To further illustrate the true potential of our SCT approach, we also evaluate against
variations of our SCT approach consisting of alternate key components of this tracker and
illustrate the benefits of incorporating spatial consistency within this framework.

Secondly, in Section 6.4.2, we perform a qualitative analysis of detection compar-
isons between our carried object detector described in Chapter 3 and the detections of
DHD. Moreover, we also present an experiment comparing heatmaps as a result of apply-
ing different variation of the SCT tracker, highlighting the importance of the final SCT
framework.

6.4.1 Quantitative Analysis

In this section we present a quantitative analysis of the performance of our spatial con-
sistency tracker. The experimental setting of this analysis is described in the following
section.

6.4.1.1 Experimental Settings

The main experiment is to evaluate the performance of our SCT approach against the
state-of-the-art DHD approach. Additionally, we also evaluate against variations of our
SCT approach where the architecture of each is illustrated in Figure 6.6. The experimental
setting of each variation is described as the following:
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Figure 6.6: Different variations of the SCT approach for evaluation. Attention Driven
System (ADS) represents the full SCT framework where the heatmap promotes True
positives and gives more attention to them. The Heatmap Driven System (HDS) uses the
heatmap to filter tracklets in a post-processing stage and does not allow the heatmap to
influence the tracking optimisation in any way. The Basic Tracking System (BTS) is a
basic tracker that does not use nor creates the heatmap.

• Attention Driven System (ADS): The ADS architecture captures the full framework
presented in Chapter 4 describing our spatial consistency tracker. This framework
capitalises on the potential of using the object-entity relative positional relationship,
captured via the heatmap, to build tracklets. Additionally, the heatmap also introduces
an attention-like mechanism into the optimisation process, where the heatmap shifts
the sampling distribution of detections for the tracklet building process from all
detections with high detection costs to detections that are more likely to be on the
true location of the object, relative to the entity interacting with it. This attention-like
mechanism effectively makes the optimisation apply more moves, as part of the
tracklet building process, to detections that are more likely to be true positives.

• Heatmap Driven System (HDS): To highlight the important role of the heatmap in
the ADS architecture and the benefits it provides, the HDS architecture removes the
effects of the heatmap in the optimisation process on the detections (i.e. no arrow
down in the architecture of HDS, in Figure 6.6) in two ways. Firstly it removes
the benefits of using the heatmap and promoting detections at each iteration of the
optimisation and the iterative nature of building the heatmap. Secondly, it avoids
using the attention-like mechanism in the optimisation for suppressing the false
positives. Therefore in the HDS architecture, the aforementioned two benefits of the
heatmap are removed as there is no influence from the heatmap to the detections. The
heatmap is therefore only used in a post-processing stage where it is built after the
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Figure 6.7: Evaluation of our Spatial consistency tracker in terms of F1 scores as the
threshold of overlap increases on both PETS2006 and MINDSEYE2012 datasets.

tracking process has been completed and only has the role of filtering out tracklets
that are not on the true location of the object.

• Basic Tracking System (BTS): To evaluate the tracking aspect of the spatial con-
sistency tracker independently and without the influence of the heatmap, the BTS
architecture is used. This architecture represents a framework where the tracklet
building process is completed during the optimisation without the creation of the
heatmap or its use, effectively setting the heatmap cost of Ch(dt, rt; θc) = 0 in the
objective function in Equation 4.2 in Section 4.2.1.

6.4.1.2 Results & Conclusions

The results illustrated in Figure 6.7a provides F1 curves for the performances of DHD, raw
detections (RD) and BTS, applied on the PETS20016 dataset for a quantitative evaluation
of the detections obtained from the aforementioned approaches. It can be clearly observed
that our detector significantly outperforms the detections obtained from DHD, whether
they are evaluated simply as detections, i.e. RD, or as part of object tracklets (BTS). It
is also worth noting that for stronger overlap thresholds, i.e. closer to 1, our approach
obtains more consistent true positives due a more constant F1 score when compared to the
sudden drop observed in DHD. This indicates that by using our approach we obtain object
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detections that more accurately localise the carried objects when compared to detections
from DHD which produce larger boundaries for the objects. This can also be observed in
Figure 6.8 images (a,d,k) as part of the qualitative analysis.

As well as DHD, RD and BTS, Figure 6.7b additionally shows results of HDS and
ADS, for a quantitative evaluation of our spatial consistency tracker after applying it on the
MINDSEYE2012 dataset. Here we can observe that our BTS approach again outperforms
DHD, while RD only outperforms DHD after an overlap threshold of > 0.25. Once more
this highlights the large object boundaries obtained from DHD which are initially counted
as true positives for overlap thresholds of < 0.25. Overall, we can again conclude that our
detections outperform the detections of DHD.

While BTS outperforms DHD, we can observe a significant tracking improvement by
using the heatmap as part of our spatial consistency tracker, whether it is used in HDS
or ADS. This highlights the importance of using the object-entity relation as part of the
tracking process, captured via the heatmap. Additionally, by comparing the performance
of ADS and HDS we can conclude on the importance and benefits of updating the heatmap
and its influence on the tracklet building process, as a result of applying them in each
iteration of the optimisation in ADS, when compared to the heatmap’s creation as only a
post-processing stage in HDS. Moreover, this also highlights the benefit of the promotion
of detections via the heatmap cost and the attention-like mechanism the heatmap provides
as part of the spatial consistency tracker optimisation.

6.4.2 Qualitative Analysis

In this section we present a qualitative analysis of the detections provided by our carried
object detector and the ones provided by DHD. Additionally we perform a comparison on
the quality of the heatmaps provided by each variation of the SCT tracker. The Experimental
Settings of this analysis is present below.

6.4.2.1 Experimental Settings

As illustrated in Figure 6.8, we present the detection results of our carried object detector,
described in Chapter 3, applied on the PETS2006 and MINDSEYE2012 datasets. We
compare these results to detections obtained by applying DHD. We perform a qualitative
analysis by summarising success and failure cases of both our detections (blue bounding
box) and DHD (red bounding box), with respect to the ground truth (green bounding box).

In Figure 6.9 we present two heatmaps, the first was obtained during the ADS architec-
ture where the heatmap updates and influences the tracking process at each iteration. The
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Figure 6.8: Illustration of the successes and the failures of our carried object detector and a
comparison with a baseline state-of-the-art detector Damen and Hogg (DHD) [24]. For
images (a)-(l), boxes coloured in green correspond to ground truth, red to baseline and blue
to those obtained using our approach.

second heatmap is based on the HDS architecture where the tracking process is completed
and the heatmap is created from the tracklets in a post processing stage. A quantitative
analysis of the results from both of the aforementioned experiments is presented below.

6.4.2.2 Results & Conclusions

In Figure 6.8 images (a)-(f) and (j)-(l) illustrate how our approach is able to detect different
types of objects such as boxes, bags, plastic bags and suitcases, while the baseline DHD
approach is unable to. This highlights the merits of performing generic object detection
without specific object models. (g)-(i) show cases where our approach performs poorly,
as the edges do not sufficiently delineate the object from the person while also obtaining
many false positives. (j) illustrates a case where edges on top of the object are not found
and only a partial detection is obtained even though it is covering most of the ground truth
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bounding box.
The (b,c,f,j) images illustrate that our approach is also able to detect objects that are

not on protrusion regions. This is not the case however for the baseline Damen and Hogg
detector as highlighted in images (a,b,c,e,j) which relies on protrusion and cannot detect
objects that are on the person region. (c,d) illustrates situations where multiple people are
in close proximity, or when the person’s bounding box is displaced, heavily affecting DHD.
(e) illustrates a case where the influence of a relatively strong prior on the position of the
object in relation to the person can hinder the detection of an object (e.g. basket) above a
person’s head. Note that the object ground truth is sometimes not available for all people
in the PETS2006 dataset e.g. (k).

So that others may use or build upon our carried object detector, we have made a basic
version of our carried object detector and made it publicly available [83]. This version
obtains edge lines from a sample image and performs level-wise mining to construct and
provide object boundaries.

In order to qualitatively analyse the benefits of updating the heatmap iteratively within
the SCT optimisation and to highlight the advantages of its attention-like mechanism,
Figure 6.9 illustrates two heatmaps obtained from the ADS and the HDS architectures. As
a reference to where the true location of the object is relative to the person, the left most
image (Detections) shows the location of the object and the person. Additionally, object
detections for the single image frame are also illustrated as red rectangles, where brighter
and darker rectangles represent detections with higher and lower costs respectively.

By comparing the ADS and the HDS heatmaps in Figure 6.9, we can observe that the
heatmap from the ADS approach suppresses the false positives on the person’s upper body
clothes from becoming a strong region in the heatmap, as a result of preventing the creation
of their tracklets. This is due to the attention-like mechanism of the ADS architecture
which represents the full SCT framework. This mechanism focuses the trackers attention on
detections that are on the true location of the object by increasing their sampling distribution
since they have a higher heatmap cost. As a result more tracklets are built on the true
location of the heatmap which further strengthens the heatmap distribution leading to more
detections being sampled and promoted. However this is not the case for the HDS heatmap
as it has no influence on the tracker. This results in the tracker creating more false positive
tracklets which lead to the strong distribution on the heatmap that also covers non-object
areas.
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Figure 6.9: Comparison of heatmaps obtained from the ADS and the HDS architectures.
The detections image illustrates a reference for the object-person relationships in the
heatmaps. Object detections on the image frame are illustrated as red rectangles, where
brighter and darker rectangles represent detections with higher and lower costs respectively.
We can observe that the heatmap from the ADS approach suppresses the false positives
from becoming a strong region in the heatmap due to its attention-like mechanism and only
captures the true location of the object, while the strong heatmap distribution of HDS also
covers non-object areas.

6.5 Evaluation of Joint Tracking and Event Analysis

In this section we present the evaluation of our Joint Tracking and Event Analysis (JTEA)
framework which was described in Chapter 5. To accomplish this, we perform a quantitative
and qualitative analysis of the JTEA framework, presented in the following sections.

6.5.1 Quantitative Analysis

In this section we perform a quantitative analysis of the tracking and event analysis aspects
of our JTEA framework. The following describes the experimental settings used as part of
this quantitative analysis.

6.5.1.1 Experimental Settings

The input of our JTEA framework consists of a set of tracklets, which can be obtained from
any tracker, and learnt event models which will be used in an HMM. The following are
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the experimental settings describing the process of satisfying these requirements for JTEA
and other requirements to obtain the tracking and event analysis results after applying our
JTEA framework on the MINDSEYE2015 Dataset.

Tracking
To obtain a set of tracklets, so that we can apply our JTEA framework, we use three trackers:
(i) our Spatial Consistency Tracker (SCT) described in Chapter 4, (ii) an unmodified version
of Pirsiavash et al. globally-optimal greedy tracker [63], henceforth (DPG), and (iii) an
unmodified version of Andriyenko et al. discrete-continuous optimization tracker [4],
henceforth (DCO).

For each of the aforementioned trackers, we obtain a set of tracklets as a results of
applying them to detections that were obtained after running our carried object detector on
the MINDSEYE2015 dataset. We then obtain results for two sets of experiments based on
our JTEA framework, represented as HMM and BASE. The first experiment, HMM, applies
the full JTEA framework, as described in Chapter 5, on each of the obtained three tracklet
sets to obtain object tracks. The tracks obtained through this experiment, for each of the
SCT, DPG and DCO trackers, are represented by the HMM experiment label in the results
section.

The second experiment (BASE), applies only the tracking aspect of our JTEA approach
in equation 5.2 as its objective function. This experiment effectively ignores the notion
of events from JTEA by removing the Gaussian observation term and the event term
P (S|R, T ) from the objective function. The tracks obtained through this experiment are
represented by the BASE experiment label. The tracking results of these two experiments
provide a means of comparison, to draw conclusions on the effects of jointly using events
as part of tracking (HMM) against tracking without the influence of events (BASE). The
tracking results from both experiments are presented in terms of an average F1 score across
all videos calculated on a frame by frame basis.

We additionally run two sets of evaluations on the aforementioned sets of experiments,
using carried object detections obtained from ground truth person tracks (GT) and automatic
person tracks (Auto). This is to illustrate that JTEA and also SCT are not heavily dependent
on highly accurate person tracks. Our automatic person tracks obtain an average F1 score
of 0.79, 0.73 and 0.58 with 50%, 60% and 70% overlap thresholds respectively.

Event Analysis
In addition to the experiments based on the tracking performance of our JTEA framework,
we also present a quantitative evaluation on the event recognition aspect of JTEA. By
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applying our JTEA framework to obtain object tracks, event recognition is simultaneously
performed within the HMM using the P (S|R, T ) term of Equation 5.2 in Section 5.2.
In the MINDSEYE2015 dataset, there are seven types of events in which an object may
participate in, relative to two types of reference entities, namely person and scene. These
events are Carry, Static (object is stationary), Pickup, Putdown, Drop, Raise and Roll

(object is moving on the ground).
To train an HMM model and learn the aforementioned events, we take as input ground

truth object and person tracks along with a scene bounding box which covers the entire
image frame, representing the scene reference track. As described in Section 5.3, we
construct an observation matrix for each event based on position and velocity, in the x and
y dimensions relative to the two reference entities, person and scene. For each event, we
obtain a mean and covariance matrix which we use as event models in our HMM along
with prior probabilities of events and a transition matrix constructed from event ground
truth. The above HMM training is performed within five folds (one for each recording in
the MINDSEYE2015 dataset).

To predict a sequence of events from a test object track, we use the HMM from the fold
that the video was not trained on. Here the HMM uses a Viterbi algorithm to predict the
most likely sequence of events, given the test object track, person and scene entity tracks
(reference objects) and the aforementioned trained model for the HMM. The output of the
HMM (in addition to the HMM measure) is a sequence of event labels corresponding to
the object track for each frame.

In order to evaluate the sequence of event labels, we present quantitative results of
event classification obtained by using the following three experimental settings:

• HMM Train Test: This experiment is to evaluate the trained model to be used by the
HMM. We perform five-fold cross validation to train and test our HMM on ground
truth object and reference object tracks and evaluate the predicted sequence of events
against ground truth events based on a frame by frame basis.

• SCT HMM GT: This experiment evaluates the events obtained from the HMM
using the final tracks generated by the SCT HMM GT tracking experiment, against
ground truth events. It must be noted that the creation of these tracks were influenced
by the events that they produce during the same optimisation.

• SCT BASE GT: In this experiment we evaluate the performance of event recognition
as a result of using the tracks obtained by the SCT BASE GT experiment. The creation
of these tracks where not influenced by events and in this experiment we perform
event recognition as a post-processing stage.
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Figure 6.10: Performance comparison of our JTEA framework. We present two sets of
experiments, using ground truth (GT) and automatic (Auto) person tracks. We apply our
three main frameworks to obtain detections, tracklets and tracks using only the person track
type in each experiment. For each of the trackers producing tracklets, namely SCT, DPG
and DCO, the significant increase in performance of our JTEA framework as a result of
incorporating events (HMM) over the baseline (BASE) can be clearly seen.

6.5.1.2 Results & Conclusions

The following presents the results of tracking and event analysis after applying our JTEA
framework with the above experimental settings.

Tracking Results
As illustrated in Figure 6.10, no matter which of the three tracklet building trackers were
employed, we can conclude that the performance of tracking is significantly improved
when influenced by events (HMM label), as a result of our joint tracking and event analysis
framework, when compared to the BASE experiment that does not take events into account
and does not take advantage of the object-entity interaction. It must be noted that even a
5% improvement corresponds to approximately 3000 more true positives due to the large
number of frames in the dataset.

From the results we can also observe that the tracks obtained by applying the JTEA
framework on tracklets provided by our SCT tracker outperforms the tracks obtained by
using tracklets from other trackers. We can therefore conclude that the SCT tracker pro-
duces significantly improved tracklets for the JTEA framework, compared to the tracklets
produced by DPG and DCO. This can be considered as further experiments for Section 6.4,
proving that the use of heatmaps as part of our spatial consistency tracker can be of great
benefit when creating tracklets.
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By comparing the results of Figure 6.10 (a) and (b), we can observe that the object
tracking results obtained from ground truth (GT) and automated person tracks (Auto) are
very similar. We can therefore conclude that our JTEA and SCT approach do not heavily
rely on high quality person tracks and are robust against noisy person tracks. It is also worth
highlighting how the performance of the system does not drop rapidly for higher values of
overlap threshold, showing the potential of our carried object detector in localising objects
accurately.

For a more in depth comparison with related works, in Table 6.2 we provide a summary
of performance indexes computed at 20% overlap, a value typically employed in the
literature for carried object tracking [24, 28]. Since there is no major difference between
the GT and Auto results, we only provide detailed information for the GT (Figure 6.10 (a))
evaluation.

F1 Precision Recall Accuracy Run Time
SCT HMM 0.80 0.81 0.79 0.67 < 25 min
SCT BASE 0.76 0.77 0.75 0.61 < 25 min
DCO HMM 0.75 0.76 0.73 0.59 < 5 min
DCO BASE 0.70 0.72 0.69 0.54 < 5 min
DPG HMM 0.68 0.69 0.67 0.52 < 1 min
DPG BASE 0.66 0.67 0.66 0.50 < 1 min

Table 6.2: Performance indexes of carried object tracks from GT person tracks, evaluated
against > 20% overlap with ground truth.

We can again verify that for all the different indexes, event recognition always improves
the tracking performance and that the SCT tracker outperforms other trackers. Since the
notion of object-entity interaction is incorporated in both the SCT tracker and the JTEA
framework (HMM), to accurately measure the benefits of incorporating the aforementioned
interaction within tracking, we must compare the SCT HMM row of the table to the DCO

BASE and the DPG BASE rows, as they do not use any notion of interaction, which
corresponds to a 10% and 14% improvement in F1 score respectively. This significant
improvement is purely as a result of using interaction within tracking in our SCT HMM

approach.
The run times in Table 6.2 are for the trackers only, and that JTEA ran an additional

5 minutes for each tracker. All given times are calculated using a single core on an Intel
Xeon E5-2665 Processor @2.40GHz. Although SCT is slower than DCO and DPG, we
believe it can be run in a more comparable time if optimised.
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Figure 6.11: Confusion matrices for event classification.

Event Analysis Results
Figure 6.11 presents the confusion matrices produced as a result of evaluating the event
recognition procedure for each of the three experiments outlined in section 6.5.1.1. The
confusion matrix in Figure 6.11 (a) illustrates that the HMM approach to modelling events
for carried objects is suitable for the problem. This also highlights the suitability of the
object-entity relations used as observations in modelling the HMM.

Confusion matrices in (b) and (c) show that HMM based event classification notably
improves the baseline, further clarified by the number of correct event classifications
reported in Table 6.3. Based on this table, the ground truth based classification in (a) allows
for consistently better results in all classes, but the HMM event recognition substantially
improves over the baseline’s performance leading to 64.2% vs. 53.9% correct classifications
respectively.

It must be noted that many of the false positive event classifications are due to the nature
of the frame by frame evaluation where event intervals may be slightly misaligned with the
ground truth, leading to a larger number of false positives which may in fact be considered
as true positives. This is particularly the case for very short temporally occurring events
such as drop and raise.

Carry Static Pickup Putdown Drop Raise Roll Total Total %
Sum GT Frames 10787 36578 1402 1521 83 530 259 51160 100
HMM Train Test 9559 35337 1340 1379 37 508 74 48234 94.3
SCT HMM 8382 22537 1108 742 17 28 24 32838 64.2
SCT BASE 7398 18630 994 375 18 113 53 27581 53.9

Table 6.3: Total number of true positive event detections based on a frame by frame
evaluation.
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6.5.2 Qualitative Analysis

In this section we present a qualitative analysis of the tracking results provided by the SCT

HMM and SCT BASE experiments on the MINDSEYE2015 dataset, by comparing the
quality of their produced tracks and additionally highlighting the benefits of incorporating
events into the tracking process. The experimental settings for this analysis is described
below.

6.5.2.1 Experimental Settings

Figure 6.12 illustrates the tracking results of SCT HMM and SCT BASE for two different
cases, namely (a) and (b). The rows of each case represent sample image frames that are
temporally ordered. Between each of the ordered frames, gaps of multiple frames may
exist. In each frame the person bounding box is represented by a black bounding box,
ground truth object track as green, the SCT HMM object track as red and the SCT BASE

as blue. For each of the object tracks the corresponding event recognition in that frame
is displayed in the gray box at the top left corner of each image frame. The green text
represents the ground truth event of the green ground truth track, the red text represents the
SCT HMM event for the red object track and the blue text represents the SCT BASE event
for the blue object track.

While the green ground truth events where manually annotated, the red events for
SCT HMM where obtained within the JTEA optimisation while tracking, whereas the blue
events for SCT BASE where obtained using the HMM in a post-processing stage after the
BASE tracking process had finished.

6.5.2.2 Results & Conclusions

Figure 6.12 illustrates tracking results by focusing on the detections within the tracks.
We can observe that in both cases (a) and (b), the red object tracks of SCT HMM more
accurately cover the green ground truth object track, compared to the blue object tracks
of SCT HMM. Moreover, the events of the red SCT HMM approach is also more accurate
than the blue SCT BASE events. This improvement in tracks and event recognition is a
direct result of incorporating events within the tracking process. The influence of events in
improving the tracks for each case is described below.

In the first case, (a), the person drops the object after carrying it. Since the SCT HMM

detects a drop event, the red object track of SCT HMM has a trajectory that conforms to a
drop event, that is it has a downward direction with a higher than normal velocity. Due
to the knowledge of this event, the red object track accurately follows the dropped object.
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However, for the blue SCT BASE object track, since it does not use any notion of events
and does not have any knowledge of what is happening, it continues to track the object as
it is still being carried, which is confirmed by the post-processed blue event recognition.

The second case, (b), illustrates an example where an object is carried, but is highly
occluded. In this example the red object track of SCT HMM continues to follow the ground
truth object track, even in frames where it is highly occluded. We can observe that the red
object track has this behaviour as the event carry is correctly predicted which enforces the
trajectory of the red object track to have a consistent spatial behaviour with respect to the
entity possessing it. In this example, the tracking procedure may prefer using interpolated
detections as part of the trajectory of the object track, since they more accurately cover
the true location of the object compared to partial or false positive object detections. The
choice of whether to use interpolated or other detections which may be false positives is
determined based on the HMM measure in the JTEA objective function, which is dependant
on the event sequence that the trajectory produces in the HMM. The importance of this
is highlighted when we compare against the blue SCT BASE object track which is not
constraint by and does not follow a particular event model. It therefore uses false positive
detections to create its final trajectory rather than interpolating, which we can observe in
the post-processed event recognition as an incorrect pickup event.

Figure 6.13 illustrates example tracking results by presenting the full trajectories of
SCT HMM and SCT BASE. We can observe that our SCT HMM trajectories more accurately
follow the green ground truth trajectories compared to the blue SCT BASE trajectories.
They are also smoother due to the events they produced and were influenced by. In Figure
6.13 (a) however, the detector produces detections that cover both the carried object and the
feet and as a result our red trajectory, which follows the centre of the detection bounding
boxes, is lower than that of the ground truth. In Figure 6.13 (b) we can observe how how
our red trajectories continues to follow the object even when it is fully occluded.

Figure 6.14 presents additional examples of trajectories in a different and more chal-
lenging viewpoint. In Figure 6.14 (a) we can observe when a second object is present in
the scene (a flag), by taking advantage of the knowledge of events, our red SCT HMM

trajectory does not alternate between the two objects and persists to remain on one. In
Figure 6.14 (b) we can observe that when the object is picked up, due to high occlusion
both SCT HMM and SCT BASE initially lose the object. However our approach finds the
object again and using the knowledge of the event Carry follows the true location of the
object.

Figure 6.15 presents another set of examples based on the same object but in two
different viewpoints. In Figure 6.15 (a), due to the way the object is carried, the object has
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a very narrow profile and is challenging to detect and track. However, in Figure 6.15 (b)
which captures the object from a different viewpoint, the object is more visible and easier
to track.

In the next section we present an overall conclusion on the evaluation and experiments
presented in this chapter.

6.6 Overall Conclusions

In this chapter we performed quantitative and qualitative evaluations of the three frame-
works outline in this thesis, namely our Geometric Carried Object Detector, our Spatial
Consistency Tracker and our Joint Tracking and Event Analysis frameworks.

We initially evaluated our carried object detector and showed the significantly improved
performance it obtained over other state-of-the-art approaches with respect to its object
detections.

We then evaluated and showed the benefits of incorporating spatial consistency within
the tracklet building process of our spatial consistency tracker. Our tracker’s ability to
suppress false positives and maximise the number of true positive in the scene based on
spatial consistency gives it an advantage over other trackers.

Finally, and most importantly, we evaluated our joint tracking and event analysis frame-
work. In this evaluation we illustrated the benefits of this framework which accomplishes
the main goal of this thesis, that is, to use interaction as a type of context and incorporate it
within tracking. We can conclude from the results of this evaluation that we can greatly
benefit from using high level notions of interactions within object tracking.

In the next chapter we provide an overall conclusion on the work presented in this
thesis and provide insights into future directions.
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Figure 6.12: Qualitative analysis of the tracking and event recognition results of SCT HMM
and SCT BASE at a detection level. Each column represents a different example of the
aforementioned results. The rows of each column illustrate a sequence of frames where the
red SCT HMM object tracks and events outperform the blue SCT BASE object tracks and
events, when compared to the green ground truth. This improvement in tracking and event
recognition is due to incorporating events in the tracking process, which can be concluded
by analysing the tracks and their corresponding events.
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Figure 6.13: Qualitative analysis of the trajectories and event recognition results of SCT
HMM and SCT BASE. We can observe that our SCT HMM trajectories more accurately
follow the green ground truth trajectories compared to the blue SCT BASE trajectories.
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Figure 6.14: Qualitative analysis of additional trajectories and event recognition results of
SCT HMM and SCT BASE. We can observe that our SCT HMM trajectories more accurately
follow the green ground truth trajectories compared to the blue SCT BASE trajectories.
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Figure 6.15: A good and bad example of the same object in different viewpoints. In (a),
due to the way the object is carried, the object has a very narrow profile and is challenging
to detect and track. However, in (b) which captures the object from a different viewpoint,
the object is more visible and easier to track.
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Conclusion and Future Work

This thesis investigated the problem of tracking in the context of interaction. We presented
our approach to this problem in three different parts of the thesis, (i) our geometric carried
object detector, (ii) detection and tracking through spatial consistency and (iii) joint tracking
and event analysis; each of these novel frameworks are briefly described below.

In Chapter 3 we presented the area in which we would like to investigate the effects of
incorporating interaction within the tracking process, that is, the area of carried objects.
We provided a full literature review of this area in Section 2.1 and highlighted the many
challenges within this domain; challenges that have been the main reason there has been
relatively little work in this area. We therefore presented our geometric carried object
detector in Chapter 3 that produces detections and provides a basis where we can apply our
trackers that incorporate the knowledge of interactions.

In Chapter 4 we used the obtained detections and locally connect them to form tracklets
using our spatial consistency tracker framework. Here, we exploited the spatial consistency
between the object and the entity interacting with it to obtain better tracklets that partly
cover the trajectory of the object. The notion of spatial consistency captures certain
interactions where the trajectories of the object and entity follow the same behaviour
and are consistent with respect to one another. We built tracklets in this manner before
performing object tracking so that we can take advantage of the notion of interactions at
a detection level, where a detection was modelled with respect to a single entity at each
frame.

Chapter 5 presents our joint tracking and event analysis framework (JTEA). In this
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chapter we tackled and solved the main goal of this thesis, tracking in the context of
interaction. Here we performed tracking by taking into account modelled interactions
based on spatial consistency and inconsistency where in each frame, the target object is
tracked based on its relationship with respect to all entities in the scene. After obtaining
interactions in this manner, they influenced and improved object tracking which in turn
produced improved knowledge of interactions.

7.1 Contributions

7.1.1 Carried object detection

We have introduced a novel approach to carried object detection by providing a vision
system that detects a large variety of carried objects. Our approach characterises carried
objects in terms of generic shape properties such as convexity, whilst taking advantage of
the fact that they are often, but not always, protruding from a person silhouette.

Based on the evaluations in sections 6.4.2 and 6.4.1, our object detector provides
detections that better localise the carried objects when compared to other state-of-the-art
approaches. Our detector does not require camera settings and works for a variety of
camera angles and viewpoints.

7.1.2 Tracking through spatial consistency

We introduced a tracking framework that exploits the continuous and spatially consistent
relationship that object trajectories have relative to the entity interacting with them. In
addition, an iterative event driven optimisation process which incorporates a heatmap and
an attention-like mechanism is used to obtain an optimal set of object tracklets.

Experimental results in section 6.4.1 and 6.4.2 show that our approach significantly
outperforms other state-of-the-art techniques, especially highlighting the benefits of itera-
tively updating the heatmap, promoting low strength true positives and its attention-like
mechanism, all of which influence the tracking process.

7.1.3 Joint tracking and event analysis

Despite the increasing efforts put by the computer vision community into tracking objects
and people from videos, few approaches have investigated the benefit of performing
tracking jointly with event analysis. We presented a novel approach to the problem of
tracking objects which various entities may interact with in different ways. We model
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interaction as events using a Hidden Markov Model and incorporate it into a joint tracking
and event analysis optimisation which selects from the optimal subset of tracklets and
forms the final carried object track.

Based on the evaluations performed and the results provided in section 6.5, we have
shown that the inclusion of event analysis in the optimisation process significantly improves
the tracking performance. This improvement was consistent across our spatial consistency
tracker and two other employed state-of-the-art trackers. We have also shown that event
classifications which were simultaneously obtained with object tracks substantially improve
when using our JTEA framework. This improvement in events is due to the improvement
in the tracks where the mutual influence and improvement between tracking and event
analysis is at the core of our novel joint tracking and event analysis framework. Moreover,
the tracking results of our spatial consistency tracker outperform the other two trackers,
which is due to its robustness to false positives as a result of using spatial consistency
between the object and the possessing entity.

7.2 Future Work

While various improvements and extensions may be applied to each of the aforementioned
previous frameworks, for example extending our approach to include multi-person, multi-
object events such as giving, following, exchanging or replacing objects, in this section we
present two main directions as part of future work.

7.2.1 HMM based tracking and event analysis

In our joint tracking and event analysis framework we performed tracking within an
optimisation procedure where event analysis, performed using a Hidden Markov Model
(HMM), jointly influenced the tracking solution. However, it would be interesting to
investigate the possibility of further combining both tracking and event analysis within a
single HMM-like architecture. To accommodate for this, we would change the architecture
illustrated in Figure 5.1, a standard HMM architecture which takes tracks as observations
and outputs event sequences, and propose the architecture illustrated in Figure 7.1. This
architecture represents a switched Kalman filter which takes detections as input (bottom
layer) and performs tracking (middle layer) and event analysis (top layer) by automatically
switching between states, or in this case modelled interactions.

This notion of model-switching was originally introduced by Isard and Blake [42]
where various motion models were used for tracking, e.g. a bouncing ball or gesture
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... ...

... ...

Figure 7.1: A proposed switched Kalman filter architecture which would perform both
tracking and event analysis under one architecture. The bottom layer is for detection
observations, the middle layer represents the layer and the top layer represents the events
where N is the total number of frames.

recognition, where each model constrains the behaviour of a trajectory differently, leading
to a significant improvement of the tracking process. We use a similar idea in our proposed
switched Kalman filter where the detections form trajectories using a Kalman filter in the
middle layer; however similar to our joint tracking and event analysis framework, event
models are switched at the top layer, influencing and improving the trajectory constructed
by the Kalman filter.

There is however an additional challenge introduced at the detection layer where a
frame may not have any detections, or detections in a particular frame may not contain any
true positives. While our joint tracking and event analysis framework handled this situation
by interpolating through such frames, a similar approach such as Kalman smoothing is
needed to handle such cases.

7.2.2 Mutual influence between frameworks

The heatmap constructed during our Spatial Consistency Tracker (SCT) models the spatially
consistent relationship between an object and the entity interacting with it, for example
during a carry event. However in our current SCT framework, there is no notion of high
level events (such as the ones detected in the JTEA approach) which define intervals that
describe whether the object is spatially consistent with respect to the person or if it is
inconsistent. Therefore, the heatmap is constructed for the entire duration an entity is
present and continues to be updated even if the object is no longer spatially consistent with
respect to the person, e.g. it is dropped or put down.

This is not a problem for the heatmap since tracklets that are during spatially incon-
sistent intervals are relatively sporadic and do not emerge as strong distributions within
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Detections

Tracklet 
Building

Tracking

Event 
Analysis

(a) Geometric Carried 
Object Detector

Object 
Detector

Heatmap

(b) Combined Spatial Consistency Tracker and
      Joint Tracking and Event Analysis

Figure 7.2: A proposed approach to combine our Spatial Consistency Tracker (SCT) and
our Joint Tracking and Event Analysis (JTEA) frameworks. The new influence indicated
by a red arrow allows the knowledge of obtained events from JTEA to improve the quality
of the heatmaps in SCT, subsequently improving the tracklets in SCT which, as influenced
by the blue arrow, will improve the quality of the tracking process in JTEA.

the heatmap. However, it would be very beneficial to construct the heatmap only during
intervals where the entity is present and only when the object has a spatially consistent
behaviour with respect to the entity, rather than during the entire duration where the entity
is present. This would provide a much more accurate heatmap. Since we obtain event
sequences in our JTEA framework, which can define intervals where the object is spatially
consistent or not, it would be interesting to combine our SCT and JTEA frameworks to
obtain more accurate heatmaps, which in turn may provide more accurate tracklets. We
propose an architecture combining the two frameworks, where we modify Figure 1.2
which consists of the different frameworks and provide Figure 7.2 illustrating our proposed
combined architecture.

In Figure 7.2, the red arrow introduces a new influence where the knowledge of events
obtained after applying JTEA can be used to improve the quality of the heatmaps in
SCT. As a result of this improvement, tracklets in SCT may also improve which directly
influence the tracking process in JTEA, indicated by a blue arrow, which may also lead to
an improvement in the quality of tracks produced by the tracking process.

The main challenge in combining the two frameworks is the way they are to be applied.
We propose two main ways, firstly one can apply both frameworks simultaneously and
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iteratively. In this approach tracklets and tracks are iteratively constructed including their
corresponding heatmaps and events. The alternative second approach is to complete the
SCT aspect of the combined framework, use the tracklets to complete the JTEA aspect of
the combined framework, and then proceed with running the SCT aspect again but this
time with the knowledge of obtained events from JTEA. This will result in more accurate
heatmaps and improved tracklets. After SCT is completed again we move on to completing
JTEA using the new and improved tracklets. This process may continue until a certain
number of cycles has been completed. Deciding which of these approaches is better suited
for the task of combining SCT and JTEA would be one of the main goals of this future
work.

7.3 Closing Remarks

This thesis has introduced a framework where tracking and event analysis were performed
jointly, where they mutually influenced and improved each other. We also presented a
framework incorporating notions of events at a detection level in our spatial consistency
tracker. This tracker builds tracklets using detections from our geometric carried object
detector. Based on quantitative and qualitative results, we experimentally validated the
hypothesis that events can have a significant role in improving object tracking. While this
work is a small but important step towards incorporating event analysis within computer
vision problems, we hope to see a larger trend where others take advantage of using
high-level knowledge to improve lower-level problems.
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