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Abstract 

The quest for improving processing power and efficiency is spawning research into many-

core systems with hundreds or thousands of cores. With communication being forecast as 

the foremost performance bottleneck, Network-on-Chips are the favoured communication 

infrastructure in the context mainly due to reasons like scalability and power efficiency. 

However, contention between non-preemptive NoC packets can result in variation in packet 

latencies thus potentially limiting the overall utilisation of the many-core system. Typical 

latency predictability enhancement techniques like Virtual Channels or Time Division Mul-

tiplexing are usually hardware expensive or non-scalable or both. This research explores the 

use of dynamic and scalable techniques in Network-on-Chip routers to improve packet pre-

dictability by countering Head-of-line blocking (blocked low priority packet blocking a 

high priority packet) and tailbacking (low priority packet utilising the link that is required 

by a high priority packet) of non-preemptive packets.  

The Priority forwarding and tunnelling technique introduced is designed to detect Head-of-

line blocking situations so that its internal arbitration parameters can be altered (by forward-

ing packet parameters down the line) to resolve such issues. The Selective packet splitting 

technique presented allows resolution of tailbacking by emulating the effect of preemption 

of packets (by splitting packets) by using a low overhead alternative that manipulates pack-

ets. Finally, the thesis presents an architecture that allows the routers to have a notion of 

timeliness in data packets thus enabling packet arbitration based on application-supplied 

priority and timeliness thus improving the quality of service given to lower priority packets. 

Furthermore, the techniques presented in the thesis do not require additional hardware with 

the increase in size of the NoC. This enables the techniques to be scalable, as the size of the 

NoC or the number of packet priorities the NoC has to handle does not affect the functional-

ity and operation of the techniques. 
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 Chapter 1 

1. Introduction 

The advent of integrated circuits around the early 1960s brought about a quantum 

leap for computing, both in terms of magnitude of computation as well as in the 

envelope of its applications [1]. As the quest for improving processing power 

forced more and more transistors onto chips, the quest for a wider range of appli-

cations forced integration of different types of components onto chips [2] [3] [4]. 

To get the best performance out of the chips, the number of transistors was in-

creased and their size continually reduced [5][6]. The clocking frequency was also 

increased to improve performance to power utilisation ratios. Although this 

shrinking reduced dynamic power dissipation and intrinsic latencies of the indi-

vidual modules, it had an adverse effect on the inter-modular communications as 

those were traditionally implemented using shared buses or point-to-point connec-

tions [7]. The reduction in wire dimensions resulted in higher resistances and re-

duced wire spacing inducing capacitance, delays and crosstalk and subsequently 

imposed practical limitations in performance [8].  

Compared to long connection lines, short lines with repeaters performed better for 

multiprocessor communication, which lead to the development of the Network-

on-Chip (NoC) concept [9] [10]. As far as manufacturing is concerned, gates cost 

commercially less than wires [7].  

Application convergence brought about a diversity of signals onto a single plat-

form, which favoured a heterogeneous communication infrastructure like NoCs 

over customised ones like buses [11]. NoCs were also surpassing buses in devel-
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opment time as Time-To-Market for NoCs were considerably less due to the ex-

tensive use of synthesizable Register Transfer Level (RTL) based approaches ra-

ther than manual layout. Superiority of NoCs over buses and point-to-point con-

nections is due to many factors like efficiency, reliability, scalability, reusability 

and cost effectiveness [7].  

Compared to traditional bus based networks, NoCs have lower capacitive load per 

transmission due to its shorter wire lengths, ultimately resulting in lower dynamic 

power consumption [12]. As a result, NoCs emerged as a promising communica-

tion infrastructure for the communication centric designs that would enable many-

core systems [13] [14]. As Moraes et al stated in [15] “An NoC is an on-chip net-

work composed by cores connected to switches, which are in turn connected 

among themselves by communication channels”. As NoCs consist of a network of 

routers communicating with each other using data packets, a wide variety of to-

pologies can be utilised.  

Regardless of the topology used, contention between packets intensified by the 

multi hop nature of communication in NoCs typically introduces uncertainty into 

the system. As NoC packets compete for arbitration traversing multiple routers to 

get to the destination, packet latencies can vary. With applications in which the 

workload is static and known beforehand, static analysis can be used to determine 

suitable packet priorities and to assign the application tasks to particular cores 

(task mapping) [16]. However, in open applications where traffic pattern is dy-

namic and cannot be predicted, increased latency could be encountered for pack-

ets regardless of its Quality of Service (QoS) requirements due to contention and 

blocking from other packets. Similarly in heterogeneous applications in which 

packets from known applications may have to coexist with dynamic traffic, simi-

lar decrease in performance can occur [17]. 

For example, in parallelised video processing applications, there would be trans-

missions needing high QoS while others can tolerate lowering of QoS intermit-

tently [18]. For such systems which deal with dynamic traffic that needs multiple 

levels of QoS, the NoC should have appropriate infrastructure to deal with conten-
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tion between packets so that the required functionality of the design can be main-

tained [19]. 

For resolving uncertainty with dynamic traffic, designers employ several strate-

gies like multiplexing link utilisation of packets in time or space domain, provid-

ing separate logical channels or by employing adaptive approaches.  

Even though the classical time multiplexed approach [20] ensures complete pre-

dictability of the system, it comes at the overhead of restriction in scalability and 

dynamic behaviour. Though dynamic, multiplexing in the space domain (band-

width) [21] and the use of separate channels [22] would result in excessive hard-

ware requirements. Considering packet predictability (QoS) as the reduction in the 

variability in packet latency [23], this research aims to improve packet predictabil-

ity by using dynamic, scalable and lightweight methods.  

For example, if a low priority packet is utilising a connection link that is required 

by a higher priority packet (blocking), the high priority packet will suffer an in-

crease in the magnitude and variation of its latency. With time multiplexed ap-

proaches, the functionality of the routers are multiplexed in time so that such sce-

narios will never occur. However time multiplexed routers would not be able to 

handle traffic which is not known in advance (dynamic traffic) unless the routers 

are reconfigured to handle those. As a result, time multiplexing can limit the rout-

er’s ability to handle dynamic traffic and they have limitation in scalability. 

Such blocking scenarios can be resolved by multiplexing in space domain; by 

providing separate logical channels. This is achieved by classifying packets into 

several service levels and then by providing separate buffering for each service 

level. As a result, this would result in significant increase in hardware overhead in 

terms of both logic as well as buffering [24].  

This thesis explores the use of scalable dynamic techniques in simple non-

preemptive routers that modify arbitration policies and packets to counter unpre-

dictability in NoC packet latencies. To resolve blocking of packets by other lower 

priority packets, the techniques presented aim at modifying the internal parame-

ters of routers and packets to improve QoS of packets depending on its priority. 
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The thesis also looks into introducing a timeliness element in arbitration decisions 

so that packets will get preference over others not only based on its application 

supplied priority value, but also based on its timeliness.  

For example, consider the situation where there is a high priority packet which is 

well ahead in time (with respect to its expected reception time) contenting for ar-

bitration with a low priority packet which is late in time (with respect to its ex-

pected reception time). By utilising a timeliness element in arbitration decisions, 

routers would be able to identify such scenarios so that the lower priority packet 

will get better QoS if the competing high priority packet can afford to be delayed.   

1.1. Thesis Hypothesis 

The hypothesis addressed in this thesis is that “Latency predictability can be 

enhanced in scalable non-preemptive NoC designs using modifications that 

dynamically alter arbitration policies or packet structure”.  

The thesis addresses packet predictability in non-preemptive NoCs as NoCs em-

ploying preemptive arbitration for predictability enhancement are hardware inten-

sive and have scalability limitations. To verify this hypothesis, this research intro-

duces techniques that allow routers to alter its arbitration policies and packets and 

evaluates their effectiveness using Hardware Description Language coded models. 

1.2. Thesis Structure 

The thesis has a three tier structure. 

    Tier 1 – Introductory chapters 

       Chapter 1:   Introduction 

       Chapter 2:   Literature review 

       Chapter 3:   Metrics and problem statement 
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    Tier 2 – Key techniques and evaluation 

      Chapter 4:   Starvation resolution by priority manipulation 

      Chapter 5:   Predictability enhancement by packet splitting 

      Chapter 6:   Predictability enhancement through dynamic slack awareness 

     Tier 3 –Supporting chapters 

        Chapter 7:   Conclusion 

      Glossary of terms 

      References 

      Appendix 

Tier 1 chapters comprise the introductory section of the thesis. Chapter 2 provides 

a literature review in which the basics of NoCs are discussed followed by specif-

ics on existing predictability enhancement techniques. As case studies for the ap-

plication of such techniques, some of the popular NoC architectures are discussed 

next, followed by details on how prototyping is done for such systems. This acts 

as a prologue to the later part of Chapter 3; where the implementation methodolo-

gies in this thesis will be introduced.  

Chapter 3 presents the metrics used in the thesis and present some experimenta-

tion results that depict the variability in latency encountered by non-preemptive 

NoC packets compared to pre-emption based designs. Chapter 3 will then contin-

ue with the problem statement followed by the details on the implementation and 

test infrastructure used. 

Tier 2 chapters describe the techniques proposed in this thesis. Chapter 4 intro-

duces the technique that use priority manipulation to resolve packet starvation 

(resulting in publication [25]). Rather than using multiplexing techniques in space 

or time, the technique features routers that exchange blocking information so that 

its internal parameters will be modified to resolve blocking. The later part of the 
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chapter presents the specific architectural details of the model and performance 

analysis. 

In Chapter 5, the technique that utilises packet splitting to improve predictability 

is presented (resulting in publication [26]). The technique introduced is aimed at 

emulating pre-emption functionality (by splitting packets) without the high hard-

ware overheads associated with the classical pre-emption approach. As the tech-

nique uses splitting of packets rather than the typical pre-emption functionality, 

the routers can be simpler and scalable. The chapter will continue with the details 

on the hybrid design that employ the technique complemented by the technique 

introduced in Chapter 4 (resulting in publication [27]). With the technique em-

ployed, NoC designs could be scalable and dynamic still providing quality of ser-

vice in end-to-end latency without major hardware overheads compared to the 

pre-emption approach. 

Chapter 6 introduces a scalable technique that will enable routers to have a notion 

of timeliness in arbitration decisions (resulting in publication [28]). This will al-

low routers to initiate predictability enhancement measures not just based on the 

priority of the packet (application-supplied priority) but also based on its timeli-

ness. This is achieved by introducing a dynamic field in the packet header to rep-

resent the timeliness component which would be modified by routers when the 

packet waits for arbitration. For arbitration decisions, the routers employ this val-

ue combined with the application supplied priority value. This would allow NoC 

routers to improve end-to-end latency of lower priority packets when higher prior-

ity packets have residual slack (earliness compared to its expected reception time) 

to spare for dynamic traffic. As a practical application for the system, the notion 

of residual slack is used to trigger the use of the techniques introduced in Chapter 

4 and 5 hence improving their effectiveness. 

Finally, Tier 3 contains the Conclusion as Chapter 7 which includes thesis sum-

mary, details of novel contributions and further work, followed by the Glossary of 

Terms, References and Appendix as subsequent chapters. 
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 Chapter 2 

2. Literature Review 

The initial part of this chapter will cover the basics of NoCs as a prologue to the 

following section that details the classical predictability enhancement techniques. 

While predictability enhancement techniques like Time Division Multiplexing and 

Link Division Multiplexing employ division of operational time and available 

bandwidth respectively, other techniques cover multi-channel approaches as well 

as adaptive routing. As a demonstration of the practical use of these techniques, 

the chapter will then discuss some of the NoC architectures that use such tech-

niques. 

The final part of the chapter deals with the prototyping techniques that can be em-

ployed for NoCs. This will act as a preface to the later part of Chapter 3 in which 

the implementation methodologies used in this research will be explained. 

2.1. Network-on-Chip Basics 

A NoC consist of Intellectual Properties (IPs) or cores connected to routers which 

are interconnected between each other using connection links as shown in Figure 

2.1 (where a 3x3 2D mesh type NoC is shown). The routers and links act as the 

communication infrastructure for the IPs and to receive and send data, each router 

will have input and output ports. 
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Figure 2.1: Mesh type NoC 

In a typical NoC router designed for 2D mesh topology (as in Figure 2.1), there 

will be five pairs of input and output ports with one connected to the local IP and 

the other four to neighbouring routers as shown in Figure 2.2.  

 

Figure 2.2: NoC router 
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seen as the set of bits that can be transmitted through a connection line in a single 

clock cycle and hence the maximum bit width of a flit will be the bit width of the 

communication channel. The data from the application layer is converted into flits 

(for communication) by the Network Interface that acts as the link between the IP 

and the NoC router. In NoCs that feature packet based communication, multiple 

flits are grouped into data packets, which usually will have a header part holding 

information about the characteristics of the packet followed by a payload part that 

contains the transmission data. For example, if the connection links are 8 bits 

wide, the flits will be 8 bits wide (if the whole bandwidth is used) as shown in 

Figure 2.3a. As seen in Figure 2.3b, several flits are grouped into a data packet 

and typically the packet will have a header comprising of one or more flits fol-

lowed by a set of payload flits which hold the actual data. 

 

Figure 2.3: (a) NoC flit   (b) NoC packet 

To form a NoC, routers can be interconnected in either uniform or non-uniform 

topology. Typical NoC designs use uniform topologies, as non-uniform topologies 

require complex routing considerations and have scalability issues as the routing 

logic will have to be customised with variation in size of the NoC. 

2.1.1. Switching Techniques 

Switching techniques specifies how the data traverses from its source IP to its des-

tination IP. Depending on the type of communication, two types of switching 

techniques can be employed in NoCs; Circuit switching and Packet switching 

[30].  
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For communication that involves streaming of data without limitation in maxi-

mum message length, Circuit switching technique can be used. With Circuit 

switching [31] [32], for an IP to transmit data to another IP, the transmission path 

will be reserved before transmission and the path will be held until the transmis-

sion is complete. As the path is entirely reserved for the communication, the tech-

nique features low latency data transfer (once a path is reserved) but as a whole, 

the NoC will suffer from several issues like blocking and low overall network 

utilisation especially under contention  [11] [30].  

The terms packet latency blocking, network utilisation and contention are defined 

as follows. 

Packet latency: The time interval between time instant when the network 

interface of the source core is supposed to inject the header flit of the 

packet to the instant when the whole of the packet is received by the net-

work interface of the destination core in simulation ticks. 

Blocking: A communication is said to be blocked by another when the 

communication path needed for the former is being utilised by the later 

communication thus preventing its transmission. 

Network utilisation: Network utilisation is defined as the percentage of to-

tal number of connection links being used for communication at any point 

of time. 

Contention: Contention is defined as the situation when two or more 

communication flows require transmission through the same connection 

link. 

Circuit switching can be significantly efficient in conditions where transmission 

time is considerably higher than the setup time (infrequent long messages) as the 

whole path is reserved beforehand.  

With Packet switching, packets are sent from source to destination without reserv-

ing paths and they independently negotiate its path through the network. The rout-

ers employing the Packet switching technique called Wormhole switching [33] are 
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designed to send a flit as soon as it can be accommodated by the next router. 

Wormhole switching technique can be seen in a wide range of NoC architectures 

including Hermes [15] and AEthereal [34] primarily due to the lower memory 

requirements than the other approaches [35]. 

There are also other Packet switching techniques like Store And Forward (SAF) 

[36] and Virtual Cut Through (VCT) [30]. In SAF, a packet is sent to the next 

router only if the next router has buffer space to accommodate it completely, and 

the receiving router starts further transmission only when the whole packet is re-

ceived. The advantage of SAF is that a packet will only block other packets inside 

a single router at any time unlike wormhole switching where a packets can block 

packets simultaneously in more than one router. As this technique has high 

memory requirements in buffering [11] [30], it is not widely used in NoC archi-

tectures (however it is used in Nostrum [10] [11] NoC).  

Though similar to SAF, VCT is intended to reduce latency by enabling the router 

to forward the packet as soon as there is space to accommodate the whole packet 

in the next router’s buffer. VCT supports lower latency packet transmission than 

SAF but it has similar memory requirements to SAF. 

With VCT and SAF, the maximum packet size possible depends on the size of the 

buffers in the NoC. This would prevent transmission of packets that are bigger 

than the buffer size in routers, which is not an issue with Wormhole switching. 

2.1.2. Routing Algorithm 

Another design choice in NoCs is the routing algorithm which determines through 

where the packets will be routed through the network. The choice of routing algo-

rithm presents a trade-off between factors like power, logic area, delays, and ro-

bustness [35]. Typically implemented as algorithms or as lookup tables, routing 

can be done in three methods; Source, Distributed and Centralized [39].  

In source routing, the route for data transport is calculated at the sender and that 

information is added into the header of the packet before starting transmission. 

The routers down the line determine the path of that packet through the NoC using 
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this route information and hence the router design can be simpler than the distrib-

uted approach.  

In distributed routing, routing decisions are made by each router individually by 

evaluating the destination information carried in the packet header. However, with 

centralised routing, routing decisions are made by a centralised module and the 

information is communicated to the appropriate router on need. This can result in 

increased latency to initiate routing as routing messages will have to be transmit-

ted to and from the centralised routing module to the router. As a result, this will 

affect the latency performance of the system (in magnitude and variability) nega-

tively and the use of the centralised module will limit scalability. 

In the thesis, the term scalability is defined as follows. 

Scalability: The ability of the NoC router to handle packets with a wider 

range of priority values thus enabling the use of the router in bigger NoC 

topologies than it was initially designed for. 

With source routed packets; as the path of transmission is calculated ahead of 

transmission, adding dynamic predictability enhancement behaviours will involve 

adding complicated logic to recalculate routing path which will result in both in-

creased overhead as well as latency (due to the additional route recalculations).  

2.1.3. Arbitration 

Routers also require arbitration logic to deal with contention between data pack-

ets. There are several arbitration techniques used in NoCs like Round Robin, First 

Come First Served, Priority Based and Priority Based Round Robin [40] [41] [42].   

Typically, Round Robin and First Come First Serve arbitration are employed for 

NoCs aiming at best effort service. Priority Based and Priority Based Round Rob-

in are used in NoCs aimed at providing guaranteed service as the approaches use 

packet priority parameter for arbitration. 
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2.2. Packet Predictability in NoCs 

As in [23] and [43], packet predictability can be considered as the reduction in 

variation in packet latency and it is a key design parameter [44] as far as NoCs are 

concerned. With NoC based communication systems that deal with dynamic traf-

fic, there could be variation in packet latency regardless of packet priority [17]. 

Murali et.al. in [45] states that “designing an interconnect architecture with pre-

dictable behaviour is essential for proper system operation” and Huang et al in 

[22] reports a steep drop in throughput of links in NoCs without predictability 

enhancement features. Without predictability enhancement measures, packets 

could have high variation in latency [46] which would increase the probability of 

missing their deadlines. The term deadline is defined in the thesis as follows. 

Deadline: The desired bound on packet latency in simulation ticks. 

If the traffic flow pattern is known in advance, static analysis aided task mapping 

or time division based approaches can be used to ensure that the packets will meet 

their hard deadlines. The term hard deadline is defined as follows. 

Hard deadline: The latency deadline of a packet, missing which can result 

in a catastrophic failure of the design target. 

However in situations where the traffic is not known beforehand, ensuring a hard 

deadline is not possible. Even with priority based arbitration, the packets cannot 

be set with a soft deadline due to unforeseeable contention scenarios in the NoC. 

The term soft deadline is defined as follows. 

Soft deadline: The latency deadline of a packet, missing which may result 

in performance degradation of the design target and would not cause a 

catastrophic failure of the design target. 

This could be unacceptable with applications that have traffic with different laten-

cy requirements.  
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For instance, in non-preemptive NoCs, high priority packets could fail to secure 

arbitration due to Head-of-line (HOL) blocking [47] which is defined as follows. 

Head-of-line blocking: A packet is said to be Head-of-line blocked when 

it is blocked by a lower priority packet which is already blocked. 

Quoting Huang et al from [22] “due to HOL blocking, the throughput of the links 

is typically limited to 58% under uniform traffic with fixed packet length” (de-

rived from [62]). To provide an idea on the uncertainty, a scenario is depicted in 

Figure 2.4 where squares represent NoC routers and arrows represent packets 

flows with the number inside the circles depicting the packet priority. In the sce-

nario, all packets have destination south of the router (1,2). 
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Figure 2.4: Head-of-line blocking example 
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In Figure 2.4a, it can be observed that packets 3, 4 and 8 are withheld from secur-

ing arbitration as packet 9 is tailbacking them by utilising the south port of router 

(1,2). The term tailbacking is defined as follows. 

Tailbacking: A packet is said to be tailbacked when the link required for 

its transmission is being utilised by a lower priority packet. 

As packet 9 is of very low priority, it could be blocked down the line by many 

packets; hence indefinitely blocking higher priority packets like 1, 3, 4 and 8 up 

the line despite their higher priorities. After packet 9 gets transmitted and releases 

the path, the issue elevates further as packet 3 will get arbitration ahead of packet 

4 forcing packet 1 to wait further up the line as depicted in Figure 2.4b. Here 

packet 4 is HOL blocking packet 1 thus preventing its transmission. 

When packet 3 finishes transmission, packet 4 will be transmitted followed by 

packet 8 ahead of 1 (Figure 2.4c and Figure 2.4d) unless the routers are designed 

to provide arbitration to packets in a single clock cycle. 

As a result, despite the highest priority value possible, packet 1 will have to wait 

until all the other packets get transmitted. Since all the other packets are suscepti-

ble to further blocking down the line due to their lower priority values, packet 1 is 

susceptible to have further waiting stages which could worsen its latency. Thus, 

under an ordinary situation, the final transmission order of router (1,2)’s south 

port will be 9-3-4-8-1 (8 before 1 if arbitration in routers take more than a clock 

cycle) which goes against the application-level priority assignment. 
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Figure 2.5: Starvation example 

Consider the situation in Figure 2.5 where the destination for the packets is south 

of router (1,2) and the transmission periods of packets 6 and 7 are short compared 

to their packet sizes. Packet period is defined as below. 

Packet period: Packet period is defined in the thesis as the interval in 

simulation ticks between successive injection of packets into the NoC from 

an IP. 

Under this situation, packet 6 will secure arbitration first followed by packet 7 and 

since the period of packet 6 is short, it will again request arbitration at router (1,2) 

before packet 7 is transmitted completely. As a result, packet 6 will secure arbitra-
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arbitration to the link before packet 6 is transmitted completely and hence get ar-

bitration to the link after packet 6 is transmitted. As a result the south port of rout-

er (1,2) will be used by packet 6 and 7 over and over and hence packet 8 will nev-

er get arbitration. Since packet 1 is behind packet 8, it will never get arbitration as 

well despite possessing the highest priority possible. 

To resolve such predictability-degrading issues and hence reduce variation in 

packet latencies, several predictability enhancement techniques can be employed. 

The rest of the section considers the contemporary predictability enhancement 

techniques used in NoCs. As unpredictability is caused by contention between 

   
(1,2) (0,2) (2,2) 

 

 

 6  7 

 
 8 

 
 1 

(1,0) 

(1,1) 



18 

 

packets, the techniques explained here exploit a variety of methods which multi-

plex, preempt or divert competing packets to ensure better predictability than triv-

ial systems. 

2.2.1. Time Division Multiplexing 

Time Division Multiplexing (TDM) [49] is one of the classical methods to ensure 

predictability in NoCs. With TDM, the functionality of the router is multiplexed 

in the time domain thus providing utmost predictability. Use of TDM can allow 

packets to meet their hard deadlines as the functionality of the routers is defined in 

the time domain.  

TDM routers work based on slot tables that dictate every input port what to do at 

each clock cycle. To understand the technique in detail, an example is shown in 

Figure 2.6 where router A is sending flits from its IP to the IP of router B. An ex-

ample slot allocation for the slot table of the local port (sender) of router A and 

the west port (receiver) of router B is provided in the figure. As the example does 

not consider the functionality of the other ports, the slot tables governing those are 

not added in the figure.  

From the slot table of the local port of router A, it is evident that it is configured 

to send a flit through the east port at the first clock cycle towards router B. On the 

next clock cycle when the flit will reach router B, the west port of router B will 

forward it to the local IP connected to router B as its slot table dictates so. 
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Figure 2.6: Time Division Multiplexing functionality example 

Simultaneously, router A will sent the next flit (on the second clock cycle) which 

will be received on router B on the third clock cycle which will then be routed to 

its local IP.  

Even though TDM systems are highly predictable and simple, they are not scala-

ble and have restricted dynamic behaviour. The word dynamic behaviour is de-

fined in the thesis as follows. 

Dynamic behaviour: The ability of the router to respond in run time to in-

coming packets (regardless of its destination) without reconfiguration to 

the routing logic. 

As the NoC work based on slot tables, for adapting the router for bigger NoC siz-

es the slot table will have to be made bigger (to service the resultant increase in 

packet flow numbers) hence becoming its scalability limiting factor. 

Furthermore, to account for any new packet flows, the slot tables of all associated 

routers will have to be modified thus highly limiting its dynamic behaviour [50]. 

As slot allocation calculation is a complex and time consuming procedure [51], 

TDM based routers have limited application in dynamic traffic scenarios. 
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2.2.2. Link Division Multiplexing 

While TDM work by sharing link access to packets in the time domain, Link Di-

vision Multiplexing (LDM) [52] work by sharing the access of sections of the link 

itself. With LDM, multiple packets can be transmitted simultaneously by desig-

nating sections of the connection link for each packet thus enabling communica-

tion even under blocking. In Figure 2.7, a possible use of LDM technique is 

demonstrated where the bandwidth of the connection link is shared in part by 

packets A, B and C simultaneously. 

 

Figure 2.7: Link Division Multiplexing 

This will allow better utilisation of the links compared to TDM but it will be 

hardware expensive [21]. As shown in Figure 2.8, the technique relies on serialis-

ing and de-serialising logic (with buffering) to allow conversion of flits into less 

wider format and back along with a control mechanism. As a result, LDM imple-

mentation results in high hardware requirement both in terms of logic complexity 

and buffer requirement. 

 

Figure 2.8: LDM implementation (taken from [21]) 
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Furthermore, the increase in size of the NoC would result in sharing of the band-

width between higher numbers of packets and hence as the size of the NoC in-

creases, the effectiveness of the LDM will decrease thus limiting scalability. 

2.2.3. Virtual Channels 

With Virtual Channels (VCs) [53] a physical connection path is multiplexed into 

separate logical channels so that multiple packets (already arbitrated) can be made 

to use the same path. Introduced by Dally in [54], the Virtual Channel technique 

relies on the use of multiple buffers for each channel on the network so that com-

munication through a link will be  possible even with blocked flits. 

 

Figure 2.9: Blocking example with and without Virtual Channels [54] 
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With the use of Virtual Channels (Figure 2.9), it can be seen that P2 flits will be 
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To prevent the upstream routers from sending flits if the packet is blocked down-

stream (hence buffers fully occupied), routers also have credit based flow control 

mechanism for each VC. As a result if the buffer in the receiving router is full (of 

that VC), the transmitting router will stop transmission (of flits of that service lev-

el) and allow transmission of flits from lower priority VCs if applicable. 

Therefore hypothetically, a two Virtual Channel router will act as two routers 

stacked on top of each other (one router for each Virtual Channel) sharing the 

same communication link as shown in Figure 2.10.  

 

Figure 2.10: Virtual Channel functionality 

As the link is being shared, Virtual Channels will have priority assignments in 

between each other which will enable the system to prioritise a Virtual Channel 

over the other under contention. 

Even so, VCs would not be able to ensure packets meeting their hard deadlines as 

there can be packets of the same service level competing for arbitration. However, 

the use of VCs can increase the probability of packets meeting their soft deadline.  

Mello et al [24] compared performance of a Hermes NoC with and without Virtu-

al Channels and their tests report reduction of average latency of more than 50% 

for the 8x8 NoC under test. Although VCs provide significant performance im-

provements, VC implementation results in significant hardware overhead. As a 

result, their tests with designs housing 1, 2 and 4 VCs resulted in hardware over-

head of 17%, 33% and 75% respectively on their target platform. 

 

Shared communication link 

Credit based flow control line 

Credit based flow control line 

Router  

Router  Router  

Router  



23 

 

2.2.4. Adaptive Routing 

Adaptive routing approaches aim to improve packet predictability by dynamically 

varying the routing by monitoring the traffic pattern in the NoC. Ge et al. in [55] 

utilised a centralised monitoring module in their design to alter the source routing 

depending on the traffic on the NoC. 

Traffic pattern is defined in the thesis as follows. 

Traffic pattern: The pattern of traffic flow through the routers over the 

whole NoC over the entire simulation run (Traffic pattern consists of all 

the packet flows through the NoC, each specifying parameters like source-

destination information, packet priority, injection time and packet size) 

Under non-congested state, the system follow source routing (simple, low latency) 

and the routing table of each router is initialised in advance and broadcasted to all 

routers. 

If a link fails or gets congested, the adjacent router informs the central monitor 

about the issue and after receiving the overall network condition, the monitor cal-

culates optimal alternate paths using Dijkstra’s shortest path algorithm [56] and 

routing tables are updated. To decrease latency further, while the tables are being 

updated, the system has an in built deadlock/live-lock free routing logic using par-

tially adaptive XY algorithm [57] to forward the packets past the congested or 

faulty links.  

With partially adaptive XY algorithm, when congestion occurs, the router will 

evaluate neighbouring router’s load status using dedicated lines to alter the rout-

ing to pass the packets through a lightly loaded path. The major drawback of the 

system is that the techniques aim at spreading load rather than resolving predicta-

bility degrading issues. As a result, if the NoC is evenly loaded, the advantages 

brought about will be limited. 
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Cidon et al in [58] presents an adaptive routing architecture which employs Traf-

fic Load Maps (TLMs) to store the congestion info so that the source routing algo-

rithm can be altered according to the traffic load pattern. 

 

Figure 2.11: Approach based on Traffic Load Map (taken from [58]) 

This system has monitors embedded in the routers to monitor the network load 

using any of the metrics like buffer occupation, Virtual Channel usage etc. How-

ever, due to the use of traffic maps, the scalability of the system is limited and 

similar to the previous technique; the efficiency of the system could decrease with 

the overall increase in load in the NoC. 

Rantala et al. in [59] dealt with adaptability in a distributed perspective where the 

source routing at each network interface was altered depending on the congestion 

information retrieved from neighbouring routers. The design had monitor modules 

connected to each router and the monitor modules were in turn connected in be-

tween each other. The monitor modules were designed to check the load situation 

at the respective router (using metrics like number of packet flows or buffer utili-

sation) and communicate with the neighbouring routers so that the routing can be 

altered using adaptive XY-routing method.  

The work mentions two approaches of load estimation; router state based and 

FIFO status based. 
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In router state based monitoring system, each router is provided with dedicated 

monitoring devices to monitor its switching activity along with activity of its 

neighbours in the mesh as shown in Figure 2.12. 

 

Figure 2.12: Router status based monitoring (taken from [59]) 

As shown in the figure, the monitor modules (white squares) are interconnected 

by 2-bit lines (thin dotted lines) so that the status information can be interchanged 

between neighbouring routers (routers shown as grey squares) while rest of the 

network follows a typical mesh topology. 

The FIFO status based monitoring approach however used output FIFO occupa-

tion as the network monitoring metric. Converse to the router status based ap-

proach which monitors switching activity, FIFO based approach focusses on link 

utilization between routers hence provides a more detailed information on traffic 

levels than the first approach. 

Nevertheless, with the increase in load in the network, the efficiency of the tech-

nique will decline as the techniques rely on diverting flows and not intended to 

resolve predictability degrading issues. Also, on an evenly loaded NoC, the ad-

vantages brought about by adaptive routing is limited and as a result, the research 

presented in the thesis refrains from using adaptive routing. 
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2.2.5. Timeliness in NoCs 

Timeliness is a parameter along with application-supplied priority that can be 

used to improve QoS of data packets. Timeliness (or the notion of time) is typical-

ly introduced in data packets with time stamping as seen in [60] and [61]. As time 

stamping requires the notion of a global time thus requiring long counters, its use 

in NoC routers is limited.  

There have been approaches that aimed at improving packet predictability by in-

troducing a time element without depending on the notion of a global time. For 

example, Das et al in [62] presented a slack aware system where the packet header 

will include the priority value which consisted of both its packet priority and ac-

ceptable slack. The slack value in the system was static and was based on parame-

ters such as the number of hops or maximum latency level. The approach was fo-

cussed on dealing with computational delays and hence it did not take into ac-

count the time spent by packets waiting in NoC routers for arbitration.  

Andreasson et al in [63] presented an approach which relied on using slack (or 

unused slots) on TDM based systems for improving network utilisation. With this 

approach, the TDM based functionality of the router made the notion of timeliness 

in packets unnecessary but as with the classical TDM approach, it limited its 

scalability and dynamic behaviour.  

Similarly, Diemer et al in [64] depicted a back suction based flow control which 

was used to improve Best Effort (BE) service latency by utilising the free band-

width available with their Guaranteed Service (GS) infrastructure. The work por-

trays a router architecture with VCs where a number of VCs are allocated perma-

nently for GS and the rest for BE traffic. The system allowed downstream routers 

to notify upstream routers of low activity in the BE service (using dedicated con-

nection lines) by evaluating the buffer utilisation in the router. This will allow 

upstream routers to prioritise BE service VCs momentarily which otherwise will 

have to wait. 

Berejuck et al in [65] presented a system in VC based NoCs to improve QoS by 

targeting ageing of packets. In the work, the packets were added with fields in 
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their headers that will be incremented as packets wait for arbitration. This value in 

the field is then utilised by the arbitrator when packets of same service levels 

compete for arbitration as the packets did not have any priority field.  

Similarly, Correa et al in [44] presents a NoC framework that allows the routers to 

increase packet priority when a packet waits for arbitration for certain number of 

clock cycles. However, under high load condition, there is possibility of multiple 

packets acquiring highest priorities thus compromising the predictability of the 

high priority spectrum of packets. The design also features dropping of low priori-

ty packets if they fail their deadlines to ease congestion. This is achieved by utilis-

ing a notion of global time and deadlines, which requires significantly higher 

hardware resources. 

2.3. NoC Architectures 

This section describes several case studies of NoC architectures. The initial part of 

Section 2.3 considers the simple Hermes [15] NoC developed by Moraes et al, 

following which the Virtual Channel based QNoC [66] developed by Bolotin et al 

is presented. The final part of this section presents the AEthereal [34] NoC devel-

oped by Goossens et al which utilises TDM followed by a review of other NoC 

architectures that employ a combination of techniques as well as others. 

2.3.1. Hermes 

Hermes [67] is a simple NoC architecture which provides low hardware overhead 

communication through its distributed routing scheme. Used typically in uniform 

topologies, each Hermes router has five input buffered bi-directional ports (one 

connected to the local IP and the rest to neighbouring routers) and a control logic 

module. To confine the hardware overhead to a minimum, Hermes employs 

wormhole switching with a configurable flit size. The first and second flits of a 

Hermes packet are the headers, which contain the target address and the number 

of flits in the entire package respectively.  



28 

 

A Hermes router can hold up to five connections simultaneously enabled by a 

switching table inside the router that keeps track of the communication. In Figure 

2.13, a sample switching table is provided corresponding to the Hermes switching 

configuration displayed alongside. Hermes’s switching table consists of three 

rows, one denoting free output port and other two pointing to the input and output 

connections of the corresponding port. The arbitration block inside the control 

module operates in round robin fashion and as the Hermes design features config-

urable port numbers, it can be used for more complex regular topologies like torus 

[68] or hypercube [69] with appropriate changes in routing algorithm and header 

format.  

Hermes is able to provide BE service to packets however Hermes packets can be 

blocked and hence get delayed indefinitely. Even though Hermes provides a low 

overhead NoC architecture, its inability to provide performance guarantees, lack 

of packet prioritisation and inability to tolerate irregular topologies remain its ma-

jor handicaps.  

2.3.2. QNoC 

QNoC (Quality of service NoC) [70] was designed to support diverse QoS (Quali-

ty of Service) requirements by providing different service levels for communica-

tion. Each QNoC router has five input buffered ports; one connected to the local 

IP and the rest to the neighbouring IPs on the mesh. 

For satisfying different communication requirements, QNoC packets have four 

service levels and hence four Virtual Channels. The ‘Signalling’ service level has 

the highest priority and is used for urgent messages (usually very short in nature) 

Figure 2.13: Hermes routing table example 
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like interrupts and control signals. The ‘Real-Time’ service level has a lower pri-

ority than signalling but it provides guaranteed bandwidth and can be used for 

applications like streaming audio/video data. The ‘Read/Write’ service level has 

lesser priority than real-time and can be used for short data transfer like short 

memory or register access. The ‘Block-Transfer’ service level has the least priori-

ty and is used to transfer large blocks of data or for long messages like DMA ac-

cess. 

 

Figure 2.14: QNoC structure ([66]) 

Nevertheless, the use of VC come with increased hardware requirements and limi-

tation in scalability as seen in section 2.2.3. 

2.3.3. AEthereal 

AEthereal NoC [71] is a synchronous indirect network which supports both con-

tention free GS and BE traffic. AEthereal’s design philosophy is based on the ar-

guments that the causes of unpredictable behaviour are packet dropping (due to 

buffer overflows, misrouting, router failure etc.) and contention and congestion. 

As a NoC working reliably aided by a flow control mechanism can resolve packet 

dropping, the idea was to deal with contention and congestion by using Circuit 

switching to ensure distinct spatial isolation and TDM to enforce distinct timing 

isolation.  

GS is provided by employing TDM and the BE router utilises the bandwidth un-

used by the GS router.  The BE router utilises input queued wormhole routing 
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with round robin arbitration and the packets are source routed to the destination 

thus making it simple.  

Configuring the slot tables to enable TDM based communication can either be 

done in a centralised manner or in a distributed fashion. In the centralised method, 

programming is done from a centralised module using special packets to setup or 

remove slot allocation. Due to the use of a centralised programming module, this 

approach has low hardware requirements but the design will have high reconfigu-

ration time which will increase with the size of the NoC. Thus the centralised 

methodology has limitation in its dynamic behaviour as well as limitation in 

scalability. 

To enable better dynamic behaviour and scalability, AEthereal design also fea-

tures a distributed programming model. In this model, IPs sending packets will be 

able to configure the slot tables along the path of its transmission using packets 

that use the BE service. This reduces the reconfiguration time compared to the 

centralised approach however the reconfiguration time depends on the load on the 

NoC at that time as it is using the BE service. As a result, the reconfiguration time 

can get increased if the NoC is heavily loaded and due to the distributed nature of 

the approach, the hardware overhead is higher than the centralised approach. 

Though scalable, as per their own admission in [34], implementation of a distrib-

uted run time slot allocation algorithm is complex. 

2.3.4. Other NoCs 

There are also architectures that employ hybrid approaches. For example, in 

MANGO [26][27] NoC, BE services are provided by employing credit based 

source routing and GS services using VCs. As a result, a MANGO router will in-

ternally consist of a BE and GS router. Similar to AEthereal, the GS router has the 

upper hand in priority and GS router use the VCs that are unused by the GS rout-

er. Similarly in Nostrum NoC [74] a hybrid of TDM and VC mechanism is used 

to provide GS with decreased power consumption. 

With Express Virtual Channels (EVC), Kumar et al. in [75] as well as Krishna et 

al. in [76] aimed at improving latency by providing extra connection links be-
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tween routers that are longer thus bypassing intermediate routers. As a result, with 

EVC, packets that usually will have to do multiple hopes to the destination will be 

able to bypass intermediate routers to improve its latency performance.  

Grot et. al in Kilo-NoC [77] used VCs as a means to improve QoS (predictability). 

The routers were equipped with logic to pre-empt and discard a low priority pack-

et if in contention with a higher priority with dedicated connections to initiate the 

packet sender to retransmit the discarded low priority packet. With such a system, 

Kilo-NoC did not have service levels for packets and hence dedicated buffers; 

thus enabling it to be scalable. 

Other designs like Octagon [78] and SoCBus [50] employ circuit switching as the 

means to support QoS. However the use of circuit switching can result in severe 

blocking (when the messages are frequent) and would limit the overall network 

utilisation of the NoC as the network path is reserved ahead of the transmission of 

the packet and is held until end of transmission (as seen in section 2.1.1). 

The commercial NoC architectures like seen from companies like NetSpeed Sys-

tems [79], Arteris [80], Sonics [81] and Aims Technology Inc [82] provide some 

QoS support in their design. However, the techniques employed in those are pro-

prietary trade secrets and are not available in contemporary literature. 

Table 2.1: QoS support on NoCs 

NoC QoS support Key feature 

AEthereal [71] 
Circuit-

switching/TDM 
QoS 

aSOC [83]  Circuit-switching Energy saving 

Catnap [84] - Energy saving 

DSPIN [85] - Energy saving 

Eclipse [86] - Fault tolerance 

EVC [75] Virtual Channels QoS 

http://www.sciencedirect.com/science/article/pii/S0167926004000185#BIB19
http://www.sciencedirect.com/science/article/pii/S0167926004000185#BIB27
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Hermes [15] - Low hardware overhead 

MANGO [72] Virtual Channels Energy saving & QoS 

Kilo-NoC [77] Virtual Channels Scalability & QoS 

NetSpeed [79] 
Adaptive routing 

(proprietary) 
Customisability & Scalability 

Nostrum [37] 
Virtual Chan-

nels/TDM 
Energy saving & QoS 

Octagon [78] Circuit-switching QoS 

Proteo [87] - Customisability 

QNoC [66] Virtual Channels QoS 

SoCBus [50] Circuit-switching QoS 

SoCIN  [88] - Customisability & Scalability 

SoCWire [89] - Fault tolerance 

Xpipes [90] - Customisability 

Table 2.1 shows the QoS support available with the prominent NoC architectures. 

It can be seen from the table that many of the designs are aimed at low energy, 

fault tolerance and customisability as key goals. 

As seen in the table, the designs that aim at predictability (QoS) typically use VC, 

TDM, Circuit switching, adaptive routing or a combination of those. As seen in 

section 2.2, the use of TDM results in limitation in dynamic behaviour and scala-

bility while circuit switching limits the overall network utilisation of the NoC [50] 

[51]. With the use of VCs, the NoC can suffer from limitation in scalability [77] 

and high hardware requirements. As adaptive routing aims at spreading the load 

on the NoC rather than resolving the contention issue, it can be ineffective if the 

NoC is evenly loaded (without hotspots) and under intense load. 

http://www.sciencedirect.com/science/article/pii/S0167926004000185#BIB32
http://www.sciencedirect.com/science/article/pii/S0167926004000185#BIB31
http://www.sciencedirect.com/science/article/pii/S0167926004000185#BIB36
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Although the combination of the above techniques can resolve some of the limita-

tions, it can be seen that none of the architectures considers simple routers with 

added logic functionality that would adapt its internal arbitration policies or pack-

ets to improve packet predictability. The chief novel advantage of such predicta-

bility enhancement measures will be the low hardware overhead, scalability and 

dynamic behaviour support achieved by abandoning the use of VCs and TDM 

based functionality. 

2.4. NoC Modelling 

NoC modelling can be classified into two approaches, direct (where the whole 

NoC is modelled simultaneously) and virtualised (where a limited number of 

components are modelled at any time to emulate NoC functionality). 

2.4.1. Direct Modelling 

In direct modelling, the whole NoC including routers and links are simulat-

ed/implemented simultaneously providing a timing accurate model of the whole 

system. As a result, the resource requirements are higher than virtualised ap-

proaches (which will be introduced in the next section). 

In [91] and [92], Genko et al presents such a direct modelled NoC emulation 

framework shown in Figure 2.15. 

 

Figure 2.15: Direct modelling example [91]. 
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As seen in the figure, the traffic generator (TG) is managed by a control module 

and is used to inject traffic into the NoC in stochastic pattern or in a trace driven 

pattern. For stochastic data, the logic is modelled as C code and for trace driven 

pattern, C code can be embedded with the data which will be executed by the 

hard-core processor ‘Power PC’ included in the system. Just before simulation, 

the whole traffic data is stored in the RAM ready for injection with each packet 

containing distinct fields specifying packet length, destination and time of injec-

tion along with its payload.  

The traffic receptor (TR) receives the packets from the network of switches so 

that the performance can be interpreted in a basic format and stored into the traffic 

receptor or stored in memory so that the Power PC can analyse the data in detail 

later. The traffic generator is capable of performing a basic analysis by counting 

acknowledgements at a certain interval of time and could interpret it as histograms 

which could be monitored by the Power PC. Similarly in [93], Papamichael et al 

presents a direct architecture modelled in HDL. In the design each HDL coded 

router had a traffic source to inject traffic and a traffic sink to drain the packets 

once it reach its destination. The routers were interconnected as per the required 

topology with all the routers functioning in parallel.  

As a result, direct modelling based designs will have high resource requirements 

but will provide a timing accurate performance model of the NoC system. 

2.4.2. Virtualised Modelling 

In contrast to direct modelling, virtualised approaches have lower hardware re-

quirements, as the whole NoC will not be modelled at any single point of time. 

Virtualised systems are designed to use a limited set of NoC elements to emulate 

the functionality of a complete NoC without full modelling.  

For example, RAMP gold [94] is a virtualised many-core system simulator by 

which shared memory many-core system of up to 64 cores can be simulated. The 

RAMP gold simulator was designed in System Verilog [95] as two separate mod-

ules, firstly a ‘functional model’ to meet the required functional requirements and 
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secondly a ‘timing model’ to manage timing of the cores in executing their re-

spective instructions. 

Functional model

CPU timing model

L2 timing model

DRAM channeltiming model

Timing model

Front end linkFront end link App serverApp server

 

Figure 2.16: RAMP gold virtualised simulator [94] 

Due to the lack of flexibility in using soft processors to simulate different cores, 

the functional model is designed as a 64-thread feed-through pipeline (host-

multithreading [96]) with each thread simulating a separate core which is tracked 

and managed by the ‘timing model’. Each core is provided with a L1 cache (for 

instruction and data) and a shared L2 cache which is connected to a DRAM via a 

controller which has the additional functionality of modelling the delays using 

FIFO queues. For evaluating the performance of the cores, each core is provided 

with counters along with global counters to monitor cache events like hits, misses 

and write backs along with target clock cycles. The work reports simulation of a 

64-core system with several times speedup compared to their reference software 

simulator. 

A similar approach for simulating medium to large virtualised networks was pre-

sented in [93]. 
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DelayCredit Links

 

Figure 2.17: Medium large many-core virtualised modelling [93] 

As seen in Figure 2.17, the design has a ‘router state’ module that stores the state 

of all routers (like flit buffers, routing tables, credits etc.) and there is a ‘virtual 

links’ module which is responsible for moving flits and credits between each vir-

tualized router. The router logic consist of FSM which is used to transform the 

virtual router state from one to the next with respect to the traffic injected by the 

‘virtual sources’ module. As the system simulates a single router at a clock cycle, 

it can be used to evaluate large networks but the system requires complex FSM 

logic to manage the whole simulation procedure. However, as the whole NoC is 

not modelled simultaneously, the speed of simulation will be lower than a compa-

rable direct modelled design.  

There are also cycle accurate [97] [98] and Transaction level [99] [100] software 

simulators that are designed to be faster than HDL based approaches [101]. As 

this research aimed at HDL based cycle accurate prototypes (for accurate over-

head evaluation), such options were not explored in detail. 
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2.5. Summary 

This chapter initially looked into the motivating factors for NoC based research 

and the basics of NoC designs. The initial part also covered the design choices 

such as switching techniques, routing algorithm and arbitration techniques.  

The predictability enhancement technique TDM that improved predictability by 

multiplexing the functionality of the NoC in the time domain followed next. It 

was seen why multiplexing in the time domain can work with static traffic where 

the traffic pattern is known ahead of time. In such cases, designers would even be 

able to provide quality of service with hard deadlines. Hoverer, with dynamic traf-

fic, assuring hard deadlines is not possible as the contention pattern in the NoC is 

not known beforehand. Though centralised TDM slot configuration can allow 

TDM based routers to function in a dynamic environment (dynamic traffic), the 

high and uncertain re-configuration time required for routers can result in signifi-

cant latency variation in packets during the initial setup period. Furthermore, the 

centralised approach limits the scalability of the NoC.  Even though a distributed 

programming approach (for TDM slot tables) can ensure NoC scalability, such 

approaches require complex design and implementation considerations [102]. 

The chapter then looked into LDM and VC based approaches which provided 

QoS support to dynamic traffic. While VCs rely on separate logical channels, 

LDM relied on multiplexing the communication link itself.  

With LDM, the bandwidth of the link is multiplexed to allow multiple packet 

flows through the same link simultaneously. This required serialising and de-

serialising logic at output and input port resulting in significant hardware over-

head. Furthermore, LDM has scalability issues as with the increase in the number 

of packet priorities in the NoC (on a bigger NoC), the efficiency of the approach 

can decreases unless the link width is increased proportionately resulting in fur-

ther increase in hardware requirements. 

With VCs however, the functionality of the router is split into separate logical 

channels with dedicated buffers for each virtual channel. As a result, VC based 
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designs have high hardware requirements. Furthermore, with the increase in size 

of the NoC, the advantages brought about by the technique will be reduced. To 

counter this, the number of VCs would have to be increased which will result in 

even higher hardware requirements. 

The chapter also looked into centralised and distributed adaptive routing ap-

proaches that tried to improve predictability by distributing traffic load by moni-

toring the instantaneous traffic. As the techniques rely on distributing the load 

rather than resolving the core predictability degrading issues, they can be ineffec-

tive in heavily loaded NoCs and where the NoC is evenly loaded. Also, in systems 

where the change in traffic is considerably faster compared to the adaptation time, 

the techniques will be ineffective. Section 2.3 looked into some of the common 

NoC architectures from the simple Hermes to the VC based QNoC and the AEthe-

real NoC that employ TDM with Circuit switching, along with other commercial 

NoC architectures and their features.  

It can be seen that most NoC architecture that are designed for QoS (predictabil-

ity) typically use VCs or TDM thus resulting in high hardware requirements or 

limitation in scalability and dynamic behaviour. As a result, it can be seen that 

there is a clear gap in the literature as designers rarely consider scalability, QoS 

and hardware overhead reduction (for dynamic traffic) simultaneously as design 

goals. As a result, the thesis presents techniques that will enable routers to be 

scalable and relatively hardware inexpensive, while providing QoS to packets by 

using techniques that dynamically modify router parameters and packets. 

The final section looked into the NoC modelling techniques; Direct and Virtu-

alised modelling. The section also discussed how direct modelling provided a tim-

ing accurate model of the whole NoC though requiring more resources than the 

virtualised approach which does not model the whole NoC simultaneously (hence 

allows modelling of large NoCs). This supports the use of the direct modelling 

technique in the prototypes presented in the following chapters. 

. 
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 Chapter 3 

3. Metrics and Problem Statement 

Although NoCs have been proposed as a promising communication infrastructure 

for many core systems, contention between non-preemptive packets intensified by 

the multi-hop nature of communication can result in variation in latency of packet 

reception.  

In an embedded system that uses NoCs as the communication infrastructure, there 

can be packets that have to be consistently delivered with low latency (and hence 

without high variability) as denoted by their high application supplied priority 

values [103]. Considering packet predictability as the reduction in the variability 

in packet latency [23], predictability enhancement (depending on packet priority) 

is hence an important consideration while designing an embedded system that 

deals with dynamically varying traffic. The terms packet predictability and dy-

namically varying traffic are defined as follows. 

Packet predictability: Packet predictability enhancement is defined as the 

reduction in variation in latency of the packet. So a packet with lower var-

iation in latency is considered more predictable than one with higher var-

iation. 

Dynamically varying traffic: Traffic that has no bounded time interval be-

tween successive packets and no upper or lower bounds on packet length. 
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If the packets have high variation in latency due to contention between packet 

flows, the probability of missing their soft deadlines would get higher. To counter 

this, the mapping of tasks would have to be done conservatively and higher per-

forming IPs (e.g. faster CPUs) would have to be employed thus resulting in lower 

overall resource utilisation and excessive hardware requirements respectively 

[46][104][105].  

As a real world example, take the case of an Electronic Control Unit (ECU) that 

manages the engine operation of an automotive system. With such an ECU (does 

not necessarily use NoCs) there will be data with different QoS requirements. For 

example, high latency variation in the throttle position sensor data or air tempera-

ture sensor would be acceptable. Even though packet latency variation in data 

from more critical systems like crankshaft position sensor, ignition or fuel injec-

tion system can be tolerated occasionally, consistent latency variation in the data 

can result in unfulfilled emission guarantees [106] which can cause serious legal 

issues for the manufacturer. 

This makes it important to improve packet predictability, and quantifying the 

magnitude and variation in latency of packets along with the associated overhead 

allows comparison between predictability enhancement techniques. 

As the work in the thesis aims at improving packet predictability in scalable NoC 

routers, the initial part of this chapter will look into the metrics that will be used to 

evaluate the techniques presented so that the advantages and disadvantages can be 

analysed. The chapter will then present the problem statement followed by exper-

imental results that show the significance of the work presented in the thesis. The 

final section of the chapter details the evaluation model used in the thesis. 

3.1. Metrics 

3.1.1. Performance 

Starvation of packets is a critical issue as far as a NoC is concerned as it can result 

in failure in packet delivery. The term starvation is defined as follows. 
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Starvation: Blocking of packets indefinitely, resulting in packet delivery 

failure. 

Starvation of packets is quantified in the thesis by using cumulative count of 

packet reception. The term cumulative count of packet reception is defined as fol-

lows. 

Cumulative count of packet reception: (For each packet priority) Number 

of packets that were received successfully at that priority level or higher. 

So, when packet starvation is evaluated, the performance of NoC designs are pre-

sented as line graphs with cumulative count of packet reception in the Y axis and 

packet priority in the X axis. An example cumulative count plot is shown in Fig-

ure 3.1. In this thesis, it is assumed that packet priorities decrease with the in-

crease in the numeric value of priority (i.e. Packet priority 1 > 2 > 3). In the plot, 

it can be seen that the number of packets received with packet priorities 1, 2 and 3 

are higher in the case of NoC B than NoC A. Even though the packet priority val-

ues are discrete values, the points on the plots are connected using lines to aid vis-

ualisation. 

 

Figure 3.1: Example cumulative count plot 

As seen in the initial part of the chapter, latency variation is an important aspect of 

the NoC design improving which will aid in resource optimisation. Latency varia-

tion is quantified using interquartile range (the difference between the 3
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quartile of latency) of all packets of that priority level, during the course of a sin-

gle simulation run. Latency variation is compared between NoC designs primarily 

using box plots that present an evaluation of both the magnitude and variation in 

latency between NoCs for the same traffic pattern.   

An example box plot is shown in Figure 3.2 and in box plots, packet priority is 

presented in the X-axis and latency in shown in the Y-axis. The box plot whiskers 

show the extreme cases of latency while the boxes show the first and third quartile 

of latency. So, the shorter the box and whiskers are the lower the variation in la-

tency and the lower the box and whiskers are the lower the magnitude of latency. 

 

Figure 3.2: Box plot example 

In the example, it can be seen that for packets 1 and 2, NoC B has lower magni-

tude and variation in latency compared with NoC A depicted by lower and shorter 

box and whiskers.  

As the techniques also result in reduction of the magnitude of latency with respect 

to the packet priority, the thesis also present average latency plots depicting aver-

age latency in the Y axis and packet priority in the X axis. In places where multi-

ple techniques are evaluated simultaneously, variation in latency is evaluated ad-

ditionally using interquartile range plots and using the variation metric we call S-

index.  
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As the thesis do not deal with packets with hard-deadlines, there can be a few ex-

treme cases of latency per packet priority which has to be ignored. As a result, 

Interquartile range is used in the thesis to quantify latency variability as it is not 

affected by extreme cases. For the same reason, interquartile range has been used 

in works like [107] and [108] and as per Buch in [109], it is one of the robust 

methods of estimating the trend of a distribution which has non-deterministic 

events. 

Even though the packet priority values are discrete values, the points on the plots 

are connected using lines to aid visualisation as with the cumulative count plots. 

Similarly, the average latency plots (which depict the magnitude of latency for 

each packet) will look similar to interquartile latency plots but converse to inter-

quartile latency plots, those will have average latency in the Y axis. 

As interquartile plots are lines that show the latency variability over the whole 

priority range, each of those lines are concatenated into a single metric called the 

S-index for the ease of comparison between NoCs. 

S-index (estimated using equation (3.1)) is used to quantify the latency variation 

of all packets priorities of a NoC into a single metric within a specific traffic pat-

tern.  

 
 

 
S − index = ∑

 Q3P−Q1P 

P × W
 

P= Prange

 

 

(3.1) 

 

(Prange- Range of packet priorities, Q3P -3
rd

 Quartile of latency, Q1P -1
st
  Quartile of latency, 

P- Numeric value of packet priority, W- Weightage relation) 

In the equation, the term W is used to specify the weightage between packet prior-

ities when computing the S-index. In this thesis, as it is assumed that the weight-

age of packet priorities decrease linearly with the increase in the numeric value of 

priority and hence W is set at one. 
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S-index allows predictability (latency variation) comparison between predictabil-

ity enhancement techniques within a specific traffic pattern. Thus, a lower S-index 

value for a NoC shows lower variation in latency compared to another for that 

specific traffic pattern. More details on the effect of latency variation of packets 

(depending of priority) on S-index is added in Appendix 4. 

Additionally, to show the advantages brought about by the techniques presented, 

plots depicting maximum latency of packets are used thus showing extreme cases 

of variability as well as plots showing the cumulative count of late packets (com-

pared to a soft deadline) thus showing magnitude of latency. 

3.1.2. Load 

With NoCs, packet latency variation increases with the increase in load (due to the 

increase in contention between packets) on the NoC. As a result, to monitor the 

latency variation of the NoC with the increase in contention, the load on the NoC 

has to be quantified.  

At any instant, the network load can be quantified as link utilisation (as in [110]). 

This thesis however quantifies it as average link utilisation (as in [111]) as an es-

timate of the non-deterministic load over the whole simulation run into a single 

metric. The average utilisation per link V is used as the measure of load in the 

NoC and it is estimated using equation (3.2).  

V =  { ∑ ∑ (
D𝑥,𝑦

P𝑥,𝑦
)

𝑦=0 𝑡𝑜 H−1

𝑥=0 𝑡𝑜 W−1

} /L(W×H) 

 

(3.2) 

(W- NoC Width, H- NoC Height, D- Total transmission time of that packet, No load laten-

cy, P- Period, L- Number of links) 

To estimate V, the utilisation of the NoC by packets of each priority is estimated 

by taking the ratio of the total transmission time (Dx,y) and period (Px,y) for that 

packet. The sum of the utilisation of all packet priorities provide the total utilisa-

tion and the value divided by the number of links (L(WxH)) gives the average utili-

sation per link V as seen in equation (3.2). 
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As V is the average utilisation per link, it does not provide information on the load 

on the NoC at any instant of time or the load at any specific link in the NoC. 

However, V can be used to quantitatively compare loading on the NoC between 

traffic scenarios.  

3.1.3. Hardware Resources 

The hardware overhead for the techniques presented is evaluated by the complexi-

ty of the logic required for each design. In this thesis, hardware overhead is quan-

tified in terms of Lookup table (LUT) and register utilisation figures for the de-

sign to be implemented on an FPGA.  

However, depending upon the architecture of the FPGA, the LUT and register 

utilisation can vary for the same design. As a result, to enable accurate compari-

son between the techniques presented, xc7a350t Artix-7 [112] FPGA (having 

2.25x10
5
 LUTs and 4.5x10

5
 slice registers) was chosen as the standard and all the 

designs were evaluated targeted at that specific FPGA. To enable this, the NoC 

models were designed in synthesisable HDL and was evaluated using Xilinx Vi-

vado [113] tool. 

Even though the hardware overhead for a design on an FPGA and Application 

Specific Integrated Circuit (ASIC) would not be numerically equal, an FPGA 

based implementation can give an estimation of the complexity of the logic to be 

implemented on ASIC for the same design. For example, Gaj et.al. in [114] com-

pared overhead of  several algorithms on FPGA and ASIC platforms and reported 

that there is a strong correlation between the hardware overheads associated in 

both cases with each algorithm.  

ASICs have a much more complex implementation cycle and hence FPGA im-

plementation is used in this thesis. 

3.2. Problem Statement 

As seen in section 2.2.1, the classical predictability enhancement technique TDM 

has limitations in scalability and dynamic behaviour.  
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Although LDM does not have limitation dealing with dynamic traffic, it is not 

scalable and it results in high hardware overhead as seen in section 2.2.2. Similar-

ly, with VCs, preemptive arbitration brings about high hardware requirements and 

limitation in scalability [77] as seen in section 2.2.3.  

Simple non-preemptive NoCs however are scalable and are dynamic with low 

hardware requirements. However, they suffer from packet latency variation re-

gardless of packet priority. As non-preemptive NoCs are scalable and have limited 

hardware requirements, this thesis aims on resolving predictability degrading is-

sues is such NoCs. 

As an example, the cumulative count of packet reception numbers of a Hermes 

based NoC with priority based arbitration (under a HOL blocking scenario added 

in Appendix 1a ) with load V= 0.3, 0.5 and 0.7 is shown in Figure 3.4. The defini-

tion of a Hermes based NoC is as follows. 

Hermes based NoC: In the thesis, the non-preemptive NoC model (with 

XY-routing and wormhole switching) based on Hermes (explained in sec-

tion 2.3.1) is referred to as the Hermes based NoC. 

It can be seen that with the increase in load on the NoC, HOL blocking resulted in 

the decrease of packet reception numbers of packet 1 and 2. At V= 0.7, they were 

completely starved. 
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Figure 3.3: Packet starvation with non-preemptive NoCs 

Furthermore, due to tailbacking and HOL blocking, non-preemptive NoC packets 

can have high magnitudes of latency regardless of the priority value as seen in 

Figure 3.4.  

 

Figure 3.4: Average latency plot comparing Hermes based and VC based NoCs 

Figure 3.4 shows the average latency plot of the performance of a Hermes based 

NoC and a VC based NoC (with 4 service levels under a random traffic scenario 

added as Appendix 1f) with average latency in the Y-axis and packet priority in 

the X-axis. The definition of a VC based NoC is as follows. 
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VC based NoC: In the thesis, the NoC with preemptive arbitration enabled 

by Virtual Channels (explained in section 2.2.3) is referred to as the VC 

based NoC. 

It can be seen that with the Hermes based NoC, the high priority packets (1 to 8) 

does not achieve any latency advantage in magnitude (depicted by high average 

latency) compared to the lower priority packets. With the VC based NoC this is-

sue is resolved as the high priority packets (1 to 8) are seen to have low average 

latency at the cost of the low priority packet’s average latency.  

 

Figure 3.5: Latency box plot comparing Hermes based and VC based NoCs 

The latency performance of both the NoCs are presented in Figure 3.5 and it can 

be seen that the high priority packets of the VC based NoC suffer lower variation 

in latency compared to the Hermes based NoC depicted by the shorter box and 

whiskers.  
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Figure 3.6: Interquartile range of latency comparing Hermes based and VC based NoCs 

The latency variation in evident in Figure 3.6 where the interquartile range of la-

tency of both the NoCs are plotted. It can be seen that with the Hermes based 

NoC, high priority packets 2 and 4 suffer high variation in latency. With the VC 

based NoC the high priority packets (1 to 9) are seen to have low variation in la-

tency and hence have better predictability than the Hermes based NoC. 

However, VC implementation results in high hardware overhead both in terms of 

LUTs and registers as shown in Figure 3.7 (4x4 NoC). 
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Figure 3.7: Hardware overhead comparison of the Hermes based NoC with the VC based NoC. 

As VCs rely on separate buffers for each service level, an increase in size in the 

NoC would result in decrease in latency performance in terms of both magnitude 

and variability. As a result, for ensuring predictability (with increased NoC size), 

the number of service levels would have to be increased hence resulting in a linear 

increase in hardware overhead. 

The research presented in the thesis aims at improving the predictability of non-

preemptive NoC packets with low overhead dynamic methods that are completely 

scalable.  

3.3. Evaluation Infrastructure 

To evaluate the performance of the developed NoC models, either a hardware 

platform like a Field Programmable Gate Array (FPGA) can be used or the evalu-

ation can be done in simulation. Though hardware base test infrastructure would 

be several times faster than simulation [115] [116], such systems provide limited 

support for monitoring the internals as well as functionality of the design. As a 

result, even though the models are done with synthesisable HDL, the performance 

evaluation was conducted with Bluesim [117] simulation environment. 

The performance metrics defined in section 3.1.1 are obtained in the thesis in 

simulation and since the NoCs follow the direct modelling approach, the simula-
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tion results are cycle accurate and are in terms of clock cycles. The same models 

were then synthesised to the chosen FPGA to get the hardware overhead figures 

as per the hardware overhead metrics described in section 3.1.3. 

3.3.1. NoC Framework  

The basic evaluation model was designed in Bluespec System Verilog [118] [119] 

as a configurable direct implemented router design called the R2.  

Bulespec System Verilog was chosen as the implementation medium for a variety 

of reasons. Based around System Verilog, Bulespec System Verilog treats both 

architectural exploration and verification as part of HDL hence considers verifica-

tion as a design problem. As a result, the verification time can be reduced signifi-

cantly thus reducing overall implementation time compared to Verilog, VHDL or 

System Verilog [120]. Furthermore, it provides several abstraction mechanisms 

for simplifying the design over System Verilog thus reducing design time further. 

These features simplify the design process profoundly resulting in reduced num-

ber of bugs along with reduced design, verification and debugging time [120].  

R2 routers were enveloped in a generic test bench that replicated and intercon-

nected routers and data generator/receptors. The local port of each router was 

connected to packet generators/receptors so that packet generation and reception 

can be carried out and documented for analysis. 

Hermes is a widely used scalable non-preemptive NoC design with minimalistic 

hardware overhead [15]. Furthermore, Hermes is widely used in contemporary 

literature on predictability [48] [52] and hence in this thesis, Hermes is treated as 

the baseline architecture to which the techniques presented in the thesis are com-

pared.  

The basic router follows a five port architecture based around Hermes hence em-

ploying XY-routing [57] and wormhole switching [121] for low hardware re-

quirements. To enable scalability and for ensuring low overhead, mesh type to-

pology is used with priority based arbitration.  
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The R2 design follows a uniform mesh topology and unlike Hermes, each packet 

header includes a priority value (application-specified priority) which is used by 

the arbitration unit inside the routers to resolve contention between packets over 

output ports.  

 

 

Figure 3.8: Router input port 

As shown in Figure 3.8, R2 routers have buffered input ports, which on reception 

of a packet header employ XY-routing to set the ‘Arb_request’ register and the 

‘priority’ register in accordance with the destination and priority information car-

ried. 
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Figure 3.9: XY-routing logic operation 

As shown in Figure 3.9, the arbitration unit in the router then checks ‘Arb  re-

quest’ and ‘priority’ registers of all input ports to provide arbitration to the quali-

fied ports. The arbitration logic simultaneously checks for ports requesting arbi-

tration to each of the output ports. If the associated output port is unused, the rout-

er will grant arbitration to highest priority request by setting the ‘out port’ register 

on the qualifying input port. This will permit the input port to send flits to the al-

located output port so that flits could be transferred away through the communica-

tion links.  

As an example, the logical operation of the arbitration unit for the local port is 

shown in Figure 3.10. 

As shown in the figure, if the output port referred in the arbitration request of the 

local port is unused and the arbitration request for the local port is active, the arbi-

tration logic for the local port gets triggered.   
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Figure 3.10: Arbitration unit operation for local port 

As shown in Table 3.1, each port has an identifier and a value greater than zero 

inside an arbitration request register represents a valid arbitration request. 

 

Connection Identifier 

Null 0 

Local 1 

North 2 

East 3 

South 4 

West 5 
  

Table 3.1: Port connection identifiers 

The arbitration logic then checks whether all the other arbitration requests (to the 

same output port) are of lower priority than the current arbitration request and if 

they are, it provides arbitration by setting the ‘out_port’ register inside the native 

input port to the identifier value of the output port. In case there are any other re-

quests with higher priorities than the current arbitration request, the logic waits 

while the logic inside the arbiter associated with that input port (hosting the high-

est priority request) executes. 

As the flits are being transferred, the input port also decrements the value in the 

‘flits left’ register so that when the value reaches zero, the connection can be 

closed by re-setting the ‘out_port’ register value to zero. 
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Details on the NoC prototypes used in the thesis and the Universal Resource 

Locator (URL) to the open source code is added in Appendix 2. 

3.3.2. Performance Evaluation Framework 

The performance evaluation framework consists of packet generator modules that 

inject packets into the NoC as per a pre-set parameter list. The packet generator 

configuration is auto generated as Bluespec source code using a custom built code 

generator (shown in Figure 3.11) which can either configure the generators ran-

domly or in accordance with a series of algorithms to generate specific configura-

tion patterns. 

 

Figure 3.11: Data generator configuration generator 
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Depending on the parameters set, the code generator generates the source code for 

configuring the packet generators and this code is added into the HDL code before 

compilation. 

A sample output of the code generator is shown in Figure 3.12. The numbers seen 

inside the parenthesis are the configuration parameters of each data generator and 

they represent X-address, Y-address, Packet Priority, Start Time, Packet Size, Pe-

riod, Destination X-Address and Destination Y-Address respectively. 

 

dat_gen[ 0] [ 0] <- mk_datagen( 0, 0,2,139,50,56, 0, 1); 

dat_gen[ 1] [ 0] <- mk_datagen( 1, 0,3,147,50,58, 1, 0); 

dat_gen[ 0] [ 1] <- mk_datagen( 0, 1,1,083,50,51, 1, 1); 

dat_gen[ 1] [ 1] <- mk_datagen( 1, 1,4,220,50,53, 1, 0); 
 

Figure 3.12: Snippet from ‘data generator configuration’ generator output 

The generators are designed to send packets of a fixed size and then sleep for a 

time period after which the same cycle will be repeated.  

To enable close simulation of a realistic system, the generators are also provided 

with logic to assess unforeseen waits imposed on it by the communication net-

work so that the associated time lag can be compensated by decreasing waiting 

periods. To enable this, the generators have two internal counters, Counter_A and 

Counter_B. Counter_A is a free running counter which will increment itself irre-

spective of the state of packet generation logic. Counter_B is the conditional 

counter that is designed to increment under both of the stages of the packet gener-

ation logic; packet injection state and sleep state. So, under ideal conditions, both 

counters will have the same value in them thereby denoting zero time lag and un-

der this situation, the packet injection and sleep operations will be repeated as per 

the pre-set parameters. 

If the generator becomes unable to inject packets into the NoC due to congestion 

inside the NoC, the generators will not be able to increment Counter_B while 

Counter_A gets incremented. This value difference between the counters is used 

to determine the wait time the generator will have to succumb to the next time. 
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The generator will then try to equalise the two counters by compensating for the 

difference by trading the sleep time as shown in Figure 3.13.  

 

 

Figure 3.13: Packet generator logic 

In case the lag is greater than the sleep time, the generator will refrain from going 

into the sleep state and will start injection of the next packet immediately after the 

current packet. The logic also increments Counter_B with the time saved by skip-

ping the sleep stage to document the resultant gain in time. In case the time lag is 

less than the sleep time, the generator sleeps for a period equal to the difference 

between sleep time and time lag so that once this is performed, both counters will 

be running at the same values denoting zero time lag. This enables the generator 

to mimic the performance of a system with large buffers with minimal overhead.  
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Apart from conditioning the data to the required flit format and injecting into the 

NoC, the packet-generators also receive packets from the NoC and export evalua-

tion figures to an external file. A snippet from one of the tests is added as Figure 

3.14.  

 

I 11 1 0 3 1 4 179 100 419 700 

R 8 2 0 701 1      

I 9 1 3 4 3 0 164 100 438 704 

R 25 0 4 706 1      

I 18 1 2 2 2 4 171 100 435 708 

R 12 1 4 742 1      
           

Figure 3.14: Snippet from an exported text file detaining simulation milestones 

The lines starting with ‘I’ depict the timestamp with characteristics of a packet 

injection while lines starting with ‘R’ depict the particulars of a packet reception 

along with its timestamp. These details are then analysed by a custom built macro 

code running inside the spread sheet software to generate performance statistics 

and graphs. The detailed information on the injection timestamp and reception 

timestamp is shown in Figure 3.15 and Figure 3.16 respectively. 

 

Type Packet 
Priority 

Source 
X 

Address 

Source 
Y Ad-

dress 

Destination 
X Address 

Destination 
Y Address 

Packet 
ID 

Start 
Time 

Packet 
Size 

Sleep 
Time 

Time 
stamp 

I 11 1 0 3 1 4 179 100 419 700 
           

Figure 3.15: Packet injection timestamp details 

 

Type Packet 

Priority 

Receptor 

X Ad-
dress 

Receptor 

Y Ad-
dress 

Reception 

Timestamp 

Packet ID 

R 8 2 0 701 1 
      

Figure 3.16: Packet reception timestamp details 

The packet latency performance is then estimated by analysing the data file using 

a VB Script coded analysis macro (shown in Figure 3.17) developed to run inside 

the spreadsheet software used. 
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Figure 3.17: Performance evaluation macro 

3.4. Summary 

This chapter initially covered the metrics the thesis is looking into, latency for 

performance and LUT and register utilisation for hardware overhead. The chapter 

continued with the problem statement followed by details on the evaluation infra-

structure. 

In the problem statement section, the predictability issues in latency suffered by 

non-preemptive NoC designs were discussed. The literature shows that non-

preemptive NoCs can have starvation of packets regardless of the priority value 

and that the magnitude of latency can vary widely thus rendering application-

supplied priory pointless.    

The section also briefly looked into how VCs can resolve such issues at the cost 

of scalability limitation and hardware overhead. This motivates the research pre-
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sented in the thesis as the techniques presented aim at improving packet predicta-

bility with simple and scalable techniques than the VC approach. 

The last section of the chapter detailed the basic evaluation infrastructure used and 

it acts as a prologue to the specifics of implementation details of the techniques 

presented in the subsequent three chapters.  
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 Chapter 4 

4. Starvation Resolution by Priority 

Manipulation 

In order to resolve HOL blocking situations, this chapter presents the Priority 

Forwarding and Tunnelling (PFT) [25] technique that is designed to neutralise 

HOL blocking scenarios by enabling the blocked packet up the line to remotely 

manipulate the routers and priority of the packets blocked down the line. Typical-

ly, HOL blocking is resolved with preemptive arbitration. As seen in the section 

2.2.3, preemption implementation is hardware intensive whereas PFT aims to re-

solve HOL blocking without the use of Virtual Channels for scalability and re-

duced hardware overhead. 

4.1. Priority Forwarding and Tunnelling  

In the PFT technique, when a packet is blocked by another blocked packet of low-

er priority, the priority and destination information of the packet blocked up the 

line will be extracted by the respective router and forwarded through the blocked 

path to the header of the blocked packet down the line as a PFT-flit. Once the 

PFT-flit reaches the router with the blocked header, the priority value contained in 

the PFT-flit is compared with the blocked header’s priority. If the priority speci-

fied in the PFT-flit is higher than the priority of the packet header blocked down 

the line, the header’s priority is boosted to that of the information in the PFT-flit 

to resolve the block. This part of the technique is called Priority Forwarding and it 
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permits HOL blocking to be neutralised, hence starvation of packets (due to lower 

priority packets) can be avoided. 

To prevent further HOL blocking on the routers through which the PFT-flits flow, 

the routers also perform a process called Priority Tunnelling by which the output 

ports that will be used by the packet blocked up the line in the near future will be 

locked with its priority value. This prevents other packets with lower priority val-

ues from getting arbitration to those output ports temporarily until the blocked 

packet is transmitted through them.  

Since the PFT-flit flows occur only on paths that are completely blocked, the 

same data lines can theoretically be used by PFT-flits by using a multiplexing log-

ic hence reducing additional overhead of extra connection lines as shown in Fig-

ure 4.1. 

 

Figure 4.1: PFT-flit transmission 
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Figure 4.2: Detailed PFT functionality 

To understand the technique further, consider the scenario depicted in Figure 4.2 

where we can see routers A and B with two packet flows. 

Packet flow 1 originates from the local port of router A (shown as S1) and is 

blocked somewhere south of router B. Packet flow 2 originates from the west port 

of router A and has destination north of router B. 

As packet 2 is blocked by the blocked packet 1, PFT logic will be initiated and the 

blocking information will be forwarded to the west input port of router B. Now, it 

can be seen that there is a conflict of interest. As the destination of packet 1 is 

somewhere south of router B, the PFT-flit has to be forwarded towards the south 

to do Priority Forwarding. But the port on router B that will be used by packet 2 in 

future is the north port and hence that is the port that has to be tunnelled.  

To enable the routers to calculate the correct ports to tunnel, the PFT-flit consists 

of three components; destination information, packet priority and tunnelling flag. 

Every time Priority Forwarding is done, the future output port (of the packet be-

hind the line) is calculated by using the destination information contained in the 

PFT-flit and the appropriate port is tunnelled. If the future port is the same as the 

one towards which the PFT-flit has to be forwarded, the PFT-flit is send to the 

next router as such. On the other hand if the future port is different to that towards 

which the PFT-flit is to be forwarded as seen in the example, the tunnelling flag in 

    

  

  W 

    

    

  

  

    A B 

  

  

  

  

S 

N N 

S 

W E E 

L L 

S1 

D1 

S2 

D2 

Priority Forwarding 

Priority Tunnelling 



64 

 

the PFT-flit is disabled and is send to the next router so that the routers down the 

line do not preform unnecessary tunnelling.  

In the example, the router tunnels the north port of router B and then forwards the 

PFT-flit through the south port with the Tunnelling flag disabled so that the rout-

ers down the line does not do further Tunnelling. 

The effect of PFT on the HOL blocking scenario explained in Section 2.2 is 

shown in Figure 4.3. As stated before, it is assumed that packet priorities decrease 

with the increase in the numeric value of priority (i.e. Packet priority 1 > 2 > 3). 

So, ordinarily under the situation in Figure 4.3a, packet 3 will get arbitration to 

the south port of router (1,2) (after packet 9 is transmitted) ahead of packet 4, 

hence forcing packet 1 to wait behind the line further. However, with the applica-

tion of Priority Forwarding, packet 4 is forwarded with the priority value 1 hence 

allowing packet 4 to secure arbitration ahead of packet 3 (as depicted in Figure 

4.3a and Figure 4.3b). 
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Figure 4.3: Priority Forwarding and Tunnelling operation 

Since Priority Tunnelling was performed to the south port of router (1,2), none of 

the lower priority packets (like 3 or 8) will be granted arbitration to the port and 

packet 1 will be able to secure arbitration next (as seen in Figure 4.3c and Figure 

4.3d). As from the example, it can be seen that PFT neutralises HOL blocking and 

allows packet 1 to get transmitted ahead of packet 3 and packet 8. As the PFT log-

ic will be active for the packets that were transmitted ahead of packet 1, those will 

not suffer HOL blocking for long so as to increase the latency of packet 1 further. 

PFT therefore allows the packets to be transmitted in the order 9-4-1-3-8, rather 

than in the order 9-3-4-8-1 as it would occur without PFT. This results in a latency 

reduction for the highest priority packet 1. Since packet 9 was transmitted ahead 

of packet 1, HOL blocking can reoccur as packet 9 could be blocked down the 

line due to its lower priority value. In such a situation, PFT will again be triggered 

to resolve that block. 
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Assume the situation where an input port already Priority forwarded is being Pri-

ority forwarded by a different packet. In such a situation, the routers would check 

whether the new Priority forwarded priority value is higher than the current one 

and if it is higher the value is updated. If the value is lower, it will be trashed but 

this will not affect the performance as the next time the packet is blocked, Priority 

Forwarding will again be initiated nevertheless. 

4.2. PFT Implementation on the R3 NoC 

To evaluate the performance merits of PFT, it was implemented as a NoC model 

designated the R3 (URL to the source code added in Appendix 2) which was an 

advancement over the R2 NoC (Hermes based). 

The major challenge in PFT implementation in the R3 NoC was dealing with the 

contention between PFT-flits. At any point of time, there can be new PFT-flits 

generated at each input port due to the blocking of packets locally simultaneously 

with remote blocking PFT-flits arriving from nearby routers contenting for the 

same output port. Furthermore, the PFT-flits arriving from nearby routers will 

already be causing tailback on the routers up the line elevating the problem fur-

ther.  

To deal with such eventualities, each input port is provided with a local blocking 

info register called -register to store the PFT-flit generated at the local input port. 

To store the PFT-flits arriving from nearby routers, each input port other than the 

local port is provided with a remote blocking register called -register. 
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Figure 4.4: Blocking registers 

Every time a packet is newly blocked by another blocked packet, a PFT-flit is 

generated and is stored into the respective -register. The router is provided with 

a scheduling logic which uses TDM logic to select an active -register or -

register one at a time to service. As the data inside the -register is the local 

blocking info, every time it is serviced, the data inside it is forwarded to the next 

router towards which the packet that is blocking the local packet is blocked. The 

internal functionality of the routers (1,1) and (1,2) from the example is depicted in 

Figure 4.5. 

In Figure 4.5 it can be seen that as packet 1 is blocked by the already blocked 

packet 4, the blocking information of packet 1 is extracted and stored into an -

register (seen inside the north port of router (1,1)).  
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Figure 4.5: PFT Functionality example 

To trigger the logic to load the -register every time when a packet is blocked by 

a blocked packet, there are two Boolean flags named A and B inside the input 

ports of each router. The router is provided with logic to store the value of A into 

B and every time a flit is transmitted, the Boolean value stored in A is inverted. 

By using such a system whenever transmission is in progress, B will be a clock 

cycle lagging behind A and both the value will be the same only when the link is 

idle, hence identifying a blocked output port (registers A and B are not shown in 

Figure 4.5 for enabling better readability). 

As the header of packet 4 is toward the south of the router in the example, when 

the PFT scheduler services the -register in the north port, the info is forwarded 

towards the south to router (1,2) where it is stored into its remote blocking register 

the -register (as seen inside the north port of router (1,2)). 

When the scheduler services the data inside -registers, if the blocked header is 

not at that router, Priority Tunnelling is done and the data is forwarded to the next 

router and this is continued until the PFT-flit reaches the router with the blocked 
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header. Once the blocked header is found, Priority Forwarding is performed to 

resolve the block. 

To prevent tailbacking of headers inside FIFO buffers, the prototype also include 

logic to verify whether a flit is a header before it is injected into a FIFO. This ena-

bles the router to update the priority register inside the input port even if the head-

er is not in the head of the queue thus engaging PFT logic even before the header 

initiates an arbitration request.  

Even though theoretically it is possible to share the data lines for both data flits 

and PFT-flits, the current prototype utilises separate connection lines for ease of 

implementation. 

The pseudo code for the logic operation is added below 

Pseudo code 

PROCEDURE PFT_loader (At each input  port) 

// to load blocking data into α-register  

IF α-register is unused AND output_port is unassigned AND port_request is active AND request-

ed_output_port is blocked THEN   

LOAD arbitration_request_priority, tunnelling_flag and destination_address into the lo-

cal α-register 

 

// to load blocking data received from the network to β-register 

IF input flit is blocking data AND β-register is unused THEN 

LOAD input flit into local β-register 

END PROCEDURE 

 

PROCEDURE PFT_Scheduler 

Using a scheduling algorithm 

SET the scheduling pointer to an active α-register or active β-register to be serviced 

END PROCEDURE 

 

PROCEDURE Process_α-register_data(for the α-register currently pointed by Scheduler) 

// to send α-register data to next router 

IF requested_output_port is blocked THEN 

SEND α-register data through the requested_output_port 

ELSE  
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DROP α-register data 

END PROCEDURE 

 

PROCEDURE Process_β-register_data (for the β-register currently pointed by Scheduler) 

// to find the blocked header and update priority 

IF output_port is unassigned AND port_request is active THEN 

IF arbitration_request_priority less than β-register_data_priority THEN 

SET arbitration_request_priority to β-register_data_priority 

ELSE 

DROP β-register data 

 

// to tunnel output port and to send β-register data to next router 

IF tunnelling_flag =1 in β-register data AND output_port is blocked THEN  

FIND future_output_port using XY-routing logic  

IF output_port = future_output_port THEN 

TUNNEL current_output_port  

SEND β-register data through current_output_port 

ELSE  

TUNNEL future_output_port 

SET tunnelling_flag to 0 in the β-register data 

SEND β-register data it through current_output_port 

 

 

// for β-register data when tunnelling is disabled (as tunnelling already done) 

IF tunnelling_flag == 0 in β-register data AND output_port is blocked THEN  

SEND β-register data through current_output_port 

ELSE IF  current_output_port is not blocked THEN  

DROP β-register data 

END PROCEDURE 

4.3. Experimental Work 

As this chapter deals with the resolution of packet starvation (and not latency di-

rectly), the chapter quantifies the performance of NoC designs based on the cumu-

lative count of packet reception numbers (thus measuring starvation). 

Tests were conducted using a 4x4 size mesh type NoC with a traffic scenario 

(added as Appendix 1a) where high priority packets 1 and 2 share a heavily con-

gested route. 
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4.3.1. Varying Load Due to the Increase in Payload Flits 

 

Figure 4.6:  Cumulative count of received packets at load V=0.3 

Figure 4.6 shows the cumulative count plot for the number of received packets at 

load V=0.3. As evident from the plot, the reception numbers of the high priority 

packets are seen higher with PFT compared to the Hermes based NoC. This is due 

to the resolution of HOL blocking by PFT while there will be high priority pack-

ets still waiting for transmission inside the packet generators of the Hermes based 

NoC.  

The load level on the NoC was then increased to V=0.5 by varying the packet size 

(thus increasing the number of payload flits in the NoC at any point of time). The 

resultant plot is added as Figure 4.7. 
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Figure 4.7: Cumulative count of received packets at load V=0.5 

The effect of the increased load is evident from the plot as the number of packets 

successfully received with priority 1 dropped from 25 (in Figure 4.7) to six. How-

ever with PFT, the packet reception number is seen almost constant.  

With further increase in load to V=0.7, packets 1 and 2 are seen to get blocked 

completely with the basic NoC due to HOL blocking as seen in Figure 4.8. 

 

Figure 4.8: Cumulative count of received packets at load V=0.7 
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The effect of PFT on the traffic is quite evident as the reception numbers for the 

high priority packets are seen to drop only slightly from V=0.5. 

 

Figure 4.9: Cumulative count of received packets at load V=1 

As seen in Figure 4.9, the situation is similar with the increase in load to V=1 as 

the packet reception numbers show only minor variation with PFT. 

4.3.2. Varying Load Due to the Increase in Packet Numbers 

To verify the effect of the increase in load on the NoC due to the increase in pack-

et numbers, a 4x4 NoC was tested with increasing load by varying the packet pe-

riod. The cumulative count of packet reception with load V=0.3, 0.5, 0.7 and 1 are 

presented in Figure 4.10, Figure 4.11, Figure 4.12 and Figure 4.13 respectively. 

Although the tests reveal similar performance characteristics, the notable differ-

ence between the results of this section is that despite an increase in the load on 

the NoC the reception numbers of the high priority packets are seen to be un-

altered with PFT. 
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Figure 4.10: Cumulative count of received packets at load V=0.3 

 

 

 

Figure 4.11: Cumulative count of received packets at load V=0.5 
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Figure 4.12: Cumulative count of received packets at load V=0.7 

 

Figure 4.13: Cumulative count of received packets at load V=1 
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packet priorities, this overlap would have happened further down the line depend-

ing of the number of packet priorities. 

The performance of PFT at different load levels can be seen in Figure 4.14 and 

Figure 4.15 where the cumulative count of received packets are plotted. Figure 

4.14 shows the plot where the load was increased by increasing the number of 

payload flits in the NoC and Figure 4.15 depict the comparison when the load was 

increased by increasing the packet numbers. 

 

Figure 4.14: Packet reception cumulative count with PFT due to the increase in payload flits 
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Figure 4.15: Packet reception cumulative count with PFT due to the increase in packet numbers 

It can be noted that the performance variation of the high priority packets is con-

siderably less due to the increase in packet numbers than increase in payload flit 

numbers. Also, with the increase in load on the NoC due to the increase in headers 

the reception numbers for low priority packets are seen to increase contrary to the 

previous approach. 

With Hermes based NoC, the increase of load on the NoC due to payload flits 

seems to have a linearly scaled effect on packet reception numbers (lines at differ-

ent load levels are seen almost parallel to each other) as seen in Figure 4.16. 
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Figure 4.16: Packet reception cumulative count with Hermes based NoC due to the increase in payload 

flits 

However with the increase on load due to the increase in packet numbers, the per-

formance variation gets magnified as seen in Figure 4.17. 

 

Figure 4.17: Packet reception count with Hermes based NoC due to the increase in packet numbers 

Although, PFT was shown to improve latency of packets (shown in Figure 4.18), 

the advantage was seen to be limited due to tailbacking of packets (explained in 

Chapter 5). 
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Figure 4.18: Packet reception latency boxplot 

In the figure it can be seen that packets like 1,2,3 and 7 has lower and shorter box 

and whiskers depicting lower magnitude and variation in latency.  

4.3.3. Performance Variation with Packet Size 

To evaluate how packet size variation (with respect to priority) affect the perfor-

mance, a 4x4 NoC was evaluated with packet size increasing proportionally and   

inversely proportionately with priority. The resultant cumulative count plots at a 

low load of V=0.4 are added as Figure 4.19 and Figure 4.20. 
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Figure 4.19: Cumulative count plot with packet size scaled proportionately to priority with V=0.4 

 

Figure 4.20: Cumulative count plot with packet size scaled inversely proportionately to priority with 

V=0.4 

From the results it is evident that PFT is more effective when the high priority 

packets are shorter than lower priority packets. When the high priority packets are 

longer than low priority packets, both Hermes based NoC and PFT had similar 

performance under low load as HOL scenarios would have been very rare (Figure 

4.20). 
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As the load was increased to V=0.8, starvation of packets were encountered with 

the Hermes based NoC as in previous experiments (evident from Figure 4.21). 

 

Figure 4.21: Cumulative count plot with packet size scaled proportionately to priority with V=0.8 

Figure 4.21 shows the performance of the system where the high priority packets 

where shorter than the low priority ones. Similar to the previous experiment, the 

effectiveness of PFT seem to be similar to Hermes based NoC when the low prior-

ity packets were shorter than the high priority ones as seen in Figure 4.22. 
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Figure 4.22: Cumulative count plot with packet size scaled inversely proportionately to priority with 

V=0.8 

4.3.4. Limitations 

Although PFT improved packet reception numbers by resolving starvation caused 

by HOL blocking, the technique can be ineffective with random traffic without 

hotspots. A hotspot is defined in the thesis as follows. 

Traffic hotspot: Connection link on the NoC which is shared by a signifi-

cantly higher number of packets than the average case. 

With random traffic without any hotspots, the occurrence of HOL blocking be-

comes a less common phenomenon thus decreasing the instances where the tech-

nique will be triggered. Also, due to the occurrence of tailbacking, the advantages 

in the magnitude and variation of latency is limited. 
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Figure 4.23: Latency plot 

 

Figure 4.24: Cumulative count plot 

For example, the latency box plot of a traffic scenario without hotspots is shown 

in Figure 4.23. It can be seen that the packets 1, 2, 5 and 6 receive minor ad-

vantages with PFT however the packet reception numbers remain identical 

(Figure 4.24). 
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4.4. Hardware Overhead 

The hardware overhead evaluation show that the baseline router (2-position input 

buffers) based on Hermes with non-preemptive priority based arbitration utilised 

1209 LUTs and 710 Slice registers of the chosen FPGA. 

However the PFT enabled NoC (2-position input buffers) utilised 2096 LUTs and 

1236 Slice registers. Detailed hardware overhead details is added in Appendix 3 

in sections R2 and R3. 

 

Figure 4.25: Hardware overhead 

4.5. Summary 

The chapter introduced the PFT technique using which HOL blocking could be 

neutralised, thus countering starvation of packets due to lower priority packets. 

This was achieved by forwarding the priority of the HOL blocked packet from 

behind the line to the router where HOL blocking is occurring using dedicated 

connection links to transmit PFT flits (control messages). This enabled the router 
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priority of the higher priority packet blocked up the line and hence resolve the 

block. 
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While transmitting the PFT flit from router to router, the routers also would lock 

the output ports that will be used by the packet blocked up the line in future so 

that other packets of lower priority would not get arbitration to those ports until 

the packet is transmitted. 

Tests using an HDL coded model reveal advantages in packet reception numbers 

under HOL blocking. Test were conducted with increased load levels by increas-

ing the number of payload flits as well as header flits in the NoC at any point of 

time. Both tests revealed improvement in packet reception numbers depending on 

packet priority compared to a Hermes based NoC with the latter case revealing 

lower variation in reception numbers with the increase in load. 

As seen in the literature review, HOL blocking is typically resolved using tech-

niques like VCs or LDM which provides spatial isolation or by using TDM which 

provide temporal isolation. While spatial isolation based techniques have high 

hardware requirements, temporal isolation limits the dynamic behaviour and 

scalability of the NoC. 

PFT however uses a dynamic approach which modifies the arbitration policy of 

routers to achieve the goal. As a result, PFT requires low hardware resources (un-

like VC or LDM) and is dynamic and scalable (unlike TDM). In typical scenarios 

with hotspots, PFT will be effective due to the occurrences of HOL-blocking 

however in uniform random traffic, the advantages is limited due to the limited 

number of HOL blocking scenarios.  

This motivated the research described in the next chapter where tailbacking is re-

solved in non-preemptive routers by manipulating packets and thus enhancing 

predictability. 
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 Chapter 5 

5. Predictability Enhancement by 

Packet Splitting 

With non-preemptive NoCs with packet priorities, tailbacking (defined in Section 

3.2) of high priority packets by low priority packets will be a frequent phenome-

non, thus causing variation and increase in magnitude of latency. Typically, tail-

backing is resolved in dynamic systems with preemptive arbitration using Virtual 

Channels, which are hardware expensive and have scalability issues. This chapter 

aim to resolve tailbacking situations by splitting data packets thereby realising a 

low hardware overhead emulation of a preemption functionality. 

5.1. Selective Packet Splitting 

Selective Packet Splitting (SPS) is aimed to resolve tailbacking scenarios by split-

ting lower priority packet flows and thereby provide better predictability to high 

priority packets than regular non-preemptive NoCs. As SPS emulates preemption 

functionality by splitting packets, the hardware requirements are comparatively 

less than the Virtual Channel approach. 

Consider the HOL blocking example in Figure 2.4 in page 15 where packet 9 is 

tailbacking (or blocking) packet 3 despite the higher priority value. Similarly, 

there is tailbacking of packet 1 due to packet 4. As a result packet 3 will have to 

wait until packet 9 gets transmitted even at the best of times hence increasing its 

latency. As packet 1 is being tailbacked by packet 4 which is tailbacked by packet 
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3 which itself is tailbacked by packet 9,  packet 1 will have to wait until the pack-

ets 9, 3 and 4 get transmitted completely despite having the highest possible prior-

ity value.  

With Virtual Channels and priority preemption, there will be separate service lev-

els and a higher priority service level will be able to preempt and transmit flits 

through a link even if the link is being used by a lower priority service level pack-

et.  

Instead of using expensive Virtual Channel hardware, in SPS the logic splits the 

lower priority communication into two so that once the initial part of the lower 

priority packet (which is tailbacking the higher priority packet) is transmitted, the 

high priority packet can be transmitted followed by the remaining part of the low 

priority packet. As a result, the system does not need extra connection lines for 

communicating between routers as they utilise the arbitration logic already present 

in the router. 

To enable splitting, the most significant bit (MSB) of every flit is designated as 

the tail flit indicator so that the router can terminate a communication by splitting 

the flow using a tail flit indicator. Thus by splitting a lower priority packet (which 

is tailbacking a higher priority packet), the higher priority packet will be able to 

secure arbitration before the lower priority packet is transmitted completely. The 

router also issues a new arbitration request and header for the rest of the low pri-

ority packet so that once the high priority packet is transmitted; the remaining part 

of the low priority packet can be transmitted. The flowchart of SPS operation is 

shown in Figure 5.1.  
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Figure 5.1: Operational flowchart 

To denote a splitted communication, each input port will have a boolean register 

called ‘split flag’. Once the tail flit for the low priority packet is sent, the output 

port is released by closing the communication and the split flag is set denoting a 

split communication. The router will also issue a new arbitration request for the 

splitted low priority packet so that the rest of the packet will be transmitted when 

the output port becomes free. 

The input port also will have registers to store the destination address of the split 

packet so that when the splitted packet gets arbitration next, a new header can be 

formulated and send followed by the payload. The split flag register is hence used 

by the state machine to identify a splitted communication from an intact packet so 

that a new header can be issued and send if it is a splitted packet. 

As an example, consider packet 9 and packet 3 in the scenario depicted in Figure 

2.4 in page 15.  

With packet splitting enabled in the routers; router (1,2) will stop transmission of 

packet 9 and then send a tail flit down the line so that the routers down the line 

terminates the connection automatically, hence eliminating the need for control 

lines or control flits. Then the router releases the south output port so that packet 3 
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will be able to secure arbitration and hence get transmitted through that port. Sim-

ultaneously, the router also issues a new arbitration request and header for the rest 

of packet 9 so that once the port is free, the remaining flits of packet 9 can be 

transmitted. In this example, this will allow packet 4 to get arbitration after packet 

3 while the remaining part of packet 9 waits for arbitration. As packet 1 will al-

ready have caused splitting of packet 4 at router (1,1), once the initial part of 

packet 4 gets transmitted, packet 1 will be able to secure arbitration while the final 

section of packet 9 and packet 4 waits for arbitration. 

5.2. Priority Forwarded Packet Splitting 

Even though in the example in Figure 2.4 in page 15, SPS enabled packet 1 to get 

transmitted before packet 9 and 4, it still had to wait until packet 3 gets transmit-

ted completely as packet 1 was HOL blocked by packet 3. This prevented packet 

1 from getting to router (1,2) hence preventing it from splitting packet 3. 

As seen in Chapter 4, under intense load, HOL blocking can cause total starvation 

of high priority packets and to resolve this, the Priority Forwarding technique 

(previously seen in Chapter 4) was combined with SPS to eliminate both tailback-

ing and HOL blocking. 

With Priority Forwarded Packet Splitting (PFS), both Priority Forwarding and 

packet splitting occurs when a packet is blocked by a lower priority packet so that 

both HOL blocking and tailbacking could be neutralised. Consider the example in 

in Figure 2.4 in page 15. With PFS, packet 4 will be forwarded with the priority 

value 1 hence enabling it to split packet 3 which will have already secured arbitra-

tion by splitting packet 9. This will allow complete transmission of packet 1 be-

fore all of the other packets. 

5.3. PFS Implementation on the R7 NoC 

To test PFS, the technique was implemented as a Bluespec System Verilog coded 

model designated as the R7 NoC (URL to the source code added in Appendix 2). 
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The basic architecture and functionality of R7 routers is similar to the R2 router 

explained in Figure 3.8 in page 52. 

Upon reception of a packet header (similar to R2), the input port evaluates the 

destination information in the header and sets the ‘arb_request’ register with the 

required output port id using XY-routing algorithm. The input port also stores the 

priority of the header into the priority register so that the arbitration unit will be 

able to evaluate all arbitration request to each output port and then provide arbitra-

tion to the qualifying input port by setting the appropriate ‘out_port’ register. 

This enables the input port to send flits through the communication link and un-

like the R2, the last flit of each R7 data packet has a bit reserved designating the 

tail flit. So, the R7 routers are designed to terminate communication upon recep-

tion of a tail flit. 

The functionality of  R7 NoC routers that enable SPS is shown in Figure 5.2. 

 

Figure 5.2: SPS implementation on the R7 NoC. 
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State 0 is responsible for routing and arbitration request generation and State 1 is 

for issuing arbitration. State 2 deals with sending of the header flit and State 3 

deals with sending of the payload flits and this continues until the tail flit is en-

countered or when the port detects a splittable scenario.  

If the port detects a splittable scenario, the port will go into the splitting state 

(State 4) where the ‘out_port’ register will be reset and ‘arb_request’ register will 

be set along with splitted flag. Then the port will go into the waiting state (State 5) 

waiting for arbitration similar to how it would in State 1. When the required out-

put port gets available and on getting arbitration, the port will go into State 6 

where a new header will be formulated and sent following which it returns to 

State 3 for payload delivery. 

To enable the packet generator/receptor module to identify the original tail flit, 

along with the tail flit denoting flag which denote the tail of a packets (even for 

split ones), a bit is reserved in the tail flit denoting the final flit of the whole pack-

et.  

The pseudo code for the logic is added below. 

Pseudo code 

PROCEDURE Arbiter (for each input port [on state S1 or S5]) 

IF qualified_for_arbitration THEN  

ARBITRATE (by setting out_port register) 

IF NOT(splitted flag) THEN 

  SET STATE to S2  // to send header 

ELSE  

  SET STATE to S6 // to formulate and send a new header 

END IF 

END IF 

END PROCEDURE 

 

PROCEDURE send_flit (at each input port [on state S2 or S3 or S4 or S6]) 

IF tail_flit THEN 

END CONNECTION 

ELSE 

IF state = S2 THEN SEND header 
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ELSE IF state = S6 THEN FORMULATE new header and SEND 

 ELSE IF state = S3 THEN SEND payload_flits 

 ELSE IF state = S4 THEN 

  SET STATE to S5 // waiting state 

  SEND tail_flit 

  ENABLE splitted_flag 

 END IF 

END IF 

END PROCEDURE 

5.4. Experimental Work 

This section presents the experimental results of the PFS based NoC (R7) com-

pared to a basic Hermes based (R2) NoC. Both the NoCs are tested for its latency 

variability using box plots with four random traffic scenarios and are tested with 

varying load levels both due to the increase in payload flits in the NoC and due to 

increase in packet numbers (header flits) in NoC. 

The NoC were also tested with varying packet sizes and finally the chapter pre-

sents the hardware requirement evaluation for the NoCs. 

5.4.1. Random Traffic 

The latency plot of a 4x4 NoC with four random traffic scenarios (described in 

Appendix 1b to 1e) is presented in Figure 5.3, Figure 5.4, Figure 5.5 and Figure 

5.6. 
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Figure 5.3: Latency performance with random traffic 1  

 

Figure 5.4: Latency performance with random traffic 2 

From the plots, the effect of PFS is evident as the high priority packets (like 1 to 

8) are seen to suffer lower magnitude and variation in latency depicted by the 

lower and shorter box and whiskers.  
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Figure 5.5: Latency performance with random traffic 3 

 

Figure 5.6: Latency performance with random traffic 4 

Due to the latency improvement brought about to the high priority packets, the 

latency performance of the packets in the lower spectrum of the priority range 

(priorities 12 to 16) are seen to get worse than the Hermes based NoC. Although 

this is acceptable due to the lower priority range of the associated packets, further 

research will look into moderating those by trading residual slack from higher 

priority packets. The details of the associated research is presented in Chapter 6. 
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5.4.2. Varying Load Due to the Increase in Payload Flits 

To verify the performance of PFS due to the increase in the load due to payload 

flits, a 4x4 NoC was tested with increased load level by increasing the packet siz-

es. The resultant latency statistics at load V= 0.4, 0.6, 0.8 and 1 are presented in 

Figure 5.7, Figure 5.8, Figure 5.9 and Figure 5.10. 

 

Figure 5.7: Latency performance with random traffic at V=0.4 

 

Figure 5.8: Latency performance with random traffic at V=0.6 
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It can be seen that with increase in load in the NoC from 0.4 to 0.6 and 0.8, the 

variation in latency of higher priority packets (like 1 to 4) are less with PFS com-

pared to the Hermes based NoC. However this results in higher magnitude and 

variation in latency of the lower spectrum of the priority range (13 to 16). 

 

Figure 5.9: Latency performance with random traffic at V=0.8 

 

 

Figure 5.10: Latency performance with random traffic at V=1 
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Similar to the experiments that were conducted in the previous section, PFS was 

seen to improve the magnitude and variation in latency of high priority packets 

depicted by the lower and shorter box and whiskers. Despite the increase in load 

on the NoC due to the increase in payload flits, the latency improvement to high 

priority packets is visible. 

5.4.3. Varying Load Due to the Increase in Header Flits 

The system was also tested with increased load levels by increasing the number of 

packets numbers (header flits) in the NoC. This was done by reducing the packet 

periods and the resultant latency performance at load V= 0.4, 0.6, 0.8 and 1 are 

presented in Figure 5.11, Figure 5.12, Figure 5.13 and Figure 5.14. 

 

 

Figure 5.11: Latency performance with random traffic at V=0.4 
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Figure 5.12: Latency performance with random traffic at V=0.6 

 

 

 

Figure 5.13: Latency performance with random traffic at V=0.8 
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Figure 5.14: Latency performance with random traffic at V=1.0 

As evident from the figures, PFS is seen to reduce the magnitude and variation in 

latency of high priority packets as with varying load levels due to the increase in 

headers in the NoC. 

With these tests however, the effect of PFS is seen to be more prolific with the 

increase in load due to the increase in packet numbers as the Hermes based NoC 

suffer poor latency figures. With the high load of 0.8 and 1.0, the high priority 

packets (1 to 6) are seen with very high magnitude and variation in latency with 

the Hermes based NoC but with PFS the variation and magnitude is confined to 

low levels. 

5.4.4. Performance Variation with Packet Size 

Figure 5.15 and Figure 5.16 depict the performance of the NoC with packet size 

scaled proportionally and inversely proportionally to packet priority. 
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Figure 5.15: Latency performance with packet size scaled proportionately to packet priority 

 

Figure 5.16: Latency performance with packet size scaled inversely proportionately to packet priority 

From the figures, it is evident that although the advantages of PFS are clear, the 

effectiveness of PFS is seen to be more when the high priority packets are shorter 

compared to lower priority packets (Figure 5.16) as seen with PFT in Chapter 4. 

This is due to the fact that when the low priority packets are longer than the high 

priority packets, the short high priority packets would get more of an advantage 
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splitting them whereas the Hermes based high priority packets would have to 

wait. 

5.5. Hardware Overhead 

The hardware evaluation show that the baseline router (2-position input buffers) 

based on Hermes with priority based arbitration utilised 1209 Look Up Tables 

(LUTs) and 710 Slice Registers of the chosen FPGA. Compared to that, the PFS 

enabled NoC (2-position input buffers) however utilised 2382 LUTs and 1050 

Slice registers. 

 

Figure 5.17: Hardware overhead 

Detailed hardware overhead details is added in Appendix 3 in sections R2 and R7-

F. 

5.6. Summary 

This chapter initially introduced the SPS techniques aimed at emulating preemp-

tion functionality by splitting packets. With the use of VC as in QNoC, packet 

pre-emption requires buffers and additional hardware which will increase the 

overall hardware requirements significantly.  It also limits the scalability of the 

NoC as the size of the NoC or the number of packet priorities increase, the effec-

tiveness of the pre-emption will decrease unless more buffers are added. 
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SPS however avoids the used of the classical pre-emption technique to reduce 

hardware requirements and to ensure scalability. With SPS, the routers are modi-

fied to split a low priority packet if a higher priority packet requires arbitration to 

the same port. The routers are designed to split the low priority communication by 

sending a tail flit down the line so that the routers down the line will know of the 

end of the packet and will close communication automatically after receiving the 

tail flit. By using such a system, SPS does not require any additional connection 

lines to communicate with downstream routers, thus making the design simple. 

In SPS, custom logic is added to the routers to issue a new header and arbitration 

request to the split packet so that once the transmission of the high priority packet 

is completed, the rest of the split lower priority packet can be transmitted. As the 

rest of the split packet is an intact packet with header, payload and a tail flit, the 

routers down the line will treat them as normal packets thus eliminating the need 

for any additional control signals or links further simplifying the design. 

The chapter followed with the details of the PFS technique which is a hybrid be-

tween SPS and Priority Forwarding technique [25] from Chapter 4. The imple-

mentation details of the PFS based model was presented then followed by the test 

results. PFS was tested with four random traffic scenarios as well as with varying 

load levels both due to the increase in payload flits in the NoC and due to the in-

crease in header flits in the NoC. In all the tests, PFS was seen to reduce the mag-

nitude and variation in latency depending on packet priority (better predictability 

for higher priority packets) compared to Hermes based NoC. 

Although acceptable, the improvements in latency performance of higher priority 

packets are brought about by trading the performance of the lower priority pack-

ets. To moderate this effect when possible, further research was conducted to add 

a timeliness parameter along with packet priority to enable routers to provide bet-

ter QoS to lower priority packets if the high priority packets have residual slack in 

latency. This is the concept explored in the next chapter. 
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 Chapter 6 

6. Predictability Enhancement 

Through Dynamic Slack Aware-

ness 

Typically, predictability enhancement techniques like VCs and LDM employ ap-

plication supplied priority as the decisive parameter. Thus, the routers favour high 

priority packets over low priority packets while implementing arbitration, preemp-

tion or other predictability enhancement measures despite its timeliness. This 

means that ordinarily, a high priority packet with residual slack (hence early in 

time compared to its soft deadline) will be preferred over a low priority packet 

which has no residual slack (hence is late). This will delay the late packet even 

more while the high priority packet get transmitted even though it can afford to 

get delayed. The term residual slack is defined as follows. 

Residual slack: The time in simulation ticks a packet can be delayed with-

out missing its soft deadline. 

This chapter presents the technique that will allow the routers to improve the pre-

dictability of packets with lower priority when possible by trading the residual 

slack associated with competing higher priority packets. 

In real-time systems in which the application structure and system workload is 

known ahead of time, static analysis can be used to determine suitable packet pri-
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orities and mappings. However, in open applications the workload which the plat-

form must handle can be unknown at design time. This can be because tasks or 

data flows may arrive dynamically requesting immediate transmission, but never-

theless requiring a certain quality of service (QoS). Alternatively, in a heteroge-

neous architecture, known applications may have to coexist with dynamically ad-

mitted traffic. These situations require additional flexibility in arbitration deci-

sions beyond static priorities. 

This chapter introduces an approach by which the packets can be added with an 

additional parameter that notifies the routers of the timeliness of packets so that 

predictability enhancement measures can be employed by evaluating both its 

timeliness and application supplied priority. 

Typically, the notion of timeliness is realised on multicore systems using time 

stamps like in [122] and [123]. The use of time stamping however requires access 

to a global time to compare with. With NoC routers, the addition of a timekeeper 

unit employing large counters or time synchronisation mechanisms would be 

hardware expensive and impractical. This chapter presents the technique called 

Dynamic slack Hard-line Aware Router Architecture (DHARA) [28] using which 

a notion of timeliness can be introduced into NoC packets. 

With DHARA, NoC routers will be able to estimate the residual slack of a packet 

(thus denoting its earliness) at any instant so that the routers can be equipped with 

logic to provide preference to packets evaluating both its timeliness and its appli-

cation supplied priority. This will allow the routers to trade time (residual slack) 

from early packets to improve the QoS of lower priority packets.  

As a practical application for the system, the chapter also details the design and 

performance implementation results of a PFS enabled prototype which was 

equipped to utilise the slack information in arbitration decisions.   

With DHARA enabled in the PFS prototype, arbitration decisions are made on the 

basis of a dynamically computed priority value. Packet headers are augmented 

with an additional slack value and this slack value is decremented by intermediate 

arbiters while the packet is blocked and forced to wait. During arbitration deci-
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sions, an instantaneous priority is computed from this slack value and the applica-

tion supplied priority value. This dynamic priority adjustment allows lower priori-

ty packets (which have been waiting) to be serviced trading residual slack availa-

ble on higher priority packets. 

6.1. Motivational Example 

Consider two PFS enabled routers (previously seen in Chapter 5) in a scenario 

shown in Figure 6.1. 

 

Figure 6.1: Motivation example 

In Figure 6.1, packet 1 is blocked by packet 16 which is itself blocked by packet 

7. As the routers are equipped with PFS, packet 1 will be able to split packet 16 

and packet 7. As a result, once the initial part of packet 7 is transmitted, the initial 

part of 16 will be transmitted followed by packet 1. It is only after the transmis-

sion of packet 1 that packet 7 and packet 16 will be transmitted, which is desirable 

under a normal situation. 

Assume the situation where packet 1 is early in time compared to its soft deadline. 

In such a situation, forcing packet 7 and 16 to wait is unnecessary and inefficient. 

After packet 1 is transmitted, packet 7 will get transmitted forcing packet 16 to 

wait further. Assume the situation where packet 7 is too late to be useful. In such a 

situation, transmitting packet 7 will be a waste of resource as it would result in 
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unnecessary traffic further along the route of packet 7, and would increase the 

latency of packet 16 for no reason. 

In this example, the introduction of the notion of time and equipping the routers to 

perform PFS evaluating both priority and timeliness will resolve such issues. This 

will allow the router to trade the residual slack (expendable time on higher priori-

ty packets) for latency enhancement in lower priority packets and thus provide an 

overall improvement in QoS. 

 

Figure 6.2: DHARA functionality 

To understand the expected functionality in detail, consider the performance of a 

PFS based NoC and a PFS based NoC with DHARA enabled (denoted as PFS-D) 

in Figure 6.2 (hypothetical example). It can be seen that the PFS based NoC has 

very low latency for the high priority packets (packets 1 to 4) at the cost of the 

lower priority packets (packets 5 to 8). As a  result the low priority packets suffer 

high latency which are outside the acceptable latency range with respect to its soft 

deadline. The idea with DHARA is to moderate this negative effect by trading the 

slack the high priority packets have (inside the acceptable latency range) to im-

prove the performance of the lower priority packets. In the plot, it can be seen that 

with PFS-D, the latency of the high priority packets are increased (still inside the 
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acceptable range) thus enabling the routers to improve the latency performance of 

the lower priority packets. 

6.2. Residual Slack as the Notion of Timeliness  

DHARA enables the packet generator/IP or the Network Interface to provide an 

additional parameter to packets (apart from priority and destination information) 

that will notify routers of the residual slack the packet has. Packet headers are 

augmented with an additional slack value, which represents the latency the packet 

can endure to its destination without adverse effects. This slack value is decre-

mented by intermediate arbiters while the packet is blocked and forced to wait. 

During arbitration decisions, an instantaneous priority value is computed from this 

slack value and the application-supplied priority value. This dynamic priority ad-

justment allows lower priority packets which have been waiting for longer to be 

serviced, while trading off some residual slack available on early high priority 

packets. 

Every time a packet header is injected into an input port, the slack is stored into a 

register. If the packet gets arbitration immediately, slack along with the rest of the 

parameters will be sent to the next router. On the other hand, if the packet gets 

delayed, the value inside the slack register will get decremented every time a 

slack-interrupt is encountered. To generate slack-interrupt, the router is added 

with an incrementing counter that will produce a slack-interrupt every time it 

overflows.   
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Figure 6.3: Slack-interrupt generator 

As there would be packets with different ranges of residual slack, there is also 

provision to vary the granularity of the wait time upon which the slack-interrupt 

generation occurs. As shown in Figure 6.3, slack-interrupt generator has an ad-

justable scale pointer using which the granularity of timeliness can be varied. For 

example, if the scale pointer is set at zero, the system will provide an interrupt 

every two clock cycles and so, the slack value will be decremented every two 

clock cycles the packet is forced to wait. The granularity will be equal to 2`
scale 

pointer value`+1
 and hence if the pointer is set to 7 as in the figure, the value inside the 

slack-left register will be decremented every 2
8
 = 512 clock cycles the packet is 

forced to wait. 

The header is also provided with an expendable flag to denote the data which is 

deemed useless after its slack is exhausted.  As a result, if a router encounters a 

packet with slack set to zero and expendable flag set, the input port will remove 

the flits (as it has exhausted its slack and hence deemed useless) rather than 

transmit them and elevate congestion. As this system does not require access to a 

global time, the hardware requirement is relatively low thus enhancing its practi-

cality.  

In larger NoCs, the delay that has to be encountered by packets which has to trav-

el a longer route will be significantly greater than a packet that has to travel a 

shorter route. As a result, it is sensible to add slack value to packets taking into 

account the route length of the packet as well. For instance, a packet that has to 

travel a longer route should be added with lower slack value than a packet taking 

a short route thus enabling it to reach the destination without excessive delays. 
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Future work on the topic will involve testing the system with packets of different 

route length to determine the effects. Future work will also involve integrating a 

route length component into the instantaneous priority equation so that the routers 

will be able to account for the position of the packet in the NoC with respect to 

the destination (instantaneously) while estimating its instantaneous priority. 

6.3. Application with PFS Based NoC 

To evaluate the performance of the system, a PFS enabled model (R7-F NoC used 

in the previous chapter) was modified to encompass DHARA (URL to the source 

code added in Appendix 2).  

6.3.1. DHARA Based Slack Awareness 

The model used the R7-F NoC as the starting point with additional logic for 

DHARA implementation. In this case, all computational units including the arbi-

ter, Priority Forwarding logic and packet splitting logic were modified to make 

decisions based on instantaneous priority rather than the priority information in 

the packet header (application-supplied priority). 

The instantaneous priority is estimated using equation (6.1) which employs an 

addition and a right shift (>>) operation thus enabling efficient realisation in 

hardware. 

P𝐼 = P𝑃 + (S ≫  D)    (6.1) 

( PI – Instantaneous priority, PP – Packet priority, S – Slack value, D- Divider index) 

As seen in the equation, the instantaneous priority is estimated by summing the 

packet priority and the slack value shifted to the right D number of times. Practi-

cally, D can be set to 0, 1 or 2 hence realising S, S/2 and S/4 respectively. Thus by 

varying the value of D, the weightage of the slack component on the instantaneous 

priority can be varied.  
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6.3.2. Implementation Details 

DHARA 

As a starting point, the PFS enabled (R7-F) router used in Chapter 5 was modified 

to encompass DHARA. As the slack value was set at seven bits, the highest value 

possible i.e. 127 is treated as packets with the notion of lateness disabled (where 

PFS will never be enabled). With slack values less than 127, the routers will dec-

rement the slack value as determined by the scale pointer, described in Section 

6.2.  

Consider the situation where a header is inside the input buffer of an input port 

behind some flits of some other packet which is blocked. As the slack register in 

the input port will be updated with only when the header is in the head of the 

buffer (typically) thus initiating an arbitration request, such a situation will allow 

headers to wait for arbitration unaccounted for. 

For example, consider the situation in Figure 6.4 where an input port and its input 

buffer is depicted. In the figure, it can be seen that as the header of a packet is be-

hind the flits from another blocked packet in the FIFO, the system will not be able 

to update the slack value even though the packet is waiting for arbitration. 

 

Figure 6.4: HOL blocking of slack-left value 

To resolve such issues, the buffers could be modified so that every time a flit is 

injected into the buffer, the newly added logic will verify whether it is a header 

and if it is; the slack-left register will be updated. As this will happen before the 
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packet gets to the front of the queue the routers will be able to decrement the slack 

value irrespective of the position of the header in the FIFO and hence provide an 

accurate awareness of residual slack. 

The work assumes that packet size will be longer than the buffer size so that only 

one header would be in a buffer at any point of time. In case the packet size is less 

than the buffer size, there is possibility of multiple headers getting injected into a 

buffer and under such a situation, the slack value of the header injected last would 

overwrite the value inside the slack-register.  

Packet generators 

To enable slack awareness in packets, the packet generators were modified so that 

the packet headers produced will include a seven bit (configurable) slack value 

and a single bit expendable flag. The slack value and expendable flag value are 

hard coded during design time by the configuration generator (previously ex-

plained in Section 3.3).  

Type J packet generators 

To enable performance testing with complex realistic traffic, an advanced version 

of the packet generator was developed which would support four sets of commu-

nication with an internal preemption mechanism. As a result, each generator can 

be configured with four in-depended packet flow information. 

Internally, each Type J packet generator acts as four individual packet generators 

and the internal preemption mechanism (SPS based) allows transmission of a 

higher priority communication even when there is an active lower priority com-

munication. 

6.4. Experimental Work 

To evaluate the performance benefits, NoC designs were tested for their magni-

tude and variation in latency using the metrics presented in Section 3.1. Magni-

tude of latency is evaluated using a variety of plots like box-plots, average latency 
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plots, maximum latency plots and plots depicting the cumulative count of late 

packets. Variability of latency is evaluated with plots like box-plots, interquartile 

range plots as well as the variability metric S-index. 

6.4.1. Performance with Random Traffic 

Under a random traffic scenario (described in Appendix 1f), the latency box plot 

and average latency plot of a Hermes based NoC compared to a PFS based NoC 

and a PFS based NoC with DHARA (PFS-D) are presented in Figure 6.5 and Fig-

ure 6.6. For the experiments the Scale pointer was set at 7 and slack value set at 

20 for all packets. 

 

 

Figure 6.5: Latency comparison with random traffic 1 

In Figure 6.5, it can be seen that the Hermes Based NoC suffers high magnitude 

and variation in latency despite its priority values (like packets with priority 2 and 

4) due to HOL blocking and tailbacking. 

With the PFS based router, the PFS logic counters HOL blocking and tailbacking 

thus improving the latency of high priority packets.  As this performance im-

provement is achieved at the cost of the performance of low priority communica-
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tion, low priority packets can have increased magnitude and variation in latency 

(like packet 12 and 14). 

With DHARA enabled in PFS routers, this ill effect is moderated by trading the 

residual slack in higher priority packets and the effect is quite evident in the fig-

ure. As a result the PFS-D based system is seen to moderate the extreme cases of 

latency (like with packet 14).  

Even though the best performance with DHARA is achieved by custom allocation 

of slack value depending on requirements, the tests in the research were conduct-

ed with slack values assigned equally to all packets. 

 

Figure 6.6: Average latency plot for random traffic 1 

This effect of DHARA is clearer in Figure 6.6 where the average latency is plot-

ted. It can be seen that there are irregular peaks in average latency with Hermes 

based NoC regardless of the priority value (like packet 2 and 4). With PFS how-

ever these issues are resolved but as a result there are peaks in average latency of 

lower priority packets (like packets 8, 10 and 12). 

The plot corresponding to PFS-D is seen to be more refined than both of those as 

the high peaks in latencies are seen to be moderated by trading residual slack. 
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Assuming sum of the allocated slack and the basic latency to be the optimal arri-

val time, the number of late packets was also evaluated with the traffic scenario 

and the cumulative count of number of late packets can be seen in Figure 6.7. 

With the Hermes based NoC, it can be seen that there are late packets regardless 

of the priority value (like packets 3, 8 and 9). With PFS based router, late packets 

are not encountered until packet 11 thus showing the effectiveness of the tech-

nique. 

 

Figure 6.7: Cumulative count of late packets with random traffic 1 

Even though the effect is similar with PFS-D, it can be noted that the PFS-D 

based approach produces a lower number of late packets compared to PFS. 
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Figure 6.8: Latency comparison with random traffic 2 

Similar to what was seen with random traffic 1, the effect of PFS and PFS-D is 

quite evident from the plot. The average latency plot for the scenario is added as 

Figure 6.9. 

 

Figure 6.9: Average latency plot for random traffic 2 
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Figure 6.10: Cumulative count of late packets with random traffic 2 

In Figure 6.10, the cumulative count of the number of late packets with random 

traffic 2 can be seen. It can be seen that with the Hermes based NoC, there are late 

packets of high priority values (like 3 and 6) whereas with PFS and PFS-D, late 

packets are not encountered until packet 9. With this traffic scenario, the total 

number of late packets with PFS and PFS-D are seen to be more than the Hermes 

based NoC. As the late packets in both accounts are from the lower priority spec-

trum of packets, this phenomenon is justifiable.  

 

Figure 6.11: Latency comparison with random traffic 3 
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Similar effect can be seen in Figure 6.11 where the latency of another random 

traffic (Appendix 1h) is presented as boxplots. Similarly, with the average latency 

plot of random traffic 3 (Figure 6.12), PFS-D is seen to reduce peaks in latency 

which were encountered with the Hermes based NoC and the PFS based NoC.  

 

Figure 6.12: Average latency plot for random traffic 3 
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Figure 6.13: Cumulative count of late packets with random traffic 3 

 

6.4.2. Performance with Varying Load 

The average latency plots of random traffic 2 at load levels V= 0.6 ,0.8 and 1 are 

presented in Figure 6.14, Figure 6.15 and Figure 6.16 respectively. 

 

Figure 6.14: Average latency plot for traffic 3 with V=0.6 
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In Figure 6.14, it can be seen that with the Hermes based NoC, packet 1 is having 

a high average latency despite possessing the highest possible priority value. With 

the PFS based router, this is resolved however the lower priority packet; packet 14 

has a high average latency.  

With PFS-D, both these occurrences are seen to be moderated by trading the re-

sidual slack. 

With the increase in load to 0.8, the average latency of packet 1 with the Hermes 

based NoC and packet 14 with PFS NoC is seen to be magnified further (Figure 

6.15). However, the PFS-D plot is seen to be having minor variation despite in-

crease in load. 

 

 

Figure 6.15: Average latency plot for traffic 3 with V=0.8 

Similarly, with the increase in load to 1, high variation in latency can be seen with 

both the Hermes based NoC and the PFS based NoC however the PFS-D based 

NoC displays lower variation (Figure 6.16) than both cases. 
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Figure 6.16: Average latency plot for traffic 3 with V=1 

The variation of maximum latency in the Hermes based NoC at the three load lev-

els is presented in Figure 6.17. It can be seen that there are peaks in maximum 

latency regardless of the priority value due to HOL blocking and tailbacking.  

 

 

Figure 6.17: Maximum latency variation with Hermes based NoC 
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The performance of the PFS based NoC is shown in Figure 6.18 and it can be seen 

that with the use of PFS the high priority packets (1 to 7) suffer very low maxi-

mum latency under the three load levels. However this results in high magnitude 

and variation in low priority packet’s maximum latency plots. 

For example, with packets like 8, 12 and 15, variations of high magnitudes can be 

seen with the increase in load. 

 

 

Figure 6.18: Maximum latency variation with PFS based NoC 
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Figure 6.19: Maximum latency variation with PFS-D based NoC 

With PFS-D (Figure 6.19), the maximum latency of packets is seen to be lower 

through the lower priority range and the effect of the increase in the load is seen to 

follow a pattern and is seen not to produce large variation in maximum latency 

unlike PFS or Hermes based NoC. 

Figure 6.20 shows the average value of slack left on packets upon final reception 

with the three load levels. 

 

Figure 6.20: Average remaining slack 
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It can be seen that the low priority packets (8 to 16) suffers more decrease in aver-

age remaining slack (from initial value of 30) than the higher priority spectrum of 

packets and this effect is seen to intensify with the increase in load on the NoC. 

As per design, this reduction in slack is what enables them to achieve arbitration 

ahead on higher priority packets occasionally to improve their quality of service. 

The higher priority packets (1 to 7) seem to show minor reduction in slack value 

thus confirming that they are not subjected to long waiting periods for arbitration 

that could negatively affect is QoS. 

6.4.3. Performance with Divider Index Variation 

As the divider index defines the weightage of slack component in computing the 

instantaneous priority, its impact upon the NoC using PFS-D was tested by setting 

divider index at 0, 1 and 2. The results from the tests are presented as a boxplot in 

Figure 6.21.  

 

Figure 6.21: Latency variation with divider index 
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weightage of slack component gets altered to ½ and 1 thus scaling the perfor-

mance of the system. 

With the tests with DI-1 and DI-0, the improvement in low priority packet latency 

is visible (like with packets 13, 14, 15 and 16); which is achieved by trading the 

performance of higher priority packets (like 1, 2 and 3). 

 

 

Figure 6.22: Average latency variation with divider index 

Similarly, the same effect can be seen in Figure 6.22 where the average latency 

for the three conditions is plotted. 
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of late high priority packets. The addition of packet priorities (priority based arbi-

tration) does improve the situation marginally as evident from the plot for the 

Hermes based NoC with packet priorities depicted as H_P. This scenario is im-

proved with PFS and by using PFS-D, the number of late packets are seen to de-

crease even further. 

 

Figure 6.23: Performance with realistic traffic 

To evaluate the effect of additional packet flows, ten more packet flows (with 

lowest priorities) were added.  

 

Figure 6.24: Performance with hybrid traffic 
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The result of the experiment is presented in Figure 6.24 and it proves comparable 

to the previous experiment however; a few of the lowest priority packets (packets 

40 to 42) are seen to have increased number of late packets with PFS-D than PFS. 

6.4.5. Scalability of Priority Levels 

As PFT, PFS and PFS-D does not rely on VCs or slot tables and instead depend 

on dynamic alterations to packets and arbitration polices, the NoCs employing the 

techniques are totally scalable (both in NoC sizes and packet priority numbers). 

Unlike VCs which need additional hardware with increase in NoC size, the tech-

niques presented in the thesis require a fixed number of components regardless of 

the size of the NoC.  

Though the majority of the performance tests in the thesis were carried out with 

4x4 NoCs, to demonstrate the scalability of the system, the latency performance 

of a 6x6 NoC with a random traffic scenario (Appendix 1j) is depicted in Figure 

6.25. 

As with the random traffic based tests with the 4x4 NoC, the tests show ad-

vantages in magnitude and variation in latency of higher priority packets with PFS 

compared to the Hermes based NoC. This can be seen resulting in increased mag-

nitude and variation in latency of the low priority packets. This is seen to be mod-

erated with PFS-D by trading the residual slack associated with the higher priority 

packets. 
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Figure 6.25: Latency performance of a 6x6 NoC with random traffic 

The average latency plot from the test is added as Figure 6.26. As with the previ-

ous tests, PFS-D is seen to resolve the peaks in average latency of high priority 

packets with the Hermes based NoC as well as the peaks in low priority packets as 

seen with PFS based NoC. 

 

Figure 6.26: Average latency of a 6x6 NoC with random traffic 
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As seen before, the hardware overhead for VC based NoC is much higher than the 

techniques presented in the thesis. As a result, NoCs bigger than 4x4 had high 

magnitudes of overhead that the Bluesim simulation environment was unable to 

simulate its performance. 

Similarly, the average latency plot of a 8x8 NoC is shown in Figure 6.27. It can be 

seen that the performance of PFS and PFS-D is unaffected with the increase in 

size of the NoC and increase in packet priorities as in previous tests. This is be-

cause the techniques introduced in the thesis use a fixed number of components 

regardless of the size of the NoC and the number of priority levels. However, the 

biggest NoC size that could be tested with the tools was 8x8 (average latency plot 

added as Figure 6.27). 

 

Figure 6.27: Average latency of a 8x8 NoC with random traffic 
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The access to the output ports have a priority based system so that if multiple VC 

packets need access to the same output port, only the highest priority VC (which 

is not blocked) will be allowed access. 

The latency box plot of a Hermes based NoC, PFS, PFS-D and a VC based NoC 

with 4 channels under three random traffic scenarios are presented in Figure 6.28, 

Figure 6.32 and Figure 6.36.  

Similarly, the average latency plot for the scenarios are presented in Figure 6.29, 

Figure 6.33 and Figure 6.37. 

 

 

Figure 6.28: Latency box plot of random traffic 4 
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Figure 6.29: Average latency plot of random traffic 4 

As seen with previous experiments, PFS is seen to provide lower average latency 

for high priority packets than the Hermes based NoC (packets 1 to 7) but suffers 

high peaks in average latency with the lower priority packets (packets 8, 10 and 

12). PFS-D is seen to moderate these high peaks by trading the residual slack as-

sociated with higher priority packets. The VC based NoC presents the best per-

formance among the four NoCs with very low average latency for high priority 

packets (packets 1 to 9) and moderate levels of average latency for lower priority 

packets compared to the other schemes. 
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Figure 6.30: Interquartile range of latency of random traffic 4 

Figure 6.30 show the plot that depicts the interquartile range (to show latency var-

iability) in packet latency. With the Hermes based NoC, it can be seen that there 

are peaks in interquartile latency (depicting high latency variation) regardless of 

the priority range (like packet 2  and 8). Although PFS resolves the latency varia-

tion of high priority packets (1 to 9), lower priority packets encounter high varia-

tion in latency (packet 10, 12 and 14). The VC based NoC is seen to provide mar-

ginally better predictability than PFS especially with the packets 12 and 14. The 

performance of the NoC over the whole priority range is quantified as S-index and 

is presented in Figure 6.31. As explained in Section 3.1.1, the S-index is used to 

quantify the latency variability of the NoC over the whole priority range and a 

lower value of S-index depict lower variation in latency. 
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Figure 6.31: S-index plot of random traffic 4 

In this particular case, the PFS-D NoC had high slack value assigned equally to all 

the packets thus resulting in higher S-index than PFS and VC. However the per-

formance of PFS-D can be improved by assigning slack for packets based on ne-

cessity rather than equally as in the experiment. 

The latency performance of the four NoCs under another random traffic scenario 

is interpreted as box plot in Figure 6.32. The average latency plot for the system is 

presented in Figure 6.33. 
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Figure 6.32: Latency box plot of random traffic 5 

 

Figure 6.33: Average latency plot of random traffic 5 

Similar to the Traffic scenario 4, in traffic scenario 5, PFS-D is seen to provide 

lower average latency performance throughout the entire priority range compared 

to the Hermes based NoC (Figure 6.33). The performance of PFS, PFS-D and VC 

is quite similar in this case however there are differences in latency variation as 

evident from Figure 6.34 where the interquartile range of latency is plotted. 
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Figure 6.34: Interquartile range of latency of random traffic 5 

It can be seen that the PFS based NoC shows lower latency variation with high 

priority packets than the Hermes based NoC and the PFS-D based NoC show even 

lower variation in latency.  The VC based NoC is seen to show the most predicta-

ble behaviour and this can be seen more clearly in Figure 6.35 where the S-index 

of the four NoCs is presented. 

 

Figure 6.35: S-index plot of random traffic 5 
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It can be seen the VC based NoC provides the best predictability than the others 

followed by PFS-D and PFS while the Hermes based NoC show the worst pre-

dictability in the group. 

 

Figure 6.36: Latency box plot of random traffic 6 

 

Figure 6.37: Average latency plot of random traffic 6 

Figure 6.36, Figure 6.37 and Figure 6.38 show the latency box plot, average laten-
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(better than Hermes based NoC) and the PFS-D based NoC showed the best per-

formance of the four in both aspects. 

 

Figure 6.38: Interquartile range of latency of random traffic 6 

The predictability comparison of the NoCs can be seen in Figure 6.39 where the 

S-index in each case is presented. 

 

Figure 6.39: S-index plot of random traffic 6 
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6.5. Hardware Overhead and VC Scalability 

The hardware requirements for a PFS based router compared to PFS-D design was 

evaluated using Xilinx Vivado and was found to be minimalistic with only 16% 

more lookup tables and 12 % registers on a xc7a350t Artix-7 FPGA. 

 

Figure 6.40: Hardware overhead 

The hardware overhead of the VC based router (with 4 VCs) can also be seen in 

the plot and as evident from the plot, it costs almost double in terms of LUTs and 

registers than the PFS-D NoC. Also, it is almost four times as expensive in LUTs 

and registers than the Hermes based NoC. Detailed hardware overhead details is 

added in Appendix 3 in sections R2, R7-F, R7-FD and R8. 

Furthermore, with the increase in size of the NoC or the increase in packet priority 

numbers, the performance of the VC based NoC will deteriorate. To counter this 

effect, the number of VCs would have to be increased and this would result in 

further increase in hardware overhead. However with PFS and PFS-D, there is no 

limitation in the number of packet priorities the system can handle and hence are 

more suited to scaling than other techniques. 

The hardware overhead comparison of a 2 VC design is shown in Figure 6.41.  
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Figure 6.41: Hardware comparison with a 2 VC design 

The hardware overhead is seen similar to PFS-D and the latency box plot and av-

erage latency plot (for random traffic 5) are presented as Figure 6.42 and Figure 

6.43 respectively. 

 

Figure 6.42: Latency comparison with a 2 VC design 
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Figure 6.43: Average latency comparison with a 2 VC design 
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Figure 6.44: Interquartile range of latency with 2 VCs 
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This is evident in Figure 6.44 where the interquartile range of latency is plotted. It 

can be seen that the 2 VC NoC suffers has high latency variation with the lower 

priority spectrum of packets. Figure 6.45 show the S-index comparison between 

the NoCs and the degradation of performance with the switch from 4 VCs to 2 

VCs is quite evident. 

 

Figure 6.45: S-index plot with the 2 VC design 
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the residual slack of packets while they are forced to wait and thus keeping it up-

to-date. This slack value was then used by the routers combined with the applica-

tion-supplied priority of the packet to compute an instantaneous priority, which is 

then used as the metric for arbitration or predictability enhancement measures.  

As seen in Section 2.2.5, monitoring timeliness is typically achieved in NoC 

packets by using time-stamping which requires a notion of the global time which 

can be hardware expensive in routers. There has also been research encompassing 

a static slack value in the packet header which is then used for arbitration deci-

sions. However the approach does not account for the time the packet spend in the 

NoC waiting for arbitration and hence is not suitable for large NoCs.  

The work by Berejuck et. al. in [65] employed ageing on packets as a method to 

introduce a timeliness parameter into NoC. In the design, packets had an age field 

in headers that would get incremented when the packet waits for arbitration and 

this field is used by arbiters to provide arbitration if packets of the same service 

level compete for arbitration. The drawback of the system is that under intense 

load there is a probability of multiple packets reaching the maximum age and 

hence result in lowering of QoS of packets. 

As DHARA uses slack value as the timeliness parameter, the QoS of packets 

would not be affected regardless of the load on the NoC. Unlike [65], DHARA 

uses instantaneous priority to arbitrate packets which have both slack and the ap-

plication supplied priority as components. So in case of high load scenarios, the 

NoC will perform reliably even when all the packets have zero slack due to the 

high contention encountered (utilising the application supplied priority component 

in determining instantaneous priority). 

To test DHARA, the PFS based prototype (used in previous chapter) was modi-

fied to DHARA specification and was tested with varying load levels and with 

random as well as realistic traffic. Test result show improvement in magnitude 

and variation in latency of lower priority packets compared to PFS and Hermes 

based NoCs. 
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Average latency tests show more consistent (lower magnitude over the whole pri-

ority range) plots compared with the Hermes based and PFS based NoC. With 

Hermes based NoCs, peaks in average latency were encounter regardless of the 

priority value and with PFS based NoC, high peaks in average latency were en-

countered with lower priority packets. DHARA based PFS showed resolution of 

such peaks by trading the residual slack in packets. DHARA based PFS was also 

seen to show lower variation in average latency and magnitude of latency with 

increase in load. Also, DHARA showed lowering of the number of late packets 

(depending on priority) with synthetic, realistic and hybrid traffic. 

The hardware overhead for DHARA was evaluated and was found minimalistic 

with only 16% more LUTs and 12% more registers. The hardware overhead of a 

VC based NoC with 4 VC were also evaluated and it was found to be almost dou-

ble in LUTs and registers compared to PFS-D. The 4 VC NoC showed better la-

tency performance than the PFS-D based NoC in most cases. 

The 2 VC based NoC however had almost identical hardware utilisation figures 

compared to the PFS-D based NoC and showed similar performance with higher 

priority packets latencies. However with lower priority packets the 2 VC NoC 

showed high variation and magnitude in latency compared to both the PFS based 

NoC and the PFS-D based NoC depicting the scalability limitation of VC based 

NoCs. However, unlike VCs, as PFT, PFS or PFS-D does not depend of service 

levels, the techniques are completely scalable both in terms of packet priority 

numbers and NoC sizes. 
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  Chapter 7 

7. Conclusion 

7.1. Thesis summary 

Network-on-Chip designs are widely seen as the communication infrastructure for 

large many-core systems where packet predictability can be an important attrib-

ute. Though hardware inexpensive, tests show that even with priority based arbi-

tration, non-preemptive NoC packets can have high magnitudes and variation in 

latency regardless of the priority value due to HOL blocking and tailbacking of 

packets. The techniques presented in the thesis were tested and verified to be 

providing improvement in variability and magnitude of latency for packets with 

respect to its priority value. This was achieved by using scalable techniques that 

resolved HOL blocking (Chapter 4) and tailbacking (Chapter 5) and by using a 

timeliness parameter in arbitration decisions (Chapter 6). 

This validates the hypothesis tested in the thesis that “Latency predictability can 

be enhanced in scalable non-preemptive NoC designs using modifications 

that dynamically alter arbitration policies or packet structure”.  

As the techniques presented in the thesis use logic that require a fixed number of log-

ic elements regardless of the size of the NoC, they are completely scalable. As aimed 

with the thesis hypothesis, the tests results confirm the predictability enhancement 

achieved with the techniques while ensuring complete scalability and dynamic 

behaviour of the routers. By resolving HOL blocking and tailbacking, the tech-

niques presented on average a latency variability reduction of 70% (in S-index 
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value) and with the DHARA based timeliness a latency variability reduction of 

68% compared to the Hermes based baseline.  

On the contrary, even though contemporary predictability enhancement tech-

niques like Time Division Multiplexing, Link Division Multiplexing and Virtual 

Channels resolve predictably degrading issues, they result in excessive hardware 

requirements or limitation in scalability or dynamic behaviour. While TDM based 

routers suffer limitation in dynamic behaviour and scalability, LDM based NoCs 

have high hardware overhead and limitation in scalability.  

With Virtual Channels, the communication is classified into separate service lev-

els such that a higher priority service level is allowed to utilise a communication 

link even if the link is being used by a lower priority service level. This is enabled 

by employing separate set of buffers for each service level thus resulting in in-

creased hardware requirements. With the increase in packet priority numbers the 

effect of predictability enhancement would deteriorate and would require addi-

tional service levels to maintain the required predictability performance. As a re-

sult, Virtual Channel based systems are not scalable without succumbing to linear-

ly increasing hardware overhead with each additional service level. This can be 

seen clearly in Chapter 6 where the latency performance of the NoC under test 

deteriorated both in magnitude and predictability with the switch from 4 VCs to 2 

VCs. 

As the techniques presented in the thesis rely of dynamic techniques that do not 

require additional hardware with the increase in size of the NoC, the techniques 

are completely scalable. As a result, the tests reveal predictability enhancement 

for high priority packets regardless of the NoC size. Tests also reveal that the 

techniques presented not only improved the magnitude and predictability of the 

packets compared to the non-preemptive Hermes based baseline, the predictability 

is seen to be comparable to a 4 VC design with only half the hardware overhead. 

While PFS-D had an average variability reduction (S-index value) of 68% com-

pared to the Hermes based baseline, the 4 VC design had an average variability 

reduction of 58% with a hardware overhead of 182% more LUTs and 220% more 

registers than PFS-D. 
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A 2 VC version of the NoC had similar hardware overhead (0.1% less LUT and 

33% less registers) compared to PFS-D, however the scalability limitation of VCs 

was quite evident as the predictability of the packets dropped remarkably with the 

reduction in the number of VCs. On the traffic scenario tested, the switch from 4 

VCs to 2 caused the latency variability to increase from 31% to 414% (S-index 

increased 13 times) while PFS and PFS-D showed 63% and 55% variability than 

the Hermes based baseline showing the scalability limitation associated with VC 

based NoCs.  

7.2. Novelty contributions 

The novelty contributions presented in the thesis are added below in descending 

order of importance as per the author. 

1) Selective packet splitting: Chapter 5 presented the SPS technique using 

which the effect of pre-emptive arbitration can be emulated (to reduce la-

tency variability) without major hardware overheads as seen with the clas-

sical preemption technique. The classical preemption approach in NoCs 

use VCs for its functionality, which is hardware expensive especially with 

the increase in size of the NoC.  

SPS however employs splitting of packets which requires simpler hard-

ware than VCs, and hence do not require extra hardware with the increase 

in size of the NoC. As a result, SPS could be a cheaper alternative than 

VCs in large many-core systems. 

2) Dynamic slack Hard-line Aware Router Architecture: Chapter 6 pre-

sented DHARA, which enabled routers to use timeliness as a parameter 

while in arbitration decisions. Typical approaches to enable timeliness in 

packets employ timestamping in packets, which would require long coun-

ters in routers thus limiting its practicality. Other approaches employ static 

fields in packet headers to denote timeliness, however these do not account 

for the lateness the packet had to encounter in transit. 

With DHARA, a dynamic field is added to the packets that denote the re-

sidual slack in latency the packet has. This is in turn decremented by rout-

ers when a packet waits for arbitration thus ensuring its correctness at eve-
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ry point of time. This slack value is utilised by the routers in arbitration 

decisions hence allowing packets of lower priority better QoS if higher 

priority packets have residual slack. 

3) Priority Forwarding and Tunnelling: Chapter 4 presented the PFS tech-

nique that enables routers to resolve HOL blocking scenarios and thus re-

solve starvation of packets. In simple NoCs which do not support non-pre-

emptive arbitration, HOL blocking can cause unpredictable behaviour and 

starvation of packets regardless of packet priority.  

With PFS, additional logic was added to the routers which enabled them to 

modify arbitration request priorities during HOL situations so that the is-

sue can be resolved. Furthermore, with increase in size of the NoC, PFS 

does not require any additional hardware for its functionality thus ensuring 

scalability. 

7.3. Further Work 

7.3.1. Dynamic Time Multiplexed Virtual Channels (DTMVC) 

The research in the thesis spawned the concept of Dynamic Time Multiplexed 

Virtual Channels (DTMVC) [124], in which a VC based NoC would be able to 

vary the intensity of predictability enhancement dynamically. The standard VC 

approach can cause high magnitude and significant variation in latency for lower 

priority VCs. Starvation of packets of lower priority VCs is even possible in sce-

narios presenting a continuous stream of packets from higher priority VCs (as 

seen in Section 0). The aim of DTMVC is to avoid this when possible, and hence 

reduce the magnitude and variation in latency of lower priority VC packets. 

With DTMVC, the operational time of the router would be divided into recurring 

time frames which consists of several time slots as shown in Figure 7.1a. There 

would be a table in each router that will denote the priority order of the VCs in 

each time slot. Assume that there are four VCs; VC0, VC1, VC2 and VC3. Under 

the highest priority setting, VC0 will be treated as the highest priority VC fol-

lowed by VC1, VC2 and VC3 (shown in Figure 7.1b) in all the time slots and 

hence the router will work like a classical VC based NoC providing VC0 with the 

best quality of service.  
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Figure 7.1: DTMVC functionality (a) Time frame   (b) Time frame for highest performance setting    

(c) Time frame for intermediate performance setting    (d) Time frame for lowest performance setting 

If the latency performance of the highest priority VC is satisfactory (which can be 

estimated using DHARA based slack awareness or any other approach), the router 

can be switched to a lower performance setting where some time slots will be al-

located to the other VCs (shown in Figure 7.1c), so that they can assume the high-

est priority momentarily and can transmit flits without getting blocked. This will 

improve the magnitude and variation in latency of lower priority VC packets. If 

the high priority VC packets are still performing satisfactorily, the router can be 

switched into an even lower performance setting where more time slots will be 

allotted to the lower priority VCs as the highest priority VC. With the lowest per-

formance setting, all the VCs will get equal time slots thus getting even quality of 

service (shown in Figure 7.1d). 

7.3.2. HYper Criticality Enabled NoC Architecture (HYENA) 

The use of components with different levels of criticality in embedded systems 

brought about mixed criticality traffic flows through the communication infra-

structure. As per Burns et.al. [125] “a  mixed  criticality  system  (MCS)  is  one  

that  has two or more distinct levels  (e.g. safety critical, mission critical and non-

critical)”. Although typical mixed criticality NoC systems like [126] and [127] 

support multiple criticality traffic, the number of criticality levels supported dur-

ing the experimental evaluation is limited to two, HI and LO. The idea of the  
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HYper criticality Enabled NoC Architecture (HYENA) is to provide a NoC infra-

structure for multi criticality traffic supporting many criticality levels. 

With HYENA, the idea is to have an extended range of criticality levels for mixed 

criticality traffic. With HYENA, the NoC packet headers carry an additional field 

along with the application-supplied priority that will specify the criticality value 

of the packet. Therefore, the number of criticality levels supported is unlimited 

and will depend on the number of bits in the header allocated for the criticality 

parameter.  

Similar to DHARA, HYENA based routers use an equation (equation (7.1) to de-

termine the instantaneous priority of a packet for all arbitration and predictability 

enhancement efforts.  

Pi = (Pa >> Da) + (C >> Dc) (7.1) 

(Pi – Instantaneous priority, Pa – Application supplied priority, Da – Divider index a, C- Criticality, 

Dc – Divider index c) 

As seen in the equation, in HYENA based routers, the criticality value (C) in the 

header is combined with the application supplied priority (Pa) to generate the in-

stantaneous priority (Pi) of the packet. As evident from the equation, the instanta-

neous priority is generated by the routers using an addition operation between two 

components. The first component in the equation ‘Pa >> Da‘ represents the appli-

cation supplied priority component and its weightage in computing the instanta-

neous priority is determined by Da. For example, setting Da to 0,1 and 2 realise the 

function of Pa,  Pa/2 and Pa/4 respectively thus varying its weightage.  

Similarly the second component in the equation ‘C >> Dc’ represents the criticali-

ty of the packet and its weightage in calculating the instantaneous priority can be 

varied by setting the value of Dc as seen with the first component. As the equation 

use two shift operations and an addition, implementation of the equation is effi-

cient and simple in hardware terms. 

To ensure scalability and to resolve HOL blocking and tailbacking, HYENA 

based NoCs will use PFS logic. To enable, criticality change in the packet that is 

mid-way in transmission, the Network Interface will be enabled with logic that 
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will send a C-flit (criticality change flit) that will be transmitted like an ordinary 

flit to the destination. Unlike an ordinary flit, C-flits will however change the crit-

icality value of the packet through the routers it pass through. If the packet is not 

blocked mid-way during its transmission, the C-flit will get to the destination 

without playing any role in the NoC’s functionality. 

However if the packet gets blocked, the router will have additional logic (similar 

to Priority Forwarding) that would forward the criticality value to routers down 

the line until the blocked header is reached and is updated. This will allow the 

routers to completely convey the criticality change and this happens only if it is 

necessary unlike typical systems like [103] where the criticality change is flooded 

throughout the NoC to all routers. 

7.3.3. Power Analysis and moving into ASIC 

As per Chen et.al. in [98] almost 64% of the total leakage power of the router is 

consumed by the buffers. Unlike VC or LDM based approaches, the techniques 

presented in the thesis do not require wide use of buffers and hence the routers are 

likely to dissipate lower dynamic and static power. However, as power dissipation 

is outside the scope of the thesis this is considered future work.  

Similarly, further work will involve simulation of the designs in ASIC platforms 

so that the performance and the related overhead can be compared with FPGA 

based implementation. 
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Appendix 1- Traffic Scenarios 

In this section, some of the traffic patterns used in the tests are added. The column titled 

priority presents the application supplied priority of the packet flow from the source to 

the destination as mentioned in the respective columns. Start time specifies the time 

when the packet was injected for the first time. Packet size column present the length of 

the packet in flits and the period column show the clock cycles the IP would spend idle 

before starting transmission of a new packet after transmitting one. Some of the tests 

utilised packet generators that have four fixed destination values. In such generators, the 

packet generator would switch between each of those destination (when sending pack-

ets) in a round robin fashion. 

Along with table, the traffic pattern is also visualised as shown below. 

 

The black squares depict routers with their addresses shown in white within them. The 

grey rectangles connecting the routers show a packet flow path and the width of the 

grey rectangle shows the utilisation. The link with the maximum average utilisation 

(peak load) is scaled to the same size as the routers and the other links are scaled ac-

cordingly. The grey rectangles are divided inside into section depicting flow priorities. 

Marron colour show the contribution of the packets with the highest 25 % of priorities 

(for example priority 1 to 4 if there are 16 packet priorities) towards the total link utili-

sation followed by red, orange and light orange depicting the utilisation of packets with 

decreasing priorities (5 to 8, 9 to 12 and 13 to 16 respectively if there are 16 packet pri-

orities). 
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Appendix 1a 

Priority Source Destination 

Start 

time 

Packet 

size Period 

1 10 13 153 50 53 

2 20 23 305 50 50 

3 33 30 126 50 54 

4 00 30 48 50 51 

5 30 00 229 50 54 

6 13 02 155 50 54 

7 23 30 257 50 59 

8 01 30 275 50 59 

9 31 30 248 50 59 

10 03 22 44 50 52 

11 12 23 245 50 59 

12 32 23 139 50 50 

13 21 23 75 50 55 

14 22 13 307 50 54 

15 02 13 203 50 53 

16 11 13 213 50 54 

 

 

 

 



152 

 

Appendix 1b 

Priority Source 

Destination 

Start time 

Packet 

size Period 1 2 3 4 

1 12 13 21 12 00 37 500 805 

2 03 02 11 33 32 158 500 813 

3 23 13 00 33 20 206 500 826 

4 32 21 02 31 32 202 500 884 

5 30 22 32 12 23 148 500 807 

6 22 00 03 01 13 190 500 894 

7 21 33 20 03 02 224 500 892 

8 00 21 01 12 00 240 500 867 

9 10 12 22 22 33 11 500 814 

10 33 21 20 23 02 229 500 867 

11 20 22 31 11 20 62 500 819 

12 02 31 03 22 21 26 500 870 

13 01 00 31 11 33 283 500 802 

14 31 01 03 12 22 110 500 890 

15 11 31 21 12 20 183 500 837 

16 13 33 10 13 23 298 500 822 
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Appendix 1c 

Priority Source 

Destination 

Start time 

Packet 

size Period 1 2 3 4 

1 32 03 32 11 01 131 500 896 

2 20 11 13 03 13 176 500 800 

3 21 32 00 12 33 296 500 847 

4 13 00 22 21 33 111 500 822 

5 33 31 31 12 21 148 500 846 

6 03 22 22 02 10 194 500 897 

7 11 32 11 31 30 218 500 830 

8 23 30 03 10 32 99 500 880 

9 10 02 11 00 02 248 500 837 

10 01 23 03 20 20 251 500 823 

11 31 21 22 33 23 262 500 823 

12 02 03 21 30 11 268 500 880 

13 12 02 32 30 13 216 500 852 

14 30 20 20 00 30 31 500 816 

15 22 13 10 20 31 233 500 822 

16 00 30 13 22 32 170 500 820 



154 

 

 

 

Appendix 1d 

Priority Source 

Destination 

Start time 

Packet 

size Period 1 2 3 4 

1 00 30 03 32 10 131 500 896 

2 10 01 12 33 20 176 500 800 

3 20 33 01 30 10 296 500 847 

4 30 31 33 12 31 111 500 822 

5 01 30 30 10 13 148 500 846 

6 11 12 12 33 20 194 500 897 

7 21 02 02 30 03 218 500 830 

8 31 13 30 10 00 99 500 880 

9 02 13 32 02 32 248 500 837 

10 12 13 10 13 12 251 500 823 

11 22 21 20 32 33 262 500 823 

12 32 01 33 31 00 268 500 880 

13 03 00 31 10 20 216 500 852 

14 13 22 12 21 22 31 500 816 



155 

 

15 23 33 30 13 33 233 500 822 

16 33 00 13 31 31 170 500 820 

 

 

Appendix 1e 

Priority Source 

Destination 

Start time 

Packet 

size Period 1 2 3 4 

1 12 13 23 03 20 86 500 847 

2 23 00 10 10 30 197 500 825 

3 31 31 23 33 12 137 500 896 

4 11 11 02 21 20 99 500 892 

5 21 22 31 12 03 295 500 892 

6 01 10 02 33 21 264 500 810 

7 22 11 11 01 30 172 500 836 

8 13 21 01 30 02 197 500 863 

9 20 22 03 33 32 272 500 874 

10 00 12 02 21 01 139 500 859 

11 32 02 01 03 00 167 500 853 
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12 10 32 20 23 13 128 500 800 

13 33 11 10 33 23 289 500 806 

14 02 00 31 11 00 128 500 837 

15 30 13 33 23 03 236 500 807 

16 03 12 22 00 11 226 500 820 

 

 

Appendix 1f 

Priority Source Destination 

Start 

time 

Packet 

size Period 

1 22 00 134 800 1105 

2 12 31 281 800 1105 

3 02 31 69 800 1107 

4 33 31 202 800 1153 

5 01 22 229 800 1101 

6 11 03 67 800 1104 

7 20 03 36 800 1108 

8 21 22 201 800 1103 

9 30 20 196 800 1104 
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10 32 00 141 800 1106 

11 03 01 121 800 1108 

12 10 23 24 800 1109 

13 00 02 302 800 1104 

14 31 31 88 800 1108 

15 13 30 159 800 1106 

16 23 22 169 800 1103 

 

 

Appendix 1g 

Priority Source 

Destination 

Start time 

Packet 

size Period 1 2 3 4 

1 00 21 22 22 03 276 807 722 

2 10 22 30 02 02 242 801 729 

3 20 31 33 32 13 118 801 718 

4 30 30 01 11 30 246 802 725 

5 01 00 12 22 00 57 803 740 

6 11 32 20 31 00 167 803 706 

7 21 01 12 03 00 207 806 708 
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8 31 31 20 13 12 159 801 748 

9 02 31 32 32 20 144 801 700 

10 12 30 11 10 30 201 806 701 

11 22 22 11 01 02 200 806 710 

12 32 21 03 32 11 272 800 747 

13 03 30 03 11 20 211 800 773 

14 13 01 11 31 21 59 804 705 

15 23 00 30 22 20 221 800 725 

16 33 31 11 03 20 299 805 730 

 

 

Appendix 1h 

Priority Source 

Destination 

Start time 

Packet 

size Period 1 2 3 4 

1 00 21 22 22 03 276 807 722 

2 02 31 32 32 20 144 801 700 

3 23 00 30 22 20 221 800 725 

4 12 30 11 10 30 201 806 701 

5 32 21 03 32 11 272 800 747 
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6 20 31 33 32 13 118 801 718 

7 13 01 11 31 21 59 804 705 

8 03 30 03 11 20 211 800 773 

9 11 32 20 31 00 167 803 706 

10 33 31 11 03 20 299 805 730 

11 22 22 11 01 02 200 806 710 

12 10 22 30 02 02 242 801 729 

13 30 30 01 11 30 246 802 725 

14 01 00 12 22 00 57 803 740 

15 21 01 12 03 00 207 806 708 

16 31 31 20 13 12 159 801 748 
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Appendix 1j 

Priority Source 

Destination 

Start time Packet size Period 1 2 3 4 

1 44 05 53 55 35 180 800 1199 

2 20 22 50 12 45 300 800 1237 

3 05 40 34 11 54 78 800 1250 

4 02 25 21 42 05 269 800 1246 

5 50 15 52 45 04 233 800 1280 

6 30 22 04 54 35 247 800 1124 

7 34 15 44 13 53 50 800 1100 

8 41 51 01 02 05 241 800 1245 

9 52 05 22 54 24 187 800 1253 

10 31 24 52 13 10 242 800 1215 

11 15 45 03 51 11 109 800 1259 

12 03 45 25 24 25 58 800 1142 

13 04 51 15 10 52 95 800 1272 

14 51 51 51 10 21 188 800 1119 

15 42 44 20 42 00 278 800 1154 

16 21 52 02 51 33 104 800 1112 

17 43 35 53 40 55 221 800 1140 

18 14 30 25 10 15 45 800 1191 
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19 24 14 01 23 00 10 800 1152 

20 12 53 25 03 03 98 800 1109 

21 45 20 33 31 15 98 800 1231 

22 25 30 51 23 23 188 800 1216 

23 32 45 02 33 22 13 800 1259 

24 54 20 12 50 42 68 800 1158 

25 23 14 34 45 13 306 800 1169 

26 10 23 44 01 43 146 800 1121 

27 01 32 24 42 22 272 800 1273 

28 22 30 12 42 43 298 800 1123 

29 13 25 33 11 52 132 800 1104 

30 53 44 02 51 41 34 800 1198 

31 11 21 31 35 03 306 800 1124 

32 40 10 14 32 35 132 800 1194 

33 55 22 31 31 55 87 800 1144 

34 33 51 45 21 04 230 800 1205 

35 00 00 13 11 12 145 800 1298 

36 35 24 10 23 24 165 800 1278 
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Appendix 2- Prototypes 

The following table presents the prototype designation and its functionality specifica-

tion. The open source Bluespec System Verilog implementation of the key models, R2, 

R3, R7-F, R7-FD and R8 can be downloaded from the URL provided in the respective 

specification column. 

 

Designation Specification 

R1 Hermes based with round robin arbitration  

R2  Hermes based with priority based arbitration  
(URL: https://drive.google.com/open?id=0B3kfh6Qv5__WaEt4LTFJQnVFOUE) 

R3  PFT enabled   
(URL: https://drive.google.com/open?id=0B3kfh6Qv5__WT3R5UXU1ck04Sm8) 

 

R7-F  PFS enabled   
(URL: https://drive.google.com/open?id=0B3kfh6Qv5__WdVc4QURmbUNabkk) 

 

R7-FD  PFS-D (PFS+DHARA) enabled  
 (URL: https://drive.google.com/open?id=0B3kfh6Qv5__WbTNVbzlWdGVOMkU) 

 

   R7-FH*  PFS-H (PFS+HYENA) enabled 

R8 Virtual Channel based  
 (URL: https://drive.google.com/open?id=0B3kfh6Qv5__WRkdnbWVveHd0RE0) 

 

R9#  ‘Dynamic Time Multiplexed Virtual Channel’ enabled  

N1*  ‘Dynamic Time Multiplexed Virtual Channels with DHARA’ enabled  

Models R7-FH*, R9
#
 and N1* are experimental designs

#
 and conceptual designs

*
 as part 

of further work. 

https://drive.google.com/open?id=0B3kfh6Qv5__WaEt4LTFJQnVFOUE
https://drive.google.com/open?id=0B3kfh6Qv5__WT3R5UXU1ck04Sm8
https://drive.google.com/open?id=0B3kfh6Qv5__WdVc4QURmbUNabkk
https://drive.google.com/open?id=0B3kfh6Qv5__WbTNVbzlWdGVOMkU
https://drive.google.com/open?id=0B3kfh6Qv5__WRkdnbWVveHd0RE0
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As shown in the above figure, the implementation infrastructure consists of four files. 

‘Router.bsv’ is the router design and it utilises some values from inside the parameters 

file, ‘Param.bsv’ for setting its internal configuration (like buffer size and packet width). 

The data generator\receptor module is contained in ‘Datagen.bsv’ and these three files 

are used by the master file ‘Main.bsv’. ‘Main.bsv’ consists of code that replicates and 

interconnects the routers and data generator\receptors as per the parameters in 

‘Param.bsv’. With more advanced designs in the thesis having extra connection lines, 

‘Main.bsv’ would also deal with the configuration and connection of those. 

 

  

R 

DG 

R 

DG 

R 

DG 

R 

DG 

R 

DG 

< Parameters > 

Router.bsv 

Datagen.bsv 

Param.bsv 

Main.bsv 
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Appendix 3- Hardware Overhead  

R2 
 

Adders 

2 Input 10 Bit 10 

Registers 

26 Bit 20 

10 Bit 15 

7 Bit 6 

3 Bit 10 

2 Bit 5 

1 Bit 20 
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6 Input 26 Bit 5 

2 Input 10 Bit 10 

2 Input 3 Bit 35 

2 Input 2 Bit 5 
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LUT3 103 
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FDRE 170 
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OBUF 140 
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LUT5 319 

LUT4 188 
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LUT2 156 
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OBUF 140 
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LUT1 3 
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LUT5 319 

LUT4 188 
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R3 
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10 Input 16 Bit 1 

2 Input 16 Bit 13 
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2 Input 4 Bit 2 

2 Input 3 Bit 60 

6 Input 3 Bit 5 

2 Input 2 Bit 5 

6 Input 2 Bit 1 

2 Input 1 Bit 80 
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LUT1 7 
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R7-F 
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R7-FD 
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R8 
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Appendix 4- S-index test 

As mentioned in 3.1.1, the S-index allows latency variability comparison between two 

NoCs under the same traffic scenario over the whole priority range. To understand the 

effect of each priority level towards the S-index, consider the table below.  

In the table, eight traffic scenarios (T1 to T8) are shown. Under each traffic scenario, 

the interquartile range of packet latencies of the eight packet priorities can be seen in the 

respective columns. The last row shows the S-index value of each traffic scenario. 

Priority T1 T2 T3 T4 T5 T6 T7 T8 

1 10 30 40 60 10 10 10 10 

2 20 30 50 30 20 20 20 20 

3 30 30 60 30 30 30 30 30 

4 40 40 40 40 40 40 40 40 

5 50 50 50 50 80 60 120 140 

6 60 60 60 60 100 100 150 180 

7 70 70 70 70 120 150 200 220 

8 80 80 80 80 140 200 250 270 

S-index 80 105 135 135 107 115 148 163 

It can be seen that with T1, the interquartile range of latencies increase with the de-

crease in packet priority linearly thus amounting to an S-index of 80. S-index equation 

is formulated in such a way that an increase in latency variation of the higher priority 

packets bring about major increase in S-index. This can be seen in T2 where the varia-

tion in latency of packet 1 and 2 are higher than T1 thus resulting in the increase of S-

index from 80 to 105. The same effect can be seen in T3 where the latency variation of 

packets 1, 2 and 3 are increased further thus resulting in an increased S-index of 135. In 

T4, only packet 1 has a high latency variation and all the other packets have latency var-

iation similar to T1. As packet 1 is the highest priority packet, its high latency variation 

is critical and hence it is seen to reflect in its S-index (of 135). 

The lower priority packets however is supposed to show a lower impact on S-index than 

the higher priority packets. For example, in T5, high priority packets (1 to 4) have la-

tency variation similar to T1 but the lower priority packets (5 to 8) has higher variability 

than before. The effect of this can be seen in S-index (increased from 80 to 107) howev-

er the effect is minor compared to how it behaved with the higher priority packets. With 



170 

 

T6, T7 and T8, it can be seen that the effect of the lower priority packets significantly 

impacts the S-index value only when the latency variation with them are extremely high 

as it should be. The thesis assumes that the weightage of packets in determining the S-

index decreases linearly with the decrease in packet priority value. As mentioned in sec-

tion 3.1.1, this is done by setting the weightage relation in the S-index equation to 1. 
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Appendix 5- Simulator functionality 

validation 

The following section depicts the functionality of the prototypes during simulation. Ex-

tra code was added to the designs to export functionality details during simulation into a 

log file. 

R2 

The following is the log file of the functionality of the routers when router (0,0) sends a 

20 flit wide packet to router (2,0). 
 
        11<= Sim tick  Packet injected at 0,0 to 2,0 with priority 1 with packet size 20 

        12<= Sim tick 
        13<= Sim tick 

        14<= Sim tick  Router  0, 0   port local arbitration request to east 

        15<= Sim tick  Normal arbitration at router  0, 0 to port   local 

        16<= Sim tick  Header send at router  0, 0 port local to port east 

        17<= Sim tick  Payload send at router  0, 0 port local to port east with   19 flits left 

        18<= Sim tick  Payload send at router  0, 0 port local to port east with   18 flits left 
        19<= Sim tick  Payload send at router  0, 0 port local to port east with   17 flits left 

Router  1, 0   port west arbitration request to east 

        20<= Sim tick Payload send at router  0, 0 port local to port east with   16 flits left 
        21<= Sim tick Payload send at router  0, 0 port local to port east with   15 flits left 

        22<= Sim tick 

        23<= Sim tick 
        24<= Sim tick Normal arbitration at router  1, 0 to port   local 

        25<= Sim tick Header send at router  1, 0 port west to port east 

        26<= Sim tick Payload send at router  1, 0 port west to port east with   19 flits left 
        27<= Sim tick Payload send at router  1, 0 port west to port east with   18 flits left 

        28<= Sim tick Payload send at router  0, 0 port local to port east with   14 flits left 

Payload send at router  1, 0 port west to port east with   17 flits left 

Router  2, 0   port west arbitration request to local 

        29<= Sim tick Payload send at router  0, 0 port local to port east with   13 flits left 

Payload send at router  1, 0 port west to port east with   16 flits left 

Normal arbitration at router  2, 0 to port   local 

        30<= Sim tick Payload send at router  0, 0 port local to port east with   12 flits left 

Payload send at router  1, 0 port west to port east with   15 flits left 

Header send at router  2, 0 port west to port local 

        31<= Sim tick Payload send at router  0, 0 port local to port east with   11 flits left 
Payload send at router  2, 0 port west to port local with   19 flits left 

        32<= Sim tick Payload send at router  0, 0 port local to port east with   10 flits left 

Payload send at router  2, 0 port west to port local with   18 flits left 
        33<= Sim tick Payload send at router  0, 0 port local to port east with    9 flits left 

Payload send at router  1, 0 port west to port east with   14 flits left 

Payload send at router  2, 0 port west to port local with   17 flits left 
        34<= Sim tick Payload send at router  1, 0 port west to port east with   13 flits left 

Payload send at router  2, 0 port west to port local with   16 flits left         

        35<= Sim tick Payload send at router  1, 0 port west to port east with   12 flits left 
Payload send at router  2, 0 port west to port local with   15 flits left 

        36<= Sim tick Payload send at router  0, 0 port local to port east with    8 flits left 

Payload send at router  1, 0 port west to port east with   11 flits left 
Payload send at router  2, 0 port west to port local with   14 flits left 

        37<= Sim tick Payload send at router  0, 0 port local to port east with    7 flits left 

Payload send at router  1, 0 port west to port east with   10 flits left 

Payload send at router  2, 0 port west to port local with   13 flits left 

        38<= Sim tick Payload send at router  0, 0 port local to port east with    6 flits left 

Payload send at router  1, 0 port west to port east with    9 flits left 
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Payload send at router  2, 0 port west to port local with   12 flits left 

        39<= Sim tick Payload send at router  0, 0 port local to port east with    5 flits left 

Payload send at router  1, 0 port west to port east with    8 flits left 
Payload send at router  2, 0 port west to port local with   11 flits left 

        40<= Sim tick Payload send at router  0, 0 port local to port east with    4 flits left 

Payload send at router  1, 0 port west to port east with    7 flits left 
Payload send at router  2, 0 port west to port local with   10 flits left 

        41<= Sim tick Payload send at router  0, 0 port local to port east with    3 flits left 

Payload send at router  1, 0 port west to port east with    6 flits left 
Payload send at router  2, 0 port west to port local with    9 flits left 

        42<= Sim tick Payload send at router  0, 0 port local to port east with    2 flits left 

Payload send at router  1, 0 port west to port east with    5 flits left 
Payload send at router  2, 0 port west to port local with    8 flits left 

        43<= Sim tick Connection closed at router  0, 0 port local to port east 

Payload send at router  1, 0 port west to port east with    4 flits left 
Payload send at router  2, 0 port west to port local with    7 flits left 

        44<= Sim tick Payload send at router  1, 0 port west to port east with    3 flits left 

Payload send at router  2, 0 port west to port local with    6 flits left 
        45<= Sim tick Payload send at router  1, 0 port west to port east with    2 flits left 

Payload send at router  2, 0 port west to port local with    5 flits left 

        46<= Sim tick Connection closed at router  1, 0 port west to port east 

Payload send at router  2, 0 port west to port local with    4 flits left 

        47<= Sim tick Payload send at router  2, 0 port west to port local with    3 flits left 

        48<= Sim tick Payload send at router  2, 0 port west to port local with    2 flits left 
        49<= Sim tick Connection closed at router  2, 0 port west to port local 

        50<= Sim tick 

        51<= Sim tick Packet received at 2,0 from 0,0 with priority 1 with packet size 20 

R3 

The following log files show the functionality of the routers under a HOL blocking sce-

nario when packets with priorities 1, 4, 9, and 3 are send from routers (1,0), (1,1), (1,2) 

and (2,2) respectively to router (1,3) as in the following figure (which is a simplified 

version of the traffic scenario seen earlier in Figure 2.4). 

 

3 

1 

4 

9 

(1,0) 

(1,1) 

(1,2) (2,2) 
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With PFT, it can be seen that the arbitration request priority of packet 4 gets updated to 

1 from 4 at router (1,2) enabling packet 4 to get arbitration ahead of packet 3. It can also 

be seen that as priority tunnelling is done to the south port of router (1,2), packet 3 will 

be withheld from getting arbitrated until packet 1 would get transmitted completely. 

 

        11<= Sim tick Packet injected at 1,0 to 1,3 with priority 1 with packet size 10 

Packet injected at 1,1 to 1,3 with priority 4 with packet size 10 

Packet injected at 1,2 to 1,3 with priority 9 with packet size 20 

Packet injected at 2,2 to 1,3 with priority 3 with packet size 10 
        12<= Sim tick 
        13<= Sim tick Router  1, 0   port local arbitration request to south 

Router  1, 1   port local arbitration request to south 

Router  1, 2   port local arbitration request to south 

Router  2, 2   port local arbitration request to west 

        14<= Sim tick Arbitration provided at router  1, 0 from local port to south port 

Arbitration provided at router  1, 1 from local port to south port 

Arbitration provided at router  1, 2 from local port to south port 

Arbitration provided at router  2, 2 from local port to west port 

        15<= Sim tick Flit send from router  1, 0's local port to south port with    9 flits left 
Flit send from router  1, 1's local port to south port with    9 flits left 

Flit send from router  1, 2's local port to south port with   19 flits left 

Flit send from router  2, 2's local port to west port with    9 flits left 
        16<= Sim tick Flit send from router  1, 0's local port to south port with    8 flits left 

Flit send from router  1, 1's local port to south port with    8 flits left 

Flit send from router  1, 2's local port to south port with   18 flits left 
Flit send from router  2, 2's local port to west port with    8 flits left 

        17<= Sim tick Flit send from router  1, 0's local port to south port with    7 flits left 

Router  1, 1   port north arbitration request to south 

Flit send from router  1, 1's local port to south port with    7 flits left 

Router  1, 2   port north arbitration request to south 

Flit send from router  1, 2's local port to south port with   17 flits left 

Router  1, 3   port north arbitration request to local 

Flit send from router  2, 2's local port to west port with    7 flits left 

        18<= Sim tick Flit send from router  1, 0's local port to south port with    6 flits left 
Flit send from router  1, 1's local port to south port with    6 flits left 

Router  1, 2   port east arbitration request to south 

Flit send from router  1, 2's local port to south port with   16 flits left 

Arbitration provided at router  1, 3 from north port to local port 

Flit send from router  2, 2's local port to west port with    6 flits left 

        19<= Sim tick Flit send from router  1, 3's north port to local port with   19 flits left 

Alpha registers loaded with local blocking information 

        20<= Sim tick > Router  1, 1 => For packet   1 Alpha register North loaded 

> Router  1, 2 => For packet   4 Alpha register North loaded 

> Router  1, 2 => For packet   3 Alpha register East loaded 

Flit send from router  1, 3's north port to local port with   18 flits left 

        21<= Sim tick Flit send from router  1, 2's local port to south port with   15 flits left 
Flit send from router  1, 3's north port to local port with   17 flits left 

        22<= Sim tick Flit send from router  1, 2's local port to south port with   14 flits left 
Flit send from router  1, 3's north port to local port with   16 flits left 

        23<= Sim tick Flit send from router  1, 2's local port to south port with   13 flits left 

Flit send from router  1, 3's north port to local port with   15 flits left 
        24<= Sim tick Flit send from router  1, 2's local port to south port with   12 flits left 

PFT flits send from Router 1,2 gets received at router 1,3 and is loaded into its North Beta register 

> Router  1, 3 => Beta register North loaded 

Flit send from router  1, 3's north port to local port with   14 flits left 

PFT flits send from Router 1,1 gets received at router 1,2 and is loaded into its North Beta register 

        25<= Sim tick > Router  1, 2 => Beta register North loaded 
Flit send from router  1, 2's local port to south port with   11 flits left 

Flit send from router  1, 3's north port to local port with   13 flits left 

        26<= Sim tick Flit send from router  1, 2's local port to south port with   10 flits left 
Flit send from router  1, 3's north port to local port with   12 flits left 

Priority forwarding initiated at router 1,2 as the priority of arbitration request at the north port is updated to 1 from 4 

        27<= Sim tick > Priority forwarded from   4 to   1 at router  1, 2 

Priority tunnelling initiated at the south port of router 1,2 

> Priority tunnelling for router  1, 2 at south port with priority  1 

> PFT information forwarded towards south from router  1, 2 

Flit send from router  1, 2's local port to south port with    9 flits left 

> Router  1, 3 => Beta register North loaded 

Flit send from router  1, 3's north port to local port with   11 flits left 
        28<= Sim tick Flit send from router  1, 2's local port to south port with    8 flits left 

Flit send from router  1, 3's north port to local port with   10 flits left 
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        29<= Sim tick Flit send from router  1, 2's local port to south port with    7 flits left 

Flit send from router  1, 3's north port to local port with    9 flits left 

        30<= Sim tick Flit send from router  1, 2's local port to south port with    6 flits left 
Flit send from router  1, 3's north port to local port with    8 flits left 

        31<= Sim tick Flit send from router  1, 2's local port to south port with    5 flits left 

Flit send from router  1, 3's north port to local port with    7 flits left 
        32<= Sim tick Flit send from router  1, 2's local port to south port with    4 flits left 

Flit send from router  1, 3's north port to local port with    6 flits left 

        33<= Sim tick Flit send from router  1, 2's local port to south port with    3 flits left 
Flit send from router  1, 3's north port to local port with    5 flits left 

        34<= Sim tick Flit send from router  1, 2's local port to south port with    2 flits left 

Flit send from router  1, 3's north port to local port with    4 flits left 
        35<= Sim tick Flit send from router  1, 2's local port to south port with    1 flits left 

Flit send from router  1, 3's north port to local port with    3 flits left 

        36<= Sim tick Flit send from router  1, 2's local port to south port with    0 flits left 
Flit send from router  1, 3's north port to local port with    2 flits left 

Packet 4 gets arbitration ahead of packet 3 due to priority forwarding 

        37<= Sim tick Arbitration provided at router  1, 2 from north port to south port 

Flit send from router  1, 3's north port to local port with    1 flits left 

        38<= Sim tick Flit send from router  1, 2's north port to south port with    9 flits left 

Flit send from router  1, 3's north port to local port with    0 flits left 
        39<= Sim tick Flit send from router  1, 2's north port to south port with    8 flits left 

        40<= Sim tick Packet received at 1,3 from 1,2 with priority 9 with packet size 20 

Flit send from router  1, 1's local port to south port with    5 flits left 
Flit send from router  1, 2's north port to south port with    7 flits left 

Router  1, 3   port north arbitration request to local 

        41<= Sim tick Flit send from router  1, 1's local port to south port with    4 flits left 
Flit send from router  1, 2's north port to south port with    6 flits left 

Arbitration provided at router  1, 3 from north port to local port 

        42<= Sim tick Flit send from router  1, 1's local port to south port with    3 flits left 
Flit send from router  1, 3's north port to local port with    9 flits left 

        43<= Sim tick Flit send from router  1, 1's local port to south port with    2 flits left 

Flit send from router  1, 3's north port to local port with    8 flits left 
        44<= Sim tick Flit send from router  1, 2's north port to south port with    5 flits left 

Flit send from router  1, 3's north port to local port with    7 flits left 

        45<= Sim tick Flit send from router  1, 2's north port to south port with    4 flits left 
Flit send from router  1, 3's north port to local port with    6 flits left 

        46<= Sim tick Flit send from router  1, 1's local port to south port with    1 flits left 

Flit send from router  1, 2's north port to south port with    3 flits left 
Flit send from router  1, 3's north port to local port with    5 flits left 

        47<= Sim tick Flit send from router  1, 1's local port to south port with    0 flits left 

Flit send from router  1, 2's north port to south port with    2 flits left 
Flit send from router  1, 3's north port to local port with    4 flits left 

        48<= Sim tick Arbitration provided at router  1, 1 from north port to south port 

Flit send from router  1, 2's north port to south port with    1 flits left 
Flit send from router  1, 3's north port to local port with    3 flits left 

        49<= Sim tick Flit send from router  1, 1's north port to south port with    9 flits left 

Flit send from router  1, 2's north port to south port with    0 flits left 
Flit send from router  1, 3's north port to local port with    2 flits left 

        50<= Sim tick Flit send from router  1, 1's north port to south port with    8 flits left 

Flit send from router  1, 3's north port to local port with    1 flits left 
        51<= Sim tick Flit send from router  1, 0's local port to south port with    5 flits left 

Flit send from router  1, 1's north port to south port with    7 flits left 

Packet 1 gets arbitration ahead of packet 3 despite being a few simulation ticks delayed as south port was tunnelled prevent-

ing packet 3 from getting arbitration 

Router  1, 2   port north arbitration request to south 

Flit send from router  1, 3's north port to local port with    0 flits left 

        52<= Sim tick Flit send from router  1, 0's local port to south port with    4 flits left 

Flit send from router  1, 1's north port to south port with    6 flits left 
Arbitration provided at router  1, 2 from router 2 to south port 

Packet 4 received at router 1,3 ahead of packet 3 due to priority forwarding 

        53<= Sim tick Packet received at 1,3 from 1,1 with priority 4 with packet size 10 
Flit send from router  1, 0's local port to south port with    3 flits left 

Flit send from router  1, 2's north port to south port with    9 flits left 

        54<= Sim tick Flit send from router  1, 0's local port to south port with    2 flits left 
Flit send from router  1, 2's north port to south port with    8 flits left 

        55<= Sim tick Flit send from router  1, 1's north port to south port with    5 flits left 

Flit send from router  1, 2's north port to south port with    7 flits left 

Router  1, 3   port north arbitration request to local 

        56<= Sim tick Flit send from router  1, 1's north port to south port with    4 flits left 

Flit send from router  1, 2's north port to south port with    6 flits left 

Arbitration provided at router  1, 3 from north port to local port 

        57<= Sim tick Flit send from router  1, 0's local port to south port with    1 flits left 

Flit send from router  1, 1's north port to south port with    3 flits left 
Flit send from router  1, 3's north port to local port with    9 flits left 

        58<= Sim tick Flit send from router  1, 0's local port to south port with    0 flits left 
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Flit send from router  1, 1's north port to south port with    2 flits left 

Flit send from router  1, 3's north port to local port with    8 flits left 

        59<= Sim tick Flit send from router  1, 2's north port to south port with    5 flits left 
Flit send from router  1, 3's north port to local port with    7 flits left 

        60<= Sim tick Flit send from router  1, 2's north port to south port with    4 flits left 

Flit send from router  1, 3's north port to local port with    6 flits left 
        61<= Sim tick Flit send from router  1, 1's north port to south port with    1 flits left 

Flit send from router  1, 2's north port to south port with    3 flits left 

Flit send from router  1, 3's north port to local port with    5 flits left 
        62<= Sim tick Flit send from router  1, 1's north port to south port with    0 flits left 

Flit send from router  1, 2's north port to south port with    2 flits left 

Flit send from router  1, 3's north port to local port with    4 flits left 
        63<= Sim tick Flit send from router  1, 2's north port to south port with    1 flits left 

Flit send from router  1, 3's north port to local port with    3 flits left 

        64<= Sim tick Flit send from router  1, 2's north port to south port with    0 flits left 
Flit send from router  1, 3's north port to local port with    2 flits left 

        65<= Sim tick Arbitration provided at router  1, 2 from east port to south port 

Flit send from router  1, 3's north port to local port with    1 flits left 
        66<= Sim tick Flit send from router  1, 2's east port to south port with    9 flits left 

Flit send from router  1, 3's north port to local port with    0 flits left 

        67<= Sim tick Flit send from router  1, 2's east port to south port with    8 flits left 

Packet 1 received at router 1,3 ahead of packet 3 as a result of priority forwarding and priority tunnelling. 

        68<= Sim tick Packet received at 1,3 from 1,0 with priority 1 with packet size 10 

Flit send from router  1, 2's east port to south port with    7 flits left 

Router  1, 3   port north arbitration request to local 

Flit send from router  2, 2's local port to west port with    5 flits left 

        69<= Sim tick Flit send from router  1, 2's east port to south port with    6 flits left 

Arbitration provided at router  1, 3 from router 2 to local port 

Flit send from router  2, 2's local port to west port with    4 flits left 

        70<= Sim tick Flit send from router  1, 3's north port to local port with    9 flits left 
Flit send from router  2, 2's local port to west port with    3 flits left 

        71<= Sim tick Flit send from router  1, 3's north port to local port with    8 flits left 

Flit send from router  2, 2's local port to west port with    2 flits left 
        72<= Sim tick Flit send from router  1, 2's east port to south port with    5 flits left 

Flit send from router  1, 3's north port to local port with    7 flits left 

        73<= Sim tick Flit send from router  1, 2's east port to south port with    4 flits left 
Flit send from router  1, 3's north port to local port with    6 flits left 

        74<= Sim tick Flit send from router  1, 2's east port to south port with    3 flits left 

Flit send from router  1, 3's north port to local port with    5 flits left 
Flit send from router  2, 2's local port to west port with    1 flits left 

        75<= Sim tick Flit send from router  1, 2's east port to south port with    2 flits left 

Flit send from router  1, 3's north port to local port with    4 flits left 
Flit send from router  2, 2's local port to west port with    0 flits left 

        76<= Sim tick Flit send from router  1, 2's east port to south port with    1 flits left 

Flit send from router  1, 3's north port to local port with    3 flits left 
        77<= Sim tick Flit send from router  1, 2's east port to south port with    0 flits left 

Flit send from router  1, 3's north port to local port with    2 flits left 

        78<= Sim tick Flit send from router  1, 3's north port to local port with    1 flits left 
        79<= Sim tick Flit send from router  1, 3's north port to local port with    0 flits left 

        80<= Sim tick 

        81<= Sim tick Packet received at 1,3 from 2,2 with priority 3 with packet size 10 

R7-F/R7-FD 

The following is the log file of the functionality of the routers when routers (0,0) and 

(1,0) sends a 40 flit wide packet to router (0,1). The packet from router (0,0) is transmit-

ted first with priority 3followed by the packet from router (1,0) five clock cycles later 

with priority 1 and slack value 6.  As a result, it can be seen that as packet 1 waits for 

arbitration, its slack value gets decremented several times until it gets to a point where it 

gets an instantaneous priority greater than packet 3 hence initiating packet splitting. As 

a result, packet 1 can be seen getting complete transmission before packet 3. 
 
        11<= Sim tick Packet injected at 1,0 to 0,1 with priority 3 with packet size 40 

        12<= Sim tick 

        13<= Sim tick 
        14<= Sim tick Router  1, 0   port local arbitration request to west 

        15<= Sim tick Normal arbitration at router  1, 0 to port east 

        16<= Sim tick Packet injected at 0,0 to 0,1 with priority 1 with packet size 40 
Header send at router  1, 0 port local to port west 

        17<= Sim tick Payload send at router  1, 0 port local to port west with   39 flits left 
        18<= Sim tick Payload send at router  1, 0 port local to port west with   38 flits left 
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        19<= Sim tick Router  0, 0   port local arbitration request to south 

Router  0, 0   port east arbitration request to south 

Payload send at router  1, 0 port local to port west with   37 flits left 

As the packet from router (0,0) waits for arbitration, its slack can be seen getting reduced 

        20<= Sim tick > Dynamic slack update- Router  0 0 port local  slack:   5  inst_prio:   6 packet priority  1 

Payload send at router  1, 0 port local to port west with   36 flits left 
        21<= Sim tick Payload send at router  1, 0 port local to port west with   35 flits left 

        22<= Sim tick Normal arbitration at router  0, 0 to port east 

        23<= Sim tick Header send at router  0, 0 port east to port south 
        24<= Sim tick Payload send at router  0, 0 port east to port south with   39 flits left 

Slack being reduced further 
        25<= Sim tick > Dynamic slack update- Router  0 0 port local  slack:   4  inst_prio:   5 packet priority  1 

Payload send at router  0, 0 port east to port south with   38 flits left 

        26<= Sim tick Payload send at router  0, 0 port east to port south with   37 flits left 

Router  0, 1   port north arbitration request to local 
Payload send at router  1, 0 port local to port west with   34 flits left 

        27<= Sim tick Payload send at router  0, 0 port east to port south with   36 flits left 

Payload send at router  1, 0 port local to port west with   33 flits left 
        28<= Sim tick Payload send at router  0, 0 port east to port south with   35 flits left 

Payload send at router  1, 0 port local to port west with   32 flits left 

        29<= Sim tick Payload send at router  1, 0 port local to port west with   31 flits left 
        30<= Sim tick > Dynamic slack update- Router  0 0 port local  slack:   3  inst_prio:   4 packet priority  1 

Payload send at router  1, 0 port local to port west with   30 flits left 

        31<= Sim tick Normal arbitration at router  0, 1 to port east 
Payload send at router  1, 0 port local to port west with   29 flits left 

        32<= Sim tick Header send at router  0, 1 port north to port local 

        33<= Sim tick Payload send at router  0, 1 port north to port local with   39 flits left 
        34<= Sim tick Payload send at router  0, 1 port north to port local with   38 flits left 

        35<= Sim tick > Dynamic slack update- Router  0 0 port local  slack:   2  inst_prio:   3 packet priority  1 

Payload send at router  0, 0 port east to port south with   34 flits left  
Payload send at router  0, 1 port north to port local with   37 flits left 

        36<= Sim tick Payload send at router  0, 0 port east to port south with   33 flits left 

Payload send at router  0, 1 port north to port local with   36 flits left 
        37<= Sim tick Payload send at router  0, 0 port east to port south with   32 flits left 

Payload send at router  0, 1 port north to port local with   35 flits left 

        38<= Sim tick Payload send at router  0, 0 port east to port south with   31 flits left 
Payload send at router  0, 1 port north to port local with   34 flits left 

Payload send at router  1, 0 port local to port west with   28 flits left 

        39<= Sim tick Payload send at router  0, 0 port east to port south with   30 flits left 
Payload send at router  0, 1 port north to port local with   33 flits left 

Payload send at router  1, 0 port local to port west with   27 flits left 

        40<= Sim tick > Dynamic slack update- Router  0 0 port local  slack:   1  inst_prio:   2 packet priority  1 

Payload send at router  0, 0 port east to port south with   29 flits left 

Payload send at router  0, 1 port north to port local with   32 flits left 

Payload send at router  1, 0 port local to port west with   26 flits left 
        41<= Sim tick Payload send at router  0, 0 port east to port south with   28 flits left 

Payload send at router  0, 1 port north to port local with   31 flits left 

Payload send at router  1, 0 port local to port west with   25 flits left 
        42<= Sim tick Payload send at router  0, 0 port east to port south with   27 flits left 

Payload send at router  0, 1 port north to port local with   30 flits left 

Payload send at router  1, 0 port local to port west with   24 flits left 
        43<= Sim tick Payload send at router  0, 0 port east to port south with   26 flits left 

Payload send at router  0, 1 port north to port local with   29 flits left 
Payload send at router  1, 0 port local to port west with   23 flits left 

        44<= Sim tick Payload send at router  0, 0 port east to port south with   25 flits left 

Payload send at router  0, 1 port north to port local with   28 flits left 
Payload send at router  1, 0 port local to port west with   22 flits left 

Packet splitting request initiated as the packet from router (0,0) achieves a higher dynamic priority than the packet from 

router(1,0)  

        45<= Sim tick Packet split request at router  0, 0 from port local to split port east 

Payload send at router  0, 0 port east to port south with   24 flits left 

Payload send at router  0, 1 port north to port local with   27 flits left 
Payload send at router  1, 0 port local to port west with   21 flits left 

Packet splitting initiated 

        46<= Sim tick Payload split at router  0, 0 port east to port south with   23 flits left 

Payload send at router  0, 1 port north to port local with   26 flits left 

Payload send at router  1, 0 port local to port west with   20 flits left 

        47<= Sim tick Payload send at router  0, 1 port north to port local with   25 flits left 
Payload send at router  1, 0 port local to port west with   19 flits left 

        48<= Sim tick Payload send at router  0, 1 port north to port local with   24 flits left 

Payload send at router  1, 0 port local to port west with   18 flits left 

Connection closed for the split packet 

        49<= Sim tick Connection closed at router  0, 1 port north to port local 

Payload send at router  1, 0 port local to port west with   17 flits left 
        50<= Sim tick Normal arbitration at router  0, 0 to port north 

Transmission of the packet from router (0,0) initiated post splitting of the other packet 



177 

 

        51<= Sim tick Header send at router  0, 0 port local to port south 

        52<= Sim tick Payload send at router  0, 0 port local to port south with   39 flits left 

        53<= Sim tick Payload send at router  0, 0 port local to port south with   38 flits left 
        54<= Sim tick Payload send at router  0, 0 port local to port south with   37 flits left 

Router  0, 1   port north arbitration request to local55<= Sim tick 

Payload send at router  0, 0 port local to port south with   36 flits left 
        56<= Sim tick Payload send at router  0, 0 port local to port south with   35 flits left 

Normal arbitration at router  0, 1 to port local 

        57<= Sim tick Header send at router  0, 1 port north to port local 

        58<= Sim tick Payload send at router  0, 1 port north to port local with   39 flits left 

        59<= Sim tick Payload send at router  0, 1 port north to port local with   38 flits left 

        60<= Sim tick Payload send at router  0, 0 port local to port south with   34 flits left 
Payload send at router  0, 1 port north to port local with   37 flits left 

        61<= Sim tick Payload send at router  0, 0 port local to port south with   33 flits left 

Payload send at router  0, 1 port north to port local with   36 flits left 
        62<= Sim tick Payload send at router  0, 0 port local to port south with   32 flits left 

Payload send at router  0, 1 port north to port local with   35 flits left 

        63<= Sim tick Payload send at router  0, 0 port local to port south with   31 flits left 
Payload send at router  0, 1 port north to port local with   34 flits left 

        64<= Sim tick Payload send at router  0, 0 port local to port south with   30 flits left 

Payload send at router  0, 1 port north to port local with   33 flits left 
        65<= Sim tick Payload send at router  0, 0 port local to port south with   29 flits left 

Payload send at router  0, 1 port north to port local with   32 flits left 

        66<= Sim tick Payload send at router  0, 0 port local to port south with   28 flits left 
Payload send at router  0, 1 port north to port local with   31 flits left 

        67<= Sim tick Payload send at router  0, 0 port local to port south with   27 flits left 

Payload send at router  0, 1 port north to port local with   30 flits left 
        68<= Sim tick Payload send at router  0, 0 port local to port south with   26 flits left 

Payload send at router  0, 1 port north to port local with   29 flits left 

        69<= Sim tick Payload send at router  0, 0 port local to port south with   25 flits left 
Payload send at router  0, 1 port north to port local with   28 flits left 

        70<= Sim tick Payload send at router  0, 0 port local to port south with   24 flits left 

Payload send at router  0, 1 port north to port local with   27 flits left 
        71<= Sim tick Payload send at router  0, 0 port local to port south with   23 flits left 

Payload send at router  0, 1 port north to port local with   26 flits left 

        72<= Sim tick Payload send at router  0, 0 port local to port south with   22 flits left 
Payload send at router  0, 1 port north to port local with   25 flits left 

        73<= Sim tick Payload send at router  0, 0 port local to port south with   21 flits left 

Payload send at router  0, 1 port north to port local with   24 flits left 
        74<= Sim tick Payload send at router  0, 0 port local to port south with   20 flits left 

Payload send at router  0, 1 port north to port local with   23 flits left 

        75<= Sim tick Payload send at router  0, 0 port local to port south with   19 flits left 
Payload send at router  0, 1 port north to port local with   22 flits left 

        76<= Sim tick Payload send at router  0, 0 port local to port south with   18 flits left 

Payload send at router  0, 1 port north to port local with   21 flits left 
        77<= Sim tick Payload send at router  0, 0 port local to port south with   17 flits left 

Payload send at router  0, 1 port north to port local with   20 flits left 

        78<= Sim tick Payload send at router  0, 0 port local to port south with   16 flits left 
Payload send at router  0, 1 port north to port local with   19 flits left 

        79<= Sim tick Payload send at router  1, 0 port local to port west with   14 flits left 

       105<= Sim tick Payload send at router  1, 0 port local to port west with   13 flits left 
       106<= Sim tick Normal arbitration at router  0, 1 to port east 

Payload send at router  1, 0 port local to port west with   12 flits left 
       107<= Sim tick Header send at router  0, 1 port north to port local 

       108<= Sim tick Payload send at router  0, 1 port north to port local with   23 flits left 

       109<= Sim tick Payload send at router  0, 1 port north to port local with   22 flits left 
       110<= Sim tick Payload send at router  0, 0 port east to port south with   18 flits left 

Payload send at router  0, 1 port north to port local with   21 flits left 

       111<= Sim tick Payload send at router  0, 0 port east to port south with   17 flits left 
Payload send at router  0, 1 port north to port local with   20 flits left 

       112<= Sim tick Payload send at router  0, 0 port east to port south with   16 flits left 

Payload send at router  0, 1 port north to port local with   19 flits left 
       113<= Sim tick Payload send at router  0, 0 port east to port south with   15 flits left 

Payload send at router  0, 1 port north to port local with   18 flits left 

Payload send at router  1, 0 port local to port west with   11 flits left 
       114<= Sim tick Payload send at router  0, 0 port east to port south with   14 flits left 

Payload send at router  0, 1 port north to port local with   17 flits left 

Payload send at router  1, 0 port local to port west with   10 flits left 
       115<= Sim tick Payload send at router  0, 0 port east to port south with   13 flits left 

Payload send at router  0, 1 port north to port local with   16 flits left 

Payload send at router  1, 0 port local to port west with    9 flits left 
       116<= Sim tick Payload send at router  0, 0 port east to port south with   12 flits left 

Payload send at router  0, 1 port north to port local with   15 flits left 

Payload send at router  1, 0 port local to port west with    8 flits left 
       117<= Sim tick Payload send at router  0, 0 port east to port south with   11 flits left 

Payload send at router  0, 1 port north to port local with   14 flits left 
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Payload send at router  1, 0 port local to port west with    7 flits left 

       118<= Sim tick Payload send at router  0, 0 port east to port south with   10 flits left 

Payload send at router  0, 1 port north to port local with   13 flits left 
Payload send at router  1, 0 port local to port west with    6 flits left 

       119<= Sim tick Payload send at router  0, 0 port east to port south with    9 flits left 

Payload send at router  0, 1 port north to port local with   12 flits left 
Payload send at router  1, 0 port local to port west with    5 flits left 

       120<= Sim tick Payload send at router  0, 0 port east to port south with    8 flits left 

Payload send at router  0, 1 port north to port local with   11 flits left 
Payload send at router  1, 0 port local to port west with    4 flits left 

       121<= Sim tick Payload send at router  0, 0 port east to port south with    7 flits left 

Payload send at router  0, 1 port north to port local with   10 flits left 
Payload send at router  1, 0 port local to port west with    3 flits left 

       122<= Sim tick Payload send at router  0, 0 port east to port south with    6 flits left 

Payload send at router  0, 1 port north to port local with    9 flits left 
Payload send at router  1, 0 port local to port west with    2 flits left 

       123<= Sim tick Payload send at router  0, 0 port east to port south with    5 flits left 

Payload send at router  0, 1 port north to port local with    8 flits left 

Connection closed at router 1, 0 port local to port west 

       124<= Sim tick Payload send at router  0, 0 port east to port south with    4 flits left 

Payload send at router  0, 1 port north to port local with    7 flits left 
       125<= Sim tick Payload send at router  0, 0 port east to port south with    3 flits left  

Payload send at router  0, 0 port local to port south with   15 flits left 

Payload send at router  0, 1 port north to port local with   18 flits left 
        80<= Sim tick Payload send at router  0, 0 port local to port south with   14 flits left 

Payload send at router  0, 1 port north to port local with   17 flits left 

        81<= Sim tick Payload send at router  0, 0 port local to port south with   13 flits left 
Payload send at router  0, 1 port north to port local with   16 flits left 

        82<= Sim tick Payload send at router  0, 0 port local to port south with   12 flits left 

Payload send at router  0, 1 port north to port local with   15 flits left 
        83<= Sim tick Payload send at router  0, 0 port local to port south with   11 flits left 

Payload send at router  0, 1 port north to port local with   14 flits left 

        84<= Sim tick Payload send at router  0, 0 port local to port south with   10 flits left 
Payload send at router  0, 1 port north to port local with   13 flits left 

        85<= Sim tick Payload send at router  0, 0 port local to port south with    9 flits left 

Payload send at router  0, 1 port north to port local with   12 flits left 
        86<= Sim tick Payload send at router  0, 0 port local to port south with    8 flits left 

Payload send at router  0, 1 port north to port local with   11 flits left 

        87<= Sim tick Payload send at router  0, 0 port local to port south with    7 flits left 
Payload send at router  0, 1 port north to port local with   10 flits left 

        88<= Sim tick Payload send at router  0, 0 port local to port south with    6 flits left 

Payload send at router  0, 1 port north to port local with    9 flits left 
        89<= Sim tick Payload send at router  0, 0 port local to port south with    5 flits left 

Payload send at router  0, 1 port north to port local with    8 flits left 

        90<= Sim tick Payload send at router  0, 0 port local to port south with    4 flits left 
Payload send at router  0, 1 port north to port local with    7 flits left 

        91<= Sim tick Payload send at router  0, 0 port local to port south with    3 flits left 

Payload send at router  0, 1 port north to port local with    6 flits left 
        92<= Sim tick Payload send at router  0, 0 port local to port south with    2 flits left 

Payload send at router  0, 1 port north to port local with    5 flits left 

        93<= Sim tick Connection closed at router  0, 0 port local to port south 

Payload send at router  0, 1 port north to port local with    4 flits left 

        94<= Sim tick Payload send at router  0, 1 port north to port local with    3 flits left 
        95<= Sim tick Payload send at router  0, 1 port north to port local with    2 flits left 

        96<= Sim tick Connection closed at router  0, 1 port north to port local 

Arbitrating the transmission of the split packet  

        97<= Sim tick Resumed arbitration at router  0, 0 to port east 

        98<= Sim tick Packet received at 0,1 from 0,0 with priority 1 with packet size 40 

New header formulated and send (for retransmission of the split packet)  

(Resumed)Header send at router  0, 0 port east to port south 

        99<= Sim tick Payload send at router  0, 0 port east to port south with   23 flits left 

       100<= Sim tick Payload send at router  0, 0 port east to port south with   22 flits left 
       101<= Sim tick Payload send at router  0, 0 port east to port south with   21 flits left 

Router  0, 1   port north arbitration request to local 

       102<= Sim tick  Payload send at router  0, 0 port east to port south with   20 flits left 
Payload send at router  1, 0 port local to port west with   16 flits left 

       103<= Sim tick Payload send at router  0, 0 port east to port south with   19 flits left 

Payload send at router  1, 0 port local to port west with   15 flits left 
       104<= Sim tick Payload send at router  0, 1 port north to port local with    6 flits left 

       126<= Sim tick Connection closed at router  0, 0 port east to port south 

Payload send at router  0, 1 port north to port local with    5 flits left 
       127<= Sim tick Payload send at router  0, 1 port north to port local with    4 flits left 

       128<= Sim tick Payload send at router  0, 1 port north to port local with    3 flits left 

       129<= Sim tick Connection closed at router  0, 1 port north to port local 

       130<= Sim tick 

       131<= Sim tick Packet received at 0,1 from 1,0 with priority 3 with packet size 40 
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Glossary of Terms 

Application sup-

plied priority 

Priority of the packet added by the application that in i-

tiated the communication 

ASIC Application Specific Integrated Circuit  

BE Best Effort Service 

Blocking A communication is said to be blocked by another when 

the communication path needed for the former is being 

utilised by the later communication thus preventing its 

transmission 

Contention Contention is defined as the situation when two or more 

communication flows require transmission through the 

same connection link 

Cumulative count 

of packet reception 

(For each packet priority) Number of packets that were 

received successfully at that priority level or higher  

Deadline The desired bound on packet latency in simulation ticks  

DHARA Dynamic Slack Hard-line Aware Router Architecture 

DI Divider Index used to specify the weightage of residual 
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slack in computing instantaneous priority 

DMA Dynamic Memory Access 

DTMVC Dynamic Time Multiplexed Virtual Channel  

Dynamic behaviour The ability of the router to respond in run time to in -

coming packets (regardless of its destination) without 

reconfiguration to the routing logic 

Dynamic traffic Traffic that has no bounded time interval be-tween suc-

cessive packets and no upper or lower bounds on packet 

length 

ECU Electronic Control Unit 

EPSRC Engineering and Physical Sciences Research Council  

EU FP7 European Union Framework Program Seven 

EVC Express Virtual Channel 

FIFO First In First Out (buffer) 

Flit Flow Control Digit; the basic unit of communication 

through NoC links 
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Flow control The process of managing data transmission between 

two nodes 

FPGA Field Programmable Gate Array 

FSM Finite State Machine 

GS Guaranteed Service 

HDL Hardware Description Language 

Hard deadline The latency deadline of a packet, missing which can 

result in a catastrophic failure of the design target  

Hermes based NoC In the thesis, the non-preemptive NoC model (with XY-

routing and wormhole switching) based on Hermes (ex-

plained in section 2.3.1) is referred to as the Hermes 

based NoC 

HOL blocking A packet is said to be Head-of-line blocked when it is 

blocked by a lower priority packet which is already 

blocked 

HYENA HYper Criticality Enabled NoC Architecture  

Interquartile range The difference between the 3rd and 1st quartile of l a-

tency 
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IP Intellectual Property 

Latency The time interval between time instant when the ne t-

work interface of the source core is supposed to inject 

the header flit of the packet to the instant when the 

whole of the packet is received by the net -work inter-

face of the destination core in clock cycles 

LDM Link Division Multiplexing 

LUT Lookup table 

Many-core proces-

sor 

A processor with high number of cores (tens or hun-

dreds) 

MCS Mixed Criticality System (system with two or more dis-

tinct criticality levels) 

MSB Most Significant Bit 

Network utilisation Network utilisation is defined as the percentage of total 

number of connection links being used for communica-

tion at any point of time 

NoC Network-on-Chip 

Non-preemptive  Without pre-emptive arbitration 
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Packet latency The time interval between time instant when the net-

work interface of the source core is supposed to inject 

the header flit of the packet to the instant when the 

whole of the packet is received by the net -work inter-

face of the destination core in clock cycles  

Packet period Time in clock cycles between successive packet injec-

tion (on a specific IP) 

PFS Priority Forwarded Packet Splitting 

PFS-D Priority Forwarded Packet Splitting with DHARA 

PFT Priority Forwarding and Tunnelling 

Predictability Packet predictability enhancement is defined as the re-

duction in variation in latency of the packet. So a pack-

et with lower variation in latency is considered more 

predictable than one with higher variation 

QNoC Quality of Service NoC 

QoS Quality of Service 

Residual slack The time in clock cycles a packet can be delayed with-

out missing its soft deadline 

RTL Register Transfer Level 
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SAF Store and Forward (switching technique) 

Scalability The ability of the NoC router to handle packets with a 

wider range of priority values thus enabling the use of 

the router in bigger NoC topologies than it was initially 

designed for 

Soft deadline The latency deadline of a packet, missing which may 

result in performance degradation of the design target 

and would not cause a catastrophic failure of the design 

target 

SPS Selective Packet Splitting 

Starvation Blocking of packets indefinitely, resulting in packet 

delivery failure 

Tailbacking A packet is said to be tailbacked when the link required 

for its transmission is being utilised by a lower priority 

packet 

TDM Time Division Multiplexing 

TG Traffic Generator 

TLM Transaction Level Modelling 

TR Traffic Receptor 
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Traffic pattern The pattern of traffic flow through the routers over the 

whole NoC over the entire simulation run (Traffic pat-

tern consists of all the packet flows through the NoC, 

each specifying parameters like source-destination in-

formation, packet priority, injection time and packet 

size) 

URL Universal Resource Locator 

VB Visual Basic (Microsoft developed programming lan-

guage) 

VC Virtual Channel 

VC based NoC In the thesis, the NoC with preemptive arbitration ena-

bled by Virtual Channels is referred to as the VC based 

NoC 

VCT Virtual Cut Through (switching technique) 
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