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Abstract

A nonlinear dynamical system is a mathematical model for a portion

of the physical world where continuous components are interacting

with each other. Such systems are complex, and it is difficult to pre-

dict how they will react towards changing the driving parameters and

initial conditions.

This dissertation is concerned with the numerical aspect of control-

ling the Lorenz system that studies the production of the magnetic

field in sunspots. The study aims to do this by applying different

approaches to the system. A study on the impact of the oscillatory

control parameter D = C0 cos(ω1t) was carried out, where C0 and ω1

are the driving amplitude and frequency, respectively. Overall, finite-

amplitude solutions were obtained for sufficiently small ω1 and large

C0 , even though the mean value of D was zero. In addition to this,

a linear relationship between C0 and ω1 for the transition between

finite-amplitude and damping solutions was found.

The combined effect of constant and oscillatory control parameters on

the complex Lorenz system was also investigated. This was done by

presuming that the control parameter D consists of a constant D0

and an oscillatory part C0 cos(ω1t). The effect of C0 and ω1 on the

linear and nonlinear response of the Lorenz system for different val-

ues of D0 was numerically observed. In sharp contrast to this linear

response, a non-monotonic behaviour is manifested in the nonlinear

case where the amplitude and frequency of dynamical variables be-

come minimum. An interesting relation C0 ≈ D0 + 1 is found for

the minimum response in this nonlinear case as the system stays in
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a Dead-Zone for the longest time. The effect of the oscillatory con-

trol parameter disappears both linearly and nonlinearly for sufficiently

large ω1 .

Furthermore, this thesis explores the phenomenon of Stochastic Res-

onance (SR) as a result of using internal and external parameters

simultaneously.
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Preface

The dynamical system is one of the oldest and most highly developed parts of

physics that has been studied by many mathematicians for over a hundred years.

Principally, its importance increases as the variety of its applications grow. Such

systems are very common in nature. Various examples are found in every dis-

cipline of science, from a comparatively simple system involving a pendulum to

a much more complex celestial system, and from artificial systems (e.g. swarm

robotics) to biological systems (e.g. stem cell behaviour) (Takens and Broer,

2009, Ott, 1993, Orme and Chaplain, 1996, Anderson et al., 2000). By replacing

the actual dynamical system with a mathematical model as a set of differential

equations that can be analysed, one can obtain appropriate information about

the problem under study. This approach becomes a good way of investigating

their behaviour in order to determine useful information about the parts of the

real world we are studying. The mathematical solutions have to be evaluated and

interpreted technically.

Among others, the Lorenz system is a popular nonlinear dynamical model that

has been widely used to understand complex nonlinear behaviour such as predict-

ing pattern formation, weather, forest fires, population dynamics and magnetic

activities in astronomical and laboratory systems (e.g. Bhattacharyaya and Bhat-

tacharjee (2001), Proctor (2007)).

xvii



xviii PREFACE

This thesis is focused on the study of the Lorenz system as a typical example of a

nonlinear dynamical system. In particular, we aim to investigate numerically the

mechanisms of generating the magnetic field inside sunspots. We address this pro-

cess using the Lorenz system as a simulation model for different parameters; an

internal time-dependent parameter, a mixture of a constant and time-dependent-

parameter, and internal and external time-dependent parameters. These three

schemes drive the system differently due to the types of parameters involved.

To guide the reader, we will give a brief summary of the contents of each chapter.

• Chapter 1: In this chapter, we give background information to support

the understanding of the thesis. We also report on related studies that have

been produced in the case of using a constant parameter D as the dynamo

number.

• Chapter 2: We study the effect of the time-dependent parameter D =

C0 cos(ω1t) on the Lorenz system, where C0 is the driving amplitude and

ω1 is the driving frequency.

• Chapter 3: We extend the study in Chapter 2 by assuming that the control

parameter D is a combination of a constant part D0 and an oscillating part

C0 cos(ω1t) for different values of D0 . Since D changes between D0 − C0

and D0 + C0 as time varies, the system effectively goes through different

varieties of attractors, from damping to chaotic solutions, including multiple

oscillations.

• Chapter 4: In this chapter we identify the Lorenz system’s mechanism

when an internal and external parameter are used at the same time, aiming



xix

for an improvement to the dynamical system so that it creates the right

opportunity for the appearance of some phenomena, such as resonance and

undamped solutions.

• Chapter 5: We summarise the thesis.

• Chapter 6: We draw the plan for future work.

Mabruka Mohamed, June, 2015
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Chapter 1

Introduction

§ 1.1 The Sun

The Sun is the nearest star to the Earth, positioned at the heart of our solar

system; it is an enormous rotating ball of hot gas and plasma. The Sun’s a radius

R� ≈ 6.955 × 105km and a total mass of 198.89 × 1028kg . This mass converts

into energy at the rate of 380× 1024 watts Dam and Lin (1996). The Sun is an

essential source of light and heat for the Earth; the solar energy is generated due

to the nuclear reactions that turn hydrogen into helium. The interior of the Sun

cannot be perceived directly due to the opaqueness of the Sun’s surface.

• The solar interior is classified into three layers: the Core, the radiation

zone and the convection zone. These regions are shown in Fig. 1.1.

• The solar exterior consists of three layers; the photosphere, the transition

1
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region, and the corona.

Figure 1.1: The Sun’s layers.

In the Core region, hydrogen plasma fuses in a reaction, which generates helium

nuclei, neutrons and photons. This layer represents a 20 % of the radius of

the Sun. The temperature diverges over the core, from about 15 million Kelvin

at the kernel to about 5 million Kelvin at the edge of the core Vernazza et al.

(1976) Watson (2012). The radiation zone is the second layer of the solar

interior, when the energy is transported as photons, instead of convection Noyes

(1982). This represents the zone extends from the core outward to about 0.7R�

Charbonneau et al. (1999). The convection zone is the outermost zone of

the Sun’s interior. It lies between the radiation zone and the visible surface at a
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depth of about 200,000 km, which represents about 30% of the radius of the Sun’s

interior. In-depth studies of the Sun can be found in many sources for instance

Watson (2012),Noyes (1982).

1.1.1 Rotation of the Sun

The Sun is not solid, and therefore it does not rotate uniformly; the poles of

the Sun rotate slower than the equator. It takes up to 35 days to rotate at the

poles whereas it takes just 25 days to rotate at the equator. This is known as

differential rotation. Sunspots and many other solar activities are due to this

phenomenon.

Figure 1.2: Picture illustrating the rotation of the Sun, it was taken from As-
tronomy TodayChaisson and McMillan (2011).

The physical process of producing the magnetic field in the Sun is known as

the solar dynamo. The Sun, as does other celestial objects, generates the mag-

netic field; the apparent evidence for the evidence for this lies in the existence of

sunspots.
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1.1.2 Sunspots

Sunspots are dark regions that exist on the exterior of the Sun, generated by

the high magnetic field strength. Sunspots appear to be darker because they are

cooler than the areas around them Russell (2010). Temperatures in the deep

cores of sunspots drop to about 3700 Kelvin (compared to 5700 Kelvin for the

photosphere that surrounds it).

Three years after the first telescope was produced in Europe in 1608, Galileo per-

formed scientific observations and concluded that indeed the Sun has spots. Also,

he reported a change in the size and pattern of these spots. Sunspots appear at

latitudes of approximately ±40◦ at the beginning of a new cycle Nicolson (1982).

As the cycle progresses, spots move towards the equator, and at the end of the

cycle reach about ±5◦ latitude. Sunspots observed for the first time with the

naked eye in at least 200BC by Chinese ( Eddy et al. (1989), Yau and Stephen-

son (1988)). Sunspots appear in a butterfly pattern. This name is inspired by the

structure which show two butterfly wings that begin far apart at the beginning

of the cycle and come together over time. The physical reason for this movement

of the sunspot structure as a butterfly can be linked to the progress of the solar

magnetic field during its cycle due to the differential rotation as illustrated in

Fig.1.2.

After discovering the magnetic fields in sunspots, Hale et al., 1919 Hale et al.

(1919) found that there are two large sunspot sets, which have opposite mag-

netic field polarities and are seen side-by-side. In other words, they spotted that

sunspots normally appear as two sets of spots. One set has a north (positive)

magnetic field, and the other set has a south (negative) magnetic field. The mag-

netic field is strongest in the darker parts of the spots which are called the umbra.
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The 11-year sunspot cycle is associated with a 22-year cycle for the reversal of

the solar magnetic field Hathaway (2014).

Figure 1.3: Sunspots recently from 2012 and from 68 years ago, with the Earth
and Jupiter for size comparison Major (2012).

The pictures in Fig. 1.3 were taken by the NASA Solar Dynamics Observatory

Major (2012). They illustrate sunspot areas in comparison with the sizes of Earth

and Jupiter, which demonstrates the scale of the sunspot phenomenon.

1.1.3 Magnetic Field in Sunspots

Magnetic fields exist everywhere in the Cosmos. They seem to be found wherever

large amounts of fluid with enough electrical field motion are present along with

mixed with convection and rotation Gailitis et al. (2002).

The magnetic field arises from under the surface of the Sun and moves up through

the atmosphere, generating multiple structures on various length scales Solanki

et al. (2006) Babcock (1961) Ostlie and Carroll (1996).
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Two mechanisms for producing the magnetic field in the Sun have been intro-

duced. One States that the Sun is a magnetic oscillator with settled poloidal and

toroidal fields that vibrate with a 22-year period. The other believes that there

exists a dynamo; where a poloidal field is created due to the persistent helicity of

convective eddies in a rotating system Weiss (1990).

The first measurement of the magnetic fields in sunspots was at the beginning of

the 20th century. A detailed study of the existence of magnetic fields in sunspots

was completed by George Hale in a paper with the title ”On the Probable Exis-

tence of a Magnetic Field in Sun-Spots” (Hale, 1908) Hale (1908). The magnetic

strength in the interior of the sunspot is much higher in comparison to the mag-

netic strength exterior. Outside the sunspots the magnetic field ranges between

10 and 50 Gauss, whereas it ranges between an astounding 1000-3000 Gauss in

the interior, which is about 104 stronger than the magnetic field of the Earth at

the surface (0.5 Gauss).

A recent paper showed that the magnetic field probably plays a significant role

in the Earth’s weather Haigh (2003). Consequently, studying the magnetic field

in sunspots is important, as a study of this nature can help in understanding the

climate patterns of Earth.

In this work, we concentrate on numerical simulations of the mechanism for gen-

erating the magnetic field in sunspots. Further detail about observational studies

related to the Sun, sunspots, and the magnetic field in sunspots can be found

in the thesis presented by Watson, University of Glasgow (2012) Watson (2012),

Stix (2000).

Past records of sunspot observations as illustrated in Fig. 1.4 clearly show that

the solar cycle is aperiodic.
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Figure 1.4: Sunspots historical record Hoyt and Schatten (1998)

It is notable that during the second half of the 17th century there was a Maun-

der Minimum period, where much fewer sunspots were observed Shindell et al.

(2001), Wuebbles et al. (1998). In the Maunder minimum period, solar activity

was lower than the early 2000s (Sokoloff (2004)). The number of sunspots sug-

gests that the solar dynamo is oscillating nonlinearly Jones et al. (1985). The

solar cycle’s features are described in much more detail in Noyes (1982). Since

the generation of magnetic fields in sunspots is a dynamical process, we will be

exposed to the study of dynamical systems and some of their properties in the

following section.

§ 1.2 Dynamical Systems

A dynamical system is a system of quantities that changes in time. It can be any

mechanism that evolves deterministically Apety (2011).

A large number of situations in nature can be simulated as dynamical systems,
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modelling them as a set of ordinary differential equations (ODEs). It is a good

approach to investigate their behaviour in order to determine useful information

about the parts of the real life world we are studying. This analysis can help us

to understand what happens to a system’s behaviour as time changes. Among

others, the Lorenz system is a popular nonlinear dynamical model that has been

widely used to understand complex nonlinear behaviour, such as predicting pat-

tern formation, weather, forest fires, population dynamics and magnetic activities

in astrophysical and laboratory systems (e.g. Bhattacharyaya and Bhattacharjee

(2001), Proctor (2007)).

For instance, the population sizes of different species of plants and animals in an

ecological system, and the positions and speeds of celestial bodies are examples of

natural phenomena that can be described by dynamical systems. In conjunction

with the development of computers, applied mathematics has made a significant

contribution as a tool to model and understand dynamical systems in different

fields.

We aim to investigate nonlinear dynamical systems and their related bifurca-

tions and also to perform linear stability analysis. This linearisation of systems,

equilibrium points, and stability properties not only helps in understanding the

system’s behaviour, but also gives us an idea of the acceptable range of the nu-

merical solutions Ott (1993).

There are two kinds of dynamical systems: continuous and discrete. To explain

the concept of these types of dynamical systems in the real world we are present-

ing the following two simple examples:

• Consider a pendulum consisting of a solid stick with a ball bonded at its

end, and that the pendulum is free to swing around the pivot point. This

kind of pendulum oscillates without any friction, and so, it will remain
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oscillating permanently. Such a mechanism gives an example of a continuous

dynamical system.

• On the other hand, assume we measure changes in a bacterial population

over time. The growth of a bacterial population is an example of a discrete-

time dynamical system.

In this thesis, we focus on a continuous dynamical system.

Consider fi (i=1, 2, ...n) continuous functions in time t , the system of n ordinary

differential equations with the initial conditions takes the following form:

ẋ1(t) = f1(x1, x2, . . . , xn, µ1)

ẋ2(t) = f2(x1, x2, . . . , xn, µ2) (1.1)

... =
...

ẋn(t) = fn(x1, x2, . . . , xn, µn)

X(0) = (x1(0), x2(0), . . . , xn(0)) ≡ X0 where (x1, x2, . . . , xn) are variables,

(f1, f2, . . . , fn) are functions telling us how these variables change with time,

and µ are parameters Spiegelman (1997).

For any initial state of the system X(0), we can determine a solution of the

equations (1.1) either analytically or numerically to obtain the system state X(t)

at any time t > 0. The set of equations (1.1) (for linear homogeneous systems)

can also be written in the following format:

Ẋ = AX. (1.2)
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where A is a coefficient matrix.

To determine the eigenvalue λ we solve the following characteristic polynomial

equation:

det |A− λI| = 0. (1.3)

Next we calculate the eigenvectors as (A − λi)vi = 0, where each eigenvalue λi

has a corresponding eigenvector vi .

The eigenvalue can be written in complex form as λi = γi + iωi , where γi rep-

resents the system growth rate for Eq. (1.2) and ωi is the frequency. The linear

solution to system (1.1) is given by:

X(t) =
∑

viβie
λi , (1.4)

where X is a vector of state variables, vi are the eigenvectors, λi are the eigen-

values and βi are constants.

Nonlinear dynamical systems possess many properties that have not been totally

explored yet, such as, the sensitivity to changing initial conditions. In some

situations, it is still not possible to find accurate solutions. However, it is possible

to find equilibrium solutions in some cases e.g. systems with small perturbations.

1.2.1 Stability of Dynamical Systems

The stability of a particular solution of a dynamical system depends upon the

system’s equilibrium points.

Let us first define an equilibrium point.

Assume X∗ ∈ C , (C represents the complex numbers), if f(X∗) = 0, X∗ called
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an equilibrium point.

As a result the left-hand side of the system (1.1) equals to zero, Ẋ = 0 so the

changing rate in X is equal to zero when f(X) = 0. Consequently, there is no

change in the system’s solutions if we are driving it from the equilibrium point.

The equilibrium point of the dynamical system X∗ is asymptoticly stable if we

drive the system from any point X(t) ∈ H , (H ⊂ C), then X converges to the

equilibrium point X∗ , and X∗ is globally stable if H = C .

1.2.2 Linearised Differential Equations

Given a dynamical system (1.1), the Jacobian matrix of f = (f1, f2, . . . , fn)

at a point X∗ ∈ C is defined by:

J =



∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
...

∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn


The linear stability of the equilibrium point X∗ that belongs to the differential

equations (1.1) is determined by the eigenvalues of the Jacobian matrix.

The equilibrium point is asymptotically stable in the case where all eigenvalues

λi of the Jacobian matrix have negative real parts. In such a case the system is

exponentially stable near equilibrium.

The equilibrium point is unstable if even one of the eigenvalues has a positive

real part.

Purely imaginary eigenvalues can not be calculated by the linearisation method

at the equilibrium point Apety (2011).
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1.2.3 Dissipative Systems

The concept of a dissipative dynamical system has a remarkable interest in

some fields such as engineering and physics. Dissipation theory, which specifies

dissipative systems from general dynamical systems, results in a substantial re-

striction on their dynamical behaviour. Electrical networks are typical examples

of dissipative dynamical systems. In these systems, electrical energy is converted

into thermal energy in the form of dissipation as heat Willems (1972).

Suppose we have the set of equations as defined in the system (1.1) where diver-

gence is defined as

(∇.f) ≡ ∂f1
∂x1

+ . . .+
∂fn
∂xn

.

If the divergence has a negative value ∇.f < 0, the system (1.1) is called a

dissipative system. This is true if the variable perturbations are small.

1.2.4 Fourier Transform

The Fast Fourier transform (FFT) is extremely useful in applied mathematics.

By definition, Fourier analysis involves the transformation from the time domain

to the frequency domain Dym and Mckean (1972),

F{υ(t)} =

∫ ∞
−∞

υ(t)e−iωtdt

= υ̃(ω).
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A similar process is used to calculate the inverse Fourier transform,

F−1{υ̃(ω)} =
1

2π

∫ ∞
−∞

dωυ̃(ω)eiωt

= υ(t).

1.2.5 Frequency Spectrum

The signal in the frequency spectrum domain is represented by the frequency

spectrum. A frequency spectrum is generated by the Fourier transform and the

respective inverse Fourier transform completely reproduces the original function.

For better reproduction, the amplitude and phase of each frequency component

must be preserved. The fast Fourier transform (FFT) is applied to generate

frequency spectra. The FFT produce complex numbers which represent a length

and direction ( amplitude and phase) of the output signal.

Both linear and nonlinear operations are easier to analyse in the frequency domain

as compared to the time domain.

It takes a long time to determine the signal in the time domain while we can find

the signal behaviour easily using the frequency power spectrum. For instance, a

periodic signal appears as a unit pulse in the frequency domain.

1.2.6 Bifurcations

Bifurcation means the separation of a system (locally / globally) into two sets

of behaviour. Bifurcation of a dynamical system is a phenomenon where varying

parameters produce a qualitative change in a system’s dynamics.

In real life, we can demonstrate the flow in a circular cylinder linked by a smooth

sphere from the middle as an example. Let us suppose viscous fluid is flowing
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smoothly through the cylinder past the sphere. There are two cases:

- If the fluid is running slowly, then the fluid changes its behaviour suddenly and

becomes periodic.

- If the running increases, the flow becomes more and more complicated, leading

to turbulent flow.

In this model, the only element changed in the dynamical system is the grid size

that may be considered as a parameter which causes the bifurcation.

Let f(x) be a solution to a dynamical system, and assume the solution depends

on the parameter µ . The bifurcation, in this case, is a phenomenon which occurs

for a specific value of µ which is called the bifurcation parameter.

Hopf bifurcation is a local bifurcation in a fixed point of a dynamical sys-

tem which becomes unstable as a pair of complex conjugate eigenvalues of the

linearisation around the fixed point crossing the imaginary axis of the complex

plane.

1.2.7 Resonance

Resonance is a phenomenon that happens in a dynamical system when the driving

frequency of oscillation is equal to the natural frequency, giving rise to high am-

plitudes. The concept of resonance is normally used in physics for states where a

dynamical system produces periodic oscillations at some output frequency equal

to the driving frequency Benzit et al. (1981).

Many pieces of research investigate the occurrence of resonance in nonlinear dy-

namical systems in the presence of driving forces. In the case of controlling

dynamical systems using time-dependent parameters, the Lorenz system has an
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efficient response motion. In particular, the stochastic resonance appears as a

consequence of the cooperation between the system’s internal mechanisms and

the external periodic forcing. This phenomenon appears in many systems, which

are likely to have exciting applications of interest in different fields.

Scheiner and Galileo first observed sunspots after the significant scientific break-

through in Europe which began with the invention of the telescope. It was an

unusual occurrence that took place in the second half of the 17th century when

sunspots became a rarity. Some researchers believe that the remarkably cold

weather during those years was linked to their disappearance. The magnetic field

in sunspots was studied for the first time by George Hale Hale (1908). Recently,

many applications of the relationship between climate change and sunspots have

taken place. The evidence for such an effect is increasing Bond et al. (2001),

Haigh (1999). Most researchers have attributed the creation of magnetic fields

in the Sunspots to the effect of an α - turbulent dynamo, due to the α- dynamo

theory which was produced by Parker (1955).

As a consequence of Parker’s theory, Weiss et al. Weiss et al. (1984) modelled the

solar cycle behaviour as a 6th-order Lorenz system with nonlinear terms, where

D represents α effect of the Sun rotation defined as;

D = α∗Ω∗L4/η2

The dynamo number D is the control parameter of the system. It plays a role in

producing the poloidal field from the toroidal field.

Previous studies have assumed D to be a constant Weiss et al. (1984), Jones

et al. (1985). However, D might be time-dependent because the α effect might
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change over time. This thesis is focused on the numerical study of the Lorenz

system, which represents the magnetic field components (poloidal and toroidal)

and differential rotation. Several modified techniques are applied to control the

nonlinear complex- valued Lorenz system.

§ 1.3 The Lorenz System

In 1963, the meteorologist Edward Lorenz introduced one of the classic represen-

tations of modern nonlinear dynamics in a 3D autonomous model. He originally

designed his model to describe the Earth’s atmospheric conditions. Since then,

the Lorenz model has applications in many fields, due to its ability to produce

different types of behaviour, including some unusual features, such as the famous

butterfly pattern Lorenz (1963).

The Lorenz system has been widely used as a simplified model to understand

some natural phenomena Yassen (2005). As a result, a large number of novel

systems have been produced based on the first Lorenz system Wang and Wang

(2008), Moghtadaei and Golpayegani (2012) Cuomo et al. (1993). In particular,

the Lorenz system has many applications in various science disciplines, such as

the weather and biological systems Jones et al. (2009), studying the sunspot pe-

riod Hathaway et al. (1994), and laser studies Wu et al. (2010).

Lorenz’s original paper Lorenz (1963) received much attention in many fields of

science Bunimovich (2014). This is especially true in the field of astronomy, and

it has been widely studied for various constant parameters Yan (2005).

In fact, Lorenz had only to look at his system’s solution without plotting any

figures of his results because his computer in 1963 was quite primitive. Since the
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1980s, the Lorenz system has been used as a dynamic model for the solar mag-

netic cycle which has a dominant regular time interval of 22 years, modulated by

irregular behaviour Suzuki (1998), Parker (1975).

In the last two decades, the study of the solar cycle has evolved from the tradi-

tional trend of understanding into a new intention of studying. A great amount

of research is carried out on the study of the sunspots cycle.

The most interesting nonlinear system is the one that describes magnetic fields

in sunspots. The Lorenz system has been used to simulate the dynamic interac-

tions between the magnetic field components and the differential speed of rotation

in the sunspots. In a Cartesian system, the production of large-scale magnetic

fields can be simulated by equations that produce plane waves Parker (1979).

This linear Cartesian system of differential equations can be extended by adding

some nonlinear terms in order to obtain a model dynamo that is able to generate

nonlinear finite-amplitude waves.

It is interesting to know the process of finding the Lorenz equations, which are

used to simulate the generating of the magnetic field in sunspots. For this reason

we address the Lorenz’s system provenance in the following subsection.

1.3.1 Magnetohydrodynamics

A plasma is a collection of ions and electrons. It is treated as a continuum

fluid in magnetohydrodynamics (MHD). In a plasma, the interaction between

the magnetic field B and the velocity field u is governed by the following MHD

equations:

∂B

∂t
= ∇× (u×B) + η∇2B (1.5)
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and the Navier-Stokes equation

ρ

[
∂u

∂t
+ (u.∇)u

]
= −∇p+ ρg + ρν∇2u + J ×B. (1.6)

Here,

B ∈ C : Magnetic field

u ∈ C : Velocity

ρ ∈ R : Density

ν ∈ R : Kinematic viscosity

J ×B ∈ C : The Lorentz force term

ρg ∈ R : Gravitational force

η = 1
µ0σ

, ∈ R : The magnetic diffusivity where σ is the conductivity and µ0 is

permeability.

1.3.2 The Magnetic Reynolds Number

The magnetic Reynolds number Rm is a dimensionless number, which is the ratio

of the first term on the right-hand side of the induction Eq. 1.5 to the second

term. The Reynolds number gives the ratio of advection of magnetic field to

diffusion.

Rm =
|∇ × (u×B)|

η|∇2B|

• In the case Rm � 1 the induction equation becomes

∂B

∂t
= η∇2B.
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In this case, the diffusive effects are controlling the system and the magnetic

field moves smoothly through the fluid, so there is no effect on the magnetic

field from the fluid.

• If Rm � 1 the magnetic field is frozen into the fluid, it moves with the

plasma.

In this case, the induction equation reduces to

∂B

∂t
= ∇× (u×B). (1.7)

The essential principles of the dynamo process are the generation of toroidal

flux from a poloidal flux through the differential rotation of the Sun at different

latitudes by stretching out the poloidal field lines into the flow direction and pro-

ducing the poloidal component from the toroidal in a cyclic processes.

The dynamo equation:

∂B

∂t
= ∇× (u×B)− η∇2B + α∇×B (1.8)

The magnetic field has three componants. In spherical coordenate (r, θ, ϕ) we

can write

B = Bp + Bt

where

Bp = ∇× (0, 0, A(r, θ, t)),

Bt = (0, 0, B(r, θ, t)).

u = (0, 0, Ωr sin(θ))
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As

Bp = ∇×A = (Br, Bθ, 0)

Then

Bp =

(
1

r sin(θ)

( ∂
∂θ

(Aϕ sin(θ)−∂Aϕ
∂ϕ

)
r̂,

1

r

( 1

sin(θ)

∂Ar
∂ϕ
−∂rAϕ

∂r

)
θ̂,

1

r

( ∂
∂r

(rAθ)−
∂Ar
∂θ

)
ϕ̂

)

Hence

Bp =
1

r sin(θ

(
∂r sin(θ)

r∂θ
Aϕ,

−∂r sin(θ)

r∂r
Aϕ, 0

)

Figure 1.5: A graph illustrating the poloidal (θ) direction, represented by the
vertical circle, and the toroidal ( Φ) direction, represented by the horizontal
circle.

• From (1.8)

∂B

∂t
= ∇× (u×B).
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By using standard vector identities we can write

∂(Bp + Bt)

∂t
= ∇× (u×B) = [(∇.B) + B.∇]u− [(∇.u) + u.∇]B

As there is no magnetic monopole, the divergence of the magnetic field is

equal to zero, i.e. ∇.B = 0. Also ∇.u = 0.

Hence

∂B

∂t
= r sin(θ)(∇×A).∇Ω (1.9)

• In Eq. (1.8) by letting

∂B

∂t
= −η∇2B

Therfore

∂(Bt{ϕ}+ Bp{(r, θ)}
∂t

= α∇×Bt {(r, θ)}+ α∇×Bp {ϕ} (1.10)

This leads to

∂Bt

∂t
= α∇×∇×A = α∇(∇.A)− α∇2A

As ∇.A = 0

∂(0, 0, B)

∂t
= −α(∇2 − 1

r2 sin2(θ)
)Aϕ̂ (1.11)

From equation 1.10

∂Bp

∂t
=
∂(∇× A)

∂t
= α∇×Bt
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We can rearrange this as

∇× ∂(0, 0, A)

∂t
= ∇× (α(0, 0, B))

Therfore

∂A

∂t
= αB (1.12)

From equations(1.9), (1.11) and (1.12)

Ȧ = αB + η
(
∇2 − 1

r2sin2(θ)

)
A (1.13)

Ḃ = rsin(θ)Bp.∇Ω + η
(
∇2 − 1

r2sin2(θ)

)
B (1.14)

The equations (1.13) and (1.14) represent an αΩ dynamo, where α rep-

resents the effects of helicity 1 and η represent the enhanced turbulent

diffusivity, which is constant.

In the case α = 0, the poloidal field A would decay exponentially, meaning

B would decay to zero as well Ott (1993).

In this case the magnetic field is bounded by the Lorentz force’s effect on

the motion. This can cause changes in the azimuthal velocity υ , which

evolves according to Eq. (1.6) as

∂υ

∂t
= F (r) + j ×B.Φ̂ + ν

(
∇2 − 1

r2sin2(θ)

)
υ. (1.15)

If we write υ = V (r)+Ψ(r, t) the time-independent component, V satisfies

the following equation

1The helicity H of the magnetic field B define by the formula:

H ≡
∫

A.BdV

where A is the vector-potential of B (B = ∇×A).
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F + ν
(
∆− 1

r2sin2(θ)

)
V = 0.

Thus, Eq. (1.15) can be rewritten for Ψ as

∂Ψ

∂t
=

1

µ0ρ

[
∇× (BΦ̂)

]
×Bp.Φ̂ + ν

(
∆− 1

r2sin2(θ)

)
Ψ. (1.16)

From the equations (1.13), (1.14) and (1.16) and by choosing the magnetic

field components B and Ψ as,

~B = (0, B(t)eikx, ikA(t)eikx).

We may assume that the α effect decreases as the magnetic field grows,

hence

Ψ(t) = Ψ0(t) + Ψ(t)e2ikx.

Equations (1.13), (1.14) and (1.16) can be put in the following 7th-order system

Ȧ(t) = 2DB(t)− A(t)

Ḃ(t) = i(1 + Ψ0)A(t)− 0.5iA∗Ψ(t)−B(t) (1.17)

Ψ̇(t) = −A(t)B(t)− νΨ(t)

Ψ̇0(t) = 0.5(A∗(t)B(t)− A(t)B∗(t))− ν0Ψ0(t).

In the above equations, Ψ0 is a real variable, while A , B and Ψ are complex,

and ν and ν0 are constants.

The system (1.17) is 7th-order and has an exact periodic solution Sood and Kim

(2013). This system can be reduced into a 5th-order system by letting ν → ∞

then Ψ→ 0.
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Also, the system (1.17) can be written as a 6th-order system, in case ν0 → ∞ ,

this leads to Ψ0 → 0. In this study, we focus on the second case.

The dynamical system consisting of the 6th-order differential equations is given

as:

Ȧ(t) = 2DB(t)− A(t),

Ḃ(t) = iA(t)− 0.5iA∗Ψ(t)−B(t), (1.18)

Ψ̇(t) = −iA(t)B(t)− νΨ(t).

Here, A , B and Ψ are complex variables, representing the poloidal and toroidal

magnetic fields, and the differential speed of rotation, respectively. Ψ has double

the frequency of magnetic fields A and B . A∗ is the complex conjugate of A .

ν is a real constant which represents the viscosity of the flow. D is the control

parameter. Different techniques have been applied to the Lorenz system that give

different types of behaviour, such as damping, periodic, and chaotic oscillation.

Jones et. al. 1984 Weiss et al. (1984), studied the 6th-order nonlinear Lorenz

model for a constant D . They found that the Lorenz system in plane geometry

has a Hopf bifurcation when D = 1, which results in to a periodic solution for

D > 1, followed by a second bifurcation at D = 2.07. Further increasing the

parameter D leads the system’s solution to an unstable state and gives chaotic

behaviour for D ≥ 3.84.

Our study will use the 6th-order Lorenz model that is presented in Weiss et al.

(1984). For more details can be found in Weiss et al. (1984), ?.
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1.3.3 Bifurcation Diagram of the Lorenz System

The bifurcation diagram of a system is a summary of the sequence of behaviours

as the control parameter increases.

Fig 1.6 illustrates the bifurcation diagram of the Lorenz system as a function

of D . At each value of the parameter D on the Y-axis, the diagram provides

different values that are obtained after several hundred thousand iterations.

As can be seen, a small difference in the parameter D changes a steady solution

to a chaotic solution.
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The bifurcation diagram for D constant

Figure 1.6: Bifurcation diagram for 0 < D < 4.

We see that for D < 1, all the points are located at zero, which is the only

attractor point for D < 1. For 1 < D < 2.07, we can also see only one fixed

point attractor. However, the attracted value increases as D increases.
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1.3.4 Stability

Now to explain the system behaviour we need to study the stability of its solution.

By linearize the system (1.18) around the equilibrium point (0, 0, 0) can be

rewritten in the matrix form:

d

dt


A

B

Ψ

 =


−1 2D 0

i −1 0

0 0 −ν



A

B

Ψ


Thus, the characteristic polynomial is given by

∣∣∣∣∣∣∣∣∣∣
−1− λ 2D 0

i −1− λ 0

0 0 −ν − λ

∣∣∣∣∣∣∣∣∣∣
= 0,

which gives eigenvalues

λ = −ν,−1±
√
D(i+ 1).

It is obvious that when λ = −ν the system is stable while the positive square

root causes instability. Clearly the solution is stable for D ≤ 1 and unstable for

D > 1 ( as for D > 1 λ > 0). The global stability can be studied by considering

a suitable Lyapunov function:

L ≡ σ−1|A|2 + 2|B|2 + |Ψ|2.

Thus,
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dL

dt
= −|2B − {D + i}A|2 − 2ν|Ψ|2 +

4D2

3
|A|2.

Hence the 6th-order system (1.18) always decays provided D < 1, this clearly

seen in Fig. 1.6.

1.3.5 The system’s features

The system has some important fundamental features as outlined below:

• The system (1.18) is dimensionless.

• It is autonomous, meaning that time does not explicitly appear on the right-

hand side of the equations.

• The system has a dissipative structure, satisfying the following inequality:

∂Ȧ

∂A
+
∂Ḃ

∂B
+
∂Ψ̇

∂Ψ
= −(ν + 2) < 0.

Since ν is a positive constant, the system’s solutions are bounded.

• The system is symmetric under the transformation

(A, B, Ψ, D, F )→ A∗, −B∗, Ψ∗, −D, − F )

• After linearisation of the equations around zero, the eigenvalues are

λ = −ν,−1±
√
D(i+ 1). (1.19)
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This implies that, as time increases, instability happens only from the positive

real eigenvalue in the positive square root. Hence, the trivial solution for |D| < 1

is stable.

Due to the changes we made to the system (1.18), it can produce different kinds

of behaviour including chaos within different ranges of parameter values.

For constant D > 1, the system has a nonlinear periodic solution which becomes

unstable as D is increased for ν < 1 Weiss et al. (1984). Besides, the system

generates chaotic behaviour for the most common value of ν < 1. The solutions

to this system are nonlinear dynamo waves, a trivial solution A = B = Ψ = 0

also exists for constant D at D < 1 Weiss et al. (1984). Also, Jones et al. Jones

et al. (1985) found the existence of a sequence of bifurcations as the parameter

D is increased from zero; conditioned on ν < 1.

The set of equations (1.18) have no analytic solutions for D > 2.07 Jones et al.

(1985) due to nonlinearity, which plays an essential role in the solution’s stability.

Analytic solution for D < 2.07 is shown in Jones et al. (1985).

As a consequence, it becomes complicated to determine the system’s solution us-

ing manual techniques. As a result, numerical solution is the only way to solve

such a system.

In this work, we have solved the set of equations (1.18) on MATLAB and IDL, by

using the Runge-Kutta (RK45) method with small time steps (0.001). A typical

value of the parameter ν = 0.5 is chosen, as was used in many previous studies,

such as Jones et al. (1985) Mohamed and Kim (2014), to ensure chaotic behaviour.

Here, we used (A(0), B(0), Ψ(0))=(0, 1, 0) as an initial condition. Although
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the initial condition is fixed throughout this numerical simulation, varying these

values does not change the solution for a sufficiently long intervals of time.

In particular, we modify the Lorenz system is presented by Jones et al. (1984)

Weiss et al. (1984) as follows:

• First, by changing the constant D to be a time-dependent parameter as

D = D0 cos(ω1t) in Chapter 2.

• Second, we have extend the study by choosing the parameter to be a com-

bination of a constant and a time-dependent parameter as D = D0 +

C0 cos(ω1t) in Chapter 3.

• Furthermore, we have combined internal and external time-dependent pa-

rameters, by using D = C0 cos(ω1t) and adding F = F0 cos(ωt) into the

first Equation in the Lorenz system 1.1 , we investigate the system response

to such parameters in Chapter 4.

In Chapters 2/3 A and B have identity solutions, however, in Chapter 4 our

extension of the system, as well as changing it’s mechanisms, turns the system

from identity solutions for A and B into different behavioural structures/trends

for some range of for some ranges of the parameters value.



Chapter 2

Oscillatory Control Parameters

Abstract

For a better understanding of the role of control parameters in nonlinear dy-

namical systems, we numerically examine the effect of the oscillatory control

parameter D = C0 cos(ω1t) on the Lorenz model for a dynamo, where C0 and

ω1 are the driving amplitude and frequency, respectively. Although the mean

value of D is zero, finite-amplitude solutions are found for sufficiently large C0

and small ω1 . Overall, smaller C0 and higher ω1 are less efficient in generating

finite-amplitude solutions. Also, the bifurcation in the system’s solutions occurs

at a larger value of C0 and a smaller value of ω1 . Furthermore, we found a linear

relationship between C0 and ω1 for the transition between finite-amplitude and

damping solutions.

30
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§ 2.1 Introduction

The Lorenz system was used as a dynamo model for the solar magnetic cycle which

shows a dominant 22-year regular period modulated by irregular behaviour Hath-

away et al. (2009),Suzuki (1998). Specifically, this model describes the evolution

of two components of a magnetic field, A and B , and the differential angular

speed of rotation Ψ, which are governed by the following non-linear ordinary

differential equations:

Ȧ(t) = 2DB(t)− A(t),

Ḃ(t) = iA(t)− 0.5iA∗Ψ(t)−B(t), (2.1)

Ψ̇(t) = −iA(t)B(t)− νΨ(t).

A(t) and B(t) represent the poloidal and toroidal magnetic fields, respectively;

Ψ(t) is the differential angular speed of rotation. All these variables are complex.

A∗ denotes the complex conjugate of A Jones et al. (1985). In this set of equa-

tions (2.1) the magnetic field generation depends on the parameter D , which is

known as the dynamo number. In this research D is taken to be the main control

parameter.

The set of equations (2.1) have the following two properties:

(1) They are symmetric under the transformation (A,B,Ψ, D) → (A∗,−B∗,Ψ∗,−D).

(2) Due to this symmetric property, the dynamics governed by a negative D has

a corresponding positive value, so it is sufficient to consider the behaviour for

positive D ( i. e. D ≥ 0).
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The solution of the given set of equations (2.1) has a finite-amplitude solution

with non-linear oscillations Jones et al. (1985), Thomas and Weiss (2004).

After ignoring the quadratic terms of the set of equations (2.1), a linear analysis

for constant D is given by:

d

dt


A

B

Ψ

 =


−1 2D 0

i −1 0

0 0 −ν




A

B

Ψ



which gives the following eigenvalues:

λ ∈ {−ν,−1±
√
D(i+ 1)}. (2.2)

This implies that for D < 1, the solutions damp in time, approaching the sta-

ble solution A(t) = B(t) = Ψ(t) = 0 as t → ∞ , when D = 1, the solution is

marginally stable.

In the presence of non-linear terms it gives rise to the first bifurcation along with

linear frequency value ω0 = 1 1 at D = 1, while the second bifurcation occurs at

D = 2.07 where the famous pattern of a butterfly wing appears. If the parameter

D goes on increasing further, the attractor structure becomes more and more

complex. Ultimately it leads towards chaos at D ≈ 3.84, see e.g. Jones et al.

(1985), Weiss et al. (1984).

While the case of constant D has been extensively studied, the situation has not

been studied well for what happens when D varies in time, with a zero mean

value.

1ω0 represents the system’s frequency for D constant (ω0 =
√
D
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It is important to note that the parameter D captures the overall effect of small-

scale dynamics and is called the transport coefficient or the dynamo number Boc-

caletti et al. (2000), Proctor (2007), Bhattacharyaya and Bhattacharjee (2001),

Newton and Kim (2012). The parameter D can vary in time as the transport

coefficient is not guaranteed to be constant (e.g. see, Douglas et al. (2013), Becker

and Kremer (1996), Graham (1982)). It is the main focus of this chapter to look

into this matter and to examine whether the time-dependent control parameter

D can alone be lead to the finite-amplitude solutions, and if so, then how these

solutions can be related to the amplitude as well as the frequency of the param-

eter D . For this reason, in this chapter, we consider oscillatory D parameters

of the form D = C0 cos(ω1t) for fixed as ν = 0.5. As the multiplicative control

parameter D is present, analytical solutions of the non-linear system are not

possible and hence we perform numerical simulations. As the parameter D is

dependent upon the amplitude C0 and frequency ω1 , in section 2.2, for a fixed

ω1 the amplitude C0 is varied, while in section 2.3 for a fixed C0 , the frequency

ω1 is varied.

In both cases, system (2.1) is solved with the help of the Runge-Kutta-Fehlberg

(RKF45) method with a suitably small time step i.e. 0.001 for sufficient numeric

accuracy, and the amplitude and frequency power spectra are computed from

the time history of A , B , and Ψ. Moreover, the relation between C0 and ω1

is established for bifurcation, which are also found in simpler systems Newton

and Kim (2012), Douglas et al. (2013). It can be seen that the reported relation

brings up the transitions between finite-amplitude and damping solutions which

are shown as being distinct from the amplitude death for damping of oscillation

Guo-Lin and Wen-Ping (2007).



34 CHAPTER 2. OSCILLATORY CONTROL PARAMETERS

§ 2.2 Results for Fixed ω1

As discussed above, when D is constant, linear instability appears for D > 1

along with finite-amplitude solutions. Equations (2.1) indicate that the frequency

for this solution is ω0 = 1. Here, we studied the response of the system by

considering two different cases for ω1 . The first case is when the driving frequency

ω1 is smaller than ω0 = 1, while in the other case ω1 is larger than ω0 = 1.

Specifically, by varying C0 , equations (2.1) are solved numerically for ω1 = 0.5

in section 2.2.1 and ω1 = 10 in section 2.2.2.

2.2.1 ω1 = 0.5 with varying C0

In this case, the driving frequency ω1 is lower than ω0 = 1. The behaviour of the

system becomes complicated increasing values of C0 from zero. In the interval

C0 < 1.78, the solutions of the system (2.1) rapidly evolve to the trivial equi-

librium point (0, 0, 0). This is the expected damped solution for the oscillatory

control parameter having mean value zero. With further increases in C0 , the sys-

tem bifurcates into finite-amplitude solutions and at C0 ≈ 1.78, there exists the

first bifurcation where the observed periodic oscillation has frequency 0.5. This

obtained output frequency i.e. 0.5 equals to the driving frequency ω1 = 0.5. In

Fig. 2.1, the Poincaré section is clearly shown as red circles2. It is very interesting

to note that these circles are positioned on top of each other and in such a way

they indicate that the output frequency and the driving frequency are the same.

2A Poincaré section is used in this part to detect some structure in the system’s attractors.
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Figure 2.1: (a) Phase-space of Re(A), Re(B) and Re(Ψ) for C0 = 5.11. (b)
Time series of Re(A) for C0 = 5.11.
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Figure 2.2: (a) Quasi-periodic solution of (2.1) for C0 = 5.12. (b) Time series
of Re(A) for C0 = 5.12. The Poincaré sections for ω1 = 0.5 are denoted by red
circles.
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Further increasing the value of C0 gives rise to phase trajectories that are more

complex, indicating that the toroidal and poloidal magnetic fields have chaotic

behaviour. At the particular value C0 ≈ 2.68, the system experiences a second

bifurcation and ultimately becomes chaotic. As Fig. 2.1 shows, further increased

value, i.e. at C0 = 5.11, the solution is again periodic with different values of the

frequency and amplitudes. When C0 exceeds slightly above C0 = 5.11 − 5.12,

the periodic oscillations become quasi-periodic while in Fig. 2.2 the red circles

represents the Poincaré section having an oval twist due to the output frequency.

This demonstration tells us that the solution is sensitive to a slight change in the

values of the parameter C0 . Moreover, further increasing the value of C0 leads

to complex behaviour by making the attractor of the system more complex. At

C0 ≈ 6.56, a changeover to a chaotic state takes place. As the system experi-

ences bifurcations of a different kind by increasing C0 , all bifurcations can not

be determined easily. This is because with a small change in C0 there occurs a

rapid change in their behaviour.

If we compute a frequency spectrum of B for a fixed C0 value and find the fre-

quency where there is the maximum amplitude spectrum, then we can understand

the overall behaviour of the system. The frequency spectrum can be computed

with the help of a fast Fourier transform (FFT) of the time series of variable B .

The plot of this dominant frequency, for maximum intensity of B as a function

of C0 is shown in Fig. 2.3.

As an interesting fact, the dominant frequency appears almost constant before

exceeding a value of 0.5 with increasing C0 . The constant frequency between suc-

ceeding jumps is due to mode-locking (e.g. Rajasekar and Lakshmanan (1988)).

Therefore, the system is controlled by the driving frequency ω1 = 0.5 by keeping

the dominant frequency as an integer multiple of the driving frequency in a small
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region by mode-locking. In a non-linear periodically forced oscillator, such jumps

were also observed (i.e. Van-del Pol oscillator Rajasekar and Lakshmanan (1988),

Parlitz and Lauterborn (1987)).

In Fig. 2.3, the dominant frequency shows a rough representation of the systems

behaviour over time, as for any fixed value of C0 , the frequency can have a wide

spectrum with multi-peaks. Therefore, for different values of C0 , the intensity of

the frequency spectrum is shown in Fig. 2.4 with colour, where a high intensity is

represented by yellow. For the dynamical variable B , firstly we obtained a time

series for each value of C0 to attain that frequency where the intensity for B is

maximum.
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Figure 2.3: The dominant frequencies of B for ω1 = 0.5.

To obtain the frequency of the maximum intensity for B , first we obtain a time

series of the dynamical variable B for each C0 . Using (FFT) we find a Fourier
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series of B to compute the power spectrum of the frequency for each C0 . Once

a power spectrum is obtained for each C0 , colours are assigned according to the

colour coding as shown in the bar next to the figure, where the frequency of

the maximum intensity to low intensity is represented by yellow to dark colours.

When zoomed in, multiple maxima separated by integer multiples of the driving

frequency ω1 = 0.5 are observed for small C0 < 2.5. A region of the brightest

yellow in Fig. 2.4 shows that the frequency of high intensity increases almost

linearly with C0 , similar to the behaviour demonstrated in Fig 2.3.

Figure 2.4: The frequency spectrum of the magnetic field against C0 for ω1 = 0.5.

Fig. 2.4 clearly shows that the region of the frequency of high intensity gradually

becomes wider as C0 increases. Furthermore, it also shows that the entire fre-

quency spectrum significantly broadens to higher frequencies around 4 < C0 < 5.

This broadening is interestingly associated with a rapid increase in |B|2 with C0

as shown in Fig. 2.6.
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Figure 2.5: The frequency spectrum of the magnetic field for C0 = 2, 5 and 10
at ω1 = 0.5.

Now we study the change in the amplitude of B with C0 . This can be computed

by taking the time average of |B|2 for a considerably long time and then plotting

it as a function of C0 . Here an interesting behaviour appears in Fig. 2.6 that,

with C0 , the overall increasing amplitude intermixed with jumps, as was observed

in Fig. 2.3 for the frequency spectrum.

Overall, starting from zero amplitude for the damping case, the amplitude in-

creases roughly linearly with C0 for C0 ∈ (1.78, 4.3). It then starts increasing

more quickly for C0 > 4.3 where we observed the frequency spectrum to become

broader suddenly as mentioned above. For further increased value of C0 there is

a gradually slower increase in amplitude.
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Figure 2.6: The amplitude of Log(|B|2) against C0 for ω1 = 0.5.

2.2.2 ω1 = 10 with varying C0

We consider ω1 = 10, a driving frequency of much higher value than ω0 = 1 and

examine how the response of the system is different. We consider different values

of C0 to examine the detailed behaviour of the system.

The domain 0 < C0 < 7.2 gives the stable decaying solution for the system and

it is the same behaviour of the system as was observed previously in section 2.1,

in the interval 0 < C0 < 1.78 for ω0 = 0.5. At C0 ≈ 7.2, the first bifurcation

happens along with a finite-amplitude periodic solution.
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Figure 2.7: Chaotic attractors for C0 = 45.

We observe from the study of the Poincaré section that the oscillation frequency

is identical to the driving frequency. It is important to notice that this bifur-

cation at driving frequency ω1 = 10 occurs at higher value of C0 than that for

ω1 = 0.5 in section 2.2.1. This critical value of C0 is also higher than D = 1 for

constant D Weiss and Thompson (2009). We obtained a quasi-periodic solution

at C0 ≈ 19.4 when the second bifurcation occurs. A more complex behaviour is

observed in the interval 35 < C0 < 45 which involves oscillations of various types

along with various values. A change to the chaotic behaviour is established for

C0 > 43. An example of this chaotic behaviour is shown in Fig. 2.7, that is the

phase-space plot for Re(A) and Re(B) with the related time series for C0 = 45.
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Figure 2.8: The frequency spectrum of the magnetic field against C0 for ω1 = 10.

For the general understanding of the behaviour of the system at ω1 = 10, the

frequency power spectrum is shown in Fig. 2.8, for different values of C0 . It is of

great interest to notice that a bright line for high-intensity appears along a hori-

zontal line of frequency 10, which corresponds exactly to the driving frequency.

The peak at ω1 = 10 gradually becomes wider from the lower frequency side for

7.2 < C0 < 17 which causes the sudden broadening of the entire spectrum, firstly

when C0 ≈ 35 and then about C0 ≈ 43. Reflection of these changes can also be

seen in the behaviour of Log(|B|2) shown in Fig. 2.9 where at about C0 ≈ 35

and C0 ≈ 43, there occur sudden jumps in Log(|B|2).

To obtain the frequency of the maximum intensity for B , first of all, a time

series of the dynamical variable B for each C0 is obtained. Using (FFT), a

Fourier series of B is found to compute the power spectrum of the frequency for
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each C0 . Once a power spectrum is obtained for each C0 , colours are assigned

according to the colour coding as shown in the bar next to the figure, where the

frequency of the maximum intensity to low intensity is represented by yellow to

dark colours. When zoomed in, multiple maxima separated by integer multiples

of the driving frequency ω1 = 0.5 are observed for small C0 < 2.5. A region

of the brightest yellow in Fig. 2.4 shows that the frequency of high intensity

increases almost linearly with C0 , similar to the behaviour demonstrated in Fig.
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Figure 2.9: Log(|B|2) as a function of C0 for ω1 = 10.

We now examine the amplitude of B as a function of C0 . In comparison with the

lower driving frequency case ω1 = 0.5, the system in this case tends to have the

smaller amplitude. Mainly, a rapidly decreasing amplitude is seen in the interval

8 < C0 < 35 as shown in Fig. 2.9. A Linear fit by red crosses is overplotted in

this region in Fig. 2.9. This decrease is replaced a roughly quadratic increase,

in the interval 35 < C0 < 42. After that |B|2 becomes saturated by attaining a
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constant value about ≈ 4.5 at larger C0 , i. e. around C0 ≈ 43.

In this case the obtained asymptotic value is much smaller than that of the lower

driving frequency case.

It is clear from these results that the smaller amplitude C0 as well as higher

frequency ω1 are not much capable of generating finite-amplitude solutions of

the Lorenz system, while the bifurcation occurring at a larger value of C0 and

smaller values of |B|2 . The difference in the trends between Fig. 2.6 and Fig.

2.9 reveals that the amplitude has very different behaviour with changing values

of C0 . Fig. 2.9 shows the amplitude for lower frequency increases monotonically

with C0 .

Moreover, in Figs. 2.8 and 2.9, the results for the frequency spectrum and am-

plitude imply the fundamental change in response of the system around C0 ≈ 35

which depends on the larger values of the frequency. Section 2.3 presents a com-

prehensive discussion of the dependence of the response of the system on the

driving frequency.

§ 2.3 Results for Fixed C0

As discussed earlier, higher frequency of D is generally not very efficient in gen-

erating finite-amplitude solutions for the Lorenz system. The response of the

system depends on the value of the driving frequency compared with the nat-

ural frequency of the system. This section elaborates on these by studying the

dependence on the frequency systematically when ω1 is varied for two different

values of C0 . Specifically, these two values are considered in such a way that for

constant D = C0 (i.e. ω1 = 0) they have periodic as well as chaotic attractors,
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and the changes that also occur in damping solution for suitably larger ω1 . It

can be noted that the values of C0 = 2 and C0 = 20 are selected as examples

of cases when a constant control parameter yields periodic and chaotic solution

correspondingly.

2.3.1 C0 = 2 with varying ω1

When ω1 increases for ω1 ∈ (0, 2) the attractors are periodic but the frequencies

change with ω1 . During this stage, the driving frequency is sufficiently small

and can be considered as constant (in time). Around ω1 ≈ 2.2, the limit cycle

disappears, and the system damps quickly to the trivial equilibrium state. The

frequency power spectrum in Fig. 2.10 reveals this behaviour where there appears

regions in yellow multiple maximal in the interval 0 < ω1 < 2.2, with the output

frequencies as nω1 (n ∈ Z) i.e. an integer multiple of the driving frequency.

Significantly, distinct peaks occur at the same frequencies as the driving frequency

(i.e. the bottom line). For ω1 > 2.2 damping makes the spectrum really weak.



46 CHAPTER 2. OSCILLATORY CONTROL PARAMETERS

Figure 2.10: Frequency spectrum of the magnetic field as a function of ω1 for
C0 = 2.2.
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Figure 2.11: |B|2 as a function of ω1 .
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The drop in the solution’s amplitude can be seen in Fig. 2.11 where |B|2 is

plotted using log scale as a function of ω1 . Around ω1 ≈ 2.2, the sudden drop of

|B|2 is visible.

What is the reason behind the sudden change in amplitude and frequency of B

at about ω1 ≈ 2.2? It appears it is linked to the change of state from when the

system responds coherently to the driving frequency to the state when it cannot

because of the large value of the driving frequency. This is also related to our

previous comment that the sufficiently small frequency ω1 < 1 in comparison

with linear onset frequency is taken to be approximately constant.

2.3.2 C0 = 20 with varying ω1

Now we will study the response of the system for different driving frequencies

ω1 while the driving amplitude is fixed at a large value C0 = 20. Due to a

significantly larger perturbation amplitude C0 , the behaviour of the system in

this case is different from the cases in section 2.3.1. The solution begins at

ω1 = 0 with a chaotic orbit which is expected if D was a constant with value

D = 20, and then around ω1 ≈ 13 it bifurcates to a periodic orbit after losing the

chaotic attractor. At about ω1 ≈ 28.29, there occurs a transition to the damped

solution. For ω1 = 1, Fig. 2.12 illustrates chaos by showing the Poincaré section

red circles.
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Figure 2.12: (a) 2D trajectory plot of Re(A) against Re(B) for a chaotic solution
at ω1 = 1. (b) Time series of Re(A).

In Figs. 2.13 and 2.14, the overall behaviour of the system is summarised, in the

order of the frequency spectrum and amplitude, respectively. In Fig. 2.13 the

bright yellow in a broadband which is the vertical direction for small ω1 < 7 is a

demonstration of chaos, which gradually weakens with increasing ω1 . This chaos

is lost by the system between 7 < C0 < 13, and at ω1 = 13 it bifurcates to a

periodic orbit. This periodic orbit lasts up to ω1 = 28.29. For ω1 > 28.29, the

damped solution is represented, in Fig. 2.13, in dark colour.

How are the above changes in the frequency spectrum related to the amplitudes

behaviour? In particular, for ω1 < 7, the amplitude first oscillates and then in-

creases very slowly as ω1 approaches 28.29. At this point, a transition to damping

along with a sudden drop in amplitude occur. Here, e0.1083ω1 and e−3.735ω1 are two

exponential functions that are fitted to the amplitude in intervals 7 < ω1 < 28

and ω1 > 29, respectively. These two fitted curves, in Fig. 2.14, are plotted in

blue lines.
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Figure 2.13: The frequency power spectrum of the magnetic field for C0 = 20.
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Figure 2.14: Log(|B|2) as a function of ω1 for C0 = 20.

In the interval 7 < ω1 < 28.29, it seems that the change in the frequency as
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well as amplitude is linked to the change of state from when the system responds

coherently to the driving frequency, to the state when it cannot because of the

large value of driving frequency as was observed in section 2.3.1. This transition

involves the bifurcation having a quasi-periodic/periodic attractor.

§ 2.4 Discussion and Conclusion

We have studied the effects of D = C0 cos(ω1t) (i.e. time-dependent) dynamo

number on the solar dynamo model represented by the Lorenz system. In par-

ticular, we vary C0 in sections 2.2 and 2.3. The parameter D depends on the

amplitude (C0 ) and frequency ω1 , respectively. Although D does not have a

mean value in average time, for sufficiently large C0 and smaller ω1 the system

has finite-amplitude solutions. When ω1 is fixed and C0 increases, we witness

how the system exhibits bifurcation towards chaos. On the other hand, when C0

is fixed and ω1 increases the finite-amplitude solution leads to a damped solu-

tion. While generating finite-amplitude solutions, the control parameter with a

smaller amplitude C0 and a higher frequency ω1 is found to be less efficient and

a bifurcation takes place at large value of C0 and smaller ω1 . Here an interesting

question arises, as to whether these are a systematic way of compensating the

effect of C0 by ω1 and vice versa. In order to answer this, we consider the more

different values of C0 and ω1 , and determine the point of bifurcation between a

finite-amplitude solution and a damped solution.
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Figure 2.15: C0 against ω1 for the onset of a finite-amplitude solution.

Our results are shown in Fig. 2.15, where circles show the values of C0 and ω1 the

bifurcation points. This leads us to find a linear relation ω1 = 1.4465C0− 0.4212

for the bifurcation points and plot it as a solid red line in Fig. 2.15. ω1 can

be altered linearly with C0 to compensate for the effect of the change in C0 .

Such a type of linear relationship was reported in a simpler nonlinear dynamo

model Newton and Kim (2012) and also in a nonlinear dynamo model as well as

in a non-linear dynamical model i.e. for transport barriers in laboratory plasmas

Douglas et al. (2013) where an oscillatory control parameter is additive. Hence,

this linear relation could be a basic aspect of periodically oscillatory perturbation

in nonlinear dynamical systems that will be examined in other non-linear systems

(e.g. Rössler Wang and Chen (2011), Gaspard (2005) and Chen LÜ et al. (2002))

in future work. The effect of time-dependent control parameter involving a mean

part as well as an oscillatory part will also be presented in Chapter 3, where an

interesting question of the effect of resonance will be examined. It is important to
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consider a more general case of viscosity having constant and fluctuating parts.

More detail can be found in Appendix A.

2.4.1 The Damping in the Linearise Lorenz system

What is interesting in the result from the linearise Lorenz system is that the

relation between C0 and ω1 when damping behaviour occurs almost equal that

in the nonlinear which appears in Fig. 2.16.
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Figure 2.16: C0 against ω1 for the onset appear in the linearised system.



Chapter 3

Parametric Instability and

Nonlinear Feedback

Abstract

We investigate the combined effect of constant and oscillatory control parame-

ters on the complex Lorenz system. By assuming that the control parameter D

consists of a constant D0 and oscillatory part C0 cos(ω1t), we numerically study

the effect of C0 and ω1 on the linear and nonlinear response of the complex

Lorenz system for different values of D0 . Since D takes values between D0−C0

and D0 +C0 as time changes, the system effectively can go through different at-

tractors from damping to chaotic solutions in time, covering multiple attractors.

The maximum linear growth rate is found at ω1 = 4ω0 , where ω0 is the natural

frequency (e.g. when C0 = 0) provided that C0 is not much larger than D0 . In

sharp contrast to this linear response, a non-monotonic behaviour is manifested

in the nonlinear case where the amplitude and frequency of dynamical variables

become minimum. An interesting relation C0 ≈ D0 +1 is found for the minimum

53
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response in this nonlinear case as the system stays in a Dead-Zone for the longest

time. The effect of the oscillatory control parameter disappears both linearly and

nonlinearly for sufficiently large ω1 .

§ 3.1 Introduction

Nonlinear dynamical systems’ key properties are governed by a few important

control parameters Boccaletti et al. (2000), Hu et al. (2007), whose change leads

to a sequence of bifurcations. For fixed control parameters, the addition of small

perturbations to the system can give rise to unexpectedly interesting behaviours,

some of which are even counter-intuitive Chen and Han (2003). For instance, the

complexity (e.g. chaos) of the system can be increased or decreased due to a per-

turbation as detailed below. Depending on the situation, a perturbation to the

system can be either internal or external in the form of multiplicative or additive

noises, respectively. We assume that in the case of internal/multiplicative noise,

the perturbation that appears in the control parameter is multiplied by a system

variable.

The evidence for the physical relevance of noise, as well as its importance, has

been accumulated from many different fields Simakov and Perez-Mercader (2013),

Gang et al. (1993). One noteworthy reaction of noise is stochastic resonance (SR),

which occurs when a nonlinear system is simultaneously driven by an external pe-

riodic force and stochastic noise Benzit et al. (1981), Neiman et al. (1997), Revelli

et al. (2008). A large response of the system is obtained at certain values of the

noise amplitude. This is due to a subtle synchronisation between the time scale

associated with periodic forces and another important characteristic timescale,
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typically associated with the transition between two attractors (e.g. exit time)

in the presence of the stochastic noise Anishchenko et al. (1993), Pikovsky and

Kurths (1997). Even in the absence of external noise (e.g. in deterministic nonlin-

ear systems), SR can also result from the stochasticity/chaos that arises internally

in a nonlinear system Crisanti et al. (1997), Sinha (1999), Chapeau-Blondeau and

Godivier (1997). Another interesting effect that has received great attention is

the parametric instability in the case of a periodic multiplicative noise Priede

et al. (2010), Li et al. (2004), Reimann (2004). The aim of this chapter is to

extend previously reported work (e.g. Crisanti et al. (1997), Priede et al. (2010))

to a nonlinear system of complex variables and explore a wide range of parame-

ter values, where a periodic perturbation can induce transitions among multiple

attractors.

3.1.1 Model and Motivation

Our model is the complex Lorenz system, that is presented in Chapters 1 and

2 and which is given as a model for the activity of magnetic fields. This model

describes how magnetic fields are produced in a conducting fluid (the so-called

dynamo). These Lorenz equations have been used as a model for solar magnetic

fields which exhibit a 22-year regular period modulated by irregular behaviour

Letellier et al. (2006), Suzuki (1998). Specifically, it is governed by a system of

six coupled ordinary differential equations (ODEs), which describe the evolution

of the two components of the magnetic field, A and B , and the angular speed of

differential rotationΨ. In dimensionless form, these are given as;
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Ȧ(t) = 2DB(t)− A(t),

Ḃ(t) = iA(t)− 0.5iA(t)∗Ψ(t)−B(t), (3.1)

Ψ̇(t) = −iA(t)B(t)− νΨ(t).

Here, A(t), B(t) and Ψ(t) represent the poloidal and toroidal magnetic fields,

and the angular speed of differential rotation, respectively. All the variables are

complex. The viscosity of the differential rotation is represented by a constant

parameter ν Parker (1979). The parameter D in the set of equations 3.1 is the

dynamo number which is to be considered as a single (real) control parameter

in our study. Previous studies Jones et al. (1985) reported that when D is con-

stant, the first bifurcation to a non-zero finite-amplitude solution of A , B , and

Ψ occurs at D = 1. Then the second bifurcation occurs at D = 2.07, followed

by the appearance of periodic limit cycle solutions. As D increases further, the

system’s behaviour becomes more complicated towards chaos around D = 3.84

(e.g. Jones et al. (1985)).

In this chapter, we assume that D consists of a constant D0 and an oscillatory

part C0 cos(ω1t) as;

D = D0 + C0 cos(ω1t).

Here ω1 and C0 in D represent the driving frequency and amplitude, respec-

tively. Our main interest is in the effect of C0 and ω1 on the response of the

system for different values of D0 at different bifurcation points Mohamed and

Kim (2015). In contrast to previous work on (SR) in Lorenz system Crisanti
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et al. (1997) where periodic forcing was included in one of the control parameters

(different from our control parameter D), our work is not limited to the analysis

of a ‘small’ perturbation effect near the bifurcation point to chaos, but instead

examines the effect of all possible values of ω1 and C0 for the two fixed values of

D0 .

In the trivial case of D0 = 0, D changes periodically in time, with zero time

average. While no finite-amplitude solution may be expected based on the mean

value, our previous study in Chapter 2/ Mohamed and Kim (2014) has shown

that a purely oscillating parameter D = C0 cos(ω1t) can give rise to a finite-

amplitude solution for sufficiently large C0 and small ω1 . In particular, we have

found that the effect of changing C0 can be offset by altering ω1 linearly with

respect to C0 , higher amplitude C0 and the smaller frequency ω1 being more

efficient in generating finite-amplitude solutions.

We have found an interesting linear relationship between ω1 and C0 given as

ω1 = 1.4465C0− 0.4212 for the transition between damping and finite-amplitude

solutions, similar to the linear relation obtained by Newton and Kim Newton and

Kim (2012) for a simpler nonlinear dynamo model. Moreover, this linear rela-

tionship governs the point where the effect of the oscillatory parameter effectively

disappears completely (i.e. D = 0).

We used similar parameter as q0 + A sin(ωt) Douglas et al. (2013).

3.1.2 Aims and Outline

We investigate the system’s response to the periodic forcing D0 + C0 cos(ω1t) in

the presence of a non-zero constant D0 . For an arbitrary value of C0 , D takes

the value between D0−C0 and D0+C0 as time changes. Specifically, as D varies

between D0 − C0 < D < D0 + C0 in time, effectively, the system goes through
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different attractors from damping to chaotic solutions in time for a sufficiently

large C0 . There thus exists a time interval in 2π/ω1 over which D is smaller than

the critical value for the onset of a finite-amplitude solution, i.e. |D| < 1. Recall

that, our system is invariant under the change of the sign of D . During this

time, |D| is too small to excite a finite-amplitude solution, effectively making B

decay; this will be named a Dead-Zone (DZ). For a given D0 our system begins

to enter this DZ when C0 > D0 − 1 since the minimum value of D < 1. As C0

increases further from D0−1, the time span for DZ increases until D0−C0 = −1

(C0 = D0 + 1). For C0 > D0 + 1 (D0 − C0 < −1), the system starts exploring

the region of the negative value of D < −1 where a finite-amplitude solution

exists as |D| > 1. This suggests that our system stays in the DZ for the longest

time span when C0 = D0 + 1. This has an important consequence a nonlinear

response as discussed in detail in Sections 3.3 and 3.4.

The main issues to be addressed are: (i) how linear instability depends on C0 and

ω1 in the absence of nonlinearity in our system; (ii) how the nonlinear response

depends on C0 and ω1 ; (iii) whether the response of the system becomes maxi-

mum or minimum for certain values of C0 and ω1 ; (iv) whether there is a relation

between C0 and ω1 for a given constant D0 which governs the transition point

where the effect of the oscillatory D disappears (like the linear relation found for

D0 = 0 in Mohamed and Kim (2014).) To be able to answer these questions, we

solve our main equations (3.1) numerically using the RK45 method for a suffi-

ciently small time step (e.g. dt = 0.001) to ensure numerical accuracy for a fixed

value of ν = 0.5, as done in previous work Jones et al. (1985), Mohamed and

Kim (2014).
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Section 3.2 contains a linear analysis of our system. Section 3.3 and Section 3.4

provide the results for fixed D0 = 2 and D0 = 4, respectively, by varying the

values of C0 and ω1 . A value of D0 = 2 in Section 3.3 is chosen as a constant

parameter which is very close to the second bifurcation at 2.07. In comparison

the value of D0 = 4 in Section 3.4 ensures chaos when C0 = 0. Discussion and

conclusions are in Section 3.5.

§ 3.2 Linear Results

For a linear analysis, we drop the nonlinear terms proportional to A∗Ψ and AB

in Eqs. 3.1. In this case, Ψ is decoupled from A and B and damps at the rate

ν . The coupled equations for A and B can be reduced to one equation in terms

of B̃ = Be−t as follows:

d2B̃

dt2
− 2i(D0 + C0 cos(ω1t))B̃ = 0. (3.2)

For C0 = 0, the linear growth rate γ and natural frequency ω0 of B can easily

be found from Eq. (3.2) as:

γ =
√
D0 − 1 , ω0 = ±

√
D0. (3.3)

For C0 6= 0, Eq. (3.2) represents the Mathieu equation with imaginary parame-

ters, which has been studied much less than the case with real parameters (e.g.

see Ziener et al. (2012)). Instead of looking for solutions in terms of series, we

compute (the largest) linear growth rate numerically for the parameter values of
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D0 = 2, 4 and for C0 = 2, 20 as we vary ω1 . The resulting linear growth rates

are shown in Fig. 3.1.
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Figure 3.1: Linear growth rates for (a) D0 = C0 = 2; (b) D0 = 2 and C0 = 20;
(c) D0 = 4 and C0 = 2; (d) D0 = 4 and C0 = 20.

Fig. 3.1a shows that for C0 = D0 = 2, the linear growth increases with ω1 and

takes its maximum value 0.438 at ω1 ≈ 6. It is important to note that ω1 ≈ 6

where the maximum growth rate occurs is about 4 times larger than the natural

frequency ω0 =
√
D0 =

√
2 [see Eq. (3.3)]. This should be compared with the

parametric resonance in a system of real variables that arise when the frequency

of the periodic perturbation is twice the natural frequency [e.g. see Priede et al.

(2010) and references therein] and is due to the fact that our variables are com-

plex instead of real. As ω1 is further increased from ω1 ≈ 6, the linear growth

rate slowly decreases and approaches an asymptotic value of γ =
√

2 − 1, equal

to the linear growth rate for D0 = 2 and C0 = 0, see Eq. (3.3). That is, the

effect of the periodic perturbation disappears for a sufficiently large ω1 > 23.
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Similar dependence of the linear growth rate on ω1 is observed for D0 = 4 and

C0 = 2 in Fig. 3.1c which shows the maximum growth rate at ω1 ≈ 8. The value

of the maximum growth rate in this case is again about four times larger than

ω0 =
√
D0 =

√
4. The disappearance of the effect of the periodic control param-

eter is also observed for a sufficiently large ω1 , the growth rate approaching its

asymptotic value of γ =
√

4− 1 = 1 [see Eq. (3.1)]. However, when the periodic

control parameter is significantly larger than the value of D0 , the growth rate is

found to monotonically decrease with increasing ω1 , approaching the value given

in Eq. (3.3). This is shown in the cases of D0 = 2 and C0 = 20 in Fig. 3.1b and

D0 = 4 and C0 = 20 in Fig. 3.1d.

In Section 3.3 and Section 3.4, we show that the effect of C0 on the growth rate

for finite ω1 (i.e. the existence of maximum growth rate, or monotonic decrease

in growth rate) is different from the nonlinear response while the disappearance

of the effect of C0 for sufficiently large ω1 is similar in the nonlinear case.

§ 3.3 Non-linear Results for D0 = 2

In section 3.2 exponentially growing solutions are obtained. However, in this

section, including the nonlinear terms in the system leads to finite-amplitude

solutions after passing through the stage of the initial transient growth. In order

to quantify the nonlinear response systematically, we carry out the following

tasks:

(I) Solve Eqs. 3.1 for the chosen values of C0 and ω1 ;
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(II) Compute the mean value of variables (e.g. |B|2 ) by taking a time-average

after removing the initial transient;

(III) Compute the Fourier series of B by taking the Fourier Transform of the

time-series of B , compute the frequency spectrum and determine the dominant

(output) frequency of B where the frequency spectrum takes its maximum value;

(IV) Repeat (I)–(III) by varying the values of C0 and ω1 ∈ (0, 35).

In this section, we consider a fixed value D0 = 2 which has a periodic solution in

the absence of the oscillatory control parameter (C0 = 0); Secs. 3.3.1 and 3.3.2

present results for a fixed value of C0 for different values of ω1 and for a fixed

value of ω1 and for different values of C0 , respectively.

3.3.1 Results for fixed C0

To understand the nonlinear response of the system when the oscillatory forcing

results in multiple attractors in time, we present the detailed nonlinear results

for C0 = 2 and C0 = 20. In the first case, C0 = 2 damping solutions occurring

only during the time span when 0 < D < 1. The second C0 = 20 is the case

when our system spends a very short fraction of the time in a DZ where |D| < 1.

3.3.1.1 C0 = 2

The case of ω1 = 0 recovers the result for constant dynamo number D = 4 where

finite-amplitude solutions are chaotic Jones et al. (1985). For non-zero ω1 , the

value of D changes between 0 and 4 in time, spanning from a damping solution

for D < 1 (i.e. in the DZ) to a chaotic solution for D > 3.84. We note that a

previous analysis based on the synchronisation and the exit time from a bistable

attractor Jones et al. (1985) cannot thus be carried over to our system. Starting



3.3. NON-LINEAR RESULTS FOR D0 = 2 63

from a chaotic attractor that occurs at D = 4 with ω1 = 0, our system changes

its stability as the value of ω1 changes. One example of such a transition is shown

for ω1 = 1.4 in Fig. 3.2 where the attractor loses its chaos and becomes quasi-

periodic. In order to study separate oscillations due to the driving frequency ω1 ,

we superimpose the Poincaré sections as red circles in Fig. 3.2. The Poincaré

sections are obtained by taking the data at discrete times that are multiples of

ω1/2π . As ω1 further increases, these quasi-periodic solutions eventually become

oscillatory.

Figure 3.2: (a) Quasi-periodic solution of Eq. (3.1) where the Poincaré-sections
are shown in red circles; (b) The time history of Re(A) for ω1 = 4.
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Figure 3.3: |B|2 as a function of ω1
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Figure 3.4: The dominant output frequencies of B for D0 = C0 = 2.

As we are more interested in the overall effect of ω1 rather than detailed bi-

furcations, we utilise the mean amplitude and frequency power spectrum of B

against ω1 as quantitative measures and show them in Figs. 3.3, 3.4 and 3.5,

respectively. Fig. 3.3 shows that |B| decreases as ω1 increases from zero, takes

its minimum value around ω1 ≈ 4, and then increases with further increase in ω1
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for ω1 > 4. This dependence of |B|2 on ω1 is in sharp contrast to the behaviour

of the linear growth rate γ with respect to ω1 , where the linear growth rate in

Fig. 3.9a takes its maximum value around ω1 ≈ 6. This result illustrates that

the nonlinear response is fundamentally different from the linear response. For

sufficiently large ω1 > 23, the amplitude becomes almost constant with the value

of 3 as the oscillatory parameter no longer has any effect on the system due to

large ω1 , which is similar to the behaviour in the linear version noted in Section

3.2.

Fig. 3.4 illustrates how the dominant frequency of B changes with ω1 where the

dominant frequency denotes the output frequency of B at which the frequency

spectrum is a maximum. The frequency spectrum can however have multiple

peaks or a broad spectrum (in the case of chaos), so the dominant frequency

given in Fig. 3.4 is a crude representation of the temporal behaviour of the sys-

tem. We thus show the entire frequency spectrum in colour for different values

of ω1 in Fig. 3.5, where colour represents the intensity of the frequency. Specif-

ically, colours are assigned according to the colour coding as shown in the bar

next to the figure where frequency of the maximum intensity to low intensity is

represented by yellow to dark colours, respectively. Note that the chaotic solution

at ω1 = 0 with a broad frequency spectrum leads to the scattered bright points

along y-axis in Fig. 3.5. In Figs. 3.4 and 3.5, the transition from chaos to an

oscillatory solution can be seen for ω1 > 23 where the only dominant frequency

takes its constant value ≈ 3. Interestingly, this value of the angular frequency is

very close to the natural output frequency ω = ω0 of the system (3.1) for D0 = 2

in the nonlinear case. This suggests that the effect of oscillatory D disappears

for ω1 > 23 in the case of C0 = 2.
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Figure 3.5: The frequency spectrum of B against ω1 for D0 = C0 = 2.

It is interesting to observe that Figs. 3.3(a), 3.4, and 3.5 exhibit a very similar

trend in that the impact of the periodic control parameter on the system gradually

fades away as ω1 increases until it completely disappears for ω1 ≈ 23. Beyond

this point, the solution recovers the result for the case of a constant control pa-

rameter D = 2, the dominant frequency and amplitude taking the asymptotic

values of 2.945 and 3, respectively. This result is reminiscent of what was found

in the linear case in Section 3.2 as well as in our previous work in the case of

a purely oscillatory control parameter D = C0 cos(ω1t), where the effect of an

oscillatory control parameter disappears for a sufficiently large ω1 . Furthermore,

Figs. 3.3 -3.5 show that the system’s response is minimum around ω1 ≈ 3.8,

as manifested by the minimum value of output frequency and |B|2 . This value

of ω1 ≈ 3.8 differ from the natural frequency of 2.945 in the nonlinear case of

the constant D = D0 = 2. This behaviour is probably due to the complexity

associated with the finite-amplitude perturbation C0 , such as different attractors
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that our system explore as time changes.

3.3.1.2 C0 = 20

The previous subsection 3.3.1 considered the case where constant and the oscil-

latory control parameters are comparable as C0 = 2 = D0 . What will happen in

the case of a large driving amplitude C0 when the effect of the oscillatory control

parameter dominates over that of constant control parameter? To answer this

question, we now consider a much larger value of the C0 = 20. As D varies

in −18 < D < 22, the system’s solutions change between damping and chaotic

solutions twice for one period of 2π/ω1 , spending a little time in DZ, as noted

previously.

Following the same steps as in Section 3.1.1, we plot the amplitude and frequency

spectrum in Figs. 3.6- 3.8 for C0 = 20. We observe that at ω1 = 0, finite-

amplitude solution is chaotic as expected for D = 20. As ω1 increases from

zero, the attractor becomes quasi-periodic; for sufficiently large ω1 , it changes

to a periodic oscillation, recovering the result for a constant D = D0 = 2.

Specifically, compared with the case of C0 = 2, the minimum in Figs. 3.6 and 3.7

occurs at ω1 = 7.8 for C0 = 20, further from the natural frequency ω0 = 2.958 for

constant D = D0 = 2 as a result of a significantly larger oscillatory perturbation.

Interestingly, this minimum response at ω1 = 7.8 again differs from the linear

response where the linear growth rate monotonically decreases with ω1 (see Fig.

3.1c and the corresponding discussion in Section 3.2). The wide yellow band

is shown for ω1 < 20 in Fig. 3.8, and again represents a continuous frequency
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spectrum associated with the chaotic solutions. In this figure, a few distinct,

discrete peaks in bright yellow are observed for 20 < ω1 < 140 in the background

of an almost continuous spectrum shown in red. Upon a further increase in

ω1 , only one frequency (shown in bright yellow) survives and remains almost

constant, approaching the asymptotic frequency ≈ 3. The latter corresponds

to the frequency for the periodic attractor for constant D = D0 = 2, reflecting

the disappearance of the effect of oscillatory parameter for large ω1 . Similar

behaviour is also seen for the amplitude squared |B|2 shown in Fig. 3.6, where

|B|2 becomes almost constant for ω1 > 140. The disappearance of the effect

of the oscillatory control parameter for large ω1 is again similar to the linear

behaviour.
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Figure 3.6: |B|2 against ω1 for D0 = 2 and C0 = 20.
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Figure 3.7: The dominant frequencies of B against ω1 for D0 = 2 and C0 = 20.

Figure 3.8: The frequency spectrum of B against ω1 for D0 = 2 and C0 = 20.

In summary, in Section 3.3.1 we analysed the system’s response to varying ω1

when C0 was fixed and showed that the system exhibits non-monotonic behaviour

with the minimum response around ω1 ≈ 3.8 for C0 = 2 and ω1 ≈ 7.8 for C0 = 20
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where the minimum values of the amplitude and frequency of B occur. ω1 ≈ 3.8

in the case of C0 = 2 is quite close to the natural frequency ω0 = 2.958 for

constant D0 = 2 while ω ≈ 7.8 in the case of C0 = 20 is further from the natural

frequency ω0 due to the large perturbation. The questions that arise are; how

the system changes its response for different amplitudes C0 when the driving

frequency was fixed; also how the minimum response is manifested as C0 is var-

ied when ω1 is fixed. These issues will be addressed in the following Section 3.3.2.

3.3.2 Results for fixed ω1

We now investigate the system’s response to varying C0 by choosing a fixed value

of ω1 = 3.0. This particular value of the driving frequency ω1 = 3.0 is chosen

since it is close to the natural frequency of ω0 = 2.958 when D0 = 2. For fixed

ω1 = 3.0, we observe different types of solutions as C0 is varied. Specifically, with

C0 increasing from zero, the solution starts with a quasi-periodic oscillation. One

example is shown in Fig. 3.9 for C0 = 2 where the Poincaré sections are shown

as red circles. Further increases in the parameter C0 lead to a more complicated

attractor towards chaos for C0 > 3.4. Fig. 3.10 shows the dependence of the

amplitude of B on C0 systematically. As can be seen, |B|2 decreases with C0

for 0 < C0 < 2, increases slowly for 2 < C0 < 16, and then increases very

rapidly for C0 > 16. The minimum |B| is observed around 2.5 < C0 < 3.5. The

corresponding frequency spectrum of B is shown in Fig. 3.11. We recall that the

bright broadband spectrum shown in the vertical direction in this figure indicates

a chaotic state. The width of the band decreases initially up to C0 ≈ 2.3 and

then gradually becomes wider with the further increase in C0 . This broadening

band is interestingly associated with a rapid increase in |B|2 with C0 shown in
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Fig. 3.10.
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Figure 3.9: Quasi-periodic solution of the system with the Poincaré sections
shown in red circles for C0 = 2.
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Figure 3.11: The frequency power spectrum of B against C0 for ω1 = 3

3.3.3 Summary of results for D0 = 2

The results in Sections 3.1 and 3.2 show how the system responds to different

values of ω1 for fixed C0 and vice versa. For a comprehensive understanding of

the system, it is worthwhile presenting results for different values of C0 and ω1 at

the same time. To this end, after performing steps (I)-(III) described in Section

3.2, we carry out the following steps (IV
′
)-(V I

′
):

(IV
′
) Plot results from (II) as a function of C0 and ω1 on a 3D plot in Fig. 3.12;

(V
′
) Plot results from (III) as a function of C0 and ω1 on a 3D plot in Fig. 3.13;

(V I
′
) Repeat (I)–(III) and (IV

′
)-(V

′
) by varying the values of C0 and ω1 ∈

(0, 35).
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Figure 3.12: 3D plot of B amplitude

Figure 3.13: 3D plot of the dominant output frequency of B for fixed D0 = 2
against C0 and ω1
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Fig. 3.12 shows |B|2 (in colour) as a function of ω1 and C0 where red (blue)

indicate high (low) amplitude. Similarly, Fig. 3.13 shows the dominant output

frequency for different values of ω1 and C0 where the intensity of the dominant

frequency is portrayed in colour. Hot and cool colours indicate strong and weak

intensity. Note that, in both Figs. 3.12 and 3.13, the Z -axis is plotted in Log

scale. Non-monotonic behaviour of the system that was discussed in Sections

3.1-3.2 is clearly seen as valleys in dark colours for certain values of ω1 and C0

in both Figs. 3.12 and 3.13 where the amplitude and dominant output frequency

of B take their local minimum values, respectively. Alternatively, for any fixed

value of C0 , there is a particular value of ω1 which gives a minimum amplitude

(frequency) and vice versa. These valleys represent the minimum response of our

nonlinear system for a certain combination of C0 and ω1 . It is important to high-

light that in contrast to the linear results for the largest growth rate at certain

parameter values, the non-monotonic response of our nonlinear system, implied

by these valleys, represents the ‘smallest’ response due to nonlinear effects.

The coordinates of the valley in Fig. 3.12 are shown in Fig. 3.14a, while the

valley coordinates in Fig. 3.13 are shown in Fig. 3.14c. Fig. 3.14b plots the

value of |B|2 against C0 at the valleys in Fig. 3.14a.

Similarly, Fig. 3.14d plots the value of the output frequency of B against C0 at

the valleys in Fig. 3.14c. Consequently, Fig. 3.14a establishes the relationship

between C0 and ω1 for the minimum response. It can be seen that ω1 decreases

with increasing C0 for C0 ≤ 3.4, and then starts to increase in direct proportion

to C0 except for a short interval 7 ≤ C0 ≤ 8. Fig. 3.14b shows that |B|2 tends to

decrease as C0 increases although there is a slight increase in |B|2 for C0 ∈ (4, 7).

Moreover |B|2 remains almost constant for C0 ≥ 10. Fig. 3.14d illustrates that

for small C0 , the output frequency at the valley is inversely proportional to C0
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while it becomes almost constant for sufficiently large C0 . Interestingly, similar

trends in C0 and ω1 can be seen in Fig. 3.14a and 3.14c while multiple values

of ω1 leading to minimum output frequency can be observed certain C0 in Fig.

3.14b.
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Figure 3.14: (a) Coordinates of the valley in Fig. 3.12; (b) The value of |B|2
against C0 at the valley in Fig. 3.13 (c) Coordinates of the valley in Fig. 3.13;
(d) The value of the output frequency against C0 at the valley in Fig. 3.13.



76CHAPTER 3. PARAMETRIC INSTABILITY ANDNONLINEAR FEEDBACK

The existence of the minimum response for certain values of C0 and ω1 in Fig.

3.14a and Figs. 3.14c-d suggests that there are two distinct regimes depending

on the value of C0 . The transition between these two regimes occurs around

C0 ≈ 3.4. To understand this, we recall that as D varies between D0 − C0 <

D < D0 + C0 in time, there exists a time interval in 2π/ω1 over which D is

below the critical value for the onset of a finite-amplitude solution, i.e. |D| < 1

(i.e. the DZ). As noted in Section 3.1, our system stays in the DZ for the longest

time span for C0 = D0 + 1, effectively leading to the minimum value of |B|2 .

Specifically, for D0 = 2, the minimum response is thus expected for C0 ≈ 3,

therefore explaining C0 ≈ 3.4 observed in Fig. 3.14a and Figs. 3.14c-d. For

sufficiently large C0 , D effectively varies twice between 0 and C0 as t changes

by 2π/ω1 , staying only briefly in the DZ. Interestingly, this explains the transition

observed around C0 > 6 in Figs 3.14a and 3.14c, where the effect of C0 becomes

smaller. From Fig. 3.14c, we found an approximate quadratic dependence of ω1

on C0 as ω1 ≈ −0.0075C0
2 + 0.4576C0 + 1.0365 for C0 > 8.

§ 3.4 Nonlinear Results for D0 = 4

We consider the case where the unperturbed control parameter is close to the

bifurcation point to chaos (D = D0 = 3.84) by choosing D0 = 4 and investigate

how the oscillatory perturbation affects the nonlinear response for different values

of C0 and ω1 . As we follow a similar analysis to that performed in the previous

section, we provide a rather brief discussion.

3.4.1 Results for fixed C0 = 2 and C0 = 20

For fixed D0 = 4, we present results for C0 = 2 and C0 = 20 by varying ω1 .
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Figure 3.15: The amplitude of B as a function of ω1 for C0 = 2
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Figure 3.16: The amplitude of B as a function of ω1 for C0 = 20.

Figs. 3.15 and 3.16 show the amplitude |B|2 against ω1 for C0 = 2 and C0 = 20,

respectively while Figs. 3.17 and 3.18 plot the corresponding angular frequency

spectrum. From these figures, the minimum response is found around ω1 = 7.8

in both cases of C0 = 2 and C0 = 20. This result contrasts to the case C0 = 2
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when the minimum response occurs at ω1 ≈ 3.8 (which was much closer to the

natural frequency ω0 = 3). Essentially this implies that, the system’s response

to oscillatory control parameter becomes more complex for larger D0 (due to the

chaotic state) as well as for larger C0 . Furthermore, the nonlinear response to

varying ω1 in both cases also differs from the linear response discussed in Section

3.2 [see Fig. 3.1b and Fig. 3.1d].

Figure 3.17: Frequency spectrum of B against ω1 for C0 = 2
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Figure 3.18: Frequency spectrum of B against ω1 for C0 = 20.

3.4.2 Summary of results for D0 = 4

To understand the system’s overall behaviour for D0 = 4 we present the 3D plots

of the mean value of |B|2 and the dominant output frequency in Figs. 3.19 and

3.20, respectively, by performing similar steps required for Figs. 3.12 and 3.13.
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Figure 3.19: |B|2 ; the colour is assigned to the intensity according to the scale
shown in the colour bar on the right.

Figure 3.20: Dominant output frequency of B against ω1 and C0 .
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Specifically, Fig. 3.19 and Fig. 3.20 illustrate |B|2 and the dominant output

frequency respectively, as a function of C0 and ω1 .

It is interesting to see the valleys in the minimum values of |B|2 as well as in the

dominant frequency of B in Figs. 3.19 and 3.20, respectively, similar to those

observed in Figs. 3.12 and 3.13. These valleys again result from the minimum

complexity (or maximum order) of our system for a certain combination of C0

and ω1 ; these are indicative of a non-monotonic response of the system upon the

application of the perturbation. The coordinates of the valleys in Figs. 3.19 and

3.20 are shown in Fig. 3.21a and Fig. 3.21c [similar to Figs. 3.14a, 3.14c]. Fig.

3.21b shows the value of the minimum amplitude of |B|2 at the valleys shown in

Figs. 3.21a. It is clear that |B|2 tends to decrease with C0 until it becomes al-

most constant for C0 ≥ 10. Similarly, Fig. 3.21d plots the value of the minimum

output frequency of B against C0 at the valleys shown in Fig. 3.21b. Fig. 3.21d

reveals that for C0 ≤ 5, ω1 decreases with the increase of C0 while for C0 ≥ 5,

ω1 increases in direct proportion to C0 . We note that Fig. 3.21a and Fig. 3.21c

exhibit rather similar behaviour between C0 and ω1 although the latter shows

multiple values of ω1 for certain values of C0 . Finally, as in the case of D0 = 2,

the change in the relationship between ω1 and C0 from being inversely propor-

tional suggests that there are two different nonlinear regimes depending on the

value of C0 .
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Figure 3.21: (a) Coordinates of the valley in Fig. 3.19; (b) The value of |B|2
against C0 at the valley in Fig. 3.19); (c) Coordinates of the valley in Fig. 3.20;
(d) The value of the output frequency against C0 at the valley in Fig. 3.20.

§ 3.5 Discussion and Conclusions

We have examined the combined effect of the constant and oscillatory control pa-

rameter on the complex-valued Lorenz system by setting D = D0 + C0 cos(ω1t).

Our principal findings are summarised as follows:

(i) The linear and nonlinear responses are different for finite frequency ω1 but
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are similar for sufficiently large ω1 ;

(ii) the maximum linear growth rate occurs due to the parametric instability at

ω1 = 4ω0 as long as C0 is not significantly larger than D0 ;

(iii) the minimum nonlinear response occurs at C0 ≈ D0 + 1 when the system

stays in the DZ for the longest time;

(iv) the minimum nonlinear response occurs for ω1 rather close to the natural

frequency for small C0 and D0 ;

(v) the effect of the oscillatory control parameter disappears both linearly and

nonlinearly for sufficiently large ω1 , with a linear relation between ω1 and C0 ,

similar to the case of a purely oscillatory control parameter Mohamed and Kim

(2014).

Finally, in order to strengthen our conclusions mentioned above, we also investi-

gated the cases of other values of D0 = 3, 3.5, 5, 6, 7 in addition to D0 = 2, 4 and

summarise the relations between C0 and ω1 in Figs. 3.22 and 3.23. Specifically,

Fig. 3.22 shows ω1/15 against C0 where the effect of the oscillatory C0 disap-

pears. From these results we identify the following relationship between C0 and

ω1 : for D0 = 2, ω1 = 7.3929C0 − 0.57; for D0 = 3, ω1 = 9.2679C0 − 8.2857; for

D0 = 3.5, ω1 = 14.393C0 − 12.
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Figure 3.23: The values of C0 (in red circles) and ω1 (in blue stars) against D0

where |B|2 becomes minimum.

Fig. 3.23 shows the values of C0 (in red circles) and ω1 (in blue stars) on the
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y-axis against D0 where |B|2 becomes minimum. It is interesting to see that in

all cases, the minimum response is obtained roughly when C0 = D+1 as reported

previously. This result suggests an interesting possibility of controlling dynamical

systems (e.g. chaos) by the addition of an oscillatory control parameter. The

extension of our work to other systems and the implications will be elaborated in

future publications.



Chapter 4

Internal and External Forcing

Effects

Abstract

In this chapter, we study the effect of applying internal (C0 cos(ω1t)) and exter-

nal (F0 cos(ωt)) oscillatory control parameters on the complex Lorenz system.

We began with the case when the dynamo number and the additive force are

constants. We determined that the main impact of the external force’s amplitude

F0 is that it drives the system component B from finite-amplitude solutions into

damping behaviour. In opposition, the additive force drives A into periodic os-

cillation solutions with an amplitude that approximates the driving force F0 .

Also, we test the effects of changing the driving frequencies ω1 and ω for fixed

C0 = 1 for some values of F0 . In this case, the system exhibits resonance when

ω1 = ω .

86
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§ 4.1 Introduction

In Chapter 2, we studied the response of the Lorenz system (1.18) using the

parameter D = C0 cos(ω1t). In this chapter, we extend this study by adding the

term F0 cos(ω1t) into the first equation of the system. This scheme of controlling

the Lorenz’83 system is implemented by driving the system with internal and

external time-dependent forces at the same time.

Examining the dynamical reaction to an external periodic signal is an approach

that has been found in some early studies, when undamped oscillators are being

observed Dykman and Krivoglaz (1984), Lu and Lu (2003). Our goal is to apply

some of the best ideas in this system while maintaining as simple a form as

possible.

In this chapter, the Lorenz system is used to simulate the dynamic interactions

between the magnetic field’s components and differential speed of rotation in the

sunspots as shown in Chapter 2. The extended system consisting of the 6th-order

differential equations can be rewritten as following:

Ȧ(t) = 2DB(t)− A(t) + F,

Ḃ(t) = iA(t)− 0.5iA∗Ψ(t)−B(t), (4.1)

Ψ̇(t) = −iA(t)B(t)− νΨ(t),

where the control parameter of the system is defined as D = C0 cos(ω1t), and F

represents the external forcing which is chosen as F = F0 cos(ωt), and ω1 and ω

are the driving frequencies. These parameters are used to control the behaviour

of the Lorenz system (4.1).

The dynamics of the Lorenz system (4.1) are very rich; with the changes we made
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on the system it is capable of producing different kinds of behaviour, including

chaos for different values of driving parameters.

Also the numerical results suggest that negative −F0 and positive +F0 have the

same effect on the system for a long time simulation. Thus, it is sufficient to

study the system only for positive F0 .

The system is symmetric under the transformation (A, B, Ψ, D, F ) → (A∗, −

B∗, Ψ∗, −D, − F ).

The main questions in this chapter are: (i) whether there is a relationship between

C0 and F0 in the absence of the driving frequencies ω and ω1 , like the linear

relationship between C0 and ω1 which we found for D = C0 cos(ω1t) when F0 = 0

in Chapter 2/ Mohamed and Kim (2014); (ii) whether the system’s amplitude

becomes maximum or minimum for certain values of C0 when F0 is fixed.

To answer these questions, we need to solve the system (4.1) numerically with

fixing some parameters while varying the others.

§ 4.2 Numerical Results

We examine the change in the mechanism of the system (4.1) regarding changing

different parameters; first, for varying C0 and F0 with fixing ω1 = ω = 0.

§ 4.3 Results for Varying C0 and F0 for

ω1 = ω = 0

In this section, we consider the parameters as D = C0 and F = F0 where C0

and F0 are constants.
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In order to understand the system’s reaction in respect to the constant D and

F , we perform the following four tasks:

(I) For the chosen values of C0 and F0 , we solve the set of equations (4.1)

numerically.

(II) We compute the mean value of B by taking time-average, after eliminating

the initial transient.

(III) We use Fourier Series of B from step (I) (i.e. FFT of time-series of B ) to

compute frequency spectra and determine the dominant (output) frequency

of the variable B which represents the frequency when the spectrum takes

its maximum value.

(IV) We repeat the steps (I)–(III) by varying the values of C0 and F0 in the

period (0, 30) and plotted the results for the amplitude/frequency as a

function of C0 and F0 .

Finally, we obtained a 3-dimensional plot that gives the amplitude |B|2/ fre-

quency (in colour) as a function of F0 and C0 as shown in Fig. 4.1 / Fig. 4.2,

where the colour change from blue to red indicates the amplitude/frequency from

lower to higher, respectively.
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4.3.1 Case I: (Amplitude of B )

Figure 4.1: 3D plot of the amplitude B as a function of C0 and F0

Figure 4.2: 3D plot of the dominant angular frequency of B as a function of C0

and F0 .
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Fig. 4.1 shows the amplitude squad of B ( |B|2 ) as a function of F0 and C0 within

the range of (0, 30). The corresponding dominant angular frequency is plotted in

Fig. 4.2. For small values of F0 the system starts with finite-amplitude solutions

when C0 > 1. The system’s amplitude increases slightly with increasing F0 , for

any fixed value of C0 . As F0 increases further a sudden drop in |B|2 is observed

after approaching maximum amplitudes. This can be seen clearly in Figs. 4.1

and 4.2.

As a consequence, the higher value of C0 the higher value of amplitude and dom-

inant frequency of the solution, and visa versa. In contrast, the higher F0 the

lower the amplitude/dominant frequency solutions the system generates. Thus,

the higher F0 and lower C0 are less efficient in generating finite-amplitude solu-

tions.

In Figs. 4.1 and 4.2, two different regions can be observed. The first region (R1)

represents the area when the system exhibits finite-amplitude solutions. Different

regular motions appear within this region. The other region (R2) that appears

as a dark blue area is linked with the system’s damping solutions.

In contrast, in the region (R2)(the dark blue area) A and B follow different

structures; while B exhibits damping behaviour, A produces periodic solutions.

In other words, in (R1), A and B are coupled and have similar solutions. How-

ever, in (R2), A takes a different from from B . A reasonable question that

arises from the above study is what is the relationship between C0 and F0 when

the system exhibits damping solutions? We thus presented a 2D diagram which

shows the relationship between C0 and F0 when this change occurs.
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Figure 4.3: The coordinate of F0 and C0 when the maximum amplitudes occur
is shown in red stars. The damping region is shown in blue.

Fig. 4.3 shows C0 and F0 coordinates of the highest peaks of the system’s

amplitude, represented by red stars. The blue area in Fig. 4.3 represents the

relationship between F0 and C0 in the region of damping solution in (R1), where

a positive linear relationship between F0 and C0 is observed for F0 > 4. This is

similar to the findings in Chapter 2 / Mohamed and Kim (2014).

It is interesting to note that the results shown in Fig. 4.3 prove numerically that

the Lorenz system (4.1) exhibits damping behaviour when F0 > 0.44C0 + 3.8.

The relationship between C0 and F0 is linear. In addition, the boundary line

between the regions (R1) and (R2)is given by F2 = 0.44C0 + 3.8.

As can be seen in Figs. 4.1 and 4.2, for fixed F0 when the parameter C0 grows,

more chaotic structures appear, and (R1) grows in size. However as F0 is in-

creased further, finite-amplitude solution changes to damping behaviour. It re-

minds us of the damping solution that occurred in Chapter 2. By comparing this
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result with our finding in Chapter 2, it can be seen that F0 has quite similar

effect as ω1 , with a different mechanism for F0 > 0. Comparing this finding

with the results obtained in case of F0 = 0 using a time-dependent parameter

D = C0 cos(ω1t) shown in Mohamed and Kim (2014), Fig. 4.1 and Fig. 4.2

provide us with a similar plot of |B|2 and angular frequency as functions of C0

and F0 .

However, one of the notable difference between these outcomes and the result

presented in Chapter 2/Mohamed and Kim (2014) is that; the linear relation-

ship, in this case, is F0 = 0.44C0 + 3.8, while the relationship between ω1 and

C0 was given as ω1 = 1.4465C0 − 0.4212, with higher tendencies than what is

shown in Mohamed and Kim (2014). This linear relation has been seen in the

case of using D = C0 cos(ω1t) as a control parameter. The effects of F0 on the

system are similar to those of ω1 in Mohamed and Kim (2014). A positive linear

relationship between F0 and C0 is observed for F0 > 4.

4.3.2 Case II: (Amplitude of A)

In the majority of previous studies e.g. Weiss et al. (1984), Sood and Kim (2014),

it was sufficient to show the relevant results of either A or B . However, since

different structures of A and B can be observed, we need to show |A|2 as a

function of F0 and C0 in addition to the results shown for the variable B in the

subsection 4.3.1.

Fig. 4.4 shows the amplitude of A squared as a function of F0 and C0 , for the

same parameters that appear in Fig. 4.1.

Comparing the output amplitude that is shown in this case (Fig. 4.4) with the

result that appears in Fig. 4.1 implies that A and B follow similar structures in

the region of (R1). However, as F0 increases the damping behaviour present in
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Fig. 4.1 becomes a band of periodical motion, where solutions with limit cycles

occur.

Figure 4.4: (a) 3D plot of A amplitude for fixed D0 = 2.

The comparison between Fig. 4.1 and Fig. 4.4 indeed verifies that the waves of

B are exponentially weak for higher values of F0 . This finding indicates that

B transfers from cohesion to a state of disintegration; the exponential scaling

expressed here would imply collapses of the term B , while A recovers as a result

of a direct relationship with the driving force F0 . Therefore, the external force F0

has the potential role to change the mechanism for the generation A . In contrast

F0 can not change the dynamics of B .

The dynamics of term A depends explicitly on the driving force F0 . The blue

region in Fig. 4.3(b) also represents the coordinates of C0 and F0 where the

splitting in the behaviour of A and B is made.

To provide a clear picture of what is happening in each region when C0 is fixed

with varying F0 , we need to study the following two cases;
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Case 1: Results for fixed C0 = 3 and varying F0

The values of the internal force C0 and the external forcing F0 are chosen care-

fully to show how the system’s solutions exhibit different behaviour.

In order to understand how A and B change their dynamical structures for vary-

ing F0 , we need to look closely to highlight the differences between the behaviour

of the amplitudes of A and B .

Analysing the dynamical response of the system for each value of C0 and F0 is

extremely difficult. Consequently, we will fix C0 and vary F0 in this case.

As an example, we consider C0 = 3 to show how the system changes its be-

haviour regarding varying F0 as plotted in Fig. 4.5. The red circles correspond

to Log|A|2 , while the blue circles corresponding to Log|B|2 . It is apparent that

the solutions A and B exhibit finite-amplitude solutions for small F0 , and around

F0 = 5.22 a sudden drop in Log|B|2 is obvious seen. For F0 < 5.22 the solu-

tions trajectories of Re(A) and Re(B) oscillates with limit cycles. However, for

F0 > 5.22 the solution trajectory of Re(A) spirals and then approaches the value

of F0 . In contrast, during this period the trajectory of Re(B) exhibits damping

behaviour.
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Figure 4.5: Log|B|2 in blue and Log|A|2 in red as function of F0 for fixed C0 = 3.

This demonstrates that if F0 lies in the interval [0, 5.22) the corresponding solu-

tions of A and B are of finite-amplitude. However, for higher F0 (F0 > 5.22),

damping and periodic solutions do exist for B and A respectively. To perceive

how the system behaves in each region we will consider two different positions of

F0 , one in the interval [0, 5.22) and the other for F0 > 5.22 as following;

• First, in the region (R1); for chosen F0 = 1 (where F0 can be any value that

satisfies F0 < 5.22), we plot the system’s solution in a phase-space in Fig.

4.6. The time series of both components A and B oscillated in periodic

behaviour, with a similar trend, and different amplitudes, as shown in Fig.

4.7.

• Second, in the region (R2); we consider a higher F0 at F0 = 7 (F0 can be

any value which satisfies F0 < 5.22) to make the effect of the additive force

more apparent. The solutions’ trajectories as a function of time are plotted

in Fig. 4.8. It is obvious that Re(A) and Re(B) start to separate after few
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iterations, and their paths remain that of different behaviour over time.

Figure 4.6: Phase space portrait of the system’s components Re(A), Re(B) and
Re(Ψ) in X, Y and Z axises, respectively, for C0 = 3 and F0 = 1
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Figure 4.7: Time-domain of Re(A) in red dashed line and Re(B) in blue contin-
uous line, for C0 = 3 and F0 = 1, when the system is exhibiting finite-amplitude
solutions, for C0 = 3 and F0 = 1.
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Figure 4.8: Time-domain of Re(A) in red dashed line and Re(B) for C0 = 3 and
F0 = 7, when the system exhibiting finite amplitude solution.

Fig. 4.8 shows the solutions’ trajectories of A in a red dashed line and B in

a continuous blue line with increasing time. The trajectories of A and Bhave

completely different behaviour. More precisely, the time series of A stick on a

constant with very close value to F0 . However, the solution of B shows a damping

structure.

We repeated these steps for several values of C0 , and then determine that as we

increase C0 for varying F0 the system spends longer time to approach the damp-

ing status. For all of the values of C0 examined, we obtained that all solutions

of A and B go to the same attractors F0 and zero, respectively. As the external

forcing F0 increases, the magnitude and period of these oscillations shrink, as

well as the time the solution orbit A reaches its fixed point.

In general, the system’s structure for varying C0 and F0 has two features; for

any value of F0 < 0.44C0 + 3.8 (R1) the system exhibits finite-amplitude solu-

tions, and A and B own the same structures; for F0 > 0.44C0 + 3.8 (R2) the
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component A has completely different behaviour from B .

The dynamics of the system’s components after passing the boundary F0 =

0.44C0 + 3.8 typically exhibit one of the two types of behaviour, periodic or

death oscillations. While A exhibits periodic oscillations, B exhibits damping

solutions. A strong interaction between A and F0 occurred because the system

is forced through the first equation that represents the change in A with time.

Case 2: Varying C0 for fixed F0 = 1

In case 1 we fixed C0 = 3 and varied F0 to see the system response. We found

that smaller F0 is more efficient in generating finite-amplitude solutions. As a

consequence F0 needs to be a small value to ensure the production of finite-

amplitude solutions. Therefore, we will set as F0 = 1 and vary C0 .
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Figure 4.9: Log|A|2 and Log|B|2 against C0 for fixed F0 = 1.

Fig. 4.9 illustrates the strength of Log|A|2/Log|B|2 as a function of C0 for fixed
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F0 = 1 and varying C0 . After the first bifurcation occurs around C0 = 1.1 both

Log|A|2 and Log|B|2 increase slowly with increasing C0 for C0 > 1.1. However,

for 2.1 < C0 < 3.4, |B|2 decreases slightly with increasing C0 . The decline in

|B|2 in this period is induced by the quenching of Ψ, which is a result of the

Lorentz force of magnetic fields. The overview of Fig. 4.9 shows an increase in

the amplitude squared of both A and B with increasing C0 . A small decrease

in |B|2 can be seen for C0 ∈ [2, 3.4). To illustrate the basic mechanism for the

system for different C0 at F0 = 1, we plot the system phase space in four different

positions of C0 as shown in Fig. 4.10.

Figure 4.10: Phase trajectories for four different values of C0 at F0 = 1. (a) C0 =
1.5, the case of limited oscillating solution; (b) and (c) the system’s orbits when
periodic oscillation solutions observed, for C0 = 2.3 and C0 = 3.3, respectively;
and (d) an example of chaotic oscillating.
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To this end, we now study the system response for non-zero equal driving fre-

quencies ω1 and ω .

§ 4.4 The Linear Growth Rate for Varying C0

and ω = ω1 for F0 = 1

The linearisation allows us to get some information about our nonlinear dynamical

model, as in the linear system any changes in a parameter do not affect the

qualitative nature of the behaviour.

The principal idea is to find out how the solutions of the linearised version of the

Lorenz system behave for varying ω1 and ω . Thus we will be able to compare

our results with the nonlinear case.

In particular, here we will show how the system’s growth rate is affected by

changing the driving frequencies.

Since our numerical analysis indicates that the system goes through damping

region for higher F0 , we choose F0 = 1 in order to see the system’s response

to a small external force (for large F0 , the system has zero amplitudes, i.e. the

solution approaches zero).

Fig. 4.5 shows the system’s growth rates as a function of C0 for four fixed driving

frequencies (ω1 = ω = 0, 1, 2, and 5) at F0 = 1, obtained numerically using the

linearised model equations. The corresponding growth rate of each ω1 increases

in magnitude as C0 increased. The growth rate curves have lower magnitudes

for higher ω1 . It is also worth noting that there is no distinct difference between

the growth rates of ω1 = 1 and ω1 = 2.
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Figure 4.11: The linear system’s growth rate for varying C0 and fix F0 = 1 and
ω = ω1 = 0, 1, 2 and 5

§ 4.5 Nonlinear Results for Varying C0 and

ω1 = ω for F0 = 1

The previous section has shown how the linearised Lorenz system operates for

the case of fixed F0 = 1 and varying C0 .

To extend these results, we will illustrate some of the changes that occur in

the system at F0 = 1 in the non-linear version. Throughout this section, the

possibility of more damping solutions than the previous section as a result of the

nonlinearity is expected.

The idea is to see how the system is affected by changing more than one parameter

at the same time. A typical correlation takes the form of Fig. ?? (a) and Fig.

??(b).
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Figure 4.12: (a) |B|2 as a function of C0 and ω1 for F0 = 1;(b) |B|2 as a function
of C0 and ω1 for F0 = 0.

Fig. 4.12 a and 4.12 b show 3D plots of the amplitude squared of B as a function

of C0 and ω1/ω when the parameter F0 = 0 and F0 = 1, respectively.
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Adding a small F0 makes no significant difference to the overall trend in the

system’s amplitude and mechanism. The comparison between these two figures

illustrates general similarity trends, as can be seen. The only obvious difference

is the system produced higher amplitudes is produced at F0 = 0, as illustrated

in 4.12 (a).

It can be seen for a higher C0 , the additive force provides an appropriate condition

for the system’s amplitude to grow. We see that the maximum amplitude for fixed

C0 occurs when ω1 = ω = 0. These results inform us that driving the system

with the same internal ω1 and external ω as driving frequencies can not make

distinguished changes in the system’s mechanism. Therefore, we in the following

section will study the system through finding the system’s amplitude as a function

of ω1 and ω .

§ 4.6 Results for varying ω1 and ω , and fixed

value of C0 = 1

In this section, we will examine the system’s reaction to varying both driving

frequency to obtain some idea of how the solutions of the given equation behave

for fixed C0 = 1 (C0 can be any other value). Fig. 4.13 shows 3D plots for the

amplitude of B |B|2 as a function of ω and ω1 for four different values of F0 .

Apparently, damping structure is a general feature of the system, excluding a

small period of ω , and ω1 where small amplitude can be seen.
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Figure 4.13: For C0 = 1, 3D for |B|2 as a function of ω and ω1 for F0 = 2, 30
and 100 in (a), (b) and (c) respectively.
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We first have to pick some values for the parameter F0 . Since the analysis of the

Lorenz system indicates that the stability characteristics does not depend on the

external force F0 , it does not much matter what we choose for F0 . Note that the

position of the mountain (highest peaks) depends on the values of F0 . It is useful

to look at the phase-space of the system’s solution at the highest a peak and

the output frequency. We aim to find if there are any relationship between the

driving and the output frequencies. It appears that in this situation the system

goes through damping state for all values of ω and ω1 , with the exception of

some values where a clear finite-amplitude solution can be noted.

The series in the figures 4.13a-c are clear confirmations of this behaviour, where

very sharp and high peaks can be seen.

This process exhibited by the system’s dynamo operates for almost all the values

of ω1 and ω , apart from the line that represents ω1 = ω .
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Figure 4.14: Results of the numerical solution for the system (4.1) when (C0 ,
F0 , ω1 , ω )=(1, 30, 6, 6). The red circles represent the Poincaré section. (a) The
system phase-space; (b) Angular frequency; (c) the time series.
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Fig. 4.14 a shows the phase-space of the solution for ω1 = ω = 6.

Furthermore, the maximum amplitude appears when the driving frequencies are

equal to the system output frequency. This phenomenon is identified as stochastic

resonance. To show this, we will plot the system’s solution and the frequency

spectrum at the highest peaks, as shown in 4.15.

In this case, if the driving frequency is approaching the natural frequency, the

energy is transported in the system with very small resistance. This makes the

amplitude of the producing oscillations very exaggerated and much higher than

of the driving force’s amplitude.

Interestingly, the height of these peaks has a linear relationship with F0 , as shown

in Fig 4.15.
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Figure 4.15: The maximum peaks of |B|2 as a function of F0

So far in our simulation we showed that F0 has a strong linear relationship with

the maximum peaks of |B|2 exhibited in Fig. 4.13. For F0 = 2, a different feature

of the system’s amplitude can be observed with one peak different from the case

F0 = 30. In fact, there are two features. Firstly, for F0 ≤ C0 one sharp mountain
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can be noticed as illustrated in Fig. 4.13a, which is a very similar to what we

obtained in the case of C0 = 1 in the previous case. Secondly, for F0 ≥ C0

multi-peak mountains occur around along ω = ω1 , as can be observed in 4.13b.

These mountains become longer in duration with increasing F0 .

§ 4.7 Discussion and Conclusion

In summary, the present chapter presents the Lorenz system’s response to two

forcing. This is the extension of in Chapter 2 by driving the system with including

the external forcing F = F0 cos(ωt) into the first equation in the Lorenz system

under investigation. We used this technique to understand the system reaction

to an external periodic force when the internal control parameter is not zero.

• We found two-types of solutions, one driven by the dynamo number when

A and B coupled and the other driven by the additive force when A and

B are decoupled, and we examine the cross-over between these two types

of solutions.

• First, we started with the case when the dynamo number and the additive

force are constants, i.e. with the driving frequencies ω1 = ω = 0. We

found that the main effect of the external force’s amplitude F0 is that it

drives the system component B from finite-amplitude solutions into damp-

ing behaviour. In contrast, the external additive force drives the component

A into periodic oscillation orbits, and the amplitude of A approaches the

driving force F0 .

• Second, we examined the effects of varying the driving frequencies ω1 and

ω for fixed C0 = 1 for some values of F0 . In this case, the system goes
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through resonance when driving frequencies ω1 and ω are equal. The effects

of changing one of the parameters of the system are demonstrated by 3D

plots to show the general behaviour. Also, time series and phase space have

been plotted to illustrate the detailed behaviour of the system for selected

values of the parameters.

We found that Stochastic resonance (SR) occurs in the system for fixed

C0 � F0 when the driving frequencies ω1 and ω are equal.

• Also, in the case of non-zero driving frequencies for small additive force F0 =

1, the system remains almost the same behaviour as for F0 = 0, apart from

a higher amplitude being observed. In comparison to the previous study

shown in Chapter 2 using one time-dependent parameter D = C0 cos(ω1t),

this chapter shows a much richer feature of the solution.

The approach used in this chapter can be applied to control other dynamical

systems such as Rössler.



Chapter 5

Concluding Remarks

As summaries have been provided at the end of each chapter, the aim of this

chapter is to provide a concise conclusion to this dissertation. The motivation for

this thesis was to study the mechanism of the Lorenz system numerically.

We applied three different approaches in order to control the Lorenz system,

which is used to model the process of generating the magnetic field in sunspots.

We investigated the Lorenz system’s response for different parameters and per-

formed descriptions of the system’s solutions that generated from computer sim-

ulations.

In Chapter 2, D = C0 cos(ω1t) was used as a control parameter to study the

system’s responses. One of the main results we obtained was shown in Fig. 2.15,

that revealed the occurrence of a linear relationship between C0 and ω1 at the

bifurcation points ω1 = 1.4465C0− 0.4212. The principal theoretical implication

of this study is that smallerω1 and higher C0 is more valuable for the system to

generate finite-amplitude solutions.

110
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Chapter 3 was intended to determine the impact of using a non-zero mean value

time-dependent parameter as D = D0 +C0 cos(ω1t). The results of this analysis

show that both the linearised system has different results from the nonlinear

system for finite frequency ω1 but are similar for sufficiently large ω1 ;

(i) the maximum linear growth rate occurs due to the parametric instability at

ω1 = 4ω0 as long as C0 is not significantly larger than D0 ;

(ii) the minimum nonlinear response occurs at C0 ≈ D0 + 1 when the system

remains in the DZ for the longest time;

(iii) the minimum nonlinear response for ω1 occurs fairly close to the natural

frequency for small C0 and D0 ;

(iv) the impact of the oscillatory control parameter disappears both linearly and

nonlinearly for enough large ω1 , with a linear relation between ω1 and C0 , similar

to the case of a purely oscillatory control parameter Mohamed and Kim (2014).

In Chapter 4, internal (C0 cos(ω1t)) and external (F0 cos(ω1t)) parameters were

used to control the system. It is an expansion of the subject studied in Chapter

2.

We found that:

• There was a linear relationship C0 and F0 when the system exhibits damp-

ing behaviour.

• Smaller F0 and higher C0 is more efficient in generating finite-amplitude

solutions.

• A stochastic resonance appears as a result of the interaction between the

external driving force and the system when driving frequencies ω1 and ω

are equal to the system’s output frequency.
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This dissertation has introduced new contributions in the area of controlling pa-

rameters in non-linear dynamical systems.



Chapter 6

Future Work

In this thesis we have studied the Lorenz system for the ordinary derivative. This

research has raised many questions in need of further investigation. There are

several approaches in which this work could be extended in the future.

• Extend the Lorenz system to be:

Ȧ(t) = 2DB(t)− A(t),

Ḃ(t) = i(1 + Ucos(θt))A(t)− 0.5iA∗Ψ(t)−B(t), (6.1)

Ψ̇(t) = −iA(t)B(t)− νΨ(t).

• Extend the Lorenz system using viscosity of the flow to a time dependent

parameter ν = ν0cos(ζt)

Ȧ(t) = 2DB(t)− A(t),

Ḃ(t) = iA(t)− 0.5iA∗Ψ(t)−B(t), (6.2)

Ψ̇(t) = −iA(t)B(t)− ν0cos(ζt)Ψ(t).

113
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• Despite spending almost a year in engaging with the fractional

derivative project we have yet been unable to obtain high accu-

racy results for the higher parameter D .

This involved around three months of researching about the project’s back-

ground. The rest of the year was spent on developing a numerical code and

simulations.

Until recently, there has been little interest in fractional calculus, despite

it being more than 300 years old. Few mathematicians contributed to this

subject over the years.

However, over the past 30 years there has been a significant increase in

amount of research which involves fractional derivatives in solving differen-

tial equations. The fractional derivative applications to physics have begun

recently Hilfer (2000), Sun and Sprott (2009). One of the main objects

of the fractional-order systems is that a memory is included in the system

Yang and Zeng (2010).

Several definitions of fractional derivatives are known; the Riemann-Liouville

formation is probably the best Grigorenko and Grigorenko (2003). The

definition of the fractional derivative of the Riemann-Liouville derivative

Oldham and Spanier (1974) Baleanu et al. (2010) is given as follows:

∂αf(t)

dt
=

1

Γ(n− α)

dn

dtn

t∫
a

f(τ)

(t− τ)α−n+1
dτ

where Γ is gamma function and n is an integer number chosen as n− 1 <

α < n . Another definition was presented by Caputo with 0 lower integral

limit, which is the adjustment of the Riemann-Liouville derivative. The
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Caputo of order α is defined as

∂αf(t)

dt
=

1

Γ(n− α)

t∫
0

f(τ)

(t− τ)α−n+1
dτ

Now let us consider the fractional generalisation of the Lorenz system as:

dα

dt
A(t) = 2DB(t)− A(t),

dβ

dt
B(t) = iA(t)− 0.5iA∗Ψ(t)−B(t) (6.3)

dγ

dt
Ψ(t) = −iA(t)B(t)− νΨ(t).

Here, we suppose 0 < α, β, γ ≤ 1 The system (6.3 ) for α = β = γ = 1

represents the Lorenz system Weiss et al. (1984).
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Appendix A:

Given that a similar linear relation between C0 and ω1 was found in the case

where an oscillatory control parameter was additive in Douglas et al. (2013) , we

examine the generation of F driven by D = C0 cosω1t to obtain an analytical

estimate of the effect of C0 and ω1 on F as follows:

dF

dt
≈ C0 cosω1t. (6.4)

The time integration of Eq. (6.4) from t = 0 to t gives

F (t) ≈ C0

ω1

sinω1t. (6.5)

Then, the time average of [F (t)]2 over t = [0, T ] in the limit of T →∞ gives

〈F (t)2〉 ≈ 1

T

∫ T

0

dt[F (t)]2 =
C2

0

Tω2
1

∫ T

0

dt[sinω1t]
2 =

C2
0

2ω2
1

, (6.6)

Thus, Eq. (6.6) shows that on average, the root mean square (RMS) value of

FRMS ≈ C0/ω1 , implying a linear relation between C0 and ω1 .
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