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Abstract

Multiprocessor Networks on Chip (MPNoCs) are an attractive architecture for inte-

grated circuits as they can benefit from the improved performance of ever smaller tran-

sistors but are not severely constrained by the poor performance of global on-chip wires.

As the number of processors increases it becomes ever more expensive to provide co-

herent shared memory but this is a foundational assumption of thread-level parallelism.

Threaded models of concurrency cannot efficiently address architectures where shared

memory is not coherent or does not exist.

In this thesis an extended actor oriented programming model is proposed to en-

able the design of complex and general purpose software for highly parallel and de-

centralised multiprocessor architectures. This model requires the encapsulation of an

execution context and state into isolated Machines which may only initiate communica-

tion with one another via explicitly named channels. An emphasis on message passing

and strong isolation of computation encourages application structures that are congru-

ent with the nature of non-shared memory multiprocessors, and the model also avoids

creating dependences on specific hardware topologies.

A realisation of the model called Machine Java is presented to demonstrate the ap-

plicability of the model to a general purpose programming language. Applications

designed with this framework are shown to be capable of scaling to large numbers of

processors and remain independent of the hardware targets. Through the use of an

efficient compilation technique, Machine Java is demonstrated to be portable across sev-

eral architectures and viable even in the highly constrained context of an FPGA hosted

MPNoC.

3





Contents

Abstract 3

List of figures 9

List of tables 13

Acknowledgements 17

Declaration 19

1 Introduction 21

1.1 The Path to Networks-on-Chip . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2 Multiprocessor Shared Memory . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3 Challenges for Programming MPNoCs . . . . . . . . . . . . . . . . . . . . 25

1.4 The Actor Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.5 Thesis Hypothesis and Research Objectives . . . . . . . . . . . . . . . . . . 28

1.5.1 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.5.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.5.3 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.6 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2 Background 33

2.1 Multiprocessor Networks on Chip . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Embedded System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Programming MPNoCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.1 Hardware-Specific Approaches . . . . . . . . . . . . . . . . . . . . . 40

2.3.2 General Purpose Communication-Centric Programming . . . . . . 44

2.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5



Contents

2.4 Actor-Oriented Design and Programming . . . . . . . . . . . . . . . . . . . 46

2.4.1 Actor-Oriented Frameworks . . . . . . . . . . . . . . . . . . . . . . 48

2.5 Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.5.1 Java in Resource Constrained Contexts . . . . . . . . . . . . . . . . 52

2.5.2 Java in Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3 Machine Abstract Architecture 57

3.1 Machine Abstract Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.1.1 Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2 Application Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.1 Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2.2 Timing, Scheduling and Synchronisation . . . . . . . . . . . . . . . 70

3.2.3 Intramachine Timing and Scheduling . . . . . . . . . . . . . . . . . 71

3.2.4 Creating Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.2.5 Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.2.6 Dynamic Synthesis and Communication . . . . . . . . . . . . . . . 95

3.2.7 Resource Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.3 Platform Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.3.1 Processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.3.2 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3.3.3 Communications Resources . . . . . . . . . . . . . . . . . . . . . . . 114

3.3.4 Making Use of the Platform . . . . . . . . . . . . . . . . . . . . . . . 116

3.3.5 A Platform API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

3.3.6 Realisation of the Platform API . . . . . . . . . . . . . . . . . . . . . 118

3.4 Frameworks and Runtime Behaviour . . . . . . . . . . . . . . . . . . . . . 119

3.4.1 Processor Managers . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

3.5 Realisation of the Application Model . . . . . . . . . . . . . . . . . . . . . 121

3.5.1 Requirements for Programming Languages . . . . . . . . . . . . . 122

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4 Machine Java 127

4.1 Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.2 Machine Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6



Contents

4.3 Machine Oriented Programming . . . . . . . . . . . . . . . . . . . . . . . . 131

4.3.1 Single-Thread Equivalence . . . . . . . . . . . . . . . . . . . . . . . 134

4.3.2 Machine Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.3.3 Machine Class Restrictions . . . . . . . . . . . . . . . . . . . . . . . 140

4.3.4 Machine Life Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.3.5 Machine End-of-Life . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.4 Platform Agnostic Framework . . . . . . . . . . . . . . . . . . . . . . . . . 150

4.4.1 Communications Channels . . . . . . . . . . . . . . . . . . . . . . . 150

4.4.2 Implementing Channel Protocols . . . . . . . . . . . . . . . . . . . . 160

4.4.3 Spontaneous Event Sources . . . . . . . . . . . . . . . . . . . . . . . 168

4.4.4 Processor Managers . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

4.5 Platform API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

4.5.1 Platform Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

4.5.2 Processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

4.5.3 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

4.5.4 Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

4.5.5 The XYNetwork Platform . . . . . . . . . . . . . . . . . . . . . . . . 180

4.6 Implementation in Standard Java . . . . . . . . . . . . . . . . . . . . . . . . 184

4.6.1 Starting the Machine Java Framework . . . . . . . . . . . . . . . . . 184

4.6.2 Machine Instance Identification . . . . . . . . . . . . . . . . . . . . 186

4.6.3 Machine Creation and Channel Addressing . . . . . . . . . . . . . 186

4.6.4 Machine Isolation and Communication . . . . . . . . . . . . . . . . 189

4.7 Implementation on Bare-Metal Hardware . . . . . . . . . . . . . . . . . . . 190

4.7.1 Compilation Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 193

4.7.2 Language Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

4.7.3 Network Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

5 Evaluation 223

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

5.2 Hardware Evaluation Platform . . . . . . . . . . . . . . . . . . . . . . . . . 226

5.2.1 The Blueshell NoC Generator . . . . . . . . . . . . . . . . . . . . . . 226

5.2.2 Evaluation Platform Specification . . . . . . . . . . . . . . . . . . . 230

5.3 Programming with Machine Java . . . . . . . . . . . . . . . . . . . . . . . . 232

7



Contents

5.3.1 Defining, Extracting and Fixing Application Structure . . . . . . . 233

5.3.2 Application Platform Independence . . . . . . . . . . . . . . . . . . 246

5.3.3 Complex and Dynamic Application Structures . . . . . . . . . . . . 249

5.3.4 Concurrency Without Sharing . . . . . . . . . . . . . . . . . . . . . 254

5.3.5 Fault Tolerance in Machine Java . . . . . . . . . . . . . . . . . . . . 262

5.4 Overheads and Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

5.4.1 Static Memory Consumption . . . . . . . . . . . . . . . . . . . . . . 265

5.4.2 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . 276

5.4.3 Communications Overheads . . . . . . . . . . . . . . . . . . . . . . 284

5.4.4 Computation Performance . . . . . . . . . . . . . . . . . . . . . . . 298

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

6 Conclusion 309

6.1 Revisiting the Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

6.2 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

6.2.1 Machine-Oriented Programming Model . . . . . . . . . . . . . . . . 311

6.2.2 Machine Java Framework . . . . . . . . . . . . . . . . . . . . . . . . 312

6.2.3 Chi Optimising Java Compiler . . . . . . . . . . . . . . . . . . . . . 313

6.2.4 An Empirical Evaluation of Machine-Oriented Programming . . . 313

6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

6.3.1 Exploitation of Extracted Application and Platform Information . 314

6.3.2 Garbage Collecting Machines . . . . . . . . . . . . . . . . . . . . . . 314

6.3.3 Relocating Active Machines . . . . . . . . . . . . . . . . . . . . . . . 315

6.3.4 Communications Performance Improvements . . . . . . . . . . . . 316

6.3.5 Multiple Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 317

6.4 Epilogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

A Machine Java API Class Examples 319

A.1 RemoteProcedureCall.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

A.2 Period.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

B Water Tank Level Control Application 327

B.1 FlowController . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

B.2 RefillPump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

B.3 LevelSensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

8



Contents

B.4 EmergencyValve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

B.5 UnreliableSensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

C Microbenchmark Source Code 333

C.1 SpeedTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

C.1.1 SpeedTest.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

C.1.2 PingClient.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

C.1.3 PingServer.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

C.1.4 PingClientReport.java . . . . . . . . . . . . . . . . . . . . . . . . . . 340

C.2 SpeedTestHP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

C.2.1 PingClientHP.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

C.2.2 PingServerHP.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

C.3 DistributedMD5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

C.3.1 DistributedMD5.java . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

C.3.2 MD5Worker.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

C.4 Dining Philosophers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

C.4.1 Fork.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

C.4.2 Dining.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

C.4.3 Philosopher.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

D Sample Experimental Log 359

E Scoped Memory Allocation in Chi 363

F Glossary 369

Bibliography 371

9





List of Figures

3.1 The Machine Abstract Architecture . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 A water tank level control application . . . . . . . . . . . . . . . . . . . . . 63

3.3 Extracted properties from example application . . . . . . . . . . . . . . . . 65

3.4 Extracted static structure in example application . . . . . . . . . . . . . . . 65

3.5 Application model entity-relationship diagram . . . . . . . . . . . . . . . . 66

3.6 The logical local area of the Flow Controller machine. . . . . . . . . . . . . 68

3.7 Encapsulation in the example application . . . . . . . . . . . . . . . . . . . 68

3.8 Gas cylinder machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.9 Scheduling of machine event handlers . . . . . . . . . . . . . . . . . . . . . 73

3.10 “Can Send?” race condition . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.11 Event-driven non-blocking send . . . . . . . . . . . . . . . . . . . . . . . . 86

3.12 Non-blocking rendezvous construction . . . . . . . . . . . . . . . . . . . . 93

3.13 Platform model entity-relationship diagram . . . . . . . . . . . . . . . . . 108

3.14 A detailed example platform . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.15 Logical connectivity in the example platform . . . . . . . . . . . . . . . . . 111

3.16 Physical connectivity in the example platform . . . . . . . . . . . . . . . . 111

3.17 The ProcessorManager definition . . . . . . . . . . . . . . . . . . . . . . . 120

4.1 The Machine Java stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.2 Hello world in Machine Java . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.3 A basic two-machine application . . . . . . . . . . . . . . . . . . . . . . . . 136

4.4 The functionality provided by the Machine class . . . . . . . . . . . . . . . 138

4.5 An invalid static method definition . . . . . . . . . . . . . . . . . . . . . . . 141

4.6 Machine validation procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.7 The SetupableMachine variant . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.8 TPIF library structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

11



List of Figures

4.9 The EventSource abstract class . . . . . . . . . . . . . . . . . . . . . . . . . 153

4.10 Immutable data validation procedure . . . . . . . . . . . . . . . . . . . . . 159

4.11 TPIFDriverTx class contract . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

4.12 TPIFDriverRx class contract . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

4.13 AlarmDriver class contract . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

4.14 Spontaneous event source library . . . . . . . . . . . . . . . . . . . . . . . . 169

4.15 ProcessorManager class in Machine Java . . . . . . . . . . . . . . . . . . . 170

4.16 newMachine() sequence diagram . . . . . . . . . . . . . . . . . . . . . . . . 171

4.17 The Platform abstract class . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

4.18 The Processor abstract class . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

4.19 A linear machine pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

4.20 A folded machine pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

4.21 The Machine Java compilation workflow . . . . . . . . . . . . . . . . . . . 194

4.22 The Network-Chi Application Exploration Procedure . . . . . . . . . . . . 197

4.23 The Network-Chi Itinerary Construction Procedure . . . . . . . . . . . . . 201

4.24 JVM Bytecode and Itinerary Examples . . . . . . . . . . . . . . . . . . . . . 203

4.25 Application Throughput vs. Allocator Block Size . . . . . . . . . . . . . . 212

4.26 A minimal Network-Chi Java application. . . . . . . . . . . . . . . . . . . . 215

4.27 A basic Flattenable class . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

5.1 A Bluetree memory network . . . . . . . . . . . . . . . . . . . . . . . . . . 228

5.2 The Evaluation NoC’s MicroBlaze Tile . . . . . . . . . . . . . . . . . . . . . 229

5.3 The Evaluation Network-on-Chip . . . . . . . . . . . . . . . . . . . . . . . . 230

5.4 Dependent Machines in Flow Controller Application . . . . . . . . . . . . 235

5.5 The internal architecture of an SDFCombiner . . . . . . . . . . . . . . . . . 244

5.6 The EventDivider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

5.7 An unsynchronised application pipeline . . . . . . . . . . . . . . . . . . . . 250

5.8 The EventCombiner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

5.9 A synchronised application pipeline . . . . . . . . . . . . . . . . . . . . . . 252

5.10 The EventCombiners used by LevelSensor . . . . . . . . . . . . . . . . . . 253

5.11 Five dining philosophers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

5.12 A Machine Java Fork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

5.13 Initialising a static dining philosophers . . . . . . . . . . . . . . . . . . . . 256

5.14 Dynamic dining philosophers elaboration . . . . . . . . . . . . . . . . . . . 257

12



List of Figures

5.15 Dynamic dining philosophers structure . . . . . . . . . . . . . . . . . . . . 257

5.16 Build options vs. static memory consumption . . . . . . . . . . . . . . . . 271

5.17 Code size survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

5.18 Code size survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

5.19 SpeedTest microbenchmark machine dependency graph . . . . . . . . . . 282

5.20 DistributedMD5 microbenchmark machine dependency graph . . . . . . 283

5.21 Serialisation of an application message . . . . . . . . . . . . . . . . . . . . 286

5.22 Message throughput on Blueshell . . . . . . . . . . . . . . . . . . . . . . . 287

5.23 Message throughput on a PC . . . . . . . . . . . . . . . . . . . . . . . . . . 288

5.24 Processor count vs Blueshell message throughput . . . . . . . . . . . . . . 289

5.25 Processor count vs OS target message throughput . . . . . . . . . . . . . . 290

5.26 Position-relative allocation of SpeedTest machines . . . . . . . . . . . . . . . 292

5.27 Sequential allocation of SpeedTest machines . . . . . . . . . . . . . . . . . . 293

5.28 Impact of processor iterator on message throughput . . . . . . . . . . . . 294

5.29 Complete throughput comparison of processor vs. machine count . . . . 295

5.30 Impact of channel protocol on message throughput . . . . . . . . . . . . . 296

5.31 Communications throughput for the Signal-based SpeedTest . . . . . . . 296

5.32 Computation throughput vs. machine count on Blueshell . . . . . . . . . 299

5.33 Computation throughput vs. machine count on OS . . . . . . . . . . . . . 299

5.34 Computation throughput with a minimal kernel . . . . . . . . . . . . . . . 302

5.35 Computation throughput vs. batch size . . . . . . . . . . . . . . . . . . . . 303

13





List of Tables

3.1 Modelled unidirectional channels . . . . . . . . . . . . . . . . . . . . . . . . 91

3.2 Modelled bidirectional channels . . . . . . . . . . . . . . . . . . . . . . . . 91

3.3 Comparison of application elements . . . . . . . . . . . . . . . . . . . . . . 96

3.4 Interpretation of capability patterns . . . . . . . . . . . . . . . . . . . . . . 106

3.5 Implementation Language Comparison . . . . . . . . . . . . . . . . . . . . 124

4.1 Machine Java Representation of Application Model Entities . . . . . . . . 132

4.2 Destructive vs. non-destructive channels . . . . . . . . . . . . . . . . . . . 154

4.3 Post-Mortem Heap Characteristics . . . . . . . . . . . . . . . . . . . . . . . 211

4.4 Network-Chi’s Network API . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

5.1 Common Bluetiles services . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

5.2 Sizes of Partial Application Compilation . . . . . . . . . . . . . . . . . . . 236

5.3 Contributors to static memory consumption . . . . . . . . . . . . . . . . . 267

E.1 A Scope-Based Memory API . . . . . . . . . . . . . . . . . . . . . . . . . . 365

15





Acknowledgements

I would first like to acknowledge the support of my supervisor, Neil Audsley, who

attempted with some success to keep my head out of the clouds.1 Neil’s practical ad-

vice kept the process on track –over several bumps– and led me to an acceptable thesis.

I’d also like to thank my two assessors, Leandro Indrusiak and Richard Jones for their

bewilderingly thorough comments and a viva I’m sure I won’t ever forget.

During my PhD I was lucky enough to work alongside Ian Gray, Jack Whitham and

Jamie Garside. Their unreasonably extensive technical expertise and contrasting atti-

tudes were so important to my work and development as a researcher and an engi-

neer. I’d also like to extend my gratitude to David George and James Williams for their

friendship and perspective over what has become many years. I also greatly appreciate

Anthony Hatswell for adding more than enough motivation to complete what I started.

I’d like to thank my loving2 wife, Sarah, for her support and encouragement through

what has been a strange and trying experience. Finally, Eleanor Plumbridge (b. 1/10/2014)

has been a challenge and a delight in equal measures, she really added a new texture to

completing a PhD and I can’t imagine it any other way.

1Although clouds are somewhat more fashionable in 2016.
2Of course, she would never admit it.

17





Declaration

I declare that the research described in this thesis is original work, which I undertook

at the University of York during 2009 - 2015. This work has not been previously pre-

sented for an award at this or any other university. Except where stated, all of the work

contained within this thesis represents the original contribution of the author.

Parts of this thesis have previously been published in the following papers:

• Gary Plumbridge and Neil Audsley. Extending Java for Heterogeneous Embedded

System Description. In 6th International Workshop on Reconfigurable Communication-

Centric Systems-on-Chip (ReCoSoC), pages 1–6. IEEE, jun 2011. ISBN 978-1-4577-

0640-0. doi: 10.1109/ReCoSoC.2011.5981527

• Gary Plumbridge and Neil Audsley. Translating Java for Resource Constrained

Embedded Systems. 7th International Workshop on Reconfigurable and Communication-

Centric Systems-on-Chip (ReCoSoC), pages 1–8, jul 2012. doi: 10.1109/ReCoSoC.2012.

6322868

• Gary Plumbridge and Neil C. Audsley. Programming FPGA based NoCs with Java.

2013 International Conference on Reconfigurable Computing and FPGAs, ReConFig 2013,

2013. doi: 10.1109/ReConFig.2013.6732323

• Gary Plumbridge, Jack Whitham, and Neil Audsley. Blueshell: a platform for rapid

prototyping of multiprocessor NoCs and accelerators. ACM SIGARCH Computer

Architecture News, 41(5):107–117, 2014

This work was the result of a collaboration and this is noted clearly in section

5.2.1.

19





Chapter 1

Introduction

Highly parallel multiprocessor network on chip (MPNoC) architectures are an active

area of research and a great variety of speculative, prototype and commercial examples

have been demonstrated. The MPNoC design pattern promises to better exploit the

improvements in silicon manufacturing technology by reducing dependence on global

on-chip wires. Long on-chip wires have not benefited so substantially from technologi-

cal improvements and now represent an architectural bottleneck. The increased number

of processors in MPNoC architectures makes it far more expensive to provide coherent

shared memory, which creates a substantial problem: Without coherent shared memory

familiar thread-based models of concurrency cannot be efficiently implemented. Other

programming models that are not beholden to shared memory have been applied suc-

cessfully in other domains, and this thesis proposes that such a model can be adapted

to address the specific challenges of multiprocessor on-chip networks.

In this chapter the motivation for the work in this thesis is presented, briefly covering

the following topics:

• The motivation for on-chip networks (section 1.1)

• The difficulty of scaling shared memory to large numbers of processors (section

1.2).

• The specific challenges for programming multiprocessor networks on chip (section

1.3).

• The actor model of concurrency, and its potential for MPNoC programming (sec-

tion 1.4).
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• Finally, the research hypothesis of this work is described in section 1.5.1.

1.1 The Path to Networks-on-Chip

Improvements in the manufacture of silicon integrated circuits (ICs) have led to a near

continual reduction in possible transistor sizes. The two major consequences of this

are that more transistors may be placed within a fixed area, and smaller transistors

enable the maximum switching frequency to be increased. When the operational fre-

quency of an IC is increased the power consumption also increases, but until nanometre

scales power consumption is not affected by the transistor density of an IC. The scale-

invariance of MOSFET1 power density (identified by Dennard et al. in 1974 [53]) implies

that increasing the transistor count in a fixed area of silicon can provide effectively

‘free’ additional capabilities. Increasing the transistor count of ICs has therefore become

the preferred route to achieve higher performance as all computer systems are con-

strained in some way by power. Small embedded systems are typically constrained by

the availability of power from low-capacity batteries or the local environment, whereas

warehouse-scale High Performance Computing (HPC) is more often constrained by the

costs of electricity and dissipating waste heat.

However, while smaller transistors enable higher transistor densities and therefore

greater integration of complex functional units, Dennard et al. also identified that on-

chip wires do not benefit significantly from a reduction in feature size. This means

that as feature sizes decrease, the wiring delays become an ever greater performance

bottleneck [204]; the RC2 timing constants for on-chip wires remains approximately

constant as they are scaled to smaller sizes so they effectively perform much worse than

the scaled transistors which can switch substantially faster. The point at which global

on-chip wires would become unfeasible had long been predicted [199, 32] and this point

can be considered to have arrived soon after 2004 [60]. Coincidentally, this is similar to

when Dennard’s MOSFET scaling is considered to have ended [31], as around this time

the power density of smaller transistors began to increase due to additional junction

leakage and other effects of very small feature sizes.

For any given feature size, the absolute signalling delay of an on-chip wire is primar-

1Metal Oxide Semiconductor Field Effect Transistor
2Where R and C are the resistance and capacitance of the wires, respectively. R increases as wires are

scaled down but C decreases by an approximately equal factor [204].
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ily a function of its length. This implies that IC designs that can minimise wire lengths

are better able to exploit the improved performance of scaled transistors. Historically,

on-chip bus-type interconnects (shared-medium type interconnects in general) have been

favoured for small numbers of processors and peripherals due to their simplicity and

efficiency but these architectures are dependent on long wires; all devices connected to

a bus share the same set of wires for communication. Long wires can be pipelined to

enable high frequency operation and improve throughput [26, 157] but this increases

the required silicon area and does not provide any improvement for signalling latency

which is at best linearly related to interconnect length. Additionally, shared-medium

interconnects scale poorly with respect to their number of masters (connected devices

that can initiate transactions) as arbitration mechanisms are required to prevent simul-

taneous access by masters.

The problem of shared-medium interconnect scaling is particularly acute as the com-

bination of abundant high performance transistors and low performance long wires

also motivates many smaller on-chip processors rather than a single large processor.

This argument for single-chip multiprocessors is now decades old [147], and is further

supported by the observation that performance gains achieved via the exploitation of

instruction level parallelism (ILP) have been exhausted [85] and therefore the explicit par-

allelism of multiple processors is required to secure further performance improvements.

Architectures where devices are organised into on-chip networks with many shorter

point-to-point links are able to address the challenge of poor interconnect scaling as

the maximum required wire length is reduced. These Network-on-Chip architectures can

accommodate far greater numbers of on-chip devices (such as processors) as each net-

work node only has connections to its neighbour nodes. This means that the complexity

to add a new on-chip device is determined only by the network topology, i.e. how many

neighbour nodes it will have, and not by the absolute number of nodes in the system.

Increasing the number of nodes in a network also has the desirable consequence that

the overall network bandwidth is also increased as additional routers and connections

will also be added.
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1.2 Multiprocessor Shared Memory

While Networks-on-Chip are a promising methodology for extremely large scale inte-

grated circuits, such as single-chip multiprocessors with thousands of discrete process-

ing units, the orthogonal problem of scaling access to shared memory for the processing

units is not addressed by these communication-centric architectures. This represents one

of the many challenges of programming multiprocessor networks-on-chip (MPNoCs).

Symmetric shared memory is a significant bottleneck for multiprocessor systems as mem-

ory bandwidth is shared between all processors and therefore aggregated demand for

memory bandwidth can easily exceed the capabilities of the memory device.

Processor-local caching of shared memory can substantially reduce the overall de-

mand for memory bandwidth, enabling far larger numbers of processors to be sup-

ported for a given memory capability. However, the existence of multiple caches leads

to the cache coherence problem [80, §5.2], where caches may have differing views of the

same regions of shared memory. The coherence of caches is enforced by the implementa-

tion of cache coherence protocols. Simple snooping coherence protocols that are effective

for small numbers of processors quickly become intractable as the number of caches in-

creases, but more sophisticated techniques such as directory-based protocols are complex

and remain difficult to scale [4, 48]. It is not universally accepted that scaling cache

coherence to large numbers of processors is impossible [129], at least for the near future.

However, the cost of coordinating caches is necessarily related to the total number of

caches sharing the same region of memory. No matter how marginal this cost is there

will still come a point where the expense of adding additional caches is dominated not

by the cache itself but by its interaction with the other caches.

Aside from the challenges of presenting a coherent view of shared memory to each

processor, programming using a multithreaded model of concurrency (which depends

on the availability of shared memory) is very challenging: Processors must synchronise

with each other to ensure that shared data structures are always consistent when ac-

cessed concurrently but this is a notoriously error prone endeavour [198]. Incorrect

synchronisation of concurrent accesses to shared data can result in race conditions, live-

locks and deadlocks. For these reasons and in spite of its ubiquity, it has been suggested

that threaded concurrent programming models be abandoned [116] in favour of more

explicit models of concurrency – even on hardware architectures that can provide coher-

ent shared memory.
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If programming models that do not depend on shared memory are applied to multi-

processor networks on chip, then the hardware complexities due to implementing cache

coherence protocols can also be avoided.

1.3 Challenges for Programming MPNoCs

Overall, it is far from straightforward to design software for multiprocessor networks-

on-chip, especially those without coherent caches or without shared memory at all. The

challenges include:

1. The familiar thread-parallel programming model available in many general pur-

pose programming languages (including C [97], Java [74] and Ada [71]) cannot

be supported efficiently without shared memory. Languages that only support

concurrency via threads cannot effectively specify the behaviour of a non-shared

memory multiprocessor system [75].

2. Coordination of processor activity via network communication is essential to ex-

ploit an MPNoC’s capabilities. This creates challenges for programming language

design as communications capabilities must be exposed to an application without

introducing hardware-specific dependencies unnecessarily.

3. Networks-on-Chip can have irregular topologies and heterogeneous functional

units. Additionally, non-functional and dynamic constraints (such as power, tem-

perature or voltage) can be viewed as a type of implicit heterogeneity. Heterogene-

ity further complicates the challenge of efficiently exploiting the hardware while

also limiting the hardware-specificity and complexity of the software.

4. Network-on-Chip architectures do not necessarily require global clock synchro-

nisation; each network node can reside in its own clock domain and the net-

work interconnect can hide the complexity of communication between clock do-

mains [145]. This means that there is not necessarily a consistent interpretation of

time between any two processors, and this complicates temporal synchronisation

of processors.

5. Minimisation of on-chip wire lengths provides an incentive to reduce the size and

complexity of the synchronous circuits in each clock domain, meaning that there
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may be an advantage to using more simple processors over fewer sophisticated

processors. Simple processors will have more limited capabilities and smaller local

memories, and this presents a challenge for programming as it limits the selection

of suitable programming languages and libraries.

While it is possible to design software for each processor in an MPNoC individually

it is much more desirable to have a software methodology that enables a whole network

of processors to be programmed with a single software application.

1.4 The Actor Model

Although threaded-models of concurrency are very poorly suited to MPNoC architec-

tures, actor-oriented models of concurrency are particularly well suited to the challenges.

Actors were first described by Hewitt in 1973 [81] as a theoretical universal model of

computation, but were later refined by Agha in 1985 [5] as a suitable model of concur-

rent computation for distributed systems.

Fundamentally, the actor model of computation considers a system to be a collection

of actors that can asynchronously send messages to one another. When an actor receives

a message it can do any of the following concurrently:

1. Send messages to other actors.

2. Create new actors.

3. Redefine its behaviour for subsequent messages received.

Actors are considered to have unforgeable ‘addresses’ – they cannot be guessed or enu-

merated by an actor. An actor can only send messages to actors that it already has the

address of, and addresses can only be acquired by creating new actors or receiving a

message containing one or more addresses. Actors themselves do not have explicit inter-

nal state other than the behaviour defined for the next message received. However, the

expression that defines the behaviour of the actor has a list of acquaintances (addresses

of other actors) that is bound when the behaviour is assigned to the actor. Values, such

as integers, are represented by so-called pure actors that have their behaviour bound

with acquaintances that are never changed; the behaviour of a pure actor is defined

not to redefine its own behaviour after creation. Values, operators and processes are all
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actors in this model. Although elementary, the actor model is universal and has been

shown to be sufficient to express programming language control structures [23] and data

structures [5]. Even at the earliest stage in the development of the actor model Hewitt

explained that actors can be thought of as virtual processors that are never so busy that

another message cannot be sent to them [81].

As a universal model of computation, the actor model is not practical for direct

realisation but it can and has been used as the theoretical basis for a large variety of pro-

gramming languages and frameworks in other contexts. These realisations notably in-

clude Erlang [104], Scala [77] (and also via the Akka [91] framework) and Ptolemy II [3].

When used as a theoretical foundation for languages or frameworks, the implementa-

tion language will already contain the ability to express control and data structures in

a considerably more succinct and practical way than with an actor abstraction. The

concurrency aspects of the actor model are what motivates its use, and the important

concepts of actor-modelled concurrency are:

• Actors interact only by message passing.

• Message passing is asynchronous and message queues have unbounded length.

• Actors execute concurrently with respect to one another.

• Messages can be arbitrarily reordered.

• Communication is unidirectional: an actor cannot reply to a message unless the

sender identified itself.

For each of the MPNoC programming challenges described previously it can be ar-

gued that an actor model is either an appropriate response to the challenge or irrelevant:

1. The allowable actions for an actor’s behaviour does not include the ability to in-

spect another actor’s behaviour (internal state). This implies that an absence of

shared memory is not a problem.

2. Actors are also communication centric.

3. Actor-oriented applications would be no worse for heterogenous architectures than

thread-modelled applications.
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4. Actors pass messages asynchronously and have no other defined relationships.

The absence of a global timing source is not an issue for an actor-oriented applica-

tion.

5. The suitability of an actor-oriented application to execution on a resource con-

strained architecture is entirely dependent on the implementation methodology;

implementation overheads are not a well defined concept at the model-level of

abstraction.

1.5 Thesis Hypothesis and Research Objectives

This thesis proposes that an actor oriented model of concurrency is a promising route

for programming whole MPNoC architectures with single software applications, and

specifically without requiring the hardware to provide expensive and (eventually) un-

scalable cache coherence protocols.

Some relevant comments can be found in the literature concerning the wisdom of

investigating models for concurrent programming, and for applying these programming

models to distributed systems:

“The message is clear. We should not replace established languages. We

should instead build on them. However, building on them using only libraries

is not satisfactory. Libraries offer little structure, no enforcement of patterns,

and few composable properties.”

– E. Lee, “The Problem with Threads” [116, §7]

“There are fundamental differences between the interactions of distributed

objects and the interactions of non-distributed objects. Further, work in dis-

tributed object-oriented systems that is based on a model that ignores or denies

these differences is doomed to failure, and could easily lead to an industry-

wide rejection of the notion of distributed object-based systems.”

– Waldo et al., “A Note on Distributed Computing" [214, §1]

The message to extract from these comments is that structure, pattern enforcement

and composability are important to a successful concurrent programming model, but this

structure must effectively distinguish between activities that happen locally and (in the

context of an MPNoC) those that might happen on a remote processor.
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1.5.1 Hypothesis

This thesis addresses the following hypothesis:

Resource constrained multiprocessor networks on chip with non-coherent

caches can be programmed effectively with a general purpose programming

language through the application of an actor-oriented model of concurrency.

For the purposes of this thesis resource constrained processors will be considered to

have <100KiB of processor-local writable memory including any caches, and <1MiB of

read-only memory. These figures align broadly with the capabilities of modern off-the-

shelf microcontrollers [144, 195, 94], and are comparable to the memory available to

each processor in Intel’s SCC MPNoC [131]. These memory constraints are driven by

the expectation of MPNoCs constructed from vast arrays of limited processors. Results

applicable to such limited processors will likely be applicable to more capable proces-

sors.

An MPNoC will be considered to be ‘effectively’ programmed primarily if it is

demonstrated to be feasible (validated by existence), but also if the programming method-

ology conveys at least some advantage, such as arguments for improved scalability, im-

proved application analysis or reduced scope for programmer errors. The costs of an

‘effective’ approach, in terms of resource overheads and programmer effort, must not be

fundamentally intolerable; prohibitively expensive overheads must not be an intrinsic

property of the approach.

Finally, the application of the an actor oriented model of concurrency to a general pur-

pose programming language avoids constraining the approach to an artificially narrow

application domain. Specialisation can always yield improved results for any metric,

but the feasibility of using a conventional general purpose language to design software

for highly multiprocessor on-chip networks is what is interesting.

1.5.2 Research Objectives

To test the hypothesis, the research objectives of this thesis are to:

1. Identify previous work relevant to the programming of networks on chip and

explore how its strengths can be built upon.

2. Define a programming model based around the actor-oriented model of concur-

rency that will enable the exploitation of massively multiprocessor networks on
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chip without coherent caches.

3. Construct a reference implementation of the MPNoC-appropriate programming

model in an existing general purpose programming language.

4. Evaluate the characteristics of the model via the reference implementation, and

the non-model characteristics specific to the reference-implementation itself, on a

representative hardware architecture. The discovered characteristics of the model

will enable the evaluation of the research hypothesis.

5. Identify the open questions that remain at the end of this research.

1.5.3 Thesis Contributions

This thesis provides a number of significant contributions, including:

• A specialised actor-oriented programming model intended for communication-

centric and resource constrained architectures.

• A reference implementation of the programming model in the Java programming

language: Machine Java

• An effective procedure for compiling Machine Java applications for execution on

resource constrained platforms.

• An empirical evaluation of machine-oriented programming, including the overheads

implied by this approach.

A more detailed summary of these contributions may be found in section 6.2.

1.6 Thesis Structure

The remainder of this thesis is structured as follows:

Chapter 2 provides a brief overview of relevant literature necessary to contextualise

the work presented, with a particular focus on programming multiprocessor systems

and networks on chip, actor oriented programming, and the use of the Java program-

ming language in resource constrained contexts.

Chapter 3 describes the Machine Abstract Architecture (MAA): a set of models for

application software, multiprocessor communication-centric hardware, and the limited
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connection between the two. The application model enables the description of machine-

oriented applications in which the actors (machines) may have any number of typed com-

munications channels with explicitly defined characteristics.

Chapter 4 presents the Machine Java framework: a complete reference implemen-

tation of the Machine Abstract Architecture in the Java programming language. Ma-

chine Java is a high-level machine-oriented programming framework that enables the

Java programming language to effectively exploit resource-constrained MPNoC archi-

tectures. This chapter also presents a compilation methodology to enable execution of

Java and Machine Java applications on highly limited embedded processors.

Chapter 5 considers and discusses the claims made for the MAA application model,

and for Machine Java as a programming framework. In particular the viability of pro-

gramming resource constrained platforms is considered, the likelihood that this pro-

gramming model and implementation can scale to large MPNoCs, and the difficulty of

expressing applications in such a framework.

Finally, 6 concludes this thesis with a summary of contributions and discussion of

the extent to which the hypothesis can be considered satisfied. A brief discussion of

promising avenues for future work is also provided.

Following the conclusion several appendices (page 318 onwards) provide reference

material for some Machine Java classes and important application examples including

the microbenchmarks. A bibliography can be found at the end of the document starting

at page 371.
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Background
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In the previous chapter the challenges of programming non-shared memory networks-

on-chip were established, particularly when the processors have limited local resources.

While there have been few attempts to address this domain specifically there is a wealth

of relevant literature addressing related architectures and issues. In this chapter a selec-

tion of previous multiprocessor network- and system- on chip approaches are discussed

in section 2.3, approaches to the application of the actor model to programming frame-

works are discussed in 2.4, finally in section 2.5 the use of Java in resource constrained

contexts is considered.

2.1 Multiprocessor Networks on Chip

Multiprocessor network on chip architectures were introduced in the previous chapter

as a technique for moving beyond the limitations of bus1-based multiprocessor configu-

1Generally any shared-medium interconnect.
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rations. This section aims to provide some context for MPNoC architectures.

When discussing MPNoC architectures the emphasis is on the networked nature of

the interconnect and not on any particular processor architecture, but the interconnect

between the processors and other functional units (in the case of MPSoCs) is less im-

portant to the purpose of the MPNoC than the type or instruction sets of the processors

provided. In this sense NoC-based designs can be considered general purpose, or more

accurately: unspecialised. To a first-order approximation the suitability of an MPNoC for

a given task depends on the suitability of it’s embedded processors for that task. For

this reason MPNoCs have been applied to varied problem domains, including:

• Scientific workloads including astrophysics, geophysics, material sciences and sci-

entific visualisation. [96]

• Video games: The Cell Broadband Engine2 [44] embedded within Sony’s PlaySta-

tion 3 game console is a double ring-network architecture with nine processors (the

so-called Power Processing Element (PPE) and Synergistic Processing Element (SPE)

units), a memory controller and two IO interfaces.

• Network and cellular infrastructure including base stations, gateways, routers and

real-time data analysis of network traffic.

• Video and signal processing. [96]

• Network Function Virtualisation [47] (NFV) where network architectures (again

composed of gateways, routers, firewalls, etc.) are virtualised rather than imple-

mented in real hardware. [143]

The examples above draw primarily from the use cases for the commercially avail-

able Tilera Tile64 [221] and its successors, and Intel’s general purpose Xeon Phi copro-

cessor [103, 96], also based on a NoC interconnect architecture. It can be seen from

this list that although the applications are diverse they also tend to be stream oriented.

The stream processing paradigm is particularly well suited to highly parallel hardware

architectures, so it is no surprise to see MPNoC architectures being applied to these

problems.

A principle motivation for multiprocessor architectures is power reduction; it can be

more efficient to apply many less-capable cores to a task than to use a single extremely

2Most often referred to as the Cell or Cell B.E.
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high performance core. However, on-chip networks can be particularly power inten-

sive [171] and therefore may not be perfectly suited to low power applications such as

mobile devices. High power consumption in an unoptimised network-on-chip design

is caused by the large number of signal transitions within network routers and buffers

as packets progress through the network. Work has been undertaken to address the

power consumption of NoC interconnects by introducing techniques such as transition

minimising coding [155] and reduced-swing voltage transitions [171].

2.2 Embedded System Design

With the exception of MPNoC architectures destined to be coprocessors in standard

personal computers (such as the Xeon Phi [103]), all MPNoC instances will become part

of an embedded system. For this reason a brief coverage of some embedded system

design topics is justified.

The term embedded system is used to refer to an instance of a special purpose com-

puter functionally contained within another system that is not necessarily identified as a

computer itself. The name also implies a level of application-specificity as an embedded

system is typically produced for a single purpose and presented as a non-divisible unit.

Examples can be found in every walk of life, from mobile phones to industrial heavy

machinery, and are far too numerous to exhaustively list but it is sufficient to say that

they are ubiquitous.

Embedded systems, like all others, require explicit design and there are several dif-

ferent high-level approaches: The most striking design choice available to embedded

systems engineers is just how much of the behaviour of the system needs to be imple-

mented by software or configurations embedded into the device and how much can

be provided by dedicated fixed function hardware. The process of designing a system

with both software and application-specific hardware components is known as co-design

and is a nebulous topic. Although some embedded systems may be constructed using

only fixed-function hardware or general-purpose hardware with fully software-defined

behaviour, these approaches would not be considered co-design.

If an embedded system is to be co-designed then the tasks it must accomplish need

to be partitioned between hardware and software and this requires an appreciation of

what dedicated hardware is suited to, and what is more suited to implementation in
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software. Thomas et al. [205] go some way to characterising what may be particularly

suited to implementation in hardware:

arbitrary arithmetic operations Hardware can be designed to implement arithmetic on

arbitrarily wide operands and over complex operations that are “expensive or

clumsy” [205] in software. Reversing the bit order in a byte is an example of

an operation that is expensive to implement in software on a general purpose

processor but exceedingly fast and cheaply (it can be implemented with only wires

and no logic) on a machine with dedicated support for this operation.

data parallelism Hardware is well suited to tasks where operations can be performed

on multiple items of the data-set simultaneously. This is fine-grained parallelism.

task parallelism is well suited to hardware as for each concurrent task a whole new

hardware unit can be placed to allow for its parallel execution rather than time

multiplexing as on a single processor. This is coarse-grained parallelism. Thomas

et al. [205] note that “multiple threads of control” are particularly well suited to

hardware implementation as only an extra state machine needs to be implemented

for each extra thread of control on the same task.

custom memory architectures are a significant advantage of hardware implementations.

Contention for system memory bandwidth can be avoided by providing hardware

execution units with their own memories to store their data-sets or temporary

information.

These observations are broadly supported in literature, with Wirth [225] placing

specific emphasis on fine-grained parallelism noting that the strength of hardware lies

in its provision for unlimited amounts of parallelism. Ward and Audsley [217] argue

that hardware implementations can be more conducive to timing analysis and therefore

possibly more useful in realtime systems than general purpose processors.

In contrast, software can be used for any task that hardware is not particularly excel-

lent at. From the observations that hardware is excellent at highly parallel, arbitrarily

sized and predictable tasks, it could be inferred that sequential, fixed-arithmetic and

dynamic tasks will be suited to a software implementation. However, it would not be

appropriate to say that software will be better at these tasks but possibly nearly as good

as a dedicated hardware implementation. Asanovic et al. [11] highlight the trade-off be-

tween efficiency and productivity which is particularly applicable to systems co-design.

36



2.2 Embedded System Design

Systems that are designed at a low level (such as primarily hardware systems) are likely

to perform very well whereas abstract, high-level systems (such as general purpose pro-

cessors) will be less efficient but have the advantage of superior productivity from the

engineers involved.

Common embedded systems methodologies involve first modelling the intended

behaviour of the overall system in a highly abstract way and then working towards an

implementable design by successively refining the model to lower levels of abstraction.

To an extent, Hardware Description Languages (HDLs), such as VHDL [13, 55] or Ver-

ilog [49] can be used to model a complete system, but more sophisticated approaches

such as high level synthesis and system-level modelling have since been developed.

HDLs are primarily characterised by enabling a designer to specify a system using

a structural domain of abstraction; they allow systems to be described in a hierarchical

style, where the whole system is represented as a tree of components containing sub-

components. In the case of both VHDL and Verilog a system can also be expressed

behaviourally at the Register Transfer Level (RTL) level of abstraction, where the system is

described in terms of how data is manipulated in transfers between specific registers or

latches. Although this process is now mature and tools exist to automatically synthesise

hardware from HDL specifications, the level abstraction is far too low to cope with the

complexity of modern embedded systems.

In response to the work required to design a system in hardware description lan-

guages, various High Level Languages (HLL) have been developed to enable the specifi-

cation of hardware using syntax and semantics that much more closely resemble those

of conventional programming languages. When describing the system behaviour in an

HLL the eventual target hardware (such as an FPGA) is almost completely abstracted

by the compiler [216]; the programmer doesn’t need to care about the functional units

that will be generated as a result of their code, nor the functional units that the target

device already contains. Handel-C [6] is a notable example of an HLL as its syntax is

significantly similar to that of standard C [97] but its runtime semantics are markedly

different: It had a rigid timing model and poor support for global memory and data

pointers. A more recent effort in high level synthesis is Xilinx’s Vivado HLS tool [230]

although this also provides a C language subset [224]. HLL approaches, in spite of their

name, are still quite limited in their ability to abstract a system’s behaviour but this is

because they are primarily intended for the design of limited system components such
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as IP cores or function accelerators.

The ability to abstractly capture a system’s characteristics is directly addressed by

system-level modelling tools (or system specification languages). There are several tools

for system-level modelling including National Instruments’ Labview and Mathworks’

Simulink but in the context of multiprocessor embedded systems, SystemC [156] and

Ptolemy II (see section 2.4.1.1) are of particular interest. SystemC is a C++ class library

to enable the description and simulation of systems at multiple levels of abstraction. The

power of this approach stems from the use of the C++ language enabling object oriented

and templated system descriptions. Although system-level modelling can allow elegant

descriptions of both application behaviour and platform structure, the realisation of the

application from a simulatable model onto the real hardware is a large and challenging

topic: the modelled application must be partitioned and mapped to the platform. Nei-

ther application partitioning nor mapping are trivial activities, in some cases application

mapping can become an NP-hard activity [206]. This is because all of the non-functional

application constraints must also be satisfied, and constraint satisfaction is not a simple

procedure. Application mapping techniques aware of several different characteristics

have been investigated including energy [206], performance [87], timing [186] and net-

work contention [126].

2.3 Programming MPNoCs

The challenges of developing multiprocessor systems on chip (MPSoC) have been well

identified in the literature [127], including issues related to the design of hardware and

software. The important hardware concerns include:

• Identification of the number and architectures of the processing units.

• Identification of the on-chip interconnects between the processors and peripherals.

• Identification of an appropriate memory architecture to support the processors.

[127] also identify the following software-related challenges:

• What programming model is appropriate, and how will concurrency and synchro-

nisation be supported?

• How can an application be partitioned across the processors and what APIs are

appropriate?
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The issue of scalability is identified as a problem common to both the hardware and the

software design of a system.

Networks on chip represent a potential solution to the scalable design of complex

on-chip interconnects, but the existence of a network does not readily imply any par-

ticular programming model that can also address scalable software. Theoretical models

of computation that can achieve certain guarantees (such as bandwidth guarantees) on

NoC architectures [102] have been developed, but these are concerned only with the

communications characteristics of the architecture and not how the models can be ap-

plied to programming abstractions for multiprocessor networks. This problem, that

multiprocessor networks on chip are difficult to program, has been widely recognised in

the literature [124, 109, 65, 211]. The selection of appropriate abstractions for program-

ming such platforms is considered to be the primary issue, as the complexity of MPNoC

architectures is overwhelming when the hardware elements (the processors, routers and

interconnections) are approached separately. Effective abstractions are required to hide

replicated and irrelevant hardware characteristics from application software.

Martin [127] provides a short but incomplete appraisal of the difficulties of program-

ming multiprocessor systems:

“Two factors are key: concurrency, and “fear of concurrency”

This assessment fails to recognise many other concepts that can be troublesome in the

design of parallel software. Skillicorn and Talia [192] elaborate five such concepts that

can be abstracted or exposed by programming models. These concepts are concurrency,

decomposition, mapping, communication, and synchronisation, and are used to form six levels

of abstraction that can be used to categorise parallel programming models:3

1. Implicit concurrency: All parallel programming concepts are abstracted. The

Haskell functional programming language is typical of this model.

2. Parallel level: Decomposition, mapping, communication and synchronisation are

abstracted.

3. Thread level: Mapping, communication and synchronisation are abstracted.

4. Agent models: Communication and synchronisation are abstracted.

3This topic is summarised more clearly in [166, §2.2.1] than Skillicon’s [192] thorough survey.
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5. Process networks: Only synchronisation is abstracted.

6. Message passing: No concepts are abstracted.

Skillicorn asserts [192] that the implicit concurrency model will result in the simplest

and least complex applications, but the realisation of such abstract programming mod-

els depends on the sophistication of the tooling. As this hierarchy of parallel program-

ming model abstractions is not concerned with implementation details it is itself quite

abstract. The representation of communications and concurrency abstractions has a

significant impact on the efficiency and ease of use for an application programming

framework.

In the remainder of this section a selection of programming frameworks and models

relevant to MPNoCs are considered.

2.3.1 Hardware-Specific Approaches

The relative novelty of multiprocessor networks on chip means that many program-

ming approaches directly related to MPNoC architectures have focussed on addressing

the challenges specific to one particular MPNoC architecture. Early work in this field

concentrated on the generation of MPNoC architectures that could be implemented on

FPGA4-based reconfigurable logic and also supplied a platform-specific programming

model. These approaches included xENoC [106], HeMPS [39] and RAMPSoC [69, 70].

2.3.1.1 xENoC

An early approach for MPNoC programming was provided by the xENoC [106] NoC

experimentation framework. xENoC distinguished itself from previous work by provid-

ing a clear programming model that is distinct from its hardware-software co-design

efforts. Previous literature had only focussed on the derivation of NoC architectures

from software models, or on the programming challenges of system-on-chip architec-

tures.

The xENoC framework generates a synthesisable NoC implementation from a selec-

tion of routers with a NIOS-II [8] processor at each node, and provides a programming

model based on a subset of Message Passing Interface [215] (MPI). MPI is a comprehen-

sive and de-facto standardised programming interface for designing message-passing

4Field-Programmable Gate Array (FPGA)
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distributed applications. However, due to the substantial size and complexity of MPI

(over 100 functions in MPI-1 and substantially more in later versions), xENoC presented

a greatly reduced subset called eMPI that was more appropriate for the constraints of

their MPNoC architectures. eMPI only has six functions, four of which are for initialis-

ing and finalising their framework, and a function each for send and receive. Less than

one month after the publication of the xENoC work, the embedded-capable Multicore

Communications API [202] (MCAPI) message-passing interface was completed [84]. The

MCAPI software API was designed specifically to accommodate embedded heteroge-

neous architectures that could not be addressed by MPI due to its complexity and high

memory requirements.

2.3.1.2 HeMPS

Soon after xENoC, one of the simplest MPNoC-centric programming models was pre-

sented as a component of the HeMPS [39] MPNoC-generation framework. As with

xENOC, this work was primarily focussed on enabling the design space exploration of

MPNoC architectures but this time built from Hermes [137] routers with Plasma [181]

MIPS processors. The HeMPS programming framework is based around a Kahn Process

Network [107] (KPN) distributed model of computation. Kahn process networks model

a system as a collection of sequential processes that are interconnected by unbounded

FIFO (first-in-first-out) buffers. The structure of the network is application-defined but

static and each KPN process is deterministic. The HeMPs programming framework

allows applications to be expressed as a set of tasks in the C [97] programming lan-

guage. A microkernel present on each of the plasma processors provides round-robin

preemptive multitasking and communication between tasks via a simple API. Although

the KPN-modelled application task structure is static, the microkernel enables a limited

form of dynamism where tasks are only allocated to a specific processor on their first

use. While the programming model is a fairly simple two-function API, network reads

(ReadPipe()) are blocking operations and must specify which task they wish to receive

data from before the data can be received. This restriction complicates general purpose

programming.
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2.3.1.3 RAMPSoC

Another MPI-based programming approach [70] was demonstrated for the RAMPSoC [69]

system on chip generator. The RAMPSoC framework demonstrated the possibility of

systems on chip that can alter their architecture (including changes to processors and

communications infrastructure) dynamically according to runtime application require-

ments. The RAMPSoC programming API contains substantially more functionality

than xENoC’s eMPI framework, covering 18 MPI functions, but required over 40KiB

of program code. MPI-subset based programming models have proven very popular for

systems- (and networks-) on chip architectures with many other demonstrated imple-

mentations [185, 125, 88, 223, 136, 173].

2.3.1.4 XC (XMOS)

Hardware-specific programming frameworks have also been demonstrated for non-

reconfigurable network-on-chip architectures including Intel’s Single Chip Cloud (SCC)

and XMOS many-core chips. In the case of the XMOS many-core processors [133] an en-

tirely new programming language is presented, XC [218], that provides an Occam [95]-

like programming model in with C syntax. Occam’s model of concurrency is a natural

fit for highly parallel communication-centric architectures as it allows fine-grained con-

currency to be expressed very easily: a par statement is provided that executes each of

its containing statements concurrently. In the following example reproduced from [218,

§3.2.1], lines 4 and 5 will execute concurrently:

1 int main(void) {
2 int i = 1, j = 2, k = 3;
3 par {
4 i = k + 1; //Thread X
5 j = k - 1; //Thread Y
6 }
7 }

The par block finishes after all of its spawned child threads have finished; it is a fork-

join model of concurrency. Although the concurrent activities are referred to as threads

in XC, data can only be shared between threads if it satisfies so-called ‘disjointness rules’:

• If a thread modifies a variable then no other thread can access that variable.

• If a thread accesses a variable then no other thread can modify it.
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• If a thread uses a port (access to external hardware via IO pins) then no other

thread can access that port.

These rules ensure that data cannot be shared in a way that would cause a race condition.

As in Occam, communication is facilitated between threads with a channel concept

rather than by sharing variables.

The same combination of Occam-like concurrency with C-syntax was also used suc-

cessfully by Handel-C [6, 123], a language for high-level hardware synthesis.

2.3.1.5 Intel SCC

Intel’s 48-core SCC [86] MPNoC exhibits both message-passing and non-coherent shared

memory features in the hardware. Each of the 48 processors are complete 32-bit Intel

architecture (P45C) processors with 256KiB of unified L2 instruction and data caches

and have access to off-chip external memory via one of four on-chip DDR3 memory

controllers. No cache coherence is provided by the hardware so applications must be

especially careful if off-chip memory is to be used for process coordination [131], but

an extension to the P45C’s instruction set is provided to improve the efficiency in this

case. The P45C processors have an extra message passing buffer type (MPBT) flag in their

page tables to mark memory regions as belonging to data that will be shared between

processors. Accesses to MPBT-flagged memory areas bypass the processor’s L2 caches,

and any data in L1 caches with an MPBT flag can be invalidated in a single clock

cycle with a new instruction: CL1INVMB. This combination of hardware features enables

more efficient software-driven cache coherence as only the areas of memory that can be

modified by other processors need to be marked with the MPBT flag.

The sophistication of the SCC’s processors enables them to execute full Linux ker-

nels, and the presented programming platform [131] provides Linux network drivers to

allow Linux applications to use TCP/IP for inter-core communications. A library-based

communications framework (RCCE) is also presented to enable programming the SCC

without an operating system. The RCCE library provides ‘put’ and ‘get’ primitives to

move data to and from other processor’s L1 caches. When used without an operating

system each processor executes the same binary code and differentiates its behaviour

based on a processor-specific ID provided by the RCCE library. This is an instance of

the single-program multiple-data (SPMD) pattern.

Possibly the least accessible MPNoC programming methodology for a fabricated
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chip was revealed by Intel’s publication [132] concerning their experimental 80-processor

‘Terascale’ MPNoC: No compiler, framework or operating system is defined at all for this

architecture; all applications must be hand assembled. However, the hardware itself is a

true example of a resource constrained communication-centric MPNoC: each processor

only has 3KiB of local instruction memory and 2KiB of local data memory, and there is

no shared memory at all.

2.3.2 General Purpose Communication-Centric Programming

The abundance of MPI-type programming interfaces demonstrated for specific plat-

forms strongly indicates the applicability of this model to communication centric ar-

chitectures in general. A variety of platform-independent implementations of MPI are

available including MPICH [197] and OpenMPI [64]. MPI is well established in high-

performance computing [197] and bindings are available in many languages including

C, C++, Fortran and Java. However the large required code sizes of MPICH and Open-

MPI (47MiB and 40MiB, respectively [70]) excludes their use in even state of the art

embedded systems. High capability platforms such as the SCC would be able to ex-

ecute MPI applications, but a substantial performance penalty can be expected as the

framework code is substantially larger than each processor’s local caches; each SCC

processor would repeatedly have to fetch communications framework instructions from

off-chip RAM.

2.3.2.1 rMPI

rMPI [173] is a complete implementation of MPI requiring only 160KiB of code, en-

abling its use in embedded and general purpose multiprocessor system on chip archi-

tectures. rMPI was validated on the Raw [201] processor but even with its vastly reduced

code footprint compared to MPICH or OpenMPI, it was still much larger than the local

memory available to the processors it was demonstrated on. The Raw architecture is a

4× 4 mesh network of MIPS-like processors each with 32KiB of hardware-managed data

caches and 32KiB of software-managed instruction caches. Much like the SCC, Raw sup-

ports access to off-chip memory enabling larger applications to execute than can fit into

processor-local memory. Application performance using rMPI on the Raw processor

was shown to be highly sensitive to processor-local instruction cache size. The authors

conclude that MPI is simply too large and complex to be well-suited for multiprocessor
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systems on chip.

Although MPI is by far the best-represented approach for MPSoC programming,

other interfaces and models have also been considered, including: Non-MPI message

passing abstractions (NoCMSG [235]), tool-assisted parallelisation of existing legacy C

code (MAPS [42] and IMEC’s approach [135] using MPA [22]), and novel models specif-

ically for communication-centric architectures (TinyGALS [46] and HyMR [158]).

2.3.2.2 TinyGALS

TinyGALS [46] provides a globally-asynchronous locally-synchronous (GALS) [43, 139] pro-

gramming model for event-driven embedded systems such as wireless sensors networks

(WSNs). Although this work was motivated by wireless sensor networks, the similari-

ties between WSNs and on-chip networks have been observed in the literature [138].5 A

subsequent C-language implementation, galsC [45], enabled the TinyGALS model to be

realised on limited embedded systems. The GALS model is particularly appropriate for

embedded distributed systems such as WSNs and MPNoCs as each processing element

has a well defined local timing source (such as a clock signal) but processors do not have

access to a common clock or ‘tick’. Event-driven programming is favoured on power and

resource constrained systems as it can be implemented very inexpensively. The Tiny-

GALS runtime scheduler was demonstrated to only require 112 bytes of memory [46],

and a similar schedular in TinyOS [50] (a minimal operating system for very limited

devices such as WSN nodes) only requires 86 bytes [46].

2.3.2.3 HyMR

HyMR [158] demonstrates an effective implementation of the MapReduce [52] program-

ming model on non-coherent many-core architectures, such as the SCC. MapReduce is

an approach for managing computation on large scale datasets. MapReduce computa-

tions happen in two logical operations: the input data set represented as a key-value

dictionary is mapped to a new list of key-value pairs. Every entry in the input dictionary

can be processed in parallel without data dependencies on any other entries, making it

particularly amenable to distribution across systems without shared memory or where

the entries in the input dictionary are already distributed. The second stage of a MapRe-

5Moritz et al. also recognise a similarity to Service Oriented Device Architectures (SODA) [51].
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duce is, naturally, a reduce function. All values with the same key in the output of the

map stage are reduced into a single value which is the output for that key. Each of these

reductions can also happen in parallel without data dependencies. The HyMR imple-

mentation is able to effectively exploit non-coherent platforms but is still dependent on

the availability of shared memory.

2.3.3 Summary

A wide variety of programming frameworks and models intended to exploit MPNoC

and MPSoC architectures can be found in the literature. Message-passing programming

models are a natural choice for communication-centric architectures and these are well

represented. MPI-like programming interfaces are particularly popular in this domain

but issues related to the large size of MPI implementations have been encountered re-

peatedly. Furthermore, MPI-like interfaces only provide an appropriate abstraction for

communication. Other issues, such as the management of tasks and their mapping to

available processing resources are not addressed by MPI. Operating systems and low

level software to manage MPNoCs [124, 39] and MPSoCs [220] have been considered in

the literature, but a platform-independent combination of programming framework and

supporting system software has not been demonstrated. The existing approaches suit-

able for programming more limited architectures are almost exclusively based around

the C programming language (or similar variants) and do not provide support for ap-

plications with dynamic task structures.

Intel’s SCC MPNoC has proven to be an enabling technology that encourages a vari-

ety of approaches for appropriate programming models for non-coherent multiproces-

sors. The SCC does still provide a shared-memory architecture and this enables software

design patterns that will struggle to scale as the processor count is increased in the

future.

2.4 Actor-Oriented Design and Programming

There are a number of computational formalisms that have been used as the theoretical

foundations for the programming approaches described previously, and in this context

–communication-centric and distributed systems– the most important of these models

include:
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• Communicating Sequential Processes [83] (CSP), which provides the foundation for

Occam’s model of concurrency, which in turn provides a model for the XC and

Handel-C languages.

• Kahn Process Networks [107] (KPN), which provides a communications model for

the HeMPS programming framework. More generally KPNs are attractive for

many systems as they provide complete system-wide determinism.

• Bulk Synchronous Parallel [210] (BSP), can be used to model for the ‘reduce’ phase of

a MapReduce computation [154]. BSP has also been used as the foundation for pro-

gramming extremely large scale hierarchical multiprocessor systems on chip [109].

• The Actor model [5, 81, 23], discussed briefly in section 1.4, forms the foundation

for a variety of distributed programming frameworks (discussed in section 2.4.1)

and has been used to model many different kinds of systems:

– embedded systems [118]

– heterogeneous systems [62]

– real-time systems [233]

– system-on-chip hardware [92]

– and networks-on-chip hardware [93]

However, a recognisable actor-oriented framework for programming communication-

centric architectures does not exist in the literature.

As discussed previously in section 1.4, the actor model of computation considers a

system to be made from isolated actors that interact via asynchronous message passing.

A subtle but important detail of the actor model is that it does not require messages to

be received in the same order in which they were sent. As the model allows for arbitrary

reordering of messages, a particular message (m1) sent to an actor could arrive only after

all other messages that will ever be sent to the actor have been received. Essentially, m1

has been lost. In this way the actor model is particularly tolerant of implementation-

defined non-determinism and hardware failures.

The intent of the actor model is to provide a theory of computation that is consistent

with a ‘physical intuition’ of the computations that occur in nature [23]. This is the rea-

son for the actor model’s asynchronous nature as it is argued that global and consistent
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timing does not make sense in a truly distributed system as this concept is fundamen-

tally unrealisable in the physical world [5]. An inherent characteristic of the universe

known as time dilation, a consequence of special relativity [56, 61], dictates that the rate

at which time progresses has no consistent universal definition but is determined by

an observer’s particular relativistic frame of reference. In the context where an actor is

the observer, the passage of time is always constant from its own perspective. However,

the apparent passage of time for other actors is dependent on the relative motion of

the actor’s realisations, and on the proximity of either actor’s realisations to a signifi-

cant gravitational mass. The Global Positioning System (GPS) is an example of a real

distributed system that has to account for the effects time dilation [12].

Neither the fundamental asynchrony nor non-determinism of the actor model are

guaranteed to occur in an implementation but the model allows for this possibility.

Agha [5] described basic constructions that can be used to assure message ordering (us-

ing sequence numbers) and synchronous behaviour (using a centralised synchroniser

actor). However, these constructions do not necessarily improve a system and Agha

argues that attempts to synchronise will necessarily create a bottleneck and introduce

inefficiencies.

2.4.1 Actor-Oriented Frameworks

A wide variety of actor-oriented programming languages and modelling frameworks ex-

ist, with some notable examples including Erlang [104], CAL [222], Scala [77], Akka [91],

Kilim [193] and Ptolemy II [3].

2.4.1.1 Ptolemy II

Unlike the others which are programming languages or frameworks, Ptolemy II [3] is

a system-level modelling framework that enables systems to be represented as a graph

of connected ‘actors’. A distinguishing feature of the Ptolemy approach is that the ex-

ecution semantics of a system are not a fundamental characteristic of the Ptolemy tool,

but instead the execution semantics are selected by a director that is embedded in to the

design. This enables Ptolemy to effectively model many different Models of Computa-

tion (MoCs) including continuous time (CT), discrete event (DE), process network (PN),

dataflow (SDF) and a CSP-like rendezvous model. While Ptolemy II provides a powerful

modelling environment for static arrangements of actors, it is not well suited to mod-
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elling dynamic architectures and is not intended to be an actor-oriented programming

framework: there is no reliable path from a Ptolemy II model to standalone executable

code, although there have been several approaches presented for limited code genera-

tion [208, 189, 119, 212].

2.4.1.2 Programming Languages

The perceived scalability and fault tolerance offered by the actor model are the primary

motivation for the construction of actor-oriented programming frameworks. In practical

implementations the programming model is not purely actor modelled but a hybrid of

the actor-model for expressing the principles of concurrency and some other paradigm

is used to express sequential computation and state within each actor. An important

characteristic for an actor-oriented programming model is therefore the conceptual di-

vision between the two (or more) different paradigms that it draws upon. In the case of

Erlang [104] this division is between a functional programming paradigm for sequential

code and recognisably actor-modelled concurrency:

• Erlang’s units of concurrency (called processes, but not OS processes) cannot share

any data, a so-called shared-nothing (SN) architecture.

• Erlang processes can only [104] communicate via message passing.

• Each process contains a single mailbox which receives messages sent to it by other

processes.

• Sending messages uses a Occam style ‘!’ operator: ‘Pid ! Message’ sends the

Message to the process identified by the value of the Pid expression.

• Unlike Occam channel sends, Erlang’s send operation never waits; messaging is

entirely asynchronous.

• Processes use a receive primitive to express how messages will be handled. Pat-

tern matching is used predicate behaviour based on the type of message received.

• Messages are stored in a process’s mailbox in the order that they arrive, but the

pattern matching mechanism allows a process to specify the order in which mes-

sages will be retrieved from its mailbox.
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• Process identifiers are provided when a new process is created with the spawn

built-in function (BIF) and can be included in messages just as any other value

can.

• Process identifiers can be bound (register) to system-wide names enabling them

to be looked up (whereis) by other processes. A process can also enumerate all

registered names by retrieving a list from the registered function.

• Process failures are isolated and have no effect on unrelated processes. However,

processes can be linked: When a process fails an EXIT signal is sent to all of its

linked processes. Process links are bidirectional and the default behaviour pro-

vided by the language is for a process to terminate if it receives an EXIT signal.

Internally, Erlang processes are lightweight threads and do not require their own

OS threads. This is also the approach taken in Akka [91] and Kilim [193] as it vastly

reduces the overheads needed for each actor. Akka retains the model of a single mailbox

per actor but an actor implementation can chose between different mailbox semantics

by implementing a particular interface (in the Java version). Akka mailboxes can be

bounded, and message arrival order (message priorities) can be specified. Akka allows

typed actors to be defined that can only receive messages of a particular type, but the

consistency of actor typing cannot be verified statically as actors can be located at run-

time via paths represented as strings. Just as Erlang provides a process directory, Akka

also enables actors to be dynamically enumerated regardless of their implementation or

location in a distributed system.

Akka actors are somewhat less isolated than in Erlang or Kilim. Kilim actors have

statically enforced isolation that ensures all actors have disjoint heaps. Kilim’s use of

isolation-types [194] ensures exchanged messages are only ever accessible (aliased) by a

single actor. This formulation enables mutable data to be sent via mailboxes. In contrast

Akka does not enforce strong isolation of its actors: immutability or limited aliasing is

not enforced for messages and code can be constructed to modify the internal state of

other actors. Akka actors have to carefully guard references to their object (the this

reference in Java) to prevent modification by other actors executing in the same virtual

machine. Correct Akka applications are required to use special proxy references to pass

their reference another actor. In addition, Akka actors are implicitly linked to the actor

that created them, with the parent actor being known as the supervisor actor. In contrast
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to Erlang, Akka’s supervision (linking) structure is only allowed to be tree-shaped.

Kilim differentiates itself from Akka and Erlang by decoupling mailboxes from ac-

tors: mailboxes are treated as any other Java object that can be exchanged between the

actors, and an actor can have access to any number of mailboxes. Similarly the capsule-

oriented programming approach [178] effectively allows multiple mailboxes per ‘capsule’

but these are represented as method invocations rather than explicit mailboxes; distri-

bution of capsules is hidden from the application entirely.

2.5 Java

Java [74] is a popular general-purpose, object-oriented programming language. It is dif-

ferentiated from other modern general-purpose languages by the combination of a high

degree of portability between architectures and operating systems and its strong static

typing system. In addition to these qualities most implementations of Java also benefit

from entirely automatic memory management, but this is a common feature in modern

programming languages [105, §1.2]. Java is most often compiled to bytecode that exe-

cutes [74] on its own Java Virtual Machine (JVM). Java itself is not directly related to the

problem domain, but forms a sufficiently important component of the work presented

in Chapters 4 and 5 that some background is warranted.

Standard Java is not designed for programming resource constrained distributed

systems but it has several characteristics that make it more suited to this environment

than C, including:

• Java makes no explicit von Neumann [213] architecture assumptions: Java code

(encapsulated in classes) does not necessarily have to reside in the same storage as

data memory.

• Java does not make any assumptions about how memory is organised in the host

architecture, for example there is no requirement that memory is integrally ad-

dressed. All data is stored in objects which may only access one another by opaque

references. These references only have meaning to the virtual machine executing

the Java bytecode and may not be manipulated as in C (by using pointer arithmetic,

for example).

• Java has concurrency support as part of the language. A Thread [74] class is used

to create new concurrently executing threads of control and all objects in Java
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contain a monitor [82] to allow synchronisation and mutual exclusion directly at

the language level.

• Java is designed to manage the complexity of large systems by providing concepts

such as packages and access control for data.

These points do not necessarily make Java suitable for resource constrained implemen-

tation but less unsuitable than C. Perhaps because Java is not profoundly expensive to

implement and because of its popularity, a large array of embedded and reduced Java

implementations have been presented. A limited selection of these approaches are pre-

sented below.

2.5.1 Java in Resource Constrained Contexts

Varma and Bhattacharyya [212] detail a Java-to-C converter to enable the an application

written in Java to be compiled ‘though’ a C compiler to native code, sparing the over-

heads of a full Java runtime environment. The use of C [110, 97] as an intermediate

language is a natural choice; practically every processor, microcontroller and DSP will

have a functional C compiler. In addition to being widely supported, C compilers such

as the popular GCC [67] have sophisticated optimisations built-in to minimise execu-

tion time and binary sizes without the need to build these optimisations into the Java

translator.

Java has been applied successfully to environments with as little as 512 bytes of RAM

and 4KiB of program code through the use of the Java Card [196] specification, or the

JEPES [190] platform. However, both the Java Card specification and the JEPES platform

make significant changes to the Java environment in to enable execution on such limited

hardware. In particular both of these approaches change the available standard libraries

and reduce the set of available primitive types available to the programmer: Java Card

simply forbids several primitives including char, float and double. JEPES makes

the existence of floating point types dependent on the target platform and reduces the

widths of other primitive types too.

In contrast to the use of a specifically cut-down Java specification, Varma and Bhat-

tacharyya [212] enable the use of the full Java libraries by extensively pruning unused

code from application and libraries under translation such that only used code is present

in the resulting C code. Toba [172] and GCJ [68] which are not intended for use in
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embedded systems do not perform such code pruning. Toba, which is no longer main-

tained, used a strategy of elaborating Java’s full class libraries into C. Translating a whole

Java library greatly simplifies compilation and saves time as this only need be done each

time the Java libraries are changed. The compiled Java library can then be linked against

the user’s own code without any special consideration. This is also the approach used

by GCJ which requires that the user’s code be linked against a large ‘libgcj.so’. However,

as of GCJ 4.46 this shared object is 34MiB putting it well out of reach of the capabilities

of small embedded systems.

In spite of the aggressive code pruning employed by Varma and Bhattacharyya [212],

the costs associated with the dispatch of virtual methods are not addressed and the

runtime in-memory class descriptor structures are especially expensive (including class

names, references to superclass structures, the size of instances, and if the class is an

array or not) considering that reflection is not supported by their compilation process.

In another similar work, Nilsson [142] presents a Java to C compiler with an em-

phasis on support for hard real-time applications. Importantly, their work incorporates

the implementation and evaluation of real-time garbage collectors suitable for including

on a sophisticated (at the time of publication) microcontrollers such as the Atmel AT-

mega128 [15]. However, Nilsson reports disappointing performance while the garbage

collector is enabled. Nilsson also confirms the observation that the virtual dispatch of

Java methods can have a significant impact in runtime performance (they observe a 43%

increase in execution time in one experiment when dynamically dispatched methods are

used compared the same experiment with statically dispatched methods). While Schultz

et al. [190] in the JEPES work also recognise that dynamically dispatched methods come

at a significant runtime price, this is accepted to be an unavoidable cost.

2.5.2 Java in Hardware

Another technique for enabling Java in embedded systems is to create a processor to na-

tively execute Java bytecodes. JOP [187] is an implementation of a Java virtual machine

that can be synthesised for use on an FPGA to provide time-predictable Java bytecode

execution. As Jop provides a processor that is itself capable of running Java bytecodes

6While not officially discontinued, GCJ is effectively out of development. The most recent update was
in March 2012 with the previous update in 2009. OpenJDK [151] has largely rendered the GCJ and GNU
Classpath redundant.
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without a software implemented virtual machine to interpret the Java instruction set,

it can be correctly called a ‘Java machine’. Unlike Sun Microsystem’s picoJava [146]

hardware Java machine, Jop only implements a real-time subset of the Java 2 Micro Edi-

tion [134] (J2ME) Java specification. Java virtual machines have been implemented in

hardware many times with different design goals [174, 78, 101] indicating the plausi-

bility and draw of this approach. Where an embedded system will be implemented on

an FPGA the use of a true Java machine is attractive as it simplifies the tool-flow from

Java code to execution in the target system. However, the use of a Java softcore does not

necessarily help with the problem of unsuitably large Java libraries.

Where there is the ability and appetite to fully redefine the implementation plat-

form, the direct synthesis of Java to digital logic for FPGAs has also been demonstrated

several times: Sea Cucumber [207] and Galadriel [41] are two approaches that have the

advantage that application-specific hardware can be described in Java itself, but the sup-

ported subset for synthesis is very limited. Neither approach supports the manipulation

of objects from synthesised Java methods, exceptions are not supported, recursion is for-

bidden, and a Java method synthesised into a hardware accelerator is not allowed to call

methods in software.

2.6 Summary

Elements of the actor-oriented approaches discussed in section 2.4.1 are attractive for

programming communication-centric architectures:

• Strong isolation of actors in time (asynchronous execution) and space (data con-

finement) avoids a dependence on shared memory and common timing sources.

• Type-safety of actor communications helps to manage the complexity of applica-

tions by detecting inconsistencies.

• Multiple mailbox semantics, including the ability to bound a message queue’s

length, is desirable when memory is extremely limited.

• Event-driven applications are amenable to lightweight implementations. OS-level

processes and threads are not required.

• Dynamic application structures that can respond to hardware and software fail-

ures, as well as changes in workload, can be expressed.
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However, the existing actor-oriented frameworks also present a number of challenges:

• Erlang and Akka’s ability to enumerate actors introduces centralisation.

• Akka allows actors to be addressed by their physical location, creating platform

dependence in an application.

• Kilim’s decoupled mailboxes create a confused model: actors can essentially swap

addresses by exchanging mailbox objects, and mailboxes can have lifetimes in-

dependent of actors. This model is an interesting middle ground between rigid

models where actors are their own addresses and models where mailboxes are

first class objects that can be freely shared between actors.

• The sophistication and complexity of these frameworks indicates a significant chal-

lenge for the exploitation of resource constrained architectures.

These observations suggest the opportunity to define and explore a more appropri-

ate programming model for resource constrained MPNoCs that can build upon the

strengths of the previous actor-oriented approaches.
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In this chapter an actor-oriented programming model is explored to enable the ex-

ploitation of resource constrained MPNoC architectures. The description of another

programming model is motivated by the difficulties of programming such architectures

using conventional thread-based concurrency and the limitations of the models dis-

cussed in chapter 2. The exploration of alternative programming models and existing

approaches for NoC programming revealed a variety of further areas for potential im-

provement:

• Static application structures inhibit scalability and portability. Without the abil-

ity to dynamically construct actors a programming framework cannot respond

to changes in application or environmental requirements. Fault tolerance is also

substantially impaired as failed actors cannot be instantiated.

• Strong communications synchronisation is unnecessary and expensive.

• Inflexible communications models do not allow applications to participate in the

reliability-performance tradeoff.

• Implicit supervisors, persistent actor addresses and actor registration can intro-

duce centralisation.

The trends in silicon technology identified in chapter 1 and the qualities of existing

MPNoC architectures discussed in chapter 2 lead to the following additional observa-

tions:

• There is an ever increasing abundance of parallel processing resources but with

fewer guarantees of inter-processor synchronisation or the availability of cache-

coherent shared memory.

This suggests that a successful application model should gracefully accommodate

an increase in concurrent processing resources, and should avoid a requirement

on memory sharing at all costs.

• There are compelling justifications for the existence of resource constrained pro-

cessors, including cost reduction and further increasing parallelism within a fixed

area of silicon.

This suggests an application model should prefer simplicity over sophistication.

An application can implement additional sophistication if required, but an expen-

sive model will invalidate its use on whole classes of architectures.
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• The overall complexity of software applications will continue to increase, moti-

vated by the increases in hardware capacity to support additional complexity.

This suggests a successful application model will facilitate automated tooling and

software engineering techniques. There is tension between the static definition of

an application’s structure, which is helpful for analysis, and its ability to scale

indefinitely at runtime. From the first observation, the application model should

favour indefinite scalability over fixed application structure definition.

Altogether this allows a list of desirable characteristics for a programming model in

the context of resource constrained MPNoCs:

portability describes the cost of re-targeting the application to operate on hardware

other than it was originally designed for. The ideal porting cost for an application

is zero, and while this is often unlikely to be achievable, minimising application

porting costs is critical. It is realistic to expect that there will eventually be a

bewildering variety of different highly multiprocessor communication-centric ar-

chitectures. The success of a programming model will depend on its ability to

insulate programmers and engineers from the architectural differences while en-

abling efficient execution.

scalability describes the cost of growing a system to accommodate greater demands

on its functionality. While the ideal cost of scalability is zero (i.e. indefinitely

increasing the capability of a system without any additional cost), this is not pos-

sible. Therefore the goal is that the costs for scaling (porting) an application from

a small platform to a large one is very low or free, and that the inherent over-

heads of implementing the programming model grow no faster than linearly with

respect to the ‘magnitude’ of the platform. In this context the magnitude of a plat-

form would be some function of the processor count and their capabilities, and the

characteristics of the interconnection fabric.

practicality A successful programming model must facilitate rather than hinder ap-

plication development. More specifically this means that it must work, and all

additional requirements imposed on application designers must be justified. A

substantial fraction of this requirement is implementation dependent.

efficiency is almost entirely implementation dependent, but the model must also avoid

creating requirements that are expensive to implement. This is the least important
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of the desirable characteristics as if the first three can be substantially satisfied then

future effort to improve efficiency will be well justified.

3.1 Machine Abstract Architecture

The Machine Abstract Architecture (MAA) is a template for computer systems including

a model of the software, the hardware and the relationships between of the two. The

application model, which is the primary focus of this chapter, aims to address the four

desirable model characteristics (portability, scalability, practicality and efficiency) such

that they are optimised for MPNoC platforms.

In this chapter the discussion of concrete architectural elements, such as specific

processor architectures or programming languages, is avoided as far as possible. The

purpose of the Machine Abstract Architecture is to help communicate clearly the rela-

tionship between the various abstract system concepts, and to provide a framework in

which to discuss the subsequent topics.

3.1.1 Systems

Systems are instances of the Machine Abstract Architecture and are composed of an

Application (discussed in section 3.2) to represent the structure and behaviour of the

software, and a Platform (discussed in section 3.3) to represent the structure and char-

acteristics of the hardware resources. The MAA also specifies a ‘framework’ element

which defines the limited coupling of the application and platform elements of a system

discussed in section 3.4.

This high-level definition is illustrated in figure 3.1. An acceptable alternative inter-

pretation is that the application layer reflects the portion of the system that is currently

being defined, while the platform section of the system has already been fixed. This in-

terpretation allows the possibility of reasoning about custom hardware accelerators and

hardware-software co-design via a machine abstraction, but the primary focus of this

thesis is on programmable multiprocessor platforms and as such applications will usually

considered to be software.
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Figure 3.1: The definition of the Machine Abstract Architecture at the highest level: A system is
an application and a platform. The ‘framework’ element describes the coupling between the two.

3.2 Application Model

Within the machine abstract architecture, machine oriented programs are structured ac-

cording to the application model. The application model is an extension of the actor-

oriented model of computation: All behaviour in a machine oriented program results

from the execution of many independent machines which encapsulate both the data and

computation aspects of software. Every machine executes concurrently without any

common notion of time shared with other machines. A machine only has access to

its own memory and resources. Interaction between machines is limited to message

passing via statically defined channels.

In this section the application model of the machine abstract architecture is dis-

cussed, including:

• how an application is defined (below)

• the properties of a machine (section 3.2.1)

• how machines interact (section 3.2.5)

Machine oriented applications are defined by a collection of machine specifications

(machine types) where one particular machine specification is denoted as the start machine.

Instances of these machine specifications are the actors of the system at runtime, but only

the start machine type is defined to have an instance at runtime. When a system begins

to execute a machine of the start type is created on the first processor (see section 3.3) of

the platform. The static definition of the application does not include which instances of
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other machine types will eventually exist. At runtime a machine can cause any quantity

of any type of machine to be created. Once created machines can react to the receipt of

messages, the passage of local time, and to their own creation. On each of these events

the machine can perform arbitrary computation, possibly involving the transmission of

messages to other machines, updating its own internal state or creating new machines.

An example of an application structured in a machine oriented style is provided in

figure 3.2. In this figure each machine type is one of the white rectangles. The channels

(think ’message boxes’) defined by the machine type are the large arrows escaping the

machines to the right. The direction of data flow is indicated by the channel arrow’s

direction, except in the case of the ‘Stimulus’ channel shown in the Emergency Valve

machine which neither transmits nor receives any data. It can be seen in the example

that the Flow Controller type is the defined ‘start’ machine type and so will be the first

machine to exist at runtime. Further facts about the runtime structure of the applica-

tion can only be obtained through analysis of the event handlers and internal state (if

defined) for each machine type:

• The application model does not define the structure of a machine type’s internal

state but this detail has been provided in figure 3.2 for clarity. Implementations of

the machine model expressed in strongly typed or object oriented programming

languages will naturally express more information about the structure of a ma-

chine’s internal state. For example, the internal state of the Level Sensor machine

type in figure 3.2 contains machine references to Flow Controller, Unreliable Sen-

sor, and Emergency Valve types. This allows the inference that the Level Sensor

has runtime dependencies on these types: It might create, communicate with, or

receive references to machines of these types.

However, as the application model only specifies that internal state exists and not

the specification of its structure, application analysis via state structure cannot be

guaranteed across implementations.

• As with the internal state of a machine, the exact behaviours and syntax of event

handlers are not defined by the application model; they are implementation de-

fined and within the confines of a single machine the behaviour of an event han-

dler is immaterial to the model. In figure 3.2 the behaviour of the event handlers

is described informally in English.
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Figure 3.2: The definition of a machine oriented water tank level control application.
63



Chapter 3: Machine Abstract Architecture

However, the application model does impose certain constraints (discussed in sec-

tion 3.2.6) which enable some structural details to be extracted from event han-

dlers. In particular it can always be determined which types of machines a ma-

chine may interact with, and which channels of other machine types the event

handler may use. The ‘may’ caveat alludes to the consequences of the halting

problem [128, 209], and more specifically Rice’s theorem [182], which states that

there is no general and effective method for determining non-trivial properties of

algorithms. In the context of event handlers this means that it cannot in general be

determined what the outcome of the execution will be. The presence of a named

channel within an event handler is an indication that the code may use that chan-

nel but it cannot be guaranteed for all possible event handlers if the channel would

actually be used, or how many times if it is used. However, it is certain that a

machine cannot use a channel if it is not referenced by an event handler.

Although it is impossible to guarantee to determine exact properties of all possible

event handlers, real program code is likely to be amenable to forms of static anal-

ysis enabling more detailed program structure to be extracted from an application

definition.

Figure 3.3 highlights the properties that the model guarantees will be extractable

from an application. The extractable information is only sufficient to generate graphs

of dependencies between the machine types. A summary of the static machine depen-

dency graph for the water tank example application is provided in figure 3.4. It can be

seen that this information is not enough to determine statically that there will be two

instances of the Unreliable Sensor machine at runtime. The Unreliable Sensor machine

type requires a level gauge resource so it is possible to infer that there cannot ever be

more Unreliable Sensor machines than the platform has level gauge resources. The

topics of resource usage and provision are discussed further in sections 3.2.7 and 3.3.2,

respectively.

An entity-relationship diagram for the application model is provided in figure 3.5.

The semantics of a machine type are defined by its event sources and handlers. Event

sources can be considered to be the ’interface’ of a machine as this defines which channels

a machine type exposes to other machines, likewise event handlers are the ’code’ of a

machine. All computation and behaviour of a machine is defined within the machine

type’s event handlers. Each instance of a machine type has distinct state and operates

64



3.2 Application Model

Water Tank Level Control Application

Flow Controller (start)

Overwriting Buffer
“tankLevel”

type: Integer    length: 1

Referenced Channels
“power” in Refill Pump
“setup” in Level Sensor

Referenced Machine Types
Refill Pump
Level Sensor

Required Resources
None

Refill Pump

Overwriting Buffer
“power”

type: Integer    length: 1

Referenced Channels
None

Referenced Machine Types
None

Required Resources
pump actuator

Level Sensor

Bounded Buffer
“setup”

type: Flow Controller
length: 1

Referenced Channels
“level” in Unreliable Sensor
“tankLevel” in Flow Controller
“openValve” in Emergency Valve

Referenced Machine Types
Flow Controller
Level Sensor
Emergency Valve

Required Resources
None

Emergency Valve

Stimulus
“openValve”

Referenced Channels
None

Referenced Machine Types
None

Required Resources
valve actuator

space reserver

Unreliable Sensor

Remote Data Fetch
“fetchPressure”

type: Integer    length: 1

Referenced Channels
None

Referenced Machine Types
None

Required Resources
level gauge

Figure 3.3: The properties that are guaranteed by the application model to be extractable from the
example application. The black arrows indicate where a machine type has a direct ’communicates
with an instance of’ relationship to another type.
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Figure 3.4: The machine dependency graph obtained from the example application.
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Figure 3.5: An entity-relationship diagram for the application model.
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independently to all other machines in the application.

The definition of an application is primarily intended to describe the behaviour of

a system but structured in a way that is amenable to analysis and implementation on

diverse platforms. As such, all implementation strategies are equally valid if they can

produce the runtime behaviour that matches the definition of the application. This

means that elements of the application definition do not have to exist at runtime if they

are not needed for correct runtime semantics. For example, if a tool is able to map certain

machine types onto hardware function accelerators when their behaviour matches, then

there may be no need to generate any code or metadata for those machines. Even when

machines are executing on general purpose processors it may be possible to generate

entirely static code that has no dependencies on the defining structure of the application.

3.2.1 Machines

Machines are the central concept in the machine abstract architecture: Each machine is

the combination of an execution context and a container for state. Runtime execution of

code only happens in the context of a machine and all machines in an application are

potentially executing concurrently. There are no other ‘threads of control’ in an applica-

tion. In a similar fashion all application state is contained within exactly one machine;

there is not any state shared between machines nor any state which is owned by no

machine. The isolation of machine state is much stronger than the typical access mod-

ifiers (public, private, protected, etc.) provided in some programming languages.

Machines never have access to each other’s state, even if they are instances of the same

machine type.

Every machine at runtime is an instance of a defined machine type, and these machine

types are the primary constituents of the application definition (see figure 3.5). There

can be any number of machines of each type at runtime, in practice the number is only

limited by resources available in the system’s platform. An application where the ma-

chines have no specific resource requirements (i.e. where only processing, memory and

inter-machine interactions are required) would have no defined limits to its magnitude

at runtime on a hypothetical unbounded platform.

A well designed application would be able to become arbitrarily large at runtime as

machines have no spatial or temporal dependencies on one another, and do not even

have any knowledge of other machine’s existence in the application. Machines are local
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Emergency Valve Unreliable Sensor
“sensorA”

Flow Controller

Refill Pump Level Sensor

Logical
Local
Area

Unreliable Sensor
“sensorB”

Figure 3.6: The runtime machine instances of the water tank example application. The logical
local area of the Flow Controller machine is represented by the green shaded region.
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Figure 3.7: The Level Controller machine essentially encapsulates the Emergency Valve and
Unreliable Sensor machines; it hides this complexity from the Flow Controller machine

entities: All interaction between machines, including synchronisation, only happens

through the application’s defined channels, and these can only be used by a machine

if it owns a valid reference to the other machine. A machine reference is an opaque

identification of a particular instance of a machine type at runtime and all references to

the same machine instance are identical. As an application definition does not specify

any machine instances, it therefore also does not contain any machine references. A

machine has permanent references to itself and to a platform-defined set of remote

ProcessorManager machines (see 3.4).

References to any other machines can only be obtained by:

creation of a new machine. The machine which requested a new machine will have a

reference to the newly constructed machine. See section 3.2.4.

communication of the reference from one machine to another. Machine references are

valid data types for intermachine communication. See section 3.2.5.

The critical detail is that machines are not able to synthesise references to other machines

and there is no built-in mechanism to index or enumerate other machines in an applica-

tions. A machine can only interact with the logical local area defined by the union of the

set of references currently part of its state, and the permanent references made available
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Gas Cylinder

Remote Data Fetch
“fetchPressure”

type: Integer    length: 1

Stimulus
“emergencyVent”

  Event Handler

1) Open emergency valve
2) Set pressure to 0

  Event Handler

1) Reply with pressure
pressure

type: Integer

Resource
emergency 

valve

Figure 3.8: A simplified gas cylinder defined as a machine. This type of machine definition
expresses the connection between a specific gas cylinder’s level and emergency vent capability.

to it by the runtime framework. In the previous water tank example application (see

figure 3.2) the Refill Pump, Emergency Valve, and Unreliable Sensor machine types

contain no machine references as part of their local state and so have the smallest possi-

ble logical local area, potentially only composed of their own machine. The internal state

of the Flow Controller machine has the logical local area illustrated in figure 3.6. It can

be seen in figure 3.6 that the Level Sensor effectively hides its internal implementation

from the Flow Controller machine, which has no awareness of the existence of the Un-

reliable Sensor machines which are used to perform the level measurements. As only

the Level Sensor machine ever has references to the Emergency Valve and Unreliable

Sensor machines they can be considered to be encapsulated by the Level Sensor machine

type. This structural encapsulation is shown in figure 3.7. Although Emergency Valve

and Unreliable Sensor may be considered structurally encapsulated by the Level Sen-

sor machine, they have the same timing and spatial independence from Level Sensor as

every other machine does.

In contrast to other actor models, machines types can define any number of commu-

nications channels including zero. The aggregation of multiple channels by a machine

type provides an unambiguous indication that the channels have a relationship to each

other. This relationship is not expressible in computational models where actors have

at most one inbound channel or where channels can exist as standalone entities. The

machine type shown in figure 3.8 expresses the important relationship between its two

channels. An application containing instances of the Gas Cylinder Machine could al-

ways be certain that if a pressure level was fetched from a “fetchPressure” channel,

then the coupled “emergencyVent” channel would correspond to the same cylinder in-
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stance. Without channel aggregation an application could never be certain that multiple

channels intended to have a shared ‘context’ actually refer to the same context as one

another; channel aggregation prevents compatible but unrelated channels from becom-

ing confused. Channel aggregation therefore exposes much more application structure

and can prevent a class of programmer errors.

3.2.2 Timing, Scheduling and Synchronisation

The isolated nature of machines means that the intermachine synchronisation consid-

erations are somewhat different to the intramachine timing and scheduling considera-

tions. Machine oriented applications can be viewed as an instance of the of the globally-

asynchronous locally-synchronous (GALS) [43, 139] architectural pattern as each machine is

internally synchronous, but there is not a synchronous relationship between machines.

3.2.2.1 Intermachine Synchronisation

At runtime all machine instances operate concurrently and without any defined timing

relationship to other machine instances. This allows total freedom for implementations

to allocate multiple machines to a processor, dedicate processing resources to a single

machine, or even implement machines as dedicated special purpose functional units.

Implementations are also not constrained by the application model to provide a global

timing source. Therefore application code cannot make any assumptions about the

execution speed of code in any other machine, even if the other machine is the same

type. Undefined and hidden timing relationships between machines are almost certain

to exist when an application is implemented on any present day computing architecture

from embedded MPSoCs to warehouse scale HPC, but these relationships cannot be

relied upon by a portable application.

Some types of communications channels, such as a rendezvous (see section 3.3.3), can

provide inter-machine temporal relationships but such relationships are fundamentally

short-lived. Inter-machine synchronisation only lasts for the duration of the transac-

tion that established the relationship and once concluded the machines are once again

decoupled in time. It is not only possible but inevitable that machines will lose synchro-

nisation when the implementation platform does not have a global timing source, as all

physical timing sources will have imperfections that guarantee they will diverge over

time.
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As machines are mutually asynchronous, both continuous synchronisation of ma-

chines’ behaviours and determining the order of events across the system are challeng-

ing. Synchronizer [19] algorithms can be used to simulate a synchronous system on

an asynchronous substrate but these introduce a substantial communications overhead.

The issue can be somewhat mitigated by avoiding a requirement on machine synchro-

nisation and instead using the concept of logical time to determine the order of events

within an application and to make distributed decisions. Any logical timing scheme

such as Lamport timestamps [114] or vector clocks [130] can be implemented within the

framework of the application model.

3.2.3 Intramachine Timing and Scheduling

At runtime all code in a machine is contained within event handlers which are exe-

cuted in response to events triggered by the machine’s event sources. The application

model considers event handlers to be black boxes and so does not define the execution

paradigm or timing aspects of event handler code; the semantics of a particular event

handler’s code is the concern of the implementation language.

The most important aspect of a machine’s internal execution is that it is sequentially

consistent. Sequential consistency is the requirement that the execution of code happens

with the same consequences as if the code had executed on a single sequential pro-

cessor [115]. This means that only one event handler may ever be ‘live’ at once, and

therefore also means that machines must execute event handlers non-preemptively. If two

or more event handlers are live at once, or if an event handler could be preempted by

another then this could result in non-sequentially consistent behaviour being observed

if the second event handler modified the data structures that were in use by the first.

Together with the guarantee of machine spatial isolation, the non-preemptive and

sequentially consistent execution properties mean that application code can be written

without any consideration for issues raised by concurrent data access. Concurrent ac-

cess to data is impossible so there is simply no need for implementations to provide

conventional synchronisation primitives such as locks, semaphores and monitors.

Implementations are free to use any form of concurrency or parallelism within the

bounds of a single event handler, but no other event handler can begin execution until

the first event handler has completed. This means that implementations cannot start

’background’ threads that would continue to execute with a lifetime beyond the event
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handler that started it.

Machines can contain non-event handler code for implementation specific initialisa-

tion purposes if the code meets two conditions:

1. it does not require any input data

2. it has no consequences for anything but the local machine.

This type of program code is unlikely to have any utility other than the algorithmic

initialisation of the machine’s internal data structures. The result of the execution of this

code will be identical every time it is run as the input will always the same.

3.2.3.1 Event Sequencing

Immediately after a machine has been initialised a startup event is triggered and the

startup event handler is executed if defined by the machine type. This event handler

is guaranteed to be the first handler executed in a machine and unlike initialisation

code it has no restrictions on its behaviour; it is free to request new machines and

perform arbitrary computation. The machine that requested the new machine to exist

may already have been provided with a reference to the new machine before the startup

event has been handled. This does not present any problem as any event triggered in

the new machine will not be handled until after the setup event has completed.

Each machine has its own internal priority queue for events that have been triggered

by event sources but have not yet been handled by their event handler. An event source

is only permitted to have at most one event in the queue at any instant. This implies the

event source must wait until the first event has been handled to enqueue a subsequent

event. This restriction bounds the maximum possible length of a machine’s event queue

to the number of event sources in the machine type. This is highly desirable as it ensures

event sources contain their own buffers if needed rather than using the event queue as

an implicit buffer. This is better as it allows event sources to define their own buffering

semantics including ordering, length and response to overrun conditions.

When a machine is idle it will chose the highest priority outstanding event to han-

dle. The priority of an event is determined first by the priority of the event source that

it originated from, and secondly by arrival order. Therefore, if all event sources in a ma-

chine have equal priority the machine will handle events in FIFO order. An illustration

of this scheduling policy for a machine with four event sources is provided in figure
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Time
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Channel
Channel Channel
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Figure 3.9: An example of event handler scheduling in a machine with a periodic event source
and three channels.

3.9, where it can be seen that the machine is severely overloaded with almost all events

handled late. The application defines the priority of each event source on a per-instance

basis. The machine’s event queue itself is not visible to application code and may not

be required to actually exist at runtime. For example, if a machine only contains a sin-

gle event source an implementation would only need a flag indicating that an event is

pending.

If a machine finishes the execution of its current event handler and the event queue

is empty it will remain idle until a new event is triggered. Machines do not have an

idle task concept so an idle machine has no behaviour. Idle behaviour can be emulated

using a low priority Yield event source discussed in the next section.

3.2.3.2 Spontaneous Event Sources

Spontaneous event sources allow a behaviour in a machine to be triggered without an

external cause. As previously discussed, intermachine timing dependencies are prob-

lematic and cannot be supported, but within the context of a single machine time is a

well defined concept. It makes sense to define some timing event sources in the appli-

cation model as they are straightforward to abstract and they enable patterns of spon-

taneous behaviour to be exposed by the programmer that would otherwise only have

been discoverable with sophisticated program analysis. In the language of real-time

systems [37, §1], these are time-triggered event sources.

There are four primitive spontaneous event sources that can be abstracted easily and

are compatible with the machine model:

Alarms trigger an event at a single absolute time in the future. Alarms cannot trigger

again unless a new absolute time is set. Alarm event sources enable time-aware [37]
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systems to be described.

Delays trigger an event after a fixed interval since starting the delay. A triggered delay

can be started again at any point during or after their event has been handled.

Delays ensure that the time between starting and triggering is at least the interval

specified. Delays allow time-triggered but aperiodic activity to be described.

Periodics trigger an event after a fixed interval since the periodic event source last

triggered. Periodic event sources are restarted automatically after the event handler

is completed. In contrast to delays, periodics aim to keep the interval between

event triggers fixed regardless of the execution time of the event handler, or the

delay between event triggering and event handling.

Yields trigger an event on request. The Yield event source enables intramachine co-

operative multitasking. As event handlers are executed non-preemptively, a long-

running event handler will prevent other event sources from having their events

handled. An event handler that needs execute for a long time can allow other

event handlers a chance to execute by finishing early after using a yield to add a

new event to the machine’s queue immediately. As long as the yield event source

has a priority that is not greater than any other event source this will give all other

pending events a chance to execute. Yield event sources have the interesting qual-

ity that they do not fit into the existing taxonomy of real-time systems behaviour

as they are neither time-triggered nor event-triggered; future yields are triggered by

the in-progress execution of some code, but the yield’s handler execution is only

loosely coupled in time to triggering of the event source.

If an implementation provides application code with a ‘timestamp’ API to access the

current time relative to some fixed point, then both delays and periodics can be emu-

lated with the correct use of an alarm. Even if it is possible in a given implementation

to emulate the behaviour of delay and periodic event sources there is utility in making

these usage patterns explicit. The representations used for the specification of absolute

time and intervals are implementation defined.

An important detail of the timed event sources is that they can only guarantee min-

imum intervals. Long running or non-terminating event handlers can entirely prevent

a timed event source from meeting its specifications, meaning that timed event sources

can only operate on a “best effort” basis. This problem is not as severe as first ap-
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pears though as event handler interference is contained within a single machine. If

non-interference is important for an event source, the functionality can be split between

two or more machines.

It is not readily possible to capture the concept of an interrupt with a machine as

event handlers cannot be preempted, and ‘terminating’ active event handlers could re-

sult in inconsistent machine state. Therefore a hypothetical deadline event source that

would terminate its event handler after a specified duration cannot be expressed. How-

ever a variant of the periodic event source could be constructed that would invoke one

of a pair of event handlers depending on if the handler was being invoked before or

after a specified deadline.

Machines and the timed event sources they contain cannot guarantee to be able

to know ‘calendar time’ as this would depend on access to a Real-Time Clock (RTC)

hardware resource. Local time relative an arbitrary but fixed point in time (such as the

local processor boot time) can always be known.

3.2.4 Creating Machines

Machines cannot be explicitly constructed by application code, they must be requested

from the implementation framework (discussed further in section 3.4). The exact syntax

will depend on the implementation language but the general contract is always the same:

a machine of a specified type is requested and at some point in the future a reference

to the new machine is supplied. The requesting code cannot provide any parameters to

influence the generation of the new machine, and no data can be supplied to the new

machine for construction. The framework implementation has total discretion about the

placement of the new machine in the platform.

Newly created machines are not given any information about their execution context,

and are not supplied with a reference to their requesting machine. If an application

needs a new machine to communicate with an existing machine then a reference to the

existing machine must be sent to the new machine via a channel that the new machine

contains. This architectural pattern can be seen in the example application (figure 3.2)

where the Flow Controller machine requests a new Level Sensor machine and then

sends a reference to itself to the newly created Level Sensor so that the new machine

can communicate back to the Flow Controller.

There are no bounds on the duration of a machine request and the request is not
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guaranteed to succeed. The way in which a machine determines that a request has failed

is implementation defined, but the requesting machine must never acquire an invalid

machine reference to a partially generated, malformed or non-existent machine. The

possible failure modes for machine requests include hardware failure of local or remote

devices, insufficient hardware resources that are required by the requested machine

type, or any other possible implementation dependent failure mode.

Machines are not required to be immortal but application code cannot request the

destruction of a machine, this is because a machine cannot know that it is safe to destroy

the machine in question; another machine may still be using it. The runtime framework

has the freedom to destroy machines on the condition that its destruction is not visi-

ble to the application code. This condition is not trivial and requires a framework to

determine:

• That the moribund machine has no future spontaneous behaviour, or that any

future spontaneous behaviour cannot interact with other machines.

• and no other machine owns a reference to the moribund machine that can be

used for a synchronous or bidirectional interaction. Purely asynchronous and

unidirectional communications could be tolerated to machines that do not actually

exist.

3.2.4.1 Entry Point

One machine type is specifically designated as the entry point of the system. At the start

of execution this machine is instantiated by the framework implementation and is the

only application defined machine that exists when application code begins to execute

within it. The Flow Controller machine is the start machine in figure 3.2 and this is

denoted by its double outline.

3.2.5 Communications

Machines can only interact with each other via the channels defined in their machine

types. Interaction can mean the exchange of data or establishing a synchronisation

relationship. A channel contained in a machine can be used by any number of other

machines, but each intermachine transaction has exactly two participants. Channels

are a generalisation of the message box concept from other actor-oriented models: all
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interaction is fundamentally based on asynchronous and unreliable message passing.

There are many different protocols that can define a channel’s behaviour and these are

discussed later in this section. Instances of the machine type that defines a channel are

always reactive to transactions initiated by other machines. Machines do not have to

define or create connections in order to communicate.

An important concept within the application model is that every machine operates

within its own logical local area and that there is not a valid ‘global’ view of the whole

system at runtime. This ensures that the overheads of a machine implementation only

need to be related to the magnitude of its logical local area and not the magnitude of

the whole system. From the perspective of a machine, only its logical local area even

exists at runtime and therefore only this area can be subject of interactions. However,

a machine’s logical local area is not fixed and can change over time. The consequence

of this concept is that communications channels cannot support non-local addressing

schemes such as:

• broadcasting — all nodes addressed

• geocasting — only nodes in a particular physical location are addressed [141].

• multicasting — addressing a group of nodes.

Broadcasting and multicasting within a machine’s logical local area are compatible with

the application model, but are not considered in any detail here as the same effect can

be achieved within an application using only unicast interactions.

This section is divided into three major parts:

1. The qualities common to all channels are considered in section 3.2.5.1.

2. Section 3.2.5.2 discusses the protocol characteristics that are important for inter-

machine communication.

3. Finally, drawing from combinations of the defined protocol characteristics, a col-

lection of distinct channel types are named and defined in section 3.2.5.3

3.2.5.1 Characteristics of All Channels

A number of formalisms for computation demonstrate that only a single communica-

tions protocol is sufficient to express any system behaviour. These formalisms include
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CSP [83] (with unbuffered synchronous channels), actor-model computation [81, 23]

(with asynchronous, unbounded channels that can reorder messages), and Kahn Pro-

cess Networks (KPN) [107] (with unbounded FIFO channels). In the context of a model

of computation having a single communications channel protocol simplifies reasoning

about systems and the addition of extra protocols does not improve the expressibility of

the model; the models are already universal.However, for practical application develop-

ment there are benefits to modelling multiple types of channel with differing properties.

In this model all channels, regardless of the protocol that they implement, will have

some features in common. These are:

single destination A specific channel is declared in exactly one machine type and can-

not be shared across several machine types; all instances of a machine type will

gain their own independent instances of the declared channels.

defined and known characteristics Channels have application-defined characteristics,

discussed below, which are known by all accessor machines and implementation

tooling.

static definition Channels must be defined in the machine type and they cannot be

created at runtime. This is discussed at length in section 3.2.6.

multiple access A channel can be ‘used’ by any machine that owns a reference to the

machine that contains the channel, and there is no model-imposed limit to the

number of accessor machines for any given channel. This means that machines

can have many-to-one communications relationships via a single channel.

message based Communication and other interactions are message oriented and not

based on streams. Connections do not have to be established between machines to

use a channel.

machine owned Channels do not exist in their own right but are best considered to be

features of the machines that they are declared in. If the channel contains a buffer

then it is stored in the machine that declares the channel.

event sources All channels are event sources in the machines that declare them, and

bidirectional channels (discussed on page 88) are also event sources in the ma-

chines that use the channel.
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undefined reliability and ordering The application model does not require that chan-

nels will guarantee delivery, provide error reports on failure, provide timeouts,

prevent duplicates, or ensure messages arrive in the same order as they are sent.

In addition, due to the distributed and decoupled nature of machines, even high-

reliability implementations cannot ensure that the ordering of messages received

from distinct senders can be guaranteed to be the same as the order in which they

were sent. This is because the two (or more) sender machines have incompara-

ble timing sources which cannot be used to order the message dispatch, and the

sender machines will not necessarily be aware of each other’s existence so cannot

establish a logical send-ordering either. This does not mean that channel protocols

cannot be reliable, but that the existence of a channel does not imply reliability.

Implementations that can target platforms with inherent unreliability may chose to

assist application development by differentiating between reliable and unreliable

implementations of channels, or by providing additional ‘wrappers’ for channels

that can provide additional assurances for message delivery, ordered messages,

and flow control. Additional assurances come at the expense of increased message

latency and runtime complexity.

undefined blocking The application model does not define the local timing character-

istics of channel operations. Implementations have the freedom to chose between

the provision of blocking and non-blocking operations where appropriate. For ex-

ample, if a channel is not yet ready to receive a new data item the sender event

handler could be prevented from making any more progress (blocked) until the

receiver is ready to accept, alternatively non-blocking schemes would allow the

sender event handler to continue to execute even after the potentially not yet ac-

cepted datum was provided for sending. Blocking communications schemes are

superficially very easy to program with as the natural flow of control is main-

tained, and blocking semantics are familiar as they are most common in popular

programming languages for their primary networking and file system access fea-

tures.

The machine model makes blocking communication less desirable as event han-

dlers are non-preemptive, so if an event handler is blocked waiting for a channel

operation then no other event handlers are able to become active either. Block-
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ing channel operations can effectively stall entire machines from making progress.

Even worse, blocking operations within a machine can allow distributed dead-

locks to exist. Improperly synchronised machines with mutual communications

dependencies can easily deadlock if they both wait for the other to send data.

3.2.5.2 Channel Protocol Characteristics

Even though a channel in a machine can have multiple other machines using it, each

separate interaction is a point-to-point communication between a pair of machines. A

quite extensive taxonomy of the protocols that can exist between two communicating

processes has been explored by Simpson [191], and these can form the foundation of

the useful protocols suggested by this application model, indeed many of the protocol

names1 used in [191] are carried into this application model. However, machines are

not exactly alike general concurrent processes and channels are not modelled here as

their own entities, so naturally there is some divergence from the originally observed

taxonomy.

In the context of machine-oriented applications the interesting protocol properties

are buffering, destructivity, type and direction.

buffering The size of the buffer in a channel if it is buffered at all. Buffering has im-

plications for the memory requirements of the machines containing the channel,

and for the expected usage patterns of the channel. Unbuffered channels require

the receiver to be ready and waiting before the sender begins the interaction, oth-

erwise the unbuffered datum is lost. Channels that are both unbuffered and non-

destructive (see below) provide particularly strong instantaneous synchronisation

between machines as the sender must be held up until the exact moment that the

channel owner is handling the receive event.

destructivity In [191] both the destructivity of protocol reads and writes are considered,

and they are defined as a write (send) operation that cannot be held up, or a

read (receive) operation that can be held up. The concept of destructive receives

(where the machine declaring the channel can be held up) is a poor match for a

1In [191] the name ’Channel’ refers to a specific communications protocol, but in this thesis it is used as
a name for a generic communications message passing concept. The specific meaning of ’Channel’ defined
in [191] is most similar to CSP’s channels and therefore requires destructive reads which are not well suited
to machine-oriented programs.
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primarily event-driven architecture. The expected practice when a machine wants

to wait for one of its channels to produce data is to ’do nothing’ as the channel

will trigger an event when a new datum has arrived (or interaction of another

variety has happened). In a sense the machine has been held up as no progress

has been made to process a datum that has not yet arrived, but the machine is not

actively waiting and it can perform its other activities as normal. Conversely, non-

destructive (always ready) reads are when the channel provides a persistent read

buffer that can be consulted by application code repeatedly. This is always possible

for unidirectional channels, and it is also trivial for applications to introduce their

own non-blocking read functionality (a buffer) that is refreshed by the channel’s

“on received datum” event handler.

Destructivity of send operations to channels is very much applicable in a machine-

oriented context. Channels that support destructive sends can always accept new

data regardless of their current state, and this makes them easy to use and amenable

to efficient implementations (as there is no need to consider flow control). In con-

trast, non-destructive channel protocols can only be sent to when the receiver is

ready or has sufficient buffer for the new data item, and this substantially compli-

cates both the send-side semantics and the implementation:

• Non-destructive channel sends require that the sender machine is able to

know if the channel ready to accept another datum. This implies that the im-

plementation must have an underlying bidirectional communications medium

to allow the channel to signal its readiness to receive. The application layer

should not need to be aware of the low level messages exchanged between a

‘sender’ machine and a ’channel owner’ machine to indicate the readiness of

a channel to accept another datum. However, there are two main approaches

that can be used in the implementation layer to support non-destructive chan-

nel sends:

1. Repeatedly send the datum until the channel issues a positive acknowl-

edgement of receipt. This scheme has the advantages that it is has low

memory requirements and only requires a simple state machine on the

send-side of the channel. This scheme has low memory requirements as

the receive-side of the channel is not required to keep a table of prospec-
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tive senders; the senders will continue to attempt to send. The disadvan-

tages of this scheme are equally clear: there can be a lot of redundant

communication, possibly contributing to network congestion, and this

scheme cannot ensure fairness or any other prioritisation for senders.

The data accepted is just the data that happened to arrive at a moment

when the channel had the capability to accept it.

2. Request permission to send from the channel. The channel replies with

some indication of when or how the sender can transmit the datum.

This can be done either by delaying an acknowledgement until a time

when the sender is guaranteed to have its datum accepted, or by reply-

ing quickly with a description of when it will be acceptable to send the

datum.

This scheme has the advantages that the datum is only sent once so min-

imises unnecessary communications, and data can be accepted in order

of any priority metric. The implementation of a non-destructive channel

can chose amongst all waiting senders whenever there is spare capacity

to receive more data. The most obvious use of this capability is to ensure

some degree of fairness between all senders, such as by queueing send-

requests and releasing them in FIFO order. More complex notions of

fairness, such as a fixed share of capacity over a moving window of time,

of more general quality of service can be supported though active acknowl-

edgement schemes such as this. The very widely deployed Transmission

Control Protocol [169] (TCP) is an example of a protocol that uses active

acknowledgement between receiver and sender to provide flow control,

guaranteed ordering and reliable delivery for a single connection, but it

is not used to provide fairness or prioritisation between multiple connec-

tions.

The disadvantages of an active acknowledgement scheme are greater

complexity at both ends of the channel, and greater memory require-

ments at the receive end of the channel. The receive-end must maintain a

record of all pending senders in order to be able to permit them to send

when capacity becomes available, and the sender must have some record

of how many reservations it has granted so that it does not permit too
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Figure 3.10: A sequence diagram of the race condition that exists when non-destructive channels
provide a naive ’buffer full?’ query for application code to decide when to send. SenderB fails
to send its datum even though it received an indication of available channel capacity. ‘f’ is the
number of free buffer slots. ‘f’ is decremented on data receive and incremented when the channel
has an event handled. SenderA and SenderB event handlers are omitted for simplicity.

many senders to transmit simultaneously. This is further complicated if

the delivery of the control messages is not guaranteed by the underlying

communications medium.

• The second complication for non-destructive channel protocols is that the pro-

gramming language implementing the model must be able to represent the

semantics of a delayed send in some way. Non-destructive channels are the

motivation for considering the blocking vs. non-blocking language seman-

tics discussed previously. Implementations can chose between at least four

approaches to providing non-destructive send operations:
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1. Block the send machine from making progress until the datum has been

accepted by the channel.

2. Provide an event when a non-destructive channel has become ready to

send.

3. Provide a facility for application code to ’test’ if the channel is ready to

accept a datum.

4. Trigger an error condition such as an exception or error code if the send

could not be accepted by the channel.

These approaches are not semantically identical and cannot be safely imple-

mented at face value. Option 1 is always safe for the channel, but has the

negative blocking consequences previously discussed. Approaches 2 and 3

are vulnerable to intermachine race conditions if they use an indication of the

remote buffer’s state to determine if it is the right time to send data (A “buffer

full?” query). This scenario is illustrated in figure 3.10: SenderB checks with

the ‘Channel Machine’ to determine if the buffer is full and even though the

channel machine responds that its buffer is not full, SenderB still fails to suc-

cessfully send data. The issue is that the response to the “can send?” query is

only valid at the instant it was issued and is very likely to be invalid when it

is received (an indeterminate amount of time later) by the querying machine.

Other machines (‘SenderA’ in the example) are able to send a datum and use

the available buffer space before the first machine (‘SenderB’) has its datum

received by the machine with the channel.

Approach 4 is a variant of approach 1 as it must block for as long as it takes

to either send the datum or determine that it cannot be sent, but it potentially

shares a flaw with approaches 2 and 3 if it uses a remote “buffer full?” query

internally. The potential flaws in approaches 2, 3 and 4 appear to suggest that

non-destructive channels require blocking operations in application code, but

it is possible to enable non-blocking programming styles with non-destructive

channels. The key is that the “buffer full?” query must be reformulated as

a “can send?” query that will reserve space in the buffer for the querying

machine if the query is responded to affirmatively. With a buffer reservation

scheme (the “active acknowledgement” scheme discussed on page 82) it is

to design a non-blocking event-driven programming interface for application
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code.

In the presence of faults, it is important that an implementation has a mech-

anism to release reserved buffer slots if the sending machine fails to send the

data as promised. Notification of sender failure or timed reservations may be

viable approaches but will further complicate an implementation. Where the

expected number of sender failures over the lifetime of the system is much

lower than a receiver’s buffer capacity, it may be acceptable to simply accept

permanent loss of buffer slots.

Figure 3.11 illustrates an example non-blocking exchange between a sender

machine and a machine with a non-destructive channel that avoids race con-

ditions between multiple sender machines. While this approach avoids block-

ing the sender machine, it does introduce considerable complexity into the

application code. In the example an unrelated event handler begins the send

transaction to the channel. The responses from the ‘Channel Machine’ are

queued in the ‘Sender Machine’s event queue until the CanSend event han-

dler is able to execute. The application must maintain a state machine for use

by the CanSend event handler to decide what its action should be. Framework

implementations would be able to ease application complexity by providing

channels that implement this handshake internally. Implementations could

also provide fixed, n-length buffering on the sender side for each channel

that the machine communicates with. Sender-side buffering ensures that the

first n data items sent could be ‘accepted’ from the application, and where

fewer than n items are ever sent to the channel there would be no need to

explicitly implement the handshaking logic.

A lesser characteristic of destructive channels is the way that they handle buffer

overrun situations. When a new datum arrives but the buffer is already full a

decision must be made about which datum to loose. Unless a priority can be

determined for the messages, a content neutral policy must be used such as over-

writing the least recently received (oldest) datum. This patten is sometimes [33, 29]

referred to as last-is-best semantics, where only the most recent data are of concern

to the receiver. Where the communication is about events that happened rather

than values, each instance may be equally important and no policy for overwriting

data is desirable. For these situations non-destructive channels or more sophisti-
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Figure 3.11: A sequence diagram for a non-blocking send to a non-destructive channel. This
sequence avoids race conditions between multiple sender machines. ‘f’ and ‘r’ represent the
number of free buffer slots and the number of ready data items in the buffer, respectively.
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cated application level protocols are required to avoid unacceptable message loss.

It is difficult to imagine the utility of first-is-best semantics, where the oldest data is

retained preferentially, but it is an efficient scheme when the receive buffer is full as

new messages are just discarded. First-is-best semantics are implicitly provided by

implementations of User Datagram Protocol [167] (UDP) and raw IP [168] where

incoming packets are simply dropped if the receive socket’s buffers are already

full.

type The type of datum that the channel is able to communicate. In [191] only two

types of data are considered: ordinary data that has a value and a void type that

has no value. This distinction enables void-typed channels to be defined which

only provide synchronisation between the sender and receiver and do not trans-

fer any data. This concept can be further generalised to allow channel definitions

to differentiate between different types of ordinary data. The key principle is

that a sender and receiver should have compatible expectations of what possible

data values could be communicated via the channel, and additionally share ex-

pectations about an appropriate interpretation of the data. This ensures that if a

channel is defined to communicate data of type T, application code can expect that

only data compatible with its expectations of T typed data will arrive. Program-

ming languages with type systems embed this concept into the semantics of the

language [40], where it is expected that useful data is typed: it has some structure,

pre-defined interpretation and importantly there are rules that define how it can

be used meaningfully.

The specification of data types for channels is ultimately implementation depen-

dent. Implementations in non-statically typed languages may also accept more

loosely typed channels but unstructured or raw channels should be considered

bad practice. This is for the same reasons that modern programming languages

would discourage the use of an unstructured globally scoped array to store all of

an application’s state: It’s highly prone to programmer error and there is little that

compilers or other automatic tooling can do to help.

It’s redundant to specify a type system in the application model and it would not

be guaranteed to be a good match for any specific implementation language’s type

system. However, the general principle that implementations must follow is this:
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A channel of type T can accept a value of type U if and only if all

values of type U can be assigned to a variable of type T.

Broadly, this allows channels to obey the value assignment rules of whatever type

system an implementation language provides. This also enables languages with

polymorphism to allow channels of polymorphic types.

direction The final differentiating characteristic for a channel is the ‘direction’ that it

communicates data. In the application model the machine that defines the a chan-

nel instance is always the receiver and other users of the channel are the senders.

More generally, machines that define a channel are reactive to transactions that are

initiated by other machines to that channel. This general interpretation is nec-

essary to accommodate void-typed protocols which do not meaningfully send or

receive data.

Bidirectional communication can be established between a pair of machines triv-

ially by ensuring that both machines define a channel for the other to communi-

cate with and that the machine initiating the communications includes a reference

to itself in the first message. This approach has the notable disadvantage that

the non-initiating machine must have prior knowledge of the machine type of the

originating machine, and specifically knowledge of the channel in the originating

machine type that will be used to reply to the first machine.

This ‘trivial’ bidirectional communications construction has significantly limited

expressiveness within the application model. A general purpose ‘service’ concept

(where a machine of any type can request a service from a server machine) is

inexpressible, as the server would be unable to reply to a client machine of a

previously unknown type. This is not an issue for actor models that only have one

channel per actor, or where the actor is the channel (such as Agha’s model [5]).

For single-channel actors there is no ambiguity about the possible return ’address’

when a message requires a reply.

The expressiveness of machine-oriented applications can be substantially improved

by allowing single channels to have a built-in return path, thereby becoming bidi-

rectional channels. Such a channel must define its data types in both the query

(towards the machine defining the channel) and response (towards the machine

that issued the query) directions. This type of channel allows general services to
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be provided by machines when when the client’s machine type is unknown. The

server does not need to know the machine type of the client as the channel defines

both the return path and the response data types. The buffering and destructivity

considerations largely identical to their unidirectional counterparts:

• Buffering is an important parameter for the machine that declares the chan-

nel as it cannot know how many client machines will use the channel, but

return path buffering is less interesting. A machine can only get as many

responses as it issues queries for, so the necessary return buffer size is only a

consequence of the querying machine’s design.

• Destructivity for outbound queries has the same implications as it does for

unidirectional channels, but a client of a destructive bidirectional channel

has no assurance that it will ever receive a response if the server is overbur-

dened. All bidirectional channels must have destructive return paths as a

server machine cannot be held up replying to a client, and cannot expend un-

bounded memory on return path send-buffers. This does not present an issue

if the client machine guarantees buffer space for the responses of all in-flight

queries to bidirectional channels. Buffer reservation for each in-flight query

could be very expensive if the query issuing period (pi) is substantially less

than the total round trip time (pr: the sum of outbound network latency, in-

bound network latency, queueing time in the server machine and processing

time) from the server machine. The required response buffer capacity is

pr

pi
· |R|

where |R| is the size of an instance of the channel’s response type R. For

variable-sized types, |R| is maximum size of any instance in the subset of

possible R typed responses.

3.2.5.3 Defined Channels

Various combinations of the the four important protocol characteristics (buffering, de-

structivity, type and direction) produce channels with recognisable semantics. The most

important of the possible unidirectional channels are specified in table 3.1 and the bidi-

rectional protocols are listed in table 3.2. For every value typed channel described an
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instance can be defined in a machine type for any allowable type in the implementa-

tion language. Instances of different kinds of channels are illustrated in the example

application in figure 3.2.

Bidirectional protocols differ from the unidirectional protocols because data can be

exchanged in both directions, but they do not necessarily provide any stronger syn-

chronisation between the machines. The unidirectional rendezvous channel (discussed

on page 92) provides the strongest possible synchronisation between machines. The

most important conceptual difference between uni- and bidirectional protocols is that

the receiver not only receives data from the sender, it receives a tuple of a datum and a

return path to the machine that issued the query. The return path is an anonymous sig-

nal channel (an overwriting single-length buffer). When the channel-defining machine

(the server) sends its response to the return path it will queue an event as usual in the

querying machine. Multiple responses by a server are not permitted by this model and

can either be ignored or forbidden by implementations.

In the table of unidirectional protocols (table 3.1), there are only two protocols that do

not have destructive reads. The pool and constant protocols uniquely provide channels

that are always readable in their host machine. Events can still be raised when a pool

is updated, but its purpose is to allow data to be updated from one machine to another

without any temporal relationship being established.

As all channels are owned by their declaring machine type, remote data fetch chan-

nels nearly represent an inversion of the sender receiver relationship, but the non-

declaring machine retains the role as transaction initiator and the channel owning ma-

chine still fulfils the server role. In the scenario where machine a will transfer data to

machine b, the important difference between a bounded buffer and a remote data fetch

is which machine defines the contract of the transfer. Using a unidirectional protocol,

the data recipient (machine b) defines the contract but with a remote data fetch the data

sender defines the contract. This enables a machine to be a data source for another

machine of an unknown type.
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Name Buffer Destructive? Type Purpose

Bounded Buffer2 n R value Root of all non-overwriting channels
Slot3 1 R value Reliable single-slot buffer
Rendezvous2 0 R value Strong synchronisation with data transfer
Directional Handshake2 0 R void Strong synchronisation without data transfer
Bounded Stim Buffer2 n R void Queue of action requests with backpressure

Overwriting Buffer2 n RW value Root of all buffer overwriting channels
Pool2 1 W value Unsynchronised data updates (always readable)
Signal2 1 RW value Sender unsynchronised data updates
Overwriting Stim Buffer2 n RW void Queue of action requests without backpressure
Stimulus2 1 RW void Action flag
Prod2 0 RW void Release an action only if it’s already waiting

Constant2 1 – value Statically defined values

Table 3.1: The variety of well defined unidirectional channel protocols.

Name Query Type Response Type Purpose

Remote Procedure Call2 value value Root of all bidirectional channels
Remote Data Fetch2 void value Request data
Remote Data Send2 value void Bounded Buffer with acknowledgement on processing
Remote Event Invocation4 void void Bounded Stim Buffer with acknowledgement on processing

Table 3.2: The well defined bidirectional channel protocols.

2Naming and semantics broadly consistent with [191]
3Referred to as a ‘Channel’ in [191]
4Referred to as a ‘Remote Thread Invocation’ in [191]
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A rendezvous channel (and the dataless directional handshake variant) are not

perfectly matched to machine modelled applications. A rendezvous more usually im-

plies [24] that at least one of the client or server waits until the other is ready to proceed

but this is not the expected mode of operation for a machine. If blocking operations

are provided by the implementation then it is possible for the client to be delayed until

the server machine is ready to receive the datum. However, it is only possible for the

server to ‘wait’ for a client by refusing to service any other pending events. In situations

where the implementation does not provide blocking channel operations the allusion to

a rendezvous becomes even more tenuous as neither the client or the server are truly

waiting for one another. Figure 3.12 shows how a notional non-blocking rendezvous

would occur in a machine oriented context. As far as possible, implementations should

hide the necessary synchronisation messaging from application code. In the figure the

red numbers indicate important points in the non-blocking rendezvous’ sequence:

1. The rendezvous begins for the sender machine when application code requests to

rendezvous with another machine.

2. The machine defining the rendezvous channel (the receiver) rejects the request if

there is another rendezvous in progress. If the rendezvous is accepted a notifi-

cation is sent to the sender machine instructing it to wait. This message is sent

without application intervention on the receiver. A “rendezvous is starting” event

is queued in the receiver machine. No other rendezvous can be accepted by the

channel-defining machine until this transaction has completed.

3. The receiver handles the “rendezvous starting” event, causing a “send now” mes-

sage to be sent to the sender machine. This message is sent without application

intervention.

4. The sender machine queues a “recipient ready to accept” event.

5. The sender machine sends the data to the recipient channel, and the rendezvous

is now complete at the sender end. Sending the data may be completed without

application intervention.

6. The receiver queues a “data received” event.

7. The receiver handles the “data received” event, concluding the rendezvous for the

receiver. The receiver can now accept another rendezvous request.
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Figure 3.12: A sequence of interactions that implements an event-driven, non-blocking ren-
dezvous channel. The rendezvous machine’s ’other event handler’ is to illustrate the delaying
effect of other activity within the machine.
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It can be seen in figure 3.12 that both the sender and the receiver will execute two

event handlers during a rendezvous transaction, but here are no assurances that ren-

dezvous event handlers in the sender machine will actually be live during the same

physical time as the rendezvous event handlers in the receiver machine. Therefore this

construction is a logical rendezvous as only the ordering of the event handlers is guaran-

teed. The two machines can be considered to be logically synchronised between instants

(3) and (5) in figure 3.12: Only between these instants can either machine correctly assert

that the rendezvous transaction must be active for both itself and the other machine, but

application code associated with the rendezvous is only live for sections of this interval.

This means that the receiver’s synchronisation point is at (3) before the ‘send’ message

is issued, as by the time that the datum is being handled at (7) the sender machine may

(and is likely) to have finished it’s rendezvous event handler. Likewise, the sender’s

synchronisation point is at (5) before the datum is sent, as before (5) has happened the

sender application code cannot be sure that the rendezvous has begun on the receiver.

A non-blocking rendezvous is also only logically unbuffered as implementations will

need to buffer the datum between its arrival to the receiver and the second event han-

dler execution. It is logically unbuffered in the sense that both applications must have

aligned to perform the transfer, and if the value is not used by the receiver machine it is

lost.

3.2.5.4 Undefined Channels

Implementations of the application model would be expected to require applications

to structure their communications in terms of named channel varieties rather than a

more general ‘omni-channel’ concept. This is because for a given channel configuration

the semantics can be well understood by humans and automated tools alike, whereas

a general purpose configurable channel would facilitate combinations of protocol char-

acteristics that may have poorly defined semantics, or may simply find an edge-case in

the implementation.

The following are some examples of channel variations that are meaningless or have

inconsistent semantics:

• A buffered, unidirectional protocol with non-destructive reads and writes. This

general construction is described in [191] as a constant as the sender may be

blocked forever without contributing any data to the channel, so it can be consid-
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ered to be a read-only protocol. Only the data that was originally in the read-side

buffer will ever be read. If this protocol is also void-valued then it contributes

absolutely nothing to an application.

• pool protocols provide no synchronisation, so a void-valued pool would con-

tribute nothing to an application.

• Bidirectional protocols with non-destructive server side reads generate a contrac-

tion of definitions. A ‘read’ from a bidirectional channel provides a query from a

client that must be serviced once; they are single-use. However a protocol with

non-destructive reads can always provide items to application code. These require-

ments cannot be reconciled. An application could buffer data items associated with

previous queries.

• Generally, bidirectional protocols are best defined with destructive read opera-

tions, especially on the client side. It is meaningless for an application to non-

destructively read the response of a query that not necessarily even been issued to

the server.

3.2.6 Dynamic Synthesis and Communication of Application Elements

The characteristics of machine references are contrasted against the other elements of a

machine oriented application in table 3.3. The defined column refers to the appearance

of the specified element in the static definition of an application. Tangible elements are

those that can in some way be manipulated in application code; if an element can be

assigned to a variable at runtime it is considered to be tangible. Where an item has been

marked with an asterisk(*) in table 3.3 this indicates that the model is consistent with

either possibility so implementations are not constrained in their choice to support or

restrict that possibility.

The most important properties of elements in a machine application are described

by the capability of application code (contained in event handlers) to either synthesise

or communicate that element. These capabilities will now be considered in some depth

as they make significant contributions to the rationale of the application model.
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Entity Synthesisable? Communicable? Defined? Tangible? Origin Enables

machine types 7 7 X 7 definition of applica-
tion

static application struc-
ture

machine type names 7 X X X definition of machine
type

request a new machine
of named type

machines 7 7 7 7 implementation de-
fined

execution context and
data storage

machine references 7 X 7 X generated by imple-
mentation framework

communication with
referenced machine

channels 7 7 X 7 definition of machine
type

static communications
structure

channels names 7 7 X 7 definition of machine
type

communication with
named channel

event handler X 7 X X* machine type defini-
tion or dynamic gener-
ation

any behaviour of a ma-
chine

mutable data X 7 X* X created and updated
by event handlers

machine local state

immutable data X X X* X created by event han-
dlers

intermachine arbitrary
data sharing

Table 3.3: A summary comparison of the various elements in a machine oriented application, including the ability for an element to be communicated
and the purpose of the element. *Indicates an implementation defined possibility consistent with the application model.
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3.2.6.1 The Synthesis of Application Elements

Synthesisable elements of an application are able to have new and usable instances

generated by event handler code. For example, event handlers are able to generate

new instances of integers, lists or any implementation permitted data structure. If the

implementation language and runtime supports it then even new event handlers can

be generated dynamically. However most structural elements of a machine application

cannot be synthesised by any event handler:

machines cannot be generated by application code because the nature of their execution

context and memory isolation is necessarily framework-implementation specific

and likely platform specific too. Platform independence for applications is one

of the primary goals of the machine abstract architecture. Applications must of

course be implemented in a programming language in order to be useful but it is

incongruous for an application to contain code to construct its own machines as

this creates framework-implementation specific dependencies.

machine references to unseen machines cannot be generated reliably by any applica-

tion code no matter how the code is constructed. There are two factors that cause

machine references to be unsynthesisable: they are opaque and a machine does

not (by definition) have enough information about the global state of a system

to generate a reference to another machine. The opacity of a machine reference

means that the internal structure of the reference is framework-implementation

defined and unavailable to the application code. Only the type of a machine and

that the machine exists5 can be determined from its reference. As above, an appli-

cation would lose portability if it contain code to generate machine references as

it would generate references with an implementation specific structure and would

either have to guess about the (non) existence of other machines, or use some other

implementation specific mechanism to locate them.

The non-synthesisability of machine references is not a rule that must be enforced

by language frameworks, but a framework constructed in a permissive language

such as C might chose to provide some protection against accidental corruption

or ‘light-hearted’ tampering. Implementations in safe or managed programming

5Even the machine’s existence is not guaranteed – machines can be destroyed on the condition that it
cannot affect application consistency.
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languages such as Java or C# could make use of the built-in language references

which cannot be manipulated by application code.

channels do not make sense to be synthesised dynamically due to the way in which

channels are defined. Channels are part of the static definition of a machine so are

fixed in number and have defined characteristics (see 3.3.3). Channels can only

exist in the context of a machine type, and are only useful if some other machine

is capable of communicating with it.

Applications cannot make assumptions about how channels will be implemented

or even if they will have a ’data’ representation at runtime. Implementations may

chose to map a machine type’s channels to real hardware communications re-

sources, and in this case there is absolutely no possibility of generating a new

channel at runtime; the channels are defined by and fixed into the hardware.

channel names are used by application code to reference a channel defined by a ma-

chine type. To be able to successfully communicate to a channel a machine must

both have the name and know the characteristics of the channel. The definition

of a channel in a machine type is an indication that it has a specific meaning or

purpose to the application as a whole, so even if some application code could

synthesise a valid channel name dynamically there would be no meaning to com-

municating with a previously unseen channel. For this reason channel names are

not considered to be synthesisable dynamically. It is possible to construct an im-

plementation in which a machine could dynamically enumerate the channels that

a given machine type defines, but this does not help a machine to understand why

a channel exists, and therefore does not enable a machine to communicate sensibly

with channels it was not explicitly coded to interact with. The ability to enumerate

channels of a machine type would not constitute dynamic synthesis per se as the

channel names must already exist in some form in order to be enumerated.

The channels defined by a machine type form the externally visible contract of

that type to all other machine types. This makes them analogous to the members

of classes or structures in existing programming languages, where it is common

for the elements of a class or structure to only be accessible by identifiers that are

statically encoded into the application. For example, the members of a Java class

can only be accessed via their identifiers which must be statically encoded into
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the source code. Without resorting to reflection, new identifiers cannot be created

at runtime to a allow a method access to previously inaccessible class members.

In the C language access to the members of struct types is similarly limited;

The members of a C struct can only be accessed by using their identifiers or by

reinterpreting the structure as another unstructured data type. While Python [176]

makes it far easier to access the members of a class dynamically (though the use

of the getattr and setattr functions [177]) the primary syntax of the language

still requires an identifier to access a class member.

machine types could be synthesisable at runtime but it presents such severe challenges

for both implementation and analysis that it is essentially infeasible. The issues

include:

• If the behaviour of a new machine type is novel at runtime (such as if the

code were loaded from a network or storage device), then there would be

no way for implementation tools to determine the possible structure of the

application as the application definition has been effectively hidden from the

compile-time tools. No meaningful analysis of an application beyond the

statically defined machine types is possible.

• New code in a new machine type must somehow be communicated to other

platform processors. This means that an implementation must have a mech-

anism to determine where machines of the new type could be allocated dy-

namically, and to ensure that those remote processors have access to the code.

• New machine types could only be synthesised at runtime if the implementa-

tion supports some form of runtime subtyping of an existing machine type.

New channels defined in the dynamically created machine type could never

be accessed by any existing machine type as they would not have the non-

synthesisable channel names required to communicate with it. Furthermore,

existing machines would not ’know’ the purpose of the new channels. As-

suming there is no dynamically loaded code in the new machine type, the mo-

tivation for such an approach is unclear as dynamically constructing a new

machine subtype cannot achieve any outcome that was not already achiev-

able. A dynamically created machine subtype is equivalent to a statically de-

fined machine type that has behaviour that can change to the potential sub-
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type’s behaviour under the same circumstances as the subtype would have

been created.

• As with the dynamic synthesis of channels, applications cannot assume that

machine types will even exist as data at runtime. If a machine type has

been mapped by an implementation to a specific function accelerator in the

platform then there is no possibility of ‘extending’ this type; the behaviour is

fixed by the hardware.

For the primary reason that application analysis is all but destroyed by runtime

machine type synthesis, it will not be considered to be allowable in this thesis.

Machine type names are symbolic references to machine types. They are not synthesis-

able by application code for the same reasons that references to machine instances

are unsynthesisable: to do so would damage portability and scalability of an ap-

plication. Implementations have the freedom to partition an application across the

available platform in such a way that not all machine types are available to all pro-

cessors. No mechanism is defined that would allow application code to determine

which machine types are available on the current or any other processor, therefore

application code cannot guarantee to create valid machine type names.

3.2.6.2 The Communication of Application Elements

Just as there are restrictions on the synthesis of application elements, only a subset of

elements can be communicated via channels. In general an application element can

only be communicated if the communication is conceptually compatible with the ma-

chine model. There are two criteria to determine if a communication is conceptually

compatible:

1. After the communication has concluded, are the machines still isolated?

2. Can the element be copied?

Isolation After Communication

The most important aspect of a machine is its isolation from all other machines, and this

isolation can only be maintained as long as no communication implies that machines

must share the same data afterwards. This means that mutable data structures cannot
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be communicated between machines in such a way that modification of the data struc-

ture on one machine is visible from any other machine. The criterion that isolation is

maintained does not imply any particular programming language design; any scheme

that preserves intermachine isolation is acceptable, including:

explicitly copy mutable data to be communicated. Copying is implied if the underlying

implementation would use a message-passing technique (such as a network) to

communicate with the recipient machine. Copying the data is acceptable as even

though the copy will be mutable, no modifications to the copy will be visible to the

originating machine nor would they be expected by an application programmer.

If communication of mutable data types is permitted by an implementation this

may introduce a source of considerable confusion unless it is very clear to the

application programmer that copies are always made of communicated data.

only allow immutable data types to be communicated. Immutable data types are fixed

after their creation and have very desirable properties for machine applications:

Flexibility of implementation and clarity for the programmer. Immutable data

types enable implementations to have complete freedom to choose their low-level

communications mechanism. If the recipient machine is hosted by a processor

that has access to the same memory regions as the sending machine then it may

be unnecessary to copy any data at all.

The implications of communicating immutable data with other machines are clearer

too: the original data cannot be modified by the recipient as it cannot be modified

by any machine. With immutable data types it does not matter if a programmer

misunderstands what mechanism enabled a datum to be transferred from one ma-

chine to another as all mechanisms will have functionally identical consequences.

However, immutable data types may be more difficult to work with as they cannot

be incrementally updated after their construction. This may imply more redundant

copying of data, and therefore greater overheads, than if mutable data structures

were used instead.

Copying Application Elements

The second criterion for the communication of an application element is whether or not

it can be copied meaningfully. This is because communication via channels fundamen-
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tally requires that the data to be sent is copied as the sending machine is permitted to

retain the data it sends. Application elements are only considered to be copiable if a

copy of the element is indistinguishable from the original. This results in a very sim-

ilar consideration as to whether or not an element can be dynamically synthesised by

application code.

Immutable data is trivially copyable and mutable data structures could be consid-

ered copyable in most contexts. However, Machines (which are the combination of data

and an execution context) cannot be meaningfully copied as their execution context is ef-

fectively a ‘reference’ to the capability of some hardware to perform actions, and clearly

this capability of the hardware cannot be copied at runtime. If the data component of

a machine were to be copied but a new execution context is assigned then this is effec-

tively a new (but somehow pre-initialised) instance of the same machine type, and so

would have a new, unique machine reference; the machine has not truly been copied. In

contrast, machine references can be freely copied as they have no implicit dependencies

on any hardware resources, only on the existence of the machine to which they refer.

In the case of channels, it is difficult to define what it would might mean to create

a copy of a channel in order to communicate it to a remote machine: Channels only

exist as features of a machine type and cannot exist in isolation and they may not have

any data representation that would be possible to copy at runtime. As channels are

conceptually non-copyable, they are certainly unable to be sent as data items between

machines.

Summary of Application Element Communicability

In principle an application element could be communicated between machines via chan-

nels if it is compatible with the model of machines as isolated entities, as described in

the previous criteria. However, for reasons of practicality it is useful to further restrict

what types of data can be communicated, resulting in only three kinds of application

element that can be communicated: machine type names, machine references, and im-

mutable data types. The disallowed elements, and the rationale for their restrictions, are

as follows:

mutable data cannot be communicated between machines as it implies that data will

be shared by two or more machines after the communication.

102



3.2 Application Model

machines and channels are not conceptually copyable. Any attempt to copy a machine

or channel will not yield a result that is identical to the original.

event handlers are plausibly communicable as both necessary criteria can be satisfied,

but the consequences of allowing event handlers to be communicated between

machines are quite undesirable:

• As event handlers are the program code of a machine, the exchange of event

handlers is only useful if the code is executable in the recipient machine. This

is achievable either by ensuring that the event handler code is portable across

all processor architectures in the system’s platform, or by ensuring all proces-

sors in the platform have compatible instruction set architectures. Neither of

these possibilities are desirable as architecture independent representations of

event handler code (such as a programming language source code or virtual

machine bytecode) will be substantially less efficient than native processor

code, and requiring the homogeneity of a target platform is neither realistic

nor an acceptable constraint for an application to impose.

As applications cannot be permitted to dictate the characteristics of an im-

plementation platform, the use of an architecture neutral event handler rep-

resentation would become necessary to enable intermachine event handler

communication. For very restricted platform processor architectures the over-

head of runtime compilation or interpretation of event handler code is likely

to be unacceptable too, leading to the conclusion that event handlers cannot

be communicated.

• Event handlers are the only mechanism for a machine to update its internal

state, and event handler code can only update the state of the machine that

it is defined within. For event handler code to be usefully sent to a machine

of a different type than the sender, the event handler must depend on access

to the machine’s internal state as this cannot be expected to have the same

structure across machines of different types. In addition, a received event

handler cannot expect to retain access to the state of the sender machine as

this would break the isolation of the machines.

Event handlers that do access machine state could be exchanged between ma-

chines of the same type if the implementation can guarantee that the machine
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state will have the same structure across all instances of the same machine

type, and the event handler code is expressed in such a way that it only ever

attempts to access the ‘local’ machine’s state.

• Program code encapsulated in procedures, functions, methods or event han-

dlers are often not tangible or “first-class citizens” [38] of a programming

language. This means that they cannot be passed as arguments, assigned to

variables or returned from functions. Allowing event handlers to be commu-

nicated would require that an implementation uses a programming language

where code is indeed treated as a first-class citizen, therefore substantially

limiting the range of available implementation languages.

Overall, supporting communicable event handlers is highly problematic and pro-

vides little if any extra expressiveness to the machine-oriented programming model.

For this reason the communication of event handlers is not allowed by the appli-

cation model.

channel names also satisfy both necessary criteria for communicable elements but can-

not be communicated as this would enable runtime communications patterns that

were not apparent in the definition of an application. So long as channel names

are neither synthesisable nor communicable, they must be statically encoded into

application code to be used. Therefore forbidding the communication of channel

names ensures it is always possible to extract the possible communications struc-

ture from the machine type definitions.

In contrast, the following three application elements can be communicated between

machines:

immutable data can always be communicated between machines and therefore this is

the root of all guaranteed communicable data. This is because immutable data com-

munication cannot interfere with the spatial or temporal isolation of machines.

Additionally, immutable data communication has less ‘surface area’ for miscon-

ceptions about the eventual behaviour of an application.

machine references are immutable and therefore can always be communicated. The

exchange of machine references is fundamental to the application model as it al-

lows machines to communicate with other machines that they did not request
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themselves. Without the exchange of machine references, the runtime structure

of applications would be limited to trees of machine instances, where machines

can only initiate communication with their direct children machines. In the worst

case, propagating data between two ‘leaf’ machines in such an application would

require that the data flow all the way to the root of the tree and back, and there

would be no way for each machine in the path to the root to notify its parent ma-

chine of it’s desire to send data. Each parent would have to periodically poll its

children for data.

Allowing machine references to be communicated enables an application to elabo-

rate arbitrarily complex graphs of machines that are limited only by the resources

available in the platform.

machine type names The names of machine types can be transferred as they are im-

mutable. As machine type names are required to request machines, this enables

the implementation of ‘construction proxy’ patterns within an application. A con-

struction proxy machine can request machines of previously unknown types on

behalf of other machines. In turn this enables a machine pool pattern to be con-

structed within an application, where a machine acts as a manager for a collec-

tion of machines with some common characteristics. Machine pools can be used

to manage many-to-many relationships between machines that require access to

certain resources and machines that own the resources. Machine pools can also

provide similar utility to general purpose ‘thread pools’. In this case a set of

‘worker’ machines are pooled and can be assigned work as needed. The main

advantage conferred by this technique is that resource consumption can be more

easily bounded than if a new set of machines are requested for each unit of work.

Worker pooling may also increase the efficiency of an application as it avoids un-

necessary instantiation (and eventual destruction) of machines, but this cannot be

assured as the overall performance of a machine pool will depend both on its own

characteristics and on the usage patterns if other application code issuing work.

As with thread pools (such as the cached and fixed thread pool implementations

in Java’s java.util.concurrent [149, 148] package), worker pools could be de-

signed with fixed numbers of worker machines, or with the ability to grow and

shrink according to the prevailing workload.
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Synthesisable? Communicable? Interpretation

7 7 intangible entities represented by identifiers or types
7 X implementation supplied values for model-

abstracted entities
X 7 any mutable data or code
X X immutable data

Table 3.4: Patterns in table 3.3 lead to four interpretations for the combinations of synthesis-
ability and communicability of application elements.

A Machine factory pattern, analogous to the conventional factory patten in object

oriented programming but where it is a machine for creating other machines, can

also be expressed in a machine oriented application but this is not predicated on

the ability to communicate machine type names.

Table 3.4 summaries the four combinations of synthesisability and communicabil-

ity for application elements and provides an interpretation of their meaning within a

programming language.

These conditions result in the structure of interaction between the types of machine

being statically encoded into the application, but not the multiplicity of each machine.

The runtime structure of an application can be said to be procedurally generated6 by the

application code itself. This is substantially more expressive than a static description of

an application’s structure: all static application structures can be generated procedurally

but the opposite is not true; static structure cannot make use of information available

only at runtime. The application in figure 3.2 (page 63) is a basic example of runtime

elaboration, where the runtime structure does not exactly match the static structure

implied by the machine type definitions. A much more complex example of dynamic

application elaboration is considered later in section 5.3.4.1.

This application model represents a tradeoff between an entirely statically elaborated

model (which cannot be considered to be a true actor model) and a fully dynamic model

where no application structure is guaranteed to be extractable.

6This term is more usually associated with computer graphics and specifically the runtime generation
of textures or geometry according to an algorithm, as opposed to loading the asset from a disk or network.
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3.2.7 Resource Usage

Platform specific behaviour in an application requires interacting with resources (see

3.3.2) that are defined to be available to specific processors in the target platform. In

the application model resources are just abstract requirements that form a resource re-

quirement set for each event handler in each machine type. Only the requirement that

a resource is exclusively available to a particular event handler is captured. All other

concerns, such as the mechanism for runtime interaction with a resource are implemen-

tation defined. The resources are considered to be used at an event handler granularity

as these are the fragments of program code that form the aggregate behaviour of a

machine.

It is not expected that event handlers or machine types will explicitly list their re-

source requirements but the requirements are deduced from the defined behaviour. For

example, the requirement for a local floating point unit (FPU) could be inferred for a

machine type if an event handler were to manipulate any floating point types. Some re-

sources (such as external actuators) cannot service two concurrent accesses and therefore

make most sense when they are required and exclusively accessed at a machine-level of

granularity. This can be accommodated by ’coarsening’ the requirement on a resource

from an event handler to all event handlers defined by a machine. It is valid to over-

provision resources for an event handler, but the opposite is not true: An event handler

obviously cannot complete successfully if a required resource is not made available to

it.

Regardless of the implementation defined representation of the set of resource re-

quirements for an event handler or a machine, they must be comparable to the sets of

available resources in the target platform in order that a legal mapping from machines

to processors can be found.

3.3 Platform Model

The Platform is an abstract representation of the hardware architecture in a system. Its

purpose is to allow decisions to be made about the allocation of machines across the

hardware target at design, compile and runtime. Only the essential structural and be-

havioural characteristics of the target are captured by platform instances; it is not a hard-

ware description language and is not intended to provide enough detail to reproduce
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Example resource types

Platform

Processor

Resource

Memory

Communication

PeripheralCapability

1..*

1..*

1..*
<<reached>>

<<owned>>

First 
Processor

1..1

Figure 3.13: An entity-relationship diagram for the platform model. Note that processors must
have at least one communications resources but can have any number of other resources.

the platform exactly. A entity-relationship diagram of the platform model is provided

in figure 3.13.

At the top level, a platform is defined as a set of processors (section 3.3.1), each of

which has a set of resources (section 3.3.2). Processor resources can represent memories,

peripherals, or communications interfaces (section 3.3.3). In turn each communications

resource has a set of processors that are reachable via that interface. Finally, a platform

also has a defined first processor which is the first processor to begin its execution upon

system startup. The first processor is where the start machine (see section 3.2.4.1) will

be created and begin its execution of the application.
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Figure 3.14: An example platform illustrating the details captured by the model. In this example there are three powerful computing units connected by
an AXI4 [227] bus, a 3×2 2D mesh network and a programmable hardware security module.
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In figure 3.14 an example platform is provided to illustrate that non-uniform topolo-

gies and heterogeneous architectures can be captured. The shaded regions in the figure

indicate what details are represented by an instance of a platform model. The connectiv-

ity graph is the most important aspect of a platform and this is what informs decisions

about how to allocate an application’s machines at runtime. The platform in figure 3.14

has ten processors, three of which (A, B & C) are connected to a conventional AXI4 bus,

one (D) is a programmable security coprocessor to (C), and the remaining six are part of

a 3×2 mesh network. It is difficult to get an intuition for the layout of such a system just

from the reachability sets of each of the processor’s communications resources. Figure

3.16 shows the physical layout of this example system and figure 3.15 shows the logical

Processor Connectivity Graph (PCG) that is encoded but opaque in the detailed figure.

A platform’s PCG is a directed graph where there is a vertex for each processor

and there is a directed edge between every pair of processors (p, q) from p to q if and

only if processor q is a member of the reachability set of any of processor p’s set of

communications resources. This definition allows for the possibility platforms where

there are unidirectional communications paths. Implementations may be somewhat

restricted if there is no data return path between a pair of communicating processors,

but these situations can be considered to occur in real systems: such as with very low

cost infrared or radio frequency messaging, and when receiving broadcast data such as

GPS coordinates.

A platform must have a connected PCG; there must exist some communications path

from every processor to every other processor in at least one direction. It does not

make sense for a platform to have disconnected regions of processors as this leaves no

opportunity for them to operate as a single system. If the PCG disconnected then it

could be considered to represent a platform for each connected component of the PCG.

3.3.1 Processors

Platform Processors represent the distinct concurrent processes that will execute the ap-

plication at runtime. As they are only logical processors they may have a straight-

forward 1-1 mapping to physical hardware processors, or represent a processes in an

operating system, or even represent the threads of a process.

The most important quality of a platform processor is that the resources that are

allocated to it cannot ever be observed to have been modified by another processor in the
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Figure 3.15: The Processor Connectivity Graph (PCG) of the platform shown in figure 3.14.
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Figure 3.16: The physical connectivity structure of the platform shown in figure 3.14.
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system; the processor appears to have exclusive access to its resources. A physical pro-

cessor with several resources can be modelled equivalently as any number of platform

processors as long as each of the resources are allocated exclusively to a single platform

processor.

Platform processors are not required to have any mutual timing or synchronisation

relationship to one another. The application model is equally applicable to platforms

with a shared clock and those with no reliable common timing source. From this point,

unless specified otherwise, the word ‘processor’ refers to a platform processor described

in a platform model instance.

3.3.2 Resources

Processor resources are defined as any platform specific hardware or service that allows

interference between any concurrent accesses to that resource. This interference can

occur in either spatial or temporal domains:

spatial interference is where some data or state of a hardware device (such as a com-

munications controller) has been altered by another concurrent process; the ‘space’

of one process has been affected by another. This has important implications for

the safety and security of a system at runtime as processes or data can be unex-

pectedly corrupted or overwritten, hardware devices can appear to spontaneously

enter unexpected states and data that must be kept private to a process could be

read.

temporal interference is where the timing characteristics of a process are affected by

the execution of another process. This is a very common mode of interference in

the situation where processes are actually tasks or threads that share the same ex-

ecution unit. Temporal interference is particularly important in real-time systems

where the timing aspect of a system’s behaviour is as important as the functional

behaviour.

The specific structural constraints that the platform model imposes are intended to

prevent spatial and temporal interference from being observable at the application level.

Spatial interference can be ‘trivially’ addressed by enforcing exclusive allocation of re-

sources but temporal interference is far more pernicious; it can creep in from multiple

sources including those which are not usually hazardous to share, such as separate re-
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gions of the same memory bank. Shared memory can introduce timing interference

though the limited bandwidth of the memory controller and interconnects, but also via

unpredictable interactions in memory caches [120]. Interference from implicitly shared

hardware devices cannot be addressed by this resource abstraction. If it is critical that

all temporal interference is eliminated from a system then all shared hardware facilities

must be divided in some way that isolates temporal interference. For a network on chip

this could mean the use of TDMA for the interconnect [72], or for an execution unit this

could mean the use of an enhanced ISA that provides timing guarantees [36]. Once guar-

antees can be provided about temporal non-interference then implicitly shared hardware

can be successfully abstracted in the platform model as multiple separate resources that

can be safely used concurrently.

In the opposite case where a hardware resource can be accessed concurrently without

interference, it need not be modelled as a resource on the condition that it can support

as many concurrent accesses as there are platform processors that might access it. A

RAM with as many ports as processors that can access it, and where each processor

uses a non-overlapping region of address space is an example of a hardware resource

that would not require any explicit mention in a platform model; this type of device

could not introduce any interference in concurrently executing software.

Examples of typical resources that could be allocated to a processor include:

• Memory devices (or memory regions) for code, data, and ROM.

• Non-volatile storage such as flash memories, battery backed RAM and hard disk

drives.

• External network interfaces and communications devices that are not used to com-

municate with other modelled processors.

• Peripherals such as sensors, actuators, timers, etc. Peripherals can also model

platform capabilities which cannot be used concurrently, such as an authentication

token for a remote server or a local hardware accelerator.

• Communications interfaces used to communicate with other platform processors.

These are discussed in more detail in the next section (3.3.3).

In many cases peripherals will be accessible to multiple physical processors in the

hardware, such as when peripherals are located on a shared interconnect, or with on-
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chip peripherals in multicore microcontrollers. In this situation the resource must still

be assigned to a single platform processor. If at runtime machines require access to

resources on remote processors then this can be arranged via an explicit proxy pattern

in the application layer. A sufficiently sophisticated implementation may chose to vir-

tualise resources in order to allow a particular resource to appear to be available on

several logical processors, and this strategy has been demonstrated in the implementa-

tion of embedded processor hypervisors [179]. Virtualising hardware peripherals does

not conflict with the platform model on the condition that the illusion of exclusive access

to local resources is maintained for each platform processor.

Hardware resources that are intended for synchronisation and inter-processor com-

munication do not make sense to be allocated exclusively to a single processor; they

only have utility in the context of multiple access from processors. Resources of this

class which include hardware mailboxes, locks, FIFOs and shared memory, should not

be modelled as ordinary local processor resources but are more appropriately repre-

sented as a communications resource.

Non-communications resources are only modelled to allow valid mappings from the

application to the platform. All details of what the resources actually are and how they

work is the responsibility of the implementation.

From a programming perspective, processor time (and the ability to execute instruc-

tions), memory and the ability to communicate with other machines are considered ab-

stracted resources and do not need to be explicitly requested by an application. All other

resources are considered non-abstracted and their use must be clear from the application

code, either by explicit declaration or reliable analysis technique.

Interrupts from non-abstracted resources are not modelled explicitly but it an im-

plementation could provide a device-specific event source for machines that use the

resource.

3.3.3 Communications Resources

Platform Communications resources allow processors to exchange messages with other

processors. They can represent any communication interface or implementation mech-

anism that is able to reach another processor represented in the platform. A device

is considered to be a communications resource based upon its purpose as a message

passing mechanism rather than an intrinsic quality of the device.
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Processors A,B & C in figure 3.14 are shown to include ethernet resources but these

are not modelled as communications resources as they are unable to reach any pro-

cessors in the platform model. This scenario is essentially guaranteed to arise in real

systems as they will need some form of communication with external systems which by

definition are not part of the modelled platform.

Communications resources might include:

• On-chip interconnects such as buses or networks.

• Local area network interfaces, such as ethernet or bluetooth.

• Short distance interconnects, such as asynchronous serial (RS232), SPI, PCI express

and USB.

• Domain specific interconnects, which in the case of the automotive domain these

‘field buses’ [180] might include CAN [98], FlexRay [100], SAE J1939 [184], ISO

11783 [99], and LIN [121].

• Interprocessor communications facilities such as shared memory, mailboxes and

FIFOs. Regardless of their intended paradigm these resources are still modelled

as message passing communications resources.

The broad variety of different possible communications resource types is largely

irrelevant to the platform model. The most important property of a communications

resource is the set of processors that it can reach. A processor is considered reachable

by a communications resource if the resource is able to send a message to the processor

directly. In this context ‘directly’ means that the message did not have to be routed

between communications interfaces explicitly by any part of the implementation that

is dependent on the platform model. For instance, each one of processors E-J in the

example platform (figure 3.16) are modelled as being able to reach every other processor

in that mesh even though there are no direct channels between them. This is because

the routing will be performed transparently by the hardware routers which are not part

of the platform model’s level of abstraction. A consequence of considering the logical

reachability of processors is that the example mesh network has a complete PCG, which

can be seen in figure 3.15.

The platform model does not define how communications resources should be im-

plemented and the resources do not necessarily need to have a physical representation in
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hardware. For example, it is entirely valid to provide ‘virtual’ communications resources

implemented using shared memory or any other hardware storage and communications

primitives.

3.3.4 Making Use of the Platform

In the example given in figures 3.14, 3.15 and 3.16 the PCG is small enough to draw a

diagram of, and therefore it is realistic that the graph could be held in memory. Large

present-day architectures (such as the whole internet) are already too complex to reason-

ably keep a platform graph in memory even if such a graph could be constructed. Even

in the context of comparatively small networks, such as a 10×10 MPNoC, the dense

connectivity graph would be of the order of 10KiB7. 10KiB may be too large to be useful

for the types of resource constrained processors discussed in section 1.5.1, and therefore

this represents a conflict between the necessity for information about the PCG, and the

space required to represent it.

By considering the cases where the PCG is certainly too large to be useful, such as

for an infinitely large mesh network, it becomes apparent that a connectivity graph is not

necessary to reason about the network. A PCG is sufficient but unnecessary to satisfy

the queries needed to operate an application on a platform at runtime.

In the context of a specific application (i.e when there is a complete system) then

there are only two necessary queries that a platform must be able satisfy in order for the

application to execute:

Query 1 “which local communications interface is preferable to contact processor p?”

Query 2 “which processor(s) could a new machine of type m be requested from?”

Clearly, both queries could easily be answered with a complete platform model includ-

ing the PCG. However, in the case of a regular, homogeneous mesh network then much

simpler representations are possible. In the case of homogeneous mesh networks the

network interface can contact all other processors and all other processors are equally

valid. This simplification is very cheap to represent and would not be demanding to

implement in a resource constrained context. However, these query responses are sub-

optimal for a variety of reasons including unequal network route and processor load-

7Assuming the graph is represented by an adjacency matrix and that no additional memory is required
for any representation of the processors
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ing, but they are sufficient to enable basic application mapping and do not exclude the

possibility of higher quality platform representations where additional complexity is

tolerable.

3.3.5 A Platform API

The above queries form the only two requirements on an instance of a platform model:

It must be able to determine which communications interface is best to reach another

processor, and determine which other processors to request a new machine of a specific

type from. This essentially forms an API to query the platform in the implied context of

the currently executing processor. The limited expressiveness of these queries provides

a lot of freedom in platform representation. There are no requirements to know any

specific facts about remote processors, and no requirements to be able to enumerate

processors. Some necessary facts about remote processors are implicitly encoded in the

queries:

• Query 1 encodes the reachability of a remote processor via a communications

resource, as if a communications resource is preferable to communicate with a

remote processor, that processor must also be reachable via that resource.

• There is no need to provide a mechanism to enumerate the resources allocated

to a processor. If Query 2 responds with a processor that could host a machine

of type m, then that processor must satisfy the minimum requirements for that

machine. However there is no way to know if the processor still has sufficient

spare resources, just that the processor when totally unloaded has enough overall

resources to satisfy the request.

• It is not needed to allow processors to be enumerated or ’looked-up’ via an ad-

dress. Processors can only be used for hosting and executing machines, so if a

processor is suitable for hosting a machine then Query 2 would already issue it.

In the case that a processor cannot host a specific machine then there is not any

purpose in having knowledge of its existence as no further action could be made

as a consequence of the knowledge.

The platform API only makes sense in the context of a complete system, as the

processor-specific subset of the platform definition that can answer these queries must

have knowledge of the requirements of the application’s machines. Implementations of
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the ‘framework’ component of the MAA (section 3.4) would contain an instance of the

platform API.

3.3.6 Realisation of the Platform API

The transformation from the conceptual platform description (with details of all of the

processors, resources and interconnect topology) through to processor-specific sets of

responses to the platform API is entirely the responsibility of an implementation as

there are several viable approaches:

Fully dynamic implementations may chose to retain a complete platform model at run-

time on all processors: the platform API is implemented by appealing to the model

as needed. The costs of this approach are likely to be prohibitive for any embedded

system both in terms of the storage required for the model, and for the computa-

tion overheads of querying a complete model on demand. An advantage is that

little if any compiler work is necessary to implement this strategy.

Static implementations could generate completely fixed mappings of machines onto

processors through the use of static analysis on the application. The platform

API would not even need to exist at runtime as the outcome of the API queries

would always be the same and would be known with certainty at compile-time, so

allowing a compiler complete freedom to optimise away the platform abstractions.

The suitability of an application to fully static compilation depends not only on

the construction of the application, but also on the strength of the static analysis

technique employed. It is possible in to express applications that conform to the

MAA but are intractable to analyse. Some examples of difficult constructions

include:

• Requesting a new machine only if some external sensor resource has a partic-

ular value at that instant. External input can be assumed to be unknowable,

so it cannot be known if that machine will be created, so a fixed mapping of

machines to processors is not possible.

• Requesting a new machine only if a message was received with a particular

value which can only be determined by executing the code. This condition

requires that the application must be executed or simulated in order for its

structure to be determined.
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Hybrid static-dynamic implementations could use readily available information from

the application, such as the machine graph and generate at compile-time a set of

constraints on the runtime allocation of the machines. These constraints would

assist in making assertions about the runtime properties of the application on

a particular processor, such as worst case memory consumption, or worst case

periodic event jitter.

3.4 Frameworks and Runtime Behaviour

The framework component of the machine abstract architecture captures the elements

of a system that are neither application nor platform specific. Ultimately, the framework

component is about the linkage between applications and their eventual runtime plat-

forms. The framework model enables total isolation of applications from any specific

platform details by defining a loose coupling between them.

As has already been discussed, application code within a machine can perform three

kinds of activities:

• Internal behaviour: performing computation on local state or exclusively owned

local resources. This behaviour does not require any wider knowledge of the

platform. If application code is executing, it already has the necessary processing,

data storage and resource capabilities; the machine does not need to know about

anything except what it already has.

• Communication with other machines. This is entirely abstracted by the application

model. A machine does not need any platform knowledge to communicate with

another machine.

• Requesting new instances of machines. This (potentially) depends on interaction

with remote processors, which in turn depends on the platform. This is the pri-

mary issue addressed by the framework model.

The framework model is by is by far the smallest of the three system components

and specifies only two details:

• Exactly one start machine is defined to be created on the platform’s first processor.
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Processor Manager

Remote Procedure Call
“remoteRequest”

Query type: Machine type name
       Response type:

(Machine reference, error indication)

  Event Handler

1) create new machine on this processor
2) reply with a reference to the new
machine if successful or an error
indication otherwise.

other implementation 
defined features

Figure 3.17: The definition of the ProcessorManager machine present on every platform proces-
sor. ProcessorManagers enable machines to be requested without leaving the machine oriented
programming model.

• Machines are requested indirectly via ProcessorManager machines. Every pro-

cessor in the platform has a ProcessorManager instance, and all instances have a

identical interface.

3.4.1 Processor Managers

ProcessorManager machines decouple application code from the concept of processors.

Their primary and only defined purpose is to facilitate the creation of new machines.

Framework implementations must guarantee that every processor in the system has a

functional ProcessorManager before any other machine issues a request to it; application

code can assume that if it has a reference to a ProcessorManager that it will actually exist

and be able to service requests. The definition of the ProcessorManager machine can be

seen in figure 3.17.

To request a new machine of type T the following steps must be followed:

1. The executing code should use the platform’s API to determine the processors that

are statically capable of accepting T type machines. The platform implementation

will not suggest processors that could never host the specified machine, but the

platform does not know the runtime state of a system and can suggest processors

that are already ‘full’.

2. Decide which processor (p) to use. The executing code has no metric it can use to

compare remote processors other than the order the platform API supplied them

in. If an implementation has extended ProcessorManagers it may be possible to
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query a remote processor about its current loading or to determine the network

latency or throughput to the remote processor.

3. Send a query to the “remoteRequest” channel in the ProcessorManager instance

for p. The framework implementation must provide a mechanism for applica-

tion code to obtain a reference to a ProcessorManager for a specified processor.

However, framework implementations should not allow processors to be enumer-

ated. A ProcessorManager’s “remoteRequest” channel is a RemoteProcedureCall

where the query type is a machine type name, and the response is a tuple of a new

machine reference and an error indication.

4. If the remote ProcessorManager was successful it will respond with a reference to

the new machine. On failure the implementation defined error indication should

be considered to determine the appropriate course of action. In most cases another

statically eligible processor can be chosen and the procedure can begin again from

step 3.

ProcessorManagers allow machines to be requested using using a machine oriented

communications mechanism, therefore this avoids applications communicating directly

with remote processors using implementation-specific interfaces. The ProcessorMan-

ager is necessarily implementation-specific as it must be able to construct new valid

machines on the current processor. Without ProcessorManagers, a machine would have

to communicate directly with a remote processor using a non-modelled communications

mechanism.

3.5 Realisation of the Application Model

In order to create a realisation of the machine abstract architecture that is useful for the

development of software applications a large number of topics must be addressed:

1. A syntax to capture the static application definition must be defined. Related

approaches including Ptolemy II [3, 118] or AUTOSAR system descriptions [18,

29] capture application structure using XML [35] syntax. More dynamic actor

oriented approaches, such as Scala [77] and Erlang [104] do not use an external

language to define application structure at all; the application is entirely encoded

by the application’s source code. The capsule-oriented ‘Panini’ [178] programming
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language represents a middle-ground where the application is statically elaborated

but this structure is defined within the application’s source code.

2. A syntax to capture the salient details of the target platform. A complete platform

model representation is sufficient but unnecessary for the execution of machine-

oriented applications.

3. A programming language must be identified to enable at least the description of

the application’s event handlers. This alone is a substantial topic and is covered in

more detail in the next section.

4. An implementation methodology must be defined to enable the application to

become executable on a specific target platform. This methodology will have to

address the following issues:

• A mechanism to provide the isolation and concurrency characteristics of the

model. If the selected application programming language contains features

that enable data to be shared between execution contexts (such as threads), in-

cluding as heap objects, global variables, or class variables (static fields), then

these mechanisms must be appropriately restricted. The runtime isolation of

machines is critical to the arguments for platform independence, scalability

and fault tolerance.

• A strategy for verifying (where possible) that machines interactions are valid.

For example, if the programming framework uses different mechanisms for

sending to each of the different channel protocols, then the compiler should

verify that a sender machine uses the correct mechanism for the target chan-

nel’s type.

• A strategy for the enforcement of the defining rules of machine-orientation,

including restricting intramachine concurrency to ensure sequential consis-

tency.

3.5.1 Requirements for Programming Languages

A programming language must be able to express a number of the application-model’s

entities in order to be a viable candidate for machine-oriented programming. The fol-
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lowing requirements are for the case where the complete application definition is speci-

fied in the code:

• A representation for machine types, and a way to represent their names. In object

oriented programming languages classes with particular patterns of organisation

would be a natural choice. In less structured programming languages, such as

C, structs could be used as machine type descriptors. Machine type definitions

must contain the following information:

– The machine type’s name. This is used to request new machines of this type.

The representation of these names could range from class identifiers (if an

machine types are represented as distinct classes), through to application-

defined string constants. Ideally these machine type names should be stati-

cally analysable to ensure that machine type names can be determined by the

compilation workflow.

– A set of communications channels that this machine type defines. However

each of the channel instances are represented, a set of pre-defined protocols

should be provided by the implementation framework in preference to allow-

ing applications to define their own communications protocols. Each channel

instance in a machine type must have a name defined for it.

– A representation for statically defined intramachine event sources, such as

the startup event source or timed event sources.

– A definition of the machine’s internal state. There are no requirements for

the representation of this.

• A mechanism for binding event handler code to their source events.

• A representation for machine references, such as a specific ‘machine reference’

class or even a string containing an implementation-defined URI [27].

• An implementation of the second platform API (see section 3.3.4): “which proces-

sor(s) could a new machine of type m be requested from?”.

• A set of mechanisms (functions, macros or methods) to:

– Obtain a reference to the ProcessorManager machine for a specified proces-

sor, therefore enabling new machines to be requested.
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Language Enforceable? Embeddable? Immutables? Capable? Realistic?

C Compile time X 7 X 7

C++ Compile time X ≈X X X
C# Compile+Run 7 ≈X X 7

Ada Compile time X X 7 7

Python Runtime 7 ≈X X 7

JavaScript Runtime 7 7 7 7

Java Compile+Run X ≈7 X X

Table 3.5: A comparison of candidate general purpose programming languages that could be
used to implement a machine-oriented programming framework.

– Send a message to a specified channel (using the channel’s name) in a speci-

fied machine instance (using a reference to the machine instance).

– Update the machine’s internal state.

– Construct new intramachine event sources, such as new delay or yield event

sources.

A speculative evaluation of several general purpose programming languages is sum-

marised in table 3.5. The classifications in table 3.5 are highly subjective and depend

heavily on the tradeoffs that are acceptable and the personal bias of the observer. As

such, table 3.5 is only a crude illustration of the compared languages’ qualities. The

table compares following qualities of a programming language:

enforcable describes if the language’s standard tooling would be able to enforce any

amount of the application model’s rules either statically or at runtime. To this

end, a language is considered to support compile-time enforcement if it has a

compilation stage, and runtime enforcement if it supports dynamic reflection.

embeddable describes the ability of the language to highly target resource constrained

embedded architectures.

immutables describes the ability of the language to express and enforce immutable data

types. Most of the languages have a const, final or similar modifier, enabling an

immutable programmatic interface but C and C++ always enable data modification

by using a non-const pointer. Likewise, reflection in Java and C# can be used to

violate almost any rule.
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capable is a crude assessment of the ability of the language to be able to operate an

approximation of the machine-model without any modification to the tooling: a

library-only implementation.

realistic is a summary of the language, considering its overall suitability for an im-

plementation of a machine-oriented application model in the context of resource

constrained MPNoCs. Both C++ and Java have expressive enough languages to

represent machine-oriented applications cleanly and have been demonstrated to

be suitable for execution on highly constrained processors.

This comparison should only be considered an ‘engineering heuristic’ as practically

any programming language could be used given enough effort or the appropriate use-

case. However, Java appears to be a very suitable implementation language but con-

siderable effort is required to achieve an implementation that is compact enough to be

useful on limited MPNoC processors.

3.6 Summary

In the previous chapters it was observed that thread-based models of concurrency are

a poor match for hardware architectures that have limited or absent shared memory.

However, the existing communication-centric programming models were also found to

be imperfectly matched to the resource constrained MPNoC domain.

This chapter presented a new actor-oriented programming model intended for the

practical description of software for highly distributed embedded systems. Supplemen-

tary models for hardware platforms and a model of a runtime framework were also

presented to support the application model’s goals. Collectively these three models

(application, platform and framework) become the Machine Abstract Architecture. The

minimal framework model enables machine-oriented application code to request new

machines without leaving the machine communication abstraction.

Although the application model described is applicable to many distributed problem

domains, it is specifically intended to enable implementations to address the challenges

of resource constrained MPNoCs. In particular this model is differentiated from existing

work by the combination of:

• Explicitly decoupled application and platform models which are also independent

of the languages used to describe instances of them. This enables portability of
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applications between platforms but also emphasises that an application will even-

tually execute upon a platform; the application does not define the platform. The

application model does not aim to address hardware-software co-design problems.

• Total decentralisation. At runtime the model considers all application machines

to be equal. The model does not define any centralised features which would

certainly become a bottleneck for a system. Decisions about the allocation of ma-

chines to processors are driven by the processor hosting the machine initiating the

request for another machine. The model does not require that machines share any

state in order to cooperate.

• Explicit support for multiple channels in a single machine each of which may

implement a different communications protocol. The benefit of multiple type-safe

channels is very clear: channels that consume different data types can be logically

related by their owner machine.

• No supervisors, guardians or addresses. The framework does not provide a su-

pervisor entity to manage or monitor machines after their construction, and the

model does not impose a supervisor-child relationship between a machine and the

machines it requests. These relationships can be implemented in an application if

desired but machine addresses (n reference to a machine that does not necessarily

exist yet) are fundamentally unsupported by the model and would require sub-

stantial work to implement. Additionally, there is no central authority capable of

listing or locating machines at runtime. These limitations avoid bottlenecks due

to centralised indices, or the complexity implied by a platform-independent dis-

tributed index of live machines. Such an extension would be an interesting avenue

for future work.

This model retains much of the dynamism of the actor model: machines can re-

quest arbitrarily many new machines and exchange references to these machines freely.

However, the simple intramachine execution model avoids creating a requirement on a

sophisticated operating system or runtime environment.
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Figure 4.1: The notional Machine Java stack extends from the user-defined application through
to the platform specific API implementations. The lowest tier in the stack is neither defined by
the application programmer nor the Machine Java framework.

In the previous chapter the Machine Abstract Architecture was presented including

a model for the structure of application software and a model for the representation

of distributed hardware. The MAA, although independent of any specific hardware

architecture or programming language, is intended to be compatible with the perceived

trends in single-chip and tightly-coupled computing.

In this chapter Machine Java is presented as a reference implementation for all three

Machine Abstract Architecture tiers. In addition to conformance with the MAA, Ma-

chine Java provides application-wide static type safety and uses an entirely distributed

internal architecture.

The Machine Java stack is illustrated in figure 4.1: Machine Java contains an appli-

cation programming framework (API) for machine oriented programming, a platform

independent implementation of an MAA framework, and an API to allow platform de-

scription. Machine Java also defines another layer (the internal API) to decouple the

implementation of the application API from platform specific concerns. The internal

API also decouples the structure of a platform (provided by a platform definition) from

the code required to implement Machine Java on that platform. This enables multiple

platform descriptions to be created that re-use Machine Java’s platform dependent code.

This chapter is divided into three main parts: A discussion of the Machine Java APIs

and platform independent framework is provided in section 4.2, the overall theory of
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operation is discussed in the context of an example implementation of the internal API

in section 4.6, finally the application of Machine Java to bare metal1 hardware platforms

via the Network Chi Java compiler is explored in 4.7.

4.1 Java

The Java programming language[74] is a natural choice for the implementation of the

machine model:

memory safety The Java language has strong memory safety meaning that many com-

mon memory access errors (including invalid pointers and buffer overflows) can-

not occur2. Fundamentally, memory safety is only a desirable trait and not an

essential one, but it is the method by which Java implements memory safety that

makes it an attractive target language for machine oriented applications: Java uses

opaque references rather than integral pointers. Java references cannot be ma-

nipulated or cast to any non-reference type. Unlike C code, code written in Java

simply cannot assume any underlying structure to Java references and this means

a Java runtime has much more freedom over its implementation; Java never has to

present the view of a linear memory address space. This abstraction of memory is

highly desirable for a machine oriented framework as it ensures that applications

cannot be written in a way that is only valid for a specific platform’s memory

architecture.

type system Java’s provides a strong type system with support for parametric types

(generics). Strong typing is desirable as it allows static properties of an applica-

tion to be verified by the compiler, on the condition that these properties can be

expressed via the type system. In a machine oriented context it is attractive to

exploit a programming language’s integrated type system to guarantee interma-

chine communications compatibility, rather than introduce a ‘second-class’ type

system within the application framework. Additionally, Java already uses a class

(java.lang.Thread, and subclasses thereof) to represent concurrently executing

contexts, so it is not unusual to encode aspects of concurrency within Java’s type

system.

1Platforms without an operating system and related software infrastructure available on every processor.
2A good treatment of memory safety topics can be found in [200].
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high quality standard library Java has a substantial standard library that applications

can assume will exist, including important functionality for mathematics, string

handling, data structures (including sets, lists and maps) and common algorithms

on these data structures.

ecosystem It has an extensive ecosystem of high quality tools: including development

environments[59, 150], runtime and library implementations[68, 152, 151, 89], and

compilers for assorted use cases[14, 7, 164]. Due to its significant popularity Java

also benefits from active research and technical support communities, open source

projects and broad coverage in literature.

Machine Java as discussed in this chapter is an extension to standard Java without

any modifications to Java’s syntax or virtual machine (JVM). However, while all Ma-

chine Java applications are valid Java, the opposite is not true as Machine Java places a

number of restrictions on the structure of an application. These restrictions relate to the

definition of machine types and the runtime interactions of machine instances, and are

discussed in sections 4.3.3 and 4.4.1.3.

4.2 Machine Java

In the following sections Machine Java’s realisation of the application model, platform

model and framework components are covered:

Machine API to allow machine oriented programs to be developed. This includes the

definitions of the core classes and interfaces, and discussion of how a machine

oriented application can be implemented using the framework, this discussed in

the next section.

framework includes implementations of the application model’s defined channel types,

and the Processor Manager concept for requesting remote machine instantiation.

This is the platform agnostic component of Machine Java’s implementation, and it

is discussed in section 4.4.

Platform API allows the essentials of multiprocessor architectures to be expressed in

Java code and is discussed in section 4.5.
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This section addresses the appli-
cation and machine API layers
of the Machine Java stack.

In brief, Machine Java applications are one or more

Machine classes with a specified ’starting machine’

class to act as an entry point to the application at

system startup. Machine classes make static3 declara-

tions of their communications interfaces and are pro-

grammed in an event driven style. All non-startup

behaviours in a Machine class are defined by event

handlers in the machine, which can be triggered at

runtime by any of the machine’s event sources. Ma-

chine Java’s event sources are a very general concept:

In addition to communications interfaces, timing util-

ities (such as delays, alarms and periodic execution)

are also abstracted as event sources. Only the inter-

machine subset of event sources (that represent interaction between machines) are re-

quired to be statically declared, whereas intramachine event sources are free to be instan-

tiated dynamically. Table 4.1 provides a summary of the mapping between application

model entities and their representation in Machine Java.

One of the most important aspects of Machine Java is that both live machines and

machine references are represented identically by machine objects (instances of sub-

classes of Machine). Application code cannot differentiate between a machine object

that represents a live machine on the current processor and a reference to a machine on

a remote processor. Applications do not have to treat machine objects specially; they

can be stored in data structures and ‘lost’ (unreferenced in the application) just as any

other object can be in Java. As implied by the application model, machine objects can

even be sent via communications channels.

3In this context static means bound at compile-time, rather than Java’s static storage class.
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Entity Machine Java Representation Example

machine types Subclasses of Machine class FlowControllerextends Machine {...}
machine type names Java Class<M extends Machine> objects Class<FlowController>
machines Machine objects private FlowController fc;
machine references Machine objects private FlowController fc;
channels Implementations of Intermachine interface new BoundedBuffer<Integer>(...)
channels names Identifiers for public machine fields public final Signal<Integer> setLevel;
event handler Handler<T> objects Handler<Integer> h= new Handler<Integer>(){...}
mutable data Any ordinary Java data type private int[]history;
immutable data Immutable data types final ImmutableSet<Integer> latest;

Table 4.1: The Machine Java representations of the important application model entities.
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Machine Java applications combine the structural definition of an application with

the code that will provide runtime behaviour and therefore Machine Java avoids a de-

pendency on a separate description language for an application’s static characteristics.

An application’s structure of Machine classes and communications channels that it de-

fines can be interpreted as an application-specific virtual platform where each machine

is a virtual processor and the channels between them are the virtual interconnect.

Hello World!

As a first example, a ‘Hello World’ application can be seen in figure 4.2. When executed

in a standard Java Runtime Environment (JRE) Java’s usual entry point4 (static main

(...)) is the first application code to be executed. The HelloWorld class extends Ma-

chine Java’s Start class, which in turn extends the Machine class. Subclassing Start

marks HelloWorld as both a machine type and a possible entry point for a machine

oriented application. This allows HelloWorld’s main method to bootstrap the Machine

Java framework by invoking the protected static start() method defined within

the Start class. From this point the Machine Java framework coordinates code exe-

cution; the start() method is not required to ever return control. Once the frame-

work has initialised, a single instance of the HelloWorld machine is created on the

current platform’s first processor where it will begin to execute its internal() method.

HelloWorld.internal() calls the log() helper method provided by the Machine class,

which writes a message to whatever logging mechanism is available.

After execution the following text is available in the log:

HelloWorld@0,0:1> Hello world!

The output text betrays a little runtime detail: The “@0,0:1” indicates that this HelloWorld

machine was executing on the processor at coordinates (0, 0) and was the second ma-

chine to be created on that processor. The first machine on any processor is always

a ProcessorManager (section 4.4.4). This logged detail is specific to the implementa-

tion of Machine Java’s internal APIs, and the current platform implementation. In this

case the ‘XYNetwork’ platform (see 4.5) for mesh networks is in use, and this then de-

pends on the ‘networkchi’ implementation (see 4.6) of Machine Java’s internal APIs. The

4Any Java class can contain an entry point method, so the JVM is instructed which class contains the
entry point of interest. This is usually handled transparently by development environments or application
loaders.
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1 package examples.helloworld;
2 import mjava.core.Start;
3

4 public class HelloWorld extends Start {
5

6 public static void main(String[] args) {
7 //start(...) is a static method defined in Start.java
8 start(HelloWorld.class);
9 }

10

11 private HelloWorld() {}
12

13 @Override
14 protected void internal() {
15 log("Hello world!");
16 }
17 }

Figure 4.2: A complete ‘Hello World’ application in Machine Java. The Java entry point (main
()) executes first and starts the application. This causes a HelloWorld machine to be created
which will then log a “Hello world!" message.

‘networkchi’ implementation enables operation on embedded processors and networks

supported by the Network Chi Java compiler (see section 4.7). A detailed explanation

of Machine Java’s startup sequence, from main() through to the execution of the start

machine’s internal() method is provided in section 4.6.1.

The ‘hello world’ application highlights the basic style of Machine Java code, but

only covers the most basic aspects of application startup and debug logging. The other

core concepts, including event handlers and intermachine channels are discussed in the

subsequent sections.

4.3.1 Single-Thread Equivalence

The application model makes strong requirements on the timing and scheduling of

intramachine code execution, most notably that it is sequentially consistent (see 3.2.3).

Sequential consistency is provided in Machine Java through single-thread equivalence.

At runtime all Machine objects execute concurrently but within a machine the code

is executed with the same semantics as standard single-theaded Java. Machines will

execute as if only one thread exists in the Java runtime; no code within a machine can

ever be observed to execute concurrently. Standard Java threads (provided by java.
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lang.Thread) are not available to Machine Java applications as their use undermines

the guarantees that the application model is intended to provide.

Most complications of multi-threaded programming relate to maintaining the con-

sistency of data structures across concurrent accesses, and these consistency issues are

avoided by Machine Java as concurrent access to data structures cannot be expressed;

machines are guaranteed to only have one internal execution context and data struc-

tures cannot be shared between machine instances. Single-thread equivalence within a

machine also has the following implications:

• The synchronized keyword for entering an object’s monitor is unnecessary and

has no meaning in Machine Java. There is no situation in which two or more

machines could hold references to the same object so Java’s monitors provide no

utility.

• Java libraries to assist with concurrency (such as the java.util.concurrent pack-

age) should be avoided. These libraries are designed for the standard Java thread

concurrency model and provide little if any utility to a machine-model application.

• The thread safety of third party Java libraries is not an issue as they can never

be executed in a multi-threaded context, but this does also imply libraries that

dependent on threading for performance or correctness must be re-architected for

the machine model. This is unlikely to be a concern in embedded systems as the

constrained resources of these platforms largely prevents the re-use of existing

general purpose libraries.

4.3.2 Machine Classes

In Machine Java, subclasses of the abstract Machine class represent the application

model’s machine types. While a machine is executing code its activity always falls

within one of the following categories:

internal behaviour Operating on data contained within the machine instance, or inter-

acting with a resource used exclusively by the local instance is internal behaviour.

APIs to interact with resources are not provided by Machine Java; only the ability

to express that a machine will require a resource is provided. Application code can

use whatever mechanism their JRE or compiler supports to use a resource, such as:
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1 public class BasicSender extends Start {
2 private BasicSender(){}
3

4 public static void main(String[] args) {
5 start(BasicSender.class);
6 }
7

8 @Override
9 protected void internal() {

10 BasicReceiver rx = newMachine(BasicReceiver.class);
11 rx.numbers.send(0x1337);
12 }
13 }

1 public class BasicReceiver extends Machine {
2 private BasicReceiver(){}
3

4 public final Slot<Integer> numbers = new Slot<Integer>(new Handler<
Envelope<Integer>>() {

5

6 public void handle(Envelope<Integer> info) {
7 log(info.getPayload());
8 }
9 });

10 }

Figure 4.3: A basic application with two machines. The start machine, BasicSender, creates
an instance of BasicReceiver and sends the value 0x1337 to the new machine.

Java Native Interface[17] (JNI), sockets, or raw memory access5. Internal behaviour

is not the concern of Machine Java, and therefore no internal behaviour requires the

use of any Machine Java APIs. However, Machine Java does provide APIs to as-

sist with intramachine timing, which is possible but awkward and inefficient to

achieve otherwise. These are discussed further in section 4.4.3.

intermachine interaction Machines can interact with any of the other live machines, on

the condition that the machine initiating the interaction owns a reference to the

5Standard JREs support breaking memory abstraction via sun.misc.Unsafe, and Chi (see section 4.7
provides a similar library (chi.runtime.Unsafe) for direct access to memory.
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remote machine. All machine interactions happen through Intermachine chan-

nels which are defined defined by subclasses of Machine. A machine defines its

channels by creating public final fields that are initialised with instances of

Intermachine classes. It is possible for an application to use Machine Java’s in-

ternal APIs to create new channel protocols; this is not required as Machine Java

provides the suite of standard protocols defined by the application model (see

3.2.5.3 and 4.4.1). Figure 4.3 shows an example of a basic communication between

two machines. The start machine BasicSender requests a new machine and then

uses the reference it has been provided to send a message to the new machine.

In BasicReceiver a single ‘Slot’ channel is defined. Slot channels are non-

overwriting (meaning that senders can only send when buffer space is available),

and have a buffer length of one data item.

In BasicReceiver the numbers channel is provided with an event handler that will

be invoked whenever the numbers channel receives a new data item, in this case

an integer. In Machine Java event handlers are implementations of the Handler

<T> generic interface, which has one method: void handle(T info); where T

is a type that is useful to the event in question. For the numbers channel in

BasicReceiver, the handler’s type is Envelope<Integer> as all unidirectional

channels wrap received data items into Envelope objects. On execution the appli-

cation in figure 4.3 logs the following:

BasicReceiver@1,0:1> 4919

This indicates that the BasicReceiver was not created on the first processor at

(0, 0), but was allocated to the processor adjacent at (1, 0). BasicReceiver has no

spontaneous behaviour, it only executes code in response to an integer arriving to

its numbers channel.

API interaction The final category of activity within a machine is interaction with the

Machine Java framework via an API. All interactions with the framework occur

through methods declared within the Machine class itself; there is a single ‘point

of contact’ between application defined code and the Machine Java framework.

Machine Java exposes very little functionality to machines: just enough to request

new machines and to log messages.
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1 public abstract class Machine {
2 public static Machine getThisMachine() {...}
3

4 //May be overriden by subclasses
5 protected void internal() {}
6

7 //Three methods to request new machines:
8 public final <T extends Machine> T newMachine(Class<T> type) {...}
9

10 public final <T extends Machine> void newMachine(Class<T> type,
Handler<T> machineArrivedHandler) {...}

11

12 public final <SetupValueType,T extends SetupableMachine<SetupValueType
>> void setupMachine(Class<T> type, final SetupValueType
setupValue, final Handler<T> machineSetupHandler) {...}

13

14 protected void setPriority(int priority) {...}
15

16 public String toString() {...}
17 public int hashCode() {...}
18 public boolean equals(Object obj) {...}
19

20 public void log(Object message) {}
21

22 //Only callable within a machine’s constructor:
23 protected void REQUIRE_RESOURCE(Resource res) {...}
24 protected void ENSURE_SINGLETON() {...}
25

26 //For framework use:
27 public MachineDriver<? extends Machine> getMachineDriver() {...}
28 }

Figure 4.4: An abridged version of the Machine class to outline the functionality provided to
machine implementations.
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The API available to subclasses of Machine is provided in figure 4.4. This API has a

few notable features not already covered:

• Machine.getThisMachine() (line 2) is public and static, so it can be called

from any code in an application and not just from within subclasses of Machine.

This method returns a reference to the machine that is the context for the code

that is currently executing. The enables machine aware libraries to be constructed

which can request their own worker machines, or perform logging via the current

machine context.

• internal() is invoked in a machine once it has been fully initialised but before all

other event handlers. This is the startup event described in the application model

(section 3.2.3.1).

• In Machine Java applications do not communicate with remote ProcessorManager

(see 4.4.4) machines directly. Instead Machine provides three distinct helper meth-

ods to request a new machine (lines 8, 10 and 12), each with different semantics:

a blocking request, a non-blocking request and a request with initialisation data.

These are discussed more thoroughly in section 4.3.4. These methods further iso-

late application machines from the concept of a ‘platform’ and even the existence

of non-local processors.

• Machines themselves have a priority which can be used by implementations to

determine the allocation of implicit resources, such as CPU time and memory.

This priority is a positive integer where lower numbers are higher priorities.

• Three of the methods defined by java.lang.Object are overridden with imple-

mentations that make more sense for machines. toString() returns the name of

the machine class with a brief platform-dependent description of the machine’s

location, hashCode() and equals() follow the contract a programmer would ex-

pect: two machines are equal according to equals() iff the two machine objects

refer to the same machine instance.

• Two methods can only be called within a machine’s instance constructor:

REQUIRE_RESOURCE(...) and ENSURE_SINGLETON(). These two methods throw

a runtime exception (ResourceUnavailableException) if the construction of the

machine would violate resource constraints on the processor that is attempting
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to create the machine. ENSURE_SINGLETON() asserts that the machine being con-

structed is a singleton (no other machines of the same type exist) on the current

processor. These methods are capitalised to represent that they are essentially

static preconditions for a machine, but happen to be executable code too. It is easy

to determine analytically if either of these methods are called from a machine’s

constructor by considering an application’s method call graph. This allows re-

source requirement and singleton preconditions to be addressed where possible at

compile time but also enforced at runtime.

The machine class also contains methods to provide access to Machine Java’s internal

APIs and to allow event sources within a machine to schedule events.

4.3.3 Machine Class Restrictions

Following from the application model, in Machine Java machines are the only context

for application code execution and data storage. This has some important implications:

code execution if there is code executing in an application it must be executing in the

context of exactly one machine. This means that all control flows in an application

must have started from a specific machine’s event scheduler and are confined to

the context of that machine. Other execution contexts may actually exist at runtime

but these can never be visible to application code. The practical consequences for

Machine subclasses include:

• There can be no intermachine method calls; A machine cannot invoke a

method in any other machine instance, even if it is the same type. This is

partially enforced by requiring that all methods defined by a Machine sub-

class are marked with either of the private or protected access modifiers.

Java allows objects to invoke private methods in other object of the same type,

so this restriction only provides partial protection. Machine Java does guar-

antee that machine isolation will never be violated by the invocation of an

instance method in another machine. This is discussed further in section 4.6.

Static methods in machine classes can always be public as they do not have

access to instance fields, and static fields are highly restricted in machine

types (see below). It is possible to apparently violate machine isolation by

defining a static method in a machine that takes an instance of the enclosing
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1 public class DataMachine extends Machine {
2 private DataMachine() {};
3

4 private int secretData;
5

6 //Won’t work unless ’instance’ is the calling machine
7 public static int getSecretData(DataMachine instance) {
8 return instance.secretData;
9 }

10 }

Figure 4.5: The definition of getSecret is allowed according to the rules for valid machine
types but appears to violate machine isolation. Machine Java guarantees that machine isolation
cannot be violated by ‘accessing’ the instance data of other machines.

type as a parameter and then returns a private instance field from the passed

machine object. This construction is shown in figure 4.5. In all cases Machine

Java guarantees that cross-instance method calls will not violate machine iso-

lation, but this very likely also guarantees that such invocations will not work

as expected and should be avoided where not explicitly restricted.

• Machines cannot be interrupted, there are no asynchronous transfers of con-

trol (ATC) and the runtime will never invoke code within a machine from any

non-machine execution context.

data storage If an object is reachable by application code within a specific machine then

the graph of references that reaches the object can only be rooted in a local variable

currently in scope of currently executing code, or it must be rooted in an instance

field of the same live machine. More concisely: at most one machine can ever reach

the same object. Additionally it follows that if no machine can reach an object then

it can never be accessed ever again and is eligible for garbage collection.

This is slightly different to standard Java which allows objects to be accessed from

all execution contexts (threads), and therefore objects are considered reachable if

they are referenced by an in-scope local variable, a live thread, or a static field of a

class. The practical consequences for Machine subclasses include:

• Machines cannot define static fields. This would allow data to have a life-

time beyond any instance of that machine type, and importantly it would

allow multiple machine instances to reach the same object and this would
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violate the isolation of machines. This policy is enforced by the Machine

Java framework for Machine classes, but not for library classes. In this case

it cannot be expected that static fields will behave as they do in standard

Java. Implementations of Machine Java’s internal APIs can define the precise

behaviour of statics, ranging from conversion to implicit instance fields for

each Machine that can call code that can access the field, through to outright

prohibition on static fields in library code. The ‘networkchi’ internal API

implementation (section 4.6) maintains separate storage of static fields for

each processor, potentially allowing library code to violate the isolation of

machines within a processor. However, as application code cannot directly

influence which processor a machine might be allocated to at runtime there

is little opportunity for an application to deliberately exploit this relaxation

of machine isolation.

As an exception to this rule, static final fields are permissible if they are

of an immutable type (see 4.4.1.3) as this retains intermachine isolation.

• Machines must protect all non-static non-intermachine6 declared fields from

external access by marking them with the either of the private or protected

access modifiers. Even final immutable fields must be access protected. This

restriction does not itself guarantee intermachine isolation, as Java objects can

access private fields of other objects if they are the same type. Likewise, the

protected access modifier grants access to subclasses. However, machine

Java does guarantee that machine isolation cannot be violated by accessing

private or protected fields of another machine instance. This mechanism is

described in section 4.6.

The validation procedure for machine classes is shown in figure 4.6. Machine sub-

classes annotated with @Relax always pass validation and can therefore contain re-

stricted patterns of fields, methods and constructors. @Relaxed machines are just as

strongly isolated at runtime as all other machines, so the @Relax annotation is just an

expression that the the programmer understands the machine execution model and does

not require as much tool assistance. @Relax is primarily useful for rapid prototyping

and sophisticated application architectures involving Java interfaces (which can only

6Channels are intermachine classes so are permitted to be declared public final.
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Figure 4.6: The procedure for determining if a machine class conforms to Machine Java’s rules.
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define public instance methods).

4.3.4 Machine Life Cycle

At system startup the Machine Java framework creates a ProcessorManager machine

on every processor defined by the current platform. If the processor is also the first

processor, the application’s start machine will also be created and have its internal()

method queued for execution in the machine’s event queue. All other processors will

wait, idle, until their ProcessorManager receives a request for a new machine.

Application is defined in section 3.2 as the pair of a set of machine types and a

specific machine type to start the application. The application’s start machine must

extend the Start abstract class to denote that it is a machine capable of starting an

application, but this is not sufficient on its own to define an application though, as an

application may contain multiple machines capable of starting an application but not

used in that capacity. The invocation of the public static start() method (defined

in the Start class) requires the class of a particular start machine as a parameter, and

this is what unambiguously identifies the start machine for a Machine Java application.

Start machines must contain some spontaneous behaviour, such as an implementa-

tion of the internal() method or a timed event source that will trigger at some point

in the future. Without some spontaneous behaviour the application will never make

progress as (by definition) there are no other machines in existence that could trigger

behaviour in the start machine. From this stage in an application’s life cycle, all ma-

chines are created at the request of application code.

Machine objects cannot be instantiated in application code using Java’s new operator

but instead they have to be requested from the framework. Java’s new operator only al-

locates memory and executes the specified constructor in the current execution context,

so a machine object created using new would both be inert (no new execution context)

and would certainly be allocated to the current processor. As the semantics of the new

operator are not appropriate for machine instances, all machines must protect their con-

structors from use by making them private. This rule can be seen in the machine type

validation procedure (figure 4.6).

Machines are required to declare all intermachine fields (channels) as final to pre-

vent the machine from attempting to replace a channel implementation at runtime. This

means that all channel fields must be initialised before a machine’s constructor has fin-
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ished executing. The clearest way to initialise channels is by using Java’s field initialisers,

such as the one shown on line 4 of figure 4.7. Machines must also declare all channel

fields public to allow other machine classes to access the fields that name the channels.

A machine’s constructor cannot interact with other machines as:

• It does not start with any machine references.

• Other machines cannot get a reference to it until construction has finished.

• It cannot request a new machine and gain a reference before the constructor has

finished. (See below)

New machines can be requested via one of three methods defined (see figure 4.4) in

the Machine class:

T newMachine(Class<T> type){...}

Is a blocking request for a machine. This method returns a reference to the new machine

class directly, but it does not return until the machine has been created and is ready for

use. This is by far the easiest API for requesting new machines as the program flow is

simple and the method will throw an exception if the new machine could not be created

for any reason. However, blocking the sender is not ideal as this prevents all activity

in the machine until the method returns. The method guarantees static type safety for

the caller as the method only accepts classes that represent machines, and is defined

to return a machine of the same type as the class supplied represents. This method

must not be used during a machine’s constructor as this introduces the possibility of

application deadlocks. This is because machine constructors are invoked within an event

handler in the processor’s ProcessorManager machine, meaning that other requests to

the same ProcessorManager cannot be serviced until the new machine’s constructor has

finished. The following sequence of events would deadlock an application:

1. Machine a on processor 0 requests a new machine, b, in an ordinary event handler.

The request is dispatched to processor 1.

2. The ProcessorManager on 1 handles the event caused by the request from 0. Dur-

ing its processing it generates a new execution context and invokes b’s constructor.

3. b’s constructor uses the blocking newMachine to request machine c, this request is

dispatched to 2.
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4. The ProcessorManager on 2 handles the event caused by the request from 1. Dur-

ing its processing it generates a new execution context and invokes c’s constructor.

5. c’s constructor uses the blocking newMachine to request machine d, this request is

dispatched to 1. This request never finishes as the ProcessorManager on 1 is stalled

waiting for b to finish construction. There is now a circular chain of dependencies

and (this section) of the application is now deadlocked.

void newMachine(Class<T> type, Handler<T> machineArrivedHandler){...}

Is a non-blocking request for a machine. This method returns immediately but can

accept an optional second parameter for an event handler. When the machine has ‘ar-

rived’ (it has been constructed, potentially on a remote processor, and is ready to use)

the specified handler will be put into the machine’s event queue. A reference to the

new machine is supplied as the parameter to the event handler when it is invoked.

This method of requesting a machine is much more efficient as the requesting machine

can continue its operation as usual, at the expense of the complexity of another event

handler. Event-driven machine requests are a more natural fit for a machine oriented

programming style. The primary benefit of this method is that it avoids the machine-

request deadlock scenario described previously, but it has the significant disadvantage

that it cannot throw an exception if unsuccessful: The event handler is not typed to

accept an exception instead of a machine. If there is a problem with the request the

arrival handler will be invoked with a null machine argument. Future refinements

could improve this API with a second event handler for unsuccessful machine requests,

or supply a typed pair to the event handler (Pair<T, Throwable>) where either the

machine is non-null for success, or the Throwable is non-null if unsuccessful. Machine

constructors can use this method (and the method below) to request a new machine, but

the machineArrivedHandler will only be invoked after the machine’s constructor and

internal() method have finished.

<SetupValueType,T extends SetupableMachine<SetupValueType>>
void setupMachine(Class<T> type, final SetupValueType setupValue, final

Handler<T> machineSetupHandler) {...}
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1 public abstract class SetupableMachine<T> extends Machine {
2 protected SetupableMachine(){};
3

4 public final Signal<T> _setupBuffer = new Signal<T>(new Handler<
Envelope<T>>() {

5 public void handle(Envelope<T> info) {
6 setup(info.getPayload());
7 //only ever receive once:
8 _setupBuffer.shutdown();
9 }

10 });
11

12 //must be implemented by subclasses:
13 protected abstract void setup(T value);
14 }

Figure 4.7: SetupableMachine is a variant of Machine with the ability to receive initialisation
data of a specific type. Note that the _setupBuffer is closed in its event handler, ensuring that
at most one setup item will ever be received.

This somewhat complex7 method is the third API to request a machine. It is a non-

blocking request and can supply some initialisation data to the new machine. The

application model describes (in section 3.2.4) that new machines cannot be created with

any parameters; all new machines of the same type are identical, ‘empty’ and their

existence cannot be predicated on some supplied data. However, after a machine has

been created it can receive data via a channel as usual. This method creates a machine

as if by using the non-blocking newMachine API, but sends the supplied setupValue to

the new machine before a reference to the machine is returned to the application. This

method can only request machines which extend the SetupableMachine (see figure

4.7) class of machine. SetupableMachine defines a Signal channel which is typed to

accept the setup data supplied. Subclasses of SetupableMachine must implement the

setup(T ...) method to accept the initialisation data item.

4.3.5 Machine End-of-Life

The application model explains (section 3.2.4) that a machine, m, cannot be destroyed at

the request of another machine, r, as r cannot be sure that m is universally unneeded.

This follows from the concept of machine logical locality: a machine cannot make correct

7The full type signature has been retained here for ‘clarity’.
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statements about the application outside of its logical local area.

Machine Java does, in some limited circumstances, support the destruction of ma-

chines. Machine Java will automatically destroy a machine if the following are all true:

1. All channels in the machine are closed.

2. and the machine is not waiting for a reply to a bidirectional request.

3. and the machine has an empty event queue.

4. and the machine has no timed event sources that can still trigger an event.

As soon as all of these conditions have been satisfied the machine is already con-

sidered dead; it can never execute any more event handlers and it is therefore eligible

for destruction at a time convenient to the framework. Condition (1) is stronger than

it appears as not all channel types are closable which implies that a machine can only

ever be destroyed if all of its channels are of closable types. Machines which only define

closable channels are considered ephemeral, and only unidirectional destructive channels

(such as the Signal, shown in figure 4.7) are closable.

4.3.5.1 Simple Ephemeral Machines

The most basic ephemeral machine has no channels at all, and as it can never commu-

nicate with existing machines, it could only be useful as an application’s start machine.

The simplest useful ephemeral machine can extend SetupMachine with no additional

channels or spontaneous event sources defined. It can receive any machine references

necessary in its setup data. This construction is safe as a Simple Ephemeral Machine (SEM)

can only ever initiate interaction with other machines: It is not possible for other ma-

chines to have a useful reference to a SEM as it has no usable channels. Condition (2)

guarantees that a SEM will not be destroyed during a bidirectional request that it initi-

ates, so a machine responding to a query from a SEM can be confident that the response

is being directed to a live machine.

Simple ephemeral machines can be used as efficiently as any other machine in work-

pooling architectures, but work must be fetched from a pool machine rather than pushed

to it. An idle worker SEM does not need to periodically poll its pool manager for

work, which would waste network and processor capacity, instead it can request work

from an ordinary RemoteDataFetch channel defined by the pool manager. The key is
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that the pool manager delays its response to the work request until it has something

useful to communicate to the worker SEM, which could include work items, a machine

reference for a new pool manager, or a notification to shutdown. Ordinarily the worker

SEM would perform the action and fetch another item from the pool manager, but if

requested to shut down it simply does no further requests. Once its RemoteDataFetch

response event handler is concluded the machine will be eligible for destruction.

Applications must be designed carefully if it is possible for a non-SEM to become

dead while it is still ‘in use’ by some other machines. This situation is not a severe

problem as data sent to a dead or destroyed machine is just discarded, the application

will continue to run as normal but the initiating machines will obviously never receive a

response. In addition, condition (1) ensures a machine that explicitly defines a channel

will never be destroyed automatically until the channel is deliberately closed by appli-

cation code; programmer error is required to destroy a machine that is still needed.

It would be possible for more sophisticated implementations of Machine Java to

use a form of distributed garbage collection in order to determine which machines are

certainly unused, and this would enable automatic destruction of machines with open

channels too. However, the ‘networkchi’ (section 4.6) implementation of Machine Java’s

internal APIs is only capable of machine destruction in accordance with the conditions

above.
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4.4 Platform Agnostic Framework

In addition to the Machine class and its two more specialised descendants, Start and

SetupableMachine, Machine Java provides (and demonstrates the implementation of)

a platform independent library of event sources. Both intermachine communications

channels (section 4.4.1) and spontaneous event sources (section 4.4.3) can be constructed

effectively in Machine Java. A realisation of the ProcessorManager concept is also pro-

vided (section 4.4.4) to allow all application-defined interprocessor communication to

be confined to the machine abstraction.

4.4.1 Communications Channels

Java Application

Internal API Implementation

Platform

Runtime (Hardware)

Abstract 
Internal API

Machine Java APIs

This section discusses the APIs
available to Machine Java ap-
plications and their platform-
agnostic implementation using
internal drivers.

Machine Java provides implementations for many of

the useful protocols defined in the application model

(section 3.2.5.3). An overview of Machine Java’s pre-

defined protocols and their relationships can be seen

in figure 4.8. As the protocols were already discussed

at length in section 3.2.5.2, this section discusses the

general representation of channel protocols in Ma-

chine Java applications. In the subsequent section

(4.4.2) the implementation of channel protocols us-

ing Machine Java’s internal communication API is

explored.

In Machine Java the suite of channel implementa-

tions and supporting libraries forms the Two Party

Interaction Framework (TPIF). An overview of this

framework’s components and important relationships is provided in figure 4.8.

In Machine Java, machines interact with each other through ‘channels’ assigned to

public final fields in machine classes. A field can only be made public in a machine

class if its type implements the Intermachine interface. The Intermachine interface

is purely symbolic; it exists to allow a class to indicate that it will not violate machine

spatial isolation and is safe to be made public. Channels provide two major kinds of

functionality within a machine: they are event sources, and they can coordinate data

exchange between machines.
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TPIFBidirectionalConnector<Q, R>
extends TPIFProtocol<Envelope<R>>

implements TPIFConnector<Q>

Figure 4.8: An overview of the Two Party Interaction Framework in Machine Java. This library provides machine oriented applications with many
of the channel protocols discussed in section 3.2.5.3. Every protocol also has a subclass of a connector associated with it but these have been omitted for
simplicity.
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At this point it is helpful to cover some deeper details of Machine Java’s imple-

mentation: To be an event source, a class must extend the abstract EventSource class

shown in figure 4.8. A simplified version of EventSource’s Java definition can be seen

in figure 4.9. An event source is granted the ability to register events into the machine’s

event queue, and importantly for channels, event sources are provided an Intermachine

Event Source Identifier (IESIdentifier). A IESIdentifier uniquely identifies the spe-

cific combination of a channel and the machine instance it is contained in. All event

sources are generic on the type of object that will be passed to the application’s event

handlers for that source. For event sources that provide no data, Machine Java defines

the Nothing class. Nothing is essentially a void type but it can be used in situations

where null is forbidden. Java’s Void8 class is insufficient in these situations as null is

the only value which can be assigned to a Void typed variable. Machine Java’s Nothing

is also uninstantiable but a single universal instance (Nothing.NOTHING) is available as

a placeholder.

So far these event source details are only to make coding channels slightly easier.

However, the most important (and eventually interesting) feature of the EventSource

class is that it captures the machine instance that owns the event source in its owner field.

As far as possible Machine Java conforms to the application model, and therefore it

provides strong guarantees of consistency, isolation and platform independence to ap-

plication code, but this is not the case for implementations of framework components

including event sources. Machine Java only provides isolation and platform indepen-

dence to event source implementations, meaning that the execution context may be (and

often is) inconsistent. Code within event sources will sometimes be executed in machine

contexts other than the machine that apparently created the object, and in some cases

code may execute in no machine context at all. For this reason, event source implemen-

tations must be especially careful to avoid assumptions about their current execution

context to avoid violating the consistency of the machine which created the event source.

In practice this means that event sources must never invoke application code directly, as

this could result in a violation of single-thread equivalence within the machine; all ap-

plication code must be executed via the event queue. Event sources must also be careful

to refer to their owner field to determine the machine that constructed them, as after

8java.lang.Void is Java’s object representation of the void pseudo-primitive. No value for void can
exist and therefore there are no instances of Void.

152



4.4 Platform Agnostic Framework

1 public abstract class EventSource<T> {
2 public final Machine owner = Machine.getThisMachine();
3 protected Handler<? super T> _handler;
4

5 public EventSource(Handler<? super T> handler) {...}
6

7 public void setHandler(Handler<? super T> handler) {...}
8

9 //register events:
10 protected void registerEvent(T info) {...}
11 protected void registerEvent(Handler<? super T> handler, T info)

{...}
12

13 //For Intermachine event sources:
14 protected IESIdentifier getExternalID() {...}
15

16 //manage priority:
17 protected int getPriority() {...}
18 public void setPriority(int priority) {...}
19 }

Figure 4.9: An abridged version of the EventSource abstract class. The EventSource class pro-
vides functionality for recording event handlers, setting event source’s priority, and registering
events into the machine’s event queue.
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Attribute Destructive Channels Non-destructive Channels

Can refuse sends? No Yes
Send-side event source No Yes
Send-side event type – Uni9: Nothing

Bidi10: defined response type
Buffer-full policy Last-is-best overwrite Refuse receives
Closable Yes No

Table 4.2: A comparison of the differences between destructive and non-destructive channels in
Machine Java.

construction Machine.getThisMachine() will often yield a machine object that does

not match the owner machine.

Although the application model distinguishes between non-destructive and destruc-

tive channel read operations, Machine Java does not: Channels in Machine Java do not

have methods to read data. The only way for a machine to get data from a channel

is by handling the arrival event for the data item. The distinction between destructive

and non-destructive writes is important though, and their characteristics can be seen in

table 4.2.

It can be seen in table 4.2 that non-destructive channels are also event sources in

the machine that sends data. To accommodate this Machine Java defines the concept

of channel connectors. The three types of connector can be seen in the TPIF overview

figure 4.8. To communicate with a remote channel, a machine must refer to the channel

and request a new connector. It is this connector object that is the event source in the

local machine. If a machine will communicate repeatedly with a remote machine via

the same channel, it is more efficient for application code to reuse the same connec-

tor for each transaction. This avoids unnecessary allocation of a new send-side event

source and the required drivers to enable the actual communication. All code examples

in this thesis use convenience methods to hide the complexity of the connectors mech-

anism at the cost of some runtime efficiency. As an example, this is the convenience

method to send data to an OverwritingBuffer without explicitly using a connector:

9Unidirectional
10Bidirectional
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1 //In OverwritingBuffer.java
2 public void send(T datum) {
3 if (cachedSendConnector==null) cachedSendConnector =

newConnector();
4 cachedSendConnector.send(datum);
5 }

4.4.1.1 Sends to Non-destructive Channels

Destructive channels (such as OverwritingBuffer) are particularly easy to operate in

an application as they can always have data sent to them. Non-destructive channels re-

quire much more care as Machine Java does not provide blocking send operations; sends

are always non-blocking. To make programming with non-destructive channels slightly

less onerous, every non-blocking connector has a single item send-buffer. This ensures

that the first send operation on a connector can always return immediately without an

issue. The data will be sent as soon as the receive end of the channel can accept it. Once

the channel has accepted the data the non-blocking connector will register an event in

the sender machine, and another send operation can be performed on the connector. If

a connector is used again before the previous data item has been accepted by the remote

channel, the send operation will throw a PreviousDatumNotAcceptedException. This

means that code which will interact with non-destructive channels must always be sure

to send data slower than it will be consumed at the remote end, or use an event-driven

style to rate limit send operations. For example, to repeatedly send incrementing inte-

gers to another machine (div2) via a non-blocking channel (input), the following style

of code must be used:

1 div2.input.send(nextSend, new Handler<Nothing>() {
2 public void handle(Nothing info) {
3 div2.input.send(++nextSend, this);
4 }
5 });

In this example the Nothing-typed event handler is triggered at some point in the future

after the first send operation. When the handler is executed it just sends again using

the same event handler object. This causes an infinite stream of send operations and

sender-side events, but the sends are perfectly limited to the rate at which the receiver

can process the data. The more obvious non-event driven construction will throw a

PreviousDatumNotAcceptedException very quickly:
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1 while (true) {
2 div2.input.send(++nextSend);
3 }

4.4.1.2 Intermachine Type Safety

Static type safety is ensured for channels through the use of Java generic types, just as

it is for requesting new machines. Unidirectional channels have a single type parameter

(an example can be seen on line 7 of figure 4.7), whereas bidirectional channels have

a type for both the query and response directions. The send methods for channels are

generic and only accept the configured type, and the event handler for a specific channel

must also match the type of the channel. Type safety can be guaranteed across machines

by the standard Java compiler because Machine Java uses instances of the application’s

machine classes (machine objects) to act as machine references. This allows the Java

compiler to treat a distributed Machine Java application exactly as an ordinary non-

distributed Java application.

For a machine, a, to be able to communicate with another machine, b, the application

code in machine a must have a reference to b. The static type (the type of the variable,

parameter or field as declared in the Java code) of the reference to machine b determines

what fields are known to exist in b, so if the reference to b has the static type Machine

then a cannot ever send data as the Machine class does not contain any channel declara-

tions. If the static type of b in a’s code contains channel definitions then a can use these

fields to access the channel object, which in turn enables communications with the live

instance of b. The Java compiler enforces that input code is consistent with respect to the

static types of machine references, so a reference to a BasicReceiver machine (shown

in figure 4.3) cannot be assigned to a variable with a static type of BasicSender; this

would cause a compile time error. The Java compiler also emits checks to ensure type

safety at runtime, so even if an application uses convoluted code to circumvent static

type safety, an exception will be thrown at runtime.

1 BasicSender wontWork
2 = (BasicSender)(Machine)newMachine(BasicReceiver.class);

In this example (using the machine classes defined in figure 4.3) the compiler will ac-

cept the double cast as both casts are acceptable individually, but it will emit a runtime

156



4.4 Platform Agnostic Framework

check11 to validate that the object is actually an instance of BasicSender. When exe-

cuted this code will throw a ClassCastException.

Although machine references are subject to very strong type checks by the Java com-

piler and runtime, the data items accepted by a channel are not so rigorously enforced.

This is because Java’s generic types are erased at compile time; all instances of the same

generic class contain the same runtime code regardless of the type parameter used in

the code. This means that the compiler cannot automatically generate runtime class-cast

checks to validate runtime type safety, and therefore it is possible to write code which

will send data of the wrong type through a channel:

1 BasicReceiver rx = newMachine(BasicReceiver.class);
2 ((Slot<String>)(Slot<?>)rx.numbers).send("Hello");

This example will not only compile, but it will also execute:

“BasicReceiver@1,0:1> Hello” is logged from the BasicReceiver machine. The Java

compiler does detect that this code may be incorrect and will issue a cryptic warning:

Type safety: Unchecked cast from Slot<capture#1-of ?> to Slot<String>

This type of generic type safety violation can allow any sendable (see 4.4.1.3) type to

be sent but it still does not violate the type safety of the receiver machine. In this case

the code executes correctly because the BasicReceiver machine just invokes Machine

.log() on whatever data arrives from the channel, and log accepts any object as a

parameter. When non-trivial applications attempt to make use of a received data item

as the type that the channel was declared to receive, the Java compiler will emit the

necessary runtime checks. If the BasicReceiver class were modified to log the square

of the newly received integer, like so:

1 public void handle(Envelope<Integer> info) {
2 log(info.getPayload()*info.getPayload());
3 }

then a runtime exception is thrown:

java.lang.ClassCastException:

java.lang.String cannot be cast to java.lang.Integer

If this ClassCastException is uncaught in the event handler then the handler will

terminate abruptly and the next event in the machine’s queue will be serviced. The

11Using a checkcast JVM bytecode.
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overall operation of a machine is unaffected if an event handler terminates abruptly,

but the application will not necessarily continue to function correctly if that handler

provided important functionality.

To summarise Machine Java’s intermachine type safety:

• It is impossible to write applications that use a non-existent channel in a machine

reference. Most errors of this kind will be caught by the compiler, the rest will be

caught at runtime before the channel is used.

• It is possible to write code that cannot make use of all the channels in a machine.

This happens in the cases where the static type of a machine reference is not

specific enough. However, this is a useful property as it allows object oriented

‘implementation hiding’ patterns to be applied in a machine oriented context.

• It is possible to to violate the generic type of a channel and send data of an un-

expected type. This will very likely cause a ClassCastException to be thrown in

the receiver machine during its channel event handler.

4.4.1.3 Sendable Objects: Immutable Types

Machine Java channels are only allowed to transfer immutable objects between machines.

The application model does allow mutable data to be communicated where it is clear

that a copy has been made, but this does not result in the most intuitive programming

model. Restricting communication to only immutable data types most clearly conveys

the concept of runtime intermachine isolation.

Unfortunately Java does not provide a general mechanism to express a requirement

for a data type to be immutable; mutability of data is not encoded via the type system

or standard annotations. There have been a number of proposals to extend Java to

allow the expression of immutability, including in JSR12 308[63] and the work of Zibin

et al[234]. These works include indications of immutability for data types, and to allow

variables, parameters and fields to be constrained to only immutable data types. It does

not seem likely that true support for immutability will arrive soon into Java as it is a

considerable divergence from Java’s typical mode of operation.

12Java Specification Requests (JSR) are part of the Java Community Process (JCP). See https://jcp.org/
en/jsr/all.
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Data Immutability Validation
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Figure 4.10: The procedure for determining if an object is sufficiently immutable to be considered
for intermachine communication.

As Java does not provide a mechanism to statically guarantee the immutability of

a data type, a more ad-hoc approach is required for Machine Java: The generic type

parameter accepted for channel declarations is unconstrained; a channel can be defined

to accept any Java object type. If a channel is defined for a mutable data type, such

as an array (which is always mutable in Java), a runtime exception will be thrown on

an attempt to send the mutable data type. The procedure to determine if an object is

immutable can be seen in figure 4.10. Machine Java considers data to be sufficiently

immutable for communication if it is one of: null13, a boxed primitive (such as java.

lang.Boolean, or java.lang.Integer), a String, a Java Class<?> object, a machine

object, or an instance of Machine Java’s Immutable interface.

Machine Java’s Immutable interface can be implemented by a class to indicate that

it is read-only after construction. Classes that implement Immutable must obey only

a weak form of immutability where each field of the class must be final14 to prevent

changing the field’s value after construction. The immutability of the field types is not

enforced in Machine Java, but should be performed on a best-effort basis by the appli-

cation programmer to avoid unexpected runtime behaviour. Strong immutable classes

13Although null values are not accepted by channels.
14In Java, final fields must be written to exactly once during the construction of the declaring object.
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in Java require a number of conditions to be satisfied:

• Have only final fields.

• If the class is nested it must be a static class, or the enclosing class must also be

immutable. This implies that inner (non-static nested) and local (non-static block

scoped) classes can only be immutable if their enclosing class is also immutable.

• All accessible (public) fields must be primitive or immutable.

• Inaccessible (private) fields can be mutable (such as arrays), while the following

sub-conditions hold:

– The mutable field must be deep copied (referenced immutable objects do not

need to be deep copied too) when the object is constructed.

– The mutable object referenced by the field must be deep copied each time its

reference would escape the class. A reference escapes when it is returned from

an accessible method in the class, or when it is stored in another object.

• The class itself must be final to prevent subclasses from violating the above rules

for accessing mutable fields.

The difficulty of implementing these requirements and of designing a verifier to en-

force the requirements motivates Machine Java’s considerably relaxed definition of im-

mutable. Machine Java does guarantee no two machines will ever share a reference to

mutable data, so it is not required that the programmer expend so much effort express-

ing this each time.

Machine Java’s Immutable interface extends the Flattenable interface (see 4.7.3.4)

provided by Network-Chi. This ensures that all immutable classes can also be serialised

(flattened) inexpensively15 at runtime.

4.4.2 Implementing Channel Protocols

Before the implementation of channels in Machine Java is discussed in the next section,

it is helpful to briefly cover internal drivers.

15In this context inexpensive means avoiding dependence on full Java reflection, rather than a claim to
efficiency.
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4.4.2.1 Internal Drivers

Machine Java’s application-facing APIs are able to function via abstract drivers where

different implementations can be provided according to the needs of the specific plat-

form. Drivers are only intended for use by Machine Java’s event sources and internal

code; applications should not use drivers directly. Machine Java defines five abstract

drivers:

machine drivers (MachineDrivers) provides the execution contexts for machine classes

and acts as the gateway between code executing in a machine context and other

Machine Java framework functionality. Machine drivers provide the following

important functionality:

• Provide event managers which isolate event sources from the implementation

specific details of a machine’s event queue. Event managers allow events to

be registered and provide IESIdentifiers.

• Allow access to the machine’s unique runtime identity, represented by the

MachineIdentifier class.

• Provide instances of alarm and communications drivers to event sources. As

these are provided on a per-machine basis each machine instance can be pro-

vided a different driver implementation if necessary.

alarm drivers (AlarmDrivers) can schedule code to be executed at some defined time

in the future.

TPIF transmit drivers (TPIFDriverTx) can send messages to matching receive drivers.

TPIF receive drivers (TPIFDriverRx) receive messages sent to them by a matching trans-

mit driver.

Processor drivers (ProcessorDrivers) coordinate the startup of each processor in the

platform and are used by the ProcessorManager machine to create new machine

drivers on the current processor.

4.4.2.2 Using TPIF Drivers

Channel implementations are able to communicate with other machines through the use

of two abstract communications drivers: TPIFDriverTx to send data, and TPIFDriverRx
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1 package mjava.core.runtime.drivers;
2 import mjava.core.identifiers.IESIdentifier;
3

4 public abstract class TPIFDriverTx<T> {
5

6 public TPIFDriverTx(IESIdentifier identity, boolean destructiverx,
boolean buffered, Runnable accepted) {...}

7

8 //Sends the specified datum to the matching RX end driver.
9 public abstract void send(T datum) throws

PreviousDatumNotAcceptedException;
10

11 //Shuts down this driver so its resources can be reclaimed.
12 public abstract void shutdown();
13 }

Figure 4.11: An abridged version of the TPIFDriverTx abstract driver specification. See section
4.4.1.1 for a discussion of PreviousDatumNotAcceptedException.

to receive data. These two drivers provide a universal message passing interface, which

can be combined and configured in different ways to implement any of the the protocols

discussed in the application model. To illustrate how channels are constructed in Ma-

chine Java the OverwritingBuffer protocol will be considered as it is the least complex

non-trivial16 protocol. OverwritingBuffer protocols do not have handshakes between

sender and receiver, there is no return path, and the receiver can have any buffer size

without impact on senders.

Abridged versions of the TPIFDriverTx and TPIFDriverRx Java classes can be seen

in figures 4.11 and 4.12, respectively.

All code in the receive side of a channel implementation executes on the processor

that the channel-defining machine is allocated to, with most of the code also executing

in the context of the defining machine. The receive side of an OverwritingBuffer can be

implemented as follows:

1. The TPIFUnidirectionalProtocol<T> (see figure 4.8) is subclassed. This marks

the new class as Intermachine so it is permitted to be a public field in a machine,

and it also designates the new class as an event source with the parameter type

Envelope<T>.

16The Constant channel protocol is certainly less complex but it is trivial to the point of futility.
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1 package mjava.core.runtime.drivers;
2

3 import mjava.core.Gettable;
4 import mjava.core.identifiers.IESIdentifier;
5

6 public abstract class TPIFDriverRx<T> implements Gettable<T> {
7 //Note: the Gettable interface defines the method:
8 //public T get();
9 //to retrieve the next datum, or null if none is available

10

11 public TPIFDriverRx(IESIdentifier identity, Runnable rxnotify, boolean
destructive, int bufferLength) {

12 this.identity = identity;
13 this.rxnotify = rxnotify;
14 this.destructive = destructive;
15 this.bufferLength = bufferLength;
16 }
17

18 public int getBufferLength() {...}
19

20 //Allows this driver to invoke the rxnotify Runnable when the next
datum is available.

21 public abstract void accept();
22

23 // Shuts down this driver so its resources can be reclaimed.
24 public abstract void shutdown();
25

26 //Gets an item from this driver and blocks until one arrives none are
available.

27 public abstract T getBlocking();
28 }

Figure 4.12: An abridged version of the TPIFDriverRx abstract driver specification. Note that
the ability to perform a non-blocking get() is provided by its implementation of the Gettable
<T> interface.
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2. In its constructor the new channel class must request a TPIFDriverRx driver from

the machine that owns the new channel instance. It can accomplish this by:

1 owner.getMachineDriver().getTPIFDriverRx(...)}

A receive driver requires four parameters to determine its behaviour:

an address This driver will receive messages from senders with a matching ad-

dress. This is represented by an intermachine event source identifier (a IESIdentifier

object). EventSource provides functionality to obtain this identifier for the

channel instance.

buffer size This determines how much memory the implementation will allocate

to buffers, and also changes the behaviour of the driver when the buffer size

is zero.

send destructivity The destructivity of send operations. If the driver is a non-

destructive type then handshaking is used between sender and receiver drivers

to prevent buffer overflow conditions in the receiver. In this case a destructive

driver is requested. Destructive receive buffers must be buffered for event

driven operation as without buffering any received data items would be lost

by the time an event handler could be executed to retrieve the data. Un-

buffered destructive protocols can be expressed with TPIFDriverRx, but this

requires a channel to use blocking receive operations.

interrupt handler Finally, the TPIFDriverRx instance requires an interrupt han-

dler. This is a Java Runnable that will be invoked when the driver has data

ready to be read from its buffer. This interrupt handler can be executed in any

context without synchronisation to application code, therefore it is critical that

it does not use any data structures that are also used by code executed in an

application context. For an OverwritingBuffer implementation this interrupt

handler just registers an event:

1 registerEvent(new TPIFEnvelope<T>(_drv, OverwritingBuffer.this));

where _drv is a reference to the receive driver instance, and OverwritingBuffer

.this is the channel instance.

The data is not read from the receive driver during the interrupt handler,
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instead the Envelope17 object will read it from the buffer during the ap-

plication code’s event handler. This is an important design pattern across

Machine Java’s channel implementations, as it ensures that data is consumed

from buffers at a rate dictated by the application and not the implementa-

tion of the channel protocol. The receive driver will not invoke the interrupt

handler again until the driver’s accept() method is called to indicate that

this is allowed. The Envelope class invokes the driver’s accept() immedi-

ately after application code uses getPayload() to retrieve the latest datum.

This mechanism ensures that the channel implementation is compliant with

the application model’s event queue specification that at most one event is

queued for a specific event source at any instant.

From an application’s perspective an Envelope object is just a container for

the new data item which in some cases can provide additional information or

facilities; bidirectional channels use ReturnableEnvelopes which both pro-

vide a reference to the querying machine (with a Machine static type), and

also provide a reply(R data) method to directly respond to the querying

machine. However, envelope classes are quite active entities and only pro-

vide the illusion of data encapsulation through just-in-time reads and data

caching.

3. After the receive driver has been obtained from the machine driver, the accept()

method is invoked on the driver to enable notification for the first data item. The

receive side of the channel is now complete and will behave as expected.

The send side of an OverwritingBuffer channel is somewhat less complex as it is not

an event source. Naturally, all code in the send side of a channel executes in the context

of the machine with data to send and this means that implementations must be espe-

cially careful not to attempt to violate machine isolation: Channel classes contain code

that can be executed in more than one machine context and therefore the data stored

by channel objects will have apparently different values depending on the particular

machine that is executing the code.

1. A new subclass of TPIFDestructiveConnector<T> is made to represent connec-

17TPIFEnvelope<T> is an implementation of the Envelope<T> interface, which has only one method:
getPayload()

165



Chapter 4: Machine Java

tors for this channel type.

2. The new connector class must request a send driver in its constructor. This is very

similar to how the receive side requests its driver, but because the send-side code

executes in a machine that does not own the channel, it must request the send

driver from the currently executing machine:

1 Machine.getThisMachine().getMachineDriver().getTPIFDriverRx(...)}

Again there are four parameters that determine a send driver’s behaviour:

send address The IESIdentifier of the receive driver that should receive sent

messages. This is straightforward for an overwriting buffer implementation

as only the receive side is an event source so there is not any confusion about

which identifier to use. The send side code can just use the channel object’s

inherited getExternalID() method. The implementation of the current ma-

chine driver will ensure that the ID returned for the send side code will match

the ID provided on the receive side.

Bidirectional and non-destructive connectors are themselves event sources in

the send side machine so must take care to use the identifier of the channel

and not the connector.

destructive send This must match the value used for the receive driver as it de-

termines the handshaking behaviour of the driver. Destructive send drivers

do not have to ask permission from the receiver to send data.

buffering Specifies if the receiver uses a send buffer or not. This only affects the

operation of non-destructive driver pairs. When a sender driver is in non-

destructive and unbuffered mode all send operations become blocking until

the receive driver is ready to receive. This is the avenue to implementation

of truly synchronised rendezvous protocols. In the case of this destructive

OverwritingBuffer protocol the value does not matter.

interrupt handler Send drivers can invoke an interrupt handler when they are

ready to send more data. Destructive protocols, such as this one, are always

ready and this handler is never invoked. For non-destructive protocols this

interrupt handler is invoked after the most recently ‘sent’ data item has ac-

tually been transmitted to the receive driver. Just as with the receiver driver,

the send driver’s interrupt handler can be invoked in any execution context

166



4.4 Platform Agnostic Framework

and cannot safely share data structures with the machine that created the

connector instance.

3. Finally, a convenience method (such as the one seen on page 155) can be provided

to avoid application code having to manage channel connectors.

All of the remaining unidirectional protocols can be implemented using this style of

construction, and the bidirectional protocols can be implemented with multiple sender

and receiver drivers. Every instance of a receive driver implies some resource con-

sumption in its host processor, even if the driver is unbuffered or used for void-valued

channels. This is because the lower level implementations must be able to determine

which driver instance is responsible for handling data items that arrive to its commu-

nications resources. This is unlikely to present an issue for unidirectional channels as a

machine class can only define a finite number of fields to be populated by channels, and

these are fixed at compile-time. From an engineering perspective resource consumption

is less troublesome if it is known when the system is designed, but this is not necessarily

the case for bidirectional protocols. Therefore bidirectional channels are more problem-

atic as their connectors must have their own ability to receive data (implying a receive

driver), and a machine can instantiate an unbounded number of connectors. This is

especially problematic when the convenience method pattern is used to query a remote

channel, such as in this example18:

1 srv.replyService.query(new PingMsg(), new PingReplyHandler());

where replyService is a bidirectional RemoteProcedureCall channel:

1 public final RemoteProcedureCall<PingMsg, PingMsg> replyService = ...

In this example, a new connector could be created each time query() is invoked which

would lead to a memory leak in the implementation. Machine Java avoids memory leaks

in this situation by using the concept of ephemeral connectors. These connectors can only

be used once, as their receive drivers are closed when their data is retrieved from the

associated Envelope object by the connector’s event handler.

For unidirectional protocols the connectors used by convenience methods are cached;

only one connector will ever exist for each channel of each machine reference owned.

18These code excerpts are taken from the SpeedTest micro-benchmark. The full source code for this
benchmark is provided in appendix section C.1
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1 package mjava.core.runtime.drivers;
2

3 public abstract class AlarmDriver {
4

5 public AlarmDriver(Runnable handler) {...}
6

7 //Sets the alarm time for this driver.
8 public abstract void setAlarm(long activateTime);
9

10 //This will cancel the alarm.
11 public abstract void cancel();
12 }

Figure 4.13: An abridged version of the AlarmDriver abstract driver specification.

This avoids unexpected proliferation of the implicit single-item send buffers within non-

destructive connectors.

A complete reproduction of a RemoteProcedureCall channel implementation in Ma-

chine Java can be found in appendix A.1.

4.4.3 Spontaneous Event Sources

All four of the model described spontaneous event sources (see 3.2.3.2) are easily ex-

pressed and have already been implemented in Machine Java. The time bound event

sources (alarms, delays, and periodics) are all implementable using Machine Java’s ab-

stract AlarmDriver. The alarm driver is very simple in comparison to the send and

receive drivers, and its contract can be seen in figure 4.13. As with the communications

drivers, the alarm driver uses a pseudo-interrupt to asynchronously notify timing event

sources that the specified time has occurred, and the interrupt handler has the same exe-

cution caveat too: It cannot safely access data structures shared with application code as

it can be executed from any execution context. An alarm driver can only have one alarm

pending at once and does not need to be explicitly shutdown to free its resources; a

finished or cancelled alarm uses no resources and is eligible for garbage collection when

unreferenced. Yield event sources do not require any drivers to operate; the function-

ality provided by extending the EventSource abstract class is sufficient to implement a

Yield-type event source.

The hierarchy of spontaneous event sources can be seen in figure 4.14. Spontaneous

event sources are particularly uncomplicated to use from within application code as the
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Figure 4.14: A summary of the spontaneous event source library provided in Machine Java.

timed event sources only require a time specification parameter and an event handler,

and Yields only require an event handler. In accordance with the application model,

Machine Java’s event handlers are non-preemptive so in the following periodic event

example:19

1 new Period(1_000, new Handler<TimeEvent>() {
2 public void handle(TimeEvent info) {
3 doWork();
4 }
5 });

the doWork() method is guaranteed to execute no more frequently than once every

second but actually is not guaranteed to execute at all when other event handlers cause

interference. All absolute time specifications in Machine Java are relative to the same

‘zero-point’ time as Java’s System.currentTimeMillis() time stamp method. This

means that the following code will register an event in one second time on all platforms,

regardless of their (possibly non-compliant) implementation of currentTimeMillis():

1 new Alarm(System.currentTimeMillis()+1_000,
2 new Handler<TimeEvent>(){ ... });

A complete reproduction of a period timed event source implementation in Machine

Java can be found in appendix A.2.

4.4.4 Processor Managers

Machine Java’s realisation of MAA framework ProcessorManager machines have ex-

tended responsibility beyond that specified in the model. Not only do they respond to

19These code examples use an underscore (_) character to group the digits of the millisecond constants.
Underscore characters are allowed in numeric literals from Java 7 onwards and have no effect on the value
represented by the literal.
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1 // The ProcessorManager is the only implicit machine on a processor.
2 @Relax
3 public final class ProcessorManager extends Machine {
4

5 //Processor-local requests:
6 public <T extends Machine> T requestMachine(Class<T> typeToStart,

final Handler<T> machineArrivedHandler, boolean blocking) {...}
7

8

9 //Remote request box
10 public final RemoteProcedureCall<MachineControl,

MachineControlResponse> remoteRequest = new RemoteProcedureCall
<MachineControl, MachineControlResponse>(new
RemoteRequestHandler());

11

12

13 //Only for debugging and instrumentation!
14 public final RemoteDataFetch<ProcessorStatus> status = new

RemoteDataFetch<ProcessorStatus>(new Handler<ReturnableEnvelope
<Nothing, ProcessorStatus>>() {...});

15 }

Figure 4.15: An abridged version of the ProcessorManager class definition. Application code
never interacts with ProcessorManager instances directly; they are used indirectly via the
Machine class.

requests for new machines just as described in the model, but ProcessorManager classes

also provide perform dynamic allocation of machines to processors. Machine Java ap-

plications are unaware of the processor manager concept as it is hidden by Machine’s

methods to request new machines.

The Java definition of the ProcessorManager can be found in figure 4.15. It can be

seen that ProcessorManager is annotated with @Relax which is necessary as it declares

a public method: requestMachine. This method is used by Machine to implement the

newMachine family of methods. Machine.newMachine() is implemented as follows:

1 public final <T extends Machine> T newMachine(Class<T> type) {
2 return Platform.getPlatform().getThisProcessorDriver().

getProcessorManager().requestMachine(type, null, true);
3 }

Although the implementation is circuitous, indirection of machine requests via the

local ProcessorManager substantially reduces application complexity as all allocation

decisions and error handing can be managed by the framework. The Platform API

(discussed in section 4.5) can only suggest which processors might be statically suitable
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ProcessorManager

Remote
ProcessorManager

new T:
t

requestMachine(T)
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remoteRequest: T
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Figure 4.16: A sequence diagram of the request for a new machine in an event handler in
‘Requester’. The processor manager on the same processor handles the request by determining
which remote processor’s ProcessorManager to forward the request to.

for a given machine type but not a single specific processor. Therefore without the

indirection through ProcessorManager’s dynamic allocator, every machine would have

to implement its own. The overall sequence for a blocking machine request can be seen

in figure 4.16, but event handlers have been elided into the machines for simplicity. The

sequence of events is as follows:

1. An event handler in the requesting machine (‘requester’) uses the blocking method

Machine.newMachine() to request a new machine of type T.

2. newMachine() uses the internal API to get a reference to the local ProcessorMan-

ager and then invokes requestMachine() on the ProcesssorManager.

3. The ProcessorManager uses the platform API to determine the possible processors

for a new machine of type T. This is a fast operation that uses no remote resources.

4. The ProcessorManager picks a processor according to its dynamic allocation algo-

rithm, discussed below. It then uses the platform API again to get a reference to

the remote ProcessorManager located on the picked processor.

5. The local ProcessorManager, which is still executing in the context of ‘requester’,

issues a blocking query to the ‘remoteRequest’ channel of the remote manager. The

query contains a MachineControl describing the intent to create a machine and
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the required machine type. The ‘requestor’ machine is now stalled until this query

receives a response, but the local ProcessorManager can still service requests as

its execution context has not been stalled.

6. The remote ProcessorManager services the request at some point in the future,

subject to the delay in servicing the its outstanding queued events. When the

request’s event handler executes the manager attempts to create a machine by

requesting a new machine from the processor’s ProcessorDriver. The driver

will perform the necessary operations to create a new execution context and create

a new instance of T, causing T’s constructor to be executed.

7. When the new instance of T: t has completed construction successfully, a reference

to t is sent as the reply to the query inside a MachineControlResponse message.

8. The requestor’s ProcessorManager resumes execution when the reference to t ar-

rives. As it was a blocking query, there is no event for this data arrival, the blocked

execution context will resume as soon as the implementation allows.

9. The newMachine method call returns the new reference to t. If the request for

a new T had failed, newMachine will throw a runtime exception with a message

specified by the remote ProcessorManager.

As figure 4.16 shows, only the constructor of the new machine is synchronous with

the request. All future event handlers in the new machine, t, happen asynchronously

with respect to other machines.

The ProcessorManagers dynamic machine allocator is only a basic proof of concept

and follows the following operating principle:

1. The ProcessorManager has an internal ‘pick counter’, n , which is initialised to

zero when the manager is created.

2. The platform’s getProcessorsForMachine() API is used to get an iterator for

the potential processors. If this iterator has no items then a runtime exception is

thrown to indicate that the machine cannot be constructed anywhere.

3. If the iterator has fewer items than n, then n is reset to 0. Otherwise n is incre-

mented.

4. The processor at the index n is selected.
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Although simple and inefficient, this procedure ensures that a ProcessorManager will

eventually attempt to use every processor offered by the platform API. Future imple-

mentations could easily extend the allocator to enable intelligent load-balancing deci-

sions based on acquired knowledge. For example, more sophisticated ProcessorManagers

could maintain an active but low priority stream of exchanges with other close by pro-

cessors. If these messages include performance or loading data then this would allow

ProcessorManagers to make better informed decisions about the allocation of machines

long after system initialisation.
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4.5 Platform API

Machine Java APIs

Java Application

Abstract 
Internal API

Runtime (Hardware)

Platform

Internal API Implementation

This section discusses Machine
Java’s platform API and its rela-
tionship to an internal API im-
plementation.

Machine Java provides a library of abstract classes to

enable the representation of platforms in Java code.

Both static structural representations of a platform

and more dynamic styles of platform description can

be accommodated using this approach. Modelling

a platform in Java has the additional advantage that

the runtime platform API (discussed in section 3.3.5)

can be implemented directly in Java code rather than

relying on a tool-flow for generation. Machine Java

platform realisations are initially much closer to the

fully dynamic and hybrid static-dynamic approaches, as

each processor in the platform can use the same plat-

form implementation and have its behaviour deter-

mined at runtime. However this is not a requirement

of the Machine Java architecture and it would be possible for each processor to have its

own separate platform implementation on the condition that all of the ‘views’ of the

platform are consistent.

The lowest level components in Machine Java’s stack (shown in full in figure 4.1 on

page 128) address different platform-specific concerns in a system:

Platform instances are constructed using the platform API by a hardware designer or

system integrator. A platform instance describes the structure and capabilities of a

hardware architecture. Platform instances reference a specific internal API imple-

mentation that can enable Machine Java to execute on it. Platform descriptions are

covered in this section using the XYNetwork platform as a reference example. Code

defined in platform instances is not intended to interact directly with hardware.

Internal API implementations must meet the contracts of the internal API for a spe-

cific processor’s hardware architecture. An internal API implementation can be

re-used by multiple platform instances, and a heterogenous platform instance may

reference multiple different API implementations for its various processor types.

The ‘networkchi’ internal API implementation is covered in section 4.6. The inter-

nal API implementation is the only Machine Java component that should interact
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1 package mjava.core.runtime;
2

3 //The platform class describes the overall system architecture.
4 public abstract class Platform {
5 //Helpers for code on this processor:
6 public abstract Processor getThisProcessor();
7 public abstract ProcessorDriver getThisProcessorDriver();
8 public MachineDriver<?> locateMachineDriver() {...}
9 //Access to remote processors:

10 public abstract Iterable<Processor> getProcessorsForMachine(Class
<? extends Machine> type);

11

12 public abstract ProcessorManager getProcessorManager(Processor
target);

13 public abstract Processor getProcessor(int procId);
14

15 //trigger Machine Java framework startup:
16 public abstract void startProcessor(Class<? extends Start>

startMachine);
17

18 //’gateway’ to the active platform:
19 public static Platform getPlatform() {...}
20 }

Figure 4.17: An abridged version of the Platform abstract class. Instances of this class define
which internal API implementation Machine Java will use, how the application can be mapped
to the available processors, and provide the ability to startup the Machine Java framework.

directly with the underlying hardware.

Hardware is assumed to exist and all salient details have been captured by the platform

and internal API implementations. All other hardware details including but not

limited to design, manufacture, FPGA configuration, processor bootloading, and

flash programming are out of scope for Machine Java.

Machine Java’s platform API broadly follows the platform model described in section

3.3: A platform is a set of processors with defined resources and abilities to communi-

cate with other processors. The platform API is composed of just four abstract classes:

Platform, Processor, Resource, and Communication.
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4.5.1 Platform Classes

The platform class is the core of a platform description. Its specification can be seen in

figure 4.17. This is where all important functionality is described; the other platform API

classes are simple representations of their counterpart in the platform model. The active

platform for the current processor can always be obtained in framework code by using

the static Platform.getPlatform() method highlighted in figure 4.17. The platform

object provided by the getPlatform() method is only required to supply information

relevant to the current processor, and what is considered relevant is the decision of

the platform implementation. Information about the global structure of the platform

is only available if a specific implementation makes it available. Application code and

high-level framework implementations are intended to be platform independent and so

should never directly use any functionality provided by Machine Java’s platform API.

The Platform class provides three broad categories of functionality: getting internal

API implementations, working with other local processors, and startup functionality.

internal API access The most important driver that a platform instance can supply is

the machine driver for the current execution context (via locateMachineDriver

()). This facility is ultimately how non-machine framework code is able to request

drivers from the current machine, as the Machine class’s static getThisMachine()

method is internally implemented as:

1 public static Machine getThisMachine() {
2 return Platform
3 .getPlatform()
4 .locateMachineDriver()
5 .getMachine();
6 }

Platform instances can also provide access to the local processor’s driver via

getThisProcessorDriver. Processor drivers are responsible for coordinating the

creation and maintenance of execution contexts for machine drivers, and depend-

ing on the implementation the processor driver may also have responsibility for

managing low-level details such as the initialisation of the local processor, and the

multiplexing of communications drivers with available hardware resources.

local processors The platform also enables interaction with other local processors. ‘Open-

ended’ communication between processors is not supported in Machine Java, it

can only happen between machines and then only from a channel connector to a
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channel. If another machine is already known it can be communicated with via

its channels. As described in the model’s framework section (3.4), even requesting

new machines from other processors follows the same communications model: a

request is sent via an ordinary channel to the ProcessorManager of the remote

machine.

Obtaining a reference to a remote processor manager is a two stage process:

1. First a Processor object for the remote processor must be obtained. These

can be provided if the processor’s identity (represented by a Java integer) is

known which is the case if a message has ever been received from that remote

processor. If the remote processor has never been contacted before, then the

only path to obtaining a Processor object for it is via the getProcessorsForMachine

() method. This method provides a Java Iterable20 of processors that are

statically capable of hosting the machine class specified. The iterator provides

processors in some statically defined order of preference from most desirable

to least desirable. As these preferences and capabilities are statically deter-

mined, and machine oriented applications can have dynamic structures, there

is no guarantee that a processor supplied by getProcessorsForMachine()

will accept a request for a new machine. There is also no guarantee that a

‘more preferable’ processor as returned by this method will actually be better

at runtime according to any criteria. The static determinations are just the

best guesses of the compiler, platform implementation, or both.

2. Next, the Platform API enables a ProcessorManager machine reference to be

retrieved for a given processor. This is done via the getProcessorManager()

platform method, which is also how the current processor’s ProcessorMan-

ager is obtained.

The definition of ‘locality’ for other processors is the concern of the platform in-

stance, so another processor is considered local if under any circumstances the

platform offers it for use.

framework startup Finally, the platform instance provides the ‘entry point’ to the Ma-

chine Java framework. The startProcessor() method is invoked by the Start.

20The Iterable<T> interface provide access to an Iterator<T> and enables the implementing class to
be used in Java’s for (Object x : iterableAggregate) statement.
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1 package mjava.core.systems;
2

3 public abstract class Processor {
4

5 public abstract String getName();
6 public abstract String shortDescription();
7

8 public abstract int getID();
9

10 //Only works if:
11 //Platform.getPlatform().getThisProcessor().equals(this)
12 public abstract List<? extends Communication>

getCommunicationsResources();
13 public abstract int hasResource(Resource query);
14 }

Figure 4.18: An abridged version of the Processor abstract class.

start() static method which is itself called by the application’s Java entry point.

startProcessor() is responsible for the creation of the local processor driver and

this will then create the ProcessorManager for the current processor. Implemen-

tations that do not use Java’s public static void main() method as an entry

point must ensure by other means that startProcessor() is invoked, such as in

the platform class’ static initialiser.

As processors can be identified by Java integer, this implies that each processor is

limited to around two billion local processors with which it can communicate. In the

unlikely event that this particular construction of the Machine Abstract Architecture

survives long enough for only two billion local processors to be stifling, contemporary

systems engineers may consider extending the processor identifier to a long.

4.5.2 Processors

Processor classes provide very little functionality to a system, but their general contract

can be seen in figure 4.18.

A processor object for the current processor is able to enumerate the available com-

munications resources but platform implementations do not have to be able to enumer-

ate the communications resources of remote processors. In the same way, only the cur-

rent processor object must be able to provide sensible responses to the hasResource()
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method. Processor objects for remote processors can throw exceptions for these meth-

ods or return an empty value. The hasResource() method is used to determine the

number of a particular resources the processor has regardless of their status as used or

available. Processor drivers can use this to validate the construction of additional ma-

chine that require resources. The getName() and shortDescription() are to facilitate

better debugging and pretty printing, but serve no functional purpose. Application and

framework code must not depend on the output of these methods.

4.5.3 Resources

Resource classes are purely symbolic; they define no members. Subclasses of Resource

are created for each type of resource that can exist and each instance represents a

particular instance of an exclusively allocatable runtime resource.

Differences between processors can be modelled using this resources abstraction.

A machine that can benefit from execution on a ‘fast’ processor could require a ‘fast

processor’ resource that is only present (and possibly in limited quantities) on the most

capable platform processors. Attempts to allocate this machine to a slow processor

would then fail.

4.5.4 Communications

The Communication abstract class extends Resource and allows any communications

device that can reach another processor to be represented. Its functionality is also very

limited:

1 public abstract class Communication extends Resource {
2 public abstract boolean isProcessorReachable(Processor p);
3 }

As with the methods defined in Processor, the isProcessorReachable() method is

only required to operate as expected if the communication resource is owned by the cur-

rent processor. This method enables communications driver implementations to deter-

mine which local communications resource is appropriate to use to send data a remote

processor. Machine Java’s platform API does not attempt to capture the relative value

of communications resources.
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4.5.5 The XYNetwork Platform

To evaluate the Machine Java framework it is necessary to consider a variety of hard-

ware configurations. XYNetwork is a flexible platform implementation that can enable

Machine Java applications to execute on any homogeneous, two-dimensional, regular

rectangular mesh of processors, including real hardware meshes and simulated meshes

in a JVM. This platform is also adequate for the exploitation of symmetric multipro-

cessor hardware, such as standard PCs, where it is less important to account for the

physical arrangement of the processors.

The XYNetwork platform is intended to be the simplest possible platform that can

support a nearly unbounded number of processors. The number of processors is only

limited by its use of Java integers to represent the absolute X and Y coordinates of each

processor in the mesh. Integers and absolute addresses are used for purely practical rea-

sons. The XYNetwork could be extended to relative addressing with arbitrary precision

integers21 without invalidating its theory of operation. In this construction all proces-

sors would consider themselves to be at coordinates (0, 0) which would require another

mechanism to determine if the current processor is also the platform’s ‘first’ processor.

This platform design is not sophisticated and makes a number of simplifying as-

sumptions about supported hardware targets:

• All processors are identical in all ways except their network coordinates. This

assumption has two important implications:

– All processors have access to the same executable code. It is immaterial

whether the code is replicated for each processor or somehow shared between

them.

– All processors have the same resources.

• Every processor has a single communications resource to represent the mesh net-

work, and all other processors are reachable via this resource.

• The executable code contains implementations of all possible machine types in the

application code; any processor can be used to host any machine type.

21Such as Java’s java.math.BigInteger class.
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• The proximity of two processors has some impact on the performance of com-

munications between them, and possibly some impact on the communications

performance of other unrelated processors. That is, it is assumed to be preferable

for communicating processors to be close to one another.

• A practical assumption (but theoretically unimportant) is that the hardware is

supported by the ‘networkchi’ implementation of Machine Java’s internal APIs.

This implementation is covered in section 4.6.

As the XYPlatform can only represent homogeneous systems, resource constraints

are not considered and each processor is modelled as having access to one of every possi-

ble resource; its hasResource() method returns 1 regardless of the supplied parameter.

Additionally, the XYPlatform is unable to make use of any facts about the current appli-

cation’s structure; there is no way to use compiler or programmer supplied hints about

the best runtime allocation of machines. This means that the platform’s response to the

getProcessorsForMachine() method can only be the result of a processor-proximity

directed heuristic as processors can only be differentiated by their location in the mesh.

4.5.5.1 Allocating Machines to Processors

Altogether these assumptions lead to a short implementation: There is only one neces-

sary processor class which represents a processor at a specific set of coordinates. This

processor’s (XYProcessor) list of communications resources is a single item: XYNetworkInterface

, and this resource’s isProcessorReachable() method returns true for all other pro-

cessors. The XYNetworkPlatform class itself constructs a processor driver from the ‘net-

workchi’ implementation during the startProcessor() method and this driver even-

tually provides all runtime behaviour for the current processor.

So far this platform definition could be applied to any homogeneous, fully-connected

network topology and not just cartesian meshes: only the network address stored in

the processor representation would need to be altered. The implementation of the

getProcessorsForMachine() method is what binds a platform to a specific topology.

A platform’s getProcessorsForMachine() could only be topology-agnostic if a hu-

man or compiler provided it with a static set of processors that are referred to in every

instance; it cannot create a new Processor instance without some understanding of the

hardware’s addressing scheme. The ability of getProcessorsForMachine() to order

181



Chapter 4: Machine Java

the returned processors also depends on an understanding of the nature of the hard-

ware’s communications interconnect. In general it makes little sense to have a topology

agnostic platform implementation as platforms are intended to represent the execution

substrate meaningfully.

The most effective getProcessorsForMachine() implementations will certainly take

advantage of application specific knowledge. However, optimising the allocation of ma-

chines (representing units of work) between processors depends on both the require-

ments of the machine types and on the system-specific non-functional requirements.

Examples of two different machine allocation strategies are shown in figures 4.19 and

4.20.

Within the constraints imposed by XYPlatform’s assumptions there are very limited

options for the implementation of getProcessorsForMachine(). It cannot be appli-

cation specific and it must be the same algorithm on every processor. Non-functional

requirements and runtime variability cannot be addressed by such a simple allocation

strategy. Previous work has established that toolchain-based approaches (such as the

Machine Java framework in this case) are well suited to deal with the challenges of

runtime variability[76].

The current processor’s ProcessorManager always has ultimate discretion about

where a new machine will be allocated but as it is platform independent and cannot

compare processors according to any static criteria. The ProcessorManager can only de-

cide a processor’s suitability through active communication with the remote processor

manager located on it.
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Figure 4.19: The allocation of a six-stage d-type machine pipeline where (x + 1, y) is chosen if
the requesting machine is also a d. Router usage assumes simple Y then X routing.
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Figure 4.20: The allocation of a six-stage d-type machine pipeline where the next processor is a
non-trivial function of current processor coordinates, the acceptable folded pipeline dimensions,
and the coordinates of d0. Although the end of the pipeline may be closer to the start, this may
not improve the desired non-functional characteristics.
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4.6 Implementation in Standard Java

Fundamentally, the Machine Java framework is a standard Java 7 application and for

this reason the majority of its construction is uninteresting.

However, there are a number of non-obvious techniques which enable Machine Java’s

non-standard behaviour to be realised in a standard JVM. These include:

• How the framework starts.

• How machine instances are identified.

• How machines are created.

• How machine isolation is guaranteed.

• How a channel object is able to communicate with a remote machine.

This reference implementation of Machine Java only has one implementation of its

internal APIs and this ‘networkchi’ driver package depends heavily on the Network-Chi

compiler to support its operation. Network-Chi and its construction is discussed more

thoroughly in section 4.7.

4.6.1 Starting the Machine Java Framework

When executing in a JVM, a Machine Java application begins its execution from the

public static void main() method in the class specified to the JVM as the applica-

tion’s entry point. From this point the following sequence happens:

1. Application code invokes Start.start(...) with the class of the application’s

start machine.

2. The Start class requests the active platform and instructs it to ‘startup’ the plat-

form processor that is executing the code: Platform.getPlatform().startProcessor

(startClass);

3. The platform instance creates a new processor driver, and instructs it to begin

operation with the start machine specified by the application’s entry point.

4. The processor driver starts by creating a ‘timing nexus’ to manage processor lo-

cal timed event sources, and a ‘communications nexus’ which multiplexes all
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machine-oriented communications too and from Network-Chi’s mesh network-

ing abstraction. On construction the communications nexus registers an interrupt

handler with the network-API enabling the Machine Java framework to receive

asynchronous notifications for new received network messages.

5. A new ProcessorManager machine is created for the local processor.

6. If the processor driver is executing on the platform’s first processor then it will

also create an instance of the application’s start machine, via the local Processor-

Manager:

1 if (Network.amOrigin()) {
2 manager.newProcessorLocalMachine(startMachineType);
3 }

The Network class is Network-Chi’s mesh networking API discussed in section

4.7.3.2. Network.amOrigin() returns true if the current node’s coordinates are

(0, 0), and this runtime defines the origin node to be the first processor of the

platform too.

7. As amOrigin() is the first network API used, Network-Chi initialises the network

runtime:

(a) If the framework has not yet been initialised then this means it must be the

first time this code has been invoked and therefore this code is executing on

the notional origin node. The following initialisation begins:

(b) For each processor in Network-Chi’s configured mesh network size, a new

thread is created.

(c) Each new thread begins executing the original main() method from step

1. The entry point is determined by walking the current call-stack to find

the first instance of a static main method. Reflection is used to invoke this

method.

(d) Another new thread is created for each node to receive network messages via

UDP.

(e) The initialisation of the ‘network’ is now complete.

8. The processor driver now enters its event loop. The startup events for the Proces-

sorManager and the application’s start machine will be in the event queue already.
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9. The timing nexus is allowed an opportunity to consider if anything will happen

soon.

10. The next event is fetched from the processor’s priority queue if there is one. If

there is, this is serviced in the context of the machine that issued the event.

11. The loop begins again from step 9.

4.6.2 Machine Instance Identification

Internally, Machine Java uses a MachineIdentifier class to uniquely identify all ma-

chines at runtime. Application code is never intended to use MachineIdentifier ob-

jects; application code should use proper machine references (Java references to machine

objects). The MachineIdentifier class is a triple of the platform-defined processor

identification for the processor that hosts the machine, a Java Class object representing

the machine’s type, and finally a long which represents the machine’s ‘serial number’

on its host machine. The information contained in a MachineIdentifier is sufficient to

construct new machine objects of the correct class that can reference the active instance

of the machine.

4.6.3 Machine Creation and Channel Addressing

The creation of a new active machine is an intricate processes as it also determines the

‘addresses’ of all the channels in the new machine instance. Starting from the point

where the processor’s local ProcessorManager has made the decision to construct a

new active machine, the following happens:

1. The ProcessorManager requests the local processor driver creates a new active

machine:

1 T m = Platform.getPlatform()
2 .getThisProcessorDriver()
3 .constructActiveMachine(type);

2. The processor driver creates a new identity for the new machine, and then creates

a new ActiveMachineDriver instance. This machine driver represents the execu-

tion context of the new machine and in alternative implementations could contain

its own thread and its own event queue.
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3. The processor driver then switches into the context of the new machine which

does not yet have an object.

4. The processor driver then uses Network-Chi’s EssentialReflection library to

create a new instance of the machine type:

public static <T extends Machine> T createMachineDynamic(Class<T> mClass

). On a JVM this method uses standard Java reflection to perform a number of

basic checks that the machine type adheres to machine Java’s rules (see section

4.3.3). An instance of the machine class is then created using its nullary construc-

tor.

5. The constructor defined in the Machine superclass begins to execute:

(a) The new machine requests its driver from the platform:

_driver = Platform.getPlatform().locateMachineDriver();

(b) The new machine provides the Machine Java framework with an early refer-

ence to its object:

_driver.machineObjectHasArrived(this, new InternalExecutor());

This serves two purposes: code used by the machine once its constructor

begins to execute may invoke public static Machine getThisMachine()

which depends on the framework having a reference to the new machine. The

second purpose is to supply the machine’s driver with a runnable that can

invoke the machine’s protected internal() method. This method would

not be visible to framework code as the application’s internal() method

will be declared in another package. This avoids the requirement on another

use of Java reflection which is particularly expensive to implement.

6. The machine class’ constructor now begins to execute:

(a) First any initialised fields are populated by executing their initialiser. All

channels defined by the machine are declared final so they must have an

initialiser at this stage or the explicit constructor (the next step) must initialise

them. When a channel is constructed:

i. The constructor in EventSource begins to execute as this is the root an-

cestor of all event sources.
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ii. The owner machine is recorded in the EventSource:

public final Machine owner = Machine.getThisMachine();

This is why it was critical for Machine’s constructor to provide the frame-

work with a reference to the machine object so early on.

iii. The EventSource constructor gets an event manager implementation

from the owner machine. The event manager implementation is sub-

sequently used to supply intermachine event source identifiers

(IESIdentifier) to the channel’s implementation.

iv. The channel’s specific constructor begins to execute.

v. The channel requests a new IESIdentifier to uniquely identify this

channel instance, enabling remote machines to communicate with it. The

important detail is that the IESIdentifiers are well defined and are

issued in sequence. For a machine being constructed with a particular

MachineIdentifier the sequence of IESIdentifiers issued will always

be the same.

(b) The application’s defined constructor in the machine class (if there is one)

now executes.

(c) All channels have now been initialised, along with any other application spe-

cific initialisation. As Java has a well-defined order in which class fields

are initialised[74, §12.5], the IESIdentifiers issued to each channel are also

well-defined.

(d) The application defined constructor now finishes and control returns to the

processor driver.

7. The processor driver reverts the execution context and adds the new machine’s

startup event onto the processor’s event queue.

8. A reference to the new machine object is obtained from the new machine’s driver

and returned to the ProcessorManager.
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4.6.4 Machine Isolation and Communication

Machine isolation is guaranteed22 as machines never have true references to one another,

even if they are executing on the same processor. When a machine has a reference to

another machine, the reference is a valid and fully constructed instance of the correct

machine class but it is never the same object as the original object constructed when the

machine was first created on its host processor.

The machine objects used as references are shadow machines. These have the same

class, have been initialised identically but use a ShadowMachineDriver rather than the

ActiveMachineDriver described previously. ShadowMachineDrivers do not execute

their internal() method and do not pass events through to the processor’s event

queue. During the initialisation of a shadow machine the execution context masquer-

ades as the original machine that will be referenced. The IESIdentifiers supplied

to the channel instances are therefore identical to the original active machine’s and are

used by the channel implementations to create valid connector instances. Code that re-

quests drivers from the framework during a shadow machine’s initialisation will receive

inert but compatible driver objects that do not use any resources. Resource assertions

(REQUIRE_RESOURCE and ENSURE_SINGLETON) are ignored for shadow machines.

This isolation mechanism is extremely robust as it cannot even be broken by reflec-

tion: application code simply does not have a reference to the correct object to reflect

upon. Circumventing this isolation is only possible if the active machine is present

on the same processor as the attempt to break isolation, and the process is extremely

convoluted requiring many layers of Machine Java’s framework to be painstakingly tra-

versed. Intermachine isolation is not intended to be secure against a determined attack

on a JVM, but it does prevent even sophisticated attempts to ’work around’ the frame-

work’s restrictions. Where security is a true concern, disabling reflection for application

code via Java’s security manager mechanism would be sufficient to guarantee machine

isolation.

22except for abuse of static fields, which cannot easily be restricted in standard Java
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4.7 Implementation on Bare-Metal Hardware

Machine Java APIs

Java Application

Abstract 
Internal APIPlatform

Runtime (Hardware)

Internal API Implementation

This section addresses the com-
pilation of Machine Java ap-
plications to platforms without
standard Java or operating sys-
tems.

In this chapter the MAA application model has

been applied to the Java programming language.

This yields an expressive and scalable programming

framework suitable for massive multiprocessing, and

in particular multiprocessors without an expecta-

tion of shared memory between processing elements.

Within the bounds of a system the machine oriented

model also avoids a number assumptions on poten-

tially expensive runtime capabilities, including:

preemptive multitasking as machines are internally

non-preemptive and intermachine relation-

ships are unknowable within an application;

The application model is tolerant of preemptive

and non-preemptive mappings of machines to

processors as machines do not inherently supply timing guarantees.

network implementation is abstracted by channels, so no particular protocol (such as

TCP/IP) or networking strategy is assumed by an application.

memory protection is a static property of a Java application, so no additional operating

system or hardware memory protection is required by the machine model.

threading is not provided to applications; concurrency is facilitated via machines. This

is one of the many divergences from standard Java.

filesystems (and graphical user interfaces, and other input/output interfaces) are not

assumed by the Machine Java framework.

The freedom from assumptions only applies within the context of a system. At

the boundaries of a system, where the environment or other systems will be interacted

with, then use of some of these facilities (such as networking or IO) is inevitable. The

overall principle is that hardware assumptions are only introduced by application code,

and these assumptions may be spatially confined to the machine that makes them. For
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example, the BasicSender machine on page 136 sends a single integer value to a single-

buffered channel in another singleton machine. A sufficiently sophisticated implemen-

tation could provide the same semantics in silicon by latching a constant into a register.

The application model does not imply any other capabilities or behaviour for this ma-

chine. However, there is a wide gulf between the smallest possible implementation of

a machine’s written semantics (in program code or transistors), and what is feasible to

automatically implement. A machine’s ultimate implementation is not guaranteed to be

compact by the model, it is just not guaranteed to be large either.

The implementation of Machine Java in a resource constrained context presents a

substantial challenge:

• Java is a substantially complex programming language with a large runtime.

• Versions of Java aimed at embedded uses-cases are still too large or impose unac-

ceptable caveats on the language, such as limited libraries or incompatible defini-

tions of standard types.

• Machine Java is highly dynamic: machine objects are created indirectly without

the use of the new operator, and objects are transparently communicated between

processors of potentially different architectures.

• Machine Java does not necessarily require a number of Java features including

threading, object monitors and concurrency libraries. In addition applications are

unlikely to use most of Java’s libraries, especially those that do not make sense in

a resource constrained context. It is desirable to avoid the memory cost associated

with unused or useless Java libraries.

Ordinarily, standard Java is compiled to an extremely compact and high-level byte-

code but this requires a Java Virtual Machine[122] (JVM) and a large set of libraries23,

together often called a Java Runtime Environment (JRE), for execution. However, the

size of the standard Java libraries is prohibitive in the context of resource constrained

processors.

23With Java 1.7.0_79-b15 on MacOS 10.10.4 the rt.jar for the runtime is 62MiB.
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Section Overview

To address these challenges, this section discusses a strategy for translating the Java pro-

gramming language, and in particular the subset required by Machine Java applications,

to a form that is suitable for execution on resource limited embedded systems such as

limited processors in Networks-on-Chip, softcore processors in FPGAs, and microcon-

trollers. The translation strategy prioritises the minimisation of runtime memory usage,

generated code size, and suitability for a wide range of limited architectures over other

desirable goals such as execution speed and strict adherence to the Java standard.

The translation procedure, or Concrete Hardware Implementation24 (Chi) of a software

application first converts the application’s compiled Java class files to a self-contained in-

termediate representation conducive to optimisation and refactoring. The intermediate

format is then serialised into the C programming language which is then compiled to

target-specific machine code via any C99[97] compliant compiler. This section covers the

techniques for analysing whole Java applications (section 4.7.1.2), translating Java meth-

ods (section 4.7.1.4) and building a stand-alone application(section 4.7.2) with the same

functional behaviour as the original Java. Through the use of aggressive code pruning

and a very compact runtime memory organisation, minimal Java applications can be

translated to standalone, bare-metal binaries that require less than 32KiB of program

code and less than 8KiB of runtime heap.

Java’s built-in networking abstractions (provided in java.net) are effective for IPC

via a local area network or the internet, but are inappropriate for communications be-

tween processors in an on-chip network. Rather than expose low-level hardware details

to Java applications, a simplified and compiler assisted networking API is provided to

applications. The Network API (section 4.7.3) is a mesh based abstraction for network

communication, allowing the programmer to send Java objects to other nodes without

consideration for the underlying hardware topology or protocols. Owing to the tight

integration of compiler and networking API, the combination is referred to as Network-

Chi.

24The name reflects the concretisation of the Java input. The output binary does not contain or depend
on a JVM and does not require an operating system for embedded targets.
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4.7.1 Compilation Strategy

The general strategy for implementation of Java applications on embedded systems is

the Ahead-of-Time (AOT) compilation and optimisation of Java bytecode to compilable

C, and then to machine code via an existing C compiler for the target. This is in contrast

to the Just-in-Time (JIT) compilation at runtime favoured by modern JVMs. The code

generated by Chi does not depend on any external libraries or the presence of an oper-

ating system. To achieve this goal, three main tactics are applied to reduce the overhead

of the Java environment. These are:

• Only including methods, objects and Java functionality that are used by the appli-

cation under compilation. (Section 4.7.1.2)

• Identifying and re-implementing commonly used Java libraries that cause runaway

inclusion of further classes. (Section 4.7.1.3)

• Abstraction of fundamental target system characteristics so that the code-generator

can be reused for different processor architectures.

The compiled application behaves exactly as it would have done inside a JVM, but

without any virtualisation or access to the JRE’s libraries. This is accomplished via AOT

linking of required class files rather than the standard demand-loading of referenced

classes.

4.7.1.1 Machine Java to Bare-Metal Workflow

A high-level overview of the workflow necessary to execute a Machine Java application

on a network is shown in figure 4.21 with the main steps from application to hardware

being:

1. Java compilation The application is compiled with any compliant Java 7 com-

piler25 using the Network-Chi libraries packaged into the same Java .jar file as

the extended compiler. As this stage of development is the same as building any

Java application with external libraries, developers can retain their familiar IDEs

and design tools. The output of this stage is a collection of Java .class files.

25Java 8 compilers should also work acceptably as Java 8 did not introduce any modifications to the JVM.
The new features in the Java 8 language (such as functional interfaces) should also work correctly in the
workflow described, but as this is not important to the thesis it has not been verified.
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Figure 4.21: The workflow to build a Machine Java application using Network-Chi: The stan-
dard Java compiler is used to create .class files for the application. The compiler then explores
the application to find used classes, generates standard C, and automatically compiles the C using
the appropriate downstream compiler.
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2. Chi is executed on the class files The Chi tool is invoked on the .class files,

instructed about the target architecture, and what level of Java safety to retain in

the output. Considerable reductions in binary size and improvements in runtime

performance can be achieved by not including Java’s runtime checks. However

the safety of the resulting binary will be compromised if the application is not

functionally correct, or if the application is structured to depend on an exception

(such as a ArrayIndexOutOfBoundsException) being thrown by the Java runtime.

The main internal steps of the Chi compiler are:

(a) Application building An internal representation of the whole input applica-

tion is built. The internal model of the application only includes reachable

code and used classes. Each method used in the application is converted

from JVM byte code instructions into an internal single-assignment represen-

tation that is more conducive to transformation and code generation. This

procedure is considered in more detail in section 4.7.1.2.

(b) Intermediate code generation The internal application is serialised into a

subset of standard C99[97] code that implements the original semantics of

the input application but without a dependancy on a JVM. This code can be

compiled with any C99 compiler, (including some with only partial support,

such as GCC[67]) ensuring wide compatibility across embedded processors

and a high degree of optimisation in the final binary code. A number of com-

mercial and research tools [14, 7, 212] also use C as an intermediate language

for Java compilation because of these compelling advantages.

(c) Target binary building The appropriate build tools for the C code are in-

voked automatically. Linker scripts are automatically generated to ensure

code and data are placed into the correct NoC memory areas, automatic gen-

eration allows for Chi to rearrange memory sections depending on configured

stack and heap sizes.

3. The binary is prepared and bootloaded The build tools will have emitted a binary

in a format that depends on both the platform and the target compiler, this must

be converted into a format suitable for use by the NoC bootloader and then sent

to the NoC for execution. The precise nature of this process is out of scope for this

paper, as is building the NoC itself.
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As Chi must support multiple different target architectures the differences between

these platforms are abstracted by a ComputationalModel class. The model describes to

the code generator the differentiating characteristics of the target platform including na-

tive data types, endianness, alignments, available memory and peripherals. The model

also describes the capabilities of the target such as support for floating point arithmetic,

recursion and dynamic method dispatch.

These models are used during the application building procedure to verify that the

input application is compatible with the capabilities of the target architecture. For exam-

ple, if the model describes an architecture that would prefer to only statically dispatch

method invocations then the application building procedure will issue an error if the

application under compilation requires dynamic dispatch to be behaviourally consistent

with standard Java.

4.7.1.2 Application Building

Application building is the first stage of the Chi translation procedure where standard

Java .class files are used to build a complete internal representation of the user’s

application in memory. This internal representation includes all code that is reachable

from the entry point of the user’s application, including used code in the standard Java

libraries if necessary.

The transformation process uses compiled Java classes to avoid the complexity asso-

ciated with parsing Java source code and to take advantage of the sophisticated verifica-

tion and optimisation that compliant Java compilers perform. Additionally, a consider-

able number of Java’s language features are handled in the source compilation and are

no longer present in the Java class files. Some of these features include: class nesting,

generics, autoboxing, monitor handling for synchronized methods, and multidimen-

tional array accesses.

The Java class file format[122] is very stable and has been changed far fewer times

than the Java programming language itself. The Network-Chi tooling uses the Apache

Byte Code Engineering Library[10] (BCEL) to access and interpret the necessary Java class

files.

The purpose of application building is to aggregate enough information about the

methods and classes used such that subsequent translation steps do not have to refer

back to the class files. Application building gathers the following information about a
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Figure 4.22: The procedure for exploring a Java application starting with only it’s entry point.
Classes are retrieved on-demand using the same loading mechanism as the application would use
at runtime.
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Java application:

• The entry point of the application.

• Every method callable by the application in a form called an Itinerary (see section

4.7.1.4). Itineraries describe the list of actions a method performs when invoked.

• Every class initialiser method (<clinit>) present from all classes used by the ap-

plication. Class initialiser methods are used by Java to initialise default values for

class static fields.

• The graph of all Java classes used by the application. This type graph considers

interfaces to be superclasses of their implementations.

• The set of callable native methods. These cannot be automatically translated so

subsequent code-generation will emit a warning and produce compatible stub

code to allow compilation to continue.

The application building procedure is an iterative process that can be seen in Figure

4.22. This procedure is essentially a variant of Bacon’s Rapid Type Analysis[21] algo-

rithm for analysis of whole applications in statically typed languages. The primary,

although minor, difference is that Chi does not require an enumerable Call Hierarchy

Graph (CHG) nor a Program Virtual-call Graph (PVG) as these are produced during

the exploration of the input application. Rather than attempt to enumerate all classes

and methods and then prune the unused ones from the system, the internal applica-

tion model is built by an explorative process of repeatedly discovering new used types

and then considering if virtually dispatched methods now have a new choice of body

for execution because of these discoveries. This has two main advantages: Firstly that

only classes actually used by the application are incorporated into the model which

minimises application translation times. Secondly, the discovery procedure is able to

use the running JVM’s own built-in class loaders. Using the JVM’s class loaders to

lookup classes and their bytecode allows the use of prepackaged and networked class

repositories in the input application.

The drawback of this process is that it cannot work on applications where classes

are used that are never referenced in the code itself. This can happen in two main

ways: First, if a native method declares it returns an object of some type T, it is per-

mitted to return any subclass of T and this subclass may never have been referenced
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in any code reachable by the user’s application. Secondly this situation arises if an

ObjectInputStream26 is used to read in a serialised object. The deserialized object

could be of any class whatsoever, including ones never referenced by the application.

Ordinary JVMs would attempt to lookup the class of the serialised object at runtime but

this is not an option for Chi translated Java. However, these are not significant draw-

backs in context as whole machine-oriented applications (or consistent partitions) are

compiled at once. This means that an unknown object type could never be received

via a channel as a machine under compilation must have sent it. In addition, general

purpose Java serialisation is not supported and Java native methods are not compil-

able using this technique, so are not able to return unexpected, unresolvable types at

runtime.

4.7.1.3 Replacement Classes and Methods

Method calls within an application to even a seemingly innocuous library method such

as System.out.println("Hello World!") causes a vast number of classes27 to be-

come required due to transitive dependencies. This runaway in class dependencies is

addressed by a framework for replacing classes and methods. Importantly, replacement

classes and methods are completely transparent to the input Java application.

The active ComputationalModel class defines which classes and methods need to

have alternative implementations in order for Java to target their platform. All targets

are assumed to have both java.lang.Object (the eventual ancestor of all classes) and

java.lang.Class replaced.

The standard implementations of Object and Class contain multiple native meth-

ods and where appropriate implementations of these are provided. Most functionality

provided by Class is not supported in Chi, so the replaced methods are just minimal

stubs. Where a feature is supported but the implementation is not expressible in stan-

dard Java the replacement method is annotated with @ChiNative to indicate that the

code generator must provide the functionality itself rather than use the translated the

body of the method. The method java.lang.Object.hashCode() is an example of

such an annotated method. Using a new annotation (@ChiNative) rather than Java’s

26Java’s deserialisation helper stream.
27401 classes loaded: as determined by “java -verbose mjava.tools.chi.tests.HelloWorld | grep
Loaded | wc -l” on Java 1.7.0_79-b15 on MacOS 10.10.4

199



Chapter 4: Machine Java

native modifier allows a standard Java-compatible method body to be provided too.

This is especially useful for functionality provided only by Network-Chi (such as the

Network API, see section 4.7.3) which can have a meaningful ersatz implementation in

a JVM.

Other classes in the set of default replacements include String, System, and PrintStream

. The implementation of String in Java has an extraordinary number of dependencies

rendering it far too large for small embedded systems. A considerably simpler (although

without complete unicode support) replacement implementation is applied by default.

In total only eighteen classes are in the default replacement set, of which seven are to

replace the standard libraries boxed primitives. The other replacements only have mi-

nor changes to remove further library dependencies (such as on system properties or

security).

4.7.1.4 Itinerary Generation

Within the Network-Chi tool method bodies are represented as objects called itineraries

which describe a sequence of actions (derived from the original Java bytecodes) upon

objects and registers. The itinerary representation of methods is somewhat different

to the JVM model of computation. Itineraries do not use an operand stack to pass

information between actions, and there is no notion of a program counter. Where a JVM

instruction would receive its operands on the operand stack, the corresponding action in

an itinerary will expect its operands in specific registers (of which there are an unlimited

number), and it will place any result into another specific register. Likewise Branch

actions do not have program counter addresses of their branch targets but symbolic

references to the action that would execute next depending on the situation.

The procedure used to generate Chi itineraries from a Java method is illustrated in

Figure 4.23.

Network-Chi uses 29 different action classes to represent the 201 valid JVM instruc-

tions. The reason for this reduction is that whole categories of JVM instructions become

single actions (almost all arithmetic instructions are implemented by a TwoOperandArithmetic

action) and all stack manipulation instructions are removed during itinerary building

as there is no runtime operand stack in a Chi compiled application.

All actions in an itinerary contain information such as the exception handlers that

will catch an exception they might happen to throw at runtime, and the line number in
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Figure 4.23: The procedure for constructing a high-level ‘itinerary’ of actions from a Java method
body. This procedure converts the stack-machine oriented Java bytecode into a more manageable
single-assignment representation.
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the original Java source code that they were derived from.

Itinerary generation is used to gather the following information about a method:

• An ordered list of actions performed by the method.

• A list of input registers this itinerary will use to receive its arguments.

• An output register if the method is non-void to return the result.

• A set of all temporary registers used by the actions of this itinerary.

An example of the JVM bytecode for a simple method (BasicSender.internal()

from figure 4.3), and its equivalent form as an itinerary action list can be seen in figure

4.24. The notation used in figure 4.24 does not capture all of the relevant details and

is only meant to be indicative of an action list’s paradigm; the text representation of an

action list is not used within Chi and is only intended for human inspection.

During itinerary building a notional operand stack and local variable table is main-

tained in a structure called the Data State. The data state keeps a mapping from the

JVM operand stack and local variables to the registers which now represent the stor-

age in the itinerary. JVM instructions that would modify either local variables or the

operand stack in fact make modifications to the data state instead. When an action is

generated the data state is checked to ensure that it is consistent with expectations and

when the control-flow analysis leads the itinerary generation procedure back to an in-

struction already translated, the current data state is reconciled with how the state was

at the time when the instruction was first translated. Both local variable tables are com-

pared and incompatible variables are marked as unreadable then both operand stacks

are compared for consistency. If the stacks contain incompatible types in any identical

positions or are different lengths then the bytecode does not meet JVM specifications

and translation is aborted. This procedure is very similar to bytecode verification from

the JVM specification[122].

Exception handlers appear to be unreachable as there is no branching control flow

that is able to reach them in the bytecode, therefore they are explicitly translated to

actions. If the active computational model has all exceptions disabled then exception

handlers are indeed unreachable and they are removed as dead code.
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1 protected void internal();
2 Code:
3 0: aload_0
4 1: ldc #25//class examples/helloworld/BasicReceiver

5 3: invokevirtual #27//Method newMachine:(Ljava/lang/Class;)Lmjava/core/Machine;

6 6: checkcast #25//class examples/helloworld/BasicReceiver

7 9: astore_1
8 10: aload_1
9 11: getfield #31//Field examples/helloworld/BasicReceiver.numbers:Lmjava/core/tpif/Slot;

10 14: sipush 4919
11 17: invokestatic #35//Method java/lang/Integer.valueOf:(I)Ljava/lang/Integer;

12 20: invokevirtual #41//Method mjava/core/tpif/Slot.send:(Ljava/lang/Object;)V

13 23: return

JVM bytecode for BasicSender.internal()

1 examples.helloworld.BasicSender: SRR0 <= this
2 SRR1 <= examples.helloworld.BasicReceiver
3 SRR2 <= Invoke Lexamples/helloworld/BasicSender;.newMachine(Lmjava/

tools/chi/replacements/SimplerClass;)Lmjava/core/Machine; on object
SRR0

4 Check SRR2 instanceof Lexamples/helloworld/BasicReceiver;
5 examples.helloworld.BasicReceiver: rx <= SRR2
6 examples.helloworld.BasicReceiver: SRR3 <= rx
7 SRR4 <= ((examples.helloworld.BasicReceiver)SRR3).numbers
8 SRR5 <= 4919
9 SRR6 <= Invoke static Lmjava/tools/chi/replacements/SimplerInteger;.

valueOf(I)Lmjava/tools/chi/replacements/SimplerInteger;
10 Invoke Lmjava/core/tpif/Slot;.send(Lmjava/tools/chi/replacements/

SimplerObject;)V on object SRR4
11 Return(void)

A Network-Chi itinerary for BasicSender.internal()

Figure 4.24: The JVM bytecode for the BasicSender.internal() method seen in figure 4.3,
and the itinerary that Chi generates for it. The eventual C code for this method is not included
as it is over 200 lines long.
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4.7.2 Language Runtime

Network-Chi has two main runtime components: the language runtime and the network

runtime. This section discusses the language runtime which encompasses the general

execution strategy in C, the runtime memory representation of objects, memory manage-

ment and the entry point to the application. The network runtime addresses the startup

of each processor and configuration of necessary hardware, and the implementation of

the Network library. The network runtime is covered in section 4.7.3.

4.7.2.1 In-Memory Representations

The runtime architecture of a Chi application is extremely simple compared to a stan-

dard JVM. All objects and arrays are stored in memory28 and code generators are free

to chose how to represent temporary registers. The internal arrangement of objects in

memory is defined by the Concrete Binary Object (CBO) format. This format is used for

all code generators and target architectures as the specific sizes of fields is dependent on

the active computational model. The model provides helpers for encoding and decoding

primitive types for its specific architecture. The in-memory layout of objects uses only

one integer field (of a width defined by the active computational model) to represent

the runtime type of the object, and then each of the object’s fields, in alphabetical order

grouped by the class they were declared in ancestor-first order (ie: java.lang.Object’s

fields first). If the target architecture requires data alignment then padding fields are

inserted into the CBO before each unaligned field. The CBO’s main purpose is to al-

low internal compilation stages to manipulate the runtime representation of an object

while maintaining application consistency, and also to allow compilation stages to create

architecture-dependent object ‘literals’ in a flat binary representation. This can be used

to prepopulate memory regions with valid objects without runtime code to allocate or

construct the objects.

Arrays have one extra integer of overhead which is the number of items the array

can store. This is placed after the type identifier and before the array data. It is safe for

an object to omit an ‘isArray’ field because array manipulation operations can only be

used in Java on an array typed variable. Any time there is a narrowing cast of a reference

in Java, such as an Object reference to a variable of type Object[] the compiler emits a

28They must have an address in memory, rather than have their value stored in registers.
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checkcast instruction that would throw an exception if the cast is found to be invalid.

Because of these guards it is always safe to assume that a reference points to the correct

type of object, even in the case of arrays.

4.7.2.2 C-Language Generation Strategy

The C99[97] code generation strategy is to map itineraries to C functions, registers in

itineraries are mapped to function-local variables of the correct type and object refer-

ences are mapped to the architecture’s native pointer type. For each class used in the

system a struct is defined according to the corresponding concrete binary object lay-

out. Each class that has static fields is also generated a ‘class instance’ struct too, and

for every class and array type used the integer type identifier defined in a header file.

The itinerary action structure maps very easily onto C. Each action that is an excep-

tion handler or could be the target of a branch is assigned a C label and branch actions

generate optionally guarded goto statements.

The C generator is complicated by Java behaviours that change depending on the

runtime type of an object. To conserve runtime data memory, which is expected to be

the most limited type of memory, the code generator does not use dispatch tables (vta-

bles) to lookup which method to execute for a virtual dispatch, and the ‘class instance’

objects that contain the static fields of a class do not contain any information about their

interface implementations or superclass. This means that objects do not need to contain

a reference to their specific class’s dispatch table.

Each time a type-dependent action is encountered in an itinerary, all of the possible

outcomes as determined by the previous application building procedure are enumer-

ated. For virtual method invocations where it is determined the object on which the

method is to be executed can only be of one type, the virtual dispatch is eliminated and

replaced with a static dispatch instead. Where it cannot be statically determined which

dynamic type an object is at compile time, a call to a dynamic dispatcher function is

emitted. Chi emits a dispatcher function for every virtually dispatched method invoca-

tion with a distinct static reference type; every invocation of a particular method with the

same static reference type will share a dispatcher. For example, the toString() method

that is declared in Object can be invoked on all runtime object types, and via any static

reference type. This means there can be a large number of dispatchers for toString(),

and that the more specific the static type of the invocation, the fewer possibilities the
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used dispatcher must consider. Internally, dispatchers are large case statements and rely

on the optimisation of downstream compilers to chose the best runtime implementation.

Only dispatchers that can actually be invoked are generated.

This strategy for virtual method dispatch is only possible as Chi has complete ap-

plication knowledge, and applications have static type structures as classes cannot be

loaded at runtime. This enables interface invocations to be considered the same as any

other virtual dispatch. Additional memory is saved as dispatch tables are not required

for each interface type. The disadvantage of this scheme is that virtual method invoca-

tion may29 be a more complex procedure and requires more code memory than the con-

ventional virtual dispatch mechanisms. When the basic two machine example in figure

4.3 is compiled for a 32-bit intel architecture target, there are 65 used dispatchers cumu-

latively using 12,687 bytes of code30. In contrast, a more complex application (a dining

philosophers implementation with five defined philosophers and forks, discussed in

section 5.3.4.1) requires a very similar 15,014 bytes for 68 dispatchers, accounting for

4.0% of the applications total compiled code size.

All code generated depends on stdint.h and math.h for their definitions of the

standard integer types and their most extreme values. The model for little endian, 32-

bit, POSIX[90] architectures also requires a suite of additional system-defined headers

for console access, determining the time, POSIX threads, UDP networking and memory

allocation. The models for Xilinx MicroBlaze targets, used for evaluation in the next

chapter, have no extra C dependencies as they uses drivers written in Java (hidden to

the user application) to provide basic console IO and timing.

The generated C application is entirely self-contained, requiring no ‘libchi.a’ or sim-

ilar to be linked against. Each class in the original Java application (and one for each

system library class used) is allocated its own C file containing method implementations.

All methods, classes and types are declared across three main header files.

4.7.2.3 Minimising Static Memory Consumption

There are two main sources of static memory consumption: code and literal data. Both

of these are immutable at runtime so do not need to exist in writable RAM. This also

29If the C compiler is particularly efficient at optimising case statements then the dispatcher mechanism
could be at least as fast as an ordinary dispatch-via-vtable invocation.

30The size of the .text section for the dispatchers.o compiled object.
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means that these components can be safely stored in shared memory.

Code memory consumption is minimised by only emitting functions that can pos-

sibly be used. The application exploration procedure is designed to build a sufficient

type- and call-graph to understand the complete behaviour of the application under

compilation. However, this procedure is conservative as methods are explored that can-

not actually be invoked at runtime. The set of required methods can be further pruned

by only including methods that meet a ‘liveness’ test. A method is considered live if:

• It is the Chi runtime’s entry point. This is the method that will invoke the appli-

cation’s entry point after system initialisation.

• OR

– If the method is non-static, then the class must be instantiated in the applica-

tion

– AND The method must be callable by a live method.

Only two types of Java objects can actually exist as literals31 in a Java class file:

Strings and Classes. Class literals are only used by applications for a small fraction

of classes, so these are instantiated on-demand by the Chi runtime. String literals are

coalesced such that all identical strings in the code will reference the same read-only,

non-heap object at runtime.

4.7.2.4 Runtime Operational Components

The main operational components of the Chi runtime are the entry point and the heap

allocator. Both are written in Java and undergo translation along with the user’s pro-

gram code. The Chi entry point becomes the generated source code’s entry point and

performs duties such as initialising the heap allocator, initialising any device drivers that

the target architecture uses, calling each class initialiser present in the application, and

finally invoking the entry point specified in the user’s application. This generated entry

point contains the top-level exception handler responsible for catching all Throwable

objects and printing a message to the system’s console (if one exists) if an uncaught

exception has propagated out of the user’s application.

31References to the class’s constant pool
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Network-Chi has three memory managers that can be selected at compile time: a

basic allocator which can never recover memory once allocated, a scoped memory man-

ager that implements a simplification of the Real-Time Specification for Java (RTSJ)[219]

scoped memory concept, and a basic garbage collecting memory allocator.

Machine Java’s construction (and implied application programming style) requires

frequent allocation of transient objects. This excludes the possibility of using a non-

reclaiming memory manager. In addition, the lifetimes of objects, such as newly re-

ceived data items from a network interface, are unknown at compile time and cannot

be coerced into a hierarchical usage pattern required by the scoped memory manager.

In a scoped memory scheme a machine would only be able to reference a received da-

tum if it was allocated in the same memory scope, or in an enclosing scope, but an

interrupt handler receiving an object from another processor could never know which

machine the object will eventually be destined. If received data were to be allocated into

a machine’s enclosing scope, common to all machines, then this would be accessible in

an event handler. However, memory exhaustion would arrive quickly as the objects in

a memory scope cannot be individually deallocated, and the scope cannot be purged

while child scopes still exist. Severe and unacceptable (from a programming complexity

perspective) convolutions involving reusable objects are required to support a Machine

Java type framework with a scoped memory allocator. A more detailed overview of

Chi’s scoped memory management can be found in appendix E.

4.7.2.5 Garbage Collection

In the context of Machine Java, only the garbage collecting allocator is suitable. Garbage

collection facilitates very flexible programming patterns, such as the use of boxed primi-

tives and repeated allocation of event handlers. Garbage collection also enables efficient

use of highly limited memory resources. Network-Chi provides a simple non-realtime

garbage collector to enable standard Java to be written without fear of memory ex-

haustion or unsafe references. The garbage collector prioritises memory efficiency over

all other concerns, including garbage collection predictability and speed of collection.

Real-time garbage collectors have been investigated thoroughly [16, 20, 108, 159, 160]

and could be implemented instead if predictability is a more important runtime charac-

teristic.

The important qualities of Network-Chi’s garbage collecting memory allocator in-
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clude:

• Implementation in Java, allowing the same collector to be used for multiple targets

without modification. The collector does assume a 32-bit pointer width, and also

requires assistance from the active computational model to determine the stack

bounds for all threads and to flush all processor registers to the stack.

• Overall, the collector can be summarised as a non-moving, conservative, stop-the-

world, mark sweep collector. This construction favours high maximum memory

utilisation (no space is reserved for memory compaction) and avoids memory leaks

due to reference cycles (mark-sweep schemes do not use reference counting). On

architectures with threads, all threads are paused during a collection but these are

not the main focus for Network-Chi. Finally, the collector is conservative meaning

that it will never collect an object that is referenced but it may fail to collect objects

that are not referenced.

• The allocator divides the heap into small blocks and maintains metadata for each

block. Each memory block can be used by at most one object, meaning that unless

an object requires a perfect multiple of the block size some memory is wasted in

the object’s last block. The allocator uses one byte of metadata per block with flags

for the usage of the block, if the block is the head of an object, if the block is for a

static instance (the static fields of a particular class), and several bits used by an

in progress garbage collection. Using block-based metadata avoids including addi-

tional fields within each object instance, at the cost of a static reduction in available

heap size. As GC metadata within an object must be at a fixed offset (such as zero),

and some platforms require field alignments within objects, a GC metadata field

would have to be a multiple of the alignment width. On the considered platforms

this would be 32 bits, or 4× the metadata size for a block.

• The collector identifies roots of the reference graph from the static instances iden-

tified from block metadata and by scanning the stack for words that appear to

be references. This stack scanning procedure is what introduces the collector’s

conservatism as any value on the stack that has the value of a valid reference by

coincidence will keep the referenced object alive. A value on the stack must pass

several tests to be considered a reference: It must point to a region within the valid
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heap, it must be aligned to point to the start of a block, and the block pointed to

must be marked as the head of an object.

• The collector does not defragment memory, but the allocator takes basic precau-

tions to avoid memory fragmentation: single-block objects are always allocated

into the lowest index available block (first-fit allocation). Larger object allocations

use a rolling index to avoid re-scanning the heap metadata for each allocation. This

is Knuth’s next-fit [111] allocation scheme. Although next-fit allocation saves some

effort where the object to be allocated is too large to fit into any of the free-regions

towards the start of the heap, a number of disadvantages to this scheme have been

noted [105, §7.2].

• The collector only supports standard (strong) Java references. Weak, soft and

phantom references are not supported. Finalizers, such as Java’s

Object.finalize() method, can only be used safely if they are executed asyn-

chronously [30]32, and this requires that they are executed in another thread. As

Chi does not guarantee to provide threads on all platforms, finalize() methods

are never executed by the Chi runtime.

4.7.2.6 Tuning the Block Size

The memory manager’s block size has a significant impact on memory efficiency and

runtime performance:

too small If the block size is too small then memory is wasted on excessive metadata

and performance will suffer. Smaller block sizes favour memory fragmentation

and increase the overheads due to allocation and and garbage collection. This is

because the allocator and collector use algorithms that are O(n) where n is the

number of allocation blocks.

too large If the block size is too large then memory is wasted when objects do not fill

their blocks exactly.

The minimal Chi object on 32-bit architectures is 4 bytes as the hidden class identifier

field consumes an integer. Very few classes will have no fields, so the minimum realistic

32Boehm provides a good summary of the necessary difficulty of providing object finalizers in [30]
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Measurement nPh MD5 STHP ST Mean

Failed request size (bytes) 136 120 168 152 144
Contiguous free (bytes) 88 80 144 144 114
Used (bytes) 37374 38448 37272 36212 37326.5
Free (bytes) 424 632 888 1808 938
Objects 1988 1515 1857 1752 1778
Mean bytes per block 6.28 6.49 6.33 6.27 6.34
Mean bytes per object 18.80 25.38 20.07 20.67 20.99

Objects <= 8 bytes 460 310 452 391 403.25
Objects > 8 and <= 16 bytes 700 384 606 618 577
Objects > 16 and <=32 bytes 713 551 637 548 612.25
Objects > 32 and <=64 bytes 108 148 137 162 138.75
Objects > 64 bytes 7 122 25 33 46.75

Wastage if 8 byte blocks 3762 2504 3392 3572 3307.5
Wastage if 16 byte blocks 11538 9504 10232 9884 10289.5
Wastage if 32 byte blocks 31874 23952 29704 29068 28649.5
Wastage if 64 byte blocks 91970 67600 84648 79820 81009.5

Table 4.3: A summary of four applications’ heap memory following an OutOfMemoryError.
The wastage figures consider the sum of memory unused in blocks if the application’s objects
were allocated with the specified block size. The execution platform was a single processor with a
48,000 byte heap.

size for an object is 8 bytes. This covers objects with a single reference or integer field,

or a zero-length array.

To determine the most efficient block size with respect to memory wastage, data on

heap usage was collected from a number of Machine Java applications. The purpose of

these applications is covered in the next chapter, but for now only the heap usage char-

acteristics are of interest. Each application was executed on a single processor platform

with 48,000 bytes of heap memory, and the applications were tuned to eventually run

out of memory before completing successfully. When the application had run out of

memory the heap was examined to determine the distribution of objects in use by the

application. An application is considered to have run out of memory when the garbage

collector throws the first OutOfMemoryError. This happens when a garbage collection

cycle could not free enough contiguous memory to satisfy the most recent request. For

the purposes of this experiment an 8-byte block size was used. Table 4.3 summarises the

results of this investigation.
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Figure 4.25: The impact of the memory allocator’s block size on overall application throughput.
This is the SpeedTest (ST) application with a 5-byte message size, four pairs of communicating
machines and executing on a 32 processor platform.

Table 4.3 provides a breakdown of overall heap usage and free memory at the time

of failure, and a coarse indication of the object size distributions. Finally, a calculation

of wasted memory due to partially utilised blocks is provided. The wastage figure is

the sum of all unused memory in blocks if all of the application’s objects were allocated

again using blocks of the specified size. The table demonstrates the expected outcome

that smaller block sizes reduce partial-block inefficiencies: 8-byte blocks waste an aver-

age of 3.3KB33 but 64-byte blocks would waste 81KB for the same set of objects. To get a

complete comparison of memory efficiency the block metadata must also be accounted

for. As this is one byte for each block, this adds an overhead of 6KB for 8-byte blocks

in a 48KB heap, and 3KB, 1.5KB and 750 bytes of overhead for 16, 32 and 64 byte block

sizes respectively. Even with the metadata overhead included the 8-byte block size is

most efficient, using 9.3KB overall compared to 13.3KB for a 16-byte block size.

To consider the performance aspects, the SpeedTest (ST) application was tested on

each of four potential block sizes. The impact of the allocator’s block size on overall

application throughput is shown in figure 4.25. It can be seen that there is a significant

performance benefit for allocation block sizes greater than 8 bytes. Throughputs for 16

and 32 byte block sizes are within the margin of error and 64 byte blocks appear to

suffer a marginal disadvantage.

33This document follows the convention that 1KB is 103bytes, and 1KiB is 10241bytes.
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Overall, the substantially better performance achieved when using a 16 byte allocator

block size appears to justify the additional memory overhead compared to the 8 byte

block size. As Chi’s garbage collector is compiled at the same time as application code,

only a trivial modification would be required to enable application-directed garbage

collection parameters.

4.7.3 Network Runtime

Network-Chi enables standard Java applications to be executed on homogeneous networks-

on-chip. Low-level architectural details are handled by Chi’s internal ‘computational

model’ mechanism, and this can be selected via a command line switch at compile-time.

High-level details, such as the amount of heap memory to use, or the dimensions of the

mesh network are also selectable via command line switches. Java applications com-

piled with Network-Chi have a simple model of execution: Every processor in the mesh

(referred to as nodes) begins executing the same entry point in the application at NoC

startup-time. The entry point can be any class with a

“public static void main(String[] args)” method, as in standard Java. Applica-

tion code is able to query the runtime to determine which node it is executing upon and

differentiate its behaviour accordingly. From the application programmer’s perspective

each node has its own private Java heap with no access to objects on other nodes. Even

if the underlying NoC architecture provides shared memory this is not exposed to the

application.

The processor at coordinates (0, 0) must be the first processor to begin execution, and

the Network-Chi runtime will boot and synchronise with other processors if necessary

before releasing control to the application’s entry point.

A basic ‘hello world’ example using the framework can be seen in figure 4.26. On

startup each node in this example begins executing from the entry point and first queries

the framework to determine if it is the origin node. All nodes in Network-Chi appear

the same to the application and have no intrinsic differences other than their address

within the network, the framework only identifies the node at coordinates (0, 0) as the

origin node for convenience. In the example, the non-origin nodes send HelloMessage

objects to the origin node, and the origin node will wait until it has received a message

from every other node. This example assumes a fully populated rectangular array of

nodes, but this is not required in general by the Network-Chi framework.
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4.7.3.1 Execution in a JVM and on POSIX Operating Systems

Network-Chi applications can execute in a standard JVM for basic functional verifica-

tion. Execution in a JVM is not a NoC simulator and may behave differently to a real

hardware NoC; no attempt is made to emulate timings, router contention or other NoC

behavioural artefacts. The runtime implements the network API’s behaviour in a JVM

by detecting the first call to any API method and then constructing thread for every node

of a notional rectangular NoC. These node-threads begin executing from the same entry

point that the JVM was started with, and their coordinates on the ‘NoC’ are recorded in

a table. When executing in this mode a network with large and lossy buffers between

nodes is assumed; sends will never block. The communications between nodes is imple-

mented using UDP networking to enable interoperability with the ‘POSIX’ compilation

target that also uses UDP as its communications protocol.

Network-Chi can be used to compile a Java application for execution as a standalone

binary on a POSIX operating system. In this case the Network-Chi runtime on the origin

node spawns another process for each node in the emulated network. The processes

identify their coordinates from a command-line argument provided by the origin node.

All subsequent communication between nodes is conducted via the network API, which

in turn uses UDP sockets. Compilation to a binary has several advantages over execution

in a JVM:

• The memory usage of the application is rigidly enforced. In a JVM memory usage

cannot easily be bounded on a per-node basis as all threads in a Java application

share the same memory.

• Applications cannot ‘cheat’ and communicate via shared memory. When execut-

ing in a JVM, static fields are shared between all nodes, but this is not possible

when each node executes in an isolated operating system process.

• Application compatibility with Network-Chi can be assured. Network-Chi has

complete Java language support, but does not support a large proportion of the

standard libraries due to dependency explosion and native methods.

4.7.3.2 Network API

The Network API (see table 4.4) is intended to be minimalist while remaining congruent

with the nature of NoC hardware. An example of its usage can be found in figure 4.26.
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1 public static void main(String[] args) {
2 if (amOrigin()) {
3 log("I’m the origin!");
4 int rxCount = 0;
5 while (rxCount<width()*height()-1) {
6 HelloMessage next = (HelloMessage) receive();
7 log(next);
8 rxCount++;
9 }

10 log("All nodes reported in!");
11 } else {
12 send(0,0, new HelloMessage());
13 }
14 }

Figure 4.26: A basic ‘HelloWorld’ application written using the Network API. The origin node
(coordinates 0,0) will print a message it receives from all other nodes and then quit. The definition
of the HelloMessage class can be seen in figure 4.27.

Method Description

void send(int, int, Flattenable) Sends any object that implements the Flattenable
interface to a specified X and Y coordinate. May

block until received by the remote node. May throw
a MessageTooLargeException if sending the Flatten-
able will exceed the underlying network’s MTU.

Flattenable receive() Receives the next object from the network. Will block
until an object is received.

Flattenable tryReceive() Receives an object from the network if one is available,
or null if no object is received.

int myX() The X coordinate of this node.
int myY() The Y coordinate of this node.
int width() The width of the network.
int height() The height of the network.
boolean amOrigin() Returns true if this node is at coordinates (0, 0)
void log(Object) Writes a specified message to a debug console

prepended with a node identification string. This
guarantees to not permanently allocate any memory
regardless of the Object’s toString() behaviour.

void setReceiveHandler(Runnable) Sets an asynchronous object arrival handler.
void setNodeLocalTag(Object) Sets guaranteed node-local variable.
Object getNodeLocalTag() Retrieves the previously set node-local variable.

Table 4.4: The API provided to applications for communication via a mesh network. These are
all static methods of the Network class.
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In this example the Network API has been statically imported to make the code clearer

to read.

Nodes can send messages to other nodes via the send(int, int, Flattenable)

method which accepts the X and Y coordinates34 of the destination node and a reference

to any Java object that implements the Flattenable (see section 4.7.3.4) interface. This is

the only provided mechanism for communications between nodes and is similar to the

message communication abstraction provided by MCAPI[202]; messages are sent as fixed

size datagrams and communication appears to be an atomic operation to the application.

When a destination node invokes receive() or tryReceive() a copy of the sent

object will be returned. The API does not provide a mechanism to determine which node

sent the message, but the sender is able to include their own address in their message

if they choose. To better reflect the nature of many underlying network architectures

the API is deliberately asymmetric. There is a non-blocking message read method but

there is not a non-blocking send method. This is because many network router designs

(including the Blueshell example hardware used in the next chapter, section 5.2) do not

provide any mechanism to determine if a remote node is ready to accept a message

without first sending a message, which obviously may not be accepted.

While the API declares that send() may block the caller until the receiving node is

ready to receive a message it is also not guaranteed to do so. If there is enough buffer for

the object available on the sending node or in the network routers between the sender

and receiver, the implementation of the API is free to return the send() call as soon as it

can. The API also does not require that messages arrive in the order that they were sent

if they were sent from different nodes; the API does not establish a NoC-wide global

notion of time or ordering of messages, but it does require that messages from a single

node to another node arrive in order.

No methods of the networking API will permanently allocate memory, with the

exception of the receive() and tryReceive() methods which will allocate the objects

which they return.
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1 public static class HelloMessage
2 implements Flattenable {
3 private final String msg;
4 public HelloMessage() {
5 this.msg = "Node "+myX()
6 +","+myY()
7 +" reporting in!";
8 }
9 public void flatten(DataOutputStream out)

10 throws IOException {
11 Utilities.flatten(msg, out);
12 }
13 public HelloMessage(DataInputStream in)
14 throws IOException {
15 msg = (String) Utilities.inflate(in);
16 }
17 public String toString() {
18 return msg;
19 }
20 }

Figure 4.27: The ‘HelloMessage’ class referenced in figure 4.26, demonstrating an implementa-
tion of the Flattenable interface.

4.7.3.3 Object Serialisation

Effective object serialisation between processors is critical for the implementation of

high-level message passing frameworks like Network-Chi. In an embedded context,

such as a processor on an FPGA implemented NoC, the structured property of objects

and the desire to perform deep (recursive) serialisation on an object causes several sig-

nificant issues:

• Expensive metadata is required at runtime to identify the fields in a class that refer

to other objects, so that these referenced objects can also be serialised. To recon-

struct an object, special serialisation constructors must be provided that allocate

memory but do not invoke any declared constructor in the class. Both metadata

and serialisation constructors are usually provided by Java reflection which is not

a justifiable overhead in embedded contexts. To an extent this issue can be ad-

dressed by having the compiler automatically generate serialisation methods for

34The framework uses a 2-dimensional (x,y) addressing scheme to reflect common NoC topologies, but
can be easily extended to support any absolute addressing scheme, such as (x,y,z) or (r, θ).
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all possible serialisable classes, however this moves the burden from metadata to

increased code volume.

• With or without metadata, object structure dictates that hardware offload such as

DMA cannot be used for deep serialisation as objects are not guaranteed to be

contiguous in memory. Complicated schemes can be contrived to perform a DMA

operation for each shallow object, but still requires CPU intervention for every

object in the structure. Direct memory copying of objects is also only appropriate

between processors with identical in-memory representation of values, which may

not be true in heterogeneous NoCs.

• Objects are unlikely to be reconstructed into the same memory addresses that they

were located at on the source node, so upon reconstruction all references in each

object must be updated to reflect the new addresses of the received objects. As

with serialisation this only provides yet more work for the CPU to perform that

cannot be offloaded to a DMA unit, further increasing the overhead.

In short, object transfer between nodes is complicated because of a lack of similari-

ties; neither data representation nor memory location can be assured between nodes in

general. If more assurances of similarity can be made, serialisation can become more

tractable.

• If representation differs objects must be fully serialised by converting all fields

into an exchange format. This is the approach both standard Java and Network-

Chi use. It is extremely expensive as it requires CPU attention for all data.

• If only location differs objects can be individually shallow copied amongst nodes,

but references require fixing.

• If neither representation nor location differ objects can be individually shallow

copied amongst nodes.

• If assurances of contiguous allocation can also be made objects can be deeply

copied amongst nodes in a single transaction, this would enable object-based mes-

sage passing as cheaply as communication of unstructured buffers.

In the context of a homogeneous NoC it is possible to assume identical representa-

tion between nodes, but a scheme to ensure identical references between nodes remains

future work.
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4.7.3.4 Flattenable Objects

The Flattenable interface is the compromise made by Network-Chi between full sup-

port for automatic object serialisation and no support at all. This approach avoids

the need to retain expensive class metadata at runtime, at the expensive of program-

mer effort. A class that implements Flattenable must provide a method flatten(

DataOuputStream out) to write the fields it cares about to the provided stream, and it

must also provide a reconstruction constructor with a single DataInputStream argument

to construct a new instance with information retrieved from the specified stream. The

Java compiler cannot check for the existence of the reconstruction constructor as Java

interfaces cannot specify constructors, but Network-Chi will enforce this contract dur-

ing the compilation workflow. An example of a simple Flattenable object is given in

figure 4.27.

A utilities library is provided to assist programming with Flattenable objects:

• void flatten(Object, DataOutputStream) will emit the object supplied into

the output stream if possible. Only null, String, and Flattenable objects can

be flattened. The implementation emits a tag into the stream before the object to

enable identification of the stream contents, and a class identifier is also emitted if

it will be a Flattenable object next.

• Object inflate(DataInputStream in) reads from the input stream and recon-

structs the null, String, or Flattenable that is next in the stream. If the im-

plementation reads a Flattenable tag from the stream, a compiler generated

psuedo-constructor (inflateFlattenable) is invoked. Chi automatically gener-

ates a body for inflateFlattenable that can invoke the reconstruction construc-

tor of any object implementing Flattenable used by the application, determined

by the class identifier received. The provision of this pseudo-constructor avoids

forcing the programmer to write a reconstruction factory manually, ensuring that

if an object implements Flattenable the programmer can send it via the network-

ing API with no additional effort.

• For convenience, Flattenable wrapper classes are provided for all primitive ar-

rays, collections, sets, lists, and maps. The data items contained within the Flattenable

collections must also be either nulls, Strings, or Flattenable.
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The flatten method and reconstruction constructor of the Flattenable interface

could be automatically generated by the compiler in the future.
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4.8 Summary

This chapter introduced a new machine-oriented programming framework: Machine Java.

Machine Java realises all three of the Machine Abstract Architecture models discussed

in previously in chapter 3. Building upon the Java programming language, Machine

Java enables the description of complex applications that can be compiled for execution

on resource constrained MPNoC architectures. The use of a high-level general purpose

language enables a great variety of existing tools and methodologies to be re-used in a

new architectural domain.

The Java programming language already embeds a threaded model of concurrency

and contains an assortment of features for synchronising threads and guarding access to

shared objects. All of these features are redundant for applications designed in Machine

Java as the framework guarantees that machines can never share the same objects. Ma-

chine Java additionally guarantees the sequential consistency of code executed within a

machine, simplifying the task of designing reliable machine code.

The exploitation of Java’s generic type system enables the compile-time validation of

inter-machine type-safety and also ensures that machines have consistent expectations

of the communications protocol.

Ordinary Machine Java applications must adhere to a set rules concerning the acces-

sibility of machine class members but the isolation of machines is retained even when

the rules are accidentally violated or deliberately disabled. Machine Java verifies com-

pliance of application code with the rules as an assistance to programming rather than a

hinderance; the behaviour of non-compliant code likely to be platform specific.

Machine Java enables dynamic application architectures to be defined that can alter

their runtime structure in response to changes in application requirements. Applica-

tions can request new machines freely but the circumstances in which machines can

be destroyed are far more limited, and just as Java objects cannot be explicitly deallo-

cated, neither can machine instances. Without careful design applications that allocate

machines dynamically may unintentionally exhaust the platform’s available resources.

The runtime library overhead required to enable dynamic applications is significant

but is addressed in part by the presented Network-Chi compilation strategy. This enables

the execution of Machine Java applications on processors with very little memory by

only emitting code that can certainly be used by the application, and a by using a

minimal in-memory representation of Java objects.
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5.1 Overview

Chapter 3 of this thesis presented the Machine Abstract Architecture (MAA), a set of

models for the structure of machine oriented applications, a simplified structure of the

execution platform and the limited connection between the two provided by a frame-

work. Machine oriented applications are platform-independent but still allow varied

communications channels to be defined between their constituent machines. Machines

are defined by their temporal and spatial isolation from one another, and this forms the

basis of arguments for scalability: Machines are only affected by their explicit interac-

tions with other machines, and these interactions are limited to the local areas of the

interacting machines. All other machines in the application and processors in the plat-

form have no impact on a machine, and therefore it does not matter how many of these

entities there are, or what types they happen to be. Similarities between the structure of

the platform and application models encourages the interpretation of an application as

an idealised virtual platform for the behaviour that it implements.

In chapter 4, the Machine Java programming framework was introduced. Machine

Java takes advantage of the processing and memory abstractions of the Java program-

ming language but replaces Java’s concurrency abstractions with the machine oriented

abstraction of the MAA’s application model. Machine Java’s construction enables Java’s

strong and static type system to be applied across a distributed application without the

need for Java code generation or additional verification tools. Java’s type system is also

used to encode the protocol characteristics of communications channels, avoiding In-

ternally, Machine Java has a layered architecture that not only separates the application

from the platform, but also separates the machine oriented API from the hardware spe-

cific realisation. The limited resources available in resource constrained MPNoCs, and

the restrictions imposed by existing ‘small’ Java implementations motivated a new strat-

egy for Java execution. In section 4.7 an optimising, whole-application Java compiler

was presented to support the implementation of dynamic programming frameworks,

such as Machine Java, on highly limited processing platforms. Network-Chi provides

comprehensive Java language support while also substantially minimising the static and

dynamic memory consumption of its output. Machine Java’s more unique requirements

are addressed via explicit support for non-shared memory multiprocessor networks and

inclusion of limited reflection functionality.

A primary claim of the machine abstract architecture is that applications are platform-
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independent if the realisation of the MAA is also platform-independent. Machine Java,

as a realisation of the MAA, supports this claim through two arguments:

• A Machine Java application will execute correctly without modification on any

platform supported by Machine Java.

• Machine Java is capable of execution on multiple architectures, and therefore will

support multiple platforms:

1. Machine Java applications are not just descriptions of an application that con-

form to the application model, but they are fully executable Java applications

and the Machine Java framework is also an executable implementation. As

Java itself is capable of executing on a vast array of different architectures, it

follows that an application would be capable of execution on a wide variety

if different architectures.

As with every other target architecture, execution in a JVM requires a plat-

form description that can provide sensible internal API drivers for a JVM. The

most basic universal platform would describe a single processor with unlim-

ited resources. This argument is not particularly satisfying as the intended

domain for this thesis —resource constrained non-cache-coherent MPNoCs—

are incapable of hosting a recognisable standard JVM. Standard Java imple-

mentations are too large and depend too strongly on coherent memory be-

tween threads.

2. A platform implementation has been described which can allow Machine

Java to execute using the Network-Chi’s abstraction for homogeneous mesh

networks. This platform is also executable in a standard JVM using separate

Java threads to emulate each processor of the mesh, but it further provides the

ability to target platforms which provide a POSIX operating system interface.

This compilation stage enables memory constraints to be enforced, somewhat

validating the claim of applicability to resource constrained networks. The

assumption of a POSIX OS is also not well suited to highly restricted target

architectures.

Using Network-Chi to execute a Machine Java application on a commodity OS, such

as linux, confirms only basic functional correctness and resource constraints. This is

problematic as only the memory used by the compiled application is constrained by
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the compilation process; the memory usage of the runtime and OS are not entirely ac-

counted for by this procedure. Network-Chi does not attempt to simulate the timing or

contention aspects of a mesh network, so there is also the possibility that the emergent

behaviour of a real mesh network would result in a different functional outcome from

an application. This is especially likely if an application relies on specific inter-message

ordering between multiple machines, but this could be considered a fault in the applica-

tion’s design. The POSIX OS target is also unable to expose architecture specific failure

modes such as deadlock of a mesh network. Hardware implementations that are suscep-

tible to deadlock may not be able to accommodate arbitrary Machine Java applications

as a degree of platform awareness may be required to avoid deadlocks. Therefore, to

provide a realistic evaluation Machine Java is also applied to a true resource constrained

network-on-chip architecture: Blueshell.

In the remainder of this chapter aspects of machine modelled programming and

Machine Java are evaluated against the overall goal of supporting application develop-

ment on resource constrained multiprocessor networks. The hardware platform used to

validate the implementation strategy is described in section 5.2. In section 5.3 the con-

struction of applications within Machine Java is considered, with particular attention to

the additional challenges introduced. In section 5.4 the performance and implementa-

tion overheads are considered.

5.2 Hardware Evaluation Platform

In this section the Blueshell hardware evaluation platform is described. As Blueshell is

actually a network generator rather than a specific instance, the general characteristics of

Blueshell networks are described first. The specific network instance used for evaluation

is detailed in the next section (5.2.2).

5.2.1 The Blueshell NoC Generator

Note: The Blueshell NoC generator described in this section was primarily the work of

Jack Whitham with contributions from other members of the Real-Time Systems group.

The Blueshell NoC generator is not claimed as my work, nor as a contribution of this

thesis. It is documented here to provide context and aid experimental reproducibility.

Blueshell [165] is a collection of libraries written in Bluespec System Verilog [28] to

generate multiprocessor networks for implementation on FPGAs. NoCs constructed
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with Blueshell are composed of:

• A set of tiles that provide some functionality to the network, including Xilinx Mi-

croBlaze [228] processors, memories, ethernet controllers and debug tiles.

• A Bluetiles mesh network to interconnect the tiles.

• A Bluetree memory network to multiplex access to external memory between tiles

requiring access.

The Bluetiles communication network is a very simple Manhattan grid network

constructed from Bluetiles routers that are addressed by their X and Y coordinates.

Each Bluetiles router has five 32-bit bidirectional physical ports, corresponding to north,

south, east, west and a ‘home’ port which connects a local tile to the router. Each

Bluetiles network packet starts with a header declaring its destination address, service

port number (see below) and payload length in flits. The packet is wormhole-routed1 in

X then Y order through each router towards the designation tile at a rate of one flit per

clock cycle. Bluetiles flits are always 4 bytes transmitted as a word. A packet in transit

retains exclusive control over both the input and output ports of the routers that it is

travelling through. Other packets cannot flow through a router and are blocked if they

would require a port that is already in use; Bluetiles routers do not implement any form

of flow control. A packet does not leave the Bluetiles network until it has been fully

read-in by the tile connected to the destination router’s home port. In many respects the

simplicity of Bluetiles makes it a model NoC for software development, as many of the

issues for NoC programming (such as network deadlock) are a very real concern.

All Bluetiles packets contain a ‘service port’ field, analogous to the port numbers

used by the internet protocols, to identify the purpose of the message. The port num-

ber is used by a recipient tile to interpret the incoming message. Well behaved tiles

implement as many of the common Bluetiles services (seen in table 5.1) as appropriate.

The mechanism a tile uses to implement a network service does not matter; some tiles

implement their services in hardware whereas processor tiles are likely to use software

implementations.

1Wormhole routing or wormhole switching is where network packets are divided into smaller flits (FLow
control unITS). Wormhole routed networks apply flow control and buffering at the flit-level rather than for
whole packets. See [80, §F.5]
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Service Port Description

blackhole 0 Discards all data that arrives.
read 1 Reads memory from the tile and replies with the value.
write 2 Writes values into the tile’s memory.
ping 3 Sends the packet received back to the sender.
boot 4 Instructs the tile to boot (branch) to the vector specified.
interrupt 5 Instructs the tile to forward its interrupts to the sender via

the network.
message 6 Writes the packet to a debugging device if present
terminate 7 Indicates that the networked application has terminated.

A host process communicating with the network can finish
and the FPGA can be deprogrammed.

object 20 Indicates the payload is a flattened Java object implement-
ing the Flattenable interface.

Table 5.1: Common services implemented by tiles on the Bluetiles network. Peripheral tiles can
be expected to implement read, write and interrupt, whereas a processor hosting the Machine
Java runtime will implement all except interrupt, message, and terminate.

!0 !1 !2 !3 !4 !5 !6 !7 !8

0 1 2 3
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1GiB DDR

Legend

! MicroBlaze Tile

0 Bluetree Multiplexer

Processor Boot Code

Memory Bus

External Memory Bus

Figure 5.1: The layout of the Bluetree memory network for a 3x3 network of MicroBlaze proces-
sors.
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Figure 5.2: The internal layout of a Xilinx MicroBlaze processor tile. The configured sizes of
evaluation platform’s memories are indicated.

A Blueshell instance also contains a second network (Bluetree) exclusively for ac-

cess to shared off-chip memory (such as DDR SDRAM). The memory network reduces

contention across Bluetiles and increases the overall flexibility of the platform.

This network is constructed from a tree of 2:1 full duplex Bluetree multiplexers where

the leaves of the tree are the devices that need access to shared memory. In the case of a

3x3 mesh of MicroBlaze tiles, the memory tree is configured as shown in figure 5.1, and

figure 5.2 shows how the Bluetree network is connected to a MicroBlaze tile internally.

While the Bluetree multiplexers hide the topology of memory accesses from clients

they do nothing to ease memory contention and do not provide any synchronisation

guarantees. Applications must always be mindful of the performance and concurrency

implications of accesses to external memory.

General purpose computation is supported on Blueshell networks by Xilinx MicroB-

laze processors encapsulated into a tile with caches, local memory and basic peripherals.

Each microblaze tile is essentially a complete system on chip. The internal structure of a

microblaze tile can be seen in figure 5.2. Each MicroBlaze processor is connected to the

Bluetiles router via a Fast Simplex Link [226] (FSL) port. The processor accesses mem-

ory through specially constructed instruction and data caches that can be invalidated

on a line-by-line basis by the ‘Cache Control’ peripheral attached to the second FSL.
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Figure 5.3: The communications network and processors in the 32-processor evaluation network-
on-chip. The communications interconnect has a clock frequency of 100MHz and 32-bit channel
width, yielding a bisection bandwidth of 1.6GB/s (1.49GiB/s)

The cache control unit also acts as the MicroBlaze’s interrupt controller and provides

a 64-bit clock-cycle counter facility. Each microblaze processor has exclusive access to

a fast and local scratchpad memory (SPM). Although the scratchpad memory provides

single-cycle access to data and instructions, it has a very limited capacity as it must draw

from the FPGA’s highly contended block ram resources.

5.2.2 Evaluation Platform Specification

The specific blueshell instance used to validate Machine Java can be seen in figure 5.3

and has the following characteristics:

• An 9×4 mesh network of bluetiles routers, populated with 32 Xilinx MicroBlaze

processors in an 8×4 grid. The network is connected to a host PC via a standard

UART for communications and bootloading.

• The communications network is clocked at 100MHz, has 32-bit wide connections,

and transfers one 32-bit word on each clock cycle. This results in a point-to-

point bandwidth of 400MB/sec and a network bisection bandwidth of 1.6GB/sec

(1.49GiB/s), if the network were bisected into two 4×4 processor networks.

• The MicroBlaze processors are configured to be fully featured microcontrollers

without hardware supported memory protection. In addition to the high-performance
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5-stage pipeline, the processors are configured to include: extended floating point

units, extended (64-bit) multipliers, hardware dividers, hardware exception sup-

port, barrel shift instructions and large branch target caches.

• The MicroBlazes are version 8.50.b and are also clocked at 100MHz. The back-

end C compiler used to target these processors was Xilinx’s mb-gcc version 4.6.2.2

No peripheral support libraries or operating systems were used; only Xilinx’s C

runtime (crt0) is used.

• Each MicroBlaze benefits from 64KiB of SPM, 1KiB of data cache for shared mem-

ory access, and 8KiB of instruction cache for shared code. The shared memory

network provides each processor access to 1GB of DDR RAM. This shared mem-

ory is writable by all processors but is treated as a read-only memory for code

during application execution. String literals are the only Java objects that will exist

in external memory at runtime.

• Each processor uses 16KiB of SPM for Java’s call stack and the remaining 48KiB

for the local Java heap. As Network-Chi’s garbage collector is configured to use

a 16-byte block size this implies that there can be at most 3072 Java objects per

processor.

• The network is hosted on Xilinx Virtex-7 XC7VX485T [232] FPGA mounted on a

VC707 evaluation board [231]. This FPGA contains 486,000 logic cells across 76,000

slices. The evaluation network uses a significant fraction of the FPGA’s resources:

Block Rams 994 of 1030 (96%)

LUTs 276K of 304K (90%)

Flip Flops 237K of 607K (39%)

It can be seen that the size and capabilities of the network are primarily constrained

by the FPGA’s block ram resources which directly limits the local SPM and cache ca-

pacities for each processor. Larger or smaller instances of Blueshell networks can be

constructed according to the size of the target FPGA.

220111018 (Xilinx 14.4 Build EDK_P.41 8 Oct 2012)
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5.3 Programming with Machine Java

This section explores some of the challenges of designing applications with Machine

Java, and by extension the general challenges implied by machine oriented program-

ming. There are few unambiguously positive consequences to programming with Ma-

chine Java; most of Machine Java’s differentiating characteristics have an equivocal im-

pact on the design of an application and the effort required to do so.

If the assumptions on which Java is built are accepted, then Machine Java’s dis-

tributed type safety and the ability to run on a Java virtual machine can also be ac-

cepted without further consideration. Other than the overheads required to use the Java

programming language, there are no readily apparent disadvantages to the static en-

forcement of types across a distributed Machine Java application. Likewise, the ability

to execute on any compliant JVM cannot be seen as a disadvantage but is a somewhat

marginal benefit.

A number of positive claims can be asserted about Machine Java and these claims

lead readily to a set of evaluation criteria. The evaluation criteria for Machine Java

include:

• To what extent are applications actually platform independent? (discussed in sec-

tion 5.3.2)

• To what extent can application structure be extracted? (discussed in section 5.3.1.1)

• What are the implications of programming without shared memory related syn-

chronisation mechanisms? (discussed in section 5.3.4)

• To what extent are applications fault tolerant? (discussed in section 5.3.5)

• To what extent does event driven code reduce overheads? (discussed in section

5.3.1.4)

• Is machine oriented programming appropriate for time-driven behaviour? (dis-

cussed in section 5.3.3.2)

• To what extent are varied application structures expressible? (discussed in section

5.3.3)

• Is it beneficial for application structure to be defined by the code rather than an

external description? (discussed in section 5.3.1)
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5.3.1 Defining, Extracting and Fixing Application Structure

Machine Java applications do not use an external structural definition and so the struc-

ture of an application is entirely defined by its Java code. This distinguishes Machine

Java from some other approaches to the description of distributed applications, such as

Ptolemy II [3, 118] or AUTOSAR system descriptions [18, 29], as these require the spec-

ification of the application’s structure in XML with references to the executable code in

Java and C respectively.

Machine Java allows an application’s structure to be explicitly described by the pro-

grammer: machines are clearly defined as subclasses of Machine and their interactions

are captured by the use of channel classes which must implement the Intermachine

interface. This type-centric encoding of an application’s structure has the benefit that

only one language is needed to describe an application, and this avoids the possibility

of inconsistency between an applications structural and behavioural descriptions.

However, the combined structural and behaviour description that Machine Java fa-

cilitates may not be as clear or as expressive as separated descriptions. In particular

the application model only specifies the interconnection of machine types and not the

runtime layout of an application’s machine instances. This allows an application some

freedom to make choices about its runtime layout in response to operating conditions,

such as available resources or the type of workload. The most significant disadvantage

of combining an application’s structure into its Java code is that the structure is not

readily accessible; it has to be extracted from the code.

5.3.1.1 Extracting Program Structure

In order for a Machine Java application to be executable, its program code must describe

some machines. The machines must contain some channels and some number of event

handlers to implement the required behaviour. As the machine types are statically

defined, and channel instances can only be accessed via the final fields that define them.

This means that it is possible to extract a graph of dependencies between machine types

without knowing the machines that will exist or their runtime interconnections. As

machine types are represented by Java classes, and their instances by objects, there is a

clear similarity between the extractable static structure of a standard Java application,

and the extractable static structure of a Machine Java application.

The extracted structure of an application has a number of potential uses, for example:
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• To determine the viable subsets of machines that could be allocated to a processor.

• To determine the worst case resource consumption.

• To enable static allocation of machine instances to processors ahead of time.

• To statically verify an application’s ability to execute on a specific platform.

• To generate a static communications schedule.

5.3.1.2 Determining A Processor’s Viable Machine Subset

It is not necessary for every processor in a platform to have access to the code for

every machine in an application. Given an application’s static machine dependency

graph (see section 3.2) and the machine types that the processor is expected to host,

the necessary machines’ code required can be calculated. Assuming execution strategy

where machines execute their code as written, such as in a JVM, or compilation via

Network-Chi, a processor must have access to code for every machine type referenced

by an instantiated machine instance:

msp =
⋃

m∈Mp

dependents(m)

where:

• msp is the set of machine types for which processor p must have code.

• Mp is the set of machine types that processor p will host (instantiate) one or more

instances of.

• dependents(m) is a function that provides the set of machine types that machine

type m depends on. dependents(m) is the set of machines directly reachable from

m in the machine dependency graph.

An example drawing upon the water tank level control application from chapter 3

is shown in figure 5.4. In each of the configurations A-E a different machine type is

selected to be instantiable on some target processor(s). Configuration F illustrates the

simplest case where the entire application is available to the target processors. Table

5.2 provides the code and data sizes after compilation for the Blueshell target and with

non-essential Java features disabled. The Machine Java code for the simplified water
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FlowController

RefillPump LevelSensor

EmergencyValve UnreliableSensor

FlowController

RefillPump LevelSensor

EmergencyValve UnreliableSensor

FlowController

RefillPump LevelSensor

EmergencyValve UnreliableSensor
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A B

C D
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Figure 5.4: The shaded regions indicate the machines’ code necessary to host the machine(s)
shown in bold. This is based on the example application in figure 3.2 in section 3.2. This
machine dependency graph was extracted automatically from the Java application. The binary
sizes required for each of these regions are shown in table 5.2.
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Hostable Java (bytes)
Configuration Machine(s) classes3 .text .data total ∆

– none 191 147,000 11,500 158,500 0

A FlowController 202 159,600 11,800 171,400 12,900
B RefillPump 193 148,100 11,700 159,700 1,200
C LevelSensor 207 161,000 11,900 172,900 14,400
D EmergencyValve 195 147,800 11,600 159,400 900
E UnreliableSensor 194 148,800 11,600 160,400 1,900
F all 209 162,000 12,000 174,000 15,500

Table 5.2: The binary sizes required for each of the configurations shown in figure 5.4 are
rounded to the nearest 100. The simplicity of this example application is overwhelmed by the
complexity of the Machine Java and Network-Chi runtimes.

tank application is reproduced fully in appendix B. This application is only intended to

be a structural illustration; it does not contain a realistic control algorithm nor code to

interact with real sensors.

It can be seen in table 5.2 that the code size overheads due to the Machine Java and

Network-Chi runtimes dominate the code and data requirements of the application.

However, by considering the difference between each of configuration A-F’s total sizes

and the size for the application without any machines, it is clear that restricting the

machines that are instantiable by a processor can save some amount of code and data

space. This example application contains little more than communications channels, and

the implementations of the runtime support for these channels requires the nearly the

same code burden regardless of the application complexity. It is reasonable to expect

that more realistic applications would account for a greater fraction of the output binary

size.

Extracting an Application’s Machine Dependency Graph

A machine dependency graph represents the statically determinable interactions be-

tween machine types. A machine type A is said to interact with another type, B, if

it:

1. Requests a new instance of B via any method.

3This figure includes all anonymous, system, library and runtime classes.
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2. Initiates an interaction with an instance of B via a channel defined in B.

Communication via the return path of a bidirectional channel does not introduce a

machine type dependency between the server (the machine replying) and the client (the

originator of the query). This is because the necessary details of the return path (the

behaviour, type and destination) are specified by the channel and not the return path

recipient machine type.

The valid construction of machines (see figure 4.6) enable certainty that only an

execution context associated with a machine instance of type A can ever execute code

defined in A. This is in contrast to standard Java classes where there are no static

guarantees about which thread of control can execute its methods. The coupled code

and execution context enable the assertion that if a machine type’s code is statically

capable of interacting with another machine, then that static capability only applies to

instances of that machine.

The static interactions of a machine class cannot be determined reliably by simple in-

spection of the classes Java source text; a finite regular expression cannot be constructed

that could correctly extract all possible channel accesses from the text. However this can

be achieved by parsing the Java source code but this is unnecessary as the Java compiler

already does this work. Only Java bytecode needs to be examined to build a pessimistic

machine dependency graph.

Pessimism is introduced when an application uses shared code that interact with

machines or contains event handlers. These machine aware libraries would have no clear

relationship to any single machine type. In the case of libraries that interact with ma-

chines but do not use event handlers, the application’s method-call graph can be used to

determine if it is possible to reach a machine-interacting library method from any of a

machine type’s event handlers. However, this is severely complicated if a library method

also contains its own event handlers. There is no easy way to guess which machine’s

context (and therefore which machine type) will execute an event handler unless that

handler is syntactically associated with the machine type.

Library-induced pessimism could be reduced by introducing new Machine Java rules

for library code. For example, machine-interactive behaviour (requesting new machines

and communicating with channels) could be restricted so that it can only be contained

within a machine class (and nested classes within a machine class), or in non-static

library methods of library classes that implement a MachineAware<T,U> interface where
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the generic type parameters represent the types of machines that the library can interact

with. Requiring machine-interactive library code to be non-static forces each machine

to instance the library4 with the appropriate type parameters for the machine’s specific

purpose for the library. The exploration of this concept remains future work.

Network-Chi uses the following two-part procedure to extract an application’s pes-

simistic machine dependency graph:

• Some Java bytecodes have class dependencies. For example, the ALOAD opcode

loads a reference from an object’s field and the opcode has a dependency on the

static type of that object. While generating the itineraries for an application’s

methods, each opcode is considered and a machine dependency has been found

if:

– The opcode’s dependent class is a subclass of Machine.

– and

* The opcode is contained in a method in a subclass of Machine

* or The opcode is nested and is eventually enclosed by a subclass of Ma-

chine.

When a dependency has been found an edge is added to the dependency graph

from the machine type that encloses the method containing the opcode to the

machine type referenced by the opcode.

• The previous step yields a messy but acceptable graph of machine dependencies.

This graph will include undesirable reflexive edges, edges between a machine and

its superclasses, and edges between processor managers (which are also machines).

The graph can be ‘cleaned’ by:

– Removing all vertices that are defined by the Machine Java framework, leav-

ing only application defined machines in the graph.

– Removing all reflexive edges. From a code-generation perspective these edges

do not provide any utility. Restricted versions of this graph that only capture

communication may be useful for machine allocators, and in this case the

reflexive edges may also be useful.

4Singleton patterns using a static field must also be prevented unless the implementation enforces inter-
machine isolation of statics.
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A machine classes’ channels and their properties are somewhat easier to determine

statically. Channels are determined by the public fields in a machine class with a static

type that implements the Intermachine interface. As channel fields must be declared

final, the exact properties of the channel can be determined by the object that is as-

signed to the field in the machine’s constructor. A Machine’s constructor (and field

initialisers) are not permitted to interact with other machines or to perform processor

local input/output. This means that a compiler or verifier can execute the machine’s

constructor and observe the channel objects that are instantiated, and there can be con-

fidence that these observations will accurately predict the channels that an a machine

constructs. The principle that a machine’s constructors will always behave the same

regardless of execution context is central to Machine Java’s runtime operating mecha-

nism, machine objects used as references to remote machines are guaranteed to have

correctly matching channel objects (as they are the same type), and therefore will be

able to generate compatible channel connectors when requested by application code.

5.3.1.3 Machines as Java Objects

The machine model is a particularly dynamic interpretation of actor oriented concur-

rency. The model does not provide a way to statically define the machine instances that

will exist at runtime and Machine Java is even more restrictive as machine references are

indistinguishable from machine instances; machines are essentially addressed by their

own objects. This means that it does not make sense to have a machine reference to

a machine that does not yet exist, just as Java cannot express a reference to an object

that does not yet exist. This duality of object reference rules and machine reference

rules makes machine oriented programming easier as machine objects do not have to

be treated specially. Additionally, machines and ordinary Java objects have very similar

rules that determine their lifetimes: a machine object used as a reference will only exist

as long as it is reachable, just as any other Java object. A machine object that represents

an active machine instance will exist for as long as it has pending or future possible

behaviours (this topic was covered in more detail in section 4.3.5.). Importantly an ap-

plication cannot determine if a machine object is a reference to a remote machine or an

active instance hosted on the same processor.

Mechanisms have been devised to allow promises of future objects to be expressed

(such as java.util.concurrent.Future<V>, or Scala’s scala.concurrent.Future used
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by Akka [91]) but these are intended to represent the eventual result of an asynchronous

computation. Futures are not intended to express the future existence of a specific in-

stance but rather the unknown result of a computation, therefore futures are not suitable

for statically defining the runtime layout of an application.

5.3.1.4 Resource Consumption and Real-Time Guarantees

Machine Java’s event driven architecture allows some efficiencies as it does not require

an execution context such as an OS thread for each event source or handler. Even ma-

chines are not required to have their own parallel thread of control, and this enables

implementations where machines are cheaply multiplexed onto each processor by shar-

ing an event queue. Avoiding dependence on preemptive execution provides:

• A one-time reduction in binary size as considerably smaller ’kernel’ is required.

• A potentially linear reduction in memory consumption for each machine as no

memory is required to save the execution context of a machine on preemption.

However, these efficiencies only reduce the minimum required resource consumption

of an application but they do not address whether or not an application’s absolute

requirements will exceed the capabilities of a specific platform.

The unknown runtime structure of an application presents a challenge for bounding

the resource consumption of an application. If it cannot be known how many of each

machine type will exist, then it also cannot be known how many resources will be

consumed. A machine will consume abstracted resources (computation, memory and

communications capabilities) without explicit declaration by the code, but the use of any

non-abstracted resources (such as a serial port, or block device) must be asserted in the

machine’s constructor using the Machine.REQUIRE_RESOURCE() method. This makes

the consumption of non-abstracted resources trivial to calculate if the multiplicity of the

machine type can be determined.

Calculating the consumption of abstracted resources —memory and execution time

in particular— is not nearly as straightforward, even assuming it is known what machine

instances a processor will host. Standard Java has a number of features that complicate

its analysis: concurrency provided via a flexible threading model, automatic memory

management, and a polymorphic object model (enabling virtual dispatch and differen-

tiated exception handling). The difficulty and necessity of determining the Worst Case
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Execution Time (WCET) for real-time java applications has resulted in a considerable

body of research [79]. The estimation of a Java application’s worst case heap allocation

has also been considered [175], and the Real-Time Specification for Java [73] (RTSJ) pro-

vides non-garbage collected memory models which are both more timing-predictable

but also provide statically defined upper bounds on memory consumption. Safety Crit-

ical Java [203] (SCJ) further limits the memory model available to applications, and this

enables even stronger analysis of Worst Case Memory Consumption (WCMC) [9]. The

application of WCET and WCMC research to Machine Java is not considered in this

thesis and remains potential future work.

Machine Java’s construction does not directly address the design of real-time ap-

plications, and this is considered to be out of the scope of this thesis. However, the

remainder of this section provides a brief discussion of some issues that would be rele-

vant when considering a real-time machine-oriented application. Relevant details of the

application model include:

• All machine instances are isolated so share no memory or resources, and cannot

make assumptions about the execution rate of their code. This means that the ex-

ecution of two machines sharing a single processor cannot be distinguished from

the execution of machines on separate processors. This requires that the single-

processor is time-sliced between the execution of the machines with a fine enough

granularity. Assuming a simple and extremely fine-grained time slicing of pro-

cessing resources, each machine can itself be considered to be a uni-processor for

the purposes of scheduling its internal event handlers.

• Event handlers within a machine are non-preemptive, implying the use of non-

preemptive scheduling and analysis techniques. A summary of non-preemptive

uniprocessor scheduling results can be found in [66]. A significant difficulty in

non-preemptive real-time scheduling is the high likelihood of priority inversion

due to long-running low-priority tasks.

• Machines use a Highest Priority First (HPF) non-idling scheduler. Machine Java

does not provide a direct mechanism to specify the deadlines for event sources,

but if extended to provide some expression of deadlines then existing work can

be used to determine priorities for the HPF scheduler. The use of a non-idling

scheduler (the machine is never idle if there are pending events to handle) is even
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more prone to priority inversion but finding feasible schedules for idling sched-

ulers known to be NP-complete [66].

5.3.1.5 Forcing a Static Application Structure

In spite of the Machine Java’s dynamic approach to application elaboration, it is possible

to encode a static runtime layout of machine instances by using a rigid programming

pattern that forces this result. Such a pattern enables models such as Synchronous Data

Flow (SDF) [117] to be expressed. SDF models require a fixed number of data items to

be received from the input channels each time the node (in this case machine) is ‘fired’,

and when fired the node sends a fixed number of data items from its output channels.

An application can be considered to have a pre-elaborated static structure if it is

possible at compile time to know exactly which machines will exist, and what their

relationships to each other will be. The simplest way to achieve this is by ensuring

that each machine type is instantiated at most once for the whole application (so that

each machine instance can be considered to have its own type; an application-wide

singleton). This can be enforced by creating new subclasses of Machine and Start to

enable a compiler or verifier to check the adherence to this pattern:

StaticMachine classes would be used to for all machines in the application and would

be forbidden to create machines or to receive machine references via communica-

tions channels during normal operation. StaticMachine would extend the Se-

tupableMachine class and receive all of its required machine references via this

mechanism. Neither of the restrictions are difficult to implement in the Machine

Java framework: The processor’s local ProcessorManager could refuse to accept

requests for new machines from subclasses of StaticMachine and the communi-

cations nexus could deserialise received machine references as null if the destina-

tion channel is contained within a StaticMachine subclass.5 A StaticMachine

would accept a generic parameter that expresses the n-tuple of machine references

the subclass of StaticMachine requires to operate.

StaticMachines should not perform any operations before they have received

their references to their dependent machines, and this could be enforced by ensur-

5The SetupableMachine’s channel would not be subject to this restriction as it is not a subclass of
StaticMachine.
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ing they do not reimplement the internal() method.

StaticStart classes would act as the entry point to a statically elaborated application. A

subclass of StaticStart must perform two operations in its internal() method:

1. Instantiate every machine instance in the application using the blocking new-

Machine() method. StaticStart machines can only request machines that

subclass StaticMachine, and only during its internal() method.

2. Then explicitly ‘setup’ each StaticMachine instance using the _setup chan-

nel defined in SetupableMachine. As soon as the first communication with a

StaticMachine is performed no additional machines can be requested. Only

machine references can be communicated to the StaticMachines via their

setup channels.

As long as the StaticMachines are application-wide singletons (rather than single-

ton machines on a particular processor), then the static machine dependency graph will

match the runtime machine instance graph.

If a static application layout is insufficient and a static pattern of communications is

also required, then SDF-style rules can also be enforced.

• A new subclass of StaticMachine is created, "SDFMachine", and subclasses of

SDFMachine are required to define the setup() method inherited from Setu-

pableMachine to instantiate an SDFCombiner.

• For simplicity, machines with at most two input channels and two output desti-

nations are considered, but this scheme could be extended to any fixed number

of inputs and outputs. The general concept is that the SDFCombiner handles the

reception of data from its assigned input channels and only executes an applica-

tion event handler when the expected number of input data items have arrived.

The combiner also proxies the output data items to ensure that the application

code has sent the correct number. A 2-in-2-out SDFCombiner would require nine

parameters to its constructor:

1. The first channel to receive data.

2. The number of data items to receive from the first channel per activation.

3. The second channel to receive data.
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Figure 5.5: The flow of events through a 2-in-2-out SDFCombiner. The combiner is an event
source in a machine but is also a sink for four other event sources: the event handlers on the left
are implemented by the SDFCombiner and service events from the input channels and output
connectors if using non-destructive output protocols, such as BoundedBuffers.

4. The number of data items to receive from the second channel per activation.

5. A connector for the first destination channel.

6. The number of data items to send to the first destination per activation.

7. A connector for the second destination channel.

8. The number of data items to send to the second destination per activation.

9. An event handler that will be scheduled whenever sufficient input data has

been received. This handler is expected to emit the correct number of data

items to its two destinations. The machine is considered to have failed if the

event handler returns before sufficient data has been sent.

The SDFMachines are sufficiently constrained that the execution of their setup()

method is as predictable as their Java constructors. This enables the characteristics of

their SDFCombiner to be determined by execution of the setup() method during compi-

lation and observing how the machine choses to instantiate the combiner. This technique

avoids the imposition of syntactic constraints on the construction of an SDFCombiner.

The internal architecture of an SDFCombiner can be seen in figure 5.5. An SDFCom-

biner acts as a sink for the input channel events and the ‘data accepted’ events for
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1 public class EventDivider<T> {
2

3 private ArrayList<T> buffer;
4 private final Handler<? super Envelope<List<T>>> dividedHandler;
5

6 public EventDivider(TPIFUnidirectionalProtocol<T> source, int
divide, Handler<? super Envelope<List<T>>> dividedHandler) {

7 ...
8 source.setHandler(new Handler<Envelope<T>>() {
9 @Override

10 public void handle(Envelope<T> info) {...}
11 });
12 }
13 }

Figure 5.6: An abridged definition of the EventDivider.

non-destructive connectors. In turn, the combiner is a single event psuedo-source6 that

will trigger an event when sufficient data items have been received from the input chan-

nels and both output channels are ready to send again. As the SDFCombiner is not a

machine itself it does not have an execution context nor its own event queue. The event

handlers shown on the left of figure 5.5 execute in the context of the host machine, just

as any event handler. However, the SDFCombiner is not a true event source as it invokes

the machine’s ‘SDF event handler’ directly during the execution of the most recent sink

event handler. The event divider and event combiner are convenience utilities provided

by Machine Java to ease the design of behaviour that depends on more than one event.

Event combiners are discussed more thoroughly in section 5.3.3.1.

Event Dividers

The EventDivider class is a single event sink and pseudo-source used to aggregate data

from unidirectional channels into fewer events. A EventDivider invokes the machine’s

supplied event handler with a List of the last n data items from the specified input

channel. An abridged version of the EventDivider’s definition can be seen in figure

5.6. An EventDivider is parametric on the type of data item that it aggregates, and

requires any unidirectional channel as a source of these data items. The application has

to supply an event handler that is capable of accepting an Envelope of type List<T>

6pseudo-sources are false event sources in the sense that they do not have the capability to enqueue events
onto the machine’s event queue, but they do invoke event handlers so giving the appearance of an event
source.
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rather than just <T> as the channel itself requires.

5.3.1.6 Static Application Structure Summary

It has been shown that it is possible to design applications which will evolve a guaran-

teed runtime structure and that this structure easily be extracted at compile-time. This

can be considered equivalent to a truly static description of machine instances but re-

mains independent of an external description language. In addition the SDFCombiner

provides runtime verification of the expected behaviour. However, a significant bene-

fit of fixing an application’s structure and communications quantities is the ability to

use this information to generate a fixed communications schedule in advance of run-

time. An implementation that is capable of translating a Machine Java application’s

behaviour onto a fixed runtime schedule is unlikely to require the complexity or valida-

tion capabilities of an SDFCombiner written in Java.

The ability to express Synchronous Data Flow applications should be interpreted as

a demonstration of Machine Java’s (and by extension, the MAA application model’s)

flexibility and not as a suggestion of an appropriate use-case. Synchronous Data Flow

was originally described as a model for describing digital signal processing algorithms

such that a parallel hardware implementation could be accomplished. If a DSP algo-

rithm were implemented in Machine Java at the level originally intended for SDF the

result would probably be inefficient, unnecessarily circuitous and a poor match for the

strengths of the application model and Machine Java.

5.3.2 Application Platform Independence

All Machine Java applications will execute correctly and without modification on any

platform if:

• An implementation of Machine Java’s internal APIs is available that can support

the processors and abstracted resources (memory and communications) that the

platform specified.

• and the application does not use any non-abstracted resources.

The basic claim for the platform independence of applications is validated by the exe-

cution of many example applications (including the microbenchmarks detailed in sec-

tion5.4.2.3) without modification on three substantially dissimilar architectures: A stan-
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dard Java virtual machine, as a set of processes on a POSIX (Linux) OS, and directly on

the embedded processors of the example Blueshell platform (discussed earlier in section

5.2.2).

In this context an application is considered to execute correctly if all of:

• The behaviour of its event handlers is consistent with the expected behaviour of

the Java code that defines them.

• The behaviour of intramachine event sources and event scheduling is consistent

with the descriptions in chapters 3 and 4.

• The intermachine interactions and isolation is consistent with the descriptions in

chapters 3 and 4.

The application is considered to be the specification of its behaviour and therefore any

encapsulating specifications (such as the application programmers intended behaviour)

cannot be considered.

Unfortunately only trivial applications are capable of meeting the requirements for

platform independence. Interaction with any external entities can only happen via non-

abstracted resources and therefore introduces an element of platform dependence. Even

highly limited interactions such as debug logging are not fundamentally abstracted by

the application model, even though Machine Java supports this activity in the Machine

class. The use of Machine.log() introduces an implicit requirement on a debug logging

resource which is not universally required by the platform model. Any platform that

does not provide such a debug logging capability will not be able execute an application

that uses Machine.log() according to the correctness criteria defined above. This is not

a practical problem if the divergence from the specified behaviour is expected.

Non-abstracted resources in the platform model (subclasses of Resource in Machine

Java) are only tokens to represent the existence of some device or capability, and the

same token is used by an application to indicate utilisation of the represented entity.

Non-abstracted resources are a mechanism to introduce constraints on the platforms

that are capable of executing the application, but they do not necessarily couple the

application to a single specific platform. However, as the procedure required to use a

resource is unspecified both by Machine Java and the MAA models, the use of a highly

domain specific resource (such as an attached peripheral) could result in the effective

coupling of an application to a specific platform.
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Even if non-abstracted resources are excluded from consideration, there are several

situations in which an application can benefit from platform specific information that

is not (and cannot generally be) provided by Machine Java or the application model.

Examples of useful platform dependent information includes:

processor count Applications that have large quantities of easily subdivided work (so-

called Embarrassingly Parallel problems) will likely execute most efficiently when

there is a machine contributing to the task on each processor of a platform. Allo-

cating too few machines risks underutilisation of the platform and too many ma-

chines will result in an increased proportion of processor effort being spent on the

management of machines rather than useful work. However, applications cannot

directly determine the number of processors available at runtime nor the load-

ing of each processor. Java does provide a basic facility to determine the number

of logical hardware threads currently available via the Runtime.getRuntime().

availableProcessors() API but this is not supported in the current formulation

of Machine Java, and the platform model does not guarantee that any facts about

the complete, global platform are knowable at runtime. Each processor in a plat-

form may only have a awareness of other processors within a certain local area.

Even if an application can determine the number of idle or under-utilised proces-

sors there may be other factors that affect the wisdom of allocating more machines

in an attempt to achieve higher throughput. Machine Java cannot elegantly express

non-functional intentions for machine allocations (such as "only if this would in-

crease throughput", or "if there is spare power") and this is a clear opportunity

for further research. Some non-functional objectives, such as power-awareness of

machine allocation, can be crudely emulated via processor resource availabilities

and machine resource requirements.

available memory Applications may be able to take benefit from using additional mem-

ory if it is available, but also function correctly if it is not. Java’s soft references

provide a mechanism for applications to use memory optimistically. In standard

Java objects that are only soft-referenced will be garbage collected before an Out-

OfMemeoryError is thrown. This mechanism would only work within a single

machine, is not supported by Network-Chi, and does not address machines which

can optionally exist but have high necessary memory requirements when they do

exist.
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Machine Java does not allow a machine to be conditionally requested depend-

ing on the availability of desired but not required memory; the construction of a

new machine is necessarily conditional on the host processor meeting the memory

requirements of a new machine.

power and thermal constraints The electrical power consumption and heat output of a

platform will often be dependent on the activities of the software being executed.

Machine Java does not have a way for an application determine the acceptable

power or thermal constraints, nor a way to react to changes in these constraints.

This is a particularly important limitation for platforms where power and thermal

constraints are not enforced in hardware but can be violated by software activity.

Such platforms can only be adequately addressed by introducing dependencies

on the relevant sensors and regulators into the application, but even this may be

difficult if the platform’s constraints are more complex, such as where the power

constraint varies as a function of time across multi-processor region.

5.3.3 Complex and Dynamic Application Structures

In section 5.3.1.5 the ability of Machine Java to express static application structures was

considered but the MAA application model does not require an application’s runtime

structure of machine instances to be statically extractable, and therefore Machine Java

does not either; Machine Java applications have the freedom to dynamically request

machine instances. The complexity of a machine’s event handlers is only limited by

the specification of the Java language and Machine Java does not impose additional

constraints on when a new machine can be requested via one of the newMachine()

methods. This means that new machines can be requested in response to stimulus

from other machines, from interaction with resources, or according to the results of any

expressible computation.

Applications can contain any number of machine instances at runtime and the re-

lationships between an application’s machines can form arbitrarily complex topologies.

Familiar patterns of parallel computation from fine-grained pipeline architectures to

coarse-grained replication of tasks (such as in a client-server arrangement) can all be

modelled using actor orientation and so are all implementable in Machine Java. Natu-

rally, other more exotic arrangements including rings, grids, toroids, cubes, hypercubes,

trees and entirely irregular arrangements of machines are also expressible in Machine
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A
Sends at 5Hz 

C
Processes at 4Hz 

nB
Sends on receive 

m

Figure 5.7: An example application with three machines A, B, and C that are formed into a
pipeline arrangement. Regardless of B and C’s channel buffer lengths, m and n, messages will
always eventually be lost as C cannot process data fast enough and B does not control the rate of
data generation.

Java.

Although complex arrangements of machines can be constructed at runtime in Ma-

chine Java, coordinating communication within a machine is not necessarily straightfor-

ward. As explained in section 3.2.2.1, all machines are mutually asynchronous and any

temporal relationship established between a pair of machines only exists as long as it is

actively maintained via communication. This asynchrony complicates even simple ar-

chitectures where a machine, B will send data to another machine, C, in response to the

receipt of a message from a third machine A that is unrelated to C. This arrangement is

illustrated in figure 5.7. If it is acceptable for messages to be lost then there is no issue:

destructive channel protocols such as OverwritingBuffers can be used by machines B

and C. If it is unacceptable for messages to be lost then machine A must be slowed

down to accommodate C’s inability to process data as fast as A can produce it.

Using non-destructive communications channels (such as a BoundedBuffer) in B

and C will ensure that no data is lost during operation but machine B would eventually

crash (due to a PreviousDatumNotAcceptedException exception (see section 4.4.1.1)

being thrown from the non-destructive buffer connector) when it attempts to forward

a datum when C’s buffer is already full. As all send operations in Machine Java are

non-blocking, the use of non-destructive channels alone is not sufficient to produce a

functional pipeline. Application code must always wait for the framework to accept

the most recently sent data item before attempting to send another, and data is only

accepted by a channel if there is an available slot in its receive buffer for the item.

5.3.3.1 Event Combiners

In the example shown in figure 5.7, machine B can effectively rate limit A’s production

of messages by only reading from its channel when C can be sent to. Data is received

from a channel’s internal buffer only when the Envelope provided to the channel’s event

250



5.3 Programming with Machine Java

1 public class EventCombiner<A, B> {
2 public EventCombiner(Handler<? super Pair<A,B>> combinedHandler)

{...}
3

4 //Handlers for input event sources
5 public Handler<A> getLeftHandler() {...}
6 public Handler<B> getRightHandler() {...}
7

8 //Preset the inputs:
9 public void rightSideReady() {...}

10 public void leftSideReady() {...}
11 }

Figure 5.8: An abridged definition of the EventCombiner. An event combiner executes an
application defined handler when both input event handlers have been invoked since the combiner
was last triggered.

handler is ‘opened’ by calling it’s getPayload() method. Therefore application code is

able to delay the receipt of data items by delaying its call to Envelope.getPayload().

This is further complicated by the non-preemptive execution of event handlers. In the

situation where B is handling a data received event, but the onwards channel to C is

not yet ready to accept another send, B must save the unopened Envelope in a private

data structure and return from the event handler to wait for the ‘data accepted’ event

handler to be invoked. Alternatively B could repeatedly attempt to send the new data

item to C, each time catching the PreviousDatumNotAcceptedException and trying

again until successful, but this behaviour results in the starvation of all other event

sources in B. Using the getPayload() deferral strategy it is possible for machines to

create back-pressure that will prevent other machines from overwhelming it with data,

while also remaining responsive to other event sources.

If machine A uses a periodic event source to trigger the transmission of data to B

then it will also require an event deferral strategy. In this case it should only send when

the channel to B is ready and when timed event has also occurred. The requirement that

some behaviour is dependent on more than one event occurs so frequently in Machine

Java applications that it justified the creation of a general purpose Event Combiner.
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Figure 5.9: Event combiners enable the application in figure 5.7 to proceed only as fast as the
machines and buffer space will allow.

5.3.3.2 Time Driven Behaviour with Event Combiners

Time driven behaviour fits naturally into Machine Java’s event-driven programming

style, even when intended behaviour is dependent on multiple prerequisite events. The

EventCombiner class provides a clean and type-safe mechanism for triggering applica-

tion code only after multiple events have occurred. The abridged definition of an event

combiner can be seen in figure 5.8: Combiners provide two event handlers that can be

supplied to any other event source in the same machine. As soon as both of the com-

biner’s input event handlers have been executed the combiner will invoke the handler

supplied to its constructor. This handler must accept a Pair<A, B> where A and B match

the type parameters for the ‘left’ and ’right’ side of the combiner, respectively. Figure 5.9

shows how event combiners could be used to ensure that each machine only sends data

when appropriate. In this example, machine A’s event combiner would require a han-

dler with the type: Handler<Pair<TimeEvent, Nothing>> and would need to have the

‘data accepted’ side preset immediately after construction as connectors can only trigger

a data accepted event after the first data item has been sent.

An example of a more complex arrangement of event combiners is used in the im-

plementation of the LevelSensor machine (see figure 3.2), and these are shown in figure

5.10. The LevelSensor machine uses two combiners to execute a handler only after

three event sources are ready. Any number of event sources can be combined by chain-

ing event sources as in figure 5.10 but it can be seen that even with only three events

combined the handler’s type signatures are becoming very large. The application’s ulti-

mate event handler will have as many Pair<A,B> containers in its type signature as the

number of event combiners that were used to trigger the composite handler. The Java

compiler is able to verify that the final event handler’s use of its parameters is consistent

with their types, but if two or more of the input event sources share the same parameter

type it is possible (and quite plausible) for a type-safe confusion of the event parameters
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1 ...
2 //A combiner that fires when both sensors are ready and when the

timed interval has happened.
3 private EventCombiner<TimeEvent, Pair<Envelope<Integer>, Envelope<

Integer>>> timedPollCombiner
4 = new EventCombiner<TimeEvent, Pair<Envelope<Integer>,Envelope<

Integer>>>(
5 new Handler<Pair<TimeEvent, Pair<Envelope<Integer>,Envelope<

Integer>>>>() {
6

7 public void handle(Pair<TimeEvent, Pair<Envelope<Integer>,
Envelope<Integer>>> info) {

8 //retrieving the values from the pairs prone to errors:
9 int sensorAValue = info.right.left.getPayload();

10 int sensorBValue = info.right.right.getPayload();
11

12 //Calculate level as the mean of the inputs:
13 currentTankLevel = (sensorAValue+sensorBValue)/2;
14

15 if (currentTankLevel>EMERGENCY_THRESHOLD) emergency.openValve.
signal();

16

17 //query the sensors again:
18 querySensors();
19 }
20 });
21

22 //Combine the two sensor’s data arrivals into one event:
23 private EventCombiner<Envelope<Integer>, Envelope<Integer>>

sensorResponseCombiner = new EventCombiner<Envelope<Integer>,
Envelope<Integer>>(timedPollCombiner.getRightHandler());

24

25 protected void internal() {
26 ...
27 //A periodic task to poll the sensors: (event combined with

sensor responses)
28 new Period(POLL_MILLIS, timedPollCombiner.getLeftHandler());
29 }
30 ...

Figure 5.10: An excerpt from the LevelSensor’s implementation. This machine uses two event
combiners to determine when to update it’s currentTankLevel and to check for an emergency
condition.
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Figure 5.11: The arrangements of the dining philosophers at a table. This is the static machine
type dependency graph for an application where each philosopher and fork was a distinct Java
class. All rectangles represent a machine type and PentagonalTable is the application’s start
machine.

to occur. A full listing for the example LevelSensor implementation is reproduced in

appendix B.3

5.3.4 Concurrency Without Sharing

A major consequence of the application model is that there are no situations in which

locks, semaphores, monitors or any other mutex primitives are required. This is because

the model provides no opportunities for concurrent access to the same data structures.

Data within a machine can be shared between event handlers, but a single machine’s

event handlers never execute concurrently. Each machine executes concurrently with

respect to all other machines but no two machines can have access to the same data or

resources.

As there is never shared concurrent access to data, the producer-consumer and reader-

writer problems do not occur. In particular the producer-consumer problem (where two

processes intend to communicate via a bounded buffer stored in shared memory) is not

only inexpressible in an machine-oriented context but communication via a bounded
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1 public class Fork extends Machine {
2 protected Philosopher owner;
3

4 public final RemoteProcedureCall<Nothing, Boolean> gainFork = new
RemoteProcedureCall<Nothing, Boolean>(1, new Handler<
ReturnableEnvelope<Nothing, Boolean>>() {...});

5

6 public final BoundedBuffer<Philosopher> releaseFork = new
BoundedBuffer<Philosopher>(1, new Handler<Envelope<Philosopher
>>() {...});

7

8 protected void internal() {
9 //Forks have high priority compared to philosophers and the

release() has higher priority than gain()
10 setPriority(5);
11 releaseFork.setPriority(5);
12 }
13 }

Figure 5.12: An abridged reproduction of a Fork machine. The owner field records a reference to
the current philosopher that has control of the Fork, or null if the Fork is idle. The highlighted
statement is essential to prevent live-lock of the application when executed on a single processor
platform. This class can be found in full in appendix C.4.1

buffer is explicitly addressed by the application model.

5.3.4.1 Dining Philosophers in Machine Java

A third common problem in concurrent computing is the so-called Dining Philosophers

Problem [83]. This problem is not about correctly coordinating processes that intend

to use shared memory, but it is a broader problem about sharing resources between

concurrent entities. The dining philosophers problem is about ensuring the behaviour

of five hungry philosophers such that they do not starve in an environment where

two forks are required to eat but there are only five forks in total. The philosophers

are typically seated at a round table with a fork in between each philosopher. Each

philosopher can only eat using their two adjacent forks. This arrangement can be seen

in figure 5.11, which is the extracted machine dependency graph of a Machine Java

application.

The dining philosopher’s problem is an instructive example for several reasons:

• In this problem the forks are effectively a shared resource that needs to be ac-
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1 newMachine(Fork1.class, new Handler<Fork1>() {
2 @Override
3 public void handle(Fork1 info) {
4 fork1 = info;
5 newMachine(Fork2.class, new Handler<Fork2>() {
6 @Override
7 public void handle(Fork2 info) {
8 fork2 = info;
9 newMachine(Fork3.class, new Handler<Fork3>() {

10 @Override
11 public void handle(Fork3 info) {
12 fork3 = info;
13 newMachine(Fork4.class, new Handler<Fork4>() {
14 @Override
15 public void handle(Fork4 info) {
16 fork4 = info;
17 newMachine(Fork5.class, new Handler<Fork5>() {
18 @Override
19 public void handle(Fork5 info) {
20 fork5 = info;
21 //Create our philosophers!
22 setupMachine(Philosopher1.class,
23 p(1, p(PentagonalTable.this, p(fork1, fork2))), null);
24 setupMachine(Philosopher2.class,
25 p(2, p(PentagonalTable.this, p(fork2, fork3))), null);
26 setupMachine(Philosopher3.class,
27 p(3, p(PentagonalTable.this, p(fork3, fork4))), null);
28 setupMachine(Philosopher4.class,
29 p(4, p(PentagonalTable.this, p(fork4, fork5))), null);
30 setupMachine(Philosopher5.class,
31 p(5, p(PentagonalTable.this, p(fork1, fork5))), null);
32 }
33 });
34 }
35 });
36 }
37 });
38 }
39 });
40 }
41 });

Figure 5.13: An excerpt from the internal() method of the PentagonalTable machine.
Even with only five Philosophers and Forks the setup is quite convoluted. Note: p constructs
a Pair from its two arguments.
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Dynamic Dining Philosophers
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Room

nth
Fork

First
Philosopher
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Constructed 
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Figure 5.14: The elaboration process for the dynamic dining philosophers application. The first
Philosopher constructs both of its Forks and the last Philosopher constructs none.

Dining

Philosopher

Fork

Figure 5.15: The static machine type dependency graph for the dynamic dining philosophers
application. Contrast with the application structure shown in figure 5.11.
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cessed by more than one machine. ‘Shared’7 resources are well represented as

their own machine, but there is also no choice: The only entity in an application

that can hold state and be accessed from multiple machines is another machine.

The representation of a fork as a machine can be seen in full in appendix C.4.1,

with the important details illustrated in figure 5.12. A Fork exposes two channels

to philosophers: a RemoteProcedureCall used by a philosopher to acquire a fork

for their exclusive use, and a BoundedBuffer that is used to notify the Fork that

it is no longer in use. Only the philosopher that currently has ownership of a fork

is allowed to release it.

• During execution its desirable for each Philosopher machine to report each time

it has been able to acquire its necessary Forks and has eaten. The natural approach

is to log a message via Machine.log() but this mechanism is not safe for use on

multiple machines simultaneously: It just maps to Java’s System.out but with

additional machine-specific information. When executing on a JVM this is not too

problematic as logged messages from all machines will be interleaved and logged

to the console. However, Network-Chi does not provide atomic console access

so simultaneous logging results in unintelligible output as messages can become

interleaved at a character level of granularity. The dining philosophers problem is a

parable for the use of shared resources, and the debugging log is certainly a shared

resource. The solution is to use the start machine (PentagonalTable in figure 5.11,

and Dining in appendix C.4) as the arbiter of Machine Java’s logging capability.

All philosophers are issued with a reference to the ‘dining room’ machine and send

messages to this machine which will log to the console on their behalf. Attention

must be paid to the message rates to the logging arbiter and the buffer size of the

arbiter’s channel as message logging can easily become a performance bottleneck.

• The implementation of the dining philosophers problem in Machine Java high-

lights the differences between a static application structures, such as the one shown

in figure 5.11 and more dynamic application constructions. The static application

structure shown in figure 5.11 has advantages for resource planning and a clar-

ity of structure but it introduces significant code duplication and requires more

programmer effort to initialise the application: the programmer must explicitly

7In the sense that multiple machines require access.
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instantiate each machine individually. An excerpt of the application initialisation

from the PentagonalTable machine is shown in figure 5.13. It is clear that this

approach to application description does not scale programmer effort gracefully;

it is a non-trivial amount of work to change the number of philosophers: Each

Philosopher class has a type signature which encodes which of the Forks it can

accept. For example:

1 public class Philosopher1
2 extends SetupableMachine
3 <Pair<Integer, Pair<PentagonalTable, Pair<Fork1, Fork2>>>>

A much more elegant construction of the dining philosophers problem in Machine

Java uses only one class for all philosophers and one for all forks. The dynamic

dining philosophers application is reproduced in appendix C.4. The benefits of

this construction are significant:

– There are fewer classes and therefore a smaller output code size.

– There is no redundant replicated code, so the application is much easier to

update if the behaviour of forks or philosophers is changed.

– The number of Philosopher machines at runtime can be configured trivially

by altering a constant in the Dining class.

– Programmer errors in the assignment of specific forks to philosophers (lines

22-31 of figure 5.13) are impossible as the assignment performed algorithmi-

cally.

In this construction each the application builds itself at runtime. The Dining ma-

chine creates the first Philosopher. Each Philosopher constructs the Fork re-

quired and the next Philosopher that will share one of its Forks. This application

elaboration procedure is illustrated in figure 5.14. The dynamic elaboration of

the philosophers does have two notable disadvantages: the extractable application

structure is quite minimal (shown in figure 5.15) and it requires much more effort

to understand and reason about the elaboration process.

• Finally, the dining philosopher’s problem exposes more challenges of designing

reliable applications in a machine oriented style, and with Machine Java in par-

ticular. One such challenge is avoiding implicit dependences on event ordering
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across multiple machines. The application model makes it clear that only the event

ordering within a machine is specified, so if an application makes assumptions on

the ordering of events in separate machines then it is possible it will fail.

The philosophers in these example applications use a basic strategy for attempting

to eat:

1. Attempt to acquire the first fork, if this fails try again.

2. While owning the first fork, attempt to acquire the second fork, if this fails

try to acquire the second fork again.

3. While owning both forks, eat for a duration.

4. Release both forks and repeat from the start.

This procedure avoids deadlock as all philosophers share the same total order-

ing of forks; all philosophers will attempt to gain the least recently instantiated

fork first. However, this procedure does make a subtle assumption about inter-

machine event ordering and is therefore faulty. As the procedure releases the

forks and begins the procedure again immediately, there is an assumption that

the forks will have been released and will be available for acquisition by other

philosophers before this philosopher requests the fork again. This appears to be

a reasonable assumption as the fork may have a queued acquisition request from

its other philosopher and this can be assumed to have an equal chance of success

to the local philosopher. However, in the case of a single processor platform Ma-

chine Java has entirely predictable and deterministic intermachine8 event ordering

and the ordering does not agree with this assumption. The following happens on

Network-Chi targets:

1. Another philosopher sends a request for this philosopher’s first fork. The

event for this message is queued.

2. The philosopher finishes eating.

3. The philosopher sends a ’release fork’ message to both forks.

4. These messages create events which are appended to the processor’s event

queue.

8All machines share an event queue on the same processor when using the Network-Chi implementa-
tion.
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5. The philosopher starts its eating cycle again and sends a request to the first

fork.

6. The event for this message is appended to the processor’s event queue.

7. All events in the queue are handled before the release fork messages are

processed. So the request issued by the other philosopher in step 1 is handled

and rejected as the fork has not yet been released.

8. The release messages are processed and the forks are released.

9. The next event in the queue is this philosopher’s request for the first fork

which succeeds.

10. The philosopher continues its procedure to eat, which will succeed.

This sequence of events will repeat forever resulting in a live-lock of the appli-

cation. A philosopher will always be able to eat repeatedly and another will be

starved.

This problem can be addressed in the uniprocessor case by increasing the priority

of Fork machines, and increasing the priority of the Fork’s releaseFork channel.

This is highlighted in figure 5.12. However, more complex protocols are necessary

to ensure application-wide liveness on a realistic platform.

5.3.4.2 Deadlocks in Machine Java

In addition to the live-locks that are possible in any distributed system, Machine Java

provides a facility that can result in network deadlocks on some platforms. There is

only one blocking operation provided in Machine Java, for the creation of a machine

via the newMachine() method, but this is sufficient to deadlock a simple network if it is

not used carefully. Any application where more than one machine will construct other

machines is vulnerable to deadlock if the platform’s internal API implementation uses

non-preemptive multiplexing of machines to processors. Machine Java’s implementa-

tion on Network-Chi uses non-preemptive machine multiplexing, so this is not only a

theoretical concern.

As a concrete example, consider a basic platform with two processors that multiplex

machines non-preemptively. A processor in this platform is unable to service requests

to create new machines while it is blocked waiting for a remote processor to create a
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machine for it. If an application loops creating machines which in turn also create ma-

chines then a deadlock becomes highly likely. The cause of the deadlock is that both of

the processors become stalled waiting for the other processor to service their request for

a new machine. If the network media is capable of re-ordering interprocessor messages

and the Machine Java internal management messages (in this case MachineControl and

MachineControlResponse, see section 4.4.4) are reordered from processor B, then dead-

lock becomes guaranteed without even repeated machine requests on processor A.

Machine model applications have no way to specify where machines should be al-

located at runtime, so there is no way that a developer can encode constraints to a

newMachine() request that would prevent the deadlock described here. The most uni-

versal solution is to avoid using the blocking version of the newMachine() API in favour

of the event-driven newMachine() and setupMachine(). If an application is simple

enough that only the start machine requests other machines, or where the application is

structured to avoid simultaneous machine requests, then it can safely use the blocking

newMachine() API. This API has the advantages that it is simpler to use and it can

throw exceptions if there was a problem requesting the new machine.

5.3.5 Fault Tolerance in Machine Java

Java’s abstraction of memory and processing easily leads to application design with the

implied fault hypothesis [112] that there will be no failures in application-visible mem-

ory or execution. Within the context of a single event handler, Machine Java does not

provide any substantial additional benefits for fault tolerance. However, machines are

not invalidated if an event handler crashes by allowing an exception to propagate out,

and in this sense machines can be considered to be more resilient execution contexts

than standard Java threads. If an exception propagates out of the method started by a

standard Java thread then the thread is abruptly terminated. The ability of a machine

to survive a failed event handler does not imply that the machine’s data structures are

consistent, therefore the additional resilience of a machine compared to a thread is not

necessarily additional fault tolerance.

The strong isolation of machines does have implications for the fault tolerance of

whole applications: The failure of a machine cannot render the internal state of any

other machine inconsistent. Machine Java does not explicitly provide fault tolerance

to applications, but does ensure that failures of application code do not automatically
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propagate between machines.

Interaction between machines via non-destructive channels, such as a Bounded-

Buffer or any bidirectional channel type, establishes a synchronisation relationship be-

tween the machines. For the sender machine this relationship exists only between the

transmission of the ‘request to send’ message and the receipt of the ’clear to send’, but

even this transient synchronisation relationship introduces vulnerability to failure if the

receiver machine is defunct. All ordinary intermachine communication is non-blocking

in Machine Java, so an attempted send to a defunct machine via a non-destructive chan-

nel connector only implies the connector becomes unusable as the datum is never suc-

cessfully sent; the machine will continue to execute as normal. Machine Java does

not provide any mechanism to cancel a send to a non-destructive channel so unusable

connectors represent a permanent loss of memory. Machines that interact using non-

destructive channels can accommodate fault hypotheses with bounded transmissions to

failed remote machines.

Destructive communications channels (such as the OverwritingBuffer) do not re-

quire a handshake between machines so allow fault hypotheses with unbounded num-

bers of transmissions to failed remote machines. In both destructive and non-destructive

cases, application code can use timed event sources (described in sections 3.2.3.2 and

4.4.3) to detect potential failures of remote machines.

In the case of the total hardware failure of a NoC processor, it would be possible

for the failed processor’s local router to automatically reject requests for new machines.

This is because the MachineControlMessage class used by Machine Java’s Processor-

Manager to request machines has a fixed size and a predictable serialised layout. A

router, when in ‘failed processor’ mode would only have to determine that the network

packet is a Java object and detect that the object is a MachineControlMessage via the

type identifier present in byte indices 1-4 of Network-Chi’s on-network object format.

The MachineControlResponse message used to indicate a successful or failed machine

creation also has a fixed size and layout, and this would enable a router to automatically

respond with a hardcoded but valid MachineControlResponse to indicate that the ma-

chine could not be created. A serialised MachineControlResponse is 76 bytes in length

and so it would require ten LUTs of a Xilinx Virtex 7 architecture FPGA9 to embed a

fixed failure response message into a network router.

9Every Virtex-7 series LUT can implement a 1×64bit ROM [229].
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5.3.5.1 Handling Failure in Machine Java

It is a limitation of this formulation of Machine Java that it does not provide any high-

level facilities to assist with handling failure. Failures of hardware (such as processor

or network failures) and failures in application code can be tolerated at a basic level

by implementing communications protocols on top of the destructive channel protocols.

Significant architectural work is required to build a resilient application using destruc-

tive channels: no guarantees of message delivery or notification on failure are provided

by the framework with these channels. The Machine Java channels are primarily de-

signed to guarantee the memory safety (the impossibility of buffer overruns) in receiver

machines.

Machine Java also does not provide any built-in mechanism to detect the failure of re-

mote machines automatically. It is possible to introduce Erlang-style failure notification

semantics into Machine Java by introducing a new class of Machines for this purpose: A

ReliableMachine class could extend SetupableMachine, accepting a reference to an-

other ReliableMachine as its setup parameter. The machine supplied as the parameter

would be the reliability ‘monitor’ or ‘parent’ of the new machine. The ReliableMachine

class would predefine a non-destructive OverwritingBuffer channel ‘machineFailure’

which would be sent a message on the event of a failure in the event handler in one of the

machine’s dependent ReliableMachines. To ensure that failures in a ReliableMachine

’s event handlers are propagated to it’s parent machine, the ReliableMachine should

also implement an event-handler factory: Usually application code directly instanti-

ates instances of Handler<...> to handle events, but ReliableMachine event handlers

should be requested from the machine’s own handler-factory that intercepts exceptions

thrown by the machine’s event handlers and then forwards them to the parent ma-

chine. The handler factory would produce ReliableHandler objects. The Machine

Java runtime could also be extended to enforce this event-wrapping mechanism by

only permitting ReliableMachines to enqueue events that are handled by subclasses

of ReliableHandler.

ReliableMachine classes are not inherently fault tolerant but would permit more

reliable applications by allowing failure notifications to be automatically propagated

between machines. Even more complex schemes such as automatic machine failover or

robust n-modular redundancy could be implemented with more layers of abstraction on

top of ReliableMachine.
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5.4 Overheads and Scaling

In chapter 3 the claim was made that machine oriented applications would be scalable,

portable and capable of execution on resource constrained platforms. In order to eval-

uate these claims it is necessary to have a realisation of the model, and chapter 4 pre-

sented Machine Java, a Java-language realisation of the Machine Abstract Architecture.

Machine Java also furthers this thesis’ overall objective of demonstrating that the use

of an actor oriented programming model enables non-cache-coherent multiprocessor

networks on chip to be programmed with a familiar general purpose programming

language.

Having already considered a number of evaluation criteria in the previous section,

this section addresses the following evaluation criteria related to the overheads and

potential for scalability:

• What are the static overheads of a machine Java application (how much read-only

memory is required for a Machine Java application) and to what extent are these

reasonable? This is considered in the next section, 5.4.1.

• What is the overhead for communication between machines at runtime, and does

this indicate scalability? This is considered in section 5.4.3.

• What are the computation overheads of the Machine Java runtime, and does this

also indicate scalability? This is considered in section 5.4.4.

5.4.1 Static Memory Consumption

The static memory consumption of an application refers to the absolute minimum re-

quirements for read-only memory. Applications compiled with Network-Chi require

read-only memory for program code and string literals. As this memory is read-only it

can be safely shared between multiple processors without any implications for the func-

tional correctness of an application. The coherence or existence of processor-local caches

has no impact on the execution of an application, but these factors can certainly impact

non-functional characteristics including performance, timing and power consumption.

As discussed in section 5.3.1.2 there is no requirement that every processor on a

platform has access to the same program code. Each processor only needs to have

access to program code for the framework and the machines that are planned to be
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allocated to the processor. Ideally the platform implementation on each processor will

have some awareness of the capability of processors in its local area to host each type

of machine, but this is not required. If a machine is requested from a processor without

access to the requested machine type’s code then the creation will fail and a failure

MachineControlResponse will be returned to the requesting machine. The dynamic

machine constructor (EssentialReflection.createMachineDynamic(), see section 4.6) used by

a processor’s ProcessorDriver to instantiate machine objects at runtime will return

null if the executing code was compiled without support for the specified machine

type.

In this section the figures are for binaries that include support for all machines in

the application. As the Network-Chi compilation workflow only includes code that is

potentially used it is not easy to calculate the impact that excluding a machine will

have on static memory consumption. For instance, some classes are likely to be used by

multiple machines, while other functionality that would be expected to be shared (such

as framework code) may only be used by a single machine. However, Network-Chi

exposes a command-line switch to exclude named machine classes from the compiled

binary. It is easy to support this workflow within Network-Chi: it considers excluded

machines to be uninstantiated classes and therefore they do not qualify as live code for

the purposes of code generation.

Including code within an application to support experimental data collection can

have a considerable confounding effect on the static memory consumption if it depends

on Java libraries that were not already used by the application.

There are several factors that influence the overall static memory consumption of an

application:

• The application itself, the libraries that it depends on, and their transitive depen-

dencies.

Table 5.3 summarises the twenty largest contributions to the SpeedTest (see sec-

tion 5.4.2.3) microbenchmark’s static memory consumption. It can be seen that the

string literals used by the application are the single largest contributor to static

memory consumption, followed in a distant second place by the virtual method

dispatch functions. Only one out of the twenty largest memory consumers is

defined by the application. Nine of the contributors are standard Java libraries,

either compiled unmodified or replaced by Chi to improve suitability for embed-
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(bytes)
Component Origin code data total

string literals all 9,310 26,600 35,900
method dispatchers all 13,000 0 13,000
SimplerClass Replacement 5,620 2,330 7,950
GarbageCollector Chi 5,590 0 5,590
SimplerHashMap Replacement 4,310 0 4,310
BluetilesNetwork Chi 4,240 0 4,240
Nexus.NexusTPIFRx Machine Java 3,850 0 3,850
ArrayList Java 3,670 0 3,670
BluetilesMicroblazeRuntime Chi 3,660 0 3,660
ProcessorDrv Machine Java 3,400 0 3,400
Utilities Chi 3,330 0 3,330
PriorityQueue Java 3,270 0 3,270
C and Java entry points Chi 2,850 8 2,870
SpeedTest Application 2,840 0 2,840
CastingString Replacement 2,650 0 2,650
ArrayDeque Java 2,590 0 2,590
LinkedList Java 2,590 0 2,590
Collections.SynchronizedMap Java 2,540 0 2,540
AbstractMap Java 2,420 0 2,420
Nexus Machine Java 2,360 0 2,360

Total for largest 20 all 84,000 28,900 113,000
Total all 168,000 28,900 197,000

Table 5.3: The 20 largest contributors to the overall static memory consumption of the
SpeedTest microbenchmark. Rows in teletype font indicate compiled Java classes. In to-
tal there are 203 components that contribute to SpeedTest’s static memory consumption. The
data in this table is from a build with the Bs, -Os, min set of characteristics described in figure
5.16
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ded contexts. The remaining eight largest contributors are runtime and framework

components that originate from Machine Java and Network-Chi.

The SimplerClass class is Network-Chi’s implementation of java.lang.Class.

Although SimplerClass is the largest single contribution to the application’s size

from a Java class, much of its content is actually generated by Network-Chi at

compile time. In particular the SimplerClass provides the garbage collector with

information about where references are located in each object type. This table

of reference offsets is the reason for SimplerClasses data memory consumption.

The garbage collector itself is the single largest consumer of code memory from

non-generated Java code.

When compiling for the Blueshell target (as is the case in table 5.3) the applica-

tion will execute directly on the processor with no underlying operating system.

Slightly more work is required in the runtime to support a bare-metal environ-

ment but there may also be differences in the relative efficiencies of each target’s

C compiler.

• The features enabled in Network-Chi during compilation. Network-Chi allows a

number of Java features to be selectively enabled at compile-time. The features

that have the most important effect on the code size (and runtime performance) of

an application include:

Virtual machine generated exceptions During execution of standard Java the JVM

will instantiate and throw exceptions if the code performs an operation on a

runtime value that is not appropriate. These exceptions include:

– NullPointerException if a reference to null is used as an object (for

field accesses, synchronisation or method invocation).

– ArrayIndexOutOfBoundsException when an attempt is made to access

an element beyond the valid bounds of an array.

– ClassCastException when an object is assigned to a reference with an

incompatible static type.

– ArrayStoreException when an attempt is made to store an object in an

array with an incompatible runtime member type. The static type of an

array reference is insufficient to determine if an object can be stored in an

array.
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– ArithmeticException when a divide by zero is attempted.

Considerable savings in code size can be achieved by disabling support for

one or more of these virtual machine exceptions, but disabling any of these

causes a significant deviation from Java’s expected semantics and will frus-

trate attempts to debug a faulty application. Applications which are written

to depend on VM generated exceptions for their correct operation will no

longer function correctly if these are disabled. The behaviour of many oper-

ations becomes target specific when VM generated exceptions are disabled.

For example, when the feature for NullPointerExceptions is disabled any

code that invokes a method on a null reference will apparently succeed if

the method does not use its this reference, but if it does use this the out-

come will depend on the target’s response to a null-pointer dereference. On a

POSIX operating system it is likely the process will crash with a segmentation

violation or similar, but on an embedded processor such as the MicroBlaze

the outcome can vary from triggering a hardware exception, to entirely un-

defined behaviour.

Ordinary, application allocated and thrown exceptions still operate as ex-

pected even when all VM generated exceptions are disabled.

Class names The ability for an application to obtain a String representing the

name of an object’s class at runtime is expensive as it requires a (sometimes

long) string literal for every instantiable class in the application. Java’s run-

time representations of classes (the Class<?> class), which can be obtained

via expressions on class literals (Machine.class) and objects (someobject.

getClass()) may not even be used in an application but this feature is used

by Machine.log() to record a human-readable description of the machine

that invoked it. The ability to print the type of an exception is essential to

debugging efforts and this is completely dependent on runtime support for

class names.

This feature only strongly affects the read-only data of an application as it

contributes to the used string literals. Disabling class name support has no

functional consequences for most code. It is not expected that Java code will

predicate its behaviour on the contents of the String returned by getName()

on a Class object, Java’s polymorphism and instanceof operator are much
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safer techniques for switching behaviour according to the runtime type of an

object.

Stack trace support The ability to print a human-readable call-stack trace associ-

ated with an exception is indispensable for debugging code, but is also ex-

tremely expensive. Stack trace support implies a huge burden for both code

and data memory consumption. Significant additional code is required for

tracking, manipulating and printing call stacks. Additional data consump-

tion is required as every class name, method name and filename containing

the classes must be available for printing at runtime. As with class name

support, sensible Java code does not predicate its functional behaviour on the

contents of exception stack traces, so there are no functional consequences to

disabling this feature.

• The optimisation level of the downstream C compiler used to build the target-

specific binary. The popular GCC [67] family of compilers support several op-

timisation levels ranging from ‘none’ to aggressive (and often unsafe) optimisa-

tions [2, §3.10].10 GCC’s -Os (optimise for minimum code size) is the most use-

ful for Network-Chi. Applications compiled with -Os benefit from considerably

reduced code size but also improvements in execution performance. Execution

performance is improved because size-optimisation includes all safe optimisations

that do not typically also increase binary sizes, and because smaller code is more

likely to fit into whatever processor cache is available.

An application compiled via Network-Chi and GCC will also see an apparent

increase in available runtime memory; code-size optimised applications can work

on more objects before an OutOfMemory exception is thrown by the allocator. This

is because the garbage collector implementation (see section 4.7.2.5) considers all

objects referenced by the stack to be live, and Chi emits C-code that uses single-

assignment for temporary variables. Even simple Java methods can have hundreds

of temporary variables in the C implementation. When this single-assignment

style of code is compiled without optimisations every method that is live on the

call stack will continue to keep alive every object that it has ever referenced with

10https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html provides an exhaustive list of sup-
ported optimisation options.
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Figure 5.16: A plot of the SpeedTest application’s static memory consumption when built with
various combinations of options.

a unique expression. However, when optimisations are enabled the C compiler

will reuse stack memory and registers for values that are never used again, and

this allows objects that have finished their lifecycle to become collected even if the

method that allocated it has not yet returned.

The impact of these various compilation options on the SpeedTest microbench-

mark’s (see section 5.4.2.3) static memory consumption is illustrated in figure 5.16. It

can be seen that the target architecture has a small impact on code size and no impact

on data size. Each of the -Os and min build options have a dramatic impact on the

application’s code size, and can be combined to produce binaries with less than 20% of

their original static memory requirements. As one might expect, the size optimisation (-

Os) has no impact on data consumption but excluding non-essential Java features (min)

substantially reduces compiled-in data.
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Figures 5.17 and 5.18 plot code and data requirements for a selection of twelve Ma-

chine Java applications. The applications considered include:

Microbenchmarks discussed in section 5.4.2.3.

NoMachine This application never starts the Machine Java framework; Start.start()

is never invoked.

AMachine Starts the framework and logs “Hello World!” in the start machine’s inter-

nal() method. This application contains almost no code but creates a dependency

on a substantial proportion of the Machine Java framework.

Eratosthenes Is a distributed sieve of Eratosthenes. The start machine feeds a stream

of integers into the first machine of a pipeline. Each machine filters (discards) the

integer if it is a multiple of the machine’s filtration number. If the number is not

filtered, its passed to the next machine in the pipeline for consideration or a new

machine is created if there is not yet another pipeline stage. When a new machine

is created this indicates that a new prime number has been discovered and the

start machine is notified of the new prime. Machine Java’s implementation on

Network-Chi renders this construction embarrassingly inefficient. The communi-

cations overhead when sending integers between the pipeline stages dominates

(by several orders of magnitude) the single division operation that each pipeline

stage performs for each filtration. More sophisticated compilation strategies are

required to enable efficient execution of such finely divided workloads. At run-

time this application will have as many pipeline stages as prime numbers that have

been discovered.

Dining Philosophers The Dining and PentagonalTable applications are the dynamic

and static dining philosopher implementations, respectively. The dynamic imple-

mentation is reproduced in appendix C.4.

FlowController is the water tank level control example from chapter 3. This application

is reproduced in appendix B.

Collatz The CollatzBB and CollatzRPC applications generate a sequence of integers11

related to the Collatz problem [113], also known as the 3n+ 1 problem. The Collatz

11This is sequence number A006877 in the Online Encyclopaedia of Integer Sequences [1].
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conjecture states that for the following function:

n′(n) =


3n + 1 if n is odd

n
2 if n is even

n′ will always eventually reach 1 for any natural number input with repeated ap-

plications of the function. The example system calculates the sequence of starting

numbers such that the count of applications of the function needed to reach 1 is

greater than any previous number in the sequence generated. These are the re-

ferred to as the high-water marks. These applications provide identical runtime

behaviour but the CollatzBB implementation only uses BoundedBuffer channels

to communicate between the worker and dispatcher machines, whereas the Col-

latzRPC uses RemoteProcedureCall channels.
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A number of observations can be made from the data presented in 5.17 and 5.18:

• When comparing the size of NoMachine on the POSIX target and the Blueshell

target, the Blueshell target requires less code. However, all other applications con-

sume more code on the Blueshell target. This can be explained by the Blueshell

target having a smaller Network-Chi runtime implementation but a less efficient

instruction set or C compiler. The savings achieved by the smaller runtime are

absorbed by the ISA/compiler inefficiencies before even the next smallest applica-

tion is considered. This is a somewhat surprising result though, as the OS target

would be expected to benefit from an OS that can assist with networking, timing

and memory management. On the Blueshell target the Network-Chi runtime has

to manage all of these itself.

• By comparing the sizes of the NoMachine and AMachine applications, it can be

seen that the Network-Chi runtime accounts for approximately one third of the

framework’s code overheads, with Machine Java responsible for the remaining

two thirds.

• The build characteristics -Os and min reduce memory consumption by a similar

factor regardless of the application.

• The Network-Chi and Machine Java runtimes are a far more significant contrib-

utor to static memory consumption than the applications. Vastly more complex

applications would be required before the application is responsible for the most

code.

5.4.2 Experimental Methodology

The experimental results presented in this thesis are the result of a considerable infras-

tructure. Machine Java and the Chi compiler combined amount to nearly 50,000 lines of

Java and there are several thousand lines of supporting infrastructure to dispatch exper-

imental trials to a target, gather the results and then convert the logs into a format that

can be analysed and typeset. Even with a copy of the original Machine Java source code,

it would be a considerable undertaking to duplicate this experimental environment due

to the large number of complex dependencies. The purpose of this section is to describe

the experimental methodology such that a third party may attempt to reproduce the

experiments in future.
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5.4.2.1 Reliable Experiments on the Blueshell Platform

The intent of the experiments in this chapter is to explore the behaviour of the machine-

oriented programming model on an example of a non-cache-coherent (communication-

centric) multiprocessor hardware platform. As such, the experimental methodology fol-

lows the requirements of the hardware platform described in section 5.2.

An important characteristic of the evaluation platform is that it behaves completely

deterministically: given identical starting conditions an application will always execute

identically, down to each clock cycle on every router and processor. None of the ex-

ample applications or microbenchmarks accept external input during operation. The

applications do output data to an external serial line during execution but this is not

externally synchronised; there is no hardware flow control. The importance of this is

that the external environment has no effect on the execution trace of the platform. No

difference in execution has ever been observed between two runs of the same determin-

istic program code in the hardware platform. Non-deterministic code, such as code

that uses psuedo-random numbers will not necessarily execute identically each time

as the random number generator is seeded based on the number of clock cycles since

the FPGA was configured, and this number of cycles will not always be identical as

the time between FPGA configuration and bootloading completing is variable.12 A fu-

ture reproduction of these or similar experiments could guarantee repeatability even for

applications that use pseudo-random numbers by either of:

• Clearing the cycle-counter hardware in all processors simultaneously after boot-

loading has completed, but this may be expensive to implement in hardware.

• Fixing the random number seed in Java’s java.util.Random class to a value not

dependent on the system timer.

• Waiting for a predefined time after FPGA configuration to release the bootloaded

program code. As long as this predefined time is comfortably longer than the

worst case bootloading time then the program code will always execute at a fixed

offset from FPGA configuration and therefore the random number generator will

always return the same values.

12This is a consequence of the variable timing inherent in the python host application running on a
standard PC.
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5.4.2.2 Platform Configuration

The hardware platform configuration has been described in section 5.2.2, and experi-

ments on the OS target were performed on a standard PC architecture machine with the

following configuration:

Hardware 4×Intel Xeon CPU E5-4607 v2 @ 2.60GHz. Each has 6 cores and 12 hardware

threads per processor, resulting in 48 hardware threads in total. 128GiB RAM.

Operating System Debian GNU/Linux 7 (wheezy) using Linux 3.2.63-2+deb7u1 x86_-

64.

C Compiler GCC version 4.7.2 (Debian 4.7.2-5)

The OS target is used to provide an indication of performance on a complex, modern

processor architecture and is not intended to be a primary evaluation platform for the

merits of Machine Java or the MAA in general. For this reason, no attempt has been

made to control for the noise introduced into the results on the OS target due to inter-

ference from other system processes and concurrent access by other faculty members.

In the remainder of this section the results presented are for code compiled with

size minimising compilation options:13 -Os for the downstream C compiler and VM

exceptions and stack trace support disabled in Network-Chi. In all cases Java version

1.7.0_79 (OpenJDK14 [151]) was used as Network-Chi’s source of Java libraries. Both the

Blueshell and OS targets use 48KiB Java heaps at runtime, but the OS target does not

share the Blueshell target’s 16KiB stack constraint.

5.4.2.3 Microbenchmarks and the Experimental Procedure

To determine the overheads implied by Machine Java and compilation via Network-Chi,

a number of microbenchmarks have been constructed. In a sense the applications de-

scribed in this section are real benchmarks as they are complete applications, however

their scope is highly constrained in order eliminate as many confounding effects as pos-

sible from the results. The results of the work done by these applications (their output)

has no real world meaning; only measurements of the operation of the applications are

used.

13Class names remain enabled as they have an insignificant impact on code size and execution speed.
14OpenJDK Runtime Environment (IcedTea 2.5.6).
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Two separate microbenchmarks are used to investigate the communications and

computation implications of Machine Java, each with several variants to enable the

investigation of more specific issues. Communications overheads and scaling are in-

vestigates with the SpeedTest series of microbenchmarks which are discussed in section

5.4.2.4. Computation overheads and scaling are investigated with the DistributedMD5

series of microbenchmarks, and these are discussed in section 5.4.2.4.

These microbenchmarks all follow the same basic procedure to gather results:

1. On system startup (in the microbenchmark’s Start class’s internal() method),

a machine parseable header is emitted identifying the benchmark’s name and any

relevant experimental parameters (such as the message size, or batch size).

2. The Start class periodically emits machine parseable log entries of the amount

of ‘work’ that the application has completed by receiving messages from worker

machines that it has also created. Only the Start class logs messages to avoid in-

troducing interference between machines as they compete for the logging resource.

These log entries also include other relevant parameters such as the number of ac-

tive worker machines.

3. The Start class also periodically creates new worker machines. This worker-

addition interval is much larger than the time required to complete a unit of work,

and also much larger than the interval between progress reports from workers

back to the Start machine.

Within a particular experiment variability in the performance of a metric such as compu-

tations per second, or bytes transferred per second, is accounted for by allowing enough

time for a large number of these events to have occurred and then computing the arith-

metic mean of the measurements. It is a limitation of these experiments that the precise

distribution of event characteristics is not captured due to limitations of the hardware

platform: insufficient memory is available to buffer data samples and the communica-

tions speed of the logging interface is too low to continuously transfer data samples.

Variability of the experiment as a whole is not accounted for as the experiments run

identically every time. There is no requirement for repeated execution of experiments

on the hardware platform, the variance is known in advance to be zero. It is a very

different situation on the noisy OS target which has very noticeable variance in results

between experimental executions. However, only the very coarse and general shape of

279



Chapter 5: Evaluation

the results are considered from the OS target as this is neither a resource constrained nor

a communication centric architecture. Experiments were not repeated on the OS target

as this thesis does not require confidence at fine granularity on a platform outside of the

intended domain.

5.4.2.4 Execution of Experiments

For execution of experiments a basic test-runner framework was constructed. This en-

abled a large number of experiments to be executed and results to be recorded. For the

performance experiments (the ones in the remainder of this chapter) the procedure is as

follows:

1. The root experimental script15 is invoked with the name of the experiment to exe-

cute and the target platform supplied as arguments. The name of the experiment

is the Java class to be used as the entry point to the application, such as examples

.speedtest.SpeedTest (see appendix C.1).

2. The script cleans up the working environment of all temporary compilation arte-

facts from previous experiments that could interfere with the build or execution

of this experiment. This also includes termination of previous stale experiments if

they are still consuming hardware resources.

3. The script now executes the application once for each of the twenty processor-

counts to be tested:

(a) A new log file is created and the parameters of the experiments are emitted

into the log, including: the application to be compiled, the options supplied

to Chi, the target platform and any experimental parameters supplied.

(b) Chi is now invoked with the necessary parameters and its output is captured

into the log. Chi is also instructed to execute the binary it has built once

compilation has finished. All output from the execution of the binary is also

captured into the log. For the OS target execution of the binary is simple:

the resulting binary is executed on the same hardware. For the Blueshell

hardware it is more complex:

15These were implemented as Bash shell scripts.
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i. Chi invokes a helper script to execute the built binary. This helper script

first prepares the binary for execution on the microblaze processors in the

Blueshell hardware. This requires conversion of the elf-format executable

into ihex format and then expansion of the ihex representation into a flat

binary that matches the memory layout of the hardware.

ii. The helper script then begins the process of programming an available

FPGA board with the Blueshell NoC instance and waits for the NoC

hardware to become available. Once the hardware is operational, the

application binary is streamed into the off-chip DDR memory. When this

process has finished the first processor of the platform is sent the com-

mand to branch to the boot vector of the binary. The Chi binary now

handles the startup of the processor from this point, and subsequently

the Bluetiles Machine Java runtime will boot other processors if config-

ured to do so.

(c) The application now executes and periodically logs useful information.

(d) When the application has completed, an error condition has been detected or

a timeout in the experimental execution script has happened, then the exper-

iment is finished and the process can be terminated safely. At this stage the

Blueshell hardware platform is deprogrammed so that the FPGA board can

be reused for future experiments. There is no possibility of interference be-

tween experiments on the hardware platform as the hardware is fully cleared

and reconfigured for every experiment, this ensures the processors are in the

same clean state each time.

4. The next iteration begins until there are no more platform configurations to test.

5. The captured logs (an abridged example of which can be found in appendix D)

can now be processed into the plots which can be seen in the remainder of this

chapter.

The SpeedTest Microbenchmark

The SpeedTest microbenchmark is a simple application that attempts to measure the

communications throughput achieved between a number of communicating pairs of
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SpeedTest

PingClient

PingServer

Figure 5.19: The SpeedTest microbenchmark’s static machine dependency graph.

machines. The machine dependency graph can be seen in figure 5.19. The base version

of this microbenchmark is reproduced in full in appendix C.1.

At runtime the SpeedTest application has a number of communicating pairs of Ping-

Client and PingServer machines. A PingServer machine has a single RemoteProce-

dureCall channel (replyService) which replies to all queries with the data sent16. Each

PingClient machine sends a message of a fixed size to its paired PingServer machine.

As soon as a PingClient receives a reply it issues the next query. Periodically each

PingClient sends a message to the application’s SpeedTest machine with an indica-

tion of the number of exchanges that were performed in the interval and how long the

machine had to wait in total for its replies.

In this application only the start machine (SpeedTest) logs any messages, avoiding

contention for the platform’s message logging device. After the start machine has been

created the following sequence of events occurs:

1. A periodic event source is created to create a new pair of machines on a regular

schedule (every ten seconds).

2. A delayed event source is created to terminate the experiment after a fixed interval

(ten minutes).

3. The benchmark identifies itself and creates the first pair of communicating ma-

chines.

Before each new pair of machines is requested, the application logs the aggregate data

throughput, latency and number of messages exchanged. The message count and data

16This is similar in spirit to the ICMP Echo/Reply [170] protocol mandated of internet hosts by
RFC1122 [34].
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DistributedMD5

MD5Worker

Figure 5.20: The DistributedMD5 microbenchmark’s static machine dependency graph.

throughput figures are the sum across all communicating pairs. The recorded latency

is the average round-trip time for a message, calculated by summing all time between

when PingClient sends its request and when the same PingClient machine begins to

handle the event for receiving a reply. This total latency measured in a fixed interval

is then divided by the number of message exchanges in the same interval, yielding an

arithmetic mean of the latency per exchange.

The Machine Java runtime supports a fast-fail mode for experimental data collection.

When in this mode if an uncaught exception propagates out of any event handler the

runtime will attempt to terminate the whole application. Failures of application logic

do not occur during execution but memory exhaustion (OutOfMemoryError exceptions)

are common when a large number of machines are allocated to few processors.

The DistributedMD5 Microbenchmark

The DistributedMD5 and SpeedTest microbenchmarks share a similar general pattern in

operation, but the DistributedMD5 application aims to measure the total computational

throughput of the application rather than a communications throughput. Distribut-

edMD5’s machine dependency graph is shown in figure 5.20, and is reproduced in full

in appendix C.3.

At runtime the start machine (DistributedMD5) periodically requests additional

worker machines (MD5Worker). Each worker machine repeatedly computes the MD5 [183]

cryptographic message digest (a hash) of an incrementing 64-byte buffer. After each

new hash is computed the MD5Worker machine uses a Yield to allow other event

handlers a chance to execute. In most cases there are no other pending events and

the worker will begin another computation. A third-party all-Java implementation

of the MD5 algorithm ( [153]) is used as the standard Java libraries for message di-

gests (java.security.MessageDigest) use non-Java language implementations and
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are therefore incompatible with the Chi compilation workflow.

Each MD5Worker periodically reports how many digests it has computed to the

DistributedMD5 machine, which are logged by DistributedMD5 in the same way as

SpeedTest. The MD5 algorithm is a sizeable computational kernel, requiring 6,480

bytes of code memory on a Blueshell processor.17 This makes it the single largest code

contributor in the DistributedMD5 application, considerably larger than the 5.6KB re-

quired by the garbage collector. In contrast the Java code of the MD5Worker machine

itself (a machine and two event handlers) only requires 1,704 bytes for its three classes.

5.4.3 Communications Overheads

In Machine Java the serialised version of an object communicated between a pair of

machines is determined either by the object itself (see section 4.7.3.4) or by Network-

Chi’s utilities for flattening and inflating common Java types. In either case it is possible

to determine at design and compile-time what the overall serialised format for an object

will be. The size of an object’s serialised format and knowledge of the wrapper objects

used by Machine Java during communication can provide a coarse indication of the

static communications overheads. However there are a number of factors that hinder an

a priori estimation of communications overheads:

• The application can be executed on different platforms with unknown communi-

cations characteristics and inefficiencies.

• Interference between unrelated transactions across the platform’s communications

media may can be unpredictable, especially as the runtime loading of an applica-

tion cannot always be known ahead of time.

• The Machine Java implementation has substantial freedom to chose its underly-

ing communications protocols, with potentially significant non-functional conse-

quences.

For example, when a PingClient issues a request to a PingServer’s RemoteProce-

dureCall channel it sends a PingMsg object. This object implements the Flattenable

interface. For a five-byte PingMsg, ten bytes are serialised: a one byte marker to indi-

17Compiled with the same options as the SpeedTest application components shown in table 5.3.
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cate the serialised message represents a Flattenable object, four bytes for the integer

identification of the PingMsg class, and finally the five bytes for the PingMsg’s payload.

In turn this PingMsg is wrapped in a BidirectionalQuery object by the RemotePro-

cedureCall connector (which provides return path information), and this is then wrapped

in a NexusDatum object records sufficient details of the destination channel to allow the

remote processor to understand the message. Overall the five-byte message becomes 76

bytes of serialised Java objects. A breakdown of this overhead may be seen in figure

5.21. In figure 5.21 serialisation starts at the outermost NexusDatum object and proceeds

as defined by the class’s .flatten() method. In this example the .flatten() methods

just serialises each field in order.
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hapter

5:Evaluation

serialisation tag
class identifier
serialised primitive
application data

0a 00 00 00 05 0a 00 00 
00 01 00 00 00 01 0a 00 
00 00 02 00 00 00 01 00 
00 00 01 0c 00 00 00 0b 
0a 00 00 00 06 0a 00 00 
00 01 00 00 00 02 0a 00 
00 00 02 00 01 00 00 00 
00 00 01 0c 00 00 00 09 
0a 00 00 00 0d 00 01 02 
03 04

class NexuxDatum: 0a 00 00 00 05
IESIdentifier target:

 

Object payload:

class IESIdentifier: 0a 00 00 00 01

int instanceIndex: 00 00 00 01
MachineIdentifier machineID: 

class BidirectionalQuery: 0a 00 00 00 06

IESIdentifier source:

Object query:

class IESIdentifier: 0a 00 00 00 01

int instanceIndex: 00 00 00 02
MachineIdentifier machineID: 

class MachineIdentifier: 0a 00 00 00 02

int processorID: 00 00 00 01
int machineSerial: 00 00 00 01
Class mClass: 0c 00 00 00 0b

class MachineIdentifier: 0a 00 00 00 02

int processorID: 00 01 00 00
int machineSerial: 00 00 00 01
Class mClass: 0c 00 00 00 09

class PingMsg: 0a 00 00 00 0d
<data>:  00 01 02 03 04

5 byte PingMsg serialisation:

total size: 76 bytes

Figure 5.21: A 5 byte PingMsg object becomes 76 bytes by the time it reaches the network driver. The wrapper objects add a considerable overhead. Tag
0x0a indicates the next item in the stream is a flattenable object (see section 4.7.3.4), and tag 0x0c indicates the next item is a class identifier.
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Figure 5.22: A comparison of the total useful throughput achieved between all machines as the
machine count is increased, and the message size is varied. These results are for the Blueshell
example platform with use size-minimising compilation options. Three different message sizes
are considered: 5, 50 and 500 bytes.

The inefficiency introduced by wrapping a communicated object at least twice is

naturally dependent on the size of the message. The lower levels of the communications

stack will also introduce their own headers and inefficiencies. Blueshell prefixes network

messages with an eight byte header and UDP used by the OS targets requires a 28 byte-

per-message overhead. Figure 5.21 highlights sources of inefficiency in the message

serialisation: Each of the ‘serialisation tags’ (see 4.7.3.4) are relatively small at only a

byte, but there are nine of them in the serialised message. There are also nine class

identifiers that are embedded in the message, all of which use a full 32 bit integer. Note

that in figure 5.21 all of the class identifiers are very small integers as this example

packet was serialised in a JVM and the JVM implementation only allocates integral class

identifiers on demand. During compilation with Chi all classes are assigned an identifier

ahead of time and will not necessarily have such low values.

Figure 5.22 plots how the measured throughput of a SpeedTest application varies

according to the number of machines and the message size in use. For this experiment

the full 32-processors of the Blueshell example platform were used, and the same 8× 4

platform was used for an execution on the OS target, shown in figure 5.23.

A number of observations can be made about these results:

• Five-byte messages are confirmed to be extraordinarily inefficient.
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Figure 5.23: The SpeedTest message size experiment (see figure 5.22) executing on the OS target
via Network-Chi. An anomalous result for 20 machines with a 500 byte message size, caused by
interference on the testing platform has been omitted.

• The Blueshell plots (figure 5.22), and particularly the plot for 500-byte messages

appear to exhibit a linear region followed by a constant region and then another

shallow linear region. The OS target experiment plots also appear to follow a

similar pattern although it is much less clear. But in both cases, the plot for 500-

byte messages has a tripartite shape.

The length of the linear region at the start of each plot appears similar on both

platforms. This hints at an architecture independent cause for the shape of the

plots. As both the Blueshell and OS targets share the same platform represen-

tation in Machine Java, the same runtime mapping of machine request to pro-

cessors will occur. Machine overmapping (>1 active machine per processor) may

appear to explain the performance degradation after 16 machine pairs when a

500-byte message is used, but the linear region appears shorter for smaller mes-

sage sizes. The sharp ‘knee’ in the OS plot for 500-byte messages at 15 machine

pairs contrasts with the gradual reduction in throughput improvement seen on

the Blueshell architecture between 11 and 15 pairs. This may indicate another,

architecture-dependent effect is also present.

• The Blueshell plots are very smooth in comparison to the OS target plots. This

is reasonable considering the Blueshell platform has no operating system and is
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Figure 5.24: A comparison of the total message throughput as the number of processors used on
the Blueshell target is varied. Unused processors were not booted by the Network-Chi runtime so
do not consume any memory network bandwidth.

executing no other code except the application and the Machine Java runtime.

Interference from other operating system responsibilities easily explains the OS

target’s noisier plots.

• The Blueshell network hardware is not perfectly reliable and fails unpredictably

under heavy communications loading.

• Throughput is substantially lower than the maximum possible for either target

architecture. This is easily explained by the inefficient object serialisation scheme

chosen by Network-Chi. All data to be sent in an application has to pass through

the processor on both send and receive sides. Hardware acceleration such as

DMAs are not used to send Java objects.

This experiment raises a number of further questions:

1. Is the linear region at the start of the plots terminated by ‘machine saturation’ or

is this a coincidence caused by the message sizes?

2. What is the likely cause of the tripartite plots for 500-byte messages?

To begin to answer the first of these new questions, the SpeedTest application can be

executed on a variety of different network sizes. Given that the evaluation platform is
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Figure 5.25: The experiment shown in figure 5.24 executing on the OS target.

an 8× 4 mesh, there are 20 possible rectangular networks with unique processor counts

that can be contained by it. This means an 8 × 4 hardware platform can emulate a

multiprocessor system with any of the following processor counts:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 28 and 32 processors.

The SpeedTest application was executed again on a smaller subset of the hardware

with each of the above processor counts. The throughput plots for eight of the pro-

cessor counts are shown in figure 5.24 and figure 5.25 for the Blueshell and OS targets

respectively. This experiment enables the following observations:

• The communications ‘linear region’, where communications throughput grows ap-

proximately linearly with respect to the number of communicating pairs, does ap-

pear to be related to the processor count in the hardware.

• On both targets each plot appears to approximately follow the same linear growth

until the number of machines exceeds the number of processors. On Blueshell

this divergence marks the end of substantial gains in throughput, indicating that

performance is likely limited by processing power. On the OS target throughput

continues to grow but more gently on all but the smallest of multiprocessors.

• For low processor counts (four and fewer) the processors do not have enough

memory between them to host 60 machines, and OutOfMemoryError exceptions
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halt the experiments before their conclusion.

The number of processors used in the platform appears to have some impact on

the shape of the communications performance plots, with the highest processor-count

experiments presenting the most clearly tripartite plots; the processor count alone does

not explain the cause of this phenomena. However, the precise runtime allocation of

machines to processors appears to offer a plausible explanation.

Machine Java’s XYNetworkPlatform implementation (see section 4.5.5) does not make

use of any application-specific information when suggesting processors for each ma-

chine request. It makes the assumption that all processors have access to all machine’s

code and exist at some (x, y) coordinates in a rectangular mesh. With little platform-

specific information and no application-specific information to guide machine alloca-

tion, the XYNetworkPlatform.getProcessorsForMachine() returns an Iterator that

will eventually list all processors in the platform.

For the results shown previously in this section the XYNetworkPlatform used a

processor iterator that aims to be position-relative within the network. This processor

iterator returns processors in approximate distance order from the current processor

by ordering processors according to the rectangular ‘shell’ that they occupy around the

current processor: the current processor is shell zero, the eight surrounding processors

are in shell one, the next shell has sixteen processors (a 5 × 5 square with the inner

3× 3 excluded), and so on. The intent is to suggest that the ProcessorManager pick

local processors preferentially, but this is far from an ideal allocation scheme both in

theory and practice. Figure 5.26 shows the allocation of the SpeedTest (ST) machine

on processor 0, 0 and the first 30 communicating machine pairs. The arrows indicate

which PingServer (S) a particular PingClient (C) machine communicates with. The

allocation order for machines is (1, 0), (0, 1), (1, 1), (2, 0), (2, 1), (0, 2) etc.

A fixed, sequential processor iterator that always returns the processors in left-to-

right, top-to-bottom (considering the layout of the processors shown in figures 5.26

and 5.27) regardless of the processor it is executing on, was used for another series

of SpeedTest experiments. The allocation of the first 30 machine pairs to processors is

shown in figure 5.27. This scheme is probably unacceptable if the network is thousands

of processors wide but for this experiment it provides regular and quite short paths

between communicating machines overall.
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Figure 5.26: The allocation of 30 pairs of machines in the SpeedTest application using the
‘position-relative’ processor iterator. Arrows indicate a reference from a PingClient (C) ma-
chine to a PingServer (S) machine. The green boxes indicate each processor in the platform,
showing each machine that the processor contains.
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Figure 5.27: The same application as shown in figure 5.26 but machines are allocated according
to the ‘sequential’ processor iterator.
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Figure 5.28: A comparison of message throughput on the 32-processor Blueshell platform
when both message size and machine iteration algorithm are changed. Representative machine-
processor mappings can be seen in figures 5.26 and 5.27 for the ‘relative’ and ‘sequential’ algo-
rithms, respectively.

A comparison of the communications performance achieved with each of these pro-

cessor iterators is provided in figure 5.28. It can be seen that the ‘naive’ sequential

iterator outperforms the position-relative iterator for both 50-byte and 500-byte message

sizes, and does not exhibit tripartite shape for the 500-byte message size. The reduced

performance with the position-relative processor iterator on Blueshell may be caused by

the additional network due to the (on-average) greater distance between the allocated

machines.

A surface plot of 500-byte message throughput across all 20 processor counts can be

seen in figure 5.29. The missing regions in figure 5.29 are where the number of machines

exceeds the memory capacity of the platform.

Effects of Channel Protocol on Throughput

The SpeedTest application used in previous experiments (reproduced in appendix C.1)

uses RemoteProcedureCall channels to communicate between the PingClient and PingServer

machines. This pattern is intuitive for application design but does imply greater static

communications overheads as each sent query is wrapped in a BidirectionalQuery

object by the RemoteProcedureCallConnector class.

294



5.4 Overheads and Scaling

5 10 15 20 25 30 35 40 45 50 55 60

5
10

15
20

25
30

0

2

4

6

8

·105

Communicating machine pairs

Processor
count

Th
ro

ug
hp

ut
by

te
s/

se
c

Figure 5.29: A surface plot of all combinations of machine pair count and processor count for
the SpeedTest application on the Blueshell target. A 500-byte message size and the sequential
processor allocator were used.
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Figure 5.30: A comparison of the RemoteProcedureCall (RPC) based SpeedTest implementa-
tion and the Signal based implementation for both 50 and 500-byte message sizes.
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Figure 5.31: The communications throughput of the Signal-based SpeedTest implementation
across various sizes of network.
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Figure 5.30 provides a comparison of the RemoteProcedureCall based SpeedTest

application, and a reformulation using Signal channels, which are unidirectional, de-

structive, and single-buffered (see section3.2.5.3). This version (‘SpeedTestHP’18) has a

true mutual dependency between its client and server machines. Each server has a ref-

erence to its particular client and responds only to that client on receipt of a new query.

As this application uses destructive communications the Machine Java framework does

not need to perform any handshaking between machines to send data.

It can be seen in figure 5.30 that when using large messages the overall throughput is

greater for the Signal-based implementation at high machine counts. A more complete

picture of Signal performance is provided in figure 5.31 where it can be seen that the

variation between high machine-count throughput is more pronounced than the RPC

version.

5.4.3.1 Summary

In this section the communications overheads of a Machine Java application were inves-

tigated with a variety of factors found to affect overall messaging performance:

• The target architecture (somewhat obviously) impacts communications perfor-

mance as this defines the processor and network types, and the operating fre-

quencies that all components execute at.

• The number of processors in the platform.

• The number of machines attempting to communicate.

• The exchanged message size.

• The specific allocation of machines to processors.

• The channel protocol used to communicate.

It can be seen that for the sizes of network considered in this section message

throughput is limited by available processing capacity. There were not enough pro-

cessors even in the largest instances to observe apparent limitations due to underlying

network capacity. Overall, the implementation of Machine Java presented in this thesis

18The client and server machine implementations are provided in appendix C.2.
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has substantial messaging overheads which in turn limits applications to low messaging

throughput. Future implementations would benefit greatly from compiler-assisted or

hardware-accelerated serialisation; messaging performance could be dramatically im-

proved if a processor did not have to actively serialise and deserialise all Java objects.

As neither the application model nor Machine Java introduce any non-application

dependencies between processors, it can be expected that applications should scale

gracefully onto considerably larger platforms; whole-application throughput can be ex-

pected to increase with additional processors until the communications substrate itself

becomes the limiting factor. The results presented in this chapter do not invalidate this

expectation but also do not prove it; the linear scaling region where adding machines

resulted in a proportionate increase in total throughput is reassuring but not a guar-

antee of the performance on much larger platforms. On platforms where the network

capacity is the limiting factor the communications patterns of applications and the inter-

nal messaging used by the non-destructive channels seem likely to introduce emergent

behaviour. The SpeedTest microbenchmark itself will also eventually encounter scal-

ing issues even on indefinitely large platforms due to the tiny but finite overheads of

communicating with the central SpeedTest machine which aggregates results.

5.4.4 Computation Performance

Evaluating the computational overheads and performance is less involved than for com-

munications overheads as computation within a machine does not interact with any

other machines. The computational throughput of an individual machine on an un-

loaded platform will simply reflect the capabilities of the processor and of the Chi (see

section 4.7) compilation strategy. For embarrassingly parallel workloads (those in which

the subdivisions of a task can be worked on independently) Machine Java can be ex-

pected to fully exploit all of the processing capacity available in a platform with no

processor-count dependent overheads; if the processor count is multiplied by five, then

five times the computational throughput can be expected. This section aims to verify

this hypothesis using the DistributedMD5 application discussed in section 5.4.2.4. This

microbenchmark represents an application where the only communications are used to

report progress and are not essential to the workload. Although simple, this workload

is representative of the proof-of-work algorithms used for spam-email prevention [58] and

cryptocurrency ‘mining’ [140, 25].
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Figure 5.32: The overall computational throughput of the DistributedMD5 application on a
Blueshell target with various processor counts. Performance is measured by the number of cryp-
tographic hashes computed per second across all machines.
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Figure 5.33: The overall computational throughput of the DistributedMD5 application on an OS
target with various processor counts. See figure 5.32 for comparison with the Blueshell platform.
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Figure 5.32 presents the throughput of the DistributedMD5 application on Blueshell

networks with varying processor counts. For contrast the execution of the application

for the OS target is also provided in figure 5.33. The application throughput is measured

as the total number of cryptographic hashes computed by all machines per second. A

number of observations can be made from figures 5.32 and 5.33:

• On the OS target the total application throughput is approximately proportional

to the number of utilised processors, whereas on the Blueshell target performance

appears to improve less than linearly above approximately 20 machines. The di-

minishing returns from adding more machines on Blueshell, even when there are

unused processors indicates some interference between the active machines. As

the application is known (by construction) to avoid communication this is a strong

indication that competition for code memory bandwidth must be beginning to

impact performance. This is because code memory bandwidth is the only shared

resource used by all active processors.

• When the number of machines is less than the number of processors in the plat-

form, the plot is unaffected by the processor count.

• On both targets the application’s throughput reaches a maximum when the ma-

chine count is equal to the platform’s processor count.

• After the machine count has exceeded the processor count there is a significant

observable decline in throughput on the Blueshell target, and especially for the 32-

processor platform. This is an indication that non-application code (which does

not contribute to measured performance) required to multiplex machines on a pro-

cessor is a considerable expense on Blueshell. However, on the OS target there is a

negligible decline in performance after machine count exceeds processor count. In

combination this is more evidence that limited instruction cache on the Blueshell’s

MicroBlaze processors is impacting performance. The OS target processors can

easily contain the entire application in the instruction cache, but the MicroBlaze

processors only have 8KiB of instruction cache each. The MD5Worker machine and

MD5 computation library require a total of 8,112 bytes of code memory. Even with

a perfect mapping from code memory into processor caches19, the MD5Worker can-

19This is highly unlikely as the MicroBlaze tile’s cache is direct-mapped.
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not quite fit into the instruction cache. When there are more machines than pro-

cessors there must be some processors with multiple machines and this implies

some effort in the Machine Java runtime to decide how to multiplex the proces-

sor’s time. This will necessarily require some code memory which must be fetched

from the read-only shared memory assuming the processor’s instruction cache has

been filled by the MD5Worker’s computational kernel.

Competition for limited code memory bandwidth not only explains the diminish-

ing returns above 20 processors on Blueshell, but it also explains why the high

processor-count platforms appear to suffer more after the machine count exceeds

processor count: there are more processors competing for the same memory band-

width.

• This experiment (in addition to the SpeedTest experiments) demonstrates that the

artificial memory capacity constraints when compiling for the OS target are a faith-

ful representation of the true memory constraints on the Blueshell target. On

one and two processor platforms the application fails due to memory exhaustion

(OutOfMemoryErrors) at similar machine counts. The exact timing of the failure is

not identical but it is sufficient to determine the basic plausibility of an application

in a resource constrained context even if real hardware were unavailable.

• It can be seen that one and two processor platforms perform the same. This is also

shown in the SpeedTest experiments and is a result of the ProcessorManager’s

implementation. ProcessorManager only choses to allocate new machines onto

the current processor if it has no alternative, so on a two processor platform only

the start machine will exist on the origin processor and all subsequent machines

allocated by the start machine will be requested from the second processor.

These observations lead to two further questions:

1. As code memory bandwidth contention is strongly implicated for the failure to

achieve linear performance scaling on the Blueshell target, would larger processor

caches or a smaller computational kernel enable linear performance growth to be

realised?

2. The experiments indicate that there are some hidden but non-trivial computational

overheads due to the framework. What is the extent of these overheads?

301



Chapter 5: Evaluation

0 5 10 15 20 25 30 35 40 45 50 55 60
0

1

2

3

4

·104

Worker machines

T
hr

ou
gh

pu
t

in
cr

em
en

ts
/s

ec

32 processors 24 processors 20 processors 16 processors
9 processors 4 processors 2 processors 1 processor

Figure 5.34: A comparison of the throughput for a minimal computational kernel on Blueshell.
The kernel is so small that effects due to instruction memory contention can be discounted.
Contrast with figure 5.32.

For the purposes of this thesis, the MicroBlaze instruction caches are fixed at their

maximum size. There are not enough block RAMs available in the host FPGA to provide

larger instruction caches. This is not a substantial problem as a smaller computational

kernel can be used instead. The specific performance numbers from a different kernel

are incomparable to the numbers in figure 5.32, but the shape of the plots acquired will

indicate if a reduced kernel size has eliminated inter-processor interference. Figure 5.34

provides the results from a modification of DistributedMD5 with a vastly reduced kernel

size. In this application each worker machine only increments a long integer before it

uses a Yield to allow another event handlers a chance to execute. This modification of

the application only requires 1,288 bytes of code memory20 for its worker machine, and

substantially less than this is actually used to perform its ‘work’. It can be seen in figure

5.34 that reducing the computational kernel to much less than the instruction cache size

has enabled linear computation scaling on the Blueshell platform. Some performance

degradation after the machine count exceeds the processor count is still evident but it

is now more similar to the gentle decline observed on the OS target. It can also be

observed that the reduced dynamic memory requirements of the smaller kernel allows

20DistributedMD5 requires 8,112 bytes for MD5Worker and the MD5 class combined.
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Figure 5.35: The impact of batching computation on application throughput on a 32-processor
Blueshell platform. The batch size is the number of hashes computed before the event handler uses
a Yield (see section 3.2.3.2) to return control to the Machine Java framework.

for more machine instances on small platforms before the memory is exhausted.

Question 2 concerns the framework overheads rather than multiprocessor scaling,

but this is largely hidden in the previous experiments. The presence of some overhead

due to the framework can be inferred from the decline in performance after machines

become overmapped but it is certainly not trivial to calculate what this overhead might

be.

As the Network-Chi implementation of Machine Java is non-preemptive at the pro-

cessor level there can be confidence that if application code is executing, not only is no

other application code also executing, but also no framework code is active. This allows

framework overhead to be measured by varying the amount of work performed before

control is released by application code. In figure 5.35 the DistributedMD5 application is

executed with a number of different ‘batch-sizes’. In this version a MD5Worker computes

a batch of hashes before yielding. It can be seen from the plots that the previous experi-

ments were actually wildly inefficient. Performing ten computations in a batch provided

an approximately eight-fold improvement in application throughput, while moving to

100 or 1,000 computations per batch provides an approximately fifteen-fold improve-

ment in throughput. It can be seen that there is a negligible improvement in batches of

1,000 compared to 100 for this application.
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An attempt can now be made to quantify the Machine Java runtime overheads: Given

the observed diminishing returns above batch sizes of 100, it can be assumed for the sake

of simplification that the framework overhead is negligible at a batch-size of 1,000. This

demonstrates that a 32-processor Blueshell can perform approximately 380,000 hashes

per second. As the non-batched application only performs approximately 26,000 hashes

per second there is the equivalent of 354,000 hashes of computation wasted: 93% ineffi-

ciency. This can alternatively be viewed as a cost of approximately 14 hash-equivalents

of work per yield to the framework.

The minimised kernel considered in figure 5.32 is at least two orders of magnitude

smaller than the MD5 kernel so could be expected to require batch sizes of at least 10,000

or likely 100,000 to achieve high efficiencies.

5.4.4.1 Summary of Computation Performance

In this section the computation overheads of a Machine Java application were investi-

gated. The primary findings were:

• Machine Java appears to enable the scalable exploitation of communication-centric

hardware architectures. This was demonstrated by the results where computa-

tional throughput was linearly related to the number of processors in use.

• Competition for instruction memory bandwidth was the primary constraint on

scalability in the experiments.

• The framework overhead was found to be approximately equivalent to the work

required to compute 14 MD5 digests of a 64-byte buffer per event handled, al-

though it is difficult from these results to separate the effects of inadequate in-

struction caching from the work actually required by the Machine Java runtime.

On Blueshell 14 MD5 digests is approximately 1.2ms. This overhead includes the

time taken by Machine Java to decide which event handler to execute next and the

time taken to perform background housekeeping tasks.

The experiments provide more evidence that shared memory can easily introduce

performance bottlenecks, even in situations where the memory is read-only. A number

possibilities for mitigating the impact of limited instruction memory bandwidth were

identified:

304



5.4 Overheads and Scaling

• Reduce the size of the computational kernel so that it is more likely to fit into

processor-local instruction cache.

• Batch computations together into a single event handler. This has the effect of re-

ducing the time required by Machine Java to determine the next activity, which in

turn reduces the amount of different code executed so increasing the effectiveness

of a limited instruction cache.

• Increase the size of processor-local instruction caches or use processor-local mem-

ory for intensively used computational kernels. This point could be considered

vacuous as the platform is almost certainly not under an application designer’s

control.
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5.5 Summary

In this chapter the Machine Abstract Architecture was evaluated for its effectiveness

via the Machine Java reference implementation. Overall the feasibility of programming

resource constrained MPNoCs using a machine-oriented programming model was vali-

dated: Machine Java is capable of expressing complex and dynamic applications which

are compact enough to execute even on substantially limited processors. While the

implementation was demonstrated to be sufficiently compact, it was also shown that

Machine Java applications were portable across a variety of platforms: simulated mesh

networks in a JVM and on Linux, and true mesh networks on an FPGA-realised MP-

NoC. No modifications to application code were required to accommodate changes in

network size or underlying instruction set architectures.

The communications throughput achievable by a Machine Java application was shown

to be affected by multiple factors both from the application and also the platform. The

number of processors and the number of machines have an obvious and substantial im-

pact on performance, but the impact on the framework’s allocation of machines to pro-

cessors has a far more subtle effect. Overall communications performance was shown

to be quite limited and most significantly constrained by the processing effort required

to send and receive messages.

Computational throughput of Machine Java applications was shown to scale well

with respect to the number of processors available in the platform. On the hardware

evaluation platform limited instruction memory bandwidth was shown to significantly

limit the scalability of applications where the computational kernel was too large to fit

into processor-local instruction caches. Machine Java framework overheads were shown

to be substantial but also avoidable: simple work-batching greatly improved execution

efficiency.

Java’s runtime safety features were shown to have a profound impact on static mem-

ory consumption which could be avoided by disabling these features when confidence

in an application’s correctness has been achieved. After all minimisation techniques are

applied the single largest contributor to an application’s static memory consumption is

the string literals embedded in the code. This represents a significant opportunity for

further reductions in application size in future.

Programming with Machine Java is shown to avoid some of the conventional pit-

falls of concurrent programming: data races and deadlocks are far less problematic as
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data cannot be shared. However, machine-oriented programming is not a magic-bullet

and concurrency-related application design errors are still very possible. Application

livelock is shown to be possible when an application makes intuitive but invalid as-

sumptions about intermachine message arrival ordering.

Finally, the ability construct applications with simple static structure but complex

self-elaborated runtime structure was discussed. This pattern provides the advantages

of reduced static memory consumption and reduced apparent application complexity,

but increases difficulty of extracting runtime structure from the application definition.
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6.1 Revisiting the Hypothesis

In this thesis machine-oriented programming was presented as an approach for program-

ming highly multiprocessor but also constrained MPNoC architectures. This work is

motivated by the observation that such architectures will be challenging or impossible

to program with conventional thread-parallel models.

As discussed in section 1.5.1, the work in thesis is intended to test the following

hypothesis:
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Resource constrained multiprocessor networks on chip with non-coherent

caches can be programmed effectively with a general purpose programming

language through the application of an actor-oriented model of concurrency.

Several success criteria can be extracted from the hypothesis and considered against

the work individually:

resource constrained MPNoCs The application model described in section 3.2 enables

communication-centric software to be independent of an implementation plat-

form’s topology. Not only does this mean that applications can be supported

on MPNoC architectures, but the application does not even need to be aware of

the hardware’s design pattern. The assertion that the model enables application-

platform independence was considered in section 5.3.2, where it was found that

applications can be mostly platform independent but non-functional goals are dif-

ficult to achieve in the absence of any platform details.

The resource constraints of the target domain was primarily addressed by the

implementation methodology described in section 4.7. This compilation approach

was found (section 5.4.1) to effectively minimise the post-compilation requirements

of Machine Java (chapter 4) application code. Execution of the complex Machine

Java reference implementation was demonstrated (section 3) on processors with

only 48KiB of memory available for the Java heap.

effective programming The ‘efficacy’ of the programming model is judged to be a suc-

cess based on the following decomposition:

• Viability: The executable Machine Java programming framework validated

the feasibility of the machine-oriented application model.

• Supports software engineering: The use of the Java programming language

enables existing software engineering practices and ecosystem to be applied

to machine-oriented programming.

• Provides some benefit: Multiple benefits of varying importance have been

identified:

– The ability to program architectures in the target domain with Java (chap-

ter 4)

– Extended analysis of program structure (section 5.3.1)
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– Exploitation of the benefits of a programming model with actors (sections

5.3.4 and 5.3.5).

– Results gathered indicate that the programming model is likely to scale

to large target platforms; no programming model related overheads that

are a function of the platform’s processor count were identified (section

5.4).

• Tolerable costs: The costs of implementation were found to be high in some

situations (section 5.4) but not so high that the approach can be considered

generally impossible. However, the overheads that can be tolerated depend

on on the ultimate purpose of a system rather than the programming model.

general purpose Neither the model nor the demonstrated realisation of Machine Java

limit the scope to a specific application domain.

actor modelled concurrency The machine-oriented application model described in sec-

tion 3.2 is certainly an actor-oriented model of concurrency: Machines are actors.

Overall, the thesis hypothesis is considered to be substantially validated: Resource

constrained MPNoCs can be exploited with general purpose programming languages.

The remainder of this chapter contains a summary of the contributions of this thesis

in section 6.2. A selection of open questions raised by this research are provided in

section 6.3 and finally the thesis is concluded in section 6.4.

6.2 Thesis Contributions

The significant contributions of this thesis are as follows:

6.2.1 Machine-Oriented Programming Model

The programming model described in section 3.2 provides a rich machine-oriented ap-

proach to design of concurrent applications. Actor-oriented models of concurrency

promise a degree of simplicity and fault tolerance that are retained in this thesis’ machine-

oriented application model. The application model presented explicitly avoids the in-

troduction of centralised coordination that would inhibit application scalability, and

improves application expressiveness by permitting (and defining the consequences of)

multiple channels per machine with potentially diverse communications protocols.
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This model is language agnostic and can be applied to a wide variety of practical

programming languages. The restrictions imposed by the model enhance the platform

independence of applications and enable application structures and properties to be

extracted regardless of the implementation language.

6.2.2 Machine Java Framework

An early version of this framework was published previously [162].

A reference implementation of the application model and the other elements of the

Machine Abstract Architecture (see chapter 3) was presented. Machine Java enables

machine-oriented applications to be designed in the very widely used Java program-

ming language. The use of Java validates the applicability of the model to a real and

practical programming language while also enabling the re-use of a large ecosystem of

existing methodologies and tools for software development.

Machine Java demonstrates compile-time enforced type-safety across an entire dis-

tributed application, and Java’s type system is further used to statically enforce the con-

sistency between machines of communications protocols. Applications and Platforms

are both defined exclusively by their Java code, reducing the possibility of errors due to

inconsistent specifications.

The communications protocols described in the application model (section 3.2.5) are

provided in Machine Java enabling applications to select channel characteristics that are

appropriate for their specific use-case. Machine Java does not attempt to hide the dis-

tributed nature of an application nor attempt to corral all intermachine communications

into a single category.

A strategy for the execution of Machine Java applications on a standard Java Run-

time Environment was presented enabling rapid behavioural prototyping of application

software.

XYNetworkPlatform

A basic Machine Java platform was presented to enable execution on homogeneous

meshes of processors addressed by their X and Y coordinates. The XYNetworkPlatform

demonstrated the principle of platform-directed machine allocation via processor itera-

tion, and some of the impact this can have on runtime performance.

The XYNetworkPlatform provided a bridge between the Machine Java specification
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and a runtime that uses the mesh-networking abstractions provided by Network-Chi to

implement its communications. This platform example demonstrates how applications

are isolated from the topology of the runtime environment, and how a Machine Java

platform model can actually be used to target many distinct implementation (hardware)

architectures.

6.2.3 Chi Optimising Java Compiler

Published previously [163, 164, 165].

An effective strategy for the compilation of Java applications into minimal binaries

was presented (see section 4.7). The Chi compilation approach minimises code require-

ments through extensive pruning of used Java code and ahead-of-time compilation of

the application against the JVM’s behaviour. In many cases runtime behaviour can be

determined at compile time (such as which method body will be invoked due to a vir-

tual invocation) so substantial savings are achieved.

A minimal in-memory representation of Java objects enables processors with very

limited RAM to be targeted, and a garbage collection profile was determined that min-

imises the runtime memory wastage while maintaining acceptable application through-

put.

A compiler assisted low-level mesh networking abstraction was introduced to Java,

enabling identical Java code to execute in a JVM, on POSIX operating systems without

Java, or on the Blueshell evaluation hardware without any host operating system.

6.2.4 An Empirical Evaluation of Machine-Oriented Programming

An empirical evaluation of Machine Java, the compilation strategy and designing appli-

cations according to a machine-oriented model was provided in chapter 5. This eval-

uation demonstrated the viability of Machine Java applications even in the context of

highly constrained processors (section 5.4).

This validates the programming of communication-centric MPNoC architectures in

Java using a machine-based model of concurrency, which is an important result as these

architectures are not programmable using standard thread-based models. The evalua-

tion of overheads and scaling in section 5.4 provides guidance for design decisions when

constructing a machine-oriented application.
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6.3 Future Work

The work presented in this thesis creates the opportunity for many different avenues of

future research:

6.3.1 Exploitation of Extracted Application and Platform Information

Although the work in chapter 5 considered the extraction of graphs from a Machine

Java application these graphs were not put to any use by the presented framework

or compiler. More sophisticated implementations could consume compiler-generated

graphs, or even graphs extracted from a system at runtime (such as figures 5.26 and 5.27

on pages 292-293) to enable any of the following:

better machine placement such as allocation of machines into physically local areas if

it can be determined that they will communicate frequently. Runtime profiling of

applications would be particularly effective for this task.

proactive load balancing by ProcessorManager machines would enable allocation of

dynamic machine workloads to a subset of processors without relying resource

exhaustion of remote processors to drive the allocation process.

non-uniform architectures such as those with heterogeneous processor architectures

or irregular topologies are difficult to exploit without information about the ap-

plication’s machine resource requirements. ProcessorManager machines and the

platform model could use application resource-requirement information to make

more intelligent allocation requests.

6.3.2 Garbage Collecting Machines

It was identified in chapters 3 and 4 that machine end-of-life is particularly problematic:

Machines cannot be safely destroyed on request as there is no way to guarantee that the

machine is no longer in use by some other machine.

Machine Java will destroy and reclaim resources used by machines in a limited se-

lection of circumstances (see section 4.3.5), but for ordinary machine definitions this

will only happen after the application code has explicitly closed the machine’s inbound

channels, and only destructive channels even have the opportunity to be closed.
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Further exploration of application design using the concept of simple ephemeral

machines (section 4.3.5.1) may be able to identify techniques by which familiar pro-

gramming patterns can be expressed using SEMs, but the problem of ordinary machine

end-of-life remains.

A mechanism that could identify machines, even those with non-destructive chan-

nels, that are universally unused would be of great use to future implementations. An

attractive starting point would be to consider the substantial literature that already ex-

ists in the field of distributed garbage collection [161] and in particular the strategies in

use by other distributed actor-oriented frameworks.

6.3.3 Relocating Active Machines

Machine Java, as described in this thesis, does not support the migration of machines

from one processor to another. This activity is compatible with the application model

as machine instances are unaware of the physical placement of their own and other

machines. If a framework supported the relocation or migration of live machines this

would enable applications to respond (possibly transparently) to dynamic changes in

the platform’s structure. Such changes might be the result of hardware failures, the

‘hot’ addition or removal of processors. Even on a single chip it may be possible for

processing units to come and go over time if the platform is implemented on a partial

dynamic reconfiguration (PDR) capable FPGA.

The ability to migrate live machines would also enable dynamic adjustment to pre-

vailing environmental conditions. If a system has run critically low on battery, it might

be desirable to migrate some machines to low power processors rather than halt the

system altogether.

However, relocating a live machine represents a variety of complex technical chal-

lenges:

• Machines reference one another via ordinary Java object references, and Machine

Java internally uses identifiers for machines that contain the identity of the host

processor. If a machine were migrated to a new processor all of the machine

references would no longer be valid. Some mechanism must be identified to dy-

namically update machine references to the new location of a migrated machine.

• Moving a machine that is active it challenging itself. The execution must be
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stopped, state moved and execution resumed elsewhere:

– Halting a tasks execution and saving the context for later is a common activity

for an operating system, but on processors without an operating system this

may be more challenging.

– A machine’s internal state may not have the same representation (byte or-

dering and floating point format, for example) on the source and destination

machine, necessitating the ability to translate the state. Furthermore, Java ob-

ject references will need to be adjusted if the in-memory representation is a

pointer, as it is when compiled with Chi.

– Resources in use by a machine may have internal state that is left inconsistent

following the machine migration. This may also represent a security and

privacy concern for a system.

• Automatic migration not triggered by hardware failure could degrade overall per-

formance rather than improve it.

6.3.4 Communications Performance Improvements

The primary cause for concern highlighted in the evaluation is the poor communications

throughput achieved (see section 5.4.3). Applications that are dependent on exchanging

non-trivial quantities of data would benefit substantially from higher performance com-

munications. The issue is the poor efficiency of the object serialisation mechanism (de-

scribed in section 4.7.3.3). Identifying more efficient, and particularly hardware assisted

Java serialisation would enable the processor to continue with useful work providing

benefits for computational as well as communications throughput.

Some platforms will have shared memory available, and this might enable copy-free

communications but the current Machine Java runtime is not able to take advantage of

this as objects are allocated into processor local memory which may not addressed by

remote processors. The object would have to be allocated into shared memory initially

or somehow be migrated in memory.

Where shared memory is available, it may be possible to enable the communication

of mutable objects without violating intermachine isolation by controlling the aliasing of

the objects to be communicated. Work has been done on the representation of aliasing

rules within a type systems [57], and in particular so-called isolation types have been
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demonstrated [194] which can ensure the single-ownership of messages in an actor-

oriented context. The application of these techniques would enable the performance

penalties associated with repeated construction of immutable Java objects to be avoided,

but they may not be appropriate in MPNoCs without shared memory.

6.3.5 Multiple Applications

Allowing multiple applications to communicate remains a challenge. The application

model as defined in section 3.2 allows for multiple applications to co-exist on a platform

but there is not any mechanism for them to communicate as no machine can have a

reference to the machines in the other application. There are two promising approaches:

1. Define some mechanism to allow inter-application communication of Machine ref-

erences within the machine model. This could plausibly be supported by enabling

the ProcessorManager machines (of which all applications always have references

to, see section 3.4.1) to act as gateways between the applications. An application

could lodge a reference to some ‘application host’ machine with a selected Pro-

cessorManager. This may then be looked up by other applications at runtime.

There are two key difficulties with this approach:

(a) How could an application know which ProcessorManager to query for a

reference to another application at runtime? Applications do not have any

concept of the platform topology so cannot in general know what Processor

Managers are available, much less chose which one to query. Even if a strat-

egy for locating ProcessorManagers is defined in a platform independent

way, scaling this lookup procedure to networks of thousands or millions of

processors is likely to be challenging.

(b) The ability to obtain a reference to a separate application at runtime could

undermine the static determination of the possible communications paths

between machines, which is a key advantage of the machine model. Frame-

works (such as Machine Java) might chose to facilitate this by requiring that

the source for the referenced application, or the source of a contract for the

application (such as abstract machine class definitions) are available at com-

pile time.

2. Some mechanism for address-based communications could be provided. In this
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scheme it would be possible to ‘lookup’ another application via an address which

has a lifetime that exists beyond the lifetime of the other application. Such an

address could be IP-style [168] or a URL [27]. Schemes with long lived addresses

have all of the complications listed above, and many more of their own including

the possibilities of invalid addresses, valid addresses with missing destinations

and resolution of addresses to references.

Another approach is to accept that separate applications must resort to use of tra-

ditional (or platform defined) interprocess communication, such as sockets, signals or

named pipes. This solution is as practical as it is unattractive. It could clearly be facili-

tated on any platform without the need to define a new application model, but none of

the safety or analysis advantages of the existing machine model would be gained across

applications.

6.4 Epilogue

The era of difficult silicon is coming: Chips with ever more processing units, with

communication-centric architectures, with heterogeneity which cannot be ignored in

software, and most critically with asymmetric memory. Appropriate programming

models will become more important than ever if such architectures are to be efficiently

harnessed. Actor-oriented models of concurrency appear to provide such an excellent

match for communication-centric hardware such as MPNoCs, that the challenge be-

comes establishing what is required for these models to achieve acceptance. The work

presented in this thesis is one data-point on the long path towards an acceptable pro-

gramming model for these difficult future architectures.

318



Appendix A

Machine Java API Class Examples

Contents

6.1 Revisiting the Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

6.2 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

6.2.1 Machine-Oriented Programming Model . . . . . . . . . . . . . . . . . . . . 311

6.2.2 Machine Java Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

6.2.3 Chi Optimising Java Compiler . . . . . . . . . . . . . . . . . . . . . . . . . 313

6.2.4 An Empirical Evaluation of Machine-Oriented Programming . . . . . . . . . 313

6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

6.3.1 Exploitation of Extracted Application and Platform Information . . . . . . . 314

6.3.2 Garbage Collecting Machines . . . . . . . . . . . . . . . . . . . . . . . . . . 314

6.3.3 Relocating Active Machines . . . . . . . . . . . . . . . . . . . . . . . . . . 315

6.3.4 Communications Performance Improvements . . . . . . . . . . . . . . . . . 316

6.3.5 Multiple Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

6.4 Epilogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

Representative examples of Machine Java classes are reproduced here for reference

including the most complex of the channels (RemoteProcedureCall) and time event

sources (Period).
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A.1 RemoteProcedureCall.java

1 package mjava.core.tpif;
2

3 import java.io.IOException;
4

5 import mjava.core.Handler;
6 import mjava.core.Machine;
7 import mjava.core.runtime.drivers.PreviousDatumNotAcceptedException;
8 import mjava.core.runtime.drivers.TPIFDriverRx;
9 import mjava.core.runtime.drivers.TPIFDriverTx;

10

11 /**
12 * Root of all bidirectional protocols.
13 *
14 * Event handlers are provided with a bidirectional envelope
15 * which can be used to reply to the querying machine without knowing
16 * what their type is.
17 *
18 * @author gary
19 *
20 * @param <Q> Query type
21 * @param <R> Response Type
22 */
23 public class RemoteProcedureCall<Q, R> extends TPIFBidirectionalProtocol

<Q, R> {
24

25 protected final int bufferLength;
26

27 /**
28 * A connector for querying remote procedure call protocols. This,

like other connectors should be shutdown after its last use.
29 *
30 * @author gary
31 *
32 * @param <Q> Query type
33 * @param <R> Response Type
34 */
35 public static class RemoteProcedureCallConnector<Q, R> extends

TPIFBidirectionalConnector<Q, R> implements Runnable {
36

37 protected final RemoteProcedureCall<Q, R> host;
38 protected final TPIFDriverTx<BidirectionalQuery<Q, R>> txDrv;
39 protected final TPIFDriverRx<R> rxDrv;
40 private boolean ephemeral;
41

42 /**
43 * Constructs a new RPC connector. The reply handler must not be

null!
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44 * @param host The host RPC protocol.
45 * @param replyHandler The handler to deal with replies.
46 */
47 public RemoteProcedureCallConnector(RemoteProcedureCall<Q, R> host,

Handler<Envelope<R>> replyHandler) {
48 super(replyHandler);
49 this.host = host;
50 //No unblocked handler is set as we don’t actually care when this

is unblocked.
51 // sending will be forbidden until a response is received from the

server.
52 // (and this can only have happened after an unblocked would have

been received.)
53 txDrv = Machine.getThisMachine().getMachineDriver().

getTPIFDriverTx(host.getExternalID(), false, true, null);
54 //replies come to this driver: (keep exactly one slot for replies,

destructive protocol: no handshakes!)
55 rxDrv = Machine.getThisMachine().getMachineDriver().

getTPIFDriverRx(this.getExternalID(), this, true, 1);
56 rxDrv.accept(); //be ready for the first reply.
57 }
58

59 /**
60 * Sends a query to the RPC.
61 * Blocks until there is data available and returns it.
62 * Only use for non-event based, one-shot queries.
63 *
64 * @param query The query to send.
65 * @throws PreviousDatumNotAcceptedException If an attempt is made

to send another query before a reply has been received for an
existing in-flight query.

66 */
67 private R sendAndWait(Q query) throws

PreviousDatumNotAcceptedException {
68 //Wrap the query with this connector’s external address for

replies.
69 send(query);
70 return rxDrv.getBlocking();
71 }
72

73 /**
74 * Sends a query to the RPC.
75 * @param query The query to send.
76 * @throws PreviousDatumNotAcceptedException If an attempt is made

to send another query before a reply has been received for an
existing in-flight query.

77 */
78 public void send(Q query) throws PreviousDatumNotAcceptedException {
79 //Wrap the query with this connector’s external address for
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replies.
80 //if (Network.amOrigin()) System.out.println("RPC: sending query")

;
81 txDrv.send(new BidirectionalQuery<Q, R>(getExternalID(), query));
82 }
83

84 /**
85 * A synonym for send.
86 * @param query
87 * @throws PreviousDatumNotAcceptedException
88 */
89 public void query(Q query) throws PreviousDatumNotAcceptedException

{
90 send(query);
91 }
92

93 /**
94 * Executed by rxDrv to indicate a new datum has arrived.
95 */
96 @Override
97 public void run() {
98 registerEvent(new TPIFEnvelope<R>(rxDrv, this, ephemeral));
99 }

100

101 public void shutdown() throws IOException {
102 rxDrv.shutdown();
103 txDrv.shutdown();
104 }
105

106 public RemoteProcedureCallConnector<Q, R> setEphemeral(boolean
ephemeral) {

107 this.ephemeral = ephemeral;
108 return this;
109 }
110

111 }
112

113 /** the driver that enables this RPC to work. This driver receives
queries. */

114 protected TPIFDriverRx<BidirectionalQuery<Q,R>> _drv;
115

116

117

118 public RemoteProcedureCall(Handler<? super ReturnableEnvelope<Q, R>>
queryHandler) {

119 this(BoundedBuffer.DEFAULT_BUFFER_LENGTH, queryHandler);
120 }
121

122 public RemoteProcedureCall(int bufferLength, Handler<? super
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ReturnableEnvelope<Q, R>> queryHandler) {
123 super(queryHandler);
124 if (queryHandler==null) throw new NullPointerException("queryHandler

may not be null.");
125 this.bufferLength = bufferLength;
126 setupDriver(bufferLength);
127 }
128

129 /**
130 * Sets up the internal driver so this protocol actually functions.

This method will be called before the object is fully constructed
!

131 * @param bufferLength
132 * @param arrivalHandler
133 */
134 protected void setupDriver(int bufferLength) {
135 //get a new rx-driver in non-destructive mode (ie: blocking writes

on full buffer)
136 //This will return null if this buffer is in a shadow machine.
137 _drv = owner.getMachineDriver().getTPIFDriverRx(getExternalID(), new

Runnable() {
138 @Override
139 public void run() {
140 registerEvent(new ReturnableEnvelope<Q, R>(_drv,

RemoteProcedureCall.this));
141 }
142 }, false, bufferLength);
143 _drv.accept(); //accept the first item if this is a buffered driver.
144 }
145

146 /**
147 * Gets a connector that can be used to query this remote procedure

call.
148 * @param replyHandler the event handler that will receive replies

from queries sent to the corresponding RPC.
149 * @return a new open connector object.
150 */
151 public RemoteProcedureCallConnector<Q, R> newConnector(Handler<

Envelope<R>> replyHandler) {
152 return new RemoteProcedureCallConnector<Q, R>(this, replyHandler);
153 }
154

155 /**
156 * As with newConnector but this connector will automatically close

after one query.
157 * @param replyHandler
158 * @return
159 */
160 public RemoteProcedureCallConnector<Q, R> newEphemeralConnector(
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Handler<Envelope<R>> replyHandler) {
161 return new RemoteProcedureCallConnector<Q, R>(this, replyHandler).

setEphemeral(true);
162 }
163

164 /**
165 * Queries the remote machine and waits for the response. This is not

a good design in general! (Too many opportunities for deadlock or
memory exhaustion)

166 *
167 * @param query
168 * @return
169 */
170 public R blockingQuery(Q query) {
171 RemoteProcedureCallConnector<Q, R> connector = newConnector(null);
172 R response = connector.sendAndWait(query);
173 try {
174 connector.shutdown();
175 } catch (IOException e) {
176 e.printStackTrace();
177 }
178 return response;
179 }
180

181 /**
182 * Issues a new non-blocking query on an ephemeral connector.
183 * @param query
184 * @param replyHandler
185 */
186 public void query(Q query, Handler<Envelope<R>> replyHandler) {
187 (new RemoteProcedureCallConnector<Q, R>(this, replyHandler).

setEphemeral(true)).query(query);
188 }
189 }
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A.2 Period.java

1 package mjava.core.time;
2

3 import mjava.core.Handler;
4 import mjava.core.runtime.Platform;
5 import mjava.core.runtime.drivers.AlarmDriver;
6

7 /**
8 * Provides an interval timer for mjava machines.
9 *

10 * This event source will issue an event approximately every period in
milliseconds, as long as the event handler is executed before the
next period is due.

11 *
12 * @author gary
13 */
14 public class Period extends TimeEventSource implements Runnable {
15

16 protected AlarmDriver drv = Platform.getPlatform().locateMachineDriver
().getAlarmDriver(this);

17

18 protected final long periodMS;
19 protected long lastScheduledFor;
20

21 public Period(long periodMS, final Handler<TimeEvent> handler) {
22 //first give the event source a null handler because we need to use

a proxy handler to detect when the event handler has finished
executing.

23 super(null);
24

25 this.periodMS = periodMS;
26 //assume we were most recently activated right now.
27 this.lastScheduledFor = System.currentTimeMillis();
28

29 setHandler(new Handler<TimeEvent>() {
30 @Override
31 public void handle(TimeEvent info) {
32 //run client code:
33 handler.handle(info);
34

35 //schedule the next period event as long as the periodic wasn’t
cancelled in the event handler.

36 if (!isCancelled) again();
37 }
38 });
39

40 //Startup:
41 again();
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42 }
43

44 /**
45 * Called after the event handler has executed to indicate we should

schedule again.
46 *
47 * Clients of the Periodic Timed Event Source do not call again().
48 */
49 protected void again() {
50 this.lastScheduledFor = lastScheduledFor+periodMS;
51 drv.setAlarm(lastScheduledFor);
52 }
53

54 boolean isCancelled = false;
55

56 @Override
57 public void cancel() {
58 isCancelled = true;
59 drv.cancel();
60 }
61

62 @Override
63 public void run() {
64 doHandle(new TimeEvent(this));
65 }
66

67 /**
68 * Periods cannot be ’agained’
69 */
70 @Override
71 public void again(long newValue) {
72 throw new UnsupportedOperationException();
73 }
74

75 }
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Example Machine Java code for the water tank level control application (shown in

figure 3.2) is reproduced here. Note that this is just a structural example: the sensors

use random numbers as their sources, the actuators just print messages to the console,

and an unrealistically simple pump control calculation is used by the FlowController.

B.1 FlowController

1 package examples.watertank;
2

3 import mjava.core.Handler;
4 import mjava.core.Start;
5 import mjava.core.time.Delay;
6 import mjava.core.time.TimeEvent;
7 import mjava.core.tpif.Envelope;
8 import mjava.core.tpif.OverwritingBuffer;
9 import mjava.tools.chi.Experiment;

10

11 public class FlowController extends Start {
12

13 private FlowController() {}
14

15 public static void main(String[] args) {
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16 start(FlowController.class);
17 }
18

19 private int calculateRequiredPumpPower(int tankLevel) {
20 return 100-tankLevel;
21 }
22

23 private RefillPump pump;
24

25 public final OverwritingBuffer<Integer> tankLevel = new
OverwritingBuffer<Integer>(1, new Handler<Envelope<Integer>>() {

26 @Override
27 public void handle(Envelope<Integer> info) {
28 int tankLevelNow = info.getPayload();
29 pump.power.send(calculateRequiredPumpPower(tankLevelNow));
30 }
31 });
32

33 @Override
34 protected void internal() {
35

36 newMachine(RefillPump.class, new Handler<RefillPump>() {
37

38 @Override
39 public void handle(RefillPump info) {
40 pump = info;
41

42 //Got the pump so can now create our sensors:
43 setupMachine(LevelSensor.class, FlowController.this, null);
44 }
45 });
46

47

48 new Delay(20*1000, new Handler<TimeEvent>() {
49 @Override
50 public void handle(TimeEvent info) {
51 Experiment.terminate();
52 }
53 });
54

55 }
56

57 }

B.2 RefillPump

1 package examples.watertank;
2

3 import mjava.core.Handler;
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4 import mjava.core.Machine;
5 import mjava.core.tpif.Envelope;
6 import mjava.core.tpif.OverwritingBuffer;
7

8 public class RefillPump extends Machine {
9

10 private RefillPump() {}
11

12 public final OverwritingBuffer<Integer> power = new OverwritingBuffer<
Integer>(new Handler<Envelope<Integer>>() {

13

14 @Override
15 public void handle(Envelope<Integer> info) {
16 setPower(info.getPayload());
17 }
18 });
19

20 private void setPower(int toPower) {
21 log("setting pump power to "+toPower+"%");
22 }
23

24 }

B.3 LevelSensor

1 package examples.watertank;
2

3 import mjava.core.EventCombiner;
4 import mjava.core.Handler;
5 import mjava.core.Pair;
6 import mjava.core.SetupableMachine;
7 import mjava.core.time.Period;
8 import mjava.core.time.TimeEvent;
9 import mjava.core.tpif.Envelope;

10

11 public class LevelSensor extends SetupableMachine<FlowController> {
12

13 private LevelSensor() {}
14

15 public static final int REPORT_MILLIS = 100;
16 public static final int POLL_MILLIS = 50;
17

18 protected static final int EMERGENCY_THRESHOLD = 90;
19

20 private int currentTankLevel;
21

22 private UnreliableSensor sensorA;
23 private UnreliableSensor sensorB;
24
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25 private EmergencyValve emergency;
26

27 //A combiner that fires when both sensors are ready and when the timed
interval has happened.

28 private EventCombiner<TimeEvent, Pair<Envelope<Integer>, Envelope<
Integer>>> timedPollCombiner = new EventCombiner<TimeEvent, Pair<
Envelope<Integer>,Envelope<Integer>>>(new Handler<Pair<TimeEvent,
Pair<Envelope<Integer>,Envelope<Integer>>>>() {

29 @Override
30 public void handle(Pair<TimeEvent, Pair<Envelope<Integer>, Envelope<

Integer>>> info) {
31

32 int sensorAValue = info.right.left.getPayload();
33 int sensorBValue = info.right.right.getPayload();
34

35 currentTankLevel = (sensorAValue+sensorBValue)/2;
36

37 if (currentTankLevel>EMERGENCY_THRESHOLD) emergency.openValve.
signal();

38

39 //query the sensors again:
40 querySensors();
41

42 }
43 });
44

45 //An event combiner so we only execute once we’ve received the latest
from each sensor:

46 private EventCombiner<Envelope<Integer>, Envelope<Integer>>
sensorResponseCombiner = new EventCombiner<Envelope<Integer>,
Envelope<Integer>>(timedPollCombiner.getRightHandler());

47

48 @Override
49 protected void internal() {
50

51 //Get sensorA
52 newMachine(UnreliableSensor.class, new Handler<UnreliableSensor>() {
53 @Override
54 public void handle(UnreliableSensor info) {
55 sensorA = info;
56 sensorA.currentLevel.fetch(sensorResponseCombiner.getLeftHandler

());
57 }
58 });
59

60 //Get sensorB
61 newMachine(UnreliableSensor.class, new Handler<UnreliableSensor>() {
62 @Override
63 public void handle(UnreliableSensor info) {
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64 sensorB = info;
65 sensorB.currentLevel.fetch(sensorResponseCombiner.

getRightHandler());
66 }
67 });
68

69 newMachine(EmergencyValve.class, new Handler<EmergencyValve>() {
70 @Override
71 public void handle(EmergencyValve info) {
72 emergency = info;
73 }
74 });
75

76 //A periodic task to poll the sensors: (event combined with sensor
responses)

77 new Period(POLL_MILLIS, timedPollCombiner.getLeftHandler());
78 }
79

80 private void querySensors() {
81 if (sensorA!=null) sensorA.currentLevel.fetch(sensorResponseCombiner

.getLeftHandler());
82 if (sensorB!=null) sensorB.currentLevel.fetch(sensorResponseCombiner

.getRightHandler());
83 }
84

85 @Override
86 protected void setup(final FlowController controller) {
87

88 //Now we know who the controller is a periodic task can be setup to
send it tank level data:

89 new Period(REPORT_MILLIS, new Handler<TimeEvent>() {
90

91 @Override
92 public void handle(TimeEvent info) {
93 controller.tankLevel.send(currentTankLevel);
94 }
95 });
96

97 }
98

99 }

B.4 EmergencyValve

1 package examples.watertank;
2

3 import mjava.core.Handler;
4 import mjava.core.Machine;
5 import mjava.core.Nothing;
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6 import mjava.core.tpif.Envelope;
7 import mjava.core.tpif.Stimulus;
8

9 public class EmergencyValve extends Machine {
10

11 private EmergencyValve() {}
12

13 public final Stimulus openValve = new Stimulus(new Handler<Envelope<
Nothing>>() {

14 @Override
15 public void handle(Envelope<Nothing> info) {
16 //Payload must always be read!
17 info.getPayload();
18 log("EMERGENCY!");
19 }
20 });
21

22 }

B.5 UnreliableSensor

1 package examples.watertank;
2

3 import java.util.Random;
4

5 import mjava.core.Handler;
6 import mjava.core.Machine;
7 import mjava.core.Nothing;
8 import mjava.core.tpif.RemoteDataFetch;
9 import mjava.core.tpif.ReturnableEnvelope;

10

11 public class UnreliableSensor extends Machine {
12

13 private UnreliableSensor() {}
14

15 private Random rng = new Random();
16

17 public final RemoteDataFetch<Integer> currentLevel = new
RemoteDataFetch<Integer>(new Handler<ReturnableEnvelope<Nothing,
Integer>>() {

18 @Override
19 public void handle(ReturnableEnvelope<Nothing, Integer> info) {
20 //let’s say (50+-45)%
21 info.reply(5+rng.nextInt(90));
22 }
23 });
24

25 }
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C.1 SpeedTest

C.1.1 SpeedTest.java

1 package examples.speedtest;
2

3 import mjava.core.Handler;
4 import mjava.core.Pair;
5 import mjava.core.Start;
6 import mjava.core.time.Delay;
7 import mjava.core.time.Period;
8 import mjava.core.time.TimeEvent;
9 import mjava.core.tpif.BoundedBuffer;

10 import mjava.core.tpif.Envelope;
11 import mjava.tools.chi.Experiment;
12 import mjava.tools.chi.runtime.Network;
13

14 /**
15 * A speed/latency tester for mJava.
16 * Will add a new machine pair every ADD_INTERVAL_MS seconds until the

timeout
17 *
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18 * Will print a message on every pair addition with the current
throughput/latency figures.

19 *
20 * @author gary
21 */
22 public class SpeedTest extends Start {
23

24 public static final int DEATH_COUNTER = 5;
25

26 public static final int TERMINATE_MS = 1000*60*10; //10mins
27

28 /**
29 * Interval to add new message exchanging machines at:
30 */
31 public static final int ADD_INTERVAL_MS = 10_000;
32

33 /**
34 * Message size exchanged in bytes
35 */
36 public static final int MSG_SIZE = 5;
37

38

39 private SpeedTest() {}
40

41 private int pairCount = 0;
42

43 ///during the last interval:
44 //bytes
45 private long bytesTransferred;
46 //n
47 private long messagesExchanged;
48 //ns
49 private long latencyEncountered;
50 //ms
51 private long lastReported;
52

53 //totals:
54 private long messagesEver;
55 private long transferredEver;
56

57 public static void main(String[] args) {
58 start(SpeedTest.class);
59 }
60

61 @Override
62 protected void internal() {
63

64 //Add a new communicating pair every
65 new Period(ADD_INTERVAL_MS, new Handler<TimeEvent>() {
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66 @Override
67 public void handle(TimeEvent info) {
68 addPair();
69 }
70 });
71

72 new Delay(TERMINATE_MS, true, new Handler<TimeEvent>() {
73

74 @Override
75 public void handle(TimeEvent info) {
76 log("Terminating due to timeout of (ms): "+TERMINATE_MS);
77 Experiment.terminate();
78 }
79 });
80

81 log("#i#SpeedTest#, processors, pairs, avgLatencyuS, rateB/s,
messages");

82 log("#i#SpeedTest# Message size: "+MSG_SIZE);
83

84 addPair();
85

86 //Experiment.waitDumpExit();
87

88 }
89

90 /**
91 * Adds a new pair of communicating machines
92 */
93 private void addPair() {
94 report();
95

96 //Create both the ping-client and server here and pass the server
reference to the client.

97 PingClient newPingClient = newMachine(PingClient.class);
98 PingServer newPingSrv = newMachine(PingServer.class);
99

100 //Send the new ping client our reference (for reporting) and the
server that it should ping.

101 newPingClient.setup.send(Pair.p(this, newPingSrv));
102

103 pairCount++;
104 log("New PingClient ("+newPingClient+") and PingServer created!");
105 }
106

107

108 /**
109 * A pair will periodically report back some total latency and message

count info.
110 */
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111 public final BoundedBuffer<PingClientReport> reportExchange = new
BoundedBuffer<PingClientReport>(50, new Handler<Envelope<
PingClientReport>>() {

112

113 @Override
114 public void handle(Envelope<PingClientReport> info) {
115 long latency = info.getPayload().latencyNanos;
116 int messages = info.getPayload().messageCount;
117

118 messagesEver+=messages;
119 transferredEver += MSG_SIZE*messages;
120

121 bytesTransferred += MSG_SIZE*messages;
122 messagesExchanged+=messages;
123 latencyEncountered += latency;
124 }
125

126 });
127

128 private int deadFor = 0;
129 private final int pCount = Network.width()*Network.height();
130 private final String datalogPrefix = "#d#SpeedTest#, "+pCount+", ";
131

132 private void report() {
133 long now = System.currentTimeMillis();
134 long interval = now-lastReported;
135

136 if (messagesExchanged>0) {
137 long avgLatencyuS = (latencyEncountered/messagesExchanged)/1000;
138 long rate = (bytesTransferred*1000l)/interval;
139

140 log(datalogPrefix+pairCount+", "+avgLatencyuS+", "+rate+", "+
messagesExchanged);

141 deadFor = 0;
142 } else {
143 log("Pairs: "+pairCount+". No messages exchanged in last interval.

");
144 deadFor++;
145 //quit if we’ve been broken for too long:
146 if (deadFor>DEATH_COUNTER) {
147 log("We’ve apparently died. Terminating.");
148 Experiment.terminate();
149 }
150 }
151

152 messagesExchanged = 0;
153 latencyEncountered = 0;
154 bytesTransferred = 0;
155
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156 lastReported = now;
157 }
158

159 }

C.1.2 PingClient.java

1 package examples.speedtest;
2

3 import java.util.Collections;
4

5 import examples.speedtest.PingServer.PingMsg;
6 import mjava.core.EventCombiner;
7 import mjava.core.Handler;
8 import mjava.core.Machine;
9 import mjava.core.Nothing;

10 import mjava.core.Pair;
11 import mjava.core.VisibleMachineDependencies;
12 import mjava.core.time.Period;
13 import mjava.core.time.TimeEvent;
14 import mjava.core.tpif.BoundedBuffer;
15 import mjava.core.tpif.Envelope;
16 import mjava.immutable.ImmutableSet;
17

18 public class PingClient extends Machine implements
VisibleMachineDependencies{

19

20 private PingClient() {}
21

22 private long lastSentNanos;
23

24 private SpeedTest host;
25

26 public final BoundedBuffer<Pair<SpeedTest, PingServer>> setup = new
BoundedBuffer<Pair<SpeedTest, PingServer>>(1, new Handler<Envelope
<Pair<SpeedTest, PingServer>>>() {

27 @Override
28 public void handle(Envelope<Pair<SpeedTest, PingServer>> info) {
29 host = info.getPayload().left;
30 srv = info.getPayload().right;
31

32 //now we can start:
33 lastSentNanos = System.nanoTime();
34 srv.replyService.query(new PingMsg(), new PingReplyHandler());
35 //con.query(new PingMsg());
36 }
37 });
38

39 private PingServer srv;
40
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41 private long latency;
42 private int messages;
43

44

45 private final class PingReplyHandler implements Handler<Envelope<
PingMsg>> {

46 @Override
47 public void handle(Envelope<PingMsg> info) {
48 //don’t actually care about the reply, but it’s imperative to read

it anyway!
49 info.getPayload();
50

51 //Woop replied!
52 long latencyNanos = System.nanoTime()-lastSentNanos;
53

54 latency+=latencyNanos;
55 messages++;
56

57

58 lastSentNanos = System.nanoTime();
59 srv.replyService.query(new PingMsg(), PingReplyHandler.this);
60

61 }
62 }
63

64

65 public static final int REPORT_INTERVAL_MS = 2000;
66

67 private EventCombiner<TimeEvent, Nothing> combiner = new EventCombiner
<TimeEvent, Nothing>(new Handler<Pair<TimeEvent, Nothing>>() {

68

69 @Override
70 public void handle(Pair<TimeEvent, Nothing> info) {
71 if (host!=null) {
72 host.reportExchange.send(new PingClientReport(messages, latency)

, combiner.getRightHandler());
73 latency = 0;
74 messages = 0;
75 } else {
76 combiner.rightSideReady();
77 }
78 }
79 });
80

81 @Override
82 protected void internal() {
83 lastSentNanos = System.nanoTime();
84

85 //Setup a periodic task to report the current latency and message
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count to the host:
86 new Period(REPORT_INTERVAL_MS, combiner.getLeftHandler());
87

88 combiner.rightSideReady();
89 }
90

91 @Override
92 public ImmutableSet<Machine> _getReferencedMachines() {
93 return new ImmutableSet<>(Collections.singleton((Machine)srv));
94 }
95

96 }

C.1.3 PingServer.java

1 package examples.speedtest;
2

3 import java.io.DataInputStream;
4 import java.io.DataOutputStream;
5 import java.io.IOException;
6

7 import mjava.core.Handler;
8 import mjava.core.Immutable;
9 import mjava.core.Machine;

10 import mjava.core.tpif.RemoteProcedureCall;
11 import mjava.core.tpif.ReturnableEnvelope;
12

13 public class PingServer extends Machine {
14

15 /**
16 * This is the message class for the speed tester.
17 * This doesn’t actually hold a message but is a data generator and

sink.
18 * @author gary
19 */
20 public static class PingMsg implements Immutable {
21

22 public PingMsg() {
23 }
24

25 public PingMsg(DataInputStream in) throws IOException {
26 for (int i=0; i<SpeedTest.MSG_SIZE; i++) {
27 in.read();
28 }
29 }
30

31 @Override
32 public void flatten(DataOutputStream out) throws IOException {
33 for (int i=0; i<SpeedTest.MSG_SIZE; i++) {
34 out.write((byte)i);
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35 }
36 }
37

38 }
39

40 private PingServer() {}
41

42 /**
43 * Just replies to the client immediately.
44 */
45 public final RemoteProcedureCall<PingMsg, PingMsg> replyService = new

RemoteProcedureCall<>(new Handler<ReturnableEnvelope<PingMsg,
PingMsg>>() {

46 @Override
47 public void handle(ReturnableEnvelope<PingMsg, PingMsg> info) {
48 info.reply(info.getPayload());
49 }
50 });
51

52 protected void internal() {};
53

54 }

C.1.4 PingClientReport.java

1 package examples.speedtest;
2

3 import java.io.DataInputStream;
4 import java.io.DataOutputStream;
5 import java.io.IOException;
6

7 import mjava.core.Immutable;
8

9 public class PingClientReport implements Immutable {
10

11 public final int messageCount;
12 public final long latencyNanos;
13

14 @Override
15 public void flatten(DataOutputStream out) throws IOException {
16 out.writeInt(messageCount);
17 out.writeLong(latencyNanos);
18 }
19

20 public PingClientReport(int messageCount, long latencyNanos) {
21 this.messageCount = messageCount;
22 this.latencyNanos = latencyNanos;
23 }
24

25 public PingClientReport(DataInputStream in) throws IOException {
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26 messageCount = in.readInt();
27 latencyNanos = in.readLong();
28 }
29 }

C.2 SpeedTestHP

C.2.1 PingClientHP.java

1 package examples.speedtest.highperf;
2

3 import examples.speedtest.highperf.PingServerHP.PingMsg;
4 import mjava.core.EventCombiner;
5 import mjava.core.Handler;
6 import mjava.core.Machine;
7 import mjava.core.Nothing;
8 import mjava.core.Pair;
9 import mjava.core.time.Period;

10 import mjava.core.time.TimeEvent;
11 import mjava.core.tpif.Envelope;
12 import mjava.core.tpif.OverwritingBuffer.OverwritingBufferConnector;
13 import mjava.core.tpif.Signal;
14

15 public class PingClientHP extends Machine {
16

17 private PingClientHP() {}
18

19 private long lastSentNanos;
20

21 private SpeedTestHP host;
22

23 public final Signal<Pair<SpeedTestHP, PingServerHP>> setup = new
Signal<Pair<SpeedTestHP, PingServerHP>>(new Handler<Envelope<Pair<
SpeedTestHP, PingServerHP>>>() {

24 @Override
25 public void handle(Envelope<Pair<SpeedTestHP, PingServerHP>> info) {
26 host = info.getPayload().left;
27 toSrv = info.getPayload().right.replyService.newConnector();
28

29 //now we can start:
30 lastSentNanos = System.nanoTime();
31 toSrv.send(new PingMsg());
32 }
33 });
34

35

36 private OverwritingBufferConnector<PingMsg> toSrv;
37

38 public final Signal<PingMsg> returnChannel = new Signal<>(new
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PingReplyHandler());
39

40 private long latency;
41 private int messages;
42

43

44 private final class PingReplyHandler implements Handler<Envelope<
PingMsg>> {

45 @Override
46 public void handle(Envelope<PingMsg> info) {
47 //don’t actually care about the reply, but it’s imperative to read

it anyway!
48 info.getPayload();
49

50 //Woop replied!
51 long latencyNanos = System.nanoTime()-lastSentNanos;
52

53 latency+=latencyNanos;
54 messages++;
55

56

57 lastSentNanos = System.nanoTime();
58 toSrv.send(info.getPayload());
59 }
60 }
61

62

63 public static final int REPORT_INTERVAL_MS = 2000;
64

65 private EventCombiner<TimeEvent, Nothing> combiner = new EventCombiner
<TimeEvent, Nothing>(new Handler<Pair<TimeEvent, Nothing>>() {

66

67 @Override
68 public void handle(Pair<TimeEvent, Nothing> info) {
69 if (host!=null) {
70 host.reportExchange.send(new PingClientReport(messages, latency)

, combiner.getRightHandler());
71 latency = 0;
72 messages = 0;
73 } else {
74 combiner.rightSideReady();
75 }
76 }
77 });
78

79 @Override
80 protected void internal() {
81 //log("pingclient internal(): 1");
82
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83 lastSentNanos = System.nanoTime();
84

85 //Setup a periodic task to report the current latency and message
count to the host:

86 new Period(REPORT_INTERVAL_MS, combiner.getLeftHandler());
87

88 combiner.rightSideReady();
89

90 //log("pingclient internal(): 2");
91 }
92

93 }

C.2.2 PingServerHP.java

1 package examples.speedtest.highperf;
2

3 import java.io.DataInputStream;
4 import java.io.DataOutputStream;
5 import java.io.IOException;
6

7 import mjava.core.Handler;
8 import mjava.core.Immutable;
9 import mjava.core.SetupableMachine;

10 import mjava.core.tpif.Envelope;
11 import mjava.core.tpif.OverwritingBuffer.OverwritingBufferConnector;
12 import mjava.core.tpif.Signal;
13 import mjava.tools.chi.Experiment;
14

15 public class PingServerHP extends SetupableMachine<PingClientHP> {
16

17

18 /**
19 * This is the message class for the speed tester.
20 * This doesn’t actually hold a message but is a data generator and

sink.
21 * @author gary
22 */
23 public static class PingMsg implements Immutable {
24

25 //use an experimental parameter:
26 private final int MSG_SIZE = Experiment.getExpParamAsInt(0);
27

28 public PingMsg() {
29 }
30

31 public PingMsg(DataInputStream in) throws IOException {
32 for (int i=0; i<MSG_SIZE; i++) {
33 in.read();
34 }
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35 }
36

37 @Override
38 public void flatten(DataOutputStream out) throws IOException {
39 for (int i=0; i<MSG_SIZE; i++) {
40 out.write((byte)i);
41 }
42 }
43

44 }
45

46 private PingServerHP() {}
47

48 /**
49 * Just replies to the client immediately using the predefined

connector.
50 */
51 public final Signal<PingMsg> replyService = new Signal<>(new Handler<

Envelope<PingMsg>>(){
52 @Override
53 public void handle(Envelope<PingMsg> info) {
54 toClient.send(info.getPayload());
55 }
56 });
57

58 private OverwritingBufferConnector<PingMsg> toClient;
59

60 @Override
61 protected void setup(PingClientHP value) {
62 toClient = value.returnChannel.newConnector();
63 };
64

65 }

C.3 DistributedMD5

C.3.1 DistributedMD5.java

1 package examples.compute;
2

3 import examples.speedtest.SpeedTest;
4 import mjava.core.Handler;
5 import mjava.core.Start;
6 import mjava.core.time.Delay;
7 import mjava.core.time.Period;
8 import mjava.core.time.TimeEvent;
9 import mjava.core.tpif.BoundedBuffer;

10 import mjava.core.tpif.Envelope;
11 import mjava.tools.chi.Experiment;
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12 import mjava.tools.chi.runtime.Network;
13

14 public class DistributedMD5 extends Start {
15

16 public static final int TERMINATE_MS = SpeedTest.TERMINATE_MS; //10
mins

17

18 /**
19 * Interval to add new message exchanging machines at:
20 */
21 public static final int ADD_INTERVAL_MS = SpeedTest.ADD_INTERVAL_MS;
22

23 private DistributedMD5() {}
24

25 private int workerCount = 0;
26

27 ///during the last interval:
28 //hashes
29 private long hashCount;
30 //ms
31 private long lastReported;
32

33 //totals:
34 @SuppressWarnings("unused")
35 private long hashesEver;
36

37 public static void main(String[] args) {
38 start(DistributedMD5.class);
39 }
40

41 @Override
42 protected void internal() {
43

44 //Add a new communicating pair every
45 new Period(ADD_INTERVAL_MS, new Handler<TimeEvent>() {
46 @Override
47 public void handle(TimeEvent info) {
48 addWorker();
49 }
50 });
51

52 new Delay(TERMINATE_MS, true, new Handler<TimeEvent>() {
53

54 @Override
55 public void handle(TimeEvent info) {
56 log("Terminating due to timeout of (ms): "+TERMINATE_MS);
57 Experiment.terminate();
58 }
59 });

345



Chapter C: Microbenchmark Source Code

60

61 log("#i#DistributedMD5#, processors, workers, hashes/s");
62 log("#i#DistributedMD5#, batch size: "+MD5Worker.BATCH_SIZE);
63

64 addWorker();
65

66 }
67

68 /**
69 * Adds a new pair of communicating machines
70 */
71 private void addWorker() {
72 report();
73 setupMachine(MD5Worker.class, this, new Handler<MD5Worker>() {
74

75 @Override
76 public void handle(MD5Worker info) {
77 workerCount++;
78 log("New MD5Worker ("+info+") created!");
79 }
80 });
81 }
82

83

84 /**
85 * periodically workers will report how much they have completed.
86 */
87 public final BoundedBuffer<Integer> reportHashesComplete = new

BoundedBuffer<Integer>(50, new Handler<Envelope<Integer>>() {
88

89 @Override
90 public void handle(Envelope<Integer> info) {
91 long completed = info.getPayload();
92

93 hashCount += completed;
94 hashesEver += completed;
95

96 }
97

98 });
99

100 private int deadFor = 0;
101 private final int pCount = Network.width()*Network.height();
102 private final String datalogPrefix = "#d#DistributedMD5#, "+pCount+",

";
103

104 private void report() {
105 long now = System.currentTimeMillis();
106 long interval = now-lastReported;
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107

108 if (hashCount>0) {
109 long rate = (hashCount*1000l)/interval;
110 //int krate = (int) (rate/1000);
111

112 log(datalogPrefix+workerCount+", "+rate);
113 deadFor = 0;
114 } else {
115 log("Workers: "+workerCount+". No work done in last interval.");
116 deadFor++;
117 //quit if we’ve been broken for too long:
118 if (deadFor>SpeedTest.DEATH_COUNTER) {
119 log("We’ve apparently died. Terminating.");
120 Experiment.terminate();
121 }
122 }
123

124 hashCount = 0;
125

126 lastReported = now;
127 }
128

129 }

C.3.2 MD5Worker.java

1 package examples.compute;
2

3 import examples.speedtest.PingClient;
4 import mjava.core.EventCombiner;
5 import mjava.core.Handler;
6 import mjava.core.Nothing;
7 import mjava.core.Pair;
8 import mjava.core.SetupableMachine;
9 import mjava.core.time.Period;

10 import mjava.core.time.TimeEvent;
11 import mjava.core.time.Yield;
12 import mjava.tools.chi.tests.network.MD5;
13

14 /**
15 * The MD5 worker just calculates MD5 digests continuously.
16 *
17 * it will periodically report back to the manager.
18 *
19 * @author gary
20 *
21 */
22 public class MD5Worker extends SetupableMachine<DistributedMD5> {
23

24 private MD5Worker() {}
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25

26 private DistributedMD5 manager;
27

28 private int hashesSinceLastReport = 0;
29

30 public static final int REPORT_INTERVAL_MS = PingClient.
REPORT_INTERVAL_MS;

31

32 /**
33 * The number of MD5s to do in a batch before yielding to other events
34 */
35 public static final int BATCH_SIZE = 1;
36

37

38 private EventCombiner<TimeEvent, Nothing> combiner = new EventCombiner
<TimeEvent, Nothing>(new Handler<Pair<TimeEvent, Nothing>>() {

39

40 @Override
41 public void handle(Pair<TimeEvent, Nothing> info) {
42 if (manager!=null) {
43 manager.reportHashesComplete.send(hashesSinceLastReport,

combiner.getRightHandler());
44 hashesSinceLastReport = 0;
45 } else {
46 combiner.rightSideReady();
47 }
48 }
49 });
50

51 @Override
52 protected void internal() {
53 //1) setup reporting task:
54

55 new Period(REPORT_INTERVAL_MS, combiner.getLeftHandler());
56

57 //We can output to the manager already:
58 combiner.rightSideReady();
59

60 }
61

62 /**
63 * does the MD5 work.
64 */
65 @SuppressWarnings("unused") //It’s not unused!
66 private Yield md5er = new Yield(new Handler<Nothing>() {
67

68 @Override
69 public void handle(Nothing info) {
70
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71 for (int i=0;i<BATCH_SIZE;i++) {
72 increment(input);
73 getMD5(input);
74 hashesSinceLastReport++;
75 }
76

77 //go again later
78 md5er.yeild();
79 }
80 });
81

82 /**
83 * the value we’re currently hashing.
84 */
85 private byte[] input = new byte[64];
86

87 private MD5 m = new MD5();
88 private byte[] getMD5(byte[] input) {
89 m.reset();
90 m.update(input);
91 return m.getHash();
92 }
93

94 public static void increment(byte[] largeNumber) {
95 int onIdx = largeNumber.length-1;
96

97 while (onIdx>=0) {
98 largeNumber[onIdx]++;
99 if (largeNumber[onIdx]==0) {

100 onIdx--;
101 } else {
102 return;
103 }
104 }
105 }
106

107 @Override
108 protected void setup(DistributedMD5 value) {
109 manager = value;
110 }
111

112 }

C.4 Dining Philosophers

C.4.1 Fork.java

1 package examples.philosophers;
2
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3 import mjava.core.Handler;
4 import mjava.core.Machine;
5 import mjava.core.Nothing;
6 import mjava.core.tpif.BoundedBuffer;
7 import mjava.core.tpif.Envelope;
8 import mjava.core.tpif.RemoteProcedureCall;
9 import mjava.core.tpif.ReturnableEnvelope;

10

11 /**
12 * A ’fork’ in the dining philosophers problem.
13 *
14 * Contains an RPC that returns true if the fork was gained, false if

the request was denied.
15 * May block arbitrarily long; never guaranteed to return false.
16 *
17 * @author gary
18 */
19 public class Fork extends Machine {
20

21 private Fork() {}
22

23 protected Philosopher owner;
24

25 public final RemoteProcedureCall<Nothing, Boolean> gainFork = new
RemoteProcedureCall<Nothing, Boolean>(1, new Handler<
ReturnableEnvelope<Nothing, Boolean>>() {

26 @Override
27 public void handle(ReturnableEnvelope<Nothing, Boolean> info) {
28 if (owner==null) {
29 owner = (Philosopher) info.getRequestingMachine();
30 info.reply(true);
31 //log("now owned by: "+owner);
32 } else {
33 info.reply(false);
34 //log("failed request to get fork by: "+info.

getRequestingMachine()+", it’s owned by: "+owner);
35 }
36 }
37 });
38

39 public final BoundedBuffer<Philosopher> releaseFork = new
BoundedBuffer<Philosopher>(1, new Handler<Envelope<Philosopher>>()
{

40 @Override
41 public void handle(Envelope<Philosopher> info) {
42 if (!owner.equals(info.getPayload())) {
43 throw new ForkException("A philosopher tried to release a fork

they didn’t own.");
44 }
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45 //log("fork released by "+owner+" and now free.");
46 owner = null;
47 }
48 });
49

50 @Override
51 protected void internal() {
52 //Forks have high priority compared to philosophers and the release

() has higher priority than gain()
53 setPriority(5);
54 releaseFork.setPriority(5);
55 }
56

57 }

C.4.2 Dining.java

1 package examples.philosophers;
2

3 import examples.philosophers.Philosopher.ProvideFork;
4 import mjava.core.Start;
5 import mjava.core.tpif.BoundedBuffer;
6 import mjava.tools.chi.Experiment;
7 import mjava.core.tpif.Envelope;
8 import mjava.core.Handler;
9

10 /**
11 * A dining philosophers implementation in Machine Java.
12 * Both philosophers and forks are represented by machines.
13 * @author gary
14 */
15 public class Dining extends Start {
16

17 public static final int PHILOSOPHER_COUNT = 100;
18

19 public static void main(String[] args) {
20 start(Dining.class);
21 }
22

23 protected Dining() {}
24

25 @Override
26 protected void internal() {
27 log("Dining.internal()");
28 //Request and provide the first philosopher with no forks... She can

make her own.
29 setupMachine(Philosopher.class, new ProvideFork(this,

PHILOSOPHER_COUNT-1, null, null), null);
30

31 //Don’t execute this experiment for ever:
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32 Experiment.waitDumpExit();
33 }
34

35 private boolean loggingEnabled = true;
36

37 public final BoundedBuffer<String> eatingNotification = new
BoundedBuffer<String>(100, new Handler<Envelope<String>>() {

38 @Override
39 public void handle(Envelope<String> info) {
40 if (loggingEnabled) log("@"+System.currentTimeMillis()/1000+"s: "+

info.getPayload());
41 }
42 });
43

44

45 }

C.4.3 Philosopher.java

1 package examples.philosophers;
2

3 import java.io.DataInputStream;
4 import java.io.DataOutputStream;
5 import java.io.IOException;
6 import java.util.Arrays;
7 import java.util.HashSet;
8 import java.util.Random;
9

10 import mjava.core.Handler;
11 import mjava.core.Immutable;
12 import mjava.core.Machine;
13 import mjava.core.Nothing;
14 import mjava.core.SetupableMachine;
15 import mjava.core.VisibleDescription;
16 import mjava.core.VisibleMachineDependencies;
17 import mjava.core.time.Delay;
18 import mjava.core.time.TimeEvent;
19 import mjava.core.tpif.Envelope;
20 import mjava.immutable.ImmutableSet;
21 import mjava.immutable.NotInflatableException;
22 import mjava.immutable.Utilities;
23

24 /**
25 * A hungry philosopher in the Dining Philosophers problem.
26 * @author gary
27 *
28 */
29 public class Philosopher extends SetupableMachine<examples.philosophers.

Philosopher.ProvideFork> implements VisibleMachineDependencies,
VisibleDescription {
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30

31 @Override
32 public String _getDescription() {
33 return Integer.toString(Dining.PHILOSOPHER_COUNT-ourID);
34 }
35

36 @Override
37 public ImmutableSet<Machine> _getReferencedMachines() {
38 return new ImmutableSet<>(new HashSet<>(Arrays.asList((Machine)

firstFork,(Machine)secondFork)));
39 }
40

41 //Higher priority fork
42 private Fork firstFork;
43 //Lower priority fork
44 private Fork secondFork;
45

46 //Let’s keep a simple ID around for debugging/inspection
47 private int ourID;
48

49 private Philosopher(){
50 //ENSURE_SINGLETON();
51 }
52

53 @Override
54 protected void internal() {
55 //Only make an RNG if this is a real machine:
56 rng = new Random();
57

58 //Nothing to do until we’re handed our first fork.
59 }
60

61 //A reference to the Dining machine that started it all off (to use as
a ’printing proxy’)

62 private Dining diningRoom;
63

64 public static final class ProvideFork implements Immutable {
65 public final Dining diningRoom;
66 public final int remainingPhilosophers; //The number of philosophers

that must still be instantiated.
67 public final Fork nextFork;
68 public final Fork finalFork; //Notionally fork0. (the first

philosopher’s top priority fork, which will also be the final
philosopher’s highest priority fork)

69

70 public ProvideFork(Dining dining, int remainingPhilosophers, Fork
next, Fork finalFork) {

71 this.remainingPhilosophers = remainingPhilosophers;
72 this.nextFork = next;

353



Chapter C: Microbenchmark Source Code

73 this.finalFork = finalFork;
74 this.diningRoom = dining;
75 }
76

77 @Override
78 public void flatten(DataOutputStream out) throws IOException {
79 out.writeInt(remainingPhilosophers);
80 Utilities.flatten(nextFork, out);
81 Utilities.flatten(finalFork, out);
82 Utilities.flatten(diningRoom, out);
83 }
84

85 public ProvideFork(DataInputStream in) throws NotInflatableException
, IOException {

86 remainingPhilosophers = in.readInt();
87 nextFork = (Fork) Utilities.inflate(in);
88 finalFork = (Fork) Utilities.inflate(in);
89 diningRoom = (Dining) Utilities.inflate(in);
90 }
91 }
92

93 private final SecondForkResponseHandler secondForkHandler = new
SecondForkResponseHandler();

94 private final class SecondForkResponseHandler implements Handler<
Envelope<Boolean>> {

95 @Override
96 public void handle(Envelope<Boolean> info) {
97 if (info.getPayload()) {
98 //Got the second fork! We can eat.
99 eat();

100 } else {
101 //failed to gain the second fork.
102 // we can either release the first and try again from the

beginning or just wait for this fork.
103

104 //try again for the second fork:
105 requestSecondFork();
106 //firstFork.releaseFork.send(Philosopher.this);
107 //think();
108 }
109 }
110 }
111

112 private final FirstForkResponseHandler firstForkHandler = new
FirstForkResponseHandler();

113 private final class FirstForkResponseHandler implements Handler<
Envelope<Boolean>> {

114 @Override
115 public void handle(Envelope<Boolean> info) {
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116 if (info.getPayload()) {
117 //Got the first fork!
118 requestSecondFork();
119 } else {
120 //Try again:
121 requestFirstFork();
122 }
123 }
124 }
125

126 /**
127 * Attempts to gain forks so that eating may occur.
128 */
129 private void requestFirstFork() {
130 firstFork.gainFork.query(Nothing.NOTHING, firstForkHandler);
131 }
132

133 /**
134 * The length of time a philosopher eats for before releasing their

forks.
135 */
136 public static final int EAT_DURATION_MS = 1000;
137 public static final int THINK_MAXDURATION_MS = 2000;
138

139 private Random rng;
140

141 /**
142 * We have the forks so eating may happen.
143 */
144 private void eat() {
145 //1) eat; wait a while before releasing forks. :)
146 final long eatingStarted = System.currentTimeMillis();
147

148 String eatingMessage = System.currentTimeMillis()/1000+"s ph:"+ourID
+": eating";

149

150 diningRoom.eatingNotification.send(eatingMessage, new Handler<
Nothing>() {

151 @Override
152 public void handle(Nothing n) {
153 long loggingDelay = System.currentTimeMillis()-eatingStarted;
154 long eatDuration = Math.min(EAT_DURATION_MS-loggingDelay, 0);
155

156 //Eat for a while (so create a delay)
157 new Delay(eatDuration, new Handler<TimeEvent>() {
158 @Override
159 public void handle(TimeEvent info) {
160 //2) release forks
161 secondFork.releaseFork.send(Philosopher.this);
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162 firstFork.releaseFork.send(Philosopher.this);
163 //3) Now think for some time.
164 think();
165 }
166 });
167 }
168 });
169 }
170

171 private void think() {
172 new Delay(rng.nextInt(THINK_MAXDURATION_MS), new Handler<TimeEvent

>() {
173

174 @Override
175 public void handle(TimeEvent info) {
176 //4) thinking finished so we can just start again!
177 requestFirstFork();
178 }
179 });
180 }
181

182 private void requestSecondFork() {
183 secondFork.gainFork.query(Nothing.NOTHING, secondForkHandler);
184 }
185

186 /**
187 * this is how we get our forks
188 */
189 @Override
190 protected void setup(ProvideFork forks) {
191 ourID = forks.remainingPhilosophers;
192

193 diningRoom = forks.diningRoom;
194

195 if (forks.remainingPhilosophers==0) {
196 //We’re the last philosopher...
197 firstFork = forks.finalFork;
198 secondFork = forks.nextFork;
199 //All setup!
200 } else {
201 //The fork the next philosopher will use as their high-priority

fork.
202 Fork nextFork;
203 //The final philosopher’s high-priority fork.
204 Fork finalFork;
205

206 if (forks.finalFork==null) {
207 //we’re the first philosopher so we must create both forks...
208 firstFork = finalFork = newMachine(Fork.class);
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209 secondFork = nextFork = newMachine(Fork.class);
210 } else {
211 //We’re neither the first nor the last philosopher so we must

create one fork.
212

213 firstFork = forks.nextFork;
214 secondFork = nextFork = newMachine(Fork.class);
215 finalFork = forks.finalFork;
216 }
217

218 //We’re not the last philosopher so there must be at least one
more...

219 //provide the next (and newest philosopher) with a set of forks:
220 setupMachine(Philosopher.class, new ProvideFork(diningRoom, forks.

remainingPhilosophers-1, nextFork, finalFork), null);
221

222 //we don’t actually need a reference to our peer, so there’s no
handler for the machine reference.

223 }
224

225 //done with fork setup!
226 // time to EAT!
227 requestFirstFork();
228 }
229 }
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Sample Experimental Log

The following log was captured during a series of experiments with the SpeedTestHP

microbenchmark across many different processor configurations and using the sequen-

tial processor iterator. The output from Chi and the messages concerning the program

download to the FPGA have been abridged as they are verbose and contribute little to

the understanding of an experimental execution. The redundancy and regularity of the

log experimental log format enables easy conversion of these captured logs into data

tables and LATEX plots.
##./executeapplication.sh# -network-size 5x3 -run -exec examples.speedtest.highperf.SpeedTestHP -target BLUESHELL Sat Jul 4

22:34:47 BST 2015

./timeout.sh -t 900 java -Xmx2G -jar chi.jar -save-temps -heapsize 49152 -force CLASSNAMES -network-size 5x3 -run -exec examples.

speedtest.highperf.SpeedTestHP -target BLUESHELL -minimal -buildopts -Os 500 Sat Jul 4 22:34:47 BST 2015

Chi alpha-0.21.84 - Gary Plumbridge 2015

Features disabled: [STACKTRACES, ARITHMETICCHECKS, ARRAYBOUNDSCHECKS, ARRAYSTORECHECKS, ASSIGNMENTRULESCHECKS, CHECKCAST,

NULLPOINTERCHECKS]

...

Application written.

Starting external build tool with command:

mb-gcc -mxl-multiply-high -mxl-barrel-shift -mno-xl-soft-mul -mno-xl-soft-div -fno-pic -mlittle-endian -DLITTLE_ENDIAN -mhard-float

-mxl-float-convert -mxl-float-sqrt -mcpu=v8.50.b *.S -Wall -Wno-unused-but-set-variable -Wno-unused-label -fno-strict-

aliasing -Wl,--script,lscript.ld -o a.out -Os *.c >/dev/null

Build succeeded.

Attempting to execute binary with command:

/home/gp/Dropbox/mjava/blueshell-experiments/bluetiles.sh /home/gp/Dropbox/mjava/blueshell-experiments/a.out

~/workspace/blueshell/tests/java ~/Dropbox/mjava/blueshell-experiments

-rw-r--r-- 1 gp gp 200K Jul 4 22:35 hw.0000c008.bin

text data bss dec hex filename

173846 30480 144 204470 31eb6 /home/gp/Dropbox/mjava/blueshell-experiments/a.out

~/Dropbox/mjava/blueshell-experiments

Using binary ../tests/java/hw.0000c008.bin

Loading FPGA bit file vc707.bit

Using board name vc707

Using net config ../netconfig.py

Virtual lab mode

Using auth file ../vc707.key

Running test procedure

Connecting to the board...

Sending bit file...

Programming FPGA...
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Open UART...

Call <function myTestProc at 0x1b990c8>

Uploading binaries...

Read ../tests/java/hw.0000c008.bin...

../tests/java/hw.0000c008.bin uploaded to 0xc008

../tests/java/hw.0000c008.bin uploaded to 0xc108

...

../tests/java/hw.0000c008.bin uploaded to 0x3dd08

../tests/java/hw.0000c008.bin uploaded to 0x3de08

Saving processor coordinates into its ram...

Set memory[0xc000] = [USER_X, USER_Y] = [0, 0]

Read back: [0, 0]

Boot microblaze: 0000c008

0,0 alive!

0,1 ali0,2 alive!

1,2 alive!

2,2 alive!

3,2 alive!

ve!

1,1 a4,2 alive!

live!

2,1 alive!

3,1 alive!

4,1 alive!

1,0 alive!

2,0 alive!

3,0 alive!

4,0 alive!

SpeedTestHP@0,0:1> #i#SpeedTestHP#, processors, pairs, avgLatencyuS, rateB/s, messages

SpeedTestHP@0,0:1> #i#SpeedTestHP# Message size: 500

SpeedTestHP@0,0:1> Pairs: 0. No messages exchanged in last interval.

SpeedTestHP@0,0:1> New PingClient (PingClientHP@1,0:1) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 1, 7329, 54612, 1087

SpeedTestHP@0,0:1> New PingClient (PingClientHP@1,1:1) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 2, 7341, 122200, 2444

SpeedTestHP@0,0:1> New PingClient (PingClientHP@2,1:1) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 3, 7326, 190450, 3809

SpeedTestHP@0,0:1> New PingClient (PingClientHP@1,2:1) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 4, 7477, 253250, 5065

SpeedTestHP@0,0:1> New PingClient (PingClientHP@3,0:1) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 5, 7509, 318600, 6372

SpeedTestHP@0,0:1> New PingClient (PingClientHP@3,2:1) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 6, 7601, 380250, 7605

SpeedTestHP@0,0:1> New PingClient (PingClientHP@4,1:1) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 7, 7701, 439950, 8799

SpeedTestHP@0,0:1> New PingClient (PingClientHP@1,0:2) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 8, 8351, 465350, 9307

SpeedTestHP@0,0:1> New PingClient (PingClientHP@1,1:2) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 9, 9058, 484150, 9683

SpeedTestHP@0,0:1> New PingClient (PingClientHP@2,1:2) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 10, 9802, 498250, 9965

SpeedTestHP@0,0:1> New PingClient (PingClientHP@1,2:2) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 11, 10514, 512200, 10244

SpeedTestHP@0,0:1> New PingClient (PingClientHP@3,0:2) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 12, 11148, 527650, 10553

SpeedTestHP@0,0:1> New PingClient (PingClientHP@3,2:2) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 13, 11804, 540650, 10813

SpeedTestHP@0,0:1> New PingClient (PingClientHP@4,1:2) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 14, 12399, 554950, 11099

SpeedTestHP@0,0:1> New PingClient (PingClientHP@1,0:3) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 15, 13203, 559000, 11180

SpeedTestHP@0,0:1> New PingClient (PingClientHP@1,1:3) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 16, 13993, 563100, 11262

SpeedTestHP@0,0:1> New PingClient (PingClientHP@2,1:3) and PingServer created!
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SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 17, 14794, 566500, 11330

SpeedTestHP@0,0:1> New PingClient (PingClientHP@1,2:3) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 18, 15615, 569050, 11381

SpeedTestHP@0,0:1> New PingClient (PingClientHP@3,0:3) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 19, 16429, 570900, 11418

SpeedTestHP@0,0:1> New PingClient (PingClientHP@3,2:3) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 20, 17203, 574500, 11490

SpeedTestHP@0,0:1> New PingClient (PingClientHP@4,1:3) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 21, 17946, 578550, 11571

SpeedTestHP@0,0:1> New PingClient (PingClientHP@1,0:4) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 22, 18959, 574300, 11486

SpeedTestHP@0,0:1> New PingClient (PingClientHP@1,1:4) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 23, 20076, 566900, 11338

SpeedTestHP@0,0:1> New PingClient (PingClientHP@2,1:4) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 24, 21099, 562850, 11257

SpeedTestHP@0,0:1> New PingClient (PingClientHP@1,2:4) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 25, 22129, 559650, 11193

SpeedTestHP@0,0:1> New PingClient (PingClientHP@3,0:4) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 26, 23102, 557900, 11158

SpeedTestHP@0,0:1> New PingClient (PingClientHP@3,2:4) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 27, 24073, 555900, 11118

SpeedTestHP@0,0:1> New PingClient (PingClientHP@4,1:4) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 28, 25088, 553400, 11068

SpeedTestHP@0,0:1> New PingClient (PingClientHP@1,0:5) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 29, 26429, 544100, 10882

SpeedTestHP@0,0:1> New PingClient (PingClientHP@1,1:5) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 30, 27507, 541350, 10827

SpeedTestHP@0,0:1> New PingClient (PingClientHP@2,1:5) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 31, 28580, 538100, 10762

SpeedTestHP@0,0:1> New PingClient (PingClientHP@1,2:5) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 32, 29850, 532000, 10640

SpeedTestHP@0,0:1> New PingClient (PingClientHP@3,0:5) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 33, 30967, 529250, 10585

SpeedTestHP@0,0:1> New PingClient (PingClientHP@3,2:5) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 34, 32169, 524800, 10496

SpeedTestHP@0,0:1> New PingClient (PingClientHP@4,1:5) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 35, 33326, 521550, 10431

SpeedTestHP@0,0:1> New PingClient (PingClientHP@1,0:6) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 36, 34835, 513350, 10267

SpeedTestHP@0,0:1> New PingClient (PingClientHP@1,1:6) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 37, 35986, 511050, 10221

SpeedTestHP@0,0:1> New PingClient (PingClientHP@2,1:6) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 38, 37469, 503800, 10076

SpeedTestHP@0,0:1> New PingClient (PingClientHP@1,2:6) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 39, 38909, 498150, 9963

SpeedTestHP@0,0:1> New PingClient (PingClientHP@3,0:6) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 40, 40614, 489600, 9792

SpeedTestHP@0,0:1> New PingClient (PingClientHP@3,2:6) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 41, 41540, 490500, 9810

SpeedTestHP@0,0:1> New PingClient (PingClientHP@4,1:6) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 42, 43218, 483450, 9669

SpeedTestHP@0,0:1> New PingClient (PingClientHP@1,0:7) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 43, 44246, 483300, 9666

SpeedTestHP@0,0:1> New PingClient (PingClientHP@1,1:7) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 44, 45858, 477050, 9541

SpeedTestHP@0,0:1> New PingClient (PingClientHP@2,1:7) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 45, 47206, 474250, 9485

SpeedTestHP@0,0:1> New PingClient (PingClientHP@1,2:7) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 46, 48842, 468350, 9367

SpeedTestHP@0,0:1> New PingClient (PingClientHP@3,0:7) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 47, 50499, 463100, 9262

SpeedTestHP@0,0:1> New PingClient (PingClientHP@3,2:7) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 48, 52129, 458050, 9161

SpeedTestHP@0,0:1> New PingClient (PingClientHP@4,1:7) and PingServer created!
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SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 49, 53362, 457000, 9140

SpeedTestHP@0,0:1> New PingClient (PingClientHP@1,0:8) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 50, 55188, 451000, 9020

SpeedTestHP@0,0:1> New PingClient (PingClientHP@1,1:8) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 51, 56840, 446400, 8928

SpeedTestHP@0,0:1> New PingClient (PingClientHP@2,1:8) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 52, 59001, 438650, 8773

SpeedTestHP@0,0:1> New PingClient (PingClientHP@1,2:8) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 53, 60373, 437000, 8740

SpeedTestHP@0,0:1> New PingClient (PingClientHP@3,0:8) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 54, 62131, 432650, 8653

SpeedTestHP@0,0:1> New PingClient (PingClientHP@3,2:8) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 55, 64330, 425350, 8507

SpeedTestHP@0,0:1> New PingClient (PingClientHP@4,1:8) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 56, 66380, 420350, 8407

SpeedTestHP@0,0:1> New PingClient (PingClientHP@1,0:9) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 57, 68154, 416250, 8325

SpeedTestHP@0,0:1> New PingClient (PingClientHP@1,1:9) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 58, 70541, 409400, 8188

SpeedTestHP@0,0:1> New PingClient (PingClientHP@2,1:9) and PingServer created!

SpeedTestHP@0,0:1> #d#SpeedTest#, 15, 59, 72187, 406900, 8138

SpeedTestHP@0,0:1> New PingClient (PingClientHP@1,2:9) and PingServer created!

SpeedTestHP@0,0:1> Terminating due to timeout of (ms): 600000

Program terminated

Exit code: 80

Execution failed with error code: 1

Call graph dumped to callgraph.dot.

Type graph dumped to typegraph.dot.

Machine dependency graph dumped to examples.speedtest.highperf.SpeedTestHP.dot

Chi completed in 12m 22.978s
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Appendix E

Scoped Memory Allocation in Chi

Region-Based Memory Management

Standard Java’s model of fully automatic memory management is very easy to program

with, but there are two important issues that make it undesirable in some embedded

contexts:

1. Standard garbage collectors introduce unpredictable delays into program execu-

tion which can hinder or destroy the ability to reason about the timing of an

application. This is especially important in embedded real-time systems where

timing is a critical aspect of system functionality, and where processors may not

have much spare computational capacity.

2. Garbage collection requires the ability to traverse the heap to discover reachable

objects which implies additional runtime memory overheads. As with serialisa-

tion, metadata is required about which fields in a class are references so that they

can be followed to other reachable objects.

3. Some mechanism to identify and deallocate unreachable objects is also required.

This might involve recording all object allocations so that unreachable objects can

be identified and deallocated, but the cost of recording several hundred object

allocations (1KiB for a 256-length table of 32-bit pointers) is non-trivial in situations

where there is only 8KiB of ram.

Other schemes, such as semispace collectors1 do not require a record of object

1Semispace GC schemes copy reachable objects to a fresh heap and then discards the original heap along
with all of the unreachable objects it contains

363



Chapter E: Scoped Memory Allocation in Chi

allocations but do require a reserved space in which to copy live objects during a

collection. Where the heap is divided into two equal parts a semispace GC implies

a spatial overhead of at least 50%.

Real-time garbage collectors have been investigated thoroughly [16, 20, 108, 159, 160,

142, 7, 54, 188] to address the unpredictable timing characteristics, but the requisite

memory overheads are still substantial for processors with very small quantities of ram.
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Method Description

Scope createScope(int) Creates a new memory scope with the size specified and
returns the descriptor Scope object. The new scope’s par-
ent is the active scope. Does not change the current alloca-
tion context.

void destroyScope(Scope) Deallocates the specified scope. All objects within the
scope are lost. If there are other scopes in existence that
are children of the specified scope then this will throw a
ScopeHasChildrenError.

void executeInScope(Scope, Handler<T>, T) Executes the handler specified with the provided parame-
ter in the allocation context provided. Exceptions thrown
by the handler will be re-thrown as a ThrowBoundaryEr-
ror. If the specified scope is null then the handler will be
executed in the immortal allocation context.

void executeInScope(Scope, Handler<Void>) As above but for handlers that do not expect a parameter.
void transientScope(int, Handler<T>, T) Creates a new transient scope with the specified size for

the duration of the execution of the handler supplied. The
handler will be executed in the transient allocation context
with the parameter supplied and when the handler returns
the scope will be destroyed.

void transientScope(int, Handler<Void>) As above but for handlers that do not expect a parameter.
Scope getActiveScope() Returns the Scope descriptor for the current allocation con-

text. This should not be used in transient scopes.

Table E.1: Network-Chi’s scope-based memory management API. These are all static methods of the ScopedMemoryManager class.
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Where it’s inappropriate to use garbage collection, Chi provides a region based mem-

ory management API which avoids the need for metadata, records of objects and also

has extremely predictable timing. A summary of the Network-Chi memory manage-

ment API can be seen in table E.1. This API is essentially a much simplified version of

the Real-Time Specification for Java (RTSJ)[219] model but with a number of compro-

mises made to further reduce the runtime overhead of the framework.

In Network-Chi objects are allocated into either the immortal memory region or into

a memory scope. Objects are allocated in the usual way with the new keyword and

the region that they are allocated into depends on the currently active allocation context.

Memory used by objects allocated into the immortal region can never be reclaimed for

the entire lifetime of the application, but memory used by objects allocated into a scope

can be reclaimed by destroying the scope. Scopes have a fixed size that is exclusively

allocated to them when they are created, and this memory is reclaimed in full when

they are destroyed, regardless of the number and size of the objects contained within.

Some important differences between the RTSJ memory model and Network-Chi in-

clude:

• When the scoped memory manager is in use, there is no normal garbage collected

heap. At system startup the allocation context is the immortal region.

• In RTSJ the ScopedMemory objects used to refer to a memory scope are distinct

from the actual backing store of memory that they refer to. RTSJ allows for a backing

store to become inactive and reclaimed independently of the ScopedMemory object

that refers to it, likewise freeing the backing store does not free the ScopedMemory

object as that is allocated in the context that constructed it.

Network-Chi uses a simpler model whereby the Scope object is allocated within

the backing store it refers to and has exactly the same lifetime as the backing store.

• Network-Chi memory scopes that were explicitly created by the programmer are

also manually deallocated by the programmer. This means that unlike the RTSJ,

Network-Chi’s memory model is unsafe. It is possible if the programmer is care-

less to retain a reference to an object that is no longer valid in memory (a dangling

reference), potentially leading to unpredictable and almost certainly incorrect be-

haviour. RTSJ-style assignment rules checks are performed by the runtime but

cannot avoid dangling references in two situations:
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1. A reference to an object in a scope is stored in a local variable (which are

not subject to assignment rules checks) and then the scope is destroyed. The

reference is now dangling.

2. A reference to a Scope object is retained after the scope it refers to is de-

stroyed. Scope descriptor objects in Network-Chi are never subject to assign-

ment rules enforcement.

• Network-Chi only provides linear time allocation of scoped memory. The backing

store is allocated and zeroed immediately on scope creation.

To partially mitigate the risk of dangling references the memory API contains meth-

ods for the use of anonymous, transient scopes. This caters for the common use case

where an operation is to be performed with no net consumption of memory, but where

it cannot be guaranteed that all library functions do not allocate temporary objects.

When transient scopes are used they are entirely safe as assignment rules enforcement

prevents references escaping to less deeply nested scopes and immortal memory, and

transient scopes cannot return data.

The ScopedMemoryManager is implemented in Java and in addition to the program-

mer visible scope management API it also supplies two important runtime methods

used exclusively by the compiler. The allocate method is called by the compiler every

time an object is constructed to reserve space for the new object in the current allocation

context, and the checkAssignment method is called by the compiler every time a refer-

ence is assigned into an object or array. It is obviously extremely expensive to check the

validity of every reference assignment but this is required to prevent references to more

deeply nested scopes from being retained beyond the lifetime of the scope. Using static

analysis to reduce the runtime burden of assignment rules checks is an area of ongo-

ing research, especially for Safety Critical Java[203] which also uses a scoped memory

model.
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Glossary

AOT Ahead-of-Time

API Application Programming Frame-

work

ATC Asynchronous Transfer of Control

CAN Controller Area Network

CBO Concrete Binary Object

Chi Concrete Hardware Implementa-

tion

FPGA Field-Programmable Gate Array

FPU Floating Point Unit

GALS Globally Asynchronous Locally-

Synchronous

HDL Hardware Description Language

HLL High Level Language

HPF Highest Priority First

IC Integrated Circuit

ILP Instruction Level Parallelism

ISA Instruction Set Architecture

J2ME Java 2 Micro Edition

JCP Java Community Process

JIT Just-in-Time

JRE Java Runtime Environment

JSR Java Specification Requests

JVM Java Virtual Machine

KPN Kahn Process Networks

LIN Local Interconnect Network

MAA Machine Abstract Architecture

MOSFET Metal Oxide Semiconductor

Field Effect Transistor

MPNoC Multi-processor Network on

Chip

NFV Network Function Virtualisation

PCG Processor Connectivity Graph

RTC Real-Time Clock

369



Chapter F: Glossary

RTL Register Transfer Level

SCC Single Chip Cloud

SDF Synchronous Data Flow

SEM Simple Ephemeral Machine

SPI Serial Peripheral Interface

TCP Transmission Control Protocol

TDMA Time Division Multiple Access

TPIF Two Party Interaction Framework

UDP User Datagram Protocol

WCET Worst Case Execution Time

WCMC Worst Case Memory Consump-

tion

WSN Wireless Sensor Network
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