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Abstract
This thesis is motived by the wish to understand the structure of the moduli space of

monopoles on R5. Our approach to define monopoles is twistorial and we start by

developing the twistor theory of R5, which is an analogue of the twistor theory for R3

developed by Hitchin. Using this, we describe a Hitchin-Ward transform for R5, giving

monopoles for the group SU(2). In order for us to construct monopoles we make use

of spectral curves. Then, using those spectral curves we find a new system of equations,

analogue to the Nahm’s equations. Lastly, we prove that the geometry of the moduli space

of solutions to this Nahm’s equations carries a 2-symplectic structure.
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Chapter 1

Introduction

1.1 A brief introduction to monopoles on R3

In physics, a magnetic monopole is an elementary particle that behaves as an isolated

magnet. In other words, it can can be regarded as the isolated pole of a magnet, either

the north or the south. Even though those particles have not been found yet, Paul Dirac

proved that the existence of a single monopole in the universe can explain the quantisation

of the charge of electrically charged particles [Dir31]. Explicitly, the magnetic field of a

point magnetic monopole of charge k at the origin is given by

B =
k

4πr2
x̂.



Chapter 1. Introduction 2

It is important to highlight that the Dirac monopoles have a singularity at the origin, thus

they are not topological solitons 1.

It was in 1974 that ’t Hooft [Hoo74] and Polyakov [Pol74] found out that the non-abelian

Yang-Mills-Higgs theory on R3 admits non singular magnetic monopole. The Yang-

Mills-Higgs theory can be obtained as the Yang-Mills energy functional coupled with

a scalar field, the Higgs field. Intuitively, the ’t Hooft Polyakov monopole behaves like

the Dirac monopole at large distances, but with the singularity in the centre smoothed out.

In what follows, we shall give a succinct explanation on the development of methods to

find monopoles on R3 when the gauge group is SU(2).

A monopole on the Euclidean R3 consists of a pair (∇, φ) minimising, with finite energy,

the Yang-Mills-Higgs energy functional

V =

∫
R3

|F∇|2 + |∇φ|2,

where ∇ is a SU(2)-connection on a complex vector bundle E over R3 and φ is a skew-

symmetric section of End(E). One can show [AH88] that the pair (∇, φ) is a monopole

if and only if it satisfies the Bogomolny equation

F∇ = ∗∇φ,

In this case there exists an integer k ≥ 0 such that

V = 4πk.

1A topological soliton is a non-singular, static, finite energy solution of field equations. Those properties

allows one to define a topological invariant of the solution, called charge.
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Moreover, ∇ and φ are subject to the following boundary conditions:

|φ| = 1− m

2r
+O(r−2)

∂|φ|
∂Ω

= O(r−2)

|∇φ| = O(r−2), as r →∞,

where
∂|φ|
∂Ω

is the angular derivative of |φ|.

We shall now give an interpretation of the integer m that appears in the boundary

conditions. The first boundary condition says that, at large distances, φ does not vanish.

Therefore, if we restrict the bundle E to a large sphere S∞ at the infinity, it splits as a

direct sum E = L ⊕ L∗ of eigenspaces for φ and the degree of L is m. Furthermore,

integration over S∞ shows that the m = k. Equivalently, we can restrict φ to S∞ and

obtain a map φ
|φ| : S∞ → S2 ⊂ su(2); this map is well-defined since φ does not vanish at

large distances. Again, by integration on the sphere at the infinity, one can show that the

degree of this map is k. From now on, we call the integer k the topological charge of the

monopole.

The problem now was to find solutions to the monopole equation. For k = 1, the exact

solution was found by Prasard and Sommerfield [PS75]. The explicit Higgs field is given

by:

φ =

(
cothr − 1

r

) i 0

0 −i

 .
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Charge 2 monopoles solutions were constructed by Ward via twistor methods. He relied

on the idea that monopoles can be regarded as self-dual Yang-Mills connections on R4

that are invariant under translations in one direction. Since, by that time, it was known

that every self-dual Yang-Mills connection corresponded to holomorphic bundles over

CP 3, Ward knew that monopoles should also correspond to holomorphic bundles or,

equivalently, to holomorphic transition matrices. In [War81b], Ward constructed the

axially symmetric monopole of charge 2. For this, he used the Atiyah-Ward ansatz for

self-dual connections on R4, described in [AW77]. Briefly, he considered a specific

transition function for a holomorphic bundle on CP 3 for which he knew how to construct

back the corresponding self-dual connection on R4 explicitly. Then he proved it was

a monopole on R3 satisfying the boundary conditions and, moreover, it was axially

symmetric. As an extension of this result, Ward also constructed a seven parameter

family (six parameters come from translations and rotations on R3) of charge 2 monopoles

[War81a].

In [PS81] Prasad and Sommerfield constructed an axially symmetric solution for each

charge k. It is important to mention that their method differ from Ward’s construction of

charge 2 monopoles and the regularity of those solutions was not proved in that paper.

Using the geometry if oriented lines in R3, Hitchin introduced in [Hit82] the dimensional

reduction at the twistor level. Namely, he proved that a solution to the Bogomolny

equations corresponds to a holomorphic bundle on T, the total space of TP 1; this type

of result is known in the literature as the Hitchin-Ward correspondence. Hitchin’s idea
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was to extend the Ward’s twistor method to general charge k monopoles. He proved that

if a bundle Ẽ on T is the bundle corresponding to a monopole, then Ẽ is given by an

extension of line bundles on T. Moreover, he uses the properties of those holomorphic

bundles to define a compact Riemann surface in TP 1, the so called spectral curve. He

also shows that the spectral curve determines the monopole. However, there was no proof

that the solutions obtained in this way were non-singular.

Concomitantly, Nahm, using a type of generalised Fourier transform, proved that the

Bogomolny equations can be reduced to a non-linear system of differential equations,

called nowadays as Nahm’s equations [Nah82]:

Ṫ1 = [T2, T3],

Ṫ2 = [T3, T1],

Ṫ3 = [T1, T2],

where Tj is a k × k analytic matrix-valued function on the interval (0, 2) with simple

poles at 0 and 2. Furthermore, solutions to Nahm’s equations satisfying these boundary

conditions corresponds to non-singular monopoles. In a later work [Hit83], Hitchin

proved an equivalence between solutions to Nahm’s equations and spectral curves

satisfying a cohomological condition. Using this result, Hitchin proved that the Prasad-

Sommerfield monopoles were actually non-singular.

Another important problem in the study of monopoles is the description of the moduli

space. It was proved by Taubes in [JT80] that the space of solutions of charge k monopoles
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is a smooth manifold M̃k of dimension 4k − 1, however, we can add a phase factor to a

monopole and obtain a circle bundleMk over the moduli space whose dimension is 4k,

called the gauged moduli space.

The importance of Nahm’s equations to the study of moduli space comes from the fact

thatMk can be described as an infinite dimensional Hyperkähler quotient [HKLR87] and

Nahm’s equations can be interpreted as the moment map for this quotient. Moreover,

using this technique, Atiyah and Hitchin described the metric onM2 explicitly.

More recently, Bielawski [Bie06] described a class of manifolds whose tangent space at

every point decomposes as copies of irreducible representations of SU(2) of dimension k

for some fixed k, the so called generalised hypercomplex manifolds, or GHC manifolds for

short. Furthermore, these manifolds have a twistor interpretation similar to hyperkähler

manifolds. He also endows some of the GHC manifolds with symplectic structures and

performs GHC-symplectic quotients. It is important to highlight here that GHC manifolds

are defined in such way that hyperkähler manifolds, and their hyperkähler quotients, are

a special case.

Bielawski also proves a Hitchin-Ward correspondence for GHC manifolds. Namely, a

holomorphic bundle on the twistor space of a GHC manifold M corresponds to a pair

(∇,Φ), where∇ is a connection on a complex vector bundle E over M and Φ is a section

of End(E)⊗ C(k−2) satisfying a flatness condition, this is the Bogomolny condition.

Our objective in this thesis is to present a construction of monopoles on R5. Our approach
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is to construct a Bogomolny pair (∇,Φ) from a spectral curve, satisfying some additional

conditions, in the twistor space of R5. We then move towards the construction of spectral

curves, which is similar to the construction in [Hit83], and we prove the equivalence

between a new system of equations, analogue to Nahm’s equations, and the spectral

curves. The motivation to take this approach comes from the fact that the twistor space

of R5 is similar to the twistor space of R3. Therefore, we expected some similarities with

the spectral curves for monopoles on R3.

The main challenge faced was the fact that our monopoles are not defined in terms of a

Yang-Mills-Higgs functional. This implies, for instance, that we do not have a topological

definition of charge. We define the charge of a monopole on R5 to be the degree of the

spectral curve associated. Moreover, this implies there is no natural way to define a L2

metric on the moduli space and we should rely on our Nahm’s equations to define the

metric.

It is important to notice that, to our knowledge, this thesis is the second source in the

literature where monopoles in R5 are mentioned, the first being [Bie06]. However, there

are other recent work in higher dimensional monopoles. For instance, in [Oli14] Oliveira

investigates monopoles on 6 dimensional Calabi-Yau manifolds and 7 dimensional G2

manifolds.
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1.2 Overview and statement of results

In Chapter 2 we describe the twistor theory of R5. Using the results of [Bie06] on GHC

manifolds we define R5 as the space of real sections of the bundle O(4) over CP 1 or,

equivalently, as the space of polynomials of degree 4 in the variable ξ, the holomorphic

coordinate for CP 1, invariant under a real structure. Moreover, if we call T the total space

of O(4), we describe the twistor correspondence between T and R5:

Every point (x0, x1, x2, x3, x4) ∈ R5 corresponds to the section p(ξ) = (x0 + ix4)+(x1 +

ix3)ξ + x2ξ
2 − (x1 − ix3)ξ3 + (x0 − ix4)ξ4 of O(4). Conversely, every point z ∈ T

corresponds to an oriented 3-dimensional affine subspace of R5. Those 3-dimensional

submanifolds are called α-surfaces and are described explicitly in proposition 2.5.2.

In Chapter 3 we introduce the twistor description of R5 and prove the Hitchin-Ward

correspondence for R5:

Theorem 3.4.6. Let E be a SU(2) bundle on R5. There is a 1-1 onto correspondence

between SU(2) Bogomolny pairs (∇,Φ) and holomorphic bundles Ẽ on T satisfying:

(i) Ẽ is trivial on real sections,

(ii) Ẽ has a symplectic structure,

(iii) Ẽ is equipped with a quaternionic structure σ covering τ , this is to say, σ is an

anti-holomorphic linear map

σ : Ẽz → Ẽτ(z),
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such that σ2 = −idẼz .

It is important to highlight that in the proof of the above theorem we described explicitly

the holomorphic structure for the bundle Ẽ from the pair (∇,Φ). Moreover, the Hitchin-

Ward correspondence stated in [Bie06] does not apply to the group to SU(2).

We also use this to find the explicit line bundle L(a
2
,b, c

2
) on T corresponding to a trivial

U(1) pair (d, (ia
2
, ib, i c

2
)). Namely, if we set holomorphic local coordinates µ and λ on

the total space of O(4), we prove the following proposition:

Poposition 3.5.1. The bundle L(a
2
,b, c

2
) has transition function

g
(a,b,c)
01 = exp

(
−aµ

(
1

λ
− 1

λ3

)
+ b

µ

λ2
− icµ

(
1

λ
+

1

λ3

))
.

We later discuss the global equations that are the equivalent, in R5, to the Bogomolny

equations. Then, we bring the chapter to an end by discussing the fact that monopoles on

R5 are dimensional reductions of self-dual connections on R8.

Chapter 4 contains the construction of monopoles. We begin the chapter with a

discussion on how a spectral curve gives rise to a pair (∇,Φ) on R5. Then, we use

the methods developed by Hitchin in [Hit82] and construct a new system of differential

equations, which is an analogue of Nahm’s equations, from spectral curves. Furthermore,

we prove an equivalence between solutions to this new Nahm’s equations satisfying reality

and boundary conditions and spectral curves.
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We bring the thesis to an end with Chapter 5. In this chapter we discuss the geometry

of the moduli space of solutions to our Nahm’s equations. We first show that our Nahm’s

equations can be interpreted as the moment map for an infinite dimensional generalised

symplectic manifold. Moreover, we prove that the moduli space of solutions to those

equations is a 2-symplectic manifold, it is a GHC manifold equipped with a generalised

symplectic structure. To give an example of this construction we find the moduli space

of solutions to our Nahm’s equations with trivial boundary conditions and compute their

twistor space explicitly. As special case of this we have the moduli space of charge 1

monopoles in R5.
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Chapter 2

R5 as a Generalised Hypercomplex

Manifold

2.1 Overview

In sections (2.2) and (2.3) we review some of the material presented in [Bie06]. Then, we

use these results to endow R5 with a generalised hypercomplex structure. More precisely,

we define R5 as the space of real sections of the degree 4 holomorphic line bundle over

CP 1. It is know, from the Borel-Weil theorem (see for e.g. [BE89]) that the space

of sections of this bundle is the fourth-symmetric power of the defining representation

of SL(2,C), which is irreducible. Thus, we have given R5 an integrable generalised

hypercomplex structure.
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We shall also describe explicitly the α-surfaces in R5. They turn out to be the analogue of

the oriented lines in R3 as investigated by Hitchin in [Hit82]. By definition, the α-surface

Pz for the point z ∈ T, where T is the total space of the bundle O(4), consists of points

of R5, regarded as sections of O(4), passing through z. The explicit description of the

α-surfaces is given in (2.5.2).

2.2 Generalised hypercomplex manifolds

Definition 2.2.1. LetM be a smooth manifold. A generalised almost complex manifold is

a smooth fibrewise action of SU(2) in the tangent bundle such that each TxM decomposes

as V ⊗ Rn, where V is an irreducible representation of SU(2). The complexified

representation V C is one or two copies of the kth-symmetric power of the defining

representation of SL(2,C). We shall then call M an almost k-hypercomplex manifold.

The dimension of a k-almost hypercomplex manifold is m(k + 1) where m is even if k

is odd. Moreover, the structure group of such manifolds is the centraliser of SU(2) in

GL(m(k + 1),R), and this centraliser is GL(m,R) is k is even or GL(m
2
,H) if k is odd.

Now, let EM be the bundle on M associated to the canonical representation of GL(m,R)

or GL(m
2
,H) and H is the trivial bundle with fibre SkC2. This gives an isomorphism

TMC = EM ⊗H .

One way to produce examples of those structures is to look into the space of sections
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of holomorphic bundles over CP 1. This happens because irreducible representations of

SL(2,C) can be realised as sections of line bundles over CP 1. A σ-bundle (or real

bundle) over CP 1 is a holomorphic bundleE equipped with a anti-holomorphic involution

σ covering the antipodal map on C1, a real section of a σ-bundle is a section invariant

under the involution σ. The map σ will be called a real structure. Following these

definitions, we can describe the irreducible representation of SU(2) as real sections of a σ-

bundle over CP 1. Consequently, the tangent space of a generalised almost hypercomplex

manifold is the space of real sections of a σ-bundle. In fact:

Proposition 2.2.2 ( [Bie06] proposition 2.2). Let Z be a complex manifold fibering over

CP 1 equipped with an anti-holomorphic involution τ which covers the antipodal map on

CP 1. Suppose there exists a holomorphic real section of Z → CP 1 whose normal bundle

is isomorphic to O(k) ⊗ Cn (k > 0), then the space of such real sections is an almost

k-hypercomplex manifold of dimension n(k + 1).

This proposition motivates the following definition:

Definition 2.2.3. An almost k-hypercomplex structure on a manifold M is integrable if

M , together with the SU(2) action on its tangent bundle, can be described (locally) as the

space of real sections of a complex manifold Z fibering over CP 1. We shall say that M is

a generalised hypercomplex manifold or GHC manifold for short. The space Z is called

the twistor space of M .

Example 2.2.4. Consider S3 ∼= SU(2), where the diffeomorphism is given by defining
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SU(2) as the quaternions of unit length. Since TSU(2) = SU(2) × su(2), we have an

action on the tangent bundle given by the adjoint action of SU(2) on su(2).

For the integrability, notice that S3 can be understood as the space of real sections of

P(O(1) ⊕O(1)). Namely, sections of O(1) are polynomials of degree 2 in ξ, where ξ is

a holomorphic coordinate for CP 1. Moreover, O(1) can be endowed with a quaternionic

structure, therefore E = O(1) ⊕ O(1) ∼= O(1) ⊗ C2 possesses a real structure. Now,

H0(CP 1, E) = C4 and the space of real sections of E is R4. Taking the projectivization

P(E) of E, gives us the real sections of P(E) = S3. Therefore, S3 is the space of real

sections of a holomorphic bundle over CP 1 and this proves the integrability.

Example 2.2.5. Let H be the k-dimensional, for k even, irreducible representation of

SL(2,C), then it acts irreducibly on the dualH∗. LetB be a Borel subgroup of SL(2,C),

then SL(2,C)/B ∼= CP 1. For each q ∈ CP 1, let Bq be its corresponding Borel subgroup

and lq be the highest weight vectors for Bq. This gives an injective map CP 1 7→ P(H∗)

and let L̃k be the bundle on CP 1 given by the pullback of the tautological bundle on

P(H∗). For Lk = (L̃k)
∗ we have:

Theorem 2.2.6. (Borel-Weil theorem) In the notation of the example above,

H0(G/B,Lk) ∼= H.

Since k is even, we can endow H with a real structure and then HR is a GHC-manifold

with twistor space Lk. We shall later describe explicitly the α-surfaces when k = 4.
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Let M be a GHC manifold and consider the action of SL(2,C) on the complexified

cotangent bundle T ∗MC. For each point q ∈ CP 1 let Bq be the corresponding Borel

subgroup of SL(2,C). Define the following:

i) Uq is the subbundle of (T ∗M) corresponding to the highest weight with respect to

Bq,

ii) Kq is the subbundle of TMC annihilated by Uq and

iii) Fq = Kq ∩ Kq ∩ TM is a distribution on M .

We then have:

Theorem 2.2.7. ([Bie06] theorem 2.5) An almost k-hypercomplex structure on a

manifold M is integrable if and only if for every q ∈ CP 1 the subbundle Kq is involutive

for all q ∈ CP 1, this is to say, [Kq,Kq] ⊂ Kq.

We shall not prove the theorem above, however we shall see how it can be used to

construct the twistor space of a GHC-manifold.

Define the twistor distribution Z of M to be the distribution on M × CP 1 given by

Z(m,q) = ((Fq)m, 0). The theorem above says that this distribution is involutive and thus

it defines a foliation of M × CP 1. Moreover, the leaf space Z = (M × CP 1)/Z is the

twistor space of the GHC-manifold M . If the foliation is simple, then Z is a complex

manifold and the projection η : M ×CP 1 → Z is a surjective submersion, in this case M

is called a regular GHC-manifold. The leaves of the foliation Z will be called α-surfaces.
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Let M be a GHC-manifold, then it is given as the space of real sections of a fibration

Z → CP 1, thenM has a natural complexificationMC given by the space of all sections of

the fibration. Notice that the holomorphic tangent bundle TM (1,0) ofMC is then endowed

with a holomorphic action of SL(2,C) such that TM (1,0) = SkC2 ⊗ Cn. Furthermore,

we can define the complexified bundles Uq,Kq and Fq, we also have theorem (2.2.7).

2.3 The twistor theory of GHC-manifolds

In this section we shall describe some distinguished bundles on a GHC-manifold M. But

first we need some results regarding bundles on CP 1 and representations of SL(2,C).

In what follows in this section G = SL(2,C) and B is the Borel subgroup of the upper

diagonal matrices.

Let L = O(k) be the degree k line bundle on CP 1, for k > 0. Then the space of sections

H is an irreducible representation ofG from (2.2.6). Notice that the homogeneous bundle

H = G×B H is trivial and that we have an equivariant map:

H → L,

which is given by evaluation. Namely, if h ∈ H and q ∈ G/B ∼= CP 1 the map above

sends (h, q) to h(q).

Now, define a bundle K on CP 1 given by the exact sequence of homogeneous bundles:

0→ K → H → L→ 0. (2.1)
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The cohomology exact sequence of the dual to the sequence (2.1) gives an exact sequence

of G representations:

0→ H∗
i−→ Ĥ

j−→ H ′ → 0, (2.2)

where H ′ = H1(L∗) ∼= Sk−2C2, Ĥ = H0(K∗) and notice that H∗ ∼= H0(H∗), since H is

a trivial bundle. Moreover, the sequence (2.2) is split.

As a consequence of the long exact sequence in cohomology of (2.1) we have:

Lemma 2.3.1. The bundle K∗ decomposes as a direct sum of the bundles O(1).

Remark 2.3.2. The lemma above says that Ĥ can be given the structure of a quaternionic

vector space.

For each q ∈ CP 1 we notice that the line of highest weight vectors in H , denoted by Sq,

is contained in K. Therefore, we can define a subbundle S of K whose fibre at q is Sq.

We can consider the short exact sequence:

0→ (K/S)∗ → K∗ → S∗ → 0. (2.3)

The long exact sequence in cohomology starts as:

0→ H0((K/S)∗)→ Ĥ → H0(S∗). (2.4)

Now Borel-Weil theorem says that H∗ and H0(S∗) are isomorphic representations of G.

Thus, we obtain a map p : Ĥ → H∗. It is proved in [Bie06] lemma 3.3 that p is the left

inverse for the map i in (2.2).
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We can now state and prove:

Proposition 2.3.3. We have an isomorphism of homogeneous bundles

(K/S)∗ ∼= G×B H ′.

In particular, H0((K/S)∗) ∼= H1(CP 1, L∗) and K/S is trivial.

Proof. H is isomorphic to SkC2 as a representation ofG and we shall write the vectors of

H as (v0, v1, · · · , vk) where the coordinates are relative to the weight decomposition with

respect to B, where v0 correspond to the minimal weight and vk, the maximal weight.

The fibre K[1] of K at the point [1] ∈ G/B ∼= CP 1 is given by vectors of the form

(0, v1, · · · , vk) and the fibre S[1], by (0, · · · , 0, vk). The mapK[1]/S[1] → Sk−2C2 induced

by

(0, v1, · · · , vk) 7→ (v1, · · · , vk−1)

is an isomorphism of B-modules. Since the bundles are homogeneous we have an

isomorphism of bundles.

We can now return our attentions to differential geometry. Let M be a regular GHC-

manifold and Z its twistor space. Therefore, on the complexified case, we have the double

fibration:

Z
η←− Y = MC × CP 1 p−→MC. (2.5)

Definition 2.3.4. The sheaf of η-vertical holomorphic l-forms Ωl
η is defined by

Ωl
η = Λl(Ω1(Y )/η∗(Ω1(Z))).
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Proposition 2.3.5. We have an isomorphism of sheaves p∗(Ω1
η)
∼= E∗ ⊗ Ĥ , where Ĥ is

defined in the sequence (2.2).

Proof. Let x ∈MC and let CP 1
x be the fibre of p over x. The η-normal bundle of CP 1

x in

Y , this is to say, the normal bundle of CP 1
x along the fibres of η, is the bundle whose fibre

at (x, q) ∈ CP 1
x is Kq. From the definition of push-forward we have:

p∗(Ω
1
η) = H0(CP 1

x ,K∗).

Now we have the decompositions TMC = EM⊗H andK = Cn⊗K, whereK is defined

in (2.1). Since H0(CP 1, K∗) = Ĥ , we have proved the proposition.

Proposition 2.3.6. We have a splitting: p∗(Ω1
η)
∼= Ω1(MC)⊕ (E∗ ⊗H ′).

Proposition 2.3.7. p∗(Ω2
η)
∼= (S2E∗⊗H−)⊕(Λ2E∗⊗H+),whereH− = H0(CP 1,Λ2K∗)

and H+ = H0(CP 1, S2K∗).

2.4 R5 as a GHC-manifold and its twistor theory

Example (2.2.5) defines R5 as a 2-GHC manifold. In this section we shall describe

explicitly the twistor distribution for R5.

First we shall fix some notations that will be used throughout this thesis. Let CP 1 =

C ∪ {∞} and put coordinates ξ on U = C ⊂ CP 1 and ξ′ on U ′ = (C \ {0}) ∪ {∞} such

that ξ′ =
1

ξ
on U ∩ U ′.
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We can now fix holomorphic coordinates onO(k). Let π : O(k)→ CP 1 be the projection

and define the open sets U0 = π−1(U) and U1 = π−1(U ′). Put coordinates (η, ξ) in U0

and (η′, ξ′) on U1 such that η′ = η/ξk. Furthermore, from now on, whenever we refer to

the total space of the bundle O(k), we shall name it T.

Under these coordinates we can express a holomorphic section p ofO(k) as a polynomial

of degree k in ξ, namely p(ξ) = a0 +a1ξ+ · · ·+akξ
k. We can define an anti-holomorphic

involution in the total space of O(k), in local coordinates, by τ(η, ξ) = (η/ξ
k
,−1/ξ).

Observe that τ covers the antipodal map in CP 1 and therefore swaps the open sets U0 and

U1. This map induces an involution in H0(CP 1,O(k)), which will still be called by τ , in

the following way: If p(ξ) = a0 + a1ξ + · · · + akξ
k is a holomorphic section of O(k),

then τ(p) = b0 + · · · + bkξ
k, where bj = (−1)jak−j . For a point (η, λ) ∈ O(k) we can

define the α-surface Π(η,λ) = {p(ξ) ∈ C5| p(λ) = η}.

We can now concentrate on R5. A point (x0, x1, x2, x3, x4) ∈ R5 corresponds to the

section p(ξ) = (x0 + ix4) + (x1 + ix3)ξ + x2ξ
2 − (x1 − ix3)ξ3 + (x0 − ix4)ξ4 ∈

H0(CP 1,O(4)). Conversely, given a point z ∈ Z, we define the real α-surface

corresponding to z, denoted by Pz, to be the subspace in R5 consisting of real sections

through z. Namely, we can consider z ∈ U0 so that we can write z = (η0, ξ0) in local

coordinates, then we have Pz = {p ∈ H0(CP 1,O(4))| p(ξ0) = η0}.

We define C5 as the fourth symmetric power of the defining representation of SL(2,C),

therefore it can be described as the space of polynomials of degree 4 in ξ and the explicit
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action of SL(2,C) on C5 is given by:

g · p(ξ) = (cξ + d)4 · p
(
aξ + b

cξ + d

)
, (2.6)

where g = ( a bc d ) ∈ SL(2,C) and p(ξ) ∈ C5. We can understand this action as being

induced by the action of SL(2,C) in the total space of O(4) defined by

g · (η, ξ) =

(
η

(cξ + d)4
,
aξ + b

cξ + d

)
. (2.7)

For the following proposition, we write an element g ∈ SU(2) ⊂ SL(2,C) as g =(
α −β
β α

)
.

Proposition 2.4.1. This action is compatible with the real structure τ in O(4), this is to

say, τg = gτ for all g ∈ SU(2).

Proof. The proof follows by direct computation using the action (2.7) and the definition

of τ . We have:

g · τ(η, ξ) =

(
η

(αξ + β)4
,
βξ − α

(αξ + β)

)
= τg · (η, ξ).

For a point λ ∈ U ⊂ CP 1 define gλ ∈ SU(2) by gλ = 1√
1+λλ

 1 λ

−λ 1

 and notice that

gλ is the unique, up to a U(1) multiplication, element in SU(2) such that g−1
λ · (0, 0) =

(0, λ).
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Now we shall explicitly describe the bundleK, which is defined in (2.1). First, we identify

the tangent space TxC5 at x ∈ C5 with S4C2 and denote a vector in TxC5 as a polynomial

of degree 4 in ξ. We then have:

Proposition 2.4.2. Let λ ∈ U ⊂ CP 1, then the fibre Kλ = SpanC{V λ
1 , V

λ
2 , V

λ
3 , V

λ
4 },

where

• V λ
1 = g−1

λ · ξ =
1

(1 + λλ)2
(λξ + 1)3(ξ − λ);

• V λ
2 = g−1

λ · ξ2 =
1

(1 + λλ)2
(λξ + 1)2(ξ − λ)2;

• V λ
3 = g−1

λ · ξ3 =
1

(1 + λλ)2
(λξ + 1)(ξ − λ)3;

• V λ
4 = g−1

λ · ξ4 =
1

(1 + λλ)2
(ξ − λ)4.

Proof. First remember that the fibre Kλ is given by the holomorphic sections p of O(4)

such that p(λ) = 0. Then, notice that K0 = SpanC{ξ, ξ2, ξ3, ξ4}. Since the group action

is an endomorphism, the subspace of H0(CP 1,O(4)) generated by the V λ
k s is a basis for

Kλ. This proves the proposition.

Remark 2.4.3. It is important to highlight the use of the group action in the proof above.

It will be important when we discuss aspects of the twistor theory of R5 that are invariant

under the group action.

We have that in our case Kq = Kq, for all q ∈ CP 1. Therefore, applying the reality

condition we have:
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Proposition 2.4.4. The twistor distribution F on R5 × CP 1 is given by F(x,λ) =

SpanR{(vλ1 , 0), (vλ2 , 0), (vλ3 , 0)}, where

vλ1 = g−1
λ · (ξ − ξ

3) =
(1 + λξ)3(ξ − λ)− (1 + λξ)(ξ − λ)3

(1 + λλ)2
, (2.8)

vλ2 = g−1
λ · ξ

2 =
(1 + λξ)2(ξ − λ)2

(1 + λλ)2
and (2.9)

vλ3 = g−1
λ · i(ξ + ξ3) = i

(
(1 + λξ)3(ξ − λ) + (1 + λξ)(ξ − λ)3

(1 + λλ)2

)
. (2.10)

Moreover, fixing an ordered frame {(vλ1 , 0), (vλ2 , 0), (vλ3 , 0)} for the twistor distribution

gives an orientation for the vector space F(x,λ).

Remark 2.4.5. We are describing R5 as the real form of the fourth symmetric power of the

defining representation of SU(2). Let Bq be the Borel subgroup of SU(2) corresponding

to q ∈ CP 1. If we consider the weight decomposition of R5 with respect to Bq, we must

have that v1, v2 and v3 are the weight-vectors corresponding to the weights −2, 0 and +2

respectively. Therefore, the orientation mentioned in the proposition above is natural with

respect to the SU(2) action.

2.5 Invariant metric on R5, α-surfaces and further

properties

We begin this section by stating the following proposition:

Proposition 2.5.1. ([Muk03] page 27 proposition 1.25) Let p(ξ) = a0 + a1ξ + a2ξ
2 +
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a3ξ
3 + a4ξ

4 as a point in TxC5. Define the quadratic form on TxC5 by N(p) = a2
2 −

3a1a3 + 12a0a4. Then, N is SL(2,C)-invariant, this is to say, N(g · p) = N(p), for all

p ∈ TxC5 and g ∈ SL(2,C).

We can apply the reality condition and restrict this form to the tangent space TxR5 for

x ∈ R5. For a tangent vector p(ξ) = (x0 + ix4) + (x1 + ix3)ξ + x2ξ
2 − (x1 − ix3)ξ3 +

(x0 − ix4)ξ4 ∈ TxR5, we have

N(p) = x2
2 + 3(x2

1 + x2
3) + 12(x2

0 + x2
4).

Thus, N(p) is positive definite and defines an SU(2)-invariant metric g on R5 by the

polarisation formula. Moreover, we must have that {vλ1 , vλ2 , vλ3}, defined in proposition

(2.4.4), is an orthogonal frame for the twistor distribution F .

We now turn to the description of the leaves of the twistor foliation, the so called α-

surfaces. Let z ∈ T, we define Πz to be the space of section of O(4) that contains z,

in local coordinates, Π(η,ξ) = {p ∈ O(4)| p(ξ) = η}. Applying the reality structure, we

define Pz = Πz ∩ τ(Πz) ∩ R5.

Proposition 2.5.2. Let (η, λ) ∈ U0, then

Π(η,λ) =

{
1

(1 + λλ)4

[
η(1 + λξ)4 + a1(1 + λξ)3(ξ − λ) + a2(1 + λξ)2(ξ − λ)2+

+a3(1 + λξ)(ξ − λ)3 + a4(ξ − λ)4
]
|a1, a2, a3, a4 ∈ C

}
.
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Applying the reality condition:

P(η,λ) =

{
1

(1 + λλ)4

(
η(1 + λξ)4 + η(ξ − λ)4+

x1[(1 + λξ)3(ξ − λ)− (1 + λξ)(ξ − λ)3]+

x2(1 + λξ)2(ξ − λ)2 − x3[(1 + λξ)3(ξ − λ) + (1 + λξ)(ξ − λ)3]
)
|x1, x2, x3 ∈ R

}
.

Now we shall concentrate on the tangent space to the α-surfaces. We shall use the

isomorphism TR5 ∼= T ∗R5 given by the above inner product and define what we shall

call “natural forms” on Ω0,1(O(4)).

The tangent space of the α-surface P(η,λ), λ ∈ CP 1, is generated by vectors vλ1 , v
λ
2 , v

λ
3 ,

where

vλ1 =
1

(1 + λλ)2
[(1 + λξ)3(ξ − λ)− (1 + λξ)(ξ − λ)3], (2.11)

vλ2 =
1

(1 + λλ)2
[(1 + λξ)2(ξ − λ)2], (2.12)

vλ3 =
1

(1 + λλ)2
[(1 + λξ)3(ξ − λ) + (1 + λξ)(ξ − λ)3], (2.13)

where λ is the holomorphic coordinate for a point in U0 = CP 1 \ {∞}.

Using the metric, we can find the dual to the basis above. Namely, we define ωλj :=

g(vλj , ·) ∈ Ω1P(η,λ). Using holomorphic coordinates (a0, a1, a2, a3, a4) for C5 we can

write a frame for (1, 0)-forms as {da0, da1, da2, da3, da4}. Expanding the formulas for vλj

above and calculating the ωλj gives us:
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ωλ1 = 1
3(1+λλ)2

[6f0da0 + 3
2
f1da1 + f2da2 + 3

2
f3da3 + 6f4da4],

ωλ2 = 1
(1+λλ)2

[6λ
2
da2

0 − 3λ(1− λλ)da1+

(1− 4λλ+ (λλ)2)da2 + 3λ(1− λλ)da3 + 6λ2da4],

ωλ3 = i
3(1+λλ)2

[6g0da0 + 3
2
g1da1 + g2da2 + 3

2
g3da3 + 6g4da4],

where:

f0 = (λ3 − λ) = f4,

f1 = (−3λλ+ 1− 3λ2 + λλ3) = −f3,

f2 = (−3λ
2
λ+ 3λ− 3λλ2 + 3λ) = f2,

g0 = −(λ3 + λ) = −g4,

g1 = (−3λλ+ 1 + 3λ2 − λλ3) = g3,

g2 = (−3λ
2
λ+ 3λ+ 3λλ2 − 3λ) = −g2.

Observe that (0, ωλk ) defines a 1-form on CP 1×R5. It will be denoted by the same symbol,

ωλk .

Now we consider a section s of η : CP 1 × R5 → O(4), η(q,m) = m(q), and shall

find the pull back θk := s∗ωk, notice that θk is independent of the section s. In the next

chapter, we shall use θ0,1
k to describe distinguished bundles on the total space ofO(4) that

correspond with a trivial U(1) monopole data. Thus, this method allows us to define line

bundles over O(4) with vanishing first Chern class.

We can choose an explicit section s of η:
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s : O(4) → CP 1 × R5,

(µ, λ) 7→
(
λ, 1

(1+λλ)2
(xvλ0 + yvλ4 )

)
,

(2.14)

where µ = x+ iy and

vλ0 =
1

(1 + λλ)2
[(1 + λξ)4 + (ξ − λ)4]

and

vλ4 =
i

(1 + λλ)2
[(1 + λξ)4 − (ξ − λ)4].

The vector fields vλ0 and vλ4 on R5 correspond respectively to the maximal and minimal

weights of R5, as a SU(2) representation, with respect to the Borel subgroup Bλ.

We can now state the following:

Proposition 2.5.3. The (0, 1) parts of the natural forms are given by:

θ0,1
1 =

3µ

(1 + λλ)3
dλ,

θ0,1
2 = 0,

θ0,1
3 =

3iµ

(1 + λλ)3
dλ.

Remark 2.5.4. Before we proceed with the proof of this result, we shall point out that the

differential forms above shall be used in the description of distinguished line bundles on

the total space of T.

Proof. First write ωλj =
∑4

j=0 h
j
k(λ)dak, where the hjks are given by the equations



Chapter 2. R5 as a Generalised Hypercomplex Manifold 28

defining ωjs. The pullback by s is given by:

s∗ωj =
4∑
j=0

hjk(s(µ, λ))d(ak(s(µ, λ))),

where ak(s(µ, λ)) is the coordinate function and notice that hjk(s(µ, λ)) = hjk(λ).

Expanding vλ0 and vλ4 above we get

vλ0 =
1

(1 + λλ)2

[
(1 + λ4) + 4(λ− λ3)ξ + 6(λ2 + λ

2
)ξ2 − 4(λ− λ3

)ξ3 + (1 + λ
4
)ξ4
]

and

vλ4 =
i

(1 + λλ)2

[
(1− λ4) + 4(λ+ λ3)ξ + 6(λ

2 − λ2)ξ2 + 4(λ+ λ
3
)ξ3 + (λ

4 − 1)ξ4
]
.

From the definition of s we have:

• x0(s(µ, λ)) =
1

(1 + λλ)4
[x(1 + λ4) + iy(1− λ4)] =

1

(1 + λλ)4
[µ+ µλ4],

• x1(s(µ, λ)) =
4

(1 + λλ)4
[x(λ− λ3)] + iy(λ+ λ3) =

4

(1 + λλ)4
[µλ+ µλ3],

• x2(s(µ, λ)) =
6

(1 + λλ)4
[x(λ2 + λ

2
) + iy(λ

2
)− λ2] =

6

(1 + λλ)4
[µλ2 + µλ

2
],

• x3(s(µ, λ)) =
4

(1 + λλ)4
[−x(λ− λ3

) + iy(λ+ λ)] =
4

(1 + λλ)4
[−µλ+ µλ

3
] and

• x4(s(µ, λ)) =
1

(1 + λλ)4
[x(1 + λ4) + iy(λ

4 − 1)] =
1

(1 + λλ)4
[µ+ µλ

4
].

Since we are interested only in the (0, 1) part of the s∗ωjs, we shall compute:

dxj(s(µ, λ))0,1 =
∂xj(s(µ, λ))

∂λ
dλ+

∂xj(s(µ, λ))

∂µ
dµ.

Computing the derivatives:
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∂x0(s(µ, λ))

∂λ
=
−4(µλ+ µλ5)

(1 + λλ)5
,

∂x0(s(µ, λ))

∂µ
=

λ4

(1 + λλ)4
.


∂x1(s(µ, λ))

∂λ
=

4[µ(1 + λλ)− 4λ(µλ− µλ3)]

(1 + λλ)5
,

∂x1(s(µ, λ))

∂µ
=

−4λ3

(1 + λλ)4
.


∂x2(s(µ, λ))

∂λ
=

12[µλ(1 + λλ)− 4λ(µλ2 + µλ
2
)]

(1 + λλ)5
,

∂x2(s(µ, λ))

∂µ
=

6λ2

(1 + λλ)4
.


∂x3(s(µ, λ))

∂λ
=

4[3λ
2
µ(1 + λλ)− 4λ(−µλ+ µλ3)]

(1 + λλ)5
,

∂x3(s(µ, λ))

∂µ
=

−4λ

(1 + λλ)4
.


∂x4(s(µ, λ))

∂λ
=

4µλ
3
[(1 + λλ)− 4λ(µ+ µλ

4
)]

(1 + λλ)5
,

∂x4(s(µ, λ))

∂µ
=

1

(1 + λλ)4
.

Substituting these into the equation for the pullback, we obtain the expressions stated in

the proposition.
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We now finish this chapter with a result concerning the behaviour of the α-surfaces with

respect to the real structure on T. More specifically, for z ∈ T, we want to compare

Pz with Pτ(z), where τ is the real structure in T. With this intention we shall state the

following results whose proofs follow by straightforward calculations and shall not be

done here.

Lemma 2.5.5. Let λ ∈ U∩U ′ = CP 1\{∞, 0} and write
λ

λ
= x+iy. The change of basis

matrix from the basis {vλ0 , vλ1 , vλ2 , vλ3 , vλ4} to {v(−1/λ)
0 , v

(−1/λ)
1 , v

(−1/λ)
2 , v

(−1/λ)
3 , v

(−1/λ)
4 } is

given by



x2 − y2 0 0 0 −2xy

0 x 0 −y 0

0 0 1 0 0

0 −y 0 −x 0

−2xy 0 0 0 −(x2 − y2)


. (2.15)

Corollary 2.5.6. Under the notation of the lemma above, the change of basis from

{vλ1 , vλ2 , vλ3} to {v(−1/λ)
1 , v

(−1/λ)
2 , v

(−1/λ)
3 } is given by:

x 0 −y

0 1 0

−y 0 −x

 . (2.16)

In particular, the α-surfaces corresponding to z ∈ T and τ(z) are the same 3-dimensional

affine subspaces of R5 with reverse orientation.
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We shall conclude this chapter by stating the twistor correspondence between R5 and T:

Every point (x0, x1, x2, x3, x4) ∈ R5 corresponds to the section p(ξ) = (x0 + ix4)+(x1 +

ix3)ξ + x2ξ
2 − (x1 − ix3)ξ3 + (x0 − ix4)ξ4 ∈ H0(CP 1,O(4)). Conversely, every point

z ∈ T corresponds to an oriented 3-dimensional affine subspace of R5 given explicitly in

local coordinates by proposition (2.5.2) and whose orientation is given by the choice of

oriented basis {vλ1 , vλ2 , vλ3}.
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Chapter 3

Twistor Approach to Monopoles on R5

3.1 Overview

In this chapter we present a higher dimensional version of Hitchin’s twistorial approach

[Hit82] to monopoles. There, Hitchin describes the twistor space of R3 as the space of

oriented lines and this turns out to be the holomorphic tangent bundle to O(2), which is

the total space of the line bundle CP 1. As we have seen in the last chapter, we can use

the SU(2) action on R5 to define oriented 3-dimensional affine subspaces, the analogue

of oriented lines in R3. First, we shall recover further material from [Bie06] and then

we shall prove a Hitchin-Ward correspondence for Bogomolny pairs in R5 for the group

SU(2).

The motivation to study monopoles in higher dimensions comes from the desire to
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understand what type of geometry the moduli space has. As we have seen in the

introduction, we do not rely on an energy functional, therefore the concept of charge

differs from what we know about the R3 case. Instead, as we shall see in the next chapter,

we use the spectral curve to define this invariant of the monopole. Another consequence

of this is the non-existence of a natural L2 metric on the moduli space and we shall use

Nahm’s equations to define a metric.

3.2 Bogomolny pairs on GHC-manifolds

Let M be a regular GHC-manifold whose twistor space is Z and consider the double

fibration for the complexified GHC-manifold:

Z
η←− Y = CP 1 ×MC p−→MC.

Also, let Ω∗η be the sheaf on Y of η-vertical holomorphic forms and define the relative

differential operator dη to be the composition map:

Ω0(Y )
d−→ Ω1(Y )

proj.−−→ Ω1
η;

observe that dη annihilates η∗Ω0(Z).

We shall now state and prove the following lemma:

Lemma 3.2.1. Let F be a holomorphic bundle on Z. Then dη extends to a flat relative

connection on η∗F , this is to say, an operator

∇η : η∗F → Ω1 ⊗ F,
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satisfying the Leibniz rule

∇η(fs) = f∇η(s) + dηf ⊗ s.

Conversely, if η has simply connected fibres, then the holomorphic bundles on Y arising

from pull-back of a bundle on Z are those which admit a flat relative connection.

Proof. Suppose F has rank k, let U and U ′ be open sets on Y and {e0, · · · , ek} and

{e′0, · · · , e′k} be local frames for η∗F on U and U ′ respectively. Let gij be the transition

function of η∗F from U ′ to U , this is to say, ei =
∑k

j=0 gije
′
j , such that dη(gij) = 0.

Let s =
∑k

i=0 fi ⊗ ei be a local section for η∗F on U define∇η on this open set by:

∇η(s) =
k∑
j=0

dη(fi)⊗ ei.

If we define it similarly for other trivialisations, we shall prove it is well defined.

In fact, on U ∩ U ′ we can write s =
∑k

i=0 figij ⊗ e′i, therefore we have:

∇η(s) =
k∑
j=0

dη(fi)gij ⊗ e′i =
k∑
j=0

dη(fi)⊗ ei,

since dη(gij) = 0. Then,∇η is well-defined and clearly satisfies the Leibniz rule.

Conversely, Let E be a bundle on Y endowed with a flat relative connection ∇η. Since

η has simply connected fibres, we can trivialise E with relative parallel section, this is to

say, we can find local frames {e0, · · · , ek} for E such that ∇η(ej) = 0. Now it is easy to

see that the transition functions g for this trivialisation must satisfy dη(g) = 0, this means
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that g is constant along the fibres of η. Thus, each transition function factors as g = η ◦h,

where h is the transition function for a holomorphic bundle F on Z.

Suppose now that a holomorphic bundle F on Z is trivial on each section of Z, then the

pull-back η∗F is trivial on each fibre of p. Therefore, F̂ = p∗η
∗F is a vector bundle

on MC with the same rank as F . Moreover, from the lemma above, the relative flat

connection∇η can be pushed down via p to an operator

D : F̂ → p∗Ω
1
η ⊗ F̂ ,

satisfying the Leibinitz rule

D(fs) = fD(s) + p∗dη(f)⊗ s.

We now use a fact from the last chapter that there exists a canonical isomorphism

(p∗Ω
1
η)x
∼= H0(CP 1

x ,K∗),

whereKq is the subspace of TxM×CP 1 given by the kernel of the highest weight 1-forms

for each q ∈ CP 1. This isomorphism allows us to define a canonical map

eq : p∗Ω
1
η → K∗q , (3.1)

given by evaluation at q ∈ CP 1.

Restrict F̂ and the operator D to the submanifold p(η−1(z)) of MC, where z ∈ Zq is a

point in the fibre of Z at q ∈ CP 1. Since ∇η is relatively flat, D is a flat connection
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restricted to this submanifold. Conversely, notice that if we have a bundle F̂ with an

operatorD that is flat on p(η−1(z)) for all z ∈ Z, then we obtain a bundle p∗(F̂ ) endowed

with a relative flat connection∇η = p∗(D).

Now consider the splitting

p∗Ω
1
η = Ω1(MC)⊕ (E∗ ⊗H ′).

Moreover, it is proved in [Bie06] that we have p∗dη = d ⊕ 0 under the splitting above.

This means that D can be written as D = ∇ ⊕ Φ, where ∇ is an actual connection and

Φ is a section of End(F̂ ) ⊗ (E∗ ⊗ H ′) and is called the Higgs field. Moreover, on each

α-surface Πz = p(η−1(z)) by the composition:

F̂
∇⊕Φ−−−→ (F̂ ⊗ E∗ ⊗H∗)⊕ (F̂ ⊗ E∗ ⊗H ′) = F̂ ⊗ E∗ ⊗ Ĥ eq−→ F̂ ⊗ Ω1(Πz).

This motivates the following definition:

Definition 3.2.2. Let M be a regular GHC-manifold and F̂ a vector bundle on MC, a

Bogomolny pair on F̂ is a pair (∇,Φ), where ∇ is connection on F̂ and Φ is a section of

End(F̂ ) ⊗ (E∗ ⊗ H ′), such that the connection ∇ ⊕ Φ, as defined by the composition

above, is flat on each α-surface. Applying the reality condition gives Bogomolny pairs on

M .

We have proved the Hitchin-Ward correspondence for GHC-manifolds:

Theorem 3.2.3. Let M be a regular GHC manifold. There is a one to one and onto

correspondence between Bogomolny pairs (∇,Φ) for a bundle F̂ onMC and holomorphic
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bundles F on Z that are trivial on sections. The correspondence remains true in the

presence of a real structure.

Remark 3.2.4. The theorem above gives a Bogomolny pair for the group SL(n,C),

where n is the rank of F . By considering bundles F on Z whose structure group reduces

we have the above correspondence between those bundles and Bogomolny pairs (∇,Φ)

for a gauge group G ⊂ SL(n,C). The objective of this chapter is to describe Bogomolny

pairs for the group SU(2) when M = R5.

Remark 3.2.5. In [Hit82], Hitchin proves a Hitchin-Ward correspondence between

solutions to the Bogomolny equation in R3 and holomorphic bundles on the total space of

the holomorphic tangent bundle T2 to CP 1 that are trivial on real sections. Therefore,

(∇,Φ) is a Bogomolny pair in R3 if and only if it satisfies the Bogomolny equation

F∇ = ∗D∇Φ.

3.3 The map eq and the Higgs field

We shall now turn our attentions to the case where M = R5. In the last section we saw

that the map eq, given by equation (3.1), plays a very important role in the description of

Bogomolny pairs. In this section we shall describe it in the case M = R5.

We know that p∗(Ω1
η) = H∗ ⊕H ′, therefore, eq is an equivariant map

eq : (C5)∗ ⊕ C3 → K∗q .
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In this section we shall describe the real version of this map:

eq : (R5)∗ ⊕H ′R → (K∗R)q. (3.2)

According to [Bie06], under the splitting above, the map eq acts on R5 as a projection and

on H ′R it is described in the sequence (2.2). Then, we shall move towards the description

of

eq : H ′R → K∗q

and its real version.

First we shall decompose C3 in weights with respect to λ ∈ CP 1. Similarly to the the C5

case, defining C3 as polynomials of degree 2 in the variable ξ allows us to write the action

of SL(2,C) in C3 by:

g · p(ξ) = (cξ + d)2 · p
(
aξ + b

cξ + d

)
,

where g =

a b

c d

 ∈ SL(2,C) and p(ξ) ∈ C3. Moreover, for a point λ ∈ U ⊂ CP 1

define gλ ∈ SU(2) by gλ = 1√
1+λλ

 1 λ

−λ 1

. Thus, the weight decomposition of C3

with respect to λ is:
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αλ1 = g−1
λ · 1 =

1

(1 + λλ)
(λξ + 1)2

=
1

(1 + λλ)
(1 + 2λξ + λ

2
ξ2),

αλ2 = g−1
λ · ξ =

1

(1 + λλ)
(λξ + 1)(ξ − λ)

=
1

(1 + λλ)
(−λ+ (1− λλ)ξ + λξ2),

αλ3 = g−1
λ · ξ2 =

1

(1 + λλ)
(ξ − λ)2

=
1

(1 + λλ)
(λ2 − 2λξ + ξ2).

(3.3)

Write (H ′)∗ = C3, G = SL(2,C) and B the Borel subgroup of upper diagonal matrices.

Then, the αλj trivialise the homogeneous bundle (G×BH ′)∗ over CP 1, where λ is a local

holomorphic coordinate for q ∈ CP 1. Then, from proposition (2.3.3) we know that there

is an isomorphism (K/S)∗λ → (H ′)∗. This isomorphism allows us to describe a global

frame for (K/S)∗λ:

F λ
1 =

1

(1 + λλ)
(W λ

1 + 2λW λ
2 + λ

2
W λ

3 ),

F λ
2 =

1

(1 + λλ)
(−λW λ

1 + (1− λλ)W λ
2 + λW λ

3 ),

F λ
3 =

1

(1 + λλ)
(λ2W λ

1 − 2λW λ
2 +W λ

3 ),

(3.4)

where W λ
1 = ωλ1 + iωλ3 , W λ

2 = ωλ2 and W λ
3 = ωλ1 − iωλ3 , where the ωλj were defined in the

last chapter.

Remark 3.3.1. Before proceeding, it is important to notice that e∗q : End(E)⊗ (H ′)∗ →

(K/S)∗ is given by

eq(φ1, φ2, φ3) =
3∑
j=1

φjF
q
j .
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We can now apply the reality condition on (C5)∗ to explicitly describe a global frame for

(K/S)∗R:

hλ1 = F λ
1 − F λ

3 =
1

(1 + λλ)
[(1− λ2)W λ

1 + 2(λ+ λ)W λ
2 − (1− λ2

)W λ
3 ],

hλ2 = F λ
2 =

1

(1 + λλ)
[−λW λ

1 + (1 + λλ)W λ
2 + λW λ

3 ],

hλ3 = i(F λ
1 + F λ

3 ) =
i

(1 + λλ)
[(1 + λ2)W λ

1 + 2(λ− λ)W λ
2 + (1 + λ

2
)W λ

3 ].

(3.5)

The proposition below describes the map eq and follows from the discussion above and

proposition (2.3.3):

Proposition 3.3.2. Let E be a vector bundle over R5, ∇ a connection on E and Φ =

(φ1, φ2, φ3) a section of End(E)⊗ C3. On the α-surface P(λ,µ) we have:

eq(∇⊕ Φ)|P(λ,µ)
= ∇|P(λ,µ)

+
3∑
j=1

φjh
λ
j .

We conclude this section by mentioning how the results of this section give a natural

orientation for the α-surfaces. A straightforward calculation proves the following lemma:

Lemma 3.3.3. Let λ ∈ CP 1 and−1/λ be its antipodal, then h−1/λ
j = −hλj , for j = 1, 2, 3.

The following corollary says that a choice of frame for the homogeneous bundle (K/S)∗

naturally defines an orientation on the α-surfaces:

Corollary 3.3.4. Let P(λ,µ) be an α-surface. Define its orientation by the 3-form

Ξ(λ,µ) = hλ1 ∧ hλ2 ∧ hλ3 .
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Then, Pτ(λ,µ) and P(λ,µ) are the same submanifold of R5 with reverse orientation.

Remark 3.3.5. It is important to notice here that the way the hλj were defined makes

them dual to the vλj , in other words, hλj (v
λ
j ) = 1. Therefore, Ξ(λ,µ)(v

λ
1 , v

λ
2 , v

λ
3 ) = 1 and the

orientation in P(λ,µ) given by the choice of order of the triple vλ1 , v
λ
2 , v

λ
3 is the same as the

one given by the 3-form in the corollary above.

3.4 SU(2)-Bogomolny pairs on R5

We begin this section by defining the fundamental forms:

Definition 3.4.1. Consider hλj , for j = 1, 2, 3, as a 1-form on CP 1 × R5. Let s be the

section of η : CP 1 × R5 → T defined in (2.14) . Define the fundamental forms on T by

Ψj = s∗hλj .

In our local coordinates we have the following lemma:

Lemma 3.4.2. In local coordinates for the open set U0 ⊂ T, the fundamental forms are

given by: 

Ψ1 = 6µ
(1− λ2

)

(1− λλ)4
dλ,

Ψ2 = −6µ
λ

(1− λλ)4
dλ,

Ψ3 = −6iµ
(1 + λ

2
)

(1− λλ)4
dλ.
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Proof. The result follows from proposition (2.5.3) and from substituting hλj in proposition

(3.5). Moreover, notice that W λ
1 = ωλ1 + iωλ3 and W λ

3 = −ωλ1 + iωλ3 , therefore s∗W λ
1 = 0

and s∗W λ
3 = −6

µ

(1− λλ)4
dλ.

Remark 3.4.3. 1. The fundamental forms will play an important role in the explicit

description of the holomorphic structure of the bundle corresponding to a

Bogomolny pair on R5.

2. It is important to notice that each Ψj defines a cohomology class in H1(T,O) and

hence, by exponentiation, an element of the Picard group Pic0(T). The line bundles

corresponding to this class shall be explicitly described in the next section.

Definition 3.4.4. Let E be a SU(2) vector bundle on R5, this is to say, E has complex

rank 2 and is equipped with a symplectic form and a quaternionic structure. We say that

the pair (∇,Φ) on E is a SU(2) Bogomolny pair if

1. ∇ and Φ = (φ1, φ2, φ3) preserve the symplectic form;

2. For every α-surface Pz, the connection∇⊕ Φ, given in (3.3.2), is flat.

We know that Pz is a leaf of the integral distribution {vq1, v
q
2, v

q
3}. From the previous

section we can choose coordinates {χz1, χz2, χz3} such that dχzk = hqk. IfA is the connection

1-form for∇ on Pz, then we can write:

eq(∇⊕−iΦ)|Pz =
3∑

k=1

(Ak − iφk)dχzk.1

1The −i here will become clear in the proof of theorem (3.4.6).



Chapter 3. Twistor Approach to Monopoles on R5 44

The zero curvature condition for this connection gives:

Fkj + i∇kφj − i∇jφk − [φj, φk] = 0, (3.6)

where F is the curvature 2-form for∇.

Before proceeding to the main result of this section we shall state the following lemma

which compares the connections eq(∇⊕ Φ)|Pz and eτ(q)(∇⊕ Φ)|Pτ(z):

Lemma 3.4.5. eτ(q)(∇⊕ Φ)|Pτ(z) = ∇− φ1h
q
1 − φ2h

q
2 − φ3h

q
3.

Proof. The proof is a straightforward calculation using lemma (3.3.3).

Theorem 3.4.6. Let E be a SU(2) bundle on R5. There is a 1-1 onto correspondence

between SU(2) Bogomolny pairs (∇,Φ) and holomorphic bundles Ẽ on T satisfying:

(i) Ẽ is trivial on real sections,

(ii) Ẽ has a symplectic structure,

(iii) Ẽ is equipped with a quaternionic structure σ covering τ , this is to say, σ is an

anti-holomorphic linear map

σ : Ẽz → Ẽτ(z),

such that σ2 = −idẼz .

Proof. We shall prove the conditions to reduce the gauge group to SU(2) and describe

the holomorphic structure for the bundle Ẽ explicitly.
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Let (∇,Φ) be a SU(2) Bogomolny pair on E consider the double fibration:

T η←− Y = CP 1 × R5 p−→ R5.

Let s be the section of η as defined in (2.14). We already know from theorem (3.2.3) that

Ẽ = s∗(p∗E) is holomorphic and trivial on real sections of T, however we shall describe

this holomorphic structure explicitly:

Define the operator ∂ : Ω0(T, Ẽ)→ Ω0,1(T, Ẽ) by:

∂t =

(
(s∗∇)t− i

[
3∑

k=1

(s∗φk)t⊗Ψk

])0,1

,

where t is a section of Ẽ. We claim that ∂ is a holomorphic structure on Ẽ.

We have to prove that ∂
2

= 0. To simplify our notation, write

∇̂ = s∗∇− iΩ,

where Ω =
∑3

k=1 s
∗φk⊗Ψk. Observe that Ω is a section of Ω1⊗End(Ẽ) and this makes

∇̂ a connection on Ẽ. Then, ∂
2

= F 0,2

∇̂ , where F∇̂ is the curvature of ∇̂. We have:

F∇̂ = s∗F∇ − i(s∗∇(Ω))− Ω ∧ Ω

= s∗F∇ + i

[
3∑

k=1

Ψk ∧ s∗(∇φk)

]
− i

[
3∑

k=1

(s∗φk)⊗ dΨk

]
−
∑
j<k

[s∗φj, s
∗φk]Ψj ∧Ψk.

Now, F 0,2

∇̂ vanishes from the zero curvature condition (3.6) on every α-surface and

dΨ0,2
k = ∂Ψk = 0. This proves that ∂ is a holomorphic structure on Ẽ.

Let ω be a symplectic structure on E. Since ∇ and −iΦ preserve ω, from the definition

of ∂ we must have that ss∗ω is also preserved by ∂. Therefore, Ẽ is endowed with a

symplectic structure compatible with ∂.
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To describe the quaternionic structure, we shall use an alternative description for the fibres

of Ẽ. Let z ∈ T and define:

Ẽz; {t ∈ Γ(Pz, E)| eq(∇⊕ Φ)t = 0}.

Now E has a quaternionic structure σ and let t ∈ Ẽz, then t satisfies(
∇− i

3∑
k=1

φkh
q
k

)
t = 0

Applying σ: (
∇+ i

3∑
k=1

φkh
q
k

)
σ(t) = 0.

Using lemma (3.4.5): (
∇− i

3∑
k=1

φkh
τ(q)
k

)
σ(t) = 0,

Thus, t ∈ Ez implies σ(t) ∈ Eτ(z). Therefore, σ : Ez → Eτ(z) is anti-holomorphic and

satisfies σ2 = −idEz .

For the converse, we just need to observe that both the symplectic structure η∗ω and

the quaternionic structure η∗σ on the bundle η∗(E) are compatible with the flat relative

connection ∇η on η∗(Ẽ). Furthermore, both structures remain compatible with D on

E = p∗(η
∗Ẽ) when they are pushed down to R5 via p and, therefore ∇ and Φ are both

compatible with the quaternionic and symplectic structures on E.
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The theorem above is phrased for the group SU(2), however minor modifications in the

real structure leads to Bogomolny pairs for other groups. In this thesis, we are interested

in the construction of Bogomolny pairs for the group SU(2) only.

3.5 The bundles L(a,b,c)

To illustrate the construction of the previous section we shall find the explicit transition

functions for the bundles on T that correspond to a trivial U(1) Bogomolny pair

corresponding to the following data: E = R5 × C, ∇ = d and Φ = (−ia,−ib,−ic),

where a, b, c are real numbers, not all vanishing.

Let L̃ be the trivial complex line bundle on T. From theorem (3.4.6) we can endow L̃

with a holomorphic structure ∂ given by:

∂(s) =
∂s

∂λ
+ Ω(s),

where Ω =
∑3

j=1−iφjΨj .

Let l be a smooth trivialisation for L̃, i.e. l is a non-vanishing complex function on T, a

local section s = fl is holomorphic if and only if ∂(fl) = 0. But this means that:

∂f

∂µ
= 0

and

∂f

∂λ
= fβ,
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where Ω = βdλ.

Suppose that f = g · exp(u), with g holomorphic, then

∂f

∂λ
=
∂u

∂λ
g.

Thus, if we want to trivialise L̃ in a given open set, we have to find a function u, regular on

this open set, such that
∂u

∂λ
= β. In this case, f = g·exp(u) will be the given trivialisation.

We shall investigate three separate cases:

• φ1 =
i

2
, φ2 = 0 and φ3 = 0.

The bundle corresponding to this data will be denoted by L( 1
2
,0,0) In this case, we

must have Ω = Ψ1 = 3µ
(1− λ2

)

(1− λλ)4
dλ. Then

β1 = 3µ
(1− λ2

)

(1− λλ)4
.

Define

ũ1 = − µ

(1− λλ)3

(
1

λ
+ λ

3
)

and observe that ũ1 is singular at∞ and at 0. Now, define g̃1 =
µ

λ
and

u1 = ũ1 + g̃1 =
µ

(1− λλ)3

(
3λ+ λλ

2
+ λ2λ

3
)
.

Then, since u1 is regular at 0 and singular at∞, f0 = exp(u1) defines a trivialisation

of L( 1
2
,0,0) in the open set U0.
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Now define ˜̃g1 =
µ

λ3
. Write g1 = −g̃1 + ˜̃g1 We have:

u1 + g =
µ

(1− λλ)3

(
1

λ3
+

λ

λ2
+
λ

2

λ

)
.

Since u1 + g1 is regular at∞ and singular at 0, f1 = exp(u1 + g1) is a trivialisation

of L( 1
2
,0,0) over U1. On the intersection U0 ∩ U1 we have f1e

g1 = f0. Then the

transition function for L( 1
2
,0,0) is given by

g1
01 = exp

(
−µ
(

1

λ
− 1

λ3

))
. (3.7)

• φ1 = 0, φ2 = i and φ3 = 0.

We shall denote the bundle corresponding to this data by L(0,1,0) and in this case we

have

Ω = Ψ2 = −6µ
λ

(1− λλ)4
dλ.

Define

u2 =
µ

(1− λλ)3

(
3λ

λ
+

1

λ2

)
.

We have that u2 is singular at 0 but regular at∞, therefore f1 = u2 trivialises L(0,1,0)

on U1. Now, for g2 = − µ

λ2
we have:

u2 + g2 = − µ

(1− λλ)3

(
3λ+ λλ

)
,

which is regular at 0, but singular at∞. Thus, f0 = u2 +g2 trivialises L(0,1,0) on U0.

On the intersection we then have f0 = eµ/λ
2
f1. Therefore, the transition function

of L(0,1,0) is:

g2
01 = exp

( µ
λ2

)
. (3.8)
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• φ1 = 0, φ2 = 0 and φ3 =
i

2

This case is similar to the first one and we shall write the transition function for this

bundle without proof:

g3
01 = exp

(
−iµ

(
1

λ
+

1

λ3

))
. (3.9)

Now we state:

Proposition 3.5.1. The bundle L(a
2
,b, c

2
) has transition function

g
(a,b,c)
01 = exp

(
−aµ

(
1

λ
− 1

λ3

)
+ b

µ

λ2
− icµ

(
1

λ
+

1

λ3

))
. (3.10)

Since the real structure in our local coordinates is given by

τ(λ, µ) = (−µ/λ4
,−1/λ),

noting that τ interchanges U0 and U1 gives us

τ(g
(a,b,c)
01 ) =

(
g

(a,b,c)
01

)−1

.

Therefore we have an anti-holomorphic isomorphism

σ : L(a
2
,b, c

2
)
∼=
(
L(a

2
,b, c

2
)

)∗
.

3.6 The monopole equations

In [MS92], the authors prove a Hitchin-Ward correspondence for Cn+1, obtaining a

system of differential equations called the Bogomolny hierarchy. In this section we shall
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use the language and the results of GHC-manifolds to give a new construction for the

same Bogomolny hierarchy equations.

In this section, let M = Cn+1 and E a rank k bundle over M . Identifies M = Sn(C2),

where C2 is the defining representation of SL(2,C), this identifyM as the space of global

holomorphic sections of the bundle O(n) on CP 1. Moreover, we shall also identify the

cotangent space at x ∈M with Sn(C2), this means we shall also write a differential form

at x as a polynomial of degree n in ξ; or in ξ′ if we are dealing in the local coordinates at

U ′.

Denote the total space of O(n) by Tn and remember that for each z ∈ Tn we can define

the α-surface Πz = {x ∈ M | x(q) = z}, where z is in the fibre at q ∈ CP 1, and denote

its tangent bundle by Kz. Now note that K∗z at x ∈ Πz can be identified with polynomials

of degree n vanishing at λ for all x, where λ is the coordinate corresponding to q ∈ CP 1.

We shall start with the following proposition:

Proposition 3.6.1. Let λ ∈ U ⊂ CP 1, define the 1-forms in M :

V λ
j = ξj−1(ξ − λ), for 1 ≤ j ≤ n.

Likewise, for λ′ ∈ U ′ ⊂ CP 1:

Ṽ λ′

j = −ξ′n−j(ξ′ − λ′) for 1 ≤ j ≤ n.

Then, (K∗(µ,λ))x = SpanC{V λ
j ; 1 ≤ j ≤ n}. Furthermore, the subbundle of K∗ whose

fibre at λ ∈ CP 1 is the subspace of K∗λ spanned by V λ
j (respect. Ṽ λ′

j ) is isomorphic to
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O(1). This means that K∗ ∼= ⊕nj=1O(1). This splitting of K∗ is the one given in lemma

(2.3.1).

Proof. We just have to observe that on the intersection U ∩U ′ we have for all j, 1 ≤ j ≤

n:

V λ
j = λṼ λ

j .

This means that the transition function, from U ′ to U , of the mentioned bundles is λ.

Therefore those bundles are isomorphic to O(1).

Remark 3.6.2. By taking the dual, we have defined an integrable distribution F on the

tangent bundle of CP 1 ×M . Now, we can endow the α-surfaces Π(µ,λ) with coordinates

χλj such that V λ
j = dχλj . Notice also that any differential 1-form with values in F∗ can

be written as a section of ⊕nj=1O(1), or more explicitly as γ1V
λ

1 + γ2V
λ

2 + γ3V
λ

3 + γ4V
λ

4 ,

where γk = Ak + λBk−1.

Let F be a holomorphic bundle on Tn trivial on holomorphic sections and η : CP 1×M →

Tn be the projection. From lemma (3.2.1), there exists a flat relative connection ∇η on

η∗F . From the proposition above,∇η can be given in terms of a matrix of 1-forms γ with

values on F∗, this is to say,∇η can be written as:

∇η(s) = dη(s) + γλ(s).

Using the remark above, we see that

∇η(s) = (
∑
k

LkV
λ
k )(s),
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where Lk(s) = ∂k − λ∂k−1 + Ak + λBk−1 = ∆k + λDk−1, with ∆k = ∂k + Ak and

Dk−1 = ∂k−1 − Bk−1, where ∂k =
∂

∂ak
with respect to the euclidean coordinates on

Cn. The condition that the curvature of ∇η vanishes implies the following system of

commutator equations:
[∆j,∆k] = 0

[Dj−1, Dk−1] = 0

[∆k, Dj−1]− [∆j, Dk−1] = 0, for 1 ≤ k ≤ n.

(3.11)

This is the same system of equations discussed in [MS92]. Solving these equations means

that we are finding the flat relative connection ∇η. Pushing ∇η forward gives us the data

for a Bogomolny pair with Higgs fields given by φk = Ak −Bk.

3.7 Bogomolny pairs as dimensional reduction of self-

dual connections in R8

We conclude this chapter by relating the concepts of Bogomolny pairs and Self-duality.

We start with a 1-hypercomplex manifoldM and a complex vector bundleE onM . Since,

there is no Higgs field for a Bogomolny pair, we can say that a connection∇ is self-dual,

or hyperholomorphic [Ver96], if∇ restricted to the α-surfaces is flat.

Remember that we have TMC = EM ⊗ H , then we have a decomposition Λ2T ∗MC =

(S2E∗M ⊗ Λ2H)⊕ (Λ2E∗M ⊗ S2H). We can state results from [Bie06] and [Ver96]:
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Proposition 3.7.1. With the notation as above, the following are equivalent:

(i) ∇ is self-dual,

(ii) F∇ lies in the component (S2E∗M ⊗ Λ2H) in the decomposition above,

(iii) F∇ is SU(2) invariant.

A connection∇ is called Yang-Mills if ∇ is a minimal of the Yang-Mills functional:

Y(∇) =

∫
M

|F∇|2volg, (3.12)

where |F∇|2 = Tr(F∇ ∧ ∗F∇) and volg is the volume form on M with respect to g.

Remark 3.7.2. It is proved in [Ver96] that if a connection ∇ satisfies conditions (i), (ii)

or (iii) of the proposition above, then it is Yang-Mills.

In order for us to explain the relations between self-dual connections and Bogomolny

pairs, we shall first recover the following result from [Bie06]:

Theorem 3.7.3. Let M be a k-hypercomplex manifold, then there exists a hypercomplex

manifold M̃ with a projection p : M̃ →M such that the pair (∇,Φ) on a bundle F on M

is a monopole if and only if p∗(∇⊕ Φ) on the bundle p∗F on M̃ is self-dual.

We shall not prove this result here, however we shall roughly see how M̃ is constructed.

First, remember the representationH ′ defined in equation (2.2). Now, consider the bundle

Z = (EM ⊗ H ′)R over M . It is then possible to define an integrable hypercomplex
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structure in the zero section of the fibration p : Z → M and this neighbourhood will be

M̃ . When M is flat, lemma (2.3.1) gives an integrable hypercomplex structure for the

total space of Z.

In our case, M = R5, E is the trivial line bundle over M and H ′ ∼= S2(C2). Then

M̃ = R5 × R3. The results above give that Bogomolny pairs in R5 are obtained from

self-duality in R8. However, it is important to remark that a self-dual connection ∇ in

R8 does not have finite energy [JT80], this is to say, Y(∇) is not finite. This makes us to

believe that the Yang-Mills-Higgs functional on R5, obtained from (3.12) by dimensional

reduction, also does not have finite energy solutions.



Chapter 3. Twistor Approach to Monopoles on R5 56



57

Chapter 4

Spectral Curves and Nahm’s equations

4.1 Overview

Our main objective now is to construct Bogomolny pairs on R5 and we take the spectral

curve approach to reach this goal. We mainly follow the methods in [HM89] and [Hit83].

We begin by defining the spectral curve in T and explain how we obtain holomorphic

bundles on T that correspond to Bogomolny pairs on R5 from the spectral curves.

Then, we impose extra conditions on the spectral curves. Namely, they are the analogue

of the conditions satisfied by a spectral curve for a monopole on R3. Furthermore, those

conditions also allow us to derive a system of Nahm’s equations and find their boundary

conditions. It turns out that there is an equivalence between solutions to our new Nahm’s

equations and the spectral curves in T.
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4.2 Spectral curves and Beauville’s theorem

Let S ⊂ O(4) be a real compact algebraic curve in the linear system |O(4k)|, this is to

say, on the open set U , S can be defined by the equation

P (ξ, η) = ηk + a1(ξ)ηk−1 + · · ·+ ak−1(ξ)η + ak(ξ) = 0, (4.1)

where aj(ξ) is a polynomial of degree 4j in ξ.

Next we shall discuss how those curves relate to holomorphic bundles on T. In this

section, we shall use L = L(a,b,c) for any non-zero (a, b, c) ∈ R3, where L(a,b,c) is defined

in (3.5.1). Then, there exists a short exact sequence of sheaves:

0→ O(L2(−4k))→ O(L2)→ OS(L2)→ 0. (4.2)

This gives a long exact sequence on cohomology:

0→ H0(T, L2(−4k))→ H0(T, L2)→ H0(S, L2) (4.3)

→ H1(T, L2(−4k))→ H1(T, L2)→ H1(S, L2) · · · (4.4)

Assume further that S is such that L2|S is trivial. This implies that H1(S, L2) = 0 and

(4.3) becomes:

0→ H0(S, L2)
δ−→ H1(T, L2(−4k))

⊗ψ−−→ H1(T, L2)→ 0, (4.5)

where ψ ∈ H0(T,O(4k)) is the section defining S.
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Choose a trivialisation s of L2 over S, this is to say, s is a non-zero element in H0(S, L2).

Define the bundle Ẽ over T by the cohomology class δ(s). This means Ẽ is given as an

extension:

0→ L(−2k)
α−→ Ẽ

β−→ L∗(2k)→ 0.

We then have the following:

Proposition 4.2.1. Ẽ satisfies the following conditions:

(i) Ẽ has a symplectic structure,

(ii) Ẽ is equipped with a quaternionic structure σ covering τ , this is to say, σ is an

anti-holomorphic linear map

σ : Ẽz → Ẽτ(z),

such that σ2 = −idẼz .

Proof. The properties (i) is straightforward from the definition of Ẽ. For (ii), let σ : L→

L∗ be the anti-holomorphic isomorphism. We can define a bundle σ(Ẽ) on T via the

extension:

0→ L∗(−2k)
α′−→ σ(Ẽ)

β′−→ L(2k)→ 0.

Now, we can extend the antiholomorphic isomorphism L ∼= L∗ to an antiholomorphic

isomorphism Ẽ ∼= σ(Ẽ).
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We shall need the following facts about these spectral curves [AHH90]

Proposition 4.2.2. The cohomology group H1(T,OT) is generated by ηi/ξj, 0 < i ≤

k − 1, 0 < j < ki.

Noticing that exp : H1(T,OT)→ Pic0(S) is an isomorphism, the bundles with vanishing

degree over S are generated by exp(ηi/ξj).

Proposition 4.2.3. The natural map H1(T,OT)→ H1(S,OS) is surjective, which means

that H1(S,OS) is generated by ηi/ξj, 0 < i ≤ k − 1, 0 < j < ki.

Similar to the remark above, if S is smooth the proposition above gives degree zero line

bundles on S. In this chapter I will assume the curves are smooth, the non-smooth case is

essentially done in [AHH90].

A bit of notation: Let π : T→ CP 1, thenOT(l) denotes the pull-back ofO(l) by π. Also,

if F is a sheaf on T we denote by F (l) the sheaf F ⊗OT(l)

Definition 4.2.4. The theta divisor Θ in S is the set of line bundles of degree g − 1 that

have a non-zero global section. The affine Jacobian Jg−1 is the set of line bundles of

degree g − 1 on S.

Theorem 4.2.5 (Beauville [Bea90]). There is a 1-1 correspondence between Jg−1\Θ and

Gl(k,C)-conjugacy classes of gl(k,C)-valued polynomials A(ξ) =
∑4

j=0 Ajξ
j such that

A(ξ) is regular for every ξ and the characteristic polynomial of A(ξ) is (4.1).
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We shall now give the idea of this construction with enough details that will be necessary

when we see the boundary conditions. In order to do this, we need the following lemma:

Lemma 4.2.6. Let E be an invertible sheaf on T whose degree is g − 1 and such that

H0(S,E) = 0, then H0(S,E(1)) ∼= Ck.

Proof. Let ξ0 ∈ CP 1 and denote by Dξ0 the divisor corresponding to the meromorphic

function (ξ − ξ0) on S, this means that as a set Dξ0 consists of the points of S in the fibre

Eξ0 , which is a set of k points, counted with multiplicities.

Now consider the exact sequence of sheaves; [GH94] page 139.

0→ OS(E)→ OS(E(1))→ ODξ0 (E(1))→ 0.

From Riemann-Roch, the hypothesis H0(S,E) = 0 implies that H1(S,E) = 0. Taking

the exact sequence on cohomology and noticing that H0(Dξ0 , E) = Ck, since Dξ0s are a

set of k points counted with multiplicity, gives the required isomorphism.

For ξ ∈ U , define a map Z : H0(Dξ, E(1)) → H0(Dξ, E(1)) given by multiplication by

η. We define the linear map

A(ξ) : H0(S,E(1))→ H0(S,E(1))

by the commutative diagram:



Chapter 4. Spectral Curves and Nahm’s equations 62

H0(S,E(1)) H0(Dξ, E(1))

H0(S,E(1)) H0(Dξ, E(1)),

A(ξ) Z

where the horizontal maps are the isomorphism given in the lemma (4.2.6).

Conversely, let A(ξ) =
∑4

j=0 Ajξ
j be a regular matricial polynomial and define a sheaf

E(1) over T via the exact sequence:

0→ O(−4)⊕kT
η−A(ξ)−−−−→ O⊕kT → E(1)→ 0. (4.6)

E(1) is supported on S and since A(ξ) has 1-dimensional kernel, E(1) is a line bundle of

degree g − 1, where g is the genus of S.

4.3 Monopoles

In this section, we shall use the following definition:

Definition 4.3.1. A spectral curve is a compact algebraic curve S in T satisfying:

(i) S is a compact algebraic real curve in the linear system O(4k), therefore it is given

by an equation of the type

P (ξ, η) = ηk + a1(ξ)ηk−1 + · · ·+ ak−1(ξ)η + ak(ξ) = 0, (4.7)

where aj(ξ) is a polynomial of degree 4j in ξ.
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(ii) S has no multiple components and L(2k − 2) is real.

(iii) The line bundle L has order 2 on S.

(iv) H0(S, Lz(2k − 3)) = 0 for z ∈ (0, 2).

Remark 4.3.2. A notice about the notation. By L in the definition above we mean any of

the distinguished line bundles L(a,b,c) described in the last chapter. Furthermore, whenever

we omit the subscript (a, b, c) we mean one of those bundles, unless explicitly stated.

Using the results from the last section, we are able to make the following definition:

Definition 4.3.3. A SU(2) Bogomolny pair (∇,Φ) on R5 is a SU(2)-monopole if the

corresponding holomorphic bundle Ẽ on T is defined via a spectral curve S satisfying the

conditions of definition (4.3.1). We say the algebraic charge of the monopole is k if the

curve S corresponding to the monopole has degree k.

We shall call the algebraic charge shortly by charge, however we must bear in mind that

we do not have yet a topological definition of charge for monopoles in R5.

Remark 4.3.4. Remember that when we constructed the bundle over T from the curve S,

we chose a trivialisation s of L2 over S, which is a complex valued holomorphic function

on S, since L2 is a trivial line bundle. Now we can normalise s into s̃ = s
|s| and s and s̃

determine the same bundle Ẽ on T. Thus, the trivialisation s of L2 on S can be chosen to

satisfy |s| = 1, this means that the spectral curve determines the monopole up to a U(1)

factor.
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Example 4.3.5. A spectral curve S for k = 1 is given by the equation η + a1(ξ) = 0,

where a1 is a polynomial of degree 4. Imposing the condition that S is real gives a1(ξ) =

ξ
4
a1(−1

ξ
), but this condition says that S is a real section P of T over CP 1. Moreover,

conditions (ii) and (iii) are clearly satisfied, remember that L is trivial on real sections of

T since it corresponds to a bogomolny pair on R5. For condition (iv), notice that on P ,

we have Lz(2k− 3) = Lz(−1) ∼= O(−1). Then, we conclude that the spectral curves for

charge 1 monopoles correspond to real sections of T.

Now we can state:

Proposition 4.3.6. The moduli space of charge 1 monopoles in R5 isM1 = R5 × S1.

The circle S1 factor comes from the freedom of choice of the trivialisation of L2 over S.

Notice also that this result holds for spectral curves S with respect to any bundle L(a,b,c).

We can also conjecture the dimension of the moduli space of higher charges. Namely, the

spectral curve is determined by (k + 1)(2k + 1) − 1 parameters, however it must satisfy

some constraints also. The number of constraints are counted by the genus of the curve.

LetMk be the moduli space of charge k. IfMk is non empty, we must have:

dimMk = (k + 1)(2k + 1)− 1− (k − 1)(2k − 1) + 1 = 6k.

Observe that we added 1 because of the U(1) freedom.

Remark 4.3.7. Our main motivation to make this definition is that the conditions in

(4.3.1) are similar to the conditions for the spectral curves for monopoles in R3 [Hit83].
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Furthermore, condition (iv) above allows us to define a flow of endomorphisms for a

bundle over the interval (0, 2) whose fibre at z ∈ (0, 2) is H0(S, Lz(2k − 2)).

4.4 From linear flows to Nahm’s equations

Also, in the last section, we saw that in order for us to construct the monopole data we

need a antiholomorphic isomorphism L = L∗ on S and this implies that L2 is trivial

on S. This condition and the condition (iii) of (4.3.1) above implies that the element

g(a,b,c) ∈ H1(S,O) is a lattice point in H1(S,Z). Thus, the straight line between 0 and

g(a,b,c) defines a morphism, which we will refer as a flow:

h : S1 → H1(S,O)/H1(S,Z) ∼= Pic0(S)

exp(iπz) 7→ exp(izg(a,b,c)), z ∈ [0, 2].

Let Pic0(S) be the group of degree 0 line bundles on S and Jg−1(S), the Jacobian of

line bundles of degree g − 1, where g is the genus of S. We can identify Pic0(S) with

Jg−1(S) by doing F → F (2k − 3), since deg(F (2k − 3)) = k(2k − 3) = 2k2 − 3k =

(k − 1)(2k − 1) − 1. Now, h can be considered a flow in the Jacobian and the condition

(iv) in (4.3.1) says that, for z ∈ (0, 2), h(z) is not in the theta divisor, the line bundles in

Jg−1(S) with a non-vanishing holomorphic section.

These properties will allow us to derive the Nahm’s equations satisfying the appropriate

boundary conditions. However, the boundary conditions will be treated in the next
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section.

Lemma 4.4.1. For z ∈ (0, 2) we have dimH0(S, Lz(2k − 2)) = k.

Proof. To prove the lemma above, we shall compactify T to an algebraic surface T̃

defined as the total space of the CP 1-bundle associated to O(4)1, this is to say

T̃ = P(O(4)⊕O) = P(O(2)⊕O(−2)).

We shall now define some distinctive divisor classes and their intersection number on

T̃. Let E0 be the image of the section (0, 1) of O(4) ⊕ O. Let σ be a section of O(4)

and notice that away from the zeros of σ, (σ, 0) gives a curve in T̃, now, let E∞ be the

projective closure of this curve (E∞ does not depend on the choice σ). Finally, let C be

any fibre of the bundle map π : T̃ → CP 1 and notice that the bundle associated to the

divisor C is π∗(O(1)). We then have the intersection numbers ([GH94] pages 517-518):

E0 · E0 = 4,

C · C = 0,

E0 · C = 1.

Furthermore, the divisor class of the canonical bundle of T̃ is given by ([GH94] page 519)

K = −2E0 + 2C.

Last but not least, we shall note that the curve S in T̃ is defined by a divisor of a section

ψ̃ ∈ H0(T̃, kE0).
1this surface is also know as the n-Hirzebruch surface.
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Now the following sequence is exact2

0→ OT̃([lC − kE0])→ OT̃([lC])→ OS([lC])→ 0.

Therefore, the Euler characteristics of the bundles above must satisfy

χ([lC]|S) = χ([lC])− χ([lC − kE0]).

We can now use the Riemann-Roch theorem for T̃ (as in [GH94] page 472) and the

relations above to compute the Euler characteristics:

χ([lC]|S) =
1

2
([lC] · [lC]− [lC] ·K)− 1

2
([lC − kE0] · [lC − kE0]− [lC − E0] ·K)

=
1

2
(2lC · E0 + 2lkC · E0 − k2E0 · E0 − 2lC · E0 + 2kE0 · E0 − 2kE0 · C)

=lk − 2k2 + 3k

=k(l − 2k) + 3k.

Reminding that [lC] = O(l) and using the invariance under deformation, for the line

bundle Lz(a,b,c), with z ∈ (0, 2), we have

dimH0(S, Lz(a,b,c)(l))− dimH1(S, Lz(a,b,c)(l)) = k(l − 2k) + 3k. (4.8)

In particular, for l = 2k − 3, dimH0(S, Lz(a,b,c)(2k − 3)) = dimH1(S, Lz(a,b,c)(2k − 3)).

Thus, from condition (iv) in (4.3.1), we have

H1((S, Lz(a,b,c)(2k − 3)) = 0, for z ∈ (0, 2).

2Let D be a divisor, then [D] denotes the line bundle defined by D.
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Since S does not have multiple components we can find a fibre F of T that intersects S

in k distinct points. Therefore, we have the exact sequence

0→ OS(Lz(a,b,c)(l))→ OS(Lz(a,b,c)(l + 1))→ OS∩F (Lz(a,b,c)(l + 1))→ 0. (4.9)

The exact sequence on cohomology for this sequence tells us that

H1(S, Lz(a,b,c)(l))→ H1(S, Lz(a,b,c)(l + 1)),

is surjective, since H1(S ∩ F,Lz(a,b,c)(l + 1)) = 0. Put l = 2k − 3, then (4.9) says that

H1(S∩F,Lz(a,b,c)(2k−2)) = 0. Using (4.8) we conclude thatH0(S∩F,Lz(a,b,c)(2k−2)) =

k and we have proved the lemma.

We can now define a bundle V on C in the following way: Let W be the bundle over

C× S whose fibre at (z, p) is Lz(2k − 2)p and P1 : C × S → C be the projection in the

first coordinate, define V = (P1)∗W .3 From the proposition above, we know that V has

rank k and, moreover, the fibre at z ∈ (0, 2) is Vz = H0(S, Lz(2k − 2)).

Now we shall state the following lemma whose proof is similar to the proof of proposition

(4.5) in [Hit83].

Lemma 4.4.2. If l < 4k, then any section s ∈ H0(S,O(l)) can be written uniquely as:

s =

[l/4]∑
j=0

ηjπ∗(cj),

where cj ∈ H0(CP 1, l − 4j).

3V is a locally free sheaf since the direct image sheaf (P1)∗W over C is torsion free.
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Observe that this lemma implies that at z = 0 the bundle Lz(2k − 2) has more sections

than for z ∈ (0, 2). This means that the fibre V0 is not just H0(S, Lz(2k − 2)) and we

shall treat this case later. In this section we shall consider the behaviour of the bundle V

on the interval (0, 2) and the endpoints will be studied in the next section.

From Beauville’s theorem we have that, for z ∈ (0, 2), each line bundle Lz(2k −

3) corresponds to a conjugacy class of a regular matricial polynomial A(ξ, z) =∑j=4
j=0 Aj(z)ξj . Moreover, A(ξ, z) can be seen, from its construction, as a linear map

A(ξ, z) : H0(S, Lz(2k − 2)) → H0(S, Lz(2k − 2)), this is to say, A(ξ, z) : Vz → Vz.

However, we want to define actual matrices, and so far we only have an equivalence class

of matrices, in other words, we have endomorphisms of Vz. The objective now is to use

the endomorphisms Aj(z) to define a connection for V on the interval (0, 2). Then we

shall trivialise V by parallel constant section with respect to this connection.

From now on, we shall consider the bundle L to be given by the transition function

exp(η/ξ2). The corresponding Nahm’s equations for the other bundles will be stated

without proof, since it is done by performing the same calculations.

Let s(z) be a local holomorphic section of V , we can write it as a pair of holomorphic

functions f0 : S ∩ U0 × C∗ → Ck and f1 : S ∩ U1 × C∗ → Ck satisfying

f0 = exp(zη/ξ2)ξ2k−2f1 on U0 ∩ U1. We now follow the construction on [Hit83] page

169:
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Differentiating with respect to z:

∂f0

∂z
=

η

ξ2
ezη/ξ

2

ξ2k−2f1 + ezη/ξ
2

ξ2k−2∂f1

∂z
.

From the definition of A, we have:

(η − A0 − A1ξ − A2ξ
2 − A3ξ

3 − A4ξ
4)s = 0,

or

η

ξ2
s = (A0ξ

−2 + A1ξ
−1 +

1

2
A2)s+ (

1

2
A2 + A3ξ + A4ξ

2)s.

This implies that on U ∩ U ′ we have

∂f0

∂z
− (

1

2
A2 + A3ξ + A4ξ

2)s

=
∂f0

∂z
− η

ξ2
f0 + (A0ξ

−2 + A1ξ
−1 +

1

2
A2)s

=ezη/ξ
2

ξ2k−2∂f1

∂z
+ ezη/ξ

2

ξ2k−2(A0ξ
−2 + A1ξ

−1 +
1

2
A2)s

=ezη/ξ
2

ξ2k−2

[
∂f1

∂z
+ (A0ξ

−2 + A1ξ
−1 +

1

2
A2)s

]
.

The lines above tell us that we can define a connection on V , over (0, 2), whose covariant

derivative on U is given by:

∇zs =
∂f0

∂z
− (

1

2
A2 + A3ξ + A4ξ

2)s.

We shall use this to define a frame (s1, · · · , sk) of covariant sections for V .

Let A+ = 1
2
A2 + A3ξ + A4ξ

2, then we can write

∂s

∂z
− A+s = 0.
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Taking the derivative of

(η − A)s = 0,

with respect to z, we have

(η − A)
∂s

∂z
− ∂A

∂z
s = 0.

Thus,

−(η − A)A+s−
∂A

∂z
s = −ηA+s+ AA+s−

∂A

∂z
s = 0,

hence (
[A,A+]− ∂A

∂z

)
s = 0.

Observe that this equation is independent of η.

Now let F be a fibre of T such that F ∩ S = {x1, · · · , xk} with the xj all distinct.

Therefore, we have an exact sequence

0→ OSLz(2k − 3)→ OSLz(2k − 2)→ OF∩S → 0.

Using the fact that H0(S, Lz(2k − 2)) = H1(S, Lz(2k − 2)) = 0, the exact cohomology

sequence says that the restriction map H0(S, Lz(2k − 2)) → H0(F ∩ S,O) is an

isomorphism. Thus, we can find a frame s1, · · · , sk for H0(S, Lz(2k − 2)) such that

si(xj) = δij .

We then have that B = [A,A+]− ∂A
∂z

satisfies
∑

j Bijsj(xl) = 0 for all i, l. But this says

that Bij = 0. Since the condition on F is generic, we must have Bij = 0 for all the fibres.
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Thus, we must have

∂A

∂z
= [A,A+].

We therefore have the Nahm’s equations

Ȧ0 =
1

2
[A0, A2]

Ȧ1 = [A0, A3] +
1

2
[A1, A2]

Ȧ2 = [A1, A3] + [A0, A4]

Ȧ3 = [A1, A4] +
1

2
[A2, A3]

Ȧ4 =
1

2
[A2, A4],

for z ∈ (0, 2) and Ȧj =
∂Aj
∂z

.

Let A0 = T1 + iT2, A1 = T3 + iT4, A2 = 2iT5, A3 = T3− iT4 and A4 = −T1 + iT2, then

the equations above become

Ṫ1 = [T5, T2]

Ṫ2 = [T1, T5]

Ṫ3 = [T1, T3] + [T2, T4] + [T5, T4]

Ṫ4 = −[T1, T4] + [T2, T3]− [T5, T3]

Ṫ5 = [T1, T2] + [T4, T3].

Now we can state
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Proposition 4.4.3. Let S be a spectral curve in T satisfying the conditions in (4.3.1)

for the line bundle L(0,1,0), the line bundle whose transition function is eη/ξ2 on T. If

A(ξ, z) = (T1 + iT2) + (T3 + iT4)ξ + 2iT5ξ
2 + (T3 − iT4)ξ3 + (−T1 + iT2)ξ4, then the

Tjs satisfy the equations above. Moreover, relative to the bundle L(a,b,c), the bundle on T

whose transition function is e(a(η/ξ−η/ξ3)+bη/ξ2+ci(η/ξ+η/ξ3)), the Tjs. must satisfy:

Ṫ1 = −a[T2, T4] + b[T5, T2]− c[T2, T3]

Ṫ2 = a[T1, T4] + b[T1, T5] + c[T1, T3]

Ṫ3 = −2a[T2, T5] + b([T1, T3] + [T2, T4] + [T5, T4])− c(2[T1, T5] + 2[T1, T2] + [T4, T3])

Ṫ4 = a(2[T1, T5]− 2[T1, T2]− [T4, T3]) + b(−[T1, T4] + [T2, T3]− [T5, T3])− 2c[T2, T5]

Ṫ5 = a([T3, T5] + [T1, T4] + [T2, T3]) + b([T1, T2] + [T4, T3])+

+ c(−[T4, T5] + [T1, T3] + [T2, T4]),

for z ∈ (0, 2).

Before proceeding to the next section, we shall give an alternative way of describing the

endomorphisms Aj(z) that will be useful later. Let S be a spectral curve and consider the

map:

m : H0(S,O(4))⊗H0(S, Lz(2k − 2))→ H0(S, Lz(2k + 2)), (4.10)

and denote by Kz its kernel at z, then we have the following proposition:
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Proposition 4.4.4. The map h : Kz → Vz given by

h(η ⊗ t0 + 1⊗ s0 + ξ ⊗ s1 + ξ2 ⊗ s2 + ξ3 ⊗ s3 + ξ4 ⊗ s4) 7→ t0

is an isomorphism for every z ∈ (0, 2).

Proof. We start with an embedding of T as a quartic CP 5:

{(z0, z1, z2, z3, z4, z5)| z0 = η, z1 = 1, z2 = ξ1, z3 = ξ2, z4 = ξ3, z5 = ξ4}.

Now consider the Euler sequence on CP 5:

0→ Ω1
CP 5(H)→ C6 → H → 0,

where H is the hyperplane bundle on CP 5, Ω1
CP 5 is the cotangent bundle of CP 5 and

C6 ∼= H0(S,O(4)) is the trivial bundle. Restrict this to S and twist with Lz(2k − 2) to

obtain:

0→ Ω1
CP 5Lz(2k + 2)→ H0(S,O(4))⊗ Lz(2k − 2)→ Lz(2k + 2)→ 0.

The long exact sequence on cohomology of this sequence gives:

0→ H0(S,Ω1
CP 5Lz(2k + 2))→

H0(S,O(2))⊗H0(S, Lz(2k − 2))
m−→ H0(S, Lz(2k + 2))→ H1(S,Ω1

CP 5Lz(2k + 2)) · · ·

We shall next identify the kernel of m and prove that it is onto.

First we shall trivialise the bundle Ω1
CP 5 over T. Consider the open set complement to the

line z1 6= 0 in T, we can trivialise it by:

ω1 = d

(
z0

z1

)
; ω2 = d

(
z2

z1

)
; ω3 = d

(
z3

z1

)
; ω4 = d

(
z4

z1

)
; ω5 = d

(
z5

z1

)
.
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On the open set z5 6= 0:

ω̃1 = d

(
z0

z5

)
; ω̃2 = d

(
z2

z5

)
; ω̃3 = d

(
z3

z5

)
; ω̃4 = d

(
z4

z5

)
; ω̃5 = d

(
z5

z5

)
.

Then we have on the intersection:

ω̃1 = d

(
z0

z1

· z1

z5

)
=ω1ξ

−4 + ηω̃5,

ω̃2 = d

(
z2

z1

· z1

z5

)
=ω2ξ

−4 + ξω̃5,

ω̃3 = d

(
z3

z1

· z1

z5

)
=ω3ξ

−4 + ξ2ω̃5,

ω̃4 = d

(
z4

z1

· z1

z5

)
=ω4ξ

−4 + ξ3ω̃5,

ω̃5 =− ξ−8ω5.

This means that Ω1
CP 1 over T has transition function:

ξ−4 0 0 0 0

0 ξ−4 0 0 0

0 0 ξ−4 0 0

0 0 0 ξ−4 0

−ηξ−8 −ξ−7 −ξ−6 −ξ−5 −ξ−8





ω1

ω2

ω3

ω4

ω5


=



ω̃1

ω̃2

ω̃3

ω̃4

ω̃5


.

Now we can consider a map of sheaves on T given by the composition:

f : Ω1
CP 5 → Ω1

T → Ω1
F ,

where F is a fibre of T and notice that Ω1
F
∼= O(−4) and f is onto, since it is a projection.
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Then, we must have that ker(f) is the bundle on T whose transition function is given by:

ξ−4 0 0 0

0 ξ−4 0 0

0 0 ξ−4 0

−ξ−7 −ξ−6 −ξ−5 −ξ−8


.

But this is isomorphic to the pull back on T of the bundle O(−5)⊕4 on CP 1. Then

ker(f) ∼= O(−5)⊕4.

This gives an exact sequence:

0→ O(−5)⊕4 → Ω1
CP 1

f−→ O(−4)→ 0.

Tensoring it by Lz(2k + 2) and restricting to S we have an exact sequence of sheaves on

S:

0→ Lz(2k − 3)⊕4 → Ω1
CP 1Lz(2k + 2)

f−→ Lz(2k − 2)→ 0.

Taking the long exact sequence in cohomology for this sequence gives us:

0→H0(S, Lz(2k − 3)⊕4)→ H0(S,Ω1
CP 1Lz(2k + 2))

f−→ H0(S, Lz(2k − 2))→

→H1(S, Lz(2k − 3)⊕4)→ H1(S,Ω1
CP 1Lz(2k + 2))→ H1(S, Lz(2k − 2)) · · ·

Remember that we proved that:

H1(S, Lz(2k − 3)) = H0(S, Lz(2k − 3)) = H1(S, Lz(2k − 2)) = 0.
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Then, we can see that f is the map h from the proposition. Moreover,

f : H0(S,Ω1
CP 1Lz(2k + 2))→ H0(S, Lz(2k − 2))

is an isomorphism and H1(S,Ω1
CP 1Lz(2k + 2)) = 0. This implies that m is onto and its

kernel is isomorphic to H0(S, Lz(2k − 2)) via f .

An immediate consequence of this proposition is that there exist endomorphisms Aj(z) ∈

EndVz such that :

(η − A0 − A1ξ − A2ξ
2 − A3ξ

3 − A4ξ
4)s = 0.

The uniqueness of Beauville’s theorem tells us that these endomorphism are the same

ones obtained via Beauville’s theorem.

4.5 Boundary conditions for the Nahm’s equations

The results in this section correspond to the Nahm’s equations relative to the line bundle

whose transition function is eη/ξ2 .

Definition 4.5.1. Let p(ξ, η) be the polynomial defining the spectral curve S, this is to

say, S = {(ξ, η)| p(ξ, η) = 0}, we shall use the following notation in this section:

a) Define M = C× S and P : M → C is the projection in the first coordinate.
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b) M̃ = {(z, ξ, η) ∈ C × T| p̃(z, ξ, η) = 0}, where p̃(z, ξ, η) = zkp
(
ξ,
η

z

)
and P̃ :

M̃ → C is the projection in the first coordinate.

c) For fixed z ∈ C we define the curve zS, it is S shrunk by a factor z, to be the curve

defined by p̃(z, ξ, η).

d) Ṽ = P̃∗(X|M̃), where X is the bundle on T whose fibre at (z, η, ξ) is Lz(2k − 2)(η,ξ).

e) Define L over C× T to be the bundle such that L{z}×T = Lz.

f) Similarly, we have X = P∗(L(2k + 2)) and X̃ = P̃∗(L(2k + 2))

g) Bundles on T, their lifts to C × T and their restrictions to M and M̃ will be denoted

by the same letter.

Remark 4.5.2. i) If we denote the zero section of O(4) by F , we then notice that

P̃−1(0) = F (k−1), the (k − 1)th formal neighbourhood of F in the total space of

O(4).

ii) V = P∗(X|M) is the bundle defined in the previous section.

4.5.1 The fibre of V at 0

Lemma 4.5.3. Define a map ρ : L(k)|M̃ → L(k)M in the following way: Let s be a

section of L(k) on M̃ such that on the trivialisation Ui it is represented by f̃i(z, η, ξ).
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Define ρ(s) to be the section of L(k) on M represented by fi(z, η, ξ) = f̃i(z, zη, ξ).

Then, ρ is a well defined map of bundles and it is an isomorphism for z 6= 0.

Proof. We just need to verify that f0 = exp(zη/ξ2)f1, but this is true since f̃0 =

ξk exp(η/ξ2)f̃1. It is immediate that ρ is an isomorphism.

Corollary 4.5.4. Taking the direct images in the lemma above, there is a map of sheaves

over C

ρ : Ṽ → V

which is an isomorphism for z 6= 0.

Consider now the evaluation map:

ẽvz : Ṽz → H0(P̃−1(z), L(2k − 2)).

It is an isomorphism for z 6= 0.

For the next result, we shall use the following notation: Γm ⊂ O(2m) consist of sections

s of the form s =
∑m

j=0 ajξ
2j and denote by L ⊗ Γ ⊂ L(2m) the set of sections of the

form
∑

jk αj ⊗ sk, with αj a section of L and sk ∈ Γm.

The first result in this section is:

Proposition 4.5.5. Let V0 ⊂ H0(S,O(2k − 2)) be the fibre of V at z = 0 and Γk−1 ⊂

H0(CP 1,O(2k− 2)) be the sections of the form p(ξ) = c2k−2ξ
2k−2 + c2k−4ξ

2k−4 + · · ·+

c2ξ
2 + c0. Then, V0

∼= Γk−1.
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An extension of a section ofO(2k−2) to a section ofX to themth formal neighbourhood

consists of the following data:

s = s0 + zs1 + · · ·+ zmsm, si ∈ H0(U0,O),

s′ = s′0 + zs′1 + · · ·+ zms′m, s′i ∈ H0(U1,O),

such that s = ξ2k−2(eη/x
2
i )s′modzm+1 on U0 ∩ U1. From lemma (4.5.3) we have that we

can change z to zη near z = 0. This means the extension above can be written as:

p = p0 + zp1 + · · ·+ zmpm, pi ∈ H0(U0,O(2k − 2− 4i)),

p′ = p′0 + zp′1 + · · ·+ zmp′m, p′i ∈ H0(U1,O(2k − 2− 4i)),

such that p = (eη/x
2
i )p′modηm+1. We can now state and prove the following:

Lemma 4.5.6. Every section in L ⊗ Γm on Z ⊂ T can be extended uniquely to the mth

formal neighbourhood, but no section can be extended to the (m+ 1)th neighbourhood.

Proof. A section of L(2m) on the mth neighbourhood consists of local section pi ∈

H0(U0,O(2m− 4i)) and p′i ∈ H0(U1,O(2m− 4i)), such that

p0 + ηp1 + · · ·+ ηmpm = eη/ξ
2

(p′0 + ηp′1 + · · ·+ ηmp′m)modηm+1.

We are therefore looking for functions pi on U0 and p′i on U1 such that on the intersection

U0 ∩ U1 we have:
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ξ2m 0 0 . . . 0

ξ2m−2 ξ2m−4 0 . . . 0

1
2
ξ2m−4 ξ2m−6 ξ2m−8 . . . 0

...
...

...
...

...

1
m!

1
(m−1)!

ξ−2 · · · · · · ξ−2m





p′0

p′1

...

...

p′m


=



p0

p1

...

...

pm


. (4.11)

Now for l even and such that 0 ≤ l ≤ 2m,



p′0

p′1

...

...

p′m



=



c0ξ
−2m+l

c1ξ
−2m+l+2

...

c( 2m−l
2

)

...

0



(4.12)

solves (4.11) if

( 2m−l
2

)∑
i=0

ci
(n− i)!

= 0, (4.13)

where
(
l

2
+ 1

)
≤ n ≤ m.

From [Hit83] page 173, there exists a unique solution of (4.13), and for this solution we

have c0 and c( 2m−l
2

) are both non-vanishing. This implies that (4.12) trivialises a rank-

m+ 1 bundle Em → CP 1 whose transition function is given by the matrix in (4.11).
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From the exact sequence

0→ Em−1(−2)→ Em
p0−→ O(2m)→ 0, (4.14)

we have the following long exact sequence in cohomology:

0→ H0(CP 1, Em−1(−2))→ H0(CP 1, Em)
p0−→ H0(CP 1,O(2m))→ (4.15)

→ H1(CP 1, Em−1(−2))→ . . . (4.16)

We can deduce from general sheaf cohomology theory that H1(CP 1, Em−1(−2)) = 0.

Therefore H0(CP 1, Em)
p0−→ H0(CP 1,O(2m)) is injective. It remains to find the image

of the map p0, in cohomology, above.

Since l is even, we can write l = 2j, for 0 ≤ j ≤ m. Define vj by the equation (4.12) and

notice that {v0, · · · , vm} is a global frame for Em. Thus, for α ∈ H0(CP 1, Em), we can

write α =
∑m

j=0 αjvj and we have:

p0(α) =
m∑
j=0

αjξ
2j ∈ H0(CP 1,O(2m)). (4.17)

Using our notation, this means that the image of p0 is Γm. This implies that sections of the

form (4.17) can be extended uniquely to Em and hence to the mth formal neighbourhood.

An extension of sections given by (4.17) on the (m + 1)th neighbourhood is given by the

pull-back to Em+1(−2) in the exact sequence:

0→ Em(−4)→ Em+1(−2)
p0−→ O(2m)→ 0. (4.18)

However, in this case H0(CP 1, Em+1(−2)) = 0 and no extension exists.
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As a concern of notation, if s is a section in Γm, its formal extension in L(m)(2m) will be

denoted by s.

Before we proceed we shall state the following lemma, whose proof is similar to the proof

of lemma (5.2) in [Hit83]:

Lemma 4.5.7. Every element c ∈ H1(S,O(2k− 2)) can be written uniquely in the form:

c =
2k−2∑

i=[k+1/2]

ηiπ∗ci,

where ci ∈ H1(CP 1, O(2k − 2− 4i)).

Proof of proposition (4.5.5). Let us start with the exact sequence:

0→ O(−2m− 4)→ L(m+1)(2m)→ L(m)(2m)→ 0.

Form its exact sequence in cohomology we have a map

δ : H0(CP 1, L(m)(2m))→ H1(CP 1, O(−2m− 4)).

Since H0(CP 1, L(m+1)(2m)) = 0 and H0(CP 1, L(m)(2m)) = Γm from lemma (4.5.6),

we can define an injective map

h : Γm → H1(CP 1,O(−2m− 4)),

defined by hs = δs.

Let s ∈ Γk−1 and take the extension of π∗s ∈ H0(S,O(2k − 2)) to the order k − 1, as in

lemma (4.5.6), and consider it to be a section of Lz(2k − 2) over C× S. The obstruction
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to extending to the order k is the element

c = ηkπ∗hs ∈ H1(S,O(2k − 2)).

Now, since S satisfies ηk + a1η
k−1 + · · ·+ a0 = 0, we must have

c = −
∑

aiη
k−iπ∗hs.

Then we can write the above as:

c = −
∑

ηk−jπ∗hj,

where hj ∈ H1(CP 1,O(4j − 2k − 2)) and also each hj must be in the image of h.

Therefore, for each j we can find a unique section si ∈ Γk−1−2j such that ηk−jπ∗hj is the

obstruction to extend π∗sj ∈ H0(S,O(2k− 2− 4j)) to the order (k− 2j) as a section of

Lz(2k− 2− 4j). This is the obstruction to extending z2jηjπ∗sj from the order (k− 1) to

the order k. Therefore, if s denotes a formal extension, we have that

s1 = s− z2ηs1 − z4η2s2 − · · · − z2lηlsl

extends to the order k in z. Now, we can consider an extension of s1 whose obstruction

is c′ ∈ H1(S,O(2k − 2)). We can proceed as above we shall add modifications of order

z3. Then, every coefficient of zn requires a finite number of modifications and we have a

power series in z. Now we can use a result in [Har97] (proposition II 9.6) to prove that a

convergent extension exists. We have then proved that π∗(Γk−1) ⊂ V0. Since both vector

spaces have dimension k, we have proved the proposition.
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Remark 4.5.8. An important remark here is that since Γm is not a natural irreducible

representation of SL(2,C), the maps in cohomology in the proof above are interpreted

only as maps of abelian groups and not as maps between irreducible representations.

Therefore, the fibre of V at z = 0 does not have a natural SL(2,C) representation

structure. This is an important difference between the R3 case.

4.5.2 The behaviour of the matrix A at 0

After having established the fibre of V at 0, we can move toward the description of the

behaviour of the matrix A(z, ξ) at 0. Namely, we shall prove that A(z, ξ) has a pole at 0.

As before, we shall work with M̃ instead of M . Remember that in corollary (4.5.4) we

defined a map ρ : Ṽ → V , which is an isomorphism away from z = 0. Also, remember

that X = P∗(L(2k + 2)) and X̃ = P̃∗(L(2k + 2)). Then, we can state the following

lemma:

Lemma 4.5.9. The diagram:

Ṽ X̃

V X

F̃

ρ ρ

F

is commutative if either F = zη and F̃ = η or F = F̃ = A(ξ, η).

The proof of this lemma is direct from lemma (4.5.3) and corollary (4.5.4). We now have

the following:
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Corollary 4.5.10. Define B(ξ, η) = zA(ξη), then (η − A(ξ, η))V = 0 if and only if

(η −B(ξ, η))Ṽ = 0.

We shall now study the behaviour of B at z = 0 and use this corollary to deduce the

corresponding behaviour of A. To start with this, we shall use Beauville’s construction of

B.

We start with the commutative diagram:

Ṽz H0(zS ∩ Tq, L(2k − 2)) ∼= Ck−1

Ṽz H0(zS ∩ Tq, L(2k − 2)) ∼= Ck−1,

restrz,q

B(ξ,η) ×η

restrz,q

where q ∈ CP 1, Tq is the fibre of T over q and

restrz,q : H0(zS, L(2k − 2))→ H0(zS ∩ Tq, L(2k − 2))

is the natural restriction map. Moreover, as in the construction of A, the cohomologies in

the diagram above can be interpreted as polynomials in η of degree k − 1.

Observe that restrz,q is an isomorphism for all z 6= 0 and its limit restr0,q is also an

isomorphism. Now, let ẽ0, · · · , ẽk−1 be a local frame for Ṽ , in a neighbourhood of 0, such

that restr0,q(ẽj) = ηj .

Then B is well-defined and continuous at z = 0 and, if ξ0 correspond to the point q ∈

CP 1,

B(0, ξ0)(ẽj) = ẽk+1.
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Since B = zA, we must have that A has simple poles at z = 0 and the next objective will

be the description of the residues of A at 0.

Now we shall use the alternative description of A given in (4.4.4) to find the residues of

A. This means we shall investigate the behaviour of the kernel Kz of the product map

m : H0(S,O(4))⊗H0(S, Lz(2k − 2))→ H0(S, Lz(2k + 2))

as z → 0. We start by noticing that, under the embedding T ⊂ CP 5,

finding K0 is equivalent to finding which sections of H0(S,Ω1
CP 5(2k + 2)) extend to

H0(S, LzΩ1
CP 5(2k + 2)). Since dimKz = k for z ∈ (0, 2), we should have a k-

dimensional subspace K0 that extends. Next, we shall describe K0.

Let {1, ξ2, · · · , ξ2k} be a basis for Γk−1 and define the linear operators B0, B1 and B2 in

Γk−1 by the the matrices:

X0 =



0 0 0 . . . 0

−(k − 1) 0 0 . . . 0

0 −(k − 2) 0 . . . 0

...
...

...
...

...

0 · · · · · · −1 0


, (4.19)
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X2 =



k 0 0 . . . 0

0 (k − 2) 0 . . . 0

0 0 (k − 4) . . . 0

...
...

...
...

...

0 · · · · · · 0 −k


and (4.20)

X4 =



0 1 0 . . . 0

0 0 2 . . . 0

...
...

...
...

...

0 · · · · · · 0 (k − 1)

0 · · · · · · 0 0


(4.21)

we can now state the following result:

Proposition 4.5.11. Every element s ∈ K0 can be written uniquely in the form

s = π∗(1⊗X0ŝ+ ξ2 ⊗X2ŝ+ ξ4 ⊗X4ŝ),

where ŝ ∈ Γk−1.

Proof. The idea of the proof of this proposition is to work on the (k − 1)th order

neighbourhood first. We shall find a basis for the fibre of the bundle V at 0 in the formal

neighbourhood in the language of the lemma (4.5.6), this is to say, we have to solve (4.11).
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In what follows, we shall find

P ′j = p′j0 + p′j1 (zη) + · · ·+ p′j(k−1)(zη)(k−1)

and

P j = pj0 + pj1(zη) + · · ·+ pj(k−1)(zη)(k−1)

satisfying (4.11), for 0 ≤ j ≤ (k − 1).

In what follows we shall use m = k − 1 for simplicity.

Fix j and and define on the open set U0:

p′jl =


(−1)l

(m− l)!
(m− l − j)!

(m− j)!
m!

1

l!
ξ−2(m−j−l) for 0 ≤ l ≤ (m− j),

0 otherwise.

(4.22)

And on U1:

pjl =


(m− l)!
(j − l)!

j!

m!

1

l!
ξ2(j−l) for 0 ≤ l ≤ j,

0 otherwise.

(4.23)

We now need to check this data satisfies (4.11). Let

βb =

(
1

b!
ξ(2m−2b),

1

(b− 1)!
ξ(2m−2b−2), · · · , ξ(2m−4b), 0, · · · , 0

)

be the bth line of the matrix (4.11). We need to prove that

βb · P ′j = pjb.
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βb · P j =

min{b,m−j}∑
l=0

(−1)l
(m− l)!(m− j)!

(b− l)!(m− j − l)!m!l!
ξ(2j−2b)

=
(m− b)!
m!

min{b,m−j}∑
l=0

(−1)l
(
m− l
b− l

)(
m− j
l

) ξ(2j−2b)

=
(m− b)!
m!

(
j

b

)
ξ(2j−2b)

=
(m− b)!j!

(j − b)!b!m!
ξ(2j−2b) = pjb.

Where we used the identity:

min{b,m−j}∑
l=0

(−1)l
(
m− j
l

)(
m− l
b− l

)
=

(
j

b

)
.

Then, we have that P j gives a basis for V0 in the (k − 1)th neighbourhood.

Now we shall describe the kernel of the multiplication map

m : H0(F (k−1),O(4))⊗H0(F (k−1), L(2k − 2))→ H0(F (k−1), L(2k + 2)).

First, notice that we have H0(F (k−1),O(4)) ∼= H0(T,O(4)) = SpanC{1, ξ, ξ2, ξ3, ξ4, η}.

Now, a direct computation shows that the kernel of m is generated by the elements of the

form:

ωzj = [zη ⊗ P j]− (m− j)[1⊗ P (j+1)] + (m− 2j)[ξ2 ⊗ P j] + j[ξ4 ⊗ P (j−1)],

for 0 ≤ j ≤ (k−1). In other words, this says that we can find sections t0, s0, s2, s4 ∈ Γk−1

such that

zηt0 + s0 + s2ξ
2 + s4ξ

4 = 0 modzk,



Chapter 4. Spectral Curves and Nahm’s equations 91

where t0 and sj represent the canonical extensions of t0 and sj respectively. Moreover,

we have proved above that we can actually take t0 = s and sj = Xj(s), for j = 0, 2, 4,

for s ∈ Γk−1.

Now, the canonical extension is of order (k − 1) and we proceed as in the proof of

proposition (4.5.5) to extend to higher orders and produce a formal extension. We can

use again a result in [Har97] (proposition II 9.6) to prove that the obstruction to extend to

higher orders are removable and, therefore we can produce an actual extension.

Remark 4.5.12. It is important to highlight how we found the solutions (4.22) and (4.23)

to (4.11). We solved (4.11) explicitly, from k = 2 up to k = 6, using the constraints

(4.13) and then we obtained a pattern for the solution for general k. In the proof written

here, we just used this general form of the solution and proved it actually solves (4.11).

We can now use this to prove our main result:

Theorem 4.5.13. Let S be a curve in T satisfying the conditions in definition (4.3.1).

Then the matrices Ti obtained in proposition (4.4.3) satisfy the following conditions:

1. T3 and T4 are analytic on the whole interval [0, 2];

2. T1, T2 and T5 have simple poles at 0 and 2, but are otherwise analytic;

3. The residues of T1, T2 and T5 at z = 0 and z = 2 define an irreducible representation

of su(1, 1).
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Proof. Remember that from corollary (4.5.10) the endomorphisms Bj , defined by Bj =

zAj , are analytic on the whole interval [0, 2]. Moreover, the proposition above tells us

that B1 and B3 vanish at z = 0 and:

lim
z→0

zBj(s) = Xj(s),

for j = 0, 2, 4.

This means the endomorphisms A1 and A3 are analytic on the whole interval [0, 2] and

the endomorphisms A0, A2 and A4 have simple poles at 0 whose residues are given by

X0, X2 and X4 respectively. We now shall extend this to the matrices that appear on the

Nahm’s equations. We have that the covariant derivative in V is defined by:

∇zs =
∂f0

∂z
−
(

1

2
A2s+ ξA3s+ ξ2A4s

)
.

From the above and the definition of Xj( equations (4.19), (4.20) and (4.21)) we have:

1

2
A2 + ξA3 + ξ2A4 =

(k − 1)

2z
× I +D,

whereD is analytic in the whole interval [0, 2] and I is the k×k identity matrix. Since the

residue of the connection is a scalar, we can use the same argument in [Hit83] page 179 to

conclude that the matricesAj have the same residue as the corresponding endomorphisms.

If we writeA0 = T1+iT2,A1 = T3+iT4,A2 = 2iT5,A3 = T3−iT4 andA4 = −T1+iT2,

then we have that T3 and T4 are analytic on the whole interval [0, 2] and the residues of

T1, T2 and T5 at 0 define an irreducible representation of su(1, 1). The condition that L2

is trivial on S says that the behaviour of the residues at z = 2 is the same as to z = 0.
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4.5.3 Reality conditions

In this subsection we shall prove the following:

Proposition 4.5.14. The matrices Tj satisfy, for t ∈ (0, 2):

(i) Tj(t) = −T ∗j (t),

(ii) Tj(t) = −T j(2− t).

Proof. To prove (i), we start by defining a hermitian structure on the bundle V over (0, 2),

whose fibre at z ∈ (0, 2) is H0(S, Lz(2k − 2)).

The reality of S defines an antilinear isomorphism:

σ : H0(S, Lz(2k − 2))→ H0(S, L−z(2k − 2))

s 7→ s∗.

Now let s, t ∈ H0(S, Lz(2k − 2)) and st∗ ∈ H0(S,O(4k − 4)). From lemma (4.4.2) we

can write this section uniquely as:

st∗ = c0η
k−1 + c1η

k−2 + · · ·+ ck−1,

with cj ∈ H0(CP 1,O(4j)). We can now define a hermitian inner product by:

〈s, t〉 = c0.

Using the same argument in [Hit83] pages 180-181 we have that this inner product is

non-zero and preserves the connection we used to trivialise V .
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From the definition of Aj we have:

ηs+ A0s+ ξA1s+ ξ2A2s+ ξ3A3s+ ξ4A4s = 0 ∈ H0(S, Lz(2k + 2)). (4.24)

Applying the reality structure σ on S we have:

ησ(s) + ξ4σ(A0s)− ξ3σ(A1s) + ξ2σ(A2s)− ξσ(A3s) + σ(A4s) = 0. (4.25)

On the other hand we have:

ησ(s) + A0σ(s) + ξA1σ(s) + ξ2A2σ(s) + ξ3A3σ(s) + ξ4A4σ(s) = 0. (4.26)

From the equations (4.25) and (4.26) we deduce that:

σA0 = A4σ,

σA1 = −A3σ and

σA2 = A2σ.

(4.27)

We now consider the inner product 〈Ajs, t〉. From (4.24) we have:

(ηs)t∗ + (A0s)t
∗ + ξ(A1s)t

∗ + ξ2(A2s)t
∗ + ξ3(A3s)t

∗ + ξ4(A4s)t
∗ = 0, (4.28)

and

(ηt)s∗ + (A0t)s
∗ + ξ(A1t)s

∗ + ξ2(A2t)s
∗ + ξ3(A3t)s

∗ + ξ4(A4t)s
∗ = 0. (4.29)

Applying the reality condition in the last equation gives:

(ηt∗)s+ ξ4(A0t
∗)s− ξ3(A1t

∗)s+ ξ2(A2t
∗)s− ξ(A3t

∗)s+ (A4t
∗)s = 0. (4.30)
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Subtracting (4.30) from (4.28) gives us:

{(A0s)t
∗ − (A4t

∗)s}+ ξ{(A1s)t
∗ + (A3t

∗)s}+ ξ2{(A2s)t
∗ − (A2t

∗)}+

ξ3{(A3s)t
∗ + (A1t

∗)s}+ ξ4{(A4s)t
∗ − (A0t

∗)s} = 0.

(4.31)

Now we can deduce that:

〈A0s, t〉 = 〈s, A4t〉,

〈A1s, t〉 = −〈s, A3t〉,

〈A2s, t〉 = 〈s, A2t〉,

(4.32)

If we writeA0 = T1 +iT2, A1 = T3 +iT4, A2 = 2iT5, A3 = T3−iT4 andA4 = −T1 +iT2

then each Tj is skew-hermitian.

To prove (ii), we shall use the trivialisation of L2 over S, a ∈ H0(S, L2). We can use a

and the real structure σ to define the antilinear map:

σ′ : H0(S, Lz(2k − 2))→ H0(S, L2−z(2k − 2)),

given by σ′ = aσ. Notice that σ′2(s) = cs for a positive constant c, and it is compatible

with the connection used to trivialise V , then, after normalisation by |c|, σ′ defines a real

structure. Therefore, we can trivialise V with sections which are real with respect to σ′,

we then obtain matrices Tj satisfying (ii).

4.5.4 From Nahm’s equations to spectral curves

The goal of this subsection is to prove the following theorem:



Chapter 4. Spectral Curves and Nahm’s equations 96

Proposition 4.5.15. Let Tj : (0, 2) → gl(k), j = 1, 2, 3, 4, 5 satisfy the Nahm’s

equations, where Tj satisfy:

(1) Tj(t) = −T ∗j (t), this is to say, each Tj is skew-adjoint;

(2) Tj(t) = −T j(2− t);

(3) The Tj have simple poles at z = 0 and z = 2 whose residues satisfy the conditions of

theorem (4.5.13).

Then, the curve S defined by det(η−A) = 0, whereA = A0 +ξA1 +ξ2A2 +ξ3A3 +ξ4A4,

with A0 = T1 + iT2, A1 = T3 + iT4, A2 = 2iT5, A3 = T3 − iT4 and A4 = −T1 + iT2,

satisfy:

i) S is real,

ii) the bundle L(2k − 2) is real,

iii) L2 is trivial on S,

iv) H0(S, Lz(2k − 3)) = 0 for z ∈ (0, 2).

Proof. For part i) notice that, since Ti are skew-adjoint, we have ξ4A(− 1

ξ
−1 ) = A(ξ)t.

Therefore det(η − A(ξ)) = det
(
η − A(− 1

ξ
−1 )
)

and S is real.

We now start to invert the procedure we used to construct the A(ξ, t). Namely, using

Beauville’s theorem, we obtain a flow of line bundles Kt on S. More explicitly, given the
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matrix A(ξ, t) we have that

Kt = coker(η − A(ξ, t)),

where

(η − A(ξ, t)) : O(−4)⊕k → O⊕k.

However, it is easier to consider the dual approach. This means we are going to find the

dual flow:

K∗t = ker(η − A(ξ, t))t,

where

(η − A(ξ, t))t : O⊕k → O(4)⊕k.

First we shall prove that K∗t = K∗t0 ⊗L
t−t0 . We start with a section s of K∗t0 and it can be

represented by u in the open set {ξ 6= ∞} and by v on {ξ 6= 0}. Moreover, let g(t0) be

the transition function of K∗t0 such that u = g(t0)v. Observe that on {ξ 6= ∞} we must

have:

(η − A(ξ, t0))tu = 0

and on {ξ 6= 0}:

(1/ξ4)(η − A(ξ, t0))tv = 0.

Let A+ = 1
2
A2 + A3ξ + A4ξ

2 and we shall vary t. To begin with, we impose that u

satisfies:

∂u

∂t
= At+u.
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We can use Nahm’s equation to prove that

∂

∂t
(η − A)tu = A+(η − A)tu.

Now, the initial condition for this differential equation is given by (η − A)tu = 0. Thus,

we have (η − A)tu = 0 for all t.

On the other open set we can impose

∂v

∂t
= −

(
A/ξ2 − A+

)t
v

and prove that

(1/ξ4)(η − A)tv = 0

for all t. Now we have:

At+ =
∂u

∂t
=
∂gv

∂t
=
∂g

∂t
v − g

(
A/ξ2 − A+

)t
v.

This implies that

η

ξ2
u =

∂g

∂t
g−1u.

The solution of this equation can be written in terms of g(t0) as g(η, ξ, t) = etη/ξ
2 · g(t0).

Therefore, we proved that K∗t = K∗t0 ⊗ L
t−t0 .

We now move towards the description of K0 and we shall use the boundary behaviour of

the matrices Ai to prove that K0
∼= O(2k − 2).

Near t = 0 we can write for t > 0 A(ξ, t) =
α(ξ, t)

t
, with α(ξ, t) analytic near t = 0.

Also, denote a(ξ, t) = α(ξ, t)t. Write α(0, ξ) = a(ξ) = a0 + a1ξ + a2ξ
2 + a3ξ

3 + a4ξ
4.
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From our hypothesis, aj satisfy the conditions in theorem (4.5.13). This means that a1 =

a3 = 0 and a0, a2 and a4 define an irreducible representation of sl(2,C).

Let Γk−1 be the subspace of C2k−1 consisting of polynomials of the form p(ξ) =∑2k−2
i=0 ξ2i and we shall also denote by Γk−1 its image in S2(Ck) under φ. The matrices

aj act on Γk−1 by multiplication. Moreover, we can choose a basis ei for Γk−1 such that

ker[a(ξ)] = (ξ2k−2, · · · , ξ2j, · · · , 1). Notice that in this basis, a0(ei) = ei+1.

We shall next compute a section of ker(η − A)t, first observe that

(η − A)t(η − A)tadj = det(η − A)× I,

where adj is the formal adjoint and I is the identity matrix. This means that on S, Im(η−

A)tadj ⊂ K∗t . However, since (η−A) is regular (η−A)tadj has rank one and the inclusion

becomes an equality.

Now, we shall compute a section of (η − A)tadj . Observe that at ξ = 0, we have that the

image of (η−A)tadj has a finite limit, because of the choice of basis above. In the general

case, Im(η−A)tadj ⊂ K∗t will consist of a polynomial of degree 2k−2 in ξ and therefore,

K0
∼= O(2k − 2). This means that Kt = Lt(2k − 2).

Notice that, since the behaviour of the matrices Tj at t = 2 are the same as at t = 0, we

also have K2
∼= O(2k − 2). This implies that L2 = 0. Lastly, from Beauville’s theorem

we must have Kt(−1) ∈ Jg−1
S , this is to say, H0(S, L(2k − 3)).
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Chapter 5

Moduli space of solution to Nahm’s

equations

5.1 k-symplectic manifolds and k-symplectic reduction

In this chapter, we shall discuss some properties of the moduli space of solutions to our

Nahm’s equations and we shall see they are what is called 2-symplectic manifolds. We

begin with this definition:

Definition 5.1.1. Let M be a regular generalised k-hypercomplex manifold and V be a

k dimensional irreducible representation of SU(2) such that TxMC = V C ⊗ Cn for all

x ∈ M . Remember that V C ∼= Sk(C2) and let V [2] be the irreducible real representation

of SU(2) such that (V [2])C = S2k(C2). A k-symplectic structure onM is a closed SU(2)-
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invariant 2-form ω with values in V [2].

Recall the decomposition TC
M = E ⊗H from the first chapter, where H = Sk(C2) is the

trivial bundle. Then, the bundle of 2-forms decomposes as

Λ2TC
M = (Λ2E ⊗ S2H)⊕ (S2E ⊗ Λ2H).

Notice that Λ2E ⊗ S2H is the only term in the decomposition above containing S2k(C2),

then a symplectic structure corresponds to a nondegenerate 2-form ωE on E such that the

map

Λ2TMC → Λ2E ⊗ S2k(C2)
ωE−→ S2k(C2)

defines a closed V [2]-valued 2-form. In practical terms, a k-symplectic form ω can be

written as ωE ⊗ α, where α ∈ S2k(C2) ⊂ S2H . This means that if αj , for 0 ≤ j ≤ 2k, is

a basis for S2k(C2), then we have (2k+ 1) closed 2-forms, namely ωE ⊗αj , on M giving

the k-symplectic structure.

Remember that M has a twistor space Z which is a complex manifold fibrering over

CP 1 and is endowed with a real structure τ covering the antipodal map on CP 1. Then

M , together with the SU(2) action on the tangent bundle, is given by the space of real

holomorphic sections of Z whose normal bundle is O(k)⊗ Cn.

Now, from the definition above, a k-symplectic structure on M is a SU(2)-invariant and

closed 2-form ω on M with values on S2k(C2), so we can write ω as:

ω = ω0 + ω1ξ + · · ·+ ω2kξ
2k. (5.1)
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This means, in terms of the twistor space, that ω defines a complex symplectic form for

each fibre of the fibration p : Z → CP 1. Globally, ω is a section of the bundle Λ2T ∗F (2k)

over Z, where TF = Ker(dp), the tangent space along the fibres.

Suppose now that M admits a proper and free action of a Lie group G and that the action

is compatible with the GHC structure and the symplectic form. Moreover, suppose the

action is Hamiltonian, i.e. there exists a moment map

µ : M → V [2] ⊗ g∗,

where g is the Lie algebra of G. By moment map, we mean that µ satisfies:

d(〈µ, ρ〉) = iρ∗ω, (5.2)

where 〈µ, ρ〉 is the function from M to R defined by 〈µ, ρ〉(x) = (µ(x))(ρ), for every

ρ ∈ g, ρ∗ is the vector field on M given by:

ρ∗x =
d

dt
(exp(tρ) · x)|t=0

and iρ∗ω is the contraction of ω by the vector field ρ∗. This permits us to define GHC

quotients. Namely, if r ∈ V [2] ⊗ g∗ is a regular value of µ, we can define the reduced

GHC manifold as M̂ = µ−1(r)/G [Bie06].

From the twistor point of view, the action of G on M can be regarded as an action of the

complexified groupGC. Now, we can construct a space Ẑ fromZ by taking a holomorphic

symplectic quotient along the fibres of Z and Ẑ is the twistor space of M̂ .
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Example 5.1.2 (Hyperkähler manifolds [HKLR87]). A Hyperkähler manifold is a 4n

dimensional Riemannian manifold M endowed with a metric g and three covariantly

constant complex structures I,J,K satisfying the algebraic quaternion relation. The twistor

space of M is Z = CP 1 ×M endowed with the following complex structure: Identify

CP 1 with S2 and let (a, b, c) be a point in S2 ⊂ R3, define the complex structure I at the

point ((a, b, c), x) ∈ Z by I = aI + bJ + cK. It is proved in [HKLR87] that a Hyperkähler

structure on M is equivalent to the existence of a section ω of Λ2T ∗F (2) over Z. Thus, the

k-symplectic quotient discussed above generalises the well-known Hyperkähler quotient.

Example 5.1.3 (R6 as a 2-symplectic manifold). We start by defining R6 as two copies of

the real form of the irreducible SL(2,C)-representation S2(C2). More explicitly, a point

p in C6 is a pair of polynomials of degree 2,

p = ((z0 + z1ξ + z2ξ
2), (z3 + z4ξ + z5ξ

2)). (5.3)

This turns R6 into a 2-hypercomplex manifold whose twistor space is O(2)⊕O(2).

Now, the complexified tangent bundle of R6 decomposes as (TR6)C = C2 ⊗ S2(C2). In

the notation above, we have E = C2 and H = S2(C2). Furthermore, a 2-symplectic

structure ω is given by ω = ωE ⊗α, where ωE a 2-form in Λ2E and α ∈ S4(C2) ⊂ S2H .

We can fix a frame e0 = (1, 0), e1 = (0, 1) for E = C2 and define the alternating 2-form

ωE on E to be given by the matrix, with respect to this basis: 0 1

−1 0

 . (5.4)
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Since Λ2E has dimension 1 this is the unique, up to a scalar, 2-form on E.

Next we shall identify S4(C2) in S2(H) = S2(S2C2). Let Z0 = 1, Z1 = ξ, Z2 = ξ2

be a frame for H , from representation theory [FH99], we have that S4(C2) ⊂ S2(H) is

generated by h0 = Z2
0 , h1 = Z0Z1, h2 = Z2

1 + 1
2
Z0Z2, h3 = Z1Z2 and h4 = Z2

2 . Then,

the hk are symmetric bilinear forms on H and have the matrix representation:

h0 =


1 0 0

0 0 0

0 0 0

 , (5.5)

h1 =


0 1 0

1 0 0

0 0 0

 , (5.6)

h2 =


0 0 1

2

0 1 0

1
2

0 0

 , (5.7)

h3 =


0 0 0

0 0 1

0 1 0

 , (5.8)
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h4 =


0 0 0

0 0 0

0 0 1

 . (5.9)

Now consider the basis ej ⊗ Zk, for j = 0, 1 and k = 0, 1, 2, for (TR6)C. With respect

to this basis we have the following 2-forms on Λ2(TR6)C given by ωk = ωE ⊗ hk. We

can put coordinates zl, l = 0, 1, 2, 3, 4, 5 on C6 relative to the frame above, this is to say,

we can consider ej ⊗ Zk as vector fields in C6 and zl is the coordinate system such that

∂z0 = e0 ⊗ Z0, ∂z1 = e0 ⊗ Z1, ∂z2 = e0 ⊗ Z2, ∂z3 = e1 ⊗ Z0, ∂z4 = e1 ⊗ Z1 and

∂z5 = e1 ⊗ Z2. Moreover, it is important to notice that these coordinates are the same

ones introduced in (5.3).

We can now use the matrices for ωE and hk given above to write the ωk explicitly in these

coordinates:

ω0 = dz0 ∧ dz3,

ω1 = dz0 ∧ dz4 + dz1 ∧ dz3,

ω2 = dz0 ∧ dz5 + 4dz1 ∧ dz4 + dz2 ∧ dz3,

ω3 = dz1 ∧ dz5 + dz2 ∧ dz4,

ω4 = dz2 ∧ dz5.

(5.10)

We now have a real structure on C6 which can be defined via the involution in the twistor

space by ((η1, η2), ξ) → ((η1/ξ
2
,−1/ξ), (η2/ξ

2
,−1/ξ)), where ((η1, η2), ξ) is a local



Chapter 5. Moduli space of solution to Nahm’s equations 107

holomorphic coordinate system forO(2)⊕O(2). Our objective now is to investigate how

this involution extends to a real structure in Λ2E ⊗ S4(C2).

One way of doing this is by noticing that the coordinates we used in C6 come from

the following short exact sequence of bundles on CP 1 given by the class
[

1

ξ2

]
∈

H1(CP 1,O(−4)):

0→ O → O(2)⊕O(2)→ O(4)→ 0. (5.11)

This yields an exact sequence in cohomology:

0→ H0(CP 1,O)→ H0(CP 1,O(2)⊕O(2))
γ−→ H0(CP 1,O(4))→ 0,

where the map γ is explicitly given by:

(p0, p1) 7→ p0 + ξ2p1,

where p0 = z0 + z1ξ + z2ξ
2 and p1 = z3 + z4ξ + z5ξ

2. Moreover, the kernel of γ consists

of sections (p0, p1) such that p0 = aξ2 and p1 = −a, for a ∈ C.

Now, every ω ∈ H0(CP 1,O(4)) = S4(C2) can be written as ω = p0 + ξ2p1 = z0 + z1ξ+

(z2 + z3)ξ2 + z4ξ
3 + z5ξ

4 and then the involution can be induced to S4(C2) as:
z0 7→ z5

z1 7→ −z4

z2 7→ z3.
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Therefore, ω ∈ S4(C2) is real if and only if
z0 = z5

z1 = −z4

z2 = z3.

Applying this reality condition to equation (5.10), yields 5 complex 2-forms on R6:

ω0 = dz0 ∧ dz2,

ω1 = −dz0 ∧ dz1 + dz1 ∧ dz2,

ω2 = dz0 ∧ dz0 − 4dz1 ∧ dz1 + dz2 ∧ dz2,

ω3 = −dz0 ∧ dz1 + dz1 ∧ dz2,

ω4 = −dz0 ∧ dz2.

(5.12)

Writing z0 = −t1 − it2, z1 = t3 + it4 and z2 = t0 − it51 and α0 = 1
2
(ω0 − ω4), α1 =

1
2
(ω1 + ω3), α2 = i

2
ω2, α3 = i

2
(ω1 − ω3) and α4 = i

2
(ω0 + ω4) gives us real 2-forms on

R6 giving a 2-symplectic structure on R6:

α0 = −dt0 ∧ dt1 + dt5 ∧ dt2,

α1 = dt0 ∧ dt3 − dt5 ∧ dt4 + dt3 ∧ dt1 + dt4 ∧ dt2,

α2 = −dt0 ∧ dt5 − dt3 ∧ dt4 + dt1 ∧ dt2,

α3 = dt0 ∧ dt4 + dt0 ∧ dt3 + dt3 ∧ dt2 − dt4 ∧ dt1,

α4 = −dt0 ∧ dt2 − dt5 ∧ dt1.

(5.13)

1The reason for this specific choice of coordinates will become clear when we interpret the Nahm’s

equations as an infinite dimensional moment map.
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It is important to notice that the 2-hypercomplex structure on R6 was defined by means

of the exact sequence (5.11). Remember this exact sequence was obtained from the

class
[

1

ξ2

]
∈ H1(CP 1,O(−4)), then we can obtain other 2-hypercomplex structures by

considering extensions corresponding to other real elements in H1(CP 1,O(−4))2, thus

this group parametrizes 2-hypercomplex structures on R6.

A bit more explicitly, we shall now consider another extension class
[

1

ξ
− 1

ξ3

]
∈

H1(CP 1,O(−4)).

0→ O → O(1)⊕O(3)→ O(4)→ 0. (5.14)

This yields an exact sequence in cohomology:

0→ H0(CP 1,O)→ H0(CP 1,O(1)⊕O(3))
γ−→ H0(CP 1,O(4))→ 0,

where the map γ is given explicitly by:

γ(p0, p1) = p0(1− ξ3) + p1(ξ − 1),

with p0 = z0 + z1ξ + z2ξ
2 and p1 = z3 + z4ξ + z5ξ

2. Then, we can write explicitly

γ(p0, p1) = (z0 − z2) + (z1 + z2 − z3)ξ + (z3 − z4)ξ2 + (z4 − z0 − z5)ξ3 + (z5 − z3)ξ4.

Using the real structure induced to S4(C2), as we did above, gives us the following reality

condition:
2The real structure on H1(CP 1,O(−4)) is the one induced from H0(CP 1,O(2)) by the non-

degenerated pairing H1(CP 1,O(−4))×H0(CP 1,O(2))→ C
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z0 = z5

z1 = z2

z3 = −z4.

Proceeding like we did in the other case, we have the following 2-symplectic structure on

R6:

α0 = −dt0 ∧ dt1 + dt5 ∧ dt2,

α1 = dt0 ∧ dt3 − dt5 ∧ dt4 + dt3 ∧ dt1 + dt4 ∧ dt2,

α2 = −dt0 ∧ dt5 − dt3 ∧ dt4 + dt1 ∧ dt2,

α3 = dt0 ∧ dt4 + dt0 ∧ dt3 + dt3 ∧ dt2 − dt4 ∧ dt1,

α4 = −dt0 ∧ dt2 − dt5 ∧ dt1.

(5.15)

Remark 5.1.4. The inclusion S4(C2) ⊂ S2(S2C2) is SL(2,C) covariant with isotropyB,

the Borel subgroup of upper-triangular matrices, therefore we have that such inclusions

of representations are parametrized by CP 1 = SL(2,C)/B, therefore there is a CP 1 of

2-symplectic structures for each 2-hypercomplex structure on R6.

5.2 Nahm’s equations as a moment map

Let G be a compact semisimple Lie group whose Lie algebra is g and A be the space of

g-valued functions Tk, k = 0, 1, 2, 3, 4, 5 on the interval [0, 2]. We can interpret A as the
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space of real sections of the bundleC∞([0, 2], gC)⊗(O(2)⊕O(2)). Furthermore, from the

discussion in the last section, A has a symplectic 2-hypercomplex structure. Explicitly,

the 2-symplectic 2-forms on A are given by:

α1 =

∫ 2

0

dT0 ∧ dT1 − dT5 ∧ dT2, (5.16)

α2 =

∫ 2

0

dT0 ∧ dT3 − dT5 ∧ dT4 + dT3 ∧ dT1 + dT4 ∧ dT2, (5.17)

α3 =

∫ 2

0

dT0 ∧ dT5 + dT3 ∧ dT4 − dT1 ∧ dT2, (5.18)

α4 =

∫ 2

0

dT0 ∧ dT4 + dT0 ∧ dT3 + dT3 ∧ dT2 − dT4 ∧ dT1, (5.19)

α5 =

∫ 2

0

dT0 ∧ dT2 + dT5 ∧ dT1, (5.20)

where the form ωij =
∫ 2

0
dTi ∧ dTj is given by:

ωij((t0, t1, t2, t3, t4), (t′0, t
′
1, t
′
2, t
′
3, t
′
4)) =

∫ 2

0

〈ti, t′j〉 − 〈tj, t′i〉,

with tj and t′j are tangent vector to A and 〈·, ·〉 is the Killing form on g.

The group of gauge transformations, G = {g : [0, 2]→ G | g is smooth}, acts on A as:

T0 7→ gT0g
−1 − ġg−1,

Tj 7→ gTjg
−1, for i = 1, 2, 3, 4, 5.

For the next proposition, we shall consider the Lie group G0 = {g ∈ G| g(0) = g(2) =

id ∈ G}, then its lie algebra is denoted by G0 given by maps ρ : [0, 2] → g, such that

ρ(0) = ρ(2) = 0. We can now state the following result:
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Proposition 5.2.1. Consider the map:

µ = (µ1, µ2, µ3, µ4, µ5) : A → C5 ⊗G∗0,

given by

µ1 = Ṫ1 + [T0, T1]− [T5, T2]

µ2 = Ṫ2 + [T0, T2]− [T1, T5]

µ3 = Ṫ3 + [T0, T3]− [T1, T3]− [T2, T4]− [T5, T4]

µ4 = Ṫ4 + [T0, T4] + [T1, T4]− [T2, T3] + [T5, T3]

µ5 = Ṫ5 + [T0, T5]− [T1, T2]− [T4, T3].

Then µ is the moment map for the action of G0

Proof. Let m = (T0, T1, T2, T3, T4, T5) ∈ A and in this notation, the action of G on A is

given by:

m 7→ (gT0g
−1 − ġg−1, gT1g

−1, gT2g
−1, gT3g

−1, gT4g
−1, gT5g

−1).

Let ρ ∈ G0 and consider the vector field ρ∗|m =
d

dt
(exp(tρ) ·m). From the description

of the action above we have:

ρ∗|m = ([ρ, T0]− ρ̇, [ρ, T1], [ρ, T2], [ρ, T3], [ρ, T4], [ρ, T5])
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Now, let t = (t0, t1, t2, t3, t4, t5) be a tangent vector at m ∈ A, then

α1(ρ∗, t) =

∫ 2

0

〈[ρ, T0]− ρ̇, t1〉 − 〈[ρ, T1], t0〉 − 〈[ρ, T5], t2〉+ 〈[ρ, T2], t5〉

=

∫ 2

0

−〈ρ̇, t1〉+ 〈[ρ, T0], t1〉 − 〈[ρ, T1], t0〉 − 〈[ρ, T5], t2〉+ 〈[ρ, T2], t5〉

= 3 − 〈ρ, t1〉|20 +

∫ 2

0

〈ρ, ṫ1〉+ 〈[ρ, T0], t1〉 − 〈[ρ, T1], t0〉 − 〈[ρ, T5], t2〉+ 〈[ρ, T2], t5〉

=

∫ 2

0

〈ρ, ṫ1 + [T0, t1] + [t0, T1]− [T5, t2]− [t5, T2]〉

=

∫ 2

0

〈ρ, dµ1(t)〉,

where µ1 = Ṫ1 + [T0, T1]− [T5, T2]. The proof for the other µk is similar to this one.

Remark 5.2.2. It is important to notice here that, from the discussion in the first section,

the quotient µ−1(0)/G0 is a 2-symplectic manifold. Moreover, µ−1 = (0) is the space of

solutions to the following system if equations:

Ṫ1 +[T0, T1]− [T5, T2] = 0

Ṫ2 +[T0, T2]− [T1, T5] = 0

Ṫ3 +[T0, T3]− [T1, T3]− [T2, T4]− [T5, T4] = 0

Ṫ4 +[T0, T4] + [T1, T4]− [T2, T3] + [T5, T3] = 0

Ṫ5 +[T0, T5]− [T1, T2]− [T4, T3] = 0.

(5.21)

Now notice that we can always choose a gauge g0 such that T0 = 0 and we obtain

our Nahm’s equations corresponding to the line bundle with transition function eη/ξ
2 .

Therefore, solutions to Nahm’s equations modulo the action of G0 is a 2-symplectic

3We used integration by parts.
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manifold. We can also change the behaviour of the Tj at the endpoints of [0, 2], we

can add poles for instance, and the corresponding quotient will give other 2-symplectic

manifolds.

5.3 The moduli space of solutions to Nahm’s equations

with trivial boundary conditions

Given (T0, T1, T2, T3, T4, T5) ∈ A, define the following matrix valued functions:

α = T0 + iT5,

β = T1 + iT2,

γ = T3 + iT4.

Observe that the equations (5.21) are equivalent to the following system of equations:

β̇ = [β, α],

γ̇ = [γ, α]− [β, γ∗],

˙(α + α∗) = [α∗, α] + [β, β∗] + [γ∗, γ].

(5.22)

Let Â = {(α, β, γ)| α, β, γ : [0, 2]→ g is smooth}. Observe that the action of G0 extends

to an action of the complexified group GC0 , namely:

α 7→ gαg−1 − ġg−1,

β 7→ gβg−1,

γ 7→ gγg−1.
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The system of equations above was already considered in [Bie06] and here we shall state

a result concerning the moduli space of solutions to the equations above and we shall

compute its twistor space.

We shall denote the moduli space of solutions to (5.22) with trivial boundary conditions

by M̂. To describe M̂, fix a gauge g0 such that α = 0 and identify (α, β, γ) 7→

(g0, β(0), γ(0)). We can state this as:

Proposition 5.3.1 ([Bie06]). M̂ is diffeomorphic to GC × gC × gC.

Next we shall find the twistor space of this 2-symplectic manifold by using method

analogue to [Kro04].

Theorem 5.3.2. The twistor space of M̂ is the fibre bundleZ over CP 1 with fibreGC×gC

and transition function

GC × gC × U → GC × gC × U ′

(g, α, ξ) 7→ (g · exp(2α/ξ2), α/ξ4, 1/ξ).

Proof. Let E = (O(2) ⊕ O(2)) ⊗ C be the twistor space of A⊗ C, where C is the space

of smooth g-valued functions on [0, 2]. Also, fix a trivialisation for E :

E|U = C × C × U, with coordinates (µ, η, ξ),

E|′U = C × C × U ′, with coordinates (µ′, η′, ξ′).
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such that on the intersection U ∩ U ′ we have µ′ = µ/ξ2, η′ = η/ξ2 and ξ′ = 1/ξ. Now

the action of G can be extended to a fibrewise action of GC on E . This action is explicitly

given by:

µ 7→ gµg−1 + ξ2ġg−1,

η 7→ gηg−1 + ġg−1 on U and

µ′ 7→ gµ′g−1 + ġg−1,

η′ 7→ gη′g−1 + ξ′2ġg−1 on U ′.

We can also define a complex symplectic form on the fibres of E by:

ωE((a, b), (a
′, b′)) =

∫ 2

0

〈a, b′〉 − 〈b, a′〉.

We now state that the action of GC0 on the fibres of E is Hamiltonian with moment map

given by:

m = −µ̇+ ξ2η̇ + [η, µ] on U,

m′ = η̇′ − ξ′2η̇′ + [η′, µ′] on U ′.

The proof that this is indeed a moment map is similar to (5.2.1) and we shall not prove it

here. For ξ ∈ U the solution to m = 0 is:

η = ġg−1,

µ = gαg−1 + ξ2ġg−1,

for g : [0, 2]→ GC with g(0) = 1 and α ∈ gC. Then, the GC-orbit of this solution is given

by the pair (g(2), α) ∈ GC × gC. This gives a trivialisation Z|U → GC × gC × U .
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We can do the same for a point ξ′ ∈ U ′, a solution to m′ = 0 is given by:

η′ = g′α′(g′)−1 − ξ′2ġ(g′)−1,

µ′ = −ġ′(g′)−1,

then (g′(2), α′) is a trivialisation Z|′U → GC × gC × U ′.

Now, we must have η′ = η/ξ2 and µ′ = µ/ξ2. Imposing this conditions for the solution

above we can see that we must have:

g′(t) = g(t) · exp(2tα/ξ2),

α′ = α/ξ4.

For t = 2 we have the transition function given in the statement of the theorem.

It is important to highlight here that the case where G = U(1) correspond to the case of

charge 1 monopoles on R5. Therefore, we have:

Theorem 5.3.3. The moduli space of charge 1 monopoles on R5 is a 2-symplectic

manifold diffeomorphic to S1 × R5 and its twistor space is the total space of the U(1)-

principal bundle associated to the line bundle L2 over T.
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5.4 Open issue: The moduli space of solutions to Nahm’s

equations with modified boundary conditions

In this section we present explicit solutions to our Nahm’s equations. The solutions

presented here do not correspond to monopoles since they do not satisfy the appropriate

reality conditions. However, it should still be interesting to study these spaces. We could

obtain 2-hypercomplex structures and new hypercomplex structures, since there exists a

hypercomplex manifold that fibres over every GHC manifold.

We shall define an ansatz to solve Nahm’s equations. First, define the matrices:

t1 =
1

2



0 0 0 −1

0 0 0 0

0 0 0 0

−1 0 0 0


,

t2 =
1

2



0 0 0 i

0 0 0 0

0 0 0 0

−i 0 0 0


,
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t3 =
1

2



0 0 0 0

0 0 i 0

0 i 0 0

0 0 0 0


,

t4 =
1

2



0 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 0


,

t5 =
1

2



−i 0 0 0

0 −i 0 0

0 0 i 0

0 0 0 i


.

Now, define Tj = fjtj , for j = 1, 2, 3, 4, 5, where fj : (0, 2) → R is analytic and has

simple poles at 0 and 2. We can substitute this ansatz in our Nahm’s equation and obtain

the following system of non-linear ordinary differential equations:
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ḟ1 = f5f2,

ḟ2 = f5f1,

ḟ3 = f5f4,

ḟ4 = f5f3,

ḟ5 = f1f2 + f3f4,

This system can be solve in terms of the Jacobi elliptic functions dnk, cnk and snk:

f1 = − 1√
2

Kcnk(K(s+ 1))

snk(K(s+ 1))

f2 = − 1√
2

Kdnk(K(s+ 1))

snk(K(s+ 1))

f3 = − 1√
2

Kcnk(K(s+ 1))

snk(K(s+ 1))

f4 = − 1√
2

Kdnk(K(s+ 1))

snk(K(s+ 1))

f5 = − K

snk(K(s+ 1))
,

where

K(k) =

∫ π/2

0

dt

1− k2sint
.

Observe that the solution T1, T2, T3, T4, T5 have poles at 0 and 2 whose residues are

respectively 1√
2
t1,

1√
2
t2,

1√
2
t3,

1√
2
t4, t5. We can generalise this ansatz and obtain solutions
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to the Nahm’s equations of rank k ≥ 4. It would be interesting to identify the moduli

space of solutions to our Nahm’s equations satisfying:

(i) T1 and T2 are Hermitian matrices,

(ii) T3, T4 and T5 are skew-Hermitian and

(iii) T1, T2, T3, T4, T5 have poles at 0 and 2 whose residues are respectively

1√
2
t1,

1√
2
t2,

1√
2
t3,

1√
2
t4, t5.

A similar question is investigated for the canonical Nahm’s equations in [Dan93].

Furthermore, we can also generalise Nahm’s equations to higher degrees, this is to say,

we can construct monopoles in R2n+1, for n ≥ 3, and we should obtain equations that we

can use to construct n-symplectic manifolds.
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