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Abstract

The graph programming language GP (Graph Programs) 2 and its implemen-

tation is the subject of this thesis. The language allows programmers to write

visual graph programs at a high level of abstraction, bringing the task of solving

graph-based problems to an environment in which the user feels comfortable and

secure. Implementing graph programs presents two main challenges. The first

challenge is translating programs from a high-level source code representation to

executable code, which involves bridging the gap from a non-deterministic pro-

gram to deterministic machine code. The second challenge is overcoming the

theoretically impractical complexity of applying graph transformation rules, the

basic computation step of a graph program.

The work presented in this thesis addresses both of these challenges. We tackle

the first challenge by implementing a compiler that translates GP 2 graph pro-

grams directly to C code. Implementation strategies concerning the storage and

access of internal data structures are empirically compared to determine the most

efficient approach for executing practical graph programs. The second challenge

is met by extending the double-pushout approach to graph transformation with

root nodes to support fast execution of graph transformation rules by restricting

the search to the local neighbourhood of the root nodes in the host graph. We

add this theoretical construct to the GP 2 language in order to support rooted

graph transformation rules, and we identify a class of rooted rules that are appli-

cable in constant time on certain classes of graphs. Finally, we combine theory

and practice by writing rooted graph programs to solve two common graph algo-

rithms, and demonstrate that their execution times are capable of matching the

execution times of tailored C solutions.
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1. Introduction

1.1. Motivation

Graphs are an abstract structure used to model the relationships among a col-

lection of objects that provide a direct, intuitive and mathematically precise way

of describing complex structures. Graphs are used to model various structures

within computer science including software architectures, Petri nets, control flow

diagrams, pointer structures and internal representations of programs. Graph

transformation, the study of the algorithmic manipulation of graphs, adds an-

other dimension by modelling the dynamic evolution of graph-based systems in

which graphs represent static states and graph transformation rules represent a

small computation steps on states. Graph transformation has been the subject of

heavy research for several decades resulting in the development and study of vari-

ous theoretical models of graph transformation. We are concerned with algebraic

graph transformation, which has been one of the most prevalent formalisms since

its inception in the 1970s. Broadly speaking, this approach formalises graph

transformation by specifying the behaviour of transformation rules as mathe-

matical constructions over the category of graphs and total graph morphisms.

The algebraic approach forms the foundation of many implementations of graph

transformation systems.

The study of graph transformation began with graph grammars, a generali-

sation of string rewriting and of tree-based term rewriting. This was motivated

theoretically by the study of classifying graph grammars and graph languages

analogous to formal language theory, and practically by pattern recognition and

compiler construction. As computer science grew and the complexity of both pro-

gramming languages and software systems increased, standard graph grammars

became insufficient to solve the problems for which they had been created from

both a practical and a theoretical point of view. Graph grammars were extended

with constructs to control the application of productions in a more fine-grained

manner. This led to a rich theory of programmable graph grammars and accom-

panying implementations. Therefore it was desirable to use the well-researched

field of graph transformation as a non-deterministic programming paradigm in

which a graph is the global environment that is manipulated by controlled appli-

cation of graph transformation rules.

A graph transformation-based programming language is not only desirable for

the specification and manipulation of graph-based systems, but also as a very

high-level programming environment accessible to users outside of computer sci-

ence. A visual environment for programming with graphs allows programmers to

define graphs and graph transformation rules without having to concern them-
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selves with relatively low-level data structures and pointer manipulation, a fre-

quent source of bugs in production code. Existing tools that offer a form of

programmed graph transformation are typically targeted towards applications

within computer science, particularly software engineering. However, graphical

structures occur in other disciplines such as molecular structures in chemistry and

cell structures in biology. Graph transformation systems tailored for computer

scientists may be unsuitable for users in less conventional application areas.

The general purpose graph programming language GP (Graph Programs) orig-

inated as a core set of control constructs necessary for a computationally com-

plete graph transformation language with double-pushout rules. Although the

language has since been extended, this minimalist approach remains the driv-

ing force in the design of the language. To this day, it remains very small in

comparison to related languages and tools. There are multiple benefits to this

design philosophy. First, the simpler the language, the easier it is to learn and

use. Writing GP programs only requires a basic understanding of graphs and

programming language concepts, and the function of a graph transformation rule

can be determined by examining its graphical representation, freeing the user

from poring over programming language syntax. Second, the language can be

described completely by a formal semantics, one small enough to be used prac-

tically for formal verification. Third, the smaller the language, the easier and

faster implementation becomes, allowing more focus to be placed on performance

and maintainability. However, we do not get all of these advantages for free. The

principal drawback is a potential lack of expressiveness: a language providing a

limited set of tools for a programmer may not be amenable for writing large scale

programs, and may require the programmer to jump through hoops to write a

program that could be expressed more concisely in a more complicated language.

Striking the balance between simplicity and practicality is a challenge, especially

if more weight is placed on the former from the start.

We present GP 2, the second version of the GP language, and its implemen-

tation. Implementing a programming language based on graph transformation

presents some interesting challenges. The most significant of these challenges is

the high complexity in finding a match, a subgraph of a host graph at which a

graph transformation rule is to be applied. For a graph program with fixed rules,

this is polynomial-time in the size of the host graph, making it the bottleneck

of an executable graph transformation system. Another challenge is compiling

high-level, abstract and non-deterministic graph programs to executable code

that preserves the semantics of the language.

1.2. Thesis Contributions

One of the main differences between GP 2 and its predecessor is that GP 2’s

semantics does not enforce general backtracking. This choice was made with the

intention of admitting an efficient implementation. The goal of this implemen-

tation is to see how efficiently we can execute graph programs written at a very

high level of abstraction. Specifically, we ask the question: How close can a high-
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level graph programming language come to the performance of graph programs

written at a much lower level of abstraction? It is clear that the high-level graph

programming language is GP 2. For the latter part of the question, we use the C

programming language as a basis of comparison: C code is generated from a GP

2 program specification which we run against a tailored C program performing

the same graph-based computation.

1.2.1. Extending GP 2

The first published definition of GP 2 is several years old [Plu12]. Since then, the

language has been extended in a number of ways, motivated both by programming

in GP 2 and by the theoretical developments and the implementation described

in this thesis. GP 2 has been augmented by:

• allowing users to create root nodes. Rooted graph transformation is de-

scribed in further detail below.

• extending GP 2’s macros to procedures by providing the ability to create

local rules and subprocedures.

• introducing the break control construct, for exiting loops, and its associated

semantic rules.

• replacing the Boolean mark system with a fixed set of marks.

• introducing the character type.

• adding the bidirectional edges and wildcard mark, syntactic sugar for fre-

quently occurring program patterns.

1.2.2. Implementing GP 2

GP 2 was implemented in two different ways. Initially, we implemented a refer-

ence interpreter in Haskell, motivated by the desire for a quick implementation to

facilitate verification of future implementations. To support this aim, the refer-

ence interpreter generates all possible outputs of a graph program. The output of

future implementations are verified by testing membership in the set returned by

the reference interpreter. We succeeded in this goal with a concise and readable

Haskell program that can interpret GP 2 programs and examine all nondetermin-

stic branches of the computation. Although performance was a not a design goal,

the interpreter is sufficiently fast to generate output graphs for sample programs

to test against a more sophisticated implementation.

The second implementation is the GP 2 compiler, which translates GP 2 graph

programs directly to C. C acts as a suitable intermediate language between GP

2 programs and machine code: it is sufficiently high level so that the translation

step is not too great, and low level enough to hard-code memory management and

optimisations. In addition, we receive all the benefits that come with a highly-

established language such as portability, tool support, and optimising compilers.
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We detail each step of the translation phase, paying particular attention to crit-

ical design choices that could have a large impact on performance in terms of

both runtime and memory consumption. The translation steps should satisfy the

reader that the generated C code is faithful to the semantics.

1.2.3. Rooted Graph Transformation

One method that graph transformation researchers use to overcome the complex-

ity of searching for an instance of a rule graph in a host graph is to uniquely

identify a node in the rule and a node in the host graph. With this “hook”, these

items are matched in constant time, and the rest of the search takes place in

the local neighbourhood of the unique host node if we assume a connected rule

graph. The unique identification could arise from a special node label or an ex-

plicit user directive. We generalise this concept to rooted graph transformation,

a novel extension to the double-pushout approach. The basic idea is to equip

graphs and morphisms with root nodes, forming a new category of rooted graphs

and rooted morphisms. Unlike previous approaches, the property of rootedness

is independent of a node’s label or type, and multiple root nodes are allowed in

host graphs and rules. We show that the standard double-pushout construction is

preserved in this generalised category. We also present a matching algorithm for

rooted graph transformation rules and prove that, under reasonable conditions,

a match can be found in constant time.

1.2.4. Rooted Graph Programs

The theory of rooted graph transformation can seamlessly be lifted into GP 2’s

programming environment by extending GP 2’s rules and host graphs with root

nodes. We write graph programs for common graph algorithms featuring these

rooted rules and demonstrate that they perform in accordance with the theoreti-

cal complexity. For some programs, the runtime is in the same order of magnitude

as tailored imperative implementations, which we show by comparing compiled

GP 2 programs against C implementations of the same graph algorithms. The

cost of faster graph programs is increased program complexity in comparison

to their unrooted counterparts. However, the case studies illustrate that rooted

graph programs are not so complicated as to be impractical.

1.3. Thesis Structure

The thesis is structured as follows.

Chapter 2 sets the scene by presenting the double-pushout approach with rela-

belling, the mathematical framework for graph transformation used as a base for

GP 2. It examines related work in the field, namely the existing languages and

tools that support programmable graph transformation, and discusses how GP 2

differs from these approaches.
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Chapter 3 presents the GP 2 language. Conditional rule schemata are defined,

which are graph transformation rules equipped with variables, expressions and

application conditions. Application of a conditional rule schema is formalised

and demonstrated with an example. It introduces GP 2’s control constructs

for controlling rule application and we show GP 2’s abstract syntax for labels,

conditions and programs. Finally, GP 2’s structured operational semantics are

presented.

Chapter 4 defines rooted graph transformation as both an extension to the

double-pushout approach and an extension to conditional rule schemata. It shows

a matching algorithm that can match rooted graph transformation rules and ex-

tends it to GP 2 by giving supplementary procedures for matching GP 2 labels.

The complexity of matching rooted rule schemata is discussed, including the iden-

tification of a class of fast conditional rule schemata that match in constant time

under certain conditions.

Chapter 5 describes the implementations of GP 2, starting with the Haskell

reference interpreter. Then the GP 2 compiler, which translates GP 2 programs to

equivalent C programs, is thoroughly detailed with its supporting runtime library.

Two important design choices are addressed, namely the internal storage of GP 2

lists and the management of host graph backtracking, supported by experiments.

The code generation phase is described in depth to show how conditional rule

schemata and GP 2 control constructs are translated to C code adhering to the

semantics. The chapter concludes by comparing the presented implementation

with existing implementations of graph transformation systems.

Chapter 6 confirms the theoretical results concerning rooted graph transforma-

tion with a number of case studies. It shows rooted GP 2 programs for depth-first

search and breadth-first search which are used as the core of GP 2 programs for

two graph algorithms: 2-colouring and topological sorting. It analyses these

programs and provides experimental evidence demonstrating that the programs

perform as efficiently as the theory states, and in some cases matching the per-

formance of tailored C programs.

Chapter 7 summarises the thesis and evaluates its contributions. It also discuss

several areas of further research.

Appendix A shows GP 2’s concrete syntax, context conditions, keywords and

operators.
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2. Graph Transformation: Theory and

Practice

2.1. The Theory: Double-Pushout Approach

Graph transformation is the study of the modification of graphs by rules. A rule

in this context is a rewriting step L→ R where an occurrence of L is located in a

host graph G and replaced by a copy of R. The formalisation of such a rewriting

step is broken down into three fundamental questions:

1. What kind of graphs do we use?

2. How can we identify the left-hand side of a rule with a subgraph of the host

graph?

3. How can we replace a subgraph of a host graph with the right-hand side of

a rule?

Many formalisms have been defined to answer these questions, the main dis-

tinction being how the third question is answered. The Handbook of Graph

Grammars and Computing by Graph Transformation [Roz97] gives a thorough

coverage of the most enduring frameworks. We focus on the double-pushout ap-

proach (DPO), introduced in the 1970s by Ehrig, Pfender and Schneider [EPS73].

This approach belongs to the class of algebraic graph transformation, named be-

cause the graph transformation step is characterised by an algebraic construction,

contrasting set-theoretic or algorithmic graph transformation where the transfor-

mation is described algorithmically. Applications of DPO graph transformation

rules are free from side effects, so the left-hand and right-hand graphs give a

precise description of the behaviour of the rule when applied to a host graph.

The results and techniques taken from category theory provide a strong theoreti-

cal foundation for proving properties about classes of graph transformation rules

in the double-pushout approach. Furthermore, this allows the generalisation of

algebraic graph transformation results to other structures because the proofs are

often independent of the specific objects and morphisms. The interested reader

is referred to [Cor+97] and [Ehr+06].

2.1.1. Fundamentals: Graphs, Rules and Graph Morphisms

We answer the first two fundamental questions by defining graphs and graph

morphisms. This is intended to be the theoretical base for a graph programming

language. Hence we desire a formalisation that is precise enough to define a
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formal semantics for rule application, as well as being practical and usable for

programmers.

The GP language operates on directed, labelled graphs [Plu09; Plu12]. In

practice, edges are commonly directed because they model asymmetric relations

between objects. In addition, it is straightforward to simulate undirected graphs

by representing an undirected edge as two edges of opposite direction. Labels

are used to encode information and to discriminate between different nodes and

edges. We formally define GP 2’s graphs below.

Definition 1. A graph G over a label alphabet L is a system G =

(VG, EG, sG, tG, lG,mG) where VG is the finite set of nodes, EG is the finite set

of edges, sG: EG → VG and tG: EG → VG are total functions that map edges

to their source and target nodes respectively, lG: VG → L is the partial node-

labelling function and mG: EG → L is the total edge-labelling function. We

write lG(v) = ⊥ if lG(v) is undefined. If lG is a total function then G is said to

be totally labelled.

It is more common to distinguish between node and edge labels by defining two

label alphabets. One alphabet is sufficient for our purposes because GP 2 has

a universal label set. The other unusual feature of this definition is the partial

node-labelling function. This contrasts the traditional graph definition in which

all nodes are required to be labelled. As we shall see, the given definition allows us

to write double-pushout rules that relabel nodes, something that would otherwise

not be possible in general. We note that unlabelled nodes are only used in rules;

host graphs are totally-labelled.

Remark 1. We say a node v is incident to an edge e, or vice versa, if either

v = s(e) or v = t(e). The notation v → w is used to refer to an edge whose

source is v and whose target is w. We use the word item to collectively refer to

nodes and edges.

Definition 2. A directed path is an alternating sequence of nodes and edges

v0, e1, . . . , en, vn such that for all i ∈ {1, . . . , n−1}, s(ek) = vk−1 and t(ek) = vk.

An undirected path is an alternating sequence of nodes and edges v0, e1, . . . , en, vn
such that for all i ∈ {1, . . . , n−1}, ek is incident to vk−1 and vk. The length of

a path is the number of edges in the path. A directed (undirected) cycle is a

directed (undirected) path as above with v1 = vn.

Remark 2. We use path to refer to either an undirected path or a directed path

when it is clear from the context. A node w is directly (undirectly) reachable from

a node v if there exists a directed (undirected) path containing the nodes v and

w. An edge e is undirectly (directly) reachable from a node v if there exists a

directed (undirected) path from v containing e. Again, we say reachable when

appropriate. A graph is connected if every node is undirectly reachable from

every other node. A graph is cyclic if it contains a cycle, and acyclic otherwise.

Note that this includes looping edges as they are paths of length 1.

Definition 3. Given graphs G and H, a graph premorphism g: G→ H is a pair

of functions gV : VG → VH and gE : EG → EH that preserves sources and targets.
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More precisely, for all edges e ∈ G, sH(gE(e)) = gV (sG(e)) and tH(gE(e)) =

gV (tG(e)). If g also preserves labels, that is mH(gE(e)) = mG(e) and lH(gV (v)) =

lG(v) for all edges e ∈ EG and for all nodes v ∈ VG with lG(v) 6= ⊥, then g is a

graph morphism. A graph morphism g is injective (surjective) if gV and gE are

injective (surjective). A bijective graph morphism is called a graph isomorphism

if gv preserves undefined labels. A graph morphism g is an inclusion if g(x) = x

for all nodes and edges x ∈ G. Given two graph morphisms f : G → H and

g: H → J , the composition is g ◦ f : G → J = (gV ◦ fV , gE ◦ fE), where ◦ is the

standard function composition operator.

Remark 3. The graph morphism is a formal description of a structural relation-

ship between two graphs. We omit the prefix “graph” when talking about graph

morphisms as we do not use any other type of morphism. In addition, we may

specify morphisms by their domain and codomain. For example, the definition of

morphism composition could have been written as (H → J) ◦ (G → H) = G →
H → J .

Definition 4. A rule r = (L ← K → R) is a pair of inclusions K → L and

K → R where L and R are totally labelled graphs. L and R are referred to as

the left-hand side and right-hand side respectively. K is called the interface.

The purpose of the interface is to precisely specify the rule’s behaviour: L−K
is the set of items to be deleted, and R−K is the set of items to be added. We

are ready to answer the second fundamental question of the start of this section:

an instance of L in G is defined by an injective morphism g: L → G called the

match. Injectivity is not essential, but desirable. From a theoretical point of

view, requiring an injective match gives us some nice properties for free. From

a practical point of view, it clarifies the purpose of a rule. For example, with

non-injective morphisms, a left-hand side containing two nodes and a connecting

edge could match a single host graph node with a looping edge. While not strictly

a side effect, this is behaviour the user may not have intended or expected when

constructing the rule.

A cause for concern when applying a rule is that a node in the host graph may

be deleted while one of its incident edges remains. The edge will be left without

one of its incident nodes which is not permitted in the definition of a graph. One

way to avoid this problem is to forbid matches that violate the condition defined

below.

Definition 5. Given a rule r = (L ← K → R) and an injective morphism

g: L → G, the dangling condition states that no edge in G − g(L) is incident to

any node in g(L−K).

The items in g(L − K) are those removed from G in the first step of rule

application, while the edges in G − g(L) are the edges that remain in G after

the first step of rule application. Thus the dangling condition states that no

preserved edge can be incident to a node that is removed.
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Figure 2.1.: A pushout diagram and an example pushout

2.1.2. Double-Pushout Approach with Relabelling

We are now ready to answer the third fundamental question by defining rule ap-

plication in terms of a pair of pushouts, a construction from category theory1 .

This thesis uses the definition of double-pushout rules with relabelling as defined

in [PS04; Ste07]. The concept originates from Habel and Plump, who modi-

fied the original DPO framework to allow straightforward relabelling of nodes by

defining graphs to be partially labelled [HP02], although the idea had been inves-

tigated as far back as 1987 [PPEM87]. Relabelling is essential in the context of

graph programming, since practical computations on graphs cannot be expressed

without being able to modify labels. For example, a program computing short-

est paths needs to perform arithmetic on labels. In the standard definition of a

double-pushout, where graphs are totally labelled, there is no way to specify node

relabelling in general because interface nodes need to have the same label in the

left-hand side and the right-hand side. Furthermore, applying a rule that relabels

a node would force the deletion of the node and the creation of a node with the

new label in the same place. Because of this, the dangling condition makes node

relabelling impossible in some circumstances. Note that the problem does not

occur for edges as they can be arbitrarily deleted and reinserted from a graph

without consequence, so edges can be relabelled in this way. Plump and Steinert

tailored their approach to GP [PS04] by only allowing nodes to be unlabelled

(as in the graph definition of the previous section), and by forcing the left- and

right-hand sides of rules to be totally labelled.

Definition 6. Given morphisms A→ B and A→ C, a graph D with morphisms

B → D and C → D is a pushout if the following conditions hold:

(i) Commutativity: A→ B → D = A→ C → D

(ii) Universal Property: For all pairs of morphisms (B → D′, C → D′) such that

A → B → D′ = A → C → D′, there exists a unique morphism D → D′

such that B → D′ = B → D → D′ and C → D′ = C → D → D′.

An abstract pushout diagram and a concrete example of a pushout are given in

Figure 2.1. The diagram on the right contains four graphs which we refer to by

their positions in the pushout diagram, e.g. the top left graph is A. The numbers

1See Appendix A of [Ehr+06] for an introduction to category theory
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Figure 2.2.: A non-natural pushout and a natural pushout

below the nodes are the node identifiers which are displayed to show how the

morphisms map nodes. Edge identifiers and labels are omitted for clarity. The

pushout is a formal way of gluing two graphs with respect to a common subgraph.

The graph D is the “union” of B and C, where the items that also occur in A

are merged. For example, consider the edge 1 → 2 and its incident nodes. All

these items are present in B and C. The edge is duplicated in D because it does

not occur in A. On the other hand, the nodes are not duplicated because they

are both in A. The items in A must be in both B and C for commutativity to

hold. By the universal property, D is unique up to isomorphism.

Definition 7. Given morphisms B → D and C → D, a graph A with morphisms

A→ B and A→ C is a pullback if:

(i) Commutativity: A→ B → D = A→ C → D

(ii) Universal Property: For all pairs of morphisms (A′ → B,A′ → C) such that

A′ → B → D = A′ → C → D, there exists a unique morphism A′ → A

such that A′ → B = A′ → A→ B and A′ → C = A′ → A→ C.

A pushout that is also a pullback is called a natural pushout. We have given

the categorical definitions; a construction of pushouts and pullbacks (for totally-

labelled graphs) is in the book [Ehr+06]. Pushouts are sufficient to suitably

model graph transformation without relabelling, but the use of graphs with

partially-labelled nodes causes ambiguity. Consider the two pushout diagrams

in Figure 2.2.

In these diagrams, the node outside the square is an instance of the graph A′

in the definition of the universal property for pullbacks. The diagram on the left

is not a pullback: the universal property is not satisfied. The morphisms a′ and

b′ satisfy c ◦ a′ = d ◦ b′, but there is not a unique morphism m that makes the

triangles commute because m does not exist. The only possible mapping is to

map the node labelled x to an unlabelled node, but that is not a graph morphism

since it does not preserve labels. On the other hand, the right-hand diagram is a

pullback. Similar to the above, there is no morphism b′ because it maps a labelled

node to unlabelled node. Therefore the universal property is trivially satisfied

because no pair of morphisms (A′ → B,A′ → C) exists.

This example is an illustration of a general result Habel and Plump prove in

[HP02] which defines a characterisation of natural pushouts.
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L K R

G

g

D H

Figure 2.3.: A double-pushout diagram illustrating the application of a rule r =
(L← K → R) with a match g. Both squares are pushouts

Lemma 1. Given two graph morphisms f : A→ B and g : B → C such that f is

injective, the pushout depicted by the left-hand diagram of Figure 2.1 is natural

if and only if for all z ∈ A, lA(z) = ⊥ implies lB(f(z)) = ⊥ or lC(g(z)) = ⊥.

The lemma states that a pushout is a natural pushout if and only if all un-

labelled items in A have an unlabelled image in at least one of B and C. Nat-

ural pushouts are required for constructing unique double-pushouts with rela-

belling. If the pullback condition is not enforced, there may be more than one

non-isomorphic graph produced from a particular rule application.

Given graphs G and H, a rule r = (L ← K → R), and an injective match,

g: L → G, a direct derivation from G to H is a pair of natural pushouts, or a

double-pushout, depicted in Figure 2.3. If such a derivation exists, we writeG⇒r,g

H, or more commonly, G⇒r H. It has been proven that G⇒r,g H if and only if g

satisfies the dangling condition [HP02]. It follows from the definition of a pushout

that D and H can be constructed uniquely up to isomorphism. The pushout

construction from [Plu09] is an algorithmic description of rule application:

1. To obtain D, remove all nodes and edges in g(L − K) from G. For all

v ∈ VK with lK(v) = ⊥, define lD(gV (v)) = ⊥.

2. Add all nodes and edges, with their labels, from R − K to D. For e ∈
ER−EK , sH(e) = sR(e) if sR(E) ∈ VR−VK , otherwise sH(e) = gV (sR(e)).

Targets are defined analogously.

3. For all v ∈ VK with lK(v) = ⊥, define lH(gV (v)) = lR(v). The resulting

graph is H.

In this construction, we see that the interface K represents all nodes and edges

that are preserved by the rule. As described before, the items in L that are not

in K are removed from G, and the items in R that are not in K are added to

G. In addition, any unlabelled nodes in the interface are nodes to be relabelled.

Their original labels are removed in the first stage of the rule application, and

the new labels from R are added during the third stage.

Figure 2.4 depicts a complete double-pushout rule application according to the

above construction. Numbers below nodes are their identifiers, numbers inside

nodes are their labels, and characters next to edges are edge identifiers. Edge

labels are omitted for clarity. The rule matches an instance of the top left graph.

It deletes both edges, creates a new loop on node 1, adds a new edge 2 → 1,
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Figure 2.4.: A concrete rule application using the DPO with relabelling construc-
tion

and relabels node 1. L is identified in G by the match g : gV = (1 7→ 1, 2 7→
2); gE = (a 7→ a, c 7→ c). This match does not violate the dangling condition

because g(L−K) = ∅. Hence we can apply the rule:

1. g(L − K) = {a, c}. These edges are removed from G to give D. Neither

node in K has a label, so the corresponding nodes in D are also unlabelled.

2. R −K = {e, f}. These edge are added to D. The source of e is defined to

be the image of its source in R: gV (sR(e)) = gV (1) = 1. Its target is defined

analogously: gV (tR(e)) = gV (1) = 1. Similarly the source and target of f

are 2 and 1 respectively.

3. Nodes 1 and 2 are unlabelled in K, so they are assigned the corresponding

labels in R to obtain the new graph H.

Henceforth, we show only the graphs L and R of rules, and we adopt the

convention that the interface contains the nodes specified by numbered identifiers

in the left-hand side and the right-hand side. Furthermore, the interface contains

no edges and all interface nodes are unlabelled. By this convention, all edges

that are matched by the rule are deleted (and reinserted if necessary) according

to the pushout construction. This works in theory, but in practice we would

prefer to keep the edge instead of deleting and reinserting it to avoid unnecessary

computation. For this reason, the language implementation infers preserved edges

from the interface nodes 2. We use this convention to free the user from concerns

about edge behaviour: the user only needs to declare the interface nodes.

Given a set of rules R and two graphs G and H, we say G directly derives H by

R if G⇒r H for some r ∈ R. Direct derivations can also be applied in sequence.

G derives H, or G⇒∗R H, if either G ∼= H or G⇒R G1 ⇒R . . .⇒R H.

We conclude by remarking that the interface is not essential to formalise graph

transformation algebraically. Another prevalent formalism is the single pushout

2See Section 5.9 for a detailed description of preserved edge inference.
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approach (SPO), introduced in the algebraic graph transformation setting by

Löwe and Ehrig [LE91]. As the name suggests, direct derivations only contain

one pushout, due to the lack of an interface. A partial morphism h: L → R

describes the behaviour of the rule: items not in the preimage of h are removed,

while items not in the image of h are created. All other rule items are preserved.

Unlike DPO, there are no conditions on the morphism, which introduces some

rule application behaviour not visible from the rule graphs. For instance, dangling

edges that are created by the rule are deleted, hence SPO rule applications are

not completely local. Consequently, single pushout direct derivations are more

flexible than their double-pushout counterparts: if a match exists, the rule is

always applicable. This is not true for a double-pushout rule because of the

dangling condition. For a description of single pushouts and a comparison to

double-pushouts, we refer the reader to [Ehr+97].

2.2. The Practice: Programmed Graph Transformation

Graph grammars were originally developed to investigate formal graph languages

[PR69; Mon70]. Not only is this interesting from a theoretical point of view, for

instance the generation and formal classification of graph languages akin to for-

mal language theory with strings, but it also has various applications in pattern

recognition, specification of programming language semantics, and modelling of

biological structures. See [Nag78] for a comprehensive bibliographical survey of

these early applications. These applications can broadly be categorised as gen-

eration of graph languages and recognition of graphs belonging to a particular

language. Implementations to support these applications, if necessary at all, did

not have to be especially sophisticated in terms of controlling the order of rule ap-

plication. For some applications, these implementations were impractical because

of the complexity of graph matching and the non-determinism of rule application.

This motivated the development of more sophisticated graph transformation sys-

tems that allowed rules to be partially ordered. In practice, this could be used

to limit the number of rules taken into consideration at any particular point in

the computation, and also to succintly specify complex graph transformations.

We present an early approach called programmed graph grammars followed by a

survey of existing implementations of graph transformation systems.

2.2.1. Attributed Programmed Graph Grammars

Introduced by Horst Bunke, attributed programmed graph grammars [Bun82]

are a precursor to graph programming languages. Bunke gives a two-part ex-

tension to conventional graph grammars. First, nodes and edges are attributed.

Each production is equipped with an applicability predicate over attributes and

a mechanism to modify attribute values. Second, a control diagram is added

to the grammar to control the application of productions. The control diagram

is a state machine where states represent productions. There are two types of

transition: a ‘Y’ transition, taken if the production can be applied to the current
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graph; and a ‘N’ transition, taken if the production is not applicable. This offers

some basic programming of graph rewriting rules.

Bunke’s examples [Bun82] illustrate the key differences between a standard pat-

tern recognition system and his generative approach. In the former, the member-

ship of an input graph is tested by as-long-as-possible applications of the inverse

production rules for the language in question which is computationally slow. In

the latter, the input graph is transformed into an output graph by the controlled

productions. This implicitly recognises the input graph: if it is not a member

of the language, the control diagram would take a ‘N’ transition at some point,

resulting in no output graph. A transformed output graph signifies that the

input graph was valid. In short, the control diagram increases determinism of

the system, reducing the computational complexity. Bunke gives two practical

examples: the generation of a graphical interpretation of a circuit diagram from

an input diagram and generation of graphs representing flowcharts from an input

specification. Similar graph grammar-based approaches have been used in dia-

gram recognition to process, for instance musical scores [FB93] and mathematical

notation [GB95].

As applications for graph grammars increased in complexity (see the collec-

tions [Ehr+99; And+99]), such a method of controlling rule application proved

to be too primitive, leading to the invention of implementations that may be

collectively referred to as “graph programming languages”. The rest of this sec-

tion describes the most prevalent of these from a roughly chronological point

of view. The aim is to give an overview of these systems and how they spec-

ify programmed graph transformation; details on specific implementations and

optimisations appear later in the thesis.

2.2.2. PROGRES

Programmed Graph Replacement Systems (PROGRES) [SWZ99] is one of the

first high-level graph-based programming languages. The motivation behind

PROGRES is to support the development of an integrated programming sup-

port environment [ELS87; Eng+92] by providing a high-level specification and

programming environment for graph-based structures. Thus the PROGRES lan-

guage and its integrated tools are used for the specification, generation and val-

idation of graph-based structures [SWZ99]. We present an overview of the key

features of the PROGRES programming environment.

The basic object in PROGRES is the DIANE graph, which stands for directed,

attributed, node- and edge-labelled graphs. Both nodes and edges are typed:

the labels specify the names of these types. Node types exist in a class-based

hierarchy, allowing the inheritance of common attribute sets in the usual object-

oriented way. In contrast, edges are not attributed because edges are defined as

a relation on nodes as opposed to edges being their own objects. Edge types

are used only to restrict the types of their incident nodes. PROGRES offers

primitive data types for attributes; more complex types can be imported from

a C-compatible language. Users define a graph schema, a DIANE graph with
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attribute type declarations and cardinality constraints on edge types. A graph

schema represents a class of permissible graphs, used to formally specify a system

from, say, a set of informal requirements. This disambiguates the requirements

at the start of software development and facilitates static checking of rules to

ensure that they are well-formed.

PROGRES offers complex forms of graph transformation rules due to its pow-

erful querying features. Composable path expressions, restrictions and attribute

conditions can be used to query the host graph, either as a predicate or to find a

set of nodes matching some particular criteria. PROGRES’ graph transformation

rules are formulated with a left-hand side and a right-hand side as standard, but

they are far more expressive than the rules encountered so far. The left-hand side

may contain queries in addition to negative items, optional nodes and node sets.

A negative item matches if a suitable host graph item does not exist. An optional

node does not cause failure of rule application if the node is not matched. Node

sets are matched to as many host graph nodes as possible, including none. Right-

hand sides cannot contain any of these constructs. Otherwise, they are arbitrary

graphs, so all the standard host graph modifications are expressible, including

the modification of attribute values by expressions. Rules are organised with

imperative-style control constructs such as sequencing, conditional branching,

looping and operators for nondeterministic rule application. Nondeterminism is

handled by a Prolog-style depth-first search/backtracking paradigm.

It is clear that, even if we ignore the implementation, PROGRES is a far more

sophisticated graph transformation framework than anything we have discussed

up to this point. It is a stretch to say that we have only scratched the surface

with PROGRES, but we have certainly not covered many important features of

the system. A full language description is in [SWZ99] and a terser coverage in

[Sch91b]. The existing graph transformation formalisms, including the algebraic

approach, were insufficient to capture the entire feature set of PROGRES. In-

stead, a new logic-based framework was constructed to specify the language and

define its formal semantics [Sch97].

2.2.3. AGG

The Attributed Graph Grammar system (AGG) [ERT99; RET11] arose from

the desire for a high-level programming environment based on graph transforma-

tion rules. Instead of defining a graph transformation formalism for a particular

application, the AGG approach bases its programming language on an existing

graph transformation framework, specifically the SPO approach, in order to use

the established mathematical techniques and results. In this sense it could be

considered as a direct implementation of algebraic graph transformation as a

programming paradigm.

AGG’s graphs contain labelled (typed) nodes and directed edges with at-

tributes. We emphasise that, in contrast to PROGRES, edges are considered

objects in their own right, so both nodes and edges can be attributed. AGG

is tightly coupled with Java: attribute types are equivalent to valid Java types.
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Rules are specified by two graphs and a partial morphism relating their items.

These are abstract rules, in the sense that attributes in left-hand side items may

contain variables that are instantiated according to the matched host graph item.

On the right-hand side, attributes are modified with arbitrary Java methods,

allowing powerful computations on attributes. Negative application conditions

(NACs) are an optional attachment to rules. An NAC is a graph N and a mor-

phism L→ N that acts as an inverse left-hand side. Roughly speaking, the rule

is applicable if a match for the NAC does not exist. Prior to the development of

AGG, both attributed graphs and NACs were formalised as extensions to SPO

[LKW93; HHT95]. Rule application is controlled by a layering system. Rules are

grouped into layers by the programmer with the following behaviour: nondeter-

ministically apply rules in the first layer for as long as possible, then move on to

the second layer, and continue until the final layer is reached.

AGG’s implementation respects its SPO foundation which allows many useful

tools and features from the theoretical results to be integrated into the system.

For example, a sequence of rules can be combined into a concurrent rule whose

behaviour is equivalent to the rule sequence. This improves efficiency by searching

for a large match once instead of conducting several smaller searches. This has

a precise mathematical construction in algebraic graph transformation [Ehr+06].

Concurrent rules and other forms of rule manipulation have been implemented

in AGG’s second version [RET11]. The AGG tool also contains a graph parser

for testing membership of a graph to a particular graph language, and a consis-

tency checker that tests whether a graph grammar preserves certain user-defined

conditons. Finally, AGG offers critical pair analysis, an algebraic graph transfor-

mation technique for detecting conflicts between rules. One practical application

of critical pair analysis used by AGG is determining conflicts of parallel refactor-

ing operations in object-oriented software [MTR05]. Another use of critical pair

analysis is determining confluence of a set of graph transformation rules [Plu93].

If confluence holds, then the system is globally deterministic in spite of local

non-determinism.

2.2.4. GROOVE

Graph-based Object-oriented Verification (GROOVE) [Gha+12] is a model check-

ing tool for object-oriented systems based on graph transformation. Graphs

model system states and graph transformation rules model transitions. GROOVE’s

primary concern is the generation, storage and exploration of a complete state

space of a graph grammar. Consequently, the focus of research is on improving

the efficiency and usability of the state space, for example by symmetry reduction

or by the merging of multiple transition steps.

GROOVE operates on directed, labelled graphs with optional node and edge

typing. Nodes are labelled with types and boolean flags, while edges have only

one textual component to their labels. Nodes can be attributed with an edge

from a node pointing to a special node representing a data value 3. Type graphs

3This is how typed attributed graphs are defined in the theory of attributed graph transfor-
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are available to formally define a well-typed graph. Rules are based on the alge-

braic approach with negative application conditions: early versions of GROOVE

implemented SPO-based rules with NACs [Ren04], but it is not clear if that has

persisted to newer versions of the tool. GROOVE supports some sophisticated

constructs for rules. One such construct is a regular expression, which is similar

to the path expressions of PROGRES. They allow the matching of paths of ar-

bitrary length. A powerful and distinguishing feature of GROOVE is its nested

quantified rules [Ren06b], enabling for instance rules to be matched and applied

at all matching subgraphs of the host graph in one step.

Due to its main application domain in state space generation, GROOVE’s de-

fault behaviour is to arbitrarily apply any rule at any point in time. However,

GROOVE also supports priority-based rule application, similar to AGG’s layer-

ing, as well as a small set of textual control constructs. There are multiple ways

to generate and explore the search space. Depth-first and breadth-first strategies

are used to explore the full state space, while various linear strategies are available

if the state space is too large or if the graph transformation rules are known to

be confluent (all computation paths lead to the same result). GROOVE also im-

plements a heuristic isomorphism-checking algorithm based on graph certificates

that characterise the isomorphism classes of graphs [Ren06a].

2.2.5. GrGEN.NET

GrGEN.NET [JBK10] is a system for programmable graph transformation with

a heavy emphasis on high performance. It was initially developed for compiler

optimisation, specifically the identification of program structures that could be

mapped to rich instructions, instructions that efficiently compose operations oth-

erwise achieved by multiple standard instructions [Gei+06; SG07]. It has since

been expanded to a general purpose tool for graph rewriting called GrGEN.NET

[JBK10], named because it compiles a graph rewriting specification into .NET

modules.

GrGEN.NET’s graphs are typed, attributed graphs with multiple inheritance

on node and edge types. Both directed and undirected graphs are usable. Rules

are based on the SPO approach with negative application conditions and condi-

tions on types and attributes. DPO rules and non-injective matching are options,

giving users some flexibility in writing rules. In addition, rules are parametrised:

rules can return matched and non-deleted host graph items to be passed into a

subsequent rule application. Rule application is controlled with a domain-specific

language called graph rewrite sequences [JBK10]. Rules and their sequential com-

position are basic graph rewrite sequences; logical constructs and regular expres-

sions are used to combine them. For example, given graph rewrite sequences S1
and S2, S

+
1 succeeds if S1 is executed at least once without failing, and S1&S2

succeeds if both S1 and S2 can be executed in sequence.

GRGEN.net offers some powerful optimisations. Rules are automatically con-

catenated if possible [MG07], similar to AGG’s concurrent rules. In addition,

mation (see Part III of [EPT04])
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rules may contain variables that match arbitrary subgraphs, allowing rules to

recursively match frequently occurring patterns in the host graph [HJG08]. In

this way an imperative-like graph rewrite sequence can be replaced by a single

graph rewriting rule.

2.2.6. PORGY

PORGY [And+11] is a graph transformation tool aimed at the specification and

visualisation of graph rewriting systems. Particular emphasis is placed on in-

teraction with the complete state space through a graphical environment, which

includes informative graph layouts, a difficult problem to solve for large host

graphs. To address this, PORGY is built on top of of the graph visualisation

framework Tulip [Aub+12].

One distinguishing feature of PORGY is its graph model. PORGY operates on

port graphs, a generalisation of labelled directed multigraphs wherein each node

has a set of connection points, or ports, to which edges are attached. Informally,

each node is assigned a set of ports, and each edge label is assigned a pair of ports,

denoting the source and target ports of that edge. The use of port graphs was

motivated by case studies for graph-based modelling in the natural sciences. Port

graph rewriting is defined in [AK08] along with a semantics formed by encoding

port graphs (called labelled multigraphs with ports or multigraphs in the paper)

as a term rewriting system.

Another distinguishing feature is its strategy language for rewriting, a concept

lifted from term rewriting that generalises the control constructs of the aforemen-

tioned graph transformation systems. Strategy-based rewriting is distinct from

the approaches seen so far. Rule application is localised to a subgraph of the

host graph. More formally, a located graph is a graph with a position, a subgraph

specifying the area for rule application. A rule is only applicable if the match has

a non-empty intersection with the position. The strategy language is built from

iterated rule applications and expressions that transform the position of the host

graph. These are combined with control constructs such as sequential composi-

tion and conditional branching. The strategy language provides a precise way

to control rule matching in terms of application order and application location

without adding any extra syntax to the rules themselves. PORGY’s strategy

language has an operational semantics [FKP14]; a more informal description is

in [FKN12].

2.3. Summary

Over the decades since its inception, graph transformation has developed a strong

theoretical framework with several standout approaches. We directed our atten-

tion towards algebraic graph transformation, specifically the double-pushout ap-

proach. We presented the relevant theory for an extension of the double-pushout

approach that supports arbitrary relabelling of nodes and edges, the foundation

for the subject of this thesis: the graph programming language GP 2.
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Originally introduced for more theory-based research goals, graph transfor-

mation has become much more application-oriented, with a particular focus on

software engineering and system modelling. Indeed, this was the application

driving the development of PROGRES, a sophisticated language and tool set

for programmable graph transformation. The persistent research in graph trans-

formation coupled with the rise of high-level modelling approaches to software

engineering has resulted in a surge of development of graph transformation tools,

of which we have presented a small selection. Each has their own unique char-

acteristics, but we can identify typed and attributed graphs as a commonality,

especially useful for software engineering applications. Another common feature

is the single pushout theoretical base, while double-pushout rules are either not

available or offered as an option. We speculate this is due to the increased flexi-

bility of single pushout rules, and perhaps ease of implementation.

GP 2, the graph programming language and the subject of this thesis, is de-

fined in the next chapter. It is much simpler than the languages presented here,

particularly in its type system and its straightforward graph transformation rules.

The DPO formalism and the lack of features such as path expressions means that

the function of a rule can be precisely determined from an inspection of its graph-

ical representation. GP 2 lacks expressive power but the rules, expressions and

control constructs allow the construction of powerful and elegant graph programs.
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3. The GP 2 Programming Language

3.1. Introduction

In 2001, Habel and Plump showed that nondeterministic application of a rule

from a set of double-pushout rules, labelled over a finite label alphabet, is com-

putationally complete using only the control constructs of sequential composition

and as-long-as-possible iteration [HP01]. This motivated the design of a small,

visual and high-level graph programming language GP 1 [PS04] (then called GP)

allowing graph transformation rules to be organised with those control constructs.

The language was extended, most significantly with an if-then-else conditional

branch statement, for reasons of practicality from the programmer’s point of view.

The extension did not have a significant impact on the simplicity of the language.

GP 1 has a small formal semantics to support concrete reasoning on graph pro-

grams, one of its primary design goals [Plu09]. Most recently, Plump published

a revised and extended graph programming language dubbed GP 2 [Plu12]. The

paper defines GP 2 and justifies the changes made to GP 1. In this chapter we

provide a definition of GP 2 without reference to older versions of the language,

including modifications made since the publication of that paper.

3.2. Conditional Rule Schemata

According to previous definitions, graph transformation rules can only contain

fixed labels. They modify graphs structurally and change the labels of nodes and

edges. This is useful, but insufficient for a practical graph programming language.

For example, when computing the shortest path between two nodes, we might

want to perform the following transformation:

0 1
1

5
2

⇒ 0 1
1

3
2

This rule could be used in a shortest path algorithm where a node label is

the distance of that node from a particular start node (in this case the left-hand

node of the rule), and an edge labels is the distance between a pair of nodes. The

left-hand side models a possible suboptimal configuration: the distance given by

the label of the right-hand node is 5, but the path from left to right has a total

distance of 3. The rule updates the right-hand node label to record this improved

distance.

To construct a complete graph program to simulate this algorithm, one would

have to write such a rule for every possible combination of integers since the
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update(a,b,x,y,z:int)

x

1

y

2

a
z

3

b
⇒ x

1

y

2

a
a+b

3

b

where(a + b < z)

Figure 3.1.: A conditional rule schema

program could be executed on varying input graphs with different node and

edge labels. Of course, this would lead to an infinite number of rules. GP 2’s

conditional rule schemata provide an easy way to overcome this problem: nodes

and edges are labelled with expressions which may contain variables. It is also

possible to write a condition which forbids the application of the rule if the

condition evaluates to false under a particular assignment of variables to values.

With these features, the infinite set of rules can be crisply expressed as the single

conditional rule schema in Figure 3.1.

Outside of GP 2, this concept is known as attributed graph transformation,

where computations on labels (attributes) are made available to the programmer.

Attributed graph transformation has been formalised in the context of the DPO

approach, but the complexity of the formalism1 conflicts with GP 2’s philosophy

of a simple syntax and semantics. As we shall see, GP 2 uses unbounded lists

of integers and strings as the data type for labels which are easier to formally

reason about.

Conditional rule schemata are expressive, graphical and intuitive. The function

performed by a rule is clear from the graphical description, and only a basic level

of programming knowledge is required to construct such a rule. The presented

schema neatly captures the procedure of updating the shortest distance between

two nodes. The condition ensures that the label of the right-hand node is updated

only if the sum of the edge labels is strictly less than its current label. The rule

schema can be applied to any integer-labelled graph.

A label consists of an optional mark and an expression. The finite set of

marks allows nodes and edges to be distinguished in a visual way appropriate

for programming in a graphical editor. Expressions are typed according to a

hierarchical type system. Figure 3.2 shows the subtype relations and the domains

of the five types.

The abstract syntax of Figure 3.3 formally defines a GP 2 label. The nonter-

minals are used as the sets of expressions that they define. IVariable, CVariable,

SVariable, AVariable, LVariable represent the sets of variables of type int, char,

string, atom and list respectively declared by the rule schema. Node repre-

sents the set of left-hand side node identifiers in the schema, and the nonterminal

Character represents the fixed character set of GP 2.

1For example, the definition of a graph includes an infinite algebra, and special node and edge
sets for encoding attributes. See Part III of [Ehr+06] for details.
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list

⊆

atom

⊆
int

⊆
string

⊆

char

(Z ∪ Char∗)∗

⊆

Z ∪ Char∗

⊆
Z

⊆
Char∗

⊆

Char

Figure 3.2.: GP 2’s type hierarchy

Label ::= List [ Mark ]

List ::= empty | Atom | LVariable | List ‘:’ List

Mark ::= red | green | blue | grey | dashed | any
Atom ::= Integer | String | AVariable

Integer ::= Digit {Digit} | IVariable | ‘–’ Integer | Integer ArithOp Integer |
(indeg | outdeg) ‘(’ Node ‘)’ |
length ‘(’ (AVariable | SVariable | LVariable) ‘)’

ArithOp ::= ‘+’ | ‘-’ | ‘∗’ | ‘/’

String ::= ‘ “ ’ {Character} ‘ ” ’ | CVariable | SVariable | String ‘.’ String

Figure 3.3.: Abstract syntax of rule schema labels

The marks grey and dashed are reserved for nodes and edges respectively; the

remaining colours are shared. The purpose of the any mark is explained shortly.

List expressions are formed by concatenating atomic expressions with the colon

operator2 ‘:’ The dot operator ‘.’ is used to concatenate strings. The empty list is

signified by the keyword empty; it is displayed graphically as a blank label. Integer

expressions are variable, constants and the unary operators indeg, outdeg, and

length composed with the standard arithmetic operations. The degree operators

take a node identifier in the interface and return the appropriate degree of the

host graph node to which it is matched. The length operator returns the length of

its variable argument according to the variable’s type and the value it is assigned

during matching. We do not allow these operators in left-hand side labels for

cosmetic reasons. We explicitly separate “wordy” textual application conditions

from application conditions implied by the structure and variables in the left-

hand side. This restriction does not restrict the functionality of rule schemata:

a degree operator in a left-hand side label is equivalent to an integer variable

in the same location with a schema condition (introduced shortly) requiring the

variable to equal the value of the degree operator.

Restrictions are placed on left-hand labels in order to preserve the uniqueness

of the match. To illustrate the point, consider the expression s.t with s, t ∈
SVariable. When matched with the string constant “foo”, there are two possible

assignments excluding those involving the empty string. Either s = “f”and t =

2Not to be confused with the cons operator in languages such as Haskell, which adds a single
element to a list.
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“oo”, or s = “fo”and t = “o”. This is undesirable because if there is an expression

on the right-hand side of the schema involving s or t, then the graph produced

by the rule will no longer be unique. We wish to preserve the uniqueness given

by the double-pushout framework. Thus we define a simple expression below and

require that expressions in the left-hand side of a rule schema are simple.

Definition 8. An expression e ∈ List is simple if

(i) e contains no arithmetic, degree or length operators.

(ii) e contains at most one occurrence of a list variable.

(iii) each occurrence of a string expression in e contains at most one occurrence

of a string variable.

Writing GP 2 programs has motivated the inclusion of two constructs in rules

to act as a substitution for multiple rules that match the same pattern except

for a difference in mark or edge direction. The first of these is the bidirectional

edge, represented graphically by an edge without arrows. It matches an edge

independent of its direction in the host graph. A similar construct is the any

mark which was introduced because it is convenient to be able to find a match

with any mark. Items marked any are called wildcards. A wildcard in the left-

hand side of a rule can match an appropriate host graph item independent of

its mark (but not an unmarked node). Bidirectional edges and wildcards are

allowed in the right-hand side if there is a preserved counterpart item in the left-

hand side. When such a rule is applied, the direction or mark of the matched

host graph item is unchanged. Semantically, these constructs are equivalent to

nondeterministic choice from a set of appropriate rules. For example, a rule

schema with a bidirectional edge is equivalent to the set of two distinct rule

schemata with standard edges such that the edge direction is the same in the

left- and right-hand side. We will see later that GP 2 offers nondeterministic

choice from a rule set.

The abstract syntax of rule schema conditions is given in Figure 3.4. A single

boolean expression is called a predicate. Boolean operators compose predicates

in the standard way. Conditions are used to impose restrictions on morphisms by

querying the structure of the host graph or by interrogating the values assigned

to variables. The type predicates (such as int(l)) check if their List argument

has a particular type. Arbitrary list expressions can be compared for equality,

and integer expressions can be compared with standard relational operators. The

edge predicate checks for the existence of an edge between two nodes, but it is

normally used in a negative form. It has an optional third argument used to test

the label of the edge connecting the two nodes.

We conclude the section with a formal definition of a conditional rule schema.

Definition 9. A rule schema (L ← K → R) is a rule such that L and R are

graphs over Label, K’s nodes are unlabelled, all expressions in L are simple, and

all variables in R also occur in L. A conditional rule schema (L ← K → R, c)

is a rule schema and a condition c ∈ Condition such that all variables in c also

occur in L.
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Condition ::= Type ‘(’ List ‘)’ | List (‘=’ | ‘!=’) List |
Integer RelOp Integer |
edge ‘(’ Node ‘,’ Node [‘,’ Label] ‘)’ |
not Condition | Condition (and | or) Condition

Type ::= int | char | string | atom
RelOp ::= ‘>’ | ‘>=’ | ‘<’ | ‘<=’

Figure 3.4.: Abstract syntax of rule schemata conditions

Remark 4. We remind the reader that the interface is implicitly denoted by the

node identifiers. All nodes with matching identifiers in the left-hand side and

right-hand side are present in the interface as unlabelled nodes, and the interface

contains no edges.

Remark 5. We sometimes abbreviate conditional rule schema to rule schema or

rule when it is clear that we are referring to graph transformation rules in the

GP 2 language.

3.3. Semantics of Rule Schemata

Conditional rule schemata differ substantially from regular rules. Standard rules

do not contain variables or conditions, so additional mechanisms are required to

construct a match and a double-pushout. There are four stages to the application

of a rule schema L to a graph G. (1) Find a premorphism g: L→ G. (2) Check

if there exists an assignment α of variables in L to values such that g is label-

preserving with respect to α. (3) Check if the condition holds under α. (4) If a

valid match and assignment has been found, apply the rule to G by evaluating

the labels in R and using the double-pushout construction in Section 2.1.2. This

involves using the assignment to evaluate all expressions in the rule schema and

relabelling G accordingly.

As seen in the previous section, labels in the rule schema are taken from the

syntactic category Label. Input graphs are labelled with values from the semantic

domain L = (Z ∪ Character∗)∗ ∪ ((Z ∪ Character∗)∗×M), where Character is a fi-

nite set of characters and M is the finite set of marks {red, blue, green, grey, dashed}.
To describe the procedure of applying a rule schema, we require the following def-

inition:

Definition 10. An assignment is a family of mappings α = (αX)X∈{I,C,S,A,L}
where:

• αI : IVariable→ Z

• αC : CVariable→ Character

• αS : SVariable→ Character∗

• αA : AVariable→ Z ∪ Character∗
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Expression (e) Value (eg,α)

empty The empty sequence.

Digit {Digit} The integer represented by e.

−x −xg,α

x⊕ y xg,α ⊕Z y
g,α

indeg(n) The indegree of gV (n).

outdeg(n) The outdegree of gV (n).

length(v), v ∈ LVar The number of atoms in α(v).

length(v), v ∈ AVar
1 if α(v) ∈ Z; the number of characters in
α(v) if α(v) ∈ Char*.

length(v), v ∈ SVar The number of characters in α(v).

“{Character}” The string represented by e.

Variable α(e)

s1 . s2 The string concatenation of sg,α1 and sg,α2 .

e1 : e2 The list concatenation of eg,α1 and eg,α2 .

Figure 3.5.: Definition of eg,α

• αL : LVariable→ (Z ∪ Character∗)∗

Given a premorphism g: L→ G, an assignment α, and a label l = em with e ∈
List and m ∈M, the value lg,α ∈ L is the pair (eg,α,m). eg,α ∈ (Z ∪ Character∗)∗

is the value of the List e when evaluated with respect to the premorphism g

and assignment α. In addition, we define cg,α ∈ B, which is the value of the

rule schema condition when evaluated with respect to the premorphism g and

assignment α. Both are defined inductively in Figure 3.5 and Figure 3.6.

In the tables, e, e1, e2 ∈ List, x, y ∈ Integer, m,n ∈ Node, s1, s2 ∈ String, and

c1, c2 ∈ Condition. The symbol ⊕Z signifies the integer operation represented by

⊕. Division by zero is undefined. Similarly, ./Z is the integer relation represented

by ./. Also note that the integer (string) represented by a sequence of digits

(characters) is unique.

Definition 11. rg,α = (Lg,α ← K → Rg,α) is the instance of r with respect to

g and α, where Lg,α and Rg,α are the graphs L and R after the replacement of

their labels l with lg,α.
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Condition (c) cg,α = true⇔

int(e) eg,α ∈ Z

char(e) eg,α ∈ Character∗

string(e) eg,α ∈ Character∗

atom(e) eg,α ∈ Z ∪ Character∗

e1 = e2 eg,α1 = eg,α2

e1 6= e2 eg,α1 6= eg,α2

x ./ y xg,α ./Z y
g,α

edge(m,n) ∃e ∈ EG | sG(e) = gV (m) ∧ tG(e) = gV (n)

edge(m,n, e) ∃e ∈ EG | sG(e) = gV (m) ∧ tG(e) = gV (n) ∧mG(e) = eg,α

not c1 cg,α1 = false

c1 and c2 cg,α1 = true = cg,α2

c1 or c2 cg,α1 = true ∨ cg,α2 = true

Figure 3.6.: Definition of cg,α

Definition 12. Given a conditional rule schema r = (L ← K → R, c), and

graphs G,H over L, G directly derives r, denoted G ⇒r,g H (or G ⇒r H), if

there exists a premorphism g: L→ G and an assignment α such that

(i) g is a morphism Lg,α → G.

(ii) cg,α = true.

(iii) G⇒rg,α,g H.

We do not introduce new notation when defining direct derivations over condi-

tional rule schemata as opposed to traditional rules. When the notation is used,

it will be clear from the context which type of direct derivation is being described.

Even with the extension of traditional rules to conditional rule schemata,

uniqueness of double-pushout direct derivations is preserved. Only simple ex-

pressions are allowed in L, so for any conditional rule schema and premorphism

g, there is at most one assignment that makes g a morphism. Uniqueness (up to

isomorphism) of the transformed graph follows from this and the uniqueness of

the graph H in the double-pushout diagram of Figure 2.1.

We demonstrate the application of a conditional rule schema to a graph by an

illustrative example in Figure 3.7. The rule is declared at the top with a rule

identifier followed by a list of variable declarations. Multiple variables of the same

type can be declared simultaneously. Declarations of variables of different types

must be separated by a semicolon. Node 1 on the left-hand side and node 3 on

the right-hand side have the mark grey, and the edge 1 → 3 on the right-hand

side has the mark dashed.

The rule bridge is applied to the lower left graph. The upper square of graphs

depicts the instantion of bridge with respect to the premorphism gV : (1 7→
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bridge(s,t:string; a:atom; n:int; x,y:list)

a:x

1

n

2

s
y

3

t
⇒ a

1

x:n

2

s
n*n

3

t

s.t

where (a=0 or a="a") and not edge(1,3,s.t)

and outdeg(1) >= indeg(3)

a:x

1

n

2

s y

3

t ⇒

7→

α, g

a

1

x:n

2

s
n*n

3

t

s.t

7→

α, g

0:1:2

1

3

2

"o"
4

3

"k" ⇒

↓ g

0

1

1:2:3

2

"o"
9

3

"k"

"ok"

↓

0:1:2 3
"o"

4
"k"

2

-1 0

⇒ 0 1:2:3
"o"

9
"k"

"ok"

2

-1 0

Figure 3.7.: Declaration and application of a conditional rule schemata

1, 2 7→ 2, 3 7→ 3) (gE defined in the obvious way) and the assignment α: (a 7→
0, x 7→ 1 : 2, n 7→ 3, y 7→ 4, s 7→ “o”, t 7→ “k”). After variable assignment, g is

label-preserving and hence a morphism. In addition, the condition clearly holds

with respect to g and α. Therefore the rule can be applied to the host graph to

give the lower right graph.

3.4. Graph Programs

GP 2 programs are composed by defining rule schemata and organising them

using a small set of control constructs. It has already been established that

nondeterministically applying rules from a set, sequentially composing rules and

iterating subprograms is sufficient for computational completeness [HP01]. How-

ever, GP 2 offers more control constructs for usability. The abstract syntax of

GP 2 programs is shown in Figure 3.8.

A program is a list of three types of declarations: rule declarations, described in
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Prog ::= Decl {Decl}
Decl ::= MainDecl | ProcDecl | RuleDecl

MainDecl ::= Main ‘=’ ComSeq

ProcDecl ::= ProcId ‘=’ [ LocalDecl ] ComSeq

LocalDecl ::= ( RuleDecl | ProcDecl ) { LocalDecl }
ComSeq ::= Com {‘;’ Com}
Com ::= RuleSetCall | ProcCall

| if ComSeq then Comseq [else ComSeq]

| try ComSeq [then Comseq] [else ComSeq]

| ComSeq ‘!’

| ComSeq or ComSeq

| ‘(’ ComSeq ‘)’

| break | skip | fail
RuleSetCall ::= RuleId | ‘{’ [RuleId { ‘,’ RuleId}] ‘}’
ProcCall ::= ProcId

Figure 3.8.: Abstract syntax of GP 2 programs

the previous section; the declaration of the main procedure at which computation

starts; and other procedure declarations, which provide a way to organise long

programs with local rules and subprograms. There must be exactly one main

declaration. At its core, a GP 2 program is a sequence of commands.

The behaviour of the control constructs is informally described here; a formal

operational semantics is presented later. The program environment is the host

graph which is manipulated by conditional rule schemata. Therefore a rule call

is the basic unit of computation. GP 2 provides the rule set call, a nondeter-

ministic choice from a set of rules. Failure occurs if a match does not exist for

any rule in the set. A procedure call executes the command sequence of that

procedure. Procedures are non-recursive and are essentially macros, in that a

procedure call can be substituted by its command sequence up to relabelling of

rule names (this point is elaborated shortly). There are two conditional branch-

ing statements. Their behaviour is unlike in a typical programming language

because the condition is an arbitrary command sequence as opposed to the more

common boolean expression. Branching depends on the success or failure of the

condition. The condition can modify the host graph; the two branches differ

in how the host graph is handled after the condition finishes execution. The

if-then-else branch discards the changes made during execution of the condi-

tion regardless of the branch taken, while try-then-else keeps the changes if the

condition terminates with a valid graph. GP 2 introduced the try-then-else

statement to allow preservation of changes made by the conditions of branching

statements. The loop command ‘!’ iterates its command sequence for as long

as possible. The choice command or nondeterministically chooses one of its two

subprograms. The break command is used to exit a loop without discarding

changes to the host graph made in the current loop iteration. The final two com-
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mands, skip and fail, are a convenience to the user to simplify some common

patterns. An example of a small GP program, with rule schemata omitted, is

given below.

Main = start; Middle; end

Middle = {foo; bar}!
Program execution starts at the main procedure’s command sequence. The

rule start is applied, followed by an execution of the procedure Middle. Pro-

cedures with no local declarations offer no extra functionality. They are used to

enhance readability. The program would operate equivalently if the procedure

identifier Middle were replaced by its command sequence ({foo; bar}!). Middle

nondeterministically repeatedly applies either foo or bar until neither foo nor

bar can be applied to the working graph. If this happens, the loop terminates,

and the rule end is applied once. The program then terminates since there are

no commands remaining.

In the example, the procedure acts only as a textual placeholder for an interme-

diate command sequence. Procedures can declare their own rules and procedures.

Declarations in the Main procedure have global scope and can be seen by any

procedure. Declarations within any other procedure are visible only to that pro-

cedure. This allows definitions of rules with the same name in multiple places.

When executing a procedure’s command sequence, a rule local to that procedure

has precedence over a global rule with the same name. We have yet to use local

procedures and local rules, but we anticipate that this will be useful for complex

GP 2 programs. In particular, rules that perform “garbage collection” on the

host graph are frequently used; it would be cumbersome to give a unique name

to each cleaning-up rule for multiple procedures.

3.5. Operational Semantics

GP2 has a formal semantics, presented here in the style of Plotkin’s structural

operational semantics [Plo04]. The inference rules, shown in Figure 3.9 and Fig-

ure 3.10, inductively define a small-step transition relation → on configurations.

A configuration represents a program state during any stage of program execu-

tion. This could be either an unfinished program execution, represented by a

command sequence and the current graph; the final graph, after all commands

have been executed; or a failure state, represented by the special element fail:

→ ⊆ (ComSeq×GL)× ((ComSeq×GL) ∪GL ∪ {fail}).3

The rules contain meta-variables, considered to be universally quantified. R

stands for a rule set call, C,P, P ′ and Q stand for command sequences, and G

and H stand for graphs in GL. The notation G ;R means that there does not

exist a graph H such that G ⇒R H. Each rule has a premise and a conclusion

separated by a horizontal bar. →+ is the transitive closure of →. For example,

[Call1] reads: if the working graph G directly derives H by R, then the command

3GL is the class of totally labelled graphs over the label alphabet L.
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[Call1]
G⇒R H

〈R,G〉 → H
[Call2]

G;R

〈R,G〉 → fail

[Seq1]
〈P,G〉 → 〈P ′, H〉

〈P ;Q,G〉 → 〈P ′;Q,H〉
[Seq2]

〈P,G〉 → H

〈P ;Q,G〉 → 〈Q,H〉

[Seq3]
〈P,G〉 → fail

〈P ;Q,G〉 → fail
[Break]

〈break;P, G〉
〈break, G〉

[If1]
〈C,G〉 →+ H

〈if C then P else Q,G〉 → 〈P,G〉
[If2]

〈C,G〉 →+ fail

〈if C then P else Q,G〉 → 〈Q,G〉

[Try1]
〈C,G〉 →+ H

〈try C then P else Q,G〉 → 〈P,H〉
[Try2]

〈C,G〉 →+ fail

〈try C then P else Q,G〉 → 〈Q,G〉

[Loop1]
〈P,G〉 →+ H

〈P !, G〉 → 〈P !, H〉
[Loop2]

〈P,G〉 →+ fail

〈P !, G〉 → G

[Loop3]
〈P, G〉 →∗ 〈break, H〉
〈P !, G〉 → H

Figure 3.9.: Inference rules for core commands [Plu12]

sequence R executed on G gives the graph H.

Reading the inference rules for the conditional branching commands

if-then-else and try-then-else tells us the following: [If1]: If the applica-

tion of the command sequence C to the graph G succeeds, generating the graph

H, then continue by applying the command sequence P to G. [If2]: If the first

attempted application of the command sequence C to the graph G fails, then con-

tinue by applying the command sequence Q to G. [Try1]: If the first attempted

application of the command sequence C to the graph G succeeds, generating the

graph H, then continue by applying the command sequence P to H. [Try2]: If

the first attempted application of the command sequence C to the graph G fails,

then continue by applying the command sequence Q to G.

The difference is the behaviour on success of the condition. if-then-else is

non-destructive: any changes made to G by C are ignored before the then branch

is executed. On the other hand, try-then-else will retain the modified graph

H, but it uses the initial graph G if C fails.

The inference rule abstracts away from the structure of the condition: since rule

application is nondeterministic, applying the command sequence C to a graph

G may produce different results. In particular, it possible that some executions

fail while others succeed. However, it would be sound for an implementation

to examine only one computation path and act on the result. Conditions are

written to control program flow, so it would be expected that the condition is

written in a rigorous manner, namely that it either always succeeds or always

fails. It is unnecessary to explicitly program nondeterminism into a condition;

this behaviour can be achieved more concisely with the or command.

The loop command also contains some subtleties. Consider a looped sequence
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[Or1] 〈P or Q,G〉 → 〈P,G〉 [Or2] 〈P or Q,G〉 → 〈Q,G〉

[Skip] 〈skip, G〉 → G [Fail] 〈fail, G〉 → fail

[If3] 〈if C then P,G〉 → 〈if C then P else skip, G〉

[Try3] 〈try C then P,G〉 → 〈try C then P else skip, G〉

[Try4] 〈try C else Q,G〉 → 〈try C then skip else Q,G〉

[Try5] 〈try C,G〉 → 〈try C then skip else skip, G〉

Figure 3.10.: Inference rules for derived commands [Plu12]

of three rule applications (r1; r2; r3)!. [Loop1]’s meaning is unsurprising: if

executing the loop body on G gives the graph H, execute the loop body again

on H. [Loop2] states that if the loop body fails at any point, exit with graph G.

Then, if G ⇒r1 H and G ;r2 H, the loop exits after failing to match r2 while

discarding the changes made by r1. The break statement is provided to retain

any intermediate changes in a loop body. To achieve this, one can write (r1; try

r2 else break; r3)!. If r1 succeeds and r2 fails, then the loop body reduces to

(break; r3)! after applying the inference rules [Seq2] and [Try2]. The [Break]

rule is used to obtain the premise for [Loop3], which exits the loop while retaining

the working graph H.

Derived commands are those which can be expressed by a command sequence

using the core commands. In other words, they are abbreviated forms of common

GP 2 control mechanisms. After defining the semantic function we will show how

these commands are equivalent to expressions consisting of only core commands.

The semantic function J K defines the meaning of GP 2 programs by mapping

an input graph G to the set of all possible results of executing a program P on

G. The application of JP K to G is written JP KG. The result set may contain,

besides proper results in the form of graphs, the special values fail and ⊥. The

value fail indicates a failed program run while ⊥ indicates a run that does not

terminate or gets stuck. Program P can diverge from G if there is an infinite

sequence 〈P, G〉 → 〈P1, G1〉 → 〈P2, G2〉 → . . . Also, P can get stuck from G if

there is a terminal configuration 〈Q, H〉 such that 〈P, G〉 →∗ 〈Q, H〉.

Definition 13 (Semantic function). The semantic function

J K : ComSeq→ (G(L)→ 2G(L)∪{fail,⊥}) is defined by

JP KG = {X ∈ (G(L) ∪ {fail}) | 〈P, G〉 +→X}
∪ {⊥ | P can diverge or get stuck from G}.

A program can get stuck in two situations: (1) it contains a command

if C then P else Q or try C then P else Q such that C can diverge from a

graph G, or (2) it contains a loop B! whose body B can diverge from a graph
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G. The evaluation of such commands gets stuck because none of the inference

rules for if-then-else, try-then-else or looping are applicable. Getting stuck

always signals some form of divergence.

The semantic function of Definition 13 suggests a straightforward notion of

program equivalence.

Definition 14 (Semantic equivalence). Two programs P and Q are semantically

equivalent, denoted by P ≡ Q, if JP K = JQK.

It is easy to see that the following equivalences between derived commands and

core commands hold. Let null be the rule schema ∅ ⇒ ∅ where ∅ is the empty

graph. Then, for all programs C and P :

• skip ≡ null,

• fail ≡ {}, the empty set of rule schemata;

• if C then P ≡ if C then P else null;

• try C then P ≡ try C then P else null.

• try C ≡ try C then null else null.

A non-trivial equivalence is required to show that or is a derived command:

P orQ ≡ if remove!; {create, null}; zero then P else Q,

Here remove is a set of three rule schemata that delete arbitrary edges, loops and

isolated nodes, create is the rule schema that creates a single 0-labelled node,

and zero matches a single 0-labelled node and does nothing. The condition

uses the non-determinism of the rule set call to select a branch, leading to the

non-deterministic choice between P and Q.

Finally, it may appear as though the if-then-else command can be used in

a straightforward way to simulate the try-then-else command. However, this

is not possible:

try C then P else Q 6≡ if C then C;P else Q.

The command sequences C = skip or fail, P = skip and Q = skip form a

counterexample to semantic equivalence. try-then-else simplifies to skip and

hence cannot fail, but if-then-else can fail.

3.6. Summary and Discussion

We have described GP 2, a graph programming language that is smaller and

simpler than related languages and tools. GP 2 programs are based on high-level

graph transformation rules that are written graphically with a small set of textual

syntax for conditions, labels, and control flow. The underlying DPO formalism

ensures that the behaviour of these rules is local, free from side-effects, and
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easily understandable from examination of the two rule graphs. These features

make it straightforward for a programmer to construct graph programs without

needing to delve into lower-level code such as the notoriously error-prone pointer

structure in a language such as C. GP 2’s lack of complexity facilitates a small

abstract syntax and complete formal semantics for the language which provides a

solid base for language implementors and for formal reasoning. Furthermore, we

believe that GP 2 is a very accessible language, an important factor because graph

transformation is currently quite obscure as a programming paradigm. Indeed,

the area may be intimidating to newcomers because of its substantial theoretical

foundations. Hence GP 2 may not only serve as a programming environment,

but as a fun method of teaching graph transformation.

From a practical point of view, GP 2 is quite flexible as a programming lan-

guage. It is capable of solving graph algorithms in an elegant and declarative way,

an area with a wide berth of applications but one that is relatively unexplored

in the graph transformation field. Published GP solutions to graph algorithms

include Dijkstra’s shortest path algorithm [PS04], vertex colouring [Plu09] and

the computation of Euler cycles [Plu12], with more examples later in the thesis.

Another common class of GP programs is recognition of graphs by reduction, one

example being acyclic graph recognition [Plu12]. A potential use case for graph

reduction is the specification and verification of pointer structures in imperative

languages [DP06a; Dod08]. A more involved GP program is minimisation of finite

automata [PSS11]. A limitation of the language is that its simple type system

does not make GP 2 especially suitable to applications in software engineering,

especially in comparison to other existing graph transformation systems.

46



4. Extension to Rooted Graph Programs

4.1. Introduction

The bottleneck for using graph transformation rules in programming is the inef-

ficiency of graph matching. In general, to match the left-hand graph L of a rule

within a host graph G requires time size(G)size(L). As a consequence, linear graph

algorithms are slowed down to polynomial complexity when they are recast as

programmed graph transformation systems.

One way to speed up graph matching, going back to Dörr’s book on efficient

graph rewriting [Dör95], is to equip rules and host graphs with distinguished

nodes, so-called roots, and to match roots in rules with roots in host graphs. The

same idea underlies Fujaba’s requirement that each method must have a “this”

node at which graph matching starts [NNZ00; Det+12]. A related concept in

GrGen is rules that return graph elements to restrict the location of subsequent

rule applications [Gei+06]. The PORGY environment uses a similar model: rules

can only be applied at a certain position, where a position is a subgraph of the

host graph. The position can be moved as part of the program [And+11].

Dodds and Plump [DP06b; Dod08] have considered rooted graph transforma-

tion by using uniquely labelled nodes as roots. They show that graph matching

can be achieved in constant time if rules have a connected left-hand graph and

host graphs have bounded node degrees. In addition, they use rooted rules in a

rule-based extension of C that allows to check the shape safety of pointer ma-

nipulations [DP06a]. We generalise the approach of [DP06b; Dod08] from graph

transformation rules to graph programs by extending GP 2 with rooted rule

schemata. We present a fast and complete algorithm for matching rooted rule

schemata.

The main contribution of this chapter is to identify fast rule schemata, a large

class of rooted conditional rule schemata, and to prove that they can be applied

in constant time if host graphs have a bounded node degree. In practice, the

latter assumption is often satisfied. For example, traffic networks, digital circuits

and social networks often have an upper bound on the number of edges attached

to nodes. The subsequent chapters demonstrate that high performance rooted

graph programs can be written, in some cases approaching the runtime of tailored

C implementations.

4.2. Rooted Graph Transformation

We extend the definitions of Section 2.1.1 and Section 2.1.2 to include distin-

guished root nodes in both rules and host graphs. Our approach is to treat
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Figure 4.1.: A non-natural pushout and a natural pushout

rooted graphs and root-preserving morphisms as “first-class citizens” instead of

encoding roots by unique labels. Unlike [DP06b; Dod08], we allow multiple roots

in rule schemata and host graphs. This is useful in certain situations. For ex-

ample, for host graphs with disconnected components, it may be desirable to

perform a rooted computation on each component.

Definition 1. A rooted graph is a pair 〈G,PG〉 where G is a graph and PG ⊆ VG
is a set of roots. A morphism g : G→ H is root-preserving if g(PG) ⊆ PH .

Remark 6. Rooted graphs (over some label set) and root-preserving morphisms

form a category.

Definition 2. A rooted rule r = 〈〈L,PL〉 ← 〈K,PK〉 → 〈R,PR〉〉 is a pair of

root-preserving inclusions 〈K,PK〉 → 〈L,PL〉 and 〈K,PK〉 → 〈R,PR〉 where L

and R are totally labelled.

In Section 2.1.2 we observed that generalising from totally-labelled graphs

to partially-labelled graphs introduces ambiguity because two distinct double-

pushouts can be constructed from the same rule. To guarantee uniqueness, we

enforce a stricter condition on pushouts, namely that they are also pullbacks. The

same issue occurs with rooted graphs. Figure 4.1 is the same diagram as Fig-

ure 2.2 except that labelled nodes are replaced by root nodes, where root nodes

are nodes with thick borders. The left diagram is not a pullback because there

exist root-preserving morphisms a′ and b′, while a root-preserving morphism m

does not exist. The right diagram is a pullback because there does not exist a

root-preserving morphism b′.

Let C be the category of partially labelled rooted graphs and root-preserving

graph morphisms over some fixed label alphabet L. Let C be the category of

partially labelled unrooted graphs and graph morphisms. Given a graph G in C,
we write G for the underlying unrooted graph. By choosing the root set to be

empty, we see that C is a subcategory of C.

Lemma 2. Given morphisms C
c←− A b−→ B in C such that square (1) is a pushout

in C, square (2) is a pushout in C if PD = b′(PC) ∪ c′(PB).
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Proof. Let PD = b′(PC)∪ c′(PB). Then b′ and c′ are root-preserving. Commuta-

tivity of (1) implies commutativity of (2). To show that (2) satisfies the universal

property, consider root-preserving morphisms C
c−→ E

b←− B such that c◦ c = b◦ b.
By the universal property of (1), there is a unique morphism d : D → E such

that d ◦ b′ = c and d◦c′ = b. We have to show that d is root-preserving. Consider

a root x in D. Then, by assumption, x ∈ b′(PC) or x ∈ c′(PB). Without loss of

generality, assume the former. Then there is a root x′ in C such that b′(x′) = x.

Hence d(x) = d(b′(x′)) = c(x′), so d(x) is a root in E.

Lemma 2 allows us to extend the algorithmic pushout construction given in

Section 2.1.2 (repeated below) to rooted graphs. Given a rooted graph G and a

root-preserving injective morphism g : L → G satisfying the dangling condition,

a direct derivation G⇒r,g H is constructed as follows:

1. To obtain D, remove all nodes and edges in g(L−K) from G. For all v ∈ VK
with lK(v) = ⊥, define lD(gV (v)) = ⊥. Define PD = PG − gV (PL − PK).

2. Add all nodes and edges, with their labels, from R − K to D. For e ∈
ER−EK , sH(e) = sR(e) if sR(E) ∈ VR−VK , otherwise sH(e) = gV (sR(e)).

Targets are defined analogously.

3. For all v ∈ VK with lK(v) = ⊥, define lH(gV (v)) = lR(v). The resulting

graph is H.

4. Define PH = PD ∪ hV (PR − PK) where h is the morphism R→ H.

The first and fourth steps extend the original construction with the specification

of the root nodes of D and H. This construction can be characterised by a double-

pushout in the category of rooted graphs and root-preserving morphisms, where

the left pushout is natural. We illustrate this with an example. Consider the

rule rooted rule at the top of Figure 4.2. Applying this rule to the graph G

containing a single root node gives two double-pushouts, shown at the bottom

of Figure 4.2 1. Only the left double-pushout is natural, and this is the double-

pushout obtained by the construction above. Explicitly, PD = PG − gV (PL −
PK) = {v} − gV ({v} − ∅) = ∅, and PH = PD ∪ hV (PR − PK) = ∅ ∪ ∅ = ∅, where

v is the node in G.

Now that we have established a DPO-based framework for rooted graphs and

rooted rule application, we can trivially extend GP 2 to support rooted host

graphs and rooted conditional rule schemata (abbreviated to rooted rule schemata

1By convention, interface nodes are unrooted.
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Figure 4.2.: A rooted rule schema and two double-pushouts

or rooted rules). We have seen an example of a rooted rule at the top of Fig-

ure 4.2. Root-preserving morphisms force rule roots to match only rooted host

graph nodes. Consequently, efficient rooted graph matching can be implemented

straightforwardly by adding a dedicated data structure to store only the root

nodes of the host graph for fast querying, which coordinates nicely with the

formal definition of a rooted graph.

The rewards of rooted graph matching cannot be fully reaped if the host graph

contains many root nodes. One potential cause is rules that create new root

nodes. It is important to classify which classes of rooted rules and rooted graph

programs admit a theoretically efficient execution time in order to write fast graph

programs. This topic is explored in the rest of this chapter. First we consider

matching rules structurally, before adding label matching in order to extend the

matching algorithm to GP 2’s rule schemata.

4.3. A Matching Algorithm for Rooted Rules

We present a matching algorithm for rooted rules adapted from the matching

algorithms in [DP06b; Dod08]. The cited papers assume a single root: we extend

the previous algorithms by allowing multiple roots in rules and host graphs.

Moreover, it is possible to designate arbitrary nodes as roots, in contrast to using

a unique label to identify a root node.

First we introduce some notation used in the algorithm. We write Dom(gV )

and Dom(gE) for the sets of nodes and edges on which a premorphism g is defined.

Given partial premorphisms f, g : G→ H, f extends g by a node v if Dom(fV ) =

Dom(gV ) ∪ {v} and Dom(fE) = Dom(gE). Also, f extends g by an edge e if

Dom(fE) = Dom(gE) ∪ {e} and Dom(fV ) = Dom(gV ) ∪ {sG(e), tG(e)}. Given

a rooted graph 〈L,PL〉 and p ∈ PL, an edge enumeration for p is a list of edges

e1, . . . , en such that {e1, . . . , en} is the set of all edges undirectly reachable from

p, e1 is incident to p, and for i = 2, . . . , n, ei is incident to the source or target of
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Rooted Rule Matching Algorithm

Input: rooted graph 〈G,PG〉, left-hand side of a rooted rule 〈L,PL〉, edge enu-
meration ep1 , . . . , epn for each p ∈ PL.

Output: Set A of all injective root-preserving premorphisms L→ G.

1: A← {h : L
par−−→ G | Dom(h) = ∅}

2: while there exists an untagged root p ∈ PL do

3: A0 ← {h : L
par−−→ G | h is injective and root-preserving, and

4: there exists h′ in A such that h extends h′ by p}
5: tag p

6: for i = 1 to n do

7: Api ← {h : L
par−−→ G | h is injective and root-preserving, and

8: there exists h′ in Api−1 such that h extends h′ by epi}
9: if s(epi) ∈ PL then tag s(epi)

10: if t(epi) ∈ PL then tag t(epi)

11: end for

12: A← Apn
13: end while

14: return A

Figure 4.3.: The Rooted Graph Matching Algorithm

some edge in {e1, . . . , ei−1}.
The algorithm of Figure 4.4 takes as input a rooted host graph 〈G,PG〉, the

left-hand side 〈L,PL〉 of a fixed rooted rule, and an edge enumeration ep1 , . . . , epn
for each p ∈ PL. We assume that each node in L is reachable from some root,

hence the edge enumeration contains all edges in L. The algorithm computes all

matches of 〈L,PL〉 in 〈G,PG〉 by incrementally constructing a set A of partial

root-preserving premorphisms h : L
par−−→ G. The roots in L are tagged when they

are matched; initially they are all untagged.

Proposition 1 (Correctness of Rooted Graph Matching). Given a rooted host

graph 〈G,PG〉, the left-hand side 〈L,PL〉 of a fixed rooted rule schema in which all

nodes are undirectly reachable from a root, and an edge enumeration ep1 , . . . , epn
for each p ∈ PL, the Rooted Rule Matching algorithm returns the set of all

injective root-preserving premorphisms g : L→ G.

Proof. First, the algorithm is guaranteed to terminate since |PL| is finite, and

there are only a finite number of premorphism extensions possible as L has a

finite number of nodes and edges.

By induction, we show that once the algorithm terminates, A contains all total

root-preserving injections L → G. Let {p1, . . . , pr} ⊆ PL be a set of root nodes

in L that are not reachable from one another. Define Li to be the subgraph of

L consisting of all nodes and edges reachable from p1, . . . , pi. Note that if two or

more of L’s roots are connected, Li may contain more than i roots, but it cannot
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contain more than i roots from the set {p1, . . . , pr} by construction. We show

that after the ith iteration of the while loop, the following statement holds:

{h : Li → G | h is injective and root-preserving} ⊆ A.

Without loss of generality, let pi be the ith root node of L chosen by the

algorithm. Consider i = 1. First, A0 becomes the set of all premorphisms that

map p = p1 to a root node in G. Then the algorithm enters the for loop. In

the first iteration, the premorphism set A1 becomes the set of all injective, root-

preserving extensions to premorphisms in A0 by e1, the first edge in the edge

enumeration of p1. If a premorphism in A0 has no such extension, then it is

discarded and can no longer be considered. This process repeats, extending the

premorphisms edge by edge and pruning non-injective and non-root-preserving

premorphisms until the for loop terminates. At this point, by definition of an edge

enumeration, all nodes and edges in L1 have been considered. A is assigned the set

An, which is precisely the set of all total injective, root-preserving premorphisms

Li → G. Hence the statement holds.

Next, assume the statement holds for Lk where k < r. That is, A contains all

total injective root-preserving premorphisms Lk → G. Now consider the k + 1st

iteration of the while loop. pk+1 is not reachable from any of {p1, . . . , pk} because

all root nodes reachable from them were tagged in a previous iteration of the while

loop. Therefore pk+1 is untagged, and not in the domain of any premorphism in A.

A mapping from pk+1 to an unmatched root in G is added to all premorphisms in

A. Then, as before, nodes and edges are added until all edges in the enumeration

for (L, pk+1) and their incident nodes have been matched, after which A becomes

the set of injective root-preserving morphisms from Lk+1 → G.

The program terminates after the rth iteration of the while loop. All nodes

in L are undirectly reachable from some root, hence Lr = L. It follows that A

contains all total injective root-preserving premorphisms L→ G.

Remark 7. We assume that rules are fixed because the context is the execution of

graph programs. In algorithm analysis, it is customary for programs (containing

rules) to be fixed and running time to be measured in terms of the input (host

graph) size. We further assume internal data structures and functions that allow

unit-time execution of the following operations:

1. Integer and character comparisons.

2. Adding a variable-to-value mapping to an assignment.

3. Adding a rule-item-to-host-graph-item mapping to a morphism.

4. Mapping a variable to a value within an assignment.

5. Labelling a right-hand side item with the value from a list or string variable

that is not repeated in the right-hand side.

6. Checking that an assignment contains a value for a specific variable.
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7. Determining the type of a variable

These are all reasonable assumptions that could be supported by standard

data structures. We elaborate on points 4 and 5: if lists in host graph labels are

stored in a doubly-linked list data structure, a list value in an assignment can be

represented by assigning a pointer to the first element of that list.

Theorem 1. Let L⇒ R be a rooted rule such that each node in L is undirectly

reachable from some root node. The algorithm Rooted Graph Matching runs in

constant time on L⇒ R if there are upper bounds on the maximal node degree

and the number of roots in host graphs.

Proof. Consider a host graph G. Let l be the number of roots in L. Let b and r

be upper bounds on the node degree and the number of roots in G respectively.

We count the number of times the set of partial premorphisms L
par−−→ G is

updated. There are at most l iterations of the while loop and, within each

iteration, at most m = |EL| iterations of the for loop. Note that both l and m

are constants by our fixed-rule assumption.

Consider the execution of the first iteration of the while loop. First, a single

root from L is matched with all unmatched roots in G. Since no roots have been

matched yet, r partial morphisms are created. Then, in each iteration, either

a single edge or an edge and a node is added to the domain of one of more

morphisms in the current set. Since node degrees in G are bounded by b, no

more than b additions can take place. This gives a worst-case running time of

r + b|A0| + b|A1| + ... + b|Am−1|. The set A0 contains at most r morphisms, A1

contains at most br morphisms, etc. It follows that the running time is

r + br + b2r + . . .+ bmr = r

m∑
i=0

bi.

Next, the second root of L is matched. One root inG has already been matched,

so the maximum size of the new morphism set is bmr(r− 1). Hence, by the same

argument as before, the execution time after the second iteration of the while

loop is

r

m∑
i=0

bi + r(r − 1)

2m∑
i=m

bi.

After the l-th and final iteration of the while loop, the total execution time is

bounded by

r

m∑
i=0

bi + r(r − 1)

2m∑
i=m

bi + . . .+ r(r − 1) . . . (r − l + 1)

lm∑
i=(l−1)m

bi.

This is an intimidating expression, but it is a constant. It is not a sharp bound

for rules with more than one root node. To simplify the proof, we made some
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Rooted Rule Schema Matching Algorithm

Input: rooted graph 〈G,PG〉, left-hand side of a rooted rule 〈L,PL〉, edge enu-
meration ep1 , . . . , epn for each p ∈ PL.

Output: Set A of all pairs of injective root-preserving premorphisms L → G
and and total assignments α.

1: A← {〈h : L
par−−→ G, ∅〉 | Dom(h) = ∅}

2: while there exists an untagged root p ∈ PL do

3: A0 ← {〈h : L
par−−→ G, αh′〉 | h is injective and root-preserving, and

4: there exists 〈h′, αh′〉 in A such that h extends h′ by p}
5: tag p

6: Update Assignment(A0)

7: for i = 1 to n do

8: Ai ← {〈h : L
par−−→ G, αh′〉 | h is injective and root-preserving, and

9: there exists 〈h′, αh′〉 in Ai−1 such that h extends h′ by ei}
10: if s(ei) ∈ PL then tag s(ei)

11: if t(ei) ∈ PL then tag t(ei)

12: Update Assignment(Ai)

13: end for

14: A← Apn
15: end while

16: return A

Figure 4.4.: The Rooted Graph Matching Algorithm

assumptions for worst-case running time that are mutually exclusive in the case

|PL| > 1. If the while loop is executed once for each root, then no roots in L

are connected, hence it is impossible for the for loop to ever execute |EL| = m

times. Conversely, if the for loop executes |EL| = m times, then all roots must be

connected, implying a single execution of the while loop. Therefore, for left-hand

sides with more than one root, the derived bound will never be reached.

4.4. Extension to Rooted Rule Schemata

We extend the rooted rule matching algorithm to match GP 2 labels. Specif-

ically, the algorithm must compare expressions of labels in the left-hand side

with values in host graph labels, and compute assignments of values to variables.

These assignments are used when evaluating the application condition of the rule

schema and when calculating the labels of added and relabelled items during rule

application.

The revised algorithm of Figure 4.4 takes the same input. However, the output

is now a set of pairs. The algorithm incrementally constructs a set A of pairs

of partial morphisms h : L
par−−→ G and partial assignments αh. By a partial

assignment we mean a partial function Var(L)→ (Z ∪ Char∗)∗, where Var(L) is
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the set of variables occurring in L. The structure of the algorithm is the same.

The differences are the contents of the set assigned to the Ai variables, and the

two calls to the auxiliary procedure Update Assignment. Its purpose is to compare

two corresponding labels in existing partial matches and update the assignment

if the labels match.

Update Assignment is defined in Figure 4.5. It uses its own auxiliary procedure

Check, defined in Figure 4.7. In the pseudocode, any right-justified text is a

comment, and & operator returns the position in the list of its argument.

Both procedures use the restriction on list and string variables in left-hand side

labels as defined in Definition 8. Concretely, lists in L are of the form a:l:a′ where

a and a′ are possibly empty sequences of atoms and l is an optional list variable.

Similarly, string expressions are either a string constant, a character variable or

w.s.w′ where w and w′ are sequences of string constants and character variables,

and s is a string variable. To verify a label in the left-hand side with a host graph

label x, it suffices to check if x has a prefix that matches with a and a suffix that

matches with a′. Then the list variable l can be assigned to the possibly empty

remainder of x without further checking. The matching of string expressions is

analogous.

Update Assignment iterates over its input, a set of pairs of partial premor-

phisms and partial assignments. For each pair 〈h, α〉, it iterates over all untested

labels l in the domain of h and compares them with the label of their images h(l).

First, the marks of the labels are tested for compatibility. If the marks differ, or

l’s mark is any and h is unmarked, then the labels do not match and the Reject

subprocedure is called, which removes the working premorphism-partial assign-

ment pair from the set and exits the inner for loop. Otherwise, a while loop is

used to compare the labels one atomic expression at a time.

It is illustrative to demonstrate the key features of the algorithm with an

example. Let x = 1 : 2 : m : 4 : 5 be a label in the left-hand side, where m

is a variable of type list. Let y1 = 1 : 2 : 3 : 4 : 5 and y2 = 1 : 2 : 5 be

two host graph labels, corresponding to the notation in line 4 of the algorithm.

By inspection, we see that x matches y1 with the assignment m = 3. On the

other hand, x and y2 do not match because y2 contains three atoms while any

label which matches x contains a minimum of four atoms. We step through

Update Assignment comparing x with both y1 and y2 starting at line 8. This is

summarised in Figure 4.6. Each row describes an iteration of one of the two while

loops in the algorithm. The first five columns of the table are the values of the

variables in the pseudocode. Variables a, b1 and b2 iterate through the lists x, y1
and y2 respectively. They are always at the same position in their respective list.

The operations column displays the comparison of the atoms and the variable

assignments that precede the following row, with reference to their line numbers

in Figure 4.6. We have yet to present the Check procedure. For now it suffices

to state that if Check is passed two constants as its first two arguments, it tests

their equality.

In the first two iterations both b1 and b2 match a because the values are the

same integer constant. Once the list variable in x is reached in the third row,
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Update Assignment

Input: Set A of pairs of partial injective root-preserving premorphisms L → G
and and partial assignments α.

Output: Set A of pairs of partial injective root-preserving morphisms L → G
and and partial assignments α.

1: Update Assignment

2: for each (h, α) in the input set do

3: for untagged items l ∈ Dom(h) do

4: x← label(l); y ← label(h(l))

5: . label = lG(x) if x ∈ VG; label = mG(x) if x ∈ EG
6: if (mark(x) 6= mark(y)) ∨ (mark(x) = any ∧ mark(y) = none)

7: then Reject

8: atom a← x.first; atom b← y.first;

9: while a 6= NULL do

10: if a is a list variable then break

11: if b = NULL then Reject . |x| > |y|
12: if ¬Check(a, b, α) then Reject

13: a← a.next; b← b.next

14: end while

15: if a = NULL then . check if |x| = |y|
16: if b = NULL then exit else Reject

17: else

18: atom temp← b;

19: a← x.last; b← y.last;

20: while a not a list variable do

21: if &b = &temp.prev then Reject . |x| > |y|
22: if ¬Check(a, b, α) then Reject

23: a← a.prev; b← b.prev

24: end while

25: α← α ∪ {(a.first 7→ temp), (a.last 7→ b)}
26: exit

27: end for

28: Tag l

29: end for

Figure 4.5.: The Update Assignment procedure
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a b1 temp1 b2 temp2 Operations

1 1 - 1 -
L12: Check(1, 1, α) = True

L13: a← a.next; b← b.next

2 2 - 2 -
L12: Check(2, 2, α) = True

L13: a← a.next; b← b.next

m 3 - 5 -

L10: a is a list variable: break

L18: temp← b

L19: a← x.last; b← y.last

5 5 3 5 5
L22: Check(5, 5, α) = True

L23: a← a.prev; b← b.prev

4 4 3 2 5

L21: &b2 = &temp.prev: Reject y2

L22: Check(4, 4, α) = True

L23: a← a.prev; b1 ← b1.prev

m 3 3 - - L25: m.first 7→ 3,m.last 7→ 3

Figure 4.6.: Executions of Update Assignment

the first loop breaks explicitly. A variable temp is assigned the current value

of b. The purpose of temp is to keep track of the start position of the list to

which m will be assigned if the labels successfully match. Note that every atom

to the left of temp in y has been explicitly checked against the corresponding

atom in x. If any of these atoms are checked again, the host list is too short to

match the rule list. The algorithm continues in the fourth row in which a, b1
and b2 store the last element in their respective lists. The check passes and the

variables are moved backwards through the list. In the fifth row, b2 now refers to

the predecessor of temp2. This means that the atom 2 in the second position of

y2 has been reached a second time, therefore y2 must contain fewer atoms than

x, and a match cannot exist. y2 is rejected. On the other hand, y1 is still in

coordination with x as a = 4 = b1. The variables a and b1 are again moved

back through their lists, and the list variable m in x is reached for a second time.

This means that all atoms in the list have been compared. The list variable m

is assigned the unexamined sublist of y1 which is precisely temp : . . . : b. In this

example, temp = b, so m is a list with one atom. m could be assigned a list

of arbitrary length, but it suffices to supply the assignment of m with since the

other elements can be accessed through the list operators in y.

Some aspects of the algorithm have not been covered by the examples. The first

while loop terminates if the end of x is reached (a = NULL) without encountering

a list variable (line 9). In this case, if b is not NULL, then y contains more

elements than x, hence the two lists cannot be matched and the algorithm calls

Reject. Otherwise, the algorithm exits without further action as there are no new

variable assignments to add to the mapping (line 16). Similarly, if the end of y

is reached (b = NULL) before the end of x, then Reject is called (line 11). We

assume that variable-value mappings are implicitly checked for conflicts against
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Check

Input: An atomic expression a in a left-hand side label, an atom b in a host
graph label, and a partial assignment α.

Output: True if a and b can be matched. False otherwise.

1: Check

2: case a is

3: integer constant: if b ∈ Z then return (a = b) else return false

4: string constant: if b ∈ Char∗ then return (a = b) else return false

5: character variable: if b ∈ Char then α← α ∪ {(a 7→ b)}; return true

6: else return false

7: integer variable: if b ∈ Z then α← α ∪ {(a 7→ b)}; return true

8: else return false

9: atomic variable: if b ∈ Z ∪ Char∗ then α← α ∪ {(a 7→ b)}; return true

10: else return false

11: string expression w.s.w′ where w,w′: sequence of characters

12: and character variables, s: string variable:

13: if b ∈ Z then return false

14: char c← a.first; chard← b.first;

15: while c 6= s do

16: if d = NULL then Reject

17: if c is a character variable then α← α ∪ {(c 7→ d)};
18: else if c 6= d then return false

19: c← c.next; d← d.next

20: end while

21: temp← d; c← a.last; d← b.last

22: else while c 6= s do

23: if &d = &temp.prev then return false

24: if c is a character variable then α← α ∪ {(c 7→ d)};
25: else if c 6= d then return false

26: c← c.prev; d← d.prev

27: end while

28: α← α ∪ {(a 7→ b)} . s.first 7→ temp, s.last 7→ d

29: return true

Figure 4.7.: The Check procedure
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an existing mapping in the assignment at the point which they are added.

Check takes three arguments. The first argument a is an atomic expression

in l, the second argument b is the corresponding atom expression in h(l), and

the third is the partial assignment α passed from Update Assignment. Check

returns false if the two expressions cannot be matched, otherwise it updates the

assignment accordingly and returns true.

In five of the six cases, Check either compares constants or performs a simple

type check. If the first argument is a variable, it updates the assignment. The

most interesting case is when a is a string expression with a variable. The expres-

sions on either side of the variable are deconstructed as sequences of character

constants and character variables. If b is also a string, then they are compared

analogously to the list comparison of Update Assignment: moving through both

lists and comparing or assigning characters, working backwards after the string

variable is located. As with list variables, string variable mappings are specified

by assigning locations to the first and last pointers of the variable.

Proposition 2 (Correctness of Rooted Schema Graph Matching). Given a rooted

host graph 〈G,PG〉, the left-hand side 〈L,PL〉 of a fixed rooted rule schema in

which all nodes are reachable from a root, and an edge enumeration ep1 , . . . , epn
for each p ∈ PL, the algorithm Rooted Graph Matching returns the set of all

pairs 〈g, α〉 where g : L → G is an injective root-preserving premorphism and

α : Var(L) → (Z ∪ Char∗)∗ is a total assignment such that g : Lα → G is label-

preserving.

Here Lα is the graph obtained from L by replacing each variable x with the

value α(x). According to the semantics of GP 2 (see Section section 3.3), g must

be label-preserving after this replacement, that is, it must be a graph morphism

Lα → G.

Proof. By Proposition 1, the premorphisms in the output pairs are injective and

root-preserving. The procedure Update Assignment tests all labels in L against

their images in G and generates appropriate mappings from variables to values,

hence all assignments are label-preserving.

4.5. Complexity of Rooted Rule Schemata

In this section, we analyse the complexity of the rooted graph matching algorithm

and the complexity of applying a conditional rule schema with a given match.

Here we assume that integer operations and character comparisons are computed

in unit time, which is consistent with the uniform cost criterion for random access

machines, the standard complexity model in algorithm analysis [AHU74; Ski08].

4.5.1. Fast Rule Schemata

Our matching algorithm assumes that each node in a left-hand graph is reachable

from some root. This alone does not guarantee that rule schemata can be applied

in time independent of the size of the host graph. To achieve this, we need to
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impose some restrictions on the form of rooted rule schemata. We will show that,

under mild assumptions on host graphs, rule schemata of the following form can

be applied in constant time.

Definition 3 (Fast rule schema).

A conditional rule schema L⇒ R is fast if:

1. Each node in L is undirectly reachable from some root,

2. Neither L nor R contain repeated list, string or atom variables

3. The condition c contains neither the edge predicate nor a test e1=e2 or

e1!=e2 where both e1 and e2 contain a list, string or atom variable.

The first condition ensures that matches can only occur in the neighbourhood

of roots. The second condition makes it unnecessary to check the equality of lists

or strings, or to copy them. The third condition rules out tests that require more

than constant time in the worst case.

Applying a conditional rule schema L⇒ R to a host graph G requires several

phases: finding a root-preserving match of L in G and constructing the induced

variable assignment; checking the dangling condition and the application condi-

tion; removing items from L−K; adding items from R−K; and relabelling nodes.

In the following we focus on the complexity of the matching phase because, in

the worst case, it is far slower than the other phases.

Lemma 3. Given a fast rule schema L ⇒ R and a host graph G, the proce-

dure Update Assignment compares each label in L in constant time with the

corresponding label in G.

Proof. Let s be the maximum number of characters in a single string expression

in L, and let t be the maximum number of non-list variable atoms in a single list

expression in L. By our assumption that L is fixed, s and t are constant.

In the worst case, the rule label l is a list containing a list variable and t non-list

variable atoms. Each of those atoms is a string expression with a string variable

and s characters. The whole list is a valid match to the corresponding host label

h, so all characters and atoms are checked.

Let us consider the execution of Check on a string expression as described

above. The number of character comparisons, pointer traversals and pointer

address comparisons are linear in s. All these operations take unit time. There

are t calls to Check, and a single assignment of the list variable to the unevaluated

sublist of h. By assumption, this takes unit time. Moreover, the list and string

variables do not occur anywhere else in L because L⇒ R is a fast rule schema, so

verifying consistency of the assignment also takes unit time. Overall the running

time is O(st), a constant.

Note that replacing the character constants with character variables would

not affect the complexity. We assume that adding a character assignment and

comparing against an existing character assignment takes unit time.
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Using Lemma 3, we can now show that fast rule schemata are matched in

constant time if both node degrees and the number of roots in host graphs are

bounded. The degree of a node v is the sum of the number of edges with source

v and the number of edges with target v.

Theorem 2. The Rooted Rule Schema Matching algorithm runs in constant time

for fast rule schemata if there are upper bounds on the maximal node degree and

the number of roots in host graphs.

Proof. The proof of Theorem 1 calculated an upper bound for the number of

times the set of premorphisms is updated. This is constant if the node degree

and number of roots in the host graph is bounded. A premorphism update adds

at most two items, a node and an edge, so each execution of Update Assignment

checks up to two labels for every premorphism in the set. By Lemma 3, these

executions take constant time. Therefore the total execution time is bounded

above by a constant.

Given a match of the left-hand side of a fast rule schema, checking the appli-

cation condition and the dangling condition, and deleting, adding and relabelling

items can be done in constant time. Hence we obtain the following corollary of

Theorem 2.

Corollary 1. Fast rule schemata can be applied in constant time if there are

upper bounds on the maximal node degree and the number of roots in host

graphs.

Proof sketch. Consider again a fast rule schema L ⇒ R with condition c and

a host graph G. By Theorem 2, constructing a premorphism g : L → G and

induced variable assignment α (or determining there is no such pair) requires

only constant time. We need to prove that the remaining phases of rule schema

application can be executed in constant time, too.

By Definition 3, the condition c is a boolean combination of predicates each

of which is either (1) a relational operator applied to integer expressions, or (2)

a test e1=e2 or e1!=e2 where e1 and e2 do not both contain list, string or atom

variables, or (3) a type check int(e), char(e), string(e) or atom(e). Under

our assumptions on the underlying operations, these checks can be performed

in constant time. Predicates of the form in (2) take constant time because no

comparisons are made between atom, string or list variables.

The dangling condition for an injective premorphism g : L→ G can be checked

by comparing the degree of each node v in L −K with the degree of its image

g(v). We assume a graph representation where nodes are stored together with

their indegree and outdegree. This operation then takes time of order |VL|, a

constant.

Given a match satisfying the dangling condition, removing the items in g(L−K)

can be executed in time proportional to |L|−|K|. Similarly, the addition of nodes

and edges takes time proportional to |R| − |K|. Finally, relabelling is a constant
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Figure 4.8.: A left-hand side L and a host graph G

time definition because there are no repeated string or list variables in the right-

hand side of a fast rule schema. There are at most |VK | relabellings, so the

execution time is proportional to |VK |.

Some concessions must be made in order for rooted rule schemata application

to operate in constant time. Bounded node degree is the first of these, but it is

often satisfied in practice. For example, traffic networks, digital circuits and social

networks often have an upper bound on the number of edges attached to nodes.

Furthermore, the overall time complexity is largely determined by the number of

root nodes in both the rule and the host graph. This is to be expected since the

number of root nodes available for matching will increase the nondeterminism of

the matching process. Indeed, if all host graph nodes were roots, then rooted

matching would be identical to traditional graph matching. For this reason, in

practice, we aim to minimise the number of root nodes.

4.5.2. Unbounded Node Degree

A topic of interest is the complexity of rooted graph matching when no restriction

is imposed on the node degree of the host graph. Consider the pattern graph L

and host graph G in Figure 4.8.

As L is fixed in our model, c is a constant. Lifting the bound on node degree

means that n is not a constant. Consider generating all premorphisms L → G

with the given matching algorithm. Labels are empty for all items in both graphs.

The roots are matched in unit time. There are n premorphisms for the first edge

in L. For each of those premorphisms, a further n− 1 can be generated from the

second edge. It is easy to see this gives
∑c

i=0(n− i) = O(nc). This is polynomial

in the branching factor. Observe that one could extend G with an arbitrary

number of edges incident to non-root nodes without increasing the time taken

to find a match: all of L’s edges are connected to the root node, therefore edges

not incident to the root node in G are not considered during search. Hence the

complexity is not a function of the size of the host graph, but a function of the

maximum node degree. This example is supported by the following theorem.

Theorem 3. The algorithm Rooted Graph Matching runs in polynomial time

for fast rule schemata if there is an upper bound on the number of roots in host

graphs.
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Proof. Following the proof of Theorem 1, and ignoring the constant factor of label

matching for simplicity, we arrive at the following expression for the algorithm

complexity.

r
m∑
i=0

bi + r(r − 1)
2m∑
i=m

bi + . . .+ r(r − 1) . . . (r − l + 1)
lm∑

i=(l−1)m

bi.

In this case, b is no longer constant as we do not assume a bound on the node

degree.

Using the equivalence

(k+1)m∑
i=km

bi ≡ (bm+1 − 1)bkm

b− 1

we can write the above expression as

r
bm+1 − 1

b− 1
+ . . .+ r(r − 1) . . . (r − l + 1)

(bm+1 − 1)b(l−1)m

b− 1
= O(b(lm+1))

Recall from Theorem 1 that l is the number of roots in L, m = |EL| and r is

the number of roots in the host graph. These are all constants. Therefore the

algorithm is polynomial in the degree of the host graph.

4.6. Summary and Discussion

We have defined rooted graph transformation, which augments host graphs and

rule graphs by the addition of an explicit subset of the node set of a graph.

The underlying idea is to support efficient graph matching by requiring that a

root node must only match a root node in the host graph. This is formalised

by the root-preserving morphism. We show that this fits neatly into the DPO

foundation of GP 2, and consequently augment GP 2’s graphs with root nodes.

The abstract nature of rooted graph transformation means that it can be adopted

by any graph transformation tool based on the algebraic approach 2.

By defining an abstract matching algorithm to generate all injective root-

preserving morphisms from left-hand sides of rules to host graphs, we identified

a class of fast rule schema and demonstrate that they are match in constant time

under certain restrictions on the host graph: the number of roots is bounded and

the maximum node degree is bounded. The first restriction is certainly reason-

able: a graph programmer who wishes to exploit root nodes would make an effort

to restrict the number of root nodes in the host graph. As the number of root

nodes approaches the number of nodes in the graph, the closer matching a fast

rule schema comes to matching an rule without root nodes. The second restric-

tion is a more significant concession, but we note that in practice host graphs

often have a bound on the node degree. For example, digital circuits, software

2We see no reason why rooted graph transformation cannot be transferred to SPO.
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models and intermediate representations of functional programs typically have

an upper bound on the number of edges attached to nodes.

Theoretical analysis of algorithm complexity considers the worst-case execution

time, which is seldom an accurate reflection of the cases handled in practice. We

highlight the restrictions on fast rule schema that prevent the comparison or

duplication of lists and string. In theory, GP 2’s lists are unbounded, but in

practice, lists and strings are frequently short enough to be manipulated very

quickly. If each node in the left-hand side of a rooted rule schemata is undirectly

reachable from some root, we expect it to perform well even when theoretically

ineffecient label computations are present. Furthermore, the algorithm presented

in this chapter is not practical for finding one match. An efficient implementation

would only seek one match with a depth-first search, in contrast to the breadth-

first algorithm that incrementally generated all matches. Chapter 6 puts the

theory into practice by executing fast rule schemata using the implementation of

GP 2 described in Chapter 5.
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5. Implementing GP 2

5.1. Introduction

The GP 2 language defined in the previous two chapters is a high-level, graphical

language with minimal textual syntax. There is a very large gap from GP 2 source

code to machine code, so a direct compilation to assembly, or even a slightly more

abstract representation such as LLVM’s intermediate representation, would be a

tremendous undertaking. Instead we use established higher level languages to ex-

ecute GP 2 programs, making use of the efficient optimising compilers developed

for those languages. With that in mind, this chapter describes two implementa-

tions of GP 2. The first is the GP 2 Reference Interpreter, a Haskell program

that parses and interprets GP 2 programs. As the name suggests, the goal of

this implementation is to provide a reference for future implementations and for

language developers. Therefore, the focus is not on performance, but on con-

cise, maintainable code with the capability of generating all solutions to a graph

program for verifying other implementations. The second is the GP 2 Compiler,

which compiles GP 2 programs into C code, using the C backend and runtime

system to execute the program.

Remark 8. Through this chapter we use the term backtracking in various contexts.

One type of backtracking, which we call rule backtracking, is undoing a rule

application in order to search for another match because a previous choice resulted

in a failure. Another type is graph backtracking, where a number of changes made

to the host graph are reversed in order to respect the language semantics. The

third type is match backtracking, where backtracking is performed during an

item-by-item search for a match.

We note here that first version of GP, GP 1, was implemented with a low-level

abstract machine for graph transformation called the York Abstract Machine

(YAM) [MP08a; MP08b]. The YAM is a bytecode interpreter that executes

YAM bytecode for graph transformation. This presented us with a decision to

make: should we extend GP 1 to support the new features introduced in GP 2,

or would we build a fresh implementation from scratch? We decided to abandon

the graph transformation abstract machine/bytecode interpreter model in favour

of direct compilation to C. Our justification is as follows:

Updated semantics. A fundamental difference between GP 1 and GP 2 is the

way the semantics handles nondeterminism. GP 1’s semantics [Plu09] are heav-

ily influenced by the nondeterministic behaviour of graph programs, with an

emphasis on completeness. For instance, a loop or a condition in a branching

statement fails if every execution of the loop body or condition respectively fails.
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Furthermore, the default behaviour of the GP 1 tool was to return all output

graphs, requiring large amounts of rule backtracking for most graph programs.

As a consequence, GP 1’s implementation was designed with rule backtracking

functionality as its chief priority. The YAM was heavily influenced by Warren’s

Abstract Machine, the stack-based backtracking abstract machine for Prolog.

While rule backtracking is desirable in some circumstances, it becomes impracti-

cal for complex programs and large host graphs. In addition, it is not especially

useful in practice: PROGRES implemented rule backtracking, but its successor,

FUJABA, removed the backtracking mechanics “since extensive experiences have

shown that it is seldom used” [Fis+00]. In their case, the lack of rule backtracking

also enabled the translation of their rules into object-oriented Java code.

GP 2’s semantics no longer enforces rule backtracking. The reason for this is

to allow for a more efficient implementation. This becomes clear upon examina-

tion of the behaviour of conditional branching statements. If an if-then-else

statement contains a condition that always fails, the GP 1 semantics forces the

execution of every nondeterministic execution before taking the else branch. This

is a source of great inefficiency in complex GP programs. On the other hand,

a GP 2 implementation may pick a single nondeterministic execution path and

proceed according to its outcome. This allows some interesting behaviour, for

instance the branch taken by an if-then-else statement may be chosen non-

deterministically if it were possible for the condition to fail and succeed under

different execution paths. We do not deem this to be problematic as we expect

users to write conditional branches that act in a controlled way. Due to the

changes in the language semantics, a sound implementation of GP 2 (that is, one

that respects the semantics) would not be required to provide rule backtracking.

This distinction in design philosophy means that an abstract machine tailored

for backtracking is not the most appropriate way to program a non-backtracking

language. Furthermore, the significant reduction in non-determinism makes gen-

erating equivalent C code more straightforward than a backtracking semantics

would allow.

Cutting out the middleman. Our primary goal for this implementation is to inves-

tigate how efficiently we can execute graph programs from very high-level source

code. A bytecode interpreter such as the YAM causes some runtime overhead

in reading and decoding the bytecode. In contrast, a C program generated by

a smart compiler has hard-coded information about the rules and control con-

structs of the source program, requiring little or no interpretation at runtime.

Another potential gain is that the generated C code is tailored for a specific GP

2 program, which could be extracted and used in a separate application domain.

If used in this way, the GP 2 system acts as a “graph algorithm generator”, taking

a high-level specification of a graph algorithm and producing C code to execute

the algorithm, in a similar way to Bison generating a C parser from a BNF-like

specification. Another benefit to the direct-to-C approach is that individual rules

and programs can be compiled independently to separate transformation units.

This would speed up compilation for users testing a single rule in a complex
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program, an option that is not provided by a bytecode interpreter.

We note that generating bytecode does not remove the possibility of a compiled

implementation; bytecode can also be compiled to a C program. This approach

has benefits in providing a clean interface between the front-end and the back-

end. This is an equally valid approch, perhaps even another means to the same

end. However, a two-step translation process may add unnecessary complications.

With a semantics that does not force rule backtracking in the implementation,

GP 2’s imperative-style control constructs map almost directly to the analogous

C constructs. Thus the translation step to C isn’t especially challenging for a

portion of the GP 2 language, and a direct compiler may enable more fine-grained

use of C’s low-level operations and flexible memory management than a byte code

compiler.

Deficiencies of the GP 1 implementation. The YAM takes as input a GP 1 pro-

gram compiled to YAM bytecode and an internal representation of the host graph.

It interprets and executes the bytecode on the host graph. It was written primar-

ily with performance in mind. In that respect, it can be considered a success: it

performed very well in a published benchmark with other graph transformation

tools on computing a graph transformation problem of exponential complexity

[Tae+08].

The highly-optimised implementation comes at the cost of readability, porta-

bility and maintainability. One of the goals of the YAM project was to provide

a general backend for graph transformation systems, including future versions of

GP, theoretically allowing any compatible system to use the YAM by compiling

its graph transformation rules and control constructs to YAM bytecode. This is

infeasible for several reasons. First, the YAM bytecode and internal graph repre-

sentation lack a formal syntax or general documentation, making it impractical to

generate input to the YAM. Second, the source code of both the compiler and the

YAM is extremely difficult to understand and maintain because of its untidiness

and lack of documentation. Third, the code is outdated. The implementation

was finished in 2008. Since then, new standards and definitions of the implemen-

tation languages (Haskell and C) have emerged. Because of this, and for other

reasons1, the source code does not compile. Furthermore, the binaries existing on

the University of York departmental machines crash on large computations, in-

cluding the published GP 1 program for generating Sierpinski triangles [Tae+08].

All of this means that the GP 1 system is no longer usable, and extending it to

support GP 2’s features, namely recoding the YAM and writing a compiler from

GP 2 to the YAM intermediate formats, would be far from a trivial task, and

would likely involve a complete reimplementation of the abstract machine along

with a compiler backend. While this would be a legitimate road to take from

an effiency point of view, from a research perspective it is more interesting to

explore a different path.

Before introducing the implementations, we present the underlying textual format

1GCC now reports errors when trying to compile the source code that we suspect may have
been (permissible but possibly risky) warnings in an older version.
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Main = rule!

a:s

1

"abc"

i

2

⇒

rule(a:atom; i:int; s:string)

where not edge(1,2)

a

1

"abc"

i

2

s

// GP program text

Main = rule!

// Rule Definitions

rule(a:atom; i:int; s:string)

[ (n0(R), a:s) (n1, i # grey) |

(e0, n0, n0, "abc") ]

=>

[ (n0(R), a) (n1, i) |

(e0, n0, n0, "abc")

(e1, n0, n1, s) ]

interface = {n0, n1}

where not edge(n0, n1)

Figure 5.1.: A GP 2 program in graphical and textual format

that acts as input to the Reference Interpreter and to the GP 2 Compiler.

5.2. GP 2 Textual Format

The GP 2 textual syntax is an adaptation of the format first proposed by San-

dra Steinert in her PhD thesis [Ste07]. A small GP 2 program with its textual

representation is given in Figure 5.1. Textual components of the program such

as the procedure names, control structures, variable declarations, lists and con-

ditions are equal in both formats. Graphs are specified by a square-bracketed

list of nodes and a list of edges separated by a vertical bar. A node has two

components: its identifier and its label. The optional marker (R) after a node’s

identifier is used to declare a root node (similarly (B) for bidirectional edges). An

edge contains its identifier, the identifier of its source and target, and its label.

If an item has a mark, a hash (#) separates the list from the mark. The host

graph is represented using the same syntax as the rule graph. The interface is

implicitly represented by the numbered nodes in the graphical representation but

explicitly stated as a set of node identifiers in the text. The format adheres to

the convention that only nodes are contained in the interface. Finally, C-style

single-line comments are allowed. A defines the concrete syntax and the context

conditions of GP 2’s textual format.

5.3. The GP 2 Reference Interpreter

We remind the reader of the declaration in Section ??. This section contains

extracts from a paper written by multiple authors [Bak+15], including the author

of this thesis.

5.3.1. Reference Interpreters: Uses and Requirements

A reference interpreter for a new programming language such as GP 2 has several

potential uses. Each has consequences for the way the reference interpreter is
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written and the facilities it provides.

An arbiter for programmers. A programmer working in a new language needs to

know whether what they are writing is a valid program, and whether the effect

of executing it is the effect they intend. To resolve such issues, the programmer

may want to use a reference interpreter as a black box, checking the output it

produces given their program as input. Or they may wish to look at a salient

part of the source-code for the interpreter, to confirm some aspect of the language

they are unsure about.

It follows that a reference interpreter should provide as output at least a report

whether a program is valid, and if so a clear representation of the result when it

is evaluated. It also follows that the source code for a reference interpreter should

be organised in such a way that salient components are easy to identify. For ease

of reading it should be written using a consistent style in a modest subset of a

suitable high-level language.

An arbiter for implementers. An implementer of a programming language, de-

veloping their own interpreter or compiler, needs a standard against which to

test the correctness of their implementation. There are two main respects in

which any implementation should agree with a reference interpreter as a defining

standard. They should agree which programs are valid, and for valid programs

they should agree the results of executing them. Like application programmers,

implementers too may wish sometimes to use the reference interpreter as a black

box, but at other times to consult its internal definitions.

There are additional requirements for this use, bearing in mind the likely devel-

opment or generation of many test programs. The representation of the reference

interpreter’s results for such programs should be amenable to automated com-

parison. This comparison presents particular challenges in GP 2 since behaviour

of programs may be non-deterministic, or programs may not terminate, or both.

The number of test programs may be large — there may even be arbitrarily many

test programs generated dynamically. So although performance is not a design

goal for the reference interpreter, its performance should be good enough to make

such multi-test comparisons feasible.

A prototype for application developers. If no production compiler has been devel-

oped for the language, or none is yet available to an application developer, they

may need to use a reference interpreter as an initial development platform. Dur-

ing the development of application programs, errors are common. So, for this use,

a reference interpreter should provide not only a check for valid programs, but a

rapid check with informative reports of errors. Yet elaborate error handling must

not obscure the definitional style in which the interpreter is written. Similarly, it

is desirable to have the option of some kind of trace or other informative report

to shed light on failures or unexpected results when a program is evaluated. Here

again, the machinery must not obscure the basic definitions for evaluation, nor

should it impose heavy performance costs when performance of the interpreter

has already been sacrificed in favour of simplicity.
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Figure 5.2.: Data flow of the reference interpreter

A prototype for implementation developers. As well as using a reference inter-

preter to verify correctness, implementers may wish to use it as the starting point

in the development of another interpreter or a compiler. The whole course of such

a development might even be defined as the successive replacement of interpreter

components by alternatives giving higher performance, or richer information, at

the cost of greater complexity. The advantage of this approach is that as each

replacement is introduced it can be checked as a new component in an already

tried system.

This use of a reference interpreter requires a modular design with simple and

clearly defined interfaces between components. Concerns should be separated so

far as possible, avoiding dependencies that are not strictly necessary. Options for

development by successive replacement may be further increased by choosing a

host programming system for the reference interpreter that has a well-developed

foreign-language interface.

5.3.2. Implementation

We describe the key components of the reference interpreter with the aim of

illustrating the simplicity, clarity, and conciseness of the implementation. A basic

knowledge of Haskell is useful but not essential to understand the content in the

following sections.

Figure 5.2 shows a data flowchart of the reference interpreter. It takes three

inputs: (1) a file containing the textual representation of a GP 2 program, (2) a

file containing the textual representation of a host graph, and (3) an upper limit

on the number of rule applications to be made before halting program execution.

It runs the program on the host graph, traversing either all nondeterministic

branches of the program or a single branch, at the behest of the user. The

output data is a complete description of all possible outputs.

The interpreter contains approximately 1,000 lines of Haskell source code. Fig-

ure 5.3 shows the module dependency structure of the interpreter and an indica-

tion of module sizes.

Parser. The parser has two components: (1) a host graph parser and (2) a

program text parser. Each individual parsing function takes a string as input

and attempts to match a prefix of the string to a particular syntactic unit. It
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Main
Interpreter

53 lines

Isomorphism
Checker
21 lines

Graph Printer
34 lines

Evaluator
99 lines

Parser
230 lines

Rule
Applier
53 lines

Graph
Matcher
43 lines

Graph
Library
76 lines

Label
Matcher
89 lines

Checker &
Transformer

118 lines

Lists &
Finite Maps

60 lines

AST
126 lines

Figure 5.3.: Module dependencies. A module points to any modules on which it
depends. Line counts exclude blank lines and comment-only lines

uses a library of parser combinators. Their purpose is to neatly compose the

parsing functions to cover standard parsing requirements such as alternation and

repetition. The parsing code is very similar in appearance to GP 2’s context-free

grammar: each nonterminal of the grammar is represented by a Haskell function

that parses the right-hand side of the grammar rule. For example:

gpMain :: Parser Main

gpMain = keyword "Main" |> keyword "=" |> pure Main <*>

commandSequence

The operators |> and <*> are binary functions: |> ignores the output of its

left parser and <*> sequences two parsers. Applications of keyword recognise and

discard a string argument, and commandSequence is another parsing function.

Main is a data constructor for the main node of GP 2’s abstract syntax tree.

Checking & Transformation. The checking and transformation phase extracts

semantic information from the AST, such as the types of variables specified in

a rule schema’s parameter list, and transforms both rule graphs and the host

graph into the data structure defined in the graph library. The internal graph

representation is a pair of maps from keys to labels for each of nodes and edges

separately. Node keys are integers. Edge keys are triples: source key, target

key and an integer. Node and edge labels are encoded into the node and edge

data types. Operations on graphs are concisely represented using Haskell func-

tions from the Haskell library Data.Map which implements maps efficiently as

balanced binary trees. Node and edge enumeration functions also support the

use of Haskell’s strong list-processing.

Label Matching. The label matching algorithm establishes whether a label from

a rule’s left-hand side can be matched with a label from the host graph. It takes

as input the current environment, the set of bindings for label variables, and the

two labels to be compared.

GP 2’s marks are encoded as an abstract data type and are directly comparable.

Lists are naturally encoded as Haskell lists, where each element is a GP 2 atom.
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Atoms occurring in the host graph are constants (integers, characters or strings),

while rule atoms are either constants, variables or a concatenated string. If a

match binds a variable, the binding must define a compatible extension of the

environment.

When comparing atoms, the interesting case occurs if a list variable is encoun-

tered. Since at most one list variable is allowed in a left-hand side, it is bound

to a host-label segment of determined length, by comparing the lengths of the

remainder of the rule label and the remainder of the host label. Matching fails if

too few host atoms remain.

Graph Matching. Given a rule graph L and a host graph G, the graph matcher

lazily constructs a list of GraphMorphisms. A GraphMorphism is a data structure

containing an environment, a mapping between nodes in L and the corresponding

nodes in G, and a similar edge map. We use association lists to represent these

small mappings, for simplicity and amenability to list processing. Morphisms

are generated in two stages. First the candidate NodeMorphisms are identified,

where a NodeMorphism is an environment and a node mapping. For each such

NodeMorphism, the matcher searches for compatible edge mappings and environ-

ment extensions to form a set of complete GraphMorphisms.

For each node lk ∈ L, the matcher constructs the list of all host nodes

[hk1 , . . . , hkm] that match lk with respect to label matching and rootedness.

An environment is paired with each host node. The result is a list of lists

[[h11 , . . . , h1m],...,[hn1 , . . . , hnm]] where n is the number of nodes in L. A

candidate node mapping is found by injectively selecting one item from each list.

The final step is to test each candidate mapping for compatibility with respect to

its environment. Haskell’s list comprehensions are perfectly suited for this task:

the list of lists is computed with a single nested list comprehension, while a second

list comprehension is responsible for collating the valid candidate mappings.

For each edge in L, we use a candidate node morphism to determine the re-

quired source and target for a corresponding edge in the host graph. The list

of candidate host edges is the list of host edges from that source to that target.

Each rule edge is checked against each candidate host edge for label compatibility,

supported by the environment passed from the node morphism.

Rule Application. Each of the GraphMorphisms produced by the graph matcher

is checked against a dangling condition and any rule conditions. If these checks

succeed, the rule application is performed in the following steps: delete edges,

delete nodes, relabel nodes, add nodes, relabel edges, add edges. For relabelling,

variables take their values from a GraphMorphism’s environment.

The dangling condition can be elegantly expressed as follows.

danglingCondition :: HostGraph -> EdgeMatches -> [NodeId] -> Bool

danglingCondition h ems delns =

null [e | hn <- delns, e <- incidentEdges h hn \\ rng ems]

The second argument is an edge map, obtained from a GraphMorphism. The

third argument is the set of nodes deleted by the rule. The function body specifies
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that no host edge e incident to any deleted node n may lie outside of the range

of the edge map ems.

The Evaluator. The evaluator applies a GP 2 program to a host graph, subject

to an upper bound on the number of rule applications. Often the same graph can

be reached through several distinct computational branches. Therefore, when

program execution is complete, an isomorphism checker is used to collate the list

of output graphs into its isomorphism classes. The output is as follows:

1. A list of unique output graphs, up to isomorphism, with a count of how

many isomorphic copies of each graph were generated.

2. The number of failures.

3. The number of unfinished computations. A computation is unfinished if the

bound on rule applications is reached before the end of the main command

sequence.

During program execution the evaluator maintains a list of GraphStates, one

for each nondeterministic branch of the computation so far. A GraphState is one

of: (1) a graph with its rule application count, (2) a failure symbol with its rule

application count, and (3) an unfinished symbol. Each GP 2 control construct

is evaluated by a function that takes as input a single GraphState and some

program data, returning a list of GraphStates. Only the application of a rule

can yield a GraphState with a changed graph. The rule application process is

the workhorse of the interpreter, so here by way of illustration is the top-level

defining equation for the evaluation of a rule-call command:

evalSimpleCommand max ds (RuleCall rs) (GS g rc) =

if rc == max then [Unfinished]

else case [h | r <- rs, h <- applyRule g $ ruleLookup r ds] of

[] -> [Failure rc]

hs -> [GS h (rc+1) | h <- hs]

Here max is the rule application bound, ds is a list of the rule and procedure

declarations in the GP 2 program, rs is a list of rules, and GS g rc is the current

graph state. GS is the GraphState constructor, g is the working host graph, and

rc is the number of rules that have been applied to g. The case-subject list

comprehension can be read as, “for all rules r in rs, apply r to g and produce

the list of all output graphs h.” Each individual rule application may produce

multiple output graphs; the list comprehension gathers every possible output into

a single lazily-computed list. If the computed list is empty, then no rule in rs was

applicable, and the list containing the single GraphState Failure is returned.

Otherwise, the output graphs are placed into a fresh list of GraphStates, each

with an incremented rule-application count.
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Main = link!

link(a,b,x,y,z:list)

x

1

y

2

a
z

3

b

where not edge(1,3)

⇒ x

1

y

2

a
z

3

b

Figure 5.4.: A GP 2 program for transitive closure

# nodes Single Result (s) All Results (s)

5 0.01 0.44
10 0.04 >5m
20 1.67 -
30 14.39 -
40 66.31 -
50 >5m -

Table 5.1.: Reference interpreter results for the transitive closure program

5.3.3. Performance Evaluation and Conclusions

Though not tuned for speed, the interpreter must run fast enough to allow its

use as a practical tool. While we wish to illustrate the practicability of the

interpreter, its performance is not a significant part of this thesis. Therefore, we

present only a sample of the results and supplementary discussion from the paper

[Bak+15]. The results presented here concern the transitive closure program of

Figure 5.4. The program is very simple, highly nondeterministic, and the output

graphs produced by the program are easy to verify. We used directed acyclic

paths, or linear graphs, to test the interpreter.

We compiled the interpreter using the Glasgow Haskell Compiler[Tea] version

7.6.3 with optimisations and profiling support enabled:

$ ghc -O2 -prof -fprof-auto -rtsopts -o gp2 Main.hs

All figures reported were obtained using a quad-core Intel i7 clocked at 3.4GHz,

with 8GB RAM, running 64-bit Ubuntu 14.04 LTS with kernel 3.13.0. The num-

ber of processor cores should not have a significant effect on the measured per-

formance of the single-threaded GP 2 interpreter. We ran benchmarks using the

following command

$ timeout --foreground 5m time \

gp2 +RTS -p -sgc.prof -RTS $GPOPT $PROG $GRAPH 10000

Table 5.1 summarises the results for the reference interpreter on the transitive

closure program. The timings presented are the sum of user and system time

reported by the UNIX time command. The extra costs of evaluating a program

in all-result mode go beyond those of generating all possible output graphs; the
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interpreter must also test them for isomorphism. Unsurprisingly, execution time

increases sharply with increasing size of host graph, putting many of the compu-

tations that completed in single-result mode beyond our five-minute execution-

time limit. This is especially potent for highly non-deterministic programs such

as transitive closure. In fact, there is a factorial growth in complexity as the host

graphs get larger: the linear graph with 5 nodes computes 866 output graphs

before isomorphism checking.

To our knowledge, none of the existing graph transformation systems has a

published implementation in the same spirit as our reference interpreter, making

this tool a novelty in the field. Indeed, it is quite striking that we have managed

to implement a graph transformation language in around 1,000 lines of code using

the lazy functional language Haskell. We have taken every opportunity to use

a Haskell strength — lazy list-processing, and in particular list comprehensions

for generate-and-test style definitions — to achieve this conciseness. However,

despite our observations about error reports and traces, we concede that our

current interpreter provides only a bare minimum in this respect. When working

with the interpreter, we have had some unexpected results. For instance, the

implementation raised the question of how root nodes ought to be treated in

subtle cases, such as an interface node being rooted on one side of the rule and

being unrooted on the other side. Occasionally, the practical consequences of

a crisp semantic definition may be surprising to programmers, or it may pose

challenges for an efficient implementation. We have found that our reference

interpreter can shed helpful light in such instances.

As the results show, the interpreter is efficient enough for practical use in

testing, both by GP 2 programmers and by the developers of other GP 2 imple-

mentations. Our main reservation here concerns all-results mode. Used in this

mode, the interpreter can require very long execution times and all the memory

our machines have available. One remedy might be to check for isomorphism

or other equivalences between intermediate graphs, compacting the state-space.

However, the extra machinery would complicate the interpreter, and it could de-

mand even more space in some cases. Instead, our likely solution will be to build

up a standard set of test programs. We can first run each test (for several days, if

necessary) on a powerful machine to produce the set of all possible output graphs

up to isomorphism. Our isomorphism checker, though simple, is efficient enough

for rapid subsequent checking of single results produced by another implementa-

tion.

5.4. Experimental Environment

All experiments reported after this section were conducted on a quad-core Intel

i5-2300 clocked at 2.8GHz with 8GB of RAM. The operating system is 64-bit

Ubuntu 14.04 with Linux kernel 3.13.0.

The C code executed to obtain running times and memory use was compiled

by the GNU Compiler Collection [Sta01] version 4.8.4 with the following optimi-

sation and warning flags:
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gcc -O2 -fomit-frame-pointer -Wall -Wextra

Reported running times are the sum of the user time and the system time

from the UNIX time command. Maximum heap usage and total heap usage

are obtained from Valgrind [NS07] version 3.10.0, executed by the command

valgrind --tool=exp-dhat followed by the name of the executable.

5.5. GP 2 System Architecture

A broad picture of the GP 2 system architecture for a compiled implementation

is given in Figure 5.5. We give an overview of the components before covering the

core of the system, the GP 2 Compiler and the GP 2 Library, in the subsequent

sections.

GP 2 Editor. The graphical editor is the interface between the user and the

compiler. Users can construct graph programs graphically, using the mouse to

construct graphs and typing the program text, labels and conditions. A proto-

type editor for GP 2 has been implemented as part of a Master’s project at the

University of York [Ell13]. It was designed with usability in mind; it features a

tutorial to introduce the user to the tool and to GP 2 programming. Further-

more, it uses the Open Graph Drawing Framework (OGDF) C++ library for host

graph visualisation. The editor communicates with the compiler via the textual

format for programs and host graphs. At the time of writing the implementation

is incomplete: the editor has been partially integrated with the GP 2 compiler,

but there remain some bugs in the code base.

GP 2 Compiler. The compiler receives the text files specifying the GP 2 program

and the host graph from the editor. It is responsible for syntax checking and

semantic checking these files and generating C code to execute the program on

the host graph. The lexical analysis and parsing is conducted by a Bison and Flex

generated parser [Lev09]. A parser generator was used for ease of development

and maintainability. Performance is not a significant consideration at compile

time, but nevertheless Bison-generated parsers should be faster than a handcoded

parser barring serious optimisations. The code generation phase is the most

significant part of the compiler and will be deconstructed in the remainder of the

chapter.

GP 2 Library. The data structures and operations used by the generated code

are collectively referred to as the GP 2 Library. It is a collection of C modules

containing data structures and functions described in the next section. The host

graph parser, a Bison/Flex-generated parser used to read the host graph file at

runtime, is also a part of the library.
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Figure 5.5.: GP 2 system architecture

5.6. Data Structures

5.6.1. Host Graphs

A graph structure stores node and edge structures in handcoded dynamic arrays.

The initial array sizes are computed at compile time from the number of nodes and

edges in the host graph. For large host graphs this is the least power of 2 greater

than the number of nodes or edges. There is a minimum size to reduce overhead

in resizing the array when executing graph programs that start with a small or

empty host graph since graph programs could build a potentially large host graph

from a relatively small input. Free lists are used to prevent fragmentation of the

arrays. Nodes and edges are uniquely identified by their indices in these arrays.

The graph structure also stores the node count, the edge count, and a linked list

of root node identifiers for fast access to the root nodes in the host graph.

A node structure contains the node’s identifier, a root flag, a matched flag, its

label, its degrees, and references to its inedges and outedges. Each node struc-

ture contains four integers for storing two inedges and two outedges. Additional

incident edges are placed in a dynamic array. These arrays are not supported by

free lists. The motivation behind this choice of incident edge storage is to limit

memory allocation overhead for host graph construction and modification: many

common graph classes such as grids, binary trees, and cycles consist mainly of

nodes with a small number of outgoing or incoming edges. While this increases

the base size of node structures, it is not especially wasteful because in practice,

host graphs contain very few isolated nodes. An edge structure contains the

edge’s identifier, its label, the identifiers of its source and target, and a matched

flag. The matched flag of nodes and edges, initially false, is set during matching

when a host graph item is paired with a rule graph item. It is used to check if

candidate host items have already been matched.

Although the data structure is optimised in some respects, there is nothing

that is tailored towards querying host graphs for matching information beyond

the bare minimum. GP 1’s graph data structure supported complex queries

by, for example, storing lists of nodes and edges by label. One could query host

graphs to return a list of edges with a specific label outgoing from a specific node.

As a consequence, host graph updating becomes slower, but this is significantly
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typedef struct HostLabel {
MarkType mark ;
int l ength ;
struct HostLis t ∗ l i s t ;

} HostLabel ;

Figure 5.6.: C data structure for
host graph labels.

typedef struct HostAtom {
char type ;
union {

int num;
s t r i n g s t r ;

} ;
} HostAtom ;

Figure 5.7.: C data structure
for host graph
labels and atoms.
A HostList is a
doubly-linked list.

outweighed by the reduction in search time for matching rules. The underlying

philosophy is that in graph transformation, a graph is queried more often than it

is updated. The current graph data structure could be improved by supporting

similar querying operations. This is achievable by auxiliary data structures that

store nodes and edges by their labels.

5.6.2. Host Graph Labels

The definitions of the data structures for host labels and host atoms can be seen

in Figure 5.6 and Figure 5.7. A label structure contains an enumerated type for

marks (MarkType), the length of the list, and a HostList. The HostList type

is a doubly-linked list of HostAtoms in order to implement the constant time list

matching algorithm from the previous chapter. A HostAtom is a union of integers

and C strings, equivalent to GP 2’s atom type. Storage of lists at runtime may

have an impact on performance when manipulating large labelled host graphs.

We describe and empirically evaluate two implementations in Section 5.7.

5.6.3. Morphisms

The morphism data structure not only needs to capture the node-to-node and

edge-to-edge functions that define a graph morphism (see Definition 3), but also

the assignments mapping variables to their values. Thus the data structure used

to represent morphisms contains the following four substructures: (1) an array of

host node identifiers, (2) an array of host edge identifiers, (3) an array of assign-

ments, and (4) a stack of variable identifiers. The first three items correspond to

the mapping functions and the assignment. The assignment’s array entries are a

pair of a character type ((n)o value, (i)nteger, (s)tring, (l)ist) and a value. The

purpose of the stack will be explained shortly.

The library defines three functions to add variable-value assignments. One of

these is addIntegerAssignment, which takes a morphism, an integer identifier i

and an integer k. It adds the assignment i→ k if it is compatible with the existing

assignment. This is checked by inspecting the ith index of the assignment array.

If no assignment to i exists, signified by the type ‘n’, then the function updates

78



stat ic unsigned hashHostList (HostAtom ∗ l i s t , int l ength ) {
unsigned hash = 0 ;
int index ;
for ( index = 0 ; index < l ength ; index++) {

HostAtom atom = l i s t [ index ] ;
int value = atom . type == ’ i ’ ?

atom .num : hashStr ing ( atom . s t r ) ;
hash = ( ( hash << 5) + hash ) + value ;

}
return hash % LIST TABLE SIZE ;

}

Figure 5.8.: GP 2’s list hashing function

the morphism by setting the array entry to (‘i’, k) and returning 1. Otherwise,

the morphism contains some assignment i → k. It returns 0 if k = k′ and -1 if

k 6= k′.

Some care is required to properly manage the assignments. The order of vari-

able indices in the assignment array is determined by the order of variable dec-

larations in the rule. There is no guarantee that the variables encountered at

runtime follow this order. This causes a complication when match backtracking:

if a rule graph item fails to match, only the variables in the label of that item

should be removed from the assignment. Variables assigned in the matching of

previous items should remain untouched. The stack is used to record assignment

indices in the order in which the variables are assigned values. To support this,

each node or edge array entry in the morphism contains the number of variables

associated with that rule node or rule edge. In this way, backtracking a step is

achieved by examining the number of variables associated with the current item,

popping that number of items from the stack, and nulling each corresponding

assignment entry.

5.7. Host List Storage

The first implementation of host label management allocated memory for host

lists on an individual basis, where each host graph item stored its own list. Initial

code profiling showed this to be a source of overhead in cases where the same list

was being allocated to a large number of items. The second implementation uses

a hash table as a central reference point to store lists. Host graph items contain a

reference to a hash table bucket instead of a pointer to its own block of memory. In

this way common lists are shared, reducing overhead caused by heap management

and list copying. However, it is unclear if this is a significant performance gain in

general, and whether extensive list sharing could be costly in some situations. We

tested both list storage implementations with two programs: Sierpinski triangle

generation, and Euler cycle generation. Both programs perform extensive label

manipulation (see subsection 5.7.1 and subsection 5.7.2).

A good hash function for GP 2 lists should avoid collisions for typical GP 2 host
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graphs. The labelled GP 2 programs in this thesis operate on integer-labelled

graphs. At a bare minimum, single integers should hash to unique hash table

entries up to the size of the hash table. Ideally, the hash function should consider

all elements of the list and demonstrate a good distribution for strings. The GP 2

list hashing function is shown in Figure 5.8. It is an adaptation of Dan Bernstein’s

djb2 string hashing algorithm [Ber]. The original algorithm starts with a hash

value h = 5381 and iterates over each character of the string, performing h =

h ∗ 33 + c at each step, where c is the character’s ASCII value. These constants

were established through experimenting on hashing typical English strings which

are not evenly distributed over the entire character set and do not have a small

length. Instead of iterating over the characters of a string, we iterate over the

elements of the list. The code ((hash << 5) + hash) bit shifts the value of

hash five places to the left, multiplying it by 32 (25). Adding hash to the result

gives the desired product of 33. The value c is dependent on the atom’s type:

for integers it is simply the integer value, and for strings it is the djb2 hash of

the string (computed with the hashString function in the code fragment). We

use an initial hash value of 0. It immediately follows that the single integer lists

map to unique hash table slots modulo the size of the hash table. The hash

table stores 100,003 buckets: the first prime number over 105. This number is

arbitrary; we choose it because the host graphs we use for testing typically peak

at 105 nodes.

5.7.1. Case Study: Generation of Sierpinski triangles

The Sierpinski triangle is a triangle-shaped fractal [PJS04], a self-similar geomet-

ric structure. An algorithm for constructing increasingly close approximations to

the Sierpinski triangle is described below.

1. Start with an equilateral triangle.

2. Draw a line between the midpoints of each of its sides to form four smaller

congruent triangles. Remove the middle triangle.

3. Repeat the previous step with each remaining triangle.

Generating Sierpinski triangles was the subject of a case study for graph trans-

formation tools [Tae+08]. Figure 5.9 demonstrates that the translation to graphs

is straightforward. The initial graph is an equilateral triangle, represented by

three nodes and three edges. Each Sierpinski step is represented by embedding

a new three-node triangle in the centre of a previous triangle.

The problem exhibits exponential growth, making it a good performance bench-

mark for graph transformation implementations. It is accessible to graph trans-

formation tools regardless of their application domain because the criterion for

a valid solution is purely structural. Finally, the problem can be expressed as a

straightforward and short algorithm which should admit relatively small solutions

with simple graph transformation rules. The challenging part of the problem is

forcing the Sierpinski step to match in the right place. The GP 2 solution in
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Figure 5.9.: Initial triangle and first generation of the Sierpinski triangle

Figure 5.10 relies on integer labels to force expand to be matched in the correct

places. This makes the program relevant to the context of this section: as the

generation size increases, so do the number of nodes and edges with the same

integer label. Although a single size-1 list uses a very small amount of memory,

the total space occupied by labels will grow exponentially with the generation

number if one list is stored per host graph item. In contrast, if the lists are

stored centrally, the space occupied by the lists is constant.

The program sierpinski assumes a host graph containing a single root node

whose label is the generation number k of the desired output triangle. The

rule init creates the initial triangle and appends 0 to the label of the root

node. Each iteration of the outer loop increments the second integer of the root

node and performs a Sierpinski step with the rule expand as much as possible.

Termination is controlled by the condition of inc: when inc has been applied k

times, the two integers will be equal, and the condition fails. Each application of

expand performs a Sierpinski step: the small triangle on the left is expanded into

the large triangle on the right. Note that the corners of the small triangle are

also the corners of the large triangle as denoted by the node identifiers. Hence

the expansion takes place inside the original triangle. The matching location is

controlled by the integer y: the matched triangles are those whose top node is

labelled with the current generation number. The expansion step labels the top

three nodes of the large triangle with the next generation number for the following

loop iteration. The GP 2 solution is identical to the GP 1 solution presented in

[Tae+08] with the exception that the control node is rooted and the difference in

notation for list concatenation. Figure 5.11 shows a third generation Sierpinski

triangle from the GP 1 GUI.

Table 5.2 and Figure 5.12 show the experimental results. For both implemen-

tations, the runtime grows exponentially, but the higher generations reveal that

the list hashing is faster by a constant factor, a significant amount of time for

generations 11 and 12. The effects on heap usage are more interesting. One

thing to note is the difference between the total and maximum memory use of

the different implementations. Using a hash table to store the lists manages the

memory very efficiently, evidenced by the constant difference between maximum

heap usage and total heap usage over all generations. In contrast, the gap be-

tween total heap and maximum heap grows with the generation when the hash

81



Main = init; (inc; expand!)!)

init(x:int)

x

1

⇒

x:0

1

0 0
2

1

0 1

inc(x,y:int)

x:y

1

⇒ x:y+1

1

where x > y

expand(u,v,x,y:int)

x:y

1

u

3

v

4

2

y

20 1 ⇒

x:y

1

u

3

0
2

v

4

2

y+1

0 1

y+1

0 1
2

y+1

20 1

Figure 5.10.: The program sierpinski

Figure 5.11.: Third generation Sierpinski triangle
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No Hashing List Hashing

Gen Runtime Max Total Runtime Max Total

5 0.003 0.17 0.198 0.004 0.909 0.911
6 0.006 0.558 0.641 0.006 1.174 1.177
7 0.017 1.293 1.539 0.017 1.542 1.544
8 0.062 4.529 5.266 0.048 3.676 3.679
9 0.402 10.798 13.005 0.318 6.639 6.412
10 5.253 37.864 44.479 2.568 23.784 23.787
11 83.208 - - 24.959 - -
12 793.208 - - 244.627 - -

Table 5.2.: Experimental results of sierpinski using two list storing implemen-
tations. Runtime is given in seconds. Maximum and total heap use
is given in megabytes
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Figure 5.12.: Plots of the sierpinski experimental results

table is not used. This is because lists are discarded whenever a single node or

edge is relabelled, whereas hash table entries are only discarded when the last

node or edge with a particular label is deleted or relabelled. The hash table

implementation uses significantly more memory for smaller generations because

the constant size of the hash table outweighs the memory used by node and edge

labels for small Sierpinski triangles. On the other hand, the growth in space is

slower when the hash table is used. By generation 8, the memory used by the

non-hashing implementation exceeds that of the hashing implementation. To put

this into perspective, the generation 8 triangle contains 9,843 nodes and 19,683

edges, not an exceptionally large graph, but the list hashing approach uses about

a third less memory.

5.7.2. Case Study: Computing Euler Cycles

An Euler cycle is a directed cycle that visits all edges of a graph exactly once.

A graph is Eulerian if it contains an Euler cycle. The GP 2 program euler

[Plu12] of Figure 5.13 takes an non-empty atomic-labelled Eulerian host graph

as input and outputs an Euler cycle, represented by edge labels. Of course, few
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Main = init; loop!; Cycle; (Next; Cycle)!); clean!

Cycle = (grow; loop!)!; unroot

Next = first; loop!

a

1

⇒

init(a:atom)

a:0

1

a:x:i

1

b:y

2

c ⇒

grow(a,b,c:atom; x,y:list; i:int)

a:x:i

1

b:x:i+1

2

c:x:i+1

a:x:i

1

b

⇒

loop(a,b:atom; x:list; i:int)

a:x:i+1

1

b:x:i+1

a:x

1

b:y

2

c ⇒

first(a,b,c:atom; x,y:list)

a:x

1

b:x:1

2

c:x:1

where length(x) > 0

x

1

⇒

unroot(x:list)

x

1

a:x

1

⇒

clean(a:atom; x:list)

a

1

where length(x) > 0

Figure 5.13.: The GP 2 program euler

host graphs are Eulerian, but one can use the property that a graph is Eulerian

if and only if it is connected and every node has the same indegree and outdegree

[BJG08] to test a host graph with a GP 2 routine before running euler. We do

not present such a routine here because it is not relevant to the current discussion.

The Euler cycle in the output graph is represented by integers appended to

the original edge label in the order of the cycle. The Euler cycle is computed by

walking the host graph with the rules grow and loop. The source node of an edge

stores the current number in the cycle which is used to label its outgoing edge

with the correct integer. Nondeterminism of rule application means that there is

no guarantee that the first execution of Cycle will traverse all the edges in the

graph. In this case, the rule first attempts to find an unvisited edge. If one

exists, then the subsequent cycle is inserted into the current cycle by extending

the length of the list.

The example of Figure 5.14 [Plu12] illustrates the algorithm. The left graph is

the host graph after the application of init. The first execution of Cycle applies

grow to the edges 1 → 2, 2 → 4, and 4 → 1 and unroots the root node, giving

the middle graph. The procedure Next searches for unvisited edges sourced at a

visited node by the rule first. 2→ 3 is such an edge. The list appended to the

new cycle edge is the “tail” of the source node (1) followed by 1. The inserted

cycle is formed by the edges labelled 1 : 1 : x, where x specifies the order of the

edges. The program terminates with the right graph. Reading the edge labels, we

see that the program has computed the Euler cycle 1→ 2→ 3→ 4→ 2→ 4→ 1.
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Figure 5.14.: Example run of euler
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Figure 5.15.: Alternate output graphs of euler

The program could have generated three other Euler cycles from the same start

node. Note that first could have matched the edge 4→ 2, resulting in the cycle

1 → 2 → 4 → 2 → 3 → 4 → 1. As shown in the left graph of Figure 5.15, the

edges in the inserted cycle are labelled 1 : 3 : x. The other two graphs illustrate

the Euler cycles computed if the edges are chosen in such a way that all edges

are traversed in the first execution of Cycle.

Star cycles were used to benchmark the euler cycle program. A star cycle

SCk,n is a collection of k cycles of size n, with k− 1 cycles connected to a central

cycle by a pair of edges. All edges are labelled 1, and nodes in each cycle are

labelled from 1 to n. Star cycles were chosen because they are non-trivial euler

cycles that are relatively easy to generate with a GP 2 program. We also wanted

the force the program to make some cycle insertions for a greater variety of

list lengths. This can be seen in Figure 5.16, the output graph obtained after

executing euler on the host graph SC4,4. The program and host graphs are

interesting with respect to list storage because of the label distribution of the

host graph over time. Initially, all edge labels are equal and there are at most n

node labels. As the Sierpinski case study demonstrated, significant list sharing

benefits the use of a hash table to store lists. However, the lists change over time.

In particular, each edge label is unique in the output graphs which is equally

memory-demanding for both implementations. During program execution the

nodes are assigned intermediate lists which are likely to be distinct, but they are

relabelled to their original values before the program terminates. Because of the

dynamic relabelling behaviour, it is hard to predict the disparities in runtime and
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Figure 5.16.: The euler cycle computed by euler on the star cycle SC4,4.

space consumption between the two implementations.

We executed euler on the star graphs SCk,1000 where k ranges from 1 to 10.

The experimental results are in Figure 5.3 and Figure 5.17. We do not display

a plot of the runtimes because they are almost identical. The jumps in the

plot arise from the doubling in size of the graph’s node and edge stores as the

host graph size increases. The memory management of the two implementations

are noticeably different. Examining the maximum heap figures reveals that the

space used in the list hashing implementation grows slightly faster than that of

the non-hashing implementation. This is because hash table entries store not

only the list, but an auxiliary linked-list data structure to support chaining. This

becomes a factor in this case because both implementations store approximately

the same amount of lists due to unique edge labels and a large variety of node

labels. However, the hash table is less wasteful as evidenced by the difference

in growth and values between the total heap use of both implementations. This

arises because the implementation without list hashing has to frequently create

new lists and discard old lists to perform applications of relabelling rules and to
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No Hashing List Hashing

SCk,1000 Runtime Max Total Runtime Max Total

k = 1 0.033 0.326 0.499 0.033 1.19 1.37
k = 2 0.106 0.633 0.978 0.107 1.561 1.746
k = 3 0.226 1.414 1.933 0.231 2.379 2.484
k = 4 0.393 1.652 2.454 0.394 2.683 2.789
k = 5 0.605 2.417 3.516 0.61 3.521 3.634
k = 6 0.869 2.657 4.037 0.875 3.816 3.938
k = 7 1.172 2.897 4.558 1.187 4.12 4.242
k = 8 1.522 3.137 5.079 1.542 4.424 4.567
k = 9 1.969 4.426 6.682 1.944 5.777 5.932
k = 10 2.375 4.666 7.203 2.396 6.081 6.236

Table 5.3.: Experimental results of euler using two list storing implementations.
Runtime is given in seconds. Maximum and total heap use is given in
megabytes
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Figure 5.17.: Plot of euler’s memory use

support graph backtracking 2, discussed in detail in the next section. Overall, we

conclude that for large host graphs with very few repeated lists, not using a hash

table is more efficient as it occupies less heap at any one time.

5.7.3. Analysis

In the Sierpinski triangle generation program, where a small set of labels is spread

over a large collection of nodes and edges, the hash table proves its worth, out-

performing the alternative in both time and space efficiency. In the Euler cycle

program, which features a mixture of heavy list sharing and storage of distinct

labels in the order of the size of the host graph, the non-hashing implementation

2In some cases, old labels are kept in memory in case a previous version of the host graph
needs to be restored
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is more memory efficient, but not to the same extent as in the Sierpinski bench-

mark. It is clear from the results that the overhead of maintaining the hash table

has a negligible effect on running time. The main drawback of hash tables in

general is a severe reduction in performance when there are frequent collisions.

There is currently no evidence to suggest that this is a factor for practical GP

2 programs. Indeed, with the current hash function, it is hard to imagine a GP

2 program that would cause a significant amount of collisions. The only advan-

tage we see when not using a hash table is the constant difference in memory

use for small host graphs. However, the size of the hash table is about 800KB,

an insignificant amount of memory on modern devices. On the other hand, the

difference in memory use for large host graphs is unbounded.

Another benefit of list hashing is that it could be used to implement fine-

grained graph querying operations. For example, with the presence of a node

store indexed by list hash values, the host graph can be queried for nodes with

a specific label, trimming the search space significantly for rules with constant

values in their left-hand side. The approach could even be extended to query

items whose labels contain variables that have already been instantiated.

For the reasons discussed, we fixed the list storage implementation as the hash

table. This is the implementation used for the experiments reported in the re-

mainder of the thesis.

5.8. Host Graph Backtracking

The semantics of GP 2’s conditional branches and loops require the host graph to

be backtracked to a previous state in certain circumstances. The if-then-else

statement executes its then and else branches on the graph reached before ex-

ecuting the condition. The try-then-else statement only executes its else

branch on the graph reached before executing the condition. If a failure occurs in

a loop body, the semantic rule states that computation resumes with the graph

reached before starting the most recent loop iteration. Subprograms that may

require means to facilitate graph backtracking during their execution are called

critical subprograms, namely conditions in conditional branches and loop bod-

ies. The structures of critical subprograms are analysed to identify where graph

backtracking support is needed. The goal of the static analysis is to minimise the

runtime overhead of supporting graph backtracking, which is dependent on both

the critical subprogram and its context.

Remark 9. In the rest of this chapter we distinguish different kinds of rule. An

empty rule is a rule with an empty left-hand side. A predicate rule is a rule whose

left-hand side and right-hand side are equal. Predicate rules are typically used

to test the existence of a property of the host graph without changing the graph.

We sometimes refer to a non-empty and non-predicate rule as a standard rule.
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5.8.1. Static Analysis

Before we present the formal static analysis, we show some illustrative examples.

In the following, G is the graph state before entering the program fragment, r1,2,3
are standard rules, p is a predicate rule, and e1,2 are empty rules.

1. if r then P else Q does not require graph backtracking. If a match ex-

ists for r in G, it does not need to be applied. Instead, immediately execute

P on G.

2. if p; r then P else Q does not require graph backtracking. If p fails,

the current graph is G, so no backtracking is required before taking the else

branch. If p succeeds, G does not change after application of p, and the

remainder of the condition is an instance of example (1).

3. if r; p then P else Q requires graph backtracking. If r succeeds, and p

fails, the changes made by r must be undone.

4. if p; r! then P else Q requires graph backtracking. If p succeeds, then

r could be applied multiple times, requiring the changes to be undone before

executing P.

5. try p; r! then P else Q does not require graph backtracking. If p suc-

ceeds, the then branch is guaranteed to be taken (assuming termination)

because a loop never fails. The changes made by r! are kept because of the

semantics of try-then-else.

6. (r; e1; e2)! does not require graph backtracking. If r fails to match, the

rule is not applied and the loop breaks, retaining the graph state before

entering the loop. If r suceeds, the end of the iteration will be reached

without failure because e1 and e2 are guaranteed to match.

7. (if r1 then r2 else r3)! does not require graph backtracking. The ef-

fect of the if statement’s condition is not “visible” to the loop because

the if-then-else always executes the branch subprograms on the original

graph. Thus the loop body can be seen as a single rule application of either

r2 or r3 to G.

8. (try r1 then r2 else r3)! requires graph backtracking. Using the logic

of the previous example, the loop body can be seen as an application of

either r1; r2 or r3 to G. The first sequence could fail on r2, requiring the

changes made by r1 to be undone.

The examples raise several points that influence the formalisation and imple-

mentation of a static analysis for graph backtracking. First, predicate rules can

be ignored when they occur at the start of a critical subprogram. Second, the

first command in the critical subprogram of a try-then-else statement or a

loop body can be ignored if all subsequent commands always succeed. Third,

the semantics of the two conditional branching statements can result in different
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outcomes with respect to graph backtracking on programs that are similar on the

surface.

The formalisations that follow take all these points into account and generalise

them. We define simplification of commands. Commands simplify to themselves

except for the following: a procedure call simplifies to its command sequence,

if C then P else Q simplifies to P or Q, and try C then P else Q simplifies

to (C; P) or Q. We emphasise that this simplification is not intended to be a

semantics-preserving transformation: it is a way for the static analyser to break

down complex programs and reason about them with respect to graph backtrack-

ing.

Commands that cannot fail are defined recursively. The basic commands that

cannot fail are skip, break, a rule call of an empty rule, and a rule set call

containing only empty rules. We extend this to compound commands with the

following rules:

• A command sequence cannot fail if all of its commands cannot fail.

• A looped program cannot fail.

• if/try C then P else Q cannot fail if its simplified command cannot fail.

• P or Q cannot fail if both P and Q cannot fail.

We similarly define commands that do not change the host graph, or null

commands: skip, break, and fail are null commands. Predicate rule calls and

rule set calls containing only predicate rules are null commands. The extension

to compound commands is the same as non-failing commands except for loops. A

looped command does not terminate if all of its rules match the working graph.

• A command sequence is null if all of its commands are null.

• A looped program is null if the loop body is null.

• if/try C then P else Q is null if its simplified command is null.

• P or Q is null if both P and Q are null.

We are now ready to define the programs that require graph backtracking.

Let C = C1; . . . ;Cn be a critical subprogram. Simplify all commands to get

C ′ = C ′1; . . . ;C
′
n′ . Remove any null commands from the start of the sequence

to get C ′′ = C ′′1 ; . . . ;C ′′n′′ . Then, if C ′′ is the condition of an if-then-else

statement, backtracking is required if C ′′ contains a loop or if n′′ >1. If C ′′ is

the condition of a try-then-else statement or a loop body, graph backtracking

is required if either n′′ = 1 and C ′′ = P or Q where at least one of P and Q

requires backtracking, or if any Ci can fail for 2 ≤ i ≤ n′′.
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5.8.2. Implementation

The abstract syntax tree of the program text is inspected by a C function that

performs the static analysis described in the previous section. It calls a recur-

sive boolean function f on subtrees representing critical subprograms. If graph

backtracking is necessary, the function returns true, which causes a flag to be

set in the AST node representing the parent of the critical subprogram (either a

conditional branch statement or a loop). This instructs the compiler to generate

code for graph backtracking while the critical subprogram is being executed. The

function does not explicitly transform command sequences as described above.

Instead, it simulates the transformation. For example, calling f on (an internal

representation of) if C then P else Q returns f(P) ∨ f(Q).

The implementation supports graph backtracking in two ways. The first is to

copy the entire host graph to memory before entering a critical subprogram. The

time complexity of this operation is linear in the size of the host graph because

the copying function iterates over all nodes and edges to duplicate their labels and

the incident edge arrays of nodes. The second is to record the individual changes

made to the host graph during execution of the critical subprogram in such a

way that they can be reversed to retrieve the correct graph. This is achieved by

a graph change stack, a concept taken from the YAM [MP08b]. Each stack frame

contains the necessary data to undo a single graph modification. A dynamic

array is used to implement the graph change stack because the number of stack

frames required is not known at compile time.

We investigated the performance of these graph backtracking methods. Cases

can be identified where recording graph changes is more efficient. For exam-

ple, consider the GP 2 program fragment if (r1; r2) then P else Q, where

r1 and r2 are standard rules. The host graph changes made by r1 have to be

reversed before executing P or Q. It is clear that recording graph changes for

at most two rule applications will be significantly more space efficient and, at

the very least, not significantly less time efficient than copying the potentially

large host graph. Another case in favour of graph recording is nested criti-

cal subprograms. For example, in the program if (if (r1; r2) then (r3;

r4) else (r5; r6)) then P else Q, graph backtracking is required for both

if statements. The host graph would be copied twice, effectively doubling the

memory overhead, while the graph change stack could span multiple “restoration

points”, allowing any intermediate host graph to be restored. Thus the graph

change stack would cost no more memory regardless of the nesting depth.

Is the converse true? Is there a class of graph programs in which copying the

host graph is more efficient than recording graph changes? Consider a critical

subprogram containing a loop. The number of loop iterations, and hence the

number of graph changes made in the loop, is not known at compile time. This

occurs in a common GP 2 program structure called a reduction test : if C! then

P else Q. For such a program, it is unclear whether graph recording would be

more efficient than copying the host graph. As the number of graph changes

grows larger, more items are pushed to the graph change stack, increasing runtime
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Figure 5.18.: Rules for acyclicity testing

overhead. Furthermore, restoring the old graph state is a very fast reassignment

of the host graph pointer. In contrast, the changes on the graph change stack

have to be inverted on the host graph, incurring a further overhead penalty

proportional to the number of graph changes made in the critical subprogram.

From this discussion arises the following hypothesis: Consider a graph program

that makes k modifications to the graph during execution of the critical subpro-

gram. As k increases, the time taken to execute the program with graph recording

is significantly slower than the time taken to execute the same program with a

single graph copy.

If the hypothesis is true, it is worth extending the static analysis on graph

programs to establish where it is best to copy the graph and where it is best to

record changes. Specifically, loops in a critical subprogram will notify the code

generator to generate code that copies the graph before entering that critical

subprogram to avoid a potential performance hit from recording and inverting a

large number of graph changes. If the hypothesis is false, then graph recording

can be used universally, as the number of changes does not have a significant

impact on runtime performance compared to graph copying.

Two recognition graph programs are used to test the hypothesis. Both pro-

grams test if the host graph belongs to a certain graph class by applying reduction

rules for as long as possible. A reduction rule matches a certain substructure of

the host graph and removes it. The structure of the resulting graph is used to

determine whether the host graph belongs to the graph class in question. The

result is encoded in an isolated root node with the label “yes” or the label “no”.

The destructive nature of the reduction test means that graph backtracking is

required if the user wishes to preserve the tested host graph.

5.8.3. Case Study: Cycle Checking

Recall that a graph is acyclic if it contains no cycles, including loops. The rules

of a GP 2 program to test a graph for acyclicity are shown in Figure 5.18 [Plu12].

Using deleteEdge, the program removes all edges outgoing from nodes with

no incoming edges. The rule preserves acyclicity, and it cannot remove a cyclic
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No Backtracking Graph Copying Graph Recording

Graph Size Runtime Max Runtime Max Runtime Max

10 2 0.038 2 0.055 2 0.043
102 2 0.038 2 0.055 2 0.044
103 8 0.157 8 0.288 8 0.198
104 216 2.184 222 4.282 218 2.84
105 24,732 17.323 24,933 34.101 24,577 22.566

Table 5.4.: Experimental results of three versions of the acyclicity program.
Graph size is given in number of nodes. Runtime is given in mil-
liseconds. Maximum heap use is given in megabytes
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Figure 5.19.: Plot of the memory use of the acyclicity checking programs.

edge because all nodes in a cycle have an indegree of at least 1. Applying this

rule for as long as possible on an acyclic graph results in a graph with no edges.

Conversely, applying this rule for as long as possible on an cyclic graph leaves

the cycles present in the host graph. The two rules edge and loop are used to

test for the presence of an edge. If either rule matches, the host graph contains

a cycle. Otherwise the host graph is acyclic.

The two versions of the acyclic testing program are below. Rules no and yes

have the empty graph as their left-hand side and a single root node on the right-

hand side labelled "no" and "yes" respectively.

1 Main = deleteEdge!; if {edge, loop} then no else yes

2 Main = if (deleteEdge!; {edge, loop}) then no else yes

The first version is used as a base for comparison. No graph backtracking

is required because it performs the reduction step destructively, not restoring

the host graph. The output is the original graph with all its non-cyclic edges

removed, plus a single root node with the appropriate label. The second version

performs the reduction step in the condition of an if statement which necessitates

graph backtracking. The output is the host graph plus a single root node with

the appropriate label.
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Figure 5.20.: Rules for series-parallel testing

The program was executed on broken cycles (a cycle with a single edge re-

moved) of increasing size. All labels are empty. The results can be seen in Table

5.4 and Figure 5.19. There is little difference between the running times of the

three programs. The heap use of graph copying is much greater than that of

graph recording for large host graphs, although we note that the reduction rule is

very simple: it removes a single edge, which requires only one entry on the graph

change stack per loop iteration.

5.8.4. Case Study: Recognition of Series-Parallel Graphs

An important class of graphs, particularly for modelling circuits, are series-

parallel graphs [BJG08]. Series-parallel graphs are defined as the class of graphs

that reduce to a single edge between two nodes under the following transforma-

tions:

1. Replace two parallel edges with a single edge with the same source and

target.

2. Replace a directed path of two edges connecting three nodes where the

middle node has degree 2, with a single edge connecting the endpoints in

the same direction.

We consider directed integer-labelled series-parallel graphs. The definition is

directly translated to a GP 2 program using the rules in Figure 5.20 [Plu12].

The program executes the two reduction rules par and seq on the host graph

for as long as possible. If the resulting graph is a single non-looping edge, then the

host graph is by definition series-parallel. After the reduction, the test concludes

with the removal of a non-looping edge with deleteBase and checking that the

current graph is empty. The result is encoded, as in the acyclic test, in an isolated

root node with the label “yes” or the label “no”. Again, there are two versions

of the program to control the presence of graph backtracking mechanisms at

runtime.

94



No Backtracking Graph Copying Graph Recording

Graph Size Runtime Max Runtime Max Runtime Max

10 2 0.037 2 0.043 2 0.056
102 2 0.038 2 0.05 2 0.57
103 18 0.126 20 0.324 21 0.227
104 836 1.699 861 3.312 847 3.302
105 94,412 - 97,594 - 96,276 -

Table 5.5.: Experimental results of three versions of the series-parallel checking
program. Graph size is given in number of edges. Runtime is given
in milliseconds. Heap use is given in megabytes
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Figure 5.21.: Plot of the memory use of the series-parallel checking programs.

1 Main = {par, seq}!; deleteBase; if nonEmpty then no else yes

2 Main = if ({par, seq}!; deleteBase; nonEmpty) then no else yes

The host graphs used to test this program are machine-generated3 series-

parallel graphs, weighted so that the number of parallel edges and the number of

“sequential edges” are approximately equal. All nodes and edges are labelled 1.

On these host graphs, par performs one host graph modification: removing an

edge, while seq performs four: two edge removals, a node removal, and an edge

addition. Hence the average number of recorded graph changes per loop iteration

is 2.5.

The results can be seen in Table 5.5 and Figure 5.21. Valgrind did not terminate

in a reasonable time for the largest host graph. Like the acyclicity testing pro-

gram, there is little difference in runtime between the three executions. However,

the heap usage evens out for the two programs that perform graph backtracking.

The greater number of graph changes per loop iteration requires a greater number

of changes to be placed on the stack, hence more memory consumption. To take

this a step further, we artificially added more graph changes to the reduction step

as shown in Figure 5.22:

3Using Faulkner’s GraphGEN ML program [Fau15]
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Figure 5.22.: Modified rules for series-parallel testing

In the modified program, par performs three relabelling operations in addition

to the edge deletion and seq performs two relabelling operations in addition to

the node deletion, two edge deletions, and edge addition. This averages out to

5 graph modifications per loop iteration. We ran the modified program on the

same host graphs as in the previous experiment. The results in Figure 5.6 and

Figure 5.23 show that the memory used by graph recording grows more rapidly

than the memory used by graph copying.

5.8.5. Analysis

According to our experiments, the overhead introduced by both forms of graph

backtracking has a negligible impact on runtime performance. This falsifies the

hypothesis: an increase in the number of recorded graph changes does not de-

crease runtime performance. Therefore, for the purpose of optimising the speed

of executing graph programs, there is no need to pick and choose one graph

recording method over the other depending on the context of the program. How-

ever, for space efficiency, the results show that the difference in memory usage

is dependent on the program structure and the complexity of the rules. Specifi-

cally, for reduction programs in which a large amount of computation needs to be

recorded and reversed, either implicitly (by copying the host graph) or explicitly

(by storing a representation of the computation), the complexity of the reduction

step has a large impact on the relative memory use.

The optimal solution would be to extend the current static analysis to heuris-

tically select the graph backtracking mechanism that is estimated to use the least

memory with respect to the program structure. This would be a complex exten-

sion to the codebase: one would need to design, implement and test a heuristic

function based at a minimum on the counts of the changes made by each rule

in a critical subprogram. We chose not to take this route since the development

time and effort was not worth the small and perhaps insignificant reduction in

memory use for a subset of graph program-host graph pairs. Instead, we chose

to use graph recording as the sole mechanism for graph backtracking at runtime.

The program patterns that strongly favour graph recording, such as those per-

forming graph backtracking for a small (and constant) number of graph changes
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No Backtracking Graph Copying Graph Recording

Graph Size Runtime Max Runtime Max Runtime Max

10 2 0.037 2 0.056 2 0.043
102 2 0.038 2 0.57 2 0.63
103 20 0.126 19 0.227 20 0.521
104 859 1.699 862 3.302 853 4.885
105 98,789 - 96,230 - 97,608 -

Table 5.6.: Experimental results of three versions of the modified series-parallel
program. Graph size is given in number of nodes. Runtime is given
in milliseconds. Heap use is given in megabytes.
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Figure 5.23.: Plot of the memory use of the modified series-parallel checking pro-
grams.

and those with nested critical subprograms, are more frequent than critical sub-

programs that perform a large number of graph changes with respect to the size

of the host graph.

5.9. Code Generation

The structure of the GP 2 compiler is broken down in Figure 5.24. As mentioned

in the previous section, a Bison-generated parser is used to parse the text files.

This is a standard, well-established way to parse a context free grammar, so

we only describe this phase in brief. The host graph file is parsed to check for

syntax errors and to generate a count of nodes and edges to be later used as the

arguments of the function responsible for initially allocating memory to the graph

data structure. The program parser syntax checks the input program file and

builds an abstract syntax tree (AST) of the program. The abstract syntax tree is

built with Bison action code, arbitrary C code that is attached to Bison grammar

productions to be executed when the production is reduced during parsing. Each

piece of action code calls a function to build an AST node representing the piece

of program structure that has been parsed. Bison generates a bottom-up parser,

so child nodes are generated before their parents. The functions to build parent
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Figure 5.24.: GP 2 compiler architecture

nodes take as arguments pointers to any child nodes constructed during a previous

parser reduction step and any necessary semantic information. Bison’s syntax

makes this form of tree generation quite straightforward and intuitive.

The semantic analyser is a collection of C functions that walk the program AST

and check for any semantic errors, which are described in Section A.6. This phase

also makes some modifications to the AST. It assigns each rule name a unique

identifier: a concatenation of the rule’s scope, which is either Main or the name

of its declaring procedure, and the rule’s name. Procedure names are globally

unique, which guarantees uniqueness of rule identifiers even if rule names are

shared across multiple procedure declarations (see Section 3.4 for a description

of local rules and GP 2’s scoping system). It points each rule call and procedure

call in the program text to the AST node representing the declaration of the

corresponding rule and procedure respectively. This eases the code generation

process.

The focus of this section is on the generation of code to match and apply

rule schemata. Rule application is the unit of computation in GP 2, and the

theoretical bottleneck in performance, so it is important to generate concise and

efficient C code. The code generator for rule schemata is the most complex part

of the compiler. We describe its three main components using the artificial rule

in Figure 5.25 as a running example: the matching code generation, the condition

code generation and the rule application code generation. Combined, the output

is a C module that exports two functions for standard rules: one to match the

rule, and one to apply the rule. No matching function is generated for empty

rules, and no application function is generated for predicate rules. The final part

of code generation is combining these functions according to the control sequence

of the GP 2 program. Therefore, to conclude the section, we present the code

generation for the GP 2 control constructs with the intention of demonstrating

(but not proving) that the compiler respects GP 2’s semantics.

The first step is the transformation phase. The AST of each rule declaration is

transformed into a complex rule data structure that captures all the information

necessary for generation of correct and concise rule application code. The node

and edge structures in particular contain far more information than those in the

host graph. Nodes contain several flags to inform the code generator if it is a root

node, how the rule changes the node (e.g. deletion, relabelling), and whether its

indegree or outdegree is queried for a right-hand side label. They also contain
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rule(i:int; x:list)

i

1

x:3

2 3

⇒ outdeg(2)

2

i*i

3

x

4

where x = 1:2 and indeg(3) > 1 or not edge(2, 3)

Figure 5.25.: The GP 2 rule schema rule.

pointers to their incident edges and any predicates they participate in. An edge

structure contains similar flags and pointers to its source and target nodes. Nodes

and edges also store an interface pointer whose purpose is to connect two interface

nodes or edges. For example, the interface pointer of a left-hand side node points

to its counterpart in the right-hand side, or NULL if the node is not in the

interface. The implementation is faithful to the convention that interfaces do not

contain edges. Preserved edges are inferred from the interface nodes: they are

precisely the edges that connect the same interface node(s) in the same direction

on both sides of the rule. In this example, there is one preserved edge, the loop

on node 2. Variables point to any predicates they participate in and store a flag

to indicate if they are used by the rule (specifically, if they exist in any right-hand

side label).

The morphism data structure, as described in Section 5.6.3, contains three

arrays. One integer array represents the mapping between rule nodes and host

nodes. Another represents the mapping between rule edges and host edges. The

third array, an array of assignments, represents the mapping between variables

and values. Rules are known at compile time, so the runtime system has a

complete knowledge of the runtime data structure for morphisms, in particular

the size of the three arrays. The morphism is initialised with dummy values: -1

for the node and edge arrays, and (‘n’, NULL) for the assignments. Each node,

edge and variable is assigned a unique identifier which acts as the index into the

appropriate array component of the morphism. The identifier assignment for rule

is {1 7→ 0, 2 7→ 1, 3 7→ 2} for nodes, {2 → 1 7→ 0, 2 → 2 7→ 1} for edges, and

{i 7→ 0, x 7→ 1} for variables. From now on we refer to rule nodes and edges as ‘n’

and ‘e’ respectively followed by their identifier as above in order to synchronise

the prose with the upcoming code fragments. For example, rule node 3 is called

n2.

5.9.1. Searchplans

Finding a match for a rule is the bottleneck in any implementation of graph

transformation. The algorithm used to implement matching is, therefore, crucial

to the performance of the entire implementation. A common algorithm for graph

matching is the searchplan (see, for example, [Dör95]). A searchplan matching

algorithm decomposes the matching of a rule’s left-hand side into a sequence
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of primitive matching operations and executes those operations in order to find

a complete match within the host graph. We have already seen an abstract

searchplan matching algorithm in Section 4.3.

What are the benefits of a searchplan matching algorithm? It decomposes

a complex structural problem (subgraph isomorphism) into a number of simple

“atomic” steps, which allows a modular implementation. For instance, one could

implement a searchplan by writing a function for each step and composing the

functions. Left-hand sides of rules are often connected and the node degrees

in host graphs are bounded. In these cases, the complexity of matching a rule

with a searchplan is bound by the complexity of the first matching operation.

Another advantage of this approach is that it can easily be optimised and tailored

to a specific application area. Indeed, there has been a lot of work put into

dynamic searchplans, where properties of the host graph, or expected classes of

host graphs, are used to generate the optimal sequence of matching operations

according to a cost function [Zün96; HVV07; BKG07].

We inherit the static searchplan generation algorithm of GP 1 [MP08a]. The

searchplan is fixed at compile time, and only takes into account the structure

of the rule. A rule can be matched by many searchplans. Some will outperform

others depending on the metrics of the host graph. A static searchplan generation

algorithm is blind to the host graph, and therefore is not guaranteed to generate

the most efficient searchplan. On the other hand, the complexity and overhead

of the runtime system is reduced. In GP 1, in order to minimise branching and

backtracking, primitive search operations are ordered by their determinism as

follows:

1. Check predicates of the schema condition whose variables have been instan-

tiated.

2. Find source and target nodes of matched edges.

3. Find an edge whose source and target nodes have both been matched.

4. Find an edge whose source or target node has been matched.

5. For conditions of the form not edge(v,w) where either v or w has been

matched, find the other node.

6. Find a node.

GP 2’s searchplan generation adopts this order but with some key differences.

As described later, conditions are checked as soon as possible, but we do not

consider condition evaluation to be an atomic searchplan operation. Furthermore,

the GP 2 compiler does not perform operation (5). Considering a specific type

of condition adds unnecessary complexity to the compiler and to the generated

code. Furthermore it is not clear that this would improve matching efficiency in

the current model. In fact, it increases the likelihood of conducting two expensive

node matching operations which may be avoidable.
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0 1

3

4

2

1← r()
3← o(1)
0← t(3)
4← l(1)
2← n()

Figure 5.26.: The structure of rule and its associated searchplan.

Searchplans are constructed through an undirected depth-first search on left-

hand sides of rules. When a node or edge is visited, the appropriate matching

operation is appended to the searchplan. Each search starts at a root node if

possible, otherwise an unvisited unrooted node is chosen. An example left-hand

side and searchplan can be seen in Figure 5.26. The matching operations are

represented by a single letter; their full specification is as follows:

• Match an unrooted node.

• Match a root node.

• Given a matched edge, match its target.

• Given a matched edge, match its source.

• Given a bidirectional edge, match one of its incident nodes.

• Match an edge.

• Given a matched node, match one of its outgoing edges.

• Given a matched node, match one of its incoming edges.

• Given a matched node, match one of its looping edges.

The searchplan is represented internally by a linked list of operation struc-

tures. A sequence of C functions, subsequently called matchers, is generated

from each operation, each responsible for finding a match for a single rule item.

The structure of the resulting code is a nested chain of matchers as shown in

the pseudocode of Figure 5.27. The main rule matching function calls the first

matcher, which in this case matches the root node n1. If a matcher succeeds

in finding a compatible host graph item, it updates the morphism and calls the

next matcher in the chain or returns true if it is the last matcher. If none of the

candidate host items match, the matcher returns false, returning control to the

previous matcher or to the main matching function.

Most of the work is done in testing whether the host item in question is a valid

match for the rule item represented by a matcher. The most expensive of these

tests is label matching. There are three simple tests that can rule out invalid

host items before their labels needs to be considered. A host item h cannot take

part in a match if:
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bool match rule {
return match n1 ;

}

bool match n1 {
for ( root nodes N o f the host graph ) {

i f (N i s not a v a l i d match for n1 ) continue ;
else {

f l a g N as matched ;
update morphism ;
i f ( match e0 ) return t rue ;

}
}
return f a l s e ;

}

bool match e0 {
for ( outedges E o f match ( n1 ) ) {

i f (E i s not a v a l i d match for e0 ) continue ;
else {

f l a g E as matched ;
update morphism ;
i f ( match n0 ) return t rue ;

}
}
return f a l s e ;

}

. . .

bool match n2 {
for ( nodes N o f the host graph ) {

i f (N i s not a v a l i d match for n2 ) continue ;
else {

f l a g N as matched ;
update morphism ;
return t rue ;

}
}
return f a l s e ;

}

Figure 5.27.: Skeleton of the rule matching code.
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1. h is flagged as matched. Mapping distinct rule items to the same host graph

item violates injective matching.

2. The rule item is not marked any and h’s mark is not equal to the rule item’s

mark.

3. h is not structurally compatible with respect to the rule and the current

partial morphism.

The third point requires elaboration, and differs depending on the searchplan

operation and the rule’s behaviour. Consider node n0. It has one incoming

edge and no outgoing edges. Clearly the mapping n0 → v for some host node v

cannot extend to a total morphism if v has no incoming edges. Therefore, when

finding a match for a rule node n, there is condition on host nodes v: indeg(v)

≥ indeg(n) ∧ outdeg(v) ≥ outdeg(n). If v is deleted by the rule, the condition is

stricter because of the dangling condition. Again consider n0→ v. Any outgoing

edge e of v is not matched because n0 has no outgoing edges in the rule. Hence

e will be a dangling edge after rule application. Similarly, if v has more than

one incoming edge, at least one of these edges will be left dangling by the rule.

Therefore the degree condition is: indeg(v) = indeg(n) ∧ outdeg(v) = outdeg(n).

Evaluating this condition is fast: the rule structure is known at compile time, so

the generated code compares the degrees of host nodes against constants.

For loops in the rule, the structural check on the host edge is a simple test of

whether it has the same source and target node. For non-looping edges, the source

and target consistency needs to be checked. For example, edge e0 is matched by

an outgoing edge operation on the node n1. Host edges are retrieved from the

outedge list of n1’s image. The structural check tests if the target of the host

edge is matched. If so, the morphism is queried to verify that the target of the

host edge is equal to image of e0’s target n0. If n0 has been assigned a different

host graph node, the structural morphism condition is violated, so the host edge

in question cannot extend the partial morphism to a total morphism.

The label matching algorithm is essentially an implementation of the Update

Assignment and Check procedures described in Section 4.4. To reiterate: the

atoms either side of the list variable are matched first and the list variable is

assigned the remaining sublist of the host list. In this way matching is a constant

time operation, given that at most one list variable may occur in a left-hand side

label. Two examples of the C code generated to match labels are in Figure 5.28.

The local variable match stores the result of the list matching.

The empty list can be matched in one line of C code. Any other rule list

generates much more verbose code using several local variables: label stores the

label of the host item, new assignments stores the number of assignments made

within a single matcher, and result stores the result of a single variable-value

assignment attempt. The list matching code is wrapped in a do-while loop so

that matching can be aborted with a break statement as soon as an inconsistency

between the rule label and the host label is detected. The code generator writes

a preliminary length check based on the length of the rule list (line 6), then it
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1 match = l a b e l . l ength == 0 ? true : f a l s e ;
2
3 bool match = f a l s e ;
4 int new assignments = 0 ;
5 do {
6 i f ( l a b e l . l ength != 1) break ;
7 HostListItem ∗ item = l a b e l . l i s t −> f i r s t ;
8 int r e s u l t = −1;
9 i f ( item−>atom . type != ’ i ’ ) break ;

10 r e s u l t = addIntegerAssignment ( morphism , 0 , item−>atom .num ) ;
11 i f ( r e s u l t >= 0) new assignments += r e s u l t ;
12 else break ;
13 match = true ;
14 } while ( f a l s e ) ;

Figure 5.28.: Generated code for label matching. Line 1 is the code to match an
empty list. The code in lines 3-14 matches the integer variable i

iterates through the rule list, at each step calling a function to generate code

to match an individual atom. The function call to match the integer variable i

writes the code in lines 8-12. After this, if control is still within the loop, then

a break statement has not been called, which means that the match succeeded.

Before exiting the do statement, the compiler writes a line to set match to true.

The value of match is queried by the subsequent code as outlined in Figure 5.27.

We conclude this section by noting that behaviour of this algorithm strongly

resembles the rooted rule matching algorithm presented in Section 4.4 as it incre-

mentally builds a morphism with the addition of node-to-node, edge-to-edge and

variable-to-value mappings to an internal data structure. The main difference

between the two algorithms is that the algorithm generated by the GP 2 com-

piler searches for one match only in a depth-first way, while the other algorithm

searches for all matches in parallel. Therefore the searchplan-based matching

algorithm here can be seen as a practical realisation of the rooted rule matching

algorithm.

5.9.2. Conditions

Generating code to evaluate conditions is not straightforward. The main reason

is that conditions query variables, nodes and edges depending on their assigned

host graph values. A naive and inefficient approach is to evaluate the condition

at the end of rule matching once the total morphism is found. This simplifies

code generation since the condition is only evaluated in one place, but it could

result in large amounts of unnecessary match backtracking at runtime because it

is often the case that the condition can be shown to be false by a single assign-

ment to a condition variable. Therefore, the compiler generates code to evaluate

the condition the moment a participatory item is assigned a value. In this way,

failure is detected as soon as possible, and the backtracking is simplified: we

only need to backtrack one step, as we do for any other form of matching fail-

ure. Generating code to perform “on-demand” condition evaluation within each
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1 /∗ Globa l v a r i a b l e s ∗/
2 bool b0 = true , b1 = true , b2 = f a l s e ;
3
4 stat ic bool eva luateCondi t ion ( void ) {
5 return ( ( b0 && b1 ) | | ! b2 ) ;
6 }
7
8 stat ic void eva lua t ePred i ca t e1 ( Morphism ∗morphism ) {
9 int n2 = lookupNode ( morphism , 2 ) ;

10 /∗ I f the node i s not y e t matched by the morphism , re turn . ∗/
11 i f ( n2 == −1) return ;
12
13 i f ( ge t Indegree ( host , n2 ) > 1) b1 = true ;
14 else b1 = f a l s e ;
15 }
16
17 stat ic void eva lua t ePred i ca t e2 ( Morphism ∗morphism ) {
18 int n1 = lookupNode ( morphism , 1 ) ;
19 i f ( n1 == −1) return ;
20
21 int n2 = lookupNode ( morphism , 2 ) ;
22 i f ( n2 == −1) return ;
23
24 Node ∗ source = getNode ( host , n1 ) ;
25 bool edge found = f a l s e ;
26 int counter ;
27 for ( counter = 0 ; counter < source−>out edges . s i z e + 2 ; counter++) {
28 Edge ∗ edge = getNthOutEdge ( host , source , counter ) ;
29 i f ( edge != NULL && edge−>t a r g e t == n2 ) {
30 b2 = true ;
31 edge found = true ;
32 break ;
33 }
34 }
35 i f ( ! edge found ) b2 = f a l s e ;
36 }

Figure 5.29.: Generated C code for a condition
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searchplan matching function, at both the level of label matching (for variables)

and structural matching (for nodes and edges) is one of the most complex parts

of the code generator.

We walk through the code generation for the condition of our running example,

namely where x = 1:2 and indeg(3) > 1 or not edge(2, 3). Some of the

C code generated to evaluate this condition is shown in Figure 5.29. The function

evaluatePredicate1 evaluates edge(2, 3) and evaluatePredicate2 evaluates

indeg(3) > 1. First, the predicates are assigned identifiers. Explicitly, x = 1:2

is predicate 0, indeg(3) > 1 is predicate 1, and not edge(2, 3) is predicate 2.

A global boolean variable is associated with each predicate at runtime. Boolean

operators give the condition a tree structure, one that is generated by the parser.

Three passes are made over the AST subtree representing the condition. The first

pass generates the declarations and initialisations of the boolean variables (line

2). Variables representing negated predicates are initialised to false, and all others

are set to true. This guarantees that the condition evaluator returns true under

the default values, which is necessary when the condition is evaluated before all of

its containing variables are instantiated. The second pass generates the function

that evaluates the condition (lines 4–6). It performs a simple transformation

from the tree structure to the boolean expression it represents. The third pass

is responsible for generating the functions to evaluate each predicate (lines 8–

36). These functions first check if all the relevant items in the predicate are

instantiated. If so, the predicate is evaluated and its boolean variable is set.

Otherwise, the function exits, and the boolean variables keep their default values.

As aforementioned, the condition is evaluated whenever one of its variables

(a rule node or a rule variable) is assigned a value. Therefore, in the matching

function for n2, evaluatePredicate1 and evaluatePredicate2 are called when a

matching host node is located. Any calls to functions that evaluate predicates

are immediately followed by a call to evaluateCondition. If evaluateCondition

returns false, the matcher resets the boolean variables to their initial values and

examines the next candidate host node (or returns false if none remain). This is

illustrated in the pseudocode given in Figure 5.30. Variables are treated in the

same way: predicates containing variables are evaluated immediately after any

of its variables is assigned a value.

5.9.3. Rule Application

The code generator scans the right-hand side of a rule to generate the function

to apply the rule. First, local variables are declared to store the values from

the morphism needed for right-hand side labels, namely values of variables and

the degrees of host nodes. The right-hand side may not contain all variables in

the rule. As mentioned earlier, nodes and variables in the rule data structure

are flagged if they participate in a right-hand side label. This informs the code

generator to print code to extract the appropriate values from the morphism or

from the host graph. This minimises the morphism and host graph querying

at runtime. The values of integer variables, the values of string variables and
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bool match node {
for ( nodes N o f the host graph ) {

i f (N i s not a v a l i d match for node ) continue ;
else {

f l a g N as matched ;
c a l l p r e d i c a t e e va lua to r s ;
i f ( cond i t i on eva lua t e s to t rue ) return t rue ;
else r e s e t boolean v a r i a b l e s ;

}
}
return f a l s e ;

}

Figure 5.30.: Generated code for matching a node that participates in the condi-
tion

the degrees of host nodes are stored in variables of the appropriate type. The

value of a list variable l is not immediately extracted from the morphism because

the type information from the assignment is necessary to create right-hand side

labels involving l. In our running example, variables i, x, and the outdegree of

node 2 are used in right-hand side labels, resulting in the following local variable

initialisation code at the start of the rule application function.

void applyMain rule ( Morphism ∗morphism , bool r ecord changes ) {
int var 0 = get Intege rVa lue ( morphism , 0 ) ;

Assignment var 1 = getAssignment ( morphism , 1 ) ;

int node index = lookupNode ( morphism , 1 ) ;

int outdegree1 = getOutdegree ( host , node index ) ;

In addition to the morphism, the rule application function takes a boolean

argument called record changes. If set to true, the code will push a frame to the

graph change stack when a change is made to the host graph. We omit that code

for conciseness. Host graph modifications are performed in the following order

to prevent conflicts and dangling edges: delete edges, relabel edges, delete nodes,

relabel nodes, add nodes, add edges. It follows that the images of e0 and n0 are

removed from the host graph first:

int hos t edge index = lookupEdge ( morphism , 0 ) ;

i f ( r ecord changes ) { . . . }
removeEdge ( host , ho s t edge index ) ;

int host node index = lookupNode ( morphism , 0 ) ;

i f ( r ecord changes ) { . . . }
removeNode ( host , hos t node index ) ;

The next stage of rule application is to relabel n1 and n2. The code to relabel

n1 is below.

host node index = lookupNode ( morphism , 1 ) ;

HostLabel l a b e l n 1 = getNodeLabel ( host , hos t node index ) ;

HostLabel l a b e l ;

int l i s t v a r l e n g t h 0 = 0 ;
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int l i s t l e n g t h 0 = l i s t v a r l e n g t h 0 + 1 ;

HostAtom array0 [ l i s t l e n g t h 0 ] ;

int index0 = 0 ;

array0 [ index0 ] . type = ’ i ’ ;

array0 [ index0 ++].num = outdegree1 ;

HostLi s t ∗ l i s t 0 = makeHostList ( array0 , l i s t l e n g t h 0 , f a l s e ) ;

l a b e l = makeHostLabel (0 , l i s t l e n g t h 0 , l i s t 0 ) ;

i f ( equalHostLabe ls ( l abe l n1 , l a b e l ) ) removeHostList ( l a b e l . l i s t ) ;

else {
i f ( r ecord changes ) { . . . }
re labe lNode ( host , host node index , l a b e l ) ;

}

An array of HostAtoms called array0 4 is created to store the evaluated right-

hand side label. The size of the array is the sum of the number of non-list variable

atoms in the right-hand side label and the values of all list variables in the right-

hand side label. The first value is worked out at compile time, while the second

requires a runtime computation if any list variables exist in the label. In this

case, the right-hand side label is outdeg(2), a list of length 1 containing no list

variables. The first element of the array is assigned the type ‘i‘ and the value

of the local variable outdegree1. Before relabelling is performed, the function

makeHostList adds the new label to the hash table and returns a pointer to the

list. This pointer is passed to makeHostLabel with the mark from the rule label.

A mark is represented as an enumerator. The code generator prints the integer

value of the enumerator; here 0 represents the absence of a mark. Finally, the

new label is compared with the current label of n1. If they are different, then the

change is pushed to the graph change stack if necessary and the node is relabelled.

Otherwise, removeHostList is called to decrement the reference count of the list

in the hash table. The code to relabel the other node is similar, except the array

value is set to var 0 * var 0, where var 0 was earlier initialised to the value of

variable i.

Finally, the code to add the new node and edge is below.

Populating the array from a list variable is more cumbersome than from an

integer or a string variable because the way that the array is populated depends

on the type of the assignment. Another complication is that adding an edge to the

host graph requires knowledge of its source and target. Nodes incident to added

edges are either interface nodes or nodes created by the rule. This information

is available from the interface pointers in the structures for rule nodes. If the

node is in the interface, the node identifier is found through the morphism. In

the second case, the node identifier is found in the rhs node map array created

before nodes are added to the host graph. In the running example, the new edge

is incident to n2, an interface node, and the new node. The code queries the

morphism to get n2’s image, and it queries rhs node map for the added node.

The morphism is reset through a function call before function exit so that future

matches of the same rule are not corrupted by the existing morphism values.

4The integer suffix is used to prevent variable name clashes.
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/∗ Array o f hos t node i n d i c e s indexed by RHS node . ∗/
int rhs node map [ 3 ] ;
int l i s t v a r l e n g t h 2 = 0 ;
l i s t v a r l e n g t h 2 += getAssignmentLength ( var 1 ) ;
int l i s t l e n g t h 2 = l i s t v a r l e n g t h 2 + 0 ;
HostAtom array2 [ l i s t l e n g t h 2 ] ;
int index2 = 0 ;
i f ( var 1 . type == ’ l ’ && var 1 . l i s t != NULL) {

HostListItem ∗ item2 = var 1 . l i s t −> f i r s t ;
while ( item2 != NULL) {

array2 [ index2++] = item2−>atom ;
item2 = item2−>next ;

}
}
else i f ( var 1 . type == ’ i ’ ) {

array2 [ index2 ] . type = ’ i ’ ;
array2 [ index2 ++].num = var 1 .num;

}
else i f ( var 1 . type == ’ s ’ ) { . . . }
HostLis t ∗ l i s t 2 = makeHostList ( array2 , l i s t l e n g t h 2 , f a l s e ) ;
l a b e l = makeHostLabel (0 , l i s t l e n g t h 2 , l i s t 2 ) ;
hos t node index = addNode ( host , 0 , l a b e l ) ;
rhs node map [ 0 ] = host node index ;
i f ( r ecord changes ) { . . . }

int source , t a r g e t ;
source = rhs node map [ 0 ] ;
t a r g e t = lookupNode ( morphism , 2 ) ;
ho s t edge index = addEdge ( host , b l ank l abe l , source , t a r g e t ) ;
i f ( r ecord changes ) { . . . }

5.9.4. The Main Routine

The main function of the generated C program is responsible for calling the

matching and application functions as designated by the command sequence of

the GP 2 program. The program is a set of rule applications organised with an

imperative syntax. The code generator writes a short code fragment for each

rule call and translates each GP 2 control construct into the equivalent C control

construct. In order to preserve the meaning of the program, the code must

provide graph backtracking when appropriate. In the presented code, we assume

that graph backtracking is implemented via a graph change stack as discussed in

section 5.8.

The runtime code is supported by a number of global variables, including the

host graphs and morphisms. The main function first calls a function to populate

the host graph’s data structure via the host graph parser, then it allocates mem-

ory for each morphism. Morphisms are passed to the matching and application

functions, and they are reset to contain dummy values after the rule is applied

or after the rule fails to match. A global boolean variable success, initialised to

true, is used to store the outcome of a computation to support the control flow

of the program.
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Rule Type Generated Code

Empty
apply R (b ) ;
s u c c e s s = true ;

Predicate
i f (matchR(m) ) s u c c e s s = true ;
else < f a i l u r e code>

Standard

i f (matchR(m) ) {
applyR (m, b ) ;
s u c c e s s = true ;

}
else < f a i l u r e code>

Figure 5.31.: Generated C code for rule calls

The code generator carries some information about the command it is currently

processing to support generation of correct code. Some aspects of the generated

code, such as failure handling, are dependent on the context of the command.

For instance, failure in a loop body is treated differently from failure at the top

level. Information about graph backtracking is also present, obtained from the

static analysis described in subsection 5.8.1. Each rule application function takes

a boolean argument that pushes changes onto the graph change stack if set to

true.

Code generated from rule calls, the basic unit of a GP 2 program, is dependent

on the rule’s structure. Figure 5.31 shows the code generated for each rule type.

The letters m and b are used to represent the morphism and boolean arguments

to rule-related functions. Empty rules do not have a matching function and their

application function does not take a morphism argument. Predicate rules do not

have an application function. The failure code is shown at the end of the section.

Figure 5.32 summarises the translation of each GP 2 control construct to C.

Command sequences and procedure calls are not shown. Command sequences are

easily handled by generating the code for each command in the designated order.

When a procedure call is encountered in the program text, the code generator

inlines the command sequence of the procedure at the point of the call. The

condition of a branching statement is generated in C’s do-while loop: if the

command sequence fails before the last command, C’s break statement is called

to exit the condition, where control is assumed by the then/else branch. GP 2’s

loop translates directly to a C while loop. One subtlety is the looped command

sequence, where the line if(!success) break; is printed after the code for all

commands except the last, the same mechanism as used in rule set calls. A second

subtlety is that success is set to true after a loop exits because GP 2’s semantics

states that a loop cannot fail.

The non-deterministic constructs are handled in different ways. The rule set

call {R1, R2} is tackled by applying the rules in textual order until one rule

matches or they all fail. C’s do-while loop is used to exit the sequence after a rule

application: it would be incorrect to try and match R2 if R1 succeeds. In contrast,
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Command Generated Code

{R1, R2}

do {
i f (matchR1(M R1) ) {
<s u c c e s s code>
break ;

}
i f (matchR2(M R2) ) <s u c c e s s code>
else < f a i l u r e code>

} while ( f a l s e )

if C then P

else Q

int r e s t o r e p o i n t = <cur rent GCS frame>;
do C while ( f a l s e ) ;
undoChanges ( host , r e s t o r e p o i n t ) ;
i f ( s u c c e s s ) P else Q;

try C then P

else Q

int r e s t o r e p o i n t = <top o f GCS>;
do C while ( f a l s e ) ;
i f ( s u c c e s s ) P
else {

undoChanges ( host , r e s t o r e p o i n t ) ;
Q

}

(P; Q)!

int r e s t o r e p o i n t = <top o f GCS>;
while ( s u c c e s s ) {

P
i f ( ! s u c c e s s ) break ;
Q
i f ( s u c c e s s ) discardChanges ( r e s t o r e p o i n t ) ;

}
s u c c e s s = true ;

P or Q
int random = rand ( ) ;
i f ( ( random % 2) == 0) <program code for P>
else <program code for Q>

Figure 5.32.: C code for GP 2 control constructs

C’s pseudo-random number generator chooses between the two subprograms of

the or statement P or Q. We chose to implement rule sets in a deterministic way

because in our experience, rule sets are used to elegantly model deterministic be-

haviour. For example, the series-parallel recognition program loops a rule set to

reduce a graph to a basic structure, behaviour that is globally deterministic de-

spite the local non-determinism. Another common use case occurs in the acyclic

checking program, in which a rule set is used to test two structural properties —

the existence of a looping edge or a non-looping edge — in a single command.

The rule set calls can be used practically even with the knowledge that the imple-

mentation is deterministic. On the other hand, implementing the or statement

in the same way defeats the purpose of the construct. We acknowledge that users

may wish to use rule sets in a genuinely nondeterministic way (one use case could

be graph generation), and we aim to implement rule sets by pseudorandom choice
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Context Failure Code

Top Level
pr in t f a i l u r e message ;
ga rbageCo l l e c t ( ) ;
return 0 ;

Condition
s u c c e s s = f a l s e ;
break ;

Loop
s u c c e s s = f a l s e ;
<pop and undo graph changes>

Figure 5.33.: Generated C code for failure.

in the future. Finally, we note that both approaches are sound with respect to

the semantics.

Restore points are created and assigned to the top of the graph change stack

before entering a critical subprogram requiring backtracking. The function un-

doChanges restores a previous host graph state by popping and undoing changes

from the stack until the restore point is reached. The function discardChanges

pops the changes but does not undo them. It is only called at the end of a success-

ful loop iteration to prevent a failure in a future loop iteration from causing the

host graph to roll back beyond the start of its preceding iteration. Each restore

point has a unique identifier in the code to facilitate multiple graph backtracking

points.

The failure code is context-sensitive as shown in Figure 5.33. If there is a

failure at the top level, the program is terminated after reporting to the user and

garbage collecting. The failure message either states the name of the rule that

failed to match or that the fail statement was invoked. Failure in a condition

sets the success flag to false so that the subsequent code takes the else branch

of the conditional statement. Failure in a loop sets the success flag to false and

calls undoChanges to restore the host graph to the state it was in at the start of

the most recent loop iteration.

5.10. Comparison with Existing Implementations

We compare the graph transformation tools discussed in section 2.2 with the

implementations of GP 2 and GP 1. We categorise the tools on several crite-

ria answering the following questions: (1) What is the underlying theoretical

framework for graph transformation rules? (2) Which algorithm is used to match

left-hand sides of rules to host graphs? (3) Does the language have a complete

formal semantics? (4) How is the graph transformation executed? Is it compiled

into native code or interpreted by the tool? (5) Which language is used to im-

plement the interpreter or compiler? Figure 5.34 collates the answers to these

questions.

Most tools base their rules on the algebraic approach. The exceptions are PRO-

GRES’ Programmed Logic-based Structure Replacement [Sch97] and PORGY’s
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Tool Rules Sem. Matching Implementation Language

PROGRES PLSR Y Searchplan (D) Int. and comp. C

AGG SPO N CSP Interpreted Java

GROOVE SPO/DPO N Incremental Interpreted Java

GrGEN.NET SPO/DPO N Searchplan (D) Compiled Java/C#

PORGY Port Graphs Y Ullman [Ull76] Interpreted C++

GP 1 DPO Y Searchplan (S) Interpreted Haskell/C

GP 2 DPO Y Searchplan (S) Compiled C

Figure 5.34.: Features of graph transformation tools

Port Graphs [AK08], frameworks constructed specifically for their respective

tools and application areas. Excluding those, and outside of GP, SPO is uni-

versally used as the default approach by those tools, although GROOVE and

GrGEN.NET provide users with the option to write DPO rules. The algebraic

approach is popular because it is well-founded by decades of mathematical re-

search, and tool designers often wish to incorporate constructs and results from

the theory in practice. AGG’s critical pair analysis is a notable example [MTR05],

and we further note that GP 2 is making steps towards the same goal in the DPO

approach [HP15].

PROGRES [Sch91a], PORGY [AK08; FKP14] and GP 1 [Plu09] have a pub-

lished formal semantics for the entire graph transformation system beyond the

behaviour of rule application. The formal semantics for GP 2 are present in this

thesis (Sections 3.3 and 3.5); the published semantics of GP 2 [Plu12] does not

cover new language features such as the break statement. A semantics is useful

for verifying the correctness of an implementation and for formal verification of

graph programs. We believe that PROGRES’ semantics is too extensive and

complicated for this purpose, while the semantics of PORGY and GP should be

amenable for these use cases because of the relative simplicity of the languages

and the semantics. In GP 2’s case, this has been demonstrated with the devel-

opment of a Hoare-style proof system for the language [Pos13].

The theoretically expensive problem of matching the left-hand side of a rule in

a potentially large host graph is addressed in various ways. The most common of

these is matching with a searchplan, a composition of small matching operations.

Both GP implementations generate searchplans statically, while PROGRES and

GrGEN.NET use a searchplan that is dynamically computed using the metrics of

the working graph. Roughly speaking, the aim of examining the host graph is to

select a searchplan exhibiting the smallest branching factor with respect to the

host graph. This concept was introduced by Dörr [Dör95]. Both PROGRES and

GrGEN.NET use a cost function to heuristically select the optimal searchplan

with a greedy algorithm. The main difference between the two approaches is

that GrGEN.NET’s searchplan generation algorithm uses data from the current

graph [BKG07], while PROGRES makes assumptions about the structure of the

host graph based on statistics of typical graphs in their application area [Zün96].

Another dynamic approach is incremental pattern matching. The basic idea is to
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store all possible matches for the rules at runtime so that they can be accessed

quickly when required. This allows very fast matching at the cost of an expensive

initialisation phase and the runtime overhead of managing the requisite data

structures. The GROOVE engine matches rules in this way using the RETE

network technique for graph grammars [BGT91]. A RETE network is a graph

representing the incremental construction of all the left-hand sides in the rule

set, starting at labelled nodes at the bottom layer and finishing at complete left-

hand sides at the top layer. Subgraphs common to multiple left-hand sides are

shared in the network. The host graph items are passed through this network

at runtime to populate the set of matches which is dynamically updated as the

host graph changes. GROOVE extends the original idea with support for its

own language features such as quantifiers, NACs and regular path expressions

[GJR10; JGR12]. AGG represents subgraph matching as a constraint satisfaction

problem (CSP) [Rud98] in order to use the wealth of research into optimised CSP

solvers. Finally, PORGY’s matching algorithm is based on Ullman’s subgraph

isomorphism algorithm [PMD12]. The original algorithm is a depth-first search

with a look-ahead based search space refinement at each step of the search [Ull76].

The PROGRES compiler generates bytecode which can be executed directly

with an interpreter, intended for interactive validation, or used to generate C or

Modula-2 source code for rapid prototyping and for the final executable. Both the

AGG and GROOVE tools use a Java codebase that interpretively executes graph

transformation rules. GrGEN.NET generates executable code (.NET assemblies)

from the graph models and rewrite rules to be executed with the support of

the system’s runtime libraries. The PORGY is tool is implemented in C++.

Their underlying hierarchical graph data structure stores a representation of the

complete state space along with the graph transformation rules, suggesting an

interpretive execution. GP 1 executes graph programs using the York Abstract

Machine (YAM), a C program that interprets YAM bytecode generated by a

compiler written in Haskell [MP08a].

The GP 2 language has a compiled implementation, which means that less

work needs to be done at runtime in comparison to the tools that interpret graph

transformation rules at runtime. However, this does not mean a compiled execu-

tion is guaranteed or even likely to outperform an interpretive execution. More

significant is the matching algorithm. There have been many implementation ef-

forts in optimising subgraph matching with dynamic algorithms [Zün96; BKG07;

Hor+10; GJR10], based on the belief that the time gained in examining less of

the search space compared to a static algorithm is worth the runtime overhead.

However, we are not aware of any direct comparisons between static and dynamic

matching algorithms. The closest comparison may be [GJR10], which runs an

incremental matching algorithm against searchplan algorithms, although it is un-

clear how these searchplans are generated. Nevertheless, we do not expect GP

2 to outperform current tools outside of rooted graph programs without a more

sophisticated rule matching algorithm.
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5.11. Summary and Discussion

In this chapter we have presented two novel implementations of the graph pro-

gramming language GP 2. The first is a reference interpreter written in Haskell.

The codebase consists of about 1,000 lines of Haskell source code, a remark-

able feat for a complete implementation of graph transformation even given the

typically elegant and concise programming style afforded by Haskell. The per-

formance of the tool is adequate for our purposes, which is a nice outcome given

that the tool was programmed with conciseness and simplicity over performance.

The second is a compiler and runtime library that executes high-level graph

programs by generating C code from a textual specification of the program and

input graph. Some difficult design choices led us to empirically compare distinct

implementations of particular GP 2 features in order to make an informed choice

as to which approach would be most efficient in general. We documented the code

generation process, covering structural rule matching, label matching, condition

evaluation, rule application, and control constructs, in order to convince the

reader that the compiler makes an effort to be as efficient as possible and that

the translation from source code to target code is sound with respect to GP 2’s

semantics.

There is still much work to be done for the GP 2 implementation to achieve

its maximum potential. There are clear areas of improvement for the current

compiler, including some “quick wins”, but we also identify a dynamic matching

algorithm as a more involved optimisation area for the future. However, the case

studies presented in this chapter and in the next demonstrate that the generated

code is capable of performing demanding computations on large host graphs

reasonably efficiently. Chapter 6 combines theory and practice by using the GP

2 compiler to execute rooted graph programs.
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6. Case Studies in Rooted Graph

Programs

6.1. Introduction

The purpose of this chapter is to put the theory of rooted graph transformation

into practice and experimentally determine the efficiency of the implementation

described in the previous chapter. We demonstrate that graph programs with

fast rule schemata can be used to construct instructive and meaningful solutions

to established graph algorithms that perform in the same order of magnitude as

tailored implementations in C. In this way, users get the best of both worlds: they

can write visual, high-level graph programs with the performance of a relatively

low-level language.

6.2. Graph Traversing

Two of the most fundamental graph algorithms, depth-first search (DFS) and

breadth-first search (BFS), are based on exploring the entire input graph.

Traversing a graph is useful in several ways. First, a graph search can perform a

computation on each node upon reaching it. Second, a graph search can reveal

interesting and desirable properties about the structure of a graph [THCRS09],

a simple example being connectivity. Third, many complicated graph algorithms

have graph traversing at their core. Finally, from the point of view of rooted

graph programs, graph traversing algorithms provide a way to explore a graph

and perform a global computation with the use of fast rule schemata, which in

some cases matches the theoretical complexity of standard algorithms in spite of

the overhead of applying graph transformation rules.

Graph traversing algorithms are applicable to both directed and undirected

graphs. We consider only directed graphs because GP 2 does not support undi-

rected graphs. We note that the programs and results of this section are also

applicable to direction-independent traversal: the abstract algorithms are easily

adaptable to undirected graphs, while the GP 2 programs can simulate direction-

independent traversal by using bidirectional edges in rule schemata.

We give a conceptual description of both types of graph traversal before pre-

senting GP 2 programs that perform these traversals. The terminology, program-

ming patterns and results of this section form the basis for the two case studies

introduced later in the chapter.
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Figure 6.1.: Illustration of a depth-first search

6.2.1. Depth-first Search

A depth first-search of a graph starts by visiting an arbitrary node. Each step

of the search visits the target of an unexplored outgoing edge from the most

recently-visited node v. If no such edge exists, then v is finished, and the outedges

of the next most recently-visited node are examined. This process repeats until

all outedges of all visited nodes have been explored. Search continues by visiting

an arbitrary unvisited node. Search terminates when all nodes in the graph have

been visited.

For a graph G, a preordering is a list of the nodes in G, where v occurs before w

if v is visited before w during a DFS. A postordering is a list of nodes in G, where

v occurs before w if v is finished before w during a DFS. A reverse postordering

is the reverse of a postordering, which is in general not equal to the preordering

given by the same search. An important property of a reverse postordering is

that it is a topological ordering of the nodes of G [THCRS09], a property which

we shall use in Section 6.4.

These concepts are illustrated in Figure 6.1, the DFS of a square graph. Colours

represent the state of each node: unvisited nodes are white, visited nodes are grey,

and finished nodes are black. Each node is labelled with pre/post, where pre and

post are the positions of the node in the graph’s preordering and postordering

respectively. Explored edges are dashed. We refer to the nodes by their position

in the grid. For example, the top left node is TL which is the first node visited by

the algorithm. Then the DFS explores the edges in the order TL→ TR, TR→
BR, TL → BL, BL→ BR. This search order produces the preorder TL, TR,

BR, BL, the postorder BR, TR, BL, TL, and the reverse postorder TL, BL, TR,
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Main = init; DFS!; label source

DFS = forward!; try back else break

1

⇒

init()

1

1

1:0 i 2

3

n:m

1

⇒

forward(i,m,n:int)

i 2

n+1 3

n+1:m

1

i

1

n:m

2

⇒

label source(i,m,n:int)

i:m+1

1

n:m+1

2

i 2

j 3

n:m

1

⇒

back(i,j,m,n:int)

i:m+1 2

j 3

n:m+1

1

Figure 6.2.: The GP2 program dfs

BR. Note that the reverse postorder is different from the preorder: BL was the

last node to be visited, but it was not the last node to be fully explored. We

note that DFS may also be used to categorise edges, which reveals interesting

properties about the graph [THCRS09], but these properties are not relevant to

the programs in this chapter.

Remark 10. In the context of graph-traversing GP 2 programs, we say a host

graph node is visited when it first participates in the match of a successful rule

application.

Remark 11. We use the term blank throughout this chapter to refer specifically

to unmarked nodes and edges labelled with the empty list. We use the term blank

graph to refer to a graph whose nodes and edges are blank.

The GP 2 program dfs, shown in Figure 6.2, is a concrete realisation of the

DFS algorithm. It performs a directed depth-first search on the blank host graph

starting at an arbitrary node v. Nodes not reachable from v are not visited by

the search. The output graph is the host graph with two changes:

1. The nodes visited in the DFS are labelled pre : post as illustrated in Fig-

ure 6.1. During the computation, visited nodes are only labelled with pre

until they are finished, at which point post is appended to the label.

2. An additional root node stores two counts of the number of nodes visited

in the DFS (obtained through the preorder and postorder labelling). This

illustrates that graph traversal can perform a global computation on host

graphs.

The program maintains two root nodes. The grey root node in the host graph

is used to navigate the graph in a depth-first manner. The second unmarked root
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node, called the counter, is created by the program. It stores the current preorder

count and the current postorder count. It assigns its preorder count to the root

node after it is moved forward, and its postorder count before it is backtracked.

When the program terminates, these counts will both be equal to the number of

nodes in the host graph that are reachable from the root node.

The rule init prepares the search by matching an arbitrary host graph node

called the source. The source is rooted and coloured grey which marks it as

visited. It is also labelled with its preorder position (1). The rule also creates

the counter. The procedure DFS is applied as long as possible. A loop iteration

has two steps. First, it moves forward along a path of unmarked edges passing

through blank nodes for as long as possible, then moves back one step when for-

ward movement is no longer possible. Each rule application moves the root node

along the path, greying blank nodes and labelling them with the next preorder

number from the counter. Explored edges are dashed. Unlike in the previous

example, this is not a permanent mark. Instead, it acts as a trail of breadcrumbs

to facilitate backtracking once a node is finished. Visited nodes are greyed and

labelled, so they cannot be matched as the third node in forward’s left-hand

side. At some point, forward is no longer applicable, either when the root node

has no outgoing edges, or when the targets of all of its outgoing edges have been

visited. In either case, the root node is finished. The rule back appends the

current postorder count to its label, moves the root node back one step along

the path of dashed edges, and unmarks it. After a single application of back the

next loop iteration starts, which searches for an unexplored outnode from the

current root node. In this way, all outedges of visited nodes are explored, and

every node reachable from the source node is reached. DFS! terminates when

back is no longer applicable, at which point the root node is the node matched

by init. The construct try back else break is used to exit the loop when

break fails without reverting the graph to the state before entering the current

loop iteration. Finally, label source appends the postorder count to the source

because it is not the subject of a back rule application.

Figure 6.3 shows an example run of dfs on the same graph as in the previous

example. The top left graph is the state after applying init. The top right graph

is the state after two applications of forward. Observe that the nodes are labelled

in the order in which they are visited. The bottom right graph is the state after

two applications of back and one application of forward. The rightmost nodes

have been labelled with their postorder positions, but the top left node has not

since the top left node is not yet finished: the search has continued on its second

outgoing edge 1→ 4. The bottom left graph is the output graph of the program.

The counter is labelled with two integers, both equal to the number of nodes in

the host graph.

Remark 12. In the following proofs, we use root node to refer only to the root

node that was part of the original host graph, i.e. not the counter node.

Lemma 4. Let G be a blank graph with source v. The following property is an

invariant of the loop DFS!: the root node is reachable from v through a path of
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Figure 6.3.: Example execution of dfs

dashed edges. Every node in this path is grey. There are no other dashed edges.

Proof. The property trivially holds immediately after the application of init.

Let w be the root node. Assume there is a path, possibly empty, of dashed edges

from v to w consisting of only grey nodes, with no other marked edges in the

graph. After an application of forward, this path has been extended by a single

marked edge connecting w and one of its outgoing neighbours w′. w′ is the new

root node, w′ is grey, and the rule creates no additional marked edges. Therefore

the property still holds. A similar argument shows that back also preserves the

invariant.

Lemma 5. Let G be a blank graph. The program dfs terminates when run on

G.

Proof. We only need to prove termination of the loop DFS!; the rest of the pro-

gram consists of single rule applications. Let > be the following lexicographic

ordering on graphs: G > H if G contains more blank nodes than H, or if G and

H contain the same number of blank nodes and G contains more dashed edges

than H. If forward is applied to G to give H, then G > H because forward

marks and labels a blank node. In addition, back is applied to G to give H, then

G > H because back undashes an edge and does not change the number of blank

nodes in the graph. It follows that DFS! terminates because there are a finite

number of graphs less than the host graph with respect to the given ordering.

Lemma 6. Let G be a blank graph, and let v be the source of the DFS. The

program dfs visits all nodes reachable from v.
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Proof. We give a proof by contradiction. Assume that there exists a node w

reachable from v that is unvisited when the loop DFS! terminates. w is blank

because it has not been visited. w is not the root node, since neither forward nor

back makes a blank node the root. w is not the target of an edge outgoing from a

visited node w′: since w′ is visited, it must have been the root at some stage in the

computation. If w were the target of an outgoing edge of w′, then forward would

have matched for w′ → w, either when w′ was first made the root or immediately

after it was made the root from an application of back. Therefore, the source of

any edge whose target is w is an unvisited node. We can inductively extend this

argument to conclude that all nodes from which w can be reached are unvisited.

However, v is visited by init, contradicting the assumption that w is reachable

from v. Therefore dfs visits all nodes reachable from v.

Proposition 3 (Correctness of dfs). Given a blank input graph G, dfs chooses

a source node v and labels all nodes w reachable from v with a two-element list,

where the first element is the preorder position of w, and the second element is

the postorder position of w.

Proof. We refer to the first and second elements of the counter’s list by pre and

post respectively. First, init matches a node v and labels it 1, which is clearly v’s

preorder position. The rule also sets pre to 1 and post to 0. A node w is visited

when it is matched by forward, which labels w with pre + 1 and increments

pre. No other rule modifies the value of pre, so the node labelling respects the

definition of preorder. The rule forward is looped, so an application of back

is only attempted when the current root node does not have an outgoing edge

whose target is unvisited, precisely when that node is finished. An application

of back labels a finished node with post+ 1 and increments post. No other rule

modifies the value of post, so the node labelling respects the definition of the

postorder. Lemma 5, dfs terminates, which guarantees a valid output graph.

Finally, Lemma 6 ensures that all nodes reachable from v are visited by dfs.

Proposition 4 (Complexity of dfs). The program dfs runs in linear time on host

graphs of bounded degree, and in quadratic time on host graphs of unbounded

degree.

Proof. We assume that the host graph is blank because this provides the worst

case complexity. The rule init matches in constant time because all nodes in

the host graph are valid matches. All other rules are fast rule schemata. By

Theorem 2 (see Section 4.5.1), they are applied in constant time on host graphs of

bounded degree and they are applied in linear time on host graphs of unbounded

degree. The rule label source is applied once, while the rules forward and back

are applied a linear number of times in the node size of the graph. It follows that

the program runs in linear time on host graphs of bounded degree, and quadratic

time otherwise.
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Figure 6.4.: Illustration of a breadth-first search.

6.2.2. Breadth-first Search

Like DFS, a breadth first-search of a graph starts by visiting an arbitrary node

v. Each step of the search visits the target of an unexplored outgoing edge from

the least recently-visited node v. In this way, all edges from a single node are

explored before the outgoing edges of any other node. Again, this process repeats

until all outedges of all visited nodes have been explored. Search continues by

visiting an arbitrary unvisited node. Search terminates when all nodes in the

graph have been visited.

The order of nodes visited by BFS makes it a natural way to measure the least

number of edges it takes to get from the start node to any other reachable node

in the graph. Formally, the distance of a node w from a node v is the number of

edges on the path from v to w containing the fewest edges. Breadth-first search

(BFS) can be used to compute the distance from a source node to all nodes

reachable from the source as illustrated in Figure 6.4. As in the DFS example,

search commences at the top left node. Visited nodes are grey and explored edges

are dashed. The nodes are labelled with their distance from the top left node.

Figure 6.5 shows a GP 2 program bfs that performs a directed BFS on a

singly-rooted graph. The rule unroot blue is not shown, which is the same as

unroot blue except the left-hand node is blue. The output is the host graph

with the reachable nodes labelled with their distance from the 0-labelled node.

Like dfs, a root node is created to keep a record of the node count. An

arbitrary node from the host graph, which we again call the source, is coloured

red and labelled 0 by init. Each loop iteration starts with an extension phase,

where all unmarked nodes outgoing from a the root node with distance d from

the source are marked with the contrasting colour and labelled with d+ 1. This

phase is repeated for all nodes at distance d before switching to the next layer

by rooting an arbitrary node at distance d+ 1. Marks are used to control these

phases. When the final iteration is complete, all nodes are unmarked except a

single root node marked either red or blue, which is cleaned up by the final rule

application.

Figure 6.6 shows an example run of bfs on the same graph as before. The

top left graph is the state after applying init. The top middle graph is the

state in the first outer loop iteration immediately after Extend! is executed. The

top right and bottom left nodes have been matched by extend red. They are

blue, rooted, and labelled with their distance from the top left node. There
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Main = init; BFS!; Unroot

BFS = Extend!; try Next else (try Switch else break)

Extend = {extend red, extend blue}
Next = {next red, next blue}
Switch = {switch to red, switch to blue}
Unroot = {unroot red, unroot blue}
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Figure 6.5.: The program bfs
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are no other red nodes, so next red fails, which triggers execution of the inner

try-then-else statement. The application of switch to blue uncolours the

top left node and nondeterministically roots the top right node. At the start

of the second outer loop iteration, the state is the graph at the top right. An

application of extend blue and next blue gives the bottom right graph. No

extension rules are applied, and next blue fails, so the root node is switched to

a red node before the next iteration. No rules are applicable in this iteration, so

the outer loop breaks by the break statement in the inner try-then-else, and

unroot red is applied to give the output graph at the bottom left of the figure.

Lemma 7. Let G be a blank graph with source v. When bfs is applied to G,

the following property is invariant in the loop BFS!: the root node r is marked

either red or blue and is labelled with its distance d from v, and all other nodes

at distance d from v are unrooted, marked with the same colour as r and labelled

d.

Proof. The invariant trivially holds immediately after the application of init

because the root v is coloured red and labelled 0 by the rule. Consider the first

iteration of the loop. First, extend red is applied as long as possible. Each rule

application seeks a blank target node w of one of v’s outgoing edges. There are

two cases.

Case 1. A node w exists. Then w 6= v because of injective matching, so w’s

distance from v is 1. This node is marked blue and labelled 1 by extend red.

After the execution of Extend!, all targets of edges outgoing from v are blue and

labelled 1. The program enters the try-then-else statement. The procedure

Next fails because v is the only red node in the graph, and control proceeds to

the inner try-then-else statement. switch to blue succeeds, without loss of

generality matching v and w. v is unrooted and unmarked, while w remains blue

and becomes a root node. Control reaches the end of the current iteration. The

invariant holds: the root node w is blue and labelled 1, its distance from v. All

other nodes at distance 1 from v are blue.

Case 2. No such node w exists. Extend! exits after zero rule applications. The

program enters the try-then-else statement. Next and Switch fail because v

is the only marked node in the graph. BFS! exits by the break statement, after

which unroot red uncolours and unroots v. The invariant trivially holds because

there are no root nodes in the graph.

Now assume that the invariant holds after the kth loop iteration. Without loss

of generality, let k + 1 be even. Then the single root node w is blue and labelled

with its distance k from v. The k+ 1th execution of the loop body first executes

Extend! which finds all targets of outgoing edges of w, marks them red, and

labels them with k + 1. If another blue node w′ exists, it is made the root

node by next blue, which also unroots and unmarks w. Another execution of

Extend! repeats the process for another set of nodes at distance k + 1 from v.

When the last blue node w′′ is processed in this way, Next fails. w′′ is unmarked

and unrooted by either switch to red or unroot blue. In the former case, the
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red node matched by switch to red is rooted, and all other nodes at distance

k + 1 are red and labelled k + 1. In the latter case, no root nodes exist. In both

cases the invariant holds.

Lemma 8 (Termination of bfs). Given a blank input graph G with a single root

node v, the program bfs terminates.

Proof. Clearly init and Unroot terminate, so we only need to prove termination

of the loop BFS!. Let > be the following lexicographic ordering on graphs: G > H

if G contains more blank nodes than H, or if G and H contain the same number of

blank nodes and G contains more unmarked nodes than H. Then, if extend red

or extend blue is applied to G to give a new graph H, then G > H as the

extension rules mark and label a blank node. In addition, applying a next rule

or a switch rule to G to give the graph H implies G > H since those rules

preserve the number of blank nodes and unmarks one node. It follows that BFS!

terminates because there are a finite number of graphs less than the host graph

with respect to the given ordering.

Lemma 9. Let G be a blank graph, and let v be the source of the BFS. The

program bfs visits all nodes reachable from v.

Proof. We give a proof by contradiction. Assume that there exists a node w

reachable from v that is unvisited when the loop BFS! terminates. w is blank

because it has not been visited, therefore w is not the root node, since the root

node is always marked. It follows that w is not the target of an edge outgoing

from a visited node w′: since w′ is visited, it must have been the root at some

stage in the computation. If w were the target of an outgoing edge of w′, then w

would have been marked red or blue by one of the extend rules and later made

the root node by either a next rule or a switch rule. Therefore, the source of

any edge whose target is w is an unvisited node. We can inductively extend this

argument to conclude that all nodes from which w can be reached are unvisited.

However, v is visited by init, contradicting the assumption that w is reachable

from v. Therefore bfs visits all nodes reachable from v.

Proposition 5 (Correctness of bfs). Given a blank input graph G, bfs chooses

a source node v and labels all nodes w reachable from v with its distance from v.

Proof. Follows directly from Lemmas 7, 8, and 9.

Proposition 6 (Complexity of bfs). The program bfs runs in quadratic time.

Proof. We assume that the host graph is blank because this provides the worst

case complexity. The rules init, unroot red and unroot blue are applied at

most once and match in constant time. The extending rules are fast rule schemata

applied a linear number of times in the size of the host graph. By Theorem 2 (see

subsection 4.5.1), they are applied in the worst case in linear time. The next and

switch rules are not fast rule schemata. Their complexity is linear because they

search for one non-root node, and they are applied a linear number of times. It

follows that the program runs in quadratic time.

125



Outside of graph programming, the computational complexity of both DFS

and BFS is linear in the size of the graph. Imperative implementations can

achieve linear time with the use of auxiliary data structures to aid the search.

DFS implementations use a stack to store the branching points, namely the list

of nodes to be visited next, because the algorithm continues the search from

the most recently encountered branch. In contrast, BFS implementations use a

queue because the next branch to explore is the least recently encountered one.

The analogous mechanism for graph programs is root nodes. Each root node

represents a branching point. GP 2 can naturally perform DFS with fast rule

schemata while maintaining only one root node since the graph traversal can

efficiently search for the most recent branching point while backtracking, a step

that has to be taken in any case. On the other hand, this cannot be achieved

so easily when programming BFS. Instead we use a single marked root node to

model the current branching point, representing other nodes in the “queue” with

the same mark. The consequence is that we do not have a program consisting

entirely of fast rule schemata, which gives a greater complexity than DFS for

host graphs with bounded degree, although the general worst case complexity is

the same. We note that it should be possible to program BFS using only fast

rule schemata by explicitly simulating a queue. The idea is that an external root

node acts as a global pointer to a node at the current depth, and auxiliary edges

connect nodes at the same depth. Initial attempts to write such a program have

revealed that it is very difficult to achieve using only rules that are rooted and

connected.

6.3. Case Study: 2-Colouring

Vertex colouring has many applications [Ski08] and is among the most frequently

considered graph problems. We focus on 2-colourability: a graph is 2-colourable,

or bipartite, if one of two colours can be assigned to each node such that the

source and target of each non-loop edge have different colours. We first give a

general result that enables us to show correctness of the graph programs that

follow.

Lemma 10. Consider the algorithm that labels nodes of a connected, undirected

graph G by assigning each node a colour from the set {red, blue} as follows: first

assign an arbitrary node the colour red, then repeat the following procedure until

all nodes have a colour: nondeterministically find an uncoloured node connected

to an coloured node v and label it with the contrasting colour to that of v. Then

the following statement holds: G is not bipartite if and only if, at any point in

the algorithm, two connected nodes have the same colour.

Proof. If G is not bipartite then, by definition, there is no way to assign integers

to nodes without labelling two connected nodes with the same integer.

We prove the other direction by the contrapositive: we assume G is bipartite,

and we show that the algorithm never assigns the same label to two connected

nodes. Let v be the initial node of the algorithm. v is coloured red. We prove, by
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Main = try (init; Colour!; if Invalid then fail)

Colour = {colour blue, colour red}
Invalid = {joined reds, joined blues}
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Figure 6.7.: The program 2colouring

induction, that no neighbours of v can be coloured red. If v has one neighbour,

clearly the algorithm must colour that neighbour blue.

Assume that if v has fewer than n neighbours, the algorithm cannot colour any

of them red. Let v have n neighbours w1, . . . , wn. By the induction hypothesis,

without loss of generality, none of w1, . . . , wn−1 are red, so we assume they are

blue. If wn is not reachable from any of w1, . . . , wn−1 except through v, then wn
must be coloured blue because it is only colourable via the edge v → wn. So

assume there is a path P from one of v’s neighbours, say w1, to wn, that does

not contain v. w1 is blue, so for wn to be coloured red, P must contain an odd

number of edges. It follows that G contains a cycle of odd-length consisting of

the two-edge path wn, v, w1 and the odd-length path P from w1 to wn. Therefore

G is not bipartite, a contradiction. By induction, no neighbours of v can be

assigned the same colour as v.

This argument can be extended to every other node in the graph. Therefore a

node can never be assigned the same colour as one of its neighbours in a bipartite

graph.

The following sections present GP 2 programs that find a 2-colouring of a graph

with the algorithm described above (adapted to GP 2’s directed graphs). The

input to these programs is a connected, unmarked and unrooted graph G. If G

is bipartite, the output is a valid 2-colouring of G. Otherwise, the output is G.

The first program contains no roots in its rules. The other two programs are

rooted: one colours the graph using a depth-first traversal, while the other uses a

breadth-first traversal. The colouring rules of all three programs use bidirectional

edges to match host graph edges independently of their direction.

6.3.1. Non-rooted 2-colouring

Figure 6.7 shows the non-rooted GP 2 program 2colouring. joined blues is

omitted: it is the same as joined reds, except its nodes are blue.
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Lemma 11. Given a connected graph G, the program 2colouring returns a

2-colouring of G if G is bipartite, otherwise it returns G.

Proof. Using the rule init, the program first marks an arbitrary node of G

and colours it red. Then the loop Colour! nondeterministically finds uncoloured

nodes that are connected to coloured nodes and colours them with the contrasting

colour. The rules in colour decrease the number of uncoloured nodes, so Colour!

will terminate precisely when each node has a colour.

By Lemma 10, after Colour! terminates, if G is bipartite, then the current

graph is a valid 2-colouring of G. Otherwise, it contains a non-looping edge

connecting two nodes of the same colour. The if-then-else statement uses

Invalid to check for such an edge. If one exists, Invalid succeeds. The then

branch triggers a fail which, by the semantics of try-then-else, causes the

host graph G to be returned. Otherwise, the else branch is taken which does

nothing. After that, the then branch of the try-then-else statement is taken

which retains the current graph.

6.3.2. Rooted 2-colouring

Figure 6.8 shows a rooted 2-colouring GP 2 program that colours the graph during

a depth-first traversal. The rules colour red and joined blues are omitted,

which are the “inverted” versions of the rules colour blue and joined reds with

respect to the node marks. In particular, the right-hand side of joined blues

also has a grey root node.

A glance at the program text reveals that dfs-2colouring is more complicated

than its non-rooted counterpart. At its core, it is an undirected depth-first search

in which the source node is chosen nondeterministically by the program. The

colouring rules and back rules correspond to the forward and back rules of dfs

respectively. Each visited node is coloured with the contrasting colour to the

previous node in the traversal. Unlike dfs, backtracking does not undo the

marking performed by the traversal because the global colouring is preserved for

the output.

The most significant departure from 2colouring is the placement and be-

haviour of Invalid. In dfs-2colouring, this check is performed immediately

after a node is coloured. If the 2-colourability is violated, the root node is marked

grey, which acts as a flag for non-bipartiteness. The check is performed by fast

rule schemata, which does not improve the worst case complexity compared to

the global check at the end of 2colouring, because in both cases the check is

performed on the neighbourhood of every node during program execution. The

advantage to performing a local check at each step is that a host graph can be

proven to be non-bipartite before it has been completely coloured. In addition,

since every rule schema is fast, all matching is performed in constant time on

host graphs of bounded degree.

Figure 6.9 shows the execution of dfs-2colouring on the host graph in the

upper-left of the diagram. This graph is clearly not 2-colourable. The rule init

colours node 1 red. The rule colour blue nondeterministically matches the edge
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Main = try (init; Colour!; if grey root then fail)

Colour = (ColourNode; try Invalid then break)!; Backtrack

ColourNode = {colour blue, colour red}
Invalid = {joined reds, joined blues}
Backtrack = try {back red, back blue} else break
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Figure 6.8.: The program dfs-2colouring
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Figure 6.9.: Example run of dfs-2colouring
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1 → 2. It roots node 2, colours it blue and dashes the edge. The colouring

rules are applied twice more to give the lower-right graph. At this point the rule

joined blues matches the edge 4 → 2. This colours the root node grey. The

inner loop breaks, and control passes to Backtrack. Both back rules fail because

neither match a grey root node. This causes the outer loop to break. Finally,

grey root succeeds, causing the try statement to fail and return the original

graph.

The following two results formally establish the correctness of

dfs-2colouring.

Lemma 12. Let v be the unique root node of a connected and unmarked graph

G. Upon executing dfs-2colouring on G, after the application of the rule init,

the following property is an invariant of the program: the current root node is

reachable from v via a path of dashed edges. Every node in this path is either

blue or red. There are no other marked edges.

Proof. Follows from Lemma 4.

Proposition 7 (Correctness of dfs-2colouring). Given a connected, unmarked

and unrooted host graph G, the program dfs-2colouring returns a 2-colouring

of G if G is bipartite, otherwise it returns G.

Proof. First, we prove that the program terminates. If we simplify the program

to preserve the loop structure, removing only statements containing single rule

applications and control statements, and inlining the Colour procedure, the pro-

gram text reads try (ColourNode!; Backtrack)!. An almost identical argu-

ment to that of Lemma 5 can be used to prove that this loop always terminates.

We split the remainder of the proof into two cases.

Case 1. G is bipartite. We can discard the try Invalid then break clause

because, by Lemma 10, Invalid is never successful. The Colour procedure

reduces to (ColourNode!; Backtrack)!. Since the input G is connected, we use

the argument of Lemma 6, easily adaptable to undirected paths, to prove that

every node in G is visited. By Lemma 12, these nodes are marked either red or

blue by the loop. By Lemma 10, these nodes are marked in a way that does not

violate 2-colourability. Only the rules in Invalid colour the root node grey, so

the if-then-else statement in the body of Main fails, and the try-then-else

statement suceeds, terminating the program with the 2-coloured graph.

Case 2. G is not bipartite. By Lemma 10, at some point during program

execution, the procedure Invalid succeeds. This colours the root node grey and

breaks the loop in Colour. Neither back red nor back blue match a grey root

node, so Backtrack will break the Colour! loop. The if statement in the body of

Main succeeds, and the try statement fails, terminating the program with G.

It is not so straightforward to convert bfs to a BFS-based 2-colouring program.

In order to output a 2-colouring, the next and switch rules should unmark the

root node. However, this causes the program to loop forever on non-trivial host
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Main = try (init; Colour!; if blank node then fail); Unroot

Colour = ColourNode!; try Invalid then break;

try Next else (try Switch else break)

ColourNode = {colour green, colour grey}
Invalid = {joined greys, joined greens}
Switch = {switch to grey, switch to green}
Unroot = {unroot grey, unroot green}
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Figure 6.10.: The GP2 program bfs-2colouring

graphs, because they can match the same pair of nodes repeatedly. In terms of

Lemma 8, these rules do not create a smaller graph with respect to the graph

ordering in the proof. We address this issue in the program bfs-2colouring by

using four marks as shown in in Figure 6.10. Grey and green are used as the

initial 2-colouring colours. When grey and green nodes are finished, they are

remarked to red and blue respectively by one of the next, switch and unroot

rules. In this way we can guarantee termination.

Generally speaking, bfs-2colouring combines the bfs algorithm with the

local invalid edge checking of dfs-2colouring. In this case, an unmarked root

node is used as the non-bipartite flag. The rules play the same roles as they did in

bfs (the expand rules have been renamed to colour green and colour grey).

Two rules are not displayed: colour grey and joined greens which are the

inverted versions of colour green and joined greys respectively. Again, the

source node is chosen nondeterministically by the program. The graph traversal

grows from the source akin to bfs. The program needs to check for invalid edges
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Figure 6.11.: Example run of bfs-2colouring

on each node during its time as a root. This is achieved by placing the familiar

try Invalid then break clause directly after the ColourNode! loop. In this

way, the current root node is checked before it is unrooted.

Figure 6.11 shows an execution of bfs-2colouring on a non-bipartite graph.

The top row proceeds as bfs. The top right graph contains an edge whose end-

points are the same colour, but this is not immediately detected by the program

because neither of these nodes are rooted. The transition from the top right

graph to the bottom right graph is done by switch to green, which matches

the top left and top right nodes, and colour grey (the start of a new loop it-

eration), which matches 2 → 3. When Invalid! is executed, joined greens

matches which unmarks the root node and breaks the loop. In the Main proce-

dure, blank node succeeds which causes its containing try-then-else statement

to fail, returning the original graph.

Proposition 8 (Correctness of bfs-2colouring). Given a connected, unmarked

and unrooted host graph G, the program bfs-2colouring returns a 2-colouring

of G if G is bipartite, otherwise it returns G.

Proof. Ignoring the clearly terminating try Invalid then break, we get the

same program structure as bfs. Termination is proved by the same argument as

in the proof of Lemma 8 with > defined as follows: G > H if G contains more

unmarked nodes than H, or if G and H contain the same number of unmarked

nodes and G contains more grey nodes or more green nodes than H. Correctness

of the output graph follows from a case analysis as in the proof of Proposition 7,

using Lemma 10.
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6.3.3. Complexity Comparison

The complexity of 2colouring is at least quadratic in the size of the host graph.

Each colouring rule is applied a linear number of times and involves a linear-

time node search and an edge search bounded by the degree of the host graph.

The equivalent rooted programs were constructed with the goal of using fast rule

schemata as much as possible in order to improve the theoretical complexity. We

formalise the complexity of both rooted 2-colouring programs.

Proposition 9 (Time complexity of dfs-2colouring). On unmarked input

graphs, the running time of dfs-2colouring is linear in the size of graphs with

bounded node degree, and quadratic otherwise.

Proof. First, init is applied in unit time because every node in the host graph

is a valid match of the left-hand side. All other rule schemata are fast. By

Corollary 1, we know that each rule schema takes only constant time on rooted

graphs of bounded degree. Moreover, none of the rule schemata increase the

degree of any node or increase the number of roots. Therefore repeated rule

schema applications in program runs preserve the assumptions of Corollary 1,

To show that the running time of dfs-2colouring is linear in the size of the in-

put graph, we demonstrate that the maximal number of rule schema applications

is linear. The rules init and grey root are applied at most once in a program

run. Next, notice that colour reduces the number of unmarked nodes and back

does not increase this number. Hence colour is applied at most n times, where

n is the node size of the host graph. The procedures Invalid and Backtrack

are executed at most once for each application of a colouring rule. Therefore the

total number of rule applications is O(n).

Now we consider host graphs of unbounded degree. Observe that no left-hand

sides in the program contain more than one edge. Therefore, by Figure 4.8 and

its analysis, matching a single rule is no worse than linear. Since there are a

linear number of rule applications, the overall time complexity is quadratic.

To illustrate the second part of the proposition with a concrete example,

consider the execution of dfs-2colouring on a blank star graph G with n

edges. Assume that init matches the central node. This is a constant time

match. The program then iterates the following sequence of rule applications

n times: (1) Apply colour blue to one of the uncoloured nodes branching out

from the central node. (2) Check for violation of 2-colourability with Invalid.

This always fails. (3) Try to colour a node adjacent to a leaf node. This

always fails. (4) Apply back blue. Each application of colour blue takes

O(n) time because in the worst case, all n outgoing edges need to be exam-

ined for a valid match. The other rules are applied in constant time since

each leaf node has only one incident edge. This gives a total running time of

n2 + 3n+ 1 = n+ (n+ 1)2 = O((n+ 1)2) = O(|VG|2).

Proposition 10 (Time complexity of bfs-2colouring). On unmarked input

graphs, the running time of bfs-2colouring is quadratic in the size of the host

graph.

133



Proof. Follows directly from Proposition 6.

6.3.4. Experimental Results

To experimentally validate the theoretical complexity of the 2-colouring pro-

grams, we executed them using the GP 2 implementation. For the first exper-

iment, the programs were executed on square grid graphs (grids). The reasons

are threefold.

1. Grids are 2-colourable. This guarantees that all three programs perform

the same computation, namely matching and colouring every node in the

graph. For non-2-colourable graphs, the rooted programs may detect non-

2-colourability before all the nodes are matched.

2. Grids have bounded node degree, which in particular tests the theoretical

linear complexity of dfs-2colouring.

3. Grids have a simple structure that admits relatively simple generation of

large host graphs.

A concrete example of the structure of the grid graphs we use for testing is in

Figure 6.12.

Figure 6.12.: An example grid graph

The results are given in Table 6.1 and Figure 6.13. Both rooted programs

greatly outperform the non-rooted program. dfs-2colouring runs faster than

bfs-2colouring, although the program based on breadth-first search performs

a lot better than its theoretical complexity. The plots confirms the theoretical

results that dfs-2colouring performs linearly with respect to the size of the host

graph with bounded degree and that bfs-2colouring performs in quadratic time.

An interesting observation is that 2colouring’s runtime grows at approximately

the same rate as bfs-2colouring, but the latter is an order of magnitude faster.

In both programs, the matching of unrooted nodes a linear number of causes is

the cause of the quadratic complexity. The striking gap in performance arises

because 2colouring matches unrooted nodes for every rule application, whereas
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Grid Size 2colouring bfs-2colouring dfs-2colouring

10,000 3.808 0.212 0.041
20,164 15.451 0.768 0.69
30,276 35.084 1.671 0.097
40,000 62.054 2.863 0.127
50,176 99.19 4.459 0.154
60,025 145.219 6.392 0.181
70,225 221.102 9.049 0.213
80,089 246.248 12.675 0.237
90,000 334.893 17.163 0.267
102,400 438.987 23.997 0.311

Table 6.1.: Experimental results of three 2-colouring programs. Grid size is given
by the number of nodes, and runtime is given in seconds
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Figure 6.13.: Plots of the runtimes of the rooted 2-colouring programs on grids

bfs-2colouring only matches (isolated) unrooted nodes for a subset of its rule

set. The take home point is that rooted rules can boost performance speed even

if there exist unrooted (or non-fast) rules in the program.

To test the theoretical complexity on graphs of unbounded degree, we ran the

2-colouring programs on star graphs. A star graph consists of a central node

with k outgoing edges. The targets of these outgoing edges themselves have a

single outgoing edge. The test graphs are star graphs ranging from 104 to 105

edges in increments of 104.

Table 6.2 and Figure 6.14 show the runtimes and their plots. None of the

curves are linear, but the two rooted programs again substantially outperform the

unrooted program. These results match the theoretical expectations that both

versions of rooted 2-colouring run in quadratic time on host graphs of unbounded

node degree. However, dfs-colouring outperforms bfs-2colouring by about

a factor of 2.
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Star Size 2colouring bfs-2colouring dfs-2colouring

0.1 · 105 2.342 0.599 0.276
0.2 · 105 9.362 2.367 1.035
0.3 · 105 20.899 5.263 2.307
0.4 · 105 37.438 9.292 4.081
0.5 · 105 59.929 14.804 6.61
0.6 · 105 91.141 21.678 9.91
0.7 · 105 128.285 30.263 13.874
0.8 · 105 169.603 40.915 18.651
0.9 · 105 216.78 53.338 24.094
1 · 105 268.12 67.375 32.41

Table 6.2.: Experimental results of three 2-colouring programs. Star size is given
by the number of edges, and runtime is given in seconds
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Figure 6.14.: Plot of the runtimes of the rooted 2-colouring programs on stars

6.4. Case Study: Topological Sorting

Topological sorting is a common graph algorithm. It has applications any scenario

where a set of tasks or jobs needs to be ordered with respect to dependencies

between the jobs such as scheduling tasks in a distributed system or computing

the dependencies of the build system of a large software project. The standard

specification is as follows: given a directed acyclic graph G, return a list of the

nodes such that for all edges e, sG(e) occurs before tG(e) in the output list. We

refer to this list of nodes as a topological order. In the context of graph programs,

we will use a different output convention: assign a positive integer to each node

such that for each edge e, number(sG(e)) < number(tG(e)). These integers are the

positions of the nodes in the topological order.

There are two established linear-time algorithms for computing a topological

sorting of a directed acyclic graph. The first algorithm works by choosing nodes

from the graph in their topological order by always selecting nodes with no in-

coming edges and deleting the outgoing edges of selected nodes [Kah62]. The

second is a depth-first traversal that computes the reverse postorder, which is a
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1: Function topsort(G: graph)
2: L← ∅
3: Queue Q← ∅
4: for each n ∈ G where indeg(n) = 0 do
5: enqueue(Q,n)
6: end for
7: while Q 6= ∅ do
8: Node n = dequeue(Q)
9: append(L, n)

10: for each outedge e of n do
11: if indeg(t(e)) = 0 then
12: enqueue(Q,n)

13: removeEdge(G, e)
14: end for
15: end while
16: return L

Figure 6.15.: The function topsort

topological ordering of the graph [THCRS09].

6.4.1. Standard Sorting

The pseudocode for the first algorithm is presented in Figure 6.15. A queue is

used to store all nodes of indegree 0. When a node is removed from the queue, it

is appended to the output list, its outedges are deleted, and new nodes with no

incoming edges are added to the queue. The use of a queue gives the algorithm

the flavour of BFS: all nodes at distance k from a source node are considered

before the first node at distance k + 1. In comparison to the single-sourced BFS

algorithms discussed earlier in the chapter, this algorithm performs a “parallel”

BFS starting from all the nodes in G with no incoming edges.

This algorithm is destructive: it removes edges in order to find the ordering as

quickly as possible. At first glance, the translation to GP 2 appears straightfor-

ward. We have already encountered reduction-based GP 2 programs in subsec-

tion 5.8.3 and subsection 5.8.4. However, the GP 2 specification for topological

sorting requires the preservation of the host graph. Wrapping the computation in

a branching statement will not suffice because we wish to keep some of the graph

changes, namely the node labels. We therefore simulate edge removal by dashing

edges, representing the “non-dashed indegree” of a node by an integer prepended

to its label. This value is replaced by the node’s position in the topological or-

dering when all its inedges have been dashed. The GP 2 program is shown with

an example execution in Figures 6.16 and 6.17.

In the example, the upper-left graph is the host graph. The node labels are

strings; quotation marks are omitted for clarity. We use these labels to uniquely

identify the nodes. There are three topological sortings for this graph: ABCD,

ACBD, and BACD. The program can generate two of these sortings due to

nondeterminism, and it cannot label the nodes in any other way. The second
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Main = Start; Sort!; unmark edge!; remove root

Start = add indeg!; make root; number source!

Sort = {number, hide edge}

x
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⇒
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Figure 6.16.: The program topsort
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Figure 6.17.: Example run of topsort
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sorting is not computable by the program because the nodes with no incoming

edges (A and B) are always labelled before any other nodes. Therefore the

program is sound but not complete.

The procedure Start is a preprocessing phase. The loop add indeg! shades

each node and prepends their indegrees to their labels. The rule make root

creates a root node with the label 1. This root acts as a global variable, storing

the next unassigned integer in the topological ordering. The top middle graph

is the state after make root is applied. The loop number source! starts the

topological ordering by nondeterministically appending integers to labels of nodes

with indegree zero and unshading them. The root node’s label is incremented

after each assignment to ensure each node is assigned a unique integer. The

upper-right graph is the state after the completion of Start.

Once the zero-indegree nodes have been assigned integers, the program enters

the Sort procedure, which sorts the rest of the host graph by nondeterministically

applying number and hide edge until neither can be applied. Applications of

hide edge effectively remove an edge from an ordered node to a marked (yet to

be ordered) node. It is correct to assign a shaded node the next number in the

topological order if there are no incoming marked edges. The rule number makes

this assignment one step earlier: if the first element of a shaded node’s label is 1,

then there is no need to dash its remaining incoming edge; it suffices to unshade

and label the node while keeping the matched edge unmarked.

The edge A → C of the top right graph is matched by number to give the

bottom right graph. Note that A → D could not be matched by the same rule.

This would be incorrect behaviour since it would cause D to be ordered before

one of its incoming nodes. The rule number has no matches in the bottom right

graph. The rule hide edge is applied twice on edges A → D and C → D, at

which point number is applicable on edge B → D, assigning the final position in

the ordering to node D. No shaded nodes exist in the current graph, so neither

number nor hide edge are applicable. The program performs a cleanup phase

unmark edge!; remove root to produce the bottom left graph: the host graph

with its topological ordering.

Proposition 11. For a node v, define its value, denoted by val(v), to be

the first atom in its label. Given an unrooted acyclic graph G, the pro-

gram topsort returns G with its nodes relabelled such that for each edge

e, val(sG(e)) < val(tG(e)).

Proof. The proof consists of three parts. We show that the following properties

are invariant of the loop Sort!: (1) The root node’s value is greater than the

value of any other unmarked node. (2) For all edges e connecting two unmarked

nodes, val(sG(e)) < val(tG(e)). Finally, we prove: (3) After Sort! terminates,

all nodes in the graph are unmarked. Together, these results demonstrate the

desired behaviour of the program.

1. The root is created with initial value 1 by make root. The loop add indeg!

marks all nodes. Each application of number source unmarks a node v and
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updates node values in the following way: val(v)← val(root), val(root)←
val(root)+1. Therefore, at the start of Sort!, the invariant holds. The rule

hide edge preserves the invariant because it does not unmark any nodes

and it does not modify any values. The rule number also preserves the

invariant as it performs the same computations with respect to marking

and updating node values as number source.

2. When Sort! is first entered, the invariant holds because there are no edges

with an unmarked target: up to this point, only nodes with no incoming

edges are unmarked. The rule hide edge preserves the invariant because

it creates no new edges between unmarked nodes. The rule number also

preserves the invariant. It matches an edge e : v → w where v is unmarked

and w is marked. w is unmarked by the rule, so e is now subject to the

invariant. The invariant is not violated because w is assigned the root’s

value, which is greater than the value of any other unmarked node by (1).

3. Assume that after Sort! terminates there exists a marked node v. v

has at least one incoming edge, or it would have been unmarked by

number source. Let w1, . . . , wk be the sources of edges with target v. At

least one of these nodes, say w1, is marked, otherwise k − 1 applications of

hide edge and 1 application of number would have unmarked v. We can

apply the same argument to w1 to infer that at least one of its incoming

nodes is shaded. Continuing in this way, since G is acyclic, we conclude

that there exists a node w′ with indegree 0 that is marked after Sort! ter-

minates. This is a contradiction because all indegree 0 nodes are unmarked

by number source. Therefore there does not exist a marked node after

Sort! terminates.

The complexity of topsort is at least quadratic in the size of the host graph.

The program contains rooted rules, but the root node is disconnected from the

rest of the graph at all times. The looped rules are applied a linear number of

times in the size of the host graph. None of the these rules are fast rule schemata,

but they have no more than one edge, so their complexity is linear for host graphs

with bounded degree and quadratic otherwise.

6.4.2. Depth-first Sorting

The algorithm specified in Figure 6.18 is a recursive depth-first traversal that

explicitly produces a reverse postorder of its nodes by adding nodes to the head

of the output list when they are finished.

Using the techniques discussed so far, this algorithm is comparatively easier

to translate to GP 2 than the other sorting algorithm. We already have a GP

2 program dfs to label each node with its reverse postorder position. However,

this would not be sufficient for the stated specification. The resulting node labels

would satisfy lG(sG(e)) > mG(tG(e)) for each edge e, the inverse of the desired
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condition. Our solution in Figure 6.19 performs two depth-first searches. The

first pass traverses the graph to count the nodes. The node count N is stored in an

isolated root node. The second pass relabels each node with N−postorder(n)+1.

This “inverts” the postorder, so that the output graph is labelled with the correct

topological sort as defined by the specification. An example run is shown in

Figure 6.20.

The procedure DFS traverses the graph and counts the nodes with a root node

in the same way as dfs. DFS is executed for each indegree 0 node in the host

graph. These nodes cannot be reached from one another, even if they exist in

the same connected component. Each visited node is coloured red; the second

DFS phase conducted by Sort! is responsible for unmarking the nodes. Before

each DFS terminates, the indegree 0 node is unrooted so that at most one root

node (excluding the counter) is maintained at all times. The top left graph of

Figure 6.20 is the graph after make root is applied. The top middle graph is the

graph after DFS! terminates.

The top right graph is the state after one application of init sort and two

applications of sort forward. The grey root node stores the list n : m, where n

is the number of nodes in the host graph. m, currently 0, acts as a counter during

the second DFS conducted by Sort!. When a node is finished, it is assigned the

value n−m, and m is incremented. As the bottom right graph demonstrates, the

first finished node is assigned the greatest integer in the ordering by sort back,

namely n − 0 = n. As m increases, the assigned integers decrease. Two further

applications of sort back and an application of unroot give the bottom middle

graph. An application of init sort and one more application of unroot on B

give the bottom left graph, labelled with a valid topological sorting of the host

graph. Observe that the postorder of the DFS is DCAB, and the topological

ordering computed by the program is BACD, the reverse of this postoder.

Proposition 12. For a node v, define its value, denoted by val(v), to be the

first atom in its label. Given an unrooted acyclic graph G, the program topsort

returnsG with its nodes relabelled such that for each edge e, val(s(e)) < val(t(e)).

1: Function topsort-DFS(G: graph)
2: while there exist unmarked nodes do
3: choose an unmarked node n
4: explore(n)
5: end while
6:

7: Procedure explore(n: node)
8: mark n
9: for each outedge e of n do

10: explore(t(e))
11: end for
12: prepend(L, n)

Figure 6.18.: A function to compute topological sorting using DFS
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Main = make counter; DFS!; Sort!; remove counter

DFS = init; (forward!; back)!; unroot

Sort = init sort; (sort forward!; sort back)!; sort unroot
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Figure 6.19.: The program dfs-topsort
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Figure 6.20.: Example run of program dfs-topsort

Proof. Let V = {v1, . . . , vk} be the set of nodes in G with indegree 0. By Lemma

6, each iteration of DFS! visits some vi and all nodes directly reachable from

it. Moreover, all of these nodes are marked red, and vi is unrooted by unroot.

Since DFS marks an indegree 0 node, and init matches an unmarked node with

indegree 0, DFS is applied once for each indegree 0 node in G. Therefore all nodes

in the graph are visited after termination of DFS!. Moreover, they are red and

unrooted.

The grey root node stores the list |VG| : 0. These two numbers are used to

assign the positions in the topological ordering to the label of each node during the

second depth-first traversal conducted by Sort!. Each iteration of Sort! starts

its depth-first traversals from a red node with indegree 0. The traversal moves

through the red nodes of the working graph, unmarking a node when it is visited.

When a node is finished, it is assigned the value n−m, where n and m are taken

from the grey root’s label n : m. As aforementioned, n = |VG| remains fixed.

Another application of Lemma 6 means that all nodes are visited in this phase.

m stores the number of finished nodes: it is initialised at 0, and it is incremented

whenever a node is finished, recognised by an application of sort back or unroot.

For any edge v → w, we have val(v) = |VG| − m′, val(w) = |VG| − m′′, and

m′ > m′′. The third inequality is true because a node is always finished before

any of its incoming nodes. It follows that val(v) < val(w).

Proposition 13. The program gp2-dfs-topsort runs in quadratic time on host

graphs of bounded degree, and cubic time otherwise.

Proof. The complexity of the program is determined by the complexity of the

procedures DFS and Sort. Both procedures traverse the graph in the same way

as dfs. We cannot use the result of Proposition 4 directly, as these searches could
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be invoked multiple times. Instead, we consider the complexity of the entire loops

DFS! and Sort!. It is clear that both procedures have the same structure, so we

only need to analyse one of these loops to establish the complexity of the whole

program. Without loss of generality, consider DFS!.

Case 1. G has bounded degree. First note that DFS iterates at most |VG| times,

since each iteration marks at least one node with init. Each iteration performs a

DFS sourced at an indegree-0 node v. This node is found by the rule init which

is not a fast rule schema, and so takes linear time to find the single unrooted

node in the left-hand side. In the worst case, G has no edges, causing init to be

matched |VG| times, giving an overall quadratic complexity.

Case 2. G has unbounded degree. Consider a single iteration of DFS!. By

Proposition 6, the loop iteration visits all nodes reachable from the node marked

by init. Note that when a node is visited, it cannot be matched by forward

or by back in this iteration or any future iteration because visited nodes are

marked red. Therefore, both forward and back are applied a linear number of

times each in the entire loop DFS!. The complexity of matching these rules is

quadratic, giving an overall cubic complexity.

6.4.3. Experimental Results

Both topological sorting programs were executed on forests. The test graphs are

generated by a GP 2 program, which takes as input a single node labelled with

the number of nodes in the desired tree. The program creates three isolated root

nodes, then nondeterministically grows branches from leaf nodes until the node

size is reached. Each rule extends a leaf node with either one, two, or three inci-

dent edges. The structure of the program gives a 50% weighting to two branches,

and 25% weight to one branch and to three branches. Some examples are shown

below. We run the experiments using two types of forests: outgrowing, in which

all edges point away from the root nodes; and ingrowing, in which all edges point

towards the root nodes. The number of indegree-0 nodes in outgrowing forests

are fixed, while the number of indegree-0 nodes in ingrowing forests increases as

the size of the forest increases.

Figure 6.21 shows two outputs of the forest generator when instructed to build

a forest containing 15 nodes. Figure 6.22 shows the output of both topolog-

ical sorting programs when executed on the left forest. The different traversal

strategies of the algorithms are clearly visible in the node labellings of the graphs.

The running times of the two topological sorting programs on forests ranging

from 104 nodes to 105 nodes are presented in Table 6.3 and Figure 6.23. The left

plot shows that the rooted topological sorting program clearly outperforms the

standard program for both classes of forest. A closer inspection of the time growth

of the rooted programs shows that dfs-rooted exhibits linear performance on

outgrowing trees, but not on ingrowing trees. The linearity in particular is made

clear in the right plot. The ingrowing trees add a degree of complexity because

the number of indegree 0 nodes is unbounded. In the rooted programs, these are

searched for (by init and init sort) without the benefit of rootedness. Even
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Figure 6.21.: Two outgrowing forests of 15 nodes generated by GP 2
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Figure 6.22.: Topological sortings of a forest. The sorting on the left was produced
by topsort. The sorting on the right was produced by dfs-topsort
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Outgrowing Ingrowing

Forest Size topsort dfs-topsort topsort dfs-topsort

0.1 · 105 2.469 0.052 5.13 0.884
0.2 · 105 9.729 0.089 20.673 3.394
0.3 · 105 22.093 0.128 48.022 7.625
0.4 · 105 39.622 0.177 90.653 13.363
0.5 · 105 62.205 0.212 151.009 21.025
0.6 · 105 91.047 0.261 225.149 30.531
0.7 · 105 126.087 0.304 321.1 42.075
0.8 · 105 165.586 0.346 435.599 57.561
0.9 · 105 221.033 0.387 574.812 76.096
1 · 105 261.53 0.426 742.715 97.211

Table 6.3.: Experimental results of two topological sorting programs. Forest size
is given by the number of nodes, and runtime is given in seconds.
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Figure 6.23.: Plots of the runtimes of the topological sorting programs on stars

with this in mind, it is striking that the rooted program’s performance slows down

by two orders of magnitude when the input changes from outgrowing forests to

ingrowing forests.

6.5. Comparison with C Programs

Generally speaking, we cannot expect GP 2 programs, even rooted ones, to com-

pete with a low-level implementation tailored to solve the problem at hand. How-

ever, some of the experimental results of the previous sections demonstrate im-

pressive runtimes. For certain classes of test graphs, the rooted GP 2 programs

were able to process graphs containing tens of thousands of nodes in well under

a second. It would be interesting to see how these cases perform in comparison

to a “bespoke” implementation. This section describes C implementations of 2-

colouring and topological sorting, based on the code in Sedgewick’s Algorithms

in C [Sed02] and provides experimental results.

The goal is to write the most efficient C code to solve the two graph algorithms.
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Hence the choice of graph data structure is an important one to make. Broadly

speaking, the two most common representations of directed simple graphs (graphs

without loops or parallel edges) are the adjacency matrix and the adjacency list

structure. For a graph with n nodes, an adjacency matrix is an n×n array M of

0’s and 1’s (we avoid discussing implementation details for the moment). An edge

i→ j is represented by Mi,j = 1, additionally Mj,i = 1 if the graph is undirected.

For the same graph, an adjacency list is a node-indexed array containing n linked

lists. An edge i→ j is represented by the presence of j in the ith linked list, and

vice versa if the graph is undirected.

The best solution often depends on the expected host graphs and on the prob-

lem that is being solved, and this is no exception. The host graphs on which

we will test these programs — grids and stars — are sparse graphs. Intuitively,

a sparse graph is one in which the number of edges is linear in the number of

nodes. In contrast, the number of edges is quadratic in the number of nodes

for dense graphs (complete graphs being the most extreme example). Adjacency

lists are preferable for sparse graphs because an adjacency matrix has N2 space

complexity1, a quantity independent of the number of edges, while adjacency

lists have space complexity N + E. Furthermore, adjacency matrices are ideal

for applications in which one wishes to make edge-based queries: checking the

presence of an edge between two nodes is a constant time operation. This is not

appropriate in our case, where we will be using DFS-based algorithms. There is

no significant theoretical difference in runtime performance for our use cases, so

based on the space complexity, we choose to use the adjacency list.

For our purposes there is no requirement to implement a graph data structure

that supports all of GP 2’s features. Instead, we exploit some of the properties of

the algorithms and host graphs we wish to execute in order to develop a minimal

graph data structure. Specifically:

• The algorithms do not modify the graph structure, so we do not concern

ourselves with dynamic memory allocation.

• We do not need to support GP 2 lists. Although the GP 2 programs work

on host graphs with any node or edge labels, the tests are conducted on

blank graphs. Therefore we only need to support the minimum labelling

required to perform the computation.

• No explicit representation of outgoing edges and incoming edges. The graph

traversals we require are either undirected or along outgoing edges only.

The presented C code is adapted from the code in [Sed02]. We preserve

Sedgewick’s function names, but we change some variable names to assist in

readability. Figure 6.24 shows the adjacency-list structure. The Graph structure

stores counts of the number of nodes and edges, an array of Link pointers adj,

and an array of integer node labels label. Nodes are represented by linked lists,

where each list element stores the node identifier (index into adj) of a target of

1Assuming a lack of labels or a constant-space label representation
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typedef struct Node {
int node id ;
struct Node ∗next ;

} Link ;

typedef struct Graph {
int nodes ; // The number o f nodes in the graph .
int edges ; // The number o f edges in the graph .
Link ∗∗ adj ;
int ∗ l a b e l ; // Node−indexed array o f l a b e l s .

} Graph ;

Figure 6.24.: Adjacency-list graph representation in C

Graph ∗GRAPHinit ( int nodes ) {
Graph ∗graph = mal loc ( s izeof (∗ graph ) ) ;
graph−>nodes = nodes ;
graph−>edges = 0 ;
graph−>adj = c a l l o c ( nodes , s izeof ( Link ∗ ) ) ;
graph−>l a b e l = c a l l o c ( nodes , s izeof ( int ) ) ;
return graph ;

}

Link ∗NEW( int id , Link ∗next ) {
Link ∗ l i n k = mal loc ( s izeof (∗ l i n k ) ) ;
l ink−>node id = id ;
l ink−>next = next ;
return l i n k ;

}

void GRAPHinsertE( Graph ∗G, int src , int tgt , bool d i r e c t e d ) {
G−>adj [ s r c ] = NEW( tgt , G−>adj [ s r c ] ) ;
i f ( ! d i r e c t e d ) G−>adj [ tg t ] = NEW( src , G−>adj [ tg t ] ) ;
G−>edges++;

}

Figure 6.25.: Functions to build the graph.

one of its outgoing edges. Edge labels are not required for the algorithms. As

we shall see, it suffices to store a single integer for each node label to implement

2-colouring and topological sorting algorithms on blank host graphs.

Figure 6.25 shows the functions that build the graph data structure. We omit

code to error-check pointers after they have been allocated memory to reduce

clutter. It is assumed that the node size N is known in advance, an assumption

we can meet when inputting the host graph. This is passed to GRAPHinit, which

allocates memory for the graph structure itself, N pointers for the adj array, and

N integers for the label array. In the latter two cases, calloc is used so that

the allocated memory is set to 0, avoiding an explicit linear-cost initialisation

process. NEW allocates a new Link, sets its id to its first argument and prepends

the new Link to its second argument. GRAPHinsertE uses NEW to add the edge’s

target id to the source’s list. If the graph is undirected, then the edge’s source
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id is added to the target’s list.

At runtime, the GP 2 compiler’s host graph parser is used to read the host

graph text file and construct the graph data structure. This is done in order to

minimise the gap between the handwritten C code and the code generated from

the GP 2 compiler, so that the comparison between the performance of the actual

computations on the host graph is as fair as possible.

We now have the tools in place to write the C algorithms for 2-colouring and

topological sorting. They are given in Figure 6.26 and Figure 6.27 respectively.

Some code is omitted, including code for error checking and host graph building,

and the declaration of global variables. The graph is undirected for 2-colouring

since edge direction is not considered when colouring a graph. Conversely, the

graph is directed for topological sorting because the algorithm requires a directed

graph. A global flag directed is set to false for 2-colouring, and true for topo-

logical sorting. Both programs take a single command line argument: the file

path of the host graph. The function buildHostGraph initialises and adds edges

to the graph (via the global Graph pointer host) through the GP 2 host graph

parser. GRAPHinsertE is called with the global flag directed, so it adds edges

appropriately depending on the nature of the graph.

In 2-colouring, nodes are labelled 0, 1 or 2. Node labels are initialised to

0, representing an uncoloured and unvisited node. 1 and 2 represent the two

colours with which the host graph is coloured. The function dfsColour is called

recursively on all uncoloured nodes of the host graph. It is passed a node v and

a colour c as its argument. It colours v with the contrasting colour c′, and goes

through v’s adjacency list. If an adjacent node is uncoloured, dfsColour is called

on that node. If an adjacent node is also coloured c′, the function returns false,

which will propagate through its parent calls and to the main function. If main

detects a failure (line 23), it sets the label of all nodes to 0 and exits. Otherwise,

the coloured graph is returned.

Like dfs-topsort, the topological sorting algorithm conducts a DFS and labels

nodes with the inverse of their postorder positions. Unlike the GP 2 program,

the number of nodes N is known in advance, so this can be achieved in a single

graph traversal. The same recursive structure is used, but there are some notable

differences elsewhere. Two additional global variables are maintained. First, an

array visited that records the visited status of each node. The node labels will

not suffice for this as they did in the 2-colouring algorithm because nodes are only

relabelled when they are finished. Second, a count of the postorder po. When a

node is finished, it is assigned N − po, and then po is incremented. Thus, each

node is assigned a distinct integer 1 ≤ k ≤ N .

We ran the handcrafted C programs against the GP 2 programs

dfs-2colouring and dfs-topsort. The results for 2-colouring are given in Ta-

ble 6.4 and Figure 6.28, and for topological sorting in Table 6.5 and Figure 6.29.

There is little difference between the time it takes for either program to 2-colour

grids. However, the star graph plot makes it clear that tailored C code is not

limited by bounds on node degree because it is not required to perform an explicit

search from scratch to explore each edge. GP 2’s depth-first topological sorting

149



bool d f sColour ( int node , int co l our ) {
Link ∗ l = NULL;
int new colour = co lour == 1 ? 2 : 1 ;
host−>l a b e l [ node ] = new colour ;
for ( l = host−>adj [ node ] ; l != NULL; l = l−>next )

i f ( host−>l a b e l [ l−>id ] == 0)
{

i f ( ! d f sColour ( l−>id , new colour ) ) return f a l s e ;
}
else i f ( host−>l a b e l [ l−>id ] != co lour ) return f a l s e ;

return t rue ;
}

int main ( int argc , char ∗∗ argv ) {
host = buildHostGraph ( argv [ 1 ] ) ;
bool c o l o u r a b l e = true ;
int v ;
for ( v = 0 ; v < host−>nodes ; v++)

i f ( host−>l a b e l [ v ] == 0)
i f ( ! d f sColour (v , 1 ) ) { c o l o u r a b l e = f a l s e ; break ; }

i f ( ! c o l o u r a b l e )
// Reset the h os t graph by unmarking a l l i t s nodes .
for ( v = 0 ; v < host−>nodes ; v++) host−>l a b e l [ v ] = 0 ;

return 0 ;
}

Figure 6.26.: DFS 2-colouring in C

stat ic int ∗ v i s i t e d = NULL, pos to rder = 0 ;

void d f s So r t ( int node ) {
Link ∗ l = NULL;
v i s i t e d [ node ] = 1 ;
for ( l = host−>adj [ node ] ; l ! = NULL; l = l−>next )

i f ( v i s i t e d [ l−>id ] == 0) d f sS o r t ( l−>id ) ;
host−>l a b e l [ node ] = host−>nodes − postorder ;
pos to rder++;

}

int main ( int argc , char ∗∗ argv ) {
host = buildHostGraph ( argv [ 1 ] ) ;
v i s i t e d = c a l l o c ( host−>nodes , s izeof ( int ) ) ;
int v ;
for ( v = 0 ; v < host−>nodes ; v++)

i f ( v i s i t e d [ v ] == 0) d f sS o r t ( v ) ;
return 0 ;

}

Figure 6.27.: DFS topological sorting in C
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Grid Size GP 2 C Star Size GP 2 C
10,000 41 39 0.1 · 105 281 21
20,164 69 66 0.2 · 105 1,051 45
30,276 97 95 0.3 · 105 2,318 62
40,000 127 114 0.4 · 105 4,228 66
50,176 154 152 0.5 · 105 6,781 95
60,025 181 178 0.6 · 105 10,349 108
70,225 213 207 0.7 · 105 14,590 118
80,089 237 239 0.8 · 105 19,499 136
90,000 267 260 0.9 · 105 24,941 147
102,400 311 294 1 · 105 31,028 163

Table 6.4.: Comparison of dfs-2colouring with a C 2-colouring program. Grid
size is given by the number of nodes, star size by the number of edges,
and runtime in milliseconds.
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Figure 6.28.: Plots of the runtimes of GP 2 and C 2-colouring programs

program sorts outgrowing forests approximately three times slower than the C

program does. Again, we observe that the C program’s performance is uncon-

strained by the class of host graph as it sorts ingrowing trees equally as quickly.

The constant factor is partially explained by the fact that the GP 2-generated

code performs two depth-first searches in contrast to the single depth-first search

executed by the C code. However, that still leaves a constant gap between GP

2 and C, something that was not present in the 2-colouring programs. This is

likely because dfs-topsort performs frequent relabelling operations which are

more computationally demanding than the remarking done by 2-colouring.

6.6. Summary and Discussion

Rooted graph programs can be used to encode established graph algorithms at a

high level of abstraction with the use of rooted graph transformation rules. Using

a template for breadth-first search and depth-first search, we have implemented

solutions to two common graph algorithms: 2-colouring and topological sorting.
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Forest Size GP 2 (outgoing) C (outgoing) C (ingrowing)

0.1 · 105 0.052 0.019 0.02
0.2 · 105 0.089 0.036 0.03
0.3 · 105 0.128 0.05 0.047
0.4 · 105 0.177 0.059 0.058
0.5 · 105 0.212 0.07 0.073
0.6 · 105 0.261 0.084 0.086
0.7 · 105 0.304 0.099 0.102
0.8 · 105 0.346 0.116 0.109
0.9 · 105 0.387 0.121 0.123
1 · 105 0.426 0.141 0.131

Table 6.5.: Comparison of dfs-topsort with a C topological sorting program.
Forest size is given by the number of nodes. Runtime is given in
milliseconds.
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Figure 6.29.: Plots of the runtimes of GP 2 and C topological sorting programs

For some graph classes, these solutions display performance in the same complex-

ity class as hand-coded C solutions, a remarkable feat considering the high level

of abstraction of GP 2 programs, the “template” C code that is generated from

them, and the lack of any auxiliary data structures in the tailored C code.

The limitations of performing global computations on graphs through graph

transformation rules, even rooted ones, mean that linear time graph algorithms

cannot always be achieved. Host graphs of unbounded degree remove the constant

time matching of rooted rules: even when the root node is matched instantly, an

unbounded number of outedges causes a linear overhead in the matching of an

edge incident to a root node in the rule.

Another drawback of rooted graphs and rooted rules compared with unrooted

graphs and rules is greater complexity in writing graph programs. This is most

evident when inspecting the 2-colouring programs: the unrooted program has

five rules, while the rooted programs have an average of nine rules and more

sophisticated control constructs. Indeed, the unrooted program is purely declar-

ative, while the rooted programs takes a step towards imperative programming
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by explicitly encoding the traversal strategy. However, we argue that the pro-

grams are instructive, easy to understand, build on the rooted graph traversal

templates described at the start of the chapter, and provide a cleaner, simpler

and more accessible way of writing graph algorithms than coding them directly

in a lower-level language such as C.
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7. Conclusion

7.1. Evaluation

To evaluate the work presented in this thesis, we refer to the broad question asked

in the introduction: How close can a high-level graph programming language come

to the performance of graph programs written at a much lower level of abstraction?

We addressed the problem by implementing a compiler for the high-level graph

programming language GP 2 and testing the performance of its output — a C

program — against pure C implementations of graph algorithms.

We introduced rooted graph transformation to tackle the high theoretical com-

plexity of rule matching, a huge problem for the practical execution of graph

transformation. Rooted graph transformation extends the established double-

pushout approach to support the direct binding of specific rule nodes to dedicated

host nodes. We demonstrated its practicality by adding rooted graph transfor-

mation to the GP 2 language, although its abstract definition makes it possible

for other languages and tools to adopt the approach.

The implementation itself was a success, though not one without challenges.

Some of GP 2’s language features map nicely to C, such as labels and control

constructs. Other features, however, required more sophistication in the code

generation phase. The most complex part of the translation step was generating

code to apply a high-level graph transformation rule. We achieved this by storing

rules internally as a complex data structure that captures features of a particular

rule such as how the rule modifies individual items and the presence of nodes

and variables in the application condition. This facilitates the generation of code

that matches rules using a searchplan-based algorithm interleaved with code to

match labels and to evaluate the condition. Another subtlety of implementing

GP 2 is the requirement to support the recovery of an old host graph state, which

we implemented by maintaining a stack of host graph changes after an empirical

comparison with copying the whole host graph to memory.

Overall, we demonstrated that it is possible, in some circumstances, for a

compiled GP 2 program to match the runtime of a handcrafted C program that

performs the same computation. We consider this to be a strong result: the

compiled C code performs explicit subgraph matching and rule application, while

the tailored C code recurses over a basic graph data structure. This was achieved

by a novel extension to the theory developed to optimise graph matching, and

its practical realisation within the GP 2 language and its implementation.

We do not wish to embellish these results. Certainly compiled GP 2 code

cannot match equivalent lower-level code in all situations. Even rooted graph

programs have quite significant limitations. It is not clear if they can be used to
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write efficient graph programs beyond algorithms based on depth-first search. In

addition, their performance wanes as the node degree of host graphs increases.

We believe that, in general, GP 2’s performance does not rival the efficiency

of the fastest graph transformation tools of today, although this has not been

empirically tested. More work needs to be done in searching for further use cases

of rooted graph programs, optimising rules without roots, and extending our suite

of case studies with an aim to directly compare performance with related tools.

7.2. Future Work

We discuss several paths for future research, broadly categorised into increasing

the efficiency of the current GP 2 implementation and adding tool support for

users of the language.

7.2.1. Dynamic Rule Matching

Rules can be matched very quickly by utilising root nodes in rules and graphs, a

language-level construct. However, no great effort is made to optimise matching

on the implementation level, which hinders the performance of matching unrooted

rules. GP 2’s static searchplan algorithm is rudimentary compared to the state of

the art. We emphasise two dynamic approaches: dynamic searchplan generation

and incremental matching. The latter in particular has received a lot of atten-

tion in recent years within the graph transformation and model transformation

communities.

Dynamic searchplan generation aims to find an optimal searchplan at runtime

based on an analysis of the host graph. The cost of the searchplan operations are

a function of host graph metrics. A greedy algorithm is used to heuristically select

the optimal searchplan based on these costs. Incremental matching computes in

advance the set of subgraphs of the host graph that match a rule so that matches

can quickly be extracted when necessary. In both cases, the stored data relating

to the match — the cost of searchplan operations or the occurrences of matches

in the host graph — are dynamically updated as the host graph changes.

Both methods invest memory and runtime overhead into speeding up the ex-

pensive rule matching operation. Experimental results have generally justified

this approach; we present some work from the literature. The dynamic search-

plan generation algorithm implemented by GrGEN.NET generates good search-

plans based on a cost model that accurately represents their actual execution

times [BKG07], although it is unclear how that translates to the global execution

time of a graph transformation system with many rule applications. An alterna-

tive approach to searchplan generation based on dynamic programming has also

demonstrated promising results [Var+12]. Incremental matching has also proven

to be quite successful, particularly in the VIATRA2 model transformation frame-

work [Ber+08]. GROOVE has also ventured into this area: results from experi-

ments conducted with the GROOVE tool show that a RETE-based incremental

matching algorithm outperforms a searchplan approach in most situations, one
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exception being when structure-modifying rules heavily outweigh querying rules

or relabelling rules [JGR12]. A hybrid of these two dynamic techniques has been

implemented and tested in VIATRA2, in which the programmer can explicitly

specify one of the two matching strategies for each rule, with promising results

[Hor+10].

The GP 2 runtime library could be extended to support one or both of these

approaches. In particular, a hybrid approach similar to that used by VIATRA 2

might be very effective. This could be enhanced by an automatic selection of the

matching strategy based on a static analysis of the program text. For instance,

rules present in a loop are expected to be applied many times and possibly in

different areas of the host graph, making them a good target for an incremental

matching strategy. Rules that are matched fewer times might benefit more from a

dynamic searchplan matching strategy. Thorough testing needs to be conducted

to discover a good selection of matching strategies with respect to the particular

GP 2 program, but a clever dynamic matching strategy should significantly speed

up the execution time of non-rooted programs, perhaps by orders of magnitude.

7.2.2. Optimising the Current Implementation

Besides adopting a new matching algorithm, we believe that less ambitious but

nevertheless useful measures can be taken to enhance the current codebase with

respect to both execution speed and memory management.

The existing host graph data structure is not fine-tuned to graph transforma-

tion: it does not support complex querying operations that would speed up graph

matching with the current static searchplan algorithm. One way to achieve this

is to use the hash values of lists as an index for nodes and edges. Marks could

also be used as a second indexing structure. Combined, this two-dimensional

indexing would support fine-grained host graph querying by label, pruning the

search space at runtime. Another approach is to use a third party library to im-

plement the graph data structure. We highlight GP 1’s use of Judy arrays [Sil02]

to implement a data structure that supports quick and powerful graph queries

such as searching for an edge with a specific target node, or querying atoms in a

specific position of an item’s label [MP08a].

The code generated for rule matching could be fine-tuned to reduce compu-

tation effort at runtime. For instance, the current implementation matches an

unrooted node by searching the host graph nodes in a fixed order. This is a

source of inefficiency for a looped rule that is applied consecutively at different

places in the host graph. Recording the state of the last search and passing it on

to the next rule application would remove the redundancy caused by searching

an already-matched portion of the host graph at each step. This could be taken

a step further by searching for all matches of a single rule and applying them

in one atomic step, although this requires some care as pairs of matches could

be in conflict. The concept is used in PORGY with its all operator which al-

lows simultaneous rule application at disjoint matches in the host graph [FKP14].

Parallel rule application has been studied extensively for term rewriting systems
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[BKV03]. An interesting area of research is to transfer these results to graph

transformation theory and graph programming languages.

7.2.3. Extending the GP 2 Tool Suite

A graphical editor originally developed for a Master’s project [Ell13] is currently

being integrated with the GP 2 compiler. The editor enables users to write graph

programs, execute them on a host graph of their choice, and see the result. At the

moment, the tool does not offer the programmer any practical means for testing

and debugging of graph programs. With this in mind, the following tool support

would be of great benefit to users.

Graph Program Tracing. The compiler currently offers some rudimentary pro-

gram tracing facilities, namely the printing of rule matching attempts, host graphs

after rule applications, and information related to graph backtracking. While this

might be sufficient, it is not up to the standards of a graphical programming en-

vironment. For example, a graphical tracing facility for graph programs should

highlight the match within the host graph at each step, and present variable-value

assignments in an easily digestible format. In the end, the tool should provide

a full debugging environment that allows users to step through a graph program

with different levels of granularity.

Graph Program Verification. Recent theoretical work has established a basis for

formal verification of graph programs. Habel, Pennemann and Rensink extend

a base form of graph programs to high-level rules with application conditions

to facilitate formal reasoning based on Dijkstra’s weakest precondition approach

[HPR06]. This was implemented as part of the ENFORCe tool (see the paper

[Aza+06] or Pennemann’s PhD thesis [Pen09]). Poskitt’s PhD thesis [Pos13]

defines a Hoare logic for reasoning about GP 2 graph programs. GP 2 is a

feasible target language for a implementation of a graph program theorem prover

due to its small syntax and semantics.

Critical Pair Analysis of Graph Programs. Confluence is a desirable property

of any graph transformation implementation: if it can be proven that a graph

program is confluent, the global behaviour of the graph program is deterministic

despite the inherent nondeterminism of rule application. Plump introduced criti-

cal pair analysis for hypergraph rewriting, and proved it to be undecidable [Plu93;

Plu05]. From an implementation point of view, this is made more challenging

with attributed graphs. Currently, AGG offers the only implemented critical pair

generator for graph transformation [RET11]. Preliminary work has been made

towards implementing a confluence checker for GP 2, specifically a unification

algorithm for GP 2’s lists to faciliate construction of critical pairs for conditional

rule schemata [HP15].
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7.2.4. Development of Larger Graph Programs

GP 2 has quite a few published (and unpublished) graph programs, most of which

fall under the category of graph algorithms or recognition of graph classes by re-

duction. Extending this suite to a broader range of application areas and more

complex graph programs (in the vein of automata minimisation [PSS11]) benefits

our research in several ways. We seek more classes of graph programs that can

reap the benefits of fast rule schemata to further demonstrate the practicality

of rooted graph transformation. In addition, larger case studies in the area of

software engineering (model transformation is a particularly ripe target for graph

transformation [Gru+05]) would allow us to directly compare the performance of

the GP 2 system to other graph transformation systems in, for example, trans-

formation tool contests.
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Appendix A.

GP 2 Concrete Syntax

A.1. Identifiers

ProcedureID ::= UpperCase {IDChar}
RuleID ::= ID

NodeID ::= ID

EdgeID ::= ID

Variable ::= ID

ID ::= LowerCase {IDChar}
UpperCase ::= A | . . . | Z
LowerCase ::= a | . . . | z
Letter ::= UpperCase | LowerCase

Digit ::= 0 | . . . | 9
IDChar ::= Letter | Digit | ‘ ’ |

Figure A.1.: Identifier syntax
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A.2. Programs and Declarations

Program ::= Declaration { Declaration }
Declaration ::= MainDecl

| ProcedureDecl

| RuleDecl

MainDecl ::= Main ‘=’ CommandSeq

ProcedureDecl ::= ProcedureID ‘=’ [ ‘[’ LocalDecl ‘]’ ] CommandSeq

LocalDecl ::= ( RuleDecl | ProcedureDecl ) { LocalDecl }
CommandSeq ::= Command {‘;’Command}
Command ::= Block

| if Block then Block [ else Block ]

| try Block [ then Block ] [ else Block ]

Block ::= ‘(’ CommandSeq ‘)’ [‘!’]

| SimpleCommand

| Block or Block

SimpleCommand ::= RuleSetCall [‘!’]

| ProcedureCall [‘!’]

| break
| skip
| fail

RuleSetCall ::= RuleID | ‘{’ [ RuleID { ‘,’ RuleID } ] ‘}’
ProcedureCall ::= ProcedureID

Figure A.2.: Program syntax
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A.3. Rule Syntax

RuleDecl ::= RuleID ‘(’ [ VarList {‘;’ VarList} ] ‘;’ ‘)’

Graphs Interface [where Cond]

VarList ::= Variable {‘,’ Variable} ‘:‘ Type

Graphs ::= ‘[’ Graph ‘]’ ‘=>’ ‘[’ Graph ‘]’

Graph ::= [Position] ‘|’ {Nodes} ‘|’ {Edges}
Nodes ::= { ‘(’ NodeID [‘(R)’] ‘,’ Label [ ‘,’ Position ] ‘)’ }
Edges ::= { ‘(’ EdgeID [‘(B)’] ‘,’ NodeID ‘,’ NodeID ‘,’ Label ‘)’ }
Position ::= ‘〈’ Float ‘,’ Float ‘〉’
Float ::= [‘-’ | ‘+’] {Digit} [‘.’ Digit {Digit}] [‘e’ | ‘E’ [‘-’ | ‘+’] {Digit}]
Interface ::= interface ‘=’ ‘{’ [ NodeID { ‘,’ NodeID } ] ‘}’
Type ::= int | char | string | atom | list

Figure A.3.: Rule declaration syntax

Positions store layout information for graphical editors. A position is a set of

floating point cartesian coordinates. The position in the Graph rule specifies the

canvas size of the graph. The position in the Nodes rule specifies the location of

that node. Positions have no semantic meaning and are ignored by the parser.

Label ::= List [‘#’ Mark]

List ::= empty | Atom | List ‘:’ List

Mark ::= red | green | blue | grey | dashed | any
Atom ::= Term {(‘+’ | ‘-’) Term}
Term ::= Factor {(‘∗’ | ‘/’ | ‘.’) Factor}
Factor ::= Variable | Number | String | Char

| (indeg | outdeg) ‘(’ NodeID ‘)’

| length ‘(’ Variable ‘)’

| ‘-’ Factor

| ‘(’ Atom ‘)’

Number ::= Digit {Digit}
Char ::= ‘ “ ’ Character ‘ ” ’

String ::= ‘ “ ’ {Character} ‘ ” ’

Character ::= Printable characters except ‘ ” ’1

Figure A.4.: Rule label syntax

1ASCII characters 32, 33, and 35-126
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Condition ::= Disjunct {or Disjunct}
Disjunct ::= Conjunct {and Conjunct}
Conjunct ::= Subtype ‘(’ Variable ‘)’

| edge ‘(’ NodeID ‘,’ NodeID [ ‘,’ Label ] ‘)’

| List ( ‘=’ | ‘!=’ ) List

| Atom RelOp Atom

| not Conjunct

| ‘(’ Condition ‘)’

Subtype ::= int | char | string | atom
RelOp ::= ‘>’ | ‘>=’ | ‘<’ | ‘<=’

Figure A.5.: Condition syntax

A.4. Host Graph Syntax

HostGraph ::= [ Position ] {HostNodes} ‘|’ {HostEdges}
HostNodes ::= { ‘(’ NodeID [‘(R)’] ‘,’ HostLabel [ ‘,’ Position ] ‘)’ }
HostEdges ::= { ‘(’ EdgeID ‘,’ NodeID ‘,’ NodeID ‘,’ HostLabel ‘)’ }
HostLabel ::= HostList [‘#’ HostMark]

HostMark ::= red | green | blue | grey | dashed
HostList ::= empty | HostExp | HostList ‘:’ HostList

HostExp ::= [ ‘-’ ] Number | String | Char

Figure A.6.: Host graph syntax
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A.5. Type Grammar and Simple Lists

ListExpression ::= ListTerm {‘:’ ListTerm }
ListTerm ::= empty | ListVariable | AtomExpression

AtomExpression ::= IntegerExpression | StringExpression | AtomVariable

IntegerExpression ::= IntegerTerm {(‘+’ | ‘-’) IntegerTerm}
IntegerTerm ::= IntegerFactor {(‘∗’ | ‘/’) IntegerFactor}
IntegerFactor ::= IntegerVariable | Number

| (indeg | outdeg) ‘(’ NodeId ‘)’

| length ‘(’ (AtomVariable | StringVariable | ListVariable) ‘)’

| ‘-’ IntegerFactor

| ‘(’ IntegerExpression ‘)’

StringExpression ::= StringTerm {‘.’ StringTerm}
StringTerm ::= CharExpression | StringVariable | String

CharExpression ::= CharVariable | Char

Figure A.7.: Syntax of well-typed expressions

SimpleList ::= SimpleListTerm {‘:’ SimpleListTerm}
SimpleListTerm ::= empty

| Variable

| [ ‘-’ ] Number

| StringExpression

Figure A.8.: Syntax of simple lists
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A.6. Context Conditions

Name Description

Identifier Length Identifiers have a maximum length of 63 characters.

Reserved Words GP keywords must not be used as identifiers

Main Declaration There is exactly one main declaration in a single program.

Unique
Procedure Names

Each procedure name must not be used in more than one
procedure declaration.

Rule Declaration
Scope

Each rule name must not be used in more than one declara-
tion in the same scope.

Rule Call
Validity

Any name in a rule call must belong to a rule declared in a
visible scope.

Procedure Call
Validity

Any name in a procedure call must belong to a procedure
declared in a visible scope.

Break
The break statement must only appear within a loop. If
the break is in the condition of a branching statement, its
containing loop must occur within the same condition.

Variable
Declarations 1

Each type must appear at most once in a rule’s variable list.

Variable
Declarations 2

Variable IDs must be distinct in the declaration list of a rule.

Interface Nodes
Each node ID in the interface list must appear exactly once
and must occur in both the left-hand side and the right-hand
side.

Bidirectional
Edges 1

A right-hand side bidirectional edge must be incident to the
same two nodes as a left-hand side bidirectional edge.

Bidirectional
Edges 2

There is at most one bidirectional edge between a pair of
nodes.

Node/Edge ID
Uniqueness

Node IDs and edge IDs must be pairwise distinct within a
single graph.

Figure A.9.: Context conditions (1)
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Name Description

Sources and
Targets

The two node IDs in an edge declaration must match a node
ID declared in the same graph.

Variable
Consistency 1

Any variable in a rule must be declared in the variable list
of the associated rule.

Variable
Consistency 2

Any variable in the right-hand side must be present in the
left-hand side of the same rule.

Grey and Dashed
Nodes must not be marked dashed and edges must not be
marked grey.

Wildcard
Consistency

A right-hand side item with the mark any must be in the
interface of the rule and its counterpart in the left-hand side
must be a wildcard.

Well-typed
Expressions

Any expression in a label or condition must conform to the
type grammar of Figure A.7.

Degree Operators
The argument of a degree operator (indeg or outdeg) must
be a node ID occurring in the interface of its containing rule.

Simple Labels
Each expression in the left-hand side of a rule declaration
must be a simple list as defined in Figure A.8

Edge Predicate
Each node ID in an edge predicate must occur in the inter-
face of its containing rule.

Integer
Comparisons

In a condition, the relational operators >, >=, <, and <=
must only be applied to integer expressions.

Figure A.10.: Context conditions (2)
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A.7. Keywords and Operators

Keyword Type Notes

Main Command sequence Declares the Main procedure.

if Command sequence Conditional branch

try Command sequence Conditional branch

then Command sequence Conditional branch

else Command sequence Conditional branch

or Command sequence Choice of two command sequences.
Also used in conditions.

break Command sequence Exit the enclosing loop

skip Command sequence Always succeeds

fail Command sequence Always fails

int Rule declaration Variable declaration type.
Also subtype predicate in condi-
tions.

char Rule declaration Variable declaration type.
Also subtype predicate in condi-
tions.

string Rule declaration Variable declaration type.
Also subtype predicate in condi-
tions.

atom Rule declaration Variable declaration type.
Also subtype predicate in condi-
tions.

list Rule declaration Variable declaration type.

interface Rule declaration

where Rule declaration Declares application condition.

and Condition

or Condition Also used in command sequences.

not Condition

Figure A.11.: GP 2 keywords (1)
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Keyword Type Notes

edge Condition Test for existence of an edge.

int Condition Type query.

char Condition Type query.

string Condition Type query.

atom Condition Type query.

indeg Condition Also used in rule labels.

outdeg Condition Also used in rule labels.

length Condition Also used in rule labels.

empty Label The empty list.

red Label Mark.

blue Label Mark.

green Label Mark.

grey Label Mark.

dashed Label Mark.

any Label Wildcard mark.

Figure A.12.: GP 2 keywords (2)

168



Operator Context Precedence Notes

! Command Sequence 1

; Command Sequence 2

or Command Sequence 3

= Condition -

!= Condition -

> Condition -

>= Condition -

< Condition -

<= Condition -

not Condition 1

and Condition 2

or Condition 3

: Expression 3

- Expression 1 Negation (Unary)

+ Expression 2

- Expression 2 Subtraction (Binary)

* Expression 1

/ Expression 1 Integer Division

. Expression 3

Figure A.13.: GP 2 operators. Precedence ranges from low (3) to high (1)
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[Sch97] A. Schürr. Programmed Graph Replacement Systems. In: Handbook

of Graph Grammars and Computing by Graph Transformation. Ed-

itor Grzegorz Rozenberg. World Scientific, 1997, pp. 479–546.

177



[Sed02] Robert Sedgewick. Algorithms in C: Part 5: Graph Algorithms.

Addison-Wesley, 2002.
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