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Abstract

Quantum computers have the potential to solve problems that are be-

lieved to be classically intractable. However, building such a device is

proving to be very challenging. In this thesis, two physically promising

settings for quantum computation are investigated: the one-way quan-

tum computer and ancilla-based quantum gates. The majority of both

the theoretical and experimental focus in the field of quantum compu-

tation has been on computation using 2-level quantum systems, known

as qubits. In contrast to this, in this thesis I consider the relatively

less well-understood setting of quantum computation using continuous

variables or d-level quantum systems, called qudits. I develop a simple

notation that encompasses each different encoding, and is applicable to

a ‘general quantum variable’. These ideas are then used to investigate

computational depth (a proxy for time) in quantum circuits and one-

way quantum computations in this general quantum variable setting. In

doing so, the parallelism inherent in the one-way quantum computer is

made precise.

In the second half of this thesis, a range of techniques are proposed for

implementing entangling gates on a well-isolated computational regis-

ter via interactions with ‘ancillary’ systems. In particular, ancilla-based

quantum gates for general quantum variables are investigated - including

the interesting case of hybrid quantum computation, whereby more than

one encoding is used in tandem. The methods proposed herein each have

their own unique advantages, such as: reducing gate-counts in certain

circuits, allowing for inherently parallel computation, or minimising the

physical requirements for universal quantum computation. In particular,

the final gate techniques that are proposed in this thesis may implement

any quantum computation using only a single fixed ancilla-register in-

teraction gate and ancillas prepared in simple states. This then allows

the computational register to consist of well-isolated ‘memory’ quantum

variables and the ancillas need only be optimised for a single high-quality

fixed interaction gate. Hence, this provides a simple and highly promis-

ing setting for physically implementing a quantum computer.
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Thesis overview

This thesis consists of three relatively distinct sections, outlined below.

Introduction

The introduction to this thesis encompasses Chapter 1 and 2. In Chap-

ter 1 a brief and relatively non-technical introduction to quantum com-

puters is provided. One purpose of this chapter is to present the inter-

related motivations for each of the two distinct lines of investigation

undertaken herein: the one-way quantum computer and ancilla-based

gates. Much of the work in this thesis is presented in terms of ‘general

quantum variables’ which encompass the three different variable types a

quantum computer may be constructed from - qubits, non-binary d-level

qudits, and quantum continuous variables. Hence, in order to motivate

the work herein, a substantial portion of Chapter 1 is dedicated to ex-

plaining why quantum computation with these systems is of interest.

Chapter 2 then provides a more technical introduction to the relevant

ideas and mathematics of quantum computation. This will introduce the

‘general quantum variable’ formalism that is used throughout this thesis

and which is, in my opinion, of interest in its own right. This chapter

is aided by Appendices A to G in which a range of further background

topics that are needed throughout this thesis are reviewed.

Quantum circuits and the one-way quantum computer

In the second part of this thesis, which encompasses Chapters 3 and 4,

the computational depth and size properties of quantum circuits and

the one-way quantum computer are compared, using the general quan-

tum variable formalism. These chapters present a range of results that

are novel outside of the qubit sub-case. Although the results of these

chapters do have certain implications later in the thesis, they may be

read without any reference to the work on ancilla-based gates included

in the latter chapters herein. The results of Chapters 3 and 4 have been

presented in Proctor (2015).



Ancilla-based quantum gates

In the final part of this thesis, which encompasses Chapters 5, 6 and 7,

techniques are presented for mediating gates on a well-isolated ‘compu-

tational register’ via ancillary systems. This work is again presented

within the general quantum variable framework. Hence, these chapters

rely heavily on the ‘general quantum variable’ formalism that is proposed

in Chapter 2. However, they can be largely read without reference to the

investigations into computational complexity undertaken in Chapters 3

and 4 (there are some minor exceptions to this). Much of the work in

these chapters may be found in Proctor et al. (2013, 2015); Proctor and

Kendon (2014, 2015, 2016).

Technical summary of the ancilla-based gates

The remainder of this thesis overview consists of a summary of the differ-

ent conditions and features of the three main ancilla-based models and

methods that are proposed in this thesis. This is intended to be used

only as a reference to clarify the subtle differences between the underly-

ing ideas of Chapters 5, 6 and 7. It is strongly advised that the following

technical summary is not read except for this purpose.

The three main ancilla-based models or gate methods in this thesis are

the geometric phase gates (GPGs) of Chapter 5, the ancilla-driven quan-

tum computer (ADQC) of Chapter 6, and the minimal control models

(MCMs) of Chapter 7. The controls required over the computational and

ancillary QVs in these models to achieve deterministic universal quan-

tum computation on the computational register are summarised in the

following table:

Model

GPG ADQC MCM

Chapter 5 6 7

Fixed interaction Yes Yes Yes

Preparation of ancillary QVs No Yes Yes

Local gates on computational QVs Yes No No

Local gates on ancillary QVs Yes No No

Measurements on ancillary QVs No Yes No

Certain subtleties and some adaptations to these models have not been

detailed by this table and are summarised below:



The GPGs are valid with ancillary and computational QVs of different

types (e.g., computational qubits and ancillary qudits). Although it is

not specified in Chapter 5 that only a single fixed interaction should

be used between the ancillary and register QVs, the basic GPGs in that

chapter may still function under the restriction to such a fixed interaction

(i.e., restricted to a fixed parameter hybrid controlled Pauli gate) as long

as local controls are available - as indicated in the table above. Some

of the more specific gate methods presented in Chapter 5, which extend

the basic GPG, require ancillas prepared in particular states. However,

these gate methods are not essential for universal quantum computation

and are simply methods for reducing the number of gates needed to

implement certain unitaries.

The ADQC model is valid when the ancillary and computational QVs

are of the same type. This model is extended to include QVs of different

types in Section 6.4.1, but it is then no longer a deterministic model of

computation (i.e., it uses stochastic gate sequences). In Section 6.4.3 the

ADQC model is adapted so as to not require any measurements (and

hence it is then globally unitary) at the cost of now needing to be able

to apply local unitary gates on the ancillas to obtain universality.

The MCMs presented in Chapter 7 are universal only for qubit or qudit-

based computation. The first MCM, presented in Section 7.3, is ap-

plicable when the ancillary and register QVs are of different types (i.e.,

different dimension qudits). However, the model presented in Section 7.5,

which is in my opinion the more practical of the MCMs, is only valid

when the ancillary and register systems are qudits of the same dimension

(which includes the case of qubits). In Section 7.4 a model is presented

which improves on the first MCM in certain senses, but uses fixed mea-

surements (and hence does not strictly fit into the conditions of MCM, as

summarised in the table above) and can only implement gate sequences

stochastically.





Chapter 1

Quantum computers

1.1 Classical computers

Digital computers have had an almost unparalleled impact in shaping the mod-

ern world. They have become both ubiquitous and indispensable: computer chips

are in-built into an enormous range of everyday items, from mobile phones to tele-

visions, and much of the world’s essential infrastructure is utterly dependent on

complex and powerful computer networks. Although the concept of computational

machines stretches back to antiquity (e.g., the abacus), the theory of computation

is a relatively young field. One of the earliest pioneers was Charles Babbage in the

mid-nineteenth century who is credited with designing the first programmable com-

puter. However, the independent discipline of computer science is often considered

to have begun around the 1930’s with the rigorous abstract work on computability

of Alan Turing and Alonzo Church [Turing (1936) Church (1936)] amongst others

(e.g., Stephen Kleene, Emil Post, and Kurt Gödel).

Initially building a digital computer was a huge challenge. The first computers

able to outperform humans for basic arithmetic were developed in the 1940s, with

an example of such an early computer, the Harwell Dekatron, shown in Figure 1.1.

Modern computers have far outstripped the power of these pioneering machines

and since then there has been an exponential increase in the power of both state-

of-the-art and mass produced computers, known as Moore’s Law.1 However, this

year-on-year improvement in silicon chip technology requires ever more ingenious

engineering and cannot continue indefinitely, with a variety of important limiting

factors [Chien and Karamcheti (2013); Markov (2014)]. Hence, in order to continue

the advance of computational power, research into a range of alternative computa-

tional paradigms has become an active field, for example, various forms of ‘natural

1This is due to a famous prediction by Gordon Moore in 1965 that there would be a doubling
of the number of the transistors on a chip approximately every two years [Moore (1998)].
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1. Quantum computers

(a)

(b)

(c)
Figure 1.1: The Harwell Dekatron from 1951 which could compute basic arithmetic
at a similar speed to a human. It could outperform human computers, as unlike
people it did not need a break.

computation’ such as molecular computers [Rozenberg et al. (2011)].

In this context, it is important to understand whether alternative computational

models allow problems to be solved more quickly than with a conventional computer.

To consider this, it is helpful to introduce the concept of an efficiently solvable prob-

lem. Most interesting computational problems may be defined for arbitrary input

size N . Such a problem is called efficiently solvable if there is an algorithm that

takes a number of time steps that is polynomial in N to solve it, using the elemen-

tary operations available to the computer (e.g., addition of bits). For example, the

school-book algorithms for the addition and multiplication of two N -digit numbers

require of order N and N2 time steps respectively - assuming that the computer may

add a single pair of one-digit numbers in a unit of time, as is the case when this is

done by hand. Not all algorithms are of this sort: the time required may grow faster

than any polynomial, for example it may be exponential in N (e.g., 2N ). Indeed,

for many problems the obvious ‘brute force’ algorithm may well be of this sort. The

reason that such an algorithm is considered inefficient is that it is of little practical

use for anything but small input sizes (you may be willing to wait 210 seconds for

an algorithms output, but you should not consider waiting 2100 seconds as this is

longer than the estimated age of the universe...). A famous example of a problem

which has no known efficient (classical!) algorithm is the seemingly innocuous prob-

lem of finding the prime factors of an N -digit number. That solving this problem

is strongly believed to be completely impractical is nicely illustrated by noting that
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1.2 From classical to quantum computation

widely used public-key cryptography methods, such as RSA encryption [Rivest et al.

(1978)], would be rendered insecure by a fast prime factoring algorithm.

On the surface it would appear that whether an efficient algorithm exists might

depend on the model of computation considered, i.e., what the basic information en-

coding and available operations are. One possible model to analyse these algorithm

complexity issues with is the Turing machine, which manipulates symbols on a line

of tape. Interestingly, the so-called complexity-theoretic Church-Turing (CTCT)

thesis claims that it is only necessary to study whether a problem can be efficiently

solved using this single model.2 Specifically, the CTCT thesis states:

A Turing machine can efficiently simulate any realistic model of computation.

There are two important points to note: firstly the ‘realistic’ qualifier is both es-

sential and natural and should be taken to mean that the model is in principle

physically realisable [Bernstein and Vazirani (1997)]; and secondly this does not im-

ply that the Turing machine has a special place in computation as many models

can also efficiently simulate the Turing machine. There are many examples which

give support to this thesis, e.g., a Turing machine and a random-access-machine

(RAM) - which is the model behind most physical computers - can simulate each

other with low overhead [Katajainen et al. (1988)]. Different models may provide

significant advantages in practice, but the point is that the CTCT thesis claims that

whether or not a problem is fundamentally intractable is independent of the realistic

computational model considered. Quantum computation presents a significant chal-

lenge to this idea and suggests the possibility that some problems that may never

be practical on any classical computer can be solved if such a quantum device can

be built.

1.2 From classical to quantum computation

At a fundamental level, nature does not obey the laws of ‘classical’ Newtonian

physics and is instead quantum mechanical. The foundations of quantum theory

were developed at the start of the 20th century and largely pre-date the abstract

and practical development of computational machines. However, the suggestion

that a machine based on the rules of quantum mechanics might be a useful compu-

tational device did not appear until the 1980s, with Richard Feynmann [Feynman

(1982)] and David Deutsch [Deutsch (1985)] amongst the first to propose such a

computer. This was initially largely inspired by, and proposed as a solution to, the

2The CTCT thesis is not due to either Church or Turing! It is an extension of their ideas on
computability to complexity theory. It is sometimes called the strong Church-Turing thesis although
this can refer to a range of slightly different statements.
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inherent difficulty in using ordinary computers to simulate quantum physics [Feyn-

man (1982)]. However, the wider ramifications of quantum computation became

clear with the publication in 1994 of Shor’s celebrated algorithm for efficient integer

factoring using a quantum computer [Shor (1994, 1997)]. As discussed above, this is

widely believed to be an intractable problem for a classical machine. Hence, Shor’s

algorithm suggests that quantum computers may have a larger class of efficiently

solvable problems than classical computers, which directly calls into question the

complexity-theoretic Church-Turing thesis.

Since 1994 there has been an explosion of interest in quantum computers, both

in terms of developing the theory and attempting the daunting tasking of actually

building such a device. The problem of factoring numbers is alone perhaps not of

sufficient practical interest to justify building a quantum computer. However, there

is an expanding range of applications for such a device, including database search-

ing [Grover (1996)], machine-learning tasks [Schuld et al. (2015)], and techniques for

simulation of quantum systems [Brown et al. (2010)]. The degree to which quantum

computers may enhance classical processing is a particularly subtle and interesting

area of ongoing research: it is known that many tasks are not amenable to improved

efficiency using a quantum computer, and careful consideration is needed to account

for the practicalities of actual computations [Aaronson (2005, 2015); Bennett et al.

(1997)]. Nonetheless, the known enhancements cover a wide range of important com-

putational processes, and it seems likely that many more applications will become

apparent if a large-scale quantum computer can be engineered.

1.2.1 From classical bits to qubits

The overwhelming majority of modern classical computers are digital machines that

encode information into a register of bits, which may each take the values 0 or 1,

i.e., a bit has a state

ΨBit ∈ {0, 1}. (1.1)

The equivalent quantum system, known as a qubit, is a vector in a two-dimensional

complex vector space with unit length, where ‘length’ is calculated by Pythagoras’

theorem (i.e., it is defined by the Euclidean or l2 norm). An orthonormal basis

of this vector space consists of two vectors, and one such basis may be chosen to

encode logical ‘0’ and ‘1’. Using Dirac vector notation, we denote these basis states

by |0〉 and |1〉, which hence satisfy 〈q|q′〉 = δq,q′ with q, q′ ∈ {0, 1}, where 〈.|.〉 is the

ordinary dot product of vectors and δq,q′ is the Kronecker delta (δq,q′ = 1 if q = q′

and δq,q′ = 0 otherwise). Therefore, the allowed states of a qubit have the form

|ΨQubit〉 = α|0〉+ β|1〉, α, β ∈ C s.t. |α|2 + |β|2 = 1, (1.2)
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which includes states that are neither definitely logical ‘0’ nor ‘1’ but are in a wave-

like superposition of both. The physical interpretation of α and β is that |α|2 and

|β|2 are the probabilities that the qubit is projected into the states |0〉 or |1〉 re-

spectively when measured (in this basis). The necessity for a specific concept of

measurement is perhaps rather strange, and is tied up in the interpretational diffi-

culties of quantum mechanics. However, it has a well-defined operational meaning

which is entirely sufficient for the purposes of quantum computation. A perhaps

more concrete representation of a qubit can be given as a column vector, as by using

the natural association

|0〉 =

(
1

0

)
, |1〉 =

(
0

1

)
, (1.3)

which obeys the required orthonormalisation condition, then the qubit state above

may be written as

|ΨQubit〉 =

(
α

β

)
. (1.4)

A qubit may initially appear to be essentially the same as a classical bit in some

probabilistic mixture of different states. Such a classical state is parameterised by

two positive real numbers p0 and p1 which give the probabilities that the bit is 0 or

1 respectively, and hence p0 +p1 = 1. This may still be represented as a two-element

column vector, e.g.,

ΨP-bit =

(
p0

p1

)
, p0, p1 ∈ R≥0 s.t. p0 + p1 = 1, (1.5)

where the basis used here is such that (1, 0)T represents a bit in the state 0 and

(0, 1)T represents a bit in the state 1. This demonstrates that the difference between

a classical bit and a qubit is surprisingly subtle and may be largely understood as

an alternative probability theory, whereby probabilities are extracted from vectors

as the modulus squared of amplitudes rather than the amplitudes themselves, as

summarised in Figure 1.2.

1.2.2 A register of qubits

A classical computer stores data in a ‘register’ of bits: for N bits there are 2N dif-

ferent possible states these bits may be in, so the register can represent up to 2N

different numbers. At each step of the computation the register is in one of these

states, e.g., one possible classical state is ΨN -bits = (010100 . . . 0). A quantum regis-

ter of qubits may encode any superposition of these classical states simultaneously,

as the state of this composite quantum system is some unit vector in the 2N dimen-
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1. Quantum computers

Figure 1.2: The state of a qubit |ΨQubit〉 = α|0〉 + β|1〉 for real α and β, may be
represented as a point on the unit circle (red arrow) as |α|2 + |β|2 = 1. The possible
states of a classical bit are equivalent to α = 1 or β = 1 (blue circles). A bit with
classical probabilities to be 0 or 1 is parameterised by two non-negative numbers
that sum to one (blue arrow and blue dashed line).

sional complex vector space obtained from a tensor product of each individual vector

space. Mathematically, using the computational basis for each qubit as a basis for

the whole system, the general state of a quantum register can be written as

|ΨN -qubits〉 =
∑

qk∈{0,1}

αq1...qN |q1 . . . qN 〉, (1.6)

with each αq1...qN ∈ C such that ∑
qk∈{0,1}

|αq1...qN |
2 = 1. (1.7)

To be clear, qk is the computational basis state of the kth qubit (zero or one),

the sum runs over all permutations thereof, and this expression uses the shorthand

notation that |ψ, φ〉 ≡ |ψ〉 ⊗ |φ〉 which is used throughout (the ‘,’ is retained or

dropped for typographical convenience). This implies that a quantum register can

represent a superposition of all possible N -bit numbers at once, which may seem

like it has access to an unreasonable level of parallelism. However, the output of a

computation is given by measuring the qubit register at the end of the computation,

producing the single bit string (q1q2 . . . qN ) with probability |αq1q2...qN |2. Hence, a

quantum algorithm needs to intelligently make use of the allowed superpositions to

enhance the probability of the desired result, illustrating the subtlety of quantum

programming [Aaronson (2015); Bacon and Van Dam (2010)]. Again, it may seem

like this is similar to a classical computer with a distribution of probabilities to be

in each bit string, parameterised by 2N probabilities that sum to unity. However,

the subtle difference in the allowed states (based on how probabilities are extracted)
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appear to make this a much more powerful model, as clearly demonstrated by Shor’s

algorithm [Shor (1994, 1997)] for which there is no known classical probabilistic

equivalent.

1.2.3 Unitary transformations and quantum circuits

A quantum computation consists of transformations, U , that convert the total sys-

tem from one allowed quantum state to another, i.e., they are maps

|ΨN -qubits〉
U−−−→

∣∣Ψ′N -qubits

〉
. (1.8)

As the state on which U acts has unit l2 norm, i.e., |〈ΨN -qubits|ΨN -qubits〉| = 1, and

so must all quantum states, a property required of the transformations is that they

preserve this norm. The relevant transformations are called unitary operators, which

have the defining property that

UU † = U †U = I, (1.9)

which clearly implies that they preserve the l2 norm, where throughout I will rep-

resent the identity operator of the appropriate dimension and U † is the Hermitian

adjoint of U . Any unitary operator acting on a d-dimensional vector may be rep-

resented by a C-valued d × d matrix, and hence the evolution stage of a quantum

computation is some global N -qubit unitary operator which may be represented by a

2N × 2N matrix. In quantum computation, unitary operators are often called gates,

and both terms will be used here (largely interchangeably).

To implement a quantum computation described by a given global unitary, it

must be decomposed into some physically available set of basic operations. Impor-

tantly, any N -qubit unitary can be exactly composed from the tensor product and

multiplicative product of gates acting on only one or two qubits at a time [DiVin-

cenzo (1995)]. Any set of gates that can (approximately) implement any quantum

computation is called a universal gate set, and a common example of such a set

consists of the three unitaries cnot, H and T [Boykin et al. (2000)], defined by

their matrix representation in the computational basis:

cnot =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 , H =
1√
2

(
1 1

1 −1

)
, T =

(
1 0

0 ei
π
4

)
. (1.10)

A natural way to represent a quantum computation is in terms of a circuit diagram

as shown in Figure 1.3, which uses gates from the set given above.
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|1〉 H • H T

|0〉 •

|0〉 H • • • •

|1〉 T

|0〉 H T H

Time −→

Figure 1.3: A circuit diagram may be used to represent a gate sequence, where a wire
represents each qubit, time flows from left to right and symbols on or connecting
wires represent gates. A box containing u denotes the unitary u acting on the wire(s)
it covers (e.g., here the two gates H and T are used). The two-qubit gate here is the
standard notation for cnot. A circuit may terminate with measurements of some
or all of the qubits or it may instead output a quantum state.

It is important to note that the availability of a universal gate set does not

imply that any N -qubit unitary can be implemented efficiently: the computation

is efficient only if it requires some polynomial-in-N number of gate layers, where a

layer contains at most one gate acting on each qubit, e.g., there are six layers in the

circuit of Figure 1.3. This may be clarified by an example: Shor’s algorithm for an

N -bit input is efficient as it can be implemented in of order N3 gate layers using

only operations that act on one and two-qubits at a time [Beckman et al. (1996)].

It may appear that which algorithms can be efficiently implemented will depend

on the particular choice of universal gate set, but as long as the set is physically

reasonable this is not the case. This is discussed in Chapter 2, where universal

quantum computation is covered in much greater detail.

1.2.4 Quantum computing with errors

To date, a useful quantum computer is yet to be built. Given the amount of time

and effort dedicated to developing such a device, this clearly indicates that this is

a difficult task! The root of the problem is that accurately manipulating quantum

systems and preserving their highly fragile states is inherently challenging. Further-

more, generically the difficulty grows with the size of the total quantum system,

as should be expected by considering the absurdity of Schrödinger’s famous dead-

and-alive cat thought experiment [Schrödinger (1935)]. This might suggest that

a useful quantum computer, which requires many qubits, can never be realised in

the real world where imperfections exist and nothing can be controlled with infi-

nite precision. Indeed, there are other computational models which also appear to
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improve on the Turing machine paradigm but which are probably not physically

realistic, for example computation with perfect-precision real numbers. An interest-

ing overview of such models is given in Aaronson (2005). However, there is good

reason to be optimistic that quantum computation really can be implemented due to

the theories of quantum error detection and correction, culminating in the concept

of fault-tolerant quantum computation [Aharonov and Ben-Or (1997); Knill et al.

(1998); Shor (1995); Steane (1996)]. A very basic outline of one of the main under-

lying ideas in quantum error correction is now given.

In a classical digital computer, real world imperfections can be mitigated by al-

lowing for large error margins between the physical states encoding zero and one,

e.g., substantially different voltages. Additionally, bits can be duplicated, for exam-

ple by letting 0 → 000. A bit flip error can then be found and corrected by taking

a majority verdict on the correct value, that is, if 000 → 010, it is corrected to

000. This cannot be directly applied to quantum computation as unknown quan-

tum states cannot be duplicated: the transformation |Ψ〉|Φfixed〉 → |Ψ〉|Ψ〉 defined

for all inputs |Ψ〉 is not unitary (it is nonlinear), which is known as the no-cloning

theorem [Wootters and Zurek (1982)]. However, rather than copying a quantum

state, logical basis states can be encoded over many physical qubits. For example,

we may associate

|0〉logic ≡ |000〉, |1〉logic ≡ |111〉, (1.11)

and hence a logical qubit is then stored in the three-physical-qubit state

|Ψ〉 = α|000〉+ β|111〉. (1.12)

Now, consider the case in which there is some (hopefully small) probability that

any physical qubit may suffer a bit-flip error, (i.e., |0〉 → |1〉 and |1〉 → |0〉). For

example, an error on the first qubit gives

α|000〉+ β|111〉 bit-flip error−−−−−−−−−→ α|100〉+ β|011〉. (1.13)

It is essential to not destroy the quantum superposition, which will happen if any

individual qubit is measured to find out if it is in the state |0〉 or |1〉. However,

this encoding allows such an error to be detected by instead asking only what the

parity (i.e., sum modulo 2) is of both the first and second qubit pair, and the second

and third qubit pair. This has four possible outcomes, 00, 01, 11 and 10, and it is

easily confirmed that these correspond to no error, and an error on the first, second

and third qubit respectively. Importantly, the measurement does not distinguish

between the two logical basis states (with or without a bit flip error). If an error is

detected it can then be corrected by flipping that qubit.
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There are obvious limitations to this protocol: for example, it cannot cope with

two bit flip errors or errors of a different form, and it does not protect the state

from being destroyed if knowledge about whether the state of any physical qubit is

|0〉 or |1〉 is leaked into the environment. Although more advanced error correcting

codes do exist that allow for general single qubit errors to be corrected for [Laflamme

et al. (1996)], error detection and correction needs to be accompanied by methods

to implement logical gates on the logical qubits, via manipulations of the physical

qubits using gates which themselves are not perfect, and whilst still maintaining the

logical qubits protection from errors! Such a procedure is known as fault-tolerant

quantum computation. In principle, a quantum computation of arbitrary length

can be implemented using these techniques, as long as the physical error rate is

below some constant threshold value (with this value depending on the techniques

used) [Aharonov and Ben-Or (1997)]. There is now a vast array of ingenious meth-

ods to protect quantum states and implement robust computation, for example see

Aharonov and Ben-Or (1997); Knill et al. (1998); Shor (1995); Steane (1996) for

early work in this area and Brown et al. (2015); Fowler (2013); Klesse and Frank

(2005); Raussendorf and Harrington (2007); Terhal (2015) for a selection of more

recent work, with a clear introductory review provided by Gottesman (2010).

1.3 Beyond two-level quantum systems

Classical digital computers need not be formulated with bits but may instead use any

d ∈ N base logic, with the basic d-valued unit often called a dit. Interestingly, in the

opinion of the eminent computer scientist Donald Knuth, ternary logic is “perhaps

the prettiest number system of all” [Knuth (1980)3]. Alternatively, computers need

not be digital at all and may instead use an analog continuous variable encoding,

where variables take values in R (in the ideal case). These machines predate the

invention of the digital computer, with the 19th century mechanical differential anal-

ysers designed by James Thompson [Thomson (1875)] an important early example on

which Claude Shannon later based the general theory of analog computation [Shan-

non (1941)]. In the formative years of the digital computer analog machines were

still of practical importance, with an interesting example given by Enrico Fermi’s

‘FERMIAC’ computer which was built in the late 1940s for Monte-Carlo simulations

[Metropolis (1987)]. The different possible information encoding types, from base-2

‘bits’ through to continuous variables, are illustrated in Figure 1.4.

As with classical computation, there is no a priori reason that a quantum com-

puter must be formulated with base-2 logic and it may instead utilise any d ∈ N
3He is referring to balanced ternary, which uses the values -1, 0 and 1, as opposed to standard

ternary which uses 0, 1 and 2.
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...

Figure 1.4: From left to right, information may be encoded into: two distinct states;
d distinct states; a continuous degree of freedom.

base logic or a continuous variable information encoding. The majority of physical

quantum systems have more than two levels and are not fundamentally qubits, as

is the case with almost all systems being used to develop prototype quantum com-

puters (e.g., atoms, ions, light modes, etc). To use such systems to encode a qubit

they must be restricted to a two-dimensional subspace of their whole Hilbert space.

Larger portions of the physically available Hilbert space may be harnessed by us-

ing a different information encoding, potentially making better use of the available

quantum resources, and this provides a strong motivation for considering quantum

computation beyond qubits. This may be of particular relevance to initially devel-

oping a useful quantum computer, especially given the limited numbers of quantum

systems that can currently be interacted in a precisely controlled manner suitable

for quantum computation.

A rigorous introduction to quantum computation with d-dimensional quantum

systems, called qudits, and quantum continuous variables (QCVs) is delayed to Chap-

ter 2, which will also cover the details of qubits not given in this introductory chapter

via the special case of d = 2. As suggested by the title, large portions of this the-

sis will involve investigations of quantum computation without the restriction to

qubits and therefore, to motivate the rest of this thesis, a more complete discussion

of the known advantages and disadvantages of using non-qubit encodings is now

given. This is then followed by a brief discussion of the experimental progress in

manipulating these systems.

1.3.1 Beyond qubits: Advantages and disadvantages

Beyond the specific application of quantum computation, in quantum information

there are a range of reasons for consider systems other than qubits. For example,

quantum communication or entanglement sharing tasks (potentially important in a

quantum computer) are likely to be most straightforward in a QCV setting [Ander-

sen et al. (2010); Braunstein and van Loock (2005)], and an example of a concrete

improvement of non-qubit encodings is the increased key rate in quantum cryptog-

raphy obtained when qudits [Sheridan and Scarani (2010)] or QCVs [Jouguet et al.

(2014)] are used. In the specific context of quantum computation, there are a range

of known advantages (and some disadvantages) of both qudits and QCVs, which are
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considered in turn.

An especially striking advantage of qudits is that qudit quantum error correcting

codes possess remarkable improvements with increased qudit dimension, as shown

recently by a variety of authors [Andrist et al. (2015); Anwar et al. (2014); Camp-

bell (2014); Campbell et al. (2012); Duclos-Cianci and Poulin (2013); Watson et al.

(2015)]. Given the central role that error correcting will play in any eventual large-

scale quantum computer (see the previous section), this is therefore a strong mo-

tivation to consider a qudit-based machine. A further advantage is that qudit al-

gorithms have been shown to exhibit increased robustness and success probability

with increased value of d [Parasa and Perkowski (2011, 2012); Zilic and Radecka

(2007)]. An additional potential benefit inherent to d > 2 qudits is that, in compar-

ison to a binary encoding, there is a log2(d) reduction in the number of gates and

subsystems required for a computation. The downside is that this is countered by

the increased complexity of each gate (a single-qudit gate is a d× d unitary matrix)

which is described by more parameters than a qubit gate, and hence any advan-

tages would depend on the details of a given physical set-up [Muthukrishnan and

Stroud Jr (2000); Stroud and Muthukrishnan (2002)].

Turning to QCVs, many problems are most naturally described using contin-

uous parameters (e.g., most physics problems) and hence might be most directly

encoded into QCVs. However, perfect-precision manipulation of QCVs is obviously

impossible, and errors are generally more problematic in continuous variables (there

is more to go wrong!). However, error-correction techniques have been developed

for QCVs [Braunstein (2003); Lloyd and Slotine (1998); Ralph (2011); Van Loock

(2010)] and despite the potential pitfalls, quantum systems which are naturally de-

scribed as QCVs are some of the easiest to manipulate (see the next section). One

possibility for taking advantage of QCVs is to instead use them in a hybrid quantum

computer which employs different types of encoding simultaneously, e.g., qubits or

qudits combined with QCVs. This idea has been used to construct simpler algo-

rithms for finding eigensystems [Lloyd (2003); Travaglione and Milburn (2001)] and

reduce gate-counts in quantum circuits [Brown et al. (2011)], as discussed in detail

in Chapter 5.

Returning to discrete devices, hybrid qubit-qudit computers have also been pre-

viously shown to be useful for speeding up qubit-based logic [Borrelli et al. (2011);

Lanyon et al. (2009); Ralph et al. (2007)]; ideas of this sort will be further developed

later. Finally, a more physically grounded motivation for considering encodings

beyond qubits is that if higher-dimensional systems are used as qubits, the extra

unused physical levels must be considered to be part of the decoherence-inducing

‘environment’. Hence, any leakage out of the qubit computational space into these

extra internal levels is a source of decoherence [Devitt et al. (2007); Ghosh et al.
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(2013)], and if the natural processes of the physical system make this significantly

likely, it may be better to actively use these levels rather than attempt to suppress

them.

1.3.2 Beyond qubits: Physical realisations

Many quantum systems naturally allow for a d > 2 qudit or QCV encoding: for

example, atoms and ions have many electronic energy levels and a light mode is the

archetypal QCV but can also provides an obvious qudit encoding into photon number

states. Focusing on qudits, it is important to note that the physical availability of

more than two levels does not automatically mean that the system will be well-suited

to encoding a good-quality qudit. For example, a system might have two ground

states, and it might be possible to drive transitions between them using suitable

laser pulse sequences. This may then provide a good-quality and controllable qubit.

The other energy levels of the system could be used to encode further states for

a d > 2 qudit, however if these quickly decay back into one of the ground states

(e.g., via photon emission) such a qudit encoding would provide a very poor qudit

with a very short lifetime and would be vastly inferior to the qubit logic encoding.

Nevertheless, there is also no reason to suspect that there aren’t systems which can

provide high-quality qudits, and the very encouraging experimental progress in this

direction is now discussed.

Experiments with qudits have been conducted in a variety of settings. For exam-

ple, Neeley et al. (2009) have demonstrated the manipulation and measurement of

a superconducting phase qudit with a dimension up to d = 5. A particular promis-

ing qudit experiment is that of Anderson et al. (2015); Smith et al. (2013) who in

these two papers have demonstrated the control of a d = 16 qudit encoded into the

hyperfine structure of the electronic ground state in the Caesium isotope 133Cs. In

particular, they have implemented very high quality state mappings [Smith et al.

(2013)] and extended this to implement unitary gates with an average fidelity of

over 98% as measured by randomised benchmarking [Anderson et al. (2015)]. A

variety of experiments have demonstrated qudits encoded into photonic degrees of

freedom [Bent et al. (2015); Lima et al. (2011); Walborn et al. (2006)] including the

demonstration of techniques to create entangled photonic qudits [Dada et al. (2011);

Rossi et al. (2009)] with Dada et al. (2011) creating entanglement between d = 12

qudits encoded into the orbital angular momentum of the photons.

Experiments that encode information into QCVs are largely based on optics.

Although mainly limited to this one setting, these experiments are often some of the

most impressive experimental demonstrations of various basic quantum information

building blocks. For example, there are a range of experiments that demonstrate

techniques for creating entangled QCVs [Menzel et al. (2012); Su et al. (2007);
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Yokoyama et al. (2013); Yukawa et al. (2008)], including experiments designed to

generate cluster states, which are a type of entangled state useful for one-way quan-

tum computation - a very interesting model for implementing quantum computation

introduced in Section 1.4.1. Particularly promising recent results are those of Chen

et al. (2014) and Yokoyama et al. (2013) who have created entangled states useful for

one-way quantum computation of 60 and 10,000 QCVs respectively. In Yokoyama

et al. (2013) this is implemented using two light beams, with each QCV realised

as a finite-length wave packet. However, the technique of Chen et al. (2014), in

which QCVs are realised as different modes of an optical frequency comb, has the

advantage that the QCVs are all simultaneously accessible and the created state

is particularly well-suited to quantum computation. This state-of-the-art entan-

glement generation is complimented by experiments demonstrating quantum gates

with QCVs, for example Ukai et al. (2011) and Su et al. (2013) have implemented

basic gates in the one-way quantum computation paradigm, using four and six QCV

entangled states respectively. In addition to this, there has been recent experimental

progress in a range of quantum optics techniques that will be important for QCV

computation, including major improvements in photon-number-resolving detectors

[Calkins et al. (2013); Humphreys et al. (2015)] and matter-based quantum memo-

ries for photonic QCVs [Jensen et al. (2011)]. Finally, outside of quantum optics,

there are also encouraging experiments using atomic ensembles to encode QCVs, for

example see Gross et al. (2011); Krauter et al. (2013).

Before moving on, it is noted that the examples given here of qudit and QCV-

based experiments can obviously be countered with many impressive qubit-based

experiments showing precise controls of qubits in a huge range of systems, for ex-

ample see Barends et al. (2014). The main point that I wish to emphasise here is

that both qudits and QCVs are experimentally relevant, and it is likely that there

will be further experimental progress made in this direction. Given that no one has

yet built a quantum computer, it seems prudent to keep open the option of basing

such a device on something other than qubits. As this thesis is largely concerned

with avoiding any restrictions to qubit-only methods, it is convenient at this point to

introduce the term quantum variable (QV) to encompass qubits, qudits and QCVs.

This terminology, which to my knowledge is novel, and the mathematical machinery

that I will develop in Chapter 2 to be applicable in this general setting, will prove

highly convenient throughout this thesis.
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1.4 Models for quantum computation

1.4 Models for quantum computation

A basic postulate of quantum mechanics is that a closed system evolves in time via

the Schrödinger equation

i
∂

∂t
|Ψ〉 = Ĥ|Ψ〉, (1.14)

where Ĥ is the Hamiltonian of the system, which is some Hermitian operator, and

where I have set ~ = 1 and do so throughout. For a time-independent Hamiltonian

the solution to the Schrödinger equation is

|Ψ(t)〉 = e−iĤt|Ψ(0)〉, (1.15)

with |Ψ(0)〉 the initial state of the system. This is a unitary evolution, which follows

easily from one of the defining properties of a Hermitian operator: Ĥ† = Ĥ. This

leads to a natural and direct interpretation of a quantum circuit: Each QV in the

circuit is encoded into a separate physical quantum system and to implement the

gates in a layer of the circuit, the QVs are evolved in time via applying appropriate

physically available Hamiltonians for precise lengths of time. I will call quantum

computation in this fashion the quantum circuit model (QCM) [Barenco et al. (1995);

Deutsch (1989)].

From a physical perspective, there are inherent challenges to implementing the

quantum circuit model. Consider the generic case in which the aim is to implement

some unitary

U = e−itĤgate , (1.16)

acting on some number of QVs (e.g., a two-QV gate) where t takes a fixed value. As

no experimental parameters which take values in R can ever be controlled exactly,

the actual applied Hamiltonian will have some extra unwanted noise term acting on

the system, i.e.,

Ĥapplied = Ĥgate + δĤnoise, (1.17)

and the actual evolution will be for some time tapplied = t+ λt, where hopefully |δ|
and |λ| are negligible. Furthermore, no quantum systems can ever be completely

isolated from other nearby systems or fundamental fields with which they naturally

interact. Hence, a further source of errors is interactions with this environment, i.e.,

the Hamiltonian applied actually has the form

Ĥ ′applied = (Ĥgate + δĤnoise)⊗ Ienvironment + εĤsystem+environment, (1.18)

where Ĥsystem+environment represents the interactions with this environment and again

hopefully |ε| is small. These interactions with the environment may be always active
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Figure 1.5: Quantum computation may be implemented by performing local mea-
surements on a highly entangled states [Raussendorf and Briegel (2001)]. An en-
tangled state is created, where here black circles represent QVs and dotted lines
represent entanglement between QVs; measurements are then performed on individ-
ual QVs, here the outcomes are 0 and 1 and the colours represent measurements
of different properties; finally, the output is obtained after all the QVs have been
measured.

regardless of whether a gate is being implemented (i.e., even when Ĥgate = I).
Although it has already been discussed that error-correction and fault-tolerance

is possible in quantum computation, this only becomes applicable if the errors are

below some threshold. Furthermore, if the error rate is not well below the threshold,

the overhead in extra QVs and gates required for the error-correction may well be

prohibitive, at least in early prototype quantum computers.

It should therefore be clear that in order for the quantum circuit model to be

physically viable, each gate needs to be achieved with high enough accuracy to

implement a minimal required quality of each gate whilst also maintaining sufficient

lifetimes of the QVs before the environment destroys the quantum coherences. Put

another way, the errors in the gates and the errors induced by the environment both

need to be sufficiently small, where what is meant by ‘sufficient’ depends on the

details of a specific task (e.g., the aim could be a small unprotected computation).

1.4.1 One-way quantum computation

One method for attempting to circumvent or minimise some of the problems in

implementing the QCM is to adopt a different paradigm for quantum computation.

One alternative that will be studied in this thesis is one-way quantum computation

(1WQC), introduced by Raussendorf and Briegel (2001) with qubits and extended to

qudits and QCVs by Zhou et al. (2003) and Menicucci et al. (2006) respectively. This

model is also often termed measurment-based or cluster-state quantum computation.

The basic idea of the 1WQC is that, rather than implementing gates on a register

of QVs via Schrödinger-equation derived unitary evolution, the unitary gates of

a computation are carried out on a logical level using only local (i.e., single-QV)

measurements on a prepared entangled state. This is illustrated in Figure 1.5.

In the 1WQC, a time-ordering in the computation emerges because, in order to
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implement a useful computation, it is necessary for the choice of which measurements

to perform to depend on some previous measurement outcomes. The final result may

be calculated by simple classical post-processing on all the measurement outcomes.

This procedure may be used to implement any desired quantum computation, and

hence it may simulate any quantum circuit [Menicucci et al. (2006); Raussendorf

and Briegel (2001); Zhou et al. (2003)], a fact that is not at all clear on an initial

inspection. 1WQC is very promising from a physical perspective, as creating large

entangled states is potentially much easier than precisely applying entangling gates

to a register via unitary evolution. Consequently, there is already much experimental

progress in this direction (as already mentioned in Section 1.3.2 in the context of

QCVs), for example, see Bell et al. (2014); Chen et al. (2007, 2014); Lanyon et al.

(2013); Su et al. (2013); Tame et al. (2014); Ukai et al. (2011); Yokoyama et al.

(2013). However, it is important to note that, although the 1WQC has a range of

advantages over a direct implementation of a quantum circuit, there are clearly still

unavoidable difficulties related to imprecise controls: e.g., measurements and state

preparation will always have errors associated with them.

The properties of qubit-based 1WQC have been extensively investigated, with

Anders and Browne (2009); Broadbent and Kashefi (2009); Browne et al. (2007,

2011); Danos et al. (2007, 2009); Duncan and Perdrix (2010); Raussendorf et al.

(2003) only a selection of the literature. However, there is much less known about

this model in the more general case of qudits or QCVs. In Chapter 4 I present a

rigorous comparison of the one-way model with quantum circuits that is applicable

to all types of quantum variable. I provide mappings between quantum circuits

and one-way computations and then use these to highlight the fundamental compu-

tational advantages inherent in one-way computation, which arise from its hybrid

quantum-classical nature. In particular, the quantum processing part of 1WQC can

in many cases be implemented in logarithmically less time than the equivalent quan-

tum circuit. This extends results of Browne et al. (2011) to quantum computation

with quantum variables of an arbitrary type.

In order to study the 1WQC with general QVs, an understanding of qudit and

QCV quantum circuits will be required. As far as I am aware, the relevant circuits

have to date not been studied in the literature and hence this is the subject of

Chapter 3. This short chapter will include defining and exploring an unbounded fan-

out model which will prove to be powerful for parallel quantum computation. This

extends qubit-based results of Moore and Nilsson (2001) amongst others [Fang et al.

(2006); Høyer and Špalek (2003, 2005); Moore (1999); Moore and Nilsson (1998,

2001); Takahashi et al. (2010)] to this more general QV setting.
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1.4.2 Ancilla-based gates

Instead of departing entirely from the quantum circuit model paradigm, physically-

motivated gate techniques can be layered on-top of an underlying quantum-circuit.

Minimising environment-induced decoherence of computational QVs is achieved by

choosing naturally well-isolated quantum systems (e.g., nuclear spins [Zhong et al.

(2015)]) to encode these QVs into, but the very nature of well-isolated systems is

that they are generically difficult to manipulate and it is particularly challenging to

make these systems controllably interact with one another. Control and isolation

are largely incompatible properties, and hence compromises must be made to op-

timise both properties as much as necessary. One practical method of engineering

interactions between well-isolated QVs is by using an additional system to mediate

the interaction. Such mediating systems are often called a quantum bus or an an-

cilla, and they can have different properties that optimise them for interactions, in

contrast with the computational QVs optimised for isolation. Ancillas can be reset

or discarded after a few gate operations, so they do not need to maintain coher-

ence for the whole computation. This is common practice in the gate designs of a

wide range of promising physical systems being developed for quantum computers.

This ancillary system can have a range of different forms, for example the ancilla can

be: additional collective internal degrees of freedom of the variables, e.g., vibrational

modes of ions in an trap [Cirac and Zoller (1995)]; a physically distinct static system

which may interact with a set of computational QVs, e.g., flux qubits coupling to a

superconducting resonator [Stern et al. (2014); Wang et al. (2009); Xue (2012)]; a

‘flying’ quantum system which may implement gates between distant computational

QVs, e.g., photons entangling spin [Carter et al. (2013); Luxmoore et al. (2013)] or

atomic [Reiserer et al. (2014); Tiecke et al. (2014)] qubits. These latter two ideas

are illustrated schematically in Figure 1.6.

Figure 1.6: An ancilla or quantum bus may be used to implement the interactions
required for a quantum computation. Left hand side (LHS): The ancilla can be
a system which may interact in turn with a set of QVs. Here the different colour
connections represent interactions at different times. Right hand side (RHS): Distant
QVs can be coupled via a ‘flying’ ancilla. The schematic here represents atomic QVs
trapped in separate cavities (e.g., using lasers) coupled using photons transmitted
via an optical fibre.
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The first important consideration is how an ancillary system may be used to

mediate entangling gates on the computational QVs. An interesting and common

technique consists of interacting two QVs simultaneously with an ancilla, e.g., via a

Hamiltonian of the form

Ĥ = ωaĤa +
∑
i=1,2

ωiĤi +
∑
i=1,2

giĤi,a, (1.19)

where Ĥa, Ĥi and Ĥi,a represent the free ancilla Hamiltonian, the free Hamiltonian

for the ith QV and the interaction between the ith QV and the ancilla respectively

and ωa, ωi and gi are constants. With particular Hamiltonians, and usually only

approximately in some regime of the system (i.e., conditions on ωa, ωi and gi),

this may create an effective direct coupling between the two QVs. That is, in the

relevant regime, Ĥ may be transformed into some effective Hamiltonian Ĥeffective =

Ĥ1,2 which acts non-trivially on only the two QVs. For example, see Byrnes et al.

(2012) where this technique is applied to coupling qubits encoded into Bose-Einstein

condensates.

It is also interesting to consider the case where the ancillas may interact with

different register QVs one-at-a-time via some Hamiltonian

Ĥ = ωaĤa + ωiĤi + giĤi,a, (1.20)

which may be applied to any ancilla-register pair. Put another way, the QVs may

interact in-turn with the ancillas via an interaction-time parameterised family of two-

body unitaries U(t) = e−iĤt but not directly with each other. Methods to implement

entangling-gates between register QVs using ancilla-mediation of this sort are the

main topic of this thesis, encompassing Chapters 5, 6 and 7. The methods given will

be formulated to apply as generally as possible to different quantum variable types

and will cover the cases when the ancillary and register systems are either qubits,

qudits or QCVs, including when the ancillas and register systems differ in QV type.

The first ancilla-based gate methods that will be introduced are the geometric

phase gates and this is the subject of Chapter 5. The basic idea of such a gate is

that by interacting with the register QVs, an ancilla picks up a phase which depends

on the state of each register system:

|Ψancilla〉 −−−→ eiθ(Φregister)|Ψancilla〉, (1.21)

where Φregister schematically denotes the state of the register. The form of this

phase can be chosen such that this is equivalent to an entangling gate between

register QVs in conjunction with no action on the ancilla. This builds on previous
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work which considers using QCV ancillas to mediate gates between computational

qubits, often termed the qubus model, see e.g., Brown et al. (2011); Proctor and

Spiller (2012); Spiller et al. (2006). The novel contribution here is that it applies

to registers and ancillas of all types (i.e., qubits, qudits and QCVs) and this more

general construction will illuminate various interesting features of these methods. In

the context of the qubus model, geometric phase gates have been shown to provide

interesting advantages in terms of low gate-count circuits [Brown et al. (2011); Louis

et al. (2007)]. Similar ideas will be seen to hold in the more general cases given

here. This will then be used to obtain an understanding of what advantages can be

gained from using higher-dimensional ancillas, and how these advantages depend on

the variable types of both the computational systems and the ancillas. Both qudit

and QCV ancillas will be shown to have distinct and inter-related computational

advantages.

The geometric phase gate is sufficient to implement universal quantum com-

putation on a register consisting of any variable type (i.e., qubit, qudit or QCV)

when augmented with local controls of the individual ancillas and the computa-

tional QVs. However, local controls of either the register systems or the ancillas

may not be easily available in some circumstances and a further disadvantage of the

geometric phase gate is that it requires each computational QV involved in a gate

to interact with the ancilla more than once. This latter constraint may be particu-

larly problematic in some circumstances, such as with ancillas coupling distant QVs,

e.g., photons coupling atoms in separate cavities. Hence, in Chapter 6 a method

for implementing universal quantum computation on a register is presented which

requires only sequential interactions of the register QVs (involved in the gate) with

the ancillas using a single fixed-time interaction gate augmented with measurements

of the ancillas. No further local controls of either the ancillas or the register are

required. A model of this sort has been previously formulated for qubits by Anders

et al. (2010), and is known as ancilla-driven quantum computation (ADQC). The

novel contribution here is to extend this to be applicable to any variable type. A

simple mapping between this model and 1WQC explored in Chapter 4 is provided

for all QV types, which will show that ADQC may exploit the same computational

advantages as 1WQC and is in some sense a hybrid between the QCM and 1WQC.

Interestingly, deterministic gate implementation is only possible when the ancillary

and computational registers are of the same QV type. However, when this is not the

case I show that either quantum computation can be implemented stochastically, or

determinism may be recovered by local controls on the register.

To realise the ADQC model of Chapter 6, experimental methods for implement-

ing a range of (single-party) measurements on each ancilla are needed, and this may

be challenging in some circumstances. Hence, in Chapter 7, a model is proposed
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whereby the required measurement is fixed. The cost of this added simplicity is that

the model is again only probabilistic and requires gate sequences of indeterminate

length. These ideas are similar to the recent work of Halil-Shah and Oi (2013, 2014)

carried out in parallel to that herein. The probabilistic element of these models is

highly undesirable and will add significant, and potentially unreasonable, overheads

to the computation. Hence, the final type of gate methods proposed herein are de-

signed to recover determinism by returning to globally unitary dynamics. The two

distinct models proposed still only utilise a single fixed ancilla-register interaction

gate and interestingly the only additional resource they require is preparation of

ancillas in very simple states (from the computational basis). These deterministic

models provide ‘minimal control’ methods for implementing universal quantum com-

putation on a register via ancillary systems, and in my opinion have the potential

to significantly simplify the realisation of a quantum computer.

In some cases, ancillas may not be required to implement basic gates, or they may

use alternative techniques to those proposed herein. However, future designs for a

universal, scalable and fault-tolerant quantum computer will likely be based around

modular quantum processing units (QPUs) of some fixed size, e.g., a single ion-trap

can hold only so many ion QVs. It will then be necessary to entangle individual

QPUs via some ancillary systems, as illustrated in Figure 1.7. Hence, ancilla-based

gate techniques may well be of importance to this higher-level aspect of quantum

computer design, regardless of whether or not they are needed for the individual basic

gates in the QPU. A recent proposal of this type is that of Nickerson et al. (2014)

who aim to construct a scalable network of high fidelity quantum registers linked

via more lossy optical ancillas. There are a variety of qubit register implementations

that are suitable for this architecture, with one of the most advanced being ion trap

technology, as suggested by Monroe et al. (2014) and recent promising experimental

progress has been made in this direction [Hucul et al. (2015)].

QPU

QPU

QPU

QPU

QPU

QPU

QPU

QPU

QPU

QPU

QPU

QPU

Figure 1.7: Many proposals for universal, scalable and fault-tolerant quantum com-
puter utilise fixed-sized quantum processing units (QPUs) entangled via ancillary
systems or ‘quantum communication buses’ [Monroe et al. (2014); Nickerson et al.
(2014)]. Here the coloured arrows represent ancillas sent between different QPUs
with the different colours representing different times.
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1.4.3 Further models of quantum computation

Finally, before concluding this introductory chapter, it is noted that there are many

different alternatives to, or adaptions of, the quantum circuit model. Although

some are purely of abstract interest, e.g., the quantum Turing machine [Deutsch

(1985)], as with the 1WQC and ancilla-based gates, most of these are largely designed

to improve the physical viability of quantum computation. Important examples

include: adiabatic quantum computing [Epstein (2012)]; spin chain models with

‘always on’ interactions [Hu et al. (2007); Lloyd (1993); Satoh et al. (2015)]; quantum

walk models [Childs (2009); Childs et al. (2013)]; topological quantum computing

using exotic quasi-particles [Pachos (2012)]; and a range of special purpose designs

for quantum simulations [Brown et al. (2010)] or optimisation problems via quantum

annealing [Das and Chakrabarti (2008); Trummer and Koch (2015)]. These ideas are

not all necessarily entirely distinct, e.g. the one-way model can utilise topologically

protected gates [Raussendorf et al. (2007)], and quantum annealing is closing related

to adiabatic quantum computation. Each of these paradigms has its own advantages

and disadvantages in the quest to overcome errors and decoherence, however these

models are discussed no further herein.

1.5 Conclusions

Shor’s algorithm for efficient integer factorisation [Shor (1994, 1997)], is the most

famous example from a range of evidence strongly suggesting that there are prob-

lems that are classically intractable which can be efficiently solved on a quantum

computer, e.g., see Aaronson and Arkhipov (2011). Furthermore, there is a signif-

icant set of important computational problems that are expected to be amenable

to a quantum-enhanced speed-up, which, beyond those related directly to integer-

factoring, include machine-learning tasks [Schuld et al. (2015)], database searching

[Grover (1996)] and simulation of quantum systems [Brown et al. (2010)] amongst

others. Together, these provide substantial motivation for developing such a device.

The simplest basic element that a quantum computer may be constructed from

is the qubit, which may exist in states that are a superposition of logical 0 and

1. However, there is no a priori reason that quantum computation should be for-

mulated with two-level qubits and may instead employ d-level qudits or quantum

continuous variables (QCVs). Indeed, there are good reasons for considering these

more general quantum variables (QVs), ranging from their physical availability and

the experimental progress made in manipulating them, to abstract computational

advantages, such as improved error-correction techniques [Campbell (2014)] and im-

proved algorithm success probabilities [Parasa and Perkowski (2012)].

The quantum circuit model (QCM), in which elementary gates are applied to
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QVs via Schrödinger-equation derived unitary evolution, is the most well-known and

simple model for a quantum computer. However, this requires precisely applying

one and two-body Hamiltonians on-demand to a register of QVs, each of which must

also be isolated to minimise environment-induced decoherence as much as required.

These technical challenges motivate the exploration of alternative paradigms for

quantum computation, with the one-way quantum computer (1WQC), as introduced

by Raussendorf and Briegel (2001), one such model. In Chapter 4, I will give a

detailed comparison of 1WQC and quantum circuits with arbitrary QV type, mainly

focusing on an investigation into computational depth (a proxy for time) in these

models.

One possibility which allows the register QVs in a quantum circuit to be op-

timised for coherence times is to use more easily controlled ancillary systems to

mediate the required interactions between them. The majority of this thesis is on

gate methods of this sort, with this topic encompassing Chapters 5, 6 and 7. The

ideas covered range from the computational advantages available when using ancil-

las, as seen most clearly in Chapter 5, to minimising the required physical controls

necessary to implement universal quantum computation, as considered in Chapter 6

and especially Chapter 7. In order to proceed further, a more technical introduction

to quantum computation is required. This is the subject of the next chapter, which

will introduce a general ‘quantum variable’ formulation for quantum computation

that covers, in parallel, the key mathematics of qubits, qudits and QCVs that will

be needed throughout this thesis.
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Chapter 2

General quantum variables

In this chapter I review the terminology and mathematical tools for quantum com-

putation using qudits of arbitrary finite dimension and quantum continuous variables

(QCVs). I propose a simple unified quantum variable (QV) formulation that encom-

passes both qudits of any dimension and QCVs, which then enables a presentation

of the structures in quantum computation that is valid simultaneously for each type

of QV. This ‘quantum variable’ construction provides a succinct language for for-

mulating further results about quantum computation with any type of QV and it

will be used to this end throughout the remainder of this thesis. The underlying

content introduced in this chapter, and encompassed by the general QV formal-

ism, is almost exclusively a review of known material. However, this has previously

been largely presented separately for qubits, qudits and QCVs and I am unaware

of such a dimension-independent formulation of quantum computation anywhere in

the literature.

2.1 Qubits, qudits and quantum continuous variables

2.1.1 Qudits: d-level quantum systems

The mathematics of qudits (i.e., finite-dimensional quantum mechanics) was ini-

tially developed by Hermann Weyl in the early decades of quantum theory [Weyl

(1950)] and in the light of its relevance to quantum information it has since been

extensively investigated, see e.g., the work of Gibbons et al. (2004); Klimov et al.

(2009, 2005); Vourdas (2003); Wootters (1987), with Vourdas (2004) providing an

excellent technical review in a broad context. The material relevant to this thesis

is now covered, using the language of quantum computation. The state of a qudit

is a vector of unit length in a d-dimensional complex vector space. An orthonormal

basis of this vector space consists of d vectors, and such a basis may be picked out

to encode the logical values 0, 1, . . . , d−1 and denoted |0〉, |1〉, . . . , |d− 1〉. The basis
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2. General quantum variables

Figure 2.1: The d distinct dth roots of unity are integer powers of ω = e2πi/d and
reside on the unit circle in the complex plane, illustrated here for d = 8.

states therefore obey 〈q|q′〉 = δq,q′ . This is called the computational basis. Hence,

the general state of a qudit may be written as

|ΨQudit〉 = α0|0〉+ α1|1〉+ · · ·+ αd−1|d− 1〉, (2.1)

with αq ∈ C such that

|α0|2 + |α1|2 + · · ·+ |αd−1|2 = 1. (2.2)

As with a qubit, the physical interpretation of αq is that |αq|2 is the probability that

the system is projected into the state |q〉 if measured. The dth root of unity, e2πi/d,

will play an important role, and is denoted ω. It has the property that

ω0 + ω1 + ω2 + · · ·+ ωd−1 = 0, (2.3)

as illustrated in Figure 2.1. Clearly the value of d determines the precise form of

ω, as is also the case for all the objects introduced below, but everything discussed

herein holds true and is presented without reference to its particular value unless

otherwise stated.

The basic operators in qudit quantum computation are the (generalised) Pauli

operators denoted X and Z, which are the natural unitary extension of two of the

well-known qubit Pauli operators σx = ( 0 1
1 0 ) and σz =

(
1 0
0 −1

)
respectively. They

may be defined (as can any operator) by their action on the computational basis

states:

X|q〉 := |q + 1〉, Z|q〉 := ωq|q〉, (2.4)

where the addition is modulo d, as on a clock with d hours, i.e., (d − 1) + 1 = 0.

As a computation, the X gate has a clear classical analogue which simply adds 1

modulo d to a dit and is the natural extension of a bit flip (0 → 1, 1 → 1 + 1 = 0

modulo 2). In contrast, the Z gate creates complex phase factors which do not have

any obvious classical equivalent. Rather than using Dirac notation, these operators
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2.1 Qubits, qudits and quantum continuous variables

may be given a perhaps more familiar and concrete representation in terms of an

array of numbers. Using the association

|0〉 =


1

0
...

0

 , |1〉 =


0

1
...

0

 , . . . , |d− 1〉 =


0

0
...

1

 , (2.5)

which obeys the necessary orthonormalisation condition, the Pauli operators are the

d× d matrices

X =



0 0 · · · 0 1

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


, Z =



1 0 0 · · · 0

0 ω 0 · · · 0

0 0 ω2 · · · 0
...

...
...

. . .
...

0 0 0 · · · ωd−1


. (2.6)

In fact, these operators pre-date quantum theory and were originally introduced by

James Sylvester in the 19th century [Sylvester (1882); Sylvester and Baker (2012)]

and in other contexts are called the ‘shift’ and ‘clock’ matrices respectively. These

operators have order d, obeying

Xd = Zd = I, (2.7)

which, for d = 2, reduces to the well-known property that the qubit Pauli operators

are self inverse. One important difference between the general case and the special

case of a qubit is that, although the qubit Pauli operators are both Hermitian and

unitary, the qudit operators for d > 2 are only unitary.

2.1.2 Quantum continuous variables

A quantum continuous variable (QCV) [Braunstein and van Loock (2005); Lloyd

and Braunstein (1999)] is a quantum system with a continuous degree of freedom

taking values in R, e.g., translational position in one-dimension. A QCV is described

by the Hermitian operators x̂ and p̂, generically termed ‘position’ and ‘momentum’,

which obey the famous canonical commutation relation

[x̂, p̂] = i. (2.8)

The spectrum of an operator is preserved under conjugation by a unitary operator,

where Â conjugated by B̂ is the operator Ĉ = B̂ÂB̂−1. Hence, the spectrum of x̂ is
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2. General quantum variables

the whole real line, R, as x̂ is Hermitian and

e−iqp̂x̂e+iqp̂ = x̂+ q, (2.9)

for any q ∈ R, which may be confirmed directly using the equation

eÂB̂e−Â = B̂ + [Â, B̂] +
1

2!
[Â, [Â, B̂]] + . . . . (2.10)

Therefore, the state |q〉 obeying x̂|q〉 = q|q〉 may be used to encode the logical real

value q ∈ R.1 These states form the computational basis. The position eigenstates

are not normalisable and instead obey the quasi-orthonormalisation relation 〈q|q′〉 =

δ(q − q′) where δ(·) is the Dirac delta function [Sakurai (1985)]. The general state

of a QCV may then be written as

|ΨQCV〉 =

∫ ∞
−∞

dq ψ(q)|q〉, (2.11)

where ψ(q) is a C-valued function obeying∫ ∞
−∞

dq |ψ(q)|2 = 1. (2.12)

The physical interpretation of ψ(q) is that |ψ(q)|2 is the probability density for q

and the ψ(q) function is simply the wavefunction familiar from ‘elementary’ wave

mechanics.

Any wavefunction ψ(q) such that
∫∞
−∞ dq |ψ(q)|2 <∞, called a square-integrable

function, may be normalised and hence describes a physical state. However, not all

functions are square-integrable, for example the delta function. This implies that

the computational basis states (i.e., the |q〉) are themselves not physical as |q′〉 has

a wavefunction δ(q − q′). From an information-theoretic perspective, this is not

surprising, as if such a state could be realised it would encode a perfect precision

real number. However, these states can be approximated to any desired precision

with a state that can be realised in principle, for example, a possible state is one

which has a Gaussian wave function centred on q with a narrow peak, which is

known as a squeezed state [Braunstein and van Loock (2005)]. This is shown in

Appendix B for completeness. The exact realisation of these states is sometimes

required to perfectly implement methods discussed or proposed herein. Whenever

this is the case this will be explicitly commented upon.

1Note that these states are not part of the Hilbert space of square integrable functions and it
is necessary to employ the larger structure of a ‘rigged Hilbert space’ to consider these states in a
mathematically precise manner [De la Madrid (2005)]. Explicitly considering these technicalities is
not necessary to outline the theory of QCV quantum computation - but they do provide a solid
basis for these QCV manipulations.
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2.2 General quantum variables

The basic operators in QCV quantum computation are again known in this con-

text as the Pauli operators and may be defined by their action on the computational

basis

X(q′)|q〉 :=
∣∣q + q′

〉
, Z(q′)|q〉 := eiqq

′ |q〉, q, q′ ∈ R. (2.13)

The X(q) gate has the natural classical counterpart of addition in R. The Pauli

operators can also be expressed as exponentials of x̂ and p̂, specifically

X(q) = exp(−iqp̂), Z(q) = exp(iqx̂), q ∈ R. (2.14)

It can be confirmed that these have the required action on the position eigenstates

with the aid of Equation 2.9. Outside the context of quantum information, these

operators are normally termed position and momentum translations, respectively.

2.2 General quantum variables

The preceding section was structured in part to highlight that qudits and QCVs

have basic properties in common. Although there are important differences, these

are fairly subtle and broadly speaking these are due to the different properties of the

set of integers, Z, and the real line, R. I now present a notational formulation of the

above basic structures that encompasses both cases simultaneously and is applicable

to a general quantum variable (QV), that is: a qubit, qudit or QCV. This formulation

is novel and in my opinion will be of use in topics well beyond those considered in

the remaining chapters of this thesis. Initially, this may seem overly complex and

formal. However, it will allow the relevant material for qubits, qudits and QCVs that

still needs to be introduced in the remainder of this chapter to be presented only

once, using this general QV formulation, with any important differences between

each type of QV noted. Before beginning, it is noted that there are various topics

that do require particular variable types, e.g., some phase-space methods apply only

to QCVs or prime (and power of prime) dimension qudits [Gibbons et al. (2004);

Vourdas (2004); Wootters (1987)]. However, the majority of the work in this thesis

will be independent of the particular type of QV.

The underlying structure on which a d-dimensional qudit is defined is the set of

d integers

Z(d) = {0, 1, 2, ..., d− 1}, (2.15)

along with modulo d arithmetic: this is known as the ring of the integers modulo d.
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2. General quantum variables

In contrast, the underlying structure for a QCV is the field of the real numbers R.2

To consider both qudits and QCVs simultaneously, it is useful to define

Sd :=

Z(d) for a d-dimensional qudit,

R for a QCV.
(2.16)

Using this notation, the computational basis for a QV may be taken to be some basis

B := {|q〉 | q ∈ Sd}, (2.17)

where the basis states obey the orthonormalisation condition that

〈
q|q′
〉

= δ(q − q′), (2.18)

where δ(q − q′) represents the Kronecker delta for a qudit, normally denoted δq,q′ ,

and the Dirac delta function for QCVs.

The only further structures that have been introduced so far are the Pauli oper-

ators. In the QCV case these were continuously parameterised, and for a qudit they

were simply fixed operators (i.e., constant matrices). However, for all QVs they may

be taken to be a mapping from Sd to the unitary operators. This is achieved for

qudits by defining

X(q) := Xq, Z(q) := Zq, ∀q ∈ Sd. (2.19)

The q = 1 cases will appear regularly (even for QCVs), for both these and other

q ∈ Sd parameterised gates introduced later. Hence, for any gate G(q) with q ∈ Sd
the shorthand G ≡ G(1) will be used. Integer powers of the the dth root of unity

ω = e2πi/d and a continuously parameterised phase factor were intrinsic to the

definitions of the Pauli operators for qudits and QCVs, respectively. These can be

unified into one notation by defining the dimensionality constant, d, for a QCV to

be d = 2π. Then

X(q′)|q〉 =
∣∣q + q′

〉
, Z(q′)|q〉 = ωqq

′ |q〉, ∀q, q′ ∈ Sd. (2.20)

where still ω = e2πi/d. Hence, this reduces to the required phase factor for each

case, as can be seen with reference to Equations 2.4 and 2.13. Here, q + q′ should

2As an aside, the difference between a ring and a field is that every non-zero element of a
ring does not necessarily have a multiplicative inverse whereas in a field it does (e.g., 1/a is the
multiplicative inverse of non-zero a ∈ R as a · 1/a = 1). Any element in Z(d) that is coprime with
the dimension d has a multiplicative inverse in Z(d). Hence, prime dimension qudits are a special
case because then every non-zero number in Z(d) is coprime with d and so this is precisely the cases
in which the integers modulo d is a field (called a finite or Galois field).

34
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be understood to be the appropriate arithmetic for Sd, i.e., ordinary arithmetic in

R for a QCV and modulo d arithmetic for a qudit. Often it will be convenient to

use expressions such as |−q〉 or X(−q). Whenever a value is used outside of Sd, it

should be understood to be modulo d for a d-dimensional qudit (for a QCV it is

never outside the allowed values as this is all of R). For instance, |−1〉 should be

taken to mean |−1 modulo d〉 = |d− 1〉 for a qudit. In some cases this is not strictly

necessary, e.g., X(−q) can be taken to mean X−q, but it may always be assumed to

be taken modulo d if it is unclear as to whether or not it is of consequence.

Before moving on, it is noted that in certain contexts (especially QCVs in quan-

tum optics), the Pauli operators are often replaced by the entirely equivalent dis-

placement operators, with the difference simply one of convention. The displacement

operators for any QV type, denoted D(q, q′), may be defined by their relation to the

Pauli operators

D(q, q′) ∝ Z(q′)X(q). (2.21)

A more detailed discussion of these operators is given in Appendix C.

2.2.1 The Fourier gate

An important unitary operator that will be required throughout is the Fourier gate,

denoted F . As its name suggests, it is simply the unitary representation of the dis-

crete and continuous Fourier transforms in the case of qudits and QCVs respectively.

Explicitly,

F |q〉 =
1√
d

∑
q′∈Sd

ωqq
′∣∣q′〉, (2.22)

where this summation notation denotes the sum or integral over all computational

basis elements as appropriate. Specifically, for a d-dimensional qudit the sum runs

over the values q′ = 0, . . . , d − 1, and in the QCV case this represents an integral

over all computational basis elements. Hence, for a QCV

F |q〉 =
1√
2π

∫ ∞
−∞

dq′eiqq
′∣∣q′〉. (2.23)

The
∑

q∈Sd notation will be used throughout this thesis without further comment.

Note that, for qubits, F = 1√
2

(
1 1
1 −1

)
, which is more commonly known as the

Hadamard gate and has been encountered briefly already in Equation 1.10, where

following convention it was denoted H.

The Fourier gate is ubiquitous in quantum circuits, and its multi-system gen-

eralisation is a key ingredient in many quantum algorithms, e.g., Shor’s algorithm

[Shor (1994, 1997)], and will be encountered later. In Appendix D it is shown that
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this transformation is indeed unitary and that it has order 4, i.e.,

F 4 = I. (2.24)

Furthermore, it is also shown that for QCVs it is a particularly natural operator as

it may be generated by the quantum harmonic oscillator (QHO) Hamiltonian

Ĥqho =
1

2

(
x̂2 + p̂2

)
, (2.25)

applied for a time t = 3π/2. Many quantum systems are QHOs or may be approx-

imated as such, e.g., a micro-mechanical resonator [Poot and van der Zant (2012)]

or a single light mode [Gerry and Knight (2005); Radmore and Barnett (1997)]. As

the QHO Hamiltonian is used occasionally in this thesis, the properties of Ĥqho are

considered in more depth in Appendix A.

The Fourier gate may be used to relate the Pauli operators to one another. Under

conjugation by the Fourier gate, the Pauli operators are transformed with the cyclic

relation
X(q) - Z(q)

Z(−q)

6

� X(−q),
?

(2.26)

where this represents FX(q)F † = Z(q), FZ(q)F † = X(−q), etc. This is also shown

in Appendix D.

2.2.2 The conjugate basis

A conjugate basis, denoted B+, may be defined in terms of the action of the Fourier

transform on the computational basis:

B+ := {|+q〉 := F |q〉 | q ∈ Sd}. (2.27)

Each of these states is an equal superpositions of all possible computational basis

states with different phase factors, e.g., for a qudit |+1〉 is

|+1〉 =
1√
d

(
|0〉+ ω|1〉+ · · ·+ ωd−1|d− 1〉

)
.

Note that, for qubits, the conventional notation is |+〉 ≡ |+0〉 and |−〉 ≡ |+1〉
(as ω = −1 and so |±〉 ∝ |0〉 ± |1〉) and the notation here is adapted from this.

The conjugate basis states have maximal uncertainty in terms of the outcomes of

computational basis measurements and vice versa, which is a property inherited
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directly from their relationship to a Fourier transform. This is because

〈
q|+q′

〉
=
ωqq

′

√
d
, ∀q, q′ ∈ Sd, (2.28)

which is easily confirmed directly. This property means the bases are what is termed

mutually unbiased.3

In the conjugate basis, the roles of the Pauli operators are reversed. Specifically

Z(q′)|+q〉 =
∣∣+q+q′

〉
, X(q′)|+q〉 = ω−qq

′ |+q〉, ∀q, q′ ∈ Sd, (2.29)

which follows directly from the cyclic relation in 2.26. The reader is reminded again

that for qudits this addition is modulo d. Hence, the computational and conjugate

bases are eigenstates of Z(q) and X(q) respectively. The actions of the Pauli and

Fourier gates can be intuitively summarised in a phase space diagram, as shown in

Figure 2.2. There is a wide range of rigorous and powerful phase space methods,

e.g., quasi-probability distribution functions, both for QCVs and qudits [Silberhorn

(2007); Wootters (1987)]. However, herein phase space will be used only occasionally

and as a schematic aid.

Figure 2.2: The Pauli operators may be represented as orthogonal translations in
a phase space formed from the computational and conjugate bases. The Fourier
transform is a π/2 rotation in phase space. The background phase space is Sd × Sd
(e.g., for qutrits this is a 3× 3 periodic lattice).

2.2.3 Entangling gates

All of the operations described so far in this chapter have applied to one QV. For

quantum computing, interactions between pairs of QVs are required. The quantum

3A set of bases {B1,B2, ...} for a qudit of dimension d (a QCV) which are orthonormal (quasi-
orthonormal) are said to be mutual unbiased if for any pair of bases Bj and Bk (j 6= k) in this set
and for any basis states |a〉 ∈ Bj and |b〉 ∈ Bk in these bases then |〈a|b〉| = k where the constant k
is k = 1/d (any non-zero and positive value) [Durt et al. (2010); Weigert and Wilkinson (2008)].
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gate often considered is the sum gate given by

sum|q〉|q′〉 = |q〉|q + q′〉, (2.30)

as adding the value of two QVs is naturally a useful computational resource. This is

conventionally called cnot for qubits and was encountered already in Equation 1.10.

Two quantum systems (in a pure state) are entangled if their joint state cannot be

written as |Ψ〉 = |ψ1〉 ⊗ |ψ2〉, otherwise they are called separable. Hence, it is clear

that sum may create an entangled state of two QVs as, for example,

1√
d

(|0〉+ |1〉+ |2〉 . . . )|0〉 sum−−−−→ 1√
d

(|00〉+ |11〉+ |22〉 . . . ). (2.31)

For qubits, this is one of the famous Bell-states which are at the heart of many

quantum information protocols, e.g., teleportation [Bennett et al. (1993)] or dense

coding [Bennett and Wiesner (1992)], and the modern formulation of the hotly-

debated Einstein-Podolski-Rosen paradox [Einstein et al. (1935)].

An alternative gate to sum, which is essentially equivalent, is the cz gate which

has the action

cz|q〉|q′〉 = ωqq
′ |q〉|q′〉, (2.32)

and this gate will be used frequently throughout this thesis. It is often called the

controlled-phase gate but I will not use this term as ‘the phase gate’ will have

a different specific meaning herein. The sum and cz gates are particular cases

of an important class of gates that are ubiquitous in quantum computation: the

controlled-u gates, denoted Cu, with the action

|q〉
∣∣q′〉 Cu−−−−→ |q〉uq

∣∣q′〉, (2.33)

for some unitary u. The first QV is called the control and the second the target.

Note that this is still well-defined for control and target QVs of different types (e.g.,

a control qubit and a target QCV) and will be used as such later. When necessary,

super and subscripts will be used to denote the control and target QVs respectively,

i.e.

|q〉j
∣∣q′〉

k

Cjku−−−−→ |q〉ju
q
∣∣q′〉

k
, (2.34)

where a subscript k on a state denote that this is the state of the QV labelled

k. Finally, the circuit notation used for these controlled gates is introduced in

Figure 2.3.
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• u • •

• •

Figure 2.3: From left to right: circuit notation for sum, a general Cu, cz and sum†.
The black circle denotes the control QV (cz acts symmetrically).

2.2.4 The unitary group

At this point it is convenient to take a diversion to discuss the n-QV unitary group.

Considering first qudits: The unitaries that act on n-qudits form a group, which is

normally denoted U(dn) and which when represented as matrices (in some basis)

are dn × dn complex-valued matrices obeying UU † = U †U = I, as has already been

discussed briefly in Section 1.2.3. Hence, such an operator is defined by a set of

m < 2d2n real parameters. For example, a general single-qubit unitary (a U(2)

operator) may be parametrised by the matrix

u(θ, φ, ϕ, ψ) = eiψ

(
eiφ cos θ e−iϕ sin θ

−eiϕ sin θ e−iφ cos θ

)
. (2.35)

Therefore, it is clear that the n-qudit unitary operators are easily understood in

terms of matrices containing a finite number of real-valued parameters.

In contrast to this, an arbitrary unitary operator on only a single QCV requires

infinitely many parameters to define [Lloyd and Braunstein (1999)]. As it is neces-

sary to specify which transformation it will be demanded that an n-QCV quantum

computer can perform, it is convenient to restrict ourselves to considering the set of

all n-QCV unitaries that may be written as

U = eipoly(x̂1,p̂1,...,x̂n,p̂n), (2.36)

where poly(x̂1, p̂1, . . . , x̂n, p̂n) is any real polynomial of finite degree in the x̂ and p̂

operators of each of the n QCVs. For example, a possible polynomial for two QVCs

is ax̂3
1 +bp̂2

1p̂2 +cp̂7
2 for a, b, c ∈ R. Any such unitary operator is defined by a discrete

set of real-valued parameters (i.e., the coefficients in the polynomial), putting this

set of unitaries on a similar footing to the set of qudit unitaries. This then enables a

well-defined and useful construction of universal quantum computation with QCVs,

as first given by Seth Lloyd and Samuel Braunstein [Lloyd and Braunstein (1999)]

and encompassed in the general construction I provide in Section 2.3. For notational

simplicity, throughout I will use U(2πn) to denote the set of these n-QCV unitaries,

so that the relevant unitary operators for a general QV are members of U(dn).

39



2. General quantum variables

2.3 Universal quantum computation

The concept of a universal quantum computer has already been introduced briefly

in Chapter 1. However, a more exact exposition of these ideas is required for the

purposes of this thesis. In particular, for Chapters 3 and 4 it will be useful to have

a concept of a quantum computer and universality which is not framed entirely in

terms of quantum circuits. To do this I introduce the concept of a general quantum

computational model (to my knowledge, this is novel), again formulated for arbitrary

types of QVs.

Definition 2.1. A quantum computational model using QVs is defined by the object

M = (o, s) where o is a set of basic allowed operations which act on QVs and s is

some set of preparable states.

The allowed operations are not necessarily restricted to unitary gates. Opera-

tions are in general allowed to have classical outputs (i.e., they are measurements

of some sort) or depend on classical inputs (e.g., measurement outcomes). Follow-

ing Browne et al. (2011), a quantum computation in a particular model is then a

quadruplet

Q = (V, I,O, q), (2.37)

where V is a set of QVs, I,O ⊆ V are input and output subsets and q is a sequence of

operations from o which act on QVs from V. A sequence of operations is considered

to be ill-defined if any operations depend on outputs from operations occurring

later in the operation sequence, as in such a case the sequence has no clear practical

meaning. All non-input QVs4, V \ I, are prepared in states from the preparable set

s and it is assumed that the input QVs may in general be in an arbitrary state |ψ〉.
A quantum computation may be considered to implement the |I|-QV unitary U

if for any input state |ψ〉, the final state of the output QVs is U |ψ〉, which requires

|O| = |I|. Such a computation will be denoted QU . Here and throughout this thesis,

I use the standard notation that |s| is the cardinality of the set s, i.e., the number

of elements it contains. QVs that are not in the input or output sets are normally

termed ancillas, however I will term them auxiliary QVs. This is to avoid confusion

with the ancillas considered in the latter chapters of this thesis, which play a special

gate-mediating role. Computations employing ancilla-mediated gates may involve

both auxiliary and gate-mediating ancillary QVs, and hence to avoid ambiguity it

is preferable to have distinct terminology.

For two computations Q = (V, I,O, q) and Q′ = (V′, I′,O′, q′) such that O = I′,

which may be enforced with a QV relabelling as long as |O| = |I′|, the composite

‘serial’ computation Q′◦Q may be defined in a natural way as [Browne et al. (2011)]

4S1 \ S2 is the standard notation for the set of elements that are in S1 and are not in S2.
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Q′ ◦Q := (V ∪ V′, I,O′, q′q). (2.38)

Here q′q is the concatenated operation sequence, i.e., the q command sequence fol-

lowed by the q′ command sequence. In a similar way for V ∩ V′ = ∅, the ‘parallel’

tensor product of two computations may defined by [Browne et al. (2011)]

Q⊗Q′ := (V ∪ V′, I ∪ I′,O ∪ O′, q′q). (2.39)

It is evident that if the two computations implement the unitaries U and U ′ then

the serial and parallel composite computations implement the unitaries U ′U and

U ⊗ U ′, respectively. This formalises the concept of building larger computations

from smaller ones.

If in a particular model there are basic building-block computations that imple-

ment some set of unitaries, it is important to know what global unitaries these can

be composed to compute, e.g., can the computer implement Shor’s algorithm? A

quantum computational model is considered to be universal if it may implement

any unitary on any number of input QVs. However, there are two subtly different

notions of universality: exact and approximate. Largely the difference is irrelevant,

but this is covered now for clarity because here there are some subtle differences

between qudits and QCVs. Furthermore, these different forms of universal compu-

tation do have some implications in Chapters 3 and 4. Following the circuit model

convention, in the following I talk about the basic unitaries that can be implemented

as the gate set.

2.3.1 Exact and approximate universality

An exactly universal gate set is defined in the following way:

Definition 2.2. A set of gates is exactly universal for quantum computation on

n-QVs if a finite sequence of gates from the set may be used to exactly implement

any U ∈ U(dn).

From a mathematical perspective, an exactly universal gate set generates the

full U(dn) group. The number of elements in the group U(dn) is uncountable, which

is a simply consequences of R being uncountable. The set of unitaries generated by

combining the elements of a finite set of gates must contain a countable (although

not necessarily finite) number of elements, which implies that an exactly universal

gate set must have an infinite number of basic gates.

There is a weaker notion of universality which may be satisfied by finite gate

sets. It is necessary to first introduce a precise meaning of gate error, considering

initially only the case of qudits. Any two n-qudit gates U and V may be adapted to
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have the same determinant by the physically irrelevant action of choosing the global

phase of either operator, as det(eiφ/d
n
U) = eiφdet(U). For two unitary operators

U and V with det(U) = det(V ), the error in the approximation of U ∈ U(dn) by

V ∈ U(dn) may be defined to be

E(U, V ) = sup
‖|ψ〉‖=1

‖ (U − V ) |ψ〉‖, (2.40)

where ‖|ψ〉‖ =
√
〈ψ|ψ〉 is the norm of |ψ〉. The justification for this definition of

error is that it is a bound on the difference in the measurement statistics for any

possible measurement [Nielsen and Chuang (2010)], but there are many alternative

definitions of gate error that could be used such as those based on fidelity, e.g., see

Gilchrist et al. (2005) for a discussion of this. Using this definition of gate error,

V is called an ε-approximation to U if E(U, V ) ≤ ε. For QCVs, it is more natural

to say that V is an ε-approximation to U when every coefficient in the generating

polynomial poly(x̂1, p̂1, . . . , x̂n, p̂n) of V is within ε (or alternatively ε/n) of the

coefficient in the generating polynomial of U [Lloyd and Braunstein (1999)]. This

facilitates the following definition:

Definition 2.3. A set of gates is approximately universal for quantum computation

on n-QVs if for any U ∈ U(dn) and ε > 0 there exists a finite sequence of gates from

the set that is an ε-approximation to U .

From a mathematical perspective, approximate universality means that the gate

set need only generate a dense subset of U(dn) and this condition can be satisfied

by gate sets containing a finite number of gates.5

2.3.2 Approximate universality is practical universality

The definitions of exactly and approximately universal gate sets may seem reason-

ably straight forward, however there are some points that need addressing, particu-

larly in the case of QCVs. Consider the notion of exact universality. In one sense,

for qudits this is a useful concept: A unitary on n qudits is a dn×dn complex-valued

matrix and matrix decomposition techniques can be used to express this without

approximation as tensor and multiplicative products of matrices representing only

two- and one-qudit gates [Bullock et al. (2005); Nielsen and Chuang (2010)]. Hence,

there are reasonable gate sets for qudits which are exactly universal, with important

specific sets covered in Section 2.5. However, to reiterate what I have already said

above: the number of gates in the set must still be infinite (i.e., continuously pa-

rameterised). Therefore, although an exactly universal gate set is a useful abstract

5A finite set of gates can only generate a countable set of operators, but a countable set can be
dense in an uncountable set. For example, the rational numbers are countable but are dense in R,
as there is a rational number arbitrarily close to any element of R.
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object with which to study quantum computation with qudits, in practice such a

gate set still cannot exist.

For QCVs, it is not clear that exact universality is a useful concept at all. In

general, an available gate set for QCV computation with any physical relevance will

have the form

Gqcv = {e−iĤ1t, e−iĤ2t, . . . , e−iĤN t}, (2.41)

where the Ĥj are real finite-degree polynomials in the position and momentum

operators of some number of QCVs and here we assume that in each case t may

take any value in R. In QCV computation, unitaries are constructed using the two

relations [Braunstein and van Loock (2005); Lloyd (1995)]:

eiĤjδteiĤkδte−iĤjδte−iĤkδt = e[Ĥj ,Ĥk]δt2 +O(δt3), (2.42)

eiĤjδt/2eiĤkδteiĤjδt/2 = ei(Ĥj+Ĥk)δt +O(δt3), (2.43)

which may be confirmed with a Taylor expansion.6 Using arbitrarily small δt and

arbitrarily many repeated applications of these equalities, the unitaries e[Ĥj ,Ĥk]t

and ei(Ĥj+Ĥk)t for any desired values of t ∈ R may be constructed. Furthermore,

using these gates and applying the above techniques again, we may implement any

unitaries generated by the Hermitian operators [Ĥi, [Ĥj , Ĥk]], i[Ĥh, [Ĥi, [Ĥj , Ĥk]]],

i[[Ĥh, Ĥi], [Ĥj , Ĥk]] and so on, along with those unitaries generated by real-valued

linear combinations of these. That is, any gate of the form eiĤt where Ĥ is the sum

of the Ĥj and of nested commutators of these operators is implementable [Lloyd

(1995)], which is called the algebra over R generated by commutation of the set of

operators {Ĥ1, Ĥ2, . . . } [Humphreys (1972)].

This construction gives a sensible meaning to how a unitary may be approxi-

mated to any accuracy (an ε-approximation) with a finite sequence of gates from

some set - simply by applying the construction above to the accuracy required. In

order to be an approximately universal gate set, the algebra of the generators of

the available gates must include every polynomial of the position and momentum

operators for any number of QCVs. Importantly, as with qudits, only one and two-

QCV gates are required to approximately generate any n-QCV unitary [Lloyd and

Braunstein (1999)] meaning that physically sensible approximately universal gate

sets exist, with specifics covered in Section 2.5. However, it is not clear that exact

universality has any relevance to QCV computation: for finite sequences of gates

the above gate composition techniques are in general intrinsically approximate (this

is not to say some gates outside the basic gate set cannot be implemented exactly).

Consequently, whenever exact universality is mentioned from now on it should be

6Note that there is not a missing factor of i in the exponential here. This is because [Ĥj , Ĥk] is
not a Hermitian operator, but ±i[Ĥj , Ĥk] is.
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assumed this applies only to qudits.

2.3.3 The overhead of gate approximations

Regardless of the technicalities discussed above, in practice the relevant notion of

universality is clearly approximate universality, for all types of QVs. Therefore,

given a particular approximately universal gate set, it is important to understand

how the length of the gate sequence required to ε-approximate any unitary scales

with ε. For example, if the length scaled exponentially with the required accuracy

this would be a serious problem. For qudits, a result known as the Solovay-Kitaev

theorem shows that there is a surprisingly small overhead required - to obtain an

accuracy of ε the gate sequence need only be of length O(logc(1/ε)), where c ≥ 1 is

a small constant that depends on the details of the particular method [Harrow et al.

(2002); Kitaev (1997)]. Furthermore, the standard proof of this theorem provides

an efficient classical algorithm for finding the gate sequence, for example, a detailed

presentation of an algorithm with c = 3.97 is provided by Dawson and Nielsen (2006).

Note that the gate sequence length does scale exponentially in the number of qudits

that the gate to be approximated acts upon, but this is to be expected as otherwise

it would provide an efficient method for simulating any n-qudit unitary. As this

theorem is relied upon to guarantee efficient gate simulation for the approximate

gate sets used herein, it is stated formally in Appendix F.

As far as I am aware, there are no similar theorems implying that only a poly-

logarithmic overhead is required for gate approximations in QCV computation.

However, it is known that the length of the gate sequence need grow no faster

than a small polynomial in 1/ε [Lloyd and Braunstein (1999)]. It will be important

in this thesis to have some some specific universal gate sets, however it is convenient

to delay this discussion until after the next section.

2.4 The Clifford group

The Clifford group is of fundamental importance in quantum computation, for ex-

ample, it underpins the theories of error correction and fault tolerance [Gottesman

(2010)]. Furthermore, it will be central to the results of Chapters 3 and 4 and hence

it is now introduced. It is first necessary to define the Pauli group.

2.4.1 The Pauli group

An important property of the Pauli operators is that they commute up to a phase

via the relation

Z(q)X(q′) = ωqq
′
X(q′)Z(q), (2.44)
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which may easily be confirmed by the action of each side of the equality on the

computational basis. This is often called the Weyl commutation relation and is per-

haps the most used equality in this thesis. This relation means that under operator

multiplication the Pauli operators may be used to form a strict subgroup of the

single-QV unitary group called the single-QV Pauli group. This is denoted P1 and

defined by

P1 := {pξ,q,q′ = ωξ/2X(q)Z(q′) | ξ ∈ SD, q, q′ ∈ Sd}, (2.45)

where SD is defined as

SD :=

Z(2d) for qudits,

R for QCVs.
(2.46)

For a QCV this is a very natural definition: it is simply the group generated by

multiplication of X(q) and Z(q), as can be seen from the Weyl commutation relation.

However, for qudits there are extra phases that are powers of ω1/2, and hence it is

necessary to add ω1/2I to the X(q) and Z(q) operators to generate the whole group.

One justification for these extra phases is that for d = 2 this recovers the normal

qubit Pauli group, generated by the two operators X and Z along with the third

ordinary Pauli operator Y = iXZ, which is normally introduced on an equal footing

with X and Z when only qubits are considered. A more concrete reason for these

extra phases is that they are required for even-dimension qudits in order for the

Clifford group, introduced below, to have equivalent properties for all types of QV

(i.e., for QCVs and both even and odd-dimension qudits). Including the extra

phases for odd-dimension qudits, as well as even-dimension qudits, is in my opinion

the most convenient choice. This is in line with some of literature, see e.g., Hostens

et al. (2005), but other authors take the alternative view, see e.g., Farinholt (2014).

The n-QV Pauli group, denoted P, is a simple generalisation of this and is the

subgroup of U(dn) consisting of all operators of the form

pξ,~v := pξ1,v1,vn+1 ⊗ pξ2,v2,vn+2 ⊗ ....⊗ pξn,vn,v2n , (2.47)

where ξ = ξ1 + ξ2 + ... + ξn with the addition as approriate for SD (i.e., modulo D

for a qudit) and ~v is the vector ~v = (v1, . . . , v2n) ∈ S2n
d .

2.4.2 The Clifford group

The (n-QV) Clifford group is the normaliser of the Pauli group in the group of the

unitaries. Hence it is defined by [Bartlett et al. (2002); Gottesman (1999a,b)]

C := {U ∈ U(dn) | UpU † ∈ P ∀p ∈ P}. (2.48)
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Therefore, the Clifford gates (the elements of C) are those unitaries which transform

Pauli gates to Pauli gates under conjugation. It is easily confirmed that it is indeed

a group under operator multiplication. It turns out that all of the specific gates so

far introduced in this chapter (X(q), Z(q), F , cz and sum) are Clifford. A further

important Clifford gate is the phase gate, P (p), defined by

P (p)|q〉 := ω
pq
2

(q+%d)|q〉, (2.49)

with p ∈ SD and where %d = 1 for odd-dimension qudits and %d = 0 otherwise. For

qubits, this reduces to the well-known gate P = ( 1 0
0 i ), also often denoted S in the

literature.

It will be useful in this thesis to have a set of gates which generate the Clifford

group. It is convenient to use the standard notation that G = 〈g1, . . . , gk〉 represents

the statement that G is the group generated by the elements g1, . . . , gk.

Proposition 2.1. C = 〈cz, Z(q), P (q), F 〉 with q ∈ Sd for all QV types.

To be clear, this is the statement that, for any QV type, any n-QV Clifford gate

can be exactly decomposed into cz, Z(q), P (q), and F gates. Furthermore, it turns

out that such a decomposition need only contain O(n2) of these basic generating

gates. For qudits this follows from the work of Hostens et al. (2005) and Farinholt

(2014)7 and for QCVs it was shown by Bartlett et al. (2002). Not all of these

generators are required in each case. For example, with qudits Z(q) and P (q) can

be obtained from powers of Z and P and hence only four generators are needed,

and in prime dimensions Z can be obtained from P and F .8 However these minor

differences can be largely ignored.

In Chapter 4 it will be useful to have the conjugation relations of these generators

on arbitrary Pauli operators. In Appendix E it is shown that

pξ,q,q′
Z(p)−−−−−→ pξ+2pq,q,q′ , (2.50)

pξ,q,q′
F−−−−−→ pξ−2qq′,−q′,q, (2.51)

pξ,q,q′
P (p)−−−−−→ pξ+pq(q+%d),q,q′+pq, (2.52)

pξ,(q1,q2,q′1,q′2)
cz−−−−−→ pξ+2q1q2,(q1,q2,q′1+q2,q′2+q1). (2.53)

The changes in the phase factors are often, but not always, of no importance. Note

that the arithmetic in each subscript is calculated as appropriate for the QV type,

7In the case of qudits, many derivations in the literature apply only in prime dimensions. E.g.,
see Gottesman (1999a); Hall (2007).

8In odd dimensions F 2P d−1F 2P = Z. For qubits P 2 = Z. Although it is claimed by Farinholt
(2014) that for all dimensions of qudits the Z generator is unnecessary, I am unaware of any proof
that confirms this.
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which for qudits is modulo 2d for the phase factor and modulo d for the X(·) and

Z(·) gate variables.

2.4.3 Classical simulation of Clifford circuits

Gates from the Clifford group are alone not sufficient for universal quantum com-

putation as they form a strict subset of the unitary group. Furthermore, quantum

computations consisting of only Clifford gates acting on QVs prepared in the com-

putational basis and which have access only to measurements of the computational

basis can be efficiently exactly simulated on a classical computer. This is known

generally as the Gottesman-Knill theorem, due to its original formulation for qubits

by Gottesman (1999b) and which is accredited therein to Emanuel Knill. The gener-

alisations to qudits and QCVs may be found in Bartlett et al. (2002); De Beaudrap

(2013); Gottesman (1999a); Hostens et al. (2005); Van den Nest (2013). This the-

orem is nicely illustrated by the qubit Clifford circuit simulator programmed by

Scott Aaronson [Aaronson and Gottesman (2004, 2005)]. Clifford gates can create

highly entangled many-QV states from separable computational basis inputs, such

as n-qubit Greenberger-Horne-Zeilinger (GHZ) states

|GHZ〉 =
1√
2

(|00...0〉+ |11...1〉), (2.54)

and hence, the Gottesman-Knill theorem may appear surprising. However, because

the theorem is only valid given strict restrictions on the allowed input states and

measurements, this prevents the full array of non-classical resources available in

states such as GHZ being accessed.

2.4.4 Further Clifford gates

The four gates cz, sum, F and P (q) along with the Pauli operators are the most

important Clifford gates herein. However, there are certain other Clifford unitaries

which will appear regularly and hence these are now introduced. The first of these

is the swap gate, defined by

swap|q〉|q′〉 := |q′〉|q〉, (2.55)

and which as the name suggests has the action of swapping the states of the two

input QVs. It is obvious that this is Clifford. A further useful operator is the

squeezing gate defined by

S(s)|q〉 := |sq〉, (2.56)
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for any s ∈ Sd such that there exists s−1 ∈ Sd. Without this condition on s it would

not be unitary. This condition holds for all non-zero s ∈ Sd with QCVs and prime

dimension qudits, and any non-zero s which is co-prime with the dimension of the

qudits in other cases (such an s is called a unit in Sd). This gate can be confirmed

to implement the conjugation maps

pξ,q,q′
S(s)−−−−−→ pξ,sq,s−1q′ . (2.57)

The cz and sum gates are the most important special cases of the more general

gates CZ(q) and CX(q) (the special case is q = 1). Again, it is easy to confirm

that these gate are Clifford. For qudits, they may be obtained as powers of sum and

cz. For QCVs, Equation 2.57 implies that they may be obtained from either cz or

sum and the squeezing gate, as shown in Figure 2.4. Finally, Figure 2.5 presents the

simple relation between CX(q) and CZ(q) in terms of local Fourier gates which will

be used regularly throughout.

• •
=

S†(q) S(q) X(q)

Figure 2.4: General controlled Pauli gates can be implemented via cz or sum and
local Clifford gates. Here the squeezing gate is used to create the CX(q) gate.

• •
=

F † X(q) F Z(q)

Figure 2.5: Conjugation by local Fourier gates transforms between CZ(q) and CX(q)
gates. This includes as a special case the relation between cz and sum.

2.5 Universal gate sets

We are now ready to return to the subject of universal gate sets, and in particular to

give certain universal sets that will be of relevance herein. A particularly important

result in quantum computation is the following:

Proposition 2.2. A gate set composed of any entangling gate in conjunction with

any set of single-QV gates that is (approximately / exactly) universal for single-QV

unitaries is an (approximately / exactly) universal gate set.
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For qudits, this results is due to Brylinski and Brylinski (2002), and for QCVs

(where only approximate universality applies), it was shown by Lloyd and Braunstein

(1999). This implies that, as long as some entangling gate can be implemented and

there are sufficient local controls of each QV then universal quantum computation

is possible. Clearly this leaves substantial freedom in terms of the exact gates,

particularly as almost any multi-partite gate is entangling [Lloyd (1995)]. Often the

entangling gate is taken to be cz or sum due to their convenient properties and the

natural role they play in algorithms, but this is not essential.

Proposition 2.2 raises the important question of which single-QV gate sets pro-

vide single-QV universality. To consider this, it useful to introduce the rotation gate

which is a single-QV unitary that is parameterised by a function ϑ : Sd → R and is

defined by

R(ϑ)|q〉 := eiϑ(q)|q〉. (2.58)

To guarantee that this is well-defined for a QCV, in this case this function is con-

strained to being some finite-degree real polynomial in q. There is a physically irrel-

evant global phase freedom in this gate, which can be removed by setting ϑ(0) = 0.

In the case of qudits, the gate set of all such rotation gates9 along with the Fourier

gate is an exactly universal single-qudit set. This is well-known for qubits [Nielsen

and Chuang (2010)10] and for qudits it is implied by the results of Zhou et al. (2003).

This can then be adapted to a finite gate set and approximate universality by simply

picking a set containing one ‘generic’ rotation gate along with the Fourier gate F .

This is shown in Appendix G and is again well-known for the qubit sub-case.

For prime dimension qudits there is a particularly elegant result that will be

useful herein: the addition of any non-Clifford gate to a set of generators of the

Clifford group elevates that set to (approximate) universality [Campbell et al. (2012);

Nebe et al. (2001, 2006)]. Similarly, for QCVs it is known that the addition of

continuous powers of any non-Clifford single-QCV gate to the Clifford group is

sufficient for (approximate) universality [Lloyd and Braunstein (1999)]. Hence, for

such QV types and a single-QV unitary u /∈ C, then

Gε−uni = {sum, F, P (q), Z(q), uq | q ∈ Sd}, (2.59)

is an approximately universal set. As far as I am aware, it is not known whether this

holds for non-prime dimension qudits. However, in such cases the u gate can be taken

to be a generic single-QV rotation gate, to obtain universality via the argument of

9For qudits, these rotation gates are parametrised by d phase angles in R, or d− 1 phase angles
if the global phase is fixed

10Any single-qubit unitary may be written as U = eiφR(θ)HR(φ)HR(γ) where R(χ)|q〉 = eiχq|q〉
and H is the Hadamard gate, i.e., the qubit Fourier gate. This may be shown directly via simple
matrix multiplication.
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Appendix G. In this thesis, it will be at times convenient to know that the Clifford

gates can be generated exactly, and hence I will make substantial use of this gate

set for some unspecified single-QV gate u that elevates the set to universality, and

which will often be assumed to be diagonal, for convenience.

Finally, there are a range of simple choices for the non-Clifford gate in this gate

set, which may be practically convenient. One option is to choose a diagonal ‘cubic’

gate. The T or the π-by-8 gate for qubits, as already introduced in Equation 1.10,

can in a certain sense be considered cubic as T |q〉 = ωq
3/d3 |q〉, and it is not hard

to show that for all QV types that this provides a non-Clifford gate (e.g., via the

results below). However, for QCVs the k = 3 case of the gate

Dk(r)|q〉 := ωrq
k/k|q〉, (2.60)

with k ∈ N and r ∈ Sd is normally considered, termed the cubic phase gate [Gu et al.

(2009)]. Note that, for QCVs and even-dimension qudits, k = 1 and k = 2 give the

Pauli Z(r) gate and the phase gate P (r) respectively. Again, for qudits this cubic

gate will also provide a non-Clifford gate. However, Campbell (2014) suggests that

a more natural generalisation for the T gate, to prime-dimension qudits with d > 3,

is T (r)|q〉 = ωrq
3 |q〉 with r ∈ Sd, which is also equivalent to the cubic phase gate

for QCVs up to a rescaling of r ∈ R. These gates have important applications to

fault-tolerant quantum computation, due to their interesting relation to the Clifford

group [Campbell (2014); Howard and Vala (2012)]. However, as this is not discussed

herein, it is of no consequence which non-Clifford gate is chosen to elevate the Clifford

group to universality, beyond possible practical considerations of what the simplest

non-Clifford gate is to implement.

2.6 Conclusions

In this chapter I have reviewed the terminology and mathematical tools for quantum

computation using qubits, qudits of arbitrary finite dimension and quantum contin-

uous variables. A simple unified formulation of the fundamental state spaces, bases,

operators, groups and concepts necessary to the theory of quantum computation

has been proposed. This will be utilised throughout the remainder of this thesis to

succinctly present results in a manner that is applicable to all types of QVs.
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Chapter 3

Unbounded fan-out circuits

with general quantum variables

This chapter introduces and investigates the computational power of the unbounded

fan-out gate, defined on general quantum variables (QVs), which may quantum-copy

QVs into an arbitrary number of auxiliary QVs. I show that a circuit model in which

this gate may be implemented in unit time has greater parallel computation power

than quantum circuits using only gates with fixed input size. This extends results

by several authors on qubit quantum circuit complexity into the general QV domain,

which applies to quantum computation not only with qubits, but also with qudits

of any dimension and QCVs. This chapter is based on Proctor (2015).

3.1 Introduction

Understanding which problems are fundamentally efficient to solve and which are not

is a question that has clear practical implications and has interested many researchers

in computer science and beyond. The answers to such computational complexity

questions have, broadly speaking, proven particularly challenging to solve. Perhaps

the most famous question of this sort is the ‘P versus NP’ problem, which asks

whether the set of classically efficiently solvable problems (the complexity class P),

and the set of problems for which a given solution can be classically efficiently verified

(the complexity class NP), are the same [Arora and Barak (2009)]. It is widely

believed that P 6= NP [Hemaspaandra (2012)], and there is plenty of motivation to

settle this question either way (including a $1,000,000 prize). However, to date no

one has been able to prove it.

In light of this, it is sensible to consider simpler problems in the hope that

progress on these will shed light on the more over-arching open questions in com-

plexity theory. One avenue of research is into the power of Boolean circuits with
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3. Unbounded fan-out circuits with general quantum variables

access to limited resources of some sort, where Boolean circuits are essentially the

(irreversible) classical version of quantum circuits [Arora and Barak (2009)]. A

natural resource to restrict is computational time, called depth in the context of cir-

cuits. For example, this can be restricted to a constant or poly-logarithmic growth

as a function of input size. There are a range of interesting results known about

the power of such restricted-depth Boolean circuits [Arora and Barak (2009); Furst

et al. (1984); Goldreich (2008)].

The study of quantum circuit complexity is a natural extension of these clas-

sical complexity ideas into the realm of quantum computation, providing insights

into both the power of quantum computation and the differences between closely

related quantum and classical circuit classes. As far as I am aware, the first explicit

definitions and investigations of constant and restricted-depth quantum circuits are

due to Moore and Nilsson (1998) and this work has since been extended by a range

of authors [Fang et al. (2006); Moore (1999); Moore and Nilsson (2001); Takahashi

et al. (2010)], with Høyer and Špalek (2003, 2005) providing a detailed investigation

of the power of unbounded fan-out gates. However, to my knowledge, up until now

all of the literature on this topic has exclusively considered qubits and any extension

to either qudits or QCVs is lacking.

In this chapter I present investigations into constant and poly-logarithmic depth

quantum circuits with general QVs. This therefore includes the previously neglected

cases of d > 2 qudits and QCVs. The gates and models that I define and the proposi-

tions that I prove in this chapter will provide the basis for linking the computational

properties of quantum circuits and the one-way quantum computer for all QV types,

which is the subject of Chapter 4. However, they are also interesting in their own

right as a study of non-binary qudit and QCV circuit depth and size complexity.

To keep the presentation concise and because the results given here extend previous

qubit-based work into the general QV domain, rather than beginning this chapter

with an extensive review of the qubit literature, I will discuss if and where the

qubit special case of each result I present in this chapter can be found in the liter-

ature when appropriate. The remainder of this chapter is structured as follows: In

Section 3.2 quantum depth and size are introduced. In Section 3.3 definitions are

proposed for the fan-out gate, standard quantum circuits, and unbounded fan-out

circuits for general QVs. It is then shown that, when restricted to constant depth,

unbounded fan-out circuits are more powerful than standard quantum circuits. In

Section 3.4 it is shown that constant depth unbounded fan-out gates can compute

sequences of commuting unitaries and any Clifford circuit. Section 3.5 includes a

brief discussion of certain technical issues that arise in the setting of QCV quantum

circuits, along with a resolution to these problems. In Section 3.6 the physical rel-

evance of unbounded fan-out circuits is briefly considered and the chapter is then
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3.2 Depth and size in quantum computation

concluded in Section 3.7.

3.2 Depth and size in quantum computation

In order to study computational depth and size complexity in quantum circuits,

formal definitions of these concepts are required. These are expressed in terms of a

general quantum computational model so that they can also be immediately applied

in Chapter 4 to the one-way quantum computer.

Definition 3.1. For a quantum computation Q = (V, I,O, q), a path of dependent

operations is a sub-sequence (qj) of q such that each operation either

(a) acts on a QV in common with, or

(b) depends upon the outcome of,

the previous operation in the subsequence.

This facilitates the following definition of the (quantum) depth of a computation:

Definition 3.2. The quantum depth of a quantum computation Q, denoted depth(Q),

is the number of operations in the longest path of dependent operations.

The depth represents the number of steps required for the computation, and

hence such a definition of depth encodes the standard assumption that two oper-

ations cannot be performed simultaneously on a QV and that an operation may

not be performed simultaneously with one whose output it depends upon. For a

quantum circuit the depth is simply the number of layers in the circuit, but this

definition also encompasses the more subtle concept of depth in one-way quantum

computation.

Definition 3.3. The quantum size of a quantum computation, denoted size(Q), is

the sum of the size of each operation it contains, where the size of an operation is

defined to be the number of QVs on which it acts.

For example, the sum gate has a size of 2. The concepts of size and depth may

be clarified further by reference to the circuit given in Figure 3.1 which has a size

of 17 and depth of 9. These quantities are referred to as quantum size and depth

as they take no account of any classical computational resources required for any

manipulations of any classical outputs. However, this is physically well-motivated

given the relative practical difficulties of classical and quantum computation.1 Note

that the quantum depth does not tell you how long a computation need be, but

rather how long a given computation is. For example, the two circuits in Figure 3.2

have the same action, but have a different depth. In this case it is obvious that the

1This is of course assuming that the model does not use unreasonable classical resources.
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3. Unbounded fan-out circuits with general quantum variables

|0〉 F • • • • • • F †

|0〉 R(ϑ1)

|0〉 R(ϑ2)

|0〉 R(ϑ3)

Figure 3.1: This quantum circuit has a depth of 9 and a size of 17.

greater depth circuit can be compressed, but in general it is a highly non-trivial task

to confirm whether or not a particular decomposition is optimal. Serial and parallel

computations (see Equations 2.38 and 2.39) obey

depth(Q1 ◦Q0) ≤ depth(Q1) + depth(Q0), (3.1)

depth(Q1 ⊗Q0) = max(depth(Q1),depth(Q0)), (3.2)

as is to be expected. In both cases sizes simply add.

In the rest of this chapter, the main topics of study are asymptotic depth and size

scalings of quantum circuits. Hence, although the standard asymptotic notation has

already been used herein without an explicit definition, it is crucial for the following

that its precise meaning is understood. A function f(n) is O(g(n)) if, for some

constants C > 0 and n0, then f(n) < Cg(n) for all n > n0. A function f(n) is

Ω(g(n)) if, for some constants C > 0 and n0, then f(n) > Cg(n) for all n > n0. For

example, n2 + 10n is O(n2) and Ω(n2); it is also O(n3) and Ω(log n), but it is not

O(n).

• •
• • • •
• • • •
• • = • •
• • • •
• • • •
• •

Figure 3.2: The depth of the circuit on the LHS is 6. The depth of the equivalent
circuit on the RHS is 2.

3.3 Standard and unbounded fan-out circuits

For any type of QV, a quantum circuit model (QCM) is any quantum computational

model M = (o, s) in which the allowed operations, o, is some set of unitary operators
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3.3 Standard and unbounded fan-out circuits

(quantum gates). It is conventional to restrict the set of preparable auxiliary QV

states to s = {|0〉}, and this will be taken to be the case herein. It it often also

required that the input and output QV subsets in any computation are equal, and

this will happen to be true in all cases in this chapter, but this is not strictly

necessary. A gate that acts on a constant number of QVs is a unitary that transforms

some fixed number of QVs, e.g., sum takes two QVs as an input.

Definition 3.4. The ‘standard quantum circuit model’ is a QCM with some uni-

versal gate set that contains only gates that act on a constant number of QVs.

A standard quantum circuit is then a particular computation in this model.

Roughly speaking, the exact specification of the gate set is not necessary in order to

consider only how computational depth and size scale with the number of input QVs

for the implementation of n-QV unitary families, and for this reason no particular

gate set was mentioned in this definition. However, there are certain issues related

to whether the gate set is approximately or exactly universal. More specifically, for

exact universality, which is relevant only for qudits, then any exactly universal set

(with fixed-size gates) is completely equivalent to any other, in this context. This

is because any unitary acting on k qudits may be exactly decomposed into O(d2k)

gates from any exactly universal gate set [Bullock et al. (2005); Lloyd (1995)] and

so one universal gate set may simulate another with only constant size and depth

overhead (as each gate in the set to simulate acts on no more than k-qudits for some

constant k). For concreteness, we may consider the exactly universal set of sum

along with all single-qudit gates, which we denote Guni.

In the case of approximate universality, as one approximately universal gate set

cannot necessarily exactly simulate the gates from another approximately univer-

sal set, there can be more subtle issues related to how the overhead to simulate

one gate set depends on the systematic gate-error level that may be tolerated (e.g.,

polynomial or poly-logarithmic overheads). However, these issues will not have any

direct implications for the results of this chapter as long as the gate set can exactly

generate any Clifford gate. Hence, for concreteness, in the case of approximate uni-

versality we consider the set Gε−uni, which was already introduced in Equation 2.59

as

Gε−uni = {sum, F, P (q), Z(q), uq | q ∈ Sd}, (3.3)

with non-Clifford single-QV unitary u which may be taken to be a diagonal gate.

This may exactly generate any Clifford gate, and is appropriate for all QV types.

Instead of this particular set, for qudits and for the purposes of this chapter, any gate

set containing any other set of Clifford group generators is completely equivalent.

However, in the case of QCVs this is not entirely true due to a slightly subtle issue

that arises from the non-periodic nature of the QCV Pauli gates: a discussion of this
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3. Unbounded fan-out circuits with general quantum variables

is delayed until Section 3.5. In summary, the following results on standard quantum

circuits are valid with either: any exactly universal qudit gate set including only

fixed-input-size gates (e.g., Guni), or with the approximate universal set Gε−uni for

all types of QVs.

3.3.1 Unbounded fan-out circuits

An alternative circuit model, which I will show does not have the same depth com-

plexity as standard quantum circuits, can be defined by first introducing the n-QV

‘fan-out’ gate. To my knowledge, outside of the qubit sub-case such a gate has not

been defined in the literature. I will denote this gate by fanout and define it by

the action

fanout|q〉|q1, . . . , qn〉 := |q〉 |q1 + q, . . . , qn + q〉 . (3.4)

Unlike for the qubit sub-case, for general QVs the fan-out gate is not self-inverse -

for a d-dimensional qudit it has order d (this is because qk + d = qk modulo d). A

circuit notation for this gate is defined in the circuit on the LHS of Figure 3.3. It is

obvious that this gate may be composed from a sequence of n sum gates, as shown

in the middle circuit diagram of Figure 3.3. The fan-out gate is named as such as it

may be used to copy computational basis states into n QVs, specifically2

|q〉|0, . . . , 0〉 fanout−−−−−→ |q〉 |q, . . . , q〉 . (3.5)

Hence, it may be used to delocalise a logical QV in a single QV over n + 1 QVs,

which will prove to be a useful resource for parallel computations.

Definition 3.5. The ‘unbounded fan-out model’ is a QCM with some universal gate

set that contains only gates that act on a constant number of QVs along with fan-out

gates acting on any number of QVs.

Again, an unbounded fan-out circuit is then a particular computation in this

model. The gate set discussions below Definition 3.4 are directly applicable again

here. Hence, for the same reasons as given there, the gate set may be taken to be

Gfanout = Gε−uni ∪ {fanout}, (3.6)

or alternatively, the exactly universal set obtained by replacing Gε−uni → Guni in this

equation. It does not really matter which, except that a fair comparison between

the two circuit models herein is given by considering the exact or universal set in

both cases.

2Note that this does not violate the no-cloning theorem as it only copies basis states - it does
not copy a QV, but instead creates a highly entangled multi-QV state for a general input.
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3.4 Constant depth unbounded fan-out circuits

Proposition 3.1. Any standard quantum circuit for the n-QV fan-out gate has a

depth of Ω(log n). There is a standard quantum circuit for this gate with a depth of

O(log n) and a size of O(n).

Proof: A circuit for the n-QV fan-out gate with a depth of O(log n) and size

of O(n) is presented in the RHS of Figure 3.3. This uses a standard ‘divide-and-

conquer’ strategy, via sum and sum† gates. All the output QVs of the fan-out gate

depend on the state of the control QV. With l circuit layers composed of gates

that act on at most m QVs for some constant m, at most ml QVs can depend on

the state of the control QV. Hence, for n QVs to depend on the control QV it is

necessary for at least l = logm n layers. Therefore, any standard quantum circuit

for the fan-out gate must have a depth of Ω(log n), which concludes the proof. This

proof is essentially identical to that for the qubit sub-case, originally presented by

Fang et al. (2006).

This proposition shows that the ability to implement the fan-out gate on an un-

bounded number of QVs in unit depth allows for lower depth circuits in comparison

to standard quantum circuits, which require logarithmic depth to simulate an n-QV

fan-out gate. In the next section, it will be shown that unbounded fan-out gates

facilitates interesting circuit-depth reductions. A simple lemma of Proposition 3.1 is

the following complexity relation between standard and unbounded fan-out circuits:

Lemma 3.1. Any n-QV unbounded fan-out circuit F may be implemented with a

standard quantum circuit that has a size of O(size(F)) and a depth of O(depth(F) log n).

This lemma may be used to convert the remaining results of this chapter, which

will be stated in terms of unbounded fan-out circuits, into statements about standard

quantum circuits. It may be also used to the same end with regard to the results

of Chapter 4, in which relationships between the 1WQC and the quantum circuit

model will be derived.

3.4 Constant depth unbounded fan-out circuits

It is now shown that certain operators may be implemented in constant depth with

an unbounded fan-out circuit. The main purpose of presenting the following results is

that they will be required to derive many of the results in Chapter 4. However, they

are also of independent interest in terms of quantum circuit complexity questions.

3.4.1 Commuting circuits

Consider the circuit diagram of Figure 3.4, which shows k pair-wise commuting

unitaries acting in series on a set of n QVs. An interesting property of the unbounded
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• • • • • • • • • • •

• •

= = • • • •

• •

Figure 3.3: LHS: A circuit notation for the n-QV fan-out gate. Middle: The fan-out
gate decomposition into n sum gates with a circuit size and depth of O(n). RHS:
An alternative circuit decomposition implementing the fan-out gate with a depth of
O(log n) and size O(n). The case shown here is for n = 23 − 1. The same structure
may be used for all n = 2m − 1 and for other cases the structure for 2dlog(n+1)e − 1
may be used with the gates omitted which would act on non-existent QVs. The
circuit notation used here for sum and sum† gates was introduced in Figure 2.3.

U1 U2 U3

· · ·

Uk
· · ·
· · ·
· · ·

Figure 3.4: A sequence of k mutually commuting unitaries Ui, with i = 1, . . . , k,
acting on a set of n QVs. Commutation implies that they are all diagonalised by
some n-QV unitary B, i.e., Di = BUiB

† for some diagonal unitaries Di.

fan-out gate is that it facilitates the application of commuting gates on a set of QVs

in parallel, whenever the basis in which they are all diagonal can be transformed

into with a sufficiently low depth circuit. More precisely:

Proposition 3.2. Consider a sequence of k mutually commuting unitaries Ui that

act on n QVs, which are therefore diagonalised by the same n-QV operator B, i.e.,

BUiB
† = Di where Di is some diagonal unitary for each i. Such an operator se-

quence may be implemented with an unbounded fan-out circuit that has a depth of

maxi(depth(Di))+2depth(B)+6, and a size of max(O(n2), O(size(B)), O (
∑

i size(Di))).

Proof: The proof precedes by providing such a circuit. The first stage of the

circuit is to apply a B gate to the n-QVs, changing into the basis in which all of the

gates are diagonal. Next, copy the n-QVs into k − 1 sets of n auxiliary QVs, using

n fan-out gates in parallel and n(k− 1) auxiliary QVs (prepared, as always, in |0〉).
The diagonal unitary Di is applied to the ith register and these may be implemented

in parallel (distinct QVs). This creates the required total phases because phases
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B

•

D1

•

B†
• •
• •
• •

|0〉

D2

|0〉
|0〉 |0〉
|0〉 |0〉
|0〉 |0〉
|0〉

D3

|0〉
|0〉 |0〉
|0〉 |0〉
|0〉 |0〉

...
...

...
|0〉

Dk

|0〉
|0〉 |0〉
|0〉 |0〉
|0〉 |0〉

Figure 3.5: This circuit implements, in parallel and with the aid of fan-out gates,
any sequence of k mutually commuting unitaries Ui = B†DiB (with i = 1, . . . , k)
that act on a set of n QVs. The case shown here is with n = 4. This circuit has
constant depth (as a function of both k and n) if B, fanout and Di for all i may be
implemented in constant depth. This circuit requires n(k − 1) auxiliary QVs. Each
inverse fan-out gate may be implemented with one fanout and four F gates.

add, i.e., eiθeiφ = ei(θ+φ). Inverse fan-out gates are applied to return the auxiliary

QVs to the |0〉 state (this requires F , F † and fan-out gates). Finally, the QVs are

rotated back into the computational basis by B†. A careful counting of the depth

and size of each stage provides the total depth and size stated above, concluding the

proof. The fan-out circuit from this proof is shown in Figure 3.5.

In the special case of qubits, this proposition can be found in the literature

and is due to Moore and Nilsson (2001). This result will be of use later, both in

Section 3.4.2 and in Chapter 4. Moreover, it may also be applied to reduce the depth

of a variety of interesting quantum circuits. One example is now considered: an

arbitrary polynomial-size circuit on n-QVs, consisting of one- and two-QV diagonal

gates. Such a circuit can be easily (and efficiently) rearranged into a circuit of the

form given in Figure 3.6. This circuit has a depth of 2n− 1 (ignoring the overhead

in decomposing these gates into those from the available set), but it is not clear how

it can be computed with a lower depth than this without fan-out based techniques

and utilising auxiliary QVs. By applying the technique of Figure 3.5, each layer

can be implemented in parallel using auxiliary QVs and unbounded fan-out gates.
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· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

Figure 3.6: A polynomial-size circuit on n-QVs consisting of arbitrary one- and
two-QV diagonal gates can be arranged into a circuit of this form, which contains
2n− 1 layers. This is achieved by writing it as a layer of local gates, followed by a
sequence of two layers for nearest-neighbour interactions, then two layers for next-
nearest-neighbour interactions and so on. This is partially shown here for n = 10,
where the gates in this circuit represent generic one- and two-QV diagonal gates,
and gaps are shown between layers for clarity.

This requires only constant depth with an unbounded fan-out circuit.3 Without

unbounded fan-out gates it seems unlikely to me that this can be implemented in less

than log(n) depth, which can be obtained via a direct simulation of the unbounded

fan-out circuit, e.g., via the method in Figure 3.3.

3.4.2 Clifford circuits

Two novel adaptions of the fan-out gate that will be useful herein are the fanout(~v)

and multisum(~v) gates, which are both parameterised by a vector ~v = (v1, . . . , vn) ∈
Snd , and I define by

|q〉|q1, . . . , qn〉
fanout(~v)−−−−−−−−→ |q〉 |q1 + v1q, . . . , qn + vnq〉 , (3.7)

|q〉|q1, . . . , qn〉
multisum(~v)−−−−−−−−→ |q + v1q1 + · · ·+ vnqn〉 |q1, . . . , qn〉, (3.8)

respectively. The latter of these gates is the natural extension to general QVs of what

is called the qubit parity gate (the parity gate, denoted parity, is the multisum(~v)

gate for qubits with ~v = (1, . . . , 1)). Using the conjugation action of the Fourier

gate on the Pauli operators, it is easy to confirm the conjugation relation

fanout(~v)
F⊗F⊗···⊗F−−−−−−−−−−→ multisum(−~v). (3.9)

3Again, this is ignoring any overhead of decomposing the unitaries, in each parallel part of the
computation, into the available one and two-QV gates - in many cases this will not scale with n,
and if it does this will also apply to the original fan-out free ‘serial’ circuit as well.
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This has a similar form, and reduces to, the well-known relationship between the

qubit fan-out and parity gates

fanout
H⊗H⊗···⊗H−−−−−−−−−−→ parity, (3.10)

first noted by Moore (1999), where H is the qubit Fourier gate more often known

as the Hadamard gate.

Lemma 3.2. Any n-QV fanout(~v) or multisum(~v) gate may be implemented with

an unbounded fan-out circuit that has a depth of O(1) and a size of O(n).

Proof: It is only necessary to show how to implement any fanout(~v) gate as

then a multisum(~v) gate may be implemented by the relation in Equation 3.10.

Any fanout(~v) gate may be implemented using standard fan-out gates and CX(q)

gates as follows: Let c1 label the control QV and 1, . . . , n label the target QVs of

the fanout(v) gate. Fan-out the control QV into n− 1 copies using n− 1 auxiliary

QVs, labelled c2, . . . , cn. Next, implement C
cj
j X(vj) gates in parallel (j = 1, . . . , n,

each gate is on distinct QVs). Such gates can be easily obtained from the generators

of the Clifford group (which have been assumed to be in the available gate set),

either as powers of sum for qudits, or using sum and the squeezing gate for QCVs,

as shown in Figure 2.4. Applying inverse fan-out gates (in parallel) disentangles the

auxiliary QVs and completes the gate. Each stage has a constant depth and O(n)

size.4

Lemma 3.3. Any polynomial-size n-QV circuit consisting of only controlled and

local Z(q) gates may be implemented with a constant depth and O(n2) size unbounded

fan-out circuit.

This circuits consists of commuting gates, and hence this lemma is implied by

Proposition 3.2. In particular, it is a special case of the application of Proposition 3.2

to circuits consisting of only one- and two-QV diagonal gates which was discussed

below that proposition and in Figure 3.6.

Proposition 3.3. Any polynomial-size circuit consisting of only controlled and local

Z(q) and X(q) gates may be efficiently rearranged into a polynomial-size circuit con-

sisting of only controlled and local Z(q) gates, followed by a polynomial-size circuit

consisting of only controlled and local X(q) gates.

Proof: Gates on distinct QVs commute and hence it is only necessary to provide

a rule for commuting gates which act on at least one QV in common. Consider com-

muting controlled Z(q) and controlled X(q) gates. As controlled Z(q) is symmetric,

4There is a simpler method for simulating any fanout(~v), valid for QCVs and prime dimension
qudits, which uses one ordinary fan-out gate and local squeezing gates on each of the target QVs.
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p p • • •

• • = qp • • • • = • • • = qp •

q p p q q q q p p q

Figure 3.7: Commutation rules for reordering controlled X(q) and Z(p) gates. A
black (grey) box containing q denotes Z(q) (X(q)). This covers all cases as the
controlled Z(p) gate acts symmetrically on its input QVs.

there are only three cases to consider. Commutation rules for rearranging all three

cases so that CZ(q) gates act before CX(q) gates are given in Figure 3.7. Rules for

commuting the local gates, and combinations of local and controlled gates, can be

obtained from these. E.g., Z(q) may be commuted past a controlled X(q) gate via

the relation obtained by considering the input |1〉 to the top QV in the middle and

RHS circuits of this figure. That the resulting circuits are still of polynomial size is

obvious.

Proposition 3.4. Any polynomial-size n-QV circuit consisting of only controlled

and local Z(q) and X(q) gates may be implemented with an unbounded fan-out circuit

of O(n2) size and O(1) depth.

Proof: By Proposition 3.3, such a circuit may be rearranged into a polynomial-

size circuit consisting of only controlled and local Z(q) gates, followed by a polynomial-

size circuit consisting of only controlled and local X(q) gates. The first part of the

circuit may be implemented with a constant depth and O(n2) size unbounded fan-

out circuit, by Lemma 3.3. Hence, it only remains to show that a polynomial-size

circuit consisting of only controlled and local X(q) gates can be implemented with

a constant depth and quadratic size unbounded fan-out circuit.

The controlled and local X(q) gates map computational basis states to compu-

tational basis states. Hence, for each computational basis input |q1, . . . , qn〉, this

controlled and local X(q) circuit maps

|q1, . . . , qn〉 → |f1, . . . , fn〉, (3.11)

for some output computational basis state |f1, . . . , fn〉. Consider the first layer of the

circuit: It is not hard to confirm that this maps |q1, . . . , qn〉 → |q′1, . . . , q′n〉, where, if

the layer contains the gate X(p) acting on the kth QV then q′k = qk + p, if the layer

contains the gate Cj
kX(p) then q′k = qk + pqj , and if k is either a control QV of a

CX(q) gate, or it has no gate act on it in the layer, then q′k = qk. Hence, by writing
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3.4 Constant depth unbounded fan-out circuits

~q = (q1, . . . , qn)T , and ~q′ = (q′1, . . . , q
′
n)T , the first layer of circuit has the action

~q′ = M [1]~q + ~v[1], (3.12)

where M [1] is the identity matrix which is altered by letting M
[1]
k,j = p if the gate

Cj
kX(p) is in the layer, and ~v[1] is the vector with v

[1]
k = p if the layer contains the

gate X(p), and v
[1]
k = 0 otherwise. A matrix M [a] and a vector ~v[a], representing

each layer a = 1, . . . , l of the l-layer circuit, can be found in exactly the same way.

Then, by writing the final output as ~f = (f1, . . . , fn)T , and repeatedly applying

Equation 3.12, the output vector is related to the input by

~f = M [l]
(
. . .
(
M [2]

(
M [1]~q + ~v[1]

)
+ ~v[2]

)
. . .
)

+ ~v[l]. (3.13)

By expanding this, the total action of the circuit may be expressed as

~f = M~q + ~v, (3.14)

where M ∈ Snd × Snd is given by M = M [l] . . .M [2]M [1], and ~v ∈ Snd is given by

~v = M [l] . . .M [3]M [2]~v[1] +M [l] . . .M [3]~v[2] + · · ·+ ~v[l], (3.15)

noting that all arithmetic is that for Sd. Hence, the action of the circuit is entirely

described by this n × n matrix M and n element vector ~v, which can be efficiently

found from a given circuit.5

For any given M and ~v pair, it is now shown how to simulate the controlled

and local X(q) gate circuit they describe. This requires mapping an arbitrary com-

putational basis input state |q1, . . . , qn〉 to |f1, . . . , fn〉, where the fk are given by

(f1, . . . , fn)T = M(q1, . . . , qn)T +~v. To do this we use an additional auxiliary ‘result’

register (and further work auxiliary registers). The method is split into four steps,

the first of which is to implement the map

|q1 . . . qn〉|0 . . . 0〉 → |q1 . . . qn〉|f ′1 . . . f ′n〉, (3.16)

where the second register is this result register and f ′k = fk − vk (so ~f ′ = M~q). To

begin, fan-out the main register into n auxiliary registers using n fan-out gates in

parallel and n2 auxiliary QVs (initialised to |0〉). In the kth auxiliary register the kth

QV is mapped from qk → f ′k using a CX(Mkk) gate, with the control the kth QV in

the original register, and a multisum gate. Specifically, for the multisum gate the

5The matrix and vector for each layer can be easily found as above, and then the total M and
~v for the circuit are obtained via matrix multiplication. As the circuit is polynomial size, this is
efficient.
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3. Unbounded fan-out circuits with general quantum variables

kth QV in that register is the target and the remaining n − 1 QVs are the control

QVs. The gate is multisum(~mk) where ~mk ∈ Sn−1
d is the kth row of M with the

Mkk element removed. These gates may be implemented on each auxiliary register

in parallel and, by Lemma 3.2, the multisum gates may be implemented via fan-out

gates in constant depth and linear size. The value of each f ′k may be written into

the ‘result’ auxiliary register in a depth of 1 using n sum gates. The next step is

to disentangle the n auxiliary work registers from the main and result registers, by

uncomputing each f ′k. This is achieved by applying the entire circuit (except the

copying into the result register) backwards, with gates replaced with their inverses.

This leaves n2 clean auxiliary registers along with the original and result registers in

the state |q1, . . . , qn〉|f ′1, . . . , f ′n〉 for each input computational basis state |q1, . . . , qn〉.
In order to clarify this method a circuit diagram is provided in Figure 3.8.

The second stage is to clean the original register, performing the transformation

|q1 . . . qn〉|f ′1 . . . f ′n〉 → |0 . . . 0〉|f ′1 . . . f ′n〉. (3.17)

To do this, |q1 . . . qn〉 is calculated from |f ′1 . . . f ′n〉 using the above method again

(i.e., via the n auxiliary registers), but with the changes now described: The roles

of the original and result registers are reversed and M is replaced with M−1 (which

may be found by directly inverting M , or by using the same the method as used for

finding M). This then computes qk on the kth QV of the kth auxiliary register. A

sum† gate, with the target the kth QV of the original register and the control the kth

QV of the kth auxiliary register, maps the target to |qk − qk〉 = |0〉. As above, the

inverse computation is implemented to disentangle the n auxiliary registers, leaving

the original and result registers in the state |0, 0 . . . 0〉|f ′1, f ′2, . . . , f ′n〉.
The third stage of the circuit swaps the states of the original and result registers,

i.e., the mapping

|0 . . . 0〉|f ′1 . . . f ′n〉 → |f ′1 . . . f ′n〉|0 . . . 0〉. (3.18)

This may be implemented by n swap gates in parallel, where swap was defined in

Equation 2.55, or alternatively, simply using one sum and one sum† gate per QV

pair. Hence, swapping the registers requires constant depth and linear size. Finally,

the mapping |f ′1 . . . f ′n〉 → |f1 . . . fn〉 is implemented via a X(q) gate on each QV (the

required gate on the kth QV is X(vk), as f ′k = fk − vk). Hence, the total mapping

|q1, . . . , qn〉 → |f1, . . . , fn〉 has been performed, as required. A careful consideration

confirms that this unbounded fan-out circuit, which implements a polynomial size

circuit consisting of only controlled and local X(q) gates, has a depth of O(1) and

size of O(n2) which concludes the proof.

A similar proposition to this was proven for the qubit sub-case by Moore and

Nilsson (2001). Proposition 3.4 will be crucial in the Chapter 4. It also facilitates
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3.5 Physically reasonable Clifford group generators

|q1〉 • • • • |q1〉
|q2〉 • • • • |q2〉
|q3〉 • • • • |q3〉

|0〉 ~m1 M11 • −M11 −~m1 |0〉
|0〉 • • |0〉
|0〉 • • |0〉

|0〉 • • |0〉
|0〉 ~m2 M22 • −M22 −~m2 |0〉
|0〉 • • |0〉

|0〉 • • |0〉
|0〉 • • |0〉
|0〉 ~m3 M33 • −M33 −~m3 |0〉

|0〉 |f ′1〉
|0〉 |f ′2〉
|0〉 |f ′n〉

Figure 3.8: The first stage of a constant depth and quadratic size unbounded fan-
out circuit simulating any polynomial-size n-QV circuit of controlled and local X(q)
gates. The details of this circuit are described in the proof of Proposition 3.4, which
also defines the parameters in the gates. Here the case of n = 3 is shown.

the proof of the following:

Proposition 3.5. Any n-QV Clifford operator may be implemented with an un-

bounded fan-out circuit of O(n4) size and O(1) depth.

This proposition could be obtained by directly adapting Proposition 3.4 to also

include Fourier and phase gates. However, this results in an unnecessarily cumber-

some proof (it is the Fourier gates which cause the main complications), hence I

will instead prove it indirectly via the relationship between the one-way quantum

computer and the unbounded fan-out model that is derived in the next chapter

(and which requires Proposition 3.4 to obtain). It will be noted when the results

presented are sufficient to directly imply Proposition 3.5.

3.5 Physically reasonable Clifford group generators

In this section, a possible criticism of the gate set used throughout this chapter

is discussed which is relevant only in the case of QCVs. This is perhaps rather

technical, but it is covered for clarity and because it will be important again for an

observation made in Chapter 5. The results presented so far in this chapter have
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3. Unbounded fan-out circuits with general quantum variables

assumed that a set of generators for the Clifford group are included in the basic gate

set. Specifically, it has been assumed that the set includes the sum (or cz), F , P (p)

and Z(q) gates, for all q, p ∈ Sd.6 For qudits, the general phase and Z(q) gates can

be replaced with P and Z, as P (p) = P p and Z(q) = Zq for integer p and q, and the

overhead of simulating any such Z(q) or P (p) gate with P and Z is less than d. This

is a constant, and hence all the results throughout this chapter equally apply when

considering this more restricted basic gate set, which is likely to be more physically

relevant.

This may seem rather obvious, however, there is a more subtle technical issue

in the case of QCVs. In this case, it has been assumed that P (p) and Z(q) for any

p, q ∈ R are in the available gate set. However, the assumption inherent in including

a gate in the basic gate set is that it is valid to claim it may be implemented in a depth

of one, or at the very least, constant depth. As depth is meant to be a simple proxy

for computational time, it is important that this is physically justifiable. However,

it can be argued that this is not the case for Z(q) and P (p) with any p, q ∈ R. To

see this, note that

Z(q) = eiqx̂, P (p) = eipx̂
2/2, (3.19)

where x̂ is the position operator. Hence, q and p are essentially the time that the

Hamiltonians −x̂ and −x̂2/2 need to be applied for, in order to implement these

gates (up to a rescaling by any physical constants). It is therefore hard to physically

justify the claim that a Z(q) or P (p) gate can be implemented in a unit of time (and

hence a depth of one) for all q and p in R (or R≥0). If this argument is accepted,

a natural solution to this problem is to restrict the Clifford gate generators in the

basic gate set to cz, F , Z(q) and P (p) where now q, p ∈ [0, a] for some constant

a ∈ R with a 6= 0, for example, a = 1 or a = 2π are obvious possible choices,

and I consider the former choice, for concreteness. It is easily confirmed that these

operators still generate the Clifford group, and it is now justified in claiming that

each of these gates can be implemented in a unit of time.

There are consequences in changing to this more physically motivated gate set

which, if adopted, necessitates some minor adaptions to the lemmas and propositions

of this chapter. For example, consider the n-QCV family of unitaries

Un = Z(q)⊗ Z(2)⊗ Z(3)⊗ · · · ⊗ Z(n). (3.20)

With the full gate set used earlier in this chapter this can obviously be implemented

in a depth of 1, but using only Z(q) gates with q ∈ [0, 1] this has a depth of n, which

is a linear rather than constant scaling. However, by using fan-out parallelisation

techniques, it is possible to recover constant depth unbounded fan-out implementa-

6See the start of Section 3.3 for a discussion of this.
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3.5 Physically reasonable Clifford group generators

|ψ〉 • Z(δ) • Z(m+ δ)|ψ〉

|0〉 Z |0〉

|0〉 Z |0〉
...

...
...

|0〉 Z |0〉

Figure 3.9: The gate Z(m + δ) for m ∈ N and δ ∈ [0, 1], may be implemented in
constant depth and O(m) size via unbounded fan-out gates, m auxiliary QCVs and
Z(q) gates with q ∈ [0, 1]. The same method may be used to implement P (m + δ)
gates.

tions of the operators Z(q) and P (q) for any q ∈ R≥0. Implementing such a Z(q) or

P (q) gate is achieved by writing q = m+ δ for some m ∈ N, and δ ∈ [0, 1], and then

using an m-QCV fan-out gate, and m auxiliary QCVs, as shown in Figure 3.9.7 The

one further issue that this raises is that now care must be taken to make sure that

the unbounded fan-out circuit implementing Z(q) or P (q) is polynomial size - which

it is if the q parameters are only polynomially large.8 By using these ideas, then all

of the lemmas and propositions of this chapter can be adapted to apply to this more

physically realistic QCV gate set whilst still achieving constant depth unbounded

fan-out circuits, as claimed previously in these statements. The exact required tech-

nical changes to the results of this chapter, for this different QCV gate set, are listed

in the following final paragraph in this section in the interest of completeness. This

may be skipped if these details are of no interest to the reader.

For QCVs and the gate set restricted as discussed above, Lemma 3.2 must be

adapted to only apply to fanout(~v) and multisum(~v) gates with a vector ~v ∈ Rn

for which the modulus of each element in ~v is a polynomial in n, i.e., O(|vk|) = f(n)

where f(n) is a polynomial. The resulting unbounded fan-out simulation of such

gates still has constant depth, but now has O(nf(n)) size. In Lemma 3.3 and

Proposition 3.4, the q ∈ R parameters in the local and controlled Z(q) and X(q)

gates (as appropriate for each statement) must all have O(|q|) = f(n), where f(n)

is a polynomial. The resultant constant depth unbounded fan-out circuit is now no

longer guaranteed to be quadratic size, but it will be polynomial size. Proposition 3.5

must be adapted to no longer apply to any Clifford operator, but rather a Clifford

operator composed from (or that may be decomposed into) polynomially many cz,

7Z(q) and P (q) with any q ∈ R<0 can then be obtained via Fourier gates.
8E.g., the circuit for parallelising the unitary Un in Equation 3.20 via unbounded fan-out gates

would be expoentially large if the parameter in the Z(·) gate on the kth QCV was not k but instead
ck for some constant c.
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3. Unbounded fan-out circuits with general quantum variables

F , Z(q) and P (q) gates where all the parameters q ∈ R are O(f(n)), for a polynomial

f(n). Again, the unbounded fan-out circuit simulating this is still constant depth,

but it is now only guaranteed to be polynomial size rather than quartic.

3.6 Implementing unbounded fan-out gates

For the purposes of this section and later chapters, it is useful to introduce the two

Hermitian operators

x̂ :=
∑
q∈Sd

q|q〉〈q|, p̂ :=
∑
q∈Sd

q|+q〉〈+q|, (3.21)

where this notation is used because they are the position and momentum opera-

tors for a QCV. Hence, the ‘position’ and ‘momentum’ terminology will be used

for all QV types. The powerful nature of unbounded fan-out circuits for parallel

quantum computation raises the question: is the unbounded fan-out gate physically

implementable in a single time-step? The model that unbounded fan-out circuits

has been compared to here is one in which sum gates can be applied on-demand

between arbitrary pairs of QVs and more than one sum gate can be applied simul-

taneously, if acting on distinct QVs. One simple way that this might be achieved is

if it is possible to turn on and off the Hamiltonians

Ĥsum
j,k = x̂j ⊗ p̂k, (3.22)

for arbitrary QVs j and k. This implements the sum gate, with control QV j and

target QV k, if applied for a time t = 2π/d. Dropping the j and k labels, that is:

sum = e−2πiĤsum/d.

If each of these Hamiltonians can be turned on and off on demand, and if they can

also be turned on and off simultaneously on distinct pairs of QVs, there is no obvious

reason why it would not be possible to turn on the n commuting Hamiltonians Ĥsum
c,1 ,

Ĥsum
c,2 , . . . , Ĥsum

c,n simultaneously. This would implement the total Hamiltonian

Ĥfanout = x̂c ⊗ (p̂1 + p̂2 + · · ·+ p̂n), (3.23)

where this notation includes n−1 implicit identity operators in each of the terms in

the sum. The application of this Hamiltonian, for a time t = 2π/d, implements the

n-QV fanout gate. By this argument, it would appear that fanout is as physically

plausible as on-demand sum gates between arbitrary QVs.

There are a few potential problems with this idea: Firstly, the physical detail

of how sum gates are actually implemented could (and probably would) differ from

simply applying Ĥsum, and the reasoning given above might not apply. This would
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depend on the specific physics of any given set-up. The second issue is that, in many

of the proposed architectures for a quantum computer, sum gates between arbitrary

pairs of QVs are not directly possible, and interactions are only implementable

between nearest-neighbour QVs in some geometry, e.g., a linear array [Fowler et al.

(2004); Ladd et al. (2002)] or a 2D square lattice [Hollenberg et al. (2006)]. When

this is the case there are significant over-heads associated with shuttling logical

QVs around through different physical QVs (or using other techniques) in order to

implement the required gates in a circuit. As such, in this setting even sum cannot

be considered to have unit depth between arbitrary QVs [Saeedi et al. (2011)].

One possible method for implementing entangling gates between arbitrary pairs

of QVs in unit time is via ancilla-mediated gates: if the ancillas are highly mobile

it may be possible to use them to interact distant QVs in a unit of time (i.e., in

essentially one gate layer). This is further motivation for the ancilla-based gate

methods investigated in the latter chapters of this thesis. Interestingly, these may

also provide a method for implementing n-QV fan-out gates in constant depth, as

is briefly discussed in Chapter 5. The final point that I would like to make is that,

regardless of whether the Hamiltonian of Equation 3.23 or some other method may

be used to implement fan-out gates, in all cases it seems clear that a fan-out gate of

unbounded input size is hard to justify physically.9 Finite input-size fanout gates

can still potentially provide very significant parallel power, but crucially they cannot

provide any asymptotic advantages. However, although not irrelevant, asymptotics

are certainly not the only important consideration.

3.7 Conclusions

In this chapter I have introduced the general QV fan-out gate and investigated the

computational power of circuits in which this may be implemented in unit depth on

an unbounded number of QVs. In particular, it was shown that this gate can be used

for constant depth implementations of commuting circuits, and it was claimed that

this is also the case for any Clifford circuit. This latter statement will be confirmed

in the following chapter. It is interesting that the ability to apply the single n-

QV Clifford gate fanout in unit depth substantially reduces the depth required

to implement any n-QV Clifford gate. Finally, I discussed whether the unbounded

fan-out gate can be implemented in unit depth in practice. The results presented

in this chapter will be crucial to the investigation of the one-way model for general

QVs undertaken in the next chapter.

For the qubit sub-case, logarithmic and constant depth unbounded fan-out cir-

cuits have been previously investigated in detail by Høyer and Špalek (2003, 2005)

9Causal influences can only travel at the speed of light.
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and other authors [Moore and Nilsson (2001); Takahashi and Tani (2013); Takahashi

et al. (2010)]. There are a range of low-depth qubit unbounded fan-out circuits that

are not included as a sub-case of any of the general QV results I have presented. For

example, there is a constant depth qubit unbounded fan-out circuit that can approx-

imate the quantum Fourier transform (QFT) [Høyer and Špalek (2005)], which is

an important component in many quantum algorithms. In future work, it would be

interesting to consider whether this can be extended to the QFT on a qudit register,

particularly as Parasa and Perkowski (2011, 2012) have shown that the qudit QFT

circuit has a range of advantages over the binary version.
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Chapter 4

One-way quantum computation

with general quantum variables

In this chapter the parallel power of the one-way quantum computer (1WQC) is

investigated using the general quantum variable formalism, which is simultaneously

applicable to qubits, qudits of any dimension and QCVs. To facilitate this, a formu-

lation of the 1WQC is proposed in terms of general measurement patterns which go

beyond a model focused exclusively on measurements on pre-prepared many-body

entangled states. I introduce a depth-reduction procedure that can be applied to

composite measurement patterns, which will then be used to highlight the differences

between quantum circuits and the 1WQC. In particular, it is shown that for all types

of quantum variables the computational depth complexity of the 1WQC is exactly

equivalent to that of unbounded fan-out circuits. This implies that the inherent

parallel power of the unbounded fan-out model is also available to the 1WQC. As

such, the 1WQC is not only a physically practical model for quantum computation,

but it has computational advantages over standard quantum circuits. This chapter

extends a range of qubit-based results to the general QV domain, especially those of

Broadbent and Kashefi (2009); Danos et al. (2007) and Browne et al. (2011). This

chapter is based upon Proctor (2015).

4.1 Introduction

It has been known since Raussendorf and Briegel (2001) introduced the one-way

quantum computer (1WQC) that adaptive local measurements of qubits prepared

in an entangled state are sufficient for universal quantum computation. Not long

after this it was shown that this can be extended to models defined on qudits [Zhou

et al. (2003)] and QCVs [Menicucci et al. (2006)], and hence the 1WQC provides

an alternative to quantum circuits for quantum computation with any type of QVs.
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4. One-way quantum computation with general quantum variables

This remarkable computational paradigm is particularly appealing from a physical

perspective as it allows the creation of entanglement to be separated into an initial

off-line procedure, which is potentially much simpler than on-demand application

of unitary entangling gates. Indeed, entangled resource states have been generated

in a variety of settings, with a particularly impressive example given by the recent

QCV-based experiments of Chen et al. (2014) and Yokoyama et al. (2013) in which

60 and 10,000 QCVs have been entangled, respectively. Furthermore, there are a

range of promising experiments demonstrating the basic measurement-induced gates

required to compute in this model [Bell et al. (2014); Chen et al. (2007); Lanyon

et al. (2013); Su et al. (2013); Tame et al. (2014); Ukai et al. (2011)].

The one-way quantum computer, often also termed measurement-based quantum

computation1, may appear to have very little in common with the quantum cir-

cuit model. As such, it is perhaps surprising that it is capable of universal quantum

computation. However, for qubits the relationship between the 1WQC and quantum

circuits has been extensively researched and is now well understood [Broadbent and

Kashefi (2009); Danos et al. (2007, 2009); Raussendorf et al. (2003)], with one inter-

esting conclusion that the one-way model requires less quantum computational steps

to implement certain operator sequences than standard quantum circuits [Broadbent

and Kashefi (2009); Browne et al. (2011)].

Although there has been some investigations of the computational properties of

the 1WQC in the more general setting of qudits [Hall (2007)] and QCVs [Gu et al.

(2009)], a detailed and unified understanding of the qudit and QCV 1WQC models,

and their relationship to quantum circuits, remains to be developed: This is the topic

of this chapter. In the following, I will provide mappings between quantum circuits

and one-way computations for general QVs. This will then be used to show that the

1WQC has exactly the same parallel power as the unbounded fan-out model, which

was introduced and investigated in the previous chapter. This extends a qubit-

based result of Browne et al. (2011) to the setting of general QVs. The results of

this chapter highlight that, for all types of QVs, the 1WQC is especially powerful for

parallel quantum computation, whilst also being a particularly physically appealing

model for realising a quantum computer. I would argue that the d > 2 qudit-based

model is especially promising as, along with this parallelism, it may also benefit

from the improvements in error-correction codes and algorithm success probabilities

associated with moving from a binary encoding to higher-dimensional qudits [Andrist

et al. (2015); Anwar et al. (2014); Campbell (2014); Campbell et al. (2012); Duclos-

Cianci and Poulin (2013); Parasa and Perkowski (2011, 2012); Watson et al. (2015);

Zilic and Radecka (2007)].

The remainder of this chapter is structured as follows: Section 4.2 provides an

1I will only refer to this model as one-way quantum computation in this thesis.
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introduction to ‘quantum teleportation’ - which is the underlying technique that the

1WQC is based upon. Section 4.3 introduces the 1WQC, within the general QV

framework, and confirms the universality of this model for quantum computation.

A procedure for reducing computational depth in a 1WQC is formulated in Sec-

tion 4.4, which extends qubit-based work of Danos et al. (2007). In Section 4.5 I

present mappings between the 1WQC and quantum circuits, which are used to derive

the relationship between unbounded fan-out circuits and the 1WQC. The relation-

ships between 1WQC, unbounded fan-out circuits and standard quantum circuits

are then expressed in terms of complexity classes in Section 4.6. In Section 4.7, these

complexity classes are used to show that there are a large range of quantum com-

putational models which the 1WQC can simulate with no increase in depth scaling.

Section 4.8 will briefly comment on the classical computations required in the 1WQC

and the role of quantum resources in enhancing classical computations. Finally, the

experimental progress in implementing 1WQC is discussed in Section 4.9 and the

chapter concludes in Section 4.10.

4.2 Logical gates via projective measurements

Projective measurements generically destroy quantum superpositions, and hence it

may seem strange that they can be used to drive unitary evolution. Therefore, before

considering the 1WQC more formally, it is useful to begin by demonstrating the basic

underlying idea on which this model rests: quantum teleportation. Consider two

QVs, the first of which is in some computational basis state |q〉, and the second of

which is prepared in the conjugate basis state |+0〉. If a cz gate is applied to this

pair of QVs, they are mapped to

|q〉|+0〉
cz−−−−−−→ |q〉|+q〉. (4.1)

This has imprinted the value of q into the second QV. Next, apply an R(ϑ) gate

(which is defined in Equation 2.58) to the first QV, for some arbitrary function ϑ,

and then an F gate also to this QV. This is the mapping

|q〉|+q〉
FR(ϑ)⊗I−−−−−−−→ eiϑ(q)|+q〉|+q〉. (4.2)

The key point to note is that this phase factor is no more associated with one QV

than the other.

Now, consider performing a destructive measurement on the first QV which

projects it onto the computational basis state |m〉, with associated outcome m ∈ Sd.
By a destructive measurement it is meant that the measured QV is destroyed in

the measurement process; mathematically it is traced-out, leaving a one-QV state.
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Hence, the effect of the measurement on the second QV is:

eiϑ(q)|+q〉|+q〉
measurement−−−−−−−−−→ 〈m|+q〉

|〈m|+q〉|
eiϑ(q)|+q〉, (4.3)

for known m ∈ Sd, where the denominator in the fraction is the required renor-

malisation term. The overlap of a computational and conjugate basis state is

〈m|+q〉 = ωmq/
√
d, as stated in Equation 2.28, and so this state may be written as

〈m|+q〉
|〈m|+q〉|

eiϑ(q)|+q〉 = ωmqeiϑ(q)|+q〉. (4.4)

Therefore, the measurement has induced a phase factor which depends on both m

and q. As X(−m)|+q〉 = ωmq|+q〉 via Equation 2.29, then from the action of R(ϑ)

and F on the computational basis it follows that

ωmqeiϑ(q)|+q〉 = X(−m)FR(ϑ)|q〉. (4.5)

As such, the effect so far has been to ‘teleport’ |q〉 from the first to the second QV

and in the process apply the gate FR(ϑ) and the probabilistic measurement-induced

X(−m) ‘error’, where every m ∈ Sd is equally likely to be the actualised value. This

error can be removed by applying X(m), leaving the final state

X(−m)FR(ϑ)|q〉 correction−−−−−−−−−→ FR(ϑ)|q〉. (4.6)

The X(m) gate can be considered a hybrid quantum-classical sum gate, as m is the

value of a classical variable. By linearity, if the first QV is in the general input state

|ψ〉 =
∑

q∈Sd cq|q〉, this whole procedure maps

|ψ〉|+0〉 −−−−−→ FR(ϑ)|ψ〉. (4.7)

This is summarised in Figure 4.1 as a quantum-classical hybrid circuit, where double

wires represent classical variables of the same type as the QVs (i.e., for qubits

they are bits, for qudits they are dits, and for QCVs they are classical continuous

variables).

A projection onto a computational basis state is only one possible measurement

and the local gates on the first QV, in the above protocol, may be absorbed into a

more general ϑ-parameterised measurement. In order to introduce these measure-

ments, it is useful to define the u-parameterised Hermitian operator

x̂u :=
∑
q∈Sd

q
(
u†|q〉〈q|u

)
= u†x̂u, (4.8)
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4.2 Logical gates via projective measurements

|ψ〉 • R(ϑ) F • m

|+0〉 • FR(ϑ)|ψ〉

Figure 4.1: A hybrid quantum-classical circuit which implements the gate FR(ϑ)
and teleports a QV in an unknown state |ψ〉 to a second QV initialised to |+0〉. In
addition to unitary gates, this circuit uses a destructive measurement and classical
controls. The operations enclosed by a dashed box can be combined into a general
ϑ-parameterised measurement.

|ψ〉 • x̂FR(ϑ) • m

|+0〉 • FR(ϑ)|ψ〉

Figure 4.2: Local unitary controls can be absorbed into a change in measurement
basis. This gate implementation protocol is the basis of the 1WQC.

where x̂ is the ‘position’ operator for a general QV, as introduced in Equation 3.21.

In practice, a measurement of this operator does not need to actually have the

outcome q associated with a projection onto u†|q〉 in the sense that, as long as the

measurement outcome for each basis state is distinct, the outcomes can be mapped

onto these values. It is sometimes a useful shorthand to discuss ‘measuring in a

basis’. Consider the basis

Bu := {u†|q〉 | q ∈ Sd}. (4.9)

By the statement ‘a measurement in the basis Bu’ what will be meant is a measure-

ment of the Hermitian operator x̂u. For a destructive measurement, the application

of u followed by a computational basis measurement is exactly equivalent to a mea-

surement in the Bu basis. Therefore, the procedure of Figure 4.1 can implemented

without any single-QV gates by instead using a ϑ-parameterised BFR(ϑ) basis mea-

surement, as shown in Figure 4.2. Note that performing variable measurements may

in practice be no easier than implementing local gates and a fixed measurement -

but it is at least no harder, as it can always be decomposed as such.

There is no a priori reason that a measurement of one of a pair of entangled

QVs, encoding a shared logical QV, will result in a unitary action on this logical

QV. For example, consider the two-QV state

|Ψ〉 =
∑
q∈Sd

cq|q, q〉, (4.10)
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4. One-way quantum computation with general quantum variables

which encodes the |ψ〉 =
∑

q∈Sd cq|q〉 logical QV. A destructive computational basis

measurement of either QV will implement the mapping∑
q∈Sd

cq|q, q〉
B−measurement−−−−−−−−−−→ |m〉, (4.11)

with probability |cm|2, which is not a logical unitary: it has destroyed the logical

QV and extracted some information about the values of cq. The key to the scheme

of Figure 4.2 is that the measurement is in a basis that is conjugate to the basis

in which the shared QV is encoded: if either QV in Equation 4.2 is measured in

the conjugate basis then the value of q is revealed, but a measurement of either QV

in the computational basis reveals nothing about this value. The inherent element

of randomness in the measurement outcomes is then realised as the random phase

error.

The protocol presented above is the basic building block of one-way quantum

computation. It may seem like this method has involved quite a lot of hard work

simply to implement a single-QV unitary gate, however, the 1WQC model based on

this has a range of advantages over quantum computation with unitary evolution

(and final measurements) alone. In my opinion, a particularly intuitive way to think

of the 1WQC is as a structured method for turning fully quantum circuits into

quantum-classical hybrid circuits. In doing so, it transfers some of the computation

to the classical domain, which is highly preferable in practice. Bearing this in mind

throughout the remainder of this chapter can help to clarify the results presented.

However, from other points of view the one-way quantum computer is radically

different to quantum circuits.

4.3 The one-way quantum computer for general quan-

tum variables

The 1WQC for general QVs is now defined. This will include cluster state compu-

tation (i.e., measurements on a lattice entangled state) as a sub-case, which is the

standard formulation for the qudit [Zhou et al. (2003)] and QCV [Menicucci et al.

(2006)] models, but it is more general than this. As the formalism I propose here

largely extends previous qubit-based work, the notation and terminology I use in

the remainder of this chapter is chosen to closely match that in common use for

the qubit sub-case, see e.g., Danos et al. (2007). It will be useful in this chapter,

and throughout this thesis, to use a subscript on an operator to denote the QV it

acts upon, e.g., ujvk represents u and v acting on QVs j and k, respectively. In

the following, I will define the 1WQC in terms of a quantum computational model

M, and I will use the associated notation and concepts (e.g., serial and parallel
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4.3 The one-way quantum computer for general quantum variables

compositions), which were introduced in Section 2.3.

I define the general quantum variable 1WQC to be a quantum computational

model M = {o, s} in which the allowed set of operations o are the entangling oper-

ations, Pauli corrections and dependent and independent measurements which will

be defined in-turn below. The set of preparable states, s, which non-input QVs can

be initialised to, is taken to be s = {|+0〉}. Each operation type is now introduced:

1. Entangling operations: The entangling operation, denoted Ei,j , where i and j

are the QVs on which it acts, is defined by

Ei,j := Ci
jZ, (4.12)

which is simply the cz operator.2

2. Pauli corrections: The Pauli corrections are classically-controlled X and Z

operators, specifically they are Xi(s) and Zi(t) operators where s, t ∈ Sd are

classical variables (CLVs) calculated from constants and measurement out-

comes (see below) using the arithmetic of Sd.

3. Dependent measurements: A dependent measurement, denoted
[
Mϑ
i

]s
t

, is

defined to be a destructive measurement on the ith QV of the operator

x̂FR(ϑ)X(s)Z(t), (4.13)

for some ϑ : Sd → R and s, t ∈ Sd. The measurement outputs a CLV, and this

is denoted by mi ∈ Sd. A phase function, ϑ, and values for the s and t CLVs

must be provided to completely specify a dependent measurement.

4. Independent measurements: This is a measurement which does not require

input CLVs to define. It is a measurement of x̂FR(ϑ). Such a measurement is

denoted Mϑ
i .

Because a destructive measurement of x̂vu is equivalent to a u gate followed by a

measurement of x̂v and because x̂eiφu = x̂u, it follows that

[
Mϑ
i

]s+s′
t+t′

=
[
Mϑ
i

]s
t

Xi(s
′)Zi(t

′) = Mϑ
i Xi(s+ s′)Zi(t+ t′). (4.14)

Hence, it is simple to convert between dependent measurements and independent

measurements preceded by Pauli corrections. To implement a dependent measure-

ment the values of the CLVs may be accounted for by altering the phase function ϑ,

2This uses the Ciju notation for cz as it is more convenient for explicitly denoting which the
control and target QVs are. It might also seem questionable whether there is any need for this
extra Ei,j notation. However, it will make the similarities between this and another model, with
an alternative entangling operation, more obvious when discussed later in this thesis.
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4. One-way quantum computation with general quantum variables

as we now see. By noting that X(s) maps |q〉 → |q + s〉 and that Z(t) = R(ϕ) with

ϕ(q) = 2πtq/d, it follows that

R(ϑ)X(s)Z(t) = X(s)R (ϑs,t) , (4.15)

where ϑs,t is the s and t adapted phase function

ϑs,t(q) = ϑ(q + s) + 2πtq/d. (4.16)

Using this, it may then be shown that

〈q|FR(ϑ)X(s)Z(t) = 〈q|FX(s)R (ϑs,t) = ωsq〈q|FR (ϑs,t) . (4.17)

This implies that

x̂FR(ϑ)X(s)Z(t) = x̂FR(ϑs,t). (4.18)

and hence a dependent measurement can be accounted for by adapting the ϑ parame-

terised measurement dependent on the CLVs s and t, via ϑ→ ϑs,t. This encompasses

the adaptive element of the 1WQC. The formalism that has been introduced above

will be particular useful for comparing quantum circuits and the 1WQC.

4.3.1 Basic measurement patterns

A computation in the one way model will be called a measurement pattern. A

particular pattern is specified by giving a quadruplet

P = (V, I,O, p), (4.19)

where p is a sequence of operations on the set of QVs V (and I and O are input

and output subsets of QVs). The definitions of the allowed operations in the model

may appear rather technical and hence, in order to illustrate how a measurement

pattern implements a quantum computation and to demonstrate the universality of

the model, examples of patterns are now given.

It is essentially trivial to give a pattern that implements the cz gate. As the en-

tangling operation is a cz operator, this can be implemented with the measurement-

free pattern

Pcz = ({1, 2}, {1, 2}, {1, 2}, E1,2), (4.20)

in which V = I = O. To be clear, there are two QVs in total on which the measure-

ment pattern acts, labelled ‘1’ and ‘2’ (the set {1, 2}), and these are also the input

and output subsets.

In Section 4.2 it has already been shown how a FR(ϑ) gate may be implemented
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4.3 The one-way quantum computer for general quantum variables

via an entangling operation and a variable measurement, as summarised by Fig-

ure 4.2. The procedure of Figure 4.2 may be expressed as the measurement pattern

PFR(ϑ) = ({1, 2}, {1}, {2}, X2(m1)Mϑ
1 E1,2), (4.21)

in which there is one input QV, labelled 1, and one output QV, labelled 2, and the

first QV is destroyed in the process.3 This demonstrates the utility of this notation:

this expression is a fairly compact representation of a non-trivial procedure. From

this measurement pattern it is possible to generate F and any R(ϑ) using composi-

tion of measurement patterns. Specifically, using the ‘zero function’ ϑ0(q) = 0 for

all q, then4

PF = PFR(ϑ0), PR(ϑ) = PF ◦PF ◦PF ◦PFR(ϑ), (4.22)

which uses relation that F 4 = I, given in Equation 2.24. Although a special case of

the R(ϑ) gate, the Z(q) gate may also be implemented with the measurement-free

pattern

PZ(q) = ({1}, {1}, {1}, Z1(q)), (4.23)

which simply uses a correction to implement the gate.

4.3.2 A universal set of measurement patterns

The measurement patterns presented above can generate logical gates that are suffi-

cient for universal quantum computation - an entangling gate, the Fourier gate and

some set of rotation gates is a universal gate set, as was discussed in Section 2.5.

Hence, by composition of measurement patterns, this shows that the 1WQC is a

universal quantum computer provided suitable measurements are available. Note

that this has already been shown in the original papers on 1WQC, using the cluster-

state formalism [Menicucci et al. (2006); Raussendorf and Briegel (2001); Zhou et al.

(2003)].

One of the aims of this chapter is to compare the 1WQC and the quantum

circuit models introduced in the previous chapter. Hence, to facilitate a suitable

comparison, it is helpful to restrict both models to equivalent logical gate sets. If we

wish to only consider approximate universality then (again) the gate set that will be

considered is Gε−uni, as introduced in Equation 2.59, which includes the generators

of the Clifford group cz, F , P (p) and Z(q) for q ∈ Sd, along with q ∈ Sd powers of

3Alternatively, a nice way to think of this is that the measured QV is being transformed into a
classical variable by the measurement.

4This uses the idea of a serial computation as given in Equation 2.38, denoted by the composition
symbol ‘◦’. The idea is that the output of one computation is the input to the next. With
measurement patterns this is less trivial than with quantum circuits, but is still fairly straight
forward.
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4. One-way quantum computation with general quantum variables

some single-QV non-Clifford gate u that is sufficient for universality. We again take

this u gate to be diagonal, with its phase function denoted ϑf , and this may be the

relevant ‘cubic’ gate for the QV type, as discussed in Section 2.5, if a specific choice

is needed.5

To implement the Clifford gates in this set, it is sufficient to demand that mea-

surements of x̂ϑ can be performed for phase-functions ϑ0(q) and ϑP (p) given by

ϑ0(q) = 0, (4.24)

ϑP (p)(q) = πpq(q + %d)/d, (4.25)

where %d = 1 for odd-dimension qudits, and % = 0 otherwise. This is because

these phase functions in the pattern PFR(ϑ) implement logical F and FP (p) (as the

phase gate acts as P (p)|q〉 = eπipq(q+%d)/d|q〉) and the other generators are obtained

from the measurement-free patterns Pcz and PZ(q). The availability of an x̂ϑf
measurement is then essential to access a universal gate set, and furthermore, for

some purposes, it is also essential to be able to measure the classically-adapted

version of this, as given by Equation 4.17. Finally, if it is instead desirable to

consider exact universality (relevant only for qudits), the set of all ϑ phase-functions

is sufficient for this (see Section 2.5). For most of the following the exact gate set, or

rather the measurement-basis set, is not explicitly relevant. However, some results

rely on the implicit assumption that Clifford gates can be implemented exactly.

4.3.3 Depth and size in measurement patterns

The main aim of this chapter is to study depth and size complexity in measurement

patterns, and compare this to quantum circuits. The definitions of quantum depth

and size given in Section 3.2 can be immediately applied to measurement patterns

and compositions of measurement patterns. However, the concept of depth is in this

case rather more subtle than with quantum circuits and therefore an example is now

given. Consider the measurement pattern

P = ({1, 2, 3, 4}, {1}, {4}, p), (4.26)

with the operation sequence p given by

p = X4(m3 − q −m1 − pm2)Z4(m2)M
ϑP (p)

3 [Mϕ
2 ]m1Mϑ

1 E2,3E3,4E1,2. (4.27)

This is a sequence of three entangling operations, followed by three measurements

(two independent, one dependent), and finally, a pair of corrections on the output.

5This is appropriate for QCVs and prime dimension qudits. For non-prime dimensions a generic
rotation gate will suffice (see Appendix G).
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4.4 Standard measurement patterns

The size of a pattern is no more complex to understand than with a circuit: this pat-

tern has a size of eleven (with a contribution of two from each entangling operation,

as they act on two QVs, and one from each of the other operations).

The (quantum) depth of a computation is defined as the longest subsequence of

dependent operations from its command sequence p: a subsequence of dependent

operations is one in which each operation acts on a QV in common with, or de-

pends on the outcome of, the previous operation in the sequence (see Definitions 3.1

and 3.2). It is easy to find dependent subsequences in a measurement pattern, for

example, take the first and third operations in p. This is the subsequence E2,3E1,2

and this satisfies these criteria: E2,3 acts on a QV in common with E1,2. However,

the subsequence of the first and second operation E3,4E1,2 is not a dependent sub-

sequence - encoding the idea that they can be implemented simultaneously. In this

pattern the depth is five, as this is length of the longest dependent subsequence. For

example, one such subsequence is highlighted in cyan below:

p = X4(m3 − q −m1 − pm2)Z4(m2)M
ϑP (p)

3 [Mϕ
2 ]m1Mϑ

1 E2,3E3,4E1,2. (4.28)

The [Mϕ
2 ]m1 measurement does not act on the same QV as the operation before

it in this subsequence, but it does depend on the outcome of that operation. An

alternative dependent subsequence of the same length is obtained by removing Mϑ
1

and including E2,3, but both operations cannot be included as they act on no QVs

in common, and Mϑ
1 does not depend on an outcome of E2,3 (which is not even a

measurement). The measurement pattern used here to illustrate size and depth may

seem rather arbitrary. However, it is a useful computation which implements the

unitary FP (p)Z(q)FR(ϕ)FR(ϑ) and, as will be seen in the next section, this can

be obtained by composition of the individual basic patterns for the FP (ϑ) gate and

the Z(q) gate, which were given in Equation 4.21 and Equation 4.23.

4.4 Standard measurement patterns

The presentation of the 1WQC given so far does not highlight the advantages over

quantum circuits inherent in measurement patterns. These can be illuminated by

introducing an operation rearranging process that can be applied to composite mea-

surement patterns, and which will be called standardisation. This extends ideas

developed for qubits by Danos et al. (2007).

4.4.1 Entangle → measure → correct

Composite measurement patterns can be rearranged so that they consist of an initial

sequence of entangling operations, followed by measurements, and then finally Pauli
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corrections only on the output QVs. This then links general measurement patterns

to computation with cluster states, in which dependent measurements are performed

on pre-prepared entangled states. Let the ith QV, along with the classical variable

mi this is converted to by a measurement (if any), be termed variable i. Operations

acting on, or depending on, distinct variables commute and may be freely rearranged.

Hence, the operations in any pattern may be reordered into entangling operations,

measurements and then corrections, with the aid of the equalities

Eij ·Xi(s)Zi(t) = Xi(s)Zi(t)Zj(s) · Eij , (4.29)

[Mϑ
i ]st ·Xi(s

′)Zi(t
′) = [Mϑ

i ]s+s
′

t+t′ . (4.30)

The first of these equalities follows from the conjugation rule for cz on Pauli gates,

given in Equation 2.53, and the second equality was already stated in Equation 4.14.

Notice that the rearrangement of the entangling operation to precede the correc-

tions, whilst maintaining the corrections as Pauli gates, is only possible because the

entangling operation is Clifford.

4.4.2 Removing dependencies for Clifford gates

In the case of patterns including Clifford operators, a further stage of pattern rewrit-

ing can be implemented, which will be called Pauli simplification. The only patterns

for generating the Clifford group that require measurements are those for F and

FP (p), with associated measurement phase functions θ0 and ϑP (p), introduced in

Equations 4.24 and 4.25. Using the phase and Fourier gate conjugation rules given

in Equations 2.51 and 2.52, it follows that

〈q|FP (p)X(s)Z(t) = ωsp(s+%d)/2−qs〈q|FP (p)Z(t+ sp), (4.31)

and similarly, 〈q|FX(s)Z(t) = ω−qs〈q|FZ(t), which respectively imply that

x̂FR(ϑP (p))X(s)Z(t) = x̂FR(ϑP (p))Z(t+sp), (4.32)

x̂FR(ϑ0)X(s)Z(t) = x̂FR(ϑ0)Z(t). (4.33)

Written in terms of the measurement operations notation, this says that[
M

ϑP (p)

i

]s
t

=
[
M

ϑP (p)

i

]
t+sp

, (4.34)[
Mϑ0
i

]s
t

=
[
Mϑ0
i

]
t

, (4.35)

where dropping one dependency super-script (or sub-script) is a natural way to

denote that the measurement no longer has this dependency type (we could equiv-
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alently put a 0 superscript here). Hence, by using these equations after standardi-

sation has been applied to a pattern, all the X-type dependencies can be removed

from these Clifford measurements in a pattern.

4.4.3 Removing all Z-type dependencies

The final stage of pattern rewriting to be introduced will be called signal shifting

and this removes all Z-type dependencies in all the measurements. Again, using

the conjugation relation in Equation 2.51, it follows that

〈q|FR(ϑ)X(s)Z(t) = ω−st〈q|X(−t)FR(ϑ)X(s) = ω−st〈q + t|FR(ϑ)X(s). (4.36)

Therefore, a general s, t ∈ Sd classically-adapted measurement operator may be

rewritten as

x̂FR(ϑ)X(s)Z(t) =
∑
q∈Sd

(q − t)
(
X(−s)R(−ϑ)F †|q〉〈q|FR(ϑ)X(s)

)
. (4.37)

Such a measurement is equivalent to instead measuring x̂FR(ϑ)X(s) and then sub-

tracting t from the measurement outcome.6 In terms of measurement operations,

this can then be understood as the equality(
mi, [Mϑ

i ]st

)
=
(
mi − t, [Mϑ

i ]s
)
. (4.38)

This denotes that the measurement outcome mi is classically post-processed if the

change in the measurement basis is dropped, and hence, anywhere in the pattern

that mi appeared, now mi − t appears.

4.4.4 Applying the standardisation procedure

The composite process of standardisation, Pauli simplification and then signal shift-

ing will be called complete standardisation, and a pattern on which this has been

applied is called completely standard. A completely standard measurement pattern

for a Clifford circuit will have no dependent measurements, and hence all of the

measurements may be performed simultaneously. To clarify the process of complete

standardisation, an example of applying this to a composite pattern is now given.

Consider the composite patten for the single-QV unitary FR(γ)Z(q)FR(ϕ)FR(ϑ)

for some arbitrary functions ϑ, ϕ and γ and q ∈ Sd, as obtained from the basic

patterns PFR(ϑ) and PZ(q), which are given in Equation 4.21 and Equation 4.23,

6For qudits, note that subtraction of t means adding d− t modulo d.
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respectively. Via the definition of serial composition, this is the pattern

PFR(γ)Z(q)FR(ϕ)FR(ϑ) = ({1, 2, 3, 4}, {1}, {4}, p), (4.39)

where p is given by

p =
(
X4(m3)Mγ

3E3,4

)
Z3(q)

(
X3(m2)Mϕ

2 E2,3

)(
X2(m1)Mϑ

1 E1,2

)
, (4.40)

where the brackets are used to clearly distinguish the operation sequence obtained

from each of the four basic patterns. First we apply standardisation to this sequence

of operations. This procedure gives

p = X4(m3)Mγ
3E3,4Z3(q)X3(m2)Mϕ

2 E2,3X2(m1)Mϑ
1 E1,2, (4.41)

⇒ X4(m3)Mγ
3 Z3(q)X3(m2)Z4(m2)E3,4M

ϕ
2 X2(m1)Z3(m1)E2,3M

ϑ
1 E1,2, (4.42)

⇒ X4(m3)Z4(m2) [Mγ
3 ]m2

q Mϕ
2 X2(m1)Z3(m1)Mϑ

1 E3,4E2,3E1,2, (4.43)

⇒ X4(m3)Z4(m2) [Mγ
3 ]m2

q+m1
[Mϕ

2 ]m1Mϑ
1 E2,3E3,4E1,2, (4.44)

= p(s). (4.45)

This pattern is now standardised. It is clear that it now consists first of entangling

operations, then measurements, and finally corrections on the output QV. In this

case, as there are no Clifford gate measurements, the Pauli simplification stage

changes nothing. Signal-shifting is then applied, which results in the transformation

p(s) ⇒ X4(m3 − q −m1)Z4(m2)[Mγ
3 ]m2 [Mϕ

2 ]m1Mϑ
1 E2,3E3,4E1,2. (4.46)

This sequence is then completely standardised. Notice that, although this procedure

has (slightly) reduced the depth of the pattern, none of the measurements have lost

their dependencies, and so they still have to be performed in sequence.

To demonstrate the procedure when some of the gates are Clifford, return to

the standardised pattern ps and set γ = ϑP (p). The Pauli simplification procedure

obtains the pattern

p̃(s) = X4(m3)Z4(m2) [M
ϑP (p)

3 ]m2
q+m1

[Mϕ
2 ]m1Mϑ

1 E2,3E3,4E1,2, (4.47)

⇒ X4(m3)Z4(m2) [M
ϑP (p)

3 ]q+m1+pm2
[Mϕ

2 ]m1Mϑ
1 E2,3E3,4E1,2, (4.48)

= p̃(ps). (4.49)

Applying signal shifting to this new operation sequence then results in the pattern

p̃(ps) ⇒ X4(m3 − q −m1 − pm2)Z4(m2)M
ϑP (p)

3 [Mϕ
2 ]m1Mϑ

1 E2,3E3,4E1,2. (4.50)
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This pattern is now completely standard. Notice that the Clifford measurement

now has no dependencies, and hence, it may be implemented in the first round of

measurements. This is the pattern that was used in Section 4.3.3 to demonstrate

depth and size in the 1WQC.

It can be shown that complete standardisation never increases the (quantum)

size or depth of a pattern7, and in many cases it can substantially reduce it. The

cost of this is the addition of simple classical processing - the exact requirements of

this classical side-processing are discussed Section 4.8.

4.4.5 Entanglement graphs

The complete standardisation procedure results in a computation in which classi-

cally controlled measurements are implemented on an entangled state, and explicit

corrections are only applied on the output (if at all8). This is exactly the idea of

cluster state computation. The entanglement stage of a pattern may be represented

uniquely as a graph in which the nodes are the QVs and the number of edges between

nodes represents the number of entangling operations acting on each QV pair (for

qudits, this may be restricted to being in Z(d)). The graph may also be labelled with

measurement bases, along with their dependencies, to completely define a standard

measurement pattern. This is shown in Figure 4.3.

Definition 4.1. The entanglement depth is the minimum depth of the entanglement

operations in a standardised pattern.

It is defined to be the minimum depth because, by arranging the entangling op-

erations in a particularly inconvenient order, the depth can (in most cases) obviously

be increased. However, as the entangling operations can be freely commuted, it is

more useful to know what the minimum depth can be by a judicious rearrangement

of these operations. For example, consider the ‘cascade’ of cz gates, which may be

arranged for the depth to be either two or the same as the number of gates, shown

in Figure 3.2. The entanglement depth of a standard pattern can be easily extracted

from its graph representation:

Lemma 4.1. [Broadbent and Kashefi (2009) Lemma 3.1] Let G be the entanglement

graph of a standardised pattern P and let ∆(G) be the maximum degree of G. The

entanglement depth of P is either ∆(G) or ∆(G) + 1.

7Broadbent and Kashefi (2009) have shown that this is the case for standardisation with qubits.
Essentially the same derivation will hold here.

8Corrections on the output do not actually need to be applied: either they can be absorbed into
the next stage of a measurement pattern, or, if the QV is then measured, they can be absorbed into
a re-interpretation of the result. The exception to this is if the output of a measurement pattern is
to be input into something other than another measurement pattern, e.g., a quantum circuit.
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4. One-way quantum computation with general quantum variables

The lemma of Broadbent and Kashefi (2009) is presented in the context of qubit

measurement patterns, but as it only relates to the properties of the entanglement

graph it is easily confirmed that it also applies here. To be clear, the degree of a

node in a graph is the number of edges attached to the node, and the maximum

degree of the graph is the maximum over all the nodes (e.g., a square 2D lattice has

maximum degree 4, a linear chain has maximum degree 2).

Figure 4.3: A standard measurement pattern may be represented in terms of a
graph. The nodes represent QVs and the edges represent entangling operations
between QVs. White circles represent input QVs, prepared in an arbitrary input
state; black circles represent auxiliary QVs prepared in |+0〉; diamonds represent
output QVs, prepared in |+0〉 and which are not measured. A phase function and any
dependencies may be written by each node that represents a QV that is measured in
the pattern (normally all non-output QVs) to completely define a standard pattern.

4.5 Quantum circuits and measurement patterns

Mappings in both directions between quantum circuits and measurement patterns

are now provided (see Broadbent and Kashefi (2009) for similar work for the qubit

sub-case). This will then be used to provide depth-preserving mappings between

measurement patterns and unbounded fan-out circuits, extending a result of Browne

et al. (2011) to the general quantum variable domain.

4.5.1 Measurement patterns simulating quantum circuits

Definition 4.2. The standard measurement pattern simulation of a quantum circuit

is obtained by

1. Rewriting the circuit as the composition of the single-gate circuits Ccz, CF ,

CR(ϑ) and CZ(q).

2. Replacing each basic circuit in the decomposition with the equivalent basic mea-

surement patterns Pcz, PF , PR(ϑ) and PZ(q).

3. Completely standardising the resultant measurement pattern.

It is noted that this procedure introduces additional auxiliary QVs. The number

of additional auxiliary QVs required generically scales with the size of the quantum

circuit.
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Lemma 4.2. Any standard quantum circuit C may be implemented with a measure-

ment pattern P that has a depth of O(depth(C)) and a size of O(size(C)).

Proof: Consider the standard measurement pattern implementation of the cir-

cuit, as given by Definition 4.2. Each basic measurement pattern replacing each

basic gate is at most a small constant increase in size and depth. Hence, after (and

before) standardisation, this pattern will have, at most, a constant increase in size

and depth over the original quantum circuit.

This method of converting a quantum circuit into a measurement pattern is, in

general, not optimal in terms of the depth of the pattern, and it will not always

give constant depth patterns for Clifford circuits. Consider, for example, any cir-

cuit consisting of only cz gates, in which case the measurement pattern will include

no measurements and have an identical depth to the circuit. Hence, an alterna-

tive circuit-simulation procedure is now given which will produce constant depth

patterns for Clifford circuits.

Definition 4.3. The cluster-state measurement pattern simulation of a quantum

circuit is found using an identical procedure to the standard measurement pattern

except that, before conversion to a measurement pattern, four CF basic circuits are

inserted between any Ccz gates that act consecutively on the same QV.

This has no effect on the unitary implemented by the circuit (and hence the

unitary implemented by the resultant measurement pattern) because F 4 = I, and

this procedure will increase the depth and size of the circuit, and hence the pattern,

by less than a factor of four. However, it may be shown that now the entanglement

graph of the pattern has nodes of at most degree three. This is important in proving

the following proposition:

Proposition 4.1. Any n-QV Clifford operator may be implemented with an O(n2)

size and constant depth measurement pattern.

Proof: Any n-QV Clifford gate may be decomposed into an O(n2) size circuit

with no auxiliary QVs consisting of only F , P (q), Z(q) and cz gates, using the

efficient algorithm of Farinholt (2014) and Hostens et al. (2005).9 Consider the

cluster-state measurement pattern simulation of this circuit. This pattern still has a

size of O(n2). Such a pattern has a constant depth for the entanglement operations

(of at most 4) by Lemma 4.1, as its entanglement graph has a maximum degree of

three. As the pattern is completely standard, and the measurement phase functions

are only those for implementing F and FP (p), all the measurements are independent

9The work of Hostens et al. (2005) and Farinholt (2014) is in the context of qudits, but can be
easily applied to QCVs (which, in this context, are simpler than general dimension qudits as all
non-zero elements of R are invertible).
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and hence may all be implemented simultaneously. This therefore requires only unit

depth. The corrections all apply to different QVs in the output and hence may be

applied in a depth of 2. Hence, the measurement pattern has a total size of O(n2)

and the depth is a constant (more specifically, the depth is 7 or less).

Lemma 4.3. The n-QV fan-out gate can be implemented with an O(n) size and

constant depth measurement pattern.

Proof: The n-QV fan-out gate is Clifford, as can be seen from its decomposition

into n sum gates in Figure 3.3. Hence, by Proposition 4.1, this may be implemented

in constant depth. The O(n) size scaling is because the sum gate circuit for fan-out,

as given in Figure 3.3, has a size of O(n).

Lemma 4.4. Any unbounded fan-out circuit F may be implemented with a measure-

ment pattern P that has a depth of O(depth(F)) and a size of O(size(F)).

This follows from Lemmas 4.2 and 4.3. The consequences of this are that the

1WQC has access to the parallel computation power of the unbounded fan-out

model: this includes all of the results shown in Chapter 3. Furthermore, it is likely

that general-QV unbounded fan-out circuits are substantially more powerful for par-

allel computation than shown in this thesis as there are a range of further known

results in the qubit sub-case [Høyer and Špalek (2003, 2005); Moore and Nilsson

(2001); Takahashi and Tani (2013); Takahashi et al. (2010)], as discussed briefly in

the conclusions to Chapter 3. Hence, this provides a further motivation for future

extensions to the studies of Chapter 3.

4.5.2 Circuit simulations of measurements patterns

It is now shown how a quantum circuit may simulate a measurement pattern. In the

complete standardisation procedure, the Pauli corrections that are obtained have

the general form Zj (qj +
∑

i cimi) and Xj (qj +
∑

i cimi), where the sum is over

the measurement outcomes of different QVs (the mi), and where each measurement

outcome may be added or subtracted to the other values (i.e., ci = ±1), or may also

have more general multiplicative factors, which come from dependencies removed

from phase gates (see Equation 4.34). The qj ∈ Sd parameters are obtained from any

Pauli gates in the pattern implemented directly via corrections (see Equation 4.23).

This is used in the following definition:

Definition 4.4. The coherent circuit simulation of the measurement pattern P =

(V, I,O, p) is the circuit C = (V, I,O, c(p)), where c(p) consists of an initial layer

of F gates on all QVs in V \ I, followed by the operations of p in order using the

replacements
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1. Mϑ
i ⇒ FiRi(ϑ),

2. Xj

(
qj +

∑
i∈Mj

cimi

)
⇒ Xj(qj)

∏
i∈Mj

Ci
jX(ci),

3. Zj

(
qj +

∑
i∈Mj

cimi

)
⇒ Zj(qj)

∏
i∈Mj

Ci
jZ(ci).

Here, each Mj ⊂ V is the set of measured QVs on which the correction on the jth QV

depends, and ci is the value that the mi outcome is multiplied by in that correction

in the pattern (e.g., ci = ±1 or ci is a phase gate parameter).

No replacement rule is needed for entangling operations as the Ei,j operation

is simply the Ci
jZ gate. This procedure may be used to turn any measurement

pattern into a quantum circuit by decomposing any dependent measurements into

Pauli corrections followed by independent measurements. This quantum circuit

implements the same operation as the measurement pattern by the principle of

deferred measurement - a measurement can always be delayed until later and classical

controls replaced with quantum control, see e.g., [Nielsen and Chuang (2010)].10

This method for the coherent implementation of a measurement pattern explicitly

highlights the intrinsic role of classical computation in the one-way model: Local

gates controlled by classically computed CLV sums are replaced by a sequence of

two-QV gates in which these sums are quantum computed. Hence, the power of the

one-way model is in using classical computation instead of quantum computation

when the quantum element is superfluous.

Proposition 4.2. Any polynomial-size measurement pattern, P, may be imple-

mented with an unbounded fan-out circuit that has a depth of O(depth(P)) and a

size of O(size(P)2depth(P)).

Proof: Without lose of generality, consider a completely standard pattern P.

The operation sequence of P consists of three sequential stages: I. Entanglement

operations; II. A sequence of measurements that may each be either X-type error

dependent ([Mϑ
i ]s operations) or independent (Mϑ

i operations); III. Pauli correc-

tions on the output QVs. Consider the coherent circuit implementation of P, as

given by Definition 4.4. The preliminary stage of this circuit consists of F gates on

the QVs in the non-input set V \ I. This may be implemented by an unbounded

fan-out circuit that has unit depth and a size no greater than size(P). Consider

stage I: This consists of cz gates and, as these are the same operations as in the

measurement pattern, this requires a quantum circuit of no greater depth or size

than the entangling stage of the measurement pattern. Consider stage II: This cir-

cuit subsection consists of no more than depth(P) layers each of which consists of

10Moreover, here there is no need to perform the delayed measurements. This is because, the
auxiliary QVs in the circuit which would have been measured in the measurement pattern, will each
just be in the state |+0〉 at the end of the circuit.
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first a CX(q) and X(q) gate circuit, acting on at most size(P) QVs (and obtained

from the X-type corrections, which come from expanding the X-type error depen-

dent measurements into corrections and independent measurements), followed by

some local F and R(ϑ) gates on these QVs, which all act on distinct QVs (and are

obtained from the independent measurements). This polynomial-size circuit acting

on size(P) QVs and consisting of only controlled and local X(q) gates may be im-

plemented with an unbounded fan-out circuit of size O(size(P)2) and depth of O(1),

by Proposition 3.4. The following local F and R(ϑ) gates may be implemented with

unit depth. As there are at most depth(P) such layers, this results in a total size

for this stage of the circuit of O(size(P)2depth(P)) and a depth of O(depth(P)).

Consider stage III: This is a polynomial-size circuit consisting of only CX(q), X(q),

CZ(q) and Z(q) gates, which acts on at most size(P) QVs. By Proposition 3.4, this

may also be implemented by an unbounded fan-out circuit with a size of O(size(P)2)

and depth of O(1). Hence, the unbounded fan-out circuit simulation of P has a size

of O(size(P)2depth(P)) and a depth of O(depth(P)).

This proposition, in combination with Proposition 4.1, proves the claim in Chap-

ter 3 that unbounded fan-out circuits can implement any Clifford gate in constant

depth, which was stated in Proposition 3.5. As a slightly technical aside, note that,

for QCVs, if the basic gate set in the quantum circuits is restricted to only include

Z(q) and P (q) gates with q ∈ [0, 1], which it was suggested in Section 3.5 might

be necessary from a physically perspective, then this proposition must be slightly

adapted. In particular, consider a measurement pattern that has a polynomial size

and only contains measurements that implement P (q) gates with polynomially large

q and ‘gate-like’ Pauli corrections Z(q) (i.e., those Z(q) ‘corrections’ which are not

corrections as such, but have been inserted to implement a Z(q) gate, and hence q is

a constant rather than a measurement outcome) also with only polynomially large

q. A QCV unbounded fan-out circuit that uses this more restricted gate set can be

found that simulates such a measurement pattern and which has the same depth as

the measurement pattern and a polynomial size.

4.6 Depth complexity classes

Quantum and classical circuits are both non-uniform models of computation. What

is meant by this is that for an n-variable input problem there is a different circuit,

and hence a different computational device, for each size of n. When we consider a

circuit to implement the unitary Un, defined for arbitrary n ∈ N, e.g., n-QV fanout,

what is really meant by this is that we are considering a family of circuits C1, C2,

C3, . . . , where circuit Cn computes Un for input size n. Therefore, it is possible for

completely unrelated circuits to be picked for each value of n, and this can allow for
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powerful computational properties to be hidden in the circuit description [Goldreich

(2008)]. Hence, it is often useful to consider uniform families of circuits, which are

those circuit families which, for each n, the associated circuit can be found efficiently

using a Turing machine.11 This technical restriction to uniformly generated circuits

(and measurement patterns) is used below.

A concise way in which to summarise the results of both this and the previous

chapter is in terms of complexity classes. For quantum circuits with qubits, the

complexity class QNCk of operators (or alternatively decision problems) that may be

computed by poly-logarithmic depth (O(logk n)) standard quantum circuits was first

introduced by Moore and Nilsson (2001), as the quantum analog of the equivalent

classical circuit class NCk. Extensions of this complexity class for qubit unbounded

fan-out circuits, denoted QNCk
f , and measurement patterns, denoted QMNCk, have

also been defined [Browne et al. (2011); Høyer and Špalek (2003)]. I now further

extend these classes to general QVs.

Definition 4.5. The complexity classes QNCk
d, QNCk

f,d and QMNCk
d contain oper-

ators computed exactly by uniform families of standard quantum circuits, unbounded

fan-out circuits and measurement patterns, respectively, which have input size n, a

depth of O(logk n), and polynomial size.

Naturally, the class of operators depends on the QV type, which the subscript

d in the complexity class notation is used to denote, and the qubit case recovers

the previously defined and studied classes.12 Note that the classes depend to some

degree on the universal gate set available, and it may be assumed that each model

has the relevant basic set built from Gε−uni in each case, as has been largely the case

throughout (i.e., the standard circuit model has this exact gate set, the unbounded

fan-out model has this set along with fanout, and the allowed measurements in the

1WQC are those to implement Gε−uni).

The relationship between unbounded fan-out circuits and measurement patterns,

that I have proven in Lemma 4.4 and Proposition 4.2, can be summarised by

QNCk
f,d = QMNCk

d, (4.51)

which holds for all k. This is an extension of a theorem of Browne et al. (2011) to

general QVs. Proposition 3.1 then implies the complexity class inclusion

QNC0
d ⊂ QNC0

f,d = QMNC0
d ⊆ QNC1

d, (4.52)

11The classical computation required to find the circuit may be restricted in size and depth: e.g.,
a poly-logarithmic time and space Turing machine.

12Sometimes these complexity classes are instead defined in terms of decision problems, e.g., in
Browne et al. (2011). However, in much of the literature the classes are defined to contain unitary
operators (as here), e.g., see Moore and Nilsson (2001).

91



4. One-way quantum computation with general quantum variables

which summarises the difference in depth complexity between standard quantum

circuits and unbounded fan-out circuits: unbounded fan-out gates cannot be com-

puted in constant depth with a standard quantum circuit, but can be computed in

log(n) depth. For all k, Equation 4.51 and Proposition 3.1 also imply that

QNCk
d ⊆ QNCk

f,d = QMNCk
d ⊆ QNCk+1

d . (4.53)

However, except for k = 0, none of these inclusions have been shown to be strict.13

This mirrors the situation for the qubit sub-case [Browne et al. (2011)].

4.7 Measurement patterns have optimal depth

I now shown that there are a large range of quantum computational models which

cannot have a lower depth complexity than measurement patterns. This will be

useful for understanding the computational model introduced in Chapter 6.

Proposition 4.3. Consider a quantum model M = (o, s) in which the set of allowed

operations o consists only of

1. Unitary operators in QMNC0
d,

2. Destructive measurements of Hermitian operators, Ô, that act on any number

of QVs and which have outcomes in Sd, such that UÔU † is diagonal in the

conjugate basis for some U ∈ QMNC0
d,

3. Unitary operators u(n) ∈ QMNC0
d with n ∈ Sd, where n is the value of a

CLV calculated from arithmetic in Sd on previous measurement outcomes and

constants in Sd,

and where the set of preparable states for the non-input QVs, s, is such that

4. For each |ψ〉 ∈ s, |ψ〉 = U |+0〉 for some U ∈ QMNC0
d.

For any computation Q in M, there exists a measurement pattern P that simulates

Q in a depth of O(depth(Q)).

Proof: The preparation of all non-input QVs in states from s can be achieved with

initial measurement patterns of constant depth from QVs prepared in |+0〉, by con-

dition 4 of the proposition. Q may be decomposed into depth(Q) sub-computations,

each of unit depth. In each sub-computation there is at most one operation on each

QV. The unitaries in this layer that are not classically controlled may be imple-

mented with constant depth measurement patterns, due to condition 1.

13For k 6= 0, showing that these inclusions are strict, or conversely that they are actually equal-
ities, is likely to be very difficult.
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Each (in general, many-QV) measurement in the layer may be simulated by first

applying the unitary that diagonalises the measurement in the conjugate basis, which

may be done with a constant depth measurement pattern by condition 2, and then

implementing Mϑ0
i operations (which are conjugate basis measurements) on each

QV that the measurement acts on. The appropriate measurement outcome of Ô,

associated with the projection onto the resultant conjugate basis state of the QV(s),

can then be calculated from the individual measurement outcome(s). Note that,

although this is in general different to a measurement of Ô (as Ô has outcomes in Sd
rather than Skd where k is the number of measured QVs), as the measured QVs are

discarded (the measurement is destructive) these procedures are identical under the

assumption that only the CLV calculated from the individual measurement outcomes

is retained. As the procedure for each measurement in the layer is of constant depth,

and all the measurements in the layer must act on distinct QVs, the measurements

may be implemented by a constant depth measurement pattern.

The classically controlled unitaries may implemented with a constant depth mea-

surement pattern, as they all act on distinct QVs and, by condition 3, all of these

unitaries may be implemented in constant depth measurement patterns, regardless

of the CLV input. Furthermore, the CLV on which they depend may be calcu-

lated with the classical computations that have been assumed to be available to

the 1WQC: arithmetic in Sd. Therefore, each component in a layer of Q may be

implemented with a constant depth measurement pattern and, as each operation in

the layer acts on distinct QVs (and may only depend on outcomes from previous

layers), the composite measurement pattern for the entire layer has constant depth.

Hence, the total pattern simulating Q has a depth of O(depth(Q)), which concludes

the proof.

This proposition is similar to one proven for qubits by Browne et al. (2011) (see

Theorem 4 therein). Any model using only Clifford operators, single-QV measure-

ments, Pauli corrections and preparation in states preparable by Clifford circuits

from the computational basis satisfies the constraints of this proposition. This will

therefore cover the model introduced in Chapter 6.

4.8 Quantum resources for classical computation

The considerations so far in this chapter have largely overlooked the classical side-

processing required to implement the 1WQC. There is good physical justification

for this, given that simple classical computations can be considered to be essentially

free in comparison to the difficulties inherent in implementing quantum operations.

This may not always be entirely true: if the time required to implement any classical

calculations between quantum layers results in any significant wait time this may
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have some implications. However, this would depend on the particular measurement

and coherence times in any physical device and there are many other layers of

classical controls in an experiment which would also need to be considered in such

an analysis.

4.8.1 Classical processing introduced via complete standardisation

In order to obtain an understanding of both the 1WQC and quantum computation

more generally, it is interesting to consider what classical resources are required in

addition to measurements of an entangled state, to obtain deterministic and uni-

versal quantum computation. This may be understood by considering the classical

computations introduced via complete standardisation, as is done below. Here, and

particular in Section 4.8.2, it will be helpful to distinguish between ordinary arith-

metic (i.e., arithmetic on R) and the arithmetic defined on the ring Sd. This is

achieved by denoting addition, subtraction and multiplication in Sd by ⊕, 	 and ⊗
respectively.

The standardisation procedure on a measurement pattern requires ⊕ addition of

measurement outcomes and constants, for all QV types, as implied by Equation 4.30.

Standardisation is sufficient to turn any measurement pattern into one consisting of

measurements on an entangled state, and hence, addition of measurement outcomes

is all that is necessary for deterministic universal quantum computation in this fash-

ion. However, the removal of any unnecessary dependencies, via Pauli simplification

and signal shifting, adds further classical computations: Pauli simplification in gen-

eral uses both ⊕ and ⊗ operations on measurement outcomes, due to the phase gate

relation given in Equation 4.34, and signal shifting uses the 	 operation, as seen in

Equation 4.38.

For qudits, the variable p ∈ Sd parameterised phase gates are not actually re-

quired (cz, F , P and Z generate the Clifford group), and if the parameter p is

set to unity in Equation 4.34, then no multiplication of measurement outcomes by

constants is needed. Furthermore, modulo subtraction can be obtained from d − 1

applications of modulo addition. Hence, for qudits the classical control computer

for the 1WQC requires only the sum gate, or with irreversible logic it may use the

gate

⊕ 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

demonstrated here for d = 4. For bits, this is known as xor (exclusive or). The clas-
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sical computer that uses only sum gates, I will refer to as a sum computer, and for

bits this is known as the parity computer [Aaronson and Gottesman (2004)]. In con-

trast to qudits, with QCVs the continuously parameterised P (p) gate is necessary to

generate the Clifford group and subtraction cannot be obtained via addition. Hence,

in this case, if 1WQC is to be implemented without unnecessary dependencies then

addition, subtraction and multiplication in R are all required to be available to the

classical control computer.14

Interestingly, for all QV types, it appears that the full power of classical compu-

tation is not required for controlling the 1WQC: it is well known that xor is not a

universal gate for Boolean logic [Pelletier and Martin (1990)], and similar consider-

ations apply to the modulo addition gate for d-valued logic.15 For example, modulo

addition cannot be used to implement the modulo multiplication gate

⊗ 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

again demonstrated for d = 4 and known as and for bits. Similarly, although the

control classical computer for the QCV 1WQC requires addition, subtraction and

multiplication, this is not sufficient for universal classical analog computation: such

a device requires access to some further operations, with universality achievable via

the inclusion of an integrator and a constant function in the basic operations set

[Bournez et al. (2006)]. Note that here I mean analog computation in the sense of

Claude Shannon’s general-purpose analog computer based on differential analysers.

4.8.2 GHZ states as a resource for a classical processor

An intriguing way to look at 1WQC is in terms of a quantum resource (a cluster

state) giving a very limited classical computer access to the power to solve problems

presumed to be intractable with any classical machine. Extending this idea, Anders

and Browne (2009) considered if there are more limited quantum resources that can

increase the power of the parity computer and they showed that access to single-

qubit measurements on three-qubit GHZ states allows the calculation of the and

gate with the parity computer, which along with xor is universal for Boolean logic

14Note that exact real-valued arithmetic is not required - it is only of any benefit to calculate
the values to the precision that the quantum operations can be performed.

15xor is not functionally complete as its truth table contains the same number of 0’s as 1’s.
Hence it can only implement Boolean functions f : {0, 1}n → {0, 1} which output 1 for half of the
input strings and 0 for the other half (even when using auxiliary fixed 0 and 1 bits). Similarly, the
⊕ logic gate for general d can only implement functions f : Z(d)n → Z(d) which give each value in
Z(d) for a fraction of 1/d of the possible inputs.
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[Pelletier and Martin (1990)]. I now briefly show how this idea can be extended to

qudits of any even dimension, and hopefully in doing so shed some light on the binary

special case. Interestingly, it would not be expected that this can be extended to

also include odd dimension qudits as it is known that there is a local hidden variable

model for odd-dimension qudit Stabilizer quantum mechanics [Gross (2006)]. In the

following, it will be necessary to use the equality16

1

d

∑
r∈Z(d)

ωr(q+q
′) = δ(q ⊕ q′). (4.54)

Given two classical dits a, b, the sum computer may compute a⊕b using a single

sum gate. Take the 3-qudit GHZ state

|ghz〉 =
1√
d

∑
q∈Z(d)

|q, q, q〉. (4.55)

Now, consider performing a measurement on the qudits in this state of the operators

x̂FP (a), x̂FP (b) and x̂FP †(a⊕b), noting that the measurements to be performed can

be controlled by this restricted-power sum computer. This is equivalent to applying

the operator FP (a)⊗ FP (b)⊗ FP †(a⊕ b), followed by a computational basis mea-

surement. Hence, the measurement outcome triplet (m,n, p) ∈ Z(d)3 is obtained

with the probability

Prob(m,n, p) =

∣∣∣∣ 1√
d

∑
q∈Z(d)

ωq
2(a+b−a⊕b)/2〈m,n, p|+q,+q,+q〉

∣∣∣∣2, (4.56)

=

∣∣∣∣ 1

d2

∑
q∈Z(d)

ωq
2(a+b−a⊕b)/2+q(m+n+p)

∣∣∣∣2, (4.57)

where
〈
q|+q′

〉
= ωqq

′
/
√
d has been used. Now consider the case when a + b < d,

which implies that a+ b− (a⊕ b) = 0. Hence, using Equation 4.54, it follows that

Prob(m,n, p|a+ b < d) =

∣∣∣∣ 1

d2

∑
q∈Z(d)

ωq(m+n+p)

∣∣∣∣2 =
1

d2
δ(m⊕ n⊕ p). (4.58)

That is, the probability is only non-zero if m ⊕ n ⊕ p = 0. In other words, each

possible outcome q ∈ Z(d) is equally likely for each measurement but they must all

add up to zero modulo d.

Consider now the remaining cases not covered above, which are when a+ b ≥ d.

16This may be proven using the formula for a geometric series: see Appendix D, where this
formula is also stated and a brief proof is given (for all QV types).
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It then follows that a+ b− a⊕ b = d. Now in this case

ωq
2(a+b−a⊕b)/2 = eiπq

2
= (−1)q

2
= (−1)q = ωqd/2, (4.59)

as the square of an odd (even) number is odd (even). Therefore, using this equality

and Equation 4.54, it follows that

Prob(m,n, p|a+b ≥ d) =

∣∣∣∣ 1

d2

∑
q∈Z(d)

ωq(m+n+p+d/2)

∣∣∣∣2 =
1

d2
δ(m⊕n⊕p⊕d/2), (4.60)

noting that this is well-defined because, as d is even, d/2 is an integer. Therefore,

again, any outcome for each measurement is equally likely in isolation, however, now

they must obey m⊕ n⊕ p = d/2 (as then m⊕ n⊕ p⊕ d/2 = 0).

The consequence of this is that by first calculating a ⊕ b, then performing this

measurement procedure and finally using further sum gates to calculate the modulo

sum of these measurement outcomes, a sum computer with access to GHZ states

can calculate the function

threshold(a, b) =

0 if a+ b < d,

d/2 if a+ b ≥ d.
(4.61)

Alternatively, it may be written as a truth table, for example, with d = 4 it has the

form

threshold 0 1 2 3

0 0 0 0 0
1 0 0 0 2
2 0 0 2 2
3 0 2 2 2

The binary special case (bits and three-qubit GHZ) reproduces the result of Anders

and Browne (2009), up to minor differences.17 In the binary case, this technique

has provided the parity computer with the ability to implement the and function.

As and and xor can together implement any Boolean function, this GHZ state

resource has elevated the parity computer to universal classical computation.

More generally, for computation with dits of even dimension d > 2, it is not

obvious what significance the threshold gate has as an additional resource for a

sum computer beyond the observation that it is indeed an additional resource as

it cannot be constructed from ⊕. One issue with dealing with higher-base logics is

that the number of different two-input irreversible gates is dd
2

(this is the number

17In Anders and Browne (2009) the measurements are of Pauli operators. Note that the qubit
Y Pauli operator is given by Y = PFX.
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of unique truth tables), and while for bits this is only 24 = 16, for d only as large

as 4 this is 416 = 4, 294, 967, 296. However, the point stands that, with dits of even

dimension, a quantum 3-qudit GHZ resource state can provide further power to a

classical sum computer. As an aside, the complexity class of problems that can

be efficiently solved by the parity computer is what is known as Parity-L or ⊕L

[Aaronson and Gottesman (2004)]. I suspect that the relevant class for the sum

computer is ModdL, defined as the set of decision problems solvable by a log-space

Turing machine such that the number of accepting paths is divisible by d if and only

if the answer is ‘no’.18 However, my limited knowledge of Turing machines prevents

me from claiming this with any certainty. It is only a conjecture that ⊕L and ModdL

are strict subsets of the full class of classically efficiently solvable decision problems

P. Finally, I wish to emphasise that I am not suggesting that GHZ resources are

useful in practice for implementing classical computation - the ideas here are merely

observations on the nature of entangled quantum resources in computation.

4.9 Physical implementation

Entanglement generation is often simpler to achieve in practice than the application

of on-demand unitary gates, and this is one of the main reasons why the 1WQC has

such great potential for a physical realisation of universal quantum computation. In

this final section before concluding the chapter, the experimental progress and the

prospects for 1WQC are briefly discussed.

There have been a range of physical systems proposed for implementing 1WQC

with qubits, and to date the most well-developed experiments are with ion-trap and

optical technologies [Bell et al. (2014); Chen et al. (2007); Lanyon et al. (2013);

Tame et al. (2014)]. Specifically, Lanyon et al. (2013) have implemented a uni-

versal set of operations on up to seven entangled ion-trap qubits, and Bell et al.

(2014); Tame et al. (2014) have entangled and performed computations on up to

five qubits encoded into photons, with Chen et al. (2007) presenting a alternative

technique whereby 1WQC was performed on four logic qubits encoded over two

photons. Furthermore, there have been a variety of proposals for creating the many-

qubit resource states that are required for a useful 1WQC, for example, such states

may be realised as the ground state of certain many-body Hamiltonians [Bartlett

and Rudolph (2006); Brennen and Miyake (2008); Chen et al. (2009)]. However, as

of yet no such large-scale states have been realised that allow for individual qubit

addressability, which is a requirement for computation.

In this regard, 1WQC with QCVs is an especially promising paradigm, as demon-

strated by the spectacular recent experiments of Yokoyama et al. (2013) who have

18For a more detailed definition, see the complexity zoo at https://complexityzoo.uwaterloo.ca.
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entangled 10,000 individually addressable QCVs encoded into finite-length wave

packets in two light beams. Complementing this is the alternative technique of

Chen et al. (2014) who have created resources states of 60 QCVs, realised as dif-

ferent modes of an optical frequency comb, and where all the encoded QCVs are

simultaneously accessible. To implement 1WQC, measurement techniques are re-

quired that implement a universal gate set. In order to implement any Clifford gate

- called a Gaussian transformation in this context - it is only necessary to employ

homodyne detection, which is a measurement of the operator x̂ sin θ + p̂ cos θ for

some θ.19 This has been experimentally demonstrated by Ukai et al. (2011) and Su

et al. (2013), who have implemented one and two-mode Gaussian transformations,

using four and six QCV entangled states, respectively. However, this is not sufficient

for universal quantum computation and the difficulty in extending this to a universal

set of operations is that this requires a non-linear optical element of some sort. The

cubic phase gate, as introduced in Equation 2.60, is sufficient to obtain universal-

ity and one method for approximately implementing this gate is via photon-number

counting and some additional Gaussian resources [Gottesman et al. (2001); Gu et al.

(2009)]. Moreover, recent experimental improvements in photon-number-resolving

detectors suggest that this may well be feasible [Calkins et al. (2013); Humphreys

et al. (2015)].

The 1WQC with qudits of dimension d > 2 has seen only limited attention in the

literature to date, but it has been noted that (as with qubits) suitable resource states

can be obtained as the ground states of many-body Hamiltonians for spin (d− 1)/2

particles [Zhou et al. (2003)] and a method has been suggested for creating d = 4

photonic cluster states [Joo et al. (2007)]. Although, to my knowledge, there have

been no experiments directly implementing a proof-of-principle qudit-based 1WQC,

there have been a range of experiments that have shown impressive control and high

quality measurements of qudits in a variety of systems. In particular, qudits have

been encoded into photonic degrees of freedom [Bent et al. (2015); Lima et al. (2011);

Walborn et al. (2006)] and multiple photonic qudits have been entangled [Dada et al.

(2011); Rossi et al. (2009)]. Particularly interesting is the experiment of Dada et al.

(2011) in which they generate entanglement between d = 12 qudits encoded into

the orbital angular momentum of the photons. Given that there is no fundamental

limit on the dimensionality of the qudit that may be encoded into this degree of

freedom, and a range of high-quality measurements have been demonstrated on

orbital angular momentum encoded qudits [Bent et al. (2015)], systems of this sort

19By reference to Section 4.3, it follows that the measurement to implement F for a QCV is
simply −p̂. To implement FP (q) the measurement required is then −P (−q)p̂P (q) = −p̂ − qx̂ =
−(p̂ cos θ + x̂ sin θ)/ cos θ where θ = tan−1(q). Hence, to implement the phase gate a homodyne
measurement may be performed along with a rescaling of the measurement output [Menicucci et al.
(2006)].
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may have the potential for future progress on 1WQC with qudits.

Outside the optical regime, a particular promising experiment is that of Ander-

son et al. (2015); Smith et al. (2013) who have reported high-quality control and

measurement of a d = 16 qudit encoded into the hyperfine structure of the elec-

tronic ground state in the Caesium isotope 133Cs. Note that, although many atom-

based experiments use fundamentally binary measurements (e.g., via pumping only

one basis-state-encoding level to a photon-emitting state and detecting any emitted

photons), such measurements can be used to simulate a d-outcome measurement

via multiple binary measurements in conjunction with permuting the different ba-

sis states in between these measurements. Furthermore, varied basis measurements

may always be simulated via local unitary controls along with a fixed d-outcome

measurement.

One potential problem with QCV 1WQC is that it cannot be implemented per-

fectly even in principle: it requires the realisation of conjugate basis states which

are not normalisable and are unphysical. In practice they are realised by finitely

squeezed vacuum states (see Appendix B for the formal relation) and until recently

it had not been shown that this did not cause uncorrectable errors in the computa-

tion. However, Menicucci (2014) showed that by encoding a logical qubit into each

QCV, using the scheme of Gottesman, Kitaev and Preskill (GKP) [Gottesman et al.

(2001)], these errors due to finite squeezing can be corrected for. Because of the uni-

versality of QCV 1WQC, it is immediately implied that universal computation can

be implemented on the encoded qubit. Furthermore, due to the nature of the encod-

ing, the qubit-encoded Clifford operators can be implemented via only QCV Clifford

operators [Menicucci (2014)]. Interestingly, the GKP encoding scheme could also be

used to embed qudits into each QCV and hence this may provide a promising route

for an optical implementation of qudit 1WQC. A more detailed investigation of this

idea, including looking into whether this qudit encoding can be made fault-tolerant

using the same ideas employed by Menicucci (2014), would be an interesting future

avenue of research.

4.10 Conclusions

In this chapter, the computational power of the one-way quantum computer with

arbitrary QV type has been investigated. To do this I have introduced a general

‘measurement pattern’ formulation of the 1WQC, which extends the cluster state

paradigm [Menicucci et al. (2006); Zhou et al. (2003)] to a more flexible setting that

is well-suited to a comparison with the gate model. Depth reduction ‘standardisa-

tion’ protocols were then developed, following the qubit-based work of Danos et al.

(2007), and using this a simple procedure for mapping between quantum circuits

100



4.10 Conclusions

and measurement patterns was provided. The implication of these mappings is that

the depth complexity of the 1WQC is exactly equivalent to that of the unbounded

fan-out model investigated in Chapter 3. This confirms and makes precise the par-

allelism inherent in 1WQC and extends a qubit-based result of Browne et al. (2011)

to the setting of more general QVs. Possible future work could investigate how the

full range of highly-developed concepts in the qubit 1WQC, e.g., information flow

notions [Browne et al. (2007); Duncan and Perdrix (2010)], may be extended to the

general QV setting. It would also be interesting to continue the investigations into

the interplay between classical and quantum resources in higher-dimensional 1WQC

which was briefly touched upon in Section 4.8.
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Chapter 5

Geometric phase gates for

general quantum variables

In this chapter geometric phase gates for general quantum variables are proposed

and investigated. These gates employ an ancilla to entangle QVs in a computational

register via a sequence of register-QV controlled Pauli operators on the ancilla. The

construction given will be applicable both when the computational elements and

ancillas are QVs of the same and of different types. This will include elements of

what is known as qubus computation [Spiller et al. (2006)] as a special case, given

when the register consists of qubits and the ancillas are QCVs, but is applicable

in a broader setting. The computational advantages associated with having access

to ancillas of a different dimension to the computational QVs are investigated. In

particular, this will include a proposal for a practical and highly efficient method for

implementing generalised Toffoli gates and also a comment showing that a previous

method proposed for implementing the quantum Fourier transform via a QCV ancilla

[Brown et al. (2011)] is infeasible. Finally, the physical relevance of these gate

methods is discussed. This chapter is partially based on Proctor et al. (2015).

5.1 Introduction

The elements of the computational register in a quantum-circuit-model computer

need to be well-isolated in order to minimise the destructive effects of decoherence.

On the other hand, it is also essential to implement two-body entangling gates to

perform any computation. The tension between these demands is one motivation

for sidestepping direct interactions and instead mediating entangling gates via an

ancillary system. This allows the register to be specifically tailored for long coherence

times, and interactions are only required with some physically distinct ancillary

systems. These ancillas may be chosen to optimise the interactions with the elements
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of the main register and moreover, as the quantum information is stored in the main

register, the coherence time of these ancillary systems is not as critical as for the

computational systems. Hence, they may exhibit complementary properties to the

register systems, such as being comparatively easy to manipulate. Indeed, ancillas

are used in a range of experiments, such as superconducting flux qubits coupled via

transmission line resonators [Majer et al. (2007); Stern et al. (2014); Wang et al.

(2009); Xue (2012)], spin qubits coupled via ancillary photonic qubits [Carter et al.

(2013); Luxmoore et al. (2013); Yamamoto et al. (2009)] or nuclear spins coupled to

electron spins [Taminiau et al. (2014, 2012)].

In light of this, it is of both practical and theoretical interest to study the effect

of incorporating the ancillary system into the computational model, hence to date

there has been a range of literature on this subject: for a selection see Anders et al.

(2010); Halil-Shah and Oi (2014); Ionicioiu et al. (2008); Spiller et al. (2006). There

is no obvious physical reason why the ancillary system should be the same type of

QV as the computational elements in the register. For example, photons couple to a

range of systems and hence they are a natural candidate as an ancillary system and

they can be employed as either qubits (e.g., via a polarisation encoding), qudits (e.g.,

using the number states as a basis) or QCVs (using the quadratures eigenstates as

a basis). Furthermore, as has been argued in Section 1.3.2, it also seems pertinent

to avoid assuming that the computational elements in a quantum computer will

necessarily be qubits. Therefore, it is preferable to develop schemes relevant to the

full range of encodings whenever possible. In the remainder of this thesis I propose

and investigate a variety of methods for implementing quantum computation via

interaction-mediating ancillary systems, with much of the work applicable to all

types of QVs. In this chapter, I propose what will be called geometric phase gates

for general quantum variables, with this terminology due to their relationship to

closed phase-space paths. Interestingly, many of the methods encountered later in

this thesis can be understood as adaptations of this gate.

The remainder of this chapter is arranged as follows: In the Section 5.2 the

basic gate is introduced. Although (to my knowledge) this is novel in all other

cases, for a qubit register and QCV ancilla this gate has been previously proposed

[Milburn (1999)] and investigated in detail, see e.g., Spiller et al. (2006). In this

qubit-QCV setting, there have been a range of interesting results showing that this

basic gate can be adapted for low gate-count implementations of certain qubit-based

circuits [Brown et al. (2011); Louis et al. (2007)]. Hence, in Section 5.3 efficient gate

decompositions using the more general geometric phase gate proposed herein are

investigated. This will include a proposal for an efficient implementation of gener-

alised Toffoli gates (on qubits) via qudit ancillas. In Section 5.4 I outline the links

between geometric phase gates and hybrid quantum computation - in which quantum
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• • •
• • = •

• •

Figure 5.1: Two qubits may be entangled without any direct interactions via cz and
cnot gates acting on a target ancillary qubit.

computation is implemented on more than one type of QV simultaneously. Finally,

the possibilities for physical implementations of the gate methods proposed in this

chapter are discussed in Section 5.5 and the chapter then concludes in Section 5.6.

5.2 The geometric phase gate

To begin the geometric phase gate is illustrated in the simplest case: mediating a

gate between two computational qubits via a third ancillary qubit. Consider the

gate sequence shown in the LHS circuit of Figure 5.1, which consists of cnot and

cz gates. If the two computational qubits are in the states |q〉 and |q′〉 respectively,

then the operator applied to the ancilla is(
0 1

1 0

)q′ (
1 0

0 −1

)q (
0 1

1 0

)q′ (
1 0

0 −1

)q
= (−1)qq

′

(
1 0

0 1

)
. (5.1)

Hence, it has no net effect (i.e., an identity) on the ancilla, but, regardless of the

ancilla state, it creates a −1 phase factor on the composite system if q = q′ = 1.

This is exactly the action of cz on the two register qubits (for qubits, cz|q〉|q′〉 =

(−1)qq
′ |q〉|q′〉), as denoted by the RHS circuit of Figure 5.1. Therefore, by interacting

each qubit with an ancillary qubit twice, an entangling gate between the two register

qubits has been mediated.1

Before introducing this gate in the more general case it is necessary to take a

diversion to discuss what may be termed hybrid controlled Pauli gates. Up to this

point in this thesis two-QV gates have always acted on two QVs of the same type:

either two qudits of the same dimension or two QCVs. In this chapter the ancilla

will not generally be assumed to be of the same type as the computational QVs it

is used to mediate gates between. Therefore, it is necessary to use two-QV gates

which act on systems that may be of different types. A general control gate Cu, as

1Given the simplicity of this relation it seems likely that this has been noted somewhere in the
literature (prior to its discussion in Proctor et al. (2015)).
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defined first in Equation 2.33, has the action

Cu(|q〉 ⊗ |q′〉) = |q〉 ⊗ uq|q′〉, (5.2)

and this is still valid for control and target QVs of different types - it is only necessary

for u to be a unitary that acts upon the target QV type. In this chapter, the

interactions that will be largely considered are the (hybrid-QV) controlled Pauli

operators, CZ(p) and CX(p). Consider the action of CX(p):

CX(p)
(
|q〉 ⊗ |q′〉

)
= |q〉 ⊗X(p)q|q′〉. (5.3)

Now, this is perfectly well-defined for all combinations of QV types. However, the

gate enacted on the target system is only a Pauli gate if

X(p)q = X(qp), (5.4)

for all q ∈ Sd, where Sd is the relevant set for the control system, and clearly the

same considerations apply to CZ(p). This equation holds for all combinations of

QVs except if the control system is a QCV and the target system is not. In this case,

q takes all values in R, and a continuous power of a qudit Pauli operator is not a

Pauli operator (see Equation 2.20). Hence, in the remainder of this chapter all cases

are considered except a register of QCVs mediated via ancillary qudits. In order to

keep the presentation as simple as possible, this will not be explicitly accounted for

in the formulas and it should be assumed that the relations given will not hold in

this particular case.

The qubit-mediated gate of Equation 5.1 is possible only because the qubit Pauli

operators commute up to a phase (of −1) and X2 = Z2 = I. The first of these is a

property shared with the Pauli operators for all QV types, which commute up to a

phase of ω, as was seen in the Weyl commutation relation of Equation 2.44. This

relation directly implies that

X(p′)Z(−p)X(−p′)Z(p) = ωpp
′
I. (5.5)

This may be understood pictorially in phase space in terms of a closed loop of

translations creating an area-dependent phase, as shown in Figure 5.2. As such, this

can be thought of as a geometric phase which motivates the ‘geometric phase gate’

terminology for the gate now introduced.

Global phases have no physical consequence in quantum mechanics, however,

as in Equation 5.1, controlled Pauli gates can utilise the geometric phase of Equa-

tion 5.5 to entangle QVs. Specifically, consider the circuit diagram on the LHS of

Figure 5.3 for two computational QVs and an ancilla of an arbitrary QV type (given

106



5.2 The geometric phase gate

Figure 5.2: A closed loop of translations generated by Pauli operators creates an
area-dependent geometric phase.

the restriction discussed above). For the computational QVs in the states |q〉 and

|q′〉 respectively, the action on the ancilla is

X(q′p′)Z(−qp)X(−q′p′)Z(qp) = ωpp
′qq′

a I, (5.6)

where the subscript a denotes that the phase is dependent on the ancilla QV type,

that is, ωa = e2πi/da where da is the dimension of the ancilla, as it will be throughout

this and later chapters. The q and q′ dependent phase, on the RHS of this equality,

is equivalent to the controlled rotation gate CR(2πpp′/da) on the computational QV

pair, with

R(θ)|q〉 = eiθq|q〉. (5.7)

This R(θ) notation is used as a short-hand for the linear and scalar-parameterised

case of the more general phase-function parameterised rotation gate introduced in

Equation 2.58 and used throughout the previous two chapters. Note that, in all

cases, if the dimensions of the computational and ancilla QVs match this is the cz

gate (when p = p′ = 1). For clarity, the cases of a qudit and a QCV ancilla are

considered individually:

1. Qudit ancilla: The gate parameters are restricted to p, p′ ∈ Z(da) and da is

the dimension of the ancillary qudit. By varying p and p′ then da − 1 distinct

non-trivial gates may be implemented, which are the da − 1 integer powers of

the gate given by p = p′ = 1. The exact gate implemented depends on the QV

type of the register.

2. QCV ancilla: The gate parameters may take any values p, p′ ∈ R and da = 2π.

By varying p and p′, any CR(θ) gate for any phase parameter θ ∈ R can be

implemented. For any type of computational QVs this may be chosen to

implement cz, with the appropriate choice of phase angle depending on the

computational QV type (e.g., pp′ = π gives the cz gate for qubits, and more

generally take pp′ = 2π/d).

For all types of ancillas and computational QVs, this gate method may implement
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• • •
• • = R(2πpp′/da)

p −p′ −p p′

Figure 5.3: An entangling gate on two computational QVs may be mediated via
an ancilla using controlled Pauli gates. A black (grey) box containing a variable p
denotes the gate Z(p) (X(p)). The induced gate on the computational QVs is the
symmetric controlled R(2πpp′/da) gate, where da is the dimension of the ancilla and
R(θ)|q〉 = eiqθ|q〉.

an entangling gate on the register and is therefore sufficient for universal quantum

computation when augmented with local controls of the computational register. As

the action of the gate leaves the ancilla unchanged, the ancilla may be either reused,

discarded or reset to remove any residual entanglement from imperfect operation.

For QCV ancillas and computational qubits the gate method introduced above

is not novel - to my knowledge it was originally proposed by Milburn (1999). This

has been followed by a large literature, investigating both the possibilities for phys-

ical realisations and the computational properties of both this and closely related

schemes, for example see Brown et al. (2011); Horsman et al. (2011); Khosla et al.

(2013); Louis et al. (2008, 2007); Milburn et al. (2000); Munro, Nemoto and Spiller

(2005); Proctor and Spiller (2012); Spiller et al. (2006); Van Loock et al. (2008);

Wang and Zanardi (2002). There is one notable difference between the literature

on this QCV-ancilla mediated entangling qubit gate and the presentation here: the

literature is phrased in terms of controlled displacement operators. These nota-

tional differences can be bridged via the relations between complex-parameterised

displacement operators and the QCV Pauli operators given in Appendix C. As far

as I am aware, this ancilla-based geometric phase gate is novel in all cases outside

the qubit-QCV setting.

5.3 Size-reducing circuit decompositions

The geometric phase gate described above is sufficient for universal quantum compu-

tation on the register (assuming the addition of local controls), and hence any gate

sequence can be implemented by many applications of such gates. Moreover, I will

now show that the gate can be adapted to implement some common gate sequences

in a more efficient fashion. Consider the gate sequence in Figure 5.4, in which many

computational QVs, separated into ‘control’ and ‘target’ sub-registers of n and m
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QVs respectively, interact in turn with an ancilla (demonstrated in Figure 5.4 for

n = 3 and m = 2). Let the control and target sub-registers contain QVs labelled

1, . . . , n and n+ 1, . . . ,m+ n, respectively. As it is essentially trivial that

Z(zn) . . . Z(z2)Z(z1) = Z(zn + · · ·+ z2 + z1), (5.8)

X(xn+m) . . . X(xn+2)X(xn+1) = X(xn+m + · · ·+ xn+1 + xn+1), (5.9)

then using these equations and applying Equation 5.5, it may be confirmed that if

the jth QV is in the state |qj〉 then the gate sequence of Figure 5.4 maps the ancilla

as

|φancilla〉 → ω(z1q1+···+znqn)(xn+1qn+1+···+xn+mqn+m)
a |φancilla〉. (5.10)

Here |φancilla〉 is some arbitrary initial state of the ancilla and, as always, ωa is

dependent on the QV type of the ancilla. Expanding the brackets confirms that this

is equivalent to m×n controlled rotation gates: one between each of the systems in

the control register and each of those in the target register - noting that this has been

achieved using only 2(n + m) gates. Consequently, this is a gate-count reduction

from the obvious (but not necessarily optimal) quantum circuit to implement this

unitary without the aid of an ancilla. In the context of a qubit register and QCV

ancilla these gate-count reduction ideas were originally developed by Brown et al.

(2011, 2012); Horsman et al. (2011); Louis et al. (2007)2 but to my knowledge the

result is novel in all other cases.

One important feature of this gate method is that the controlled rotation gates

induced on the register by this sequence do not all have independent rotation pa-

rameters – this would not be possible as there are only n + m parameters in the

ancilla-mediated gate sequence. This gate method is a particularly clear setting

for considering any efficiency gains obtained from using ancillas of a different di-

mension to the main register to aid a computation: the phase parameter in the

controlled rotation enacted on the jth control and kth target QV pair is e2πizjxk/da

with zj , xk ∈ Sda , and hence, higher dimensional ancillas give greater freedom in the

implemented rotation angles. For example, with a QCV ancilla the phase may take

any value in R, but for a qubit ancilla every phase is either 0 or π. Whether there are

any fundamental advantages associated with combining ancillary and computational

registers of different QV type is discussed further in Section 5.4. However, before

turning to this, some specific highly-efficient ancilla-mediated gate decompositions

are considered, which may be of practical interest. These are essentially extensions

of the gate method given above, and, in the interesting cases, will employ ancillas

of a different dimension to the register QVs.

2The techniques used in these papers are all special cases or adaptions of this.
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• •
• •

• •
• •

• •

z1 z2 z3 −x4 −x5 −z1 −z2 −z3 x4 x5

Figure 5.4: An ancilla-mediated gate sequence that enacts a controlled rotation gate
between every control-target pair of QVs from ‘control’ and ‘target’ sub-registers.
The specific circuit demonstrated here is for three QVs in the control sub-register
(top three quantum wires), and two QVs in the target sub-register (quantum wires
four and five). The lowest quantum wire represents the ancilla.

5.3.1 The quantum Fourier transform

The ancilla-based gate-count reduction method given above has been adapted to

implement the quantum Fourier transform (QFT) on a qubit register using a QCV

ancilla by Brown et al. (2011). I now point out a problem with this method. In

the interest of generality and in keeping with the majority of this thesis, I will not

show this directly for the qubit-based QFT method of Brown et al. (2011), but

for a simple and natural extension to a technique for implementing a qudit-based

QFT via a QCV ancilla - which hence includes the binary version as a special case.3

To clarify, this is a negative result showing that the previous method proposed by

Brown et al. (2011) (and the simple extension here) is not of any practical use. Any

readers uninterested in such a result are encouraged to skip ahead to Section 5.3.2.

To begin, the QFT is introduced.

The Fourier transform has already been encountered in this thesis - as the single-

QV Fourier gate F , which was first introduced in Section 2.2.1. More generally,

what is conventionally termed the quantum Fourier transform (QFT) modulo k is

a unitary which acts on k orthonormal basis states |0〉, |1〉, . . . , |k − 1〉, encoding

the numbers 0, 1, . . . , k − 1. Here it will be denoted qftk, and it is defined by the

mapping

|q〉 qftk−−−−−→ 1√
k

k−1∑
q′=0

e2πiqq′/k
∣∣q′〉. (5.11)

Therefore, as with the F gate, it is exactly the unitary representation of the discrete

Fourier transform, but it is now defined as a family of operators where for each value

3Although it may seem strange to extend a method I am going to show is infeasible, given the
material already covered in this thesis, it essentially requires no additional effort to present this
more general case.
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F R2 R3
. . . Rn−1 Rn

. . . . . . . . .

• . . . F R2
. . . Rn−1 Rn

. . . . . .

• . . . • . . . F . . . Rn−1 Rn
. . .

...
...

...
...

...

. . . • . . . • . . . • . . . F R1

. . . • . . . • . . . • . . . • F

Figure 5.5: An n-qudit circuit to implement the quantum Fourier transform modulus
dn, where d is the dimension of the qudits [Cao et al. (2011); Zilic and Radecka
(2007)]. This circuit also inverts the ordering of the qudits, and hence to implement
precisely qftdn , as given by Equation 5.13, is is necessary to swap the output qudit
ordering: that is, swap qudit 1 with qudit n, qudit 2 with qudit n− 2, etc. Here Rk
is the gate with the action Rk|q〉 = e2πiq/dk |q〉.

of k it acts on a different sized Hilbert space.

The QFT for modulus k ≤ dn is an operator that can be implemented using n

qudits of dimension d, and it is particularly simple to perform qftdn using n qudits.

The most natural way to embed qftdn as an operator on n qudits is to use the

association ∣∣q1d
n−1 + q2d

n−2 + · · ·+ qnd
0
〉
≡ |q1, q2, . . . , qn〉, (5.12)

which is the d-nary encoding of the numbers 0 to dn−1 into n qudits. Using this rep-

resentation, the QFT modulus dn is then found by replacing each q in Equation 5.11

with the d-nary representation of q. Hence, it is the mapping

|q1, q2, . . . , qn〉
qftdn−−−−−→ 1√

dn

d−1∑
q′1,q
′
2,...,q

′
n=0

e2πi
∑n
a,b=1(qaq′bd

n−a−b)
∣∣q′1, q′2, . . . , q′n〉. (5.13)

For a single qudit (n = 1) this reduces to a single local Fourier transform F , as it

should. The QFT is a critical sub-routine in a significant proportion of algorithms

that exhibit a quantum speedup [Nielsen and Chuang (2010)], including Shor’s al-

gorithm [Shor (1997)] and related problems. In most of the literature the imple-

mentation of the QFT over a register of qubits has been considered (either with

modulus 2n or more generally). However, the non-binary QFT may have certain ad-

vantages, including reduced errors when the smaller rotations are not implemented

[Zilic and Radecka (2007)]. Furthermore, in direct analogy to the binary sub-case, it

is an important component in qudit algorithms, such as the qudit phase estimation

algorithm [Cao et al. (2011); Parasa and Perkowski (2011)].
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An expansion of the phase terms in Equation 5.13 can be used to show that

the qudit QFT can be implemented by the quantum circuit given in Figure 5.5,

consisting of single-qudit Fourier gates and controlled rotations. This decomposition

is originally due to Coppersmith (1994) for qubits, and this qudit circuit may be

found in Cao et al. (2011); Zilic and Radecka (2007).4 The qudit QFT circuit of

Figure 5.5 has a size of O(n2) and, with a careful pairing of controlled gates,5 it has

a depth of O(n).

A method for a low-gate count implementation of a ‘QFT-like’ unitary on a

register of qudits via a QCV ancilla is now presented, which includes the technique

of Brown et al. (2011) as a special case. Define the ‘QFT-like’ unitary U~u,θ, which

is parameterised by n single-qudit gates u1, . . . , un and a matrix of phase angles θ,

by the product of basic single and two-qudit gates

U~u,θ = un
(
Cn
n−1R(θn−1,l)

)
un−1 . . .

(
n∏
l=3

Cl
2R(θ2,l)

)
u2

(
n∏
l=2

Cl
1R(θ1,l)

)
u1, (5.14)

where θj,k ∈ R, j = 1, . . . , n− 1 and k = j + 1, . . . , n.6 The natural circuit represen-

tation for this unitary is given in Figure 5.10, which should hopefully clarify why it

is termed ‘QFT-like’: it is has the same circuit structure as the standard circuit for

the QFT modulus dn. Indeed, it reduces to the qftdn when uk = F for all k and if

the phase angles are given by

θj,k = 2πdj−(k+1). (5.15)

As with the QFT, the circuit given in Figure 5.10 has a size of O(n2) and a depth

of O(n), via a suitable pairing of controlled rotations.

Now, consider the ancilla-mediated gate sequence given in Figure 5.11. This is

probably simpler to comprehend as a circuit diagram, but for completeness the gate

4See Nielsen and Chuang (2010) for a clear derivation in the binary case, which may be easily
adapted to the qudit QFT.

5This may be achieved using a similar, but slightly more subtle, method to that already en-
countered in Figure 3.6.

6In this expression, the subscript k on uk is used to denote that these are in general different
unitaries for each k, and also to denote which unitary the operators acts on (i.e., uk denotes the
unitary uk acting on qudit k.). Although perhaps slightly vague, I consider this preferable to a
more complication notation.

112



5.3 Size-reducing circuit decompositions

sequence is

Uqft-seq =

(
n−1∏
l=2

Cl
aZ(−zl)

)
· vnCn

aX(xn) ·
(
Cn−1
a Z(zn−1)vn−1C

n−1
a X(xn−1)

)
. . .

. . .
(
C3
aZ(z3)v3C

3
aX(x3)

)
·
(
C2
aZ(z2)v2C

2
aX(x2)

)
·C1

aZ(−z1) ·

(
n∏
l=2

Cl
aX(−xl)

)
C1
aZ(z1)v1, (5.16)

where the ‘a’ subscript denotes the ancillary system. Via a careful consideration of

this sequence, or the circuit of Figure 5.11, and with the aid of the Weyl commutation

relation of Equation 5.6, it may be confirmed that this implements the QFT-like

unitary U~u,θ with uk = vk and with the controlled rotation parameters in the matrix

θ given by

θj,k = 2πzjxk/da, (5.17)

where as always da is the dimension of the ancilla, and zj , xk ∈ Sda . On an initial

inspection, the ancilla-mediated circuit of Figure 5.11 has a size of 9n−8 and a depth

of 5n − 4, which are both O(n). Hence, this provides a reduction from quadratic

size to a linear size scaling in comparison to the defining circuit for a general U~u,θ

unitary, as given in Figure 5.10.

Consider now the case of a QCV ancilla, whence θj,k = zjxk and zj , xk ∈ R. If

the aim is to apply the qftdn then it is necessary to implement the phases given

in Equation 5.15. Leaving z1 as some arbitrary value, which may be chosen later

for convenience, in order to satisfy Equation 5.15 for j = 1 and 1 < k ≤ n, it is

necessary to take

xk = 2πd−k/z1. (5.18)

This then gives z1xk = 2πd−k, as required. Now, to satisfy Equation 5.15 for

j = 2, . . . , n− 1 and general k = j + 1, . . . , n, it is necessary to take

zj = z1d
j−1. (5.19)

This gives zjxk = 2πdj−1−k, as required. Hence, the QCV ancilla-mediated gate

sequence of Figure 5.11 implements the QFT modulus dn on the n-qudit register if

we take the the values for the zj and xk parameters given above (z1 may be fixed to

any non-zero value, say z1 = 1) and with um = F for all m. As such, this provides

a method for implementing the QFT modulus dn, via a QCV ancilla, with a circuit

depth and size of O(n). This is in contrast to the standard circuit decomposition

for the (exact) QFT, which has a size of O(n2) and depth of O(n).

However, there is a problem with this ancilla-based circuit decomposition for
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the QFT, as now explained. The assumption in the analysis of the circuit depth

and size in this circuit is that controlled Pauli X(q) and Z(q) operators with any

parameters q ∈ R are available in the basic gate set, and hence may be implemented

in unit depth. As has already been argued in Section 3.5, the claim that all such

gates may be implemented in a unit of time cannot be physically justified.7 Hence,

in order for depth to be an accurate proxy for computational time, it is necessary

to restrict the values of q ∈ R for which CZ(q) and CX(q) gates are assumed to

be implementable in a unit depth by considering only q ∈ [0, a] for some (non-zero)

constant a ∈ R. However, the controlled Pauli gates in this QFT-implementing se-

quence contain parameters which grow exponentially large as a function of input size

n, which can be confirmed via Equation 5.19.8 Therefore, with the more physically

appropriate gate set of bounded-magnitude controlled Pauli gates, some of the gates

in this sequence require exponential depth (and time), which renders this QFT im-

plementation technique impractical, and vastly inferior to the ordinary O(n2) size

and O(n) depth decomposition, given in Figure 5.5 (which may be implemented

via ancilla in a gate-by-gate fashion, if required). It might appear as though the

exponential resource-scaling in this ancilla-based method can be removed with the

aid of local squeezing gates on the QCV ancilla, but although these gates can trans-

fer the exponential parameter scaling from the ancilla-register interaction gates to

local squeezing gates (see Figure 2.4), exponential scaling in such gates is essentially

just as problematic and unphysical. Finally, before moving on it is noted that this

ancilla-based technique for implementing a QFT-like unitary is valid in certain other

cases that are not the QFT, by which I mean that, even under the restriction of

bounded-magnitude controlled Pauli gates, it will have the depth and size scaling

initially claimed. However, it is not clear that it implements any unitaries of interest

in such cases, except those also covered by the simpler technique of Figure 5.4.

5.3.2 Modulo controlled gates via qudit ancilla

So far in this chapter, only register-controlled Pauli gates have been considered as

the ancilla-register interactions. The reason for this is that Pauli operators have

convenient properties that make them easy to manipulate, and which also allow

for an analysis that can be applied simultaneously to each type of QV. When only

considering operations of this sort, a qudit ancilla has strictly less power to enhance

a computation than is available with a QCV, as inferred by the discussions near

7The discussion in Section 3.5 largely considers local Pauli gates, but the conclusions given
obviously extend to controlled Pauli gates.

8This exponential parameter scaling cannot be removed by taking z1 to be exponentially small,
that is by choosing z1 ∝ d−n. This is because if z1 ∝ d−n then the biggest xk parameter grows
exponentially with increasing n, as then Equation 5.18 implies that x2 ∝ dn. Hence, either the
controlled X(x2) or controlled Z(zn−1) gate has a parameter which grows exponentially with n.
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the beginning of this section. However, the restriction to controlled Pauli gates

is perhaps rather unnatural for a qudit ancilla, and it can be argued it is more

physically well-motivated to consider a general controlled rotation interaction gate,

which maps

|q〉r|q
′〉a

CraR(θ)−−−−→ eiθqq
′ |q〉r|q

′〉a, (5.20)

where θ ∈ R. For θ = 2πz/da with z ∈ Sda , this gives the CZ(z) gate. Hence,

this operator is only a generalisation from CZ(q) for the case of qudits, as with a

QCV target system then CR(θ) = CZ(θ). This is a natural extension of the allowed

interactions for qudit ancillas as it is easy to confirm that this operator is generated

by the same Hamiltonian as the controlled Pauli operator, with the interaction

time controlling θ, as will be shown in Section 5.5. This gate allows for continuous

parameters in qudit ancilla-based sequences, but also means that the periodicity

of a qudits phase space can be harnessed to efficiently implement some interesting

gates, as I now show. In the following, the ancilla and register are restricted to

being qudits and, as always, the ancilla and register dimensions are denoted da and

d, respectively.

Controlled rotation operators along with ancilla preparation may be used to

implement a controlled rotation gate on the register of arbitrary phase angle, by

adapting the geometric phase gate of Figure 5.3. This is because the CX gate maps

a register system in an arbitrary computational basis state |q〉, and an ancillary

qudit in the state |0〉, to

|q〉|0〉 CX−−→ |q〉|q mod da〉. (5.21)

Hence, as long as da ≥ d, then for two register qudits c and t, this implies that

〈0|aC
c
aX
† ·Ct

aR(θ) ·Cc
aX|0〉a = Cc

tR(θ). (5.22)

Note that 〈0| appears in the LHS of this equation so that the RHS is simply a

gate acting on the register, but equivalently it could be dropped and then the final

ancilla state on the RHS would be |0〉. The circuit diagram for this gate is given in

Figure 5.6. In contrast to when the gates are all controlled Pauli operators, ancilla

preparation is now essential in order for the qudit not to remain entangled with the

register. This is because the overall operation on the ancilla is a register-controlled

phase, which acts as the identity if the ancilla is prepared in the state |0〉 (or a

constant phase multiplied by the identity if initialised in any other computational

basis state). This gate method may not seem of much consequence, but it provides

the basis for the more interesting gates introduced below.

Before going any further, it will be useful to introduce a succinct notation for
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• • •
• = R(θ)

|0〉 R(θ) |0〉

Figure 5.6: A circuit which implements a general controlled rotation gate between
register qudits of dimension d via an ancilla qudit of dimension da ≥ d. The sum and
sum† gate circuit notation (the ⊕ and 	 symbols, respectively) is used to denote the
CX and CX† gates, because these can be considered to be hybrid sum and sum†

gates respectively.

controlled gates with multiple control and target QVs. Consider two sets of QVs,

Q and Q′, with no elements in common (i.e., Q ∪ Q′ = ∅). Then, for a scalar-

parameterised unitary u(p) with p ∈ S ⊆ R and u(a)u(b) = u(b)u(a) for all a, b ∈ S,

and a map θ : Q′ × Q→ S, define

CQ′
Q u(θ) :=

∏
q′∈Q′

∏
q∈Q

Cq′
q u(θ(q′, q)). (5.23)

That is, this unitary is equivalent to a controlled u(·) gate between each QV in

Q and each QV in Q′, with u(·) taking a potentially different parameter for each

control-target pair. This is well defined as the ordering of the gates in Equation 5.23

is irrelevant, due to the commutativity of each Cu(·) gate. This notation is a simple

way to denote many multi-QV gates that are defined naturally in terms of controlled

gates without explicit and cumbersome expansions. For example, the utility of this

notation can be seen by observing that the ancilla-based circuit of Figure 5.4 can be

succinctly expressed as

CQ′
a X(x) ·CQ

aZ(−z) ·CQ′
a X(−x) ·CQ

aZ(z) = CQ
Q′R(2πzx/da), (5.24)

where z : Q→ Sda and x : Q′ → Sda . It will also be useful to have a simple notation

for an arbitrary diagonal gate on a set of QVs, Q. Such a gate is parameterised by a

potentially different phase for each computational basis state, and hence it may be

defined by the unitary DQ(φ) with the action on the computational basis

∣∣q1, . . . , q|Q|
〉 DQ(φ)−−−−→ eiφ(q1,...,q|Q|)

∣∣q1, . . . , q|Q|
〉
, (5.25)

where φ is a function φ : S|Q|d → R, and the reader is reminded that |Q| denotes the

number of elements in the set Q.

We are now ready to consider interesting qudit ancilla-mediated gates that utilise
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the periodicity of the ancillary qudit’s phase space. Consider two sets of register

qudits Q = {1, . . . , n} and Q′ = {n + 1, . . . ,m + n}. Then, if the first set of qudits

interact with an ancilla prepared in |0〉 via the n-gate sequence CQ
aX(x), where

x : Q→ Sda , then the affected register qudits and the ancilla are mapped as

|q1, . . . , qn〉|0〉
CQ
aX(x)−−−−−→ |q1, . . . , qn〉|x(1)q1 ⊕ · · · ⊕ x(n)qn〉. (5.26)

The ⊕ notation is used here, and throughout the rest of this section, to explicitly

denote that this arithmetic must be taken modulo da, and that this is in general not

the same modularity as if a similar summation was implemented in a register qudit

(which would only be true if da = d). From Equation 5.26, and using the action of

a controlled scalar-parameterised rotation given in Equation 5.20, it follows that

〈0|CQ
aX(−x) ·CQ′

a R(θ) ·CQ
aX(x)|0〉 = DQ∪Q′(φ), (5.27)

where the phases of the diagonal gate, which acts on all n+m of the register qudits,

are given by

φ(q1, . . . , qn+m) = (θ(n+m)qn+m + · · ·+ θ(n+ 1)qn+1) (x(n)qn ⊕ · · · ⊕ x(1)q1) .

(5.28)

When da > (dr − 1)
∑

k∈Q x(k), then the modulo arithmetic is equivalent to ordi-

nary arithmetic. In this case, this implements the unitary CQ
Q′R(θ) where θ(j, k) =

x(j)θ(k), which is almost identical to what can be achieved with controlled Pauli

operators and a QCV ancilla, as given in Equation 5.10 and discussed below that

equation. Although this is an extension on what can be achieved with a qudit ancilla

in Equation 5.10 (which allows only phases that are integer multiples of the dth
a root

of unity for a qudit ancilla), a much more interesting case is when

da ≤ (dr − 1)
∑
k∈Q

x(k), (5.29)

which is when the modularity of the arithmetic is central to the effect of the gate. It is

perhaps not entirely obvious whether this gate has any uses in quantum computation,

when written in this general form. However I now give a simple adaption of this

to implement a novel ‘step’ gate, which I now introduce and which includes the

important generalised Toffoli gate as a particular case for qubits. Before presenting

the method, this ‘step’ gate is defined and the importance of generalised Toffoli gates

is briefly discussed.

Define the step gate, denoted stepD(u), by the action:

|q1, . . . , qn〉|q〉
stepD(u)−−−−−−→ |q1, . . . , qn〉 ⊗ ub(q1+···+qn)/Dc|q〉, (5.30)
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where bxc is the floor function, which returns the largest k ∈ N with k ≤ x. There-

fore, this gate applies the unitary um on the target qudit, when

D(m+ 1) > q1 + · · ·+ qn ≥ Dm. (5.31)

Hence, the step gate is a family of unitaries (i.e., it is defined for a general input size

n+ 1) which require a unitary u and a value D ∈ N to be fully defined, noting that

D may be chosen to scale with n if desired. For qubits, this includes the generalised

Toffoli gate as a special case, which maps

|q1 . . . qn〉|q〉
toffolin(u)−−−−−−−→ |q1 . . . qn〉 ⊗ uq1·q2····qn |q〉, (5.32)

and hence applies the unitary u to the target system if and only if all of the n

control qubits are in the state |1〉. Specifically, it is the special case of the qubit step

gate, stepD(u), with D = n. The Toffoli gate plays an important role in quantum

computation, for example, it appears in many error correcting codes [Fedorov et al.

(2011); Gottesman (1997)] and it is a natural component in a variety of quantum

algorithms [Nielsen and Chuang (2010)]. The importance of this gate is in part

because the ordinary Toffoli gate (n = 2, u = X) is a valid classical 3-bit gate,

and alone is universal for classical reversible computation [Toffoli (1980)9]. Hence,

efficient decompositions of Toffoli gates into physically realistic primitive gates are

of interest.

Consider the sub-case of Equation 5.27 where Q′ = {t}. From this equation it

follows that

〈0|CQ
aX ·Ct

aR(−θ/da) ·CQ
aX|0〉 = DQ∪{t}(φ), (5.33)

where the phases of the diagonal gate are given by

φ′(q1, . . . , qn, qt) = − θ

da
qt (q1 ⊕ · · · ⊕ qn) . (5.34)

As long as da ≥ d, then individual additional control rotation gates of Ck
tR(θ/da),

for k = 1, . . . , n, can be applied via n applications of the ancilla-based gate sequence

in Figure 5.6, which uses a total of 3n gates. If these additional gates are appended

to the sequence of Equation 5.33, the total unitary effected is

CQ
t R(θ/da)DQ∪{t}(φ) = DQ∪{t}(φ

′), (5.35)

9Interestingly, the addition of only the Hadamard gate, or indeed any basis changing gate, is
enough to make this universal classical set become universal for quantum computation [Shi (2002)].
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• . . . . . . • • • . . .
• . . . . . . • • • . . .

...
...

...
...

. . . • • . . . . . . • •

. . . • . . . • • . . . •

|0〉 . . . R(−θd) . . . R(θd) R(θd) . . . R(θd) |0〉

Figure 5.7: This circuit implements the gate stepda(R(θ)) on one target and n
control register qudits of dimension d, via an ancilla of dimension da ≥ d prepared
in the state |0〉. The lowest wire of the main register is the target of the step gate
and θd = θ/da. This circuit has a size of 10n+ 2 and a depth of 5n+ 1.

where the resultant gate has the phase factor function φ′ given by

φ′(q1, . . . , qn, qt) = θqt ((q1 + · · ·+ qn)− (q1 ⊕ · · · ⊕ qn)) /da, (5.36)

= θqtb(q1 + · · ·+ qn) /dac. (5.37)

The latter equality follows via considering the difference between the same ordinary

and modulo arithmetic sums. Hence, D(φ′) is exactly the gate stepda(R(θ)), where

θ can take any value in R. Therefore, this ancilla-based sequence gives a method

for implementing a subset of step gates using only 5n+ 1 basic gates. The complete

circuit is given in Figure 5.7.

For a register of qubits, this may be converted via local gates to a step gate

with any unitary u, as for all u ∈ U(2) there is a v ∈ U(2) and θ, φ ∈ R such that

u = eiφvR(θ)v†, which is simply u expressed in terms of its eigenvectors (columns

of v) and eigenvalues (which are eiφ and ei(φ+θ)). As the n-qubit Toffoli gate is the

special case of the qubit step gate, stepD(u), with D = n, then this gives a method

for implementing any generalised Toffoli gate on n qubits via 5n + 1 interactions

with an ancilla of dimension n. Moreover, this method may be adapted slightly

to reduce the gate-count for the generalised Toffoli gate, with a circuit given in

Figure 5.8 which requires only 2n+5 gates (a saving of ≈ 3n).10 Although the most

well-known decomposition of generalised Toffoli gates into two-qubit gates, due to

Barenco et al. (1995), requires a number of gates quadratic in n, it is known that this

can be reduced to a linear scaling without the need for higher-dimensional ancilla

[Barenco et al. (1995); Maslov et al. (2008); Saeedi and Pedram (2013)]. This is the

same scaling with input size n as the qudit-mediated scheme I have proposed here,

however (to my knowledge) all known decompositions into two-qubit gates require

more than 2n + 5 elementary gates. As far as I am aware, the optimal qubit-only

10Similar adaptions apply more generally for step gates, but have been ignored for simplicity.
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construction in the literature (in terms of both size and depth) is due to Saeedi and

Pedram (2013) and requires 12n− 22 gates.11

• . . . . . . •
• . . . . . . •

...
...

...
. . . • • . . .
. . . • • . . . • •
. . . • • . . . •

|0〉 . . . R(−θd) R(θd) . . . R(θd) |0〉

Figure 5.8: A circuit acting on n + 1 qubits and an ancillary qudit of dimension n
initialised to |0〉 which implements the gate R(θ) on the the qubit n+ 1 if and only
if all of the other control qubits are in the state |1〉. This is the generalised Toffoli
gate toffolin(u) with u = R(θ), where the Toffoli gate is defined in Equation 5.32.
From this a generalised Toffoli gate with any u ∈ U(2) can be implemented via local
controls. This circuit has a size of 4n+ 10 and a depth of 2n+ 5. The parameter θd
is given by θd = θ/n.

An alternative method for implementing generalised Toffoli gates in a highly

efficient manner via a qudit ancilla has been proposed previously by Ionicioiu et al.

(2009). I now present a (slightly improved version) of this method to compare to

the technique introduced above. Consider a qudit ancilla with dimension da > n

that is initialised to |	n〉 (i.e., |da − n〉). Then, as with the method above, if the

interaction sequence CQ
aX is applied, this maps

|q1 . . . qn〉|qt〉|	n〉
CQ
aX−−−→ |q1 . . . qn〉|qt〉|q1 ⊕ · · · ⊕ qn 	 n〉. (5.38)

Hence, the ancilla is in the state |0〉 only when all of the qubits are in the |1〉 state

(as da > n). Therefore, if the gate u is then implemented on the target subsystem

controlled on whether the ancilla is in the state |0〉, i.e., the unitary

U0(u) = |0〉〈0| ⊗ u+

da−1∑
k=1

|k〉〈k| ⊗ I, (5.39)

this implements a u gate on the target qubit only if all of the n control qubits are in

the state |1〉, as required of the generalised Toffoli gate. As in the method proposed

above, applying CQ
aX
† disentangles the control qubits, finishing the gate.12

11This uses n−2 auxiliary qubits. With only one auxiliary qubit then 24n−64 gates are required.
12The gate that is implemented if the input size n is allowed to scale independently of da is

what might naturally be called a modda(u) gate, which applies u to the target qubit if and only if
q1 ⊕ · · · ⊕ qn = 0, where the summation is modulo da.
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• . . . . . . •
• . . . . . . •

...
...

...
. . . • • . . .

. . .

U0(u)

. . .

|da − n〉 . . . . . . |da − n〉

Figure 5.9: The method of Ionicioiu et al. (2009) for implementing a generalised
Toffoli gate on n+ 1 qubits via a qudit ancilla of dimension da > n. The U0(u) gate
applies the gate u to the target register qubit if the ancillary qudit is in the state
|0〉, and applies the identity otherwise.

This method for implementing the generalised Toffoli gate is summarised in

Figure 5.9 and requires only 2n + 1 gates, which is a reduction of four gates from

the method I have proposed herein, as given in the circuit diagram of Figure 5.8.

However, the circuit of Figure 5.9 has a substantial disadvantage: it contains a

U0(u) gate. A direct implementation of this gate requires an additional ancilla-

register interaction Hamiltonian, as it is not generated by the same Hamiltonian as

the CR(θ) gate, and it cannot be obtained from such a gate and local controls alone.

For this reason, I would argue that the method proposed herein is substantially more

practical, as it uses only CR(θ) and CX(±1) gates (which can all be easily obtained

from CR(θ) and local F gates, as discussed further in Section 5.5). Finally, one nice

feature of (the adaption of) the scheme of Ionicioiu et al. (2009) given here is that

it can be used to implement generalised Toffoli gates on different sized inputs, n, as

long as n < da, with the only change for different input sizes being a different initial

ancilla state. This can also be achieved with the method proposed herein simply

by changing the ancilla input state in the circuit of Figure 5.8 to |n− da〉, which

facilitates the implementation of a generalised Toffoli for any input size n ≤ da.

5.4 Hybrid quantum computation

The ancilla-based gates discussed in this chapter use (in general) hybrid variables,

and hence are clearly hybrid quantum computation in one sense. However, the fo-

cus has been entirely on implementing gates on the register and has not considered

whether some computation may also be implemented explicitly in the ancillary regis-

ter (there will necessarily be many ancillas in practice, i.e, a ‘register’ of ancillas). If

universal quantum computation can be performed in both registers, when they are of

different QV types, then the computational model can be considered a hybrid quan-

tum computer in a much stronger sense. I will now show that the physical primitives
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used in the geometric phases gates of this chapter allow for truly hybrid quantum

computation with all pairings of different types of QVs for the computational and

ancillary systems. The following discussion will then be useful for understanding

to what degree ancillas of a different dimension can provide efficiencies in quantum

computation and, as such, may be used to put the results of Section 5.3 into a more

general context.

To begin, consider the case when the register and ancillary systems are all qudits,

which may in general be of different dimensions. The interaction gate we have been

considering is the CR(θ) gate (θ ∈ R), which is completely symmetric as13

Cr
aR(θ)|q〉r|q

′〉a = eiθqq
′ |q〉r|q

′〉a = Ca
rR(θ)|q〉r|q

′〉a. (5.40)

Hence, the ancilla can be equally considered to be the control system in such a gate.14

As such, it is clear that, along with local controls on both ancillary and register

systems, an interaction gate of this sort allows for universal quantum computation

on both the ancillary and computational registers (geometric phase gates, etc, may

be implemented on the ancillary register, via computational QVs).

Essentially the same considerations hold true for a qudit register combined with

QCV ancillas, although it is less straightforward to see. In the following, and in the

next section, it be useful to use the ‘position’ and ‘momentum’ operators for a general

QV, given by x̂ =
∑

q∈Sd q|q〉〈q| and p̂ =
∑

q∈Sd q|+q〉〈+q| respectively, as first

introduced in Equation 3.21. In this qudit-QCV context, the implicit assumption

throughout this chapter has been that it is possible to implement CZ(q) gates, for

arbitrary q ∈ R (or at least, arbitrary q ∈ [0, a] for some non-zero a ∈ R), between

any register-ancilla pair, where the register QV is the control system. This operator

can be expressed in terms of the position operators of the two systems, specifically

Cr
aZ(q) = eiqx̂r⊗x̂a . Hence, as Fx̂F † = p̂, then via local Fourier gates it is also

possible to implement the gate

(Fr ⊗ Ia) ·Cr
aZ(q) · (F †r ⊗ Ia) = eiqp̂r⊗x̂a , (5.41)

between any register qudit, r, and ancillary QCV, a. Therefore, for a single register

system, r, and two ancillary QCVs, a and b, it is possible to implement the operation

13Note that, in this equation, the R(θ) gate on the LHS is not exactly the same gate as on the
RHS. That is, on the LHS it is the R(θ) gate for a da-dimensional qudit, and on the RHS it is a
R(θ) gate for a d-dimensional qudit. Obviously, if this was not the case this equality would not
make sense.

14For example, taking θ = 2πq/d with q ∈ Sd, can be interpreted as implementing an ancilla-
controlled Pauli Z(q) gate on the register qudit.
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sequence

eiqp̂r⊗x̂beiqx̂r⊗x̂ae−iqp̂r⊗x̂be−iqx̂r⊗x̂a = eq
2[p̂r,x̂r]⊗x̂a⊗x̂b +O(q3), (5.42)

where this equality follows from the general relation

eiĤjδteiĤkδte−iĤjδte−iĤkδt = e[Ĥj ,Ĥk]δt2 +O(δt3), (5.43)

for Hermitian Ĥk and Ĥj [Braunstein and van Loock (2005); Lloyd (1995)], which

has already been stated in Equation 2.42. As discussed in Section 2.3.2, this means

that via repeated applications of this sequence the unitary

U = eφ[p̂r,x̂r]⊗x̂a⊗x̂b , (5.44)

can be built up to arbitrary accuracy for any finite φ ∈ R. Now, if the register qudit

is prepared in an eigenstate of the Hermitian operator i[p̂r, x̂r], then this implements

the gate U(θ) = eiθx̂a⊗x̂b , for some θ ∈ R, which is the two-QCV controlled Z(θ)

gate.15 Hence, a register qudit has been used to entangle two ancillary QCVs, im-

plying that along with local controls of both the ancillary and register systems, this

interaction is sufficient to implement universal quantum computation in both the

main and the ancillary registers. This derivation is very closely related to the work

of Lloyd (2003) in which the concept of hybrid discrete-continuous quantum com-

putation was introduced. Interestingly, this qudit-mediated two-QCV gate can be

understood as an infinitesimally constructed version of the geometric phase gate.16

The discussions up to this point have explicitly shown the close link between

ancilla-mediated geometric phase gate techniques and hybrid quantum computation,

but have not shed any light on the degree to which such different-dimension ancillary

systems can provide additional efficiencies in quantum computation. To consider this

question, the case in which the register and ancillary systems are both qudits is first

discussed. An ancillary qudit may be simulated with k = dlogd dae many register

qudits, which is a constant (given that the dimension of the ancillas is a constant,

which is a physically appropriate constraint). To implement any local gate on this

encoded da-dimensional qudit requires only O(d2k) = O(d2
a) gates and a similarly

small number are needed to simulate an interaction gate between an ‘ordinary’ single

register qudit and this da-dimensional encoded qudit. The simulation is particularly

simple when the ancilla has a dimension that is an integer power of d, i.e., da = dk,

15Exactly what the eigenstates of i[p̂r, x̂r] are, is not that important - it is not being suggested
here that this is an especially practically method for implementing an entangling gate on two QCVs.
For qubits, the eigenstates of this operators are those of the Pauli Y = iXY gate.

16The geometric phase gate does not work in an exact sense for qudits mediating an interaction
between QCVs, which is the case that has been excluded throughout this chapter.
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and this is discussed briefly for clarity.

Consider the case when da = dk. The most natural encoding of a da-dimensional

qudit into k = logd(da) qudits of dimension d, is given by taking the computational

basis states of the encoded qudit to be∣∣∣dk−1q1 + dk−2q2 + · · ·+ qk

〉
= |q1, . . . , qk〉. (5.45)

With this representation, an encoded rotation gate R̄(θ) (a ū is used to denote a

unitary u that acts on the emulated qudit) is simply the tensor product of single-

qudit rotation gates, specifically,

R̄(θ) = R
(
dk−1θ

)
⊗R

(
dk−2θ

)
⊗ · · · ⊗R(dθ)⊗R(θ). (5.46)

As a circuit on the physical qudits, this has a depth of one, and a size of k. To achieve

the single d-dimensional qudit controlled version of this gate, CR(θ), each of these

gates simply needs to be controlled by the control system, and hence this need have

a depth of no more than k and a size of 2k. The encoded local Fourier gate, F̄ ,

is simply the QFT modulus da = dk on the k physical qudits, and hence may be

implemented with a circuit of O(k2) = O(logd(da)
2) size, and O(k) = O(logd(da))

depth (see Section 5.3.1). From this, X̄(q) (and controlled X̄(q)) gates can be

obtained, via R̄(θ) gates (or CR̄(θ) gates) along with Fourier gates.

In summary, the overhead of simulating ancillary qudits of a different dimen-

sion to the register qudits is low for physically relevant dimensions and in scaling

terms it is irrelevant. Hence, it is clear that the advantages associated with aiding a

d-dimensional qudit-based computer with d′-dimensional ancillary qudits are reason-

ably limited. However, an argument in favour of such devices, and the qudit-aided

proposals of Section 5.3.2 such as that for the generalised Toffoli gate, is that even

relatively small efficiency savings may still be of practical utility - particularly in

prototype quantum computers.

The advantages that QCV ancillas can provide for a qudit (or qubit) based

quantum computer are less easily understood. However, there are certain conclusions

that can be drawn. Perhaps the simplest way to understand why QCVs may have

the potential to aid a computation (in theory, at least), is that they can employ

intrinsically real-valued, rather than integer, arithmetic. E.g., for a set of n qudits,

labelled 1, . . . , n, then an ancillary QCV can be mapped to the state |r1q1 + . . . rnqn〉,
where qk is the computational basis state of the kth qudit, and the rk parameters

are real numbers. Such arithmetic is fundamentally not available to a discrete-only
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encoding.17 The conclusion that this real-valued arithmetic is key to any advantages

associated with QCV ancillas may be further reinforced by the simple observation

that, if the computation uses only controlled QCV Pauli gates with parameters that

all have the form 2πq/k for some constant k ∈ N and integer values of q, then

these operations may be simulated with a k-dimensional ancillary qudit. Hence, in

such cases, there can be no benefits to using QCV ancillas, beyond those limited

benefits associated with qudit ancillas. Furthermore, it is important to note that,

in practice, any advantages that QCV ancillary systems can provide are likely to

be illusionary to some degree: finite precision essential reduces a QCV to a discrete

set of accessible states and operators. Adding further weight to this point of view

is the observation that, if error correction is to be layered on-top of the ancillary

system, then some discrete encoding of information into the QCVs will be essential

(e.g., via the GKP encoding scheme of Gottesman et al. (2001)).18 This is because

error-correction of even a classical (logical) continuous variable appears not to be

possible.

5.5 Physical implementation

In this penultimate section, the physical implementation of the gate methods that

have been proposed throughout this chapter is discussed. Moreover, much of what

follows will also be applicable to the models and gate methods introduced in the

next two chapters. Consider the ancilla-register interaction Hamiltonian

Ĥcz
r,a = x̂r ⊗ x̂a, (5.47)

where the first system, denoted with a subscript r, and the second system, denoted

with a subscript a, are a register and ancillary QV respectively. Note that the

ancillary and register QVs may be of different types and, as in the previous section,

the x̂ operator is again the ‘position’ operator for a general QV (see Equation 3.21).

It is easily confirmed that such a Hamiltonian, applied for a time t, generates the

interaction gate

Cr
aR(−t) = exp

(
−itĤcz

r,a

)
, (5.48)

17Encoding r1q1 + . . . rnqn into the QCV computational basis state |r1q1 + . . . rnqn〉 is very
different to possible encodings of this value into qudits or qubits, such as encoding it into a phase.
For example, a qubit state can be easily created of the form |0〉 + ei(r1q1+...rnqn)|1〉, but here the
value of r1q1 + . . . rnqn is not physically accessible in the same sense as the QCV encoding, in which
case this value has been mapped into orthogonal basis states. Orthogonal states can in-principle be
distinguished with a one-shot measurement, whereas a continuous phase parameter cannot.

18Note that such quantum error correction of the ancillary systems would be necessary in a full-
scale and fault-tolerant quantum computer if the ancillary systems are to remain entangled with
the register for extended periods of the computation.
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which for t = 2πq/da, with q ∈ Sda , is the CZ(−q) gate. Register-QV controlled

X(q) gates on the ancilla, and CR(θ) gates with positive θ ∈ R, can be generated

from CR(−t) gates (with t ≥ 0) and local Fourier gates on the ancilla, via the relation

given in Figure 2.5 and using the equality F 2R(θ)F 2 = R(−θ), respectively. Hence,

the interaction Hamiltonian in Equation 5.47, augmented with local Fourier gates,

is sufficient to implement all of the ancilla gate methods proposed in this chapter

(although not the generalised Toffoli gate method of Ionicioiu et al. (2009)).19

In the context of qubits, or more general dimension qudits, ‘position’ and ‘mo-

mentum’ operators are not commonly used, and it is more conventional to consider

‘spin’ operators. A qudit of dimension d may be considered to be a spin s = (d−1)/2

particle, which has a Hermitian z-spin operator defined by20

Ŝz =



s 0 · · · 0 0

0 s− 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · −s+ 1 0

0 0 · · · 0 −s


. (5.49)

Observe that, when s = 1/2, this reduces to the qubit Pauli Z operator (up to

a factor of 1/2) but this is not the case more generally as it is only for qubits

that the Pauli operators are both unitary and Hermitian. Replacing the position

operator, x̂, with the z-spin operator, Ŝz, in the Hamiltonian of Equation 5.47,

when either the ancillary or register systems are qubits or qudits, will still generate

the required interaction CR(θ), up to local rotation gates. Hence, this provides

a perhaps more familiar Hamiltonian from a physics perspective, for generating

the relevant interactions. E.g., for a qubit register and a QCV ancilla, this is the

commonly encountered Hamiltonian

Ĥ = σz ⊗ x̂ = σz ⊗
1√
2

(â+ â†), (5.50)

19Moreover, for a QCV ancilla local controls (in the form of squeezing gates) allow the interaction
time to be fixed to any non-zero value, as can be confirmed with reference to Figure 2.4. For qudits
it may be fixed to an irrational multiple of π, or, if only those gate methods which use controlled
Pauli operators are to be used, it may be fixed to 2π/da. Obviously, an interaction time that is an
irrational multiple of π is not something that can be achieved in practice - in the realistic setting
of finite precision a fixed-time interaction is still sufficient, but a more careful analysis would be
needed for how this should be fixed.

20That the z-spin operator is diagonal in the computational basis is essentially an arbitrary choice
that has been made here, i.e., the particles spin eigenstates in the z-direction can be considered
to define the computational basis. Defining the computational basis is always in a sense arbitrary,
without the grounding of a specific physical context.
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where the subscripts have been dropped for typographical simplicity, and with

â† =
1√
2

(x̂− ip̂), â =
1√
2

(x̂+ ip̂), (5.51)

which are termed the ‘creation’ and ‘annihilation’ operators, respectively. These op-

erators will be preferred to the QCV position and momentum operators throughout

this section, in keeping with the majority of the literature relevant here.

Before moving on to discussing physical systems in which interaction Hamiltoni-

ans of this form might be engineered or have been realised, because the Fourier gate

on the ancilla is key in implementing the schemes discussed in this chapter without

recourse to more than one ancilla-register interaction Hamiltonian, it is important

to first discuss how this gate may be generated. It has already been mentioned in

Section 2.2.1 that this is a particularly natural operator for a QCV. This is because

it is generated by the quantum harmonic oscillator (QHO) hamiltonian

Ĥqho = â†â+
1

2
, (5.52)

which is the free hamiltonian in a range of systems, such as micro-mechanical res-

onators [Poot and van der Zant (2012)] or single light modes [Gerry and Knight

(2005); Radmore and Barnett (1997)].21 As such, the Fourier gate is easily imple-

mented in these settings (e.g., with a light mode, it may be implemented with a

suitable length phase/time-delay).

In the context of qudits, Stroud and Muthukrishnan (2002) have claimed that

the local Fourier gate is a particular natural unitary evolution in atomic systems.

However, regardless of whether or not this is an especially straightforward gate to

implement directly in the particular qudit-encoding physical system in question, it

can always be composed from a small number of physically reasonable operations.

In particular, any local gate on a qudit of dimension d can be composed from ap-

proximately d2 operations that couple only two levels of the qudit at a time [Brennen

et al. (2005)]. Moreover, the implementation-time overhead associated with this de-

composition is reduced if these couplings can be implemented in parallel [O’Leary

et al. (2006)], as may well be the case in some systems, e.g., with atoms multi-

ple couplings can be achieved with additional control fields [O’Leary et al. (2006)].

Hence, implementing local Fourier gates on qudits can be considered to be relatively

straightforward, at least in comparison to the inherent difficultly in achieving strong

and high-quality couplings between physically distinct systems. This is supported by

some impressive experimental progress on local gates in non-binary systems. E.g.,

d = 16 qudits encoded into the hyperfine structure of the electronic ground state

21See Appendix D for a derivation of the equality F = e−3πiĤqho/2 and Appendix A for further
discussions on the properties of the well-known QHO hamiltonian.
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in the Caesium isotope 133Cs have been demonstrated to be a particularly promis-

ing setting for non-binary quantum computation by Anderson et al. (2015); Smith

et al. (2013), with Anderson et al. (2015) reporting high-quality local gates with

an average fidelity of over 98%, as measured by randomised benchmarking. Having

discussed local operations, we now turn back to two-QV interactions.

To begin, consider first the case in which either the ancillary or register systems

are qubits. One common Hamiltonian, which it will be seen can generate appropriate

gates to implement the methods of this chapter, is that of the Jaynes-Cummings

model [Jaynes and Cummings (1963)]. This model describes the coupling of a qubit

to a QHO, and (in the rotating wave approximation [Gerry and Knight (2005)]) is

given by

Ĥjc = ω

(
â†â+

1

2

)
+

Ω

2
Z + g(σ−â

† + σ+â), (5.53)

where σ+ = |0〉〈1| and σ− = |1〉〈0|, ω is the frequency of the QHO, Ω is the frequency

of the qubit, and g is the qubit-oscillator coupling strength. The Jaynes-Cummings

model describes a wide range of physical systems, for example, qubit-oscillator cou-

plings in a cavity [Shore and Knight (1993)] and circuit QED [Blais et al. (2004);

Deppe et al. (2008)], and for a variety of qubit types coupling to mechanical os-

cillators [Gröblacher et al. (2009); Wallquist et al. (2009)]. In the dispersive limit

(g/∆� 1 where ∆ = Ω−ω) of the Jaynes-Cummings model, Ĥjc may be shown to

be approximated by [Blais et al. (2004)]22

Ĥdisp
jc ≈ ωâ†â+

(
Ω

2
+
g2

∆

)
Z +

g2

∆
Z ⊗ â†â. (5.54)

Importantly, this limit of the Jaynes-Cummings model has been experimentally re-

alised with a large enough coupling strength, g, to implement an entangling gate

within the decoherence time of the system (referred to as the strong coupling regime)

[Schuster et al. (2007); Wallraff et al. (2004)].

Clearly, a QHO naturally lends itself to a QCV encoding. However, one possi-

ble way to encode a d-dimensional qudit into a QHO is by using the first d energy

eigenstates of the free QHO Hamiltonian (the eigenstates of â†â) as the qudits com-

putational basis, often called the number states. With this encoding, the Jaynes-

Cummings model describes a qubit-qudit coupling, and in particular, the dispersive

limit Hamiltonian, given above, generates controlled rotations gates, CR(θ), and

controlled Pauli Z(q) gates, on this qubit-qudit pair (up to local rotation gates23).

22This can be derived by considering the conjugation transformation Ĥjc → UĤjcU
†, with U

the unitary given by U = exp( g
Ω−ω (σ+â− σ−â†)), and then expanding to first order in g/∆.

23The single-system terms in the Hamiltonian of Equation 5.54 create only local gates on each
system and do not effect the non-local gate implemented by this Hamiltonian, as they commute
with the interaction term.
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Interestingly, using the Jaynes-Cummings Hamiltonian to implement qubit-qudit

interactions has been proposed elsewhere by Mischuck and Mølmer (2013) in the

context of implementing qudit-based quantum computation via control-field pulse-

sequence techniques. Alternatively, if we do not consider encoding a qudit into the

QHO but instead treat it as a QCV, the dispersive limit of the Jaynes-Cummings

Hamiltonian generates what may be termed qubit-controlled phase-space rotations

on the QCV.24 This is a different qubit-QCV interaction gate to the qubit-controlled

QCV Pauli operators that have been considered throughout this chapter, and there

are a range of interesting ancilla-based gate methods that have been developed

that directly use interactions of this sort, e.g., see Louis et al. (2007); Munro,

Nemoto, Spiller, Barrett, Kok and Beausoleil (2005); Proctor and Spiller (2012);

Spiller et al. (2006). However, by multiple interactions and local controls of the

QCV, controlled phase-space rotations may be converted into controlled QCV Pauli

operators [Van Loock et al. (2008); Wang and Zanardi (2002)25], and hence these

interactions may also be used for the gate methods discussed herein.

There are a range of physical systems and interactions, in addition to the Jaynes-

Cummings model, that can provide suitable ancilla-register interactions for the

methods given in this chapter. The qubit-controlled QCV Pauli operator is gener-

ated by the Hamiltonian of Equation 5.47 which can be realised in superconducting

systems [Spiller et al. (2006); Wang et al. (2009); Xue (2012)]. This has been demon-

strated experimentally, for example, a very recent experiment by Yoshihara et al.

(2016) implemented such controlled QCV Pauli operators (called controlled phase-

space displacements therein), and confirmed that they can create large amounts of

entanglement between the qubit and QCV, as would be expected in the ideal case.

In order to consider qudit-qudit or qudit-QCV couplings it is obviously necessary to

go beyond couplings between single two-level systems and oscillators. One possible

interaction, that is relevant to photonics, is the coupling between two oscillators

given by

Ĥkerr = â†â⊗ b̂†b̂. (5.55)

This is often called the cross-Kerr Hamiltonian, and may be engineered using elec-

tromagnetically induced transparencies [Sun et al. (2008); Yang et al. (2009)], optical

fibres [Li et al. (2005); Matsuda et al. (2009)] and cavity QED systems [Mücke et al.

(2010); Zhu (2010)]. With qudits encoded into both of the QHOs this describes a

24In the literature, these are normally simply called controlled rotations. The addition of ‘phase-
space’ to the name, is used herein to avoid confusion with CR(θ) gates, which are not the same as
this gate.

25From Appendix D, it follows that exp(−3πiσz â
†â/2) = e3πi/4|0〉〈0| ⊗ F + e−3πi/4|1〉〈1| ⊗ F †.

Using the relation FZ(q/2)F † = X(−q/2), it may then be confirmed that CX(q) = (I⊗X (q/2)) ·
exp(−3πiσz â

†â/2) ·(I⊗Z (q/2)) ·exp(+3πiσz â
†â/2). See Van Loock et al. (2008) for a more general

relation, which is not dependent on large controlled rotations, i.e., it may use exp(iθσz â
†â) gates

with general θ ∈ R.
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qudit-qudit coupling that implements a controlled R(θ) gate (if the encoding con-

sidered above is used). Moreover, this provides another method for implementing

qubit-controlled phase-space rotations on a QCV ancilla, as discussed above, which

may be achieved by encoding the qubit into the the lowest and first energy eigen-

states of â†â, in which case â†â is equivalent to the qubit position operator (for

photons, this is encoding the qubit in terms of whether or not there is a photon

in the mode). A further possibility was suggested by Ionicioiu et al. (2009) who

proposed that qubit-controlled qudit Pauli operators may be realisable with a qubit

encoded into a field mode and a qudit encoded into a spin s = (d− 1)/2 particle in-

teracting via the generalised Jaynes-Cummings (GJC) model in the dispersive limit,

where the GJC model describes a coupling of a spin-s particle to a field mode anal-

ogous to that in the ordinary Jaynes-Cummings model. Alternatively, this model

can obviously describe the coupling of a qudit with a qudit or QCV and in these

cases it may also provide relevant interactions for the gate methods herein.

Qudits have been experimentally realised in a wide range of physical systems,

including superconducting [Neeley et al. (2009)], atomic [Smith et al. (2013)] and

photonic systems, where in the latter the qudit is encoded in the linear [Lima et al.

(2011); Rossi et al. (2009)] or orbital angular momentum [Dada et al. (2011)] of a

single photon. Hence, there are likely to be many further alternatives setting in

which the gate methods considered herein will be relevant. One possible alternative

encoding for a qudit is in the collective excitations of an ensemble of qubits. Such

systems are an active area of research [Byrnes et al. (2012); Dooley et al. (2015,

2013); Lü et al. (2013); Ma et al. (2015); Marcos et al. (2010); Stanwix et al. (2010)]

and experiments have been conducted in a range of physical settings, including en-

sembles of caesium atoms [Christensen et al. (2014)] and nitrogen-vacancy (NV)

centres in diamond [Zhu et al. (2011)]. One appealing property of such N -qubit

ensembles is that the coupling strength between these ensembles and other physical

systems generically exhibits a
√
N enhancement [Lukin (2003); Rabl et al. (2006)],

providing a means for obtaining strong coupling even when the individual inter-

actions are relatively weak. Qubit ensembles have been investigated as a possible

long-life quantum memory for logical qubits [Lü et al. (2013); Marcos et al. (2010);

Petrosyan et al. (2009); Rabl et al. (2006)], however, to my knowledge, encoding

non-binary qudits into these systems has not been explored in detail and hence I

now briefly outline how this might be achieved in a physically appealing manner.

Qubit ensembles are naturally described by the collective spin operators. Define

the collective z-spin operator, for an ensemble of N qubits, by

Jz := Z1 + Z2 + · · ·+ ZN , (5.56)
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noting the implicit identity operators on the remaining N −1 qubits in each term of

this sum. Collective Jx and Jy operators may be defined analogously (where the Y

qubit operator may be defined as Y = iXZ), and using these, the total spin operator

may be defined by J2 := J2
x + J2

y + J2
z . By showing that [Jx, Jy] = 2iJz, along with

cyclic permutations, it follows that [J2, Jk] = 0, for k = x, y, z. As these operators

commute, an orthonormal basis for the total N -qubit Hilbert space can be found

consisting of the joint eigenstates of J2 and Jz, with these known as the Dicke states

[Dicke (1954)]. The subspace of maximal total angular momentum (which is N), is

spanned by the N + 1 eigenstates of Jz in this subspace, given by

|nD〉 =

(
N

n

)−1/2 ∑
perm

∣∣∣1⊗(N−n)0⊗n
〉
, (5.57)

with n = 0, . . . , N , and where the sum is over all possible arrangements of the n

excitations.26 Hence, a d = N + 1 dimensional qudit may be encoded into this

subspace of the ensemble, with a convenient choice for the computational basis of

the qudit given by these Dicke states, i.e., B = {|nD〉 | n = 0, . . . , N}. Because

the states in this subspace are symmetric with respect to exchange of qubits, they

are physically accessible by operations that act symmetrically on all the qubits, i.e.,

there is no need for individual qubit addressability.

To use a qudit encoded in this way for the gate methods proposed herein, or

indeed, any useful quantum information processing, it is necessary to be able to

couple such spin ensembles to either qubits, qudits or QCVs. Considering the gate

methods herein, the spin-ensemble-encoded qudits may play the role of either com-

putational or ancillary systems and, given the large coherence times of spin ensem-

bles, they may be particular well-suited to providing long-life computational qudits.

As already mentioned, ensemble-qubit couplings have already been proposed in the

context of utilising the collective ensemble states as a quantum memory [Lü et al.

(2013); Marcos et al. (2010); Petrosyan et al. (2009); Rabl et al. (2006)], with a

computational qubit stored in the ground and first excited Dicke states. These pro-

posals provide methods for interacting spin ensembles and qubits, suggesting that

it may be possible to entangle qudits encoded into ensembles via ancillary qubits.

More specifically, given the encoding discussed above, an interaction Hamiltonian of

the form Ĥse = Z ⊗ Jz would be appropriate for implementing controlled rotation

gates and controlled Z(q) gates, as used throughout this chapter.27 One specific

physical system that may be relevant for this proposal is an ensemble of NV centers

coupled to a superconducting flux qubit. Couplings of this sort have been proposed

by Lü et al. (2013); Marcos et al. (2010) and experimentally realised by Zhu et al.

26The |nD〉 state is the eigenstate of Jz with eigenvalue 2n−N , i.e., Jz|nD〉 = (2n−N)|nD〉.
27These gates are symmetric, so it is not necessary to specify which system is the control.
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(2011). This setting has the advantage that the NV centers have an energy spec-

trum that may allow for gap-tuneable flux qubits to sequentially interact with the

spin-ensemble by bring them into resonance in turn.

Alternatively, it might also be of interest to consider using this spin-ensemble-

encoded qudit as an ancillary system for mediating gates and aiding computation

on some register of qubits or qudits. The above discussions are also relevant in this

case and in Proctor et al. (2015) we have proposed an alternative method for using

such an ensemble as an ancillary system to mediate entangling gates on qubits via

controlled ‘SU(2) displacements’. Although linked to the ideas presented in this

chapter, this gate method is notably different to the techniques used in the rest of

this thesis and hence, in the aid of continuity, this has not been included in the main

text and may instead be found in Appendix K. This appendix also provides a much

more detailed introduction to the spin operators that have been used here.

5.6 Conclusions

To protect the quantum information in a quantum computation it is necessary for

the computational QVs to have long coherence times, but to implement a useful

computation it is essential to be able to implement high-quality entangling gates

on these QVs. A naturally solution to fulfilling these competing requirements is to

use highly-controllable, but perhaps short-lived, ancillary systems to mediate the

interactions between well-isolated QVs in a computational register. Moreover, as

discussed in Section 5.1, there are a range of additional advantages associated with

implementing quantum computation in this fashion, e.g., if the ancillas are highly

mobile (e.g., states of light), they may be used to implement gates between distant

computational QVs in some static array (e.g., a 2D square lattice, or linear array)

without any overheads. In this chapter, ancilla-mediated geometric phase gates

have been proposed and investigated. These two-QV entangling gates, introduced

in Section 5.2, are implemented on a pair of computational QVs via a sequence of

controlled Pauli operators acting on a target ancilla, which may be of a different QV

type to the register systems. The particular case of this gate with computational

qubits mediated via ancillary QCVs has been considered previously in literature, e.g.,

see Louis et al. (2008); Milburn (1999); Munro, Nemoto and Spiller (2005); Spiller

et al. (2006), and is often called ‘qubus’ computation. However, the construction

given here applies to computation with more general QV types and where the ancillas

can be qubits, qudits or QCVs: to my knowledge it is novel in all cases outside the

qubit-QCV setting.

The ancilla-mediated geometric phase gate, when augmented with local gates on

the computational systems, is sufficient to implement any quantum computation.
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As such, any quantum circuit can be decomposed into a sequence of these basic

gates. However, by adapting the gate to keep some register systems entangled with

the ancilla for extended periods of the computation, it was shown in Section 5.3 that

the number of ancilla-register interactions required to achieve certain unitaries may

be reduced. These ideas have been developed previously in the ‘qubus’ sub-case (i.e.,

qubit register, QCV ancillas), by Brown et al. (2011, 2012); Horsman et al. (2011);

Louis et al. (2007) and, in particular, Brown et al. (2011) have given a method

for implementing the quantum Fourier transform (QFT) on a qubit register with a

reduced number of gates. However, in Section 5.3.1 it was shown that this method for

implementing the QFT requires exponential time, and as such, is much worse than

the ordinary decomposition of the QFT. Highly efficient methods for implementing a

range of modulo-arithmetic based gates, via a qudit ancilla, were then developed in

Section 5.3.2, including a simple scheme for implementing generalised Toffoli gates

(on qubits). Furthermore, in Section 5.4, the links between these gate methods and

full hybrid quantum computation were investigated and finally, in Section 5.5, the

possibilities for the physical implementation of these gate methods were discussed.

The analysis throughout this chapter has assumed that all operations are per-

formed perfectly and no decoherence is present. In any physical realisation of ancilla-

based gates this will not be the case, hence an interesting extension of this work

would be to assess the impact of physically realistic noise and gate errors to the

operation of the geometric phase gate and its extensions. In the previously studied

‘qubus’ model this has already been considered by Louis et al. (2008), in the context

of a photonic ancilla and photon losses during the gate implementation, and they

have shown that high fidelity computations can still be achieved in the presence

of moderate dissipation. It seems likely that similar considerations will carry over

to the further gate methods introduced herein, although the relevant decoherence

mechanisms will be depend on physical systems in question. The circuit-size re-

ducing techniques proposed in this chapter rely on many computational QVs being

entangled with an ancillary system simultaneously, and hence, any errors on this

ancilla may cause correlated errors on these QVs. Such correlated errors can cause

problems for quantum error-correction [Terhal (2015)] and there will then be a trade-

off between reducing gate counts and introducing these problematic errors. For the

‘qubus’ case this optimisation has been considered by Horsman et al. (2011), con-

firming that gate-count reductions of this sort may indeed prove useful in practice.

Again, it is likely that similar results hold for the more general gate methods intro-

duced herein and a careful analysis of this would also be interesting to investigate

in the future.

One unfortunate feature of the geometric phase gate is that each QV involved

in the gate must interact with the ancilla twice, which in some settings may be
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particularly inconvenient (e.g., a ‘flying’ ancilla implementing a gate on distant

QVs). This then provides one motivation for the ancilla-based model proposed in

the next chapter, which minimises the required number of interactions per gate

to a single interaction with each computational QV. This model will employ gate

methods that are closely related to the geometric phase gate and it will also be seen

to have many similarities to the one-way quantum computer (1WQC). Hence, it

will provide an interesting conceptual link between the ideas in this chapter and the

1WQC.
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Chapter 6

Quantum computation driven

by measurements of ancillas

In this chapter a model of quantum computation for general quantum variables is

proposed in which universal quantum computation is implemented on a register using

only : repeated applications of a single fixed two-body ancilla-register interaction

gate, ancillas prepared in a single state, and variable basis measurements of these

ancillas. Driving the computation via measurements of the ancillas introduces a

fundamentally probabilistic aspect to the computation, but step-wise determinism

can be maintained via classical feed-forward of measurement outcomes in a similar

fashion to the general quantum variable one-way quantum computer (1WQC), which

was investigated in Chapter 4. A method for simulating the 1WQC within this

model is provided, which is used to demonstrate that the hybrid quantum-classical

advantages of 1WQC are also inherent in the model presented here, including the

ability to implement any Clifford gate in constant depth. Hence, the model proposed

here not only requires highly limited physical controls but is also powerful for parallel

quantum computation. The links between this model and the geometric phase gate

of the previous chapter are explored and an adaptation of the model to globally

unitary dynamics is given. The main measurement-based model presented in this

chapter is novel in the case of non-binary qudits and QCVs, with the qubit sub-

case previously proposed by Anders et al. (2010); Kashefi et al. (2009), and the

adaptation of this model to unitary dynamics given herein is novel in all cases. This

chapter is based upon Proctor et al. (2013); Proctor and Kendon (2015).

6.1 Introduction

Decoherence is the major obstacle that is currently preventing the realisation of a

useful quantum computer. In order to minimise the destructive effects of decoherence
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it is essential that each quantum variable in the register of a quantum computer

is isolated as effectively as possible. Indeed, this is the key motivation for the

development of ancilla-based techniques for quantum computation, as they remove

the necessity for direct interactions between the register QVs, allowing them to be

more effectively isolated. Continuing in this line of thought, it is well-motivated

to consider ways in which the access needed to the register, in order to implement

universal quantum computation on it, can be further reduced to a minimum. This

is the subject of both this and the next chapter.

One perspective on minimising access to the register might be to try and min-

imise the total number of operations, or perhaps only the number of two-body gates,

that need to be applied to the register in a particular quantum computation. This

can be understood in terms of decomposing algorithms into an operation sequence

(i.e., a sequence of gates and possibly measurements) over some operation set with

a minimal computational size. In both this and the next chapter an alternative

perspective is considered in which the number of different operations in the ba-

sic operations set is to be minimised. More precisely, as the priority is optimising

the computational register for long coherence times, it is of utmost importance to

minimise the number of operations in the basic set that act on register systems,

leaving the possibility of manipulations on the ancillas to compensate for such re-

stricted access to the register. Motivated by this, in both this and the next chapter,

general quantum variable models will be proposed that require only a single fixed

two-body ancilla-register interaction gate, along with certain controls on individual

ancillas, for universal quantum computation on the register. Quantum computation

with a scheme of this sort then allows the register systems to be optimised for long

coherence times, with only a single fixed two-body gate needing to be engineered.

In the interests of physical simplicity, it is also natural to minimise the number of

interactions between an ancilla and a pair of register elements required to implement

an entangling gate. It is obviously necessary for the ancilla to interact with each

register QV at least once and it will be seen that this minimum is indeed possible -

with the aid of single-party measurements on the ancillas. To be more specific, the

main model that is proposed and studied in this chapter will require only a single

two-body ancilla-register interaction gate, ancillas prepared in a fixed state, and

measurements of the ancillas in a variable basis, and furthermore, each entangling

gate will be implemented via sequential interactions of an ancilla with the pair of

register QVs on which it is to act. This model can be understood as an extension, to

the setting of general QVs, of the qubit-based ancilla-driven quantum computation

(ADQC) model developed by Anders et al. (2010) and Kashefi et al. (2009). For

this reason, the same name will be used for the more general model proposed herein,

which is introduced in Section 6.2.
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Measurement outcomes are fundamentally probabilistic, hence the measurements

on the ancillas must create errors in the computation. However, it will be shown that

the ADQC model may achieve (step-wise) determinism via adapting measurement

bases using classical feed-forward of previous measurement results, in direct analogy

to the 1WQC investigated in Chapter 4. It will then be shown that the general

QV 1WQC may be embedded inside the ancilla-driven model proposed herein. In

particular, this will be used to demonstrate that the parallelism of the 1WQC is

also available in ADQC. Hence, this ADQC model is not only interesting from a

physical perspective, but also because it has access to a level of parallelism which

is not present in any purely gate-based globally-unitary scheme (which uses only

bounded input-size gates).

General variable-basis measurements may well be challenging in practice, par-

ticularly in the case of QCVs. Hence, in Section 6.3 sets of measurements which are

sufficient to guarantee that the model may implement universal quantum computa-

tion are discussed - it will be shown that for the QCV-based model, with ancillas

realised as optical states, homodyne detection and photon-number counting on these

ancillas is sufficient for universality. In Section 6.4 a range of adaptions to the ADQC

model are presented, including a proposal for an alternative ancilla-based model of

quantum computation which removes the need for high-quality measurements of

each ancilla at the cost of now requiring local unitary gates on the ancillas. To be

precise, to achieve universal quantum computation this alternative model requires

only a fixed ancilla-register interaction gate, ancillas prepared in a single state, and

access to a universal set of single-QV gates which need act only on the ancillas. As

such, this model provides a globally unitary counterpoint to the measurement-based

ADQC model and may be of relevance in physical settings in which high-quality

measurements are not available. In the interests of clarity, the constraints of the

models in this chapter and how they compare to both the gate methods of the pre-

vious chapter and those that will be introduced in the following chapter have been

summarised in the thesis overview, on pages 2-3 of this thesis: the reader is referred

there for a concise summary of the different ancilla-based models herein.

6.2 Ancilla-driven quantum computation

To begin, the main model of study in this chapter is introduced. This model is

defined on general quantum variables, and as already noted in the introduction, this

will include as the qubit sub-case the so-called ancilla-driven quantum computation

(ADQC) model which was introduced by Anders et al. (2010) and Kashefi et al.
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(2009).1 For this reason, the more general model proposed here will also be referred

to by this term. This ‘ADQC’ model provides an ancilla-based method for imple-

menting deterministic universal quantum computation on a register of QVs using

only a fixed ancilla-register interaction gate, ancillas prepared in a fixed state, and

single-party measurements on the ancillas, where the ancillas are of the same QV

type as the register QVs.

It is clearly necessary to carefully chose the ancilla-register interaction, as uni-

versal quantum computation will not be possible in this fashion with just any fixed

two-QV gate (e.g., it must be entangling), as discussed again later. Furthermore, it

is also important to consider which measurements will be permissible in the model,

as they will not all be equally difficult in practice, and hence, it is preferable if these

are as limited as possible. Specifically, consider:

1. The fixed ancilla-register interaction gate, Ěar, defined by Ěar := FrF
†
aC

r
aZ.

2. Measurements on ancillas of the operators x̂ and x̂FR(ϑ), for variable phase-

function ϑ : Sd → R.

3. The fixed ancilla preparation state, |+0〉.

The exact measurements allowed will be restricted no further than this at this point

- which measurements are necessary for universality will be discussed again later.

Note that, as in the previous chapter, a subscript a will be used to refer to an

ancillary QV and other subscripts to refer to register QVs. Furthermore, here a

measurement of the Hermitian operator x̂u has been used, which is defined by

x̂u =
∑
q∈Sd

q
(
u†|q〉〈q|u

)
= u†x̂u, (6.1)

as already introduced in Equation 4.8, where x̂ =
∑

q∈S q|q〉〈q| is the general QV

‘position’ operator. Finally, note that R(ϑ) with ϑ : Sd → R is the gate used

throughout Chapters 3 and 4 and defined in Equation 2.58 as R(ϑ)|q〉 = eiϑ(q)|q〉.

6.2.1 A universal gate set on the register

It is now shown how universal quantum computation can be implemented in this

‘ADQC’ model. It is simple to confirm, via the equality Z(q)|+0〉 = |+q〉, that

the action of the fixed interaction, Ěar, on a register QV in the state |q〉 and an

initialised ancilla is

|q〉|+0〉
Ěar−−→ |+q〉|q〉. (6.2)

1The qubit sub-case of the model herein is the same as the model of Anders et al. (2010) and
Kashefi et al. (2009) up to a very minor alteration, which is noted later.
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6.2 Ancilla-driven quantum computation

|ψ〉 • F FR(ϑ)|ψ〉

|+0〉 • F † x̂FR(ϑ) • m

Figure 6.1: Any FR(ϑ) gate may be implemented on a register QV, via an interac-
tion with an ancilla prepared in the state |+0〉, using the fixed gate Ě = (F⊗F †) ·cz
followed by a measurement of the ancilla in the ϑ-parameterised basis BFR(ϑ). The
intended gate is followed by a probabilistic error gate X(−m), where m is the mea-
surement outcome. This error may be removed with local controls, as shown here,
or instead it may be accounted for via feed-forward, as will be shown in the main
text.

Hence, an interaction of a register QV with an ancilla will delocalise a logical QV

in the register over the two physical QVs. Therefore, any subsequent manipulations

(i.e., gates or measurements) on the ancilla will implement transformations on the

logical QV, and measurements of the ancilla will destroy this delocalisation. It is

this delocalisation which enables the following universal gate set implementation.

Local single-QV gates can be implemented via a measurement in almost exactly

the same fashion as in the 1WQC, which was covered in detail in Section 4.3. In

particular, after an ancilla-register interaction, a measurement on the ancilla of the

operator x̂FR(ϑ) implements the gate FR(ϑ) on the register QV up to a Pauli error

of X(−m), where m ∈ Sd is the measurement outcome. Formally, this gate method

is confirmed to act on the register as claimed by showing that

〈m|FaRa(ϑ)Ěar|+0〉
‖〈m|FaRa(ϑ)Ěar|+0〉‖

= Xr(−m)FrRr(ϑ). (6.3)

A more detailed derivation is not given as it follows in a very similar fashion to the

1WQC teleportation calculation of Section 4.3. This gate method is summarised

in the quantum-classical circuit diagram of Figure 6.1 which explicitly corrects for

the error. However, as with the 1WQC, it will be shown in Section 6.2.2 that these

errors do not need to be directly corrected for - which would require local gates on

the register, which have been assumed to be unavailable in this model - and can

instead be accounted for with classical feed-forward. Gates of the form FR(ϑ) are

sufficient for implementing any single-QV gate for all types of QV, as discussed in

Section 2.5.

In order to elevate any set of universal single-QV gates to full universality, all that

is necessary is a method for implementing some entangling gate (see Proposition 2.2),

hence it is only now required to show how such an entangling gate may be applied

to the register via an ancilla. Sequential interactions between an ancilla and two
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register QVs, r and s, followed by a computational basis measurement of the ancilla

implements such an entangling gate on this pair of register QVs.2 This is because,

if the QVs r and s are in the states |q〉 and |q′〉 respectively, then, with reference to

Equation 6.2 and using F †|n〉 = |+−n〉, it follows that

|q〉r|q
′〉s|+0〉

ĚasĚar−−−−−→ ωqq
′ |+q〉r

∣∣+q′
〉
s
|+−q〉. (6.4)

Note that the ωqq
′

phase is exactly the phase that would by created by a cz gate

acting on these two register QVs. Therefore, given that the measurement outcome is

m ∈ Sd, the gate implemented after the ancilla has been measured may be confirmed

to be

〈m|ĚasĚar|+0〉
‖〈m|ĚasĚar|+0〉‖

= Xr(m)Ẽrs, (6.5)

where Ẽrs is the symmetric entangling gate given by

Ẽrs = FrFsC
r
sZ. (6.6)

Notice that the phase that creates the cz gate (i.e., the ωqq
′

factor) is not obtained

from the measurement-induced phase. The role of the measurement is simply to

relocalise the logical QV, which is achieved via a measurement in a basis which

reveals no information about which conjugate basis state the ancilla was in. A circuit

diagram of this gate method is given in Fig. 6.2, where again the measurement-

induced error is explicitly corrected for.

6.2.2 Adaptive measurements for determinism

It has now been shown that the gate methods given in Figures 6.1 and 6.2 are suffi-

cient to implement (step-wise) deterministic universal quantum computation on the

register using the fixed ancilla-register interaction Ě, along with ancilla preparation

and measurement, if local corrections can be applied to the register after each gate.

Moreover, it is now shown how these errors can be accounted for without local con-

trols via a simple classical feed-forward process that uses classical computation and

some adaptive measurements, with the technique analogous to that for the 1WQC

2Here there is one minor difference between the model herein in the qubit sub-case and the
qubit-based model of Anders et al. (2010) and Kashefi et al. (2009). Specifically, the measurement
basis for the entangling gate is not the same, with Anders et al. using a measurement in the basis
constructed from the eigenstates of the Pauli operator Y = iXZ = i(|1〉〈0| − |0〉〈1|). Implementing
the entangling gate in the general QV model herein with a measurement in a basis which is an
extension of this is possible (see the ‘phase basis’ introduced in Section 7.4.1, which consists of the
eigenstates of Y = ω(1+%d)/2XZ, defined for a general QV). However, the mathematical details are
substantially more complicated and as this is unnecessary it is therefore avoided.
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• F • F

• F = • F

|+0〉 • F † • F † x̂ •

Figure 6.2: Sequential interactions between an ancilla and two register QVs, using
the fixed ancilla-register gate Ě = (F ⊗ F †) · cz, followed by a computational basis
measurement of the ancilla may be used to implement an entangling gate Ẽ =
F ⊗ F · cz on the register up to a probabilistic X(m) error, where m ∈ Sd is
the measurement outcome. This error may be removed via a classically-controlled
local X(−m) gate, as shown here, or may be accounted for using feed-forward and
adapting later measurement bases.

given in Chapter 4. One method for achieving this would be to introduce ADQC

‘measurement patterns’ and then give an ADQC ‘standardisation procedure’ in a

very similar manner to the work for 1WQC in Section 4.4. However, a less for-

mal approach is taken here, which in my opinion is more helpful for gaining an

understanding of the ADQC model.

Consider an n-QV computational register and write the state it is in as pζ,~v|ψ〉,
where pζ,~v = ωζ/2X1(v1)Z1(vn+1) . . . Xn(vn)Zn(v2n) as defined in Equation 2.47. In

other words, the register is in the state |ψ〉, up to Pauli errors on all of the QVs

(and a global phase). It will be useful to let the elements of the vector ~v be denoted

~v = (x1, . . . , xn, z1, . . . , zn)T , as then the error on kth QV is Xk(xk)Zk(zk). It is now

shown how, given the vector ~v, we may implement either of the two mappings

pζ,~v|ψ〉 → pζ′,~v′FrRr(ϑ)|ψ〉, pζ,~v|ψ〉 → pζ′,~v′Ẽrs|ψ〉, (6.7)

for any register QVs r and s, using the available operations in ADQC - and hence

without recourse to directly implementing local gates on the register. Furthermore,

it is also shown how the new Pauli error vector ~v′ may be calculated in each case,

using simple classical side-processing. By repeated applications of these processes

it is then possible to deterministically implement any quantum computation (by

decomposing it into Ẽ and FR(ϑ) gates) up to final Pauli errors on each QV. Pauli

errors on the final output state can then be accounted for in classical post-processing

of final measurement outcomes (or absorbed into further computations). Note that

the natural way to think of the vector ~v is as 2n classical variables (CLVs) which

computations are implemented on in parallel to the quantum computation on the n

QVs.

First consider the case when the aim is to apply an Ẽrs gate to the r and s
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6. Quantum computation driven by measurements of ancillas

QVs in the register. By implementing the procedure of Equation 6.5, or Figure 6.2

without the explicit correction, the actual gate implemented is Xr(m)Ẽrs, where

m is the outcome of the measurement on the ancilla. Now, as the entangling gate

Ẽ is Clifford, the Pauli errors on r and s may simply be commuted past Ẽ whilst

remaining Pauli errors (of a different form). Specifically, the relation is

Xr(m)ẼrsXr(xr)Zr(zr)Xs(xs)Zs(zs) =

ω−(xrxs+xrzr+xszs)Xr(m− zr − xs)Zr(xr)Xs(−zs − xr)Zs(xs)Ẽrs, (6.8)

which is found via Equations 2.51 and 2.53. Using this relation, the procedure to

keep track of these errors upon application of an Ẽ gate simply requires an updating

of the CLVs associated with QVs r and s (i.e, four elements from ~v). Specifically,

for measurement outcome m, the classical computation required is

(xr, xs, zr, zs) −→ (m− zr − xs,−zs − xr, xr, xs), (6.9)

which can be achieved with classical sum, swap and inversion (x → −x) gates.3

To clarify this process, it may be written as a quantum-classical circuit which acts

on two register QVs, one ancillary QV and four CLVs. Specifically, this process to

implement Ě and update the classical CLVs is summarised with the circuit

|+0〉 x̂ •

xr × I

zr × •
xs × I

zs × •

where the first and second quantum wires represent the r and s QVs respectively,

a register QV connected to an ancilla with ‘◦’ symbols denotes the fixed ancilla-

register interaction Ě, a box containing I denotes the inversion operator x → −x,

and wires connected via a line and ‘×’ is the standard notation for the swap gate,

which maps (x, z)→ (z, x). Using a further CLV, it would be possible to keep track

of the change in the global phase at each stage of the computation, but such phases

are of no physical consequence and as such this may be ignored.

Consider now the second scenario, whereby the aim is to apply a FR(ϑ) on one

of the QVs, for some ϑ : Sd → R. The Pauli X(x) maps |q〉 → |q + x〉, and hence,

3As always, −x is taken modulo d for dits.
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by taking ϑx to be the x-adapted phase-function with ϑx(q) = ϑ(q + x), then

X(−m)FR(ϑx)X(x)Z(z) = ω−xzX(−z −m)Z(x)FR(ϑ), (6.10)

where this has used the conjugate relations for F on Pauli operators, given in Equa-

tion 2.26. Hence, to implement this gate on the rth QV without recourse to local

corrections, the measurement of the ancilla should be of the xr-adapted operator

x̂FR(ϑxr ), so that the X(−m)FR(ϑxr) gate is implemented on the register, with m

the measurement outcome. Hence, this procedure implements the intended FR(ϑ)

gate, and the CLV update required is

(xr, zr) −→ (−zr −m,xr), (6.11)

where m is the outcome of the measurement of the ancilla. This may also be written

as the quantum-classical circuit module

|+0〉 x̂FR(ϑ) •

x × I

z × •

where the adaption to the measurement basis is shown schematically via the classical

control wire to the measurement device.

For exactly the same reasons as with the 1WQC, when the FR(ϑ) operator is

a Clifford gate then the dependencies can be removed from this procedure - at the

cost of further classical computation. The error up-date procedures for the F and

FP (p) gates on the rth QV, when no classical control is used, can be found from

Equations 2.51 and 2.52, to be

(xr, zr)
F−→ (−zr −m,xr), (xr, zr)

FP (p)−−−−→ (−zr − pxr −m,xr), (6.12)

respectively. When written as quantum-classical circuit modules, the Fourier gate

is implemented via the circuit

|+0〉 x̂F •

x × I
z ×

and the Fourier-phase gate, FP (p), is implemented via the circuit
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|+0〉 x̂FP (p) •

x × X(p) I

z × •

Finally, it is interesting to note that Z(q) and X(q) gates can be implemented with

only classical processing, e.g., to implement the gate Xr(q)Zr(q
′) gate simply map

the CLVs for the rth QV as (xr, zr)→ (xr − q, zr − q′). Written as a circuit module

this is the almost trivial circuit

x X(−q)

z X(−q′)

As has already been stated many times in this thesis, cz, F , FP (p) and Z(q) are

sufficient to implement any Clifford gate (see Proposition 2.1), hence, as methods for

implementing these operators have been given which require no classically-adapted

measurements, then no measurement dependencies are required for any Clifford

gates. This should not be surprising given the closely related analysis of the 1WQC

in Chapter 4.

6.2.3 Simulating the one-way quantum computer

The analysis given above does not immediately imply that Clifford gates can be

implemented in constant depth on the register. For example, consider the obvious

procedure for implementing a sequence of m single-QV Clifford gates on one register

QV, which uses m ancillas which must each be entangled with the register QV and

can only be implemented sequentially.4 Despite this, the ADQC model does contain

exactly the same parallel power as the 1WQC (and therefore also the parallel power

of unbounded fan-out circuits). As such, it can implement any Clifford unitary

in constant depth - which is just one of the parallel features of the 1WQC (see

Chapters 3 and 4). The way that I will show this is by providing a method for

simulating any 1WQC using ADQC with only a constant increase in computational

depth. In the following, it will be assumed that the measurement bases available in

each model are equivalent in the sense that they allow the implementation of the

same set of FR(ϑ) gates, i.e., the same phase-functions ϑ : Sd → R. This is a natural

assumption to ensure that the models being compared use similar resources.

4Although the analysis of the previous section does imply that all the ancillas could all be
measured simultaneously after they have been entangled with the register QV in sequence.
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Proposition 6.1. Any ADQC computation, A, can be simulated by a 1WQC mea-

surement pattern, P, that has a depth of O(depth(A)). Any 1WQC measurement

pattern, P, can be simulated by a ADQC computation, A, that has a depth of

O(depth(P)).

Proof: Consider any computation in the ADQC model. The allowed operations

in ADQC are a Clifford entangling gate, Ě, single-QV measurements (of the ancillas)

which are either computational basis measurements, or equivalent to FR(ϑ) gates

(for some set of ϑ functions) followed by computational basis measurements, where ϑ

may in general be classically adapted by a sum of measurement outcomes, constants,

and measurement outcomes multiplied by constants. By proposition 4.3, such a

model can be simulated in the 1WQC with no scaling increase in depth, i.e., there

is a measurement pattern P for any ADQC computation A such that P has a depth

of O(depth(A)). This proves the first part of this proposition.

Without loss of generality, consider a completely standard measurement pattern

P = (V, I,O, p), which consists of a sequence of entangling operations (which are cz

gates), followed by a sequence of measurements, and finally a set of corrections on

the output QVs (see Section 4.4, and Chapter 4 more generally, for further details on

completely standard measurement patterns). Treat the total set of QVs in the mea-

surement pattern, V, as the register in ADQC (i.e., this includes any auxiliary QVs

in the measurement pattern), and ancillas will be used to drive 1WQC on this regis-

ter. All register QVs which are not inputs to the pattern (V \ I) must be initialised

to |+0〉. If they cannot be prepared directly in this state, this can be achieved via

ancilla-driven F gates on QVs prepared in |0〉, which are the conventional auxiliary

states in the quantum circuit model5, and this requires only constant depth. The

entangling stage of the measurement pattern consists of layers of cz gates on distinct

QVs. The cz gates in each layer can be implemented (up to Pauli errors) in constant

depth, as cz = F 3 ⊗ F 3 · Ẽ and all measurements of ancillas to implement these

gates have no dependencies. Hence, the entire entangling stage can be implemented

with only a constant increase in depth (of at most six) in comparison to that stage

of the measurement pattern. Note that the entangled state created here is only

equivalent to that created in the measurement pattern up to Pauli corrections on

each QV (due to the measurements of the ancillas). These may be accounted for via

additional changes to the following stage, which simulates the dependent and inde-

pendent measurements in the measurement pattern, but will not add any increase

in depth as these measurement outcomes are obviously already known at the end of

this stage.

It is now shown how to simulate the measurement stage of the measurement

5The preparable auxiliary states of the main register in the ADQC model has not been specified,
but it is perhaps natural to restrict them to the |0〉 state.
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|ψ〉 |+m〉

|+0〉 x̂ m

Figure 6.3: A computational basis measurement of a register QV may be simulated
via an interaction with an ancilla, followed by a computational basis measurement
of this ancilla. The register QV is projected onto |+m〉, but if it is discarded, this is
irrelevant.

pattern. The key to this is introducing a method for driving the non-unitary mea-

surement dynamics on the register via ancillas. All of the measurements in the mea-

surement pattern are of the operator x̂FR(ϑ), where ϑ may be classically adapted,

and hence there may be a time-ordering induced by these dependencies. Hence, to

simulate this in ADQC, it is necessary to be able to implement these measurements

on any register QV using only the operations allowed in ADQC. A measurement

of x̂FR(ϑ) on register QV is equivalent to FR(ϑ), where ϑ may have dependen-

cies, followed by a computational basis measurement. A local FR(ϑ) gate is easily

applied via an ancilla, using the method of Equation 6.3. A computational basis

measurements on a register QV can be simulated by interacting the register QV to

be measured with an ancilla and then measuring the ancilla in the computational

basis. This is because

‖〈m|aĚar|ψ〉r|+0〉a‖ = |〈m|ψ〉|, (6.13)

which may be confirmed from Equation 6.2. Hence, a post-interaction measurement

of the ancilla is equivalent to a (non-destructive) pre-interaction measurement of

the register QV,6 or stated another way, the measurement of the ancilla performs a

computational basis measurement of the logical QV that was stored in the register

QV, as required. The circuit to implement this measurement is given in Figure 6.3.

The only reason that this x̂FR(ϑ) measurement simulation procedure cannot be per-

formed simultaneously, on all the register QVs that are to be measured, is because

there is a time-ordering structure (encoded in dependencies of ϑ on other measure-

ment outcomes) inherited directly from the measurement pattern. Hence, the depth

of the measurement stage is only increased by a constant factor (of at most four) in

the ADQC simulation of the measurement pattern.

The final stage of the measurement pattern is the corrections on the output.

6Followed by a Fourier gate on the register QV. This is irrelevant in this context as this QV has
now been removed from the 1WQC as it is no-longer entangled with any other QVs and its state
does not matter.
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Strictly speaking, these cannot be simulated in ADQC unless we allow final local

corrections on the register in ADQC. However, in neither model are these actually

required, in the sense that they can be absorbed into classical post-processing. Either

way this requires the same depth in each model, as it is either only a depth of two or is

only a classical computation and hence does not contribute to the depth. Hence, the

total measurement pattern has been simulated with a ADQC with only a constant

increase in depth (at most, a multiplicative factor of six), which concludes the proof.

This proposition implies that all of the depth complexity results of Chapters 3

and 4, for unbounded fan-out circuits and the 1WQC, also apply to the ADQC model

with general QV type. Therefore, although the primary motivation for introducing

the ADQC model for general QVs is its potential for simplifying the requirements

for a physical realisation of a quantum computer, it also has very interesting com-

putational advantages over a purely unitary gate-based model. Finally, note that

Kashefi et al. (2009) proved that the qubit ADQC model had at least the same

parallel computational power as the 1WQC, using so-called ‘twisted graph states’.

Hence, combining the results of Kashefi et al. (2009) with the qubit 1WQC depth

complexity theorems of Browne et al. (2011) provides an alternative proof of Propo-

sition 6.1 in the qubit sub-case. However, the depth-preserving ADQC simulation

of a 1WQC provided here is very different to that of Kashefi et al. (2009), hence

the result herein still has some utility even in the qubit sub-case as it provides a

different perspective on the known results.

6.3 Universal sets of measurements

The gate methods given so far are sufficient for universal quantum computation on

the register. However, these techniques include x̂FR(ϑ) measurements for unspecified

phase-functions ϑ : Sd → R and not all such measurements will be equally straight-

forward in practice. This can be restricted to a similar set of measurement bases to

those needed in the 1WQC, which was discussed in Section 4.3.2. As summarised by

Figures 6.2 and 6.1, the measurements required for the entangling and local gates

are

Ẽ gate ↔ measurement operator: x̂, (6.14)

FR(ϑ) gate ↔ measurement operator: x̂FR(ϑ), (6.15)

respectively. Furthermore, to implement any Clifford gate it is only necessary to

implement measurements of the operators x̂ and x̂FP (q) for q ∈ Sd, which are used

for implementing Ẽ and FP (q), respectively. In order to discuss this in more detail

it is convenient to consider qudits and QCVs in turn.
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For qudits only three measurement operators are required to implement any Clif-

ford gate because F , FP , Z and Ẽ generate the Clifford group for qudits (this follows

from Propostion 2.1). Hence, only measurements of x̂, x̂F and x̂FP are necessary

to implement any Clifford gate. For a qubit, a direct calculation can be used to

confirm that these are equivalent to measurements of the Pauli Z, X and Y opera-

tors, respectively, up to a post-processing on the measurement outcomes of +1→ 0,

and −1 → 1. As an aside, these qubit operators define a set of three mutually

unbiased bases (i.e., the bases formed from their eigenstates), and this is is similarly

true for the non-binary qudit measurement operators, as can be inferred from re-

sults which are presented later in Section 7.4.1.7 To implement universal quantum

computation, it is necessary to also have access to some non-Clifford gate, which in

prime dimensions may be any non-Clifford gate [Campbell et al. (2012); Nebe et al.

(2001, 2006)], e.g., the qudit cubic ‘T ’ gate (see Section 2.5), and in any dimen-

sion this gate may be some FR(ϑ) with a generic phase vector (see Appendix G).

Alternatively, by the same arguments as given in Appendix G, the phase function

with ϑ(d − 1) = θ for some generic θ and ϑ(q) = 0 if q 6= d − 1 is also appropriate

for obtaining universality when added to the Clifford group and this may be more

convenient in practice. Variable-basis measurements of this sort, or equivalently,

variable local gates followed by a fixed-basis measurement, have been implemented

in a range of physical systems encoding non-binary qudits, e.g., see Anderson et al.

(2015); Neeley et al. (2009), and are common practice in qubit systems, e.g., see

Barz et al. (2014); Gao et al. (2011); Lanyon et al. (2013).

Turn now to QCVs. In the following, it will be useful to use the diagonal gate

Dk(q) = eiqx̂
k/k, as introduced in Equation 2.60. The conjugation relations of this

gate on the position and momentum operators are given by

x̂
Dk(q)−−−→ x̂, p̂

Dk(q)−−−→ p̂ = p̂− qx̂k−1, (6.16)

respectively, which may be derived with the aid of Equation B.2 and by showing

that [x̂k, p̂] = ikx̂k−1 with k ∈ N. Now, in order to implement any Clifford gate

in the QCV-based ADQC model, it is only necessary to be able to measure the

quadrature operator X(φ) = (p̂ cosφ+ x̂ sinφ) for variable φ ∈ [0, 2π), although this

must be aided with additional post-processing on the measurement outcomes. This

is because

X(π/2) = x̂, X(π) = F †x̂F, (6.17)

with the later relation holding because −p̂ = F †x̂F , and a measurement of these

7In Section 7.4.1, it is shown that that the eigenstates of x̂ (i.e., the computational basis),
the eigenstates of p̂ (i.e., the conjugate basis), and the eigenstates of x̂F†P† (which will be called
the phase basis) form a set of three mutually unbiased basis. These are slightly different to the
measurement operators here, but the results of Section 7.4.1 can be easily adapted to these bases.
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operators is what is required to implement Ẽ gates and the F gates, respectively.

Furthermore, by noting that P (p) = D2(p) and then considering Equation 6.16, it

may be confirmed that

X(φ) = cosφ(p̂+ x̂ tanφ) = −1 cosφ
(
P (tanφ)†F †x̂FP (tanφ)

)
. (6.18)

Hence, a measurement of X(φ) implements the gate FP (tanφ), with the measure-

ment outcome m needing to be post-processed via the mapping m → −m/ cosφ.

Quadrature measurements, often called homodyne detection, are now routine in

quantum optics, see e.g., Su et al. (2013); Ukai et al. (2011), and are implemented

by mixing the light to be measured with a strong local oscillator on a beam splitter,

with the relative phase of the oscillator fixing the phase-space angle, φ, of the mea-

surement [Tyc and Sanders (2004)]. Although the most natural realisation of the

ancillary systems in QCV-based ADQC is probably an encoding into optical states,

interestingly, homodyne detection of QCVs encoded into atoms has also been re-

cently demonstrated [Gross et al. (2011)].

To obtain a universal gate set, it is again necessary to augment the Clifford

gates with some non-Clifford unitary and this must be a gate which is generated

by at least a cubic function of x̂ and p̂, as gates which are generated by quadratic

functions of x̂ and p̂ are Clifford. As with the 1WQC, the natural gate to consider

is the cubic phase gate, which is the k = 3 case of the Dk(q) gate and hence is given

by D3(q) = eiqx̂
3/3. This cubic phase gate may be implemented via measurement of

the operator

D3(q)†F †x̂FD3(q) = qx̂2 − p̂, (6.19)

where this equality follows directly from Equation 6.16. The CLV-adapted version

of this gate required for direct step-wise determinism is simply given by letting

q → q + x in Equation 6.19, where x is CLV tracking the X-type error on the

register QV, which is the operator (q + x)x̂2 − p̂ (see the paragraph containing

Equation 6.10 for more details on this). However, this can also be decomposed into

a measurement of the operator in Equation 6.19 followed by x-dependent Clifford

gates, as will be implied by the following discussions, and this is likely to be easier

in practice.

The measurement to implement the cubic phase gate is quadratic in the position

operator and such a measurement is not easy to achieve experimentally as it requires

a non-linear optical element. However, one alternative to these measurements is to

use an auxiliary resource state, such as the so-called cubic phase state [Gottesman

et al. (2001)]. For example, consider the state

|cubic(γ)〉 = D3(γ)|+0〉, (6.20)
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for non-zero γ ∈ R. It is now shown how, if such states can be prepared in auxiliary

register QCVs, cubic phase gates may be implemented on computational register

QCVs (up to Pauli corrections) within the constraints of the ADQC model and

using only homodyne detection. This uses a similar method to that proposed by Gu

et al. (2009) in the context of the 1WQC. It will then be shown how these resource

states can be made in a physically realistic fashion in the ADQC model, via a simple

adaption of the proposals of Gottesman et al. (2001); Gu et al. (2009). To begin,

via Equation 6.16 and by noting that UeiÔU † = eiUÔU
†

for any unitary U , it follows

that

Z(q)
D3(γ)−−−−→ Z(q), X(q)

D3(γ)−−−−→ eiq(γx̂
2−p̂) =: C(q, γ), (6.21)

where C(q, γ) is a Clifford gate as it is generated by a quadratic in x̂ and p̂.8 Now,

by noting that R(ϑ) commutes with cz, it is not hard to confirm that

|ψ〉 F † • F x̂ m

R(ϑ)|+0〉 • R(ϑ)X(−m)|ψ〉

as this is essentially the same as the teleportation procedure that the 1WQC is based

upon, which is summarised by Figure 4.1. Hence, with the aid of the conjugation

relations of Equation 6.21, then it follows that

X(x)Z(z)|ψ〉 F † • F x̂ m

D3(γ)|+0〉 • C(q −m, γ)Z(z)D3(γ)|ψ〉

Hence, by using an auxiliary cubic phase state, the cubic phase gate has been imple-

mented on a computational register QCV in an arbitrary state, |ψ〉, with pre-existing

Pauli errors, X(x)Z(z), and in the process the computational QCV has been tele-

ported to the auxiliary QCV and a (non-Pauli) Clifford error has been created, in

addition to an ordinary Pauli error. Before discussing the Clifford error, it is impor-

tant to note that this circuit can be implemented with an ancilla-driven sequence:

The three unitary gates in this circuit can be implemented via ancillas and homo-

dyne detection (which will induce changes in the Pauli errors, i.e., x → x′(x, z,mi)

and z → z′(x, z,mi), where mi denotes that these error CLVs will also be a function

of the further measurement outcomes on these additional ancillas). Furthermore,

the computational basis measurement of the first register QV may be simulated via

an ancilla, by the method given in Figure 6.3.

This ancilla-driven circuit has created a (non-Pauli) Clifford error and the gate

8This equation implies that the Pauli gates are mapped to Clifford gates under conjugation by
the cubic phase gate. The set of gates with this property are in what is termed the ‘third-level of
the Clifford Hierarchy’, see e.g., Howard and Vala (2012), and the qudit and qubit ‘T ’ gates also
have this property [Campbell (2014); Howard and Vala (2012)].
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methods given so far in this Chapter are only concerned with accounting for Pauli

errors. However, this Clifford error can be converted to a Pauli error via an ancilla-

driven C(m − q, γ) gate, as such a gate can be implemented up to Pauli errors

by decomposing this Clifford gate into a sequence of FP (p) and F Clifford gates.9

Therefore, it has been shown how an auxiliary cubic phase state can be used to

implement the mapping

X(x)Z(z)|ψ〉 → X(x′)Z(z′)D3(γ)|ψ〉, (6.22)

for any arbitrary logical register state |ψ〉, with γ fixed by the auxiliary state. More-

over, this can be converted to a cubic phase gate D3(q) with any q ∈ R, by noting

that D3(q) = S(γ/q)D3(γ)S(q/γ), where S(s)|q〉 = |sq〉 is the Clifford squeezing

gate, which was introduced in Equation 2.56. Hence, by applying (ancilla-driven)

squeezing gates before and after the protocol given above, any cubic phase gate may

be implemented via ancillas using only the fixed ancilla-register interaction, homo-

dyne detection of the ancillas, and auxiliary cubic phase states. It is important

to note that this procedure requires adaptive measurements even though all of the

unitary gates implemented are Clifford, as exactly which Clifford gates need to be

implemented depends on one of the measurement outcomes.

Although it has been shown how auxiliary cubic phase states may be converted

to cubic phase gates, no method has been given for how these states can be made.

Before turning to this, it is convenient to first consider another challenge asso-

ciated with the ADQC model in the setting of QCVs, which is an issue shared

with all QCV-based quantum computation: the conjugate and computational basis

states cannot be exactly physically realised even in principle [Lloyd and Braunstein

(1999)]. In ADQC, the ancillas should be initialised to |+0〉 in the ideal case. How-

ever, these states may be approximated by the squeezed vacuum, or more precisely

|+0〉 ≈ S(s)|vac〉 and |0〉 ≈ S(1/s)|vac〉 for s � 1, where |vac〉 is the ground state

of the QHO, and this approximation becomes exact in the limit s → ∞ [Radmore

and Barnett (1997)], with a derivation of this included as Appendix B. The effect

on the computation of preparing the ancillas in such approximations to |+0〉 will be

a distortion of the output register state from each gate, as shown for the 1WQC by

Gu et al. (2009), and by analogy to the 1WQC, this distortion will build up linearly

with the number of gates implemented. Squeezed states, which approximate the

quadrature eigenstates, have been prepared with reasonably high levels of squeezing

in the laboratory: The quantity of squeezing in a state is often expressed in terms of

9The exact decomposition can be found by using the methods of Farinholt (2014). Although
these are presented in the case of qudits, they are easily applied also to QCVs.
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decibels (dB), where the state S(s)|vac〉 has 10 log10(s2) dB of squeezing,10 and as

far as I am aware, the current experimental record stands at 12.7 dB [Eberle et al.

(2010); Mehmet et al. (2011)]. However, it is unlikely that these currently obtainable

values are sufficient for viable computations in the QCV-based models herein - a re-

cently established minimal squeezing threshold for error-correction in qubit-encoded

QCV-based 1WQC is around 20 dB [Menicucci (2014)]. The errors associated with

this finite squeezing is discussed no further here, and a full investigations of the

effect of these distortions is left for future work.

It is now shown how cubic phase states may be generated with ancilla-driven

gates and a physically plausible measurement. Gottesman et al. (2001) have shown

how to approximately generate a cubic phase state with gaussian operations acting

on squeezed vacuums, and a measurement of the number operator, n̂, defined by11

n̂ :=
1

2
(x̂2 + p̂2 − 1) = â†â. (6.23)

This technique has been converted to the setting of the 1WQC by Gu et al. (2009),

and by a simple manipulation of the 1WQC computation given therein (see Equation

45 of Gu et al. (2009)), it may be confirmed that

S(s)|vac〉 F † ≈ eiγ(n)x̂3 |+0〉

S(s)|vac〉 F X(q) n̂ n

where γ(n) = (6
√

2n+ 1)−1, and where this approximation holds when s � 1 and

q � s. In this circuit, the lower quantum wire represents an ancilla initialised in an

approximation to |+0〉 (which is the state that all ancilla would be initialised to in

practice), the top wire represents an auxiliary register QCV initialised similarly, and

it should be noted that the local F † gate on the register QCV may be applied, up to a

Pauli error, via an ancilla-driven gate. Although this measurement is a non-Gaussian

operation, in a QHO it is very natural as it is simply a measurement of the QHO’s

energy. Hence, in optics, this is photon-number counting and there have been many

recent improvements in the state-of-the-art in this technology [Calkins et al. (2013);

Humphreys et al. (2015)]. Although photon-number resolving detectors are highly

challenging to implement in comparison to homodyne detection, it is perhaps the

most well-developed non-Gaussian optical component. Hence, in combination with

10The quantity of squeezing in any given state, with respect to the phase space angle φ, is often
defined to be 10 log10(2∆X(φ)2) dB, where ∆X(φ)2 is the variance of X(φ) with respect to the
state in question, i.e., ∆X(φ)2 = 〈φ|X(φ)2|φ〉 − 〈φ|X(φ)|φ〉2 [Lvovsky (2014)]. This then gives the
amount of squeezing stated for the squeezed vacuum in the main text (with φ = 0).

11The eigenvalues of n̂ are the set of integers greater than or equal to zero, and the eigenstates
are obviously those of the QHO.
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the method given above for transforming this resource state into a cubic phase gate,

it has been shown that ancilla-driven gates that employ homodyne detection and

number-counting measurements are sufficient for universal quantum computation.

6.4 Adapting the ancilla-driven model

In this penultimate section of the chapter interesting adaptions to the ancilla-driven

model are presented. In Section 6.4.1 a generalisation of the ADQC model is consid-

ered in which the ancillary and register QVs may have different dimensions and the

effect that this has on step-wise determinism is discussed. In Section 6.4.2 an alter-

native fixed interaction gate appropriate for the ADQC model is given, which then

leads onto Section 6.4.3 where this gate is used to define an alternative completely

deterministic computational model, in which the measurements of the ancillas are

replaced with unitary controls.

6.4.1 Determinism and the dimension of the ancillas

One of the first constraints imposed on the ADQC model was that the ancillary

and register QVs where all of the same type. In contrast to this, the ancilla-based

gates methods developed in Chapter 5, centred on the geometric phase gate, were all

applicable to ancillas of a different dimension (i.e., different QV type) to the register

QVs. As such, it is interesting to consider whether it is also possible to extend

the ancilla-driven model to apply in this more general setting. This question can

be answered by showing how the geometric phase gate can be transformed into the

same form as the entangling gate of ADQC, with the added benefit of this analysis

being that it will highlight the link between these two techniques. In the following,

it will be assumed that the register does not consist of QCVs.12 By considering

the geometric phase gate circuit of Figure 5.2, it is clear that this gate functions

independently of the ancillary input state. Hence, the circuit will have exactly the

same effect if the ancilla is prepared in the state |+0〉 and measured at the end in

the computational basis, which is the quantum circuit

• •
• •

|+0〉 q −p −q p x̂

From Figure 5.2, it follows that this induces a CR(2πpq/da) gate on the pair of reg-

ister QVs, where da is the dimension of the ancilla and R(2πpq/da)|q〉 = e2πipq/da |q〉
12This is because the geometric phase gate is only valid for register QCVs when the ancillas are

also QCVs, and this case has already been covered in the ADQC model so may now be ignored.
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is the scalar-parameterised rotation gate. Now, after the first three gates of this

sequence, the ancilla has returned to the state |+0〉, regardless of the state of the

register QVs. Furthermore, the |+0〉 state is an eigenstate of the final gate, with an

eigenvalue of unity for all values of the gate parameter p. Hence, the last gate in this

circuit has the same effect as an identity operator, and can therefore be dropped.

Moreover, the penultimate gate (which has now become the final gate), can equally

be understood as an ancilla-controlled R(−2πq/da) gate on the first register QV.

Now, as a quantum-controlled gate followed by a computational basis measurement

of the control system is equivalent to performing the measurement before the gate

and then applying a classically controlled gate, this implies that the circuit given

above can be simply rewritten as

• R(−2πq/da)

•
|+0〉 q −p x̂ •

This already looks very similar to the ADQC entangling gate. Moreover, by using the

relation of Figure 2.5, (and noting that F 2|q〉 = |−q〉) this can be further rearranged

to

• R(2πq/da)

•
|+0〉 q F † p F † x̂ •

Hence, by setting p = q = 1,13 this gate sequence requires only a fixed ancilla-register

interaction gate, and by adding in a local Fourier transform to the interaction, we

arrive at the sequence

• F R+(2π/da) R(2π/da) F

• F = • F

|+0〉 1 F † 1 F † x̂ •

where R+(θ)|+q〉 = eiθ|+q〉. The ancilla-register fixed interaction gate used here,

and this method for implementing a two-qudit entangling gate, is the natural gen-

eralisation of the ADQC interaction and entangling gate to allow the ancillary and

register QVs to be of different types.

It is clear that the gate technique given above may be used to implement an

13It is not essential to set the value of the two parameters to unity, but they should be set to
the same value.
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entangling gate on the register, but without local controls of the register this is only

implemented up to the error R+(2mπ/da) and with an ancilla of general dimension

this is not in all cases a Pauli gate. The condition under which this is guaranteed

to be a Pauli gate is when da = d/k for some positive integer k, where d is the

dimensionality of the register qudits, as in this case then R+(2mπ/da) = X(−km).

Before considering the repercussions of non-Pauli errors, consider the obvious ex-

tension of the ADQC single-qudit gates, as summarised in Figure 6.1, to this more

general setting. This is the circuit

|ψ〉 • F R+(2π/da) FR(ϑ̄)|ψ〉

|+0〉 1 F † x̂FR(ϑ) • m

which may be easily confirmed to act as claimed via a direct calculation, where ϑ̄ is

the phase-function given by ϑ̄(q) = ϑ(0⊕q) for q ∈ Sd with ⊕ denoting the arithmetic

of Sda . Hence, when da ≥ d or the ancilla is a QCV, any FR(ϑ) operator may be

applied to the register (up to the error) by an appropriate choice of measurement

basis for the ancilla. However, when da < d then, no matter what measurement is

chosen, the gate implemented has a phase function which obeys ϑ̄(q) = ϑ̄(q mod da).

For example, if the ancillas are qubits then each FR(ϑ̄) gate that can be implemented

on the register has a phase-function ϑ̄ with ϑ̄(q) = ϑ(0) if q is even and ϑ̄(q) = ϑ(1)

if q is odd for some ϑ : {0, 1} → R, which is fixed by the choice of measurement

basis. Therefore, when da ≥ d it is clear that a universal set of single-qudit gates

can be implemented on the register, but it is not at all obvious that this is the case

for da < d.

This analysis highlights a clearly problem with this extension of the ADQC

model to a setting where the ancillary and register QVs are of a different type: Still

assuming a qudit register, it is necessary for the ancillas to be qudits of dimension

da ≤ d for the measurement-induced errors on the register to be Pauli gates, which

is required for the step-wise determinism techniques used herein. But in this case,

unless da = d, it may not be possible to implement a universal gate set as the single-

qudit gates that can be implemented on the register are restricted.14 When the

ancillas are qudits of dimension da > d or QCVs, the gate set which may be applied

to the register is universal (an entangling gate + a universal set of single-qudit gates),

but the measurement-induced errors are non-Pauli. Hence, local corrections on the

register need to be available for step-wise deterministic computation. Alternatively,

without these controls the model can be said to be universal in a stochastic sense -

any quantum computation can be implemented with a stochastic sequence of single-

14It is left for future work to confirm whether universality is achievable in this setting. It is not
clear to me either way.
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qudit gates of indeterminate length between each entangling gate (which can be

deterministically applied, up to a single-qudit error gate). This may be considered a

form of what is termed repeat-until-success (RUS) gate implementation [Lim et al.

(2005)] and these ideas will be briefly discussed further in Chapter 7 where an

additional stochastically universal model is introduced. Note however, it is my

opinion that the overheads involved in quantum computation in this fashion are

likely to be unreasonably large.15

6.4.2 An alternative interaction

Return now to the setting in which the ancillary and register QVs are of the same

type. The choice to fix the ancilla-register interaction gate to Ěar = FrF
†
aC

r
aZ was

made at the beginning of this chapter, and it is not obvious that this interaction

has unique properties that single it out as the only possible option. Indeed, there is

an alternative interaction which is suitable for ADQC, which is based on the swap

gate and is given by

Šar := Fa · swap · cz. (6.24)

When considering this fixed interaction, there are minor changes to the gate imple-

mentation methods, which are now briefly outlined. The two-QV gate implemented

by sequential interactions of an ancilla with QVs r and s followed by a computational

basis measurement may easily be confirmed to be

〈m|ŠasŠar|+0〉
‖〈m|ŠasŠar|+0〉‖

= Xs(−m)FrFsC
r
sX. (6.25)

The same set of single QV gates can be implemented by using a slightly different

measurement basis. Specifically, an interaction followed by a measurement in the

basis x̂FR(ϑ)F † , implements FR(ϑ) up to Pauli error, as

〈m|FaRa(ϑ)F †a Šar|+0〉
‖〈m|FaRa(ϑ)F †a Šar|+0〉‖

= Xr(−m)FrRr(ϑ). (6.26)

Although this gate set is not identical to the one implemented with the Ěar inter-

action, the same techniques of classical-feedforward may be used to implement the

computation deterministically: the details are omitted for brevity. For the qubit

sub-case, it has been shown by Kashefi et al. (2009) that, up to local gates, the two

interactions Ěar and Šar are the only possible choices that allow for deterministic

15Some RUS gate methods actually have lower overheads than equivalent deterministic schemes,
e.g., see Bocharov et al. (2015); Paetznick and Svore (2014). What I am claiming here, is that the
sort of RUS scheme needed for the ‘stochastic ADQC’ model, given above, is likely to have very
large overheads.
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universal quantum computation within the constraints of ADQC. It is not at all

clear how this could be shown more generally, if it is indeed true.

6.4.3 Replacing measurements with unitary controls

High-quality variable-basis measurements of ancillas are critical to the ancilla-driven

model, and the quality of each measurement directly effects the fidelity of each gate

implemented. This is challenging physically, and in some settings it may well be

the case that local unitary controls of the ancillas can be enacted with much lower

errors than can be achieved with measurements on these ancillas. Interestingly,

the swap-based gate, Šar, which it was shown above may be used to implement the

ancilla-driven model, can also be used to implement universal quantum computation

on the register if local gates, instead of measurements, can be implemented on the

ancillas. To be more precise, the following model will use only: (I) a fixed ancilla-

register interaction gate, (II) ancillas prepared in a single state, (III) a universal set

of local gates on the ancillas.

Rather than use the Šar interaction gate, given in Equation 6.24, it will be

simpler to consider the locally-equivalent gate

Sar := swap · cz. (6.27)

The action of this gate on two QVs in arbitrary computational basis states is

|q〉|q′〉 Sar−−→ ωqq
′ |q′〉|q〉, (6.28)

and hence, if either QV is in the state |0〉, it simply acts as a swap gate. Therefore,

if an ancilla is initialised to |0〉, and interacts with a register QV via this gate, the

logical QV in this register QV is swapped into the ancilla, i.e., |ψ〉|0〉 → |0〉|ψ〉.
Therefore, any further gates that are applied to this ancilla will perform transfor-

mations on the |ψ〉 logical QV, and as the register QV is in the state |0〉, a further

interaction of the ancilla with this QV swaps the logical state back into the regis-

ter. It then immediately follows that an Srs gate may be implemented between two

register QVs, r and s, via the gate sequence16

• × • ×
• × =

|0〉 • × • × • × |0〉

• ×
• ×

16Note that two quantum wires connected via a wire with ‘×’ symbols at each end is the nota-
tion used herein (and often in the literature) for the swap gate. This notation has already been
encountered in this thesis, but only to represent classical swap gates.
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which employs an ancilla initialised to |0〉 and three applications of the single fixed

interaction gate Sar. In exactly the same fashion, if the gate u can be applied to the

ancillas this may be transferred to the register by interacting a register QV with an

ancilla prepared in |0〉 both before and after a u gate is applied to this ancilla. This

is the circuit

|ψ〉 • × • × u|ψ〉

|0〉 • × u • × |0〉

Hence, if a set of single-QV gates can be implemented on the register that is suffi-

cient to generate any single-QV gate, then this provides a method for implementing

universal quantum computation using only ancillas prepared in |0〉, the gate Sar

between ancillas and register QVs, and local gates on the ancillas. It is interesting

to note that the entangling part of the interaction is actually only required in order

to make the induced two-QV gate on the register an entangling gate, and otherwise

it plays no direct role in the gate methods.

One feature of these ancilla-based gates, that make them potentially appealing

from a practical point of view, is that the interaction need not have the exact form of

Sar and there is a range of interactions for which the above methods are applicable.

Indeed, consider an ancilla-register interaction of the form

Sar(φ) := swap ·Dra(φ), (6.29)

where Dra(φ) is a general diagonal gate on r and a, which is parameterised by a

function φ : S2
d → R and defined as17

|q〉r|q′〉a
Dra(φ)−−−−→ eiφ(q,q′)|q〉r|q

′〉a. (6.30)

Because the action of this more general Sar(φ) gate, when either QV is in the state

|0〉, is equivalent to swap up to local rotation gates, the gate techniques given above

still apply. Hence, as long as the fixed function φ is chosen such that D(φ) is an

entangling gate (which is almost any choice of φ), this gate also allows for universal

quantum computation in the ancilla-based and globally unitary fashion described

above. The gates implemented on the register with this more general interaction are

slightly altered, in comparison to the simple case of Sar, and the relevant quantum

circuits are given in Figures 6.4 and 6.5.

The model of ancilla-based quantum computation presented in this section may

find practical relevance in a range of settings, particularly when local unitary gates

on the ancillas are straightforward but where these gates cannot be so easily ap-

17Note that this general two-QV diagonal gate is a special case of the many-QV diagonal gate
introduced in Equation 5.25.

160



6.4 Adapting the ancilla-driven model

|ψ〉 D(φ) × D(φ) × u|ψ〉

|0〉 D(φ) × R(−φ′′)uR(−φ′) D(φ) × |0〉

Figure 6.4: If a universal set of single-QV gates can be implemented on the ancillas,
this circuit may be used to implement gates from this set on the register QVs. This
circuit uses an ancilla initialised to |0〉, a single local gate on the ancilla, and two
applications of the fixed interaction Sar(φ) = swap · Dar(φ), where φ : S2

d → R.
Here, φ′ and φ′′ are the phase-functions given by φ′(q) = φ(q, 0) and φ′′(q) = φ(0, q),
respectively. In this diagram, the D(φ) gate is represented schematically by the
boxes containing D(φ) connected via a wire.

D(φ) × D(φ) ×

D(φ) × =

|0〉 D(φ) × D(φ) × D(φ) × |0〉

R(φ′) D(φ) × R(φ′′)

D(φ) ×

Figure 6.5: A two-QV entangling gate may be implemented on a pair of register
QVs with the aid of an ancilla that has been prepared in the state |0〉, and three
applications of the fixed ancilla-register interaction gate Sar(φ). The circuit notation
and the parameters used here are as described in Figure 6.4 and the main text.

plied directly to the well-isolated ‘memory’ register QVs and also when high-quality

measurements of the ancillas are not available for implementing the ADQC model.

Discussions on more specific settings in which this may be of relevance, and possi-

ble methods for generating appropriate interaction gates, are delayed until the next

chapter, in which this model is extended. Before concluding this chapter, a few

observations are made relating to the differences between this model and ADQC:

In comparison to ADQC, one disadvantage of this globally unitary model is that

to entangle two QVs it is necessary for one of the QVs to interact twice with the

ancilla, and this may be highly inconvenient in some settings, e.g., with ‘flying’ pho-

tonic QVs entangling distant register QVs. However, three ancilla-register gates is

actually the minimal number possible with which an entangling gate can be me-

diated on two QVs via an ancilla whilst using globally unitary dynamics [Lamata

et al. (2008)], and hence, although the model here has this gate-count disadvantage

in comparison to ADQC, this is inherent to all globally unitary models (e.g., see the

geometric phase gate, which uses four interactions per gate). A further cost to using

161



6. Quantum computation driven by measurements of ancillas

globally unitary dynamics is that the computational model can no-longer have access

to the parallel power of the 1WQC.18 It should also be made clear that, at the end

of the computation, it is obviously necessary to be able to perform a measurement of

each register QV. Here, this can be achieved either directly or via measurements on

ancillas. Finally, note that the qubit sub-case of the model outlined in this section

has been presented in Proctor et al. (2013) and this should be referred to for further

details relevant only in this (perhaps most practical) special case.

6.5 Conclusions

In this chapter a model of quantum computation for general quantum variables has

been developed which requires only very limited access to the computational reg-

ister. This is an extension of the qubit-based ancilla-driven quantum computation

(ADQC) model of Andersen et al. (2010) and Kashefi et al. (2009), and hence, for

this reason, the same terminology has been used herein. To be more specific, in

this ‘ADQC’ model universal quantum computation is implemented on a register

using only repeated applications of a single fixed two-body ancilla-register interac-

tion gate, ancillas prepared in a single state, and variable basis measurements of

these ancillas. Because measurement outcomes are fundamentally probabilistic the

measurements of the ancillas introduce random Pauli errors into the computation.

However, it was shown that a quantum computation can still be implemented de-

terministically with the aid of classical feed-forward of measurement outcomes and

adaptive measurement bases. It was then shown how the general quantum variable

one-way quantum computer (1WQC) can be simulated within this model, which

in-turn demonstrated that the hybrid quantum-classical advantages of 1WQC, as

investigated in Chapter 4, are also inherent in the ADQC model presented here.

Hence, ADQC not only requires highly limited physical controls, but is also pow-

erful for parallel quantum computation. The measurement bases that are sufficient

for universal quantum computation were then discussed. In particular, it was shown

that in the setting of QCVs, with the ancillas realised as optical states, homodyne de-

tection and photon-number counting are sufficient for universality. From a physical

perspective this is fairly promising, as homodyne detection is now a routine quan-

tum optics technique [Su et al. (2013); Ukai et al. (2011)] and there have been many

recent improvements in photon-number-resolving detectors [Calkins et al. (2013);

Humphreys et al. (2015)].

The ADQC model employs ancillas of the same dimension (i.e., the same QV

type) as the register QVs, which may not be convenient in all settings. Hence, an

18This is true as long as the model uses only bounded input-size gates, as is the case here. This
was shown in Chapter 3.
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adaption of the ADQC model to the more general setting of ancillary and register

QVs of different dimensions was considered and this was seen to be closely related

to the geometric phase gates of Chapter 5. It was shown that when the ancillary

and register dimensions do not match this either prevents step-wise determinism, or

restricts the implementable gate set so that the model may no longer be universal.

Finally, it was shown that the ADQC model can be implemented with a swap-like

interaction gate and that this interaction can also be used for an alternative model

of ancilla-based quantum computation, which requires only interactions between

ancillary and register QVs using this single fixed gate, ancillas prepared in a single

fixed state, and local unitary controls of the ancillas. This globally unitary model

may be more relevant in settings in which high-quality measurements on ancillas are

not possible, particularly as it has been shown that inaccurate measurements of the

ancillas have a serious detrimental impact on the fidelity of the computation in the

original qubit-based ADQC model [Morimae (2010); Morimae and Kahn (2010)].

Future work could include an analysis of the effects of such measurement inaccuracy

to this more general model, and an additional avenue for further research could be

to fully assess the effects on the QCV-based ADQC model of using finitely-squeezed

vacuum states instead of ideal position and momentum eigenstates. In particular, it

would be interesting to consider whether the QCV-based ADQC model can be made

fault-tolerant in a similar fashion to the recent qubit-encoded QCV-based 1WQC

work of Menicucci (2014).
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Chapter 7

Minimal ancilla-based gates

In this chapter a quantum computer is proposed which may implement any quantum

algorithm on a well-isolated register, via interactions with ancillas prepared in the

computational basis, using only a single fixed ancilla-register interaction gate. This

may be naturally termed a minimal control ancilla-based quantum computer, as it

requires both a minimal level of access to the computational register, which can

hence be optimised for long coherence times, and highly limited control over the an-

cillas, which may be optimised for a single high-quality interaction with the register

systems. This model is applicable to the setting of both qubits and qudits of more

general dimensions. Moreover, in the particular case of a qubit-based computer and

a swap-like fixed interaction gate, it is shown that any quantum computation can

be implemented on the register even if the ancillas can only be prepared in a single

fixed state, which it can be argued is a completely minimal scheme for universal

ancilla-based quantum computation. The models proposed in this chapter are novel

for all types of QVs. This chapter is based upon Proctor and Kendon (2014, 2015).

7.1 Introduction

From a fundamental point of view, it is interesting to understand the minimal re-

sources required to implement universal quantum computation. As such, this was

extensively investigated by the early pioneers of the subject [Barenco (1995); Deutsch

(1989)], culminating with Deutsch et al. (1995) showing that almost any two-input

gate is alone sufficient for universality with qubits, and Lloyd (1995) independently

showing that this is true for qudits of any dimension.1 In the latter chapters of this

thesis, quantum computational models have been considered in which the gates on

the computational systems are mediated via ancillas, and in this more restricted set-

ting it is not a priori clear, and it does not directly follow from the work of Deutsch

1See Childs et al. (2011) and Bauer et al. (2014) for more recent works on this subject.
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et al. (1995) and Lloyd (1995), that there are fixed ancilla-register interactions which

alone (i.e., with no further control of the register or ancillary QVs) can implement

universal computation on the register. Indeed, the models considered so far in this

thesis all require local controls of either the ancilla or the register to achieve univer-

sality: The geometric phase gates of Chapter 5 must be augmented with local gates

on the register quantum variables to obtain universality, and the measurement-based

ADQC model of Chapter 6 requires variable basis measurements of the ancillas, with

the globally unitary adaption of ADQC proposed therein removing the necessity for

these variable-basis measurements but replacing it with the need for local unitary

gates on the ancillas.

In this chapter, deterministic and universal ancilla-based models will be devel-

oped which require only a single fixed ancilla-register interaction gate and ancillas

prepared in states from a fixed orthonormal basis. Two distinct models will be pre-

sented, with distinct gate methods and forms for the fixed interaction gate - the

latter of these models will be based on a swap-like gate and consume a minimal level

of resources to implement each entangling gate on the register. The models pro-

posed in this chapter will be formulated in the setting of general quantum variables

and hence the gate methods will be applicable to qubits, qudits and QCVs and are

novel in all of these settings. However, although highly applicable in the setting of

qubits and qudits, the models will not be particularly suited to the QCV setting,

largely because they fundamentally rely on preparing ancillas in computational basis

states but also as the models will not be shown to be universal in this case. Due

to the subtle differences between the models presented in this and the previous two

chapters, the constraints and properties of each model have been summarised in the

thesis overview, on pages 2-3 of this thesis: the reader is again referred there for a

concise summary of the different ancilla-based models herein.

The computational models introduced in this chapter are interesting from an

abstract perspective, but they also have clear practical motivations. Minimising

the access needed to the computational register facilitates the optimisation of the

register systems for the long coherence times that are essential for the realisation of

useful computations, and this has already been discussed in detail in the introduction

to Chapter 6. Going beyond this minimal-register-access paradigm, introduced in

Chapter 6, the physical motivation for also minimising the control needed over the

ancillary systems is clear: Implementing high-quality variable basis-measurements

on any quantum system is intrinsically challenging, and in some settings it may not

be straight-forward to access individual ancillas on-the-fly in order to apply local

unitary gates between interactions of the ancillas with register QVs. Because the

models proposed in this chapter bypass the need for on-line local controls of any

kind on the register or ancillary QVs, they allow the entire set-up to be optimised
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for a high fidelity fixed ancilla-register interaction and long coherence times in the

computational register.

7.2 Interactions via generalised controlled gates

The purpose of this chapter is to develop methods for ancilla-based universal quan-

tum computation which require only a single fixed interaction gate and ancilla prepa-

ration. More precisely, with ancillas of dimension da and register QVs of dimension

d, the idea is that the quantum computer should only requires access to

1. A single fixed ancilla-register interaction gate U ∈ U(da × d), which may be

applied to any ancilla-register pair.

2. Ancillas prepared in states from a fixed orthonormal basis.

Models of quantum computation which obey these constraints will be termed mini-

mal control models. As in the previous chapter, the fixed gate, U , must be chosen

careful (e.g., it must be entangling) and not any interaction will do. As an aside, it

is important to emphasise that although the model does not require measurements

to implement the computation, some measurements will be required at the end of

the computation for the final read-out. The schemes given here will allow for those

measurements to be performed either directly on the register systems, or on some

ancillas. Furthermore, it should also be noted that it is essential that the register

QVs can be initialised to some fiducial state - or to computational inputs - at the

start of the computation, as has been assumed (often implicitly) throughout this

thesis.

7.2.1 Choosing an interaction for a qubit-qubit computer

In keeping with the rest of this thesis, as far as is possible the aim is to develop

methods which are independent of the particular choices for the QV types of the

ancillary and register systems. Hence, if the methods are to work in all cases they

must work in the simplest qubit-qubit case (i.e., qubits as the ancillary and the

register systems). With this in mind, we begin by considering what the conditions

given above imply for the possible forms the interaction gate, U , may take in this

simplest, and perhaps most physically relevant, of cases.

Given that part of the motivation for developing ‘minimal control’ models is

physical simplicity, it is natural to demand that a single-qubit gate (from some set)

can be induced on any register qubit via interactions with only a single ancilla, and

using some (hopefully small) number of applications of the fixed gate U . In order

for the mapping on the register implemented by some non-zero m ∈ N number of
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applications of the interaction gate, U , to be unitary, it is necessary for the ancilla

and register to be in a product state after Um has been applied, with the unknown

quantum information still in the register.2 This implies that, for at least some state

|ζ0〉 that the ancillas can be prepared in, and all possible register qubit states |ψ〉,
we must have

|ψ〉 ⊗ |ζ0〉
Um−−→ u0|ψ〉 ⊗ |η0〉, (7.1)

for at least one non-zero m ∈ N, and some |η0〉, and unitary u0. Due to the unitarity

of Um, and because both systems are qubits, it is simple to show that this implies

that

Um = u0 ⊗ |η0〉〈ζ0|+ u1 ⊗ |η1〉〈ζ1|, (7.2)

for some u0, u1 ∈ U(2) and some orthonormal qubit bases {|ζ0〉, |ζ1〉} and {|η0〉, |η1〉}.
Alternatively, this may be re-written as

Um = ca · (u0 ⊗ |0〉〈0|+ u1 ⊗ |1〉〈1|) · ba, (7.3)

where b and c are the unitaries defined by b|ζq〉 = |q〉 and c|q〉 = |ηq〉. This interaction

and ancilla preparation basis pairing still contains a physically irrelevant freedom,

which stems from the equivalence relation

〈ψ|Ô|ψ〉 = 〈ψ|u†uÔu†u|ψ〉, (7.4)

for unitary u. Hence, any transformation of the form

Um → vaU
mv†a = vaUv

†
a . . . vaUv

†
a, (7.5)

for unitary v, can be accounted for by a rotation in the ancilla preparation states.

Therefore, this freedom can be removed by setting the ancilla preparation basis to

be the computational basis.3 Hence, without any lose of generality, the preparation

basis for the ancillas may be fixed to the computational basis, and the ancilla-register

interaction must then have, as an integer power, the operator

Um = I⊗ l · (u0 ⊗ |0〉〈0|+ u1 ⊗ |1〉〈1|) , (7.6)

for some unitaries u0, u1, l ∈ U(2). To be clear, here the first (second) part of the

tensor product acts on a register (ancilla) qubit. The non-local part of this gate

can be understood as what might be termed a ‘generalised controlled gate’, which

applies uq to the register qubit if the ancilla qubit is in the state |q〉.
2This holds as measurements are not available to disentangle the ancilla and register qubits.
3Note that this is not a physical constraint, as the physical observable which defines the com-

putational basis (i.e., what defines the Pauli Z gate) must itself be chosen by an experimentalist.
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7.2.2 Choosing an interaction for general quantum variables

In order to present the natural extension to general QVs of the condition on the

fixed interaction gate in the qubit-qubit case derived above, and as summarised by

Equation 7.6, it is useful to first define a ‘generalised controlled gate’ for arbitrary

QV types. For a function ν : Sdc → U(dt), where dc and dt are the dimensions of a

control and a target QV respectively, define the generalised controlled gate, denoted

C[ν], by the action

|q〉 ⊗ |q′〉 C[ν]−−→ |q〉 ⊗ ν(q)|q′〉. (7.7)

Note that the square parentheses in the notation have been used to clearly distinguish

this gate from an ordinary controlled gate. As with ordinary controlled gates, the

control and target systems will be denoted via including super- and sub-scripts in

this notation when necessary, i.e., Cc
t [ν] denotes that c is the control QV, and t is

the target QV. This definition of a generalised controlled gate can be understood

as being a notation for an arbitrary two-QV unitary that may be represented as

a block-diagonal matrix, when expressed in the computational basis. To further

clarify this definition, some simple examples are now given: If ν(q) = u for fixed

unitary u, then C[ν] is equivalent to a local u gate on the target system; if ν(q) = uq

for fixed u, then this gate is equivalent to the ordinary controlled gate Cu; finally, if

u(q) is diagonal for all q then this gate is an arbitrary diagonal two-QV gate, with

such gates having already been encountered in this thesis (see Section 6.4.3, and in

particular Equation 6.30).

The generalised controlled gate, defined above, provides a succinct notation for

extending the condition derived for the fixed interaction in a qubit-qubit ‘minimal

control’ model to the more general setting. Specifically, the natural extension of

Equation 7.6 to the general QV domain is to impose the condition that, for some

non-zero m ∈ N, the fixed ancilla-register interaction gate, U ∈ U(da × d), obeys

Um = la ·Ca
r [ν], (7.8)

for some function ν : Sda → U(d) and l ∈ U(da). Considering the mth power

of the fixed ancilla-register interaction to have this form immediately highlights a

possible method for implementing single-QV gates on the register, and indeed, the

construction was specifically designed for this purpose. In particular, it immediately

follows that

|ψ〉 ⊗ |q〉 Um−−→ ν(q)|ψ〉 ⊗ l|q〉, (7.9)

with q ∈ Sda . Hence, the gate ν(q) may be applied to a register QV by m applications

of the fixed interaction gate, U , to the register QV and an ancilla prepared in the
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state |q〉. Moreover, if the set

Sν = {ν(q) | q ∈ Sda}, (7.10)

is an (approximately4) universal set for single-QV gates on the register QVs, then

any single-QV gate can be approximated on any register QV by repeated applications

of this technique. For example, a universal set would be provided in the qubit-qubit

case if ν(0) = H and ν(1) = T . This will be the method used to implement single-QV

gates on the register throughout this chapter. The underlying nature of this method

provides one of the reasons why the models in this chapter are fairly unsuited to

the setting of QCV ancillas - in the case of QCVs, the computational basis states

cannot be exactly realised, and if they are imperfectly realised, via squeezed states,

the ancillas will remain entangled with the register QVs and this will be a source

of decoherence in the computation, even before non-ideal gate implementation, and

other imperfections, are also taken into account.

7.3 The control-gate minimal control model

In the remainder of this chapter, if the register consists of QCVs it will be implicitly

assumed that the ancillas are also QCVs, for the same reasons that this was assumed

throughout Chapter 5. A general form for interactions that are potentially suitable

for minimal control ancilla-based computation has been given in the previous section,

and a simple method which may be used to implement local gates has been presented.

Specifically, the fixed interaction, U , should obey Um = la ·Ca
r [ν] for some non-zero

m ∈ N. The simplest case is given by imposing m = 1, and hence U = la · Ca
r [ν].

The model introduced in this section will use a fixed interaction of this form. It is

not clear how, with an arbitrary gate of this sort, this interaction may be used to

mediate an entangling gate on the register, which is essential for universal quantum

computation. Instead, consider the slightly less general family of ancilla-register

interaction operators

Ēar(v, w, ϑ) := F †a ·Ca
r [νv,w,ϑ], (7.11)

where ν : Sda → U(d) is the function defined by

νv,w,ϑ(q) = vR(2πϑ/da)
qw, (7.12)

for some v, w ∈ U(d) and some phase-function ϑ with the restriction that ϑ : Sd →
Sda (the phase functions in a R(ϑ) gate can, in general, be mappings into R). This

gate still has free parameters (u, v and ϑ), that will be left undetermined for now,

4Only approximate universality will be relevant in this chapter. This will not always be explicitly
stated.

170



7.3 The control-gate minimal control model

in the interests of flexibility. This interaction is a natural generalisation of the

fixed interaction gate in the ADQC model of the previous chapter, denoted Ěar,

and defined by Ěar = FrF
†
a · Cr

aZ. At this point, this may not be particularly

obvious, but this will be expanded upon in the following. To be clear, the quantum

computational model introduced in this section will only require access to:

1. The fixed interaction Ēar(v, w, ϑ), where u, v and ϑ are fixed, but yet to be

specified.

2. Ancillas prepared in the computational basis, B.

It is now shown how an (approximately) universal set of gates may be imple-

mented on the register in this model, under a certain assumption about the ancilla-

register interaction. It will then be shown that the parameters in the interaction

gate (i.e., v, w and ϑ) can be chosen such that this assumption holds for certain

dimensions for the register and ancillary QVs. In particular, interactions will be

provided that are proven to be universal when the register consists of qubits and

the ancillas are of any QV type, and when the register consists of qudits and the

ancillas have a range of dimensions. Single-QV gates on the register can be applied

using the method of Equation 7.9. Specifically, it immediately follows that

|ψ〉 ⊗ |q〉 Ēar(v,w,ϑ)−−−−−−−→ ν(q)|ψ〉 ⊗ |+−q〉. (7.13)

Therefore, via ancilla preparation in the state |q〉, the gate ν(q) is implemented with

the ancilla transformed to the state |+−q〉, which may be discarded. Hence, ancilla

preparation may be used to deterministically implement the gates from the set

Sv,w,ϑ = {ν(q) = vR(2πqϑ/da)w | q ∈ Sda}. (7.14)

As a circuit diagram, this is simply the single-gate circuit

|ψ〉 ν(q)|ψ〉

|q〉 |+−q〉

where two quantum wires connected via a line and two ‘◦’ symbols will be used to

denote the fixed interaction gate, Ēar(v, w, ϑ), in this section.

For now, simply assume that the parameters in the interaction (u, v and ϑ)

may be chosen such that Sv,w,ϑ is a universal single-QV set on the register (this is

non-trivial), and this assumption is addressed in Sections 7.3.2 and 7.3.3. Given this

assumption, it is now shown that it is possible to use this interaction to implement

a two-QV entangling gate on any pair of register QVs, and hence the model is a
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universal quantum computer. Such an entangling gate may be achieved via the

following protocol:

1. Sequentially interact the QVs on which the gate is to act with an ancilla

prepared in any state, e.g., |0〉.

2. Using additional ancillas and the fixed ancilla-register interaction, implement

w†v† on both register QVs. The number of additional ancillas needed and the

states from the computational basis they should be prepared in depends on

the form of w†v† and the available ν(q) single-QV gates. As such, it depends

on the specific form of the interaction and the assumption that Sv,w,ϑ is a

universal set of single-QV gates (this will be returned to below).

3. Sequentially interact the QVs with the first ancilla.

It will be shown below that the effect of this sequence on the register is the symmetric

entangling gate5

G(v, w, ϑ) = v ⊗ v ·D (φϑ) · w ⊗ w, (7.15)

where φϑ : S2
d → R is the two-variable phase-function given by

φϑ(p, q) = 2πϑ(p)ϑ(q)/da, (7.16)

and D(φ) is the general two-QV diagonal gate, which is defined in Equation 6.30 by

the mapping |p〉|q〉 → eiφ(p,q)|p〉|q〉. It is important to stress that this gate method

requires multiple ancillas: one ‘entangling’ ancilla and further ancillas to implement

local gates on the register (the number of which depends on the form of the gates).

This method may be summarised by the circuit diagram

w†v†

G(v, w, ϑ)

w†v† =

(7.17)

where the local gates, enclosed by the dashed box, are implemented by further

ancillas prepared appropriately.

From the above presentation, it is not at all clear why (or even if) this gate

functions as claimed. However, it is actually a fairly simple adaption of the geomet-

ric phase gate from Chapter 5, as is now shown. The ancilla-register interaction,

5D(φϑ) is entangling for most choices of ϑ, e.g., ϑ(q) = q. A condition which guarantees it is
entangling is given as part of Appendix J.
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Ēar(v, w, ϑ), may be rewritten as

Ēar(v, w, ϑ) := F †a ·Ca
r [νv,w,ϑ] = F †avr ·Cr

a[Z(ϑ)] · wr, (7.18)

which may be shown by checking the action of each side of this equality on arbitrary

computational basis states. Note that this equality only makes sense because ϑ was

restricted such that ϑ(q) ∈ Sda . To be clear, the non-local part of this gate maps

basis states via

|q〉|q′〉 Cra[Z(ϑ)]−−−−−→ |q〉 ⊗ Z(ϑ(q))|q′〉, (7.19)

and hence, Ēar(v, w, ϑ) can be understood as a generalisation of the ADQC inter-

action gate Ěar = FrF
†
aC

r
aZ, as it reduces to this case when v = F , w = I and

ϑ(q) = q. It is now shown why the ancilla-mediated entangling gate, given above,

functions as stated. The gate sequence under consideration, given in the LHS of the

quantum circuit above, is ĒasĒarw
†
rw
†
sv
†
rv
†
sĒasĒar. Now, using Equation 7.18, it is

straight-forward to confirm that

(ĒasĒar)w
†
rw
†
sv
†
rv
†
s(ĒasĒar) = vrvs · Srsa · wrws (7.20)

where Srsa is the ancilla-register interaction gate sequence

Srsa = F †aC
s
a[Z(ϑ)] · F †aCr

a[Z(ϑ)] · F †aCs
a[Z(ϑ)] · F †aCr

a[Z(ϑ)]. (7.21)

By using F 4 = I, the cyclic relation of the Pauli operators under conjugation by F ,

given in Equation 2.26, and the Weyl commutation relation, given in Equation 2.44,

it may be shown that

F †Z(q′) · F †Z(q) · F †Z(q′) · F †Z(q) = X(q′)Z(−q)X(−q′)Z(q) = ωqq
′
, (7.22)

noting that this is exactly the geometric phase that the geometric phase gate, from

Chapter 5, relies upon. From this relation and Equation 7.19, it follows that Srsa

maps register QVs in computational basis states, and an ancilla in an arbitrary

state, as

|q〉|q′〉|ψ〉 Srsa−−−→ e2πiϑ(q)ϑ(q′)/da |q〉|q′〉|ψ〉, (7.23)

which has the action of the D(φϑ) gate, as given in Equation 7.16, on the register

QVs. Hence, by combining this with Equation 7.20, to include the effect of the local

v and w gates, this has confirmed that the action of this ancilla-register interaction

sequence is the G(v, w, ϑ) gate of Equation 7.15, as claimed. This gate method can

be understood as a generalisation of the geometric phase gate of Figure 5.2, using

a fixed interaction that includes local gates on the register systems and where the

non-local part of the interaction uses a minor generalisation of a controlled Pauli
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gate (i.e., a C[Z(ϑ)] gate rather than simply a CZ(z) gate).

7.3.1 Removing the local gates

The protocol given in Equation 7.5, for implementing an entangling gate, includes a

step for implementing local gates via further ancillas and the details of this stage are

now considered further. By assumption the gate set Sv,w,ϑ is universal for single-QV

gates, which implies that the required local w†v† gates may be approximated to

arbitrary accuracy. Hence, this step may be implemented to a given accuracy with

some finite number of additional ancillas prepared suitably. In certain cases w†v†

may be implementable exactly and with only a small number of ancillas - this will

be true in one of the examples, given in Section 7.3.2, for the qubit-qubit model.

Moreover, it is not actually necessary to implement this w†v† local gate on one of the

two register QVs. This can be deduced by noting that, as the ‘entangling’ ancilla

is assumed to be prepared in some computational basis state |q〉, the first gate in

the entangling sequence enacts only a local ν(q) gate on the register, and hence

the local w†v† gate need not be applied to the first register QV (if this local gate

on the first QV isn’t included in the gate sequence, the local parts of the induced

entangling gate are slightly altered). This raises the question: is the remaining local

gate actually required? If wv could be chosen to be diagonal in the computational

basis, the answer would indeed be no. However, in this case ν(q) and ν(q′) commute

for all q, q′ ∈ Sda , and hence the gate set Sv,w,ϑ = {ν(q) | q ∈ Sd} cannot form an

approximately universal set of single-QV gates.6 Hence, it appears that the local

gates on the second register QV are indeed necessary in this entangling gate protocol.

In order to design a more elegant and practical model, in which additional ancillas

are not needed to implement a single entangling gate, a different form for the fixed

interaction will be used, and this is the topic of Section 7.5.

7.3.2 The qubit-qubit model

The qubit-qubit setting is perhaps the most physically relevant for implementing

models of this sort, and furthermore, it is conceptually the most straight forward.

For both of these reasons, and because specific interactions that can implement

universal quantum computation are easily found in this case, the qubit-qubit model

is now studied as an interesting special case. The ϑ phase-function parameter in

the interaction gate, Ēar(v, w, ϑ), is superfluous in this case, and without loss of

generality, the interaction may take the form

Ēar(v, w) = Havr · cz · wr, (7.24)

6This is because if wv is diagonal then ν(q)ν(q′) = vR(2πqϑ/da)wvR(2πq′ϑ/da)w =
vR(2πq′ϑ/da)wvR(2πqϑ/da)w = ν(q′)ν(q).
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as can be obtained via considering Equation 7.11 when both systems are qubits. For

clarity, the decomposition of this interaction into local and non-local parts can be

summarised by the circuit

w • v

=

• H

The two implementable local gates, that can be obtained by preparing an ancilla in

the state |0〉 or |1〉, are ν(0) = vw and ν(1) = vZw, respectively. The entangling

gate implemented via the methods given above is now locally equivalent to cz. In

particular, it is the gate G(v, w) = v ⊗ v · cz · w ⊗ w.

Specific choices of the gate parameters v and w are now given that result in

ν(0) and ν(1) forming a universal set for single qubit gates. This then confirms

that this model, using only the fixed interaction gate and ancillas prepared in the

computational basis, can implement universal quantum computation on the register.

Let p(φ) be the single-qubit operator defined by the action

p(φ)|q〉 = sinφ|q + 1〉+ (−1)q cosφ|q〉, (7.25)

or written as a matrix in the computational basis, it is given by

p(φ) =

(
cosφ sinφ

sinφ − cosφ

)
. (7.26)

Now, taking v = p(π/8) and w = p(π/8)R(θ), it is straight-forward to show that then

ν(0) = R(θ) and ν(1) = HR(θ), where R(θ) is the ordinary integer-parameterised

rotation gate R(θ)|q〉 = eiqθ|q〉. This pair of gates form a universal single-qubit set

if θ is a generic rotation angle and also for a range of more specific choices, such

as if θ = π/4n for any non-zero integer n. In particular, the n = 1 case gives

R(π/4) = T , hence ν(0) = T and ν(1) = HT . The universality of this set follows

from the well-known universality of T and H [Boykin et al. (2000)], as T 7 = T † and

so ν(1)ν(0)7 = H.

In order to implement the entangling gate protocol of Equation 7.5, it is necessary

to be able to implement w†v† = ν(0)† gates on register qubits. With the H and

T -based choice for the interaction gate given above, then ν(0)† = ν(0)7 and so ν(0)†

can be implemented exactly on a register qubit using seven ancillas, initialised to the

state |0〉, which each interact once with the register qubit. Therefore, the entangling

gate protocol of Equation 7.5, in this case, uses a total of fifteen ancillas prepared in

the state |0〉: fourteen to apply ν(0)† gates on the two register qubits, in addition to
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the ‘entangling’ ancilla that directly mediates the gate.7 As such, it is clear that the

overhead in terms of the number of ancillas and gates consumed to implement each

entangling gate is fairly low with this choice for the interaction. It also then follows

that the overhead to simulate gates from the set {cnot, H, T} on the register, which

is commonly used in algorithm decompositions, is similarly low.

7.3.3 Universality beyond the qubit-qubit model

It has now been shown that universal quantum computation can be obtained in this

‘minimal control’ model in the case of a qubit-qubit quantum computer, and that

in this case there are a range of values that the parameters in the interaction gate

may take. The case of more general QVs is now briefly considered. To begin, still

restrict the register to consist of qubits, but consider the case when the ancillas may

be general qudits or QCVs. The local gate that may be obtained by initialising

an ancilla to |q〉 is in this case of the form ν(q) = vR(2πqθ/da)w where θ ∈ Sda ,

as can be confirmed from Equation 7.14.8 It is not hard to find choices for the

parameters u, v and θ such that this set of ν(q) gates with q ∈ Sda are universal for

single-qubit gates. For example, letting θ = 1, in the case of QCV or even-dimension

qudit ancillas ν(0) = vw and ν(da/2) = vR(π)w = vZw, and hence any choices for

the v and w unitaries that were sufficient for universality in the qubit-qubit case

(see above), are also sufficient here. More generally, for generic gates v and w it

will follow that ν(0) = vw is a rotation by an irrational multiple of π around some

Bloch sphere axis and ν(1) = vR(2π/da)w is a rotation by an irrational multiple of

π around some different Bloch sphere axis (i.e., it is not parallel to the axis that vw

is a rotation around), and this is all that is required for two single-qubit gates to be

a universal set for single-qubit unitaries [Nielsen and Chuang (2010)].

Moving beyond the case of a register of qubits, it is not so simple to find specific

choices for the gate parameters v, w and ϑ, for which it is straight-forward to verify

that Sv,w,ϑ = {ν(q) = vR(2πqϑ/da)w | q ∈ Sda} is a universal single-QV gate set. In

the case of a register of qudits and ancillas of any dimension, it seems reasonably

likely to me that values for these parameters may always be found that are sufficient

for universality. More specifically, it seems likely that the set will be universal for

randomly chosen v and w, with an explicit proof of this possibly obtainable based

on the work of Lloyd (1995). To conclude this section, a specific construction is

given that guarantees universality when the register consists of qudits of any prime

7This may be reduced to eight ancillas if the local ν(0)† gate is only applied to the second
register qubit, which is all that is actually necessary.

8In general, the gate ν(q) is of the form ν(q) = vR(2πqϑ/da)w where ϑ : Sd → Sda . Because
the ϑ(0) phase may be always set to zero, as this is only fixing the global phase, when the register
systems are qubits this gate may be written as ν(q) = vR(2πqθ/da)w where R(·) is now the scalar-
parameterised rotation gate, and θ ∈ Sda .
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dimension, with ancillas of any dimension da = nd for integer n ≥ 2. Let ϑ be given

by ϑ(q) = q(q + 1)/2 modulo da, and let v = F and w = I. Then ν(q) = FP
q
n and

so ν(0) = F and ν(n) = FP . These two gates generate the single-qudit Clifford

group in prime dimensions (see Section 2.4). Now ν(1) = FP
1
n and if n ≥ 2, as

guaranteed by the condition on the dimension of the ancillas, this is not a Clifford

gate. Hence, this set is universal for single-qudit gates as any non-Clifford unitary

along with the generators of the one-qudit Clifford group is a universal single-qudit

gate set in prime dimensions [Campbell et al. (2012); Nebe et al. (2001, 2006)]. This

gate set, and the relation between the ancillary and register dimensions, is rather

contrived. As such, if this model was to be of further interest in the non-binary case

then it would be important to investigate further parameter choices that allow for

universal quantum computation. Finally, note that the case of a register of QCVs

has not been considered here, which is because the models in this chapter are not

particular well-suited to QCVs.

7.4 Measurements for stochastic quantum computation

The ‘minimal control’ model presented in the previous section is appealing from a

physical perspective as it may deterministically implement universal quantum com-

putation on a register via only a single fixed gate and ancillas prepared in the compu-

tational basis. However, there are two less convenient features of the model: firstly,

it requires many ancillas to implement a single entangling gate, and secondly, it can-

not implement entangling gates on the register in a sequential fashion - it requires

two interactions between the ‘entangling’ ancilla and each register QV to implement

an entangling gate on the register (see Equation 7.5). In some circumstances it may

be highly preferable to implement entangling gates in a sequential fashion, that is,

using only one interaction with the ancilla per register QV, and as this is impossible

with unitary dynamics [Lamata et al. (2008)], in order to achieve this measurements

of the ancillas are required. The natural adaption of the constraints of ‘minimal

control’ ancilla-based quantum computation (see the beginning of Section 7.2) to

a measurement-based model is to consider a quantum computer restricted to using

only a single fixed ancilla-register interaction, ancillas prepared in a single state and

single-party measurements on the ancillas of a fixed operator. In the following, the

model introduced in Section 7.3 is adapted to this measurement-based setting. In

advance, it is noted that this model will have certain unappealing features which are

unavoidable in a model of this sort, including being universal only in a stochastic

sense, which, in my opinion, make it unlikely to be of any practical use. However, it

is interesting as a conceptual link between the model of Section 7.3 and the ADQC

model of Chapter 6, and also links the work herein to the (qubit-based) models of
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Halil-Shah and Oi (2013, 2014), which were developed in parallel to the work here.

7.4.1 The phase basis

For the following, it is necessary to first introduce what I will call the ‘phase basis’.

Define the phase basis by

B× := {|×q〉 := PF |q〉 | q ∈ Sd}, (7.27)

where P is the phase gate gate first defined in Equation 2.49 (with the parameter

p = 1). The action of a general Pauli operators on this basis is shown in Appendix H

to be

ωξ/2X(a)Z(b)|×q〉 = ω(ξ+a(a−%d))/2−a(b+q)|×q+b−a〉, (7.28)

where a, b ∈ Sd, and the reader is reminded that %d = 1 for odd dimension qudits

and %d = 0 otherwise. As an interesting aside, note that |×q〉 is the eigenstate of

the (generalised) Pauli Y operator, defined by

Y := ω(1+%d)/2XZ, (7.29)

with eigenvalue ω−q, where for qubits the Y operator is the standard Pauli operator

Y = i(|1〉〈0| − |0〉〈1|). A measurement in either the computational, conjugate or

phase bases of a QV that is in a basis state of one of the other two bases reveals no

information about which basis state the QV was in before the measurement. This

is because

〈
q|×q′

〉
=
ωqq

′

√
d
ω−

q
2

(q+%d), (7.30)

〈
+q|×q′

〉
=
ωqq

′

√
d
ω−

q
2

(q−%d)ω−
q′
2

(q′+%d)ω
d−%d

8 , (7.31)

and we have already seen that
〈
q|+q′

〉
= ωqq

′
/d. These equations are derived in

Appendix H using generalised Gauss sums and integrals.

7.4.2 A stochastic minimal model

There is a natural symmetry between state preparation and projective measurements

which may be used to easily transform the model presented in Section 7.3 into a

measurement-based model which requires only sequential interactions and only a

single ancilla to implement an entangling gate. Specifically, consider a model in

which the following fixed operations are available:

1. The fixed interaction gate Ēar(v, w, ϑ), as defined in Equation 7.11, where u,
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v and ϑ are fixed, but yet to be specified.

2. Measurements of ancillas of the fixed operator: x̂ (i.e., computational basis

measurements).

3. Ancillas prepared in the single state: |ψ0〉 = F |×0〉.

Sequential interactions of an ancilla with two register QVs and followed by a

measurement of x̂ on the ancilla may implement an entangling gate. Specifically,

the gate implemented is

〈m|ĒasĒar|ψ0〉
‖〈m|ĒasĒar|ψ0〉‖

= v′r(m)v′′s (m) ·G(v, w, ϑ), (7.32)

where G(v, w, ϑ) is the entangling gate defined in Equation 7.15, and v′(m) and

v′′(m) are the measurement-outcome dependent gates

v′(m) = vR(−2mπϑ/da)v
†, (7.33)

v′′(m) = vR(2mπϑ/da)R(−πϑ(ϑ+ %da)/da)v
†. (7.34)

Hence, up to measurement-induced ‘errors’ this is exactly the same gate as obtained

via the globally unitary sequence of Equation 7.5.9 The substantially advantages of

this gate method are that it requires only a single ancilla and a minimal number

of applications of the interaction gate. It is not immediately obvious why Equa-

tion 7.32 holds, however, the intuitive reason is that the interaction gates permute

the phase-basis state of the ancilla dependent on the state of the two register QVs

(see Equation 7.28), encoding this information into the ancilla. The measurement

induced phase is then dependent on this global property of the two QVs (see Equa-

tion 7.30), which therefore is equivalent to implementing an entangling gate on the

two register QVs.10 A formal derivation of Equation 7.32 is included in Appendix J.

This measurement-based gate may be summarised by the circuit diagram

G(v, w, ϑ)
v′(m)

= v′′(m)

|ψ0〉 x̂ m

An initialised ancilla that interacts with a register QV and is then measured,

9In this model, it is perhaps a misnomer to term the local m-dependent gate ‘errors’, as will be
seen below.

10In some ways this is quite different to the entangling gate in ADQC, in which the measurement-
induced phase only creates the local error - see the discussion below Equation 6.6.

179



7. Minimal ancilla-based gates

implements the single-QV gate

〈m|Ēar|ψ0〉
‖〈m|Ēar|ψ0〉‖

= ṽR (−2mπϑ/da)w =: µ(m), (7.35)

for measurement outcome m ∈ Sda , where ṽ = vR(πϑ (ϑ− %da) /da). The derivation

is simple, but is included in Appendix J for completeness. This gate method may

be summarised by the circuit diagram

|ψ〉 µ(m)|ψ〉

|ψ0〉 x̂ m

The gate implemented here, µ(m), is essential the same as that implemented in

the global unitary model (see Equation 7.12) - and by a simple mapping in the

interaction gate parameters they are identical - but with the crucial difference that

now the gate that is implemented is random as it is controlled by the measurement

outcome, rather than being deterministically fixed by the state the ancilla is prepared

in. As the local gate sets are essentially the same, the universality discussions of

Sections 7.3.2 and 7.3.3 also apply here and any set of parameters that provide

universality for the globally unitary model can be mapped onto a set of parameters

for which S′v,w,ϑ = {µ(m) | m ∈ Sda} is a universal single-QV gate set.

The gate methods given in this section, for suitable choices of the interaction

parameters, allow for an entangling gate to be deterministically implemented on

the register, up to measurement-outcome dependent local gates, and gates from a

universal single-QV set to be stochastically applied to the register. In other words,

when applying a local gate, which gate from the available set is actually implemented

is entirely random and fixed by the measurement outcome - which is known after the

measurement, but which cannot be predetermined. Hence, this scheme (assuming

a universal gate set) can then implement universal quantum computation stochasti-

cally, in the sense that each single-QV gate in a gate sequence can be implemented

to a given desired accuracy with a stochastic sequence of gates of indeterminate

length and entangling gates can be deterministically applied. This is a form of what

is called repeat-until-success (RUS) gate implementation [Bocharov et al. (2015);

Halil-Shah and Oi (2013, 2014); Lim et al. (2005); Paetznick and Svore (2014)] but

unlike in certain scenarios (i.e., see Bocharov et al. (2015); Paetznick and Svore

(2014) where RUS techniques are used to achieve low-gate counts), in this case, the

probabilistic nature of the gate implementation clearly creates a potentially massive

gate-count (and depth) overhead, which is highly undesirable. This overhead has

been considered elsewhere for a similar model with qubits, proposed by Halil-Shah
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and Oi (2013, 2014)11, and is discussed no further here beyond noting that even

for qubits it appears that the gate-count to achieve a target unitary via a random

walk can be massive [Halil-Shah and Oi (2013)]. Hence, although this measurement-

based model is interesting as it provides a conceptual link between the ADQC model

of Chapter 6 and the globally unitary ‘minimal control’ model of Section 7.3, and

also because it highlights the crucial role that variable-basis measurement play in

ADQC, it does not appear to be a sensible model to pursue in practice. As such, it

is investigated no further here.

7.5 The swap-gate minimal control model

In this section we return to the globally unitary setting of the constraints of ‘minimal

control’, as outlined in the introduction to this chapter, and an alternative model

that fits into this paradigm is presented which in many respects improves on that

introduced in Section 7.3. In particular, it will require only a single ancilla to

mediate an entangling gate on two register QVs, and that gate will require only

three applications of the fixed ancilla-register interaction gate - which is the minimal

possible with unitary dynamics [Lamata et al. (2008)]. The cost of the simplicity

of this model is that it requires the ancillary and register systems to have the same

dimension (denoted d), as will be assumed from now on in this section. This is

because it is based on the swap gate. It should be noted that the following model

can be understood as a simple extension of the globally unitary model presented

in Section 6.4.3, but that model required local controls (in particular, local unitary

gates) on the ancillas which will now no-longer be necessary.

Consider a fixed ancilla-register interaction of the form

Êar(u, φ) := ua · swap ·Dra(φ), (7.36)

with some u ∈ U(d) and some two-parameter function φ : S2
d → R, which for now

are left unspecified in the interests of flexibility. Note that the ordering of the r

and a labels on the D(φ) gate is relevant as it is not in general symmetric (this has

already been discussed in Section 6.4.3). To be clear, this notation is used to mean

that

|q〉r|q
′〉a

Dra(φ)−−−−→ eiφ(q,q′)|q〉r|q
′〉a, (7.37)

that is, the first (second) label denotes the first (second) variable of φ. Consider

now a quantum computer which only has access to:

11The qubit-qubit case of the model in this section has many features in common with that in
Halil-Shah and Oi (2014). There are also certain differences, but the essential concept of the models
is the same.
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1. The fixed interaction gate Êar(u, φ), which may be applied to any ancilla-

register pair, where u and φ are fixed, but yet to be specified.

2. Ancillas prepared in the computational basis, B.

It is straight-forward to confirm that the fixed interaction gate, when either the

ancilla or the register QV is in a computational basis state, implements the mappings

|ψ〉 ⊗ |q〉 Êar(u,φ)−−−−−→ |q〉 ⊗ uR(φ(·, q))|ψ〉, (7.38)

|q〉 ⊗ |ψ〉 Êar(u,φ))−−−−−−→ R(φ(q, ·))|ψ〉 ⊗ u|q〉, (7.39)

where φ(·, q) and φ(q, ·) are the one-parameter phase-functions obtained from φ with

the first and second variables fixed to q, respectively. Therefore, if either QV is in

a computational basis state then the gate acts as a swap along with local gates.

Hence, an entangling gate may be implemented on a register QV pair using only

three interactions and an ancilla prepared in any computational basis state. In

particular, it is simple to confirm that

|ψ〉rs ⊗ |0〉
ÊarÊasÊar−−−−−−−→Wrs(u, φ)|ψ〉rs ⊗ u|0〉, (7.40)

where Wrs(u, φ) is the (in general) entangling gate

Wrs(u, φ) = Rr(φ(0, ·)) · Êrs(u, φ) · urRr(φ(·, 0)). (7.41)

The Wrs(u, φ) gate is an entangling gate except for special choices of φ - it may be

easily confirmed that it is entangling if there is some q, q′ ∈ Sd such that

φ(q, q) + φ(q′, q′)− φ(q, q′)− φ(q′, q) mod 2π 6= 0, (7.42)

which is generically true. This entangling gate implementation method may be

summarised by the circuit diagram

W (u, φ)
=

|0〉 u|0〉 |0〉 u u|0〉

where, as in the previous sections of this chapter, two quantum wires connected via

a line and two ‘◦’ symbols are used to denote the fixed interaction gate, which is

now Êar(u, φ). Note that this is essentially the same as the two-QV entangling gate

method of Section 6.4.3, and in particular Figure 6.5.
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It is now shown how a set of local gates can be implemented in this model via

preparing ancillas in different states from the computational basis. In Section 7.2,

general forms for interactions that were potentially suitable for ‘minimal control’

ancilla-based quantum computation were given - and in particular, it was suggested

that some integer power of the interaction should be of the form la · Ca
r [ν] where

ν : Sda → U(d) (see Equation 7.8). Such interactions may then be used in an obvious

manner to implement local gates on the register: preparing the ancilla in |q〉 can be

used to implement ν(q), as summarised in Equation 7.9. Here, this interaction is

indeed of this form - it is easily confirmed that

Ê2
ar(u, φ) = ua ·Ca

r [su,φ], (7.43)

where su,φ : Sd → U(d) is given by

su,φ(q) = R(φ(q, ·))uR(φ(·, q)). (7.44)

Hence, two interactions of an ancilla prepared in the state |q〉 with a single register

QV may implement the gate s(q), as clearly

|ψ〉 ⊗ |q〉 ÊarÊar−−−−−→ s(q)|ψ〉 ⊗ u|q〉. (7.45)

This gate may be summarised in the circuit diagram

|ψ〉 s(q)|ψ〉

|q〉 u|q〉

(7.46)

Note that the price of using a swap-based interaction is that two gates are required

to implement the local unitaries - which is because the quantum information must

be swapped back into the register. This is contrast to the single application of the

(different) fixed interaction required in Section 7.3.

The two gate methods given in this section allow the deterministic implementa-

tion of the gate set

Ssc = {W (u, φ), su,φ(q) | q ∈ Sd}, (7.47)

on any register QVs. This gate set is sufficient for universal quantum computation

if the single-QV gates in the set are a universal set of single-QV gates, although

this is not required for universality. Clearly, it is important to investigate whether

there are choices of the interaction gate parameters, u and φ, that are sufficient for

universal quantum computation. Because the qubit-qubit model is the simplest case,

and because it is probably of most practical relevance, this special case is considered
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first in Section 7.5.1, before the more general QV case is covered in Section 7.5.2.

However, before turning to this, one final issue is considered - how the results of

the computation may be read-out from the register at the end of the computation if

measurements can only be performed on the ancillas. There is a very simple method

to achieve this: The computation is altered so that instead of the intended global

unitary, an additional R(−φ(·, q))u† gate is applied to each of the QVs which are to

be measured. A QV is then read-out by interacting it once with an ancilla which

is then measured. Clearly, as this swaps the QVs and applies a uR(φ(·, q)) gate,

the measurement of the ancilla is identical to a direct measurement of the register

QV without the unwanted additional R(−φ(·, q))u† gate, which is the intended final

state of this QV.

7.5.1 The qubit-qubit model

Consider the qubit sub-case of the model introduced in this section. Let φθ be the

two-parameter phase-function given by φθ(q, q
′) = qq′θ for some θ ∈ R. A simple

example of a specific form for the ancilla-register interaction, Êar(u, φ), such that

s(0) and s(1) form a universal set for single-qubit gates, is given by taking u = H,

and φ = φπ/4. The fixed interaction then takes the form

Êar
(
H,φπ/4

)
= Ha · swap ·CT, (7.48)

and hence s(0) = H and s(1) = THT (from Equation 7.44). A proof of the uni-

versality of the set {H,THT} for single-qubit gates is included as Appendix I. The

entangling gate induced on a pair of register qubits in this model will then have the

specific form

Wrs

(
H,φπ/4

)
= Hr · swap ·CT ·Hr, (7.49)

and this can easily simulate cnot with four applications of this gate as

Wrs

(
H,φπ/4

)4
= cnot. (7.50)

Moreover, with this particular interaction, any quantum computation can still be

implemented even if only ancillas prepared in the single state |0〉 are available. This

is because, with ancillas prepared in |0〉, the gates s(0) = H and Wrs

(
H,φπ/4

)
may

be implemented on the register, and

sr(0) ·Wrs

(
H,φπ/4

)2 · sr(0) = CP, (7.51)

as H2 = I and Wrs(H,φπ/4)2 = Hr · CP · Hr, which follows because P = T 2.

Therefore the gates H and CP can be implemented on any register qubit using only
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ancillas prepared in |0〉, and this pair of gates has been shown to be sufficient for

universal quantum computation by Kitaev (1997).12

Beyond this specific T -based gate, other suitable interactions to achieve univer-

sality in this model include Êar(H,φθ) for generic values of θ, which follows because

the set {H,R(θ)HR(θ)} is a universal single-qubit set for such θ - as is discussed

briefly in Appendix I. Furthermore, with more general interactions of this sort, simu-

lating cnot is still straight-forward and requires a low gate-count overhead: suitable

gate sequences for obtaining cnot gates from any two-qubit entangling gate can be

found using the method of Bremner et al. (2002).

7.5.2 Universality beyond the qubit-qubit model

It has now been confirmed that the swap-based ‘minimal control’ model proposed

in this section can implement any quantum computation on the register in the

qubit sub-case, and hence the case of d-dimensional qudits for arbitrary d is now

considered. It seems highly likely that generic choices for the parameters u and φ

will be sufficient for universality for all dimensions of qudit, and again it may be

possible to confirm this using the work of Lloyd (1995). However, in the interests

of completeness and to confirm that this model can implement universal quantum

computation regardless of whether this conjecture is correct, a more specific choice

for the interaction parameters is now given which it can be explicitly shown are

sufficient for universal quantum computation.

Let u = F and consider the case when φ is any two-parameter phase function such

that φ(q, q′) = 0 for all q, q′ ∈ Z(d) except when q′ = d−1, in which case φ(q, d−1) =

θq with θq randomly (and independently) sampled from R for all non-zero q ∈ Z(d)

and θ0 = 0. Because the local gate that is implemented by initialising the ancilla to

|q〉, and applying the procedure of Equation 7.46, is su,φ(q) = R(φ(q, ·))uR(φ(·, q)),
it follows that by preparing an ancilla in the state |0〉 then s(0) = F can be applied to

the register. It is therefore also possible to implement the gates s(q)s(0)3 = R(φ(q, ·))
for 0 < q < d−1. Because φ(q, q′) = θq for q′ = d−1, and φ(q, q′) = 0 otherwise, then

this gives a method for implementing a gate which applies no phase to all the basis

states except the |d− 1〉 basis state, for which it applies a ‘generic’ phase (which

is different for each q). Because these phases are generic, it is therefore possible to

approximate any gate which applies only a phase to this last basis state to arbitrary

accuracy. Now, s(d− 1) = R(φ(d− 1, ·))FR(φ(·, d− 1)), and R(φ(d− 1, ·)) is a gate

which applies only a phase to the last basis state. Because with s(q) gates with

q = 0, . . . , d− 2, the gate R(−φ(d− 1, ·)) can be implemented to arbitrary accuracy

and s(0)3 = F †, it is possible to obtain the gate s′(d − 1) = R(φ(·, d − 1)) from

12The exact sense in which this set is universal is stated clearly by Aharonov (2003).
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the available set. Now, φ(·, d − 1) is a generic phase function13, as implied by the

conditions on φ given above, and as a rotation gate with a generic phase function

in combination with the F gate (obtained as s(0)) is a universal set of single-qudit

gates, as shown in Appendix G, this confirms the universality of the available gate

set with an interaction gate of this form.

The construction given above may seem rather contrived, however it represents a

physically sensible gate - a Dra(φ) gate with φ as described above is a gate which im-

plements phases on the register qudit only if the ancilla qudit is in the state |d− 1〉.
However, if the model proposed in this section were to be of further interest outside

the qubit-based setting, it would be important to undertake a more thorough inves-

tigation of which parameter choices in the interaction are sufficient for universality.

Finally, note that universality in the QCV model has not been investigated as it

does not seem likely that this model will be of practical interest in this case. One

reason for this is that Gaussian (i.e., Clifford) operations are generally much simpler

to implement than non-Gaussian operations in the most promising QCV setting of

optics (e.g., a Gaussian entangling gate can be achieved via a beam-splitter). Hence,

in this setting it makes more sense to consider a Gaussian computer aided by some

non-Gaussian operator used as sparingly as possible and this does not fit into the

paradigm considered here, whereby a quantum computer is based entirely on a single

gate which must be non-Gaussian to achieve universality.

7.6 Physical implementation

The models proposed in this chapter are physically motived, and hence it is useful

to briefly consider candidate physical systems in which they may be of interest, and

Hamiltonians with which appropriate interaction gates may be generated. Consider

first the model of Section 7.3, which is based on interactions that were formed from

‘generalised control gates’. In particular, the interaction was a simple extension

of a controlled Pauli Z(q) gate, and in the most physically relevant case of qubits

it reduced to an interaction that is locally equivalent to cz (see Section 7.3.2).

Generating controlled Pauli operators has been considered in detail in Section 5.5,

in the context of the geometric phase gates, and these discussions largely carry over

to this model. For this reason, and because the swap-based model of Section 7.5

has significant advantages, physical implementation of the ‘minimal control’ model

of Section 7.3 is considered no further here.

The swap-based model of Section 7.5 is now considered, with the focus on the

case of qubits, as this is likely to be of most practical relevance. The two-qubit

13Note that, although here the φ(0, d− 1) = 0, i.e., only the other d− 1 values of φ(·, d− 1) are
‘generic’, this is irrelevant as this may be considered to be fixing the global phase of the rotation
gate.
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Hamiltonian

ĤXY Z (θ) = π(X ⊗X + Y ⊗ Y ) + (π − θ)Z ⊗ Z, (7.52)

naturally arises in spin systems [Doherty and Wardrop (2013)], and certain spin

systems are potentially relevant to ancilla-based gate methods. For example, nuclear

spins in diamond exhibit particularly long coherence times [Neumann et al. (2010,

2008)] as they are well isolated, and they may be interfaced via ancillary electronic

spins in nitrogen-vacancy (NV) defects [Robledo et al. (2011); Taminiau et al. (2014);

Waldherr et al. (2014)]. Denoting U(Ĥ, t) = exp(−iĤt), a direct Eigen-system

calculation may be used to confirm that

U(ĤXY Z (θ), 1/4) = R(−θ/2)⊗R(−θ/2) · swap ·CR(θ). (7.53)

The unitary U(Hcs(θ), 1/4) followed by the fixed local gate u′ = R(θ/2)uR(θ/2) on

the ancilla is an appropriate interaction for the qubit case of the swap-based model

of Section 7.5 (with certain values of the parameters u and θ). In particular, it is

straightforward to show that, with this interaction gate, the single-qubit gate set

which can then be implemented on the register by ancilla preparation consists of

s(0) = u and s(1) = R(θ)uR(θ), which is universal for a range of u and θ (see

the discussions of Section 7.5.1 and 7.5.2), e.g., u = H and generic θ, or θ = π/4.

Note that although this interaction is not simply generated by evolving the ancilla

and register qubit via ĤXY Z (θ), as it also requires the implementation of a local

unitary on the ancilla, this is a fixed gate on the ancilla after every ancilla-register

interaction via ĤXY Z (θ), and hence this can be a fixed element in an experimental

setup or incorporated into the free evolution of the ancilla between interactions. For

example, if the ancillary qubit is photonic the local operation can potentially be

performed by fixed linear optics after each ancilla-register interaction. Given that

ancillary photons have been used to mediate gates in many experimental setups,

for example with atomic [Reiserer et al. (2014); Tiecke et al. (2014)] or spin [Carter

et al. (2013); Luxmoore et al. (2013)] qubits, this setting is highly relevant to models

of this sort.

Although in some physical settings, such as the photonic case discussed above,

the fixed local operation on the ancillary qubits after each interaction via ĤXY Z (θ)

may be convenient or natural, in other cases it may be problematic or it may negate

the benefits of the ‘minimal control’ models introduced in this chapter. However,

it is also obviously possible to find Hamiltonians that directly implement suitable

interactions for either of the models proposed in this chapter (including in the qu-

dit case), and this can be achieved via a direct brute-force diagonalisation of any

given suitable interaction unitary. Alternatively, an evolution via the Hamiltonian
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ĤXY Z (θ), for θ 6= 0 modulo 2π, generates unitaries that are directly suitable for

implementing the globally-unitary swap-based model of Section 6.4.3, which relied

on the application of local unitary gates on the ancillas to achieve universality. Fi-

nally, it is noted that ĤXY Z (π), which is known as the two-qubit XY exchange

Hamiltonian, generates the maximally entangling unitary

U(ĤXY Z (π), 1/4) = P † ⊗ P † · swap · cz. (7.54)

This gate can still be used for the fixed interaction in the globally unitary model of

Section 6.4.3, but it is also locally equivalent to the swap-based interaction suitable

for implementing ancilla-driven quantum computation (see Section 6.4.2), with this

model relevant in settings where variable-basis measurements of the ancillas are

available (e.g., this is potentially possible in optics).

7.7 Conclusions

In this chapter ancilla-based models of computation have been proposed in which

universal quantum computation on a register is implemented using only a single fixed

ancilla-register interaction and ancillas prepared in the computational basis. These

models may be naturally termed minimal control ancilla-based quantum computers

as they require both a minimal level of access to the computational register, which

can hence be optimised for long coherence times, and highly limited control over

the ancillas, which may be optimised for a single high-quality interaction with the

register systems.

In the first part of this chapter, a minimal control model has been presented

which employs an interaction based on a ‘generalised control gate’. Interestingly,

the gate methods in this model are closely related to both the geometric phase gates

of Chapter 5 and those of the measurement-based ancilla-driven quantum computer,

as investigated in Chapter 6. Although this model has the advantages of ‘minimal

control’, as outlined above, it has the serious disadvantage that it requires many

ancillas and many applications of the ancilla-register interaction gate to implement

a single entangling gate on a pair of register QVs. This is a particularly unde-

sirable complication from a physical perspective. One method for removing the

necessity for these additional ancillas, whilst still considering quantum computation

with highly limited controls, is to adapt the model to allow measurements on the

ancillas of a fixed operator whilst also constraining the preparation of ancillas to a

singe state. However, quantum computation in this fashion results in a model that

is unavoidably stochastic in nature, in the sense that gates from the universal set

can only be implemented randomly, with the exact gate implemented dependent on
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each measurement outcome. To implement a given quantum computation requires

gate sequences of an indeterminate length. A model of this sort has been proposed

elsewhere (for qubits) by Halil-Shah and Oi (2014) and the stochastic nature of the

computation results in a gate-count overhead [Halil-Shah and Oi (2013)], which is

in my opinion highly unappealing from a practical perspective.

Hence, in the latter part of this chapter a second ‘minimal control’ model was

developed which uses a swap-based fixed interaction (and is globally unitary). This

model requires only a single ancilla, and three applications of the fixed interaction

gate, to implement an entangling gate on any pair of register qubits, which is a

minimal use of resources in any ancilla-based and globally unitary scheme [Lamata

et al. (2008)]. Furthermore, in the qubit sub-case it was shown that, for certain

fixed interaction gates, any quantum computation can be implemented on the reg-

ister even if the ancillas can only be prepared in a single fixed state, which it can

be argued is a completely minimal scheme for universal ancilla-based computation.

Hence, this swap-based model is highly appealing from both a physical and the-

oretical perspective. In the penultimate section of this chapter, the prospects for

physically implementing the models proposed in this chapter were considered. The

general setting in which these minimal control models have the potential to be of

particular relevance is when limited controls are available over both the register and

ancillary systems, for example, the low-control setting of either qubit or qudit scat-

ting interactions [Ciccarello et al. (2008)]. A more detailed study of physical systems

which might be particularly well suited to the models proposed in this chapter would

be an interesting topic for future work.

The models proposed in this chapter provide a method for realising quantum

computation on a well-isolated register with a practical and simple scheme. In

particular, they allow the optimisation of the physical systems entirely for coherence

times and the high fidelity implementation of a single gate. Finally, these models

shed a fresh light on the minimal controls that are required for a universal quantum

computer and they show that such a device need only have access to a single fixed

ancilla-register gate, with the computation to be implemented controlled by choosing

the initial states of the ancillas.
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Chapter 8

Conclusions

Quantum computers hold the potential to solve problems that are believed to be

classically intractable [Aaronson and Arkhipov (2011); Shor (1994, 1997)] and there

are a range of important tasks that are expected to be amenable to a quantum-

enhanced speed-up, from integer-factoring [Shor (1994, 1997)] and related tasks, to

machine-learning [Schuld et al. (2015)], database searching [Grover (1996)] and sim-

ulation of quantum systems [Brown et al. (2010)]. The simplest basic element that a

quantum computer may be constructed from is the 2-level qubit. However, there is

no a priori reason that quantum computation should be formulated with two-level

quantum systems, and they may instead employ d-level qudits or quantum continu-

ous variables (QCVs). Indeed, as has been covered in detail in Chapter 1, there are

good reasons for considering these more general quantum variables (QVs), ranging

from the physical availability of non-binary qudits and QCVs, and the experimental

progress made in manipulating them, e.g., see Anderson et al. (2015); Chen et al.

(2014); Smith et al. (2013); Ukai et al. (2011); Yokoyama et al. (2013), to more

abstract advantages, such as improved error-correction techniques for non-binary

qudits [Andrist et al. (2015); Anwar et al. (2014); Campbell (2014); Watson et al.

(2015)].

Quantum computation with qubits is the simplest case in theory, and in many

respects it is the most advanced experimentally (e.g., see Barends et al. (2014)).

However, given that no one has yet built a useful quantum computer and that there

are certain known advantages in going beyond the qubit paradigm, it seems prudent

to keep open the option of basing such a device on something other than qubits.

With this in mind, one contribution of this thesis has been to introduce a formula-

tion of quantum computation that encompasses all types of quantum variables - i.e.,

it applies to qubits, non-binary qudits and QCVs simultaneously. This formalism,

introduced in Chapter 2 and developed throughout, may be used to succinctly derive

results that are applicable in all three settings which have largely been considered
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separately in the literature, and furthermore it may also be used to easily highlight

any differences between quantum computation with the different types of QVs. In-

deed, the utility of this dimension-independent formulation of quantum computation

has been demonstrated by Chapters 3 to 7 of this thesis, which present results that

largely apply to all types of quantum variables.

Quantum circuits and the one-way quantum computer

The quantum circuit model, in which elementary gates are directly applied to

physical QVs via Schrödinger-equation derived unitary evolution, is the most well-

known and simple model for a quantum computer. However, this requires the precise

application of one and two-body Hamiltonians on-demand to a register of QVs, each

of which must also be isolated to minimise environment-induced decoherence as much

as is necessary. These technical challenges motivate the exploration of alternative

paradigms for quantum computation. One such alternative that has been studied in

this thesis is the one-way quantum computer (1WQC), introduced by Raussendorf

and Briegel (2001) in the case of qubits, and extended to qudits and QCVs by Zhou

et al. (2003) and Menicucci et al. (2006) respectively. In the 1WQC, the unitary

gates of a computation are carried out on a logical level using local (i.e., single-QV)

measurements on a prepared entangled state. As such, this model is very promising

from a physical perspective, as creating large entangled states is potentially much

easier than applying entangling gates on-demand, with this point of view backed-up

by impressive experimental progress in implementing this model [Bell et al. (2014);

Chen et al. (2007, 2014); Lanyon et al. (2013); Su et al. (2013); Tame et al. (2014);

Ukai et al. (2011); Yokoyama et al. (2013)].

The properties of qubit-based 1WQC have been extensively investigated, for ex-

ample, see Anders and Browne (2009); Broadbent and Kashefi (2009); Browne et al.

(2007, 2011); Danos et al. (2007, 2009); Duncan and Perdrix (2010); Raussendorf

et al. (2003). However, there is much less known about this model in the more

general case of qudits or QCVs, and this has been addressed in Chapter 4 of this

thesis, using the setting of general QVs. In order to study the properties of the

1WQC with general QVs, and in particular to compare it to quantum circuits, it is

clear that an understanding of qudit and QCV quantum circuits is required. To my

knowledge, the relevant circuits have not been studied in the literature, and hence,

the necessary general QV quantum circuits were first investigated in Chapter 3.

In Chapter 3, two classes of the quantum circuit model were defined and in-

vestigated: standard quantum circuits and unbounded fan-out circuits. ‘Standard

quantum circuits’ are those in which only bounded-input-size gates may be applied

in a unit of depth (a proxy for time), which is in contrast to ‘unbounded fan-out cir-

cuits’, which allow QVs to be ‘quantum-copied’ into any number of auxiliary QVs in
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a unit of depth. More precisely, ‘unbounded fan-out circuits’ have access to fanout

gates for unbounded input size, where this gate maps computational basis states as

|q〉 ⊗ |q1〉|q2〉 . . . |qn〉
fanout−−−−→ |q〉 ⊗ |q1 + q〉|q2 + q〉, . . . |qn + q〉, (8.1)

and by ‘unbounded input size’ it is meant that the number of input QVs to the gate,

n + 1, may be as large as the number of QVs in the quantum circuit. This gate

facilitates ‘quantum copying’ of a logical QV into any number of auxiliary QVs, as

the above relation implies that∑
q

αq|q〉 ⊗ |0〉|0〉 . . . |0〉
fanout−−−−→

∑
q

αq|q〉 ⊗ |q〉|q〉 . . . |q〉. (8.2)

Given that this delocalises the quantum information in one QV over many QVs, it

should perhaps not be surprising that ‘unbounded fan-out circuits’ are fundamentally

more powerful for constant depth parallel computations than the more physically

well-motivated ‘standard quantum circuits’.

To be more specific, I have shown that unbounded fan-out gates can be used

for constant depth implementations of certain commuting circuits and any n-QV

Clifford gate.1 Furthermore, this is a fundamental improvement on what can be

achieved with ‘standard quantum circuits’, as it was shown that simulating the

unbounded fan-out gate with bounded input-size gates requires logarithmic depth.

For the qubit sub-case, logarithmic and constant depth unbounded fan-out circuits

have been previously investigated in detail by Høyer and Špalek (2003, 2005) and

others, see e.g., Moore and Nilsson (2001); Takahashi and Tani (2013); Takahashi

et al. (2010). Interestingly, there are a range of logarithmic and constant depth qubit

unbounded fan-out circuits that are not included as a sub-case of any of the general

QV results I have presented herein. For example, for qubits, there is a constant depth

unbounded fan-out circuit that can approximate the quantum Fourier transform

(QFT) [Høyer and Špalek (2005)]. Because the QFT is an important component

in many quantum algorithms, in future work it would be interesting to consider

whether this result can be extended to the QFT on a qudit register, particularly as

Parasa and Perkowski (2011, 2012) have shown that the qudit QFT circuit has a

range of advantages over the binary version.

The investigations into the properties of quantum circuits with general QVs,

presented in Chapter 3, laid the necessary foundations for a full comparison of

the computational depth properties of the quantum circuit model and the general

QV 1WQC, which was then undertaken in Chapter 4. In the first parts of this

chapter a measurement pattern formulation of the 1WQC was given which includes

1Modulo certain complications in the QCV case.
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and goes beyond the ‘cluster state’ paradigm [Menicucci et al. (2006); Zhou et al.

(2003)], in which computations are implemented via measurements on a pre-prepared

entangled state. These highly flexible ‘measurement patterns’ are well-suited to

a comparison with the gate model, and using this construction a computational

depth reduction protocol was then developed, extending the qubit-based work of

Danos et al. (2007). A simple procedure for mapping between quantum circuits and

measurement patterns was then proposed, and the implication of these mappings is

that the depth complexity of the 1WQC is exactly equivalent to that of unbounded

fan-out circuits. This confirms and makes precise the parallelism inherent in 1WQC

and extends a qubit-based result of Browne et al. (2011) to the setting of more

general QVs.

One interesting consequence of these results is that it shows that the parallel

power of unbounded fan-out circuits - a model of quantum computation that is hard

to justify on physical grounds - is inherently available to the physically promising

1WQC model. The root of these computational advantages associated with 1WQC

is that the measurements in the computation allow parts of the computation to be

moved from quantum into classical processing, which in the analysis given here has

been assumed to be free. This classical side-processing of measurement outcomes

is a crucial part of the computational model. The final contribution of Chapter 4

was to briefly comment upon the role of quantum resource states in enhancing

classical processing. In particular, an extension to qudits was given of the three-

qubit GHZ state protocol for elevating a ‘parity’ computer to universal classical

processing proposed by Anders and Browne (2009). An interesting avenue for future

research would be to extend these investigations into the interplay between classical

and quantum resources in non-binary qudit 1WQC.

Ancilla-based quantum computation

Instead of departing entirely from the quantum circuit model paradigm, alter-

native gate techniques can be layered on top of an underlying quantum circuit.

Minimising environment-induced decoherence of computational QVs is achieved by

choosing naturally well-isolated quantum systems (e.g., nuclear spins [Zhong et al.

(2015)]) to encode these QVs into, but the very nature of well-isolated systems is

that they are generically difficult to manipulate and it is particularly challenging to

make these systems controllable interact with one another. One practical method for

engineering interactions between well-isolated QVs is by using an ‘ancillary’ quan-

tum system to mediate the interaction, which can be chosen with optimisation of

these interactions in mind. In Chapters 5, 6 and 7 of this thesis ancilla-based gate

techniques have been developed with the formulations again designed to apply to

quantum variables of different types and, wherever possible, to include the case of
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hybrid quantum variables, whereby the dimensions of the computational and ancil-

lary systems need not match.

Although the different models and gates proposed in this thesis differ in a range

of ways, they all use essentially one of two basic techniques. The first of these is

delocalising the quantum information in a register system across that system and an

ancilla. Although it appears in various guises herein, this essentially involves entan-

gling a register QV in some arbitrary state,
∑

q∈Sd cq|q〉, and an ancilla, initialised

to say |0〉, via the mapping ∑
q∈Sd

cq|q〉|0〉 →
∑
q∈Sd

cq|q〉|q〉, (8.3)

which may be achieved with a (possibly hybrid) sum gate. The logical QV now

resides non-locally in both QVs and so manipulations of the ancilla will affect the

state of the logical QV and may therefore be used to entangle it with further register

QVs and perform other logical operations on it. To complete a gate of this type the

logical QV must be relocalised into the register, which could be achieved either with

unitary dynamics (e.g., here an inverse sum gate is the appropriate gate) or with

a measurement of the ancilla in any basis which reveals no information about the

logical QV (e.g., here a conjugate basis measurement would suffice).

Instead of delocalising the quantum information stored in a register system, the

logical state of that register system, |ψ〉, can be completely swapped into the ancillary

system. More specifically, for an ancilla in some input state |ψ0〉, this is the mapping

|ψ〉|ψ0〉 → |ψ0〉|ψ〉, (8.4)

which can be achieved via a swap gate, but also by other gates which (unlike swap)

can be entangling and only act identically to swap on the input of the fixed state

|ψ0〉. Obviously, manipulations of the ancilla will then transform the logical |ψ〉
state, which must then be swapped back into the register to complete the gate, via

a second swap or swap-like gate.

The first ancilla-based gate methods proposed in this thesis were the geometric

phase gates, as introduced and investigated in Chapter 5. These gates employ an

ancilla to entangle QVs in a computational register via a sequence of register-QV

controlled Pauli operators on the ancilla. Interestingly, this gate functions inde-

pendently of the input state of the ancilla, and is an adaption of the delocalisation

technique described above so as to be applicable when the ancilla is in an unknown

state - as such, the gate requires four ancilla-register interactions, which is one more

than is necessary if the ancilla can be prepared in a suitable state. The geometric

phase gate construction given herein is applicable both when the computational el-
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ements and ancillas are QVs of the same and of different types, and it should be

noted that in the particular case of computational qubits and QCV ancillas this

gate has been previously proposed by Milburn (1999); Spiller et al. (2006); Wang

and Zanardi (2002). By adapting these geometric phase gates to keep some register

systems entangled with an ancilla for extended periods of the computation, I have

shown that, when using a qudit ancilla, a range of modulo-arithmetic based gates

can be implemented on the register in a highly efficient manner in terms of gate-

count (i.e., circuit size). In particular, for the case when the computational systems

are qubits, this includes a proposal for a highly efficient and practical method for

implementing generalised Toffoli gates.

The geometric phase gates of Chapter 5 are sufficient to implement any quan-

tum computation on a register consisting of any quantum variable type when local

unitary gates on the individual ancillas and the computational QVs are available.

However, in some settings, such local gates may not be easily available and a fur-

ther disadvantage of the geometric phase gate is that it requires each computational

QV involved in a gate to interact with the ancilla more than once. This latter con-

straint may be particularly problematic in some circumstances, such as with ancillas

coupling distant QVs, e.g., photons coupling atoms in separate cavities. Hence, in

Chapter 6, a method for implementing universal quantum computation on a register

was presented which uses only a single fixed ancilla-register interaction gate along-

side variable-basis measurements of the ancillas and, furthermore, requires an ancilla

to interact only once with each QV from a pair of register QVs in order to induce

an entangling gate on them. This extends the qubit-based ancilla-driven quantum

computer (ADQC) of Anders et al. (2010) to the setting of quantum variables of

any type. This model is measurement-based, and hence clearly has many features

in common with the 1WQC. The precise relationship was given in terms of a sim-

ple method for simulating a 1WQC in ADQC with no increase in computational

depth, which guarantees that ADQC may exploit the same computational advan-

tages as 1WQC, and hence the ADQC model is in some sense a hybrid between a

quantum-circuit-model computer and a 1WQC.

The ADQC model of Chapter 6 relies on measurements of a range of local op-

erators on the ancillas and this may be highly challenging in some circumstances.

Hence, in Chapter 7, models of quantum computation were proposed which may im-

plement universal quantum computation on a well-isolated register via interactions

with ancillas prepared in the computational basis and in which the only opera-

tion used is a single fixed ancilla-register interaction gate. These may be naturally

termed minimal control ancilla-based quantum computers as they need only a min-

imal level of access to the computational register, which can hence be optimised

for long coherence times, and only highly limited controls over the ancillas, which
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may be optimised for a single high-quality interaction with the register systems.

These models are applicable to the setting of both qubits and qudits of more gen-

eral dimensions. Moreover, in the particular case of a qubit-based computer and a

swap-like fixed interaction gate, it was shown that any quantum computation can

be implemented on the register even if the ancillas can only be prepared in a single

fixed state, which it can be argued is a completely minimal scheme for universal

ancilla-based quantum computation.

The analysis of the ancilla-based models proposed herein has almost exclusively

considered only the ideal case of perfect initial states, unitary controls and mea-

surements. This leaves open the important question of what effect incorporating

realistic imperfections has on the viability of each of the models. In the case of

geometric phase gates with QCV ancillas and a register of qubits, it is known that,

with an optical realisation of the ancillas, high fidelity computations can in-principle

still be achieved in the presence of moderate dissipation on the ancillas in the form

of photon losses [Louis et al. (2008)]. It seems likely that similar conclusions will

hold more generally, although the dominant decoherence mechanisms will be depend

on physical systems in question. Furthermore, such losses will have effects on the

gate-count reduction methods discussed in Chapter 5, as if multiple register QVs are

entangled with a dissipating ancilla this can induce correlated errors on the register,

which can be problematic for quantum error-correction [Terhal (2015)]. Hence, there

will be a trade-off between reducing gate counts and introducing these problematic

errors, and for the QCV-qubit ‘qubus’ case, this optimisation has been considered

by Horsman et al. (2011). Again, it seems likely these results will carry over to the

more general models herein, but this would need investigating if these gate-count

methods were to be considered further.

Going beyond considering only the effects of imperfections on individual gate

fidelities, it would be interesting to consider whether error-detection, correction and

fault-tolerance can be naturally in-built into any of the ancilla-based models pro-

posed and investigated herein. From one perspective they are a natural setting for

error-detection and correction, as they explicitly include the possibility for entan-

gling the register QVs with ancillas and performing measurements on these ancillas.

Finally, it is noted that future designs for a universal, scalable and fault-tolerant

quantum computer will likely be based around modular quantum processing units

(QPUs) of some fixed size with entangling gates between these QPUs implemented

via ‘flying’ ancillas [Hucul et al. (2015); Nickerson et al. (2014)]. Hence, the ancilla-

based gate techniques proposed herein may well be applicable to this higher-level

aspect of quantum computer design, which is likely to be crucial to the long-term

prospects of realising a useful quantum computer.
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Appendix A

The quantum harmonic

oscillator

A quantum harmonic oscillator (QHO) is a system governed by the Hamiltonian

Ĥqho =
1

2
(x̂2 + p̂2). (A.1)

The QHO Hamiltonian obtained directly from quantisation of a particular classical

harmonic oscillator will contain physical constants, such as mass or a spring constant,

and these have been been set to unity here (or absorbed into the operators via a

rescaling of position and momentum). The vacuum state - which by definition is

the lowest energy eigenstate of Ĥqho - is required sporadically in this thesis, and

hence a derivation of the spectrum of the QHO Hamiltonian is included here for

completeness. This is covered in many text-books, e.g., see the elegant derivation of

Lawrie (2012), which is similar to that given here and on which this is based.

It is useful (and conventional) to express the QHO Hamiltonian using the ‘ladder’

creation and annihilation operators defined respectively by

â† :=
1√
2

(x̂− ip̂), â :=
1√
2

(x̂+ ip̂). (A.2)

Via the canonical commutation relation [x̂, p̂] = i, it is easily confirmed that they

obey the commutation relation [â, â†] = 1. In terms of these operators, the QHO

Hamiltonian may be re-expressed as

Ĥqho = â†â+
1

2
. (A.3)

From [â, â†] = 1, it follows that

[Ĥqho, â] = −â, [Ĥqho, â
†] = â†. (A.4)
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A. The quantum harmonic oscillator

As Ĥqho is Hermitian all of its eigenvalues are real numbers and hence the set of

eigenvalues is some (not necessarily strict) subset of R. Let E denote an arbitrary

eigenvalue and |E〉 an associated normalised eigenvector, i.e.,

Ĥqho|E〉 = E|E〉. (A.5)

For convenience, the same notation is being used for these eigenvectors as is used

herein for the computational basis states but these are not computational basis

states. The question is ‘what values can E take?’. For any vector |v〉 then 〈v|v〉 ≥ 0,

as this is one of the defining properties of an inner product. Let |v〉 = â|E〉. Then

for any eigenvalue E,

E − 1/2 = 〈E|
(
Ĥqho − 1/2

)
|E〉 = 〈E|â†â|E〉 = 〈v|v〉 ≥ 0. (A.6)

This implies that all E ≥ 1/2, and hence the spectrum is bounded below by 1/2.

Now consider â†|E〉. Then, using Equation A.4, it follows that

Ĥqho

(
â†|E〉

)
= â†(Ĥqho + 1)|E〉 = (E + 1)

(
â†|E〉

)
. (A.7)

Similarly, using Equation A.4, it can also be shown that

Ĥqho (â|E〉) = (E − 1) (â|E〉) . (A.8)

Hence, the creation and annihilation operators have the action of raising and lower-

ing an energy eigenstate by a unit of energy, that is

â†|E〉 ∝ |E + 1〉 â|E〉 ∝ |E − 1〉. (A.9)

These relations are not equalities as they are not necessarily the normalised eigen-

states (they are not).

It is now shown that the lowest energy is 1/2. Denote the lowest energy (which

we have shown exists) by E0, then

Ĥqho (â|E0〉) = (E0 − 1) (â|E0〉) . (A.10)

There is no eigenvalue lower than E0, and hence this equation can only hold if

â|E0〉 = 0. It then follows that

E0 = 〈E0|Ĥqho|E0〉 = 〈E0|(â†â+ 1/2)|E0〉 = 1/2. (A.11)

Therefore, using E0 = 1/2 in combination with Equation A.7, we have shown that

any n+ 1/2, for n = 0, 1, 2, . . . , is an eigenvalue of the QHO Hamiltonian.
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It only remains to show that there are no other eigenvalues. Assume that E + λ

is an eigenvalue with E ∈ N and λ ∈ [0, 1), which covers all remaining possible

values. Then âE |E + λ〉 = |λ〉. But â|λ〉 = 0, as otherwise â|λ〉 would be an

eigenvector with a negative eigenvalue, and this condition implies that λ = 1/2

as already shown in Equation A.11. Hence, there are no further eigenvalues. The

lowest energy eigenstate of the QHO, |E0〉 = |1/2〉, is called the vacuum state and

elsewhere in this thesis it is denoted |vac〉 (rather than the conventional |0〉) to

clearly distinguish it from a computational basis state. Finally, it is explicitly noted

that we have seen that the vacuum state has the property

â|vac〉 =
1√
2

(x̂+ ip̂)|vac〉 = 0, (A.12)

as this equality is required in Appendix B.
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Appendix B

Squeezed states

In this appendix it is shown that the computational basis states of a QCV can be

approximated using squeezed vacuum states, with the correspondence exact in the

limit of infinite squeezing. Similar derivations can be found in a variety of sources,

for example, see Braunstein and van Loock (2005). The unitary squeezing operator

is defined here by1

S(z) := e−i ln(z)(x̂p̂+p̂x̂)/2, (B.1)

where z ∈ R≥0. This operator describes a variety of non-linear optical processes

[Radmore and Barnett (1997)]. Using the relation

eÂB̂e−Â = B̂ + [Â, B̂] +
1

2!
[Â, [Â, B̂]] + . . . , (B.2)

it may be shown that

S(z)†x̂S(z) = zx̂, S(z)†p̂S(z) =
1

z
p̂, (B.3)

and hence the squeezing operator stretches position and squeezes momentum if z >

1, and vice-versa for 0 < z < 1. The state of interest here is the squeezed vacuum

defined by

|z〉 := S(z)|vac〉, (B.4)

where |vac〉 is the grounded state of the QHO Hamiltonian Ĥqho = 1
2(x̂2 + p̂2), as

introduced in Appendix A. The above relations (along with S(z)S(z)† = I) may be

1It may also be defined to take a complex parameter, which is not needed here. Furthermore,
note that this is the same operator as the squeezing gate that is introduced in Section 2.4.4, where
here we are considering the particular case of QCVs and the operator has instead been written
in terms of its generating Hamiltonian, rather than simply defined in terms of its action on the
computational basis.
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B. Squeezed states

used to show that

(x̂/z + izp̂)S(z)|vac〉 = S(z)(x̂+ ip̂)|vac〉 = 0, (B.5)

where this last relation holds because (x̂ + ip̂)|vac〉 = 0, as seen in Equation A.12.

Therefore, it has been shown that

(x̂/z + izp̂)|z〉 = 0. (B.6)

For 0 < z � 1, then x̂/z + izp̂ ≈ x̂/z and hence |z〉 is approximately the eigenstate

of x̂ with eigenvalue zero, which is the zero computational basis state |0〉. The

correspondence is exact in the limit of z → 0, i.e.,

lim
z→0
|z〉 = |0〉. (B.7)

Other computational basis states can be obtained by applying the Pauli X(q) gate

(as defined in Equation 2.13) to these states, and the conjugate basis states (see

Equation 2.27), which are the eigenstates of p̂, can be obtained via the Fourier

gate. Alternatively, the eigenstate of p̂ with eigenvalue zero is obtained in the limit

z → ∞ of the state |z〉. Infinite squeezing (associated with z = 0 or z = ∞) is not

physical. However, when the squeezing is finite the states given here approximate

the eigenstates of x̂ and p̂.
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Appendix C

Displacement operators

In this appendix the relationship between Pauli operators, the C-number parame-

terised displacement operators and coherent states is given. Displacement operators

are ubiquitous in the theory of quantum optics [Gerry and Knight (2005); Radmore

and Barnett (1997)] (i.e., displacement operators for QCVs) and for discrete systems

these are less common but are used by a variety of authors, see e.g., the work of

Klimov et al. (2009); Marchiolli et al. (2007); Saraceno (1990).

The displacement operator, parameterised by two numbers q, q′ ∈ Sd, may be

defined in terms of the Pauli operators by1

D(q, q′) := ω−2−1qq′Z(q′)X(q). (C.1)

Obviously, this may alternatively be parameterised by a single complex number α

(with suitable restrictions on the values it may take in the discrete case). To obtain

the normal definition of the C-number parameterised displacement operator take

D(α) ≡ D
(√

2<(α),
√

2=(α)
)
. (C.2)

For a QCV (e.g., optics) it is conventional to express the displacement operator in

the ‘entangled’ form

D(q, q′) = exp(i(q′x̂− qp̂)), (C.3)

which may be derived from the relations Z(q) = exp(iqq̂) and X(q) = exp(−iqp̂)
along with the canonical commutation relation and the Weyl formula

eAeB = e
1
2

[A,B]eA+B, (C.4)

1In this definition, 2−1 is the multiplicative inverse of 2 in Sd. For QCVs this is obviously 1/2.
For odd dimension qudits this always exists (d and 2 are co-prime) and is (d + 1)/2. For even
dimensions this phase factor could be omitted, or 2−1 could be replaced with 1/2.
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C. Displacement operators

which holds when [A, [A,B]] = [B, [A,B]] = 0, and is a special case of the Baker-

Campbell-Hausdorff formula [Gazeau (2009)]. The other common form for the QCV

displacement operator is written in terms of the creation and annihilation operators

â† :=
1√
2

(x̂− ip̂), â :=
1√
2

(x̂+ ip̂), (C.5)

which obey the commutation relation [â, â†] = 1, and are also introduced in Ap-

pendix A in the context of the quantum harmonic oscillator. It is easily shown that

D(α) = exp(αa† − α∗a), (C.6)

with α ∈ C. This form is the most common in quantum optics. From this equation,

which is often used to define the displacement operator, it is certainly not obvious

(at least to me) that this operator is analogous to the qubit Pauli operators.

Displacement operators may be used to define the C-number parameterised co-

herent states by

|α〉 := D(α)|ψ0〉, (C.7)

where |ψ0〉 is some reference state. The well-known Glauber (or standard) coherent

states [Glauber (1963)] are obtained for a QCV with the reference state as the vac-

uum, |vac〉, which is the lowest energy eigenstate of the quantum Harmonic oscillator.

This state and the quantum harmonic oscillator are introduced in Appendix A. For

qudits, coherent states are less often considered but one choice of reference state to

define them is an eigenstate of the Fourier transform F [Klimov et al. (2009)2].

2This choice can be motivated by analogy to the QCV case - the eigenstates of the quantum
harmonic oscillator are eigenstates of the QCV Fourier transform. This follows from results in
Appendix D.
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Appendix D

The Fourier gate

This appendix provides derivations for the properties of the Fourier gate, F , that

are stated in Section 2.2.1 of the main text. For convenience, the definition of the

Fourier gate for a general QV is repeated here. It is defined by,

F |q〉 =
1√
d

∑
q′∈Sd

ωqq
′∣∣q′〉, (D.1)

with q ∈ Sd. The reader is referred back to the start of Section 2.2 for an explanation

of the QV-type independent notation used in this appendix. The following relation

will be useful:
1

d

∑
r∈Sd

ωr(q−q
′) = δ(q − q′), (D.2)

where q − q′ is taken modulo d for qudits. For qudits this is straightforward to

prove directly1, and for QCVs it holds because the Fourier transform of a complex

exponential function e−iq
′r is a delta function, with the exact relation given by

[Erdélyi (ed.)]
1√
2π

∫ ∞
−∞

dre−q
′re+iqr =

√
2πδ(q − q′). (D.3)

It is first confirmed that F is indeed a unitary operator. Using Equation D.2

1This can be shown using the formula for a geometric series, which is the relation that
∑d−1
r=0 a

r =
1−ad
1−a for any a ∈ C except a = 1. For q 6= q′ this gives 1

d

∑d−1
r=0 ω

(q−q′)r = 1
d

1−ωd(q−q′)

1−ωq−q′ = 1
d

1−1

1−ωq−q′ =

0. For q = q′ the sum is obviously equal to unity, giving the required result.
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D. The Fourier gate

and the orthogonality relation 〈q|q′〉 = δ(q − q′), it follows that

FF † =
1

d

∑
q,q′,r,r′∈Sd

ωqq
′−rr′ |q〉

〈
q′|r
〉 〈
r′
∣∣, (D.4)

=
1

d

∑
q,r,r′∈Sd

ωr(q−r
′)|q〉

〈
r′
∣∣, (D.5)

=
∑

q,r′∈Sd

δ(q − r′)|q〉
〈
r′
∣∣, (D.6)

=
∑
q∈Sd

|q〉〈q|, (D.7)

= I. (D.8)

The same derivation holds to show that F †F = I, confirming that F is unitary. A

simple adaption of this derivation shows that

F 2 =
∑
q∈Sd

|−q〉〈q|, (D.9)

which is a useful relation in itself and which implies that F 4 = I, as stated in the

main text.

In Equation 2.26 it was claimed that, under conjugation by F , the Pauli X(q)

and Z(q) gates are transformed via the cyclic relation

X(q) - Z(q)

Z(−q)

6

� X(−q)
?

(D.10)

Again using Equation D.2 and the orthogonality relation 〈q|q′〉 = δ(q−q′), it follows
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that

FZ(p)F † =
1

d

∑
p′,q,q′,r,r′∈Sd

ωpp
′+qq′−rr′ |q〉

〈
q′|p′

〉 〈
p′|r
〉 〈
r′
∣∣, (D.11)

=
1

d

∑
p′,q,q′,r,r′∈Sd

δ(q′ − p′)δ(p′ − r)ωpp′+qq′−rr′ |q〉
〈
r′
∣∣, (D.12)

=
1

d

∑
p′,q,r′∈Sd

ωp
′(p+q−r′)|q〉

〈
r′
∣∣, (D.13)

=
∑

q,r′∈Sd

δ(q − r′ + p)|q〉
〈
r′
∣∣, (D.14)

=
∑
r′∈Sd

∣∣r′ − p〉〈r′∣∣, (D.15)

= X(−p). (D.16)

Note that, as always, r′ − p is to be taken modulo d for a d-dimensional qudit. A

very similar derivation shows that FX(p)F † = Z(p). Specifically,

FX(p)F † =
1

d

∑
p′,q,q′,r,r′∈Sd

ωqq
′−rr′ |q〉

〈
q′|p′ + p

〉 〈
p′|r
〉 〈
r′
∣∣, (D.17)

=
1

d

∑
p′,q,q′,r,r′∈Sd

δ(q′ − p′ − p)δ(p′ − r)ωqq′−rr′ |q〉
〈
r′
∣∣, (D.18)

=
1

d

∑
p′,q,r′∈Sd

ωqp+p
′(q−r′)|q〉

〈
r′
∣∣, (D.19)

=
∑

q,r′∈Sd

δ(q − r′)ωqp|q〉
〈
r′
∣∣, (D.20)

=
∑
q∈Sd

ωqp|q〉〈q|, (D.21)

= Z(p). (D.22)

Together, these prove the required cyclic relation given in this appendix and in

Equation 2.26.

Finally, it is confirmed that applying the quantum harmonic oscillator Hamilto-

nian, Ĥqho = 1
2(x̂2 + p̂2), for a time t = 3π/2 generates the QCV Fourier gate, as

claimed in the main text. This means showing that, for a QCV

F = e−i
3π
4

(x̂2+p̂2). (D.23)

More generally, using the notation U(Ĥ, t) := e−itĤ , consider the operator

U(Ĥqho, t) = e−i
t
2

(x̂2+p̂2), (D.24)
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D. The Fourier gate

which is generated by the QHO Hamiltonian applied for a time t and may be termed

a phase-space rotation. Using the relation

eABe−A = B + [A,B] +
1

2!
[A, [A,B]] +

1

3!
[A, [A, [A,B]]] + . . . , (D.25)

it is simple to derive that the conjugation action of U(Ĥqho, t) on x̂ and p̂ is

x̂
U(Ĥqho,t)−−−−−−→ x̂ cos t− p̂ sin t, p̂

U(Ĥqho,t)−−−−−−→ p̂ cos t+ x̂ sin t. (D.26)

These equalities are the reason for the name given to this operator. It is clear that

for t = 3π/2 this has the action x̂→ p̂ and p̂→ −x̂. This action on the position and

momentum operators implies that this is the Fourier transform - as stated above

and in the main text. One way to see this is that the cyclic conjugation relation in

Equation D.10 may be derived by using these equalities, the relations X(q) = e−iqp̂

and Z(q) = eiqx̂ given in Equation 2.14, and the general equality that for any unitary

U then

UeÂU † = eUÂU
†
. (D.27)

The conjugation action of an operator on X(q) and Z(q) entirely defines an operator

(up to global phase) and hence U(Ĥqho, 3π/2) is the Fourier gate.
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Appendix E

Clifford conjugation relations

In this appendix the conjugation relations of the Fourier, phase and cz gates on

Pauli operators are derived. It will be shown that

pξ,q,q′
Z(p)−−−−−→ pξ+2pq,q,q′ , (E.1)

pξ,q,q′
F−−−−−→ pξ−2qq′,−q′,q, (E.2)

pξ,q,q′
P (p)−−−−−→ pξ+pq(q+%d),q,q′+pq, (E.3)

pξ,(q1,q2,q′1,q′2)
cz−−−−−→ pξ+2q1q2,(q1,q2,q′1+q2,q′2+q1). (E.4)

as was stated in Equation 2.51 to 2.53 of the main text. The first relation follows

directly from the Weyl commutation relation of Equation 2.44 and hence does not

require a derivation.

Consider the Fourier gate, F . The conjugation relations of this gate on X(q)

and Z(q) have already been derived in Appendix D and are

X(q)
F−→ Z(q), Z(q)

F−→ X(−q). (E.5)

Then, using the Weyl commutation relation, it follows that

pξ,q,q′
F−→ ωξ/2Z(q)X(−q′) = ωξ/2ω−qq

′
X(−q′)Z(q), (E.6)

= ω(ξ−2qq′)/2X(−q′)Z(q), (E.7)

= pξ−2qq′,−q′,q. (E.8)

This confirms the relation claimed in Equation E.2 of this appendix and in the main

text.

Consider now the phase gate, P (p). The conjugation action of the phase gate on
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X(q) is

P (p)X(q)P (p)† =
∑

r,s,r∈Sd

ω
p
2

(r(r+%d)−t(t+%d))|r〉〈r|s+ q〉〈s|t〉〈t〉, (E.9)

=
∑

r,s,t∈Sd

ω
p
2

(r(r+%d)−t(t+%d))δ(s+ q − r)δ(t− s)|r〉〈t|, (E.10)

=
∑
r,t∈Sd

ω
p
2

(r(r+%d)−t(t+%d))δ(t+ q − r)|r〉〈t|, (E.11)

=
∑
t∈Sd

ω
p
2

((t+q)(t+q+%d)−t(t+%d))|t+ q〉〈t|, (E.12)

= X(q)
∑
t∈Sd

ωpq(q+%d)/2ωptq|t〉〈t|, (E.13)

= ωpq(q+%d)/2X(q)Z(pq). (E.14)

To get from E.12 to E.13 the brackets have been expanded which for QCVs, and

when t + q < d for qudits, follows directly as there is no modulo arithmetic to

consider. For qudits, in the parts of the sum where t+ q ≥ d, then t+ q represents

t+q−d and such a replacement is in general necessary to obtain the correct answer.

However, in this case, the calculation with or without this replacement gives the

same result.1 The phase gate commutes with Z(q). Hence it follows that

pξ,q,q′
P (p)−−−→ ω(ξ+pq(q+%d))/2X(q)Z(pq + q′) = pξ+pq(q+%d),q,q′+pq, (E.15)

which is the result stated in Equation E.3 and in the main text.

Finally, consider the cz gate. From the Weyl commutation relation, the relation

that (I⊗ v†) ·Cu · (I⊗ v) = C(v†uv) and the equality C(ωqI) = Z(q)⊗ I, it may be

shown that

X(q1)⊗X(q2)
cz−→ ωq1q2X(q1)Z(q2)⊗X(q1)Z(q2). (E.16)

The cz commutes with Z(q) and hence this implies that

pξ,(q1,q2,q′1,q′2)
cz−→ pξ+2q1q2,(q1,q2,q′1+q2,q′2+q1), (E.17)

as stated in Equation E.4 and in the main text. This concludes the derivation of

the Clifford group generator conjugation relations.

1This is because ω is d periodic.
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Appendix F

The Solovay-Kitaev theorem

Let G denote any finite set of fixed gates containing gates that act on a constant

number of qudits which is approximately universal for computation over qudits such

that if g ∈ G then g† may be exactly generated by a finite sequence of gates from G.

Then the following, known as the Solovay-Kitaev theorem, holds:

Theorem F.1 (Kitaev (1997)). For any gate U ∈ U(dn) and for any ε > 0 there

exists a finite sequence of gates from G of length no more than exp(O(n))O(logc(1/ε))

that is an ε-approximation to U where c is some constant. Furthermore, this sequence

may be found by a classical algorithm with the same order runtime.

The value of c depends on the particular proof, for example an explicit efficient

algorithm with c = 3.97 is provided in the review paper of Dawson and Nielsen

(2006). However c cannot be less than 1, as proven by Harrow et al. (2002) who have

shown that in some circumstance the optimal value of 1 can be obtained but with no

constructive method for finding these gate sequences. One important consequence

of this theorem that is used herein is that one set of approximately universal single-

qudit gates is essentially as good as any other set of approximately universal single-

qudit gates, in the sense that they require a very small overhead to simulate one

another to high precision.
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Appendix G

Generic rotation gates

Consider the single-qudit gate set

Ggen = {R(ϕ), F}, (G.1)

where ϕ : Z(d) → R is a generic function, where the term ‘generic’ is used to

mean that ϑ(q) is randomly sampled from R for each q ∈ Z(d).1 By appealing

to a standard argument used by Lloyd (1995) and Deutsch et al. (1995), in this

appendix it is shown that this gate set can approximately generate any single-qudit

gate. Hence, along with any entangling gate, this gate provides an approximately

universal gate set for qudit-based quantum computation, via the results of Brylinski

and Brylinski (2002) (see Proposition 2.2).

Proof : If an R(ϑ) unitary for any ϑ : Z(d) → R may be approximated to

arbitrary accuracy using F and R(ϕ), then these two gates may approximate any

single-qudit gate. This is because Zhou et al. (2003) have shown that any single-

qudit can be decomposed into R(ϑ) and F gates. For a generic function ϕ : Z(d)→ R
it follows that ϕ(q) and ϕ(q′) will be irrational multiples of π and each other for

every q, q′ ∈ Z(d) with q 6= q′.2 For convenience, write these d different phase angles

as a vector ~φ = (ϕ(0), . . . , ϕ(d − 1)). Obviously, it is only necessary to be able to

generate a rotation gate with any vector of phase angles, ~θ, with the restriction to
~θ ∈ [0, 2π)d, as trivially ei(x+2π) = eix. For N ∈ N, consider

~φN ≡ N~φ mod 2π = (Nϕ(0), Nϕ(1), . . . , Nϕ(d− 1)) mod 2π. (G.2)

It is known that, for any vector ~φ with elements that are irrational multiples of π

and each other, the vectors ~φ1, ~φ2, ~φ3, . . . fill up the interval [0, 2π)d, or stated

1Equivalently, we could consider the gate R(ϕ) to be randomly selected from the set of all
rotation gates.

2The intuition behind this is that there are only countably many functions that are not of this
sort (the rational numbers are countable), but there are uncountably many functions ϑ : Z(d)→ R.
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another way, the set {~φN | N ∈ N} is a dense subset of [0, 2π)d. For example,

this argument or closely related arguments are made in Lloyd (1995), Deutsch et al.

(1995), and Childs et al. (2011). As such, for a R(ϑ) gate with any ϑ : Z(d)→ R and

given any ε > 0 there is some N(ε) ∈ N such that R(ϕ)N(ε) is an ε-approximation

to R(ϑ). A more rigorous proof than that given here could be obtained by adapting

the arguments of Childs et al. (2011), which are concerned with the universality of

two-qubit Hamiltonians and unitaries.
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Appendix H

The phase basis

In this appendix the action of the Pauli operators on the phase basis and the overlap

between the states in the computational, conjugate and phase bases is derived. This

will show that these bases are a set of three mutually unbiased bases for any type

of QV. The phase basis is defined to be

B× := {|×q〉 := PF |q〉 | q ∈ Sd}, (H.1)

where the reader is reminded that the phase gate P (the gate P (p) with p = 1) is

given by the action

P |q〉 = ωq(q+%d)/2|q〉, (H.2)

as first defined in Equation 2.49. Using the definition of the phase basis, the Pauli

conjugation relation for the phase gate given in Equation 2.52, and the action of the

Pauli operators on the conjugate basis given in Equation 2.29, it follows that

ωξ/2X(a)Z(b)|×q〉 = ωξ/2X(a)Z(b)P |+q〉, (H.3)

= Pω(ξ−a(a+%d))/2X(a)Z(b− a)|+q〉, (H.4)

= ω(ξ−a(a+%d))/2+a(a−b−q)|×q+b−a〉, (H.5)

= ω(ξ+a(a−%d))/2−a(b+q)|×q+b−a〉, (H.6)

as stated in Equation 7.28 of the main text.

Consider the overlap between arbitrary phase and computational basis states.

Using the action of the phase gate on the computational basis and the overlap〈
q|+q′

〉
= ωqq

′
/
√
d, it follows that for all q, q′ ∈ Sd then

〈
q|×q′

〉
= 〈q|P

∣∣+q′
〉
, (H.7)

= ω−q(q+%d)/2
〈
q|+q′

〉
, (H.8)

= ωq(q
′−(q+%d)/2)/

√
d, (H.9)
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as stated in Equation 7.30 of the main text. Now, consider the overlap of arbitrary

conjugate and phase basis states. Again, using the action of the phase gate on the

computational basis and the overlap of the conjugate and computational bases, it

follows that for all q, q′ ∈ Sd then

〈
+q|×q′

〉
= 〈+q|P

∣∣+q′
〉
, (H.10)

=
∑
k∈Sd

ω
k
2

(k+%d) 〈+q|k〉
〈
k|+q′

〉
, (H.11)

=
1

d

∑
k∈Sd

eiπ(k2+k(2(q′−q)+%d))/d. (H.12)

This is a generalised quadratic Gauss sum when the QV is a qudit, and a Gaussian

integral when the QV is a QCV. It can be evaluated using the following two results:

For any a, b ∈ N such that a > 0 and a+ b is even then [Berndt and Evans (1981)]

1

a

a−1∑
k=0

eiπ(k2+bk)/a = ei
π
4 e−iπ

b2

4a /
√
a. (H.13)

As d 6= 0 and d + 2(q − q′) + %d is even (%d = 0 and %d = 1 for even and odd d

respectively), this can be applied to Equation H.12 for the case of qudits. For QCVs,

the following integral relation can be used [Watson (1928); Weisstein (2004)]:

1

a

∫ ∞
−∞

dk eiπ(k2+bk)/a = ei
π
4 e−iπ

b2

4a /
√
a, (H.14)

which has an exactly equivalent form to the discrete case. Hence, using these two

relations it follows that in all cases

〈
+q|×q′

〉
= ei

π
4 e−iπ

(2(q′−q)+%d)2

4d /
√
d, (H.15)

= ωqq
′
ω−

q
2

(q−%d)ω−
q′
2

(q′+%d)ω
d−%d

8 /
√
d, (H.16)

as stated in Equation 7.31 of the main text. This concludes this appendix on the

phase basis.
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Appendix I

The Hadamard and π-by-8 gates

Here it is proven that v0 = H and v1 = THT form a universal set of single qubit

gates. This in turn provides a proof for the universality of the commonly used gate

set GHT = {H,T} due to Boykin et al. (2000). denote the nth roots of the X and Z

operators by X
1
n and Z

1
n . Any u ∈ SU(2) can be written as

u = exp (iϕn̂ · ~σ) , (I.1)

where ϕ ∈ R is some rotation angle and ~σ = (X,Y, Z) is the vector of Pauli operators,

n̂ = (nx, ny, nz) is some unit vector in R3. Hence, n̂ · ~σ = nxX + nyY + nzZ. Via a

direct expansion it is simple to show that

exp (iϕn̂ · ~σ) = cosϕI + i sinϕ(n̂ · ~σ). (I.2)

Hence it follows that Z = i exp
(
−iπ2Z

)
and X = i exp

(
−iπ2X

)
where the phase

factor i is need as the Pauli operators are not in SU(2). Therefore

Z
1
n ∼= exp

(
−i π

2n
Z
)
, X

1
n ∼= exp

(
−i π

2n
X
)
, (I.3)

where ‘∼=’ is used to denote equality up to a phase and X
1
n = HZ

1
nH as HZH = X.

It is straightforward to confirm that T ∼= Z
1
4 and so v+ := v0v1

∼= X
1
4Z

1
4 and

v− := v1v0
∼= Z

1
4X

1
4 . From a simple explicit calculation it can be shown that

v± ∼= cos2 π

8
− i sin2 π

8

(
cot

π

8
(Z +X)∓ Y

)
. (I.4)

If v+ or v− is written in the form of Equation I.2, this implies that cosϕ± = cos2 π
8

and hence ϕ is an irrational multiple of π [Boykin et al. (2000)]. Furthermore,
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I. The Hadamard and π-by-8 gates

n̂± = n±/‖n±‖ where n± = −(cot π8 ,∓1, cot π8 ). As ϕ is an irrational multiple of π

then it is possible to approximate to arbitrary accuracy any rotation around the n±

axis by m applications of v±, with m a finite integer. As these axes of rotation are

not parallel then any arbitrary rotation can be decomposed into rotations around

these axes [Nielsen and Chuang (2010)1]. This then proves that v+ and v− and

hence v0 and v1 are a universal set of single qubit gates. Essentially the same proof

can be used to show that the single-qubit gate set {H,R(θ)HR(θ)} for generic θ is

a universal set.

1See exercise 4.11.
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Appendix J

Stochastic gate implementation

This appendix includes derivations of equalities that were stated without proof in

Section 7.4, which is concerned with what might be termed a ‘stochastic minimal

control model’ of ancilla-based quantum computation. The gate which will be needed

in this appendix is

Ēar(v, w, ϑ) := F †a ·Ca
r [νv,w,ϑ], (J.1)

where ν : Sda → U(d) is the function defined by νv,w,ϑ(q) = vR(2πqϑ/da)w, for

some v, w ∈ U(d) and some phase-function ϑ with the restriction that ϑ : Sd → Sda .

Equation 7.18 will be useful in this appendix, which states that

Ēar(v, w, ϑ) = F †avr ·Cr
a[Z(ϑ)] · wr, (J.2)

which can be easily confirmed directly by considering the action of this operator on

computational basis states.

To begin, the relation stated in Equation 7.32 of the main text is derived. This

is equivalent to the statement that

〈m|ĒasĒar|ψ0〉
‖〈m|ĒasĒar|ψ0〉‖

= v′r(m)v′′s (m) · (vrvs ·D(φϑ) · wrws) , (J.3)

where |ψ0〉 = F |×0〉 with |×0〉 the zero phase-basis state, φϑ is the two-parameter

function given by φϑ(q, p) = 2πϑ(q)ϑ(p)/da, and the (m-dependent) local gates are

given by

v′(m) = vR(−2mπϑ/da)v
†, (J.4)

v′′(m) = vR(2mπϑ/da)R(−πϑ(ϑ+ %da)/da)v
†. (J.5)

It is easily confirmed that

〈m|ĒasĒar|ψ0〉 = vrvsÔ(m)wrws, (J.6)
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where Ô(m) is diagonal in the computational basis (as generalised control gates do

not change the computational basis states of the control QV) and is given by

Ô(m) =
∑
q,p∈Sd

Cm(q, p)|q〉〈q|r ⊗ |p〉〈p|s, (J.7)

with the coefficients found from the equality

Cm(q, p) = 〈m|F †Z(ϑ(p))F †Z(ϑ(q))F |×0〉. (J.8)

Using the action of the Pauli operators on the phase basis state given in Equa-

tion 7.28, then

Cm(q, p) = 〈m|F †Z(ϑ(p))F †Z(ϑ(q))F |×0〉, (J.9)

= 〈+m|Z(ϑ(p))X(ϑ(q))|×0〉, (J.10)

= 〈+m|ωϑ(q)(ϑ(q)−%d)/2
a

∣∣×ϑ(p)−ϑ(q)

〉
, (J.11)

= ω
ϑ(q)(ϑ(q)−%da )/2
a ωm(ϑ(p)−ϑ(q))

a ω
−(ϑ(p)−ϑ(q))(ϑ(p)−ϑ(q)+%da )/2
a /

√
da, (J.12)

where deriving this last equality has used Equation 7.31 and holds only up to a

(m-dependent) phase, which has been omitted for simplicity as it contributes only

a global phase to the operator. Expanding this into phases dependent on ϑ(q), ϑ(p)

and ϑ(q)ϑ(p) gives

Cm(q, p) = ωϑ(q)ϑ(p)
a ω−ϑ(q)m

a ωϑ(p)m
a ω

−ϑ(p)
2

(ϑ(p)+%da )
a /

√
da. (J.13)

Note that |Cm(q, p)| = 1/
√
da for all values of m, and so ‖〈m|ĒasĒar|ψ0〉‖ = 1/

√
da.

Therefore, the gate implemented on the r and s QVs is unitary and has the form

〈m|ĒasĒar|ψ0〉
‖〈m|ĒasĒar|ψ0〉‖

= v′r(m)v′′s (m) · (vrvs ·D(φϑ) · wrws) , (J.14)

where φϑ is given by φϑ(q, p) = 2πϑ(q)ϑ(p)/da and the (m-dependent) local gates

are given by

v′(m) = vR(−2mπϑ/da)v
†, (J.15)

v′′(m) = vR(2mπϑ/da)R(−πϑ(ϑ+ %da)/da)v
†, (J.16)

which confirms Equation 7.32 of the main text.

The D(φϑ) gate is an entangling-gate for any phase-function ϑ such that there

is some q and p for which (ϑ(q) − ϑ(p))2 mod d 6= 0. This is because the action of

D(φϑ) on an arbitrary pair of computational basis states is |q, p〉 → ω
ϑ(q)ϑ(p)
a |q, p〉
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and hence for the separable input

|ψin〉 =
1

2
(|q, q〉+ |q, p〉+ |p, q〉+ |p, p〉), (J.17)

the D(φϑ) gate outputs

|ψout〉 =
1

2

(
ωϑ(q)2

a |q, q〉+ ωϑ(q)ϑ(p)
a (|q, p〉+ |p, q〉) + ωϑ(p)2

a |p, p〉
)
. (J.18)

This is a separable state if and only if

ωϑ(q)2

a ωϑ(p)2

a = ω2ϑ(q)ϑ(p)
a , (J.19)

and hence it is entangled if ϑ(q)2 + ϑ(p)2 − 2ϑ(q)ϑ(p) mod d 6= 0, that is, if

(ϑ(q)− ϑ(p))2 mod d 6= 0. (J.20)

Therefore given that there is some q and p such that this is true, then the gate

creates an entangled state for some separable inputs which is the definition of a gate

being entangling.

The relation of Equation J.21 is now derived, which states that

〈m|Ēar|ψ0〉
‖〈m|Ēar|ψ0〉‖

= ṽR (−2mπϑ/da)w =: µ(m), (J.21)

where ṽ = vR(πϑ (ϑ− %da) /da). It is clear that

〈m|Ēar|ψ0〉 = vrô(m)wr, (J.22)

where ô(m) =
∑

q∈Sd cm(q)|q〉〈q| with the coefficients, cm(q), given by

cm(q) = 〈m|F †Z(ϑ(q))F |×0〉,

= 〈m|X(ϑ(q))|×0〉,

= ω
ϑ(q)(ϑ(q)−%da )/2
a

〈
m|×−ϑ(q)

〉
,

= ω
ϑ(q)(ϑ(q)−%da )/2
a ω−mϑ(q)

a /
√
da,

with the last equality derived via Equation 7.30, and again holds only up to (m-

dependent) irrelevant global phase. It may be easily confirmed that this implies the

relation stated above. This concludes the appendix.
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Appendix K

Ancillary spin ensembles

In this appendix a brief outline is given of a method for implementing an entangling

gate on a pair of qubits via interactions with an ancillary qubit ensemble. This gate

method can be understood in terms of a controlled geometric phase and hence is

related to the ancilla-based gate techniques of Chapter 5. The method for imple-

menting the gate is very straightforward - the majority of this appendix is dedicated

to presenting the necessary introduction to collective spin operators for a qubit en-

semble and showing how a geometric phase can be accessed via a closed path of

phase-space SU(2) displacements. The initial parts of the following section have

been partially covered in the main text, but are included here for clarity.

K.1 The collective spin operators

Consider an ensemble of N qubits. Define the collective x, y, z, and total spin

operators, respectively, by

Jx :=

N∑
j=1

Xj = X1 +X2 + ...XN , (K.1)

Jy :=
N∑
j=1

Yj = Y1 + Y2 + ...YN , (K.2)

Jz :=

N∑
j=1

Zj = Z1 + Z2 + ...ZN , (K.3)

J2 := J2
x + J2

y + J2
z . (K.4)

Note that the Y Pauli operator may be defined in terms of X and Z by Y := iXZ.

As Pauli operators acting on different qubits commute, it immediately follows from
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the commutation relation for the qubit Pauli operators, [X,Y ] = 2iZ, that

[Jx, Jy] = 2iJz, (K.5)

with cyclic permutations giving the remaining relations between Jx, Jy and Jz. It

is straightforward to show that

[J2, Jk] = 0, (K.6)

for k = x, y, z. As J2 and Jz commute, an orthonormal basis for the total Hilbert

space on the spin ensemble can be found that consists of the joint eigenstates of J2

and Jz and these are known as the Dicke states [Dicke (1954)]. The Dicke states

may be denoted by |j,m, d〉, where

J2|j,m, d〉 = j(j + 2)|j, n, d〉, Jz|j,m, d〉 = (2n− j)|j, n, d〉, (K.7)

with j ∈ {0, 1, ..., N}, n ∈ {0, 1, ..., j} and d ∈ {1, ..., d(j, n)}, where d(j, n) is the

degeneracy of the J2 and Jz eigenvalue pair.1 In what follows, only the j = N

subspace will be of interest and in this subspace the eigenvalues of Jz are not degen-

erate, implying that the subspace has dimension N + 1. The states in this subspace

are symmetric with respect to the exchange of qubits in the ensemble [Arecchi et al.

(1972)]. Using the shorthand |nD〉 ≡ |N,n, 1〉, it may be shown that in terms of the

state of each individual qubit

|nD〉 =

(
N

n

)−1/2 ∑
perm

∣∣∣1⊗(N−n)0⊗n
〉
, (K.8)

where the sum is over all possible arrangements of the n excitations and
(
N
n

)
=

N !/n!(N − n)! is the binomial coefficient, required to normalise the state.

The SU(2) displacement operator for the spin ensemble, which is also sometimes

referred to as a ‘rotation operator’ [Arecchi et al. (1972); Gazeau (2009)], may be

defined by

DN (θ, ϕ) := exp

(
i

(
θ

2
sinϕJx −

θ

2
cosϕJy

))
, (K.9)

where θ, ϕ ∈ R [Zhang et al. (1990)]. A spin coherent states (or SU(2), atomic

or Bloch states) of the N + 1 dimensional symmetric subspace of a qubit ensemble

[Arecchi et al. (1972); Gazeau (2009); Radcliffe (1971)] is then defined by

|θ, ϕ〉N := DN (θ, ϕ)|0, 0〉N , (K.10)

1It is clear that the eigenvalues must be degenerate as there are N2 different (j, n) labelling
pairs but 2N states are required to span a Hilbert space of dimension 2N .

250



K.1 The collective spin operators

where the reference state is taken to be

|0, 0〉N = |0D〉 = |1〉⊗N . (K.11)

Hence, a spin coherent state is a separable state of N qubits in the same pure state,

which may be written as

|θ, ϕ〉N =

(
cos

θ

2
|1〉 − e−iϕ sin

θ

2
|0〉
)⊗N

, (K.12)

and as such, a spin coherent state can be represented on a Bloch sphere and the

displacement operator can be interpreted as a rotation around some vector in the

xy-plane.

An alternative parameterisation for the spin coherent states may be introduced,

which will be useful in the following and which is analogous to writing a QCV (i.e.,

a field-mode) coherent state in terms of a complex number α. Take

ζ = −e−iϕ tan
θ

2
, (K.13)

which is a stereographic projection of the sphere onto the complex plane [Gazeau

(2009)] and with which the spin coherent states can be expressed as

|ζ〉N =

(
|1〉+ ζ|0〉√

1 + |ζ|2

)⊗N
. (K.14)

This implies that the overlap between two spin coherent states is

〈
ζ|ζ ′
〉

=

(
1 + ζ∗ζ ′√

(1 + |ζ|2)(1 + |ζ ′|2)

)N
. (K.15)

In this parameterisation, the displacement operator may be written as

DN (ζ) =

(
I2 + ζσ+ − ζ∗σ−√

1 + |ζ|2

)⊗N
, (K.16)

where σ± := 1
2(X±iY ). By definition |ζ〉N = DN (ζ)|0〉N , and it is simple to confirm

that

DN (ζ2)DN (ζ1)|0〉N = eiNφ(ζ1,ζ2)

∣∣∣∣ ζ1 + ζ2

1− ζ1ζ∗2

〉
N

, (K.17)

where the phase factor is given by

eiφ(ζ1,ζ2) =
1− ζ1ζ

∗
2

|1− ζ1ζ∗2 |
. (K.18)
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K.2 Geometric phases via SU(2) displacements

It is now shown how a closed path of displacements, acting on the ‘vacuum’ state,

|0〉N , can create a geometric phase. Displacements around the orthogonal x and y

axes are given by taking cosϕ = 0 (which is equivalent to ζ ∈ R) and sinϕ = 0

(which is equivalent to iζ ∈ R) respectively. Now, consider acting a sequence of

these orthogonal displacements on the vacuum, |0〉N . Specifically, consider

DN (−iζ4)DN (−ζ3)DN (iζ2)DN (ζ1)|0〉N = eiφ(ζj ,N)|ζ(ζj)〉N , (K.19)

where ζj ∈ R for j = 1, 2, 3, 4. Note that the LHS of this equation must be equal

to the RHS for some ζ ∈ C and φ ∈ R because displacement operators transform

coherent states to coherent states, up to a phase. Equation K.17 and simple algebraic

manipulations can be used to shown that

ζ(ζj) =
(ζ1 + iζ2)(1− iζ3ζ4)− (1 + iζ1ζ2)(ζ3 + iζ4)

(ζ1 + iζ2)(ζ3 − iζ4) + (1 + iζ1ζ2)(1 + iζ3ζ4)
, (K.20)

with the phase factor given by eiφ(ζj ,N) = (β/|β|)N where β is

β(ζj) =
(1 + iζ1ζ2)(1 + iζ3ζ4) + (ζ1 + iζ2)(ζ3 − iζ4)

(1 + iζ1ζ2) + ζ3(ζ1 + iζ2)
. (K.21)

An area-dependent phase and no resultant displacement is created if ζ = 0. If the

‘phase space’ in which the displacements act has a flat geometry (such as for a

QCV, which has the phase space R2), it is required that ζ1 = ζ3 and ζ2 = ζ4, and

the simplest case is given by taking ζ1 = ζ2 = ζ3 = ζ4. However, on the surface of

a sphere (the relevant space here) this choice of displacements will not result in a

closed loop. Via a geometric argument, as given in Figure K.1, it is possible to see

that ζ = 0 may be satisfied whilst restricting the displacement parameters such that

ζ4 = ζ1 = η and that such a restriction implies that ζ2 = ζ3 = τ(η) with τ 6= η. It

may then be shown, by setting Equation K.20 equal to zero, that such a choice for

the displacement parameters implies that

τ(η) =
1− η2 −

√
η4 − 6η2 + 1

2η
. (K.22)

As a+ bi = |a+ bi| exp(i tan−1(b/a)) when a > 0, the phase factor φ can be shown,

using Equation K.21, to be given by

φ(η, τ,N) = N tan−1

(
2ητ + τ2 − η2

1 + 2ητ − η2τ2

)
. (K.23)
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x y

z

Figure K.1: A geometric phase is obtained by the displacement of a spin coherent
state around a closed loop. If orthogonal displacements (rotations around the x and
y axes) are considered it can be seen that the 1st and 4th rotations may be taken to
be of an equal magnitude γ and that this implies that the 2nd and 3rd rotations are
of an equal magnitude ς. The rotation angles γ and ς can be related to the complex
variables η and τ from Equation K.22 via the stereographic projection.

This then implies that

〈0|NDN (−iη)DN (−τ)DN (iτ(η))DN (η)|0〉N = eiφ(η,τ,N). (K.24)

As a side point, it is interesting to consider under what conditions τ ≈ η, which is

when the curvature of the phase space can be ignored with the resultant phase space

path still approximately closed. To consider this, τ and φ may be expanded around

η = 0, giving

τ(η) = η +O(η3),
φ(η, τ(η), N)

N
= 2η2 +O(η4), (K.25)

and hence, when η � 1 the higher order terms will be negligible. In this case, τ will

be well approximated by η and the area-dependent phase created is approximately

equal to that expected in a flat geometry.2

It is now shown how the geometric phase of Equation K.24 can be used to create a

controlled phase gate on a pair of qubits, if they may interact with a spin ensemble

via a type of controlled SU(2) displacement. Consider the interaction between a

computational qubit, labelled j, and a spin ensemble, of the form

D
j
N (ζ) := |0〉〈0|j ⊗DN (ζ) + |1〉〈1|j ⊗DN (−ζ). (K.26)

2That the phase parameter here is 2η2 rather than η2, when the displacement is around a
‘square’ of sides η, follows from the definition of the displacement operator, which implies that the
geometric phase created is twice the area enclosed in phase space. This also appears in the phase
accrued by displacements around a square of sides η with a QCV complex-number parameterised
displacement operator, as can be seen by reference to Appendix C.
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It then follows directly from Equation K.24 that

〈0|ND
t
N (−iη)·Dc

N (−τ(η))·Dt
N (iτ(η))·Dc

N (η)|0〉N = exp(iφ(η, τ,N)Zc⊗Zt), (K.27)

where τ(η) and φ(η, τ,N) are given by Equation K.22 and Equation K.23 respec-

tively. It is simple to confirm that this entangling gate is locally equivalent to

CR(4φ), via local rotation gates. The value of φ can be fixed by changing the

interaction parameters and may be chosen so that the implemented gate is cz.

In order to implement this gate it is only necessary to be able to apply controlled

displacements for ζ ∈ R, as for such ζ it is simple to confirm that

(HP †)⊗N ·Dj
N (ζ) · (PH)⊗N = D

j
N (iζ). (K.28)

These local operations on the spin ensemble can be applied without single-qubit ad-

dressability of the constituent qubits in the ensemble and for this reason such control

of the ensemble is physically plausible. The interaction between the computational

qubits and the ensemble qubits used to implement this gate is simply

Ĥse = Z ⊗ Jx, (K.29)

and this interaction is physically realistic (e.g., it is not that dis-similar to the

Hamiltonian in the experiment of Zhu et al. (2011), which couples a flux qubit to an

NV-centre spin-ensemble in diamond). The discussions of Section 5.5, on encoding

a qudit into a spin ensemble, are largely relevant again here and this can be referred

back to for further details. An important source of errors for this gate method would

be leakage out of the symmetric subspace, which could be caused by inhomogeneity

in the ensemble, for example, if the coupling strength to the control computational

qubit varies over the ensemble. If this gate method were to be further pursued, an

important topic for future work would be to consider the effect on the computational

model of such physically relevant errors within the realistic parameter regimes of a

specific physical system.

To conclude this appendix, it is noted that there are two interesting formal links

between this gate method and quantum computing on a register of qubits via a QCV

ancilla, as covered by the geometric phase gate of Section 5.2. Firstly, in the limit

of infinite constituent spins (N →∞) the spin ensemble mediated gate, introduced

above, is formally equivalent to the ‘qubus’ geometric phase gate (up to some local

rotation gates), whereby qubits are entangled via controlled Pauli operators acting

on an ancillary QCV. This is because, as shown in Section K.3,

lim
N→∞

DN

(
ζ√
N

)
= exp

(
ζâ† − ζ∗â

)
= D(ζ), (K.30)
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where D(ζ) is the C-number parameterised displacement operator for a QCV, given

in Equation C.6. This is itself equivalent to QCV Pauli operators, and in partic-

ular for α ∈ R, then D(α/
√

2) = X(α) and D(iα/
√

2) = Z(α), via Equation C.2

(see Appendix C more generally for further details). Another interesting relation

between this spin ensemble based gate and QCV-based gates is that, instead of

collective spin operators, all of the formalism of this appendix also applies to the

angular momentum operators for a QCV in three dimensions (i.e., a quantum sys-

tem with position and momentum in three spatial dimensions), as discussed briefly

in Section K.4. Note that both of these connections are largely only of interest from

a formal perspective.

K.3 The group contraction of SU(2)

The group contraction of SU(2) demonstrates the N →∞ limit of the spin coherent

states [Arecchi et al. (1972); Dooley et al. (2013); Gazeau (2009); Radcliffe (1971)]

and shows that in this limit the displacement operator of Equation K.9 is equivalent

to that for a bosonic mode, i.e., a QCV. By defining

J± :=
1

2
(Jx ± iJy) =

N∑
j=1

σ±j , (K.31)

the J spin operators can be represented by the creation and annihilation operators

of a QCV by the Holstein-Primakoff transformation [Holstein and Primakoff (1940)]

J+√
N

= â†
√

1− â†â

2N
,

J−√
N

=

√
1− â†â

2N
â, Jz = â†â−N. (K.32)

It is straightforward to confirm that these operators obey the required SU(2) com-

mutation relations, given in terms of Jk with k = x, y, z in Equation K.5. It then

follows that

lim
N→∞

J+√
N

= â†, lim
N→∞

J−√
N

= â. (K.33)

From the definition of DN (θ, ϕ) in Equation K.9, and the relation ζ = −e−iϕ tan θ
2 ,

it may be shown that

DN (ζ) = exp

(
tan−1 |ζ|
|ζ|

(ζJ+ + ζ∗J−)

)
. (K.34)

As tan−1(x) = x+O(x3) via a Taylor expansion of tan−1(x) around the x = 0, it is

clear that

lim
N→∞

tan−1 |ζ/
√

2N |
|ζ/
√

2N |
= 1. (K.35)
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Combining these limits together results in the relationship between the SU(2) and

the Glauber displacement operators being given by

lim
N→∞

DN

(
ζ√
N

)
= exp

(
ζâ† − ζ∗â

)
= D(ζ), (K.36)

where D(ζ) is the C-number parameterised displacement operator for a continuous

variable given in Equation C.6. Furthermore, via this contraction process it may be

shown that

lim
N→∞

∣∣∣∣ ζ√
N

〉
N

= |ζ〉, (K.37)

where the RHS of this equation is a (C-number parametrised) Glauber coherent

state, as defined in Equation C.7 [Arecchi et al. (1972); Dooley et al. (2013); Gazeau

(2009); Radcliffe (1971)]. This can be achieved by writing a spin coherent state in

terms of the Dicke states |nD〉 and then, in the limit of N → ∞, associating the

Dicke state |nD〉 with the QHO energy eigenstate |n〉 (see Appendix A for details

on the QHO) and noting that this has exactly the form of the QHO, or Glauber,

coherent states written as an infinite sum of the QHO eigenstates.

K.4 Angular momentum operators

The collective spin operators obey exactly the same commutation relations as the

(scaled3) angular momentum operators of elementary quantum mechanics

l̂x = 2(q̂yp̂z − q̂z p̂y), (K.38)

l̂y = 2(q̂z p̂x − q̂xp̂z), (K.39)

l̂z = 2(q̂xp̂y − q̂yp̂x), (K.40)

l̂2 = l̂2x + l̂2y + l̂2z , (K.41)

where [q̂j , p̂k] = iδjk, which are the position and momentum operators in orthogonal

directions x, y and z. In this case, for any subspace of fixed total angular momentum

l (i.e., an Eigen-space of l̂2), the l̂z eigenvalues are non-degenerate and the spin

coherent state formalism may be employed. In particular, the equivalent limit to

N → ∞ is given by taking l → ∞ [Gazeau (2009)]. Therefore, the formalism and

gate method presented above applies also to a system governed by such operators.

As such, this provides a second link between gates mediated via spin ensembles and

QCVs. However, it is likely that this is only interesting in an abstract sense, as I

am unaware of any systems in which qubit-controlled angular displacements are a

3They have been scaled by a factor of 2 due to the definitions of the J operators. The spin
operators could instead be scaled by a factor of 1/2.
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physically relevant interaction.
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