
i

Improving Packet Predictability of Scalable Network-on-Chip

Designs without Priority Pre-emptive Arbitration

Bharath Sudev

Doctor of Philosophy

University of York

Computer Science

July 2015

ii

Abstract

The quest for improving processing power and efficiency is spawning research into many-

core systems with hundreds or thousands of cores. With communication being forecast as

the foremost performance bottleneck, Network-on-Chips are the favoured communication

infrastructure in the context mainly due to reasons like scalability and power efficiency.

However, contention between non-preemptive NoC packets can result in variation in packet

latencies thus potentially limiting the overall utilisation of the many-core system. Typical

latency predictability enhancement techniques like Virtual Channels or Time Division Mul-

tiplexing are usually hardware expensive or non-scalable or both. This research explores the

use of dynamic and scalable techniques in Network-on-Chip routers to improve packet pre-

dictability by countering Head-of-line blocking (blocked low priority packet blocking a

high priority packet) and tailbacking (low priority packet utilising the link that is required

by a high priority packet) of non-preemptive packets.

The Priority forwarding and tunnelling technique introduced is designed to detect Head-of-

line blocking situations so that its internal arbitration parameters can be altered (by forward-

ing packet parameters down the line) to resolve such issues. The Selective packet splitting

technique presented allows resolution of tailbacking by emulating the effect of preemption

of packets (by splitting packets) by using a low overhead alternative that manipulates pack-

ets. Finally, the thesis presents an architecture that allows the routers to have a notion of

timeliness in data packets thus enabling packet arbitration based on application-supplied

priority and timeliness thus improving the quality of service given to lower priority packets.

Furthermore, the techniques presented in the thesis do not require additional hardware with

the increase in size of the NoC. This enables the techniques to be scalable, as the size of the

NoC or the number of packet priorities the NoC has to handle does not affect the functional-

ity and operation of the techniques.

iii

Contents

Abstract ... ii

Contents ... iii

List of Figures .. ix

Acknowledgements .. xvi

Author’s Declaration .. xviii

1. Introduction ... 1

1.1. Thesis Hypothesis ... 4

1.2. Thesis Structure .. 4

2. Literature Review .. 7

2.1. Network-on-Chip Basics .. 7

2.1.1. Switching Techniques ... 9

2.1.2. Routing Algorithm .. 11

2.1.3. Arbitration ... 12

2.2. Packet Predictability in NoCs ... 13

2.2.1. Time Division Multiplexing .. 18

2.2.2. Link Division Multiplexing .. 20

2.2.3. Virtual Channels.. 21

2.2.4. Adaptive Routing .. 23

iv

2.2.5. Timeliness in NoCs ... 26

2.3. NoC Architectures .. 27

2.3.1. Hermes .. 27

2.3.2. QNoC .. 28

2.3.3. AEthereal... 29

2.3.4. Other NoCs ... 30

2.4. NoC Modelling ... 33

2.4.1. Direct Modelling ... 33

2.4.2. Virtualised Modelling ... 34

2.5. Summary .. 37

3. Metrics and Problem Statement .. 39

3.1. Metrics .. 40

3.1.1. Performance .. 40

3.1.2. Load... 44

3.1.3. Hardware Resources.. 45

3.2. Problem Statement ... 45

3.3. Evaluation Infrastructure .. 50

3.3.1. NoC Framework .. 51

3.3.2. Performance Evaluation Framework... 55

3.4. Summary .. 59

4. Starvation Resolution by Priority Manipulation ... 61

v

4.1. Priority Forwarding and Tunnelling ... 61

4.2. PFT Implementation on the R3 NoC .. 66

4.3. Experimental Work .. 70

4.3.1. Varying Load Due to the Increase in Payload Flits 71

4.3.2. Varying Load Due to the Increase in Packet Numbers 73

4.3.3. Performance Variation with Packet Size... 79

4.3.4. Limitations .. 82

4.4. Hardware Overhead .. 84

4.5. Summary .. 84

5. Predictability Enhancement by Packet Splitting ... 86

5.1. Selective Packet Splitting ... 86

5.2. Priority Forwarded Packet Splitting ... 89

5.3. PFS Implementation on the R7 NoC .. 89

5.4. Experimental Work .. 92

5.4.1. Random Traffic ... 92

5.4.2. Varying Load Due to the Increase in Payload Flits 95

5.4.3. Varying Load Due to the Increase in Header Flits 97

5.4.4. Performance Variation with Packet Size... 99

5.5. Hardware Overhead .. 101

5.6. Summary .. 101

6. Predictability Enhancement Through Dynamic Slack Awareness 103

vi

6.1. Motivational Example .. 105

6.2. Residual Slack as the Notion of Timeliness ... 107

6.3. Application with PFS Based NoC .. 109

6.3.1. DHARA Based Slack Awareness ... 109

6.3.2. Implementation Details ... 110

6.4. Experimental Work .. 111

6.4.1. Performance with Random Traffic.. 112

6.4.2. Performance with Varying Load ... 118

6.4.3. Performance with Divider Index Variation ... 123

6.4.4. Performance with Realistic Traffic ... 124

6.4.5. Scalability of Priority Levels .. 126

6.4.6. Comparison with VC Based NoCs .. 128

6.5. Hardware Overhead and VC Scalability .. 137

6.6. Summary .. 140

7. Conclusion .. 143

7.1. Thesis summary .. 143

7.2. Novelty contributions ... 145

7.3. Further Work .. 146

7.3.1. Dynamic Time Multiplexed Virtual Channels (DTMVC) 146

7.3.2. HYper Criticality Enabled NoC Architecture (HYENA) 147

7.3.3. Power Analysis and moving into ASIC .. 149

vii

Appendix 1- Traffic Scenarios .. 150

Appendix 1a .. 151

Appendix 1b .. 152

Appendix 1c .. 153

Appendix 1d .. 154

Appendix 1e .. 155

Appendix 1f ... 156

Appendix 1g .. 157

Appendix 1h .. 158

Appendix 1i ... 159

Appendix 1j ... 160

Appendix 2- Prototypes .. 162

Appendix 3- Hardware Overhead ... 164

R2 .. 164

R3 .. 165

R7-F .. 166

R7-FD .. 167

R8 .. 168

Appendix 4- S-index test ... 169

Appendix 5- Simulator functionality validation ... 171

R2 .. 171

viii

R3 .. 172

R7-F/R7-FD .. 175

Glossary of Terms ... 179

References ... 186

ix

List of Figures

Figure 2.1: Mesh type NoC ... 8

Figure 2.2: NoC router .. 8

Figure 2.3: (a) NoC flit (b) NoC packet .. 9

Figure 2.4: Head-of-line blocking example .. 15

Figure 2.5: Starvation example ... 17

Figure 2.6: Time Division Multiplexing functionality example 19

Figure 2.7: Link Division Multiplexing .. 20

Figure 2.8: LDM implementation (taken from [21]) .. 20

Figure 2.9: Blocking example with and without Virtual Channels [54] 21

Figure 2.10: Virtual Channel functionality ... 22

Figure 2.11: Approach based on Traffic Load Map (taken from [58]) 24

Figure 2.12: Router status based monitoring (taken from [59])...................................... 25

Figure 2.13: Hermes routing table example .. 28

Figure 2.14: QNoC structure ([66]) ... 29

Figure 2.15: Direct modelling example [91]. .. 33

Figure 2.16: RAMP gold virtualised simulator [94] ... 35

Figure 2.17: Medium large many-core virtualised modelling [93] 36

Figure 3.1: Example cumulative count plot .. 41

Figure 3.2: Box plot example .. 42

file://///userfs/bs638/PhD%20docs/zz15%20Thesis/Chapter0_a1.docx%23_Toc443998563

x

Figure 3.3: Packet starvation with non-preemptive NoCs .. 47

Figure 3.4: Average latency plot comparing Hermes based and VC based NoCs 47

Figure 3.5: Latency box plot comparing Hermes based and VC based NoCs 48

Figure 3.6: Interquartile range of latency comparing Hermes based and VC based NoCs

 ... 49

Figure 3.7: Hardware overhead comparison of the Hermes based NoC with the VC

based NoC. .. 50

Figure 3.8: Router input port ... 52

Figure 3.9: XY-routing logic operation .. 53

Figure 3.10: Arbitration unit operation for local port ... 54

Figure 3.11: Data generator configuration generator .. 55

Figure 3.12: Snippet from ‘data generator configuration’ generator output 56

Figure 3.13: Packet generator logic .. 57

Figure 3.14: Snippet from an exported text file detaining simulation milestones 58

Figure 3.15: Packet injection timestamp details ... 58

Figure 3.16: Packet reception timestamp details... 58

Figure 3.17: Performance evaluation macro ... 59

Figure 4.1: PFT-flit transmission .. 62

Figure 4.2: Detailed PFT functionality ... 63

Figure 4.3: Priority Forwarding and Tunnelling operation ... 65

Figure 4.4: Blocking registers ... 67

xi

Figure 4.5: PFT Functionality example .. 68

Figure 4.6: Cumulative count of received packets at load V=0.3 71

Figure 4.7: Cumulative count of received packets at load V=0.5 72

Figure 4.8: Cumulative count of received packets at load V=0.7 72

Figure 4.9: Cumulative count of received packets at load V=1 73

Figure 4.10: Cumulative count of received packets at load V=0.3 74

Figure 4.11: Cumulative count of received packets at load V=0.5 74

Figure 4.12: Cumulative count of received packets at load V=0.7 75

Figure 4.13: Cumulative count of received packets at load V=1 75

Figure 4.14: Packet reception cumulative count with PFT due to the increase in payload

flits .. 76

Figure 4.15: Packet reception cumulative count with PFT due to the increase in packet

numbers ... 77

Figure 4.16: Packet reception cumulative count with Hermes based NoC due to the

increase in payload flits ... 78

Figure 4.17: Packet reception count with Hermes based NoC due to the increase in

packet numbers.. 78

Figure 4.18: Packet reception latency boxplot .. 79

Figure 4.19: Cumulative count plot with packet size scaled proportionately to priority

with V=0.4 .. 80

Figure 4.20: Cumulative count plot with packet size scaled inversely proportionately to

priority with V=0.4 ... 80

xii

Figure 4.21: Cumulative count plot with packet size scaled proportionately to priority

with V=0.8 .. 81

Figure 4.22: Cumulative count plot with packet size scaled inversely proportionately to

priority with V=0.8 ... 82

Figure 4.23: Latency plot .. 83

Figure 4.24: Cumulative count plot .. 83

Figure 4.25: Hardware overhead ... 84

Figure 5.1: Operational flowchart ... 88

Figure 5.2: SPS implementation on the R7 NoC. ... 90

Figure 5.3: Latency performance with random traffic 1 ... 93

Figure 5.4: Latency performance with random traffic 2 ... 93

Figure 5.5: Latency performance with random traffic 3 ... 94

Figure 5.6: Latency performance with random traffic 4 ... 94

Figure 5.7: Latency performance with random traffic at V=0.4 95

Figure 5.8: Latency performance with random traffic at V=0.6 95

Figure 5.9: Latency performance with random traffic at V=0.8 96

Figure 5.10: Latency performance with random traffic at V=1 96

Figure 5.11: Latency performance with random traffic at V=0.4 97

Figure 5.12: Latency performance with random traffic at V=0.6 98

Figure 5.13: Latency performance with random traffic at V=0.8 98

Figure 5.14: Latency performance with random traffic at V=1.0 99

xiii

Figure 5.15: Latency performance with packet size scaled proportionately to packet

priority ... 100

Figure 5.16: Latency performance with packet size scaled inversely proportionately to

packet priority ... 100

Figure 5.17: Hardware overhead ... 101

Figure 6.1: Motivation example .. 105

Figure 6.2: DHARA functionality... 106

Figure 6.3: Slack-interrupt generator .. 108

Figure 6.4: HOL blocking of slack-left value ... 110

Figure 6.5: Latency comparison with random traffic 1 ... 112

Figure 6.6: Average latency plot for random traffic 1 .. 113

Figure 6.7: Cumulative count of late packets with random traffic 1 114

Figure 6.8: Latency comparison with random traffic 2 ... 115

Figure 6.9: Average latency plot for random traffic 2 .. 115

Figure 6.10: Cumulative count of late packets with random traffic 2 116

Figure 6.11: Latency comparison with random traffic 3... 116

Figure 6.12: Average latency plot for random traffic 3 .. 117

Figure 6.13: Cumulative count of late packets with random traffic 3 118

Figure 6.14: Average latency plot for traffic 3 with V=0.6 .. 118

Figure 6.15: Average latency plot for traffic 3 with V=0.8 .. 119

Figure 6.16: Average latency plot for traffic 3 with V=1 ... 120

xiv

Figure 6.17: Maximum latency variation with Hermes based NoC.............................. 120

Figure 6.18: Maximum latency variation with PFS based NoC 121

Figure 6.19: Maximum latency variation with PFS-D based NoC 122

Figure 6.20: Average remaining slack .. 122

Figure 6.21: Latency variation with divider index .. 123

Figure 6.22: Average latency variation with divider index... 124

Figure 6.23: Performance with realistic traffic ... 125

Figure 6.24: Performance with hybrid traffic ... 125

Figure 6.25: Latency performance of a 6x6 NoC with random traffic 127

Figure 6.26: Average latency of a 6x6 NoC with random traffic 127

Figure 6.27: Average latency of a 8x8 NoC with random traffic 128

Figure 6.28: Latency box plot of random traffic 4 .. 129

Figure 6.29: Average latency plot of random traffic 4.. 130

Figure 6.30: Interquartile range of latency of random traffic 4 131

Figure 6.31: S-index plot of random traffic 4 ... 132

Figure 6.32: Latency box plot of random traffic 5 .. 133

Figure 6.33: Average latency plot of random traffic 5.. 133

Figure 6.34: Interquartile range of latency of random traffic 5 134

Figure 6.35: S-index plot of random traffic 5 ... 134

Figure 6.36: Latency box plot of random traffic 6 .. 135

Figure 6.37: Average latency plot of random traffic 6.. 135

xv

Figure 6.38: Interquartile range of latency of random traffic 6 136

Figure 6.39: S-index plot of random traffic 6 ... 136

Figure 6.40: Hardware overhead ... 137

Figure 6.41: Hardware comparison with a 2 VC design ... 138

Figure 6.42: Latency comparison with a 2 VC design .. 138

Figure 6.43: Average latency comparison with a 2 VC design..................................... 139

Figure 6.44: Interquartile range of latency with 2 VCs .. 139

Figure 6.45: S-index plot with the 2 VC design ... 140

Figure 7.1: DTMVC functionality (a) Time frame (b) Time frame for highest

performance setting (c) Time frame for intermediate performance setting (d) Time

frame for lowest performance setting ... 147

xvi

Acknowledgements

I would like to thank my supervisor Dr. Leandro Soares Indrusiak for his guidance and

encouragement throughout my research work. I am also thankful to Dr. Indrusiak for

supporting my research through his EPSRC project LowPowNoC (EP/J003662/1) and

EU FP7 project DREAMCLOUD (611411). I would like to thank my internal assessor

Prof. Neil Audsly for his insightful suggestions and discussions during my research and

for supporting me with his EU FP7 project T-CREST (288008).

I would then like to thank my parents; Dr. Sudev and Mohana and my brother Aravind

for their consistent support.

I would also like to thank James (Dr. James Robert Harbin) for being a tolerant office

mate humouring all of my weirdest ideas; discussing, filtering and refining the promis-

ing ones out and for proofreading my thesis. All of my research group members deserve

special mention for providing a positive, friendly and resourceful atmosphere.

Finally, I would like to thank the friends I made in York during my Masters and Doc-

toral study; James, Piotr, Yunfeng, Antonio, Rosh and Silvia as well as my old friends

Liju, Shanawaz and Shahin for their companionship.

http://www-users.cs.york.ac.uk/~lsi/
http://www-users.cs.york.ac.uk/~lsi/
http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/J003662/1
http://www.dreamcloud-project.org/
http://www-users.cs.york.ac.uk/neil/Neil_Audsley.html
http://www.t-crest.org/
https://www.facebook.com/james.harbin.7?fref=ts
https://www.facebook.com/james.harbin.7?fref=ts
https://www.facebook.com/robin.ma.376?fref=ts
https://www.facebook.com/antonio.thecrown?fref=ts
https://www.facebook.com/liju.raj.18?fref=ts
https://www.facebook.com/shanawaz.shahul?fref=ts
https://www.facebook.com/shaashahin?fref=ts

xvii

Dedicated to

The Chief Designer
(1907-1966)

https://www.youtube.com/watch?v=zLNPYHH1LBk

xviii

Author’s Declaration

I declare that the work presented in this thesis is original except where otherwise stated

or cited to a source. This work has not previously been presented for an award at this, or

any other, University. Some of the work in this thesis has resulted in the following pub-

lications.

 PFT- A Low Overhead Predictability Enhancement Technique for Non-

Preemptive NoCs, B. Sudev and L. S. Indrusiak, 21
st
 IFIP/IEEE International

Conference on Very Large Scale Integration (VLSI-SoC), Istanbul-Turkey, Oc-

tober 2013.

 Low Overhead Predictability Enhancement in Non- preemptive Network-On-

Chip Routers using Priority Forwarded Packet Splitting, B. Sudev and L. S. In-

drusiak, 9
th

 International Symposium on Reconfigurable Communication-centric

Systems-on-Chip (ReCoSoC), Montpellier-France, May 2014 (Best Paper

Award).

 Predictability Enhancement in Non-preemptive NoCs using Selective Packet

Splitting, B. Sudev and L. S. Indrusiak, 12
th

 IEEE International Conference on

Industrial Informatics (INDIN), Porto Alegre-Brazil, July 2014.

 Dynamic Time Multiplexed Virtual Channels, a Performance Scalable Ap-

proach in Network-On-Chip Routers to Reduce Packet Starvation, B. Sudev and

L. S. Indrusiak, 7
th

 York Doctoral Symposium on Computer Science and Elec-

tronics (YDS), York-UK, Oct 2014 (Best Presentation Award).

 Network-on-Chip Packet Prioritisation based on Instantaneous Slack Aware-

ness, B. Sudev, L. S. Indrusiak and J. Harbin, 13
th

 IEEE International Confer-

ence on Industrial Informatics (INDIN), Cambridge-UK , July 2015.

1

 Chapter 1

1. Introduction

The advent of integrated circuits around the early 1960s brought about a quantum

leap for computing, both in terms of magnitude of computation as well as in the

envelope of its applications [1]. As the quest for improving processing power

forced more and more transistors onto chips, the quest for a wider range of appli-

cations forced integration of different types of components onto chips [2] [3] [4].

To get the best performance out of the chips, the number of transistors was in-

creased and their size continually reduced [5][6]. The clocking frequency was also

increased to improve performance to power utilisation ratios. Although this

shrinking reduced dynamic power dissipation and intrinsic latencies of the indi-

vidual modules, it had an adverse effect on the inter-modular communications as

those were traditionally implemented using shared buses or point-to-point connec-

tions [7]. The reduction in wire dimensions resulted in higher resistances and re-

duced wire spacing inducing capacitance, delays and crosstalk and subsequently

imposed practical limitations in performance [8].

Compared to long connection lines, short lines with repeaters performed better for

multiprocessor communication, which lead to the development of the Network-

on-Chip (NoC) concept [9] [10]. As far as manufacturing is concerned, gates cost

commercially less than wires [7].

Application convergence brought about a diversity of signals onto a single plat-

form, which favoured a heterogeneous communication infrastructure like NoCs

over customised ones like buses [11]. NoCs were also surpassing buses in devel-

2

opment time as Time-To-Market for NoCs were considerably less due to the ex-

tensive use of synthesizable Register Transfer Level (RTL) based approaches ra-

ther than manual layout. Superiority of NoCs over buses and point-to-point con-

nections is due to many factors like efficiency, reliability, scalability, reusability

and cost effectiveness [7].

Compared to traditional bus based networks, NoCs have lower capacitive load per

transmission due to its shorter wire lengths, ultimately resulting in lower dynamic

power consumption [12]. As a result, NoCs emerged as a promising communica-

tion infrastructure for the communication centric designs that would enable many-

core systems [13] [14]. As Moraes et al stated in [15] “An NoC is an on-chip net-

work composed by cores connected to switches, which are in turn connected

among themselves by communication channels”. As NoCs consist of a network of

routers communicating with each other using data packets, a wide variety of to-

pologies can be utilised.

Regardless of the topology used, contention between packets intensified by the

multi hop nature of communication in NoCs typically introduces uncertainty into

the system. As NoC packets compete for arbitration traversing multiple routers to

get to the destination, packet latencies can vary. With applications in which the

workload is static and known beforehand, static analysis can be used to determine

suitable packet priorities and to assign the application tasks to particular cores

(task mapping) [16]. However, in open applications where traffic pattern is dy-

namic and cannot be predicted, increased latency could be encountered for pack-

ets regardless of its Quality of Service (QoS) requirements due to contention and

blocking from other packets. Similarly in heterogeneous applications in which

packets from known applications may have to coexist with dynamic traffic, simi-

lar decrease in performance can occur [17].

For example, in parallelised video processing applications, there would be trans-

missions needing high QoS while others can tolerate lowering of QoS intermit-

tently [18]. For such systems which deal with dynamic traffic that needs multiple

levels of QoS, the NoC should have appropriate infrastructure to deal with conten-

3

tion between packets so that the required functionality of the design can be main-

tained [19].

For resolving uncertainty with dynamic traffic, designers employ several strate-

gies like multiplexing link utilisation of packets in time or space domain, provid-

ing separate logical channels or by employing adaptive approaches.

Even though the classical time multiplexed approach [20] ensures complete pre-

dictability of the system, it comes at the overhead of restriction in scalability and

dynamic behaviour. Though dynamic, multiplexing in the space domain (band-

width) [21] and the use of separate channels [22] would result in excessive hard-

ware requirements. Considering packet predictability (QoS) as the reduction in the

variability in packet latency [23], this research aims to improve packet predictabil-

ity by using dynamic, scalable and lightweight methods.

For example, if a low priority packet is utilising a connection link that is required

by a higher priority packet (blocking), the high priority packet will suffer an in-

crease in the magnitude and variation of its latency. With time multiplexed ap-

proaches, the functionality of the routers are multiplexed in time so that such sce-

narios will never occur. However time multiplexed routers would not be able to

handle traffic which is not known in advance (dynamic traffic) unless the routers

are reconfigured to handle those. As a result, time multiplexing can limit the rout-

er’s ability to handle dynamic traffic and they have limitation in scalability.

Such blocking scenarios can be resolved by multiplexing in space domain; by

providing separate logical channels. This is achieved by classifying packets into

several service levels and then by providing separate buffering for each service

level. As a result, this would result in significant increase in hardware overhead in

terms of both logic as well as buffering [24].

This thesis explores the use of scalable dynamic techniques in simple non-

preemptive routers that modify arbitration policies and packets to counter unpre-

dictability in NoC packet latencies. To resolve blocking of packets by other lower

priority packets, the techniques presented aim at modifying the internal parame-

ters of routers and packets to improve QoS of packets depending on its priority.

4

The thesis also looks into introducing a timeliness element in arbitration decisions

so that packets will get preference over others not only based on its application

supplied priority value, but also based on its timeliness.

For example, consider the situation where there is a high priority packet which is

well ahead in time (with respect to its expected reception time) contenting for ar-

bitration with a low priority packet which is late in time (with respect to its ex-

pected reception time). By utilising a timeliness element in arbitration decisions,

routers would be able to identify such scenarios so that the lower priority packet

will get better QoS if the competing high priority packet can afford to be delayed.

1.1. Thesis Hypothesis

The hypothesis addressed in this thesis is that “Latency predictability can be

enhanced in scalable non-preemptive NoC designs using modifications that

dynamically alter arbitration policies or packet structure”.

The thesis addresses packet predictability in non-preemptive NoCs as NoCs em-

ploying preemptive arbitration for predictability enhancement are hardware inten-

sive and have scalability limitations. To verify this hypothesis, this research intro-

duces techniques that allow routers to alter its arbitration policies and packets and

evaluates their effectiveness using Hardware Description Language coded models.

1.2. Thesis Structure

The thesis has a three tier structure.

 Tier 1 – Introductory chapters

 Chapter 1: Introduction

 Chapter 2: Literature review

 Chapter 3: Metrics and problem statement

5

 Tier 2 – Key techniques and evaluation

 Chapter 4: Starvation resolution by priority manipulation

 Chapter 5: Predictability enhancement by packet splitting

 Chapter 6: Predictability enhancement through dynamic slack awareness

 Tier 3 –Supporting chapters

 Chapter 7: Conclusion

 Glossary of terms

 References

 Appendix

Tier 1 chapters comprise the introductory section of the thesis. Chapter 2 provides

a literature review in which the basics of NoCs are discussed followed by specif-

ics on existing predictability enhancement techniques. As case studies for the ap-

plication of such techniques, some of the popular NoC architectures are discussed

next, followed by details on how prototyping is done for such systems. This acts

as a prologue to the later part of Chapter 3; where the implementation methodolo-

gies in this thesis will be introduced.

Chapter 3 presents the metrics used in the thesis and present some experimenta-

tion results that depict the variability in latency encountered by non-preemptive

NoC packets compared to pre-emption based designs. Chapter 3 will then contin-

ue with the problem statement followed by the details on the implementation and

test infrastructure used.

Tier 2 chapters describe the techniques proposed in this thesis. Chapter 4 intro-

duces the technique that use priority manipulation to resolve packet starvation

(resulting in publication [25]). Rather than using multiplexing techniques in space

or time, the technique features routers that exchange blocking information so that

its internal parameters will be modified to resolve blocking. The later part of the

6

chapter presents the specific architectural details of the model and performance

analysis.

In Chapter 5, the technique that utilises packet splitting to improve predictability

is presented (resulting in publication [26]). The technique introduced is aimed at

emulating pre-emption functionality (by splitting packets) without the high hard-

ware overheads associated with the classical pre-emption approach. As the tech-

nique uses splitting of packets rather than the typical pre-emption functionality,

the routers can be simpler and scalable. The chapter will continue with the details

on the hybrid design that employ the technique complemented by the technique

introduced in Chapter 4 (resulting in publication [27]). With the technique em-

ployed, NoC designs could be scalable and dynamic still providing quality of ser-

vice in end-to-end latency without major hardware overheads compared to the

pre-emption approach.

Chapter 6 introduces a scalable technique that will enable routers to have a notion

of timeliness in arbitration decisions (resulting in publication [28]). This will al-

low routers to initiate predictability enhancement measures not just based on the

priority of the packet (application-supplied priority) but also based on its timeli-

ness. This is achieved by introducing a dynamic field in the packet header to rep-

resent the timeliness component which would be modified by routers when the

packet waits for arbitration. For arbitration decisions, the routers employ this val-

ue combined with the application supplied priority value. This would allow NoC

routers to improve end-to-end latency of lower priority packets when higher prior-

ity packets have residual slack (earliness compared to its expected reception time)

to spare for dynamic traffic. As a practical application for the system, the notion

of residual slack is used to trigger the use of the techniques introduced in Chapter

4 and 5 hence improving their effectiveness.

Finally, Tier 3 contains the Conclusion as Chapter 7 which includes thesis sum-

mary, details of novel contributions and further work, followed by the Glossary of

Terms, References and Appendix as subsequent chapters.

7

 Chapter 2

2. Literature Review

The initial part of this chapter will cover the basics of NoCs as a prologue to the

following section that details the classical predictability enhancement techniques.

While predictability enhancement techniques like Time Division Multiplexing and

Link Division Multiplexing employ division of operational time and available

bandwidth respectively, other techniques cover multi-channel approaches as well

as adaptive routing. As a demonstration of the practical use of these techniques,

the chapter will then discuss some of the NoC architectures that use such tech-

niques.

The final part of the chapter deals with the prototyping techniques that can be em-

ployed for NoCs. This will act as a preface to the later part of Chapter 3 in which

the implementation methodologies used in this research will be explained.

2.1. Network-on-Chip Basics

A NoC consist of Intellectual Properties (IPs) or cores connected to routers which

are interconnected between each other using connection links as shown in Figure

2.1 (where a 3x3 2D mesh type NoC is shown). The routers and links act as the

communication infrastructure for the IPs and to receive and send data, each router

will have input and output ports.

8

Figure 2.1: Mesh type NoC

In a typical NoC router designed for 2D mesh topology (as in Figure 2.1), there

will be five pairs of input and output ports with one connected to the local IP and

the other four to neighbouring routers as shown in Figure 2.2.

Figure 2.2: NoC router

Communication between NoC routers are done with flits (flow control digits)

which is the smallest unit of flow control maintained by the NoC [29]. It can be

Router
IP

N
o

rt
h
 i

n
p

u
t

p
o

rt

N
o

rt
h
 o

u
tp

u
t

p
o

rt

S
o

u
th

 i
n
p

u
t

p
o

rt

S
o

u
th

 o
u
tp

u
t

p
o

rt

West input port

West output port

East input port

East output port

IP

Neighbouring

router

Neighbouring

router

Neighbouring

router

Neighbouring

router

9

seen as the set of bits that can be transmitted through a connection line in a single

clock cycle and hence the maximum bit width of a flit will be the bit width of the

communication channel. The data from the application layer is converted into flits

(for communication) by the Network Interface that acts as the link between the IP

and the NoC router. In NoCs that feature packet based communication, multiple

flits are grouped into data packets, which usually will have a header part holding

information about the characteristics of the packet followed by a payload part that

contains the transmission data. For example, if the connection links are 8 bits

wide, the flits will be 8 bits wide (if the whole bandwidth is used) as shown in

Figure 2.3a. As seen in Figure 2.3b, several flits are grouped into a data packet

and typically the packet will have a header comprising of one or more flits fol-

lowed by a set of payload flits which hold the actual data.

Figure 2.3: (a) NoC flit (b) NoC packet

To form a NoC, routers can be interconnected in either uniform or non-uniform

topology. Typical NoC designs use uniform topologies, as non-uniform topologies

require complex routing considerations and have scalability issues as the routing

logic will have to be customised with variation in size of the NoC.

2.1.1. Switching Techniques

Switching techniques specifies how the data traverses from its source IP to its des-

tination IP. Depending on the type of communication, two types of switching

techniques can be employed in NoCs; Circuit switching and Packet switching

[30].

Flit

8
 b

it
s

Data packet

Payload Header
(a) (b)

8
 b

it
s

10

For communication that involves streaming of data without limitation in maxi-

mum message length, Circuit switching technique can be used. With Circuit

switching [31] [32], for an IP to transmit data to another IP, the transmission path

will be reserved before transmission and the path will be held until the transmis-

sion is complete. As the path is entirely reserved for the communication, the tech-

nique features low latency data transfer (once a path is reserved) but as a whole,

the NoC will suffer from several issues like blocking and low overall network

utilisation especially under contention [11] [30].

The terms packet latency blocking, network utilisation and contention are defined

as follows.

Packet latency: The time interval between time instant when the network

interface of the source core is supposed to inject the header flit of the

packet to the instant when the whole of the packet is received by the net-

work interface of the destination core in simulation ticks.

Blocking: A communication is said to be blocked by another when the

communication path needed for the former is being utilised by the later

communication thus preventing its transmission.

Network utilisation: Network utilisation is defined as the percentage of to-

tal number of connection links being used for communication at any point

of time.

Contention: Contention is defined as the situation when two or more

communication flows require transmission through the same connection

link.

Circuit switching can be significantly efficient in conditions where transmission

time is considerably higher than the setup time (infrequent long messages) as the

whole path is reserved beforehand.

With Packet switching, packets are sent from source to destination without reserv-

ing paths and they independently negotiate its path through the network. The rout-

ers employing the Packet switching technique called Wormhole switching [33] are

11

designed to send a flit as soon as it can be accommodated by the next router.

Wormhole switching technique can be seen in a wide range of NoC architectures

including Hermes [15] and AEthereal [34] primarily due to the lower memory

requirements than the other approaches [35].

There are also other Packet switching techniques like Store And Forward (SAF)

[36] and Virtual Cut Through (VCT) [30]. In SAF, a packet is sent to the next

router only if the next router has buffer space to accommodate it completely, and

the receiving router starts further transmission only when the whole packet is re-

ceived. The advantage of SAF is that a packet will only block other packets inside

a single router at any time unlike wormhole switching where a packets can block

packets simultaneously in more than one router. As this technique has high

memory requirements in buffering [11] [30], it is not widely used in NoC archi-

tectures (however it is used in Nostrum [10] [11] NoC).

Though similar to SAF, VCT is intended to reduce latency by enabling the router

to forward the packet as soon as there is space to accommodate the whole packet

in the next router’s buffer. VCT supports lower latency packet transmission than

SAF but it has similar memory requirements to SAF.

With VCT and SAF, the maximum packet size possible depends on the size of the

buffers in the NoC. This would prevent transmission of packets that are bigger

than the buffer size in routers, which is not an issue with Wormhole switching.

2.1.2. Routing Algorithm

Another design choice in NoCs is the routing algorithm which determines through

where the packets will be routed through the network. The choice of routing algo-

rithm presents a trade-off between factors like power, logic area, delays, and ro-

bustness [35]. Typically implemented as algorithms or as lookup tables, routing

can be done in three methods; Source, Distributed and Centralized [39].

In source routing, the route for data transport is calculated at the sender and that

information is added into the header of the packet before starting transmission.

The routers down the line determine the path of that packet through the NoC using

12

this route information and hence the router design can be simpler than the distrib-

uted approach.

In distributed routing, routing decisions are made by each router individually by

evaluating the destination information carried in the packet header. However, with

centralised routing, routing decisions are made by a centralised module and the

information is communicated to the appropriate router on need. This can result in

increased latency to initiate routing as routing messages will have to be transmit-

ted to and from the centralised routing module to the router. As a result, this will

affect the latency performance of the system (in magnitude and variability) nega-

tively and the use of the centralised module will limit scalability.

In the thesis, the term scalability is defined as follows.

Scalability: The ability of the NoC router to handle packets with a wider

range of priority values thus enabling the use of the router in bigger NoC

topologies than it was initially designed for.

With source routed packets; as the path of transmission is calculated ahead of

transmission, adding dynamic predictability enhancement behaviours will involve

adding complicated logic to recalculate routing path which will result in both in-

creased overhead as well as latency (due to the additional route recalculations).

2.1.3. Arbitration

Routers also require arbitration logic to deal with contention between data pack-

ets. There are several arbitration techniques used in NoCs like Round Robin, First

Come First Served, Priority Based and Priority Based Round Robin [40] [41] [42].

Typically, Round Robin and First Come First Serve arbitration are employed for

NoCs aiming at best effort service. Priority Based and Priority Based Round Rob-

in are used in NoCs aimed at providing guaranteed service as the approaches use

packet priority parameter for arbitration.

13

2.2. Packet Predictability in NoCs

As in [23] and [43], packet predictability can be considered as the reduction in

variation in packet latency and it is a key design parameter [44] as far as NoCs are

concerned. With NoC based communication systems that deal with dynamic traf-

fic, there could be variation in packet latency regardless of packet priority [17].

Murali et.al. in [45] states that “designing an interconnect architecture with pre-

dictable behaviour is essential for proper system operation” and Huang et al in

[22] reports a steep drop in throughput of links in NoCs without predictability

enhancement features. Without predictability enhancement measures, packets

could have high variation in latency [46] which would increase the probability of

missing their deadlines. The term deadline is defined in the thesis as follows.

Deadline: The desired bound on packet latency in simulation ticks.

If the traffic flow pattern is known in advance, static analysis aided task mapping

or time division based approaches can be used to ensure that the packets will meet

their hard deadlines. The term hard deadline is defined as follows.

Hard deadline: The latency deadline of a packet, missing which can result

in a catastrophic failure of the design target.

However in situations where the traffic is not known beforehand, ensuring a hard

deadline is not possible. Even with priority based arbitration, the packets cannot

be set with a soft deadline due to unforeseeable contention scenarios in the NoC.

The term soft deadline is defined as follows.

Soft deadline: The latency deadline of a packet, missing which may result

in performance degradation of the design target and would not cause a

catastrophic failure of the design target.

This could be unacceptable with applications that have traffic with different laten-

cy requirements.

14

For instance, in non-preemptive NoCs, high priority packets could fail to secure

arbitration due to Head-of-line (HOL) blocking [47] which is defined as follows.

Head-of-line blocking: A packet is said to be Head-of-line blocked when

it is blocked by a lower priority packet which is already blocked.

Quoting Huang et al from [22] “due to HOL blocking, the throughput of the links

is typically limited to 58% under uniform traffic with fixed packet length” (de-

rived from [62]). To provide an idea on the uncertainty, a scenario is depicted in

Figure 2.4 where squares represent NoC routers and arrows represent packets

flows with the number inside the circles depicting the packet priority. In the sce-

nario, all packets have destination south of the router (1,2).

15

Figure 2.4: Head-of-line blocking example

(a)

3

1

4

8 9

(1,0)

(1,1)

(1,2) (0,2) (2,2)

(b)

1

4

8 3

(1,0)

(1,1)

(1,2) (0,2) (2,2)

9

1

4

8

(1,0)

(1,1)

(1,2) (0,2) (2,2)

9

3

1

8

(1,0)

(1,1)

(1,2) (0,2) (2,2)

9

3

4

(c) (d)

16

In Figure 2.4a, it can be observed that packets 3, 4 and 8 are withheld from secur-

ing arbitration as packet 9 is tailbacking them by utilising the south port of router

(1,2). The term tailbacking is defined as follows.

Tailbacking: A packet is said to be tailbacked when the link required for

its transmission is being utilised by a lower priority packet.

As packet 9 is of very low priority, it could be blocked down the line by many

packets; hence indefinitely blocking higher priority packets like 1, 3, 4 and 8 up

the line despite their higher priorities. After packet 9 gets transmitted and releases

the path, the issue elevates further as packet 3 will get arbitration ahead of packet

4 forcing packet 1 to wait further up the line as depicted in Figure 2.4b. Here

packet 4 is HOL blocking packet 1 thus preventing its transmission.

When packet 3 finishes transmission, packet 4 will be transmitted followed by

packet 8 ahead of 1 (Figure 2.4c and Figure 2.4d) unless the routers are designed

to provide arbitration to packets in a single clock cycle.

As a result, despite the highest priority value possible, packet 1 will have to wait

until all the other packets get transmitted. Since all the other packets are suscepti-

ble to further blocking down the line due to their lower priority values, packet 1 is

susceptible to have further waiting stages which could worsen its latency. Thus,

under an ordinary situation, the final transmission order of router (1,2)’s south

port will be 9-3-4-8-1 (8 before 1 if arbitration in routers take more than a clock

cycle) which goes against the application-level priority assignment.

17

Figure 2.5: Starvation example

Consider the situation in Figure 2.5 where the destination for the packets is south

of router (1,2) and the transmission periods of packets 6 and 7 are short compared

to their packet sizes. Packet period is defined as below.

Packet period: Packet period is defined in the thesis as the interval in

simulation ticks between successive injection of packets into the NoC from

an IP.

Under this situation, packet 6 will secure arbitration first followed by packet 7 and

since the period of packet 6 is short, it will again request arbitration at router (1,2)

before packet 7 is transmitted completely. As a result, packet 6 will secure arbitra-

tion after 7 is transmitted. As packet 7 also has a short period, it will again request

arbitration to the link before packet 6 is transmitted completely and hence get ar-

bitration to the link after packet 6 is transmitted. As a result the south port of rout-

er (1,2) will be used by packet 6 and 7 over and over and hence packet 8 will nev-

er get arbitration. Since packet 1 is behind packet 8, it will never get arbitration as

well despite possessing the highest priority possible.

To resolve such predictability-degrading issues and hence reduce variation in

packet latencies, several predictability enhancement techniques can be employed.

The rest of the section considers the contemporary predictability enhancement

techniques used in NoCs. As unpredictability is caused by contention between

(1,2) (0,2) (2,2)

 6 7

 8

 1

(1,0)

(1,1)

18

packets, the techniques explained here exploit a variety of methods which multi-

plex, preempt or divert competing packets to ensure better predictability than triv-

ial systems.

2.2.1. Time Division Multiplexing

Time Division Multiplexing (TDM) [49] is one of the classical methods to ensure

predictability in NoCs. With TDM, the functionality of the router is multiplexed

in the time domain thus providing utmost predictability. Use of TDM can allow

packets to meet their hard deadlines as the functionality of the routers is defined in

the time domain.

TDM routers work based on slot tables that dictate every input port what to do at

each clock cycle. To understand the technique in detail, an example is shown in

Figure 2.6 where router A is sending flits from its IP to the IP of router B. An ex-

ample slot allocation for the slot table of the local port (sender) of router A and

the west port (receiver) of router B is provided in the figure. As the example does

not consider the functionality of the other ports, the slot tables governing those are

not added in the figure.

From the slot table of the local port of router A, it is evident that it is configured

to send a flit through the east port at the first clock cycle towards router B. On the

next clock cycle when the flit will reach router B, the west port of router B will

forward it to the local IP connected to router B as its slot table dictates so.

19

Figure 2.6: Time Division Multiplexing functionality example

Simultaneously, router A will sent the next flit (on the second clock cycle) which

will be received on router B on the third clock cycle which will then be routed to

its local IP.

Even though TDM systems are highly predictable and simple, they are not scala-

ble and have restricted dynamic behaviour. The word dynamic behaviour is de-

fined in the thesis as follows.

Dynamic behaviour: The ability of the router to respond in run time to in-

coming packets (regardless of its destination) without reconfiguration to

the routing logic.

As the NoC work based on slot tables, for adapting the router for bigger NoC siz-

es the slot table will have to be made bigger (to service the resultant increase in

packet flow numbers) hence becoming its scalability limiting factor.

Furthermore, to account for any new packet flows, the slot tables of all associated

routers will have to be modified thus highly limiting its dynamic behaviour [50].

As slot allocation calculation is a complex and time consuming procedure [51],

TDM based routers have limited application in dynamic traffic scenarios.

A

 B

S R

20

2.2.2. Link Division Multiplexing

While TDM work by sharing link access to packets in the time domain, Link Di-

vision Multiplexing (LDM) [52] work by sharing the access of sections of the link

itself. With LDM, multiple packets can be transmitted simultaneously by desig-

nating sections of the connection link for each packet thus enabling communica-

tion even under blocking. In Figure 2.7, a possible use of LDM technique is

demonstrated where the bandwidth of the connection link is shared in part by

packets A, B and C simultaneously.

Figure 2.7: Link Division Multiplexing

This will allow better utilisation of the links compared to TDM but it will be

hardware expensive [21]. As shown in Figure 2.8, the technique relies on serialis-

ing and de-serialising logic (with buffering) to allow conversion of flits into less

wider format and back along with a control mechanism. As a result, LDM imple-

mentation results in high hardware requirement both in terms of logic complexity

and buffer requirement.

Figure 2.8: LDM implementation (taken from [21])

Sender Receiver
A
B

C

21

Furthermore, the increase in size of the NoC would result in sharing of the band-

width between higher numbers of packets and hence as the size of the NoC in-

creases, the effectiveness of the LDM will decrease thus limiting scalability.

2.2.3. Virtual Channels

With Virtual Channels (VCs) [53] a physical connection path is multiplexed into

separate logical channels so that multiple packets (already arbitrated) can be made

to use the same path. Introduced by Dally in [54], the Virtual Channel technique

relies on the use of multiple buffers for each channel on the network so that com-

munication through a link will be possible even with blocked flits.

Figure 2.9: Blocking example with and without Virtual Channels [54]

For example, consider the example in Figure 2.9, where there are four routers and

two packets P1 and P2. It can be seen that without the use of Virtual Channels,

flits of P2 are blocked behind flits of P1 when P1 is blocked somewhere down the

line (as P1 and P2 share the path through router 3).

With the use of Virtual Channels (Figure 2.9), it can be seen that P2 flits will be

able to reach the destination even if the shared port has blocked packets as Virtual

Channels use separate buffers for each channel.

Without Virtual Channels

P2 P2

 P1

P1

D
es

ti
n
at

io
n

O
f

P
2

P2 P2 P2 P2

P1

P1

With Virtual Channels

D
es

ti
n
at

io
n

O
f

P
2

1 2 3 4

1 2 3 4

22

To prevent the upstream routers from sending flits if the packet is blocked down-

stream (hence buffers fully occupied), routers also have credit based flow control

mechanism for each VC. As a result if the buffer in the receiving router is full (of

that VC), the transmitting router will stop transmission (of flits of that service lev-

el) and allow transmission of flits from lower priority VCs if applicable.

Therefore hypothetically, a two Virtual Channel router will act as two routers

stacked on top of each other (one router for each Virtual Channel) sharing the

same communication link as shown in Figure 2.10.

Figure 2.10: Virtual Channel functionality

As the link is being shared, Virtual Channels will have priority assignments in

between each other which will enable the system to prioritise a Virtual Channel

over the other under contention.

Even so, VCs would not be able to ensure packets meeting their hard deadlines as

there can be packets of the same service level competing for arbitration. However,

the use of VCs can increase the probability of packets meeting their soft deadline.

Mello et al [24] compared performance of a Hermes NoC with and without Virtu-

al Channels and their tests report reduction of average latency of more than 50%

for the 8x8 NoC under test. Although VCs provide significant performance im-

provements, VC implementation results in significant hardware overhead. As a

result, their tests with designs housing 1, 2 and 4 VCs resulted in hardware over-

head of 17%, 33% and 75% respectively on their target platform.

Shared communication link

Credit based flow control line

Credit based flow control line

Router

Router Router

Router

23

2.2.4. Adaptive Routing

Adaptive routing approaches aim to improve packet predictability by dynamically

varying the routing by monitoring the traffic pattern in the NoC. Ge et al. in [55]

utilised a centralised monitoring module in their design to alter the source routing

depending on the traffic on the NoC.

Traffic pattern is defined in the thesis as follows.

Traffic pattern: The pattern of traffic flow through the routers over the

whole NoC over the entire simulation run (Traffic pattern consists of all

the packet flows through the NoC, each specifying parameters like source-

destination information, packet priority, injection time and packet size)

Under non-congested state, the system follow source routing (simple, low latency)

and the routing table of each router is initialised in advance and broadcasted to all

routers.

If a link fails or gets congested, the adjacent router informs the central monitor

about the issue and after receiving the overall network condition, the monitor cal-

culates optimal alternate paths using Dijkstra’s shortest path algorithm [56] and

routing tables are updated. To decrease latency further, while the tables are being

updated, the system has an in built deadlock/live-lock free routing logic using par-

tially adaptive XY algorithm [57] to forward the packets past the congested or

faulty links.

With partially adaptive XY algorithm, when congestion occurs, the router will

evaluate neighbouring router’s load status using dedicated lines to alter the rout-

ing to pass the packets through a lightly loaded path. The major drawback of the

system is that the techniques aim at spreading load rather than resolving predicta-

bility degrading issues. As a result, if the NoC is evenly loaded, the advantages

brought about will be limited.

24

Cidon et al in [58] presents an adaptive routing architecture which employs Traf-

fic Load Maps (TLMs) to store the congestion info so that the source routing algo-

rithm can be altered according to the traffic load pattern.

Figure 2.11: Approach based on Traffic Load Map (taken from [58])

This system has monitors embedded in the routers to monitor the network load

using any of the metrics like buffer occupation, Virtual Channel usage etc. How-

ever, due to the use of traffic maps, the scalability of the system is limited and

similar to the previous technique; the efficiency of the system could decrease with

the overall increase in load in the NoC.

Rantala et al. in [59] dealt with adaptability in a distributed perspective where the

source routing at each network interface was altered depending on the congestion

information retrieved from neighbouring routers. The design had monitor modules

connected to each router and the monitor modules were in turn connected in be-

tween each other. The monitor modules were designed to check the load situation

at the respective router (using metrics like number of packet flows or buffer utili-

sation) and communicate with the neighbouring routers so that the routing can be

altered using adaptive XY-routing method.

The work mentions two approaches of load estimation; router state based and

FIFO status based.

25

In router state based monitoring system, each router is provided with dedicated

monitoring devices to monitor its switching activity along with activity of its

neighbours in the mesh as shown in Figure 2.12.

Figure 2.12: Router status based monitoring (taken from [59])

As shown in the figure, the monitor modules (white squares) are interconnected

by 2-bit lines (thin dotted lines) so that the status information can be interchanged

between neighbouring routers (routers shown as grey squares) while rest of the

network follows a typical mesh topology.

The FIFO status based monitoring approach however used output FIFO occupa-

tion as the network monitoring metric. Converse to the router status based ap-

proach which monitors switching activity, FIFO based approach focusses on link

utilization between routers hence provides a more detailed information on traffic

levels than the first approach.

Nevertheless, with the increase in load in the network, the efficiency of the tech-

nique will decline as the techniques rely on diverting flows and not intended to

resolve predictability degrading issues. Also, on an evenly loaded NoC, the ad-

vantages brought about by adaptive routing is limited and as a result, the research

presented in the thesis refrains from using adaptive routing.

26

2.2.5. Timeliness in NoCs

Timeliness is a parameter along with application-supplied priority that can be

used to improve QoS of data packets. Timeliness (or the notion of time) is typical-

ly introduced in data packets with time stamping as seen in [60] and [61]. As time

stamping requires the notion of a global time thus requiring long counters, its use

in NoC routers is limited.

There have been approaches that aimed at improving packet predictability by in-

troducing a time element without depending on the notion of a global time. For

example, Das et al in [62] presented a slack aware system where the packet header

will include the priority value which consisted of both its packet priority and ac-

ceptable slack. The slack value in the system was static and was based on parame-

ters such as the number of hops or maximum latency level. The approach was fo-

cussed on dealing with computational delays and hence it did not take into ac-

count the time spent by packets waiting in NoC routers for arbitration.

Andreasson et al in [63] presented an approach which relied on using slack (or

unused slots) on TDM based systems for improving network utilisation. With this

approach, the TDM based functionality of the router made the notion of timeliness

in packets unnecessary but as with the classical TDM approach, it limited its

scalability and dynamic behaviour.

Similarly, Diemer et al in [64] depicted a back suction based flow control which

was used to improve Best Effort (BE) service latency by utilising the free band-

width available with their Guaranteed Service (GS) infrastructure. The work por-

trays a router architecture with VCs where a number of VCs are allocated perma-

nently for GS and the rest for BE traffic. The system allowed downstream routers

to notify upstream routers of low activity in the BE service (using dedicated con-

nection lines) by evaluating the buffer utilisation in the router. This will allow

upstream routers to prioritise BE service VCs momentarily which otherwise will

have to wait.

Berejuck et al in [65] presented a system in VC based NoCs to improve QoS by

targeting ageing of packets. In the work, the packets were added with fields in

27

their headers that will be incremented as packets wait for arbitration. This value in

the field is then utilised by the arbitrator when packets of same service levels

compete for arbitration as the packets did not have any priority field.

Similarly, Correa et al in [44] presents a NoC framework that allows the routers to

increase packet priority when a packet waits for arbitration for certain number of

clock cycles. However, under high load condition, there is possibility of multiple

packets acquiring highest priorities thus compromising the predictability of the

high priority spectrum of packets. The design also features dropping of low priori-

ty packets if they fail their deadlines to ease congestion. This is achieved by utilis-

ing a notion of global time and deadlines, which requires significantly higher

hardware resources.

2.3. NoC Architectures

This section describes several case studies of NoC architectures. The initial part of

Section 2.3 considers the simple Hermes [15] NoC developed by Moraes et al,

following which the Virtual Channel based QNoC [66] developed by Bolotin et al

is presented. The final part of this section presents the AEthereal [34] NoC devel-

oped by Goossens et al which utilises TDM followed by a review of other NoC

architectures that employ a combination of techniques as well as others.

2.3.1. Hermes

Hermes [67] is a simple NoC architecture which provides low hardware overhead

communication through its distributed routing scheme. Used typically in uniform

topologies, each Hermes router has five input buffered bi-directional ports (one

connected to the local IP and the rest to neighbouring routers) and a control logic

module. To confine the hardware overhead to a minimum, Hermes employs

wormhole switching with a configurable flit size. The first and second flits of a

Hermes packet are the headers, which contain the target address and the number

of flits in the entire package respectively.

28

A Hermes router can hold up to five connections simultaneously enabled by a

switching table inside the router that keeps track of the communication. In Figure

2.13, a sample switching table is provided corresponding to the Hermes switching

configuration displayed alongside. Hermes’s switching table consists of three

rows, one denoting free output port and other two pointing to the input and output

connections of the corresponding port. The arbitration block inside the control

module operates in round robin fashion and as the Hermes design features config-

urable port numbers, it can be used for more complex regular topologies like torus

[68] or hypercube [69] with appropriate changes in routing algorithm and header

format.

Hermes is able to provide BE service to packets however Hermes packets can be

blocked and hence get delayed indefinitely. Even though Hermes provides a low

overhead NoC architecture, its inability to provide performance guarantees, lack

of packet prioritisation and inability to tolerate irregular topologies remain its ma-

jor handicaps.

2.3.2. QNoC

QNoC (Quality of service NoC) [70] was designed to support diverse QoS (Quali-

ty of Service) requirements by providing different service levels for communica-

tion. Each QNoC router has five input buffered ports; one connected to the local

IP and the rest to the neighbouring IPs on the mesh.

For satisfying different communication requirements, QNoC packets have four

service levels and hence four Virtual Channels. The ‘Signalling’ service level has

the highest priority and is used for urgent messages (usually very short in nature)

Figure 2.13: Hermes routing table example

29

like interrupts and control signals. The ‘Real-Time’ service level has a lower pri-

ority than signalling but it provides guaranteed bandwidth and can be used for

applications like streaming audio/video data. The ‘Read/Write’ service level has

lesser priority than real-time and can be used for short data transfer like short

memory or register access. The ‘Block-Transfer’ service level has the least priori-

ty and is used to transfer large blocks of data or for long messages like DMA ac-

cess.

Figure 2.14: QNoC structure ([66])

Nevertheless, the use of VC come with increased hardware requirements and limi-

tation in scalability as seen in section 2.2.3.

2.3.3. AEthereal

AEthereal NoC [71] is a synchronous indirect network which supports both con-

tention free GS and BE traffic. AEthereal’s design philosophy is based on the ar-

guments that the causes of unpredictable behaviour are packet dropping (due to

buffer overflows, misrouting, router failure etc.) and contention and congestion.

As a NoC working reliably aided by a flow control mechanism can resolve packet

dropping, the idea was to deal with contention and congestion by using Circuit

switching to ensure distinct spatial isolation and TDM to enforce distinct timing

isolation.

GS is provided by employing TDM and the BE router utilises the bandwidth un-

used by the GS router. The BE router utilises input queued wormhole routing

30

with round robin arbitration and the packets are source routed to the destination

thus making it simple.

Configuring the slot tables to enable TDM based communication can either be

done in a centralised manner or in a distributed fashion. In the centralised method,

programming is done from a centralised module using special packets to setup or

remove slot allocation. Due to the use of a centralised programming module, this

approach has low hardware requirements but the design will have high reconfigu-

ration time which will increase with the size of the NoC. Thus the centralised

methodology has limitation in its dynamic behaviour as well as limitation in

scalability.

To enable better dynamic behaviour and scalability, AEthereal design also fea-

tures a distributed programming model. In this model, IPs sending packets will be

able to configure the slot tables along the path of its transmission using packets

that use the BE service. This reduces the reconfiguration time compared to the

centralised approach however the reconfiguration time depends on the load on the

NoC at that time as it is using the BE service. As a result, the reconfiguration time

can get increased if the NoC is heavily loaded and due to the distributed nature of

the approach, the hardware overhead is higher than the centralised approach.

Though scalable, as per their own admission in [34], implementation of a distrib-

uted run time slot allocation algorithm is complex.

2.3.4. Other NoCs

There are also architectures that employ hybrid approaches. For example, in

MANGO [26][27] NoC, BE services are provided by employing credit based

source routing and GS services using VCs. As a result, a MANGO router will in-

ternally consist of a BE and GS router. Similar to AEthereal, the GS router has the

upper hand in priority and GS router use the VCs that are unused by the GS rout-

er. Similarly in Nostrum NoC [74] a hybrid of TDM and VC mechanism is used

to provide GS with decreased power consumption.

With Express Virtual Channels (EVC), Kumar et al. in [75] as well as Krishna et

al. in [76] aimed at improving latency by providing extra connection links be-

31

tween routers that are longer thus bypassing intermediate routers. As a result, with

EVC, packets that usually will have to do multiple hopes to the destination will be

able to bypass intermediate routers to improve its latency performance.

Grot et. al in Kilo-NoC [77] used VCs as a means to improve QoS (predictability).

The routers were equipped with logic to pre-empt and discard a low priority pack-

et if in contention with a higher priority with dedicated connections to initiate the

packet sender to retransmit the discarded low priority packet. With such a system,

Kilo-NoC did not have service levels for packets and hence dedicated buffers;

thus enabling it to be scalable.

Other designs like Octagon [78] and SoCBus [50] employ circuit switching as the

means to support QoS. However the use of circuit switching can result in severe

blocking (when the messages are frequent) and would limit the overall network

utilisation of the NoC as the network path is reserved ahead of the transmission of

the packet and is held until end of transmission (as seen in section 2.1.1).

The commercial NoC architectures like seen from companies like NetSpeed Sys-

tems [79], Arteris [80], Sonics [81] and Aims Technology Inc [82] provide some

QoS support in their design. However, the techniques employed in those are pro-

prietary trade secrets and are not available in contemporary literature.

Table 2.1: QoS support on NoCs

NoC QoS support Key feature

AEthereal [71]
Circuit-

switching/TDM
QoS

aSOC [83] Circuit-switching Energy saving

Catnap [84] - Energy saving

DSPIN [85] - Energy saving

Eclipse [86] - Fault tolerance

EVC [75] Virtual Channels QoS

http://www.sciencedirect.com/science/article/pii/S0167926004000185#BIB19
http://www.sciencedirect.com/science/article/pii/S0167926004000185#BIB27

32

Hermes [15] - Low hardware overhead

MANGO [72] Virtual Channels Energy saving & QoS

Kilo-NoC [77] Virtual Channels Scalability & QoS

NetSpeed [79]
Adaptive routing

(proprietary)
Customisability & Scalability

Nostrum [37]
Virtual Chan-

nels/TDM
Energy saving & QoS

Octagon [78] Circuit-switching QoS

Proteo [87] - Customisability

QNoC [66] Virtual Channels QoS

SoCBus [50] Circuit-switching QoS

SoCIN [88] - Customisability & Scalability

SoCWire [89] - Fault tolerance

Xpipes [90] - Customisability

Table 2.1 shows the QoS support available with the prominent NoC architectures.

It can be seen from the table that many of the designs are aimed at low energy,

fault tolerance and customisability as key goals.

As seen in the table, the designs that aim at predictability (QoS) typically use VC,

TDM, Circuit switching, adaptive routing or a combination of those. As seen in

section 2.2, the use of TDM results in limitation in dynamic behaviour and scala-

bility while circuit switching limits the overall network utilisation of the NoC [50]

[51]. With the use of VCs, the NoC can suffer from limitation in scalability [77]

and high hardware requirements. As adaptive routing aims at spreading the load

on the NoC rather than resolving the contention issue, it can be ineffective if the

NoC is evenly loaded (without hotspots) and under intense load.

http://www.sciencedirect.com/science/article/pii/S0167926004000185#BIB32
http://www.sciencedirect.com/science/article/pii/S0167926004000185#BIB31
http://www.sciencedirect.com/science/article/pii/S0167926004000185#BIB36

33

Although the combination of the above techniques can resolve some of the limita-

tions, it can be seen that none of the architectures considers simple routers with

added logic functionality that would adapt its internal arbitration policies or pack-

ets to improve packet predictability. The chief novel advantage of such predicta-

bility enhancement measures will be the low hardware overhead, scalability and

dynamic behaviour support achieved by abandoning the use of VCs and TDM

based functionality.

2.4. NoC Modelling

NoC modelling can be classified into two approaches, direct (where the whole

NoC is modelled simultaneously) and virtualised (where a limited number of

components are modelled at any time to emulate NoC functionality).

2.4.1. Direct Modelling

In direct modelling, the whole NoC including routers and links are simulat-

ed/implemented simultaneously providing a timing accurate model of the whole

system. As a result, the resource requirements are higher than virtualised ap-

proaches (which will be introduced in the next section).

In [91] and [92], Genko et al presents such a direct modelled NoC emulation

framework shown in Figure 2.15.

Figure 2.15: Direct modelling example [91].

34

As seen in the figure, the traffic generator (TG) is managed by a control module

and is used to inject traffic into the NoC in stochastic pattern or in a trace driven

pattern. For stochastic data, the logic is modelled as C code and for trace driven

pattern, C code can be embedded with the data which will be executed by the

hard-core processor ‘Power PC’ included in the system. Just before simulation,

the whole traffic data is stored in the RAM ready for injection with each packet

containing distinct fields specifying packet length, destination and time of injec-

tion along with its payload.

The traffic receptor (TR) receives the packets from the network of switches so

that the performance can be interpreted in a basic format and stored into the traffic

receptor or stored in memory so that the Power PC can analyse the data in detail

later. The traffic generator is capable of performing a basic analysis by counting

acknowledgements at a certain interval of time and could interpret it as histograms

which could be monitored by the Power PC. Similarly in [93], Papamichael et al

presents a direct architecture modelled in HDL. In the design each HDL coded

router had a traffic source to inject traffic and a traffic sink to drain the packets

once it reach its destination. The routers were interconnected as per the required

topology with all the routers functioning in parallel.

As a result, direct modelling based designs will have high resource requirements

but will provide a timing accurate performance model of the NoC system.

2.4.2. Virtualised Modelling

In contrast to direct modelling, virtualised approaches have lower hardware re-

quirements, as the whole NoC will not be modelled at any single point of time.

Virtualised systems are designed to use a limited set of NoC elements to emulate

the functionality of a complete NoC without full modelling.

For example, RAMP gold [94] is a virtualised many-core system simulator by

which shared memory many-core system of up to 64 cores can be simulated. The

RAMP gold simulator was designed in System Verilog [95] as two separate mod-

ules, firstly a ‘functional model’ to meet the required functional requirements and

35

secondly a ‘timing model’ to manage timing of the cores in executing their re-

spective instructions.

Functional model

CPU timing model

L2 timing model

DRAM channeltiming model

Timing model

Front end linkFront end link App serverApp server

Figure 2.16: RAMP gold virtualised simulator [94]

Due to the lack of flexibility in using soft processors to simulate different cores,

the functional model is designed as a 64-thread feed-through pipeline (host-

multithreading [96]) with each thread simulating a separate core which is tracked

and managed by the ‘timing model’. Each core is provided with a L1 cache (for

instruction and data) and a shared L2 cache which is connected to a DRAM via a

controller which has the additional functionality of modelling the delays using

FIFO queues. For evaluating the performance of the cores, each core is provided

with counters along with global counters to monitor cache events like hits, misses

and write backs along with target clock cycles. The work reports simulation of a

64-core system with several times speedup compared to their reference software

simulator.

A similar approach for simulating medium to large virtualised networks was pre-

sented in [93].

36

Virtual sources

Traffic tables

Router State

Flit Buffers
Credits

Route Tables
Scheduler State

Virtualized Router

Router Logic

Virtual Links

Flit Links

Flit/Credit Conn. Table

DelayCredit Links

Figure 2.17: Medium large many-core virtualised modelling [93]

As seen in Figure 2.17, the design has a ‘router state’ module that stores the state

of all routers (like flit buffers, routing tables, credits etc.) and there is a ‘virtual

links’ module which is responsible for moving flits and credits between each vir-

tualized router. The router logic consist of FSM which is used to transform the

virtual router state from one to the next with respect to the traffic injected by the

‘virtual sources’ module. As the system simulates a single router at a clock cycle,

it can be used to evaluate large networks but the system requires complex FSM

logic to manage the whole simulation procedure. However, as the whole NoC is

not modelled simultaneously, the speed of simulation will be lower than a compa-

rable direct modelled design.

There are also cycle accurate [97] [98] and Transaction level [99] [100] software

simulators that are designed to be faster than HDL based approaches [101]. As

this research aimed at HDL based cycle accurate prototypes (for accurate over-

head evaluation), such options were not explored in detail.

37

2.5. Summary

This chapter initially looked into the motivating factors for NoC based research

and the basics of NoC designs. The initial part also covered the design choices

such as switching techniques, routing algorithm and arbitration techniques.

The predictability enhancement technique TDM that improved predictability by

multiplexing the functionality of the NoC in the time domain followed next. It

was seen why multiplexing in the time domain can work with static traffic where

the traffic pattern is known ahead of time. In such cases, designers would even be

able to provide quality of service with hard deadlines. Hoverer, with dynamic traf-

fic, assuring hard deadlines is not possible as the contention pattern in the NoC is

not known beforehand. Though centralised TDM slot configuration can allow

TDM based routers to function in a dynamic environment (dynamic traffic), the

high and uncertain re-configuration time required for routers can result in signifi-

cant latency variation in packets during the initial setup period. Furthermore, the

centralised approach limits the scalability of the NoC. Even though a distributed

programming approach (for TDM slot tables) can ensure NoC scalability, such

approaches require complex design and implementation considerations [102].

The chapter then looked into LDM and VC based approaches which provided

QoS support to dynamic traffic. While VCs rely on separate logical channels,

LDM relied on multiplexing the communication link itself.

With LDM, the bandwidth of the link is multiplexed to allow multiple packet

flows through the same link simultaneously. This required serialising and de-

serialising logic at output and input port resulting in significant hardware over-

head. Furthermore, LDM has scalability issues as with the increase in the number

of packet priorities in the NoC (on a bigger NoC), the efficiency of the approach

can decreases unless the link width is increased proportionately resulting in fur-

ther increase in hardware requirements.

With VCs however, the functionality of the router is split into separate logical

channels with dedicated buffers for each virtual channel. As a result, VC based

38

designs have high hardware requirements. Furthermore, with the increase in size

of the NoC, the advantages brought about by the technique will be reduced. To

counter this, the number of VCs would have to be increased which will result in

even higher hardware requirements.

The chapter also looked into centralised and distributed adaptive routing ap-

proaches that tried to improve predictability by distributing traffic load by moni-

toring the instantaneous traffic. As the techniques rely on distributing the load

rather than resolving the core predictability degrading issues, they can be ineffec-

tive in heavily loaded NoCs and where the NoC is evenly loaded. Also, in systems

where the change in traffic is considerably faster compared to the adaptation time,

the techniques will be ineffective. Section 2.3 looked into some of the common

NoC architectures from the simple Hermes to the VC based QNoC and the AEthe-

real NoC that employ TDM with Circuit switching, along with other commercial

NoC architectures and their features.

It can be seen that most NoC architecture that are designed for QoS (predictabil-

ity) typically use VCs or TDM thus resulting in high hardware requirements or

limitation in scalability and dynamic behaviour. As a result, it can be seen that

there is a clear gap in the literature as designers rarely consider scalability, QoS

and hardware overhead reduction (for dynamic traffic) simultaneously as design

goals. As a result, the thesis presents techniques that will enable routers to be

scalable and relatively hardware inexpensive, while providing QoS to packets by

using techniques that dynamically modify router parameters and packets.

The final section looked into the NoC modelling techniques; Direct and Virtu-

alised modelling. The section also discussed how direct modelling provided a tim-

ing accurate model of the whole NoC though requiring more resources than the

virtualised approach which does not model the whole NoC simultaneously (hence

allows modelling of large NoCs). This supports the use of the direct modelling

technique in the prototypes presented in the following chapters.

.

39

 Chapter 3

3. Metrics and Problem Statement

Although NoCs have been proposed as a promising communication infrastructure

for many core systems, contention between non-preemptive packets intensified by

the multi-hop nature of communication can result in variation in latency of packet

reception.

In an embedded system that uses NoCs as the communication infrastructure, there

can be packets that have to be consistently delivered with low latency (and hence

without high variability) as denoted by their high application supplied priority

values [103]. Considering packet predictability as the reduction in the variability

in packet latency [23], predictability enhancement (depending on packet priority)

is hence an important consideration while designing an embedded system that

deals with dynamically varying traffic. The terms packet predictability and dy-

namically varying traffic are defined as follows.

Packet predictability: Packet predictability enhancement is defined as the

reduction in variation in latency of the packet. So a packet with lower var-

iation in latency is considered more predictable than one with higher var-

iation.

Dynamically varying traffic: Traffic that has no bounded time interval be-

tween successive packets and no upper or lower bounds on packet length.

40

If the packets have high variation in latency due to contention between packet

flows, the probability of missing their soft deadlines would get higher. To counter

this, the mapping of tasks would have to be done conservatively and higher per-

forming IPs (e.g. faster CPUs) would have to be employed thus resulting in lower

overall resource utilisation and excessive hardware requirements respectively

[46][104][105].

As a real world example, take the case of an Electronic Control Unit (ECU) that

manages the engine operation of an automotive system. With such an ECU (does

not necessarily use NoCs) there will be data with different QoS requirements. For

example, high latency variation in the throttle position sensor data or air tempera-

ture sensor would be acceptable. Even though packet latency variation in data

from more critical systems like crankshaft position sensor, ignition or fuel injec-

tion system can be tolerated occasionally, consistent latency variation in the data

can result in unfulfilled emission guarantees [106] which can cause serious legal

issues for the manufacturer.

This makes it important to improve packet predictability, and quantifying the

magnitude and variation in latency of packets along with the associated overhead

allows comparison between predictability enhancement techniques.

As the work in the thesis aims at improving packet predictability in scalable NoC

routers, the initial part of this chapter will look into the metrics that will be used to

evaluate the techniques presented so that the advantages and disadvantages can be

analysed. The chapter will then present the problem statement followed by exper-

imental results that show the significance of the work presented in the thesis. The

final section of the chapter details the evaluation model used in the thesis.

3.1. Metrics

3.1.1. Performance

Starvation of packets is a critical issue as far as a NoC is concerned as it can result

in failure in packet delivery. The term starvation is defined as follows.

41

Starvation: Blocking of packets indefinitely, resulting in packet delivery

failure.

Starvation of packets is quantified in the thesis by using cumulative count of

packet reception. The term cumulative count of packet reception is defined as fol-

lows.

Cumulative count of packet reception: (For each packet priority) Number

of packets that were received successfully at that priority level or higher.

So, when packet starvation is evaluated, the performance of NoC designs are pre-

sented as line graphs with cumulative count of packet reception in the Y axis and

packet priority in the X axis. An example cumulative count plot is shown in Fig-

ure 3.1. In this thesis, it is assumed that packet priorities decrease with the in-

crease in the numeric value of priority (i.e. Packet priority 1 > 2 > 3). In the plot,

it can be seen that the number of packets received with packet priorities 1, 2 and 3

are higher in the case of NoC B than NoC A. Even though the packet priority val-

ues are discrete values, the points on the plots are connected using lines to aid vis-

ualisation.

Figure 3.1: Example cumulative count plot

As seen in the initial part of the chapter, latency variation is an important aspect of

the NoC design improving which will aid in resource optimisation. Latency varia-

tion is quantified using interquartile range (the difference between the 3
rd

 and 1
st

1

10

100

1000

1 2 3 4

C
u
m

u
la

ti
v
e

co
u
n
t

o
f

p
ac

k
et

re
ce

p
ti

o
n
 n

u
m

b
er

s
)

Packet priority

NoC A NoC B

42

quartile of latency) of all packets of that priority level, during the course of a sin-

gle simulation run. Latency variation is compared between NoC designs primarily

using box plots that present an evaluation of both the magnitude and variation in

latency between NoCs for the same traffic pattern.

An example box plot is shown in Figure 3.2 and in box plots, packet priority is

presented in the X-axis and latency in shown in the Y-axis. The box plot whiskers

show the extreme cases of latency while the boxes show the first and third quartile

of latency. So, the shorter the box and whiskers are the lower the variation in la-

tency and the lower the box and whiskers are the lower the magnitude of latency.

Figure 3.2: Box plot example

In the example, it can be seen that for packets 1 and 2, NoC B has lower magni-

tude and variation in latency compared with NoC A depicted by lower and shorter

box and whiskers.

As the techniques also result in reduction of the magnitude of latency with respect

to the packet priority, the thesis also present average latency plots depicting aver-

age latency in the Y axis and packet priority in the X axis. In places where multi-

ple techniques are evaluated simultaneously, variation in latency is evaluated ad-

ditionally using interquartile range plots and using the variation metric we call S-

index.

400

4000

40000

1 2 3 4

L
at

en
cy

 i
n

 s
im

u
la

ti
o

n
 t

ic
k

s

Packet priority

NoC A NoC B

43

As the thesis do not deal with packets with hard-deadlines, there can be a few ex-

treme cases of latency per packet priority which has to be ignored. As a result,

Interquartile range is used in the thesis to quantify latency variability as it is not

affected by extreme cases. For the same reason, interquartile range has been used

in works like [107] and [108] and as per Buch in [109], it is one of the robust

methods of estimating the trend of a distribution which has non-deterministic

events.

Even though the packet priority values are discrete values, the points on the plots

are connected using lines to aid visualisation as with the cumulative count plots.

Similarly, the average latency plots (which depict the magnitude of latency for

each packet) will look similar to interquartile latency plots but converse to inter-

quartile latency plots, those will have average latency in the Y axis.

As interquartile plots are lines that show the latency variability over the whole

priority range, each of those lines are concatenated into a single metric called the

S-index for the ease of comparison between NoCs.

S-index (estimated using equation (3.1)) is used to quantify the latency variation

of all packets priorities of a NoC into a single metric within a specific traffic pat-

tern.

S − index = ∑

 Q3P−Q1P

P × W

P= Prange

(3.1)

(Prange- Range of packet priorities, Q3P -3
rd

 Quartile of latency, Q1P -1
st
 Quartile of latency,

P- Numeric value of packet priority, W- Weightage relation)

In the equation, the term W is used to specify the weightage between packet prior-

ities when computing the S-index. In this thesis, as it is assumed that the weight-

age of packet priorities decrease linearly with the increase in the numeric value of

priority and hence W is set at one.

44

S-index allows predictability (latency variation) comparison between predictabil-

ity enhancement techniques within a specific traffic pattern. Thus, a lower S-index

value for a NoC shows lower variation in latency compared to another for that

specific traffic pattern. More details on the effect of latency variation of packets

(depending of priority) on S-index is added in Appendix 4.

Additionally, to show the advantages brought about by the techniques presented,

plots depicting maximum latency of packets are used thus showing extreme cases

of variability as well as plots showing the cumulative count of late packets (com-

pared to a soft deadline) thus showing magnitude of latency.

3.1.2. Load

With NoCs, packet latency variation increases with the increase in load (due to the

increase in contention between packets) on the NoC. As a result, to monitor the

latency variation of the NoC with the increase in contention, the load on the NoC

has to be quantified.

At any instant, the network load can be quantified as link utilisation (as in [110]).

This thesis however quantifies it as average link utilisation (as in [111]) as an es-

timate of the non-deterministic load over the whole simulation run into a single

metric. The average utilisation per link V is used as the measure of load in the

NoC and it is estimated using equation (3.2).

V = { ∑ ∑ (
D𝑥,𝑦

P𝑥,𝑦
)

𝑦=0 𝑡𝑜 H−1

𝑥=0 𝑡𝑜 W−1

} /L(W×H)

(3.2)

(W- NoC Width, H- NoC Height, D- Total transmission time of that packet, No load laten-

cy, P- Period, L- Number of links)

To estimate V, the utilisation of the NoC by packets of each priority is estimated

by taking the ratio of the total transmission time (Dx,y) and period (Px,y) for that

packet. The sum of the utilisation of all packet priorities provide the total utilisa-

tion and the value divided by the number of links (L(WxH)) gives the average utili-

sation per link V as seen in equation (3.2).

45

As V is the average utilisation per link, it does not provide information on the load

on the NoC at any instant of time or the load at any specific link in the NoC.

However, V can be used to quantitatively compare loading on the NoC between

traffic scenarios.

3.1.3. Hardware Resources

The hardware overhead for the techniques presented is evaluated by the complexi-

ty of the logic required for each design. In this thesis, hardware overhead is quan-

tified in terms of Lookup table (LUT) and register utilisation figures for the de-

sign to be implemented on an FPGA.

However, depending upon the architecture of the FPGA, the LUT and register

utilisation can vary for the same design. As a result, to enable accurate compari-

son between the techniques presented, xc7a350t Artix-7 [112] FPGA (having

2.25x10
5
 LUTs and 4.5x10

5
 slice registers) was chosen as the standard and all the

designs were evaluated targeted at that specific FPGA. To enable this, the NoC

models were designed in synthesisable HDL and was evaluated using Xilinx Vi-

vado [113] tool.

Even though the hardware overhead for a design on an FPGA and Application

Specific Integrated Circuit (ASIC) would not be numerically equal, an FPGA

based implementation can give an estimation of the complexity of the logic to be

implemented on ASIC for the same design. For example, Gaj et.al. in [114] com-

pared overhead of several algorithms on FPGA and ASIC platforms and reported

that there is a strong correlation between the hardware overheads associated in

both cases with each algorithm.

ASICs have a much more complex implementation cycle and hence FPGA im-

plementation is used in this thesis.

3.2. Problem Statement

As seen in section 2.2.1, the classical predictability enhancement technique TDM

has limitations in scalability and dynamic behaviour.

46

Although LDM does not have limitation dealing with dynamic traffic, it is not

scalable and it results in high hardware overhead as seen in section 2.2.2. Similar-

ly, with VCs, preemptive arbitration brings about high hardware requirements and

limitation in scalability [77] as seen in section 2.2.3.

Simple non-preemptive NoCs however are scalable and are dynamic with low

hardware requirements. However, they suffer from packet latency variation re-

gardless of packet priority. As non-preemptive NoCs are scalable and have limited

hardware requirements, this thesis aims on resolving predictability degrading is-

sues is such NoCs.

As an example, the cumulative count of packet reception numbers of a Hermes

based NoC with priority based arbitration (under a HOL blocking scenario added

in Appendix 1a) with load V= 0.3, 0.5 and 0.7 is shown in Figure 3.4. The defini-

tion of a Hermes based NoC is as follows.

Hermes based NoC: In the thesis, the non-preemptive NoC model (with

XY-routing and wormhole switching) based on Hermes (explained in sec-

tion 2.3.1) is referred to as the Hermes based NoC.

It can be seen that with the increase in load on the NoC, HOL blocking resulted in

the decrease of packet reception numbers of packet 1 and 2. At V= 0.7, they were

completely starved.

47

Figure 3.3: Packet starvation with non-preemptive NoCs

Furthermore, due to tailbacking and HOL blocking, non-preemptive NoC packets

can have high magnitudes of latency regardless of the priority value as seen in

Figure 3.4.

Figure 3.4: Average latency plot comparing Hermes based and VC based NoCs

Figure 3.4 shows the average latency plot of the performance of a Hermes based

NoC and a VC based NoC (with 4 service levels under a random traffic scenario

added as Appendix 1f) with average latency in the Y-axis and packet priority in

the X-axis. The definition of a VC based NoC is as follows.

1

10

100

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L
at

en
cy

 i
n
 c

lo
ck

 c
y
cl

es
 (

lo
g
 s

ca
le

)

Packet priority

V=0.3 V=0.5 V=0.7

0

15000

30000

45000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
v
er

ag
e

la
ta

n
cy

 i
n
 s

im
u
la

ti
o

n
 t

ic
k
s

Packet priorty

Hermes based VC

48

VC based NoC: In the thesis, the NoC with preemptive arbitration enabled

by Virtual Channels (explained in section 2.2.3) is referred to as the VC

based NoC.

It can be seen that with the Hermes based NoC, the high priority packets (1 to 8)

does not achieve any latency advantage in magnitude (depicted by high average

latency) compared to the lower priority packets. With the VC based NoC this is-

sue is resolved as the high priority packets (1 to 8) are seen to have low average

latency at the cost of the low priority packet’s average latency.

Figure 3.5: Latency box plot comparing Hermes based and VC based NoCs

The latency performance of both the NoCs are presented in Figure 3.5 and it can

be seen that the high priority packets of the VC based NoC suffer lower variation

in latency compared to the Hermes based NoC depicted by the shorter box and

whiskers.

400

4000

40000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Hermes Based VC

L
at

en
cy

 i
n

 s
im

u
la

ti
o

n
 t

ic
k

s

Packet priority

49

Figure 3.6: Interquartile range of latency comparing Hermes based and VC based NoCs

The latency variation in evident in Figure 3.6 where the interquartile range of la-

tency of both the NoCs are plotted. It can be seen that with the Hermes based

NoC, high priority packets 2 and 4 suffer high variation in latency. With the VC

based NoC the high priority packets (1 to 9) are seen to have low variation in la-

tency and hence have better predictability than the Hermes based NoC.

However, VC implementation results in high hardware overhead both in terms of

LUTs and registers as shown in Figure 3.7 (4x4 NoC).

0

10000

20000

30000

40000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

In
te

rq
u

ar
ti

le
 r

an
g
e

o
f

la
te

n
cy

 i
n

 s
im

u
la

ti
o
n

 t
ic

k
s

Packet priority

Hermes based VC

50

Figure 3.7: Hardware overhead comparison of the Hermes based NoC with the VC based NoC.

As VCs rely on separate buffers for each service level, an increase in size in the

NoC would result in decrease in latency performance in terms of both magnitude

and variability. As a result, for ensuring predictability (with increased NoC size),

the number of service levels would have to be increased hence resulting in a linear

increase in hardware overhead.

The research presented in the thesis aims at improving the predictability of non-

preemptive NoC packets with low overhead dynamic methods that are completely

scalable.

3.3. Evaluation Infrastructure

To evaluate the performance of the developed NoC models, either a hardware

platform like a Field Programmable Gate Array (FPGA) can be used or the evalu-

ation can be done in simulation. Though hardware base test infrastructure would

be several times faster than simulation [115] [116], such systems provide limited

support for monitoring the internals as well as functionality of the design. As a

result, even though the models are done with synthesisable HDL, the performance

evaluation was conducted with Bluesim [117] simulation environment.

The performance metrics defined in section 3.1.1 are obtained in the thesis in

simulation and since the NoCs follow the direct modelling approach, the simula-

0

2000

4000

of LUTs # of Registers

Hermes based VC

51

tion results are cycle accurate and are in terms of clock cycles. The same models

were then synthesised to the chosen FPGA to get the hardware overhead figures

as per the hardware overhead metrics described in section 3.1.3.

3.3.1. NoC Framework

The basic evaluation model was designed in Bluespec System Verilog [118] [119]

as a configurable direct implemented router design called the R2.

Bulespec System Verilog was chosen as the implementation medium for a variety

of reasons. Based around System Verilog, Bulespec System Verilog treats both

architectural exploration and verification as part of HDL hence considers verifica-

tion as a design problem. As a result, the verification time can be reduced signifi-

cantly thus reducing overall implementation time compared to Verilog, VHDL or

System Verilog [120]. Furthermore, it provides several abstraction mechanisms

for simplifying the design over System Verilog thus reducing design time further.

These features simplify the design process profoundly resulting in reduced num-

ber of bugs along with reduced design, verification and debugging time [120].

R2 routers were enveloped in a generic test bench that replicated and intercon-

nected routers and data generator/receptors. The local port of each router was

connected to packet generators/receptors so that packet generation and reception

can be carried out and documented for analysis.

Hermes is a widely used scalable non-preemptive NoC design with minimalistic

hardware overhead [15]. Furthermore, Hermes is widely used in contemporary

literature on predictability [48] [52] and hence in this thesis, Hermes is treated as

the baseline architecture to which the techniques presented in the thesis are com-

pared.

The basic router follows a five port architecture based around Hermes hence em-

ploying XY-routing [57] and wormhole switching [121] for low hardware re-

quirements. To enable scalability and for ensuring low overhead, mesh type to-

pology is used with priority based arbitration.

52

The R2 design follows a uniform mesh topology and unlike Hermes, each packet

header includes a priority value (application-specified priority) which is used by

the arbitration unit inside the routers to resolve contention between packets over

output ports.

Figure 3.8: Router input port

As shown in Figure 3.8, R2 routers have buffered input ports, which on reception

of a packet header employ XY-routing to set the ‘Arb_request’ register and the

‘priority’ register in accordance with the destination and priority information car-

ried.

Input port

XY

Router

 Arb request

Priority

 Out port Flits left

 Buffer Communication
channel

 To arbiter

From arbiter

Router

N

S

E W

L

Router

N

S

E W

L

53

Figure 3.9: XY-routing logic operation

As shown in Figure 3.9, the arbitration unit in the router then checks ‘Arb re-

quest’ and ‘priority’ registers of all input ports to provide arbitration to the quali-

fied ports. The arbitration logic simultaneously checks for ports requesting arbi-

tration to each of the output ports. If the associated output port is unused, the rout-

er will grant arbitration to highest priority request by setting the ‘out port’ register

on the qualifying input port. This will permit the input port to send flits to the al-

located output port so that flits could be transferred away through the communica-

tion links.

As an example, the logical operation of the arbitration unit for the local port is

shown in Figure 3.10.

As shown in the figure, if the output port referred in the arbitration request of the

local port is unused and the arbitration request for the local port is active, the arbi-

tration logic for the local port gets triggered.

Out_Port0

Arb_reqest=0

Set Arb_request as per XY- routing

Set Priority

Set Flits Left

Y N

54

Figure 3.10: Arbitration unit operation for local port

As shown in Table 3.1, each port has an identifier and a value greater than zero

inside an arbitration request register represents a valid arbitration request.

Connection Identifier

Null 0

Local 1

North 2

East 3

South 4

West 5

Table 3.1: Port connection identifiers

The arbitration logic then checks whether all the other arbitration requests (to the

same output port) are of lower priority than the current arbitration request and if

they are, it provides arbitration by setting the ‘out_port’ register inside the native

input port to the identifier value of the output port. In case there are any other re-

quests with higher priorities than the current arbitration request, the logic waits

while the logic inside the arbiter associated with that input port (hosting the high-

est priority request) executes.

As the flits are being transferred, the input port also decrements the value in the

‘flits left’ register so that when the value reaches zero, the connection can be

closed by re-setting the ‘out_port’ register value to zero.

Output

Port Unused

and

Arb_req.(Local)

active

Y N

Arb_req.(Local) active

and

All other active request to

Val(Arb_req.(Local)) has

priorities less than prio(Local)

N Y

Out_port(Local) = Val(Arb_req.(Local))

Arb_req.(Local) =0

55

Details on the NoC prototypes used in the thesis and the Universal Resource

Locator (URL) to the open source code is added in Appendix 2.

3.3.2. Performance Evaluation Framework

The performance evaluation framework consists of packet generator modules that

inject packets into the NoC as per a pre-set parameter list. The packet generator

configuration is auto generated as Bluespec source code using a custom built code

generator (shown in Figure 3.11) which can either configure the generators ran-

domly or in accordance with a series of algorithms to generate specific configura-

tion patterns.

Figure 3.11: Data generator configuration generator

56

Depending on the parameters set, the code generator generates the source code for

configuring the packet generators and this code is added into the HDL code before

compilation.

A sample output of the code generator is shown in Figure 3.12. The numbers seen

inside the parenthesis are the configuration parameters of each data generator and

they represent X-address, Y-address, Packet Priority, Start Time, Packet Size, Pe-

riod, Destination X-Address and Destination Y-Address respectively.

dat_gen[0] [0] <- mk_datagen(0, 0,2,139,50,56, 0, 1);

dat_gen[1] [0] <- mk_datagen(1, 0,3,147,50,58, 1, 0);

dat_gen[0] [1] <- mk_datagen(0, 1,1,083,50,51, 1, 1);

dat_gen[1] [1] <- mk_datagen(1, 1,4,220,50,53, 1, 0);

Figure 3.12: Snippet from ‘data generator configuration’ generator output

The generators are designed to send packets of a fixed size and then sleep for a

time period after which the same cycle will be repeated.

To enable close simulation of a realistic system, the generators are also provided

with logic to assess unforeseen waits imposed on it by the communication net-

work so that the associated time lag can be compensated by decreasing waiting

periods. To enable this, the generators have two internal counters, Counter_A and

Counter_B. Counter_A is a free running counter which will increment itself irre-

spective of the state of packet generation logic. Counter_B is the conditional

counter that is designed to increment under both of the stages of the packet gener-

ation logic; packet injection state and sleep state. So, under ideal conditions, both

counters will have the same value in them thereby denoting zero time lag and un-

der this situation, the packet injection and sleep operations will be repeated as per

the pre-set parameters.

If the generator becomes unable to inject packets into the NoC due to congestion

inside the NoC, the generators will not be able to increment Counter_B while

Counter_A gets incremented. This value difference between the counters is used

to determine the wait time the generator will have to succumb to the next time.

57

The generator will then try to equalise the two counters by compensating for the

difference by trading the sleep time as shown in Figure 3.13.

Figure 3.13: Packet generator logic

In case the lag is greater than the sleep time, the generator will refrain from going

into the sleep state and will start injection of the next packet immediately after the

current packet. The logic also increments Counter_B with the time saved by skip-

ping the sleep stage to document the resultant gain in time. In case the time lag is

less than the sleep time, the generator sleeps for a period equal to the difference

between sleep time and time lag so that once this is performed, both counters will

be running at the same values denoting zero time lag. This enables the generator

to mimic the performance of a system with large buffers with minimal overhead.

Y

 Counter_A = Counter_B

Y

 (Counter A - Counter B)>Sleep_Time

Y

Wait for Sleep_time

Increment Counter_B

Send flits

Increment Counter_B

Flits left

Increment Counter_A

Wait for Sleep_Time-

(Counter_A – Counter_B)

Increment Counter_B by

(Counter_A – Counter_B)

Increment Counter_B

by Sleep_Time

58

Apart from conditioning the data to the required flit format and injecting into the

NoC, the packet-generators also receive packets from the NoC and export evalua-

tion figures to an external file. A snippet from one of the tests is added as Figure

3.14.

I 11 1 0 3 1 4 179 100 419 700

R 8 2 0 701 1

I 9 1 3 4 3 0 164 100 438 704

R 25 0 4 706 1

I 18 1 2 2 2 4 171 100 435 708

R 12 1 4 742 1

Figure 3.14: Snippet from an exported text file detaining simulation milestones

The lines starting with ‘I’ depict the timestamp with characteristics of a packet

injection while lines starting with ‘R’ depict the particulars of a packet reception

along with its timestamp. These details are then analysed by a custom built macro

code running inside the spread sheet software to generate performance statistics

and graphs. The detailed information on the injection timestamp and reception

timestamp is shown in Figure 3.15 and Figure 3.16 respectively.

Type Packet
Priority

Source
X

Address

Source
Y Ad-

dress

Destination
X Address

Destination
Y Address

Packet
ID

Start
Time

Packet
Size

Sleep
Time

Time
stamp

I 11 1 0 3 1 4 179 100 419 700

Figure 3.15: Packet injection timestamp details

Type Packet

Priority

Receptor

X Ad-
dress

Receptor

Y Ad-
dress

Reception

Timestamp

Packet ID

R 8 2 0 701 1

Figure 3.16: Packet reception timestamp details

The packet latency performance is then estimated by analysing the data file using

a VB Script coded analysis macro (shown in Figure 3.17) developed to run inside

the spreadsheet software used.

59

Figure 3.17: Performance evaluation macro

3.4. Summary

This chapter initially covered the metrics the thesis is looking into, latency for

performance and LUT and register utilisation for hardware overhead. The chapter

continued with the problem statement followed by details on the evaluation infra-

structure.

In the problem statement section, the predictability issues in latency suffered by

non-preemptive NoC designs were discussed. The literature shows that non-

preemptive NoCs can have starvation of packets regardless of the priority value

and that the magnitude of latency can vary widely thus rendering application-

supplied priory pointless.

The section also briefly looked into how VCs can resolve such issues at the cost

of scalability limitation and hardware overhead. This motivates the research pre-

60

sented in the thesis as the techniques presented aim at improving packet predicta-

bility with simple and scalable techniques than the VC approach.

The last section of the chapter detailed the basic evaluation infrastructure used and

it acts as a prologue to the specifics of implementation details of the techniques

presented in the subsequent three chapters.

61

 Chapter 4

4. Starvation Resolution by Priority

Manipulation

In order to resolve HOL blocking situations, this chapter presents the Priority

Forwarding and Tunnelling (PFT) [25] technique that is designed to neutralise

HOL blocking scenarios by enabling the blocked packet up the line to remotely

manipulate the routers and priority of the packets blocked down the line. Typical-

ly, HOL blocking is resolved with preemptive arbitration. As seen in the section

2.2.3, preemption implementation is hardware intensive whereas PFT aims to re-

solve HOL blocking without the use of Virtual Channels for scalability and re-

duced hardware overhead.

4.1. Priority Forwarding and Tunnelling

In the PFT technique, when a packet is blocked by another blocked packet of low-

er priority, the priority and destination information of the packet blocked up the

line will be extracted by the respective router and forwarded through the blocked

path to the header of the blocked packet down the line as a PFT-flit. Once the

PFT-flit reaches the router with the blocked header, the priority value contained in

the PFT-flit is compared with the blocked header’s priority. If the priority speci-

fied in the PFT-flit is higher than the priority of the packet header blocked down

the line, the header’s priority is boosted to that of the information in the PFT-flit

to resolve the block. This part of the technique is called Priority Forwarding and it

62

permits HOL blocking to be neutralised, hence starvation of packets (due to lower

priority packets) can be avoided.

To prevent further HOL blocking on the routers through which the PFT-flits flow,

the routers also perform a process called Priority Tunnelling by which the output

ports that will be used by the packet blocked up the line in the near future will be

locked with its priority value. This prevents other packets with lower priority val-

ues from getting arbitration to those output ports temporarily until the blocked

packet is transmitted through them.

Since the PFT-flit flows occur only on paths that are completely blocked, the

same data lines can theoretically be used by PFT-flits by using a multiplexing log-

ic hence reducing additional overhead of extra connection lines as shown in Fig-

ure 4.1.

Figure 4.1: PFT-flit transmission

Input buffer

PFS logic

MUX
Data line

Control line

Input port of router

63

Figure 4.2: Detailed PFT functionality

To understand the technique further, consider the scenario depicted in Figure 4.2

where we can see routers A and B with two packet flows.

Packet flow 1 originates from the local port of router A (shown as S1) and is

blocked somewhere south of router B. Packet flow 2 originates from the west port

of router A and has destination north of router B.

As packet 2 is blocked by the blocked packet 1, PFT logic will be initiated and the

blocking information will be forwarded to the west input port of router B. Now, it

can be seen that there is a conflict of interest. As the destination of packet 1 is

somewhere south of router B, the PFT-flit has to be forwarded towards the south

to do Priority Forwarding. But the port on router B that will be used by packet 2 in

future is the north port and hence that is the port that has to be tunnelled.

To enable the routers to calculate the correct ports to tunnel, the PFT-flit consists

of three components; destination information, packet priority and tunnelling flag.

Every time Priority Forwarding is done, the future output port (of the packet be-

hind the line) is calculated by using the destination information contained in the

PFT-flit and the appropriate port is tunnelled. If the future port is the same as the

one towards which the PFT-flit has to be forwarded, the PFT-flit is send to the

next router as such. On the other hand if the future port is different to that towards

which the PFT-flit is to be forwarded as seen in the example, the tunnelling flag in

 W

 A B

S

N N

S

W E E

L L

S1

D1

S2

D2

Priority Forwarding

Priority Tunnelling

64

the PFT-flit is disabled and is send to the next router so that the routers down the

line do not preform unnecessary tunnelling.

In the example, the router tunnels the north port of router B and then forwards the

PFT-flit through the south port with the Tunnelling flag disabled so that the rout-

ers down the line does not do further Tunnelling.

The effect of PFT on the HOL blocking scenario explained in Section 2.2 is

shown in Figure 4.3. As stated before, it is assumed that packet priorities decrease

with the increase in the numeric value of priority (i.e. Packet priority 1 > 2 > 3).

So, ordinarily under the situation in Figure 4.3a, packet 3 will get arbitration to

the south port of router (1,2) (after packet 9 is transmitted) ahead of packet 4,

hence forcing packet 1 to wait behind the line further. However, with the applica-

tion of Priority Forwarding, packet 4 is forwarded with the priority value 1 hence

allowing packet 4 to secure arbitration ahead of packet 3 (as depicted in Figure

4.3a and Figure 4.3b).

 (a)

3

1

4

8 9

(1,0)

(1,1)

(1,2) (0,2) (2,2)

1

(b)

1

4

8 3

(1,0)

(1,1)

(1,2) (0,2) (2,2)

9

1

Priority forwarding

Priority tunnelling

1

65

Figure 4.3: Priority Forwarding and Tunnelling operation

Since Priority Tunnelling was performed to the south port of router (1,2), none of

the lower priority packets (like 3 or 8) will be granted arbitration to the port and

packet 1 will be able to secure arbitration next (as seen in Figure 4.3c and Figure

4.3d). As from the example, it can be seen that PFT neutralises HOL blocking and

allows packet 1 to get transmitted ahead of packet 3 and packet 8. As the PFT log-

ic will be active for the packets that were transmitted ahead of packet 1, those will

not suffer HOL blocking for long so as to increase the latency of packet 1 further.

PFT therefore allows the packets to be transmitted in the order 9-4-1-3-8, rather

than in the order 9-3-4-8-1 as it would occur without PFT. This results in a latency

reduction for the highest priority packet 1. Since packet 9 was transmitted ahead

of packet 1, HOL blocking can reoccur as packet 9 could be blocked down the

line due to its lower priority value. In such a situation, PFT will again be triggered

to resolve that block.

(c)

3

1

8

9

(1,0)

(1,1)

(1,2)

4

(0,2) (2,2)

(d)

1

4

8 3

(1,0)

(1,1)

(1,2) (0,2) (2,2)

9

1

66

Assume the situation where an input port already Priority forwarded is being Pri-

ority forwarded by a different packet. In such a situation, the routers would check

whether the new Priority forwarded priority value is higher than the current one

and if it is higher the value is updated. If the value is lower, it will be trashed but

this will not affect the performance as the next time the packet is blocked, Priority

Forwarding will again be initiated nevertheless.

4.2. PFT Implementation on the R3 NoC

To evaluate the performance merits of PFT, it was implemented as a NoC model

designated the R3 (URL to the source code added in Appendix 2) which was an

advancement over the R2 NoC (Hermes based).

The major challenge in PFT implementation in the R3 NoC was dealing with the

contention between PFT-flits. At any point of time, there can be new PFT-flits

generated at each input port due to the blocking of packets locally simultaneously

with remote blocking PFT-flits arriving from nearby routers contenting for the

same output port. Furthermore, the PFT-flits arriving from nearby routers will

already be causing tailback on the routers up the line elevating the problem fur-

ther.

To deal with such eventualities, each input port is provided with a local blocking

info register called -register to store the PFT-flit generated at the local input port.

To store the PFT-flits arriving from nearby routers, each input port other than the

local port is provided with a remote blocking register called -register.

67

Figure 4.4: Blocking registers

Every time a packet is newly blocked by another blocked packet, a PFT-flit is

generated and is stored into the respective -register. The router is provided with

a scheduling logic which uses TDM logic to select an active -register or -

register one at a time to service. As the data inside the -register is the local

blocking info, every time it is serviced, the data inside it is forwarded to the next

router towards which the packet that is blocking the local packet is blocked. The

internal functionality of the routers (1,1) and (1,2) from the example is depicted in

Figure 4.5.

In Figure 4.5 it can be seen that as packet 1 is blocked by the already blocked

packet 4, the blocking information of packet 1 is extracted and stored into an -

register (seen inside the north port of router (1,1)).

S

E W

L

N



 












 Scheduler

68

Figure 4.5: PFT Functionality example

To trigger the logic to load the -register every time when a packet is blocked by

a blocked packet, there are two Boolean flags named A and B inside the input

ports of each router. The router is provided with logic to store the value of A into

B and every time a flit is transmitted, the Boolean value stored in A is inverted.

By using such a system whenever transmission is in progress, B will be a clock

cycle lagging behind A and both the value will be the same only when the link is

idle, hence identifying a blocked output port (registers A and B are not shown in

Figure 4.5 for enabling better readability).

As the header of packet 4 is toward the south of the router in the example, when

the PFT scheduler services the -register in the north port, the info is forwarded

towards the south to router (1,2) where it is stored into its remote blocking register

the -register (as seen inside the north port of router (1,2)).

When the scheduler services the data inside -registers, if the blocked header is

not at that router, Priority Tunnelling is done and the data is forwarded to the next

router and this is continued until the PFT-flit reaches the router with the blocked

N

S L

W E

N

S L

W E

(1,1)

(1,2)



 

4

prio

3

Min_prio

8

9

1

69

header. Once the blocked header is found, Priority Forwarding is performed to

resolve the block.

To prevent tailbacking of headers inside FIFO buffers, the prototype also include

logic to verify whether a flit is a header before it is injected into a FIFO. This ena-

bles the router to update the priority register inside the input port even if the head-

er is not in the head of the queue thus engaging PFT logic even before the header

initiates an arbitration request.

Even though theoretically it is possible to share the data lines for both data flits

and PFT-flits, the current prototype utilises separate connection lines for ease of

implementation.

The pseudo code for the logic operation is added below

Pseudo code

PROCEDURE PFT_loader (At each input port)

// to load blocking data into α-register

IF α-register is unused AND output_port is unassigned AND port_request is active AND request-

ed_output_port is blocked THEN

LOAD arbitration_request_priority, tunnelling_flag and destination_address into the lo-

cal α-register

// to load blocking data received from the network to β-register

IF input flit is blocking data AND β-register is unused THEN

LOAD input flit into local β-register

END PROCEDURE

PROCEDURE PFT_Scheduler

Using a scheduling algorithm

SET the scheduling pointer to an active α-register or active β-register to be serviced

END PROCEDURE

PROCEDURE Process_α-register_data(for the α-register currently pointed by Scheduler)

// to send α-register data to next router

IF requested_output_port is blocked THEN

SEND α-register data through the requested_output_port

ELSE

70

DROP α-register data

END PROCEDURE

PROCEDURE Process_β-register_data (for the β-register currently pointed by Scheduler)

// to find the blocked header and update priority

IF output_port is unassigned AND port_request is active THEN

IF arbitration_request_priority less than β-register_data_priority THEN

SET arbitration_request_priority to β-register_data_priority

ELSE

DROP β-register data

// to tunnel output port and to send β-register data to next router

IF tunnelling_flag =1 in β-register data AND output_port is blocked THEN

FIND future_output_port using XY-routing logic

IF output_port = future_output_port THEN

TUNNEL current_output_port

SEND β-register data through current_output_port

ELSE

TUNNEL future_output_port

SET tunnelling_flag to 0 in the β-register data

SEND β-register data it through current_output_port

// for β-register data when tunnelling is disabled (as tunnelling already done)

IF tunnelling_flag == 0 in β-register data AND output_port is blocked THEN

SEND β-register data through current_output_port

ELSE IF current_output_port is not blocked THEN

DROP β-register data

END PROCEDURE

4.3. Experimental Work

As this chapter deals with the resolution of packet starvation (and not latency di-

rectly), the chapter quantifies the performance of NoC designs based on the cumu-

lative count of packet reception numbers (thus measuring starvation).

Tests were conducted using a 4x4 size mesh type NoC with a traffic scenario

(added as Appendix 1a) where high priority packets 1 and 2 share a heavily con-

gested route.

71

4.3.1. Varying Load Due to the Increase in Payload Flits

Figure 4.6: Cumulative count of received packets at load V=0.3

Figure 4.6 shows the cumulative count plot for the number of received packets at

load V=0.3. As evident from the plot, the reception numbers of the high priority

packets are seen higher with PFT compared to the Hermes based NoC. This is due

to the resolution of HOL blocking by PFT while there will be high priority pack-

ets still waiting for transmission inside the packet generators of the Hermes based

NoC.

The load level on the NoC was then increased to V=0.5 by varying the packet size

(thus increasing the number of payload flits in the NoC at any point of time). The

resultant plot is added as Figure 4.7.

1

10

100

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P
ac

k
et

 r
ec

ep
ti

o
n
 c

u
m

u
la

ti
v
e

co
u
n
t

Packet priority

Hermes based PFT

72

Figure 4.7: Cumulative count of received packets at load V=0.5

The effect of the increased load is evident from the plot as the number of packets

successfully received with priority 1 dropped from 25 (in Figure 4.7) to six. How-

ever with PFT, the packet reception number is seen almost constant.

With further increase in load to V=0.7, packets 1 and 2 are seen to get blocked

completely with the basic NoC due to HOL blocking as seen in Figure 4.8.

Figure 4.8: Cumulative count of received packets at load V=0.7

1

10

100

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P
ac

k
et

 r
ec

ep
ti

o
n
 c

u
m

u
la

ti
v
e

co
u
n
t

Packet priority

Hermes based PFT

1

10

100

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P
ac

k
et

 r
ec

ep
ti

o
n
 c

u
m

u
la

ti
v
e

co
u
n
t

Packet priority

Hermes based PFT

73

The effect of PFT on the traffic is quite evident as the reception numbers for the

high priority packets are seen to drop only slightly from V=0.5.

Figure 4.9: Cumulative count of received packets at load V=1

As seen in Figure 4.9, the situation is similar with the increase in load to V=1 as

the packet reception numbers show only minor variation with PFT.

4.3.2. Varying Load Due to the Increase in Packet Numbers

To verify the effect of the increase in load on the NoC due to the increase in pack-

et numbers, a 4x4 NoC was tested with increasing load by varying the packet pe-

riod. The cumulative count of packet reception with load V=0.3, 0.5, 0.7 and 1 are

presented in Figure 4.10, Figure 4.11, Figure 4.12 and Figure 4.13 respectively.

Although the tests reveal similar performance characteristics, the notable differ-

ence between the results of this section is that despite an increase in the load on

the NoC the reception numbers of the high priority packets are seen to be un-

altered with PFT.

1

10

100

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P
ac

k
et

 r
ec

ep
ti

o
n
 c

u
m

u
la

ti
v
e

co
u
n
t

Packet priority

Hermes based PFT

74

Figure 4.10: Cumulative count of received packets at load V=0.3

Figure 4.11: Cumulative count of received packets at load V=0.5

1

10

100

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P
ac

k
et

 r
ec

ep
ti

o
n
 c

u
m

u
la

ti
v
e

co
u
n
t

Packet priority

Hermes based PFT

1

10

100

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P
ac

k
et

 r
ec

ep
ti

o
n
 c

u
m

u
la

ti
v
e

co
u
n
t

Packet priority

Hermes based PFT

75

Figure 4.12: Cumulative count of received packets at load V=0.7

Figure 4.13: Cumulative count of received packets at load V=1

PFT does not need additional hardware with increase in size of the NoC hence

ensuring scalability. For example, if the size of the NoC was increased resulting in

increased number of packet priorities, the plot will be similar to the one seen be-

fore with the difference that the two lines (depicting Hermes based and PFT)

would overlap further down the priority range. In Figure 4.13, it can be seen that

the cumulative count of the Hermes based NoC and PFT overlap at packet priority

12. If the same test was conducted with a bigger NoC resulting in more number of

1

10

100

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P
ac

k
et

 r
ec

ep
ti

o
n
 c

u
m

u
la

ti
v
e

co
u
n
t

Packet priority

Hermes based PFT

1

10

100

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P
ac

k
et

 r
ec

ep
ti

o
n
 c

u
m

u
la

ti
v
e

co
u
n
t

Packet priority

Hermes based PFT

76

packet priorities, this overlap would have happened further down the line depend-

ing of the number of packet priorities.

The performance of PFT at different load levels can be seen in Figure 4.14 and

Figure 4.15 where the cumulative count of received packets are plotted. Figure

4.14 shows the plot where the load was increased by increasing the number of

payload flits in the NoC and Figure 4.15 depict the comparison when the load was

increased by increasing the packet numbers.

Figure 4.14: Packet reception cumulative count with PFT due to the increase in payload flits

0

200

400

600

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P
ac

ke
t

re
ce

p
ti

o
n

 c
u

m
u

la
ti

ve
 c

o
u

n
t

Packet priority

V= 0.3 V= 0.5 V= 0.7 V= 1

77

Figure 4.15: Packet reception cumulative count with PFT due to the increase in packet numbers

It can be noted that the performance variation of the high priority packets is con-

siderably less due to the increase in packet numbers than increase in payload flit

numbers. Also, with the increase in load on the NoC due to the increase in headers

the reception numbers for low priority packets are seen to increase contrary to the

previous approach.

With Hermes based NoC, the increase of load on the NoC due to payload flits

seems to have a linearly scaled effect on packet reception numbers (lines at differ-

ent load levels are seen almost parallel to each other) as seen in Figure 4.16.

0

200

400

600

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P
ac

ke
t

re
ce

p
ti

o
n

 c
u

m
u

la
ti

ve
 c

o
u

n
t

Packet priority

V= 0.3 V= 0.5 V= 0.7 V= 1

78

Figure 4.16: Packet reception cumulative count with Hermes based NoC due to the increase in payload

flits

However with the increase on load due to the increase in packet numbers, the per-

formance variation gets magnified as seen in Figure 4.17.

Figure 4.17: Packet reception count with Hermes based NoC due to the increase in packet numbers

Although, PFT was shown to improve latency of packets (shown in Figure 4.18),

the advantage was seen to be limited due to tailbacking of packets (explained in

Chapter 5).

1

10

100

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P
ac

ke
t

re
ce

p
ti

o
n

 c
u

m
u

la
ti

ve
 c

o
u

n
t

Packet priority

V= 0.3 V= 0.5 V= 0.7 V= 1

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P
ac

ke
t

re
ce

p
ti

o
n

 c
u

m
u

la
ti

ve
 c

o
u

n
t

Packet priority

V= 0.3 V= 0.5 V= 0.7 V= 1

79

Figure 4.18: Packet reception latency boxplot

In the figure it can be seen that packets like 1,2,3 and 7 has lower and shorter box

and whiskers depicting lower magnitude and variation in latency.

4.3.3. Performance Variation with Packet Size

To evaluate how packet size variation (with respect to priority) affect the perfor-

mance, a 4x4 NoC was evaluated with packet size increasing proportionally and

inversely proportionately with priority. The resultant cumulative count plots at a

low load of V=0.4 are added as Figure 4.19 and Figure 4.20.

400

4000

40000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L
at

en
cy

 i
n

 s
im

u
la

ti
o
n

 t
ic

k
s

Priority

Hermes based PFT

80

Figure 4.19: Cumulative count plot with packet size scaled proportionately to priority with V=0.4

Figure 4.20: Cumulative count plot with packet size scaled inversely proportionately to priority with

V=0.4

From the results it is evident that PFT is more effective when the high priority

packets are shorter than lower priority packets. When the high priority packets are

longer than low priority packets, both Hermes based NoC and PFT had similar

performance under low load as HOL scenarios would have been very rare (Figure

4.20).

20

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P
ac

k
et

 r
ec

ep
ti

o
n
 c

u
m

u
la

ti
v
e

co
u
n
t

Packet priority

Hermes based PFT

20

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P
ac

k
et

 r
ec

ep
ti

o
n
 c

u
m

u
la

ti
v
e

co
u
n
t

Packet priority

Hermes based PFT

81

As the load was increased to V=0.8, starvation of packets were encountered with

the Hermes based NoC as in previous experiments (evident from Figure 4.21).

Figure 4.21: Cumulative count plot with packet size scaled proportionately to priority with V=0.8

Figure 4.21 shows the performance of the system where the high priority packets

where shorter than the low priority ones. Similar to the previous experiment, the

effectiveness of PFT seem to be similar to Hermes based NoC when the low prior-

ity packets were shorter than the high priority ones as seen in Figure 4.22.

2

20

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P
ac

k
et

 r
ec

ep
ti

o
n
 c

u
m

u
la

ti
v
e

co
u
n
t

Packet priority

Hermes based PFT

82

Figure 4.22: Cumulative count plot with packet size scaled inversely proportionately to priority with

V=0.8

4.3.4. Limitations

Although PFT improved packet reception numbers by resolving starvation caused

by HOL blocking, the technique can be ineffective with random traffic without

hotspots. A hotspot is defined in the thesis as follows.

Traffic hotspot: Connection link on the NoC which is shared by a signifi-

cantly higher number of packets than the average case.

With random traffic without any hotspots, the occurrence of HOL blocking be-

comes a less common phenomenon thus decreasing the instances where the tech-

nique will be triggered. Also, due to the occurrence of tailbacking, the advantages

in the magnitude and variation of latency is limited.

2

20

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P
ac

k
et

 r
ec

ep
ti

o
n
 c

u
m

u
la

ti
v
e

co
u
n
t

Packet priority

Hermes based PFT

83

Figure 4.23: Latency plot

Figure 4.24: Cumulative count plot

For example, the latency box plot of a traffic scenario without hotspots is shown

in Figure 4.23. It can be seen that the packets 1, 2, 5 and 6 receive minor ad-

vantages with PFT however the packet reception numbers remain identical

(Figure 4.24).

65

650

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P
ac

k
et

 r
ec

ep
ti

o
n
 c

u
m

u
la

ti
v
e

co
u
n
t

Packet priority

Hermes Based PFTHermes based

400

4000

40000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L
at

en
cy

 i
n

 s
im

u
la

ti
o
n

 t
ic

k
s

Priority

Hermes based PFT

84

4.4. Hardware Overhead

The hardware overhead evaluation show that the baseline router (2-position input

buffers) based on Hermes with non-preemptive priority based arbitration utilised

1209 LUTs and 710 Slice registers of the chosen FPGA.

However the PFT enabled NoC (2-position input buffers) utilised 2096 LUTs and

1236 Slice registers. Detailed hardware overhead details is added in Appendix 3

in sections R2 and R3.

Figure 4.25: Hardware overhead

4.5. Summary

The chapter introduced the PFT technique using which HOL blocking could be

neutralised, thus countering starvation of packets due to lower priority packets.

This was achieved by forwarding the priority of the HOL blocked packet from

behind the line to the router where HOL blocking is occurring using dedicated

connection links to transmit PFT flits (control messages). This enabled the router

to update the priority of the arbitration request of the low priority packet with the

priority of the higher priority packet blocked up the line and hence resolve the

block.

0

500

1000

1500

2000

2500

LUTs # Registers

Hermes based PFT

85

While transmitting the PFT flit from router to router, the routers also would lock

the output ports that will be used by the packet blocked up the line in future so

that other packets of lower priority would not get arbitration to those ports until

the packet is transmitted.

Tests using an HDL coded model reveal advantages in packet reception numbers

under HOL blocking. Test were conducted with increased load levels by increas-

ing the number of payload flits as well as header flits in the NoC at any point of

time. Both tests revealed improvement in packet reception numbers depending on

packet priority compared to a Hermes based NoC with the latter case revealing

lower variation in reception numbers with the increase in load.

As seen in the literature review, HOL blocking is typically resolved using tech-

niques like VCs or LDM which provides spatial isolation or by using TDM which

provide temporal isolation. While spatial isolation based techniques have high

hardware requirements, temporal isolation limits the dynamic behaviour and

scalability of the NoC.

PFT however uses a dynamic approach which modifies the arbitration policy of

routers to achieve the goal. As a result, PFT requires low hardware resources (un-

like VC or LDM) and is dynamic and scalable (unlike TDM). In typical scenarios

with hotspots, PFT will be effective due to the occurrences of HOL-blocking

however in uniform random traffic, the advantages is limited due to the limited

number of HOL blocking scenarios.

This motivated the research described in the next chapter where tailbacking is re-

solved in non-preemptive routers by manipulating packets and thus enhancing

predictability.

86

 Chapter 5

5. Predictability Enhancement by

Packet Splitting

With non-preemptive NoCs with packet priorities, tailbacking (defined in Section

3.2) of high priority packets by low priority packets will be a frequent phenome-

non, thus causing variation and increase in magnitude of latency. Typically, tail-

backing is resolved in dynamic systems with preemptive arbitration using Virtual

Channels, which are hardware expensive and have scalability issues. This chapter

aim to resolve tailbacking situations by splitting data packets thereby realising a

low hardware overhead emulation of a preemption functionality.

5.1. Selective Packet Splitting

Selective Packet Splitting (SPS) is aimed to resolve tailbacking scenarios by split-

ting lower priority packet flows and thereby provide better predictability to high

priority packets than regular non-preemptive NoCs. As SPS emulates preemption

functionality by splitting packets, the hardware requirements are comparatively

less than the Virtual Channel approach.

Consider the HOL blocking example in Figure 2.4 in page 15 where packet 9 is

tailbacking (or blocking) packet 3 despite the higher priority value. Similarly,

there is tailbacking of packet 1 due to packet 4. As a result packet 3 will have to

wait until packet 9 gets transmitted even at the best of times hence increasing its

latency. As packet 1 is being tailbacked by packet 4 which is tailbacked by packet

87

3 which itself is tailbacked by packet 9, packet 1 will have to wait until the pack-

ets 9, 3 and 4 get transmitted completely despite having the highest possible prior-

ity value.

With Virtual Channels and priority preemption, there will be separate service lev-

els and a higher priority service level will be able to preempt and transmit flits

through a link even if the link is being used by a lower priority service level pack-

et.

Instead of using expensive Virtual Channel hardware, in SPS the logic splits the

lower priority communication into two so that once the initial part of the lower

priority packet (which is tailbacking the higher priority packet) is transmitted, the

high priority packet can be transmitted followed by the remaining part of the low

priority packet. As a result, the system does not need extra connection lines for

communicating between routers as they utilise the arbitration logic already present

in the router.

To enable splitting, the most significant bit (MSB) of every flit is designated as

the tail flit indicator so that the router can terminate a communication by splitting

the flow using a tail flit indicator. Thus by splitting a lower priority packet (which

is tailbacking a higher priority packet), the higher priority packet will be able to

secure arbitration before the lower priority packet is transmitted completely. The

router also issues a new arbitration request and header for the rest of the low pri-

ority packet so that once the high priority packet is transmitted; the remaining part

of the low priority packet can be transmitted. The flowchart of SPS operation is

shown in Figure 5.1.

88

Figure 5.1: Operational flowchart

To denote a splitted communication, each input port will have a boolean register

called ‘split flag’. Once the tail flit for the low priority packet is sent, the output

port is released by closing the communication and the split flag is set denoting a

split communication. The router will also issue a new arbitration request for the

splitted low priority packet so that the rest of the packet will be transmitted when

the output port becomes free.

The input port also will have registers to store the destination address of the split

packet so that when the splitted packet gets arbitration next, a new header can be

formulated and send followed by the payload. The split flag register is hence used

by the state machine to identify a splitted communication from an intact packet so

that a new header can be issued and send if it is a splitted packet.

As an example, consider packet 9 and packet 3 in the scenario depicted in Figure

2.4 in page 15.

With packet splitting enabled in the routers; router (1,2) will stop transmission of

packet 9 and then send a tail flit down the line so that the routers down the line

terminates the connection automatically, hence eliminating the need for control

lines or control flits. Then the router releases the south output port so that packet 3

Y

Y

Splitting Logic

Arbitration Request

Arbitration

Close connection

Flit transfer

Tail Flit

Splittable

Close Connection

Send Tail Flit

Issue Arbitration Request
& Header

89

will be able to secure arbitration and hence get transmitted through that port. Sim-

ultaneously, the router also issues a new arbitration request and header for the rest

of packet 9 so that once the port is free, the remaining flits of packet 9 can be

transmitted. In this example, this will allow packet 4 to get arbitration after packet

3 while the remaining part of packet 9 waits for arbitration. As packet 1 will al-

ready have caused splitting of packet 4 at router (1,1), once the initial part of

packet 4 gets transmitted, packet 1 will be able to secure arbitration while the final

section of packet 9 and packet 4 waits for arbitration.

5.2. Priority Forwarded Packet Splitting

Even though in the example in Figure 2.4 in page 15, SPS enabled packet 1 to get

transmitted before packet 9 and 4, it still had to wait until packet 3 gets transmit-

ted completely as packet 1 was HOL blocked by packet 3. This prevented packet

1 from getting to router (1,2) hence preventing it from splitting packet 3.

As seen in Chapter 4, under intense load, HOL blocking can cause total starvation

of high priority packets and to resolve this, the Priority Forwarding technique

(previously seen in Chapter 4) was combined with SPS to eliminate both tailback-

ing and HOL blocking.

With Priority Forwarded Packet Splitting (PFS), both Priority Forwarding and

packet splitting occurs when a packet is blocked by a lower priority packet so that

both HOL blocking and tailbacking could be neutralised. Consider the example in

in Figure 2.4 in page 15. With PFS, packet 4 will be forwarded with the priority

value 1 hence enabling it to split packet 3 which will have already secured arbitra-

tion by splitting packet 9. This will allow complete transmission of packet 1 be-

fore all of the other packets.

5.3. PFS Implementation on the R7 NoC

To test PFS, the technique was implemented as a Bluespec System Verilog coded

model designated as the R7 NoC (URL to the source code added in Appendix 2).

90

The basic architecture and functionality of R7 routers is similar to the R2 router

explained in Figure 3.8 in page 52.

Upon reception of a packet header (similar to R2), the input port evaluates the

destination information in the header and sets the ‘arb_request’ register with the

required output port id using XY-routing algorithm. The input port also stores the

priority of the header into the priority register so that the arbitration unit will be

able to evaluate all arbitration request to each output port and then provide arbitra-

tion to the qualifying input port by setting the appropriate ‘out_port’ register.

This enables the input port to send flits through the communication link and un-

like the R2, the last flit of each R7 data packet has a bit reserved designating the

tail flit. So, the R7 routers are designed to terminate communication upon recep-

tion of a tail flit.

The functionality of R7 NoC routers that enable SPS is shown in Figure 5.2.

Figure 5.2: SPS implementation on the R7 NoC.

S0

S1

S2

S3

S0: Routing and arbitration request generation

S4

Splittable

S5

S6

Arbitration

S1: Arbitration

S2: Send header flit

S3: Send payload

S4: Split packet

S5: Waiting state

S6: Send new header

(Not Splittable) &

(Not tail flit)

Tail flit

91

State 0 is responsible for routing and arbitration request generation and State 1 is

for issuing arbitration. State 2 deals with sending of the header flit and State 3

deals with sending of the payload flits and this continues until the tail flit is en-

countered or when the port detects a splittable scenario.

If the port detects a splittable scenario, the port will go into the splitting state

(State 4) where the ‘out_port’ register will be reset and ‘arb_request’ register will

be set along with splitted flag. Then the port will go into the waiting state (State 5)

waiting for arbitration similar to how it would in State 1. When the required out-

put port gets available and on getting arbitration, the port will go into State 6

where a new header will be formulated and sent following which it returns to

State 3 for payload delivery.

To enable the packet generator/receptor module to identify the original tail flit,

along with the tail flit denoting flag which denote the tail of a packets (even for

split ones), a bit is reserved in the tail flit denoting the final flit of the whole pack-

et.

The pseudo code for the logic is added below.

Pseudo code

PROCEDURE Arbiter (for each input port [on state S1 or S5])

IF qualified_for_arbitration THEN

ARBITRATE (by setting out_port register)

IF NOT(splitted flag) THEN

 SET STATE to S2 // to send header

ELSE

 SET STATE to S6 // to formulate and send a new header

END IF

END IF

END PROCEDURE

PROCEDURE send_flit (at each input port [on state S2 or S3 or S4 or S6])

IF tail_flit THEN

END CONNECTION

ELSE

IF state = S2 THEN SEND header

92

ELSE IF state = S6 THEN FORMULATE new header and SEND

 ELSE IF state = S3 THEN SEND payload_flits

 ELSE IF state = S4 THEN

 SET STATE to S5 // waiting state

 SEND tail_flit

 ENABLE splitted_flag

 END IF

END IF

END PROCEDURE

5.4. Experimental Work

This section presents the experimental results of the PFS based NoC (R7) com-

pared to a basic Hermes based (R2) NoC. Both the NoCs are tested for its latency

variability using box plots with four random traffic scenarios and are tested with

varying load levels both due to the increase in payload flits in the NoC and due to

increase in packet numbers (header flits) in NoC.

The NoC were also tested with varying packet sizes and finally the chapter pre-

sents the hardware requirement evaluation for the NoCs.

5.4.1. Random Traffic

The latency plot of a 4x4 NoC with four random traffic scenarios (described in

Appendix 1b to 1e) is presented in Figure 5.3, Figure 5.4, Figure 5.5 and Figure

5.6.

93

Figure 5.3: Latency performance with random traffic 1

Figure 5.4: Latency performance with random traffic 2

From the plots, the effect of PFS is evident as the high priority packets (like 1 to

8) are seen to suffer lower magnitude and variation in latency depicted by the

lower and shorter box and whiskers.

400

4000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L
at

en
cy

 i
n
 s

im
u
la

ti
o
n
 t

ic
k
s

Packet priority

Hermes based PFS based

400

4000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L
at

en
cy

 i
n

 s
im

u
la

ti
o

n
 t

ic
k

s

Packet priority

Hermes based PFS based

94

Figure 5.5: Latency performance with random traffic 3

Figure 5.6: Latency performance with random traffic 4

Due to the latency improvement brought about to the high priority packets, the

latency performance of the packets in the lower spectrum of the priority range

(priorities 12 to 16) are seen to get worse than the Hermes based NoC. Although

this is acceptable due to the lower priority range of the associated packets, further

research will look into moderating those by trading residual slack from higher

priority packets. The details of the associated research is presented in Chapter 6.

400

4000

40000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L
at

en
cy

 i
n
 s

im
u
la

ti
o
n
 t

ic
k
s

Packet priority

Hermes based PFS based

400

4000

40000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L
at

en
cy

 i
n

 s
im

u
la

ti
o

n
 t

ic
k

s

Packet priority

Hermes based PFS based

95

5.4.2. Varying Load Due to the Increase in Payload Flits

To verify the performance of PFS due to the increase in the load due to payload

flits, a 4x4 NoC was tested with increased load level by increasing the packet siz-

es. The resultant latency statistics at load V= 0.4, 0.6, 0.8 and 1 are presented in

Figure 5.7, Figure 5.8, Figure 5.9 and Figure 5.10.

Figure 5.7: Latency performance with random traffic at V=0.4

Figure 5.8: Latency performance with random traffic at V=0.6

400

4000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L
at

en
cy

 i
n
 s

im
u
la

ti
o
n
 t

ic
k
s

Packet priority

Hermes based PFS based

400

4000

40000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L
at

en
cy

 i
n
 s

im
u

la
ti

o
n

 t
ic

k
s

Packet priority

Hermes based PFS based

96

It can be seen that with increase in load in the NoC from 0.4 to 0.6 and 0.8, the

variation in latency of higher priority packets (like 1 to 4) are less with PFS com-

pared to the Hermes based NoC. However this results in higher magnitude and

variation in latency of the lower spectrum of the priority range (13 to 16).

Figure 5.9: Latency performance with random traffic at V=0.8

Figure 5.10: Latency performance with random traffic at V=1

400

4000

40000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L
at

en
cy

 i
n
 s

im
u
la

ti
o
n
 t

ic
k
s

Packet priority

Hermes based PFS

based

400

4000

40000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L
at

en
cy

 i
n

 s
im

u
la

ti
o

n
 t

ic
k

s

Packet priority

Hermes based PFS based

97

Similar to the experiments that were conducted in the previous section, PFS was

seen to improve the magnitude and variation in latency of high priority packets

depicted by the lower and shorter box and whiskers. Despite the increase in load

on the NoC due to the increase in payload flits, the latency improvement to high

priority packets is visible.

5.4.3. Varying Load Due to the Increase in Header Flits

The system was also tested with increased load levels by increasing the number of

packets numbers (header flits) in the NoC. This was done by reducing the packet

periods and the resultant latency performance at load V= 0.4, 0.6, 0.8 and 1 are

presented in Figure 5.11, Figure 5.12, Figure 5.13 and Figure 5.14.

Figure 5.11: Latency performance with random traffic at V=0.4

400

4000

40000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L
at

en
cy

 i
n

 s
im

u
la

ti
o

n
 t

ic
k

s

Packet priority

Hermes based PFS based

98

Figure 5.12: Latency performance with random traffic at V=0.6

Figure 5.13: Latency performance with random traffic at V=0.8

400

4000

40000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L
at

en
cy

 i
n
 s

im
u
la

ti
o
n
 t

ic
k
s

Packet priority

Hermes based PFS based

400

4000

40000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L
at

en
cy

 i
n

 s
im

u
la

ti
o

n
 t

ic
k

s

Packet priority

Hermes based PFS

based

99

Figure 5.14: Latency performance with random traffic at V=1.0

As evident from the figures, PFS is seen to reduce the magnitude and variation in

latency of high priority packets as with varying load levels due to the increase in

headers in the NoC.

With these tests however, the effect of PFS is seen to be more prolific with the

increase in load due to the increase in packet numbers as the Hermes based NoC

suffer poor latency figures. With the high load of 0.8 and 1.0, the high priority

packets (1 to 6) are seen with very high magnitude and variation in latency with

the Hermes based NoC but with PFS the variation and magnitude is confined to

low levels.

5.4.4. Performance Variation with Packet Size

Figure 5.15 and Figure 5.16 depict the performance of the NoC with packet size

scaled proportionally and inversely proportionally to packet priority.

400

4000

40000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L
at

en
cy

 i
n
 s

im
u
la

ti
o
n
 t

ic
k
s

Packet priority

Hermes based PFS based

100

Figure 5.15: Latency performance with packet size scaled proportionately to packet priority

Figure 5.16: Latency performance with packet size scaled inversely proportionately to packet priority

From the figures, it is evident that although the advantages of PFS are clear, the

effectiveness of PFS is seen to be more when the high priority packets are shorter

compared to lower priority packets (Figure 5.16) as seen with PFT in Chapter 4.

This is due to the fact that when the low priority packets are longer than the high

priority packets, the short high priority packets would get more of an advantage

50

500

5000

50000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L
at

en
cy

 i
n
 s

im
u
la

ti
o
n
 t

ic
k
s

Packet priority

Hermes based PFS based

50

500

5000

50000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L
at

en
cy

 i
n

 s
im

u
la

ti
o

n
 t

ic
k

s

Packet priority

Hermes based PFS based

101

splitting them whereas the Hermes based high priority packets would have to

wait.

5.5. Hardware Overhead

The hardware evaluation show that the baseline router (2-position input buffers)

based on Hermes with priority based arbitration utilised 1209 Look Up Tables

(LUTs) and 710 Slice Registers of the chosen FPGA. Compared to that, the PFS

enabled NoC (2-position input buffers) however utilised 2382 LUTs and 1050

Slice registers.

Figure 5.17: Hardware overhead

Detailed hardware overhead details is added in Appendix 3 in sections R2 and R7-

F.

5.6. Summary

This chapter initially introduced the SPS techniques aimed at emulating preemp-

tion functionality by splitting packets. With the use of VC as in QNoC, packet

pre-emption requires buffers and additional hardware which will increase the

overall hardware requirements significantly. It also limits the scalability of the

NoC as the size of the NoC or the number of packet priorities increase, the effec-

tiveness of the pre-emption will decrease unless more buffers are added.

0

500

1000

1500

2000

2500

LUTs Registers

Hermes based PFS

102

SPS however avoids the used of the classical pre-emption technique to reduce

hardware requirements and to ensure scalability. With SPS, the routers are modi-

fied to split a low priority packet if a higher priority packet requires arbitration to

the same port. The routers are designed to split the low priority communication by

sending a tail flit down the line so that the routers down the line will know of the

end of the packet and will close communication automatically after receiving the

tail flit. By using such a system, SPS does not require any additional connection

lines to communicate with downstream routers, thus making the design simple.

In SPS, custom logic is added to the routers to issue a new header and arbitration

request to the split packet so that once the transmission of the high priority packet

is completed, the rest of the split lower priority packet can be transmitted. As the

rest of the split packet is an intact packet with header, payload and a tail flit, the

routers down the line will treat them as normal packets thus eliminating the need

for any additional control signals or links further simplifying the design.

The chapter followed with the details of the PFS technique which is a hybrid be-

tween SPS and Priority Forwarding technique [25] from Chapter 4. The imple-

mentation details of the PFS based model was presented then followed by the test

results. PFS was tested with four random traffic scenarios as well as with varying

load levels both due to the increase in payload flits in the NoC and due to the in-

crease in header flits in the NoC. In all the tests, PFS was seen to reduce the mag-

nitude and variation in latency depending on packet priority (better predictability

for higher priority packets) compared to Hermes based NoC.

Although acceptable, the improvements in latency performance of higher priority

packets are brought about by trading the performance of the lower priority pack-

ets. To moderate this effect when possible, further research was conducted to add

a timeliness parameter along with packet priority to enable routers to provide bet-

ter QoS to lower priority packets if the high priority packets have residual slack in

latency. This is the concept explored in the next chapter.

103

 Chapter 6

6. Predictability Enhancement

Through Dynamic Slack Aware-

ness

Typically, predictability enhancement techniques like VCs and LDM employ ap-

plication supplied priority as the decisive parameter. Thus, the routers favour high

priority packets over low priority packets while implementing arbitration, preemp-

tion or other predictability enhancement measures despite its timeliness. This

means that ordinarily, a high priority packet with residual slack (hence early in

time compared to its soft deadline) will be preferred over a low priority packet

which has no residual slack (hence is late). This will delay the late packet even

more while the high priority packet get transmitted even though it can afford to

get delayed. The term residual slack is defined as follows.

Residual slack: The time in simulation ticks a packet can be delayed with-

out missing its soft deadline.

This chapter presents the technique that will allow the routers to improve the pre-

dictability of packets with lower priority when possible by trading the residual

slack associated with competing higher priority packets.

In real-time systems in which the application structure and system workload is

known ahead of time, static analysis can be used to determine suitable packet pri-

104

orities and mappings. However, in open applications the workload which the plat-

form must handle can be unknown at design time. This can be because tasks or

data flows may arrive dynamically requesting immediate transmission, but never-

theless requiring a certain quality of service (QoS). Alternatively, in a heteroge-

neous architecture, known applications may have to coexist with dynamically ad-

mitted traffic. These situations require additional flexibility in arbitration deci-

sions beyond static priorities.

This chapter introduces an approach by which the packets can be added with an

additional parameter that notifies the routers of the timeliness of packets so that

predictability enhancement measures can be employed by evaluating both its

timeliness and application supplied priority.

Typically, the notion of timeliness is realised on multicore systems using time

stamps like in [122] and [123]. The use of time stamping however requires access

to a global time to compare with. With NoC routers, the addition of a timekeeper

unit employing large counters or time synchronisation mechanisms would be

hardware expensive and impractical. This chapter presents the technique called

Dynamic slack Hard-line Aware Router Architecture (DHARA) [28] using which

a notion of timeliness can be introduced into NoC packets.

With DHARA, NoC routers will be able to estimate the residual slack of a packet

(thus denoting its earliness) at any instant so that the routers can be equipped with

logic to provide preference to packets evaluating both its timeliness and its appli-

cation supplied priority. This will allow the routers to trade time (residual slack)

from early packets to improve the QoS of lower priority packets.

As a practical application for the system, the chapter also details the design and

performance implementation results of a PFS enabled prototype which was

equipped to utilise the slack information in arbitration decisions.

With DHARA enabled in the PFS prototype, arbitration decisions are made on the

basis of a dynamically computed priority value. Packet headers are augmented

with an additional slack value and this slack value is decremented by intermediate

arbiters while the packet is blocked and forced to wait. During arbitration deci-

105

sions, an instantaneous priority is computed from this slack value and the applica-

tion supplied priority value. This dynamic priority adjustment allows lower priori-

ty packets (which have been waiting) to be serviced trading residual slack availa-

ble on higher priority packets.

6.1. Motivational Example

Consider two PFS enabled routers (previously seen in Chapter 5) in a scenario

shown in Figure 6.1.

Figure 6.1: Motivation example

In Figure 6.1, packet 1 is blocked by packet 16 which is itself blocked by packet

7. As the routers are equipped with PFS, packet 1 will be able to split packet 16

and packet 7. As a result, once the initial part of packet 7 is transmitted, the initial

part of 16 will be transmitted followed by packet 1. It is only after the transmis-

sion of packet 1 that packet 7 and packet 16 will be transmitted, which is desirable

under a normal situation.

Assume the situation where packet 1 is early in time compared to its soft deadline.

In such a situation, forcing packet 7 and 16 to wait is unnecessary and inefficient.

After packet 1 is transmitted, packet 7 will get transmitted forcing packet 16 to

wait further. Assume the situation where packet 7 is too late to be useful. In such a

situation, transmitting packet 7 will be a waste of resource as it would result in

 1

 16

1

 7

106

unnecessary traffic further along the route of packet 7, and would increase the

latency of packet 16 for no reason.

In this example, the introduction of the notion of time and equipping the routers to

perform PFS evaluating both priority and timeliness will resolve such issues. This

will allow the router to trade the residual slack (expendable time on higher priori-

ty packets) for latency enhancement in lower priority packets and thus provide an

overall improvement in QoS.

Figure 6.2: DHARA functionality

To understand the expected functionality in detail, consider the performance of a

PFS based NoC and a PFS based NoC with DHARA enabled (denoted as PFS-D)

in Figure 6.2 (hypothetical example). It can be seen that the PFS based NoC has

very low latency for the high priority packets (packets 1 to 4) at the cost of the

lower priority packets (packets 5 to 8). As a result the low priority packets suffer

high latency which are outside the acceptable latency range with respect to its soft

deadline. The idea with DHARA is to moderate this negative effect by trading the

slack the high priority packets have (inside the acceptable latency range) to im-

prove the performance of the lower priority packets. In the plot, it can be seen that

with PFS-D, the latency of the high priority packets are increased (still inside the

0

30

60

90

1 2 3 4 5 6 7 8

L
at

en
cy

Packet priorty

PFS-D PFS

Acceptable latency range

107

acceptable range) thus enabling the routers to improve the latency performance of

the lower priority packets.

6.2. Residual Slack as the Notion of Timeliness

DHARA enables the packet generator/IP or the Network Interface to provide an

additional parameter to packets (apart from priority and destination information)

that will notify routers of the residual slack the packet has. Packet headers are

augmented with an additional slack value, which represents the latency the packet

can endure to its destination without adverse effects. This slack value is decre-

mented by intermediate arbiters while the packet is blocked and forced to wait.

During arbitration decisions, an instantaneous priority value is computed from this

slack value and the application-supplied priority value. This dynamic priority ad-

justment allows lower priority packets which have been waiting for longer to be

serviced, while trading off some residual slack available on early high priority

packets.

Every time a packet header is injected into an input port, the slack is stored into a

register. If the packet gets arbitration immediately, slack along with the rest of the

parameters will be sent to the next router. On the other hand, if the packet gets

delayed, the value inside the slack register will get decremented every time a

slack-interrupt is encountered. To generate slack-interrupt, the router is added

with an incrementing counter that will produce a slack-interrupt every time it

overflows.

108

Figure 6.3: Slack-interrupt generator

As there would be packets with different ranges of residual slack, there is also

provision to vary the granularity of the wait time upon which the slack-interrupt

generation occurs. As shown in Figure 6.3, slack-interrupt generator has an ad-

justable scale pointer using which the granularity of timeliness can be varied. For

example, if the scale pointer is set at zero, the system will provide an interrupt

every two clock cycles and so, the slack value will be decremented every two

clock cycles the packet is forced to wait. The granularity will be equal to 2`
scale

pointer value`+1
 and hence if the pointer is set to 7 as in the figure, the value inside the

slack-left register will be decremented every 2
8
 = 512 clock cycles the packet is

forced to wait.

The header is also provided with an expendable flag to denote the data which is

deemed useless after its slack is exhausted. As a result, if a router encounters a

packet with slack set to zero and expendable flag set, the input port will remove

the flits (as it has exhausted its slack and hence deemed useless) rather than

transmit them and elevate congestion. As this system does not require access to a

global time, the hardware requirement is relatively low thus enhancing its practi-

cality.

In larger NoCs, the delay that has to be encountered by packets which has to trav-

el a longer route will be significantly greater than a packet that has to travel a

shorter route. As a result, it is sensible to add slack value to packets taking into

account the route length of the packet as well. For instance, a packet that has to

travel a longer route should be added with lower slack value than a packet taking

a short route thus enabling it to reach the destination without excessive delays.

7 6 5 4 3 2 1 0 n .

Scale pointer

Incrementing counter

Interrupt Generator

Slack-interrupt

109

Future work on the topic will involve testing the system with packets of different

route length to determine the effects. Future work will also involve integrating a

route length component into the instantaneous priority equation so that the routers

will be able to account for the position of the packet in the NoC with respect to

the destination (instantaneously) while estimating its instantaneous priority.

6.3. Application with PFS Based NoC

To evaluate the performance of the system, a PFS enabled model (R7-F NoC used

in the previous chapter) was modified to encompass DHARA (URL to the source

code added in Appendix 2).

6.3.1. DHARA Based Slack Awareness

The model used the R7-F NoC as the starting point with additional logic for

DHARA implementation. In this case, all computational units including the arbi-

ter, Priority Forwarding logic and packet splitting logic were modified to make

decisions based on instantaneous priority rather than the priority information in

the packet header (application-supplied priority).

The instantaneous priority is estimated using equation (6.1) which employs an

addition and a right shift (>>) operation thus enabling efficient realisation in

hardware.

P𝐼 = P𝑃 + (S ≫ D) (6.1)

(PI – Instantaneous priority, PP – Packet priority, S – Slack value, D- Divider index)

As seen in the equation, the instantaneous priority is estimated by summing the

packet priority and the slack value shifted to the right D number of times. Practi-

cally, D can be set to 0, 1 or 2 hence realising S, S/2 and S/4 respectively. Thus by

varying the value of D, the weightage of the slack component on the instantaneous

priority can be varied.

110

6.3.2. Implementation Details

DHARA

As a starting point, the PFS enabled (R7-F) router used in Chapter 5 was modified

to encompass DHARA. As the slack value was set at seven bits, the highest value

possible i.e. 127 is treated as packets with the notion of lateness disabled (where

PFS will never be enabled). With slack values less than 127, the routers will dec-

rement the slack value as determined by the scale pointer, described in Section

6.2.

Consider the situation where a header is inside the input buffer of an input port

behind some flits of some other packet which is blocked. As the slack register in

the input port will be updated with only when the header is in the head of the

buffer (typically) thus initiating an arbitration request, such a situation will allow

headers to wait for arbitration unaccounted for.

For example, consider the situation in Figure 6.4 where an input port and its input

buffer is depicted. In the figure, it can be seen that as the header of a packet is be-

hind the flits from another blocked packet in the FIFO, the system will not be able

to update the slack value even though the packet is waiting for arbitration.

Figure 6.4: HOL blocking of slack-left value

To resolve such issues, the buffers could be modified so that every time a flit is

injected into the buffer, the newly added logic will verify whether it is a header

and if it is; the slack-left register will be updated. As this will happen before the

Packet Header

Slack register

Expendable Flag

Slack-left field

FIFO

Input port

111

packet gets to the front of the queue the routers will be able to decrement the slack

value irrespective of the position of the header in the FIFO and hence provide an

accurate awareness of residual slack.

The work assumes that packet size will be longer than the buffer size so that only

one header would be in a buffer at any point of time. In case the packet size is less

than the buffer size, there is possibility of multiple headers getting injected into a

buffer and under such a situation, the slack value of the header injected last would

overwrite the value inside the slack-register.

Packet generators

To enable slack awareness in packets, the packet generators were modified so that

the packet headers produced will include a seven bit (configurable) slack value

and a single bit expendable flag. The slack value and expendable flag value are

hard coded during design time by the configuration generator (previously ex-

plained in Section 3.3).

Type J packet generators

To enable performance testing with complex realistic traffic, an advanced version

of the packet generator was developed which would support four sets of commu-

nication with an internal preemption mechanism. As a result, each generator can

be configured with four in-depended packet flow information.

Internally, each Type J packet generator acts as four individual packet generators

and the internal preemption mechanism (SPS based) allows transmission of a

higher priority communication even when there is an active lower priority com-

munication.

6.4. Experimental Work

To evaluate the performance benefits, NoC designs were tested for their magni-

tude and variation in latency using the metrics presented in Section 3.1. Magni-

tude of latency is evaluated using a variety of plots like box-plots, average latency

112

plots, maximum latency plots and plots depicting the cumulative count of late

packets. Variability of latency is evaluated with plots like box-plots, interquartile

range plots as well as the variability metric S-index.

6.4.1. Performance with Random Traffic

Under a random traffic scenario (described in Appendix 1f), the latency box plot

and average latency plot of a Hermes based NoC compared to a PFS based NoC

and a PFS based NoC with DHARA (PFS-D) are presented in Figure 6.5 and Fig-

ure 6.6. For the experiments the Scale pointer was set at 7 and slack value set at

20 for all packets.

Figure 6.5: Latency comparison with random traffic 1

In Figure 6.5, it can be seen that the Hermes Based NoC suffers high magnitude

and variation in latency despite its priority values (like packets with priority 2 and

4) due to HOL blocking and tailbacking.

With the PFS based router, the PFS logic counters HOL blocking and tailbacking

thus improving the latency of high priority packets. As this performance im-

provement is achieved at the cost of the performance of low priority communica-

500

5000

50000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Hermes Based PF PFS-D

L
at

en
cy

 i
n
 s

im
u
la

ti
o
n
 t

ic
k
s

Packet priority

113

tion, low priority packets can have increased magnitude and variation in latency

(like packet 12 and 14).

With DHARA enabled in PFS routers, this ill effect is moderated by trading the

residual slack in higher priority packets and the effect is quite evident in the fig-

ure. As a result the PFS-D based system is seen to moderate the extreme cases of

latency (like with packet 14).

Even though the best performance with DHARA is achieved by custom allocation

of slack value depending on requirements, the tests in the research were conduct-

ed with slack values assigned equally to all packets.

Figure 6.6: Average latency plot for random traffic 1

This effect of DHARA is clearer in Figure 6.6 where the average latency is plot-

ted. It can be seen that there are irregular peaks in average latency with Hermes

based NoC regardless of the priority value (like packet 2 and 4). With PFS how-

ever these issues are resolved but as a result there are peaks in average latency of

lower priority packets (like packets 8, 10 and 12).

The plot corresponding to PFS-D is seen to be more refined than both of those as

the high peaks in latencies are seen to be moderated by trading residual slack.

0

15000

30000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
v
er

ag
e

la
te

n
cy

 i
n
 s

im
u
la

ti
o
n
 t

ic
k
s

Packet priority

Hermes Based PFS PFS-D

114

Assuming sum of the allocated slack and the basic latency to be the optimal arri-

val time, the number of late packets was also evaluated with the traffic scenario

and the cumulative count of number of late packets can be seen in Figure 6.7.

With the Hermes based NoC, it can be seen that there are late packets regardless

of the priority value (like packets 3, 8 and 9). With PFS based router, late packets

are not encountered until packet 11 thus showing the effectiveness of the tech-

nique.

Figure 6.7: Cumulative count of late packets with random traffic 1

Even though the effect is similar with PFS-D, it can be noted that the PFS-D

based approach produces a lower number of late packets compared to PFS.

Similarly, the latency plot of another random traffic scenario (Appendix 1g) is

depicted in Figure 6.8.

0

100

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C
u

m
u

la
ti

v
e

co
u

n
to

f
n

u
m

b
er

 o
f

la
te

 p
ac

k
et

s

Packet priority

Hermes based PFS PFS-D

115

Figure 6.8: Latency comparison with random traffic 2

Similar to what was seen with random traffic 1, the effect of PFS and PFS-D is

quite evident from the plot. The average latency plot for the scenario is added as

Figure 6.9.

Figure 6.9: Average latency plot for random traffic 2

As seen with random traffic 1, it can be seen that there are peaks in average laten-

cy with Hermes based NoC (like packet 8) along with peaks with PFS based NoC

(like packet 14). These are seen to be moderated with PFS-D by trading residual

slack.

0

15000

30000

45000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
v
er

ag
e

la
te

n
cy

 i
n

 s
im

u
la

ti
o

n
 t

ic
k
s

Packet priority

Hermes based PFS PFS-D

500

5000

50000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Hermes Based PFS PFS-D

L
at

en
cy

 i
n
 s

im
u
la

ti
o
n
 t

ic
k
s

Packet priority

116

Figure 6.10: Cumulative count of late packets with random traffic 2

In Figure 6.10, the cumulative count of the number of late packets with random

traffic 2 can be seen. It can be seen that with the Hermes based NoC, there are late

packets of high priority values (like 3 and 6) whereas with PFS and PFS-D, late

packets are not encountered until packet 9. With this traffic scenario, the total

number of late packets with PFS and PFS-D are seen to be more than the Hermes

based NoC. As the late packets in both accounts are from the lower priority spec-

trum of packets, this phenomenon is justifiable.

Figure 6.11: Latency comparison with random traffic 3

0

100

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C
u

m
u

la
ti

v
e

co
u

n
to

f
n

u
m

b
er

 o
f

la
te

 p
ac

k
et

s

Packet priority

Hermes based PFS PFS-D

500

5000

50000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Hermes Based PFS PFS-D

L
at

en
cy

 i
n

 s
im

u
la

ti
o

n
 t

ic
k

s

Packet priority

117

Similar effect can be seen in Figure 6.11 where the latency of another random

traffic (Appendix 1h) is presented as boxplots. Similarly, with the average latency

plot of random traffic 3 (Figure 6.12), PFS-D is seen to reduce peaks in latency

which were encountered with the Hermes based NoC and the PFS based NoC.

Figure 6.12: Average latency plot for random traffic 3

The cumulative count of the number of late packets is shown in Figure 6.13 and

similar to the previous experiments the PFS and PFS-D produce a lower number

of late high priority packets compared to the Hermes based NoC. PFS-D however

is seen to have a slight increase in late packet numbers with packets 9 and 10, alt-

hough the total number of late packets is lower than both the other cases.

0

15000

30000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L
at

en
cy

 i
n
 s

im
u
la

ti
o

n
 t

ic
k
s

Packet priority

Hermes based PFS PFS-D

118

Figure 6.13: Cumulative count of late packets with random traffic 3

6.4.2. Performance with Varying Load

The average latency plots of random traffic 2 at load levels V= 0.6 ,0.8 and 1 are

presented in Figure 6.14, Figure 6.15 and Figure 6.16 respectively.

Figure 6.14: Average latency plot for traffic 3 with V=0.6

0

40

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C
u

m
u

la
ti

v
e

co
u

n
t

o
f

n
u

m
b

er
 o

f
la

te
 p

ac
k
et

s

Packet priority

Hermes based PFS PFS-D

0

10000

20000

30000

40000

50000

60000

70000

80000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
v
er

ag
e

la
te

n
cy

 i
n
 s

im
u
la

ti
o

n
 t

ic
k
s

Packet priorty

H_p PFS PFS-D

119

In Figure 6.14, it can be seen that with the Hermes based NoC, packet 1 is having

a high average latency despite possessing the highest possible priority value. With

the PFS based router, this is resolved however the lower priority packet; packet 14

has a high average latency.

With PFS-D, both these occurrences are seen to be moderated by trading the re-

sidual slack.

With the increase in load to 0.8, the average latency of packet 1 with the Hermes

based NoC and packet 14 with PFS NoC is seen to be magnified further (Figure

6.15). However, the PFS-D plot is seen to be having minor variation despite in-

crease in load.

Figure 6.15: Average latency plot for traffic 3 with V=0.8

Similarly, with the increase in load to 1, high variation in latency can be seen with

both the Hermes based NoC and the PFS based NoC however the PFS-D based

NoC displays lower variation (Figure 6.16) than both cases.

0

10000

20000

30000

40000

50000

60000

70000

80000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
v
er

ag
e

la
te

n
cy

 i
n
 s

im
u
la

ti
o

n
 t

ic
k
s

Packet priorty

H_p PFS PFS-D

120

Figure 6.16: Average latency plot for traffic 3 with V=1

The variation of maximum latency in the Hermes based NoC at the three load lev-

els is presented in Figure 6.17. It can be seen that there are peaks in maximum

latency regardless of the priority value due to HOL blocking and tailbacking.

Figure 6.17: Maximum latency variation with Hermes based NoC

0

10000

20000

30000

40000

50000

60000

70000

80000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
v
er

ag
e

la
te

n
cy

 i
n
 s

im
u
la

ti
o

n
 t

ic
k
s

Packet priorty

H_p PFS PFS-D

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
ax

im
u
m

 l
at

en
cy

 i
n
 s

im
u
la

ti
o

n
 t

ic
k
s

Packet priorty

V=0.6 V=0.8 V=1

121

The performance of the PFS based NoC is shown in Figure 6.18 and it can be seen

that with the use of PFS the high priority packets (1 to 7) suffer very low maxi-

mum latency under the three load levels. However this results in high magnitude

and variation in low priority packet’s maximum latency plots.

For example, with packets like 8, 12 and 15, variations of high magnitudes can be

seen with the increase in load.

Figure 6.18: Maximum latency variation with PFS based NoC

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
ax

im
u
m

 l
at

en
cy

 i
n
 s

im
u
la

ti
o

n
 t

ic
k
s

Packet priorty

V=0.6 V=0.8 V=1

122

Figure 6.19: Maximum latency variation with PFS-D based NoC

With PFS-D (Figure 6.19), the maximum latency of packets is seen to be lower

through the lower priority range and the effect of the increase in the load is seen to

follow a pattern and is seen not to produce large variation in maximum latency

unlike PFS or Hermes based NoC.

Figure 6.20 shows the average value of slack left on packets upon final reception

with the three load levels.

Figure 6.20: Average remaining slack

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
ax

im
u
m

 l
at

en
cy

 i
n
 s

im
u
la

ti
o

n
 t

ic
k
s

Packet priorty

V=0.6 V=0.8 V=1

14

18

22

26

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
v
er

ag
e

sl
ac

k
 v

al
u
e

Packet priority

V=0.6 V=0.8 V=1

123

It can be seen that the low priority packets (8 to 16) suffers more decrease in aver-

age remaining slack (from initial value of 30) than the higher priority spectrum of

packets and this effect is seen to intensify with the increase in load on the NoC.

As per design, this reduction in slack is what enables them to achieve arbitration

ahead on higher priority packets occasionally to improve their quality of service.

The higher priority packets (1 to 7) seem to show minor reduction in slack value

thus confirming that they are not subjected to long waiting periods for arbitration

that could negatively affect is QoS.

6.4.3. Performance with Divider Index Variation

As the divider index defines the weightage of slack component in computing the

instantaneous priority, its impact upon the NoC using PFS-D was tested by setting

divider index at 0, 1 and 2. The results from the tests are presented as a boxplot in

Figure 6.21.

Figure 6.21: Latency variation with divider index

It can be seen that with divider index 2 (DI-2), the weightage of slack component

in computing the instantaneous priory is 1/4
th

 hence the high priority packet are

seen with lowest magnitude and variation in latency at the cost of the lower priori-

ty packets. With the change in divider index to 1 and 0 (DI-1 and DI-0) the

500

5000

50000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

DI-2 DI-1 DI-0

L
at

en
cy

 i
n
 s

im
u
la

ti
o
n
 t

ic
k
s

Packet priority

124

weightage of slack component gets altered to ½ and 1 thus scaling the perfor-

mance of the system.

With the tests with DI-1 and DI-0, the improvement in low priority packet latency

is visible (like with packets 13, 14, 15 and 16); which is achieved by trading the

performance of higher priority packets (like 1, 2 and 3).

Figure 6.22: Average latency variation with divider index

Similarly, the same effect can be seen in Figure 6.22 where the average latency

for the three conditions is plotted.

6.4.4. Performance with Realistic Traffic

To evaluate the performance with realistic traffic, the system was tested with a

traffic scenario based on the application used in [16] (configuration added in Ap-

pendix 1i) and Figure 6.23 shows the cumulative count plot of the number of late

packets under the scenario. For this experiment, a classical round robin based

Hermes router based NoC (without packet prioritisation) designated as H was also

tested. It can be seen that the Hermes based NoC packets suffer high magnitudes

0

10000

20000

30000

40000

50000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L
at

an
cy

 i
n
 s

im
u
la

ti
o

n
 t

ic
k
s

Packet priorty

DI-2 DI-1 DI-0

125

of late high priority packets. The addition of packet priorities (priority based arbi-

tration) does improve the situation marginally as evident from the plot for the

Hermes based NoC with packet priorities depicted as H_P. This scenario is im-

proved with PFS and by using PFS-D, the number of late packets are seen to de-

crease even further.

Figure 6.23: Performance with realistic traffic

To evaluate the effect of additional packet flows, ten more packet flows (with

lowest priorities) were added.

Figure 6.24: Performance with hybrid traffic

0

200

400

1 15 29

C
u

m
u

la
ti

v
e

co
u

n
to

f
n

u
m

b
er

 o
f

la
te

p
ac

k
et

s

Packet priorty

H_p PFS PFS-D H

0

150

300

1 15 29 43

C
u

m
u

la
ti

v
e

co
u

n
t

o
f

n
u

m
b

er
 o

f
la

te

p
ac

k
et

s

Packet priorty

H_p PFS PFS-D H

126

The result of the experiment is presented in Figure 6.24 and it proves comparable

to the previous experiment however; a few of the lowest priority packets (packets

40 to 42) are seen to have increased number of late packets with PFS-D than PFS.

6.4.5. Scalability of Priority Levels

As PFT, PFS and PFS-D does not rely on VCs or slot tables and instead depend

on dynamic alterations to packets and arbitration polices, the NoCs employing the

techniques are totally scalable (both in NoC sizes and packet priority numbers).

Unlike VCs which need additional hardware with increase in NoC size, the tech-

niques presented in the thesis require a fixed number of components regardless of

the size of the NoC.

Though the majority of the performance tests in the thesis were carried out with

4x4 NoCs, to demonstrate the scalability of the system, the latency performance

of a 6x6 NoC with a random traffic scenario (Appendix 1j) is depicted in Figure

6.25.

As with the random traffic based tests with the 4x4 NoC, the tests show ad-

vantages in magnitude and variation in latency of higher priority packets with PFS

compared to the Hermes based NoC. This can be seen resulting in increased mag-

nitude and variation in latency of the low priority packets. This is seen to be mod-

erated with PFS-D by trading the residual slack associated with the higher priority

packets.

127

Figure 6.25: Latency performance of a 6x6 NoC with random traffic

The average latency plot from the test is added as Figure 6.26. As with the previ-

ous tests, PFS-D is seen to resolve the peaks in average latency of high priority

packets with the Hermes based NoC as well as the peaks in low priority packets as

seen with PFS based NoC.

Figure 6.26: Average latency of a 6x6 NoC with random traffic

0

15000

30000

45000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

A
v
er

ag
e

la
te

n
cy

 i
n
 s

im
u
la

ti
o

n
 t

ic
k
s

Packet priority

Hermes based PFS PFS-D

350

3500

35000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Hermes Based PFS PFS-D

L
at

en
cy

 i
n

 s
im

u
la

ti
o

n
 t

ic
k

s

Packet priority

128

As seen before, the hardware overhead for VC based NoC is much higher than the

techniques presented in the thesis. As a result, NoCs bigger than 4x4 had high

magnitudes of overhead that the Bluesim simulation environment was unable to

simulate its performance.

Similarly, the average latency plot of a 8x8 NoC is shown in Figure 6.27. It can be

seen that the performance of PFS and PFS-D is unaffected with the increase in

size of the NoC and increase in packet priorities as in previous tests. This is be-

cause the techniques introduced in the thesis use a fixed number of components

regardless of the size of the NoC and the number of priority levels. However, the

biggest NoC size that could be tested with the tools was 8x8 (average latency plot

added as Figure 6.27).

Figure 6.27: Average latency of a 8x8 NoC with random traffic

6.4.6. Comparison with VC Based NoCs

To test the performance of the techniques compared to the VC approach, a VC

based NoC prototype was implemented designated the R8 (URL to the source

code added in Appendix 2). The R8 NoC use a variation of the R2 NoC (Hermes

Based) with added feedback lines as components and it is replicated (to a number

of times equal to the number of VCs needed) to enable multiple service levels.

70

700

7000

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

A
v
er

ag
e

la
te

n
cy

 i
n
 s

im
u
la

ti
o

n
 t

ic
k
s

Packet priority

Hermes based PFS PFS-D

129

The access to the output ports have a priority based system so that if multiple VC

packets need access to the same output port, only the highest priority VC (which

is not blocked) will be allowed access.

The latency box plot of a Hermes based NoC, PFS, PFS-D and a VC based NoC

with 4 channels under three random traffic scenarios are presented in Figure 6.28,

Figure 6.32 and Figure 6.36.

Similarly, the average latency plot for the scenarios are presented in Figure 6.29,

Figure 6.33 and Figure 6.37.

Figure 6.28: Latency box plot of random traffic 4

400

4000

40000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Hermes Based PFS PFS-D VC

L
at

en
cy

 i
n

 s
im

u
la

ti
o

n
 t

ic
k

s

Packet priority

130

Figure 6.29: Average latency plot of random traffic 4

As seen with previous experiments, PFS is seen to provide lower average latency

for high priority packets than the Hermes based NoC (packets 1 to 7) but suffers

high peaks in average latency with the lower priority packets (packets 8, 10 and

12). PFS-D is seen to moderate these high peaks by trading the residual slack as-

sociated with higher priority packets. The VC based NoC presents the best per-

formance among the four NoCs with very low average latency for high priority

packets (packets 1 to 9) and moderate levels of average latency for lower priority

packets compared to the other schemes.

0

25000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L
at

an
cy

 i
n
 s

im
u
la

ti
o

n
 t

ic
k
s

Packet priorty

Hermes based PFS PFS-D VC

131

Figure 6.30: Interquartile range of latency of random traffic 4

Figure 6.30 show the plot that depicts the interquartile range (to show latency var-

iability) in packet latency. With the Hermes based NoC, it can be seen that there

are peaks in interquartile latency (depicting high latency variation) regardless of

the priority range (like packet 2 and 8). Although PFS resolves the latency varia-

tion of high priority packets (1 to 9), lower priority packets encounter high varia-

tion in latency (packet 10, 12 and 14). The VC based NoC is seen to provide mar-

ginally better predictability than PFS especially with the packets 12 and 14. The

performance of the NoC over the whole priority range is quantified as S-index and

is presented in Figure 6.31. As explained in Section 3.1.1, the S-index is used to

quantify the latency variability of the NoC over the whole priority range and a

lower value of S-index depict lower variation in latency.

0

10000

20000

30000

40000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

In
te

rq
u

ar
ti

le
 r

an
g
e

o
f

la
te

n
cy

 i
n

 s
im

u
la

ti
o
n

 t
ic

k
s

Packet priority

Hermes based PFT PFT-D VC

132

Figure 6.31: S-index plot of random traffic 4

In this particular case, the PFS-D NoC had high slack value assigned equally to all

the packets thus resulting in higher S-index than PFS and VC. However the per-

formance of PFS-D can be improved by assigning slack for packets based on ne-

cessity rather than equally as in the experiment.

The latency performance of the four NoCs under another random traffic scenario

is interpreted as box plot in Figure 6.32. The average latency plot for the system is

presented in Figure 6.33.

0

10000

20000

S
-i

n
d

ex

Hermes based PFT PFT-D VC

133

Figure 6.32: Latency box plot of random traffic 5

Figure 6.33: Average latency plot of random traffic 5

Similar to the Traffic scenario 4, in traffic scenario 5, PFS-D is seen to provide

lower average latency performance throughout the entire priority range compared

to the Hermes based NoC (Figure 6.33). The performance of PFS, PFS-D and VC

is quite similar in this case however there are differences in latency variation as

evident from Figure 6.34 where the interquartile range of latency is plotted.

0

5000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L
at

an
cy

 i
n
 s

im
u
la

ti
o

n
 t

ic
k
s

Packet priorty

Hermes based PFS PFS-D VC

600

6000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Hermes PFS PFS-D VC

L
at

en
cy

 i
n

 s
im

u
la

ti
o

n
 t

ic
k

s

Packet priority

134

Figure 6.34: Interquartile range of latency of random traffic 5

It can be seen that the PFS based NoC shows lower latency variation with high

priority packets than the Hermes based NoC and the PFS-D based NoC show even

lower variation in latency. The VC based NoC is seen to show the most predicta-

ble behaviour and this can be seen more clearly in Figure 6.35 where the S-index

of the four NoCs is presented.

Figure 6.35: S-index plot of random traffic 5

0

1000

2000

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

In
te

rq
u

ar
ti

le
 r

an
g
e

o
f

la
te

n
cy

 i
n

 s
im

u
la

ti
o
n

 t
ic

k
s

Packet priority

Hermes based PFT PFT-D VC

0

1000

2000

3000

S
-i

n
d

ex

Hermes based PFT PFT-D VC

135

It can be seen the VC based NoC provides the best predictability than the others

followed by PFS-D and PFS while the Hermes based NoC show the worst pre-

dictability in the group.

Figure 6.36: Latency box plot of random traffic 6

Figure 6.37: Average latency plot of random traffic 6

Figure 6.36, Figure 6.37 and Figure 6.38 show the latency box plot, average laten-

cy plot and interquartile range plot of random traffic 6. In this case, the PFS and

VC based NoC showed similar performance in magnitude and variation of latency

0

30000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L
at

an
cy

 i
n
 s

im
u
la

ti
o

n
 t

ic
k
s

Packet priorty

Hermes based PFS PFS-D VC

500

5000

50000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Hermes PFS PFS-D VC

L
at

en
cy

 i
n

 s
im

u
la

ti
o

n
 t

ic
k

s

Packet priority

136

(better than Hermes based NoC) and the PFS-D based NoC showed the best per-

formance of the four in both aspects.

Figure 6.38: Interquartile range of latency of random traffic 6

The predictability comparison of the NoCs can be seen in Figure 6.39 where the

S-index in each case is presented.

Figure 6.39: S-index plot of random traffic 6

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

In
te

rq
u

ar
ti

le
 r

an
g
e

o
f

la
te

n
cy

 i
n

 s
im

u
la

ti
o
n

 t
ic

k
s

Packet priority

Hermes based PFT PFT-D VC

0

10000

20000

S
-i

n
d

ex

Hermes based PFT PFT-D VC

137

6.5. Hardware Overhead and VC Scalability

The hardware requirements for a PFS based router compared to PFS-D design was

evaluated using Xilinx Vivado and was found to be minimalistic with only 16%

more lookup tables and 12 % registers on a xc7a350t Artix-7 FPGA.

Figure 6.40: Hardware overhead

The hardware overhead of the VC based router (with 4 VCs) can also be seen in

the plot and as evident from the plot, it costs almost double in terms of LUTs and

registers than the PFS-D NoC. Also, it is almost four times as expensive in LUTs

and registers than the Hermes based NoC. Detailed hardware overhead details is

added in Appendix 3 in sections R2, R7-F, R7-FD and R8.

Furthermore, with the increase in size of the NoC or the increase in packet priority

numbers, the performance of the VC based NoC will deteriorate. To counter this

effect, the number of VCs would have to be increased and this would result in

further increase in hardware overhead. However with PFS and PFS-D, there is no

limitation in the number of packet priorities the system can handle and hence are

more suited to scaling than other techniques.

The hardware overhead comparison of a 2 VC design is shown in Figure 6.41.

0

2000

4000

LUTs # Registers

Hermes based PFS PFS-D VC

138

Figure 6.41: Hardware comparison with a 2 VC design

The hardware overhead is seen similar to PFS-D and the latency box plot and av-

erage latency plot (for random traffic 5) are presented as Figure 6.42 and Figure

6.43 respectively.

Figure 6.42: Latency comparison with a 2 VC design

0

1500

3000

LUTs Registers

U
n
it

s

Hermes based PFS PFS-D 2 VC

600

6000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Hermes Based PFS PFS-D 2VC

L
at

en
cy

 i
n

 s
im

u
la

ti
o

n
 t

ic
k

s

Packet priority

139

Figure 6.43: Average latency comparison with a 2 VC design

It can be seen that the performance of a 2 VC NoC is similar to PFS and PFS-D

with the high priority packets (1 to 8) but the performance of the low priority

packets (9 to 16) is seen poorer than the Hermes based NoC, PFS and PFS-D

based NoCs.

Figure 6.44: Interquartile range of latency with 2 VCs

0

5000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
v
er

ag
e

la
ta

n
cy

 i
n
 s

im
u
la

ti
o

n
 t

ic
k
s

Packet priorty

Hermes based PFS PFS-D 2 VC

0

10000

20000

30000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

In
te

rq
u

ar
ti

le
 r

an
g
e

o
f

la
te

n
cy

 i
n

 s
im

u
la

ti
o

n
 t

ic
k
s

Packet priority

Hermes based PFT PFT-D 2 VC

140

This is evident in Figure 6.44 where the interquartile range of latency is plotted. It

can be seen that the 2 VC NoC suffers has high latency variation with the lower

priority spectrum of packets. Figure 6.45 show the S-index comparison between

the NoCs and the degradation of performance with the switch from 4 VCs to 2

VCs is quite evident.

Figure 6.45: S-index plot with the 2 VC design

As evident from the plot, with the switch from 4 VC design to 2 VC design, the

performance of the lower spectrum of the priority range (9 to 16) got significantly

poor. With the increase in size of the NoC or packet priorities, this range of poorly

performing packets would increase thus requiring increase in VC numbers for

better latency performance. This will result in a linearly increased hardware over-

head as evident from the hardware overhead figures in Figure 6.40 and Figure

6.41.

6.6. Summary

The chapter introduced DHARA a low overhead protocol that enables the notion

of timeliness in NoC packets. DHARA aimed at using dynamic residual slack as

an additional parameter for arbitration (the other being packet priority) thereby

improving QoS of lower priority packets at the cost of the residual slack of higher

priority packets. The protocol employed additional logic in routers to decrement

0

4000

8000

12000
S-

in
d

e
x

Hermes based PFT PFT-D VC2 VC

141

the residual slack of packets while they are forced to wait and thus keeping it up-

to-date. This slack value was then used by the routers combined with the applica-

tion-supplied priority of the packet to compute an instantaneous priority, which is

then used as the metric for arbitration or predictability enhancement measures.

As seen in Section 2.2.5, monitoring timeliness is typically achieved in NoC

packets by using time-stamping which requires a notion of the global time which

can be hardware expensive in routers. There has also been research encompassing

a static slack value in the packet header which is then used for arbitration deci-

sions. However the approach does not account for the time the packet spend in the

NoC waiting for arbitration and hence is not suitable for large NoCs.

The work by Berejuck et. al. in [65] employed ageing on packets as a method to

introduce a timeliness parameter into NoC. In the design, packets had an age field

in headers that would get incremented when the packet waits for arbitration and

this field is used by arbiters to provide arbitration if packets of the same service

level compete for arbitration. The drawback of the system is that under intense

load there is a probability of multiple packets reaching the maximum age and

hence result in lowering of QoS of packets.

As DHARA uses slack value as the timeliness parameter, the QoS of packets

would not be affected regardless of the load on the NoC. Unlike [65], DHARA

uses instantaneous priority to arbitrate packets which have both slack and the ap-

plication supplied priority as components. So in case of high load scenarios, the

NoC will perform reliably even when all the packets have zero slack due to the

high contention encountered (utilising the application supplied priority component

in determining instantaneous priority).

To test DHARA, the PFS based prototype (used in previous chapter) was modi-

fied to DHARA specification and was tested with varying load levels and with

random as well as realistic traffic. Test result show improvement in magnitude

and variation in latency of lower priority packets compared to PFS and Hermes

based NoCs.

142

Average latency tests show more consistent (lower magnitude over the whole pri-

ority range) plots compared with the Hermes based and PFS based NoC. With

Hermes based NoCs, peaks in average latency were encounter regardless of the

priority value and with PFS based NoC, high peaks in average latency were en-

countered with lower priority packets. DHARA based PFS showed resolution of

such peaks by trading the residual slack in packets. DHARA based PFS was also

seen to show lower variation in average latency and magnitude of latency with

increase in load. Also, DHARA showed lowering of the number of late packets

(depending on priority) with synthetic, realistic and hybrid traffic.

The hardware overhead for DHARA was evaluated and was found minimalistic

with only 16% more LUTs and 12% more registers. The hardware overhead of a

VC based NoC with 4 VC were also evaluated and it was found to be almost dou-

ble in LUTs and registers compared to PFS-D. The 4 VC NoC showed better la-

tency performance than the PFS-D based NoC in most cases.

The 2 VC based NoC however had almost identical hardware utilisation figures

compared to the PFS-D based NoC and showed similar performance with higher

priority packets latencies. However with lower priority packets the 2 VC NoC

showed high variation and magnitude in latency compared to both the PFS based

NoC and the PFS-D based NoC depicting the scalability limitation of VC based

NoCs. However, unlike VCs, as PFT, PFS or PFS-D does not depend of service

levels, the techniques are completely scalable both in terms of packet priority

numbers and NoC sizes.

143

 Chapter 7

7. Conclusion

7.1. Thesis summary

Network-on-Chip designs are widely seen as the communication infrastructure for

large many-core systems where packet predictability can be an important attrib-

ute. Though hardware inexpensive, tests show that even with priority based arbi-

tration, non-preemptive NoC packets can have high magnitudes and variation in

latency regardless of the priority value due to HOL blocking and tailbacking of

packets. The techniques presented in the thesis were tested and verified to be

providing improvement in variability and magnitude of latency for packets with

respect to its priority value. This was achieved by using scalable techniques that

resolved HOL blocking (Chapter 4) and tailbacking (Chapter 5) and by using a

timeliness parameter in arbitration decisions (Chapter 6).

This validates the hypothesis tested in the thesis that “Latency predictability can

be enhanced in scalable non-preemptive NoC designs using modifications

that dynamically alter arbitration policies or packet structure”.

As the techniques presented in the thesis use logic that require a fixed number of log-

ic elements regardless of the size of the NoC, they are completely scalable. As aimed

with the thesis hypothesis, the tests results confirm the predictability enhancement

achieved with the techniques while ensuring complete scalability and dynamic

behaviour of the routers. By resolving HOL blocking and tailbacking, the tech-

niques presented on average a latency variability reduction of 70% (in S-index

144

value) and with the DHARA based timeliness a latency variability reduction of

68% compared to the Hermes based baseline.

On the contrary, even though contemporary predictability enhancement tech-

niques like Time Division Multiplexing, Link Division Multiplexing and Virtual

Channels resolve predictably degrading issues, they result in excessive hardware

requirements or limitation in scalability or dynamic behaviour. While TDM based

routers suffer limitation in dynamic behaviour and scalability, LDM based NoCs

have high hardware overhead and limitation in scalability.

With Virtual Channels, the communication is classified into separate service lev-

els such that a higher priority service level is allowed to utilise a communication

link even if the link is being used by a lower priority service level. This is enabled

by employing separate set of buffers for each service level thus resulting in in-

creased hardware requirements. With the increase in packet priority numbers the

effect of predictability enhancement would deteriorate and would require addi-

tional service levels to maintain the required predictability performance. As a re-

sult, Virtual Channel based systems are not scalable without succumbing to linear-

ly increasing hardware overhead with each additional service level. This can be

seen clearly in Chapter 6 where the latency performance of the NoC under test

deteriorated both in magnitude and predictability with the switch from 4 VCs to 2

VCs.

As the techniques presented in the thesis rely of dynamic techniques that do not

require additional hardware with the increase in size of the NoC, the techniques

are completely scalable. As a result, the tests reveal predictability enhancement

for high priority packets regardless of the NoC size. Tests also reveal that the

techniques presented not only improved the magnitude and predictability of the

packets compared to the non-preemptive Hermes based baseline, the predictability

is seen to be comparable to a 4 VC design with only half the hardware overhead.

While PFS-D had an average variability reduction (S-index value) of 68% com-

pared to the Hermes based baseline, the 4 VC design had an average variability

reduction of 58% with a hardware overhead of 182% more LUTs and 220% more

registers than PFS-D.

145

A 2 VC version of the NoC had similar hardware overhead (0.1% less LUT and

33% less registers) compared to PFS-D, however the scalability limitation of VCs

was quite evident as the predictability of the packets dropped remarkably with the

reduction in the number of VCs. On the traffic scenario tested, the switch from 4

VCs to 2 caused the latency variability to increase from 31% to 414% (S-index

increased 13 times) while PFS and PFS-D showed 63% and 55% variability than

the Hermes based baseline showing the scalability limitation associated with VC

based NoCs.

7.2. Novelty contributions

The novelty contributions presented in the thesis are added below in descending

order of importance as per the author.

1) Selective packet splitting: Chapter 5 presented the SPS technique using

which the effect of pre-emptive arbitration can be emulated (to reduce la-

tency variability) without major hardware overheads as seen with the clas-

sical preemption technique. The classical preemption approach in NoCs

use VCs for its functionality, which is hardware expensive especially with

the increase in size of the NoC.

SPS however employs splitting of packets which requires simpler hard-

ware than VCs, and hence do not require extra hardware with the increase

in size of the NoC. As a result, SPS could be a cheaper alternative than

VCs in large many-core systems.

2) Dynamic slack Hard-line Aware Router Architecture: Chapter 6 pre-

sented DHARA, which enabled routers to use timeliness as a parameter

while in arbitration decisions. Typical approaches to enable timeliness in

packets employ timestamping in packets, which would require long coun-

ters in routers thus limiting its practicality. Other approaches employ static

fields in packet headers to denote timeliness, however these do not account

for the lateness the packet had to encounter in transit.

With DHARA, a dynamic field is added to the packets that denote the re-

sidual slack in latency the packet has. This is in turn decremented by rout-

ers when a packet waits for arbitration thus ensuring its correctness at eve-

146

ry point of time. This slack value is utilised by the routers in arbitration

decisions hence allowing packets of lower priority better QoS if higher

priority packets have residual slack.

3) Priority Forwarding and Tunnelling: Chapter 4 presented the PFS tech-

nique that enables routers to resolve HOL blocking scenarios and thus re-

solve starvation of packets. In simple NoCs which do not support non-pre-

emptive arbitration, HOL blocking can cause unpredictable behaviour and

starvation of packets regardless of packet priority.

With PFS, additional logic was added to the routers which enabled them to

modify arbitration request priorities during HOL situations so that the is-

sue can be resolved. Furthermore, with increase in size of the NoC, PFS

does not require any additional hardware for its functionality thus ensuring

scalability.

7.3. Further Work

7.3.1. Dynamic Time Multiplexed Virtual Channels (DTMVC)

The research in the thesis spawned the concept of Dynamic Time Multiplexed

Virtual Channels (DTMVC) [124], in which a VC based NoC would be able to

vary the intensity of predictability enhancement dynamically. The standard VC

approach can cause high magnitude and significant variation in latency for lower

priority VCs. Starvation of packets of lower priority VCs is even possible in sce-

narios presenting a continuous stream of packets from higher priority VCs (as

seen in Section 0). The aim of DTMVC is to avoid this when possible, and hence

reduce the magnitude and variation in latency of lower priority VC packets.

With DTMVC, the operational time of the router would be divided into recurring

time frames which consists of several time slots as shown in Figure 7.1a. There

would be a table in each router that will denote the priority order of the VCs in

each time slot. Assume that there are four VCs; VC0, VC1, VC2 and VC3. Under

the highest priority setting, VC0 will be treated as the highest priority VC fol-

lowed by VC1, VC2 and VC3 (shown in Figure 7.1b) in all the time slots and

hence the router will work like a classical VC based NoC providing VC0 with the

best quality of service.

147

Figure 7.1: DTMVC functionality (a) Time frame (b) Time frame for highest performance setting

(c) Time frame for intermediate performance setting (d) Time frame for lowest performance setting

If the latency performance of the highest priority VC is satisfactory (which can be

estimated using DHARA based slack awareness or any other approach), the router

can be switched to a lower performance setting where some time slots will be al-

located to the other VCs (shown in Figure 7.1c), so that they can assume the high-

est priority momentarily and can transmit flits without getting blocked. This will

improve the magnitude and variation in latency of lower priority VC packets. If

the high priority VC packets are still performing satisfactorily, the router can be

switched into an even lower performance setting where more time slots will be

allotted to the lower priority VCs as the highest priority VC. With the lowest per-

formance setting, all the VCs will get equal time slots thus getting even quality of

service (shown in Figure 7.1d).

7.3.2. HYper Criticality Enabled NoC Architecture (HYENA)

The use of components with different levels of criticality in embedded systems

brought about mixed criticality traffic flows through the communication infra-

structure. As per Burns et.al. [125] “a mixed criticality system (MCS) is one

that has two or more distinct levels (e.g. safety critical, mission critical and non-

critical)”. Although typical mixed criticality NoC systems like [126] and [127]

support multiple criticality traffic, the number of criticality levels supported dur-

ing the experimental evaluation is limited to two, HI and LO. The idea of the

Time frame

(in clock cycles)

Time slot

Priority

VC0

VC1

VC2

VC3

(a)

(b) (c) (d)

148

HYper criticality Enabled NoC Architecture (HYENA) is to provide a NoC infra-

structure for multi criticality traffic supporting many criticality levels.

With HYENA, the idea is to have an extended range of criticality levels for mixed

criticality traffic. With HYENA, the NoC packet headers carry an additional field

along with the application-supplied priority that will specify the criticality value

of the packet. Therefore, the number of criticality levels supported is unlimited

and will depend on the number of bits in the header allocated for the criticality

parameter.

Similar to DHARA, HYENA based routers use an equation (equation (7.1) to de-

termine the instantaneous priority of a packet for all arbitration and predictability

enhancement efforts.

Pi = (Pa >> Da) + (C >> Dc) (7.1)

(Pi – Instantaneous priority, Pa – Application supplied priority, Da – Divider index a, C- Criticality,

Dc – Divider index c)

As seen in the equation, in HYENA based routers, the criticality value (C) in the

header is combined with the application supplied priority (Pa) to generate the in-

stantaneous priority (Pi) of the packet. As evident from the equation, the instanta-

neous priority is generated by the routers using an addition operation between two

components. The first component in the equation ‘Pa >> Da‘ represents the appli-

cation supplied priority component and its weightage in computing the instanta-

neous priority is determined by Da. For example, setting Da to 0,1 and 2 realise the

function of Pa, Pa/2 and Pa/4 respectively thus varying its weightage.

Similarly the second component in the equation ‘C >> Dc’ represents the criticali-

ty of the packet and its weightage in calculating the instantaneous priority can be

varied by setting the value of Dc as seen with the first component. As the equation

use two shift operations and an addition, implementation of the equation is effi-

cient and simple in hardware terms.

To ensure scalability and to resolve HOL blocking and tailbacking, HYENA

based NoCs will use PFS logic. To enable, criticality change in the packet that is

mid-way in transmission, the Network Interface will be enabled with logic that

149

will send a C-flit (criticality change flit) that will be transmitted like an ordinary

flit to the destination. Unlike an ordinary flit, C-flits will however change the crit-

icality value of the packet through the routers it pass through. If the packet is not

blocked mid-way during its transmission, the C-flit will get to the destination

without playing any role in the NoC’s functionality.

However if the packet gets blocked, the router will have additional logic (similar

to Priority Forwarding) that would forward the criticality value to routers down

the line until the blocked header is reached and is updated. This will allow the

routers to completely convey the criticality change and this happens only if it is

necessary unlike typical systems like [103] where the criticality change is flooded

throughout the NoC to all routers.

7.3.3. Power Analysis and moving into ASIC

As per Chen et.al. in [98] almost 64% of the total leakage power of the router is

consumed by the buffers. Unlike VC or LDM based approaches, the techniques

presented in the thesis do not require wide use of buffers and hence the routers are

likely to dissipate lower dynamic and static power. However, as power dissipation

is outside the scope of the thesis this is considered future work.

Similarly, further work will involve simulation of the designs in ASIC platforms

so that the performance and the related overhead can be compared with FPGA

based implementation.

150

Appendix 1- Traffic Scenarios

In this section, some of the traffic patterns used in the tests are added. The column titled

priority presents the application supplied priority of the packet flow from the source to

the destination as mentioned in the respective columns. Start time specifies the time

when the packet was injected for the first time. Packet size column present the length of

the packet in flits and the period column show the clock cycles the IP would spend idle

before starting transmission of a new packet after transmitting one. Some of the tests

utilised packet generators that have four fixed destination values. In such generators, the

packet generator would switch between each of those destination (when sending pack-

ets) in a round robin fashion.

Along with table, the traffic pattern is also visualised as shown below.

The black squares depict routers with their addresses shown in white within them. The

grey rectangles connecting the routers show a packet flow path and the width of the

grey rectangle shows the utilisation. The link with the maximum average utilisation

(peak load) is scaled to the same size as the routers and the other links are scaled ac-

cordingly. The grey rectangles are divided inside into section depicting flow priorities.

Marron colour show the contribution of the packets with the highest 25 % of priorities

(for example priority 1 to 4 if there are 16 packet priorities) towards the total link utili-

sation followed by red, orange and light orange depicting the utilisation of packets with

decreasing priorities (5 to 8, 9 to 12 and 13 to 16 respectively if there are 16 packet pri-

orities).

151

Appendix 1a

Priority Source Destination

Start

time

Packet

size Period

1 10 13 153 50 53

2 20 23 305 50 50

3 33 30 126 50 54

4 00 30 48 50 51

5 30 00 229 50 54

6 13 02 155 50 54

7 23 30 257 50 59

8 01 30 275 50 59

9 31 30 248 50 59

10 03 22 44 50 52

11 12 23 245 50 59

12 32 23 139 50 50

13 21 23 75 50 55

14 22 13 307 50 54

15 02 13 203 50 53

16 11 13 213 50 54

152

Appendix 1b

Priority Source

Destination

Start time

Packet

size Period 1 2 3 4

1 12 13 21 12 00 37 500 805

2 03 02 11 33 32 158 500 813

3 23 13 00 33 20 206 500 826

4 32 21 02 31 32 202 500 884

5 30 22 32 12 23 148 500 807

6 22 00 03 01 13 190 500 894

7 21 33 20 03 02 224 500 892

8 00 21 01 12 00 240 500 867

9 10 12 22 22 33 11 500 814

10 33 21 20 23 02 229 500 867

11 20 22 31 11 20 62 500 819

12 02 31 03 22 21 26 500 870

13 01 00 31 11 33 283 500 802

14 31 01 03 12 22 110 500 890

15 11 31 21 12 20 183 500 837

16 13 33 10 13 23 298 500 822

153

Appendix 1c

Priority Source

Destination

Start time

Packet

size Period 1 2 3 4

1 32 03 32 11 01 131 500 896

2 20 11 13 03 13 176 500 800

3 21 32 00 12 33 296 500 847

4 13 00 22 21 33 111 500 822

5 33 31 31 12 21 148 500 846

6 03 22 22 02 10 194 500 897

7 11 32 11 31 30 218 500 830

8 23 30 03 10 32 99 500 880

9 10 02 11 00 02 248 500 837

10 01 23 03 20 20 251 500 823

11 31 21 22 33 23 262 500 823

12 02 03 21 30 11 268 500 880

13 12 02 32 30 13 216 500 852

14 30 20 20 00 30 31 500 816

15 22 13 10 20 31 233 500 822

16 00 30 13 22 32 170 500 820

154

Appendix 1d

Priority Source

Destination

Start time

Packet

size Period 1 2 3 4

1 00 30 03 32 10 131 500 896

2 10 01 12 33 20 176 500 800

3 20 33 01 30 10 296 500 847

4 30 31 33 12 31 111 500 822

5 01 30 30 10 13 148 500 846

6 11 12 12 33 20 194 500 897

7 21 02 02 30 03 218 500 830

8 31 13 30 10 00 99 500 880

9 02 13 32 02 32 248 500 837

10 12 13 10 13 12 251 500 823

11 22 21 20 32 33 262 500 823

12 32 01 33 31 00 268 500 880

13 03 00 31 10 20 216 500 852

14 13 22 12 21 22 31 500 816

155

15 23 33 30 13 33 233 500 822

16 33 00 13 31 31 170 500 820

Appendix 1e

Priority Source

Destination

Start time

Packet

size Period 1 2 3 4

1 12 13 23 03 20 86 500 847

2 23 00 10 10 30 197 500 825

3 31 31 23 33 12 137 500 896

4 11 11 02 21 20 99 500 892

5 21 22 31 12 03 295 500 892

6 01 10 02 33 21 264 500 810

7 22 11 11 01 30 172 500 836

8 13 21 01 30 02 197 500 863

9 20 22 03 33 32 272 500 874

10 00 12 02 21 01 139 500 859

11 32 02 01 03 00 167 500 853

156

12 10 32 20 23 13 128 500 800

13 33 11 10 33 23 289 500 806

14 02 00 31 11 00 128 500 837

15 30 13 33 23 03 236 500 807

16 03 12 22 00 11 226 500 820

Appendix 1f

Priority Source Destination

Start

time

Packet

size Period

1 22 00 134 800 1105

2 12 31 281 800 1105

3 02 31 69 800 1107

4 33 31 202 800 1153

5 01 22 229 800 1101

6 11 03 67 800 1104

7 20 03 36 800 1108

8 21 22 201 800 1103

9 30 20 196 800 1104

157

10 32 00 141 800 1106

11 03 01 121 800 1108

12 10 23 24 800 1109

13 00 02 302 800 1104

14 31 31 88 800 1108

15 13 30 159 800 1106

16 23 22 169 800 1103

Appendix 1g

Priority Source

Destination

Start time

Packet

size Period 1 2 3 4

1 00 21 22 22 03 276 807 722

2 10 22 30 02 02 242 801 729

3 20 31 33 32 13 118 801 718

4 30 30 01 11 30 246 802 725

5 01 00 12 22 00 57 803 740

6 11 32 20 31 00 167 803 706

7 21 01 12 03 00 207 806 708

158

8 31 31 20 13 12 159 801 748

9 02 31 32 32 20 144 801 700

10 12 30 11 10 30 201 806 701

11 22 22 11 01 02 200 806 710

12 32 21 03 32 11 272 800 747

13 03 30 03 11 20 211 800 773

14 13 01 11 31 21 59 804 705

15 23 00 30 22 20 221 800 725

16 33 31 11 03 20 299 805 730

Appendix 1h

Priority Source

Destination

Start time

Packet

size Period 1 2 3 4

1 00 21 22 22 03 276 807 722

2 02 31 32 32 20 144 801 700

3 23 00 30 22 20 221 800 725

4 12 30 11 10 30 201 806 701

5 32 21 03 32 11 272 800 747

159

6 20 31 33 32 13 118 801 718

7 13 01 11 31 21 59 804 705

8 03 30 03 11 20 211 800 773

9 11 32 20 31 00 167 803 706

10 33 31 11 03 20 299 805 730

11 22 22 11 01 02 200 806 710

12 10 22 30 02 02 242 801 729

13 30 30 01 11 30 246 802 725

14 01 00 12 22 00 57 803 740

15 21 01 12 03 00 207 806 708

16 31 31 20 13 12 159 801 748

Appendix 1i
Priority So

u

rce

Destination Start time Packet size Period

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 7 3
6

3
8

01 1
1

1
3

0
2

1
2

50
7

45
4

12
2

30
7

25
6

25
6

87
3

87
3

64
0

640 1600
0

3200
0

2 1
2

4
0

5
5

30 2
0

2
0

1
1

1
1

37
2

51
3

14
0

19
5

25
6

25
6

16
7

14
5

64
0

640 271 229

5 3
1

3
2

5
0

03 1
3

1
2

0
2

1
1

41
1

42
3

23
1

23
9

25
6

27 27 5 64
0

8000 8000 365

160

6 3
4

6
1

4
7

02 1
2

0
1

1
1

1
1

53
5

12
8

57
4

28
2

25
6

21
8

15
2

17
6

64
0

1600
0

210 318

8 3
3

2
7

5
7

00 1
0

3
2

0
2

1
1

38
9

24
4

25
0

48
7

25
6

12 54 10
1

64
0

8000 1600 352

9 4
2

6
3

5
4

33 2
3

1
1

1
1

1
1

14
4

11
5

26
1

49
5

25
6

12
9

12
3

14
8

64
0

250 268 208

1
0

3
0

3
5

4
1

32 2
2

1
0

3
3

1
1

14
7

39
4

18
4

56
3

25
6

27 54 10
9

64
0

1600 1600
0

288

1
1

2
5

2
9

5
6

31 2
1

1
2

3
2

1
1

36
5

14
4

47
8

30
0

25
6

27 54 14
6

64
0

1600 1600 298

1
3

3 4
6

4
4

13 2
2

1
2

1
1

1
1

39
1

14
0

32
8

55
2

12 27 12
6

17
8

64
0

640 275 257

1
4

2
4

2
6

3
7

12 2
2

3
0

1
0

0
1

42
3

30
5

30
6

45
6

12 27 54 54 64
0

1600 1600 3200
0

1
5

2
2

5
8

3
9

11 2
2

2
1

1
1

1
1

29
1

25
0

57
4

58
9

12 51 14
0

12
7

64
0

640 232 232

1
6

6
0

6
4

4
3

10 2
2

1
1

1
1

1
1

59
0

22
1

36
6

15
3

12 19
9

16
7

10
1

64
0

315 220 220

1
7

2
8

4
5

5
9

23 1
1

3
2

1
1

1
1

47
6

39
8

51
6

10
9

12 27 12
1

10
7

64
0

1600 221 266

1
8

2
1

4
8

5
1

22 1
1

2
1

1
1

1
1

33
7

22
8

41
4

37
1

12 51 11
5

19
3

64
0

640 330 301

1
9

2
3

4
9

5
2

21 1
1

0
2

1
1

1
1

33
1

27
6

30
2

23
4

12 21
8

10
5

12
4

64
0

640 395 212

2
0

4 6
2

5
3

20 1
1

1
2

1
1

1
1

14
8

38
0

44
7

55
6

12 27 18
3

10
2

64
0

640 308 383

Appendix 1j

Priority Source

Destination

Start time Packet size Period 1 2 3 4

1 44 05 53 55 35 180 800 1199

2 20 22 50 12 45 300 800 1237

3 05 40 34 11 54 78 800 1250

4 02 25 21 42 05 269 800 1246

5 50 15 52 45 04 233 800 1280

6 30 22 04 54 35 247 800 1124

7 34 15 44 13 53 50 800 1100

8 41 51 01 02 05 241 800 1245

9 52 05 22 54 24 187 800 1253

10 31 24 52 13 10 242 800 1215

11 15 45 03 51 11 109 800 1259

12 03 45 25 24 25 58 800 1142

13 04 51 15 10 52 95 800 1272

14 51 51 51 10 21 188 800 1119

15 42 44 20 42 00 278 800 1154

16 21 52 02 51 33 104 800 1112

17 43 35 53 40 55 221 800 1140

18 14 30 25 10 15 45 800 1191

161

19 24 14 01 23 00 10 800 1152

20 12 53 25 03 03 98 800 1109

21 45 20 33 31 15 98 800 1231

22 25 30 51 23 23 188 800 1216

23 32 45 02 33 22 13 800 1259

24 54 20 12 50 42 68 800 1158

25 23 14 34 45 13 306 800 1169

26 10 23 44 01 43 146 800 1121

27 01 32 24 42 22 272 800 1273

28 22 30 12 42 43 298 800 1123

29 13 25 33 11 52 132 800 1104

30 53 44 02 51 41 34 800 1198

31 11 21 31 35 03 306 800 1124

32 40 10 14 32 35 132 800 1194

33 55 22 31 31 55 87 800 1144

34 33 51 45 21 04 230 800 1205

35 00 00 13 11 12 145 800 1298

36 35 24 10 23 24 165 800 1278

162

Appendix 2- Prototypes

The following table presents the prototype designation and its functionality specifica-

tion. The open source Bluespec System Verilog implementation of the key models, R2,

R3, R7-F, R7-FD and R8 can be downloaded from the URL provided in the respective

specification column.

Designation Specification

R1 Hermes based with round robin arbitration

R2 Hermes based with priority based arbitration
(URL: https://drive.google.com/open?id=0B3kfh6Qv5__WaEt4LTFJQnVFOUE)

R3 PFT enabled
(URL: https://drive.google.com/open?id=0B3kfh6Qv5__WT3R5UXU1ck04Sm8)

R7-F PFS enabled
(URL: https://drive.google.com/open?id=0B3kfh6Qv5__WdVc4QURmbUNabkk)

R7-FD PFS-D (PFS+DHARA) enabled
 (URL: https://drive.google.com/open?id=0B3kfh6Qv5__WbTNVbzlWdGVOMkU)

 R7-FH* PFS-H (PFS+HYENA) enabled

R8 Virtual Channel based
 (URL: https://drive.google.com/open?id=0B3kfh6Qv5__WRkdnbWVveHd0RE0)

R9# ‘Dynamic Time Multiplexed Virtual Channel’ enabled

N1* ‘Dynamic Time Multiplexed Virtual Channels with DHARA’ enabled

Models R7-FH*, R9
#
 and N1* are experimental designs

#
 and conceptual designs

*
 as part

of further work.

https://drive.google.com/open?id=0B3kfh6Qv5__WaEt4LTFJQnVFOUE
https://drive.google.com/open?id=0B3kfh6Qv5__WT3R5UXU1ck04Sm8
https://drive.google.com/open?id=0B3kfh6Qv5__WdVc4QURmbUNabkk
https://drive.google.com/open?id=0B3kfh6Qv5__WbTNVbzlWdGVOMkU
https://drive.google.com/open?id=0B3kfh6Qv5__WRkdnbWVveHd0RE0

163

As shown in the above figure, the implementation infrastructure consists of four files.

‘Router.bsv’ is the router design and it utilises some values from inside the parameters

file, ‘Param.bsv’ for setting its internal configuration (like buffer size and packet width).

The data generator\receptor module is contained in ‘Datagen.bsv’ and these three files

are used by the master file ‘Main.bsv’. ‘Main.bsv’ consists of code that replicates and

interconnects the routers and data generator\receptors as per the parameters in

‘Param.bsv’. With more advanced designs in the thesis having extra connection lines,

‘Main.bsv’ would also deal with the configuration and connection of those.

R

DG

R

DG

R

DG

R

DG

R

DG

< Parameters >

Router.bsv

Datagen.bsv

Param.bsv

Main.bsv

164

Appendix 3- Hardware Overhead

R2

Adders

2 Input 10 Bit 10

Registers

26 Bit 20

10 Bit 15

7 Bit 6

3 Bit 10

2 Bit 5

1 Bit 20

Muxes

6 Input 26 Bit 5

2 Input 10 Bit 10

2 Input 3 Bit 35

2 Input 2 Bit 5

2 Input 1 Bit 30

BlackBox cell count

BUFG 1

LUT1 3

LUT2 156

LUT3 103

LUT4 188

LUT5 319

LUT6 949

FD 280

FDE 260

FDRE 170

IBUF 150

OBUF 140

Primitives

LUT6 949

FDCE 540

LUT5 319

LUT4 188

FDRE 170

LUT2 156

IBUF 150

OBUF 140

LUT3 103

LUT1 3

BUFG 1

LUT6 949

FDCE 540

LUT5 319

LUT4 188

165

R3

Adders

2 Input 10 Bit 10

2 Input 4 Bit 1

2 Input 1 Bit 5

Registers

26 Bit 20

16 Bit 26

10 Bit 15

7 Bit 10

4 Bit 11

3 Bit 16

2 Bit 11

1 Bit 56

Muxes

6 Input 26 Bit 5

10 Input 16 Bit 1

2 Input 16 Bit 13

2 Input 10 Bit 10

4 Input 7 Bit 5

2 Input 4 Bit 2

2 Input 3 Bit 60

6 Input 3 Bit 5

2 Input 2 Bit 5

6 Input 2 Bit 1

2 Input 1 Bit 80

BlackBox cell count

BUFG 1

LUT1 7

LUT2 320

LUT3 111

LUT4 196

LUT5 328

LUT6 1200

MUXF7 30

MUXF8 15

FD 488

FDE 388

FDR 5

FDRE 395

IBUF 222

OBUF 212

Primitives

LUT6 1200

FDCE 836

FDRE 400

LUT5 328

LUT2 320

IBUF 222

OBUF 212

LUT4 196

LUT3 111

MUXF7 30

MUXF8 15

LUT1 7

BUFG 1

166

R7-F

Adders

2 Input 10 Bit 10

2 Input 4 Bit 1

Registers

27 Bit 20

10 Bit 10

7 Bit 41

4 Bit 11

3 Bit 21

2 Bit 11

1 Bit 40

Muxes

6 Input 27 Bit 5

2 Input 27 Bit 10

2 Input 10 Bit 10

4 Input 7 Bit 5

10 Input 7 Bit 1

2 Input 4 Bit 2

6 Input 3 Bit 5

4 Input 3 Bit 5

2 Input 3 Bit 60

2 Input 2 Bit 20

6 Input 2 Bit 1

2 Input 1 Bit 86

BlackBox cell count

BUFG 1

LUT1 1

LUT2 195

LUT3 185

LUT4 288

LUT5 234

LUT6 784

FD 368

FDE 326

FDRE 103

IBUF 192

OBUF 190

Primitives

LUT6 784

FDCE 694

LUT4 288

LUT5 234

LUT2 195

IBUF 192

OBUF 190

LUT3 185

FDRE 103

BUFG 1

LUT1 1

167

R7-FD

Adders

2 Input 10 Bit 5

2 Input 7 Bit 9

2 Input 4 Bit 1

2 Input 3 Bit 1

Registers

34 Bit 36

10 Bit 11

7 Bit 56

4 Bit 11

3 Bit 25

1 Bit 68

Muxes

3 Input 34 Bit 5

2 Input 34 Bit 5

6 Input 34 Bit 5

7 Input 10 Bit 5

2 Input 10 Bit 5

6 Input 10 Bit 1

8 Input 7 Bit 5

6 Input 7 Bit 9

2 Input 7 Bit 5

10 Input 7 Bit 1

2 Input 4 Bit 2

8 Input 3 Bit 5

5 Input 3 Bit 1

3 Input 3 Bit 5

2 Input 3 Bit 16

6 Input 3 Bit 13

4 Input 3 Bit 5

2 Input 2 Bit 5

7 Input 1 Bit 5

2 Input 1 Bit 87

BlackBox cell count

BUFG 1

CARRY4 2

LUT1 9

LUT2 216

LUT3 149

LUT4 197

LUT5 565

LUT6 1447

MUXF7 74

MUXF8 7

XORCY 1

FD 624

FDE 566

FDR 7

FDRE 438

FDS 1

IBUF 227

OBUF 225

Primitives

LUT6 1447

FDCE 1190

LUT5 565

FDRE 445

IBUF 227

OBUF 225

LUT2 216

LUT4 197

LUT3 149

MUXF7 74

LUT1 9

MUXF8 7

CARRY4 3

BUFG 1

FDSE 1

168

R8

Adders

2 Input 10 Bit 5

2 Input 2 Bit 120

Registers

84 Bit 20

28 Bit 60

10 Bit 20

8 Bit 20

3 Bit 60

2 Bit 22

1 Bit 256

RAMs

84 Bit 20

3 Bit 20

Muxes

2 Input 28 Bit 120

6 Input 28 Bit 5

4 Input 28 Bit 5

4 Input 10 Bit 5

7 Input 10 Bit 20

4 Input 3 Bit 5

2 Input 3 Bit 140

4 Input 2 Bit 20

6 Input 2 Bit 16

2 Input 2 Bit 130

2 Input 1 Bit 590

4 Input 1 Bit 14

BlackBox cell count

BUFG 1

LUT1 1

LUT2 725

LUT3 447

LUT4 560

LUT5 998

LUT6 2965

MUXF7 1

RAM16X1D 20

RAM32M 100

FD 436

FDE 840

FDRE 1226

FDSE 96

IBUF 220

OBUF 210

Primitives

LUT6 2965

FDCE 1276

FDRE 1226

LUT5 998

LUT2 725

RAMD32 640

LUT4 560

LUT3 447

IBUF 220

OBUF 210

RAMS32 200

FDSE 96

BUFG 1

LUT1 1

MUXF7 1

169

Appendix 4- S-index test

As mentioned in 3.1.1, the S-index allows latency variability comparison between two

NoCs under the same traffic scenario over the whole priority range. To understand the

effect of each priority level towards the S-index, consider the table below.

In the table, eight traffic scenarios (T1 to T8) are shown. Under each traffic scenario,

the interquartile range of packet latencies of the eight packet priorities can be seen in the

respective columns. The last row shows the S-index value of each traffic scenario.

Priority T1 T2 T3 T4 T5 T6 T7 T8

1 10 30 40 60 10 10 10 10

2 20 30 50 30 20 20 20 20

3 30 30 60 30 30 30 30 30

4 40 40 40 40 40 40 40 40

5 50 50 50 50 80 60 120 140

6 60 60 60 60 100 100 150 180

7 70 70 70 70 120 150 200 220

8 80 80 80 80 140 200 250 270

S-index 80 105 135 135 107 115 148 163

It can be seen that with T1, the interquartile range of latencies increase with the de-

crease in packet priority linearly thus amounting to an S-index of 80. S-index equation

is formulated in such a way that an increase in latency variation of the higher priority

packets bring about major increase in S-index. This can be seen in T2 where the varia-

tion in latency of packet 1 and 2 are higher than T1 thus resulting in the increase of S-

index from 80 to 105. The same effect can be seen in T3 where the latency variation of

packets 1, 2 and 3 are increased further thus resulting in an increased S-index of 135. In

T4, only packet 1 has a high latency variation and all the other packets have latency var-

iation similar to T1. As packet 1 is the highest priority packet, its high latency variation

is critical and hence it is seen to reflect in its S-index (of 135).

The lower priority packets however is supposed to show a lower impact on S-index than

the higher priority packets. For example, in T5, high priority packets (1 to 4) have la-

tency variation similar to T1 but the lower priority packets (5 to 8) has higher variability

than before. The effect of this can be seen in S-index (increased from 80 to 107) howev-

er the effect is minor compared to how it behaved with the higher priority packets. With

170

T6, T7 and T8, it can be seen that the effect of the lower priority packets significantly

impacts the S-index value only when the latency variation with them are extremely high

as it should be. The thesis assumes that the weightage of packets in determining the S-

index decreases linearly with the decrease in packet priority value. As mentioned in sec-

tion 3.1.1, this is done by setting the weightage relation in the S-index equation to 1.

171

Appendix 5- Simulator functionality

validation

The following section depicts the functionality of the prototypes during simulation. Ex-

tra code was added to the designs to export functionality details during simulation into a

log file.

R2

The following is the log file of the functionality of the routers when router (0,0) sends a

20 flit wide packet to router (2,0).

 11<= Sim tick Packet injected at 0,0 to 2,0 with priority 1 with packet size 20

 12<= Sim tick
 13<= Sim tick

 14<= Sim tick Router 0, 0 port local arbitration request to east

 15<= Sim tick Normal arbitration at router 0, 0 to port local

 16<= Sim tick Header send at router 0, 0 port local to port east

 17<= Sim tick Payload send at router 0, 0 port local to port east with 19 flits left

 18<= Sim tick Payload send at router 0, 0 port local to port east with 18 flits left
 19<= Sim tick Payload send at router 0, 0 port local to port east with 17 flits left

Router 1, 0 port west arbitration request to east

 20<= Sim tick Payload send at router 0, 0 port local to port east with 16 flits left
 21<= Sim tick Payload send at router 0, 0 port local to port east with 15 flits left

 22<= Sim tick

 23<= Sim tick
 24<= Sim tick Normal arbitration at router 1, 0 to port local

 25<= Sim tick Header send at router 1, 0 port west to port east

 26<= Sim tick Payload send at router 1, 0 port west to port east with 19 flits left
 27<= Sim tick Payload send at router 1, 0 port west to port east with 18 flits left

 28<= Sim tick Payload send at router 0, 0 port local to port east with 14 flits left

Payload send at router 1, 0 port west to port east with 17 flits left

Router 2, 0 port west arbitration request to local

 29<= Sim tick Payload send at router 0, 0 port local to port east with 13 flits left

Payload send at router 1, 0 port west to port east with 16 flits left

Normal arbitration at router 2, 0 to port local

 30<= Sim tick Payload send at router 0, 0 port local to port east with 12 flits left

Payload send at router 1, 0 port west to port east with 15 flits left

Header send at router 2, 0 port west to port local

 31<= Sim tick Payload send at router 0, 0 port local to port east with 11 flits left
Payload send at router 2, 0 port west to port local with 19 flits left

 32<= Sim tick Payload send at router 0, 0 port local to port east with 10 flits left

Payload send at router 2, 0 port west to port local with 18 flits left
 33<= Sim tick Payload send at router 0, 0 port local to port east with 9 flits left

Payload send at router 1, 0 port west to port east with 14 flits left

Payload send at router 2, 0 port west to port local with 17 flits left
 34<= Sim tick Payload send at router 1, 0 port west to port east with 13 flits left

Payload send at router 2, 0 port west to port local with 16 flits left

 35<= Sim tick Payload send at router 1, 0 port west to port east with 12 flits left
Payload send at router 2, 0 port west to port local with 15 flits left

 36<= Sim tick Payload send at router 0, 0 port local to port east with 8 flits left

Payload send at router 1, 0 port west to port east with 11 flits left
Payload send at router 2, 0 port west to port local with 14 flits left

 37<= Sim tick Payload send at router 0, 0 port local to port east with 7 flits left

Payload send at router 1, 0 port west to port east with 10 flits left

Payload send at router 2, 0 port west to port local with 13 flits left

 38<= Sim tick Payload send at router 0, 0 port local to port east with 6 flits left

Payload send at router 1, 0 port west to port east with 9 flits left

172

Payload send at router 2, 0 port west to port local with 12 flits left

 39<= Sim tick Payload send at router 0, 0 port local to port east with 5 flits left

Payload send at router 1, 0 port west to port east with 8 flits left
Payload send at router 2, 0 port west to port local with 11 flits left

 40<= Sim tick Payload send at router 0, 0 port local to port east with 4 flits left

Payload send at router 1, 0 port west to port east with 7 flits left
Payload send at router 2, 0 port west to port local with 10 flits left

 41<= Sim tick Payload send at router 0, 0 port local to port east with 3 flits left

Payload send at router 1, 0 port west to port east with 6 flits left
Payload send at router 2, 0 port west to port local with 9 flits left

 42<= Sim tick Payload send at router 0, 0 port local to port east with 2 flits left

Payload send at router 1, 0 port west to port east with 5 flits left
Payload send at router 2, 0 port west to port local with 8 flits left

 43<= Sim tick Connection closed at router 0, 0 port local to port east

Payload send at router 1, 0 port west to port east with 4 flits left
Payload send at router 2, 0 port west to port local with 7 flits left

 44<= Sim tick Payload send at router 1, 0 port west to port east with 3 flits left

Payload send at router 2, 0 port west to port local with 6 flits left
 45<= Sim tick Payload send at router 1, 0 port west to port east with 2 flits left

Payload send at router 2, 0 port west to port local with 5 flits left

 46<= Sim tick Connection closed at router 1, 0 port west to port east

Payload send at router 2, 0 port west to port local with 4 flits left

 47<= Sim tick Payload send at router 2, 0 port west to port local with 3 flits left

 48<= Sim tick Payload send at router 2, 0 port west to port local with 2 flits left
 49<= Sim tick Connection closed at router 2, 0 port west to port local

 50<= Sim tick

 51<= Sim tick Packet received at 2,0 from 0,0 with priority 1 with packet size 20

R3

The following log files show the functionality of the routers under a HOL blocking sce-

nario when packets with priorities 1, 4, 9, and 3 are send from routers (1,0), (1,1), (1,2)

and (2,2) respectively to router (1,3) as in the following figure (which is a simplified

version of the traffic scenario seen earlier in Figure 2.4).

3

1

4

9

(1,0)

(1,1)

(1,2) (2,2)

173

With PFT, it can be seen that the arbitration request priority of packet 4 gets updated to

1 from 4 at router (1,2) enabling packet 4 to get arbitration ahead of packet 3. It can also

be seen that as priority tunnelling is done to the south port of router (1,2), packet 3 will

be withheld from getting arbitrated until packet 1 would get transmitted completely.

 11<= Sim tick Packet injected at 1,0 to 1,3 with priority 1 with packet size 10

Packet injected at 1,1 to 1,3 with priority 4 with packet size 10

Packet injected at 1,2 to 1,3 with priority 9 with packet size 20

Packet injected at 2,2 to 1,3 with priority 3 with packet size 10
 12<= Sim tick
 13<= Sim tick Router 1, 0 port local arbitration request to south

Router 1, 1 port local arbitration request to south

Router 1, 2 port local arbitration request to south

Router 2, 2 port local arbitration request to west

 14<= Sim tick Arbitration provided at router 1, 0 from local port to south port

Arbitration provided at router 1, 1 from local port to south port

Arbitration provided at router 1, 2 from local port to south port

Arbitration provided at router 2, 2 from local port to west port

 15<= Sim tick Flit send from router 1, 0's local port to south port with 9 flits left
Flit send from router 1, 1's local port to south port with 9 flits left

Flit send from router 1, 2's local port to south port with 19 flits left

Flit send from router 2, 2's local port to west port with 9 flits left
 16<= Sim tick Flit send from router 1, 0's local port to south port with 8 flits left

Flit send from router 1, 1's local port to south port with 8 flits left

Flit send from router 1, 2's local port to south port with 18 flits left
Flit send from router 2, 2's local port to west port with 8 flits left

 17<= Sim tick Flit send from router 1, 0's local port to south port with 7 flits left

Router 1, 1 port north arbitration request to south

Flit send from router 1, 1's local port to south port with 7 flits left

Router 1, 2 port north arbitration request to south

Flit send from router 1, 2's local port to south port with 17 flits left

Router 1, 3 port north arbitration request to local

Flit send from router 2, 2's local port to west port with 7 flits left

 18<= Sim tick Flit send from router 1, 0's local port to south port with 6 flits left
Flit send from router 1, 1's local port to south port with 6 flits left

Router 1, 2 port east arbitration request to south

Flit send from router 1, 2's local port to south port with 16 flits left

Arbitration provided at router 1, 3 from north port to local port

Flit send from router 2, 2's local port to west port with 6 flits left

 19<= Sim tick Flit send from router 1, 3's north port to local port with 19 flits left

Alpha registers loaded with local blocking information

 20<= Sim tick > Router 1, 1 => For packet 1 Alpha register North loaded

> Router 1, 2 => For packet 4 Alpha register North loaded

> Router 1, 2 => For packet 3 Alpha register East loaded

Flit send from router 1, 3's north port to local port with 18 flits left

 21<= Sim tick Flit send from router 1, 2's local port to south port with 15 flits left
Flit send from router 1, 3's north port to local port with 17 flits left

 22<= Sim tick Flit send from router 1, 2's local port to south port with 14 flits left
Flit send from router 1, 3's north port to local port with 16 flits left

 23<= Sim tick Flit send from router 1, 2's local port to south port with 13 flits left

Flit send from router 1, 3's north port to local port with 15 flits left
 24<= Sim tick Flit send from router 1, 2's local port to south port with 12 flits left

PFT flits send from Router 1,2 gets received at router 1,3 and is loaded into its North Beta register

> Router 1, 3 => Beta register North loaded

Flit send from router 1, 3's north port to local port with 14 flits left

PFT flits send from Router 1,1 gets received at router 1,2 and is loaded into its North Beta register

 25<= Sim tick > Router 1, 2 => Beta register North loaded
Flit send from router 1, 2's local port to south port with 11 flits left

Flit send from router 1, 3's north port to local port with 13 flits left

 26<= Sim tick Flit send from router 1, 2's local port to south port with 10 flits left
Flit send from router 1, 3's north port to local port with 12 flits left

Priority forwarding initiated at router 1,2 as the priority of arbitration request at the north port is updated to 1 from 4

 27<= Sim tick > Priority forwarded from 4 to 1 at router 1, 2

Priority tunnelling initiated at the south port of router 1,2

> Priority tunnelling for router 1, 2 at south port with priority 1

> PFT information forwarded towards south from router 1, 2

Flit send from router 1, 2's local port to south port with 9 flits left

> Router 1, 3 => Beta register North loaded

Flit send from router 1, 3's north port to local port with 11 flits left
 28<= Sim tick Flit send from router 1, 2's local port to south port with 8 flits left

Flit send from router 1, 3's north port to local port with 10 flits left

174

 29<= Sim tick Flit send from router 1, 2's local port to south port with 7 flits left

Flit send from router 1, 3's north port to local port with 9 flits left

 30<= Sim tick Flit send from router 1, 2's local port to south port with 6 flits left
Flit send from router 1, 3's north port to local port with 8 flits left

 31<= Sim tick Flit send from router 1, 2's local port to south port with 5 flits left

Flit send from router 1, 3's north port to local port with 7 flits left
 32<= Sim tick Flit send from router 1, 2's local port to south port with 4 flits left

Flit send from router 1, 3's north port to local port with 6 flits left

 33<= Sim tick Flit send from router 1, 2's local port to south port with 3 flits left
Flit send from router 1, 3's north port to local port with 5 flits left

 34<= Sim tick Flit send from router 1, 2's local port to south port with 2 flits left

Flit send from router 1, 3's north port to local port with 4 flits left
 35<= Sim tick Flit send from router 1, 2's local port to south port with 1 flits left

Flit send from router 1, 3's north port to local port with 3 flits left

 36<= Sim tick Flit send from router 1, 2's local port to south port with 0 flits left
Flit send from router 1, 3's north port to local port with 2 flits left

Packet 4 gets arbitration ahead of packet 3 due to priority forwarding

 37<= Sim tick Arbitration provided at router 1, 2 from north port to south port

Flit send from router 1, 3's north port to local port with 1 flits left

 38<= Sim tick Flit send from router 1, 2's north port to south port with 9 flits left

Flit send from router 1, 3's north port to local port with 0 flits left
 39<= Sim tick Flit send from router 1, 2's north port to south port with 8 flits left

 40<= Sim tick Packet received at 1,3 from 1,2 with priority 9 with packet size 20

Flit send from router 1, 1's local port to south port with 5 flits left
Flit send from router 1, 2's north port to south port with 7 flits left

Router 1, 3 port north arbitration request to local

 41<= Sim tick Flit send from router 1, 1's local port to south port with 4 flits left
Flit send from router 1, 2's north port to south port with 6 flits left

Arbitration provided at router 1, 3 from north port to local port

 42<= Sim tick Flit send from router 1, 1's local port to south port with 3 flits left
Flit send from router 1, 3's north port to local port with 9 flits left

 43<= Sim tick Flit send from router 1, 1's local port to south port with 2 flits left

Flit send from router 1, 3's north port to local port with 8 flits left
 44<= Sim tick Flit send from router 1, 2's north port to south port with 5 flits left

Flit send from router 1, 3's north port to local port with 7 flits left

 45<= Sim tick Flit send from router 1, 2's north port to south port with 4 flits left
Flit send from router 1, 3's north port to local port with 6 flits left

 46<= Sim tick Flit send from router 1, 1's local port to south port with 1 flits left

Flit send from router 1, 2's north port to south port with 3 flits left
Flit send from router 1, 3's north port to local port with 5 flits left

 47<= Sim tick Flit send from router 1, 1's local port to south port with 0 flits left

Flit send from router 1, 2's north port to south port with 2 flits left
Flit send from router 1, 3's north port to local port with 4 flits left

 48<= Sim tick Arbitration provided at router 1, 1 from north port to south port

Flit send from router 1, 2's north port to south port with 1 flits left
Flit send from router 1, 3's north port to local port with 3 flits left

 49<= Sim tick Flit send from router 1, 1's north port to south port with 9 flits left

Flit send from router 1, 2's north port to south port with 0 flits left
Flit send from router 1, 3's north port to local port with 2 flits left

 50<= Sim tick Flit send from router 1, 1's north port to south port with 8 flits left

Flit send from router 1, 3's north port to local port with 1 flits left
 51<= Sim tick Flit send from router 1, 0's local port to south port with 5 flits left

Flit send from router 1, 1's north port to south port with 7 flits left

Packet 1 gets arbitration ahead of packet 3 despite being a few simulation ticks delayed as south port was tunnelled prevent-

ing packet 3 from getting arbitration

Router 1, 2 port north arbitration request to south

Flit send from router 1, 3's north port to local port with 0 flits left

 52<= Sim tick Flit send from router 1, 0's local port to south port with 4 flits left

Flit send from router 1, 1's north port to south port with 6 flits left
Arbitration provided at router 1, 2 from router 2 to south port

Packet 4 received at router 1,3 ahead of packet 3 due to priority forwarding

 53<= Sim tick Packet received at 1,3 from 1,1 with priority 4 with packet size 10
Flit send from router 1, 0's local port to south port with 3 flits left

Flit send from router 1, 2's north port to south port with 9 flits left

 54<= Sim tick Flit send from router 1, 0's local port to south port with 2 flits left
Flit send from router 1, 2's north port to south port with 8 flits left

 55<= Sim tick Flit send from router 1, 1's north port to south port with 5 flits left

Flit send from router 1, 2's north port to south port with 7 flits left

Router 1, 3 port north arbitration request to local

 56<= Sim tick Flit send from router 1, 1's north port to south port with 4 flits left

Flit send from router 1, 2's north port to south port with 6 flits left

Arbitration provided at router 1, 3 from north port to local port

 57<= Sim tick Flit send from router 1, 0's local port to south port with 1 flits left

Flit send from router 1, 1's north port to south port with 3 flits left
Flit send from router 1, 3's north port to local port with 9 flits left

 58<= Sim tick Flit send from router 1, 0's local port to south port with 0 flits left

175

Flit send from router 1, 1's north port to south port with 2 flits left

Flit send from router 1, 3's north port to local port with 8 flits left

 59<= Sim tick Flit send from router 1, 2's north port to south port with 5 flits left
Flit send from router 1, 3's north port to local port with 7 flits left

 60<= Sim tick Flit send from router 1, 2's north port to south port with 4 flits left

Flit send from router 1, 3's north port to local port with 6 flits left
 61<= Sim tick Flit send from router 1, 1's north port to south port with 1 flits left

Flit send from router 1, 2's north port to south port with 3 flits left

Flit send from router 1, 3's north port to local port with 5 flits left
 62<= Sim tick Flit send from router 1, 1's north port to south port with 0 flits left

Flit send from router 1, 2's north port to south port with 2 flits left

Flit send from router 1, 3's north port to local port with 4 flits left
 63<= Sim tick Flit send from router 1, 2's north port to south port with 1 flits left

Flit send from router 1, 3's north port to local port with 3 flits left

 64<= Sim tick Flit send from router 1, 2's north port to south port with 0 flits left
Flit send from router 1, 3's north port to local port with 2 flits left

 65<= Sim tick Arbitration provided at router 1, 2 from east port to south port

Flit send from router 1, 3's north port to local port with 1 flits left
 66<= Sim tick Flit send from router 1, 2's east port to south port with 9 flits left

Flit send from router 1, 3's north port to local port with 0 flits left

 67<= Sim tick Flit send from router 1, 2's east port to south port with 8 flits left

Packet 1 received at router 1,3 ahead of packet 3 as a result of priority forwarding and priority tunnelling.

 68<= Sim tick Packet received at 1,3 from 1,0 with priority 1 with packet size 10

Flit send from router 1, 2's east port to south port with 7 flits left

Router 1, 3 port north arbitration request to local

Flit send from router 2, 2's local port to west port with 5 flits left

 69<= Sim tick Flit send from router 1, 2's east port to south port with 6 flits left

Arbitration provided at router 1, 3 from router 2 to local port

Flit send from router 2, 2's local port to west port with 4 flits left

 70<= Sim tick Flit send from router 1, 3's north port to local port with 9 flits left
Flit send from router 2, 2's local port to west port with 3 flits left

 71<= Sim tick Flit send from router 1, 3's north port to local port with 8 flits left

Flit send from router 2, 2's local port to west port with 2 flits left
 72<= Sim tick Flit send from router 1, 2's east port to south port with 5 flits left

Flit send from router 1, 3's north port to local port with 7 flits left

 73<= Sim tick Flit send from router 1, 2's east port to south port with 4 flits left
Flit send from router 1, 3's north port to local port with 6 flits left

 74<= Sim tick Flit send from router 1, 2's east port to south port with 3 flits left

Flit send from router 1, 3's north port to local port with 5 flits left
Flit send from router 2, 2's local port to west port with 1 flits left

 75<= Sim tick Flit send from router 1, 2's east port to south port with 2 flits left

Flit send from router 1, 3's north port to local port with 4 flits left
Flit send from router 2, 2's local port to west port with 0 flits left

 76<= Sim tick Flit send from router 1, 2's east port to south port with 1 flits left

Flit send from router 1, 3's north port to local port with 3 flits left
 77<= Sim tick Flit send from router 1, 2's east port to south port with 0 flits left

Flit send from router 1, 3's north port to local port with 2 flits left

 78<= Sim tick Flit send from router 1, 3's north port to local port with 1 flits left
 79<= Sim tick Flit send from router 1, 3's north port to local port with 0 flits left

 80<= Sim tick

 81<= Sim tick Packet received at 1,3 from 2,2 with priority 3 with packet size 10

R7-F/R7-FD

The following is the log file of the functionality of the routers when routers (0,0) and

(1,0) sends a 40 flit wide packet to router (0,1). The packet from router (0,0) is transmit-

ted first with priority 3followed by the packet from router (1,0) five clock cycles later

with priority 1 and slack value 6. As a result, it can be seen that as packet 1 waits for

arbitration, its slack value gets decremented several times until it gets to a point where it

gets an instantaneous priority greater than packet 3 hence initiating packet splitting. As

a result, packet 1 can be seen getting complete transmission before packet 3.

 11<= Sim tick Packet injected at 1,0 to 0,1 with priority 3 with packet size 40

 12<= Sim tick

 13<= Sim tick
 14<= Sim tick Router 1, 0 port local arbitration request to west

 15<= Sim tick Normal arbitration at router 1, 0 to port east

 16<= Sim tick Packet injected at 0,0 to 0,1 with priority 1 with packet size 40
Header send at router 1, 0 port local to port west

 17<= Sim tick Payload send at router 1, 0 port local to port west with 39 flits left
 18<= Sim tick Payload send at router 1, 0 port local to port west with 38 flits left

176

 19<= Sim tick Router 0, 0 port local arbitration request to south

Router 0, 0 port east arbitration request to south

Payload send at router 1, 0 port local to port west with 37 flits left

As the packet from router (0,0) waits for arbitration, its slack can be seen getting reduced

 20<= Sim tick > Dynamic slack update- Router 0 0 port local slack: 5 inst_prio: 6 packet priority 1

Payload send at router 1, 0 port local to port west with 36 flits left
 21<= Sim tick Payload send at router 1, 0 port local to port west with 35 flits left

 22<= Sim tick Normal arbitration at router 0, 0 to port east

 23<= Sim tick Header send at router 0, 0 port east to port south
 24<= Sim tick Payload send at router 0, 0 port east to port south with 39 flits left

Slack being reduced further
 25<= Sim tick > Dynamic slack update- Router 0 0 port local slack: 4 inst_prio: 5 packet priority 1

Payload send at router 0, 0 port east to port south with 38 flits left

 26<= Sim tick Payload send at router 0, 0 port east to port south with 37 flits left

Router 0, 1 port north arbitration request to local
Payload send at router 1, 0 port local to port west with 34 flits left

 27<= Sim tick Payload send at router 0, 0 port east to port south with 36 flits left

Payload send at router 1, 0 port local to port west with 33 flits left
 28<= Sim tick Payload send at router 0, 0 port east to port south with 35 flits left

Payload send at router 1, 0 port local to port west with 32 flits left

 29<= Sim tick Payload send at router 1, 0 port local to port west with 31 flits left
 30<= Sim tick > Dynamic slack update- Router 0 0 port local slack: 3 inst_prio: 4 packet priority 1

Payload send at router 1, 0 port local to port west with 30 flits left

 31<= Sim tick Normal arbitration at router 0, 1 to port east
Payload send at router 1, 0 port local to port west with 29 flits left

 32<= Sim tick Header send at router 0, 1 port north to port local

 33<= Sim tick Payload send at router 0, 1 port north to port local with 39 flits left
 34<= Sim tick Payload send at router 0, 1 port north to port local with 38 flits left

 35<= Sim tick > Dynamic slack update- Router 0 0 port local slack: 2 inst_prio: 3 packet priority 1

Payload send at router 0, 0 port east to port south with 34 flits left
Payload send at router 0, 1 port north to port local with 37 flits left

 36<= Sim tick Payload send at router 0, 0 port east to port south with 33 flits left

Payload send at router 0, 1 port north to port local with 36 flits left
 37<= Sim tick Payload send at router 0, 0 port east to port south with 32 flits left

Payload send at router 0, 1 port north to port local with 35 flits left

 38<= Sim tick Payload send at router 0, 0 port east to port south with 31 flits left
Payload send at router 0, 1 port north to port local with 34 flits left

Payload send at router 1, 0 port local to port west with 28 flits left

 39<= Sim tick Payload send at router 0, 0 port east to port south with 30 flits left
Payload send at router 0, 1 port north to port local with 33 flits left

Payload send at router 1, 0 port local to port west with 27 flits left

 40<= Sim tick > Dynamic slack update- Router 0 0 port local slack: 1 inst_prio: 2 packet priority 1

Payload send at router 0, 0 port east to port south with 29 flits left

Payload send at router 0, 1 port north to port local with 32 flits left

Payload send at router 1, 0 port local to port west with 26 flits left
 41<= Sim tick Payload send at router 0, 0 port east to port south with 28 flits left

Payload send at router 0, 1 port north to port local with 31 flits left

Payload send at router 1, 0 port local to port west with 25 flits left
 42<= Sim tick Payload send at router 0, 0 port east to port south with 27 flits left

Payload send at router 0, 1 port north to port local with 30 flits left

Payload send at router 1, 0 port local to port west with 24 flits left
 43<= Sim tick Payload send at router 0, 0 port east to port south with 26 flits left

Payload send at router 0, 1 port north to port local with 29 flits left
Payload send at router 1, 0 port local to port west with 23 flits left

 44<= Sim tick Payload send at router 0, 0 port east to port south with 25 flits left

Payload send at router 0, 1 port north to port local with 28 flits left
Payload send at router 1, 0 port local to port west with 22 flits left

Packet splitting request initiated as the packet from router (0,0) achieves a higher dynamic priority than the packet from

router(1,0)

 45<= Sim tick Packet split request at router 0, 0 from port local to split port east

Payload send at router 0, 0 port east to port south with 24 flits left

Payload send at router 0, 1 port north to port local with 27 flits left
Payload send at router 1, 0 port local to port west with 21 flits left

Packet splitting initiated

 46<= Sim tick Payload split at router 0, 0 port east to port south with 23 flits left

Payload send at router 0, 1 port north to port local with 26 flits left

Payload send at router 1, 0 port local to port west with 20 flits left

 47<= Sim tick Payload send at router 0, 1 port north to port local with 25 flits left
Payload send at router 1, 0 port local to port west with 19 flits left

 48<= Sim tick Payload send at router 0, 1 port north to port local with 24 flits left

Payload send at router 1, 0 port local to port west with 18 flits left

Connection closed for the split packet

 49<= Sim tick Connection closed at router 0, 1 port north to port local

Payload send at router 1, 0 port local to port west with 17 flits left
 50<= Sim tick Normal arbitration at router 0, 0 to port north

Transmission of the packet from router (0,0) initiated post splitting of the other packet

177

 51<= Sim tick Header send at router 0, 0 port local to port south

 52<= Sim tick Payload send at router 0, 0 port local to port south with 39 flits left

 53<= Sim tick Payload send at router 0, 0 port local to port south with 38 flits left
 54<= Sim tick Payload send at router 0, 0 port local to port south with 37 flits left

Router 0, 1 port north arbitration request to local55<= Sim tick

Payload send at router 0, 0 port local to port south with 36 flits left
 56<= Sim tick Payload send at router 0, 0 port local to port south with 35 flits left

Normal arbitration at router 0, 1 to port local

 57<= Sim tick Header send at router 0, 1 port north to port local

 58<= Sim tick Payload send at router 0, 1 port north to port local with 39 flits left

 59<= Sim tick Payload send at router 0, 1 port north to port local with 38 flits left

 60<= Sim tick Payload send at router 0, 0 port local to port south with 34 flits left
Payload send at router 0, 1 port north to port local with 37 flits left

 61<= Sim tick Payload send at router 0, 0 port local to port south with 33 flits left

Payload send at router 0, 1 port north to port local with 36 flits left
 62<= Sim tick Payload send at router 0, 0 port local to port south with 32 flits left

Payload send at router 0, 1 port north to port local with 35 flits left

 63<= Sim tick Payload send at router 0, 0 port local to port south with 31 flits left
Payload send at router 0, 1 port north to port local with 34 flits left

 64<= Sim tick Payload send at router 0, 0 port local to port south with 30 flits left

Payload send at router 0, 1 port north to port local with 33 flits left
 65<= Sim tick Payload send at router 0, 0 port local to port south with 29 flits left

Payload send at router 0, 1 port north to port local with 32 flits left

 66<= Sim tick Payload send at router 0, 0 port local to port south with 28 flits left
Payload send at router 0, 1 port north to port local with 31 flits left

 67<= Sim tick Payload send at router 0, 0 port local to port south with 27 flits left

Payload send at router 0, 1 port north to port local with 30 flits left
 68<= Sim tick Payload send at router 0, 0 port local to port south with 26 flits left

Payload send at router 0, 1 port north to port local with 29 flits left

 69<= Sim tick Payload send at router 0, 0 port local to port south with 25 flits left
Payload send at router 0, 1 port north to port local with 28 flits left

 70<= Sim tick Payload send at router 0, 0 port local to port south with 24 flits left

Payload send at router 0, 1 port north to port local with 27 flits left
 71<= Sim tick Payload send at router 0, 0 port local to port south with 23 flits left

Payload send at router 0, 1 port north to port local with 26 flits left

 72<= Sim tick Payload send at router 0, 0 port local to port south with 22 flits left
Payload send at router 0, 1 port north to port local with 25 flits left

 73<= Sim tick Payload send at router 0, 0 port local to port south with 21 flits left

Payload send at router 0, 1 port north to port local with 24 flits left
 74<= Sim tick Payload send at router 0, 0 port local to port south with 20 flits left

Payload send at router 0, 1 port north to port local with 23 flits left

 75<= Sim tick Payload send at router 0, 0 port local to port south with 19 flits left
Payload send at router 0, 1 port north to port local with 22 flits left

 76<= Sim tick Payload send at router 0, 0 port local to port south with 18 flits left

Payload send at router 0, 1 port north to port local with 21 flits left
 77<= Sim tick Payload send at router 0, 0 port local to port south with 17 flits left

Payload send at router 0, 1 port north to port local with 20 flits left

 78<= Sim tick Payload send at router 0, 0 port local to port south with 16 flits left
Payload send at router 0, 1 port north to port local with 19 flits left

 79<= Sim tick Payload send at router 1, 0 port local to port west with 14 flits left

 105<= Sim tick Payload send at router 1, 0 port local to port west with 13 flits left
 106<= Sim tick Normal arbitration at router 0, 1 to port east

Payload send at router 1, 0 port local to port west with 12 flits left
 107<= Sim tick Header send at router 0, 1 port north to port local

 108<= Sim tick Payload send at router 0, 1 port north to port local with 23 flits left

 109<= Sim tick Payload send at router 0, 1 port north to port local with 22 flits left
 110<= Sim tick Payload send at router 0, 0 port east to port south with 18 flits left

Payload send at router 0, 1 port north to port local with 21 flits left

 111<= Sim tick Payload send at router 0, 0 port east to port south with 17 flits left
Payload send at router 0, 1 port north to port local with 20 flits left

 112<= Sim tick Payload send at router 0, 0 port east to port south with 16 flits left

Payload send at router 0, 1 port north to port local with 19 flits left
 113<= Sim tick Payload send at router 0, 0 port east to port south with 15 flits left

Payload send at router 0, 1 port north to port local with 18 flits left

Payload send at router 1, 0 port local to port west with 11 flits left
 114<= Sim tick Payload send at router 0, 0 port east to port south with 14 flits left

Payload send at router 0, 1 port north to port local with 17 flits left

Payload send at router 1, 0 port local to port west with 10 flits left
 115<= Sim tick Payload send at router 0, 0 port east to port south with 13 flits left

Payload send at router 0, 1 port north to port local with 16 flits left

Payload send at router 1, 0 port local to port west with 9 flits left
 116<= Sim tick Payload send at router 0, 0 port east to port south with 12 flits left

Payload send at router 0, 1 port north to port local with 15 flits left

Payload send at router 1, 0 port local to port west with 8 flits left
 117<= Sim tick Payload send at router 0, 0 port east to port south with 11 flits left

Payload send at router 0, 1 port north to port local with 14 flits left

178

Payload send at router 1, 0 port local to port west with 7 flits left

 118<= Sim tick Payload send at router 0, 0 port east to port south with 10 flits left

Payload send at router 0, 1 port north to port local with 13 flits left
Payload send at router 1, 0 port local to port west with 6 flits left

 119<= Sim tick Payload send at router 0, 0 port east to port south with 9 flits left

Payload send at router 0, 1 port north to port local with 12 flits left
Payload send at router 1, 0 port local to port west with 5 flits left

 120<= Sim tick Payload send at router 0, 0 port east to port south with 8 flits left

Payload send at router 0, 1 port north to port local with 11 flits left
Payload send at router 1, 0 port local to port west with 4 flits left

 121<= Sim tick Payload send at router 0, 0 port east to port south with 7 flits left

Payload send at router 0, 1 port north to port local with 10 flits left
Payload send at router 1, 0 port local to port west with 3 flits left

 122<= Sim tick Payload send at router 0, 0 port east to port south with 6 flits left

Payload send at router 0, 1 port north to port local with 9 flits left
Payload send at router 1, 0 port local to port west with 2 flits left

 123<= Sim tick Payload send at router 0, 0 port east to port south with 5 flits left

Payload send at router 0, 1 port north to port local with 8 flits left

Connection closed at router 1, 0 port local to port west

 124<= Sim tick Payload send at router 0, 0 port east to port south with 4 flits left

Payload send at router 0, 1 port north to port local with 7 flits left
 125<= Sim tick Payload send at router 0, 0 port east to port south with 3 flits left

Payload send at router 0, 0 port local to port south with 15 flits left

Payload send at router 0, 1 port north to port local with 18 flits left
 80<= Sim tick Payload send at router 0, 0 port local to port south with 14 flits left

Payload send at router 0, 1 port north to port local with 17 flits left

 81<= Sim tick Payload send at router 0, 0 port local to port south with 13 flits left
Payload send at router 0, 1 port north to port local with 16 flits left

 82<= Sim tick Payload send at router 0, 0 port local to port south with 12 flits left

Payload send at router 0, 1 port north to port local with 15 flits left
 83<= Sim tick Payload send at router 0, 0 port local to port south with 11 flits left

Payload send at router 0, 1 port north to port local with 14 flits left

 84<= Sim tick Payload send at router 0, 0 port local to port south with 10 flits left
Payload send at router 0, 1 port north to port local with 13 flits left

 85<= Sim tick Payload send at router 0, 0 port local to port south with 9 flits left

Payload send at router 0, 1 port north to port local with 12 flits left
 86<= Sim tick Payload send at router 0, 0 port local to port south with 8 flits left

Payload send at router 0, 1 port north to port local with 11 flits left

 87<= Sim tick Payload send at router 0, 0 port local to port south with 7 flits left
Payload send at router 0, 1 port north to port local with 10 flits left

 88<= Sim tick Payload send at router 0, 0 port local to port south with 6 flits left

Payload send at router 0, 1 port north to port local with 9 flits left
 89<= Sim tick Payload send at router 0, 0 port local to port south with 5 flits left

Payload send at router 0, 1 port north to port local with 8 flits left

 90<= Sim tick Payload send at router 0, 0 port local to port south with 4 flits left
Payload send at router 0, 1 port north to port local with 7 flits left

 91<= Sim tick Payload send at router 0, 0 port local to port south with 3 flits left

Payload send at router 0, 1 port north to port local with 6 flits left
 92<= Sim tick Payload send at router 0, 0 port local to port south with 2 flits left

Payload send at router 0, 1 port north to port local with 5 flits left

 93<= Sim tick Connection closed at router 0, 0 port local to port south

Payload send at router 0, 1 port north to port local with 4 flits left

 94<= Sim tick Payload send at router 0, 1 port north to port local with 3 flits left
 95<= Sim tick Payload send at router 0, 1 port north to port local with 2 flits left

 96<= Sim tick Connection closed at router 0, 1 port north to port local

Arbitrating the transmission of the split packet

 97<= Sim tick Resumed arbitration at router 0, 0 to port east

 98<= Sim tick Packet received at 0,1 from 0,0 with priority 1 with packet size 40

New header formulated and send (for retransmission of the split packet)

(Resumed)Header send at router 0, 0 port east to port south

 99<= Sim tick Payload send at router 0, 0 port east to port south with 23 flits left

 100<= Sim tick Payload send at router 0, 0 port east to port south with 22 flits left
 101<= Sim tick Payload send at router 0, 0 port east to port south with 21 flits left

Router 0, 1 port north arbitration request to local

 102<= Sim tick Payload send at router 0, 0 port east to port south with 20 flits left
Payload send at router 1, 0 port local to port west with 16 flits left

 103<= Sim tick Payload send at router 0, 0 port east to port south with 19 flits left

Payload send at router 1, 0 port local to port west with 15 flits left
 104<= Sim tick Payload send at router 0, 1 port north to port local with 6 flits left

 126<= Sim tick Connection closed at router 0, 0 port east to port south

Payload send at router 0, 1 port north to port local with 5 flits left
 127<= Sim tick Payload send at router 0, 1 port north to port local with 4 flits left

 128<= Sim tick Payload send at router 0, 1 port north to port local with 3 flits left

 129<= Sim tick Connection closed at router 0, 1 port north to port local

 130<= Sim tick

 131<= Sim tick Packet received at 0,1 from 1,0 with priority 3 with packet size 40

179

Glossary of Terms

Application sup-

plied priority

Priority of the packet added by the application that in i-

tiated the communication

ASIC Application Specific Integrated Circuit

BE Best Effort Service

Blocking A communication is said to be blocked by another when

the communication path needed for the former is being

utilised by the later communication thus preventing its

transmission

Contention Contention is defined as the situation when two or more

communication flows require transmission through the

same connection link

Cumulative count

of packet reception

(For each packet priority) Number of packets that were

received successfully at that priority level or higher

Deadline The desired bound on packet latency in simulation ticks

DHARA Dynamic Slack Hard-line Aware Router Architecture

DI Divider Index used to specify the weightage of residual

180

slack in computing instantaneous priority

DMA Dynamic Memory Access

DTMVC Dynamic Time Multiplexed Virtual Channel

Dynamic behaviour The ability of the router to respond in run time to in -

coming packets (regardless of its destination) without

reconfiguration to the routing logic

Dynamic traffic Traffic that has no bounded time interval be-tween suc-

cessive packets and no upper or lower bounds on packet

length

ECU Electronic Control Unit

EPSRC Engineering and Physical Sciences Research Council

EU FP7 European Union Framework Program Seven

EVC Express Virtual Channel

FIFO First In First Out (buffer)

Flit Flow Control Digit; the basic unit of communication

through NoC links

181

Flow control The process of managing data transmission between

two nodes

FPGA Field Programmable Gate Array

FSM Finite State Machine

GS Guaranteed Service

HDL Hardware Description Language

Hard deadline The latency deadline of a packet, missing which can

result in a catastrophic failure of the design target

Hermes based NoC In the thesis, the non-preemptive NoC model (with XY-

routing and wormhole switching) based on Hermes (ex-

plained in section 2.3.1) is referred to as the Hermes

based NoC

HOL blocking A packet is said to be Head-of-line blocked when it is

blocked by a lower priority packet which is already

blocked

HYENA HYper Criticality Enabled NoC Architecture

Interquartile range The difference between the 3rd and 1st quartile of l a-

tency

182

IP Intellectual Property

Latency The time interval between time instant when the ne t-

work interface of the source core is supposed to inject

the header flit of the packet to the instant when the

whole of the packet is received by the net -work inter-

face of the destination core in clock cycles

LDM Link Division Multiplexing

LUT Lookup table

Many-core proces-

sor

A processor with high number of cores (tens or hun-

dreds)

MCS Mixed Criticality System (system with two or more dis-

tinct criticality levels)

MSB Most Significant Bit

Network utilisation Network utilisation is defined as the percentage of total

number of connection links being used for communica-

tion at any point of time

NoC Network-on-Chip

Non-preemptive Without pre-emptive arbitration

183

Packet latency The time interval between time instant when the net-

work interface of the source core is supposed to inject

the header flit of the packet to the instant when the

whole of the packet is received by the net -work inter-

face of the destination core in clock cycles

Packet period Time in clock cycles between successive packet injec-

tion (on a specific IP)

PFS Priority Forwarded Packet Splitting

PFS-D Priority Forwarded Packet Splitting with DHARA

PFT Priority Forwarding and Tunnelling

Predictability Packet predictability enhancement is defined as the re-

duction in variation in latency of the packet. So a pack-

et with lower variation in latency is considered more

predictable than one with higher variation

QNoC Quality of Service NoC

QoS Quality of Service

Residual slack The time in clock cycles a packet can be delayed with-

out missing its soft deadline

RTL Register Transfer Level

184

SAF Store and Forward (switching technique)

Scalability The ability of the NoC router to handle packets with a

wider range of priority values thus enabling the use of

the router in bigger NoC topologies than it was initially

designed for

Soft deadline The latency deadline of a packet, missing which may

result in performance degradation of the design target

and would not cause a catastrophic failure of the design

target

SPS Selective Packet Splitting

Starvation Blocking of packets indefinitely, resulting in packet

delivery failure

Tailbacking A packet is said to be tailbacked when the link required

for its transmission is being utilised by a lower priority

packet

TDM Time Division Multiplexing

TG Traffic Generator

TLM Transaction Level Modelling

TR Traffic Receptor

185

Traffic pattern The pattern of traffic flow through the routers over the

whole NoC over the entire simulation run (Traffic pat-

tern consists of all the packet flows through the NoC,

each specifying parameters like source-destination in-

formation, packet priority, injection time and packet

size)

URL Universal Resource Locator

VB Visual Basic (Microsoft developed programming lan-

guage)

VC Virtual Channel

VC based NoC In the thesis, the NoC with preemptive arbitration ena-

bled by Virtual Channels is referred to as the VC based

NoC

VCT Virtual Cut Through (switching technique)

186

References

[1] “International Technology Roadmap for Semiconductors- Interconnects,” IRTS.

[Online]. Available: http://www.itrs.net/Links/2005itrs/Interconnect2005.pdf

[Accessed: 01/06/2015].

[2] S. Kumar, A. Jantsch, J.-P. Soininen, M. Forsell, M. Millberg, J. Oberg, K.

Tiensyrja, and A. Hemani, “A network on chip architecture and design methodol-

ogy,” in 2002 IEEE Computer Society Annual Symposium on VLSI, pp. 105–112.

[3] L. Benini and G. De Micheli, “Powering Networks on Chips: Energy-efficient

and Reliable Interconnect Design for SoCs,” in 2001 14th International Symposi-

um on Systems Synthesis, New York, USA, pp. 33–38.

[4] P. Guerrier and A. Greiner, “A generic architecture for on-chip packet-switched

interconnections,” in 2000 Design, Automation and Test in Europe Conference

and Exhibition (DATE 2000), pp. 250–256.

[5] I. Cidon, “Zooming in on Network-on-Chip Architectures,” in Structural Infor-

mation and Communication Complexity, S. Kutten and J. Žerovnik, Eds. Springer

Berlin Heidelberg, 2010, pp. 1–1.

[6] A. Agarwal, C. Iskander, and R. Shankar, “Survey of Network on Chip (NoC)

Architectures & Contributions,” Journal of Engineering, Computing and Archi-

tecture, vol. 3, 2009.

[7] I. Cidon and I. Keidar, “Zooming in on Network-on-Chip Architectures ∗,” pre-

sented at the Technion Department of Electrical Engineering, Tech. Rep, 2005.

[8] R. Havemann and J. A. Hutchby, “High-Performance Interconnects: An Integra-

tion Overview,” Proceedings of the IEEE, vol. 89, no. 5, may 2001.

[9] “A comparison of Network-on-Chip and Busses,” Arteris, The Network-On-Chip

Company. [Online]. Available: http://www.design-reuse.com/articles/10496/a-

comparison-of-network-on-chip-and-busses.html. [Accessed: 28-May-2012].

[10] N. Magen, A. Kolodny, U. Weiser, and N. Shamir, “Interconnect-power Dissipa-

tion in a Microprocessor,” in 2004 International Workshop on System Level In-

terconnect Prediction, New York, USA, pp. 7–13.

[11] M. Ali, M. Welzl, and M. Zwicknagl, “Networks on Chips: Scalable intercon-

nects for future systems on chips,” in 2008 4th European Conference on Circuits

and Systems for Communications (ECCSC 2008), pp. 240 –245.

187

[12] E. Rijpkema, K. Goossens, and P. Wielage, “A Router Architecture for Networks

on Silicon,” in 2001 2nd workshop on embedded systems, pp. 181–188.

[13] C. Kim, D. Burger, and S. W. Keckler, “An Adaptive, Non-uniform Cache Struc-

ture for Wire-delay Dominated On-chip Caches,” in 2002 10th International

Conference on Architectural Support for Programming Languages and Operat-

ing Systems, New York, USA, pp. 211–222.

[14] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M. Horowitz, “Smart

Memories: a modular reconfigurable architecture,” in 2000 27th International

Symposium on Computer Architecture, pp. 161–171.

[15] F. Moraes, N. Calazans, A. Mello, L. Möller, and L. Ost, “HERMES: an infra-

structure for low area overhead packet-switching networks on chip,” Integration,

the VLSI Journal - Elsevier, vol. 38, no. 1, pp. 69–93, Oct. 2004.

[16] Z. Shi and A. Burns, “Schedulability Analysis and Task Mapping for Real-time

On-chip Communication,” Real-Time Systems-ACM Digital Library, vol. 46, no.

3, pp. 360–385, Dec. 2010.

[17] K. Goossens, J. van Meerbergen, A. Peeters, and P. Wielage, “Networks on sili-

con: combining best-effort and guaranteed services,” in 2002 Design, Automation

and Test in Europe Conference and Exhibition (DATE 2002), pp. 423–425.

[18] A. Ziviani, B. E Wolfinger, J. De Rezende, and S. Fdida, “Joint Adoption of QoS

Schemes for MPEG Streams,” Multimedia Tools and Applications 2005 Springer

Science + Business Media, Inc.

[19] A. Ziviani, B. E. Wolfinger, J. F. de Rezende, O. C. M. B. Duarte, and S. Fdida,

On the Combined Adoption of QoS Schemes to Improve the Delivery Quality of

MPEG Video Streams. International Symposium on Performance Evaluation of

Computer and Telecommunications Systems (SPECTS 2002).

[20] R. Stefan, A. Molnos, A. Ambrose, and K. Goossens, “A TDM NoC supporting

QoS, multicast, and fast connection set-up,” in 2012 Design, Automation Test in

Europe Conference Exhibition (DATE 2012), pp. 1283 –1288.

[21] A. Morgenshtein, A. Kolodny, and R. Ginosar, “Link Division Multiplexing

(LDM) for Network-on-Chip Links,” in 2006 IEEE 24th Convention of Electrical

and Electronics Engineers in Israel, pp. 245 –249.

[22] T.-C. Huang, U. Y. Ogras, and R. Marculescu, “Virtual Channels Planning for

Networks-on-Chip,” in 2007 8th International Symposium on Quality Electronic

Design (ISQED 2007), pp. 879–884.

[23] L. Thiele and R. Wilhelm, “Design for Timing Predictability,” Real-Time Sys-

tems, vol. 28, no. 2–3, pp. 157–177, Nov. 2004.

[24] A. Mello, L. Tedesco, N. Calazans, and F. Moraes, “Virtual channels in networks

on chip: implementation and evaluation on hermes NoC,” in Proceedings of the

188

18th annual symposium on Integrated circuits and system design, New

York,USA, 2005, pp. 178–183.

[25] B. Sudev and L. S. Indrusiak, “PFT- A low overhead predictability enhancement

technique for non-preemptive NoCs,” in 2013 IFIP/IEEE 21st International Con-

ference on Very Large Scale Integration (VLSI-SoC 2013), pp. 314–317.

[26] B. Sudev and L. S. Indrusiak, “Low overhead predictability enhancement in non-

preemptive network-on-chip routers using Priority Forwarded Packet Splitting,”

in 2014 9th International Symposium on Reconfigurable and Communication-

Centric Systems-on-Chip (ReCoSoC 2014), pp. 1–8.

[27] B. Sudev and L. S. Indrusiak, “Predictability Enhancement in Non-preemptive

NoCs using Selective Packet Splitting.” 2014 12th IEEE International Conference

on Industrial Informatics (INDIN 2014).

[28] B. Sudev, L. Indrusiak, and J. Harbin, “Network-on-Chip Packet Prioritisation

based on Instantaneous Slack Awareness,” in 13th IEEE International Confer-

ence on Industrial Informatics (INDIN 2015), Cambridge-UK.

[29] J. Lee, C. Nicopoulos, S. J. Park, M. Swaminathan, and J. Kim, “Do we need

wide flits in Networks-on-Chip?,” in 2013 IEEE Computer Society Annual Sym-

posium on VLSI (ISVLSI 2013), pp. 2–7.

[30] Y. A. Sadawarte, M. A. Gaikwad, and R. M. Patrikar, “Comparative study of

switching techniques for network-on-chip architecture,” in 2011 International

Conference on Communication, Computing & Security, New York, USA, pp.

243–246.

[31] C. Hilton and B. Nelson, “PNoC: a flexible circuit-switched NoC for FPGA-

based systems,” 2006 IEEE Computers and Digital Techniques, vol. 153, no. 3,

pp. 181–188.

[32] J. Liu, L.-R. Zheng, and H. Tenhunen, “A circuit-switched network architecture

for network-on-chip,” in 2004 IEEE International System-on-Chip Conference,

pp. 55–58.

[33] I. Nousias and A. Tughrul, “Wormhole Routing with Virtual Channels using

Adaptive Rate Control for Network-on-Chip (NoC).” 2006 1st NASA/ESA Con-

ference on Adaptive Hardware and Systems (AHS 2006).

[34] K. Goossens, J. Dielissen, and A. Radulescu, “AEthereal network on chip: con-

cepts, architectures, and implementations,” Design Test of Computers, IEEE, vol.

22, no. 5, pp. 414 – 421, Oct. 2005.

[35] S. Pasricha and N. Dutt, On-Chip Communication Architectures: System on Chip

Interconnect [Book]. Morgan Kaufmann, 2008.

[36] D. Tutsch and M. Malek, “Comparison of network-on-chip topologies for multi-

core systems considering multicast and local traffic,” in 2009 2nd International

189

Conference on Simulation Tools and Techniques, ICST, Brussels, Belgium, Bel-

gium, pp. 23:1–23:9.

[37] M. Millberg, E. Nilsson, R. Thid, S. Kumar, and A. Jantsch, “The Nostrum back-

bone-a communication protocol stack for Networks on Chip,” in 2004 17th Inter-

national Conference on VLSI Design, pp. 693 – 696.

[38] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch, “Guaranteed bandwidth using

looped containers in temporally disjoint networks within the nostrum network on

chip,” in Design, Automation and Test in Europe Conference and Exhibition,

2004. Proceedings, 2004, vol. 2, pp. 890–895 Vol.2.

[39] A. Vieira de Mello, L. C. Ost, F. G. Moraes, and N. Calazans, “Evaluation of

Routing Algorithms on Mesh Based NoCs,” Faculdade de Informatica - PUCRS,

Porto Alegre, Technical Report 40, May 2004.

[40] R. Mutha, “Packet Switched Networks for Communications within Large Multi-

Core Systems on Chip,” International Journal of Modelling and Optimization,

Vol. 2, No. 4, August 2012.

[41] S. Liu, A. Jantsch, and Z. Lu, “Analysis and evaluation of circuit switched NoC

and packet switched NoC,” 2013 Euromicro Conference on Digital System De-

sign (DSD 2013).

[42] C.-H. Lu, K.-C. Chiang, and P.-A. Hsiung, “Round-based priority arbitration for

predictable and reconfigurable Network-on-Chip,” in 2009 International Confer-

ence on Field-Programmable Technology (FPT 2009), pp. 403–406.

[43] S. N. Routing Abdelkader Saadaoui, “NoC: Qos metrics modelling and analysis

based on dynamic routing,” International Journal of Distributed and Parallel

Systems, vol. 3, 2012.

[44] E. de F. Corrêa, L. A. de P. e Silva, F. R. Wagner, and L. Carro, “Fitting the

Router Characteristics in NoCs to Meet QoS Requirements,” in Proceedings of

the 20th Annual Conference on Integrated Circuits and Systems Design, New

York, USA, pp. 105–110.

[45] S. Murali, D. Atienza, P. Meloni, S. Carta, L. Benini, G. De Micheli, and L. Raf-

fo, “Synthesis of Predictable Networks-on-Chip-Based Interconnect Architec-

tures for Chip Multiprocessors,” 2007 IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 15, no. 8, pp. 869–880.

[46] R. Mraz, “Reducing the Variance of Point to Point Transfers in the IBM 9076

Parallel Computer,” in Proceedings of the 1994 ACM/IEEE Conference on Su-

percomputing, Los Alamitos, CA, USA, 1994, pp. 620–629.

[47] J. V. Escamilla, J. Flich, and P. J. Garcia, “Head-of-Line Blocking Avoidance in

Networks-on-Chip,” in IEEE 27th International Parallel and Distributed Pro-

cessing Symposium Workshops PhD Forum (IPDPSW 2013), 2013, pp. 796–805.

190

[48] M. J. Karol, M. G. Hluchyj, and S. P. Morgan, “Input Versus Output Queueing

on a Space-Division Packet Switch,” IEEE Transactions on Communications,

vol. 35, no. 12, pp. 1347–1356, 1987.

[49] R. Elsevier and S. 2010, “A TDM Slot Allocation Flow Based on Multipath

Routing in NoCs,” TechRepublic. [Online]. Available:

http://www.techrepublic.com/resource-library/whitepapers/a-tdm-slot-allocation-

flow-based-on-multipath-routing-in-nocs/. [Accessed: 13-Mar-2015].

[50] D. Wiklund and D. Liu, “SoCBUS: switched network on chip for hard real time

embedded systems,” in 2003 International Parallel and Distributed Processing

Symposium, p. 8 pp.

[51] T. Marescaux, B. Bricke, P. Debacker, V. Nollet, and H. Corporaal, “Dynamic

time-slot allocation for QoS enabled networks on chip,” in 2005 3rd Workshop

on Embedded Systems for Real-Time Multimedia, pp. 47–52.

[52] K. Cheshmi, J. Trajkovic, M. Soltaniyeh, and S. Mohammadi, “Quota setting

router architecture for quality of service in GALS NoC,” in 2013 International

Symposium on Rapid System Prototyping (RSP 2013), pp. 44–50.

[53] W. J. Dally and B. Towles, Principles and Practices of Interconnection Networks

[Book]. Morgan Kaufmann, 2004.

[54] W. J. Dally, “Virtual-channel flow control,” in Proceedings of the 17th annual

international symposium on Computer Architecture, New York, NY, USA, 1990,

pp. 60–68.

[55] F. Ge, N. Wu, and Y. Wan, “A network monitor based dynamic routing scheme

for Network on Chip,” in 2009 PrimeAsia Asia Pacific Conference on Postgrad-

uate Research in Microelectronics Electronics, pp. 133 –136.

[56] D. Fan and P. Shi, “Improvement of Dijkstra’s algorithm and its application in

route planning,” in 2010 Seventh International Conference on Fuzzy Systems and

Knowledge Discovery (FSKD 2010), vol. 4, pp. 1901–1904.

[57] M. Dehyadgari, M. Nickray, A. Afzali-kusha, and Z. Navabi, “Evaluation of

pseudo adaptive XY routing using an object oriented model for NOC,” in 2005

17th International Conference on Microelectronics (ICM 2005), p. 5 pp.

[58] R. Manevich, I. Cidon, A. Kolodny, I. Walter, and S. Wimer, “A Cost Effective

Centralized Adaptive Routing for Networks-on-Chip,” in 2011 14th Euromicro

Conference on Digital System Design (DSD 2011), pp. 39 –46.

[59] V. Rantala, T. Lehtonen, P. Liljeberg, and J. Plosila, “Distributed Traffic Moni-

toring Methods for Adaptive Network-on-Chip,” in 2008 Microelectronics con-

ferrence of the Nordic countries (NORCHIP 2008), pp. 233 –236.

[60] C. Ciordas, T. Basten, A. Radulescu, K. Goossens, and J. Meerbergen, “An

event-based network-on-chip monitoring service,” in 2004 9th IEEE Internation-

al High-Level Design Validation and Test Workshop, pp. 149 – 154.

191

[61] R. B. Mouhoub and O. Hammami, “NOC Monitoring Feedback for Parallel Pro-

grammers,” in 2006 IEEE North-East Workshop on Circuits and Systems, pp. 141

–144.

[62] R. Das, O. Mutlu, T. Moscibroda, and C. Das, Aérgia: Exploiting Packet Latency

Slack in On-Chip Networks. 2010 International Sympossium on Computer Archi-

tecture (ISCA 2010).

[63] D. Andreasson and S. Kumar, “Slack-time aware routing in NoC systems,” in

2005 IEEE International Symposium on Circuits and Systems (ISCAS 2005), pp.

2353–2356 Vol. 3.

[64] J. Diemer and R. Ernst, “Back Suction: Service Guarantees for Latency-Sensitive

On-chip Networks,” in 2010 Fourth ACM/IEEE International Symposium on

Networks-on-Chip (NOCS 2010), pp. 155–162.

[65] C. A. Z. Marcelo Daniel Berejuck, “Adding mechanisms for QoS to a network-

on-chip.,” Symposium on Integrated Circuits and Systems Design (SBCCI 2009).

[66] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, “QNoC: QoS architecture and

design process for network on chip,” Journal of Systems Architecture, vol. 50, no.

2–3, pp. 105–128, Feb. 2004.

[67] J. J. H. Pontes, M. T. Moreira, F. G. Moraes, and N. L. V. Calazans, “Hermes-

AA: A 65nm asynchronous NoC router with adaptive routing,” in 2010 IEEE In-

ternational SOC Conference (SOCC 2010), pp. 493–498.

[68] M. Mirza-Aghatabar, S. Koohi, S. Hessabi, and M. Pedram, “An Empirical Inves-

tigation of Mesh and Torus NoC Topologies Under Different Routing Algorithms

and Traffic Models,” in 10th Euromicro Conference on Digital System Design

Architectures, Methods and Tools (DSD 2007), pp. 19–26.

[69] M. Chatti, S. Yehia, C. Timsit, and S. Zertal, “A hypercube-based NoC routing

algorithm for efficient all-to-all communications in embedded image and signal

processing applications,” in 2010 International Conference on High Performance

Computing and Simulation (HPCS 2010), 2010, pp. 623–630.

[70] R. (Reuven) Dobkin, R. Ginosar, and A. Kolodny, “QNoC asynchronous router,”

Integration, the VLSI Journal, vol. 42, no. 2, pp. 103–115, Feb. 2009.

[71] K. Goossens and A. Hansson, “The aethereal network on chip after ten years:

Goals, evolution, lessons, and future,” in Design Automation Conference (DAC),

2010 47th ACM/IEEE, 2010, pp. 306 –311.

[72] T. Bjerregaard and J. Sparso, “A router architecture for connection-oriented ser-

vice guarantees in the MANGO clockless network-on-chip,” in Design, Automa-

tion and Test in Europe (DATE 2005), pp. 1226 – 1231 Vol. 2.

[73] T. Bjerregaard and J. Sparso, “Implementation of guaranteed services in the

MANGO clockless network-on-chip,” Computers and Digital Techniques, IEEE

Proceedings -, vol. 153, no. 4, pp. 217 – 229, Jul. 2006.

192

[74] S. Penolazzi and A. Jantsch, “A High Level Power Model for the Nostrum NoC,”

in 2006 9th EUROMICRO Conference on Digital System Design: Architectures,

Methods and Tools (DSD 2006), pp. 673–676.

[75] A. Kumar, L.-S. Peh, P. Kundu, and N. K. Jha, “Express Virtual Channels: To-

wards the Ideal Interconnection Fabric,” in Proceedings of the 34th Annual Inter-

national Symposium on Computer Architecture, New York, NY, USA, 2007, pp.

150–161.

[76] T. Krishna, A. Kumar, P. Chiang, M. Erez, and L.-S. Peh, “NoC with Near-Ideal

Express Virtual Channels Using Global-Line Communication,” in 2008 16th

IEEE Symposium on High Performance Interconnects, 2008, pp. 11–20.

[77] B. Grot, J. Hestness, S. W. Keckler, and O. Mutlu, “Kilo-NOC: A heterogeneous

network-on-chip architecture for scalability and service guarantees,” in 2011 38th

Annual International Symposium on Computer Architecture (ISCA 2011), pp.

401–412.

[78] F. Karim, A. Nguyen, and S. Dey, “An interconnect architecture for networking

systems on chips,” 2002 IEEE Micro, vol. 22, no. 5, pp. 36–45.

[79] “NetSpeed Systems | Redefining SoC Design.” [Online]. Available:

http://www.netspeedsystems.com/. [Accessed: 29-Nov-2015].

[80] “Arteris - The on-chip SoC communications company.” [Online]. Available:

http://www.arteris.com/. [Accessed: 29-Nov-2015].

[81] “Sonics Inc. - The Trusted Leader in On-Chip Networks.” [Online]. Available:

http://sonicsinc.com/. [Accessed: 29-Nov-2015].

[82] “Aims Technology Inc.” [Online]. Available:

http://aimstechnologyinc.com/company.html. [Accessed: 29-Nov-2015].

[83] A. Laffely, J. Liang, P. Jain, W. Burleson, and R. Tessier, “Adaptive systems on a

chip (aSoC) for low-power signal processing,” in 2001 Thirty-Fifth Asilomar

Conference on Signals, Systems and Computers, 2001, vol. 2, pp. 1217–1221

vol.2.

[84] R. Das, S. Narayanasamy, S. K. Satpathy, and R. G. Dreslinski, “Catnap: Energy

Proportional Multiple Network-on-Chip,” 2013 ACM/IEEE International Sympo-

sium on Computer Architecture (ISCA 2013).

[85] I. Miro-Panades, F. Clermidy, P. Vivet, and A. Greiner, “Physical Implementa-

tion of the DSPIN Network-on-Chip in the FAUST Architecture,” in Proceedings

of the Second ACM/IEEE International Symposium on Networks-on-Chip, 2008,

pp. 139–148.

[86] M. Forsell, “A scalable high-performance computing solution for networks on

chips,” 2002 IEEE Micro, vol. 22, no. 5, pp. 46–55.

193

[87] D. Siguenza-Tortosa and J. Nurmi, “VHDL-based simulation environment for

Proteo NoC,” in 2002 Seventh IEEE International High-Level Design Validation

and Test Workshop, pp. 1–6.

[88] C. A. Zeferino and A. A. Susin, “SoCIN: a parametric and scalable network-on-

chip,” in 2003 16th Symposium on Integrated Circuits and Systems Design

(SBCCI 2003), pp. 169–174.

[89] R. Salamat and H. R. Zarandi, “Fault-tolerance assessment and enhancement in

SoCWire interface: A system-on-chip wire,” in 2011 IEEE 17th International

On-Line Testing Symposium (IOLTS 2011), pp. 196–197.

[90] S. Stergiou, F. Angiolini, S. Carta, L. Raffo, D. Bertozzi, and G. De Micheli,

“Xpipes Lite: a synthesis oriented design library for networks on chips,” in 2005

Design, Automation and Test in Europe, pp. 1188–1193 Vol. 2.

[91] N. Genko, D. Atienza, G. De Micheli, J. M. Mendias, R. Hermida, and F. Cat-

thoor, “A complete network-on-chip emulation framework,” in 2005 Design, Au-

tomation and Test in Europe (DATE 2005), 2005, pp. 246 – 251 Vol. 1.

[92] N. Genko, D. Atienza, G.De Micheli, L. Benini, J.M. Mendias, R. Hermida, F.

Catthoor, “A novel approach to network on chip emulation,” IEEE International

Symposium on Circuits and Systems, (ISCAS 2005).

[93] M. K. Papamichael, “Fast scalable FPGA-based Network-on-Chip simulation

models,” in 2011 9th IEEE/ACM International Conference on Formal Methods

and Models for Codesign (MEMOCODE 2011), 2011, pp. 77 –82.

[94] Z. Tan, A. Waterman, R. Avizienis, Y. Lee, H. Cook, D. Patterson, and K. Asa-

novic, “RAMP gold: An FPGA-based architecture simulator for multiproces-

sors,” in 2010 47th ACM/IEEE Design Automation Conference (DAC 2010),

2010, pp. 463 –468.

[95] R. Surepeddi, “System Verilog for Quality of Results (QoR),” in 2008 9th Inter-

national Symposium on Quality Electronic Design (ISQED 2008), 2008, pp. 460–

464.

[96] Z. Tan, K. Asanovic, and D. Patterson, An FPGA Host-Multithreaded Functional

Model for SPARC v8. International Symposium on Computer Architecture (ISCA

2008).

[97] M. Lis, K. S. Shim, M. H. Cho, P. Ren, O. Khan, and S. Devadas, “Darsim: A

Parallel Cycle-Level NoC Simulator,” MIT web domain available at

http://hdl.handle.net/1721.1/59832 [Accessed: 2015-06-03], 2010.

[98] N. Jiang, D. U. Becker, G. Michelogiannakis, J. Balfour, B. Towles, D. E. Shaw,

J. Kim, and W. J. Dally, “A detailed and flexible cycle-accurate Network-on-

Chip simulator,” in 2013 IEEE International Symposium on Performance Analy-

sis of Systems and Software (ISPASS 2013), 2013, pp. 86–96.

194

[99] K.-L. Lin, C.-K. Lo, and R.-S. Tsay, “Source-level timing annotation for fast and

accurate TLM computation model generation,” in 2010 15th Asia and South Pa-

cific Design Automation Conference (ASP-DAC 2010), 2010, pp. 235–240.

[100] J. Aynsley, “TLM-2.0 Language Reference Manual.” OSCI, Tech. Rep., 2009

available at http://accellera.org/downloads/standards/systemc [Accessed 2015-06-

15].

[101] G. Schirner and R. Dömer, “Quantitative Analysis of the Speed/Accuracy Trade-

off in Transaction Level Modeling,” ACM Transaction of Embedded Computing

Systems, vol. 8, no. 1, pp. 4:1–4:29, Jan. 2009.

[102] K. Goossens, J. Dielissen, and A. Radulescu, “AEthereal network on chip: con-

cepts, architectures, and implementations,” Design & Test of Computers, IEEE,

vol. 22, no. 5, pp. 414–421, 2005.

[103] K. Yan, H. Yang, and H. Wang, “A Low Latency Variance NoC Router,” in Em-

bedded and Multimedia Computing Technology and Service, J. J. (Jong H. Park,

Y.-S. Jeong, S. O. Park, and H.-C. Chen, Eds. Springer Netherlands, 2012, pp.

89–97.

[104] S. Tobuschat, P. Axer, R. Ernst, and J. Diemer, “IDAMC: A NoC for mixed criti-

cality systems,” in 2013 IEEE 19th International Conference on Embedded and

Real-Time Computing Systems and Applications (RTCSA 2013), 2013, pp. 149–

156.

[105] J. Kim, W. J. Dally, J. Dally, and D. Abts, “Adaptive Routing in High-Radix Clos

Network,” in Proceedings of the ACM/IEEE SC 2006 Conference, 2006, pp. 7–7.

[106] J. Zareei and A. H. Kakaee, “Study and the effects of ignition timing on gasoline

engine performance and emissions,” presented at the European Transport Re-

search Review. (2013) 5:109 – 116.

[107] I. Scollar, B. Weidner, and T. S. Huang, “Image Enhancement Using the Median

and the Interquartile Distance,” 1984 Computer vison, graphics and image pro-

cessing.

[108] F. Ajil Jassim, “Image Denoising Using Interquartile Range Filter with Local

Averaging,” International Journal of Soft Computing and Engineering (IJSCE

2013).

[109] K. D. Buch, “Decision based non-linear filtering using interquartile range estima-

tor for Gaussian signals,” in 2014 Annual IEEE India Conference (INDICON

2014), pp. 1–5.

[110] M. Daniel Berejuck, “Network-on-Chip with load balancing based on interleave

of flits technique,” Computing Research Repository (CoRR 2015).

[111] G. Nychis, T. Moscibroda, O. Mutlu, and S. Seshan, “On-Chip Networks from a

Networking Perspective: Congestion and Scalability in Many-Core Intercon-

195

nects,” ACM Special Interest Group on Data Communication (SIGCOMM 2012),

no. ACM 978–1–4503–1419–0/12/08.

[112] “Artix-7 FPGA Family,” Artix-7 FPGA Family. [Online]. Available:

http://www.xilinx.com/products/silicon-devices/fpga/artix-7.html. [Accessed: 08-

Aug-2015].

[113] D. O’Loughlin, A. Coffey, F. Callaly, D. Lyons, and F. Morgan, “Xilinx Vivado

High Level Synthesis: Case studies,” in 25th China-Ireland International Confer-

ence on Information and Communications Technologies/ 2014 IET Irish Signals

Systems Conference (ISSC 2014/CIICT 2014), pp. 352–356.

[114] A. Fpgas, K. Gaj, E. Homsirikamol, M. Rogawski, R. Shahid, and M. U. Sharif,

Comprehensive Evaluation of High-Speed and Medium-Speed Implementations of

Five SHA-3 Finalists Using. Springer 264-278,vol 6225, Heidelberg 2009.

[115] Z. Guo, W. Najjar, F. Vahid, and K. Vissers, “A Quantitative Analysis of the

Speedup Factors of FPGAs over Processors,” in Proceedings of the 2004

ACM/SIGDA 12th International Symposium on Field Programmable Gate Ar-

rays, New York, USA, 2004, pp. 162–170.

[116] N. Genko, D. Atienza, G. De Micheli, and L. Benini, “Feature - NoC emulation: a

tool and design flow for MPSoC,” IEEE Circuits and Systems Magazine (2007),

vol. 7, no. 4, pp. 42–51.

[117] “High-Level Synthesis Tools.” [Online]. Available:

http://www.bluespec.com/high-level-synthesis-tools.html. [Accessed: 05-Jun-

2015].

[118] R. Nikhil, “Bluespec System Verilog: efficient, correct RTL from high level

specifications,” in Proceedings of Second ACM and IEEE International Confer-

ence on Formal Methods and Models for Co-Design (MEMOCODE 2004), 2004,

pp. 69–70.

[119] M. Ghasempour, L. Mikel, and J. Garside, SoC Simulator on FPGA using

Bluespec System Verilog. UK Electronics Forum (UKEF 2012).

[120] F. Gruian and M. Westmijze, “VHDL vs. Bluespec System Verilog: A Case

Study on a Java Embedded Architecture,” in 2008 ACM Symposium on Applied

Computing, New York, NY, USA, pp. 1492–1497.

[121] B. Kim, J. Kim, S. Hong, and S. Lee, “A real-time communication method for

wormhole switching networks,” in Proceedings of 1998 International Conference

on Parallel Processing, 1998, pp. 527–534.

[122] B. Sprunt, “Pentium 4 performance-monitoring features,” IEEE Micro, vol. 22,

no. 4, pp. 72 – 82, Aug. 2002.

[123] V. Todorov, A. Ghiribaldi, H. Reinig, D. Bertozzi, and U. Schlichtmann, “Non-

intrusive Trace & Debug Noc Architecture with Accurate Timestamping for

GALS SoCs,” in Proceedings of the Eighth IEEE/ACM/IFIP International Con-

196

ference on Hardware/Software Codesign and System Synthesis, New York, NY,

USA, 2012, pp. 181–186.

[124] B. Sudev and L. S. Indrusiak, “Dynamic Time Multiplexed Virtual Channels, a

Performance Scalable Approach in Network-On-Chip Routers to Reduce Packet

Starvation,” in York Doctoral Symposium on Computer Science & Electronics

(YDS), 2014, pp. 21–30.

[125] A. Burns and R. I. Davis, “Mixed Criticality on Controller Area Network,” in

2013 25th Euromicro Conference on Real-Time Systems (ECRTS 2013), 2013,

pp. 125–134.

[126] A. Burns, J. Harbin, and L. S. Indrusiak, “A Wormhole NoC Protocol for Mixed

Criticality Systems,” in 2014 IEEE Real-Time Systems Symposium (RTSS 2014),

2014, pp. 184–195.

[127] L. S. Indrusiak, A. Burns, and J. Harbin, “Average and worst-case latency im-

provements in mixed-criticality wormhole networks-on-chip.,” presented at the

Euromicro Technical Committee on Real-Time Systems (ECRTS 2015), Lund,

Sweden, 2015.

[128] X. Chen and L.-S. Peh, “Leakage power modeling and optimization in intercon-

nection networks,” in Proceedings of the 2003 International Symposium on Low

Power Electronics and Design (ISLPED 2003), 2003, pp. 90–95.

