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Abstract

The schema is the key artefact used to describe the structure of a relational database,

specifying how data will be stored and the integrity constraints used to ensure it is valid.

It is therefore surprising that to date little work has addressed the problem of schema

testing, which aims to identify mistakes in the schema early in software development.

Failure to do so may lead to critical faults, which may cause data loss or degradation of

data quality, remaining undetected until later when they will prove much more costly to

fix.

This thesis explores how mutation analysis – a technique commonly used in software

testing to evaluate test suite quality – can be applied to evaluate data generated to

exercise the integrity constraints of a relational database schema. By injecting faults into

the constraints, modelling both faults of omission and commission, this enables the fault-

finding capability of test suites generated by different techniques to be compared. This

is essential to empirically evaluate further schema testing research, providing a means of

assessing the effectiveness of proposed techniques.

To mutate the integrity constraints of a schema, a collection of novel mutation oper-

ators are proposed and implementation described. These allow an empirical evaluation

of an existing data generation approach, demonstrating the effectiveness of the mutation

analysis technique and identifying a configuration that killed 94% of mutants on average.

Cost-effective algorithms for automatically removing equivalent mutants and other inef-

fective mutants are then proposed and evaluated, revealing a third of mutation scores to

be mutation adequate and reducing time taken by an average of 7%. Finally, the exe-

cution cost problem is confronted, with a range of optimisation strategies being applied

that consistently improve efficiency, reducing the time taken by several hours in the best

case and as high as 99% on average for one DBMS.
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Chapter 1

Introduction

1.1 Overview

While the average person may be unaware of importance of databases, they are a crit-

ical piece of infrastructure in modern society, storing data about almost every facet of

everyday life – from banking and commerce, to medical records and electronic commu-

nication [100]. Information stored in databases has been claimed to be critical tools in

political campaigns [21], as well as an important component in mobile devices, Internet

browser software and entertainment systems [103]. Recognising the intrinsic value of

data has led to calls for organisations to allow open access to the information they store,

especially those operating in the public sector. For example, the governments of both

the United Kingdom [109] and the United States of America [112] are amongst those

who have launched initiatives to release publicly held non-sensitive information, aiming

to provide transparency and unlock the potential additional economic value held in this

data.

Unfortunately, information and understanding cannot easily be derived from raw data

unless it can be reliably stored in a structured way, updated and maintained over time,

and retrieved easily. Data that is not stored in a reliable way may become corrupt or

incomplete, leading to difficulties in extracting meaningful information. In addition, with-

out structure it may be difficult to discern the meaning of the data, therefore preventing
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information being extracted. Likewise, if data is not properly maintained it may lead to

misleading information being produced, causing business decisions to be made upon false

conclusions – as well as potentially failing to comply with legal obligations. Finally, data

must be retained in a format that can be easily retrieved to create useful information,

otherwise its inherent value cannot be realised.

A relational database provides a structured means of storing data that meets these

requirements, based upon a conceptual model proposed by Codd [27]. Data is organised

into columns and tables, which may have references between them, according to a schema.

This ensures that all stored data must conform to a particular structure and organises data

such that it can later be retrieved. Interaction with a database is facilitated through an

application known as a database management system (DBMS), which allows the creation

of a database and the subsequent execution of queries against it to retrieve, update and

remove items of data. These queries are most commonly expressed in the Structured

Query Language (SQL), which provides a standardised language for communication with

a DBMS.

For data to be considered sufficiently high quality such that meaningful and correct

information can be derived from it, thus allowing a business to realise its value, it is

essential that it is accurate [115]. Although a schema defines the structure of the data

stored in a relational database, defining the tables, column and data types of a database

is not enough to ensure that all data inserted into the database is adequately accurate.

For example, rows in the database may include empty values – usually referred to as

null values in databases – or may contain spurious data, like zero or negative values for

a price column. Such rows may allow for incomplete or inaccurate data to be stored in

the database, which may cause faults to manifest in any application that makes use the

data in it, such as allowing products to be sold at a loss. Such additional restrictions

on what data is acceptable can also be encoded in a schema using a series of integrity

constraints, which must each be satisfied by a row of data for it to be added into the

database. These allow the schema designer to incorporate additional business rules into

the database – such as ensuring that a price is always greater than zero, that all individuals

can be uniquely identified, or that an aeroplane seat cannot be double-booked. Because

integrity constraints are defined at the database level, rather than in each application

using the database, they automatically ensure that all applications using the database

conform to the same restrictions without the need for each application to reimplement
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them, which would be more prone to errors. These constraints are therefore critical to

ensuring that the data in a database can be relied upon to be accurate and to not be

corrupted by the addition of poor quality data, which may otherwise be allowed by the

definition of tables, columns and their data types.

Given the significant impact that integrity constraints may have on the data which can

be stored in the database, and therefore in protecting a valuable asset, it is surprising that

industry practitioners reportedly do not frequently test the schemas of their databases as

recommended [40]. Similarly, while a variety of testing research has focussed on detecting

faults in either DBMSs (e.g., [101, 65, 15, 8]) or applications using databases (e.g., [24,

106, 29]), the area of schema testing has been left relatively unexplored. Schema testing

aims to identify where elements of the schema have been incorrectly specified, such that a

database created using it would either allow data to be persisted that is invalid according

to some business rules, lowering the accuracy of the stored data as a whole, or preventing

valid data from being added to the database, leading to loss of data. These both lead

to a decrease in the realisable value of the data stored, which was likely to be costly to

obtain and maintain, as a business is unable to rely upon its accuracy or completeness.

To our knowledge, our paper on schema testing [62] was the first to propose a data gen-

eration technique specifically for identifying where the integrity constraints of a schema

may contain such errors. This applies a meta-heuristic search algorithm to generate

data that aims to exercise the constraints within a schema, implemented in a tool called

SchemaAnalyst. The coverage that this automatically generated data achieves is gener-

ally determined according to how many constraints were satisfied or violated by at least

one row of data. Once the data is executed with a DBMS the tester can examine the

rows accepted by the schema and the data added to the database, because all constraints

were satisfied, or rejected by the schema and not added to the database, as one or more

constraints were violated. Provided the coverage is high, and therefore a majority of the

constraints have been exercised, examining these two sets of data will allow the tester

to determine where their schema may have unexpected behaviour and therefore likely

contains a fault.

To evaluate the quality of the test data produced by the search-based technique in

the SchemaAnalyst tool, we proposed an approach for applying mutation analysis to the

investigate its fault-finding capability [62]. Mutation analysis is a commonly researched

3



technique that allows test suites to be evaluated by analysing their ability to distinguish

the presence of a series of faults that have been intentionally added to a program (or

other software artefact) to create mutant programs, each with the aim of subtly altering

the program’s behaviour. Assuming that the injected faults in these mutants model a

suitably wide range of programmer errors, a test suite that can detect a high proportion

of these small changes should also detect many genuine errors made by a programmer.

Therefore, if the tester is confident the behaviour specified in their test suite is correct,

they can be given assurance that such genuine errors are unlikely to be present, and that

by extension the program should behave according to its specification. Where a fault is

not detected by the test suite, the tester can further refine their test suite by manually

producing additional test cases, repeating this process until a satisfactory proportion

of mutants can be identified. However, it is possible that one or more of the mutants

cannot be detected by any test case – the equivalent mutant problem – which may lead

the tester to waste time attempting to produce an infeasible test case. Additionally,

it is important that the mutation analysis procedure is efficient enough to allow for a

potentially large number of mutants to be processed, enabling the analysis of larger

programs to be completed in a reasonable time.

This thesis explores a number of important, yet previously unexplored, facets relat-

ing to the mutation analysis of integrity constraints contained within relational database

schemas, as a means of assessing the fault-finding capability of a series of database rows.

This includes confronting the problems commonly associated with mutation analysis –

such as the design of a system for generating mutants of database schemas, the automated

identification of a number of types of unwanted mutants (including equivalent mutants),

and the scalability of analysis in light of potentially large numbers of mutants – in the pre-

viously unexplored context of mutating integrity constraints in schemas, proposing and

evaluating techniques for each. Domain-specific challenges such as the varying behaviour

between DBMSs, due to varying degrees of conformance with the SQL specification, are

discussed and their impact managed. In addition, the fault-finding capability of different

data generation configurations of SchemaAnalyst are empirically evaluated, to determine

how best to produce data to find potential mistakes in the integrity constraints of schemas.

Together, these facets yield a complete mutation analysis system for evaluating the capa-

bility of a test suite to detect faults in the integrity constraints of a relational database

schema, including techniques to reduce both the human and computational cost, as well

as demonstrating how this can be used to assess the quality of data produced by an
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existing data generation approach.

The remainder of this Chapter first provides a brief background of relational databases

and their integrity constraints, as defined using the SQL language. Next, a motivating

example for schema testing is described, demonstrating how mistakes in a schema may

manifest as faults in applications using a database based upon it. Finally, the novel

contributions and structure of this thesis are detailed.

1.2 Relational Database Schemas

Using the relational model of data proposed by Codd [27] a series of values, or attributes,

relating to one object (e.g., an item of inventory) are stored as tuples. A collection of

tuples that relate to the same types of object are stored together in a relation, where

each tuple should usually be able to be uniquely identified. A query can then be used

to retrieve data from a relation by specifying which attributes are required and any

expressions those attributes must satisfy. Values from multiple tuples may be queried

together using a join operation. Queries can also be used to insert, delete or update

tuples, modifying the contents of a relation.

In practical usage, the relational model is commonly applied to define and manipulate

databases using a language called Structured Query Language (SQL). In SQL, tuples are

referred to as rows, attributes as columns and relations as tables. The structure of a

database is defined using SQL in an artefact known as a schema, which defines the table

and columns that will be used to store rows of data. This is expressed as a series of

CREATE TABLE statements with one statement for each table, containing the definitions

for its columns, that are submitted to the database in a query. The SQL language also

defines a syntax for the queries used to add rows to the database (INSERT statements),

retrieve rows matching given criteria (SELECT statements with optional WHERE clauses),

modify values of rows already in the database (UPDATE statements), remove rows from

the database (DELETE statements), and discard the tables of the database (DROP TABLE

statements). An example of each of these types of query, their effect on the state of a

database, or the values that they return when executed for SELECT queries, are shown in

Figure 1.1.
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CREATE TABLE stock (

product_id integer,

description varchar(50),

price numeric,

sale_price numeric

);

SQL query sequence

product_id description price sale_price

Accumulated database state and query results

INSERT INTO stock VALUES

(1, 'Laptop computer', 499, 399);

product_id description price sale_price

1 Laptop computer 499 399

INSERT INTO stock VALUES

(2, 'Desktop computer', 699, 649);

product_id description price sale_price

1 Laptop computer 499 399

2 Desktop computer 699 649

SELECT description, price FROM stock; Query result:
description price

Laptop computer 499

Desktop computer 699

SELECT description, sale_price FROM

stock WHERE product_id = 1;

Query result:
description sale_price

Laptop computer 499

UPDATE stock SET

sale_price = 599

WHERE product_id = 2;

product_id description price sale_price

1 Laptop computer 499 399

2 Desktop computer 699 599

UPDATE stock SET

sale_price =

sale_price - 50;

product_id description price sale_price

1 Laptop computer 499 349

2 Desktop computer 699 549

DELETE FROM stock WHERE

product_id != 2;

product_id description price sale_price

2 Desktop computer 699 549

DELETE FROM stock; product_id description price sale_price

DROP TABLE stock;

Figure 1.1: Example SQL queries executed in sequence using the SQLite DBMS.
The CREATE TABLE query produces an empty database with one table, stock, that contains
four columns. The INSERT queries then each add a row of data to the database. The SELECT

queries demonstrate how data can be retrieved from the database, including using a WHERE

clause to limit the rows returned. The UPDATE queries show how entries in the database can
be updated, including applying changes only to specific rows and referencing existing column
values in arithmetic expressions. The DELETE queries illustrate the removal of one or more
rows of data. Finally, the DROP TABLE query shows how a table is discarded entirely.
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1.2.1 Database constraints

While the organisation of data into tables and columns provides some structure to the

data, it does not allow the schema designer to prevent data being inserted into the

database that is invalid according to one or more business rules. Instead, relational

databases allow a series of constraints to be defined that must be satisfied whenever data

is being added to the database, otherwise the executing INSERT statement will fail and

the data will not be incorporated into the database.

The simplest type of database constraints are domain constraints [100], which limit

the value of each column within a row to a specific data type. Specifying the data type of

a column is compulsory in each column definition of a CREATE TABLE statement, therefore

it is not possible to omit a domain constraint – although it is clearly possible to specify

the wrong type. The CREATE TABLE query in Figure 1.1 demonstrates the definition of

domain constraints for each column in the stock table. This states that product id may

only contain whole-number integer values, description must be a character string1,

while price and sale price may contain numeric values that include a decimal part.

More complex restrictions on what constitutes valid data for a given database may be

specified by including one or more integrity constraints, which are described independently

of their implementation in a given DBMS by the standards that define the expected

behaviour of SQL (e.g., [7]). These are explicitly defined by the schema designer and

therefore may experience both faults of commission, where a constraint may overly restrict

the rows of data that will be accepted, or faults of omission, where the constraints defined

are insufficient to restrict the insertion of data deemed invalid by the business rules. This

Section now continues to describe the five types of integrity constraint, providing examples

of how each allows the schema design to define what criteria all rows of data must satisfy.

NOT NULL constraints

By default, an INSERT query may leave any column in an SQL row database unspecified,

in which case the special null value is used. This signifies that the value is effectively

1The type varchar is an abbreviation of ‘variable length character’, a type designed to store strings
that may contain a variable number of characters between zero and some maximum number – in this
case, the limit is specified as 50 characters, although a default value is used if this is omitted.
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unknown, which differs from a value of 0 or the empty string in that the outcome of some

boolean expressions may in turn become unknown if any argument is null2. Alternatively,

an INSERT statement may include explicitly null values, to indicate definitively that a

specific column value is not known.

A NOT NULL constraint may be defined on a given column to prevent INSERT state-

ments either omitting a value or specifying a null value for it being accepted into the

database. For example, in the stock table specified in Figure 1.1, the definition of the

column price may be amended to ‘price numeric NOT NULL’ to ensure that null values

are disallowed, and thus meeting the business requirement that all products must have a

price specified.

UNIQUE constraints

While the relational model of data proposed by Codd [27] specifies that rows in the

database should always be uniquely identifiable, the SQL standard does not enforce this

requirement. Nonetheless, to allow each row of data to be retrieved, updated and removed

without other rows being affected there must be a unique set of attributes that identify

only that row. For example, in Figure 1.1 the product id column appears to uniquely

identify each row, with it taking the different values of 1 and 2 for the sample INSERT

statements.

To guarantee that the values taken by one or more columns are unique amongst all

other rows in the table, a UNIQUE constraint may be specified. This ensures that any

INSERT statement will be rejected unless the specified column values do not already

exist. The SQL language allows this constraint to be defined either when specifying

the column name and data type, or elsewhere in the CREATE TABLE statement. For

example, in the case of the stock schema the former would require the column definition

to be changed to product id integer UNIQUE, while the latter would involve adding

UNIQUE(product id) on a separate line within the CREATE TABLE statement.

As mentioned above when describing NOT NULL constraints, unless such a constraint

is defined for a column, rows may contain the special value of null, signifying the ac-

tual value is unknown. When evaluating whether one or more columns are unique for

2In the case of certain expressions, this requires SQL to operate according to a three-valued logic
system where boolean expressions may be either true, false or unknown.
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the purposes of a UNIQUE constraint, these unknown values are not treated as equal –

as the actual value of each occurrence of null may in fact be different. Therefore if

the product id was defined with a single-column unique constraint as described above,

multiple items may be added to the database with an identifying value of null.

PRIMARY KEY constraints

A PRIMARY KEY constraint dictates that one or more columns form a unique identifier for

each row and that those columns may not be null – essentially combining the restrictions

of both a UNIQUE constraint over those columns and a NOT NULL on each of them3. This

type of constraint can only be defined once per table and is therefore used for the most

common set of columns that uniquely identify a single row, while UNIQUE constraints may

be defined for other columns that must be unique according to the business requirements.

In the case of the example schema in Figure 1.1 while product id should have unique

values for each row in the database, as discussed in the Section immediately prior, it

also appears logical that the value null should be disallowed – otherwise the database

may contain products that it cannot guarantee to be uniquely identified, and so may

be sold at an incorrect price if the wrong matching row is returned. In addition, as

the product id column appears to be the only column that will always be unique for

each product it is a natural choice for a PRIMARY KEY constraint, rather than a UNIQUE

constraint. As with UNIQUE constraints, a PRIMARY KEY may either be added as part

of a column definition (product id integer PRIMARY KEY) or within the surrounding

CREATE TABLE statement (PRIMARY KEY(product id)).

FOREIGN KEY constraints

While separate tables in a schema may be used to avoid duplication of data, it may be

necessary to join the rows of different tables together according to one or more matching

column values. In some cases, the data in one table can only be understood once such a

join has been performed, therefore the rows referenced from one table must always exist

in the referenced table. For example, expanding upon the schema of Figure 1.1 an orders

table might be added to record purchases:

3As described later in this thesis, although this restriction is specified in the SQL standard [7] the
adherence to it differs between DBMSs – for example, the SQLite DBMS does not disallow null values
for columns within a PRIMARY KEY constraint [1].
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CREATE TABLE purchases (

order_id integer PRIMARY KEY,

product_id integer NOT NULL,

customer_id integer NOT NULL,

quantity integer NOT NULL

);

In this case, each order relates to a purchase made by a specific customer, whose

attributes are stored in another table (not shown), to obtain some quantity of a single

product, as detailed in the stock table. Without a constraint to enforce that both

the customer and the product exist, as referenced by the customer id and product id

columns respectively, it may be possible to attribute an order to a customer who does

not exist or to place an order for a non-existent product.

A FOREIGN KEY constraint enforces that the values of one or more columns in a table

must correspond to rows which already exist in the referenced table. In the above ex-

ample, the constraint to limit products to those in the stock table would be defined as

‘FOREIGN KEY product id REFERENCES stock(product id)’ within the CREATE TABLE

statement for the purchases table. This strictly limits the domain of valid values of

product id in the purchases table to those already added to the stock table, such that

any INSERT queries violating this would be rejected by the DBMS.

CHECK constraints

While the prior four types of constraint are specific in their applications, CHECK constraints

allow a wide range of boolean expressions to be included in a schema. All of these must

evaluate to true for any data that is added to the database with an INSERT statement or

when an UPDATE statement tries to modify existing data.

Each CHECK constraint defined in a schema may include an arbitrarily complex com-

bination of expressions that may reference the column values of the row an INSERT state-

ment is attempting to add to the database. For example, expressions may test whether a

value is set to null, compare two values – either both column values or a column value and

a constant – using a relational operator (i.e., =,6=,<,≤,≥), test whether a column value

is between two limits (‘x BETWEEN y AND z ), or ensure a column takes one value from

a given list of values (‘a IN (b,c )’). These can then be combined using conjunctions

and disjunctions to create more complex logic to reflect detailed business rules.
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Continuing the stock example table, a number of simple CHECK constraints can be

specified to ensure that sensible limitations are placed on the data that can be stored.

For example, the stock table, which has already been refined by the addition of other

types of constraints, may be further improved with CHECK constraints as follows:

Original

CREATE TABLE stock (

product_id integer PRIMARY KEY,

description varchar(50),

price numeric NOT NULL,

sale_price numeric NOT NULL

);

With CHECK constraints

CREATE TABLE stock (

product_id integer PRIMARY KEY,

description varchar(50),

price numeric NOT NULL,

sale_price numeric NOT NULL,

CHECK ((price > 0) AND

(sale_price > 0)),

CHECK (sale_price <= price)

);

These additional constraints enforce two sensible business rules. Firstly, both the

price and sale price of an item must be greater than zero, ensuring a negative or zero

value cannot be specified by mistake. Secondly, the sale price of an item must always be

less than or equal to the normal price, ensuring that whenever the customer is offered

the sale price they cannot be charged more than usual.

1.2.2 Summary

This Section has provided background of how SQL can be used to define the structure

of a relational database, in terms of table, columns and their data types, and integrity

constraints. The five types of constraints that are commonly found in SQL schemas

have been discussed, with descriptions of the types of data they help prevent from being

added to the database and a worked example showing how these can be applied in a

simple scenario. Next, a motivation for schema testing is provided to further explain

the importance of detecting and resolving mistakes made when defining the integrity

constraints of the schema.
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1.3 Motivation for Schema Testing

As previously mentioned in Section 1.1, there has been little research into techniques for

schema testing, meaning it is difficult to determine where faults may have been included

in the integrity constraints of a relational database schema. When compared to the

efforts in developing approaches to test both DBMSs themselves (Section 2.2.1) and the

database applications that use them (Section 2.2.2), this leaves a conspicuous opportunity

for errors to occur because of mistakes made early in the development of such applications,

when a data model is transformed into a database schema and constraints are defined.

Given that these constraints protect against the database becoming corrupted, leading to

possible loss of data or an increased difficulty in extracting meaningful information – and

therefore generate value – from the database, the correct definition of these constraints

is critical to the success of an application. In addition, if constraints overly limit the

data that can be stored, important data may be lost that should have been persisted

into the database, indicating that both faults of omission and commission [4] should

be considered. Moreover, while database application testing techniques may be able to

detect these problems in some circumstances and resolve them in the application layer

of the application, rather than the data layer, this relies upon all applications sharing a

given database to follow the same technique and apply the same resolutions – which is,

at best, a potentially unreliable and expensive prospect.

Schema testing aims to aid in detecting faults located in the definition of the structure

of the database and its constraints. This thesis focusses on how mutation analysis can

be used to evaluate schema testing techniques that exercise the constraints in a schema,

through execution of sequences of INSERT statements, and how to ensure this is performed

both efficiently and effectively. This Section now continues with a description of a schema,

possible faults that may easily be made when defining the integrity constraints and their

impact on an application using a database produced with this schema, and how schema

testing would help detect the faults before they manifest as potentially hard to detect

bugs in the application.
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Correct schema

1 CREATE TABLE stock (

2 product_id integer PRIMARY KEY,

3 description varchar(50) NOT NULL,

4 price numeric NOT NULL,

5 sale_price numeric NOT NULL,

6 CHECK ((price > 0) AND

7 (sale_price > 0)),

8 CHECK (sale_price <= price)

9 );

10

11 CREATE TABLE customer (

12 customer_id integer PRIMARY KEY,

13 name varchar(100) NOT NULL,

14 address varchar(100) NOT NULL,

15 );

16

17 CREATE TABLE purchases (

18 order_id integer PRIMARY KEY,

19 product_id integer NOT NULL,

20 customer_id integer NOT NULL,

21 quantity integer NOT NULL,

22 FOREIGN KEY product_id

23 REFERENCES stock(product_id),

24 FOREIGN KEY customer_id

25 REFERENCES customer(

customer_id),

26 CHECK (quantity > 0);

27 );

Possible faults

CREATE TABLE stock (

product_id integer PRIMARY KEY,

description varchar(50) NOT NULL,

price numeric NOT NULL,

sale_price numeric NOT NULL,

CHECK ((price > 0) AND

(sale_price > 0)),

CHECK (sale_price <= price)

);

CREATE TABLE customer (

customer_id integer UNIQUE,

name varchar(100) NOT NULL,

address varchar(100) NOT NULL,

);

CREATE TABLE purchases (

order_id integer PRIMARY KEY,

product_id integer NOT NULL,

customer_id integer NOT NULL,

quantity integer NOT NULL,

FOREIGN KEY product_id

REFERENCES stock(product_id),

FOREIGN KEY customer_id

REFERENCES customer(

customer_id),

CHECK (quantity >= 0)

);

Figure 1.2: An example of an SQL schema and several faults in integrity constraint
definitions that would be identified through schema testing.

1.3.1 Motivating example

The schema in Figure 1.2 provides a more complete listing of the examples used thus

far to describe the various constraints in SQL. This produces a database that can be

used to track items that are offered to be sold, customers who may buy them and record

purchases that have been made. While it contains some assumptions for the sake of

clarity, such as each order only permitting one type of product from the stock table

and customers being limited to a single address, it still provides ample scope for simple

mistakes in constraints to have a significant effect. This is because the constraints in the

schema define a series of business rules that ensure any application using this database

functions correctly. A series of four possible programmer mistakes highlighted on the

right-hand side of Figure 1.2 are now described, in terms of both their impact and how

schema testing would enable them to be detected.
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Highlighted on lines 4 and 21, the omission of NOT NULL constraints can allow null

values to be inserted into the database in place of actual values. In the first case (line

4), an application using the database may fail to specify the price for an item – for

example, if a user does not enter a value in the relevant field when adding a new item

of stock. This INSERT statement would still satisfy the remaining constraints of the

schema and a null value would be added to the database in the price column. This

value may result in faulty behaviour in the application logic that allows a customer to

purchase an item for no charge, unless this logic is thoroughly tested with null values

being returned by the database. In the second case (line 21), a null value would be

allowed to be provided as the quantity in an order. Again, this may cause a fault in

the purchasing portion of the application, where the number of items to include in an

order may become undefined, leading to unpredictable application behaviour. In both

cases, thorough testing of the integrity constraints contained within the schema should

detect such omissions, by generating data to test both null and non-null values for each

column4. Upon reviewing this data, a tester would be able to identify that both the

price and quantity columns should not be able to accept null values, thus determining

both faults in the schema.

The fault on line 12 represents the case where a UNIQUE constraint has been used in

place of a PRIMARY KEY constraint. If the programmer is familiar with a DBMS that

does not infer an implicit NOT NULL constraint on the columns of a PRIMARY KEY (e.g.,

SQLite), but is using an alternative DBMS that does so according to the SQL standard

(e.g., PostgreSQL), then they may mistakenly believe these constraints are equivalent.

However, by permitting null values to be specified for the customer id column it may

become impossible to retrieve the details of a customer where this has been mistakenly

omitted when adding them to the database, if the application using the database relies

upon this key value to identify each row. As with the NOT NULL constraints, schema

testing via generating null and non-null values would expose this fault to the tester, who

would be able to identify from the generated data that null values for the customer id

column are being allowed into the database.

Finally, the fault on line 26 shows a simple mistake where the wrong relational op-

erator has been specified, with ≥ being used instead of >. Similarly, this mistake may

4A means of generating data according to this strategy as implemented in the SchemaAnalyst tool
[76] is described later in Section 3.5.1 and its effectiveness evaluated as a novel contribution of this thesis
in Chapter 5.
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cause errors to occur in an application where it may be assumed that all purchases must

correctly refer to an item from the stock table, but does not check the quantity is cor-

rectly set and allows a value of zero (which still satisfies the NOT NULL constraint even if

this is not omitted). Testing a CHECK constraint requires the generation of data to both

satisfy and violate the constraint. In this case, selection of boundary values that ‘just’

satisfy or violate the expression would help the tester determine the erroneous case –

for example, the tester would recognise that -1 should not be accepted and is correctly

rejected by the schema, and that 0 should not be accepted but is incorrectly accepted

by the faulty version of the schema. This would help them determine that the CHECK

constraint is poorly defined and requires modification, leading them to select the correct

operator.

1.3.2 Application of Mutation Analysis

While a tester may conceive a strategy for producing test cases that exercise those parts

of the schema thought to be most important, without a more rigorous approach they

may be liable to forget to include tests for all constraints in the schema. However, this

greatly increases the likelihood of small faults remaining undetected until later in the

development of the program using a database produced from the schema, likely increasing

the cost of remediation significantly. Mutation analysis provides a more guided process

for developing a test suite that has a high likelihood of identifying faults in the program,

based upon measuring a test suite’s ability to detect a set of mutants with known faults.

Where a test suite is able to recognise all such mutants, the tester can be assured that

their test suite has a high fault-finding capability, assuming the faults applied to produce

the mutants are representative of real programmer faults.

Proposed technique

To evaluate the quality of test suites produced for testing the integrity constraints of

relational database schemas, such that different data generation techniques could be

compared, I proposed a mutation analysis approach for relational database schemas [62].

By executing each of these INSERT statements with the original, unmodified schema and

then each of its mutants, produced by modifying its integrity constraints, and comparing
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which INSERT statements are accepted or rejected, it is possible to determine whether the

fault of each mutant is detected by the test suite or not. This allows a mutation score –

the proportion of mutants detected out of all mutants produced – to be calculated, where

a higher score suggests a higher fault-finding capability. The basic steps of this mutation

technique, specified more formally in Section 7.2, are as follows:

1. Produce mutant versions of the schema by applying mutation operators.

2. Create a database with the original schema by executing CREATE statements.

3. Execute each INSERT statement in the test suite against the database.

4. Remove the database from the DBMS with DROP statements.

5. For each mutated copy of the schema:

(i) Create a database with a mutant schema by executing CREATE statements.

(ii) Execute each INSERT statement in the test suite against the database.

(iii) Compare the acceptance of each INSERT statement to the acceptance when

using the non-mutated schema. If there are any differences the mutant is

killed5).

(iv) Remove the database from the DBMS with DROP statements.

6. Calculate the mutation score as the proportion of mutants detected.

This technique – hereinafter referred to as the Original technique – is pivotal to each

of the contributions of this thesis. It generates mutants of relational database schemas

according to the operators in Chapter 4, which allow a mutation analysis experiment to

be performed to measure the fault-finding capability of different schema coverage criteria

to be evaluated in Chapter 5. However, as with the application of mutation analysis

to other domains, it is possible that some of the produced mutants reduce its efficiency

and effectiveness, which in turn decreases the usefulness of the technique in a practical

setting. Therefore, in Chapter 6, I describe a series of algorithms to automatically detect

5In the context of schema constraint mutation, a mutant is described as killed if at least one of a
series of INSERT statements accepted by the original, non-mutant schema is rejected by the mutant, or
vice-versa.
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many of these, and empirically evaluate the effectiveness of an implementation of them.

Due to the potentially large number of mutants produced as the size of the mutated

artefact increases, mutation analysis can become prohibitively expensive, requiring either

significant computational resources and long execution times, or both. This problem is

equally present for mutation analysis of relational database schemas as it is for programs.

Therefore, in Chapter 7 I discuss how the Original technique can be made more efficient

by implementing a series of different time-saving approaches, to ensure mutation analysis

can be scaled to large schemas in a reasonable time, and compare their impact in an

empirical study.

1.3.3 Summary

This Section has provided an overview of how small mistakes in even relatively simple

schemas can cause faults to occur in applications that use them to produce databases.

As the scale of the schema increases, the scope for such mistakes is likely to increase,

their impact may worsen, and detecting them through database application testing could

become more expensive. For each mistake, a means of detecting it through schema testing

is described, motivating further investigation of schema testing techniques and evaluation

of their effectiveness. To evaluate test suites produced for schema testing, a mutation

analysis approach for relational database schemas was discussed, which is central to the

contributions of this thesis. The contribution Chapters of this thesis explore numerous

facets relating to this approach, exploring both its efficiency and effectiveness, including

tackling a number of challenges usually faced when applying mutation analysis, proposing

and evaluating a number of solutions to them.

1.4 Contributions of this Thesis

The novel work of this thesis, produced according to the above motivations, can be divided

into the following contributions:

C1: Schema mutation operators – I formally describe a collection of mutation op-

erators, implemented as part of a mutation framework, designed to model poten-

tial programmer mistakes when defining integrity constraints in relational database
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schemas, including operators leveraging static analysis to produce only valid FOREIGN

KEY mutants, as well as definitions of the predicted productivity of each operator. In

each case, worked examples are also given to demonstrate how the operator behaves

for a sample schema (Chapter 4).

C2: Empirical evaluation of coverage criteria for database schemas – An empir-

ical investigation determining how the choice of coverage criteria influences the

effectiveness of generating data for testing relational database schemas, including

an analysis of the types of mutants specific criteria are adept at killing and how

combinations of criteria can improve test suite effectiveness (Chapter 5).

C3: Algorithms for removing ineffective mutants and an evaluation of their impact

– Definitions of three types of undesirable mutants produced when mutating rela-

tional database schema, a series of patterns and detection functions for automati-

cally identifying them, and the results of an empirical study to determine the impact

this has on the accuracy and efficiency of mutation analysis (Chapter 6).

C4: Techniques to improve the efficiency of mutation analysis for schema testing

– The specification of a number of novel mutation analysis techniques, implementing

domain-appropriate equivalents to techniques previously used for program mutants,

as well as optimisations specific to the domain of relational databases (Chapter 7).

C5: An evaluation of mutation analysis techniques for schema testing – An em-

pirical evaluation of several optimised mutation analysis techniques to determine

their efficiency when applied to a wide variety of schemas and numerous DBMSs as

well as their accuracy with respect to the standard, unoptimised technique (Chap-

ter 7).

1.5 Thesis Structure

This thesis relates each of the above contributions through the following structure, the

links between which are highlighted in Figure 1.3:
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Thesis topic

Mutation Analysis of
Relational Database Schemas

Chapter 4
Mutating the integrity

constraints of schemas

Chapter 5
Evaluating data

generation techniques

Chapter 6
Automatically removing

ineffective mutants

Chapter 7
Reducing the cost

of mutation analysis

Figure 1.3: An overview of the connections between the Chapters of this thesis.

Chapter 2: “Literature Review” explores literature relating to both database test-

ing – including DBMS testing and database application testing techniques – and muta-

tion analysis – covering the theory underpinning mutation, known challenges such as the

equivalent mutant problem and approaches to tackle them, and techniques attempting

to improve the efficiency of mutation analysis to enable its use in practical settings.

Chapter 3: “The SchemaAnalyst tool” describes the implementation of a schema

testing technique as a tool which is used throughout the Chapters of this thesis. The

mutation framework contributed as part of this thesis is described, which is used later in

Chapter 4, as well as the test data generation system that is evaluated in Chapter 5.

Chapter 4: “Mutation Operators for Relational Database Schemas” details

a collection of novel mutation operators that can be used to inject faults into the in-

tegrity constraints of a relational database schema to produce the mutants required by

the mutation analysis approach described in Section 1.3.2. These model a wide range

of faults in the constraints of an SQL schema, including PRIMARY KEY, FOREIGN KEY,

UNIQUE constraint, NOT NULL constraint and CHECK constraint mutants. Where applica-

ble, static analysis approaches are used to prevent the production of semantically invalid

mutants. For each operator, a formal algorithm is described in terms of manipulation

of the SchemaAnalyst intermediate representation of SQL (Section 3.3), as well as a

definition of the operator’s productivity.
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Chapter 5: “Evaluating Coverage Criteria for Relational Database Schemas

Using Mutation Analysis” makes use of these mutation operators and the proposed

mutation analysis technique to evaluate the fault-finding capability of test suites pro-

duced by difference coverage criteria, which are each designed to exercise the constraints

of a relational database schema in different ways. By examining which seeded faults the

produced test suites are able to detect, the coverage criteria can be compared in terms of

how likely they are to identify genuine errors made when creating a relational database

schema. Through analysis of the types of mutants killed most readily by certain opera-

tors, a series of combinations of coverage criteria are also evaluated, to determine which

produce the overall most effective test suite of SQL INSERT statements.

Chapter 6: “Automatically Identifying Ineffective Mutants” more closely ex-

amines the types of mutants produced by the mutation operators defined in Chapter 4,

highlighting three classes of mutant that distort the results of mutation analysis – equiva-

lent, redundant and quasi-mutants – and details algorithms that can automatically iden-

tify and remove these, prior to analysis. Implementations of these algorithms are then

evaluated in an empirical study to quantify the effect this removal has on the efficiency

of mutation analysis, as well as the accuracy of the mutation score obtained.

Chapter 7: “Improving the Efficiency of Mutation Analysis for Relational

Database Schemas” proposes how optimisations can be used to vastly improve the

efficiency of mutation analysis of relational database schemas to evaluate schema testing

techniques, ensuring it is practical for both large scale empirical experiments such as that

in Chapter 5 and practical application. These optimisations are generally inspired by

those applied to mutation analysis of programs and other software artefacts, although

implement strategies specifically tailored to the domain of schema testing. These are then

compared and evaluated through an empirical experiment, to determine which optimisa-

tions are able to maintain effectiveness – producing the same results as the unoptimised

Original technique – while improving efficiency by minimising the cost of execution.

Chapter 8: “Conclusions and Future Work” contains final remarks about the

work in this thesis, summarising the contributions of the prior Chapters and providing

possible directions for future research in the area.
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Chapter 2

Literature Review

2.1 Software Testing

Given that software is generally written by humans, it is reasonable to expect that as

the number of lines of code increases, occasional mistakes become inevitable. While

these mistakes may have relatively harmless consequences – for example, causing minor

annoyance to a user who must spend a few moments to restart a crashed application –

in some cases their impact may be catastrophic – such as the explosion of an Ariane 5

space rocket, worth approximately $500 million, only 40 seconds after launch [49]. By

testing software, it is possible to gain confidence that such mistakes can be identified and

fixed prior to deployment of the software, usually during or shortly after development,

reducing the risk of costly ramifications. As a result, software testing is an essential part

of software development, taking up to half of the overall development time according to

some estimates [80].

This Section now continues by first describing a number of important terms and

concepts commonly used in the context of software testing, including throughout the

remainder of this thesis. The different types of testing technique are also discussed,

followed by a discussion of metrics that can be used by testers to guide the development

of effective tests. Finally, a brief description of mutation analysis, its relation to test

development and software testing experiments is given.
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2.1.1 Basic Concepts

A number of important terms used throughout software testing literature are described

below. Although there are slight variations between definitions given by different software

testing researchers, the following definitions provide the generally accepted meanings

according to a number of prominent authors in the field (e.g., Ammann and Offutt [4],

Burnstein [20], and Myers and Sandler [80]).

Where a mistake is made in the source code of a program this is referred to as an

error. These may have various causes, such as the programmer misunderstanding the

program’s requirements, misusing a particular programming construct or simply making a

typographical mistake. If the presence of an error causes a program to behave abnormally,

such that it no longer meets its specification, this is known as a fault – a term used

interchangeably with bug or defect. Not all errors will manifest as faults – for example

because they are located in code that is not executed, or do not impact upon the externally

observable behaviour of the program. Finally, if the fault is executed during the running

of the program causing it to behave incorrectly, it is exposed externally as a failure.

Software testing aims to detect faults through the execution of test cases. These en-

code the intended behaviour of the program, specifying that executing part or all of the

program should produce some expected result, which may be expressed as an assertion.

For each of these assertions, the expected result is compared with the actual result ob-

tained by running the program, with any violated assertion indicating the presence of a

fault – or, an incorrectly specified test case. In the former case, the tester should investi-

gate further to determine the underlying error(s), while in the latter they should correct

the mistake in their test. The collection of test cases for a program are usually combined

into a test suite, ideally including tests executing a wide range of its functionality. Where

some piece of functionality or section of code is executed by at least one test, it is said

to be covered by the test suite.

When selecting a testing technique, it is not necessarily assumed that the tester will

have the specialist knowledge to understand the internal implementation of the program.

This reduces their need for in-depth training and a thorough understanding of the algo-

rithms applied in the code of the program. In black-box testing techniques, the tester

is left unaware as to the inner workings of the program, comparing only the outputs it
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produces when given various inputs. For example, the tester may use values derived from

the formal specification of the program, if one exists. Unfortunately, this can limit the

tester’s ability to give assurance that no faults are present, unless they exhaustively test

the program for all inputs [80] – usually a prohibitively expensive task for even small

programs. To avoid this, white-box testing techniques assume the tester is able to inspect

the implementation of the program and use this to inform their choice of test inputs. For

example, they may observe literal values used in conditional statements or loop termina-

tion conditions and select values that test for ‘out by one’ errors (where the correct literal

value is ±1 from the stated value). They may also use a systematic approach to ensure

that all parts of the program are executed, according to some notion of test coverage –

what parts of the program have been tested by a given test suite (see Section 2.1.2 for a

more detailed description). Unfortunately, compared to black-box testing, this generally

requires the tester to gain a more detailed understanding of the program’s implementa-

tion, which may present a significant human-time cost. By balancing the positive and

negative elements of black-box and white-box testing, grey-box techniques allow the tester

to use partial information about the implementation of the program and combine this

with higher-level specifications of the program’s expected behaviour to produce tests.

2.1.2 Strategies for Software Testing

Coverage criteria

To ensure that the developed test suite covers a sufficiently broad proportion of a pro-

gram’s functionality, testers may base their testing strategies upon coverage criteria.

These provide a quantifiable way of determining how well a test suite exercises the pro-

gram, and therefore in theory the likelihood of it detecting any faults present. Applying

these, a tester can identify a target coverage level they wish to achieve, where a higher

target will involve a greater effort in developing the test suite, but also increase the

likelihood that faults are detected.

When using white-box testing techniques, where the program code is available to

the tester, a series of structural coverage criteria [4] can be employed, which measure

what parts of the program tests have executed, to estimate the quality of the test suite.

The most basic of these criteria, statement coverage, requires that each statement of the
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program is executed at least once. However, it is not difficult to devise a simple example

where this does not execute all behaviour of a program. Consider the following simple

example function, which calculates the new price for an item by applying a fixed discount,

but ensures the minimum value of new price is 10:

int reducePrice(int price, int discount) {

int newPrice = price - discount;

if (newPrice < 10) {

newPrice = 10

}

return newPrice;

}

In this case, statement coverage can be satisfied by any input x where ‘x < 10’. However,

this fails to test the function’s behaviour when the ‘if’ condition is not satisfied, meaning

the implementation may contain a fault in that case. While in such a simple example it is

clear by inspection that there are no such errors, this weakness of statement coverage per-

sists in more complicated programs that contain any similar conditional logic. To tackle

this, decision coverage (DC) (also known as branch coverage) dictates that test cases

must be provided to satisfy and negate the boolean expression of each conditional branch

of the program. Therefore, in the above case, two tests would be required – one where

‘price−discount < 10’, and another where ‘price−discount ≥ 10’. Expanding upon

this for boolean expressions that are composed of multiple sub-expressions, condition

coverage states that a test suite should include tests where each of these sub-expressions

evaluates to true and false. For example, with the expression ‘(a < 5 && b > 10)’, the

test cases required would be ‘(a < 5, b > 10) = (true, true)’, ‘(a < 5, b < 10)

= (true, false)’ and ‘(a > 5, b = ?) = (false, not evaluated )’. In the latter

case, it is assumed that the programming language used implements short-circuiting of

logical operators, where the right hand-side of an ‘&&’ (logical AND) expression will not

be evaluated if the first operand evaluates to ‘false’. Therefore, the choice of value for

b is not restricted in this case. Combining decision coverage and condition coverage,

condition/decision coverage (C/DC) ensures that both each overall top-level boolean ex-

pression must be evaluated to true and false, as well as that each sub-expression has also

taken both true and false values. For the purposes of testing safety-critical applications,

modified condition/decision coverage (MC/DC) [25] refines this definition to additionally
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specify that tests must ensure each sub-expression independently affects the overall result

(i.e., causes it to evaluate to both true and false). While these coverage criteria cannot

be used directly for the testing of relational database schemas, Section 3.5.1 briefly de-

scribes a series of criteria specifically designed for this purpose by McMinn et al. [76].

The fault-finding capability of each of these criteria is evaluated as a contribution of this

thesis in Chapter 5.

Mutation analysis

Another means of evaluating the quality of a test suite is mutation analysis, which mea-

sures how effective it is at identifying a series of automatically inserted faults. Assuming

that these faults are representative of those caused by programmer errors, a test suite

that can identify a high proportion of the added faults is also likely to identify many real

faults, if any are present. Due to its highly automated nature and ability to model a wide

range of faults, mutation analysis has been used in many software testing experiments

(e.g., [2, 32, 50, 62, 83, 106]) and has been shown to be an effective means of measuring

the fault-finding capability of a test suite for real programs [5, 6, 60]. Mutation analy-

sis is used to compare coverage criteria for testing the integrity constraints of relational

database schemas in Chapter 5. A more thorough description of mutation analysis and

discussion of relevant literature follows in Section 2.3.

2.1.3 Summary

This Section has outlined a number of basic concepts underlying software testing, includ-

ing definitions for a range of common terms used in the literature and throughout this

thesis. Next, a series of logic coverage criteria for testing programs were described, which

help guide the tester to develop tests that exercise all parts of a program, according to

different test requirements. Using similar concepts, a set of coverage criteria specifically

designed to test the integrity constraints of a relational database schema [76] are described

later in Section 3.5.1. Finally, mutation analysis was briefly introduced as a means of

evaluating the quality of a test suite, such that suites produced by different coverage

criteria can be compared. This is described in greater detail in Section 2.3, and is applied

to compare the different integrity constraint testing coverage criteria in Chapter 5. The
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following Section describes the more specific problem of database testing, which discusses

techniques developed to test both the database management system used to host with

databases, and programs that interact with those databases.

2.2 Database Testing

Many real-world applications involve the storage of data such that it can be retrieved,

modified and removed easily, while ensuring any loss of data is minimised. This com-

monly involves a database management system (DBMS) to create a relational database,

which stores the data in a structured way according to a schema. The schema is usually

expressed in the SQL language and specifies how the data is organised into tables and

columns, what types of data can be stored in each column and what constraints any data

being stored must satisfy. These constraints may specify that row values must uniquely

identify a single row in a table (PRIMARY KEY and UNIQUE constraints), that they cannot

omit specific columns (NOT NULL constraints), that they must validly refer to values in

another table (FOREIGN KEY constraints), or that they satisfy some arbitrarily complex

boolean expression (CHECK constraints). By applying these constraints the DBMS can

ensure that the data stored in the database is of a sufficient quality, preventing incom-

plete or erroneous data being allowed to be stored in the database. Once stored in the

database, data is retrieved, modified and removed by submitting queries to the DBMS,

which first checks that the query is valid and then applies it to the database, either

returning those rows that were requested or changing the state of the database.

Given the importance of data in many applications, it is important to test that the

database component performs as expected. Literature in this area can be divided into

two different testing activities – DBMS testing and database interaction testing – both

of which are described in this Section. DBMS testing (Section 2.2.1) aims to ensure that

the DBMS returns the expected results for given queries. Database interaction testing

(Section 2.2.2) investigates whether an application that stores data using a database

works correctly.
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2.2.1 DBMS testing

If a DBMS exhibits faulty behaviour, then any application that relies upon it to store

data in a database would in turn be prone to unreliable behaviour, leading to possible

data loss or inconsistency – both of which may prove costly if undetected. It is therefore

unsurprising that DBMS testing has been focussed upon by numerous researchers (e.g.,

[11, 65, 94, 101, 104]). This testing activity requires three artefacts – a number of rows

of data to insert into the database, a set of queries to execute against that data, and a

series of expected results for those queries. The remainder of this Section first discusses a

number of techniques for generating database queries, then describes a variety of proposed

approaches for generating sample rows of data, both for the purposes of DBMS testing.

In each case, where applicable, the process applied for determining the expected results

is also detailed.

Query generation

To test whether a DBMS correctly returns the expected rows when given a query to

execute against a database – which is usually the most common operation performed

on a database – it is necessary to produce one or more queries. Due to the potentially

huge number of queries possible for a given database schema, it is important to both

test a wide range of different queries – by selecting a useful range of queries according

to some criterion – as well as producing queries by more systematic means – for example

enumerating all possible queries for a given schema or targeting certain error prone parts

of the DBMS. The former cases are categorised below as ‘sampling’ approaches [101, 11,

94], which try to produce a wide variety of queries, while the latter as referred to as

‘systematic’ approaches [65]. Combining techniques from both of these categories may

help ensure that a wide range of possible faults in a DBMS can be identified, to give

assurance that its behaviour is correct.

Sampling approaches The RAGS (Random Generation of SQL) system, presented

by Slutz [101], enables a tester to quickly produce a large number – potentially thousands

– of SQL SELECT queries according to a provided schema via an automated process. This

aimed to improve coverage of the massive input domain of possible SQL statements when
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Query generation Query execution Result evaluation

DBMS A DBMS B

Coverage feedback

Figure 2.1: A generalisation of the technique used by Slutz [101] to generate SELECT

queries, and the addition of coverage feedback contributed by Bati et al. [11].

compared to the use of manually created test SQL statements alone. To achieve this, it

traverses the parse tree of a given SQL statement and randomly introduces additional el-

ements, to produce a set of more complex SELECT statements. This may include adding a

wide range of valid SQL constructs such as modifying column lists, table lists, subqueries,

expressions in WHERE clauses, and grouping clauses. Which of these elements are added is

based upon values produced randomly, according to a random seed to allow reproducibil-

ity, until a configurable depth is reached. The generated queries can then be used with

a database pre-populated with data (e.g., data produced during other testing activities

or sampled from a production system), with results being compared between different

DBMSs or varying versions of the same DBMS. For example, comparisons were made

between the results obtained by systems produced by multiple different software vendors,

allowing the results they return to be compared. If each of the systems under test return

the same result then either none of the systems contain an error in the processing of the

query or, less likely, they all do. The RAGS tool also allows results of these queries to

be stored for different versions of a DBMS to be persisted, to allow for regression testing

to be performed. Applying this tool to produce 2,000 SELECT statements for four differ-

ent DBMSs indentified a possible genuine programmer error in a commercially released

system, demonstrating the industrial applicability of the approach. However, given the

random nature of the RAGS tool it is not possible to sufficiently guide the generation

of statements to explore a specific part of the overall query space. Additionally, given

the requirement for comparing results between multiple systems, the tool is only able to

produce queries that are valid in all DBMSs under test. Nonetheless, the RAGS tool is

able to quickly produce many valid SQL statements – up to three million per hour – that

have been shown to help reveal potential bugs in a DBMS, reducing the risk of faults in
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applications using a database.

Improving upon the RAGS system, Bati et al. [11] proposed the use of a genetic

algorithm to guide the SELECT query generation process to meet particular coverage

goals. This functions by producing a ‘pool’ of queries that are each ranked according

to whether they are likely to meet these goals, then proceeding to modify those ranked

most highly according to a number of operations – for example, mutating the contents as

with the random generation in the RAGS tool, or combining multiple of these statements

through joins, subqueries and unions. The fitness function that guides the generation of

these queries encourages the production of SELECT statements that lead to the exploration

of unusual execution paths, and discourages the production of cases that always return

empty data sets. Coverage is measured by recording the code paths that have been

executed for each query, by augmenting the DBMS with additional logging options to

output which paths have been executed. Statements that improve upon those used to

create it according to the fitness measurement, statement length or running time, replace

them in the pool of queries. This process is then repeated until the pool stabilises for the

given fitness function. By varying the fitness function used, it is then possible to focus

the areas of code executed by the queries, thus allowing testing to be focussed on more

specific parts of the DBMS – for example, those which have been under active development

since previous testing, and are therefore much more likely to contain bugs. As with the

RAGS system, this genetic algorithm (GA) based system also requires another DBMS

to compare the results produced by the system-under-test with, thus avoiding the need

to determine the correctness of returned results by other means. The evaluation of this

approach involved comparing its ability to produce SELECT statements that achieved good

coverage of the DBMS to those generated by a random technique. This revealed that

the GA-based system was able to achieve the same coverage of DBMS functions within

significantly less time than the random approach, and achieved ∼29% higher coverage

than the random approach when given the same time. This demonstrates its ability to

test a DBMS more thoroughly given the same resources, as well as allowing the testing to

be focussed more accurately if specific components have a higher likelihood of containing

faults.

A similar tool, QGEN, created by Poess and Stephens [94] is able to generate queries

by the user expressing them using a template language that can then be sampled from

to provide instantiated versions of queries, which can be automated by combining it with
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1 -- Declare substitutions

2 DEFINE

3 year = RANDOM (1950, 2000, UNIFORM);

4

5 -- SQL statements

6 SELECT *

7 FROM person

8 WHERE person.birthyear = year;

Figure 2.2: An example query template using the approach of Poess and Stephens [94].
In this case, the variable year is configured to take random values between 1950 and
2000, according to a uniform distribution. This is substituted into the WHERE clause of
the query causing each query to select all rows from person with a the given birth year.

a data generator [104]. Using a query template containing variables that are randomly

instantiated, a predictably distributed set of queries can be generated, which can then

be used to compare the performance of different database systems. This enables the

detection of particularly important performance gains or losses between varying versions

of a DBMS, which may help identify possible efficiency regressions prior to a new version

being used in a production environment. The variables in a template can be instanti-

ated with either uniform or normally distributed values, and may also be nested within

each other to produce more complex queries. An example of a simple query template

is shown in Figure 2.2. While it was shown by Poess and Stephens that the template

approach could accurately model different types of realistic distributions – for example,

how sales may be more heavily weighted to certain times of year – it hasn’t been thor-

oughly evaluated in an empirical evaluation. However, anecdotal evidence suggested that

the technique is efficient, and offers a means of producing data that can target different

parts of the DBMS more effectively than random generation – provided that the tester

is able to construct templates with a suitable set of substitutions.

Systematic approaches While sampling approaches aim to produce many queries in

an attempt to ensure the DBMS work correctly for a wide range of inputs according to

random or guided selection, systematic approaches aim to test the DBMS according to

more structured means. One such approach for query generation proposed by Khalek

and Khurshid [65] makes use of the formal Alloy language – which is designed to model

various software structures and constraints [48], as well as to be automatically analysable

– and the Alloy Analyzer tool to automatically enumerate all possible SELECT queries for
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a given schema. These queries include additional elements such as extra joins between

tables, aggregation operators (e.g., MAX, MIN and count) and subqueries. To use this

approach, the tester must provide a description of the schema under test expressed in

the Alloy language, where each table is defined as a set of named fields with types and

constraints manually defined over them. The tool implementing this approach can then

automatically provide a set of queries giving complete coverage of that schema with

respect to an SQL grammar specified, which can be varied to determine the range of

queries to be generated. While a simple example is shown to execute in a reasonable

time using this approach, it may be susceptible to scaling issues as the complexity of the

schema and supported grammar increase, because it fully enumerates all queries possible

with the given grammar. For example, a simple two table database schema and relatively

simple grammar produced over 27,000 queries and while these only took ∼2 minutes to

generate, the time taken to execute each of these with a DBMS may quickly become

infeasible as the complexity of the schema and grammar increases. It is also unclear how

the time taken for the Alloy Analyzer to produce data that meets any defined constraints

may scale.

Data generation

In addition to the generation of queries, testing of a DBMS requires a number of rows of

data to be present in a database otherwise most, if not all, queries executed during testing

would return empty results, preventing much of the DBMS being tested thoroughly.

The data generation techniques are divided below into ‘query-oriented’ [14, 15, 8, 9, 64]

and ‘schema-oriented’ [16, 46] approaches. The query-oriented techniques produce rows

with prior knowledge of one or more queries that will be executed against the database,

ensuring that data will be returned for each, while the schema-oriented techniques focus

on particular structures or relationships in the schema used to define the database.

Query-oriented approaches The QAGen data generator [14, 15] produces data that

is distributed according to cardinality constraints defined for a given query. These con-

straints are defined at each branching point of the parse tree for a given SQL SELECT

statement, and specify how many rows in the produced data should be contained in the

result of that branch. A simple example of this is shown in Figure 2.3, where the number

of rows to be produced are included at each part of the query. This approach allows
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oncust id=owner id
size=75

σage<25

Customersize=100

σtype=compact

Carsize=100

size=20 size=30

size=20

SELECT * FROM Customer, Car

WHERE Customer.cust_id = Car.

owner_id

AND Customer.age < 25

AND Car.size = `compact'

Figure 2.3: Example of cardinality constraints over the branches of a query, as used by
Binnig et al. [14] to specify what data should be generated. The corresponding database
would contain rows for 20 customers aged under 25 who own compact cars, out of a total
100 customers, 20 of whom are under 25, and 100 cars, 30 of which are compact.

the tester to specify the data they wish to be returned by a query, enabling them to

target particular areas of interest in the DBMS as well as model realistic distributions of

data. The row counts are used to build an internal symbolic database that describes the

constraints that generated data must satisfy, similar to techniques used for symbolic exe-

cution of programs. A data instantiation phase then applies a constraint solver, Cogent,

in an attempt to produce concrete instantiations for each row in the symbolic database,

creating real data values that can be used in a traditional relational database. To evalu-

ate the QAGen tool, Binnig et al. [14] used it to generate data for a database extracted

from a DBMS benchmarking system based on cardinality constraints specified for five

different queries. This demonstrated that the tool was able to successfully satisfy a com-

plex set of constraints – with multiple SQL joins, many branching points and subqueries

– while producing 10 megabytes of data for each in ∼14 minutes. They also showed that

the technique could be scaled up to produce datasets of up to 1 gigabyte with a linear

increase in cost, allowing it to be applied to large scale data generation problems.

Cardinality constraints were also used by Arasu et al. [8, 9] to describe data generation

requirements in a declarative way, implemented in the DataSynth tool. In this case, the

constraints can describe both intra-table and inter-table column relationships, and define

how many rows should be produced for each part of a query, as with QAGen. Additional

limitations may also be placed upon certain column values to ensure they contain sensible
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CREATE TABLE customer (

cust_id int,

cust_name varchar(50),

PRIMARY KEY (cust_id)

);

SQL

1 one sig customer {

2 rows : Int -> varchar

3 } {

4 all x: rows.varchar | one x.rows

5 }

Alloy

Figure 2.4: An example of a relational schema expressed in both SQL and as an Alloy
representation, as used by Khalek et al. [64]. Line 2 of the Alloy code represents the
cust id and cust name fields as an integer and variable length character, respectively.
The PRIMARY KEY constraint is represented on line 4, which states the restriction that for
all rows there must only be one value for each unique integer value.

values, for example limiting an integer ‘age’ column to positive values below a reasonable

maximum limit. In contrast to the work of Binnig et al. [14], the technique implemented

in the DataSynth tool allows one database to be created that attempts to satisfy the

constraints for multiple queries with cardinality constraints simultaneously, rather than

being limited to producing one database for each query. In addition, DataSynth expresses

the constraints as a series of linear equations that are solved using a commercially available

linear program solver, as opposed to the more general constraint solver used in the QAGen

tool. When applied to the linear equations, the solver produces a probability distribution

that defines how likely it is a value should meet particular constraints. This is then

sampled from to determine what data should be generated, giving an estimate of the

distribution of data specified in the constraints. As a consequence, the approach used in

the DataSynth tool is not exact, and instead produces data similar to that which is desired

– however, as the number of rows produced is increased, the inherent randomness it

applies should cause the number of rows to tend to the specified number. This inexactness

allows the data generation process to be much quicker than for more exact techniques,

such as the constraint-solving approach used in QAGen, as the time taken to resolve the

constraints does not have to scale as the target amount of data does. For example, while

resolving the constraint system with constraint solving for a 1 gigabyte data generation

problem using the QAGen tool took over 10 minutes, a similar problem expressed using

linear equations in the DataSynth tool was solved in less than 5 seconds. While the data

generated is only an approximation of those specified by the cardinality constraints, an

example data generation problem with ∼9 million rows contained only 264 additional

database rows, demonstrating that the amount of error from this approximation would

be acceptable for the vast majority of uses.
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By modelling a schema and query formally using the Alloy relational language in a

framework they referred to as ADUSA, Khalek et al. [64] were able to generate test data

using the Alloy Analyzer. This tool is able to check whether a set of constraints can

be satisfied and then attempts to produce data meeting those constraints, if possible.

An example model of a schema using the Alloy language is shown in Figure 2.4. In

ADUSA, a query was modelled as a composition of functions – such as SELECT, WHERE

and FROM – and relational predicates. This is then used to partition the possible rows

of data into those that satisfy a particular part of the query and those that do not.

However, due to the expense of the model used for strings other operations cannot be

included, preventing the approach being used to test queries containing predicates that

use these. For example, a constraint such as age > 25 would partition the possible data

rows into age > 25, satisfying the expression, and age ≤ 25, failing to satisfy it. The

same partitioning in ADUSA can also be applied to string equality, where name = 'John'
creates partitions where name either exactly matches or is any other string. The Alloy

Analyzer is then used to enumerate combinations of matching data values that satisfy

each predicate, generating rows for a test database as a consequence. The query-aware

nature of this technique therefore ensures that at least some of the data produced should

be returned when the query is executed, rather than the query result being empty. This

is important, as otherwise faults in the part(s) of the DBMS handling the returning

of the correct results may remain undetected during testing. In addition to producing

test data, the expected result of applying the query against the generated database is

produced, enabling the testing of a DBMS without requiring an additional DBMS to

compare against, as required by some other approaches, or another form of test oracle.

An empirical evaluation showed that ADUSA was able to produce data and expected

results for a small 5 table schema, containing multiple foreign key constraints, from a set

of 4 different queries in at most 78 seconds. However, these queries contained only single

clause constraints in the WHERE section, suggesting more complex constraint systems may

be much more expensive to process. In addition, as the required number of rows increased

slightly the execution time did so significantly. This is because Alloy Analyzer enumerates

all possible test databases for a given specification, therefore favouring the production of

many small test databases that separately test the DBMS with different queries. Further

evaluation did however demonstrate that the tool was able to locate a number of known

bugs and seeded bugs in commercial DBMSs, suggesting it may still be useful in certain

settings.
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Schema-oriented approaches Rather than producing test data according to one or

more queries, schema-oriented approaches instead makes use only of information in the

schema to generate rows of data, avoiding the need for a priori knowledge of the queries

being used. For example, Bruno and Chaudhuri [16] proposed an approach for creating

flexible database generators that make use of an annotated version of the schema to cre-

ate test data. These annotations specify for each column how values should be generated

according to iterating sequences and statistically distributed values – either uniform or

normal – that may be combined to produce arbitrarily complex row values. Integrity

constraints between tables can be supported by generating data for multiple tables si-

multaneously, ensuring FOREIGN KEY references are valid. Once a tester has specified a

statistical model that describes the desired data using these annotations, it is possible to

create a variable sized database by retrieving values from the iterators and chosen dis-

tributions, which will then approximate the desired data. This can then be inserted into

a database so they can be queried during DBMS testing, or also used to benchmark the

performance of a DBMS for potentially large datasets. An evaluation of this approach

showed it was able to produce a large number of rows quickly, generating 10.5 million

rows (∼1GB of data) in approximately 13 minutes. This demonstrates the technique is

more scalable than other alternatives, although it does not guarantee that the data will

return non-empty query results during testing – this responsibility is instead passed to

the tester, who must carefully define the desired column values to achieve this.

The relationships between various tables and columns in a schema can also be mod-

elled as a graph, which can then be used for data generation. Houkjær et al. [46] proposed

that each table and inter-table constraint could be represented as nodes and edges in a

graph, respectively. Each table node stores information about the types of the columns,

desired number of rows (expressed as the proportional number of rows on a per table

basis) and any PRIMARY KEY or UNIQUE constraints. The edges between nodes describe

both the type and direction of each inter-table relationship (i.e., which table refers to

values in the other), as well as the levels of reference participation (i.e., what proportion

of rows in a should be referenced to by rows in b, where b has a foreign key reference to

a) that must be maintained when creating data. By traversing the graph it is possible

to determine which rows of data must be created first such that foreign key relation-

ships can be satisfied by maintaining information about existing rows. However, it is

unclear what data generation technique is used by Houkjær et al. to create the data val-

ues themselves, meaning it is difficult to replicate either the approach or these empirical
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results. Nonetheless, the graph-traversal approach was shown to be able to produce 1GB

of data that satisfied multiple intra- and inter-column constraints within approximately

10 minutes, with a linear rise in time taken to increase the amount of data generated,

demonstrating both its effectiveness and scalability. As such, it may be a useful approach

for generating realistic data for testing the behaviour of a DBMS, especially that relating

to inter-table constraints.

2.2.2 Database interaction testing

In addition to testing that the behaviour of a DBMS is as expected, it is important to also

test whether an application that stores data using a database (hereinafter referred to as a

database application) works correctly. Testing a database application is more challenging

than testing a traditional application that doesn’t make use of a database, as it is more

difficult to manage and observe the state – while the state of a traditional application can

be observed as the values of one or more variables after a series of method invocations,

a database application has additional state information stored in the database. As the

state of the database usually determines the behaviour of a database application to some

degree, it is therefore important to both populate the database using data generation

techniques, as with DBMS testing, and examine or alter this state, by executing queries

against it during testing.

The remainder of this Section describes a collection of approaches for creating queries

to help identify possible faults in an application, then discusses a number of techniques

for generating database queries, both for use in testing of database applications. Finally,

a number of optimisation techniques specific to this testing problem are discussed, which

help reduce the possibly large cost of testing database applications.

Query generation

Similarly to DBMS testing, it is important when testing a database application to pro-

duce queries that may be able to highlight where mistakes may have been made in the

application – for example, in sections of code where SELECT statements are embedded.

Faults in theses locations may otherwise manifest as errors during the execution of the

application. However, in contrast to DBMS testing all query generation approaches in
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SELECT login.time

FROM login , user

WHERE user.user id = 5

SELECT DISTINCT login.time

FROM login , user

WHERE user.user id = 5

SELECT login.time

FROM login , user

WHERE ABS(user.user id) = 5

SELECT login.time

FROM login , user

WHERE ((user.user id)-1) = 5

SELECT login.time

FROM login , user

WHERE (1=1)

Figure 2.5: An example of 4 out of 12 mutants produced for a simple schema and query
using the operators implemented in the SQLMutation tool of Tuya et al. [106]. The
injected faults are highlighted in each case.

this context can be categorised as ‘systematic approaches’ [24, 106, 107], designed to test

for specific faults that may exist in the application.

Systematic approaches Chan et al. [24] presented a fault-based testing approach

using mutation operators to modify queries embedded in database applications, which

make use of additional information provided in an enhanced entity-relationship model

of the relational schema. This model expresses properties that cannot be included in

the SQL syntax of the SELECT statement, such as the proportion of rows participating

in the relationship that joins them (i.e., a FOREIGN KEY constraint) and the specialised

class of data in the row (e.g., an invoice table may contain both normal and cancelled

classes of invoice). To produce mutants of queries using this information a total of

seven mutation operators were proposed. Because the enhanced entity-relationship model

provides information about the connections between different tables in the schema, the

operators are able to make semantic mutations rather than the more common syntactic

type of mutations1, which aim to expose business logic errors in the application. These

operators injected faults such as altering a column reference in the statement to another

of the same data type, replacing a reference to a specialised class with a subclass, and

altering the cardinality of a relationship to extreme values. While the semantic mutants

produced by this approach may prove useful for testing purposes it is not possible to

empirically evaluate this proposition, as the approach has not been implemented in a

prototype tool.

The use of mutation to generate SELECT queries was also investigated by Tuya et al.

[106, 107], who proposed a large number of syntactic mutation operators to model a wide

1A semantic mutation involves a small change to the meaning of the code whereas a syntactic mutation
involves a small change to syntax of the code
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range of possible faults. These operators included those that apply to the “main SQL

clauses” (joins, ordering and predicates), operators in conditions and expressions (logical

operators and operations on absolute values), handling of null values (alternating IS

NULL and IS NOT NULL statements), and replacement of column identifiers. An example

of applying some of these operators is shown in Figure 2.5. Once these mutants have

been automatically generated, they can be used to evaluate the quality of test cases and

the test data they have created through mutation analysis. The evaluation of test cases

involves automatically executing each with the generated mutant queries, considering

each to be killed when the mutant returns different data to the original query. In the

case that a mutant remains alive, it is either the case that the test database or test case is

insufficient to detect the fault, and therefore require further refinement to give confidence

that the application will work correctly. A tool based upon this approach, SQLMutation,

has been made available on-line as both a web application and an XML-based web-service,

facilitating possible integration with other work. The mutation analysis approach was

applied to evaluate the data supplied as part of the NIST test suite – an SQL conformance

suite used to check the correctness of a DBMS according to the SQL standard – which was

improved from detecting 70% of the injected faults initially to 85% through automatic

data generation, and then to 100% through manually crafted test cases. This shows

the tool is able to generate useful data, with respect to the set of faults implemented

in the mutation operators. However, it is unclear how well these model the real-world

programmer errors that may occur when writing SQL statements as part of a database

application. Additionally, the need for manually crafted test cases to detect 15% of

injected faults may mean achieving full coverage of faults in a practical setting would

incur a significant human-time cost.

Database generation

As the behaviour of a database application is likely to vary depending on the contents

of the database it uses, it is important to generate a number of rows of data to insert

into the database – otherwise those sections of code only executed when such rows exist

cannot be tested, and therefore may contain undetected faults. By manipulating the

choice of data values in these rows it is possible to test different parts of the application,

ensuring each of these parts behave as expected. The techniques for database generation

discussed below are divided into ‘flexible-use database generation’ [29, 15], which generate
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data with multiple possible testing uses, and ‘specialised database generation’ [39, 98],

whose data is generated to detect specific problems.

Flexible-use database generation To generate each row to be used in the test

database, de la Riva et al. [29] transformed the queries extracted from the database

application into a series of coverage rules that describe the test case, using a coverage

criterion named SQLFpc. This coverage criterion defines what test data is required to

fully test any conditions in the query – for example, a WHERE clause of x ≤ 5 would cre-

ate the coverage rules that represent x < 5, x = 5 and x > 5. Once a series of coverage

rules have been created they are transformed into a representation that uses the Alloy

relational language, which are combined with an Alloy encoding of the database schema

before being processed using the Alloy Analyzer tool. Each of the coverage rules is then

‘solved’ using this tool, which generates an example row of data that satisfies that rule.

This data is then used as a row in the database, which should contain one row for each

coverage rule and therefore ensures each query returns at least one result. Evaluating this

approach, the data generated using the SQLFpc coverage criterion was compared against

a production database in terms of the number of coverage rules satisfied and the propor-

tion of mutants killed (using mutants generated by Tuya et al. [107]), for a single large

relational schema with 37 tables and 230 columns. In terms of coverage the SQLFpc test

database achieved an average of 87% compared to 57% for the production database, while

mutation score averaged 84% compared to 67%. Therefore, the SQLFpc test database

was significantly more effective than the production database at detecting the injected

faults. In addition, execution of the SQLFpc test database should be much faster as it

contained approximately two orders of magnitude fewer rows (139 vs 139,259), although

data relating to this execution cost are not reported by the authors. Overall, the SQLFpc

was therefore much more efficient at generating useful test values than using data taken

from the production database, suggesting that the realism of the data generated may not

be as important as other criteria when creating test databases.

Using techniques referred to as reverse query processing (RQP) [13] and subsequently

multi-RQP (MRQP) [15], Binnig et al. enable a tester to describe the desired data in

terms of the expected results for a series of queries. In general, these queries should

refer to results that are independent of one another (i.e., the data generated for one

should not affect the results of different query), however MRQP does support some types

39



of overlap in queries through a mechanism called query refinement. This information

is then used in a data generation process which guarantees that when the queries are

executed they will return the expected result – although the exact mechanism used for

producing data is not clearly detailed. The data can then be used for a variety of purposes

such as database application testing and measuring the performance of a given DBMS.

Unfortunately, the MRQP approach has not been evaluated in an empirical experiment,

with only a demonstration with a small toy example schema being included. In this

case, the approach was able to generate a small database according to a set of queries

and expected results, however there are no details given on the amount of time or space

necessary to generate this. The efficiency of this approach is therefore unclear, and it is

also unknown whether it is able to scale well with larger examples, greater numbers of

queries or higher required numbers of rows.

Specialised database generation Instead of generating data that may be useful for

a variety of purposes, some techniques focus specifically on identifying a certain set of

possible faults. For example, the X-Data system proposed by Gupta et al. [39] was

designed to produce database rows guaranteed to return different results for a subset

of join operator and selection predicate mutations, applied to SELECT statements. Join

operators are used to combine tables, based upon some matching column value, and can

vary on whether they include only matching rows, all rows from one table or all rows

from both. It is therefore useful to test whether the type of join is correct as otherwise

too many or too few rows may be returned in the results. Selection predicates, such as =

and <, are used in WHERE clauses to limit the number of rows returned according to some

boolean expression. The X-Data system provides the tester with a small amount of data

that they can use to ensure these types of fault would be detected, although the exact

means of data generation is not specified. In addition, the tester must supply the expected

results for each query, increasing the human-cost of testing database applications in this

way. An implementation of the X-Data system was tested with a single sample schema

using queries containing multiple joins, which showed data could be produced for these

within 10 to 15 seconds, although the exact attributes of the schema are not discussed.

Expanding upon the X-Data system, Shah et al. [98] incorporated additional rules

for generating data to kill mutants of aggregation clauses (e.g., COUNT). However, the

technique for these relies upon a number of assumptions about the schema and queries.
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These include primary and foreign keys being the only constraints, as well as disallowing

the use of null values. In addition, nested sub-queries are also not supported. To

generate data to kill a specific mutant, the approach expresses each of the applicable

constraints between variables symbolically in a format compatible with the CVC3 general

purpose constraint solver. Applying this solver creates an array of values that can then be

transformed back into database rows that are guaranteed to produce different outputs for

the non-mutant and mutant queries, thus killing the mutants. By examining whether the

database application returns the expected results in each case, as determined by the tester,

it is possible to identify possible faults in the supported clauses of SELECT statements.

Shah et al. also proposed a means of making generated datasets more intuitive for human

analysis, potentially reducing the human-cost of determining whether the results are as

expected, by using values extracted from an existing database where possible. This is

implemented into the data generation process by using an additional constraint that

forces the CVC3 solver to use values from rows in the database, provided that there are

enough rows present. An experimental evaluation of this technique showed it was able to

generate small test databases that were able to kill all of the considered types of mutants,

provided that equivalent mutants are removed via other means. However, the nature of

this experiment was limited as only seven example queries were tested against a single

database schema, limiting the generalisability of the findings.

Optimisation techniques

As the state of a database must be managed during testing, as well as that of the ap-

plication, testing database applications can become very expensive. To ensure that this

cost does not become prohibitive, a number of techniques have been proposed that aim

to reduce some of the costs specifically associated with database application testing, two

of which are described below.

During testing, if the size of the test database is non-trivial then there is an expensive

cost to ‘reset’ the database to the initial state between executing each of the test cases.

This is necessary to prevent a database state-altering query (such as UPDATE) causing a

subsequent query to return a different result than it otherwise would have. To reduce

this cost for the purposes of regression testing, Haftmann et al. [41] proposed a series of

algorithms that could be applied to determine which tests can be executed in sequence,

without a database reset, while still obtaining the correct results. The first of these
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algorithms, Optimistic++, executes the tests in a random order, resetting the database

and re-running a test only if it fails initially. During subsequent executions, information

about conflicts between tests can be used to further reduce the execution time. While

this algorithm may suffer false positives – where a test should fail, but does not because of

the non-empty database state – the authors claim this is both rare in practice, as well as

a potentially acceptable cost for the significant increase in the efficiency of testing. The

Slice algorithm reduces the number of database resets required by using the test case

conflict data as a heuristic to select as many test cases as possible into sequences. As well

as reducing the number of database resets, the proposed framework also supports the

distributed execution of the test sequences across multiple servers, each with their own

database instance, to reduce the overall running time. An empirical evaluation with 1,000

test cases, with execution times of between 0 and 3 minutes, and a varying number of

conflicts, ranging from 1,000 to 100,000, showed the reset-reduction algorithms were able

to execute a large number of tests while reducing the number of resets significantly. In

addition, both parallelism via multiple local threads of execution and multiple separate

servers were able to significantly decrease the time further, with little overhead being

incurred in the latter case.

Instead of attempting to order the test cases to improve the efficiency of testing, Tuya

et al. [108] instead aimed to reduce the size of the test database. The Query-Aware

Shrinking approach they proposed makes use of automatically generated coverage rules

from queries used in the test cases to identify which rows in the existing database are

required, to ensure one row of results is returned. Where possible, when choosing a row

to add to the minimised database from a set of results returned by a query, a row already

required by another query is used to avoid unnecessary additional rows being stored.

Once a set of rows have been selected all others are discarded, except those required for

referential integrity (i.e., FOREIGN KEY constraints). This approach is therefore able to

automatically create a test database that still returns at least one row of results for each

query, but which likely has significantly fewer rows of data. This in turn reduces the cost

of database application testing by decreasing the time taken to insert the rows of data

into a database, to reset the database when needed and to execute queries against it.

In an empirical evaluation, the approach was applied to the reduction of a production

database containing a non-trivial 137,940 rows, based upon a schema with 31 tables. The

reduced test database contained only 223 rows – a 99.84% reduction – whilst only taking

approximately 2 minutes to produce, likely leading to a significant improvement in the
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efficiency of application testing. In addition, a mutation analysis experiment showed that

the mutation score achieved by the reduced test database was less than a percent lower

than the full database, confirming that the smaller database still retained a very similar

fault-finding capability.

2.3 Mutation Analysis

Mutation analysis is a technique that evaluates the quality of a test suite according to

whether it is able to detect the presence of a series of automatically injected faults. Where

a suite detects all such faults the user can assert, with an adequate degree of certainty,

their program is unlikely to contain such mistakes. Mutation analysis can also be used

to guide automatic generation of test data (e.g., [37, 44]), although this is considered

outside of the scope of this thesis. This Section provides an overview of the application of

mutation analysis for software testing, then discusses a number of important topics and

issues relating to mutation analysis that provide useful background for later Chapters of

this thesis.

2.3.1 Overview

Mutation analysis has commonly been used to compare and evaluate various approaches

to creating test cases in software testing literature. It measures the effectiveness of the

tests by checking whether they can identify a series of potential programmer mistakes,

as modelled by a number of small changes made automatically to a program by applying

one or more mutation operators. Each version of the program that has had such a change

applied is referred to as a mutant. A mutant is detected, or killed, by a test suite if it

exhibits different behaviour when executed with the mutant, compared to the original

program. By killing the mutant the test suite enables the tester to assert that the

program does not contain the specific mistake modelled by that mutant. Conversely, if

the behaviour is the same for both the mutant and original program for all test cases,

the mutant is alive, meaning the test suite is not sufficient to detect the possible fault

contained in that mutant. The tester can then refine the test suite according to the alive

mutants, until it is able to kill all of mutants, and is described as mutation adequate.
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Original Artefact Mutant Generation

Mutation Operators

Mutant Artefacts

Mutation Analysis Test Suite

Alive MutantsKilled Mutants
Inspect Mutants

and Improve Tests

Equivalent Mutants

Figure 2.6: An overview of how mutation analysis is used to evaluate the effectiveness
of a test suite.

The effectiveness of a test suite is usually measured using the higher-is-better metric of

mutation score, calculated as killed mutants / all mutants, which ranges from 0 to 1.

The change in some mutants may have failed to alter the behaviour of the program,

and therefore cannot be detected by any test suite. Such mutants are known as being

equivalent to the original program and usually require manual analysis to identify and

remove them. Figure 2.6 provides a summary of how mutation analysis can be applied

to determine the effectiveness of a test suite.

2.3.2 Background

The concept of mutation analysis is not a new one; the first practical method for mutation

analysis was described in 1978 by DeMillo et al. [30], who referred to their approach as

program mutation. This aimed to exploit two key concepts – the competent programmer

hypothesis and the coupling effect – that DeMillo et al. argued provide a logical basis for

program mutation. The competent programmer hypothesis, states that programmers will

produce programs which are almost correct, suggesting that small syntactic changes to

the program should prove sufficient to detect and resolve possible faults. Meanwhile, the
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coupling effect, asserts that tests able to detect small errors should be sufficiently sensitive

to identify other, larger errors. Therefore, determining the effectiveness of a test suite

at identifying a number of small injected faults (i.e., mutations) will give a reasonable

measure of effectiveness at detecting a much broader set of faults. This process has since

become known as mutation analysis, following a similar process as DeMillo et al. [30], as

described in Section 2.3.1.

Since its initial inception, mutation analysis has attracted significant interest, with

a 2011 survey revealing that by 2009 over 400 related works had been published [52].

The remainder of this Section now discusses a number of these publications in context of

a number of key issues faced when applying mutation analysis. Section 2.3.3 describes

attempts to show that both the coupling effect and competent programmer hypothesis,

which underpin the theory of mutation analysis as a testing technique, are valid assump-

tions. Section 2.3.4 explains the problem of equivalent mutants, which cannot be killed

by any test case, and how they may be identified. Section 2.3.5 discusses the poten-

tially large computational cost of mutation analysis and techniques that allow this to be

mitigated.

2.3.3 Underlying concepts

Coupling effect

To experimentally evaluate the claim of the coupling effect, Offutt [82, 83] empirically

tested the similar mutation coupling effect. This states that complex mutants and simple

mutants are coupled, so a test suite that can kill all simple mutants of a program will

also kill most complex mutants. Assuming that the faults injected by the mutation

operators used to produce these mutants are representative of real-world faults, showing

the mutation coupling effect to exist also supports the theory of the general coupling

effect. The experiment made use of the Mothra mutation analysis system for Fortran [66],

utilising 22 mutation operators believed to be representative of real-world programmer

mistakes. The simple mutants were created by applying one mutation operator, while

complex mutants were created by applying two or three operators (these are known as

second-order and third-order mutants, respectively, and are collectively known as higher

order mutants). While the programs studied in this experiment were necessarily small
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(due to the computational cost), the results showed strong support for the mutation

coupling effect, with over 99% of non-equivalent complex mutants being killed by data

sets generated to kill all of the simple mutants. In addition, the experiment showed that

data sets which killed a small proportion of simple mutants were still able to kill more

complex mutants. For example, in one case tests killing 75% of simple mutants were

able to kill 92% of complex ones. Similar results were also found by Lipton et al. [71],

although they only considered a small proportion of the mutants produced, thus limiting

the generalisability of their findings. In both cases, these results provide supporting

evidence for the coupling effect.

The coupling effect has also been examined with a more theoretical approach. Wah

[113, 114] modelled programs as compositions of functions, where a fault is limited to af-

fecting one of these functions and each fault in a higher order mutant relates to a different

function. Their conclusions supported those of the empirical evaluations, showing that a

test suite which is adequate for simple mutants will kill an increasing number of higher

order mutants as the order is increased – that is, it will kill more third-order mutants than

second-order, and more second-order than first-order. In addition, Wah showed that the

more simple mutants each test case is able to kill, the greater the number of higher-order

mutants the whole test suite will identify. This was complemented by Kapoor [63], who

demonstrated a formal proof that the coupling effect holds for eight different types of

faults in boolean formula (as used in conditional statements) – including an omitted con-

junction or disjunction, an incorrect choice of operator, a wrong operator reference, an

operator precedence issue due to missing brackets, and replacing a variable reference with

both 0 and 1. Together, these provide a theoretical backing for the coupling effect, which

in turn provides confidence in the validity of mutation analysis as a testing technique.

Competent programmer hypothesis

When describing the initial methodology for mutation analysis, DeMillo et al. [30] also

reported on the proportion of different types of mistakes made by programmers when

writing programs in Fortran, Cobol, PL/I and Basic. Although errors made with these

languages may not be directly comparable to those found in programs using modern

languages, the results showed the majority of errors were caused by simple mistakes,

therefore supporting the competent programmer hypothesis. Acree et al. [2] also argued

in support of the hypothesis, giving an example of how the approach to a problem might
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differ between a competent and incompetent programmer. In the latter case, Acree et al.

asserted that errors of such magnitude would be trivially easy to identify with basic test

cases, and therefore needn’t be considered when performing mutation analysis.

Although not directly referring to the competent programmer hypothesis, numerous

examples from the published literature have commented on the types of errors caused

by mistakes in programs, which provide additional confidence in the correctness of the

hypothesis. Analysing faults made when writing an assembly program of approximately

4,000 lines, as self-reported by programmers, Shooman et al. [99] also showed that the

majority of errors were fixed by a change to an instruction – a relatively small change.

Notably, of the 63 reported fixes included in the study, none required algorithmic changes,

further supporting the assumption that programmers generally only make subtle faults.

Budd et al. [19] discussed both the theoretical basis for mutation analysis and the clas-

sified 25 errors in 11 Fortran programs, revealing that almost half related to an incorrect

computation statement. This, again, suggests that many programmer mistakes are sim-

ple in nature, and therefore that the competent programmer hypothesis appears to hold

true. The types of errors found in an industrial setting were investigated by Ostrand

et al. [90], where programmers were required to record information about errors during

development of a single application. Their results showed that the majority of errors

were caused by mistakes in code handling constant values and code that initialised or

modified variable values, representing 32% and 22% of cases respectively. Interestingly,

the experiment also involved recording the time taken to isolate the error and then fix

it. These results showed that in 71% of cases neither activity took more than 1 hour,

suggesting the mistakes causing them were relatively small. In summary, each of these

examples from the published literature provide some support for the competent program-

mer hypothesis, giving additional confidence that mutation analysis provides a suitable

means of detecting faults.

2.3.4 Equivalent mutant problem

Overview

In general, it is intuitive to believe that applying a mutation operator to a program, and

thus changing it syntactically, should always result in a change in behaviour – even if

this is relatively small, or only revealed when using highly specific input data. However,

47



Original

int max(int a, int b) {

if (a > b) {

return a;

} else {

return b;

}

}

Equivalent mutant

int max(int a, int b) {

if (a >= b) {

return a;

} else {

return b;

}

}

Figure 2.7: A function with an example equivalent mutant.

as described in Section 2.3.1, this is not always true; it may be the case that no possible

input to the program causes a mutant to return a different result than the original. Such

mutants are known as equivalent mutants. Figure 2.7 provides an example of a function,

which returns the maximum of its two arguments, and an equivalent mutant that could

be produced via a small syntactic mutation. By definition, equivalent mutants cannot be

killed by a test suite, therefore their presence during mutation analysis causes a decrease

in the mutation score, by increasing the proportion of live mutants to killed mutants. If

equivalent mutants are not identified and removed then the tester may be led to believe

that their test suite is insufficient to reveal additional possible faults in their program,

as the mutation score indicates it is not mutation adequate. It is therefore desirable to

identify and remove equivalent mutants, to ensure that the mutation score provides a

more accurate estimate of the fault-finding capability of any given test suite.

While equivalent mutants may be identified by hand, the potentially huge number of

mutants produced means this can quickly become infeasible for all but simple programs,

due the both the human time cost and the risk of errors. Unfortunately, deciding whether

a mutant is equivalent to the original program, commonly known as the equivalent mutant

problem, has been shown to be undecidable [18]. Consequently, detection of all such

mutants using automated techniques is not possible.

Proposed techniques

Although the equivalent mutant problem is undecidable in the general case, there have

been numerous techniques proposed to automatically identify at least some of the equiv-

alent mutants of a program, therefore reducing the human cost associated with mutation

analysis. The remainder of this Section discusses and evaluates a number of these tech-

niques.
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Offutt and Craft [85] attempted to exploit the intuition that equivalent mutants are

often effectively optimised or de-optimised versions of the original program – that is, they

are semantically identical, but their syntactic differences may be produced by applying or

removing optimisations that may be made by a compiler. The paper introduced a total of

six techniques for detecting equivalent mutants of Fortran programs in a tool integrated

into the Mothra mutation system. Dead code detection uses control flow analysis to

statically determine when a particular statement cannot be executed. If the mutation

affects code that can be proved to be unreachable, then the mutation cannot affect the

program behaviour and the mutant must be equivalent. Constant propagation detects

when the specific value of a constant means certain mutations have no impact. For

example, a mutation taking the absolute value of a positive number produces the same

number, thus execution of the program will be unchanged. Similarly, if the value of some

variable is known to be constant then a mutation setting the variable to that value will

produce an equivalent mutant (e.g., if data flow analysis shows a = 0 then the mutant

produced by an operator setting variables to 0 will be equivalent). Invariant propagation

stores information about the relationships between variables and 0 (e.g., x > 0 or y >=

0), which can be used similarly to constant propagation to detect cases such as when

absolute value mutations will not change the program semantics (i.e., when var > 0).

Common subexpression detection identifies when two variables are being set according

to the same expressions, and substitutes a variable reference in place of repeating the

calculations of the expression. This is used in equivalence detection by adding to the

collection of invariants used by the other techniques. Loop invariant detection is usually

applied by a compiler to move code from the inside to the outside of a loop. One of the

mutation operators applied in the experiment moved the boundary of a loop, either adding

or removing a line from the inside of it. If the statement moved leads to an invariant, then

that mutant is equivalent, and can be detected in this way. Finally, hoisting and sinking

of statements involves moving statements that are repeated within a particular block

of code (i.e., within both branches of an if else construct) to remove the duplication.

This can detect mutants that are produced by moving the bounds of these blocks. The

execution time for each of these techniques is either quadratic or cubic of the program

size, however given the full test suite would otherwise be executed for each equivalent

mutant (because no test case will kill them), they argue that this time is comparatively

very small. To evaluate their tool, Offutt and Craft used Mothra to produce mutants for

15 Fortran programs of 5 to 52 lines, yielding between 180 and 3000 mutants, where the
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equivalent mutants had previously been identified by hand. The results showed that of

the six techniques, only three were effective in detecting equivalent mutants – dead code

detection, constant propagation and invariant propagation. Overall, 45% of equivalent

mutants were successfully identified, with a strong bias towards operators specifically

targeted by the techniques, leaving 141 equivalent mutants undetected. For the most

common type of mutant (ABS, which surrounds expressions with a positive and negative

absolute operation), which replaces variables with positive and negative absolutes, 59%

of the equivalents were identified, whilst none of the equivalent mutants produced by

four of the less common operators were detected, representing 11% of the overall total.

While these results represent a significant reduction in the number of equivalent mutants

that must be hand-checked for equivalence, the quantity remaining for more complex

programs (greater than the 52 lines in this experiment) may still present too great a cost

for practical usage. In addition, it may be that outside the context of Fortran programs,

these techniques may not be as applicable.

Offutt and Pan [86] made use of feasible path analysis – determining whether a par-

ticular path of execution through a program is possible – to try to identify whether there

is input data that is able to kill a mutant. In the case that there is not, they posit that

the mutant is equivalent. This is described as the feasible test problem, whereby given

the requirement for a test case (i.e., to kill the mutant), one must identify if any possible

input data exists to satisfy this. To kill a mutant, the test case must satisfy three charac-

teristics – reachability, necessity and sufficiency. These state that the test must execute

the mutated statement, that the statement changes the state of the program, and that

state must differ at the end of execution, respectively. The requirements for the test case

are formed as a constraint, which may be augmented with additional user-specified infor-

mation such as preconditions on functions, that is then tested for infeasibility. Although

identifying equivalent mutants in this way is said to be generally undecidable, Offutt

and Pan made use of a collection of specialised techniques and heuristics to determine

when the constraints are infeasible, using domain knowledge of the mutation operators.

These were implemented in a prototype tool, Equivalencer, which was evaluated against

11 Fortran programs of 11 to 30 statements, producing between 180 and 3000 mutants.

The equivalent mutants had been identified manually for each of these programs as part

of previous work. The results showed that, on average across all 11 programs, 47% of

equivalent mutants could be identified automatically, ranging from 13% in the worst case

to 84% in the best. As with previously discussed techniques, while this technique de-
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1 printMinMax(array) {

2 min = array[0]

3 max = array[0]

4 for (i=1,i<size(array),i++) {

5 if (array[i] < min)

6 min = array[i]

7 if (array[i] > max)

8 max = array[i]

9 }

10 print(min)

11 print(max)

12 }

(a) Original program

min = array[0]

for (i=1,i<size(array),i++) {

if (array[i] < min)

min = array[i]

}

(b) Slice for min to line 9

max = array[0]

for (i=1,i<size(array),i++) {

if (array[i] > max)

max = array[i]

}

(c) Slice for max to line 9

Figure 2.8: An example of program slicing, derived from Hierons et al. [45].

tects a large number of equivalent mutants, it is unclear how well the technique could be

generalised to other programming languages and how well it scales with respect to more

realistic sizes of program. In addition, the authors state that the tool’s implementation

is closely coupled with a data generation technique, which may mean application of this

approach for other languages could have considerable implementation costs.

Hierons et al. [45] applied program slicing to the equivalent mutant problem, attempt-

ing to both simplify the process of human analysis of equivalent mutants and also reduce

the number of equivalent mutants produced initially. Program slicing is a technique that

produces a reduced version of a program by including only those statements relating to a

specified variable, up to a given statement number. Figure 2.8 provides a simple example

of program slicing for an imperative programming language, derived from an example

given by Hierons et al. [45]. They showed that program slicing may be helpful in sim-

plifying an alive mutant presented to a tester, reducing the complexity of the program

they are required to analyse to check for equivalence. This may be combined with a con-

straint solving approach that can be applied first in an attempt to detect equivalence, or

generate a test case able to kill the mutant. The combination of these techniques reduces

the number of mutants the tester must consider, thus reducing the overall human cost of

mutation analysis. In addition, program slicing is shown to reveal some cases where the

mutation cannot affect the overall behaviour of the program, and is therefore equivalent.

However, it is not shown how this technique may perform in a practical setting, and

therefore how much human effort is saved. In addition, no empirical analysis is given to

quantify how many, and what proportion of, equivalent mutants can be automatically

identified and at what computational cost.
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Harman et al. [43] investigated how dependence analysis could be used to prevent

equivalent mutants from being produced and to generate test data for killing non-equivalent

mutants. Dependence analysis provides information about which variables affect the value

of another variable, at a given line – known as the variables it depends upon. This pro-

vides a finer-grained understanding of the flow of data in the program than that given by

program slicing, such as that used by Hierons et al. [45]. By extracting which variables

others depend upon, it is possible to identify which input values may be able to influ-

ence the behaviour of the program for a specific mutation. This can be used to reduce

the scope of the input domain to consider when formulating a test case aiming to kill

a particular mutant. In addition, if for a particular point in the program (the end of

the program for traditional mutation analysis) the program variables do not depend on

those on the left hand-side of the mutated statement, then the mutation cannot affect

the program behaviour. As such, these mutants can be classified as equivalent. Although

this technique may help reduce the number of equivalent mutants, Harman et al. state

that due to “imprecision inherent in dependence analysis” some proportion of equiva-

lent mutants may not be detected in this fashion. Therefore, further work is required to

evaluate the effectiveness, as well as the efficiency, of this approach.

Adamopoulos et al. [3] proposed using a co-evolutionary search technique with genetic

algorithms to simultaneously evolve both a set of mutants and test cases for each. This

aims to reduce both the number of equivalent mutants and the total number of mutants.

An evolutionary search technique attempts to find a solution to a problem by ranking

possible solutions according to some fitness function and then combining parts of high

ranking solutions, according to operations inspired by biological evolution. To provide

meaningful guidance to this process, the fitness function must provide a score encoding

how close each solution is to successfully solving the problem, which is then either min-

imised or maximised (which of these is generally an implementation detail) by the search

algorithm. Such a technique was first used to produce a set of mutants which are hard

to kill, but are nonetheless not equivalent, according to a fixed set of test cases. This

required a fitness function that scores each mutant based on how easily it is killed by

the tests, where scores of near 1 indicate a hard to kill mutant, but mutants who are not

killed are given a score of 0 to prevent the inclusion of possibly equivalent mutants. Next,

an evolutionary technique was applied to select test cases, from a randomly generated

pool of tests, according to how effective they were at killing mutants, taken from a fixed

pool. These two techniques are then combined to co-evolve both a set of mutants and
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a set of test cases for killing those mutants. An analysis of applying these techniques

with simulated fitness function values showed that genetic algorithms appear to be well

suited to this task. However, because all of the mutants selected are guaranteed to be

non-equivalent, it is possible that some hard to kill non-equivalent mutants may be given

very low fitness scores, and thus be excluded. These may represent difficult-to-detect

faults, which the tester may otherwise fail to identify before they manifest as failures. In

addition, efficiency of the technique is not discussed, leaving an open question as to the

practical feasibility of the technique.

Fraser and Wotawa [36] explored how mutants of formal program specifications could

be analysed to identify equivalent mutants, without the need to use a model-checker to

test each mutant against the original specification for a difference in behaviour, as with

prior work. This formed part of a wider work where the number of test cases produced and

the time taken to generate them was reduced by removing equivalent mutants before test

case generation, as well as attempting to identify where tests kill multiple mutants and

therefore do not need duplicating. To achieve this, characteristic properties of the mutant

models are identified, which describe how the mutation made either adds to the set of

valid transitions in the program – a formal description of how the state of the program

can be changed – or removes an element from it. From this, an equivalent mutant can

be identified as a mutated specification where the set of transitions is unchanged, such

that no input during the execution of the program could lead to a different state when

executed with the mutant than the original. In an empirical study, this approach was

shown to greatly reduce both the test suite size and test generation time when applied to

one example program, by an average of 77% and 64% across the mutation operators used,

respectively. However, detailed results relating to equivalent mutants were not reported.

Grun et al. [38] made initial investigations into whether the impact of a mutant – how

much it alters the behaviour of a original program – can be used to predict whether it is

equivalent. The changes in behaviour between the mutant and the original program are

measured according to the control flow, assuming that if this is changed then the mutant

is less likely to be equivalent. The control flow is measured according to the statement

coverage achieved by the test suite with each program, recording how many times each

statement has been executed. This approach was implemented as an extension to the

“Javalanche” mutation tool. The approach was evaluated by examining a sample of the

9,819 mutants produced for the JAXEN XPATH engine – an open-source Java XPATH
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query system. An initial sample of 20 mutants was taken from those 1,933 mutants

which were covered by the test suite (i.e., the mutated statement was executed). These

20 mutants were manually examined by two experienced individuals who classified each as

non-equivalent (proven by providing a test case that killed it), equivalent or undecided.

Overall, a mutant was deemed non-equivalent if either individual provided a test case

that could kill it, equivalent if both individuals specified so, or otherwise undecided. This

human analysis revealed that of the 20 sampled mutants, 10 (50%) were non-equivalent,

8 (40%) were considered equivalent, and 2 (10%) being left undecided. On average this

analysis took 15 minutes per mutant, highlighting the high cost associated with human

identification of equivalent mutants. Of these mutants, 6 out of 8 equivalent mutants

were found to have no impact, while 6 out of 10 non-equivalent mutants did have an

impact. These results suggest that a mutant which does have an impact on execution is

more likely to be non-equivalent than equivalent. Analysis of those mutants that instead

were killed by the test suite showed that 98% had an impact on coverage, supporting the

conclusion that there is a link between the impact of a mutant and whether it can be

killed. All mutants not killed by the test suite were then ranked according to their impact,

with the first and last 20 mutants being hand-examined, according to the same strategy

as before. Of the 20 mutants with the highest impact, 18 were non-equivalent and 2

equivalent, while for the 20 mutants with the lowest impact, 9 were non-equivalent and 11

equivalent. These findings also support the hypothesis that there is a correlation between

the impact of a mutant and whether it can be killed, with higher impact increasing the

chance. Although these results help suggest which mutants are more or less likely to be

equivalent, this cannot be used to definitively identify these mutants – only predict, with

a statistically significant probability, the most likely classification. However, this may

still be useful in a practical setting, to guide the tester to produce test cases for mutants

which are most likely to be killed. Ranking the mutants by impact also helps the tester

identify where omitted tests could identify potential bugs in many parts of their program.

Schuler and Zeller [96] examined how coverage information gathered at runtime can

be used to calculate the likeliness of a mutant being non-equivalent, expanding upon

the previous work of Grun et al. [38]. While test cases effectively assess the impact of

each mutant at the end of execution (i.e., whether the overall result of the program has

changed), this approach involves measuring how the program state has been changed

during execution. This impact is measured according to two metrics – control flow and

data. The control flow metric measures whether the statements in a program have been
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executed in a different order for the mutant than the original program. If the control flow

does change, it is more likely that the mutation has propagated and caused an overall

change in behaviour. The data metric considers whether the values passed between

different methods called during the tests are different. Again, if these have changed

then the mutant is more likely to have altered the overall behaviour of the program.

To evaluate their approach, seven real-world Java programs were selected, ranging from

4,837 to 94,902 lines of code, producing a total of 116,551 mutants. From these mutants,

20 that were not detected by the test suite – and therefore are either equivalent, or non-

equivalent and the test suite is insufficient to kill – were selected per program, giving

140 mutants to manually classify. The results showed that if a mutation does impact

upon the coverage it has a 75% chance of being non-equivalent. This suggests that by

ranking mutants by coverage may be an effective way to present alive mutants to a tester,

reducing the likelihood that the mutant they are attempting to kill is equivalent until the

majority of remaining mutants are equivalent. While these results were obtained for large,

real-world programs, they are limited to detecting coverage only when the provided test

suite executes the mutated statement. This constrains the number of mutants that made

up the sample 20 used per program, and therefore possibly limits the generalisability of

the results. In addition, the seven programs used may not be representative of other

Java programs, especially as they all belong to open source projects, which may have

significant differences to programs developed in other settings.

Yao et al. [119] manually investigated the causes and prevalence of equivalent and

stubborn mutants (those which are not killed by otherwise effective test suites, but are

not equivalent). A total of 1,230 mutants that were not killed by test suites covering all

branches from 18 programs were examined, revealing 946 equivalent mutants. These were

then classified by whether they were caused due to issues with reachability (can the mu-

tated statement be executed at all), infection (does the mutated statement cause a change

in state) or propagation (can the state change affect the program output). For a mutant

to be detected, each of these must be satisfied in order – that is, without reachability,

infection cannot be achieved, and in turn without infection, propagation is not possible.

In-depth analysis of the equivalent mutants revealed that the mutated statement was

reachable for the vast majority of cases – a total of 92% – with similar proportions from a

lack of infection or propagation – 52% and 40% of all equivalent mutants, respectively. In

addition, over 75% of equivalent mutants were shown to be produced by two mutations of

the five applied mutation operators – absolute value insertion (ABS, surround variables

55



with a positive and negative absolute operation) and unary operator insertion (UOI, re-

place variables with pre- and post- increment and decrement operations). From their

results, Yao et al. suggested that the high proportion of equivalent mutants produced by

the ABS operator mean it should not be used, unless there is specific reason to suspect

the presence of such errors. In contrast, while the UOI operator as a whole led to many

equivalent mutants, these were mostly isolated to the pre- operations. As such, it may

be useful to split this operator and apply only this part.

Papadakis et al. [93] expanded upon the concept of using compiler optimisations to

detect equivalence, applying it to C programs by using modern compiler optimisations.

While previous work by Offutt and Craft [85] made use of optimisations inspired by

those implemented in optimising compilers, Papadakis et al. [93] compiles the original

and mutant programs using an existing compiler with these optimisations enabled then

compares the machine code produced. While these optimisations may alter parts of

the program, generally to reduce the cost of execution, they do so in such a way that

the behaviour is unchanged. Therefore, if two programs compile to the same optimised

machine code, they must be equivalent2. In addition, the same approach is taken to

detect duplicate mutants – those that are equivalent to other mutants and therefore

represent the same possible programmer error, such that any test that kills one always

kills the other, and vice-versa. This technique is referred to as trivial compiler equivalence.

To evaluate their approach, Papadakis et al. used the popular gcc compiler with four

different optimisation settings (“None”, “O”, “O2” and “O3”, in increasing order) to find

equivalent mutants for two different sets of programs. The first consists of the two

largest components extracted from each of six large scale real-world programs, which

vary from 7,323 to 750,157 lines of code (although the components themselves range from

1,075 to 22,827). The second contains 18 programs which have previously been manually

analysed to identify equivalent mutants, used to provide a “gold standard” number of

equivalent mutants with which to compare the approach. The results for the first set of

programs revealed 9,551 equivalent mutants and 27,163 redundant mutants, representing

7.4% and 21.0% of all mutants. Interestingly, the highest optimisation setting, O3, only

detects all equivalent mutants that the lower levels of optimisation do in 2 of 12 cases,

although on average it identifies 84% of equivalent mutants, and for 8 of 12 programs

it does detect the greatest proportion. These results suggest that sometimes mutations

2Alternatively, there may be a bug in the compiler optimisations. However, the maturity of C com-
pilers significantly reduce this threat, such that it can generally be ignored.
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may prevent some levels of optimisations being applied by the compiler, thus to detect

as many equivalent mutants as possible using this technique may necessitate multiple

compilations and comparisons, with each different optimisation level. In contrast, when

attempting to detect duplicate mutants the O3 level identifies almost all of the 27,163

duplicate mutants, recognising all of those found by other optimisation levels for 10 of

12 programs, and identifying almost all of them in the other two cases – 97% of them in

the worst case. In terms of computational cost, the technique required 377,166 seconds

(∼105 hours) to compile all 12 of the first set of programs with the O3 optimisation, detect

equivalent mutants and detect duplicate mutants. While this seems very expensive, the

compilation step that represents over 99% of this time is already required to execute

the test cases for mutation analysis, although compilation without optimisations could

reduce the time to 71,301 seconds (∼20 hours). In addition, given the total of 129,161

mutants this represents less than 3 seconds per mutant, which is clearly faster than the

alternative of human analysis, and is a purely computational cost, which may be further

reduced by utilising additional hardware resources. The second set of programs was used

to evaluate what proportion of known equivalent mutants the trivial compiler equivalence

technique is able to detect. These results show that the technique detects between 9%

and 100% of equivalent mutants, with an average across programs of 30%. Unfortunately,

the mutant programs had not been analysed for duplicate mutants, so the proportion of

these detected could not be evaluated. Regardless, this confirms that the technique

can successfully identify a significant number of equivalent mutants using checks which

cost relatively little – especially compared to human analysis. Overall, trivial compiler

equivalence provides a technique for detecting both equivalent and duplicate mutants that

seems both scalable and effective. It is, however, reliant on a sufficiently effective and

reliable optimising compiler being available for the programming language used in the

program of interest, as well as a tool to compare the resulting executable files. In addition,

it may be necessary to compile programs with multiple optimisation options, if available,

to reveal the highest proportion of equivalent mutants, increasing the computational cost

of mutant compilation prior to mutation analysis.

2.3.5 Execution cost

As described in Section 2.3.1, mutation analysis requires the test suite to be executed once

for each mutant. Given the number of mutants increases as the size of the program does,
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Original

1 int max(int a, int b) {

2 if (a > b) {

3 return a;

4 } else {

5 return b;

6 }

7 }

Meta-mutant

1 int max(int a, int b) {

2 if (relop(absvar(a,2),absvar(b,2),2)) {

3 return absvar(a,3);

4 } else {

5 return absvar(b,5);

6 }

7 }

Figure 2.9: A function with an example meta-mutant.

and the size of a test suite will generally increase in kind, the cost of mutation analysis

can become prohibitively expensive, exceeding available computational resources. To

counteract or mitigate this problem of execution cost, a variety of techniques have been

proposed, which are described in this Section.

Due to the large number of techniques, a number of schemes have been proposed to

classify the type of optimisation(s) they employ. Jefferson et al. [50] categorised tech-

niques according to three types – “do fewer”, “do smarter” and “do faster”. These refer

to reducing the number of mutants, reducing the cost per mutant or distributing their

execution, and executing each mutant more quickly, respectively. Each of the techniques

discussed in this Section are categorised according to this scheme.

Mutant schemata – Do faster

Due to the large cost that would be associated with compiling the entirety of each mutant

program, where necessary for the language used, some mutation analysis systems made

use of an interpreter-based approach, such as in the Mothra Fortran mutation system

[66]. However, Untch [110] observed that using such an approach increased test execution

time significantly, which generally represented the majority of time taken for mutation

analysis. To address this issue, they proposed the mutant schemata approach, where

each of the mutant programs are combined into a single program – the metamutant

– that can be compiled once, but configured to execute a particular mutation via a

parameter provided at runtime. This allows the test suite to be executed much more

quickly, with the parameter being varied each time to run the program with a specific

mutation applied. Figure 2.9 provides an example of a program and a meta-mutant using

a similar style to the mutant schemata implementation of Untch [110]. In this case, two
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different mutations are considered – replacement of relational operators, and replacement

of variables with positive and negative absolutes values, implemented using the relop

and absvar functions. The last operand in both functions identifies where the statement

is in the program, which corresponds to particular entry in the configuration file. Each

relational expression in the program (i.e., on line 2) has been replaced by a call to the

function relop, which calls a particular relational operator on its operands according

to the runtime configuration file. By configuring the behaviour like this, each mutation

of the relational operator (i.e., =,6=,<,≤,≥) can be “activated” at runtime, without a

need to recompile the program. If a different mutation is being activated then the relop

operation will simply apply the > operator, as in the original program. Similarly, each

variable reference in the program (i.e., lines 2, 3 and 5) is replaced with a call to absvar,

which returns the variable directly when inactive, and either the positive or negative

absolute value (e.g., |a| or −|a|) when active, depending on which mutation is specified.

It is noted that this can easily be combined with other schemata functions by nesting the

calls, as shown on line 2. The mutant schemata approach has since been implemented

into a wide range of mutation analysis systems [17, 33, 35, 84, 97, 111], with a selection

of those that included an empirical evaluation discussed further below.

Untch et al. [111] performed an evaluation of the mutant schemata approach, com-

paring its efficiency with that of the interpreted Mothra mutation system. For this, a

single C program was used which had to be transformed to a Fortran program for use

with Mothra, producing 385 mutants and 364 for the C and Fortran variants, respec-

tively. Their results showed that the schemata approach was 4.1 times faster, although

given the greater number of mutants for the C variant the schemata approach is in fact

more than 4.1 times quicker. The findings of this initial experiment, however, are clearly

slightly limited given the use of only one case study program, as well as the inability to

verify that the achieved mutation scores are comparable between both techniques, due to

the differing number of mutants. In addition, differences in test suite execution times for

the C and Fortran programs are not controlled for, nor discussed. However, when com-

pared to interpreted mutation analysis systems, where the entire runtime of a particular

language has to be precisely and correctly modelled for the mutation analysis results to

be truly representative, the mutant schemata approach proposed is significantly easier to

implement and less error prone, as it is compiled and executed using exactly the same

tools as the original program.
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The Javalanche tool [97] also makes use of mutant schemata to reduce the number of

separate programs produced when mutating Java programs, in addition to making use of

other optimisations (described elsewhere in this Section). In evaluating their tool, Schuler

and Zeller showed that even for large programs – with up to 94,902 lines, 339 tests and

producing 14,357 mutants – the execution time is not practically infeasible, taking less

than 6 hours. Although this time may seem very high, it is still low enough to be plausible

to execute in a practical setting on an occasional basis (e.g., daily) to provide a measure

of test suite quality, even though it clearly cannot be used for near-interactive feedback

for the tester. These results show that the optimisations such as mutant schemata can

help to vastly improve the time taken for mutation analysis.

Madeyski [74] presented the Judy mutation analysis tool, which made use of the

mutant scheamta technique to reduce the compilation overhead of mutation analysis,

using Java and the AspectJ aspect-oriented programming library. This allows parts of the

code to marked as “pointcuts” at which point fragments of code, each called an “advice”,

can be executed. Through this approach, each mutation can be modelled as an advice

fragment that can be optionally executed, according to whichever mutation is desired.

The performance of this approach was compared to that of the MuJava tool [89, 72, 73],

which also uses the mutant schemata approach and other optimisations (discussed later

in this Section). Comparing the two systems across 24 open-source programs from the

Apache Software Foundation showed that Judy was approximately 12 times faster on

average, processing a mean of 52 mutants per second. This demonstrates that some means

of implementing the mutant schemata technique may be more efficient than others, and

that in general the approach can help in the production of high performance mutation

analysis systems that may help mutation analysis to be feasible in a practical setting.

Compiler integration – Do smarter

When mutating a program written in a language that must be compiled prior to exe-

cution, each extra mutant increases the time taken for compilation. While the mutant

schemata approach (see page 58) aims to tackle this problem by producing a single large,

meta-mutant program that contains each of the possible mutations, this still requires the

original program to be parsed to produce the mutations and then the meta-mutant to

be compiled. To reduce this potentially significant cost, DeMillo et al. [31] suggested

applying a compiler integrated approach to mutation analysis, whereby the production
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Figure 2.10: An overview of the compiler integrated approach of DeMillo et al. [31].

of mutants is implemented directly into the compiler rather than being a separate pro-

cess. This reduces the amount of time spent parsing and compiling the original program,

lowering the overall cost of mutation analysis.

In the approach of DeMillo et al. [31], a Fortran compiler was augmented to omit

each mutant as a “program patch” – a compiled unit that could be applied at run-time to

modify the program behaviour, according to the single mutation it contains. An overview

of this implementation is shown in Figure 2.10. This avoids the cost of recompiling the

code that would otherwise be duplicated across each mutant, whilst only adding a small

overhead itself, although this specific implementation approach does rely on support for

such runtime patching in the language in use. While the approach overall was described

as being efficient, it has not been subject of an empirical evaluation, so it is unclear what

degree of time saving it achieves.

The techniques of compiler integration and mutant schemata were combined by Just

et al. [56], in an approach referred to as conditional mutation, implemented in a mutation

analysis tool called MAJOR (mutation analysis in a Java compiler). Instead of using

compiler patches, this approach, integrated as part of the standard javac Java compiler,

automatically inserts conditional branches into the abstract syntax tree of the original

program that contain the mutated versions of each modified statement. As with other

mutant schemata techniques, these can be optionally enabled at runtime to adjust the

program behaviour to that of a particular mutant. This approach was empirically evalu-

ated by mutating eight open source programs with a total of 752,905 executable lines of

code to produce 796,484 mutants [55]. Results of this initial step showed that the addi-

tional time taken for compilation due to the compiler modifications were negligible, while

the increase in memory was still reasonable for execution on commodity hardware. Mu-

tation analysis was then performed by executing the original test suite for each program,
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revealing that the worst-case increase in time taken for executing the test suite varied

between 1% and 30%. However, this is still likely to be a significant reduction compared

to an approach without both optimisations, for which analysing 796,484 mutants would

become infeasible. While these results show that conditional mutation, and so in turn

compiler integration and mutant schemata techniques, can reduce the cost of mutation

analysis it is unclear how easily it may be maintained over time as the target platform

continues to be developed. In addition, it requires close integration into the tools used

with a specific programming language, thus increasing the implementation cost of this

technique for other languages. Furthermore, where the tools available for a specific lan-

guage are not suitably extensible, or their source code freely available, such an approach

may become prohibitively difficult to implement.

Bytecode mutation – Do smarter

Rather than compiling to machine code that can be directly executed on a given machine,

a number of programming languages – such as Java, Erlang and Lua – are compiled to

bytecode. This is a portable intermediate between source code and machine code that is

later executed by an interpreter in a virtual machine. The bytecode mutation technique

attempts to reduce the time taken for mutation analysis by operating on the compiled

bytecode of a program, rather than the source, thus avoiding the need to compile each

mutant separately.

Offutt, Ma, and Kwon [89, 72, 73] implemented the bytecode mutation approach, along

with the mutant schemata technique, for Java programs in the MuJava tool (Mutation

System for Java). In this case, bytecode mutation is applied in a number of suitable

mutation operators to produce each mutant as a separate class file. Each of these is then

loaded at runtime using a Java class loader, where the chosen class determines which

mutant is activated, and then tested with a series of unit tests using Java reflection. This

approach was evaluated with 7 of 264 classes from the open source Byte-Code Engineering

library, comparing the optimised approach against individual compilation of mutants – as

usually required when mutating source code instead of bytecode. Results showed that on

average mutants could be generated 9.3 times faster and executed 2.1 times faster, with

an overall speed up of 5.5 times. Although the subjects of the experiment were limited,

this still shows a significant potential for reducing the time needed for mutation analysis,

improving its practical applicability.
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Rather than implementing only a selected number of operators using bytecode muta-

tion, as with the MuJava tool, Irvine et al. [47] implemented all of their operators using

bytecode mutation in their Jumble tool. In this case, the operators replace each instruc-

tion in the bytecode with each other instruction that requires and produces the same

number and type of arguments. For example, one mutant would be to replace a single

instance of dmul – multiply two doubles to produce a double – with dsub – subtract two

doubles to produce a double. This tool was used with programs with up to 310,000 lines

of code, showing the technique does scale sufficiently, although an empirical analysis of

the performance isn’t provided. Nonetheless, anecdotal evidence did suggest that the

mutation analysis process was useful in providing feedback to developers and testers of

a real-world application in a industrial setting, where mutation analysis was otherwise

believed to be prohibitively expensive, providing some support for bytecode mutation as

an optimisation technique.

Incremental mutation – Do fewer

When using mutation analysis to evaluate and improve a test suite during the devel-

opment of a program, the analysis process must be executed frequently to determine

whether changes have altered the mutation adequacy of the test suite. However, given

that many changes will only lead to small differences in behaviour, isolated to small parts

of the program, the mutation adequacy will remain the same for the majority of the

program. Therefore, a significant amount of the mutation analysis process is repeated

between executions, executing the same tests against the same fragment of the program

and mutants, producing the identical results. Cachia et al. [23] observed this inefficiency

and proposed incremental mutation testing as a solution, which limits the scope of mu-

tant generation to only those sections of code that have changed since the last mutation

analysis execution, as well as only running the tests that will exercise those sections. Ap-

plying this process during the development of a program should reduce both the number

of mutants examined and the amount of tests executed, decreasing the time taken for

mutation analysis and improving its applicability in a practical setting. An implementa-

tion of this approach was evaluated with multiple versions of the Apache Commons CLI

Library – an open source Java project with ∼5000 executable lines of code – comparing

incremental and standard mutation analysis with three different degrees of “code churn”

(how many lines were changed). Incremental mutation analysis was shown to reduce
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the time taken for mutation analysis by approximately 90% in all three cases, removing

between 45% and 91% of mutants. However, the mutation score decreased radically –

between 0.94 and 0.45 for normal mutation and incremental mutation in the worst case

– and with up to 3.4 times as many live mutants for incremental mutation. Cachia et al.

suggested that this was likely a consequence of the näıve approach used for reducing the

number of tests executed, suggesting that further work is required to improve the static

analysis approach used to detect which tests to execute.

Higher order mutation – Do fewer

While the majority of mutation analysis techniques focus on the modelling of single

small faults, as injected by applying one mutation operator per mutant, it may be that

applying more than one mutation operator could produce more useful mutants. As first

proposed by Jia and Harman [53], such higher order mutants (HOMs) may still represent

simple programmer errors, yet be more valuable for evaluating test suites as they may be

significantly harder to kill - therefore, killing a small number of HOMs could provide a

better measure of fault-finding capability, without a significant increase in analysis cost.

In particular, Jia and Harman identified a specific class of HOMs that were most likely

to be useful, referred to as a strongly subsuming HOM (SSHOM). A subsuming HOM

is harder to kill than the first order mutants (FOMs) it is constructed from - that is,

there is a smaller range of inputs that would reveal the faults injected in the HOM. A

SSHOM is one type of subsuming HOM, whereby any test that can kill it is also able to

kill its constituent FOMs. Therefore, a SSHOM is able to replace these FOMs while still

ensuring a mutation adequate test suite can detect at least the same range of faults.

Clearly, producing all possible HOMs would lead to a combinatorial explosion in the

number of mutants. Instead, Jia and Harman [53, 51] investigated whether three different

search algorithms – a greedy algorithm with random restarts, a genetic algorithm, and

a hill climbing with random restarts – could automatically identify which HOMs were

hardest to kill, and therefore were most likely to represent a subtle fault, according to the

guidance of a fitness function. To evaluate the prevalence of different types of subsuming

HOMs when mutating C programs, the higher order mutation approach was implemented

in a tool called Milu [54]. This was executed with 10 C programs [51], which contained up

to 6,000 executable lines of code and produced at most 68,843 FOMs. The results showed

that SSHOMs can be successfully identified by this search process with over 8,000 being
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found for the largest program, with the search using genetic algorithms being the most

efficient. This shows that the number of SSHOMs for a program is likely to be significantly

lower than the number of FOMs, thus giving good potential to reduce the time taken by

mutation analysis. In addition, manual analysis confirmed that SSHOMs do indeed model

subtle faults that require the tester to choose test inputs more carefully, and therefore

represent good candidates to form a reduced pool of mutants for use in mutation analysis.

A subsequent extension of this work including an additional 7 programs [42] gave further

evidence to support the value of HOMs over first-order mutants, showing that a test data

generation that aimed to kill HOMs was able to kill between 8 and 38% of mutants left

alive by the next best approach from the literature.

Langdon et al. [69, 70] expanded upon this work, applying genetic algorithms, genetic

programming and Monte Carlo sampling to search for hard to kill and realistic HOMs.

In this case, the search process is a multi-objective problem guided by a fitness score that

specifies HOMs must be syntactically similar to the original program – and thus, realistic

as a programmer error according to the competent programmer hypothesis – as well as

hard to kill. This confirmed that higher order mutation is able to produce mutants that

model complex faults that FOMs cannot and that these are harder to kill than FOMS.

In addition, this demonstrated that multi-objective search is able to find such FOMs in

a reasonable time without specialised hardware.

Removing redundant mutants – Do fewer

While each mutation is intended to model a different type of fault, Just et al. [57] demon-

strated that it is possible that some produced mutants are guaranteed to be killed by

a test case that reveals another mutant. These are referred to as redundant mutants,

which decrease the efficiency of mutation analysis while also reducing the accuracy of

the mutation score – as it is unduly biased towards test suites that kill many of these

mutants. For example, in a Java program given the statement a && b, the mutations

lhs and rhs (return the left and right operand, respectively) return a different result

from the original program when (a,b) = (true,false) and (a,b) = (false,true),

in turn, and would therefore be killed. This overlaps with the input required to detect

the mutation a || b, which is killed for the same test inputs, and is therefore deemed

redundant. Continuing this notion, Just et al. identified four mutations which were suf-

ficient to test for the same behaviour as another six for statements with && clauses, and
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a further four to make another six redundant for || clauses. Adjustments were therefore

proposed to the two operators responsible for these mutants, to prevent the production

of these redundant mutants. An evaluation with four open-source programs, with a total

of 71,041 executable lines of code, revealed that the affected mutation operators pro-

duced up to 57.8% of mutants, in the worst case. Therefore, as expected, applying the

adjusted versions of the operators reduced the number of mutants significantly, with an

average decrease of 24%. This in turn reduced the time taken for mutation analysis by

between 9.9% and 34.1%, which is a wide, yet significant, range. Therefore, identifying

and removing redundant mutants can yield meaningful improvements to the efficiency of

mutation analysis, as well as positively impacting upon how accurate the mutation score

is for evaluating a test suite.

Selective mutation – Do fewer

Originally proposed by Mathur [75], the selective mutation technique involves reducing

the number of mutants used for mutation analysis by removing those produced by certain

operators. Mathur suggested that this technique, initially referred to as constrained

mutation, should have a linear complexity in the size of the program, as opposed to the

quadratic complexity of full mutation, although may not be suitable for testing critical

software. As such, it may be useful in cases where mutation using all available mutants

has become too costly, due to the computational expense of compiling each – if necessary

for the programming language being used – and executing, in the worst case, the full test

suite.

N -selective mutation Offutt et al. [87] experimentally evaluated selective mutation

by implementing it according to the proposition by Mathur [75], for Fortran programs.

The number of mutants was reduced by removing mutants created by the n most pro-

ductive operators – those which produce the most mutants. This was referred to as

n-selective mutation as opposed to full mutation, when mutants from all operators are

used. To investigate whether selective mutation reduces the number of mutants from a

quadratic complexity in the size of the program to a linear complexity, 28 Fortran pro-

grams were examined that ranged from 8 to 164 lines of code, producing a total of 81,159

mutants. These results showed that the number of mutants was still quadratic, as with

full mutation, but that nonetheless 2-selective, 4-selective and 6-selective mutation can
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achieve a significant saving. In fact, further examination of these results showed that for

these 28 programs the mutants created by the 1st and 2nd most productive operators

represent over 30% of all mutants, the 3rd and 4th for over 20%, and the 5th and 6th

for around 15%. Next, the selective mutation techniques were evaluated to see if they

could still provide a tester with an accurate estimate of the quality of their test suite.

This was measured by seeing whether a mutation adequate test suites for the selective

sets of mutants was also mutation adequate for the full set of mutants. The Fortran

programs used to test this include between 10 and 48 statements, producing 183 to 3010

mutants. All equivalent mutants were removed, and although an approach for this is not

discussed it is assumed manual analysis was applied. For each of the three n-selective

sets of mutants, selective mutation adequate test suites were then created, with test cases

being generated automatically where possible or otherwise being hand written. These

test suites were then used for full mutation analysis, executing them against all mutants

for each of the programs. The test suite produced for 2-selective mutation was mutation

adequate for the full set of mutants for 8 out of 10 programs, killed 99.94% of mutants in

the worst case and 99.99% on average. This shows that the 2-selective mutants provide a

very accurate prediction of whether a test suite will be mutation adequate for full muta-

tion. It also suggests that those mutants produced by the two most productive operators

are likely to be easy to kill. The reduction of mutants was also notable, with an average

of ∼24% across all programs. Although the real-world time saving is not reported, it is

clear that this likely represents a significant reduction in the computational cost. Results

for 4-selective mutation and 6-selective mutation showed these techniques both provided

good predictors of whether a test suite is adequate, with killing an average of 99.84%

and 99.71% of mutants each, while both also greatly decreasing the number of mutants

executed, reducing this by 41% and 61% respectively. While these results all suggest that

selective mutation may greatly reduce the cost of mutation analysis, while still giving a

tester a strong indication of whether their test suite is sufficient, there are a number of

limitations. Firstly, it is unclear whether these results can be generalised to other pro-

gramming languages besides Fortran, and whether they may be the product of specific

characteristics of the mutants produced by the Mothra mutation system. Secondly, a low

number of programs were studied and these were generally very small – only 10 programs

with at most 48 executable statements, for the latter half of the experiment. In addition,

the evaluation of the selective techniques only considers the case of selection adequate test

suites, and does not examine whether sub-adequate test suites achieve similar mutation
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scores for both the selective and full sets of mutant. Finally, the experimental design used

requires both that all equivalent mutants be identified and test cases are produced to kill

all other mutants – both of these represent potentially huge costs, making reproduction of

this experiment with other languages very difficult. Nonetheless, these results do indicate

that in some contexts particular mutants may be easier to kill, and therefore contribute

less to the overall picture of whether a test suite is sufficient.

Randomly selected x% mutation Wong and Mathur [116] investigated how mu-

tation with only two specific mutation operators, referred to as constrained mutation,

and randomly selected x% mutation, where a random x% of mutants produced by each

operator are used, compare to full mutation, where mutants from all operators are used.

The two operators, abs and ror, were selected because of the type of test data the tester

is required to produced in order to kill them. The abs operator creates mutants by

surrounding the right hand-side of assignment expressions with positive and negative ab-

solute operations (e.g., x becomes |x | and −|x |), as well as zpush operation that can only

be killed by setting the expression value to zero. These mutants force the tester to select

values from varying parts of the input domain, including zero as well as positive and neg-

ative non-zero values. The ror operator produces mutants by replacing the operator in a

relational expression with each other available operator (e.g., x < 10 becomes x = 10, x

6= 10, x > 10, x ≤ 10 and x ≥ 10 ) and either boolean constant (e.g., x < 10 become true

and false). To kill these mutants, the tester must explore the possible boundary values in

the predicates for each conditional branch of the program. This ensures that the specified

constants in each relational predicate are correctly defined and that the tester specifies

cases to explore all feasible branches. The approaches were evaluated by an empirical

experiment using 4 partial Pascal programs, which were converted by hand into C and

Fortran variants for compatibility with the various tools used. A total of 2,991 mutants

were produced for these programs using the Mothra Fortran mutation tool. For randomly

selected x% mutation, 7 levels were tested – 10 to 40% in 5% increments. The efficiency

of each technique was measured according to the reduction in number of mutants, as well

as the reduction in the number of tests required – which may represent another significant

human-time cost. The effectiveness was measured using a similar metric to Offutt et al.

[87], by measuring how close a selection adequate test suite was to being full mutation

adequate. These test suites were produced by a combination of automated means and

manual creation. All equivalent mutants were identified and removed – it is assumed, by
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hand, as no other technique is mentioned. The results for constrained mutation showed

that on average the selection adequate test suite was able to kill 96% to 99% of the full

set of mutants, while reducing the number of mutants by 80%. Findings for randomly

selected x% mutation showed that the test suites were able to kill an average of 95% of

the full set of mutants, when x is between 10 and 20%, and 98%, when x is greater than

20%. Clearly, the reduction in the number of mutants is fixed for randomly selected x%

mutation, varying between 90% and 40%, decreasing as x increases. These results suggest

that removing the mutants produced by many mutation operators may well still provide

a good indication of the quality of a given test suite, while significantly reducing the

execution cost of mutation analysis. However, determining which operators yield these

results may be specific to the programming language in use, as this may impact on what

types of programmer mistakes are most common and also most important to detect. In

addition, it is unclear whether these results apply only to selection adequate test suites

– that is, it is not known whether a test suite that kills half of the selected mutants

would also kill half of the full set of mutants. This may limit the practical value of this

technique to a tester who may not be able to invest enough effort to kill all mutants, as it

may give a poor indication of the quality of the test suite. If it provides an overestimate,

the tester is given too much confidence in their test suite, while an underestimate may

lead to extra unneeded human effort, to produce additional test cases. In addition, the

experiment only considered extracts from a small number of programs, raising concerns

of generalisability of the results. Expanding the empirical study using the same design,

however, would require significant effort to both manually identify equivalent mutants

and produce mutation adequate test suites.

Categorising by operator types Offutt et al. [88] observed that the mutation oper-

ators used in the Mothra Fortran mutation system could be divided into three groups,

according to the type of element they mutate, and then used these to produce sets of

operators to use in a selective mutation experiment. Firstly, the Replacement-of-operand

operators substitute each operand in statements with each other valid operand. Sec-

ondly, the Expression modification operators replace existing operators and add new op-

erators. Finally, the Statement modification operators replace entire statements. These

were formed into four sets, named according to the operators they included – ES-selective

(expression and statement modification), RS-selective (replacement and statement mod-

ification), RE-selective (replacement and expression modification) and E-selective (only
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ES-selective 99.54 71.52
RS-selective 97.31 22.44
RE-selective 99.97 6.04
E-selective 99.51 77.56

Figure 2.11: The proportion of all mutants killed by test suites produced with different
subsets of mutation operators and the reduction in number of mutants analysed, as
reported by Offutt et al. [88].

expression modification). Each of these selective sets were evaluated using 10 Fortran

programs of between 10 and 48 statements, for which 183 to 3,010 mutants were pro-

duced with the full operator set. As with prior works [116, 87], the effectiveness of the

selective techniques were assessed by forming a selection adequate test suite for each and

evaluating what proportion of mutants it could kill from the full set of mutants. This

again called for the creation of adequate test suites, which required a combination of au-

tomatic data generation and manual test case creation for hard to kill mutants, and the

manual identification of equivalent mutants, which would otherwise reduce the mutation

scores to below 1. The results of this are shown in Figure 2.11, with both axes of the

plot representing “higher is better” metrics. From this, the E-selective (replacement and

addition of operators) operator set appears to be the most compelling choice, with the

greatest reduction in mutants and an approximately equal mutant killing ability to the

ES-selective operator set. Given the similarity to prior evaluations of selective mutation,

many of the limitations are shared – for example, the necessity to produce mutation ad-

equate test suites (for some given set of mutants) and to remove all equivalent mutants,

both of which may prove incredibly time consuming for all but small programs. In ad-

dition, these results may be highly dependent on the specific set of operators being used

for a given programming language – in this case, Fortran – as these results may be an

artefact of an overlap or subsumption relationship between mutation operators, where a

test that kills mutants produced by one operator are guaranteed to kill those produced

by another.
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Cost-based heuristics Mresa and Bottaci [79] analysed each of the Mothra Fortran

mutation operators separately, to find what their individual mutation scores and execu-

tion costs were. This was then used as a heuristic to guide the choice of operators for

selective mutation. The cost for each operator is considered to be not only the number

of mutants it produces, as with much of the prior literature, but also the proportion

of equivalent mutants generated as well as an estimate of the cost of generating test

cases. This highlighted the need for test cases to be generated such that tests are only

included in the test suite if they kill a mutant that is not killed by at least one other test

– otherwise, they are redundant, in that they do not contribute fault-finding capability

to the test suite, and represent an unnecessary extra execution cost. An experimental

evaluation of the operator mutation scores and execution costs used 11 Fortran programs,

with an average of ∼44 lines that led to a production of 35,321 mutants using 21 of the

Mothra mutation operators. For this, selection adequate test suites were created for each

operator by a combination of automated means, using a constraint-based tool and/or

random data generation, and hand written tests, for hard to kill mutants. Mutants for

which no automatically generated or manually produced test case could be created were

deemed equivalent and removed. As with prior studies, applying the selection adequate

test suites to the full set of mutants in the first half of the experiment revealed that these

tests were still able to kill over 70% of mutants, in the worst case, and over 98%, in the

best case. The results also showed that the cost associated with the operators positively

correlates with the mutation score, suggesting that the larger size of the produced test

suite may contribute to this increase in mutation score. The latter half of the experiment

looked into how these operators could be most effectively be grouped into sets for use in

selective mutation showed that the best choice of operator selection technique depends

upon the needs of the tester. If the tester wishes to achieve a mutation adequate test

suite, then randomly selected x% mutation as applied by Wong and Mathur [116] is likely

to be more efficient, when considering the extra costs of equivalent mutant identification

and test case generation. On the other hand, if the tester relaxes this requirement, then

a more efficient subset of the available mutation operators may be used to significantly

reduce the cost of mutation analysis. While Mresa and Bottaci provided a much more

comprehensive measurement of the cost of individual mutation operators than prior work,

it is slightly unclear how well the cost values relate to the actual human and computa-

tional time costs associated with them. In particular, the weightings used for individual

components of the measurement may require additional investigation to determine their
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degree of correctness, for example by measuring the actual time taken in a controlled

human study. Nonetheless, the results do provide additional understanding of the high

degree of overlap between mutants produced by the Mothra mutation operators, such

that there may well exist subsumption relationships between them.

Criteria for operator selection Barbosa et al. [10] applied some of the knowledge of

selective mutation for Fortran programs presented Offutt et al. [88] instead to mutation of

programs using the C programming language. This led to the definition of a generalised

guideline for selecting a subset of mutation operators from any given full set of operators.

This involves choosing operators according to six criteria, including using operators that

lead to the production of test suites with the highest full-set mutation score, using at least

one operator from each group or class, and evaluated where mutants produced by different

operators may overlap. This guideline was experimentally evaluated by implementing

it as a selection procedure, which was applied to the mutation analysis of 27 small C

programs ranging from 11 to 71 statements. The full set of 71 mutation operators from

the Proteum mutation tool were applied to these programs, although only 39 generated at

least one mutant, producing a total of 20,146 mutants. A second phase of the experiment

introduced 5 alternative C programs of 76 to 119 lines, which led to the production of a

further 12,834 mutants. Applying the procedure to these operators and mutants yielded

a set of ten mutation operators, which achieved a mutation score of 0.997 while using

only 35% of the original number of mutants. This was compared to prior techniques

such as 6-selective mutation [87] and randomly selected x% mutation, and was shown

to produce the highest mutation score. The randomly selected 40% mutation technique

was shown to achieve a marginally lower mutation score whilst slightly improving upon

efficiency, however it is notable that random selection may suffer from unreliable results

from its inherent stochasticity. Overall, these results showed that the suggested guideline

was able to assist in the identification of an effective subset of mutation operators for the

C programming language from those provided by the Proteum mutation system. These

operators provided a more accurate model of the mutation score obtained with the full set

of operators than other techniques previously suggested for selective mutation. However,

it is unclear how the results may have been affected if a larger proportion of the Proteum

mutation operators had been applicable (i.e., generated at least one mutant), as only 55%

and 79% of operators were considered in the first and second phase of the experiment,

respectively.

72



Statistical procedures Namin et al. [81] proposed treating the problem of selecting

mutation operators as a statistical variable reduction, or feature selection, problem. Vari-

able reduction is a process used to simplify a model of some problem, by reducing the

number of predictor variables, whilst still ensuring it is accurate. In the context of selec-

tive mutation, the model is aiming to predict the mutation score a given test suite would

achieve for full mutation, based upon the proportion of mutants killed for each included

mutation operator. Therefore, the mutants produced by each operator represent a vari-

able that may or may not be included in the model, according to a variable reduction

technique. The subset of operators is produced using a cost-based least-angle regression

(CBLARS) procedure that is able to find subsets of predictor variables while avoiding the

need for producing all possible subsets, which the authors claim would require a clearly

infeasible 238 models. As well as optimising the accuracy of the selective mutation score

as a predictor of the full-set mutation score, the cost-based element of the procedure re-

duces the number of mutants included, as opposed to the number of operators included as

in a standard least-angle regression procedure. The approach was evaluated using seven

programs written in C with a total of 2,188 executable statements. As these programs,

known as the Siemans programs, have been studied multiple times previously they are

accompanied by a large number of test cases. Sampling a wide range of test cases from

this pool provides the CBLARS procedure with a wide range of mutation score values,

ensuring the results are representative for all scores – not just mutation adequate scores,

as with previous work. Applying the 108 Proteum operators to these programs produced

70,238 mutants, which were sampled to give 2,000 mutants per program, divided propor-

tionally for each mutation operator. Applying the CBLARS procedure to these mutants

identified a set of 28 mutation operators that are able to reliably predict the full-set mu-

tation score (with an adjusted R2 value of 0.98, indicating a high goodness of fit), while

reducing the number of mutants produced by 92%. In practical usage, this allows a tester

to apply those 28 mutation operators (provided the scores achieved for mutants by each

is recorded), and use the coefficient values reported by Namin et al. [81] to calculate a

reliable estimate of the full mutation score.

Parallel execution – Do faster

Mutation analysis requires many mutants to be produced, compiled and executed via a

potentially large number of test cases. With all but small programs, this can become
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very expensive to execute. However, while there may be a specific order tests must be

executed in, there are not dependencies between the execution of each mutant - clearly,

if the execution of one mutant could impact the execution of another, it would not be

possible to determine which was responsible for any change in behaviour, which may

become unpredictable at best. It is therefore possible to parallelise the mutation anal-

ysis process, executing the tests against multiple mutants simultaneously by exploiting

suitable hardware resources, such as multi-core processors and compute clusters.

Early approaches using parallel techniques for mutation analysis focussed on exploit-

ing specialised parallel hardware. For example, Byoungju and Mathur [22] developed a

parallelised version of the Mothra mutation system, called PMothra, which allows the

tester to transparently utilise a range of parallel hardware, including an Ncube hyper-

cude computer and a vector multiprocessor. This was evaluated with five programs with

a total of 138 lines, producing 10,391 mutants, and 150 test cases. Overall, this showed a

speed-up for mutation analysis of between 40 and 50 times. These results demonstrated

that given sufficient hardware capability it is possible to improve the time needed for mu-

tation analysis, even if the hardware cost limit the applicability in an industrial setting

rather than an academic one.

More recently, Schuler and Zeller [97] have made use of parallel execution in their

Javalanche tool, which implements mutation analysis for Java programs. In this case,

the multi-processing capabilities of commodity hardware can be used, in addition to

distributed execution using several separate computers. As discussed previously (see

page 59) this tool incorporates numerous other optimisation techniques, such as mutant

schemata and selective mutation. As a result, Javalanche is able reduce the time taken

for mutation analysis, making its use feasible for projects much larger than otherwise

possible – for example, taking less than 6 hours to process all mutants for 14,357 mutants

of a 94,902 line program.

Dynamic analysis – Do fewer

While techniques such as mutant schemata and selective mutation aim to reduce the

cost of mutation analysis by using information about the mutants prior to execution,

dynamic analysis takes advantage of information only available during runtime. Just

et al. [58, 59] made use of such a technique in an attempt to reduce the number of tests
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executed for each mutant, by identifying those tests who would not be able to detect

a particular mutation. This is achieved by executing the test suite once against an

instrumented the original program, recording which mutations could be detected by each

test. In the simplest case, this involves identifying those tests that will not execute the

mutated statement. Next, this analysis checks for each test and each mutant whether

the mutation is able to change the state of the program – referred to as an infected

execution state. Following this, the tests are checked to ensure that the mutated state

would propagate and affect the overall behaviour of the section of code it is referenced

in. Finally, where the state would be infected by a test, the infected execution state is

compared to the state each other test would produce, including each unique state only

once. Because each of these optimisations can be applied from a single execution of the

test suite, they have the potential to greatly reduce the number of test case executions,

and therefore the overall cost of mutation analysis. To evaluate the technique, it was

applied to mutation analysis of 14 open source Java programs with a total of 669,100

lines of executable code, with test suites used being a combination of those developed

alongside the programs themselves and automatically generated with the EvoSuite tool

[34]. Overall, this empirical experiment revealed the three optimisations were able to

reduce the time taken for mutation analysis by an average of 40%. This suggests that

analysing the effect each mutant has on state by executing the tests once and reducing

the number of tests by exploiting this information may prove a cost effective means of

improving the efficiency of mutation analysis in other domains.

2.3.6 Mutation analysis with databases

While limited in quantity, there are a number of items of literature that apply mutation

analysis in the context of relational databases, some of which have already been discussed

earlier in this Chapter. This Section describes the most prominent of these, which form

the most related literature to the content of this thesis.

As discussed in Section 2.2.2, Tuya et al. [106, 107] proposed a range of mutation

operators to perform syntactic changes to SQL SELECT statements, implemented in the

SQLMutation tool. As these types of query are used whenever retrieving data from a

database, there is significant scope for a mistake in such a statement to cause a critical

failure in a database application, therefore it is important to model such faults. A wide
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range of faults were modelled including those relating to joins, ordering and predicates,

as well as logical operators and the application of null values. An example of how these

operators could be applied to a SELECT statement has been shown previously in Figure 2.5

(page 37). These mutants were used to evaluate the fault-finding capability of the data

provided with the NIST SQL conformance test suite, which was able to detect 70% of

the injected faults, subsequently improved to 85% and then 100% by applying automatic

data generation techniques and incorporating manually crafted test cases, respectively.

This suggests that the types of faults modelled can be difficult to detect, suggesting the

impact they have on the behaviour of the query is subtle, but also importantly that these

mutants are not equivalent as tests can be created that detect them, confirming that

they could represent a real-world fault in an application that might lead to a failure.

When compared to the contributions of this thesis, the work of Tuya et al. is instead

focussed on the mutation of a different element of a database application. The mutation

operators proposed in Chapter 4 modify the constraints in the CREATE TABLE statement

used to describe the structure of the database, altering the data considered valid by the

DBMS. In contrast, the operators defined by Tuya et al. make changes to the SQL SELECT

statements used to extract rows of data from an existing database. These are therefore

distinct areas of research, although it is possible they may be used to compliment each

other as part of a collection of techniques to fully test a database application.

Extending upon the SQLMutation tool, Zhou and Frankl [120] developed the “Java

Database Application Mutation Analyser” (usually shortened to JDAMA). When ap-

plied to a database application, this tool identifies where the Java database connectivity

(JDBC) library is used to communicate with a database and instruments the underlying

Java bytecode to allow mutation analysis of the SQL statement to be performed. This

mechanism enables the mutation to be performed in the wider context of the application

during testing, allowing values of program variables in a SELECT statement to be consid-

ered. This in turn allows the response from the database to be compared for the original

SELECT statement and a series of mutant statements, using the same program state for

each. For example, given the following Java statement that could form part of a database

application:

String statement = "SELECT * FROM stock WHERE quantity < " + min + ";"
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In this case, the SELECT statement is being formed through string concatenation3, with

the value of the variable min being substituted into the statement at runtime. To test

mutants of this statement it is therefore important to consider the possible values of min.

By capturing each SELECT statement as it is submitted to the database, JDAMA is able

to execute each relevant mutant statement (generated using the SQLMutation tool) and

compare the result against that of the original statement, to determine if the mutant is

killed. As with the SQLMutation tool it is built upon, the JDAMA tool differs from the

work contained in this thesis in that it is designed to operate on SELECT statements rather

than the CREATE TABLE mutants. It does however highlight a possible path to integrating

the work of this thesis into the wider context of testing database applications, using auto-

matic instrumentation of JDBC statements to dynamically identify where mutations can

be applied during application testing. However, as CREATE TABLE statements are usually

static in nature, and as such would not include concatenation of program variables, the

production of abstract statements that can later be transformed into concrete statements

during execution would not be necessary in this context.

To generate data for use in database application testing, it is necessary consider

both the constraints within the application and expressed as part of the SQL SELECT

statements used to extract data from the database, declared in the WHERE part of the

statement. Implemented as a framework used in the MutaGen tool, Pan et al. [92]

proposed a technique that extracts the constraints in the WHERE clause and encodes them

as normal application code, such that they can be analysed using an existing symbolic

execution approach. This can then be used to infer constraints for both the program

and database during execution, by capturing database interactions using an instrumented

synthetic database. The MutaGen tool leverages this framework to generate data targeted

to kill two different sets of mutants – mutants in the original program code, and mutants

in embedded SQL queries. An evaluation of this approach showed data generated by the

tool was able to kill significantly more mutants of both considered varieties than prior

tools, although the evaluation included only two case study applications. Similarly to the

other items of literature described in this Section, the work of Pan et al. is distinct from

the contributions of this thesis in that it focussed on the SELECT statements executed

3The SELECT statement could otherwise be formed using a PreparedStatement which similarly sub-
stitutes variables into the resulting SQL, although automatically handles specific cases of character
escaping to reduce possible security vulnerabilities. Although JDAMA does not explicitly support these
statements, its authors note similar instrumentation could be developed to add support for them.
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Software Testing
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Analysis
Section 2.3 Schema

Testing
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Database
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This thesis

Figure 2.12: An overview of how the contributions of this thesis relate to the existing
work discussed in this literature review.

within a database application, rather than the CREATE TABLE statements that define the

structure and constraints of the database itself.

2.4 Summary

Measuring the quality of a test suite is important to both testers – who wish to be

given assurance their program contains few, if any, faults – and researchers – who want

to evaluate the tests produced by different techniques and compare their effectiveness.

Test quality metrics such as coverage criteria (Section 2.1.2) can quantify how much the

application has been tested, according to different notions of how thorough tests should

be. Alternatively, mutation analysis (Section 2.3) can be used to estimate the fault-

finding capability of a test suite, by measuring how many artificially seeded faults it can

identify. Through the definition of mutation operators, these injected faults can model

a wide range of real-world faults, thus providing the tester a good metric with which to

evaluate the quality of their test suite.

While mutation analysis has been applied to a wide range of different domains, in-

cluding database application testing as discussed in Section 2.3.6, it has yet to be used

for measuring the quality of test suites that exercise the integrity constraints of relational

database schemas. As discussed in Section 1.3, mistakes in the constraints of a schema
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may lead to critical failures in programs that use it to make a database, leading to either

a degradation of data quality or potential data loss – both costly problems for businesses

to resolve. However, to date, no known work has been undertaken to evaluate the quality

of test suites produced to test integrity constraints. This thesis investigates the appli-

cation of mutation analysis to such test suites to provide a metric that can be used to

compare the quality of suites produced by different techniques. In addition, the resulting

mutation scores may be useful to testers to determine whether their test suite is sufficient

to reveal misspecified schema constraints.

The next Chapter describes the tool in which the mutation analysis framework has

been implemented. The subsequent Chapters then define how the integrity constraints

of a schema can be mutated (Chapter 4), use the mutation analysis framework to com-

pare a series of data generation criteria (Chapter 5), describe algorithms to automatically

identify types of unwanted mutants such as equivalent mutants and evaluate their im-

plementation (Chapter 6), and detail how various optimisations inspired by those in

Section 2.3.5 can be applied to this new domain (Chapter 7).
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Chapter 3

The SchemaAnalyst tool

3.1 Introduction

Having outlined how the work in this thesis relates to prior literature on database testing

and mutation analysis in the prior Chapter, this Chapter now describes various important

parts of the SchemaAnalyst tool, which is used as the basic foundation for the implemen-

tation of the techniques proposed in this thesis. The majority of the tool’s functionality

relies on an intermediate representation of SQL schemas, whereby the various tables,

columns and constraints are represented as a graph of Java objects. These objects can

then be inspected and manipulated programmatically, for example to detect the pres-

ence of particular patterns of interest or to make small modifications to produce mutant

versions of the schema. The SchemaAnalyst tool includes classes that use the parse tree

created by an SQL parser1 to generate a Java source file from an SQL schema, which

produces this object representation at runtime. This SQL parsing functionality has been

used to produce intermediate representation versions of a variety of schemas from both

real-world and synthetic sources. SchemaAnalyst also includes a data generation com-

ponent that facilitates the production of test data, which can be used to exercise the

constraints in a schema. An SQL writing and DBMS interaction component allows the

schemas and data in the intermediate object representation to be transformed into SQL

1The SQL is parsed using a commercially available SQL parser, General SQL Parser (http://www.
sqlparser.com/)
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and executed with a number of different DBMSs. Finally, a framework is provided for

producing mutated copies of SQL artefacts.

This Chapter aims to provide the following:

1. An explanation of the intermediate object representation of SQL used by the

SchemaAnalyst tool to represent relational database schemas;

2. A description of the parsed SQL schemas available within SchemaAnalyst, including

where their source and detailing of their attributes, which are used later in empirical

experiments in this thesis;

3. Discussion of the range of data generation algorithms and coverage criteria imple-

mented in the SchemaAnalyst tool to generate test suites for relational database

schemas; and

4. A brief overview of the mutation framework implemented in SchemaAnalyst, which

can be used to define operators that generate mutants of SQL artefacts.

3.2 Architecture

3.2.1 Overview

In Chapters 4 and 6, the algorithms given are described in terms of their implementation

within the SchemaAnalyst tool, exploiting the SchemaAnalyst representation of SQL

schemas. To provide a thorough understanding of the structure and functioning of this

tool prior to its usage in these Chapters, this Section now describes its architecture and

implementation.

Figure 3.1 provides an overview of the architecture of the tool, showing how its com-

ponents can be used to perform mutation analysis of database schemas. The “Mu-

tation” section of this Figure represents original work produced during my PhD. The

SQL schema is transformed into the SchemaAnalyst intermediate representation of SQL

using a third-party parser, GeneralSQL Parser, and the SQL Parser component.
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org.schemaanalyst

util

unittest

testgeneration

sqlwriter

sqlrepresentation

sqlparser

mutation

logic

javawriter

dbms

configuration

(Utility functions for other packages)

(Test suite for SchemaAnalyst tool itself)

(SQL INSERT test case generation)

(Transform intermediate representation into SQL)

(Intermediate representation of SQL schemas)

(Transform SQL into intermediate representation)

(Mutation and mutation analysis of SQL schemas)

(Representation of relational statements)

(Output of Java code)

(Database connectivity and DBMS-specific SQL writing)

(SchemaAnalyst tool configuration options)

Package descriptionSchemaAnalyst packages

Figure 3.2: The main packages of SchemaAnalyst with descriptions of their purpose.

Once transformed into the Java object-based representation the schema can be used to

both produce schema mutants, using the Mutation components, and produce test cases,

using the Data Generation component. Mutation analysis can then be performed, accord-

ing to some analysis technique, executing the test suite via a DBMS-specific Database

interactor and SQL Writer. Finally, a mutation report is produced that contains the re-

sults of the mutation analysis process. This Chapter now describes parts of the Schema-

Analyst tool in more detail, providing the necessary background for the later Chapters

of this thesis.

3.2.2 Components and package structure

The Java classes implementing the various functions in the SchemaAnalyst tool are di-

vided into a number of different Java packages, the top-level of which are listed in Fig-

ure 3.2. These can be organised into three major components, which each expose some

externally accessible functionality:

• Input/Output : javawriter, sqlparser, sqlwriter, dbms.

• Data Generation: testgeneration.

• Mutation: mutation.
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The remaining packages are either only used internally within the SchemaAnalyst

tool itself (configuration, logic, sqlrepresentation, util) or for testing purposes

(unittest). The Input/Output component facilitates the transformation of relational

database schemas expressed in SQL to and from the SchemaAnalyst intermediate repre-

sentation (Section 3.3), including support for three different DBMSs (Section 3.3.3), as

well as producing Java source code files from the intermediate representation. In addi-

tion, it allows other components of SchemaAnalyst to communicate with a DBMS, by

handling creation of INSERT statements from generated data and wrapping functionality

provided by the Java Database Connectivity (JDBC) API2. The Data Generation com-

ponent (Section 3.5) uses search-based techniques to produce data that can exercise the

constraints of a relational database schema, according to some coverage criterion (eval-

uated in Chapter 5). This data can be transformed into SQL using the Input/Output

component to produce a test suite of INSERT statements. Finally, the Mutation compo-

nent enables mutation analysis experiments to be performed, to evaluate how effective

a given test suite is at detecting possible faults in a relational database schema. This

includes a mutation framework (Section 3.6) that I have used to express a set of 14 muta-

tion operators (Chapter 4), which each model a different possible fault in the schema. It

also contains functionality I have implemented for automatically identifying three types of

unwanted, or “ineffective”, mutants (Chapter 6) and a collection of optimised techniques

for reducing the computational cost of mutation analysis (Chapter 7).

3.3 Intermediate Representation of SQL

The sqlrepresentation package in the Input/Output component of SchemaAnalyst pro-

vides a collection of Java classes that can be used to represent an SQL schema as a graph

of objects. These objects can then be manipulated programmatically (i.e., to produce

schema mutants) and transformed back into SQL using the SQL Writer component of

SchemaAnalyst. Although there may be minor differences in the SQL used by different

DBMSs (sometimes referred to as dialects of SQL), this representation is DBMS-agnostic

to allow for support of schemas from a number of different DBMSs (currently support

for PostgreSQL, HyperSQL and SQLite is implemented). Differences between DBMSs

2JDBC enables Java programs to communicate with numerous SQL databases via a programmatic
interface, although this requires all database statements to first be transformed into SQL statements.
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is instead handled in the SQL Parser and SQL Writer components of SchemaAnalyst.

A UML diagram showing the hierarchy of these classes is shown in Figure 3.3, although

all methods and some attributes are omitted for clarity. This shows that while an SQL

schema appears to be a relatively simple structure – consisting of tables, columns and

constraints – these can mask the inherent complexity of SQL, such as the wide range

of different data types and the highly flexible nature of CHECK constraint expressions.

This Section now describes the classes of this intermediate representation in more detail,

including how these can be used to model an example SQL schema.

3.3.1 Overview of classes

In the intermediate representation a Schema object acts as the root of the graph of objects,

containing a variable number of tables and constraints. Each SQL table is stored as a

Table object, which in turn references a collection of Column objects that each represent

one column in the schema. A column is specified by its name and DataType (such as Int,

Varchar etc.), where each DataType maps to one or more SQL data types according to

SQL dialect being parsed. Each constraint is modelled as a specific implementation of the

Constraint class, which consists of a reference to a Table and an optional name. The

classes representing PRIMARY KEY, UNIQUE and FOREIGN KEY constraints each contain a

list of affected columns, with the latter also including the referenced table and columns

as refTable and refColumns, respectively. As a NOT NULL constraint only applies to a

single column, the NotNullConstraint class contains a single Column attribute.

While the other types of constraints are limited in their complexity, a CHECK constraint

contains an arbitrarily complex expression that may include many sub-expressions, which

themselves may consist of multiple expression that each need to be stored. To allow the

programmatic traversal and manipulation of these boolean expressions, the SchemaAna-

lyst intermediate representation includes a large number of classes to specify the expres-

sion of a CheckConstraint instance, using a tree structure. The classes can therefore be

divided by whether they represent “leaf” expressions, which either refer to a column or

some constant value, or “tree” expressions, which use references to other expressions to

form some more complex structure. An example of the latter is a relational expression

such as price < 100 that would be represented using the RelationalExpression class

with a lhs (left-hand side) attribute of a ColumnExpression referring to price,
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a rhs (right-hand side) attribute of a ConstantExpression with the value 100, and

the less-than operator as the RelationalOperator attribute op. By compounding those

classes shown in Figure 3.3 implementing the Expression interface, it is possible to

represent a significant portion of CHECK expressions, including all of those for the schemas

described later in Section 3.4.

3.3.2 Schema example

Figure 3.4 demonstrates how an example SQL schema is stored in the SchemaAnalyst

intermediate representation, in terms of both the Java object graph and Java source file

(as produced by the javawriter package), showing how different types of constraints are

represented using the classes discussed in Section 3.3.1. While the Java source expression

of the SchemaAnalyst intermediate representation is usually more verbose than SQL, it

is worth noting that this is generally produced automatically using the SQL parsing and

Java writing capabilities of the Input/Output component of SchemaAnalyst and is not

usually interacted with by the user — instead, the Java source code is produced automat-

ically by this component, and the resulting structure is manipulated programmatically

at runtime.

3.3.3 Supported DBMSs

As the SchemaAnalyst intermediate representation of SQL is DBMS-agnostic, support

for different DBMSs is implemented in the Input/Output component of SchemaAnalyst,

using classes in the dbms package. Where necessary these encompass the small differences

between DBMSs, such as formatting of identifiers and substituting equivalent data types

where the exact data type is not available. Currently, SchemaAnalyst supports three

DBMSs — PostgreSQL, HyperSQL and SQLite– that were chosen due to their differing

design principles and architectures.

PostgreSQL [95] is a standalone DBMS used in a client-server configuration, which

supports a large portion of the SQL specification, meaning a wide range of SQL features

can be used. It is designed to be highly scalable in both table size and number of concur-

rent user connections, supporting tables of up to 32 terabytes and claiming a theoretically
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Figure 3.4: The ArtistSimilarity schema, used to store musical artists that are similar to
one another; as expressed in SQL, the SchemaAnalyst Java representation, and a diagram
of the objects as instantiated by executing the Java code.

SQL

CREATE TABLE artists (

"artist_id" text PRIMARY KEY

);

CREATE TABLE similarity (

"target" text,

"similar" text,

FOREIGN KEY(target)

REFERENCES artists("artist_id"),

FOREIGN KEY("similar")

REFERENCES artists("artist_id")

);

SchemaAnalyst representation

public class ArtistSimilarity extends Schema {

public ArtistSimilarity() {

super("ArtistSimilarity");

Table tableArtists = this.createTable("artists");

tableArtists.createColumn("artist_id", new TextDataType());

this.createPrimaryKeyConstraint(tableArtists, tableArtists.

getColumn("artist_id"));

Table tableSimilarity = this.createTable("similarity");

tableSimilarity.createColumn("target", new TextDataType());

tableSimilarity.createColumn("similar", new TextDataType());

this.createForeignKeyConstraint(tableSimilarity,

tableSimilarity.getColumn("target"), tableArtists,

tableArtists.getColumn("artist_id"));

this.createForeignKeyConstraint(tableSimilarity,

tableSimilarity.getColumn("similar"), tableArtists,

tableArtists.getColumn("artist_id"));

}

}

Instantiated object diagram

columns

Schema

name = ArtistSimilarity

tableArtists : Table

name = artists

Column

name = artist id
dataType = TextDataType

tableSimilarity : Table

name = similarity

Column

name = target
dataType = TextDataType

Column

name = similar
dataType = TextDataType

PrimaryKeyConstraint

name = null
table = tableArtists

ForeignKeyConstraint

name = null
table = tableSimilarity
refTable = tableArtists

ForeignKeyConstraint

name = null
table = tableSimilarity
refTable = tableArtists

columns

tables

columns

primaryKeyConstraints

columns

foreignKeyConstraints

columns

refColumns

89



unlimited maximum database size, although results later in this thesis suggest it incurs

some computational overhead for these advanced features.

HyperSQL [105] is an embedded database, executed as a component of a wider appli-

cation, that supports a large number of SQL features whilst providing quick performance

by reducing the overheads of the traditional client-server model. Applications using Hy-

perSQL include the OpenOffice software suite and the JBoss Java application server,

both of which have very large numbers of users.

SQLite [103] is also an embedded database that produces portable, single-file databases,

which supports a reduced number of SQL features compared to HyperSQL and Post-

greSQL. This enables for a very small overhead, leading to very wide adoption in applica-

tions such as the popular Internet browsers Mozilla Firefox and Google Chrome, as well

as the Android mobile device operating system [102].

3.4 Database Schemas

Utilising the SQL parsing component of SchemaAnalyst, a collection of example relational

database schemas expressed in the internal representation of SQL have been produced,

by myself and the other developers of SchemaAnalyst. These were chosen to be represen-

tative of a wide range of schemas by selecting examples from a wide range of sources such

as open source software projects, DBMS tutorial samples and textbooks. In addition,

these vary substantially in the number of tables, columns and constraints they contain,

and include examples of all of the major types of constraint supported in SchemaAnalyst.

Table 3.1 provides a description of the source for each schema, as well as whether it is

real-world or synthetic, and any references of publications that have previously included

that schema. Table 3.2 lists these attributes for each of the schemas currently included

within SchemaAnalyst.

3.5 Test Case Generation

To facilitate the testing of relational database schemas SchemaAnalyst contains a Data

Generation component, which produces test data to exercise the constraints specified
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Table 3.1: Description of parsed schemas in SchemaAnalyst

Schema Type Source References
AdmissionsPatient Synthetic Microsoft Access example
ArtistSimilarity Synthetic MillionSong research data set of music meta-data [12]
ArtistTerm Synthetic MillionSong research data set of music meta-data [12]
BankAccount Synthetic Teaching material
BioSQL Real-world Storage of biological sequences and annotations
BookTown Synthetic PostgreSQL example
BrowserCookies Synthetic Worked example inspired by Mozilla schemas
ChromeDB Real-world Google Chrome
Cloc Real-world ‘CLOC’ code line counter program export format
CoffeeOrders Synthetic Textbook example
Crafts2002 Synthetic Textbook example
CustomerOrder Synthetic Textbook example
DavilaDjango Real-world Schema visualization tool
DHDBookstore Synthetic Textbook example
DellStore Synthetic PostgreSQL example
Employee Synthetic Textbook example
Examination Synthetic Textbook example
FACAData1997 Real-world US Federal Advisory Committee Act database
Factory2000 Synthetic Microsoft Access example
Flav R03-1 Real-world US Department of Agriculture flavanoids database
Flights Synthetic Textbook example
FrenchTowns Synthetic PostgreSQL example
GeoMetadb Real-world Gene expression database
H1EFileFY2007 Real-world US Visa applications
Hydat Real-world Canadian water monitoring database
Inventory Synthetic Textbook example
Iso3166 Synthetic PostgreSQL example
IsoFlav R2 Real-world US Department of Agriculture isofalvone database
iTrust Synthetic Medical application for teaching software testing methods [78]
JWhoisServer Real-world Java-based Internet WHOIS server implementation [26]
MozillaExtensions Real-world Extract from Firefox internet browser
MozillaPermissions Real-world Extract from Firefox internet browser
MozillaPlaces Real-world Extract from Firefox internet browser
Mxm Synthetic MillionSong research data set of music meta-data [12]
NistDML181 Real-world NIST SQL conformance suite [107]
NistDML182 Real-world NIST SQL conformance suite [107]
NistDML183 Real-world NIST SQL conformance suite [107]
NistWeather Real-world NIST SQL conformance suite [107]
NistXTS748 Real-world NIST SQL conformance suite [107]
NistXTS749 Real-world NIST SQL conformance suite [107]
Northwind Synthetic Microsoft Access example
Person Synthetic Textbook example
ProductSales Synthetic Microsoft Access example
Products Synthetic Textbook example
RiskIt Real-world Insurance risk assessment application [91]
Skype Real-world Voice-over-IP and messaging application
SRAMetadb Real-world Gene sequencing database
SongTrackMetadata Synthetic MillionSong research data set of music meta-data [12]
StackOverflow Real-world Database previously used by a popular programming ques-

tion and answer website
StudentResidence Synthetic Textbook example
TweetComplete Synthetic Teaching material
UnixUsage Real-world Application to monitor and record use of UNIX commands [91]
Usda Synthetic PostgreSQL example
WordNet Real-world Graph visualiser for Wordnet
World Synthetic MySQL sample
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Table 3.2: Attributes of parsed schemas in SchemaAnalyst
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AdmissionsPatient 3 17 0 0 0 0 3 3
ArtistSimilarity 2 3 0 2 0 1 0 3
ArtistTerm 5 7 0 4 0 3 0 7
BankAccount 2 9 0 1 5 2 0 8
BioSQL 28 129 0 52 86 24 24 186
BookTown 22 67 2 0 15 11 0 28
BrowserCookies 2 13 2 1 4 2 1 10
ChromeDB 2 7 0 0 5 2 2 9
Cloc 2 10 0 0 0 0 0 0
CoffeeOrders 5 20 0 4 10 5 0 19
Crafts2002 15 140 0 0 0 0 9 9
CustomerOrder 7 32 1 7 27 7 0 42
DavilaDjango 32 248 0 41 94 32 0 167
DHDBookstore 7 39 0 0 0 0 7 7
DellStore 8 52 0 0 39 0 0 39
Employee 1 7 3 0 0 1 0 4
Examination 2 21 6 1 0 2 0 9
FACAData1997 12 173 0 0 0 0 18 18
Factory2000 4 17 0 0 0 0 4 4
Flav R03 1 7 50 0 0 0 0 6 6
Flights 2 13 1 1 6 2 0 10
FrenchTowns 3 14 0 2 13 0 9 24
GeoMetaDB 11 112 0 0 0 0 0 0
H1EFileFY2007 1 39 0 0 0 0 0 0
Hydat 33 407 0 0 0 0 32 32
Inventory 1 4 0 0 0 1 1 2
Iso3166 1 3 0 0 2 1 0 3
IsoFlav R2 6 40 0 0 0 0 5 5
iTrust 42 309 8 1 88 37 0 134
JWhoisServer 6 49 0 0 44 6 0 50
MozillaExtensions 6 51 0 0 0 2 5 7
MozillaPermissions 1 8 0 0 0 1 0 1
MozillaPlaces 11 68 0 0 10 10 5 25
Mxm 2 6 0 1 0 1 0 2
NistDML181 2 7 0 1 0 1 0 2
NistDML182 2 32 0 1 0 1 0 2
NistDML183 2 6 0 1 0 0 1 2
NistWeather 2 9 5 1 5 2 0 13
NistXTS748 1 3 1 0 1 0 1 3
NistXTS749 2 7 1 1 3 2 0 7
Northwind 15 95 0 0 33 14 0 47
Person 1 5 1 0 5 1 0 7
ProductSales 6 25 0 0 0 0 5 5
Products 3 9 4 2 5 3 0 14
RiskIt 13 57 0 10 15 11 0 36
Skype 6 31 0 0 0 0 0 0
SRAMetadb 11 288 0 0 0 3 0 3
SongTrackMetadata 1 14 0 0 0 1 0 1
StackOverflow 4 43 0 0 5 0 0 5
StudentResidence 2 6 3 1 2 2 0 8
TweetComplete 2 10 0 1 0 2 0 3
UnixUsage 8 32 0 7 10 7 0 24
Usda 10 67 0 0 31 0 0 31
WordNet 8 29 0 0 22 8 1 31
World 3 24 1 2 18 3 0 24
Total 398 2983 39 146 603 214 139 1141
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Figure 3.5: The subsumption hierarchies of coverage criteria for the testing of relational
database schemas [76].

within a schema. These can be transformed into SQL INSERT statements using the

Input/Output component in SchemaAnalyst. Data generation is implemented using a

search-based approach and consisting of two main parts – a collection of coverage criteria

and a set of search algorithms [76]. A coverage criterion specifies logically how the

produced data should test the schema, expressed as a series of predicates. The search

algorithms attempt to generate data to satisfy those predicates, which can then be output

as INSERT statements and be executed with a DBMS. The following Sections provide a

brief description of the main parts of the data generation component, however as these

represent work not undertaken by myself as part of this thesis, the reader is referred

elsewhere for further detail [76].

3.5.1 Coverage criteria

Given a schema containing some set of constraints expressed in the SchemaAnalyst in-

termediate representation of SQL, a coverage criterion formulates a series of predicates

that describe a number of test cases, which should either be accepted or rejected by the

database. The choice of criterion therefore determines which constraints in the schema are

tested and how they are exercised. In SchemaAnalyst, there are three types of coverage
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criteria available — constraint criteria, unique column criteria and null column criteria —

which each produce predicates based on testing different element of the schema. These

form three different subsumption hierarchies, as shown in Figure 3.5, where the more

complex criteria towards the top of each hierarchy subsume those below them.

Constraint criteria

The five constraint criteria in SchemaAnalyst generate test predicates according to the

constraints present in a given schema. The simplest, Acceptance Predicate Coverage

(APC) criteria produces two predicates per table — specifying that the two resulting test

cases should be accepted and rejected by the database, respectively. In the latter case

this means that at least one constraint must be violated, although the predicate does

not specify which. The Integrity Constraint Coverage (ICC) criteria improves upon APC

by requiring two test cases be created for each integrity constraint in the schema, with

the condition that one satisfies the constraint and the other violates it, ensuring each

constraint is exercised. However, it does not guarantee that any data will be produced

that will be accepted into the database as the predicates do not specify that the data

produced to satisfy one constraint must also satisfy any other constraints. It is therefore

possible that data produced to satisfy one constraint is in violation of another, and thus is

rejected by the database. To alleviate this problem, Active Integrity Constraint Coverage

(AICC) creates predicates that specify the given constraint under test must determine

the overall acceptance or rejection of the data. The predicate therefore requires any

other constraints in the same table are satisfied by the data generated, such that only the

constraint under test may cause rejection. When generating data to test some types of

constraints, it is possible that satisfying data can easily be generated by using the NULL

value. For example, NULL is considered trivially unique by a UNIQUE constraint. How-

ever, such data may not be as useful as non-NULL unique values. The Condition-Based

Active Integrity Constraint Coverage (CondAICC) criteria uses the same approach as

AICC, but in addition specifies that tests should be produced to satisfy each constraint

with and without NULL values, where applicable. Finally, the Clause-Based Active In-

tegrity Constraint Coverage (ClauseAICC) criteria enhances CondAICC by additionally

specifying that each individual clause in the constraint under test must be evaluated to

true and false separately, whilst maintaining all other clauses. This ensures the selected

clause determines whether the generated statement will be accepted or rejected. In effect,
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ClauseAICC therefore leads to the production of tests that ensure each component part

(e.g., each column) in a constraint is correct, and not the result of an error of commission,

which overly constrains the data accepted into the database.

Unique column criteria

While the constraint criteria produce test data to ensure the correctness of existing con-

straints, the two unique column criteria test whether a UNIQUE constraint has been omit-

ted. For the simpler Unique Column Coverage (UCC) criteria, this requires two test

predicates per column — one containing unique column values, and one containing non-

unique column values. As the value NULL is considered trivially unique, the predicates

also specify the values used must be non-NULL. However, as with ICC, when a value gen-

erated by UCC is rejected by a database it is unclear whether this is due to an existing

UNIQUE constraint, or some other constraint in the schema. Therefore, the Active Unique

Column Coverage (AUCC) criteria extends the definition of UCC to stipulate that all

constraints other than those already requiring uniqueness (i.e., PRIMARY KEY and UNIQUE

constraints) must be satisfied.

Null column criteria

The two null column criteria produce tests containing NULL and non-NULL values, which

help to identify the omission of NOT NULL constraints. The Null Column Coverage (NCC)

criteria produces two predicates per column — one requiring a NULL value, the other a

non-NULL value. As with UCC and ICC, when a generated statement is rejected it may

either be due to a NOT NULL constraint, or some other existing constraint in the schema.

The Active Null Column Coverage (ANCC) criteria resolves this by specifying that all

other constraints that do not require a non-NULL value must be satisfied, such that only

a NOT NULL can determine the acceptance or rejection.

3.5.2 Search algorithms

Once a series of predicates have been produced by some criterion, a search algorithm is

applied to attempt to generate test data that satisfies the set of predicates for each test
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case. There are currently two main search algorithms implemented in SchemaAnalyst —

Random+ and Alternating Variable Method (AVM).

Random+

The Random+ algorithm produces test data by randomly generating values of the correct

data type for each of the columns needed in the test case. Once values for all required

columns have been produced these are evaluated against the test predicate, to determine

whether the data will be accepted or rejected by the database, as required in the predicate,

once converted into an SQL INSERT statement. If the predicate is not met new values are

generated, until either the predicate is met or some specified maximum number of values

have been generated without success.

As some predicates may require the absence of data for one or more column (e.g.,

producing data that causes a NOT NULL constraint to reject the input), the search tech-

nique uses the value NULL instead of generating data at a frequency specified by a given

probability. In addition, satisfying some constraints may require specific values that may

be very unlikely to be generated at random (e.g., a CHECK constraint specifying a column

of a string-like data type must be in a given list of values). Therefore, the Random+ algo-

rithm is augmented with a ‘library’ of values that have been extracted from the schema,

for example constants specified in CHECK constraints. As with NULL values, these are used

according to configured probability.

Alternating Variable Method (AVM)

Because the Random+ algorithm uses randomly generated values it may require many

repeated attempts to produce data that satisfies the required predicate, thus increasing

the execution cost of data generation. The AVM algorithm attempts to reduce this

by providing an alternative that uses a heuristic to guide the search to produce data

that satisfies the test predicates. The search process begins by initialising each required

column value to a default. Then, a change is made to one value and the data is evaluated

using a fitness function, to determine whether that change has resulted in the data being

“closer” to satisfying the predicate. If it has, the search continues with that change to
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the data, otherwise a different change is applied. The search algorithm continues this

process iteratively, until either data has been produced that satisfies the predicate or no

change to the current values produces an improved fitness value, causing the values to be

replaced with randomly generated values and the search restarted. To prevent this search

process from continuing indefinitely (i.e., there may exist no possible values that satisfy

all clauses of the predicate), the search is terminated after either a specified number of

fitness evaluations or search restarts.

3.5.3 Fitness functions

Metaheuristic search algorithms, such as AVM, produce candidate solutions to a problem

– in this case, generating data that satisfies a set of predicates produced by a coverage

criterion – that must then be evaluated, to determine how successful those solutions

are. In the case of the Random+ algorithm, success is considered in a binary fashion,

with a new solution being generated if the previous one is unsuccessful at satisfying the

predicates. In contrast, the AVM algorithm must differentiate between different degrees

of success, as it produces the next candidate solution by modifying whichever previous

solution is nearest to being successful. This is calculated according to a fitness function

that provides a fitness score between 0 and 1 – where 0 is a successful solution to the

current problem – that can be used as a measurement of the “distance” between the

proposed solution and a successful one. The AVM algorithm searches the domain of

inputs to a problem by minimising this distance, until a suitable value is found or a

termination criteria is met.

In the SchemaAnalyst tool, fitness functions are automatically generated based upon

the predicates produced by the coverage criterion. These are then used to evaluate each

possible set of data produced by the AVM algorithm. The fitness functions are formed

from the distance functions in Figure 3.6, using value dist to compare two values. This

applies either an atomic or compound distance measurement, depending on the type of

data being tested. Atomic data types are those that can be represented by a single

value, such as numeric (e.g., INTEGER, DOUBLE, NUMERIC) and boolean values. Compound

data types are represented as multiple atomic data values. For example date (e.g., DATE,

DATETIME) values are stored as a series of integers for each component, while character

values (e.g., CHAR, VARCHAR) consist of a variable-length list of integers, to allow for
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value dist(a, op, b)
a b
NULL NULL return 0
NULL any return 1
any NULL return 1
Atomic Atomic return norm(atomic dist(a, op, b))
Compound Compound return norm(compound dist(a, op, b))

atomic dist(a, op, b)
op
= if (|a− b| = 0) then return 0 else return |a− b|+ 1
6= if (|a− b| 6= 0) then return 0 else return 1
< if (a− b < 0) then return 0 else return (a− b) + 1
≤ if (a− b ≤ 0) then return 0 else return (a− b) + 1
> if (b− a < 0) then return 0 else return (b− a) + 1
≥ if (b− a ≤ 0) then return 0 else return (b− a) + 1

compound dist((a1, . . . ap), op, (b1, . . . bq))
op

= return |p− q|+
∑min(p,q)

i=1 norm(atomic dist(ai,=, bi))

6= if (p 6= q) then return 0

else return minmin(p,q)
i=1 norm(atomic dist(ai, 6=, bi))

other d← 0
while (i ≤ min(p, q) ∧ d = 0)

if (ai 6= bi) then d← norm(atomic dist(ai, op, bi))
i← i + 1

end while
return d + atomic dist(p, op, q)

and dist(d1, . . . , dn)
return norm(

∑i=n
i=0 di)

or dist(d1, . . . , dn)
return mini=n

i=0di

Figure 3.6: The distance functions used in the SchemaAnalyst tool to produce a fitness
function for search-based data generation [76].

their possibly unspecified size. The atomic and compound distance functions for a given

predicate are combined using the and dist and or dist functions, as applicable, and

are each normalised to an equal weighting of the overall fitness function. The generated

function can then be used by the AVM algorithm to guide the search algorithm to locate

data values that satisfy the predicates produced by the coverage criterion for the current

test case.

98



3.6 Mutation Framework

In order to simplify the definition of mutation operators for SQL artefacts (e.g., schemas)

within SchemaAnalyst, such as the 14 integrity constraint mutation operators formally

described in Chapter 4, I have created a mutation framework within the tool. This

encapsulates much of the behaviour shared between different operators to reduce the

duplication of code, therefore reducing the likelihood of faults in the mutation analysis

process itself. The process of mutation requires the following steps to be taken:

1. Traverse the object graph of the abstract representation produced from parsing the

schema, to find a point where a mutation can be applied.

2. Make a duplicated copy of the schema prior to making a modification, to ensure

both that the original schema is left unmodified and that each mutant only contains

a single injected fault.

3. Apply the change to the duplicated copy of the component that is being mutated,

according to the implementation of the mutation operator.

The mutation framework, which forms the Mutation component of SchemaAnalyst,

implements this functionality within the mutation package and is divided into four main

sub-packages, as shown in Figure 3.7 – mutator, supplier, pipeline and analysis.

Together these classes are used to create a Mutant copy of some artefact, which has been

modified to model a programmer fault, by executing a MutantProducer, that defines how

to inject theses fault into the artefact.

3.6.1 The mutator package

Although there are many different types of constraint that may be mutated, the actual

type of change being made can be categorised as one of a limited list of modification

types. Each of these is implemented as a Mutator class that can manipulate any type of

component, such that they can be reused regardless of the type constraint being mutated.

For example, the list of columns specified for a PRIMARY KEY constraint or a UNIQUE
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org.schemaanalyst.mutation

analysis

pipeline

supplier

mutator (Generic classes for modifying artefacts)

(Find items to mutate from object graphs)

(Enables combinations of multiple mutation operators)

(Mutation analysis of schema mutants)

Package descriptionMutation framework packages

Figure 3.7: The packages of the SchemaAnalyst mutation framework with descriptions
of their purpose.

constraint can be modified using the same classes, as both are defined by the lists of

columns they are defined for.

Initially, four Mutator classes were implemented with the mutation framework. Firstly,

ListElementAdder modifies a list of components by adding each value from a list of valid

additional values in turn – so, given the existing list (a, b) and valid additional values (c,

d), this class will produce two mutants with the lists (a, b, c) and (a, b, d). Secondly,

the ListElementRemover removes each component from a list in turn, for example mod-

ifying the list (a, b, c) to produce the mutated lists (b, c), (a, c) and (b, c). Next, the

ListElementExchanger mutator alters a list by replacing each component in turn with

an component from another list of alternatives. For example, applying this mutator to

the list (a, b) with the list of alternative (c, d) will produce four mutated lists – (c, b), (d,

b), (a, c) and (a, d). Finally, ElementNullifier modifies an component by replacing it

with null, which when used with the SchemaAnalyst representation of SQL as removing

it entirely. In addition to these mutators, during the development of the operators dis-

cussed in Chapter 4 an additional RelationalOperatorExchanger mutator was added

that exchanges a relational operator (as used in a CHECK constraint) with each other

operator (=, 6=,<,≤,≥). This made it simpler to define the CRelOpE mutation operator,

formally described later in that Chapter, therefore reducing the likelihood of a mistake

in the implementation.

3.6.2 The supplier package

As the Mutator classes are designed to be unaware of the type of artefact they are

mutating, it is necessary to combine them with a set of classes that extract components

100



Table 3.3: Description of the Supplier classes implemented in the mutation framework.

Supplier Description
PrimaryKeyConstraintSupplier Supplies PRIMARY KEY constraints from each table of a schema
PrimaryKeyColumnSupplier Supplies a list of columns from a PRIMARY KEY constraint
PrimaryKeyColumnsWithAlternativesSupplier Supplies a list of columns from a PRIMARY KEY constraint and

a list of columns not in the constraint from the same table
UniqueConstraintSupplier Supplies UNIQUE constraints from each table of a schema
UniqueColumnSupplier Supplies a list of columns from a UNIQUE constraint
UniqueColumnsWithAlternativesSupplier Supplies a list of columns from a UNIQUE constraint and a list

of columns not in the constraint from the same table
ForeignKeyConstraintSupplier Supplies FOREIGN KEY constraints from each table of a schema
ForeignKeyColumnSupplier Supplies a list of (local column, reference column) pairs from

a FOREIGN KEY constraint
ForeignKeyColumnPairWithAlternativesSupplier Supplies a list of (local column, reference column) pairs from

a FOREIGN KEY constraint and a list of (local column, reference
column) pairs not in the constraint from the same tables

CheckConstraintSupplier Supplies CHECK constraints from each table of a schema
CheckExpressionSupplier Supplies expressions from CHECK constraints
ExpressionSupplier Supplies each of a given type of descendant expression from a

root expression
RelationalExpressionSupplier Supplies each relational expressions from a root expression
RelationalExpressionOperatorSupplier Supplies the relational operator from a relational expression
InExpressionRHSListSupplier Supplies each IN expression where the right hand-side is a list

(e.g., ‘a IN (x,y,z)’) from a root expression
InExpressionRHSListExpressionSupplier Supplies the list from the right hand-side of an IN expression

from a schema that they can be applied to, in order to produce mutants. In the mutation

framework this functionality is implemented as a series of Supplier classes. These also

include the logic required to produce duplicated versions of the schema being mutated,

such that a new duplicate of the schema can be created prior to a modification being

made by a mutator. This ensures that each mutant only contains a single mutation and

the original schema is left unchanged.

Each supplier class accepts some artefact, A, as an input and extracts one or more

component, C, from it, producing multiple mutants by iterating through each component

in turn and passing it to the Mutator class specified in the operator. A number of the

Supplier classes implemented are listed and described in Table 3.3. To avoid repetition

in various supplier the mutation framework supports the chaining of multiple suppliers to-

gether using a LinkedSupplier if the first accepts A1 and produces C1, the second accepts

A2 and produces C2, and C1 = A2. For example, the PrimaryKeyConstraintSupplier

class can be used to extract PRIMARY KEY constraints from each table of any schema

(A = Schema, C = PrimaryKeyConstraint). This can then either be chained with the

PrimaryKeyColumnSupplier to provide a list of columns that can be removed by the

ListElementRemover mutator, or the PrimaryKeyColumnsWithAlternativesSupplier

to provide lists of both the columns already in the constraint and columns not in the con-
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straint for use with the ListElementAdder or ListElementExchanger mutators. When

suppliers are chained in this way, mutants are produced by extracting all components in

the bottom level supplier before iterating to the next value from the top level supplier.

The process is then repeated until both suppliers are exhausted, in a fashion similar

to a depth-first search process. In addition, as LinkedSupplier is itself an instance of

Supplier it is possible to chain together any number of these together, provided each

supplier in the chain yields an output type that matches the input type of the next, to

allow components to be extracted from arbitrarily complex artefacts.

3.6.3 The pipeline package

By combining the mutators and suppliers described above various mutation operators

can be defined, which can each produce a series of mutant schemas when executed with

a schema. For mutation analysis it is necessary to execute multiple operators to produce

a set of mutants that model a wide range of faults. This is implemented in the mutation

framework as a Pipeline, which applies a series of operators in sequence to generate

the full set of mutants. As discussed later in Chapter 6, a pipeline may also include

classes that are used to remove certain types of undesirable mutants after they have been

generated but prior to mutation analysis.

3.6.4 The analysis package

Once a mutation pipeline has been specified this can be used to generate a set of mutants

that can be used for mutation analysis, the code for which is implemented in the analysis

package of the mutation framework. The classes in this package coordinate the generation

of test data (by invoking the data generation component of SchemaAnalyst), production

of mutants, execution of the data against both the original schema and each mutant

schema, and the comparison of the results for the mutants to determine whether they

have been killed. The exact technique used to analyse the mutants can be varied prior

to execution, using various optimised implementations discussed later in Chapter 7.
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3.7 Summary

This Chapter described a number of different parts of the SchemaAnalyst tool, including

the existing SQL representation and data generation components, as well as the mutation

framework that forms a contribution of this thesis. All of the remaining Chapters of this

thesis now make use of these components to explore various facets of mutation analysis

for relational database schemas. Firstly, Chapter 4 makes use of the mutator, supplier

and pipeline classes of the mutation framework to define a series of mutation operators

for mutating the integrity constraints of schemas. Then, Chapter 5 investigates the

various configurations of the data generation component to determine which can kill

the greatest proportion of those mutants, to identify the data generator and coverage

criterion that produces test data with the highest fault-finding capability. Following

this, Chapter 6 describes three types of mutant that reduce either the effectiveness or

efficiency of mutation analysis, or both. By describing patterns that can be detected in

the SchemaAnalyst intermediate representation of SQL, these are automatically removed

using a series of classes that can be added to a mutation pipeline. Finally, Chapter 6

explores how mutation analysis optimisations for programs from the literature can inspire

a collection of techniques that attempt to reduce the computational cost of mutation

analysis for schemas. Each of these are then implemented as part of the analysis

package of the mutation framework and evaluated through an empirical experiment.
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Chapter 4

Mutation Operators for

Relational Database Schemas

4.1 Introduction

Utilising the mutation framework developed as part of the SchemaAnalyst tool, discussed

in Chapter 3, this Chapter now describes a set of 14 mutation operators for generating

mutants of relational database schemas. These modify a range of different integrity

constraints expressed within schemas with each modelling a different possible mistake

made by the author when designing the schema, such that a wide range of potential

faults can be identified. In some cases, static analysis must be applied to detect type-

compatibility of columns used in mutated constraints, to ensure syntactic validity. These

mutants can be used as part of a mutation analysis experiment to estimate the fault-

finding capability of a given test suite – in this case, a series of SQL INSERT statements.

The operators have been previously discussed as part of published works produced during

my PhD [62, 118, 76], with the formal definitions and descriptions of the productivity of

each (i.e., how many mutants they produce) given in this Chapter providing a greater

level of detail, to form a contribution of this thesis.

The Chapter begins by explaining the approach used to classify each mutation oper-

ator and the operator naming scheme based upon this, followed by the description of a
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number of utility functions that are used for the remainder of the Chapter in the algorith-

mic definitions of the mutation operators. The 14 operators are then detailed, including

original definitions of the algorithms I have used to implement them in the SchemaAn-

alyst tool, as well as numerous examples. Finally, the productivity of each operator is

specified formulaically in terms of the various columns and constraints contained within

the schema under mutation.

The contributions this Chapter makes are:

1. Textual and algorithmic descriptions of all 14 mutation operators for relational

database schemas, specifying the programmatic mechanism by which they produce

mutants, including worked examples of how these apply to simple schemas; and

2. Novel definitions of the productivity of each of the 14 operators, used to calculate

how many mutants will be produced by a given schema, in terms of the attributes

of a schema under test.

4.2 Preliminaries

This Section provides some background information that is useful for understanding the

rest of this Chapter. Firstly, a scheme for classifying and naming relational database

schema mutation operators is described. This can be used to derive a simple descriptive

name for each operator that include the constraint affected and the type of modification

made. Secondly, a collection of utility functions are described, which are used in the

algorithm definitions of the mutation operators. These are approximately equivalent to

methods implemented in SchemaAnalyst either as part of the intermediate representation

of SQL (Section 3.3) or the mutation framework (Section 3.6).

4.2.1 Operator classification and naming schema

To enable easy identification of the mutation operators, each is assigned a name compris-

ing of two parts – the kind of constraint that it can mutate, and the type of modification

it makes to those constraints. These two categories can take the following possible values:
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Constraints:

1. PRIMARY KEY

2. FOREIGN KEY

3. UNIQUE

4. NOT NULL

5. CHECK

Modifications:

1. Addition

2. Removal

3. Exchange

An operator with an addition modification adds an element (e.g., a column) to an

existing constraint, while the removal modification removes an element from a constraint

– or a constraint in its entirety. Finally, an exchange modification replaces part of an ex-

isting constraint (e.g., replacing a reference to a column in a constraint with the reference

to another).

By combining the kind of constraint mutated and the type of modification made,

a unique descriptive name can be produced for an operator. For example, using his

scheme an operator mutating a PRIMARY KEY constraint by adding columns is given the

name PrimaryKeyColumnAddition, which can be abbreviated to PKColumnA. Similarly,

an operator mutating a UNIQUE constraint by removing columns is referred to as the

UniqueConstraintColumnRemoval operator, or UColumnR for short. This naming scheme

is used for the rest of this Chapter for referring to each mutation operator.

4.2.2 Utility functions for operator algorithms

The functions listed in Figure 4.1 are used to simplify the definition of the mutation

operators later in Section 4.3. These are divided into decomposition functions, which

extract information from a schema; composition functions, which produce components of

a schema; and predicate functions, which are boolean tests executed against a schema.

These correspond to functionality implemented in either the intermediate representation

of SQL or in the mutation framework, both parts of the SchemaAnalyst tool. The exact

details of these functions are omitted as an implementation detail.
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. Decomposition functions
function getTables(schema) . Set of tables in schema

function getTable(c) . The table some constraint c relates to

function getColumns(table) . Set of columns in table

function getColumns(constraint) . Set of columns in constraint

function getPrimaryKey(table) . The PRIMARY KEY of table

function getForeignKeys(table) . Set of FOREIGN KEYs in table

function getForeignKey(table,i) . The ith FOREIGN KEY in table

function getRefColumns(fk) . Set of referenced columns in fk

function getRefTable(fk) . The referenced table in fk

function getForeignKeyPairs(fk) . The set of local-reference pairs in fk

function getUniques(table) . Set of UNIQUEs in table

function getUnique(table,i) . The ith UNIQUE in table

function getNotNulls(table) . Set of NOT NULL in table

function getChecks(table) . Set of CHECKS in table

function getCheck(table,i) . The ith CHECKS in table

function getExpressions(check) . Extracts expressions from check

function getExpressionList(check) . Extracts list from IN LIST type check

function getExpressionRelOp(check) . Extracts relational operator from REL OP type check

function getType(column) . Data type of column

. Composition functions
function createMutant(a,b) . Mutant of schema with a replaced by b

function createPrimaryKey(cols) . Creates PRIMARY KEY over cols

function createForeignKey(cols,refs) . Creates FOREIGN KEY over cols and refs

function createUnique(cols) . Creates UNIQUE over cols

function createNotNull(cols) . Creates NOT NULL for cols

function createCheck(expressions) . Creates CHECK with expressions

. Predicate functions
function containsInListExpr(expression) . Whether expression is IN LIST type

function containsRelOpExpr(expression) . Whether expression is relation operation type

Figure 4.1: The utility functions, as implemented in the SchemaAnalyst tool, used to
analyse and produce mutants of relational database schemas.
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4.3 Operator Definitions

In this Section each operator is described in turn, grouped according to the kind of

constraint it mutates. In each case, an algorithm listing is provided to define the exact

behaviour, according to the functions of Figure 4.1.

4.3.1 PRIMARY KEY operators

Algorithm 1 Primary key column addition operator

function PKCColumnA(schema)
mutants ← ∅
for t in getTables(schema) do

pk ← getPrimaryKey(t)
for c in getColumns(t) do

if c 6∈ getColumns(pk) then
mutant ← createPrimaryKey(getColumns(pk) ∪ {c})
mutants ← mutants ∪ {createMutant(pk,mutant)}

return mutants

PKColumnA: The function in Algorithm 1 describes the approach of the PRIMARY

KEY column addition (PKColumnA) operator, which models the faults of either an omit-

ted single-column PRIMARY KEY or omission of a column from an existing PRIMARY KEY.

Mutants are produced by adding each column of a table to a PRIMARY KEY, if it is not

already part of one. For example, with a table x:

x (a INT, b INT, PRIMARY KEY(a))

...which contains a single column PRIMARY KEY, one mutant will be produced, m1, by

adding the column b:

m1: x (a INT, b INT, PRIMARY KEY(a,b))

If no PRIMARY KEY is defined for the table this operator will produce mutants with one

added, containing each column in turn. So, for a table y:

y (a INT, b INT)

...which contains no PRIMARY KEY, the mutants m2 and m3 would be generated:

m2: y (a INT, b INT, PRIMARY KEY(a))

m3: y (a INT, b INT, PRIMARY KEY(b))
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Algorithm 2 Primary key column removal operator

function PKCColumnR(schema)
mutants ← ∅
for t in getTables(schema) do

pk ← getPrimaryKey(t)
for c in getColumns(pk) do

mutant ← createPrimaryKey(getColumns(pk) \ {c})
mutants ← mutants ∪ {createMutant(pk,mutant)}

return mutants

PKColumnR: The function in Algorithm 2 describes the approach of the PRIMARY KEY

column removal (PKColumnR) operator. This operator creates mutants by removing

each column of existing PRIMARY KEY constraints in turn. For example, for the table x:

x (a INT, b INT, PRIMARY KEY(a,b))

...which contains a multi-column PRIMARY KEY, mutants m1 and m2 would be produced by

removing a and b from the constraint, respectively:

m1: x (a INT, b INT, PRIMARY KEY(b))

m2: x (a INT, b INT, PRIMARY KEY(a))

If no columns remain in the constraint after removal (i.e., in the original schema it

contained only a single column, which was removed) then the entire constraint is removed,

as a PRIMARY KEY must be defined over at least one column.

Algorithm 3 Primary key column exchange operator

function PKCColumnE(schema)
mutants ← ∅
for t in getTables(schema) do

pk ← getPrimaryKey(t)
for c in getColumns(t) do

if c 6∈ getColumns(pk) then
for pkc in getColumns(pk) do

mutant ← createPrimaryKey(c ∪ ( getColumns(pk) \ {pkc})
mutants ← mutants ∪ {createMutant(pk,mutant)}

return mutants

PKColumnE: The function in Algorithm 3 describes the approach of the PRIMARY KEY

constraint column exchange (PKColumnE) operator. Mutants are produced with this

operator by exchanging each column in a PRIMARY KEY with each column in the same

table that isn’t already in the constraint. For example, given the table x:
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x (a INT, b INT, c INT, PRIMARY KEY(a,b))

...which contains a multi-column PRIMARY KEY, mutants would be produced by exchang-

ing the column c, the only column not already in the constraint, for the columns in the

constraint, a and b, in turn. This yields two mutants, m1 and m2:

m1: x (a INT, b INT, c INT, PRIMARY KEY(c,b))

m2: x (a INT, b INT, c INT, PRIMARY KEY(a,c))

These mutants model a programmer mistakenly specifying the wrong column in a PRIMARY

KEY constraint, but the right number of columns in total.

4.3.2 FOREIGN KEY operators

Algorithm 4 Foreign key column pair addition operator

function FKCColumnPairA(schema)
mutants ← ∅
for t in getTables(schema) do

for fk in getForeignKeys(t) do
for x, y in getColumns(t), getColumns(getRefTable(fk)) do

if getType(x) = getType(y) ∧ x 6∈ getColumns(fk) ∧ y 6∈ getRefColumns(fk) then
mutant ← createForeignKey(getColumns(fk) ∪ {x}, getRefColumns(fk) ∪ {y})
mutants ← mutants ∪ {createMutant(fk,mutant)}

return mutants

FKColumnPairA: The function in Algorithm 4 describes the approach of the FOREIGN

KEY column pair addition (FKColumnPairA) operator. Unlike other addition operators

that select a single column to add, this operator must add a column from both the “local”

table (where the constraint is defined) and the “reference” table (which the constraint

refers to). This is because a FOREIGN KEY is expressed as a mapping between pairs of

columns from two tables. It is also necessary to ensure that the two columns selected are

of the same data type — otherwise the mutant created may not be syntactically valid.

This requires static analysis of the schema to determine which columns have matching

data types, and therefore make a valid addition to a FOREIGN KEY constraint. For every

pair of columns from the local and reference tables that do match data type, and are not

already included in the constraint, this operator will create a mutant with these added

to an existing FOREIGN KEY constraint. For example, given the tables x and y:
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x (a INT, b INT, c VARCHAR)

y (d INT, e INT, f VARCHAR, FOREIGN KEY (d) REFERENCES x(a))

...there are the following matching column pairs, according to their data type:

(1) (d,a) (2) (e,a) (3) (d,b) (4) (e,b) (5) (f,c)

Of these pairs (1), (2) and (3) use columns already in the FOREIGN KEY constraint, and

are therefore excluded from the mutant generation. However, pairs (4) and (5) do not

and are therefore used by the operator to produce the mutants m1 and m2:

m1: x (a INT, b INT, c VARCHAR)

y (d INT, e INT, f VARCHAR, FOREIGN KEY (d,e) REFERENCES x(a,b))

m2: x (a INT, b INT, c VARCHAR)

y (d INT, e INT, f VARCHAR, FOREIGN KEY (d,f) REFERENCES x(a,c))

These mutants model the programmer error of omitting a pair of columns from a FOREIGN

KEY constraint, or omitting the constraint entirely.

Algorithm 5 Foreign key column pair removal operator

function FKCColumnPairR(schema)
mutants ← ∅
for t in getTables(schema) do

for fk in getForeignKeys(t) do
for a, b in cols, colsref do

mutant ← createForeignKey(getColumns(fk) \ {a}, getRefColumns(fk) \ {b})
mutants ← mutants ∪ {createMutant(fk,mutant)}

return mutants

FKColumnPairR: The function in Algorithm 5 describes the approach of the FOREIGN

KEY constraint column pair removal (FKColumnPairR) operator. This operator creates

mutants by removing pairs of columns from each FOREIGN KEY constraint in the schema,

if any exist, where a pair consists of a column in the “local” table and the corresponding

column from the reference table. If the removal of a pair leaves the FOREIGN KEY with

no remaining column pairs (i.e., if the original constraint only consisted of a single pair)

then the constraint is removed entirely. For example, given the tables x and y:

x (a INT, b INT)

y (c INT, d INT, FOREIGN KEY (c,d) REFERENCES x(a,b))
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...there are two local-reference column pairs, (c,a) and (d,b). These are removed in turn

to create two mutants, m1 and m2, which model the programmer mistake of erroneously

including an extra pair of columns in a FOREIGN KEY:

m1: x (a INT, b INT)

y (c INT, d INT, FOREIGN KEY (d) REFERENCES x(b))

m2: x (a INT, b INT)

y (c INT, d INT, FOREIGN KEY (c) REFERENCES x(a))

Algorithm 6 Foreign key column pair exchange operator

function FKCColumnPairE(schema)
mutants ← ∅
for t in getTables(schema) do

for fk in getForeignKeys(t) do
for a, b in getColumns(fk), getRefColumns(fk) do

for x, y in getColumns(t), getColumns(getRefTable(fk)) do
if ((x = a ∧ y 6= b) ∨ (x 6= a ∧ y = b)) ∧ getType(x) = getType(y) then

cols ← ( getColumns(fk) \{a} ) ∪ {x}
refs ← ( getRefColumns(fk) \{b} ) ∪ {y}
mutant ← createForeignKey(cols, refs)
mutants ← mutants ∪ {createMutant(fk,mutant)}

return mutants

FKColumnPairE: The function in Algorithm 6 describes the approach of the FOREIGN

KEY constraint column pair exchange (FKColumnPairE) operator. This operator ex-

changes columns from the pairs specified in existing FOREIGN KEY constraint, for ex-

ample replacing the constraint FOREIGN KEY (a) REFERENCES t(x) with FOREIGN KEY

(a) REFERENCES t(y) or FOREIGN KEY (b) REFERENCES t(x). Note that as mutation

operators should only make a single change, only one column reference is changed. As

with the FKCColumnPairA operator, the columns added to the constraint must have

matching types. Therefore, the schema is statically analysed to determine which two of

columns — one from each the “local” and “reference” tables — form a valid pair to use

in the constraint. Mutants are then produced by exchanging the existing columns in the

FOREIGN KEY constraint with the new column pair. This operator therefore models the

programmer error of mispecifying one of the columns in a FOREIGN KEY column pair.

As an example, given the tables x and y with a single column FOREIGN KEY constraint:

x (a INT, b INT, c VARCHAR, d VARCHAR)

y (e INT, f INT, g VARCHAR, h VARCHAR, FOREIGN KEY (e) REFERENCES x(a))
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...according to the constraints of matching data types and modifying only one column

reference, 2 mutants can be produced — m1 to m2:

m1: x (a INT, b INT, c VARCHAR, d VARCHAR)

y (e INT, f INT, g VARCHAR, h VARCHAR, FOREIGN KEY (e) REFERENCES x(b))

m2: x (a INT, b INT, c VARCHAR, d VARCHAR)

y (e INT, f INT, g VARCHAR, h VARCHAR, FOREIGN KEY (f) REFERENCES x(a))

Alternativly, where there are multiple column pairs in the FOREIGN KEY constraint, con-

sider the example tables m and n:

m (a INT, b INT, c VARCHAR, d VARCHAR)

n (e INT, f INT, g VARCHAR, h VARCHAR, FOREIGN KEY (e,g) REFERENCES m(a,c))

...then applying the mutation FKCColumnPairA operator would generate 4 mutants —

m1 to m4:

m1: m (a INT, b INT, c VARCHAR, d VARCHAR)

n (e INT, f INT, g VARCHAR, h VARCHAR, FOREIGN KEY (e,g) REFERENCES m(b,c))

m2: m (a INT, b INT, c VARCHAR, d VARCHAR)

n (e INT, f INT, g VARCHAR, h VARCHAR, FOREIGN KEY (f,g) REFERENCES m(a,c))

m3: m (a INT, b INT, c VARCHAR, d VARCHAR)

n (e INT, f INT, g VARCHAR, h VARCHAR, FOREIGN KEY (e,g) REFERENCES m(a,d))

m4: m (a INT, b INT, c VARCHAR, d VARCHAR)

n (e INT, f INT, g VARCHAR, h VARCHAR, FOREIGN KEY (e,h) REFERENCES m(a,c))

4.3.3 UNIQUE constraint operators

UColumnA: The function in Algorithm 7 describes the approach of the UNIQUE con-

straint column addition (UColumnA) operator. This produces mutants in two phases.

Firstly, for each column in a table, a mutant is created with a UNIQUE constraint added

to that column, provided one doesn’t already exist. Secondly, for each UNIQUE constraint

already in the original schema, a mutant is created with each column in the table added

to that constraint, provided that column is not already included. Applying this operator

to the table x:
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Algorithm 7 Unique constraint column addition operator

function UCColumnA(schema)
mutants ← ∅
for t in getTables(schema) do

for c in getColumns(t) do . Produce new UNIQUE constraints
if getUnique(c) 6∈ getUniques(t) then

mutant ← createUnique(c)
mutants ← mutants ∪ {createMutant(∅,mutant)}

for uc in getUniques(t) do . Modify existing UNIQUE constraints
for c in getColumns(t) do

if c 6∈ getColumns(uc) then
mutant ← createUnique(getColumns(uc) ∪ {c})
mutants ← mutants ∪ {createMutant(uc,mutant)}

return mutants

x (a INT, b INT, c INT, UNIQUE(a))

...would produce two mutants in the first phase, m1 and m2, by adding UNIQUE constraints

for the columns b and c. A constraint is not added for a as it is already subject to a

UNIQUE constraint. These mutants model the programmer error of omitting a UNIQUE

constraint from the schema. The produced mutants are as follows:

m1: x (a INT, b INT, c INT, UNIQUE(a), UNIQUE(b))

m2: x (a INT, b INT, c INT, UNIQUE(a), UNIQUE(c))

In the second phase, columns are added to any existing constraints, modelling the omis-

sion of a column from a UNIQUE that is already part of the schema. In this case, b and c

are individually added to the UNIQUE constraint to produce two mutants, m3 and m4:

m3: x (a INT, b INT, c INT, UNIQUE(a,b))

m4: x (a INT, b INT, c INT, UNIQUE(a,c))

Algorithm 8 Unique constraint column removal operator

function UCColumnR(schema)
mutants ← ∅
for t in getTables(schema) do

for uc in getUniques(t) do
for c in getColumns(uc) do

mutant ← createUnique(getColumns(uc) \ {c})
mutants ← mutants ∪ {createMutant(uc,mutant)}

return mutants
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UColumnR: The function in Algorithm 8 describes the approach of the UNIQUE con-

straint column removal (UColumnR) operator. Applying this operator creates mutants

by removing a single column from each UNIQUE constraint in turn – either producing

a constraint with fewer columns if the original had multiple columns, or removing the

constraint entirely if the original only had a single column. For example, with the table

x:

x (a INT, b INT, c INT, UNIQUE(a,b), UNIQUE(c))

...this operator would be applied twice – once per UNIQUE constraint. Mutating the first

constraint would create two mutant schemas, m1 and m2, by removing each column from

the constraint in turn, whilst leaving the second constraint unaltered:

m1: x (a INT, b INT, c INT, UNIQUE(b), UNIQUE(c))

m2: x (a INT, b INT, c INT, UNIQUE(a), UNIQUE(c))

Next, the operator would change the second UNIQUE constraint. In this case, the con-

straint is removed entirely, as there is only one column to remove, to give m3:

m3: x (a INT, b INT, c INT, UNIQUE(a,b))

All three of these mutants model the mistake of the programmer including too many

columns in a UNIQUE constraint, thus constraining the data accepted into the database

too tightly.

Algorithm 9 Unique constraint column exchange operator

function UCColumnE(schema)
mutants ← ∅
for t in getTables(schema) do

for uc in getUniques(t) do
for c in getColumns(t) do

if c 6∈ getColumns(uc) then
for ucc in getColumns(uc) do

mutant ← createUnique(c ∪ ( getColumns(uc) \ {ucc})
mutants ← mutants ∪ {createMutant(uc,mutant)}

return mutants
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UColumnE: The function in Algorithm 9 describes the approach of the UNIQUE con-

straint column exchange (UColumnE) operator. Each mutant generated by this operator

is created by exchanging a single column in an existing UNIQUE constraint with another

column from the same table, provided that column is not already part of the constraint.

So, given the table x:

x (a INT, b INT, c INT, UNIQUE(a))

...the column a in the UNIQUE constraint would be exchanged with the two columns not

in the constraint, b and c, to produce two mutants, m1 and m2:

m1: x (a INT, b INT, UNIQUE(b))

m2: x (a INT, b INT, UNIQUE(c))

In this respect, the UColumnE operator functions much like the PKColumnE operator.

However, UNIQUE constraints differ from PRIMARY KEY constraints, in that more than one

may be defined per table. In this instance, each UNIQUE constraint is treated separately,

so any column not included in a constraint may be exchanged into the constraint, even

if it is part of another UNIQUE constraint.

This leads to the possibility of two UNIQUE constraints over the same columns —

suppose columns( UC1 ) = { a } and columns( UC2 ) = { b }, then exchanging a with b

in UC1 would mean columns( UC1 ) = columns( UC2 ). As two UNIQUE constraints with

matching columns do not confer any semantic difference than only one UNIQUE constraint

over the same columns only one is retained, effectively removing the mutated constraint.

For example, given the table y:

y (a INT, b INT, UNIQUE(a), UNIQUE(b))

...there are two single-column UNIQUE constraints to mutate. As b is not already part

of the first constraint, it is exchanged with a to give UNIQUE(b), which is discarded to

give the mutant m1 below. Likewise, a can be exchanged with b in the second UNIQUE

constraint, giving a duplicated constraint that is discarded to give the mutant m2 below:

m1: y (a INT, b INT, UNIQUE(b))

m2: y (a INT, b INT, UNIQUE(a))
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4.3.4 NOT NULL constraint operators

Algorithm 10 Not null addition operator

function NNCA(schema)
mutants ← ∅
for t in getTables(schema) do

nns ← getNotNulls(t)
for c in getColumns(t) do

if c 6∈ getColumns(nns) then
mutant ← createotNull(getColumns(nns) ∪ {c})
mutants ← mutants ∪ {createMutant(nns,mutant)}

return mutants

NNA: The function in Algorithm 10 describes the approach of the NOT NULL constraint

addition (NNA) operator. This generates mutants by adding a NOT NULL constraint to

each column of the schema in turn, unless the column already has one defined on it. So,

given the table x:

x (a INT NOT NULL, b INT, c INT)

...the mutation operator is applied to columns b and c in turn, but not a as it already

has a NOT NULL constraint, to give the mutants m1 and m2:

m1: x (a INT NOT NULL, b INT NOT NULL, c INT)

m2: x (a INT NOT NULL, b INT, c INT NOT NULL)

The addition of these constraints reduces the data that can be accepted into the database,

with the mutants modelling the omission of a NOT NULL constraint.

Algorithm 11 Not null removal operator

function NNCR(schema)
mutants ← ∅
for t in getTables(schema) do

nns ← getNotNulls(t)
for nn in nns do

mutant ← nns \ {nn}
mutants ← mutants ∪ {createMutant(nns,mutant)}

return mutants
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NNR: The function in Algorithm 11 describes the approach of the NOT NULL constraint

removal (NNR) operator. This operator removes existing NOT NULL constraints, one at a

time, from a schema to produce mutants. Therefore, applying this operator to a table x:

x (a INT NOT NULL, b INT NOT NULL, c INT)

...will yield two mutants, m1 and m2, with the constraints on a and b removed one at a

time:

m1: x (a INT, b INT NOT NULL, c INT)

m2: x (a INT NOT NULL, b INT, c INT)

These mutants model the programmer mistake of erroneously including a NOT NULL con-

straint, thus preventing the accepting of a NULL value into the database.

4.3.5 CHECK constraint operators

Algorithm 12 Check constraint removal operator

function CCR(schema)
mutants ← ∅
for t in getTables(schema) do

checks ← getChecks(t)
for c in checks do

mutantChecks ← checks \ {c}
mutants ← mutants ∪ {createMutant(checks,mutantChecks)}

return mutants

CR: The function in Algorithm 12 describes the approach of the CHECK constraint

removal (CR) operator. Provided that the schema contains at least one CHECK constraint,

this produces mutants by removing each CHECK constraint from a schema, one at a time.

It does not remove individual branches of a complex CHECK expression, so cannot model

mistakes that may have been made inside the expression itself. For example, given the

table x:

x (a INT, b INT, CHECK (a < b), CHECK (a > 0 AND b > 0))
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...the operator will produce the two mutants, m1 and m2, by fully removing each CHECK

constraint:

m1: x (a INT, b INT, CHECK (a > 0 AND b > 0))

m2: x (a INT, b INT, CHECK (a < b))

These mutants each model the programmer error of including an unneeded CHECK con-

straint, thus over-constraining the data that can be accepted into the database.

Algorithm 13 Check constraint IN LIST element removal operator

function CCInListelementR(schema)
mutants ← ∅
for t in getTables(schema) do

for ch in getChecks(t) do
for expr in getExpressions(ch) do

if containsInListExpr(expr) then
mutants ← mutants ∪ MutateList(ch, expr)

return mutants

function MutateList(expr)
mutants ← ∅
for i in getExpressionList(expr) do

mutants ← mutants ∪ mutate(expr, getExpressionList(expr) \ {i})
return mutants

CInListElementR: The function in Algorithm 13 describes the approach of the CHECK

constraint IN list element removal (CInListElementR) operator. Mutants are produced

with this operator by removing a single element from the list in the right-hand side of

the CHECK constraint expression expr IN (x1, x2, ..., xn). For example, given the

constraint:

CHECK (expr IN (x,y,z ))

...this operator would produce three mutants — m1, m2 and m3 — by removing the elements

x , y and z from the right-hand side of the expression in turn:

m1: CHECK (expr IN (y,z ))

m2: CHECK (expr IN (x,z ))

m3: CHECK (expr IN (x,y ))
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In this example, the variables x , y and z may be column references, constant values

or sub-expressions. The operator may also be applied within complex CHECK constraints

where expressions are nested, for example with the expression:

OR

IS NULL

a

IN

a LIST

x y z

Expression to mutate

CHECK a IS NULL OR a IN (x,y,z)
Parses

By traversing the expression from the “root” node – in this case OR – the mutation

operator can locate any IN expression that it can mutate – IN (x,y,z) for this example.

Then mutation can proceed as previously described. The mutants produced with this

operator model the mistake of a programmer erroneously including an extra value in the

right-hand side of a IN expression in a CHECK constraint.

Algorithm 14 Check constraint relational operation exchange operator

function CRelOpE(schema)
mutants ← ∅
for t in getTables(schema) do

for ch in getChecks(t) do
for expr in getExpressions(ch) do

if containsRelOpExpr(expr) then
mutants ← mutants ∪ MutateRelOp(expr)

return mutants

function MutateRelOp(expr)
mutants ← ∅
for op in {=, 6=, <,>,≤,≥} do

if op 6= getExpressionRelOp(expr) then
mutants ← mutants ∪ {mutate(getExpressionRelOp(expr), op)}

return mutants

CRelOpE: The function in Algorithm 14 describes the approach of the CHECK con-

straint relational operator exchange (CRelOpE) operator. To generate mutants, this

operator exchanges the relational operator in a relational expression (such as a > 5)

with another relational operator (=, 6=,<,≤,≥). For example, using the table x:

x (a INT, CHECK a > 5)
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...there are five mutants generated — one for each relational operator other than the

original — shown below as m1 to m5:

m1: x (a INT, CHECK a = 5)

m2: x (a INT, CHECK a 6= 5)

m3: x (a INT, CHECK a < 5)

m4: x (a INT, CHECK a ≤ 5)

m5: x (a INT, CHECK a ≥ 5)

The operator can be applied to any CHECK expression with a relational expression in the

form x relop y , where x and y may be a column reference, constant value or sub-

expression, and relop is a relational operator. In addition, the relational expression

may be nested inside a more complex expression, such as CHECK a IS NULL OR (a >

5), using the expression tree traversal described for CInListElementR. Where a single

CHECK constraint contains more than one relational expression, mutants will be produced

for each independently, such that only one constraint is mutated at a time. For example,

in the expression CHECK a > 5 AND a < 100 the mutation operator would be applied

twice to the expression tree:

AND

relop

a > 5

relop

a < 100

Constraint to mutate 1 Constraint to mutate 2

CHECK a > 5 AND a < 100
Parses

Applying the operator independently to these two points would produce a total of 10

mutants, which could divided into two sets — the first where a > 5 has been mutated

and a < 100 kept constant and the second the where a < 100 has been mutated and a

> 5 kept constant, show below as m1 to m5 and m6 to m10, respectively:
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Mutants of constraint 1:

m1: CHECK a = 5 AND a < 100

m2: CHECK a 6= 5 AND a < 100

m3: CHECK a < 5 AND a < 100

m4: CHECK a ≤ 5 AND a < 100

m5: CHECK a ≥ 5 AND a < 100

Mutants of constraint 2:

m6: CHECK a > 5 AND a = 100

m7: CHECK a > 5 AND a 6= 100

m8: CHECK a > 5 AND a > 100

m9: CHECK a > 5 AND a ≤ 100

m10: CHECK a > 5 AND a ≥ 100

4.4 Operator Productivity

While the number of mutants produced for each of the mutation operators described in

Section 4.3 have been analysed previously [118], their productivity has not been defined

in terms of the elements of the schema being mutated before this point. This Section pro-

vides those definitions, described in terms of the mutation utility functions in Figure 4.1.

In each case, the productivity is specified with respect to a single table, tbl.

Calculating the productivity of each operator without needing to execute them against

a schema to generate mutants, which may prove costly for very large schemas, is useful

for a number of different use cases, such as:

Selective mutation This technique aims to reduce the number of mutants that need to

be analysed by applying rules such as “do not apply the N most productive opera-

tors”. Determining how much the cost of executing mutation analysis changes with

varying values for N could be performed entirely statically using these definitions,

reducing the cost of such experimentation. Also, as these definitions are given with

respect to each table of a schema, the operators omitted can be easily varied for

each different schema under test.

Schema migration When making changes to the schema, it is generally unknown what

scope there may be for the changes to introduce new faults. However, using the

definitions of operator productivity it could be possible to estimate the potential

increase in scope a particular modification to the schema may introduce. This can
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be calculated by finding the difference between the number of mutants that would

be produced for a schema before and after the change. In the worst case, each

additional mutant represents an additional test case that is required to ensure that

a fault has not been introduced by the schema migration.

Operator introduction A user of the mutation analysis techniques described in this

thesis might wish to reduce the cost of evaluating their test suite by selecting a sub-

set of mutation operator that represent faults they most wish to detect. However,

in deciding when it might be useful to include additional operators to that set it is

important for them to estimate the likely change in cost of the analysis. The defi-

nitions in this Section could be used to support such decision making by providing

a static technique to approximate the mutant-cost of including extra operators.

Throughout this Section, each definition is applied to the following stock table, which

could be used to store basic information about a set of products a business has, which is

defined as follows1:

CREATE TABLE stock (

id integer PRIMARY KEY,

name varchar(50) UNIQUE,

description varchar(50),

type varchar(10),

price numeric NOT NULL,

location varchar(10) REFERENCES

store(name),

CHECK (price > 0),

CHECK type IN ('mens','womens','
childrens')

);

4.4.1 PRIMARY KEY operators

PKColumnA: The PRIMARY KEY constraint column addition operator creates a mu-

tant by adding a column to the PRIMARY KEY of the table, provided the column is not

already included in the constraint. The productivity can therefore be defined as:

1For clarity, the store table has been omitted as the operator productivity definitions are given per
table. For the FOREIGN KEY operators assumptions for the calculations will be stated where necessary.
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‖getColumns(tbl)‖ − ‖getColumns(getPrimaryKey(tbl))‖

By applying this to the stock table, the number of mutants produced by this operator

could be calculated as follows:

‖{id, name, description, type, price, location}‖ − ‖{id}‖ = 5

PKColumnR: The PRIMARY KEY constraint column removal operator produces each

mutant by removing a column from the PRIMARY KEY of a table in turn, provided one is

defined in the schema. The operator productivity is therefore simply:

‖getColumns(getPrimaryKey(tbl))‖

When applying this definition to the stock example schema, the number of mutants

produced can be calculated easily:

‖{id}‖ = 1

PKColumnE: The PRIMARY KEY constraint column exchange operator replaces each

column in a PRIMARY KEY with each column not already included in the constraint. Con-

sequently, the productivity of the operator can be expressed as:

( ‖getColumns(tbl)‖ −

‖getColumns(getPrimaryKey(tbl))‖ ) · ‖getColumns(getPrimaryKey(tbl))‖

Using this definition it is possible to calculate the number of mutants that would be

generated by the operator for the stock schema as follows:

( ‖{id, name, description, type, price, location}‖ − ‖{id}‖ ) · ‖{id}‖ = (6− 1) · 1 = 5
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4.4.2 FOREIGN KEY operators

FKColumnPairA: The FOREIGN KEY column pair addition operator adds new pairs

of columns (one each from the local and reference tables) to existing FOREIGN KEY con-

straints to produce mutants. These pairs must be matched in data type, to ensure the

mutants are valid. The productivity of this operator can be defined as:

‖getForeignKeys(tbl)‖∑
i=1

∥∥∥∥∥
{
a, b | a ∈ getColumns(tbl),

b ∈ getColumns(getRefTable(getForeignKey(tbl, i))),

getType(a) = getType(b),

(a, b) 6∈ getForeignKeyPairs(getForeignKey(tbl, i))

} ∥∥∥∥∥
This definition can be applied to the stock schema as follows. Assume that the store

table contains two columns, defined as id integer and name varchar(50). This gives 6

columns in stock and 2 in store, yielding an initial set of 12 column pairings. Of these,

the type-matching restriction means that stock.id can only be matched with store.id,

while store.name can be matched with stock.name, stock.description, stock.type

and stock.location. Of these, the pairing of stock.location and stores.name is

already part of the FOREIGN KEY so is removed from the pool of potential mutants. This

leaves a total of 5 mutants that would be produced by applying this operator.

FKColumnPairR: The FOREIGN KEY column pair removal operator generates mutants

by discarding each pair of columns, one from each of the ‘local’ and ‘reference’ tables,

from a FOREIGN KEY constraint in turn, repeating the process for each FOREIGN KEY in a

table. This gives the following overall productivity:

‖getForeignKeys(tbl)‖∑
i=1

‖getForeignKeyPairs(getForeignKey(tbl, i))‖

Using this definition with the stock schema states that only one mutant would be

produced by this operator, as there is only one FOREIGN KEY to be removed and it contains

only a single local-reference column pair.
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FKColumnPairE: The FOREIGN KEY column pair exchange operator generates mu-

tants by exchanging pairs of columns in a FOREIGN KEY constraint with columns not

already in the constraint. To guarantee the constraint remains valid the data types of

these columns must match. Overall, the productivity of this operator can be described

with the same expression as for the FKColumnPairA operator:

‖getForeignKeys(tbl)‖∑
i=1

∥∥∥∥∥
{
a, b | a ∈ getColumns(tbl),

b ∈ getColumns(getRefTable(getForeignKey(tbl, i))),

getType(a) = getType(b),

(a, b) 6∈ getForeignKeyPairs(getForeignKey(tbl, i))

} ∥∥∥∥∥
The application of this definition to the stock example schema is the same as for

the FKColumnPairA operator, so yields the same total of 5 mutants, applying the same

assumptions discussed above.

4.4.3 UNIQUE constraint operators

UCColumnA: The UNIQUE constraint column addition operator creates mutants by

firstly adding new UNIQUE constraints for each column that is not subject to a single-

column UNIQUE constraint, and secondly adding each column to existing UNIQUE con-

straints that is not already included in. These two phases are represented as the first and

second parenthesised parts of the following productivity expression:(
‖{c ∈ getColumns(tbl) | getUnique(c) 6∈ getUniques(tbl)}‖

)

+

( ‖getUniques(tbl)‖∑
i=1

‖getColumns(tbl)‖ − ‖getColumns(getUnique(tbl, i))‖
)

This can be applied to the stock table to calculate the number of mutants that

would be generated as follows (in this case both phases are effectively the same because

the FOREIGN KEY contains a single column pair):

( ‖{id, description, type, price, location}‖ ) + ( ‖{id, description, type, price, location}‖ ) = 10
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UCColumnR: The UNIQUE constraint column removal operator takes one column out

of a UNIQUE constraint at a time to produce mutants. This is then repeated for each

UNIQUE constraint in the table. Overall, the productivity of this operator is expressible

as:

‖getUniques(tbl)‖∑
i=1

‖getColumns(getUnique(tbl, i))‖

Intuitively, because there is only one UNIQUE constraint in the stock table, applying

it to this schema simplifies the expression such that the number of mutants is exactly the

number of columns in that constraint – so, in this case it would determine that only one

mutant would be produced by this operator were it applied.

UCColumnE: The UNIQUE constraint column exchange operator generates mutants of

each UNIQUE constraint by swapping every column in the constraint with columns not

already included in that constraint. This gives the following productivity:

‖getUniques(tbl)‖∑
i=1

( ‖getColumns(tbl)‖ − ‖getColumns(getUnique(tbl, i))‖ ) ·
‖getColumns(getUnique(tbl, i))‖

Using this productivity definition with the stock table gives the following equation,

showing a total of 5 mutants would be generated by applying the operator to it:

( ‖{id, name, description, type, price, location}‖ − ‖{name}‖ ) · ‖{name}‖ = (6− 1) · 1 = 5

4.4.4 NOT NULL constraint operators

NNA: The NOT NULL addition operator mutates tables by adding a NOT NULL constraint

to each column in turn, provided that column isn’t already subject to one. This gives a

simple productivity expression of:

‖getColumns(tbl)‖ − ‖getNotNulls(tbl)‖

As the stock table contains 6 columns with 1 already subject to a NOT NULL con-

straint, this definition reveals a total of 5 mutants would be generated if this operator

were executed with it.
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NNR: The NOT NULL removal operator produces mutants by discarding each NOT NULL

constraint defined on a table in turn. The productivity of this operator can be described

as follows:

‖getNotNulls(tbl)‖

Applying this expression with the stock table shows that only one mutant would be

produced, as it contains only a single NOT NULL constraint on the price column.

4.4.5 CHECK constraint operators

CR: The CHECK constraint removal operator mutates a table by taking out each CHECK

constraint, in its entirety. This gives a productivity of:

‖getChecks(tbl)‖

Because the stock table contains one CHECK constraint, applying this definition would

identify that a single mutant would be produced by this operator.

CInListElementR: The CHECK constraint IN list element removal operator produces

mutants of expressions in CHECK constraints with the form expr IN (x1, x2, ..., xn)

by removing each of the list elements, xi, in turn. The productivity of this operator can

be described as:

‖getChecks(tbl)‖∑
i=1

‖getExpressionList(getCheck(tbl, i))‖

As shown in the definition for the stock table, the type column is restricted to one

of three fixed values. Therefore, applying the above definition to this table would show

a total of three mutants would be produced.
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CRelOpE: The CHECK constraint relational operator exchange operator produces mu-

tants of CHECK constraints that contain relational expressions (such as a > 5) by replacing

the existing relational operator with each alternative operator (=,6=,<,≤,≥). Therefore,

the operator productivity can be expressed as:

‖getChecks(tbl)‖∑
i=1

‖getExpressionRelOp(getCheck(tbl, i))‖ · 5

Given that the stock table contains a single CHECK constraint with relational expres-

sion, evaluating this expression shows that 5 mutants would be produced if the operator

was applied to the schema.

4.5 Alternative Elements to Mutate

While the mutation operators defined in this Chapter are able to model a wide range

of possible faults in the integrity constraints of a relational database schema, including

both faults of omission and commission, there are a number of alternative elements of a

schema that could be mutated. The remainder of this Section discusses a range of these,

along with discussion of why operators for mutating these were not included in the initial

collection of mutation operators proposed in this thesis.

4.5.1 Column definitions

As previously described, even in relational database schemas with no integrity constraints

there are still restrictions on the data that can be stored in a table according to the data

types and lengths specified for each column. These are referred to as domain constraints

[100], and must be specified as part of any relational schema expressed in the SQL lan-

guage. For example, consider the following schema:

CREATE TABLE stock (

product_id integer,

description varchar(50),

price numeric,

sale_price numeric

);
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In this case, product id must be a whole number, description can only store a

character string with a maximum length of 50, and both price and sale price must

be a floating point number. As with the integrity constraints of the schema, mistakes

made when defining the domain constraints of a schema may cause difficult to detect bugs

within applications that use the database. For example, using a floating point column

type rather than an integer type may lead to CHECK constraints that test if the column is

equal to a constant value to fail as floating point types do not store values exactly, instead

storing a very close approximation of the number. Alternatively, incorrectly specifying

the length a column may lead to values being truncated, if the given length is too small,

leading to inaccuracies in the stored data. This problem may also be exacerbated by

subtle differences between the handling of certain data types by different DBMSs.

While mutation operators could be proposed to mutate both the type of columns, for

example replacing integer and floating point types, or altering the length specified for

columns, increasing or decreasing it, this could lead to a very large number of mutants

being produced to analyse. In addition, killing each of these mutants would require very

specific test cases to be produced, leading to large test suites that may prove infeasible

to run frequently in a practical setting. Therefore, these mutation operators were not

considered as part of this thesis.

4.5.2 Further CHECK mutation

Although three mutation operators were defined for modifying CHECK constraints earlier

in this Chapter – CR, CInListElementR and CRelOpE – there are many additional

mutation operators that could be proposed, taking inspiration from operators for other

programming languages. For example, considering the following CHECK constraint:

CHECK ((x != 5) AND (y IS NOT NULL))

...the following additional mutations could be considered:

1. Modifying the literal value 5. This could be by incrementing, decrementing, negat-

ing, or setting it to zero. Alternatively, it could be replaced with a column reference.

2. Swapping the column references x and y with each other valid column reference,

negating them or setting them to a constant value.
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3. Changing IS NOT NULL to IS NULL.

4. Replacing the logical operator AND with OR.

5. Negating each of the two clauses in turn using the NOT operator.

6. Removing each conditional clause in turn.

These operators could be defined using the mutation framework developed as part

of this thesis, however were not included in the operators considered. This is because

CHECK constraints seem to be a relatively infrequently used type of constraint in relational

schemas, as demonstrated by the attributes of the schemas available in SchemaAnalyst,

shown in Table 3.2 (see page 92). These schemas were gathered from a wide range

of sources, including real-world applications, so can be considered representative of a

large number of schemas used in database applications. Because there are very few

CHECK constraints in these schemas it would be difficult to evaluate a set of operators

implementing the above mutations as they would produce very few mutants, and in

some cases no mutants for any schema. However, if additional schemas containing more

examples of CHECK constraints were acquired these operators could be considered as part

of future work.

4.5.3 Table indices

When defining a relational database schema the programmer can optionally include a

number of INDEX statements. Each of these defines an index that the DBMS should

maintain that can be used to more quickly lookup values for one or more columns, at

the expense of increases the time taken for each INSERT statement [100]. For example,

considering the schema:

CREATE TABLE users (id int, name varchar(50), address varchar(50));

CREATE INDEX users index ON users (id);

In this case, querying the database with a WHERE clause that searches the id column,

such as WHERE id == 5, will be faster than if the index users index had not been defined.

If the table were to grow very large and was subject to many more read operations
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than write operations, then this could improve performance of the database significantly.

However, it is important to note that the presence of an index does not alter the results

of a query – that is, the difference in behaviour is entirely related to performance of the

database2.

Considering the example schema, there are a number of possible mutations that could

be applied:

1. Add each other column reference to the existing index.

2. Replace the column reference id with each other column.

3. Add an index to each other column.

4. Remove the existing index.

Although the mutation framework in SchemaAnalyst could be used to implement

mutation operators for these modifications each of these would only affect the performance

of the database, and not its overall behaviour. This is in contrast to the operators

defined earlier in this Chapter that focus of programmer mistakes that alter the behaviour

of the database, which may in turn lead to errors in applications using the database.

Therefore mutation operators for INDEX statements were not considered as part of this

thesis, although could be investigated as an item of future work.

4.6 Summary

This Chapter described a set of 14 mutation operators that can be applied each of the

major kinds of SQL constraint – PRIMARY KEY, FOREIGN KEY, UNIQUE, NOT NULL and

CHECK constraints. A naming scheme for these operators was specified, which gives each

a unique name by combining the kind of constraint with the type of modification made

– addition, removal and exchange. Algorithms were described for each of the operators,

2An exception to this is a unique index, which behaves exactly as a UNIQUE constraint. In SchemaAn-
alyst this type of index is instead converted to a UNIQUE constraint which is modified using the mutation
operators defined in this thesis.

133



which represent a contribution of this thesis. In addition, the productivity of each op-

erator was defined, in terms of the attributes of the schema under mutation. Finally,

alternative elements of a schema that could be mutated were described and mutations

suggested, along with brief discussion of why these were omitted from this thesis. These

operators are now used in Chapters 5 to 7 as part of mutation analysis experiments that

investigate various facets of mutation analysis of relational database schemas.
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Chapter 5

Evaluating Coverage Criteria for

Relational Database Schemas

Using Mutation Analysis

5.1 Introduction

Making use of the mutation framework detailed in Section 3.6, this Chapter combines

the algorithm described in Section 1.3.2 and mutation operators defined in Chapter 4 to

perform a mutation analysis experiment to evaluate the data generation component of the

SchemaAnalyst tool. By modelling a range of faults in integrity constraints, this enables

the different coverage criteria and search technique combinations, discussed previously

in Section 3.5, to be compared in terms of their capability to detect realistic faults. As

a result, those configurations that would be most effective for testing schemas in an

industrial setting can be identified, such that the widest range of faults can be detected.

To ensure the result were generalisable and to facilitate to analysis of how different

configuration options may impact upon effectiveness, the empirical experiment describe

in this Chapter includes 32 schemas, all nine of the coverage criteria discussed in Sec-

tion 3.5.1, both available search algorithms and all three supported DBMSs. The results

revealed that the choice of search algorithm affects the fault-finding capability of some
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coverage criteria, and also that combining test cases from different types of criteria can

produce more effective test suites.

The contributions this Chapter makes are:

1. A description of an empirical experiment designed to determine the effectiveness of

the search techniques, in terms of producing data to test all required constraints,

and of the coverage criteria, in terms of mutant killing ability; and

2. Discussion of the results of the empirical experiment in the context of four research

questions, including how combining criteria can improve the mutant killing ability

of a test suite.

5.2 Experiment Design

5.2.1 Schemas

To ensure that the complexity of the schemas (e.g., number of tables and constraints)

does not adversely bias the results of this experiment, a total of 32 schemas were chosen

that range in complexity, as shown in Table 5.1. As previously discussed in Section 3.4,

these schemas were acquired from a variety of sources, including real-world applications.

For example, RiskIt, taken from an insurance risk modelling application, and MozillaPer-

missions, used in the popular Firefox Internet browser. In addition, care was taken to

ensure the schemas contained examples of each major constraint type (i.e., PRIMARY KEY,

FOREIGN KEY, UNIQUE, CHECK and NOT NULL), as well as single-column and multi-column

variants where appropriate (e.g., PRIMARY KEY (x) and PRIMARY KEY (x,y)). The vary-

ing complexity and source of the schemas used ensures that the results are representative

of a wide range of schemas, and therefore that any conclusions can be generalised to other

schemas. Meanwhile, the selection of 32 schemas from those available in SchemaAnalyst

ensures the execution cost of the experiment is not prohibitive.
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Table 5.1: Schemas analysed in the empirical study

Schema T
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ArtistSimilarity 2 3 3 0 2 0 1 0
ArtistTerm 5 7 7 0 4 0 3 0
BankAccount 2 9 8 0 1 5 2 0
BookTown 22 67 28 2 0 15 11 0
BrowserCookies 2 13 10 2 1 4 2 1
Cloc 2 10 0 0 0 0 0 0
CoffeeOrders 5 20 19 0 4 10 5 0
CustomerOrder 7 32 42 1 7 27 7 0
DellStore 8 52 39 0 0 39 0 0
Employee 1 7 4 3 0 0 1 0
Examination 2 21 9 6 1 0 2 0
Flights 2 13 10 1 1 6 2 0
FrenchTowns 3 14 24 0 2 13 0 9
Inventory 1 4 2 0 0 0 1 1
Iso3166 1 3 3 0 0 2 1 0
iTrust 42 309 134 8 1 88 37 0
JWhoisServer 6 49 50 0 0 44 6 0
MozillaExtensions 6 51 7 0 0 0 2 5
MozillaPermissions 1 8 1 0 0 0 1 0
NistDML181 2 7 2 0 1 0 1 0
NistDML182 2 32 2 0 1 0 1 0
NistDML183 2 6 2 0 1 0 0 1
NistWeather 2 9 13 5 1 5 2 0
NistXTS748 1 3 3 1 0 1 0 1
NistXTS749 2 7 7 1 1 3 2 0
Person 1 5 7 1 0 5 1 0
Products 3 9 14 4 2 5 3 0
RiskIt 13 57 36 0 10 15 11 0
StackOverflow 4 43 5 0 0 5 0 0
StudentResidence 2 6 8 3 1 2 2 0
UnixUsage 8 32 24 0 7 10 7 0
Usda 10 67 31 0 0 31 0 0
Total 172 975 554 38 49 335 114 18

5.2.2 DBMSs

As DBMSs may vary slightly in their interpretation of the SQL specification, the data

generation component of SchemaAnalyst produces subtly different test data depending

on the DBMS in use. Therefore it is important to determine whether the effectiveness of a

given criterion and search algorithm is consistent across different DBMSs. For that reason,

this experiment includes all three DBMSs supported by SchemaAnalyst — PostgreSQL,

HyperSQL and SQLite. The differences in architecture and design philosophy between

these DBMSs was discussed briefly in Section 3.3.3.
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5.2.3 Methodology

Given the complexity of the data generation component in SchemaAnalyst, such as the

number of different coverage criteria and search algorithms (described in Sections 3.5.1

and 3.5.2 respectively), this empirical experiment is divided into a number of parts that

analyse a number of different facets.

Firstly, the nine coverage criteria are compared in terms of the number of test cases

they require, across all of the 32 schemas, and how frequently the two search algorithms

are able to successfully produce data for those test cases. In this case the combination

is possibly important as a more complex coverage criterion may require a more guided

search algorithm to produce data that satisfies the predicates and therefore produces

usable test cases.

Secondly, mutation analysis is used to compare the test cases generated by each of

the coverage criteria and search algorithm pairings in terms of fault-finding capability.

The higher proportion of mutants killed by the test cases of a given criterion, the more

likely that those test cases would reveal faults in a real-world application, and therefore

the more useful that criterion is for generating test data.

Next, data gathered from the mutation analysis trials is used to determine which

mutants were killed by specific coverage criterion, to examine whether some criteria are

better suited to exposing certain types of faults. This is categorised by the operators

used to produce the mutants and what proportion of those mutants were killed.

Finally, the effectiveness of combining coverage criteria is analysed, using the data

detailing which mutants have been killed by each criterion, to identify whether combining

test cases from the different classes of criterion (i.e., constraint criteria, unique column

criteria and null column criteria) can yield a test suite with a higher mutation score. If

so, this would suggest that such a combined test suite would be the most effective at

revealing faults in a real-world application.

In summary, the experiment involves executing nine coverage criteria (five constraint

coverage, two unique coverage and two null column coverage) to generate the predicates

for 32 schemas, using three different DBMSs. The number of predicates is recorded in

every case, with 30 repeat trials with different random seeds to reduce the impact of
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the stochastic nature of the search techniques and allow averages to be obtained. This

requires a total of 25,920 experimental trials. Where the created predicate is detected

to be trivially infeasible1 during the data generation processed (e.g., specifying x =

NULL ∧ x 6= NULL) or duplicated2 (i.e., two test cases have the same predicates) this

is also recorded. For each set of test predicates produced, two search algorithms are

used to attempt to generate data that satisfies them and therefore produce test cases,

evaluating the algorithms based on their success rate. The effectiveness of those test cases

is calculated as the mutation score obtained from mutation analysis, using the full set of 14

operators specified in Chapter 4. Using data from the mutation analysis a “per-operator”

mutation score is produced to identify whether certain criteria kill mutants produced by

particular operators more frequently. The mutation score is then calculated for each

permutation of constraint criteria, unique column criteria and null column criteria, to

determine the effectiveness of combined test suites, and whether such combinations can

produce tests that identify a higher proportion of faults.

5.2.4 Configuration

Because of the large number of experimental trials, described in the previous Section,

this experiment was executed using a high performance computing cluster, running 64-

bit Scientific Linux and managed with Sun Grid Engine. The SchemaAnalyst tool was

compiled using Java Development Kit 7 and executed with the 64-bit Oracle Java 1.7

virtual machine. The experiment used PostgreSQL 9.1.9 in its default configuration, and

HyperSQL version 2.28 and SQLite 3.6.20 using their “in-memory” settings. The data

generation algorithm was configured to allow up to 100,000 fitness evaluations, which

was shown in initial trials to be sufficient to successfully generate data whilst avoiding

excessive execution time in the cases where the search process is highly unlikely to find

data that satisfies the set of data generation constraints.

1 Currently, only two cases of infeasibility are detected using static analysis of the test predicate (see
[76] for more detail), with both relating to requiring a variable to be both NULL and ¬NULL simulatenously.
In the first case, the test predicate requires a = NULL ∧ a = ¬NULL. In the second case, this is extended
to allow for a logical OR nested within an AND where all subclauses of the former are negations of the
latter, for example:

a = NULL ∧ b = NULL ∧ (a = ¬NULL ∨ b = ¬NULL)

2 The removal of duplicate requirements is achieved using a Set-based implementation whereby only
one of two duplicate requirements will be stored when joining multiple requirements together.
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5.2.5 Threats to validity

As with all empirical experiments, there are a number of different threats to the validity of

the results. This Section describes some of the most significant of these and explains how

their impact was mitigated to ensure the findings are both accurate and generalisable.

DBMS specific results The differences in behaviour between DBMSs may lead to var-

ied results according to which is being used – for example, certain coverage criteria

may be more or less effective depending upon how NULL values are handled. The

impact of this is reduced by including three different DBMSs, including SQLite

which is more permissive with respect to NULL values.

Stochasticity of algorithms As the data generation techniques use randomly gener-

ated values to search for valid test data, the performance of a particular config-

uration may vary significantly due to the seed value. To avoid this affecting the

empirical results, 30 repeat trials were performed for each condition with a different

random seed for each, to allow averages to be calculated.

Bias from search algorithm The effectiveness of the data produced for a particular

coverage criterion may be affected by the search algorithm used to generate the data.

This threat was managed by including two different data generation algorithms with

significantly different designs.

5.3 Empirical Results

The results of the experiment described in this Chapter are now discussed in the context

of four research questions, each evaluating different facets of the SchemaAnalyst data

generation component.

RQ1: How does the choice of coverage criterion affect the number of test cases required

for each schema, how successful are the two search algorithms at producing data for those

tests, and are these results dependant on the DBMS used?
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Table 5.2: Number of test cases generated for each schema by the coverage criteria.

For each criterion, the left value is for PostgreSQL and HyperSQL (which have identical results due to their

similarity in handling of constraints) and the right value for SQLite. The values in brackets are the number of

test cases once trivially infeasible and duplicate cases have been removed.

(a) Constraint coverage criteria

Schema APC ICC AICC CondAICC ClauseAICC
ArtistSimilarity 4 (4) 4 (4) 6 (6) 6 (6) 6 (5) 6 (5) 9 (9) 9 (9) 9 (9) 9 (9)
ArtistTerm 10 (10) 10 (10) 14 (14) 14 (14) 14 (12) 14 (12) 21 (21) 21 (21) 21 (21) 21 (21)
BankAccount 4 (4) 4 (4) 16 (16) 16 (16) 16 (10) 16 (10) 19 (13) 19 (15) 19 (13) 19 (15)
BookTown 26 (26) 26 (26) 34 (34) 56 (56) 34 (30) 56 (41) 47 (42) 69 (53) 49 (44) 71 (55)
BrowserCookies 4 (4) 4 (4) 14 (14) 20 (20) 14 (9) 20 (12) 20 (19) 26 (22) 30 (27) 36 (29)
Cloc 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
CoffeeOrders 10 (10) 10 (10) 38 (38) 38 (38) 38 (24) 38 (24) 47 (37) 47 (40) 47 (37) 47 (40)
CustomerOrder 14 (14) 14 (14) 70 (70) 84 (84) 70 (42) 84 (49) 85 (58) 99 (65) 86 (59) 100 (66)
DellStore 16 (16) 16 (16) 78 (78) 78 (78) 78 (47) 78 (47) 78 (47) 78 (47) 78 (47) 78 (47)
Employee 2 (2) 2 (2) 8 (8) 8 (8) 8 (5) 8 (5) 12 (11) 12 (12) 12 (11) 12 (12)
Examination 4 (4) 4 (4) 18 (18) 18 (18) 18 (11) 18 (11) 27 (27) 27 (27) 27 (27) 27 (27)
Flights 4 (4) 4 (4) 12 (12) 20 (20) 12 (8) 20 (12) 16 (12) 24 (16) 25 (22) 33 (22)
FrenchTowns 6 (6) 6 (6) 48 (48) 48 (48) 48 (27) 48 (27) 59 (38) 59 (38) 61 (39) 61 (39)
Inventory 2 (2) 2 (2) 4 (4) 4 (4) 4 (3) 4 (3) 6 (6) 6 (6) 6 (6) 6 (6)
Iso3166 2 (2) 2 (2) 6 (6) 6 (6) 6 (4) 6 (4) 7 (5) 7 (6) 7 (5) 7 (6)
iTrust 82 (82) 82 (82) 234 (234) 268 (268) 234 (158) 268 (175) 280 (208) 314 (243) 559 (488) 593 (517)
JWhoisServer 12 (12) 12 (12) 88 (88) 100 (100) 88 (50) 100 (56) 94 (56) 106 (62) 94 (56) 106 (62)
MozillaExtensions 10 (10) 10 (10) 14 (14) 14 (14) 14 (12) 14 (12) 21 (21) 21 (21) 31 (31) 31 (31)
MozillaPermissions 2 (2) 2 (2) 2 (2) 2 (2) 2 (2) 2 (2) 3 (3) 3 (3) 3 (3) 3 (3)
NistDML181 4 (4) 4 (4) 4 (4) 4 (4) 4 (4) 4 (4) 6 (6) 6 (6) 10 (10) 10 (10)
NistDML182 4 (4) 4 (4) 4 (4) 4 (4) 4 (4) 4 (4) 6 (6) 6 (6) 62 (62) 62 (62)
NistDML183 4 (4) 4 (4) 4 (4) 4 (4) 4 (4) 4 (4) 6 (6) 6 (6) 10 (10) 10 (10)
NistWeather 4 (4) 4 (4) 24 (24) 26 (26) 24 (14) 26 (15) 32 (22) 34 (26) 39 (30) 41 (32)
NistXTS748 2 (2) 2 (2) 6 (6) 6 (6) 6 (4) 6 (4) 8 (8) 8 (8) 8 (8) 8 (8)
NistXTS749 4 (4) 4 (4) 8 (8) 14 (14) 8 (6) 14 (9) 12 (11) 18 (14) 14 (13) 20 (15)
Person 2 (2) 2 (2) 12 (12) 14 (14) 12 (7) 14 (8) 14 (9) 16 (10) 16 (11) 18 (12)
Products 6 (6) 6 (6) 26 (26) 28 (28) 26 (16) 28 (17) 35 (25) 37 (29) 37 (28) 39 (31)
RiskIt 24 (24) 24 (24) 48 (48) 72 (72) 48 (36) 72 (48) 69 (59) 93 (71) 71 (61) 95 (72)
StackOverflow 8 (8) 8 (8) 10 (10) 10 (10) 10 (9) 10 (9) 10 (9) 10 (9) 10 (9) 10 (9)
StudentResidence 4 (4) 4 (4) 14 (14) 16 (16) 14 (9) 16 (10) 20 (16) 22 (18) 20 (16) 22 (18)
UnixUsage 16 (16) 16 (16) 32 (32) 48 (48) 32 (24) 48 (32) 46 (42) 62 (50) 48 (44) 64 (51)
Usda 20 (20) 20 (20) 62 (62) 62 (62) 62 (41) 62 (41) 62 (41) 62 (41) 62 (41) 62 (41)
Total 316 (316) 316 (316) 958 (958) 1108 (1108) 958 (637) 1108 (712) 1177 (893) 1327 (1000) 1571 (1288) 1721 (1378)

(b) Column coverage criteria

Schema UCC AUCC NCC ANCC
ArtistSimilarity 6 (6) 6 (6) 6 (6) 6 (6) 6 (6) 6 (6) 6 (6) 6 (6)
ArtistTerm 14 (14) 14 (14) 14 (14) 14 (14) 14 (14) 14 (14) 14 (14) 14 (14)
BankAccount 18 (18) 18 (18) 18 (18) 18 (18) 18 (18) 18 (18) 18 (13) 18 (15)
BookTown 134 (134) 134 (134) 134 (134) 134 (134) 134 (134) 134 (134) 134 (132) 134 (132)
BrowserCookies 26 (26) 26 (26) 26 (26) 26 (26) 26 (26) 26 (26) 26 (24) 26 (24)
Cloc 20 (20) 20 (20) 20 (20) 20 (20) 20 (20) 20 (20) 20 (20) 20 (20)
CoffeeOrders 40 (40) 40 (40) 40 (40) 40 (40) 40 (40) 40 (40) 40 (30) 40 (33)
CustomerOrder 64 (64) 64 (64) 64 (64) 64 (64) 64 (64) 64 (64) 64 (44) 64 (44)
DellStore 104 (104) 104 (104) 104 (104) 104 (104) 104 (104) 104 (104) 104 (73) 104 (73)
Employee 14 (14) 14 (14) 14 (14) 14 (14) 14 (14) 14 (14) 14 (14) 14 (14)
Examination 42 (42) 42 (42) 42 (42) 42 (42) 42 (42) 42 (42) 42 (42) 42 (42)
Flights 26 (26) 26 (26) 26 (26) 26 (26) 26 (26) 26 (26) 26 (22) 26 (22)
FrenchTowns 28 (28) 28 (28) 28 (28) 28 (28) 28 (28) 28 (28) 28 (18) 28 (18)
Inventory 8 (8) 8 (8) 8 (8) 8 (8) 8 (8) 8 (8) 8 (8) 8 (8)
Iso3166 6 (6) 6 (6) 6 (6) 6 (6) 6 (6) 6 (6) 6 (4) 6 (5)
iTrust 618 (618) 618 (618) 618 (618) 618 (618) 618 (618) 618 (618) 618 (544) 618 (564)
JWhoisServer 98 (98) 98 (98) 98 (98) 98 (98) 98 (98) 98 (98) 98 (60) 98 (60)
MozillaExtensions 102 (102) 102 (102) 102 (102) 102 (102) 102 (102) 102 (102) 102 (102) 102 (102)
MozillaPermissions 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16) 16 (16)
NistDML181 14 (14) 14 (14) 14 (14) 14 (14) 14 (14) 14 (14) 14 (13) 14 (14)
NistDML182 64 (64) 64 (64) 64 (64) 64 (64) 64 (64) 64 (64) 64 (50) 64 (64)
NistDML183 12 (12) 12 (12) 12 (12) 12 (12) 12 (12) 12 (12) 12 (12) 12 (12)
NistWeather 18 (18) 18 (18) 18 (18) 18 (18) 18 (18) 18 (18) 18 (13) 18 (15)
NistXTS748 6 (6) 6 (6) 6 (6) 6 (6) 6 (6) 6 (6) 6 (6) 6 (6)
NistXTS749 14 (14) 14 (14) 14 (14) 14 (14) 14 (14) 14 (14) 14 (13) 14 (13)
Person 10 (10) 10 (10) 10 (10) 10 (10) 10 (10) 10 (10) 10 (6) 10 (6)
Products 18 (18) 18 (18) 18 (18) 18 (18) 18 (18) 18 (18) 18 (13) 18 (15)
RiskIt 114 (114) 114 (114) 114 (114) 114 (114) 114 (114) 114 (114) 114 (111) 114 (111)
StackOverflow 86 (86) 86 (86) 86 (86) 86 (86) 86 (86) 86 (86) 86 (85) 86 (85)
StudentResidence 12 (12) 12 (12) 12 (12) 12 (12) 12 (12) 12 (12) 12 (11) 12 (11)
UnixUsage 64 (64) 64 (64) 64 (64) 64 (64) 64 (64) 64 (64) 64 (62) 64 (62)
Usda 134 (134) 134 (134) 134 (134) 134 (134) 134 (134) 134 (134) 134 (113) 134 (113)
Total 1950 (1950) 1950 (1950) 1950 (1950) 1950 (1950) 1950 (1950) 1950 (1950) 1950 (1694) 1950 (1739)
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Figure 5.1: The number of infeasible, duplicate and retained test cases required by each
coverage criterion for HyperSQL/PostgreSQL and SQLite.

The number of test cases generated for each schema, as well as the number remaining

after removing those which were trivially infeasible and duplicate, are shown in Table 5.2.

The bar plot in Figure 5.1 shows what proportion of those test cases removed are either

infeasible or duplicate, relative to the number retained (i.e., not removed). As described

previously, only simple cases of infeasibility such as x = NULL ∧ x 6= NULL are currently

detected automatically in SchemaAnalyst, therefore identifying and detecting more subtle

kinds of infeasibility may increase the proportion of cases removed. Nonetheless, detecting

this simple case prevents wasted computational effort by avoiding attempts to satisfy this

type of infeasible combination of requirements.

The results show that for the constraint coverage criteria (APC, ICC, AICC, CondAICC

and ClauseAICC), the number of test cases increases as the complexity of the criterion

increases. As discussed in Section 3.5.1, each of the constraint coverage criteria builds on

the definition of the previous criterion, adding further requirements, therefore explaining

this trend. In the case of “Cloc”, no tests were produced by any constraint coverage

criterion because, as shown in Table 5.1, it includes no constraints and therefore contains

nothing to test according to the definition of these criteria. Across all schemas, the two

simplest criteria, APC and ICC, produced no test cases that were removed as trivially

infeasible or duplicate, for either DBMS. Of the remaining constraint criteria, AICC has

the greatest proportion of tests removed, followed by CondAICC then ClauseAICC –

with 34%, 24% and 18% for PostgreSQL/HyperSQL, and 36%, 25% and 20% for SQLite.

For the column coverage criteria (UCC, AUCC, NCC, ANCC), the number of tests is
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Figure 5.2: The percentage of test cases successfully generated by the AVM and Random+

search algorithms, across all schemas for each DBMS. The boxes span between the 1st

and 3rd quartile, with the line indicating the median and the white diamond showing
the mean. The whiskers extend to the furthest data point up to 1.5× the inter-quartile
range, with outliers beyond this marked as filled circles.

twice the number of columns for each schema as expected – for every schema, one case

per column to requiring it to be NULL or UNIQUE (depending on the criterion), and one

requiring it is not. Notably, of the four column coverage criteria only ANCC produces

any test cases removed as trivially infeasible or duplicated. This is because ANCC may

dictate a column must not be NULL when it already has an existing NOT NULL constraint

defined for it. In the case of multiple NOT NULL constraints this produces tests that are

duplicates of each other, such that only one should be retained.

Figure 5.2 shows how frequently the search algorithms were able to successfully gen-

erate data satisfying the predicates for the test cases, expressed as a percentage across

all schemas and repeat trials for each DBMS. These results show that for all coverage

criteria, the AVM algorithm is consistently more successful than Random+, especially for

the more complex constraint coverage criteria (i.e., CondAICC and ClauseAICC) and the

active unique column coverage criterion (AUCC). Examining the results more closely, the

few cases where the AVM algorithm was unable to generate data were caused by infeasible

sets of predicates, which are not currently removed as with the trivially infeasible cases

described previously. Automatically detecting such infeasible sets of predicates may be

scope for future work. The Random+ algorithm fails to successfully generate data for

all test cases for any of the coverage criteria, with a general trend of failing more fre-
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quently the more complex coverage criteria. However, contrary to this trend, Random+

is more effective at generating data for the ClauseAICC criterion than the CondAICC

criterion. This suggests the additional cases added by ClauseAICC are easier for the

algorithm to generate test data for, leading to an overall increase in the success percent-

age. Despite this difference, statistical testing of the results for each schema using the

Wilcoxon Rank-Sum test shows that the difference is not significant (p < 0.05) for either

PostgreSQL/HyperSQL or SQLite, with values of 0.09 and 0.2 respectively.

Comparing the data generation success across DBMSs, Figure 5.2 shows that the

Random+ algorithm performs slightly better for PostgreSQL and HyperSQL than SQLite,

although the difference is generally very small. This may be caused by PostgreSQL and

HyperSQL disallowing null values for columns with a PRIMARY KEY constraint, meaning

that generating data that violates a PRIMARY KEY constraint for these DBMSs is much

easier for SQLite where the same value must be produced twice at random.

RQ1 Summary: The number of test cases produced for a given constraint coverage

criteria increases as the complexity of the criterion increases, with the most complex

(ClauseAICC) requiring over 4 times as many as the least complex (APC or ICC) when

summing across all schemas. Due to differences in their model of SQL constraints, there

is a slight increase in number of tests when using SQLite, compared to PostgreSQL and

HyperSQL. When generating data for those test cases, the AVM algorithm is consistently

more successful than the Random+ algorithm, and is therefore the more effective choice.

This result is unchanged by the choice of DBMS, where only Random+ is affected, with

slightly lower success when using SQLite.

RQ2: What is the fault-finding capability of the test cases produced by each of the coverage

criteria, and how does this depend upon the DBMS and search algorithm used?

As described in Section 5.2.3, mutation analysis was used to assess the fault-finding

capability of the test cases produced, as a measure of effectiveness of both the cover-

age criteria and data generation algorithms. The number of mutants for each schema,

produced by applying the 14 mutation operators described in Chapter 4, is shown in

Table 5.3. The values in brackets represent the actual number of mutants used for the

mutation analysis process, after a number of unwanted mutants have been removed3 ac-

3To briefly summarise, this removal process improves the accuracy of the results of mutation analysis,
as well as reducing the execution time required, by analysing the intermediate representation of each
mutant and checking against a series of patterns that identify these unwanted cases.
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cording to automated techniques described next in Chapter 6. The differences between

the number of mutants for PostgreSQL/HyperSQL and SQLite are a side effect of this

removal process, as a consequence of their differing models of SQL constraints. After

this process, a total of 3,775 mutants were generated for PostgreSQL and HyperSQL,

and 3,915 mutants for use with SQLite. The box plots in Figure 5.3 shows the per-

centage of these mutants that were killed by the test cases produced by each coverage

criterion, across all schemas. As depicted by the relatively short length of the “boxes”,

the variability across the 30 repeat trials was low for all both Random+ and AVM search

techniques, with maximum inter-quartile range values of 0.17% and 0.2%, respectively.

This demonstrates that both algorithms generate similarly effective data and therefore

indicates that the coverage criteria place suitably restrictive constraints on what data is

required to satisfy their requirements. Figure 5.4 shows the mean percentage of mutants

killed across each schema against the mean number of test cases produced, for every

combination of coverage criterion, search algorithm and DBMS.

The results show that as the complexity of a constraint coverage criteria increases, so

does the mutation score. Although this may be partly caused by the higher number of test

cases produced for these criteria, therefore increasing the likelihood of killing mutants,

Figure 5.4 shows that a greater number of test cases does not necessarily lead to a higher

proportion of mutants killed. For example, ICC consistently produces more test cases

than AICC and CondAICC, across all conditions, yet also kills fewer mutants than either

in every case. Examining the results for both the unique column criteria and null column

criteria shows similar results – for example, ANCC requires fewer test cases than NCC,

but kills a higher proportion of mutants.

While the constraint coverage criteria are designed to specifically test the existing

contents of the schema, in some cases the unique and null column coverage criteria killed

a higher proportion of mutants. One explanation for this is that the mutation operators

for UNIQUE and NOT NULL constraints (described in Chapter 4) produce a large proportion

of mutants, as shown in Table 5.3, which the unique and null column coverage criteria are

able to kill easily. Aggregating across all DBMSs and schemas these mutants represent

52% of total mutants, thus explaining the high proportion of mutants killed by the unique

and null column coverage criteria.

145



Random+ AVM

●●

●

●●

●

●
●

●●

●

●●

●

●
●

●

●

●

●

●

●●

●

●●●●●●

●●

●

●●●●●●

●●●●●●

●●

●

●●●●●●

●

●●●

●

●●●●●●

●●●●●●

10

20

30

40

50

60

10

20

30

40

50

60

10

20

30

40

50

60

H
yperS

Q
L

P
ostgreS

Q
L

S
Q

Lite

APC
IC

C
AIC

C

Con
dA

IC
C

Clau
se

AIC
C

UCC

AUCC
NCC

ANCC
APC

IC
C

AIC
C

Con
dA

IC
C

Clau
se

AIC
C

UCC

AUCC
NCC

ANCC

Coverage criterion

M
ut

an
ts

 k
ill

ed
 (

%
)

Figure 5.3: The proportion of mutants killed across all schemas, as a percentage of
total number of mutants, for each combination of coverage criterion, DBMS and search
algorithm used to generate data. The boxes span between the 1st and 3rd quartile, with
the line indicating the median and the white diamond showing the mean. The whiskers
extend to the furthest data point up to 1.5× the inter-quartile range, with outliers beyond
this marked as filled circles.
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Figure 5.4: The mean percentage of mutants killed for each schema against the mean
number of test cases generated. The points for constraint criteria, unique column criteria
and null column criteria results are plotted as squares, triangles and circles, respectively.

Comparing the results between Random+ and AVM, Figure 5.4 shows that the test

suites generated for the constraint coverage criteria consistently kill fewer mutants. This

is likely because the Random+ algorithm does not successfully generate data for test

cases as frequently, as shown in Figure 5.1, therefore reducing the likelihood that a given

mutant will be killed. In contrast, when applying a unique or null column criterion the

Random+ appears to produce better data for test cases than the AVM technique. This

result may be caused by the greater variety between test cases produced using a random

search when compared to the data generated by the AVM technique, which is configured

to start with the same set of ‘initial’ values for each test. By covering a larger area of the

possible input domain, the test cases produced by Random+ may be more likely to kill a

wider range of mutants. Conversely, the test cases produced by the AVM technique are

likely to be very similar to each other, as changes are only made from the initial values

if they improve the progress towards satisfying the predicates for a given test case.
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The criterion with the highest percentage of mutants killed depends upon which search

algorithm is used to generate data. When using AVM, ClauseAICC produces test cases

that kill the highest number of mutants, while for Random+ AUCC is the most effective.

However, overall the most mutants were killed when using ClauseAICC and the AVM

algorithm, which resulted in a higher percentage of mutants killed than the AUCC cri-

terion and the Random+ algorithm. As the results for PostgreSQL and HyperSQL in

Figure 5.3 do not clearly support this finding, the Wilcoxon Rank-Sum test was used

to test for statistical significance, showing the difference is highly statistically significant

(p < 108). For SQLite, the difference is clear because the boxes in Figure 5.3 do not

overlap. Therefore, overall the test suites with the highest fault-finding capability are

most likely to be those produced by the ClauseAICC criterion with data generated by

the AVM search algorithm.

Comparing the results across DBMSs, there is not a difference between the results

for PostgreSQL and HyperSQL, which is consistent with the findings of RQ1, where the

same test cases were generated for both. However due to its differing model of SQL

constraints, the results for SQLite differ slightly, especially for NCC and ANCC, which

kill fewer mutants when using SQLite. This is because PostgreSQL and HyperSQL have

an implicit NOT NULL constraint on the columns of a PRIMARY KEY, therefore NCC and

ANCC (which set column values to NULL) are able to kill many mutants when using these

DBMSs.

RQ2 Summary: The highest proportion of mutants are killed by the ClauseAICC

criterion, if using the AVM search algorithm to generate data, or the AUCC criterion, if

the Random+ search algorithm is used. Overall, ClauseAICC and AVM produce the test

cases that kill the most mutants. Although the DBMS choice affects the effectiveness of

some coverage criteria, it does not alter this result.

RQ3: Do the coverage criteria produce test cases that detect different types of faults, and

how can these be characterised?

The box plots of Figures 5.5 and 5.6 provide a breakdown of the percentage of mutants

killed by each criterion according to the mutation operator used to produce them. As

with the results discussed in RQ2, these plots show that the variability across trials

is relatively small, as represented by the very small bars. The higher variability for

Random+ compared to AVM in this Figure is also consistent with the difference in success

rate for producing test data shown in Figure 5.2.
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(a) Using the PostgreSQL/HyperSQL DBMSs
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(b) Using the SQLite DBMS

Figure 5.5: The percentage of mutants killed using each coverage criterion and the AVM
search algorithm, across all schemas, divided by the mutation operator used to produce
them.
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(a) Using the PostgreSQL/HyperSQL DBMSs

●●●●●●●

●
●

●

●●

●

●

●

● ●

●

●
●
●

●

●
●
●

●

●
●

●

●

●

●

●●
●
●●

●

●

●
●

●●
●
●
●
●
●

●●
●
●
●●●

●●
●
●
●●●

●

●●

●

●●
●

●

● ● ● ●

●

●

●

●

● ●

●●●

●●

●

● ●

●●

●

●●●

●

●

●● ●●●●●● ●●●●●● ●●●●●●
●●●●●●

●

●

●

●●
●●
●● ●

●
●
●
●
● ●●

●
●
●● ●●●

●
●●

●●●

●

●

●●●●

● ●●

●

●●

● ●

CInListElementR CR CRelOpE FKColumnPairE FKColumnPairR

NNA NNR PKColumnA PKColumnE PKColumnR

UColumnA UColumnE UColumnR

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100 APC
IC

C
AIC

C

Con
dA

IC
C

Clau
se

AIC
C

UCC

AUCC
NCC

ANCC
APC

IC
C
AIC

C

Con
dA

IC
C

Clau
se

AIC
C

UCC

AUCC
NCC

ANCC

APC
IC

C
AIC

C

Con
dA

IC
C

Clau
se

AIC
C

UCC

AUCC
NCC

ANCC
APC

IC
C
AIC

C

Con
dA

IC
C

Clau
se

AIC
C

UCC

AUCC
NCC

ANCC
APC

IC
C
AIC

C

Con
dA

IC
C

Clau
se

AIC
C

UCC

AUCC
NCC

ANCC

Coverage criterion

M
ut

an
ts

 k
ill

ed
 (

%
)

(b) Using the SQLite DBMS

Figure 5.6: The percentage of mutants killed using each coverage criterion and the
Random+ search algorithm, across all schemas, divided by the mutation operator used
to produce them.
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When using the null column coverage criteria, NCC and ANCC, a large proportion of

mutants produced by those operators adding and removing NOT NULL constraints – NNA

and NNR, respectively – were killed, as expected given the design of these criteria. In

general, ANCC produces tests that kill the highest proportion of these mutants, equalling

or bettering the results of other criteria. For mutants with added NOT NULL constraints

the difference between ANCC and the next best criterion is particularly large. Similarly,

the unique column coverage criteria, UCC and AUCC, kill many of the mutants produced

by adding columns to existing UNIQUE constraints or creating new UNIQUE constraints –

both created using the UColumnA operator. In particular, AUCC outperforms all other

criteria in this respect, across all DBMSs and search algorithms. The high prevalence

of mutants produced by the UColumnA operator, as shown in Table 5.3, combined with

AUCC’s high probability of killing such mutants partly explains why AUCC compares so

favourably to other criteria in Figures 5.3 and 5.4, as discussed in RQ2.

The results for the constraint coverage criteria show that these are generally most

likely to kill mutants produced by ‘removal’ and ‘exchange’ type operators (denoted with

an ‘R’ or ‘E’ as the last character of the operator name, respectively). This trend applies

generally across all types of constraint. For example, none of these criteria produce tests

able to kill more than 10% of mutants produced by the PKColumnA operator, when

using the AVM search algorithm and any DBMS, while nearly 100% of mutants from the

PKColumnE and PKColumnR operators are killed in the best case. This is because the

constraint coverage criteria test the constraints that are already present in the schema,

and thus are able to differentiate the case of a mutant that removes or modifies one of

these constraints.

From these results, the constraint coverage criteria can be described as being appro-

priate at testing for faults of “commission”, where a mistake has been made in an existing

constraint. In contrast, the null and unique column criteria are best suited to testing for

faults of “omission”, where a constraint has mistakenly not be included, as shown by the

high degree of mutants they are able to kill that are produced by ‘addition’ operators,

such as NNA and UColumnA.

There are some differences in results caused by the choice of DBMS, some of which

may be explained by the differences in how PostgreSQL and HyperSQL handle PRIMARY

KEY constraints, where the columns of the constraint are subject to an implicit NOT NULL
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constraint, compared to SQLite, where there is no such restriction. This accounts for the

higher proportion of PRIMARY KEY mutants – produced by PKColumnA, PKColumnE

and PKColumnR – killed by the null column criteria, NCC and ANCC, when using

PostgreSQL or HyperSQL rather than SQLite. In addition, the search algorithm used

also affects the results. For example, the proportion of mutants killed by the constraint

coverage criteria for the UNIQUE mutants – produced by UColumnA, UColumnE and

UColumnR, is much better with data generated using the AVM algorithm than the

Random+ algorithm. This is likely because the AVM algorithm uses a default set of

‘initial’ values, whereas Random+ chooses values randomly, thus the data values used

are more likely to be the same between test cases. As a result, mutations of UNIQUE

constraints are likely to be detected, and thus these mutants killed. Conversely, because

Random+ uses random values these are highly unlikely to be non-unique by chance, and

therefore not likely to detect mutations of UNIQUE constraints.

RQ3 Summary: Constraint coverage criteria are generally better at detecting faults

of commission where constraints are mistakenly included or affect a surplus of columns, as

modelled by removal and exchange type mutation operators. The ClauseAICC criterion

detects the highest proportion of such faults. The null and unique column criteria are

generally the most successful at identifying faults of omission, where constraints have

not been included, with the active criteria (i.e., ANCC and AUCC) finding the greatest

number of these faults.

RQ4: Can the tests from different types of coverage criteria be combined to improve the

overall effectiveness?

As discussed in RQ3, the various types of coverage criteria are able to detect different

kind of faults with greater probabilities. Therefore this research question investigates

whether combining the test cases produced by criteria from the different coverage types

yields an increased fault-finding capability, as estimated by the proportion of mutants

killed.

Figure 5.7 shows box plots of the percentage of mutants killed by each possible one,

two and three-way combination of constraint coverage criterion, null column criterion and

unique column criterion. This includes results for both the AVM and Random+ search

algorithms, as parts (a) and (b), and the PostgreSQL DBMS – results for other DBMSs

were similar and are therefore omitted.
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When generating data with the AVM algorithm, the greatest proportion of mutants

are killed by the combination of ClauseAICC + UCC + ANCC, with a mean average of

96%. This result is interesting as Figure 5.3 shows that when comparing AUCC and UCC

alone, the former kills more mutants. By comparison, the combination of ClauseAICC

+ AUCC + ANCC yields a total of 94% of mutants killed, which is the second highest

result. Using the Wilcoxon Rank-Sum test confirms that this difference is statistically

significant (p < 0.05). However, the difference between combinations of UCC and AUCC

is likely to be an artefact of how data is generated by the AVM algorithm, as ClauseAICC

+ AUCC + ANCC produces data killing the greatest proportion of mutants when instead

using the Random+ algorithm. As the AVM algorithm uses a default set of initial values,

non-unique values will be used in test cases with a higher frequency than when using

the Random+ algorithm. For the UCC criterion, this may result in all columns being

assigned non-unique values which may inadvertently cause the test cases generated to kill

more mutants.

As the majority of mutants were killed by these combined sets of criteria, I was inter-

ested to examine which mutants remained, and therefore likely modelled more difficult

to detect faults. After removing those mutants killed by test cases produced by the

ClauseAICC + UCC + ANCC combination and AVM algorithm, all of the remaining

live mutants were found to be produced by three operators – CRelOpE, PKColumnA

and UColumnA. The CRelOpE (CHECK Relational Operator Exchange) operator pro-

duces mutants by swapping the operator (i.e., =, 6=,<,≤,≥) of a relational expression in a

CHECK constraint with each other. Detecting these cases requires a large number of value

to be produced (e.g., above, on and below a specified constant), especially if the variables

on either side of the relational expression are column references. The PKColumnA and

UColumnA operators add columns to existing PRIMARY KEY and UNIQUE constraints, re-

spectively, or create new single column constraints of the corresponding types. The latter

case is exhibited by many of the live mutants, suggesting there may be scope to further

improve the column coverage criteria to detect such faults of omission. It is also worth

noting that the survival of some mutants provides evidence that the faults modelled by

the mutation operators test a schema more rigorously than the data generated by the

coverage criteria is able to. Therefore to thoroughly test a schema it would be necessary

to produce additional coverage criteria that exercise it more rigorously.

RQ4 Summary: Combining tests produced using constraint coverage, null column

coverage and unique column coverage criteria does increase fault-finding capability, incor-

porating the detection of both faults of commission and omission. The highest proportion
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of mutants were killed using combinations of ClauseAICC, ANCC and either UCC, if us-

ing the AVM algorithm, or AUCC, when using Random+. In the best case, the mean

percentage of mutants killed was 94%, a large improvement over the best single-criterion

mean which was below 60%.

5.4 Summary

This Chapter described an experiment to evaluate the effectiveness of the different cov-

erage criteria and search algorithms that form the data generation component of the

SchemaAnalyst tool. The experiment included all nine coverage criteria, both available

search algorithms, three DBMSs, and a range of 32 schemas, chosen for the wide range

in their number of constraints. The results were then discussed in the context of four

research questions. The first revealed that the more complex criteria, such as Clause-

AICC, produce many more tests than the simple criteria, as well as that the coverage

criteria result in a slightly higher number of tests being produced for SQLite, compared to

PostgreSQL and HyperSQL. The results also showed that the AVM algorithm was consis-

tently more successful in generating test cases than the Random+ algorithm, producing

test data in almost 100% of trials. In the second research question I investigated which

coverage criterion had the highest fault-finding capability, measured by the number of

mutants it managed to kill. The ClauseAICC criterion was found to be the most effective

when the AVM algorithm was used to generate data, while the AUCC criterion killed

slightly more mutants when using the Random+ algorithm. Next, in RQ3 I analysed

whether particular coverage criteria were better at killing mutants produced by specific

mutation operators. This revealed that the constraint criteria were better at detecting

faults of commission, while null and unique column criteria killed a higher proportion of

mutants representing faults of omission. The ClauseAICC, ANCC and AUCC criteria

were shown to have the highest fault finding capability. Finally, in RQ4 I investigated

whether combining the test cases from each of the three types of criteria produced a test

suite that detects a greater number of faults. This confirmed that such combined test

suites can kill many more mutants than those produced by single criteria, with the best

combination depending upon the data generation algorithm – ClauseAICC + ANCC +

UCC when using the AVM algorithm, and ClauseAICC + ANCC + AUCC with the

Random+ algorithm. In the former case this killed 94% of mutants, which is much higher

than the best single-criterion score of below 60%.
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Chapter 6

Automatically Identifying

Ineffective Mutants

6.1 Introduction

In Chapter 5, mutation analysis of relational database schemas was shown to be useful

as a means of comparing different test suites, measuring their fault-finding capability

according to the mutation operators of Chapter 4. However, as with mutation analysis

of other software artefacts, not all mutants contribute meaningfully to the overall result

obtained. This Chapter discusses three types of mutants – equivalent, redundant and

quasi-mutants – classified as “ineffective”, due to their detrimental impact on either the

efficiency or accuracy of the results of mutation analysis. It is therefore beneficial to

attempt to identify and remove these mutants prior to analysis.

First, each of these types of mutant are described in the context of relational database

schemas, including example schemas and discussion of their effect on mutation analysis.

Next, techniques and algorithms are discussed for automatically identifying these mu-

tants, without the need for costly human involvement. Finally, these techniques are eval-

uated with an empirical study, to determine their efficacy and cost-effectiveness across a

range of case study database schemas and multiple DBMSs.

In summary, the contributions this Chapter makes are:
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1. Definitions and examples of equivalent, redundant and quasi-mutants, in the context

of relational database schemas, and discussion of the negative impacts they have

on the mutation analysis process;

2. Descriptions of a set of techniques which are able to identify each type of “ineffec-

tive” mutant in a fully automated way, including support for detecting equivalence

between some different types of SQL constraint; and

3. An empirical evaluation of applying the techniques in practice to the mutation

analysis of a variety of database schemas and three DBMSs, to determine how

effective and efficient they are.

6.2 Types of Ineffective Mutant

This Section defines the three types of ineffective mutant, describes what circumstances

cause them to be produced, provides an example, and the negative impact each has on

mutation analysis of relational database schemas.

6.2.1 Equivalent mutants

While each of the database schema mutation operators, described in Chapter 4, makes a

specific syntactic change to the original schema, it is nonetheless possible that a mutant

may be produced that is functionally identical, but syntactically different, to the original.

As a consequence, there exists no possible sequence of SQL INSERT statements that is

accepted by the original schema and rejected by the mutant schema, or vice-versa. Such

a mutant is commonly known as an equivalent mutant.

An example of an equivalent mutant is produced when a schema containing a PRIMARY

KEY is mutated to contain a UNIQUE constraint over the same columns:

x(a INT, PRIMARY KEY (a)) x(a INT, PRIMARY KEY (a), UNIQUE (a))
UColumnA operator

Original schema Mutant schema
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As both a PRIMARY KEY and UNIQUE constraint require the specified columns to contain

unique values, the addition of UNIQUE(a) in the mutant schema does not alter the range

of INSERT statements accepted, compared to the original schema. Therefore, the mutant

is behaviourally identical to the original, thus is classified as an equivalent mutant.

Given that an equivalent mutant cannot be discerned from the original schema, during

mutation analysis it will never be “killed”. As a consequence, equivalent mutants may

lead to inaccurate mutation scores, where test suites will be given lower-than-expected

scores. This may in turn interfere with the comparison of different techniques for pro-

ducing test suites, leading to false assessments of their effectiveness. In addition, in the

practical application of mutation analysis each mutant left “alive” by a test suite is man-

ually inspected, to determine in what way the test suite is deficient. As the number of

equivalent mutants increases, this human cost can quickly become prohibitively expen-

sive. In addition, for every equivalent mutant present, the full test suite will be executed

against it, in an ineffectual attempt to kill it, thus needlessly adding to the computational

cost of mutation analysis.

To mitigate these issues, it is important to identify equivalent mutants such that they

can be removed prior to mutation analysis. As the number of mutants produced may grow

very large for complex schemas, thus rendering human detection of equivalence infeasibly

expensive, it is necessary for this process to be automated as much as is possible.

6.2.2 Redundant mutants

Where two database schema mutants are behaviourally the same as each other they are

classified as redundant mutants. This implies that for any sequence of SQL INSERT state-

ments the acceptance pattern will be the same for both mutants. Redundant mutants

may be produced when Exchange-type mutation operators make a change that effec-

tively removes a constraint, thus overlapping with the changes made by a Removal-type

operator. For example:

x(a INT, b INT, UNIQUE(a), UNIQUE(b)) m1: x(a INT, b INT, UNIQUE(a))

m2: x(a INT, b INT, UNIQUE(a))

UColumnR operator

(Removes UNIQUE(b))

UColumnE operator

(Exchanges b with a)

Original schema Mutant schemas
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In the case of the m2, the mutation causes there to be two UNIQUE(a) constraints.

However, as there is no semantic difference between this and the original single UNIQUE

constraint, this is simplified such that the two mutants are identical, both behaviourally

and syntactically.

Redundant mutants may interfere with the comparison of different test suite gener-

ation techniques, by biasing the mutation scores obtained towards particular types of

mutants, thus causing the score to potentially either over- or under-estimate the true ef-

fectiveness of the test suites. In addition, as sets of redundant mutants are behaviourally

equivalent, with respect to each other, executing the test suite against each is an unnec-

essary computational cost.

As with equivalent mutants, it is therefore also important to detect the presence of

redundant mutants, prior to mutation analysis, to ensure results are both accurate and

obtained efficiently. Given each possible pair of mutants may be redundant with respect

to each other, it is impractical to consider identifying redundant mutants manually, thus

necessitating an automated approach.

6.2.3 Quasi-mutants

While there is an official ISO standard for the SQL language [7], defining how an SQL

relational database should behave, each DBMS may vary in its interpretation and confor-

mance to this standard [1]. As a consequence, it is possible to produce a mutant that is

syntactically valid for one DBMS, yet invalid for another. A syntactically invalid mutant

is usually described as being “still-born”, in mutation analysis of programs. However,

because these mutants are only still-born with respect to certain DBMSs they are referred

to as quasi-mutants instead.

A quasi-mutant exposes a specific difference between the internal models of SQL used

by at least two DBMSs. For example, in a PostgreSQL database for every FOREIGN KEY

there must be a PRIMARY KEY or UNIQUE constraint defined for the reference columns,

otherwise the CREATE TABLE statement will be rejected. However, submitting a similar

statement to an SQLite database causes no such error. In this case, the mutants are

classified as quasi-mutants with respect to the PostgreSQL DBMS. For example, the

following schema would be rejected by PostgreSQL but accepted by SQLite:
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CREATE TABLE x(a INT);

CREATE TABLE y(b INT REFERENCES x(a));

Statements:
Rejected

Accepted

Executed with PostgreSQL

Executed with SQLite

Results:

Although quasi-mutants do not stop the application of mutation analysis, and can

trivially be prevented from affecting the overall mutation score, identifying these mutants

ahead of time may allow for the use of optimisations otherwise precluded by their presence

[117]. In the interest of efficiency, it is therefore beneficial to detect and discard any quasi-

mutants specific to the DBMS in use, prior to mutation analysis.

6.3 Detecting Ineffective Mutants Automatically

The content in this Section details techniques to detect each of the types of ineffective

mutant described in Section 6.2, which would otherwise detrimentally affect mutation

analysis of relational database schemas. These techniques work automatically, thus re-

ducing the amount of costly human inspection required, decreasing the overall cost of

mutation analysis.

All of the techniques in this Section operate directly on the intermediate representation

of SQL used internally in the SchemaAnalyst tool, as described in Section 3.3, and which

is both produced when parsing SQL schemas for use with the tool and used directly as the

representation for mutants. This enables the schemas and their mutants to be analysed

statically in order to identify ineffective mutants, prior to mutation analysis.

6.3.1 Equivalent mutants

As defined previously in Section 6.2.1, a mutant is classified as equivalent if it is function-

ally identical, but syntactically different, to the original schema. All equivalent mutants

may be categorised as being either structurally or behaviourally equivalent to the original

schema. These two categories require different means of detection, which are described

in turn in this Section.
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Structural equivalence

Two schemas are structurally equivalent to one another if they are identical, ignoring small

possible differences in the SQL used to define them – for example, whether a PRIMARY

KEY is defined as part of a column definition, as shown by tables x1 and x2 respectively:

CREATE TABLE x1 (a INT PRIMARY KEY)

CREATE TABLE x2 (a INT, PRIMARY KEY(a))

Such small differences are factored away when parsing a schema into the SchemaAna-

lyst intermediate representation, which can be approximately visualised as the following

trees of objects for this example:

Table

Name = x Columns

Name = a

Type = INT

Constraints

Type =

Primary Key

Columns = {a}

SchemaAnalyst representation of x1

Table

Name = x Columns

Name = a

Type = INT

Constraints

Type =

Primary Key

Columns = {a}

SchemaAnalyst representation of x2

By visual inspection of these trees it is easy to observe that they are identical, even

though the original SQL definitions of each differ subtly, and therefore that the initial

schemas are structurally equivalent.

To automate this comparison, thus eliminating the human cost, the functions of Fig-

ure 6.1 are applied to the original schema and each mutant schema, by first invoking the

schemaEquiv function. Together, these functions compare each attribute of two schemas

in turn, starting at the top of the trees of objects and stopping if any difference is detected

between the two. This allows the detection of structurally equivalent mutants to be fully

automated, so they can be removed prior to mutation analysis, reducing the cost and

improving the accuracy of the resulting mutation score.

Behavioural equivalence

Although two schemas may not be structurally equivalent, it is still possible that they will

behave identically for all INSERT statements and are therefore classified as behaviourally
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function schemaEquiv(a, b)
return (name(a) = name(b)

and |tables(a)|=|tables(b)|
and tablesEquiv(tables(a),tables(b))
and primaryKeysEquiv(getPrimaryKey(a),getPrimaryKey(b))
and foreignKeysEquiv(getForeignKeys(a),getForeignKeys(b))
and uniquesEquiv(getUniques(a),getUniques(b))
and checksEquiv(getChecks(a),getChecks(b))
and notNullsEquiv(getNotNulls(a),getNotNulls(b)))

function tablesEquiv(a, b)
return (name(a) = name(b)

and columnsEquiv(getColumns(a),getColumns(b)))

function columnsEquiv(a, b)
return (name(a) = name(b)

and getType(a) = getType(b))

function primaryKeysEquiv(a, b)
return multicolumnConstraintEquiv(a,b)

function foreignKeysEquiv(a, b)
return (multicolumnConstraintEquiv(a,b)

and name(getRefTable(a)) = name(getRefTable(b))
and |getRefColumns(a)| = |getRefColumns(b)|
and getRefColumns(a) ⊆ getRefColumns(b))

function uniquesEquiv(a, b)
return multicolumnConstraintEquiv(a,b)

function checksEquiv(a, b)
return (name(a) = name(b)

and name(getTable(a)) = name(getTable(b))
and expression(a) = expression(b))

function notNullsEquiv(a, b)
return (name(a) = name(b)

and name(getTable(a)) = name(getTable(b))
and name(column(a)) = name(column(b)))

function multicolumnConstraintEquiv(a, b)
return (name(a) = name(b)

and name(getTable(a)) = name(getTable(b))
and |getColumns(a)| 6= |getColumns(b)|
and getColumns(a) ⊆ getColumns(b))

Figure 6.1: The set of functions used to detect structural equivalence, using the utility
functions described in Figure 4.1 (see page 108).
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Algorithm 15 Detecting NOT NULL equivalent to CHECK

function notNullEquivToCheck(a, b)
unmatched ← ∅
for all notNullA in getNotNulls(a) do

found ← F
for all notNullB in getNotNulls(b) do

if notNullA = notNullB then
found ← T
break

if found = F then
unmatched ←unmatched ∪ {notNullA}

if |unmatched | = 0 then return T
else

for all notNull in unmatched do
if getCheck((getColumns(notNull)) IS NOT NULL) 6∈ getChecks(b) then return F

return T

equivalent. This is due to the overlapping effects various SQL features have on the

acceptance of data into the database, meaning the same overall effect can be achieved in

multiple ways by applying different constraints. This Section describes three “patterns”

that describe such sets of overlapping constraints, which can be automatically identified

using a corresponding set of detection functions, implemented in the SchemaAnalyst tool.

Where the pattern is only applicable to a particular DBMS, due to differences in their

interpretation and implementation of the SQL specification, this is detailed.

Pattern 1: NOT NULL in CHECK constraints. Defining a NOT NULL constraint for a

column, x, is behaviourally equivalent to including a CHECK constraint with the expression

x IS NOT NULL. For example, tables x1 and x2 will accept and reject exactly the same

INSERT statements and are therefore behaviourally equivalent:

CREATE TABLE x1 (a INT NOT NULL)

CREATE TABLE x2 (a INT, CHECK(a IS NOT NULL))

To detect this behavioural equivalence, the notNullsEquiv function in Figure 6.1

must be modified to identify whether each NOT NULL constraint in schema a has a cor-

responding NOT NULL constraint or behaviourally equivalent CHECK constraint in schema

b. This is implemented using the algorithm in Algorithm 15 as the function notNullE-

quivToCheck.

Pattern 2: NOT NULL and PRIMARY KEY constraints. If the DBMS in use is either

PostgreSQL or HyperSQL, a PRIMARY KEY constraint specifies not only that the value(s)
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Algorithm 16 Detecting NOT NULL and PRIMARY KEY overlap

function notNullOnPrimaryKey(schema)
for all t do in getTables(schema)

for all nn do in getNotNulls(t)
if getPrimaryKey(getColumns(nn)) ∈ primaryKeys(t) then

getNotNulls(t) ← createNotNulls(t) / {nn}

for the specified column(s) must be unique, but also cannot be NULL. In contrast, SQLite

does not enforce this restriction, allowing NULL values to be used unless an additional NOT

NULL constraint is defined for each of the columns.

As a consequence, the NOT NULL addition operator (NNA, Algorithm 10) may produce

mutants that are behaviourally indistinguishable from the original schema, when using

either PostgreSQL or HyperSQL, by adding a NOT NULL constraint to a column already in

a PRIMARY KEY. For example, given the table x and the mutants m1 and m2, both produced

by the NNA operator:

x(a INT,

b INT,

PRIMARY KEY(a))

m1: x(a INT NOT NULL,

b INT,

PRIMARY KEY(a))

m2: x(a INT,

b INT NOT NULL,

PRIMARY KEY(a))

NNA operator

(Adds a NOT NULL)

NNA operator

(Adds b NOT NULL)

Original schema Mutant schemas

In this case, m1 contains a NOT NULL constraint overlapping the PRIMARY KEY, as both

are defined for the same column, a. As a result, there is no INSERT statement that will

be accepted by the original schema and rejected by m1, or vice versa. In contrast, m2 does

not have such an overlap, and therefore an INSERT can be used to identify the mutation

– in this case, the values (a =1,b =NULL) would suffice, being accepted by m2 but rejected

by the original. Therefore, it can be said that m1 is behaviourally equivalent, while m2 is

not.

To detect these mutants, the notNullOnPrimaryKey function in Algorithm 16 is

applied, prior to the application of the structural equivalence detection functions. This

function analyses all tables in schema and removes any NOT NULL constraint that overlaps

with the columns of the PRIMARY KEY, a process which can be seen as being analogous
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Algorithm 17 Detecting UNIQUE and PRIMARY KEY overlap

function uniqueOnPrimaryKey(schema)
for all t do in getTables(schema)

for all uc do in getUniques(t)
if getPrimaryKey(getColumns(uc)) ∈ primaryKeys(t) then

getUniques(t) ← createUniques(t) / {uc}

to removing ‘dead code’ that does not affect behaviour from a program. This removal

process renders mutants such as m1 structurally equivalent to the original schema, enabling

them to be identified and removed automatically.

Pattern 3: UNIQUE and PRIMARY KEY overlap. Where a PRIMARY KEY and UNIQUE

constraint are defined over the same set of columns, the UNIQUE constraint is superfluous,

as the PRIMARY KEY already enforces the uniqueness of those columns, such that the

UNIQUE does not impose any additional restrictions on the data accepted by the database.

Therefore, a mutant whose mutation is the addition of a UNIQUE constraint matching the

existing PRIMARY KEY constraint is a behaviourally equivalent mutant. For example, given

the table x and the mutants m1 and m2, both produced by the UNIQUE column addition

(UColumnA) operator:

x(a INT,

b INT,

PRIMARY KEY(a))

m1: x(a INT,

b INT,

PRIMARY KEY(a),

UNIQUE(a))

m2: x(a INT,

b INT,

PRIMARY KEY(a),

UNIQUE(b))

UColumnA operator

(Adds UNIQUE(a))

UColumnA operator

(Adds UNIQUE(b))

Original schema
Mutant schemas

In this case, the UNIQUE constraint added in m1 does not alter the acceptance behaviour

compared to the original schema, because it contains the same set of columns as the

PRIMARY KEY. This implies there is no possible sequence of INSERT statements that will

be accepted by m1 and rejected by the original, or vice versa. In contrast, the mutation in

m2 does not contain the same set of columns as the existing PRIMARY KEY and thus the mu-

tation can be detected – for example, the sequence of values {(a =1,b =1),(a =2,b =1)}
will be accepted by the original schema but rejected by m2.

166



As with pattern 2, the automatic detection of these behaviourally equivalent mutants

applies a function to remove the unneeded constraint(s) – uniqueOnPrimaryKey in

Algorithm 17 – and then utilizes the structural equivalent mutant detection functions to

identify and discard the mutant. Applying this process to m1, given above, would cause

the UNIQUE(a) constraint to be removed, leaving the mutant structurally identical to the

original schema.

6.3.2 Redundant mutants

As defined previously in Section 6.2.2, a mutant is a redundant if it is behaviourally

identical to another mutant. These mutants may impact on the ability to use mutation

analysis to compare different data generation techniques by biasing the mutation scores

towards particular types of mutant, as well as increasing the time needed for mutation

analysis, and should therefore be removed.

Identification of redundant mutants is achieved by applying the automatic equivalent

mutant detection approaches described in Section 6.3.1, used there to compare each mu-

tant against the original schema, to compare each pair of mutants instead. By including

the techniques for identifying both structural and behavioural equivalence, this enables

the detection of either type of redundant mutant.

6.3.3 Quasi-mutants

Due to slight differences between DBMSs, it is possible a mutant is syntactically valid for

one DBMS yet invalid for another; Section 6.2.3 classifies these mutants as quasi-mutants.

The presence of these mutants may affect the efficiency of mutation analysis, therefore

it is beneficial to automatically identify and remove them. However, this process should

only be applied when they are invalid with respect to the DBMS currently being used,

otherwise the accuracy of the mutation score will be affected.

Applying the mutation operators discussed previously in Chapter 4 to mutation anal-

ysis using three DBMSs – PostgreSQL, HyperSQL and SQLite – has led to the discovery

of one pattern that describes a quasi-mutant, which is invalid when either PostgreSQL

or HyperSQL are used:
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∀fk ∈ getForeignKeys(t) =⇒

∃getUnique(getRefColumns(fk)) ∈ getUniques(t) ∨

∃getPrimaryKey(getRefColumns(fk)) ∈ getPrimaryKey(getRefTable(fk))

That is, for every foreign key constraint, the columns referred to in the reference table

must either be subject to a PRIMARY KEY or UNIQUE constraint, otherwise the schema is

invalid and will be rejected when a CREATE TABLE statement is issued, preventing a

database from being created. If a CREATE statement violating this pattern is submitted

to PostgreSQL an error message is returned stating:

“There is no unique constraint matching given keys for referenced table

(Error 42830 (invalid foreign key))”

...while HyperSQL produces a comparable error message:

“a UNIQUE constraint does not exist on referenced columns (Error 5529)”

Because a DBMS will reject a CREATE statement if it is syntactically invalid, the DBMS

itself can be used to identify quasi-mutant. This simply involves submitting the schema

for each mutant to the intended DBMS as CREATE TABLE statements and examining

whether it was accepted or rejected. However, this may become very costly as the size of

the schema and number of mutants increases, as CREATE TABLE statements are expensive

operations. In addition, between each mutant a series of DROP TABLE statements must

be executed, provided at least one table of the prior mutant was accepted and a database

created. To ameliorate this cost, the submission of each mutant schema may be wrapped

in an SQL transaction, such that the transaction can be “rolled back” between mutants

to return the database to an empty state.

Alternatively, it is possible to detect quasi-mutants by statically analysing the schema,

thus avoiding the need for DBMS interaction which may prove computationally costly. I

achieved this by transforming the more formal description of the quasi-mutant pattern

into the detection function, detectQuasi, given in Algorithm 18. By applying this

function to each mutant schema prior to mutation analysis, provided either PostgreSQL

or HyperSQL are the DBMS in use, any quasi-mutants matching this known pattern

can be identified both automatically and without interaction with the DBMS. These can
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Algorithm 18 Detecting quasi-mutants

function detectQuasi(schema)
for all t in getTables(schema) do

for all fk in getForeignKeys(t) do
if getPrimaryKey(getRefColumns(fk)) 6∈ primaryKeys(getRefTable(fk))

and getUnique(getRefColumns(fk)) 6∈ getUniques(getRefTable(fk)) then
return T

return F

then be discarded, allowing the mutation analysis process to be implemented assuming

all remaining mutants are syntactically valid for the chosen DBMS.

Although currently only one pattern of quasi-mutant is identified using this detec-

tion function, to date experimentation with the SchemaAnalyst tool has not led to the

discovery of any additional patterns, using the three currently supported DBMSs, the

mutation operators of Chapter 4 and over 50 schemas. However, I have designed the mu-

tation analysis process implemented in the SchemaAnalyst tool to automatically report

when the assumption that “all mutants remaining after quasi-mutant removal must be

syntactically valid” is violated. Any mutant that violates this constraint must represent

a new pattern of quasi-mutant, therefore if additional DBMSs or operators are added

these mutants can be identified. These new patterns can then be encoded within detec-

tion functions and easily integrated into the mutation analysis system of SchemaAnalyst,

applied selectively depending on the DBMS in use.

6.4 The Impact of Ineffective Mutant Removal

This Section describes the design and results of an empirical study aiming to determine

what effect removal of ineffective mutants has, applying the techniques described in Sec-

tion 6.3. This is measured both in terms of the change in the resulting mutation score

and the time taken for mutation analysis, including the additional time required to detect

and remove them.
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Table 6.1: Schemas analysed in the empirical study
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ArtistSimilarity 2 3 0 2 0 1 0 3
ArtistTerm 5 7 0 4 0 3 0 7
BankAccount 2 9 0 1 5 2 0 8
BookTown 22 67 2 0 15 11 0 28
Cloc 2 10 0 0 0 0 0 0
CoffeeOrders 5 20 0 4 10 5 0 19
Flights 2 13 1 1 6 2 0 10
IsoFlav R2 6 40 0 0 0 0 5 5
JWhoisServer 6 49 0 0 44 6 0 50
NistDML183 2 6 0 1 0 0 1 2
NistWeather 2 9 5 1 5 2 0 13
NistXTS749 2 7 1 1 3 2 0 7
RiskIt 13 57 0 10 15 11 0 36
StackOverflow 4 43 0 0 5 0 0 5
UnixUsage 8 32 0 7 10 7 0 24
WordNet 8 29 0 0 22 8 1 31
Total 91 401 9 32 140 60 7 248

6.4.1 Experiment design

Schemas

For this study a set of 16 schemas were chosen, which are detailed in Table 6.1. Although

there are fewer schemas used than other experiments in my thesis this ensured that the

runtime of the experiment remained practically feasible. In addition, the schemas chosen

vary widely in the number of tables (2 to 22), columns (3 to 67) and constraints (0

to 50), as well as containing examples of all types of supported constraints – PRIMARY

KEY, FOREIGN KEY, NOT NULL, UNIQUE and CHECK constraints. The schemas were also

extracted from a variety of sources, with 10 being from real-world usage. For example,

the JWhoisServer schema forms part of an open source server application that implements

the Internet “WHOIS” protocol, while the UnixUsage schema is used in an application

that logs and monitors usage of Unix commands. Other examples include RiskIt, which

is part of an insurance risk modelling and premium adjustment system, and IsoFlav R2,

which is used by the U.S Department for Agriculture to report the flavonoid content

of a number of foods. I therefore argue that while the set of schemas used is smaller

than other experiments in my thesis, they are sufficiently diverse to produce an adequate

number and variety of mutants to both test and evaluate the techniques introduced in

this Chapter. This ensures the results are generalisable to a wider range of schemas,

while ensuring the running time of the experiment remains practically feasible.
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DBMSs

To control for any effect that the choice of DBMS may have on the results both Post-

greSQL and HyperSQL were included, chosen for their architectural differences, as dis-

cussed in Section 3.3.3. This ensures that the results can be generalised to multiple

DBMSs and are not an artefact of specific implementation details or performance nu-

ances of the DBMS in use.

Methodology

To allow a thorough comparison of the techniques and approaches described in this Chap-

ter, a number of different experimental conditions are used, each repeated 15 times to

enable the calculation of means and standard deviations. This number was chosen to

ensure the computational cost of running the experiment was not too great, while gath-

ering sufficient data to control for any small random error introduced into the results by

differing levels of background processes running on the machine during the experiment1.

Firstly, for quasi-mutant detection three techniques are tested — the simple DBMS

approach, the DBMS approach with SQL transactions, and the static analysis approach.

The DBMS approaches are repeated for each DBMS, to expose any difference derived

from the performance of the DBMS, while the static analysis approach is included only

once, as the performance is independent of the DBMS in use. This gives a total of five

conditions for quasi-mutant detection. For each condition, the efficiency and effective-

ness is measured in terms of the time taken and the number of quasi-mutants detected,

respectively, with the simple DBMS approach representing the expected result for the

other techniques.

Secondly, the time taken for mutation analysis is measured for each DBMS with

and without the removal of all three types of ineffective mutant present, to determine

whether the time taken to identify equivalent and redundant mutants is cost-effective

when compared to the time saved by the reduced number of mutants to analyse. To

statistically describe the significance of any difference, the Wilcoxon Rank-Sum test is

applied and complemented with the Vargha-Delaney Â12 effect size measure, to describe

1The server used was not used for any other purpose during the execution of the experiment, therefore
the amount of noise added to the data should be very small and controlled for by the use of average
values when analysing the results.
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the practical significance, if any. The effect of ineffective mutant removal is also quantified

in terms of the number of equivalent, redundant and quasi-mutants detected, to better

understand their prevalence and identify any possible patterns in their occurrence.

Finally, the mutation score is recorded for each DBMS with and without ineffective

mutant removal, to determine how the accuracy of the score is affected by equivalent and

redundant mutants. This is expressed as an increase, decrease or no change, which is

tested for significance with the Wilcoxon Rank-Sum test.

Configuration

The experiment was performed using the SchemaAnalyst tool, compiled using the Java

Development Kit 7 compiler and executed with the 64-bit Oracle Java 1.7 virtual machine,

in an Ubuntu 12.04 environment. All trials were executed on the same server running

a 3.2.0-27 GNU/Linux 64-bit kernel, with a quad-core 2.4GHz CPU, 12GB RAM and

all data stored on a local disk. Experiments used PostgreSQL version 9.1.9, running on

the same machine, in its default configuration and HyperSQL version 2.2.8 using the

“in-memory” setting.

Threats to validity

To reduce the possible impact of different threats to the validity of the experimental

results, a number of decisions were made when designing the experiment:

Misclassification of mutants It is possible that mutants may be incorrectly classified

as ineffective due to implementation mistakes in the detection functions. To reduce

the risk of this impacting the results, each mutant identified as either equivalent or

redundant was manually reviewed. Quasi-mutants were tested by automated means

by testing them against the DBMS and check they were rejected as expected. It is

however possible there are further cases of equivalence or redundancy that remain

undetected, which should be subject to further investigation as part of future work.

Range of schemas The prevalence of ineffective mutants depends directly on the types

of constraints used in a schema. Therefore, the choice of schemas to study has a

direct impact upon how cost effective the techniques described in this Chapter are.
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Figure 6.2: Time taken for quasi-mutant detection
The time taken when combining results from all schemas by scaling each against the maximum mean

from any technique for that schema. This allows the results to be collated without being affected by the

differences between schemas.

As discussed earlier in this Section, the schemas were selected to give a diverse

set to study, including a number of real-world examples from open source software

projects. This increases the generalisability of the experimental results.

Performance variability While the server used to perform the trials of this experi-

ment was used exclusively for this task for its duration, differences in background

tasks and caching may reduce the accuracy of the results obtained. To reduce this

risk, 15 repeat trials of each configuration were performed to allow averages and

standard deviation to be calculated.

6.4.2 Empirical results

Summary of results

The number of mutants produced and identified as one of the three types of ineffective

mutant for each schema is shown in Table 6.2a. The same results are shown, instead

grouped by the mutation operator used to generate the mutant, in Table 6.2b. In both

cases, totals are provided for the number of ineffective mutants and the number of re-

maining, or effective, mutants. For each schema or operator, the savings column gives

the percentage of mutants removed, calculated as:
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Table 6.2: Ineffective Mutants Removed

The number of equivalent, redundant and quasi-mutants produced and removed automatically. All quasi-
mutant detection techniques identified the same number of mutants, thus these result are repesentative
of all three included techniques. Savings is the number of mutants removed expressed as a percentage.
The savings value for the total row is calculated across the total row itself.

(a) Grouped by Schema
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ArtistSimilarity 13 2 2 1 5 8 38.5
ArtistTerm 29 6 0 3 9 20 31.0
BankAccount 51 4 0 21 25 26 49.0
BookTown 235 22 0 0 22 213 9.4
Cloc 30 0 0 0 0 30 0.0
CoffeeOrders 115 10 0 54 64 51 55.7
Flights 70 4 3 19 26 44 37.1
IsoFlav R2 219 0 0 0 0 219 0.0
JWhoisServer 190 12 0 0 12 178 6.3
NistDML183 40 0 2 18 20 20 50.0
NistWeather 58 3 0 23 26 32 44.8
NistXTS749 33 4 0 7 11 22 33.3
RiskIt 503 22 0 297 319 184 63.4
StackOverflow 129 0 0 0 0 129 0.0
UnixUsage 220 14 0 124 138 82 62.7
WordNet 107 20 1 0 21 86 19.6
Total 2042 123 8 567 698 1344 34.2

(b) Grouped by Operator
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CInListElementR 4 0 0 0 0 4 0.0
CR 9 0 0 0 0 9 0.0
CRelOpE 10 0 0 0 0 10 0.0
FKColumnPairA 188 0 0 188 188 0 100.0
FKColumnPairE 287 0 5 222 227 60 79.1
FKColumnPairR 34 0 2 4 6 28 17.6
NNA 261 13 0 0 13 248 5.0
NNR 140 60 0 0 60 80 42.9
PKColumnA 327 0 0 61 61 266 18.7
PKColumnE 201 0 0 66 66 135 32.8
PKColumnR 74 0 0 21 21 53 28.4
UColumnA 427 50 0 1 51 376 11.9
UColumnE 68 0 0 2 2 66 2.9
UColumnR 12 0 1 2 3 9 25.0
Total 2042 123 8 567 698 1344 34.2
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Table 6.3: Mean and standard deviation of time taken to detect quasi-mutants

Schema
Time Taken (ms)

HyperSQL HyperSQL Trans. PostgreSQL PostgreSQL Trans. Static
Mean SD Mean SD Mean SD Mean SD Mean SD

ArtistSimilarity 2203 117 2057 148 2811 154 2562 101 <1 <1
ArtistTerm 14852 372 13373 307 14889 331 13377 364 3 <1
BankAccount 7248 244 6362 136 7372 278 6360 177 2 <1
BookTown 227657 1934 177102 1012 238193 1495 185695 1135 <1 <1
Cloc 2361 177 2114 130 2321 145 2052 112 <1 <1
CoffeeOrders 39086 635 32108 590 39071 785 32062 561 11 <1
Flights 10113 251 9059 272 10480 211 9355 192 2 <1
IsoFlav R2 151500 4475 137992 961 150570 1225 138145 970 <1 <1
JWhoisServer 107537 1187 96748 908 110345 1144 100450 801 <1 <1
NistDML183 3511 145 2957 113 4143 306 3445 198 2 <1
NistWeather 8643 385 7483 313 8536 198 7450 253 2 <1
NistXTS749 6633 206 6138 231 6676 213 6064 201 1 <1
RiskIt 258236 1754 210010 696 334288 1874 269025 1217 57 3
StackOverflow 34724 682 30633 510 34843 625 30796 726 <1 <1
UnixUsage 82574 1186 65771 756 102872 1341 79872 586 21 <1
WordNet 74003 852 65714 891 77998 1153 68160 529 <1 <1

Table 6.4: Mutation score with and without ineffective mutants by schema

Schema With Without Difference
ArtistSimilarity 0.83 1.00 0.17
ArtistTerm 0.77 1.00 0.23
BankAccount 0.87 1.00 0.13
BookTown 0.89 0.99 0.09
Cloc 1.00 1.00 0.00
CoffeeOrders 0.84 1.00 0.16
Flights 0.88 0.95 0.07
IsoFlav R2 1.00 1.00 0.00
JWhoisServer 0.94 1.00 0.06
NistDML183 1.00 1.00 0.00
NistWeather 0.89 0.97 0.08
NistXTS749 0.81 0.95 0.15
RiskIt 0.89 1.00 0.11
StackOverflow 0.98 0.98 0.00
UnixUsage 0.85 1.00 0.15
WordNet 0.13 0.15 0.02
Total 0.85 0.94 0.09

Savings (%) =

∑
Ineffective

Produced
× 100

The total rows give the sum total of mutants across all schemas or operators for each

column, except the savings column, which is calculated across the total rows themselves,

using the equation:
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Table 6.5: Summary of mutation score change

A summary of the change to mutation scores made by removing ineffective mutants. Increase, decrease
and no change show the percentage of case studies where the mutation score increase, decreased or
remained the same, respectively. The “Adequate” column is the number of schemas for which the score
increased from less than 1 to 1, therefore revealing a mutation adequate test suite, as percentage of the
schemas where the score increased. The “Significance” column reports the statistical significance of the
change in mutation score, using the Wilcoxon Rank-Sum test.

DBMS Increase (%) Decrease (%) No Change (%) Adequate (%) Significance
HyperSQL 75 0 25 44 0.001
PostgreSQL 75 0 25 44 0.001
Both 75 0 25 44 <0.001

Total Savings (%) =

∑
Ineffective∑
Produced

× 100

The time taken for each of the five quasi-mutant detection techniques is shown in

Table 6.3, stated as a mean and standard deviation to account for variance across repeated

trials. The static analysis technique, listed as “Static” in the table, is only included once

as its efficiency is not affected by whether PostgreSQL or HyperSQL is being used. The

number of quasi-mutants for each technique was identical across all schemas, repeat trials

and both DBMSs, thus the results given in the quasi-mutant column of Table 6.2a are

representative for all five techniques. The time taken by each technique is also shown

in the box plots of Figure 6.2, where the time taken has been scaled between 0 and 1

against the maximum mean value of any technique for each schema. This allows the

results for each schema to be combined, without allowing major structural differences

between schemas to adversely affect the summarised data.

Table 6.6a shows the mean total time taken for mutation analysis for each DBMS,

both with and without ineffective mutants, including the time to detect and remove

those mutants using static analysis in the latter case. For each schema, the difference

between the means is calculated and presented as both a time and percentage, which if

positive indicates mutation is faster with removal of ineffective mutants than without.

These results are summarised for each DBMS in Table 6.6b, where the “Both” row is

a summary across all results (i.e., disregarding the DBMS used when summarising the

data). Finally, Table 6.6c shows the results of statistical analysis of the difference in time

taken, determining statistical significance using the Wilcoxon Rank-Sum test and effect

sizes with the Â12 statistic.
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Table 6.6: Mutation analysis time with and without ineffective mutants

The mean time taken for mutation analysis, with and without ineffective mutants. A positive mean

difference indicates removing ineffective mutants improves efficiency. In the summarised results, “both”

is the time difference across all results, ignoring the DBMS being used. The Wilcoxon Rank-Sum test

is used to test for statistical significance, where a p-value less than 0.05 is significant. The Â12 effect

size statistic is also applied, to determine whether any differences are practically significant, with values

greater than 0.5 representing a time decrease and less than 0.5 representing a time increase. The effect

size is described as “large” if less than 0.29 or greater than 0.71, “medium” if less than 0.36 or greater

than 0.64 and “small” if less than 0.44 or greater than 0.56. Otherwise, the effect size is “none”.

(a) Time taken

Schema
HyperSQL PostgreSQL

Mean Time (ms) Mean Diff. Mean Time (ms) Mean Diff.
Without With (ms) (%) Without With (ms) (%)

ArtistSimilarity 185 240 55 23.05 5693 8588 2895 33.71
ArtistTerm 1178 1302 124 9.54 42668 55905 13238 23.68
BankAccount 1025 1071 47 4.35 30741 35458 4717 13.30
BookTown 26283 27001 718 2.66 1710434 1908186 197752 10.36
Cloc 1100 1027 -73 -7.15 28797 28838 41 0.14
CoffeeOrders 2979 3016 37 1.22 217683 257678 39995 15.52
Flights 2187 2161 -27 -1.24 79073 90303 11230 12.44
IsoFlav R2 9316 8492 -824 -9.71 1032813 1029727 -3086 -0.30
JWhoisServer 9401 9104 -297 -3.26 646683 686089 39407 5.74
NistDML183 755 737 -17 -2.37 23262 24378 1116 4.58
NistWeather 1546 1541 -4 -0.29 44922 48610 3688 7.59
NistXTS749 892 928 36 3.83 26214 31125 4911 15.78
RiskIt 17555 17831 276 1.55 2117462 2434670 317208 13.03
StackOverflow 6415 6007 -408 -6.79 515815 514126 -1689 -0.33
UnixUsage 5661 5955 294 4.93 885947 1042460 156513 15.01
WordNet 3668 3851 183 4.76 115310 141511 26201 18.51

(b) Summary for DBMSs

DBMS
Time Difference (ms) Time Difference (%)
Median Mean Median Mean

HyperSQL 36.2 7.5 1.4 1.6
PostgreSQL 8071.0 50880.0 12.7 11.8
Both 229.9 25450.0 4.7 6.7

(c) Statistical significance of change

Schema
HyperSQL PostgreSQL

p-value Â12 p-value Â12

ArtistSimilarity <0.01 1.00 (large) <0.01 1.00 (large)
ArtistTerm <0.01 1.00 (large) <0.01 1.00 (large)
BankAccount <0.01 1.00 (large) <0.01 1.00 (large)
BookTown <0.01 0.87 (large) <0.01 1.00 (large)
Cloc <0.01 0.00 (large) 0.61 0.54 (none)
CoffeeOrders <0.01 0.75 (large) <0.01 0.97 (large)
Flights <0.01 0.15 (large) <0.01 1.00 (large)
IsoFlav R2 <0.01 0.00 (large) <0.01 0.28 (large)
JWhoisServer <0.01 0.01 (large) <0.01 0.97 (large)
NistDML183 <0.01 0.00 (large) <0.01 0.96 (large)
NistWeather <0.01 0.25 (large) <0.01 1.00 (large)
NistXTS749 <0.01 0.98 (large) <0.01 1.00 (large)
RiskIt <0.01 0.84 (large) <0.01 1.00 (large)
StackOverflow <0.01 0.00 (large) 0.01 0.30 (med)
UnixUsage <0.01 1.00 (large) <0.01 1.00 (large)
WordNet <0.01 1.00 (large) <0.01 1.00 (large)
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The change in the mutation score is shown for each schema in Table 6.4 and sum-

marised in Table 6.5, expressed as increase, decrease or no change. Where an increase

occurred, “Adequate” represents the percentage of those schemas where the test suite

was revealed as mutation adequate (i.e., the tests killed all remaining mutants). The

statistical significance is reported using the Wilcoxon Rank-Sum test, where a value less

than 0.05 is deemed significant.

Research questions

RQ1: Does the use of static analysis improve the efficiency of quasi-mutant detection,

compared to DBMS-based techniques?

As shown by results in both Table 6.3 and Figure 6.2, the technique using static anal-

ysis to detect quasi-mutants is many times faster than either the simple DBMS technique

or the SQL transaction optimised technique, regardless of whether PostgreSQL or Hy-

perSQL is used. In the worst case, the static technique takes approximately two seconds

less than the next fastest technique (<1ms compared to 2,052ms using PostgreSQL with

transactions for Cloc), while being approximately three and a half minutes quicker than

the next fastest technique in the best case (57ms compared to 210,010ms using Hyper-

SQL with transactions for RiskIt). The cost of applying the static technique is also highly

consistent between repeat trials, with a maximum standard deviation of 3ms, which is

much lower than for the DBMS-based alternatives. In addition, as previously stated,

all five quasi-mutant detection techniques identified the same number of quasi mutants,

for all schemas and repeat trials, and are therefore all equally effective. As the static

technique both matches the effectiveness of the most accurate technique and improves

significantly on its efficiency, identifying quasi-mutants many magnitudes quicker, it is

clearly the superior of the five techniques.

RQ1 Summary: The static analysis approach for detecting quasi-mutants is signifi-

cantly faster than the next best approach, often taking many magnitudes less time, whilst

achieving the same results across all schemas and both DBMSs.

RQ2: What impact does ineffective mutant removal have on the time taken for mutation

analysis?

The results of Tables 6.6a to 6.6c show that the effect of removing ineffective mutants

on the time taken for mutation analysis varies depending on the choice of schema and

DBMS, ranging from a relatively small increase to large decreases.
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When using HyperSQL, the difference in mean times taken for mutation analysis vary

between -824 and 718ms, representing a percentage difference in mean time of -9.71 to

23.05% across all schemas. For 9 of the 16 schemas a mean time saving is achieved when

removing ineffective mutants, meaning it is cost-effective to identify and discard them.

In all 9 of these cases, the difference in time taken is statistically significant (p-value

<0.05) and have a “large” effect size, according to the Wilcoxon Rank-Sum test and

Â12 effect size statistic, respectively. For the other 7 schemas the removal of ineffective

mutants causes the mean time for mutation analysis to increase, with this increase being

statistically significant and having a “large” effect size in all 7 cases. To summarise,

Table 6.6b shows that when using HyperSQL and averaging across all schemas overall

these time differences represent a very small time saving, with a mean of 7.5ms or 1.6%.

When using PostgreSQL, the difference in mean times with and without ineffective

mutants varies between -3,086 and 317,208ms, which equates to a percentage difference

of -0.33 to 33.71%. Averaging these results across all schemas gives a mean difference

of 50,880ms, or 12.7%. A mean time saving is achieved by using ineffective mutant

removal for 14 of the 16 schemas, with the reduction being statistically significant for all

but one. Where the decrease was statistically significant the effect size of the difference

was “large”. For the remaining two schemas where the time for mutation analysis was

increased, IsoFlav R2 and StackOverflow, the difference was also statistically significant

and with “large” and “medium” effect sizes, respectively. However, the mean increases

of 3,086 and 1,689ms for these two schemas only represent increases of 0.30 and 0.33%

when considered as a proportion of the total time taken, and are therefore unlikely to

appreciably impact the practical usefulness of mutation analysis. In summary, the results

show that when using PostgreSQL, removing ineffective mutants will reduce the time

taken for mutation analysis by statistically significant degree in the majority of cases (13

out of 16 schemas in this experiment), with best case decreases of approximately one

third, or in excess of 5 minutes in real-terms.

To conclude, while the choice of DBMS affects the cost-effectiveness of ineffective

mutant removal as the results of Table 6.6b show, for both PostgreSQL and HyperSQL

on average there is at least a small time saving, with mean values of 11.8% and 1.6%,

respectively. Overall, combining results across both DBMSs gives a mean time difference

of 25,540ms, or 6.7%. The large difference between DBMSs may be accounted for by the

performance difference between them — as the results suggest that HyperSQL is generally
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much faster than PostgreSQL, the time taken for static analysis to detect ineffective

mutants will represent a larger proportion of the total time taken for mutation analysis.

As the maximum increase in time taken for HyperSQL is less than 1 second this is

arguably insignificant in practical terms, while the maximum decrease for PostgreSQL of

over 5 minutes is significant. Therefore, the results of this experiment show that in general

removing ineffective mutants is beneficial in terms of efficiency, even considering the cost

of static analysis, and in many of the tested configurations leads to a practically significant

reduction in time taken for mutation analysis, especially when using PostgreSQL.

RQ2 Summary: While the removal of ineffective mutants is not always cost effective,

especially when using HyperSQL, in real-terms any increase in time taken is very small.

On the other hand, when removal is cost effective – often when using PostgreSQL – the

time saving is practically significant, such that overall removing ineffective mutants does

generally improve efficiency.

RQ3: Are the scores produced by mutation analysis significantly affected by ineffective

mutant removal?

The results in Table 6.5 show that whether using PostgreSQL or HyperSQL, removal

of ineffective mutants caused a change in the mutant score for 75% of the 16 schemas

in this experiment, with the score increasing in all of those cases. This shows that

for 12 schemas the mutation score obtained with ineffective mutants present led to an

under-estimate of the “true” mutation score. These increases in score were shown to be

statistically significant (p-value <0.05) using the Wilcoxon Rank-Sum test.

In practical terms, these results mean that ineffective mutant removal reduced the

number of mutants that would require human inspection, thus reducing the overall

human-time cost of mutation analysis. Where the mutation score did change due to

ineffective mutant removal, in 44% of cases the score increased to 1, meaning the test

suite was revealed to be mutation adequate (i.e., it killed all of the remaining mutants).

This means for those schemas, ineffective mutant removal reduced the number of mutants

requiring human inspection to nil.

RQ3 Summary: Ineffective mutant removal is able to improve the effectiveness of

mutation analysis, by ensuring the mutation score is accurate by reducing the impact of

ineffective mutants, as well as increase efficiency, decreasing the human costs of mutation

analysis by reducing the set of mutants requiring human inspection.
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6.5 Summary

This Chapter described three types of “ineffective” mutants that negatively impact on the

efficiency and effectiveness of mutation analysis for relational database schemas. Equiva-

lent mutants behave identically to the original, non-mutant schema and therefore cannot

be killed by any test case. Structurally equivalent mutants are identical to each other

except for small possible differences in the SQL used to define them, while behaviourally

equivalent mutants contain different constraints that accept and reject the same set of

data. Redundant mutants are equivalent to one or more other mutants, either structurally

or behaviourally, and thus all but one can be removed as duplicates of each other. Quasi-

mutants are syntactically valid for one DBMS, but invalid for another, and may prevent

the use of certain efficiency improving techniques for mutation analysis. As detecting each

of these types of ineffective mutant by human inspection would be impractically expen-

sive, this Chapter next described a series of techniques for automatically identifying them,

using static analysis with a collection of patterns and detection functions. Finally, an

empirical study was used to assess the impact of ineffective mutant removal on mutation

analysis. Quasi-mutant detection using static analysis was compared to approaches that

directly used the DBMS, include one optimised by using SQL transactions, and shown to

be many magnitudes quicker. The effect of removing all types of ineffective mutants on

the time taken varied according to the DBMS used, but overall led to a 6.7% decrease on

average. In terms of effectiveness, the mutation score increased for 75% of schemas, with

44% of those revealing the test suite to be mutation adequate. In summary, removing

ineffective mutants improves both the efficiency of mutation analysis and the accuracy of

the results obtained.
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Chapter 7

Improving the Efficiency of

Mutation Analysis for Relational

Database Schemas

7.1 Introduction

Mutation analysis provides a means of assessing the quality of a test suite, but can

prove computationally expensive due to the repeated execution of potentially many tests

for each mutant. This Chapter describes a collection of techniques to improve the effi-

ciency of mutation analysis for relational database schemas, while ensuring the resulting

mutation score is left unaltered. Some take inspiration from existing techniques used

for program mutation (e.g., [110, 97]), implementing domain-appropriate counter-parts,

while others are more specific to relational database schema mutation, which may not

have corresponding equivalents in other applications.

Previously described in Section 1.3.2, the ‘Original’ mutation analysis technique acts

as the unoptimised standard against which other techniques are compared. An algo-

rithm for this technique is given below, followed by a discussion of several algorithms

for mutation analysis of relational database schemas that incorporate a number of opti-

misations – mutant schemata, parallelisation and test artefact minimisation. Following
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this, a “virtual” mutation analysis technique is described, which avoids costly DBMS

communication by exploiting the internal model of a DBMS SchemaAnalyst uses during

data generation to quickly and accurately perform mutation analysis without the use of

a database. Finally, each of these techniques are evaluated with an empirical study using

a wide range of schemas and multiple DBMSs, to confirm that the mutation scores for

each are unaltered and quantify their impact on the time taken for mutation analysis.

To summarise, the contributions this Chapter makes are:

1. Algorithmic descriptions of a collection of novel techniques for mutation analysis

of relational database schemas, including domain-specific techniques specialised for

integrity constraint mutants; and

2. An empirical study to assess the accuracy of results obtained by these techniques

and the affect they have on the efficiency of mutation analysis, across multiple

DBMSs and a representative range of schemas.

7.2 Original Approach

To enable an empirical comparison of two data generation approaches, I proposed a

technique for the mutation analysis of relational database schemas, using SQL INSERT

statements as the test suite [62]. By recording whether each INSERT is accepted or

rejected by database created using the schema with and without mutation, it is possible

to determine whether each mutant is killed by the test suite or not, thus allow a mutation

score to be calculated. The basic steps of the technique, repeated for each mutant, are

as follows:

1. Create a database with the mutant schema by executing CREATE statements;

2. Execute each INSERT statement in the test suite against the database;

3. Compare the acceptance of each INSERT statement to the acceptance when using

the non-mutated schema. If there are any differences the mutant is killed; and

4. Remove the database from the DBMS with DROP statements.
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Algorithm 19 “Original” mutation analysis technique (as described by Kapfhammer
et al. [62])

Killed ← ∅
for mutant do

Create tables in database for mutant
for insert in testSuite do

originalResult ← Pre-computed result of insert with non-mutant
mutantResult ← executeWithDBMS(insert)
if originalResult 6= mutantResult then

Killed ← Killed ∪ {mutant}
Remove tables in database for mutant

Once this process has been repeated for each mutant, a mutation score can be calcu-
lated for the test suite using the equation:

Mutation score =
‖Killed mutants‖
‖Mutants‖

This approach, referred to as the “Original” technique, is described more formally in

Algorithm 19. As no optimisations are employed in this technique it can become very

computationally expensive, especially for large schemas, as shown later in Section 7.6.

Sections 7.3 and 7.4 explore a number of possible improvements to this mutation analysis

algorithm, while Section 7.5 investigates an alternative approach leveraging the fitness

functions used in the search-based data generation process of SchemaAnalyst to avoid

the need for DBMS interaction.

7.3 Schemata Techniques

As previously described in Section 2.3.5, the mutant schemata approach to mutation anal-

ysis produces a “meta-mutant” that contains both the original artefact and its mutants.

In program mutation, this meta-mutant contains a conditional branch for each mutation,

where either the original or mutant code is executed based upon which mutant is enabled

at runtime. This aims to reduce the time needed for mutation analysis by producing

only a single version of the program that needs to be compiled and executed, rather than

one per mutant. Although the meta-mutant program itself will be much larger than the

original, and thus more expensive to compile, each extra mutant only incurs an additional

conditional branch, rather than requiring a recompilation of the whole program.
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database with DBMS
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Drop mutant
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Drop meta-mutant
database with DBMS

Repeat for
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Original technique

Full schemata technique

Figure 7.1: A comparison of the Original and Full schemata techniques, showing the
reduced number of steps which are repeated per mutant by the latter.

The rest of this Section describes three techniques – Full schemata, Minimal schemata

and Minimal+ schemata – that incorporate the concepts of mutant schemata in the

context of mutation of relational database schemas, with the aim of reducing the time

taken. The impact each has on the efficiency of mutation analysis is evaluated later in

Section 7.6.

7.3.1 Full schemata

The Full schemata technique produces a single relational database schema that contains

both the schema under test and all of its mutants. This reduces the number of database

interactions taken to execute CREATE and DROP statements, from two per mutant to two

times overall, thus reducing the time taken communicating with the DBMS.

Figure 7.1 gives an overview of the major steps used by this technique compared to

the Original technique, showing the reduced number of steps that must be repeated for

each mutant, while Algorithm 20 more formally describes this technique.
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Algorithm 20 Full schemata mutation analysis technique
. 1. Meta-mutant creation
for each mutant do

Prefix names of tables in mutant with unique mutant ID
Add tables of mutant to metamutant

Create tables in database for metamutant

. 2. Mutant evaluation
Killed ← ∅
for mutant do

for insert in testSuite do
originalResult ← Pre-computed result of insert with non-mutant
insert ′ ← insert modified to use mutant ID for table names
mutantResult ← executeWithDBMS(insert ′)
if originalResult 6= mutantResult then

Killed ← Killed ∪ {mutant}

. 3. Clean up
Remove tables in database for metamutant

Although this technique reduces the repeated part of the algorithm, in exchange the

size of the database created will be increased, due to the extra tables included in the

schema. As creating a single schema involves including an extra copy of each table

for every mutant, this technique must also include an extra “renaming” step in which

table names are prefixed with a unique identifier (e.g., m1 name, m2 name, etc...), to avoid

identifier collisions, before being merged into a single schema. For example, given the

schema, s and mutants, m1 and m2:

s: x (a INT, b INT)

y (c INT)

m1: x (a INT NOT NULL, b INT)

y (c INT)

m2: x (a INT, b INT NOT NULL)

y (c INT)

...then the Original technique would communicate with the DBMS six separate times

to create and drop the database for use in mutation analysis:
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Statement: Description:

1. CREATE TABLE x (a INT, b INT) Create s

CREATE TABLE y (c INT)

2. DROP TABLE x Drop s

DROP TABLE y

3. CREATE TABLE x (a INT NOT NULL, b INT) Create m1

CREATE TABLE y (c INT)

4. DROP TABLE x Drop m1

DROP TABLE y

5. CREATE TABLE x (a INT, b INT NOT NULL) Create m2

CREATE TABLE y (c INT)

6. DROP TABLE x Drop m2

DROP TABLE y

However, the Full schemata technique instead produces a meta-mutant schema, smeta

that contains all of the tables of s, m1 and m2, with mutant tables prefixed to avoid name

collisions:

smeta: x (a INT, b INT)

y (c INT)

m1 x (a INT NOT NULL, b INT)

m1 y (c INT)

m2 x (a INT, b INT NOT NULL)

m2 y (c INT)

...which then reduces the number of database interactions, to once to execute the

appended CREATE statements and once for the DROP statements:

Statement: Description:

1. CREATE TABLE x (a INT, b INT) Create smeta

CREATE TABLE y (c INT)

CREATE TABLE m1 x (a INT NOT NULL, b INT)

CREATE TABLE m1 y (c INT)

CREATE TABLE m2 x (a INT, b INT NOT NULL)

CREATE TABLE m2 y (c INT)

2. DROP TABLE x Drop smeta

DROP TABLE y

DROP TABLE m1 x

DROP TABLE m1 y

DROP TABLE m2 x

DROP TABLE m2 y

During mutation analysis, it is then possible to test with any chosen mutant by

simply prefixing the table names used in each INSERT statement with the relevant mutant

identifier (e.g., m1 , m2 , etc...).
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7.3.2 Minimal schemata

As with the Full schemata technique, the Minimal schemata produces a meta-mutant

containing both the schema under test and its mutants. However, for each mutant meta-

mutant created by the Minimal schemata technique only includes the table altered by

the mutation – referred to as the affected table – rather than one copy of all tables.

Compared to Full schemata, this vastly reduces the number of tables in the meta-mutant

schema from “tables × (mutants + 1)” to “tables + mutants”. For example, given the

previous example schema, s, and mutants, m1 and m2:

s: x (a INT, b INT)

y (c INT)

m1: x (a INT NOT NULL, b INT)

y (c INT)

m2: x (a INT, b INT NOT NULL)

y (c INT)

...while the meta-mutant for Full schemata contains a total of six tables, the one

produced by Minimal schemata contains only four – only including the affected x table

for mutants m1 and m2 because the y table was unaltered by their mutations:

Full schemata: Minimal schemata:

smeta: x (a INT, b INT) smeta: x (a INT, b INT)

y (c INT) y (c INT)

m1 x (a INT NOT NULL, b INT) m1 x (a INT NOT NULL, b INT)

m1 y (c INT) m2 x (a INT, b INT NOT NULL)

m2 x (a INT, b INT NOT NULL)

m2 y (c INT)

Because there may be FOREIGN KEY constraints in the schema under test, it is possible

for the affected table of a mutant to contain a reference to a table not contained in

the meta-mutant. If left unresolved this would cause whichever DBMS is being used

to reject the CREATE statements as syntactically invalid, preventing mutation analysis

from continuing. To avoid this, the Minimal schemata technique remaps the referenced

tables in all FOREIGN KEY constraints to the non-mutated copy in the schema under test,

which will lead to the same results under the assumption that only a single mutation is

made (i.e., this cannot produce correct results in a higher-order mutation context). For

example, given the schema, s, which contains a FOREIGN KEY constraint, and its mutants

m1 and m2:
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s: x (a INT, FOREIGN KEY a REFERENCES y(b))

y (b INT)

m1: x (a INT NOT NULL, FOREIGN KEY a REFERENCES y(b))

y (b INT)

m2: x (a INT, FOREIGN KEY a REFERENCES y(b))

y (b INT NOT NULL)

...the Full schemata and Minimal schemata techniques would produce two differing

meta-mutants:

Full schemata:

smeta: x (a INT, FOREIGN KEY a REFERENCES y(b))

y (b INT)

m1 x (a INT NOT NULL,

FOREIGN KEY a REFERENCES m1 y(b))

m1 y (b INT)

m2 x (a INT, FOREIGN KEY a REFERENCES m2 y(b))

m2 y (b INT NOT NULL)

Minimal schemata:

smeta: x (a INT, FOREIGN KEY a REFERENCES y(b))

y (b INT)

m1 x (a INT NOT NULL,

FOREIGN KEY a REFERENCES y(b))

m2 y (b INT NOT NULL)

In the meta-mutant produced by the Full schemata technique, each of the FOREIGN

KEY constraints is updated to refer to the copy of the table prefixed with the mutant

ID (e.g., m1 and m2). However, both the FOREIGN KEY constraints meta-mutant from the

Minimal schemata technique reference the same table, y. Note also in the case of m2, there

is no FOREIGN KEY constraint to remap, because y is the affected table, not x. Continuing

with the above example, the differing dependencies between tables for Full schemata and

Minimal schemata, where an arrow from a to b means a depends on b, can be visualised

as:

x

m1 x

m2 x

y

m1 y

m2 y

Full schemata

x

m1 x

m2 x

y

m1 y

m2 y

Minimal schemata

As well as reducing the size of the meta-mutant, Minimal schemata aims to reduce the

cost of test suite execution. Rather than repeatedly running all tests for every mutant,
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the Minimal schemata technique only executes those INSERT statements that attempt to

add data to the affected table. Because FOREIGN KEY constraints are mapped to the same

“shared” copy of the reference table, the data required to satisfy these constraints can

be added once and referred to by each of the mutants. Naively, this could be achieved

by modifying the INSERT statements of each test at execution time, to refer to either the

desired mutant table or shared reference table, as needed, and ignoring any other test

data. However, this required insertion and deletion of data into the shared reference table

to be repeated for each mutant. Instead, the Minimal schemata technique only inserts

the shared data once, interleaving this with executing statements for each mutant table

as necessary according to the test data. This proceeds according to the following steps

for each INSERT statement:

1. Execute the statement with the non-mutated copy of the table named in the INSERT,

to determine the acceptance status of the schema under test and in case referenced

by a FOREIGN KEY constraint.

2. Execute the statement for each mutated copy of the table named in the INSERT that

exists in the meta-mutant, marking the mutant as killed if the acceptance differs

from the schema under test.

For example, given the schema s, mutants m1 and m2, meta-mutant smeta, and test

sequence t1 to t2:

s: x (a INT REFERENCES y(b))

y (b INT)

m1: x (a INT NOT NULL REFERENCES y(b))

y (b INT)

m2: x (a INT REFERENCES y(b))

y (b INT NOT NULL)

smeta: x (a INT REFERENCES y(b))

y (b INT)

m1 x (a INT NOT NULL,

REFERENCES y(b))

m2 y (b INT NOT NULL)

t1: y(b =1)

t2: x(a =1)

...then the INSERT execution ordering used by Minimal schemata would be as follows:

1. Execute t1 with table y.

2. Execute t1 with table m2 y.

3. Execute t2 with table x.

4. Execute t2 with table m1 x.
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Algorithm 21 Minimal schemata mutation analysis technique
. 1. Meta-mutant creation
for each mutant do

mutant ′ ← mutant with non-affected tables removed
Prefix names of tables in mutant ′ with unique mutant ID
Add tables of mutant ′ to metamutant

Create tables in database for metamutant

. 2. Mutant evaluation
Killed ← ∅
for each insert in testSuite do

originalResult ← Pre-computed result of insert with non-mutant
affectedTable ← Table insert is involving
affectedMutants ← Mutants that mutated affectedTable
executeWithDBMS(insert) . (To satisfy FOREIGN KEY references)
for each affectedMutant do

insert ′ ← insert modified to use mutant ID for table names
mutantResult ← executeWithDBMS(insert ′)
if originalResult 6= mutantResult then

K ← K ∪ {mutant}

. 3. Clean up
Remove tables in database for metamutant

This process ensures that for any FOREIGN KEY, the expected data is present in the

reference table, without requiring the INSERT statements to be executed multiple times,

for each mutant.

If a mutant is killed, no more tests are executed against that mutant. However, if

a mutant returns the same results as the schema under test for all INSERT statements

executed against it, then the test suite is unable to detect the mutant and it is alive. The

overall algorithm for the Minimal schemata technique is shown in Algorithm 21.

7.3.3 Minimal+ schemata

The Minimal+ schemata technique aims to improve upon Minimal schemata by further

reducing the size of the meta-mutant. Where Minimal schemata includes a full copy of the

affected table for each mutant, Minimal+ schemata only includes the mutated constraint

in the copied table, reducing the overall number of constraint in the meta-mutant schema.

For example, given the schema, s, and mutants, m1 (NOT NULL added to b in table x) and

m2 (NOT NULL added to c in table y):
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s: x (a INT NOT NULL, b INT)

y (c INT, d INT PRIMARY KEY)

m1: x (a INT NOT NULL, b INT NOT NULL)

y (c INT, d INT PRIMARY KEY)

m2: x (a INT NOT NULL, b INT)

y (c INT NOT NULL, d INT PRIMARY KEY)

...then the Minimal schemata and Minimal+ schemata techniques would produce the

following meta-mutant schemas:

Minimal schemata:

smeta: x (a INT NOT NULL, b INT)

y (c INT, d INT PRIMARY KEY)

m1 x (a INT NOT NULL, b INT NOT NULL)

m2 y (c INT NOT NULL, d INT PRIMARY KEY)

Minimal+ schemata:

smeta: x (a INT NOT NULL, b INT)

y (c INT, d INT PRIMARY KEY)

m1 x (a INT, b INT NOT NULL)

m2 y (c INT NOT NULL, d INT)

Notably, while both techniques contain the same number of tables, reduced by 1/3

from 6 to 4 when compared to Full schemata, in the meta-mutant produced by Minimal+

schemata only includes the mutated constraints in tables m1 x and m2 y. This means that

for each INSERT statement executed for a mutant there are fewer constraints that must

be checked by the DBMS, which should in turn reduce the time taken to execute each

statement.

However, the applicability of this technique depends upon the type of modification

made by the mutation operator. An operator either increases or decreases the range

of INSERT statements that can be accepted into a database created with the schema.

As a consequence, detection of a mutant may either be by an INSERT being rejected by

the non-mutant and accepted by the mutant, for Addition type operators, or vice-versa,

for Removal or Exchange type operators. For example, for the schema, s, and mutant

produced by removal operator, m1 (PRIMARY KEY removed by the PKColumnR operator):

s: x (a INT PRIMARY KEY)

m1: x (a INT)

Then a sequence of INSERT statements such as the following list would be required“kill”

the mutant, by being rejected by the non-mutant and accepted by the mutant, because

the mutant has fewer constraints on the accepted data:

Acceptance by...

Original Mutant

1. INSERT INTO TABLE x VALUES (1) 3 3

2. INSERT INTO TABLE x VALUES (1) 7 3
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Algorithm 22 Minimal+ schemata mutation analysis technique
. 1. Mutant division and delegated mutation analysis
mutantsRE ← Mutants produced by removal or exchange operators
mutantA ← Mutants produced by addition operators
Killed ← minimalSchemata(mutantsRE, testSuite)

. 2. Meta-mutant creation
for each mutant in mutantsA do

mutant ′ ← mutant with non-affected tables and non-affected constraints removed
Prefix names of tables in mutant ′ with unique mutant ID
Add tables of mutant ′ to metamutant

Create tables in database for metamutant

. 3. Mutant evaluation
for each insert in testSuite do

originalResult ← Pre-computed result of insert with non-mutant
affectedTable ← Table insert is involving
affectedMutants ← Mutants that mutated affectedTable
executeWithDBMS(insert) . (To satisfy FOREIGN KEY references)
for each affectedMutant do

insert ′ ← insert modified to use mutant ID for table names
mutantResult ← executeWithDBMS(insert ′)
if originalResult 6= mutantResult then

K ← K ∪ {mutant}

. 4. Clean up
Remove tables in database for metamutant

However, if the mutant is produced with an addition operator, such as with s and m1

(PRIMARY KEY added with the PKColumnA) as follows:

s: x (a INT)

m1: x (a INT PRIMARY KEY)

Then to kill the mutant, it is necessary to produce a sequence of INSERT statements

that are accepted by the non-mutant and rejected by the mutant, as the mutation has

increased the constraints on the range of accepted data, for example:

Acceptance by...

Original Mutant

1. INSERT INTO TABLE x VALUES (1) 3 3

2. INSERT INTO TABLE x VALUES (1) 3 7

Because the Minimal+ schemata technique removes all but the mutated constraint,

it cannot reliably infer whether a statement rejected by the non-mutant but accepted
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by the meta-mutant representation of a particular mutant is due to the mutation or

because of the constraints removed when producing the meta-mutant. However, if an

INSERT statement is accepted by the non-mutant but rejected by the mutant table in

the meta-mutant, it must be due to the mutation, as the mutated constraint is the only

constraint present. Therefore, the extra optimisation of Minimal+ schemata can be used

for mutants produced by addition operators, but not for those generated by removal or

exchange operators. As a consequence, prior to mutation analysis the Minimal+ schemata

technique divides the mutants of the schema under test according to the modification type

of the operator used to generate them, delegating to the Minimal schemata technique

to obtain a mutation score for those mutants it cannot accurately analyse itself and

combining this with its own results to give a final mutation score. Algorithm 22 shows

the overall mutation analysis approach of the Minimal+ schemata technique.

7.4 Parallelisation Techniques

Parallel algorithms aim to exploit the presence of multi-core processors, even on commod-

ity hardware, to reduce their overall running time by dividing the problem into multiple

parts that can be executed concurrently and then recombining the results. Distributing

the units of work across multiple separate computers, such as with a computer cluster or

grid computer, may also be described as parallel computation, however for this Section I

only refer to the former type of parallelism.

Section 2.3.5 describes a number of existing approaches to use parallel execution to

reduce the cost of mutation analysis for testing programs. This Section discusses two

novel techniques for applying parallelisation to mutation analysis of relational database

schemas – Just-in-Time schemata and Up-Front schemata . These are later evaluated

in Section 7.6 to determine what effect parallel algorithms have on the time taken for

mutation analysis.

7.4.1 Just-in-Time schemata

The Just-in-Time schemata technique can be thought of as a parallel version of the

Original technique, with CREATE and DROP statements being executed for each mutant
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Figure 7.2: A comparison of the Original and Just-in-Time schemata techniques, showing
the parallelisation of the loop in the latter case.

Algorithm 23 Just-in-Time schemata mutation analysis technique
. 1. Mutant renaming
for each mutant do

Prefix names of tables in mutant with unique mutant ID

. 2. Mutant evaluation
Killed ← ∅
parallel for mutant do

Create tables in database for mutant
for insert in testSuite do

originalResult ← Pre-computed result of insert with non-mutant
mutantResult ← executeWithDBMS(insert)
if originalResult 6= mutantResult then

Killed ← Killed ∪ {mutant}
Remove tables in database for mutant
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Figure 7.3: A comparison of the Full schemata and Up-Front schemata techniques,
showing the use of parallel computation by the latter.

just prior to and after analysis, respectively, hence former part of its name. However, due

to the parallel analysis of mutants it is very likely that table name collisions will be caused

within the DBMS, with analysis of two or more mutants attempting to simultaneously

store tables of the same name in the database. To prevent this, the tables are renamed

according to the prefixing strategy of the schemata techniques (i.e., m1 , m2 , etc...), such

that a partial meta-mutant is used for each mutant. Therefore, Just-in-Time schemata

is both a schemata and parallel technique.

Figure 7.2 shows a comparison of this technique compared to the Original technique.

Over the course of mutation analysis, the tables added will be identical to the meta-

mutant produced by Full schemata, however only part of the meta-mutant will be present

at any given moment, depending on how many mutants are being analysed simultane-

ously. The overall approach used for the Just-in-Time schemata technique is shown in

Algorithm 23.
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Algorithm 24 Up-Front schemata mutation analysis technique
. 1. Meta-mutant creation
for each mutant do

Prefix names of tables in mutant with unique mutant ID
Add tables of mutant to metamutant

Create tables in database for metamutant

. 2. Mutant evaluation
Killed ← ∅
parallel for mutant do

for insert in testSuite do
originalResult ← Pre-computed result of insert with non-mutant
insert ′ ← insert modified to use mutant ID for table names
mutantResult ← executeWithDBMS(insert ′)
if originalResult 6= mutantResult then

Killed ← Killed ∪ {mutant}

. 3. Clean up
Remove tables in database for metamutant

7.4.2 Up-Front schemata

While Just-in-Time schemata can be likened to a parallel version of the Original tech-

nique, Up-Front schemata is a parallel equivalent to the Full schemata technique. As with

Full schemata a meta-mutant is produced containing all mutants, which includes a full

copy of all tables for each mutant. This is used both prior to mutation analysis, to create

a database, and afterwards, to remove the database, whilst requiring only one database

interaction for each. However, the analysis of each mutant can then be performed in

parallel, rather than serial. Figure 7.3 shows this conceptual difference between Full

schemata and Up-Front schemata, while Algorithm 24 shows the approach used by the

technique.

7.5 Virtual Mutation Analysis

Communication between different processes can prove to be very computationally expen-

sive, even when those processes are running on the same physical machine (e.g., via Unix

domain sockets), compared to sharing data between different parts of the same process
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Figure 7.4: A comparison of the Original and Virtual mutation analysis techniques,
showing the similarity of the algorithms except for the replacement of the external DBMS
with an internal model of DBMS behaviour.

(either with single or multiple threads of execution). All of the previously described mu-

tation analysis techniques require interaction with a database instance hosted in a DBMS,

and therefore incur such a performance cost. The Virtual mutation analysis technique

aims to reduce the time taken for mutation analysis by removing this requirement, by

instead exploiting a model of DBMS behaviour used elsewhere in SchemaAnalyst to per-

form mutation analysis without creating a database.

As discussed in Section 3.5, the data generation component of SchemaAnalyst is able

to automatically generate test suites of data that exercise the constraints of a relational

database schema, according to a chosen coverage criterion. To generate the required data

a search-based technique is used, with SchemaAnalyst employing the AVM algorithm, as

described in Section 3.5.2. The search process is guided according to a fitness function

that evaluates whether a given set of data tests the constraints as required, either by

satisfying or violating all or some of them. This function returns a score between 0 and

1 that can be used to determine how far away a set of data is from meeting the current

requirements, such that it can direct the search towards a set of data values that will

exhibit the correct response from the DBMS. In this way, the fitness functions produced

during data generation model the expected behaviour of the DBMS.

The Virtual mutation analysis technique exploits these fitness functions to determine

whether a test case for a schema will be accepted or rejected by a given DBMS. This is
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compared to the Original technique in Figure 7.4. By repeating this for all cases in a

test suite, repeating the process for each mutant of a schema, it is possible to perform

mutation analysis without any DBMS interaction. As the fitness functions are designed

to be quick to evaluate – as they may be evaluated many thousands of times during data

generation – the Virtual mutation analysis technique is expected to reduce the time taken

for mutation analysis considerably, compared to those communicating with a DBMS.

A drawback of the Virtual mutation analysis technique is that it requires the internal

modelling of each DBMS within SchemaAnalyst to be wholly accurate with respect to the

SQL features used in the schema under test. This means that supporting a new DBMS

requires the formation of the fitness function to be adjusted according to any subtle differ-

ences in its implementation of SQL. However, in general the differences between DBMSs

are relatively small, especially for the small set of SQL features used most commonly

in many relational database schemas (such as those described in Section 3.4), therefore

this human cost is relatively low. The correctness of this modelling is now assured, to a

reasonable degree of certainty, by empirically comparing the mutation scores it achieves

for a large number of schema to those produced by the other techniques in Section 7.6.

Further discussion of this technique has been published elsewhere [77].

7.6 Empirical Experiment

This Section details the design and results of an empirical experiment to determine what

impact the schemata, parallel and virtual mutation techniques detailed in Sections 7.3

to 7.5 have on the time taken for mutation analysis, and how this is affected by the

schema under test and DBMS in use.

7.6.1 Experiment design

Schemas

Given that the number of tables, columns and constraints may significantly impact upon

the performance of each the mutation analysis techniques, a total of 32 schemas were

selected for this experiment. These vary from 1 to 42 tables, 3 to 309 columns and 0
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Table 7.1: Schemas analysed in the empirical study

Schema T
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ArtistSimilarity 2 3 0 2 0 1 0 3
ArtistTerm 5 7 0 4 0 3 0 7
BankAccount 2 9 0 1 5 2 0 8
BookTown 22 67 2 0 15 11 0 28
BrowserCookies 2 13 2 1 4 2 1 10
Cloc 2 10 0 0 0 0 0 0
CoffeeOrders 5 20 0 4 10 5 0 19
CustomerOrder 7 32 1 7 27 7 0 42
DellStore 8 52 0 0 39 0 0 39
Employee 1 7 3 0 0 1 0 4
Examination 2 21 6 1 0 2 0 9
Flights 2 13 1 1 6 2 0 10
FrenchTowns 3 14 0 2 13 0 9 24
Inventory 1 4 0 0 0 1 1 2
Iso3166 1 3 0 0 2 1 0 3
iTrust 42 309 8 1 88 37 0 134
JWhoisServer 6 49 0 0 44 6 0 50
MozillaExtensions 6 51 0 0 0 2 5 7
MozillaPermissions 1 8 0 0 0 1 0 1
NistDML181 2 7 0 1 0 1 0 2
NistDML182 2 32 0 1 0 1 0 2
NistDML183 2 6 0 1 0 0 1 2
NistWeather 2 9 5 1 5 2 0 13
NistXTS748 1 3 1 0 1 0 1 3
NistXTS749 2 7 1 1 3 2 0 7
Person 1 5 1 0 5 1 0 7
Products 3 9 4 2 5 3 0 14
RiskIt 13 57 0 10 15 11 0 36
StackOverflow 4 43 0 0 5 0 0 5
StudentResidence 2 6 3 1 2 2 0 8
UnixUsage 8 32 0 7 10 7 0 24
Usda 10 67 0 0 31 0 0 31
Total 172 975 38 49 335 114 18 554

and 134 constraints, with at least one of each of the types of constraint supported by

SchemaAnalyst (PRIMARY KEY, FOREIGN KEY, NOT NULL, UNIQUE and CHECK constraints).

Table 7.1 provides a detailed breakdown of the schema attributes. Many of these schemas

are taken from real-world sources, as previously discussed in Section 6.4.1, thus enabling

the generalisation of results from this experiment to analysis of other real-world schemas.

DBMSs

To determine whether the efficiency of any technique is affected by the choice of DBMS

used this experiment included all three DBMSs supported by SchemaAnalyst– Post-

greSQL, SQLite and HyperSQL. Performance differences may be caused by the differing

architecture of these DBMSs — PostgreSQL operates as a standalone database server,
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while SQLite and HyperSQL operate as “embedded” databases integrated into an ap-

plication — and their use of available storage hardware — SQLite and HyperSQL have

been configured to use an “in-memory” mode that disables writing to the slower hard disk

drive, reducing the time taken waiting for input/output operations, whereas PostgreSQL

may make periodic read/write operations to the hard disk drive.

Methodology

The mutation analysis techniques described in Sections 7.3 to 7.5 of this Chapter are

evaluated in terms of both accuracy and efficiency, according to two metrics. These

metrics were monitored over 30 repeated trials for each technique, DBMS and schema

combination to ensure the results were consistent and representative, such as ensuring

varying levels of background processes on the server used did not adversely affect the

timing data obtained.

Firstly, to determine the accuracy of each technique, the mutation score obtained for

each combination of DBMS and schema was recorded and compared to that obtained by

the Original technique, which is used as the “gold standard” for score correctness. This

ensures that the implementation of the technique is correct and does not contain any

bugs, which might otherwise cause an incorrect result to be obtained.

Secondly, the time taken for the mutation analysis technique to return a mutation

score was recorded. This excluded the time taken to generate both the mutants and test

data used, to ensure that the timing data obtained represented only the time taken by

the technique in use, to prevent any variable performance in other parts of the overall

mutation analysis process reducing the accuracy of the experimental analysis.

Configuration

The experiment was performed using the SchemaAnalyst tool, compiled using the Java

Development Kit 7 compiler and executed with the 64-bit Oracle Java 1.7 virtual machine,

in an Ubuntu 12.04 environment. All trials were executed on the same server running

a 3.2.0-27 GNU/Linux 64-bit kernel, with a quad-core 2.4GHz CPU, 12GB RAM and

all data stored on a local disk. Experiments used PostgreSQL version 9.1.9, running

on the same machine, in its default configuration, HyperSQL version 2.2.8 using the

“in-memory” setting and SQLite version 3.8.2 using the “in-memory” setting.
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Threats to validity

To ensure that the results obtained are both accurate and can be generalised to a broader

set of relational database schemas, a range of steps were taken to mitigate the threats to

their validity. A number of these are discussed below:

Original technique accuracy Given that the Original mutation analysis technique is

being used as the “gold standard” to measure the correctness of the other tech-

niques, it is essential that it itself correct. This risk is firstly minimised as a con-

sequence of the simplicity of its implementation – that is, because the technique is

relatively simple, communicating with the DBMS directly with no optimisations,

there is less scope for faults to occur. Secondly, the technique has been used for

the experiment in the previous Chapter as well as a number of publications with

no anomalous results being identified, and has been subject to thorough manual

testing.

Execution environment variability It is possible that different optimisations will

perform more or less efficiently, depending on the hardware it is executed using.

As previously discussed, all trials were executed on the same server, ensuring all

techniques were given the same computational resources, which are sufficient to

ensure that constraints such as available memory do not impact upon the results.

Range of schemas The performance of each technique may reply upon the size of a

schema and the type of constraints it contains, which in turn impacts upon the

number of mutants generated. It is therefore important to include a variety of

schemas. As discussed earlier in this Section, many of the schemas were taken

from real-world applications and were selected to give a very wide range of their

attributes, such as the number of tables, columns and each type of constraint.

7.6.2 Empirical results

Summary of results

The mutation scores produced by each of the six novel techniques — Full schemata,

Up-Front schemata, Just-in-Time schemata, Minimal schemata, Minimal+ schemata and
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Virtual mutation analysis — matched exactly with those produced by the Original tech-

nique for all DBMS and schema combinations, as well as all 30 repeat trials, and therefore

are not otherwise presented in this Section.

The box plots in Figures 7.5 to 7.7 show the time taken for each mutation analysis

technique and schema, where lower is better, for HyperSQL, PostgreSQL and SQLite, in

turn. The boxes in the plots span from the 1st to 3rd quartile, with the line across the

box marking the median value, and the whiskers extend to the furthest data point within

1.5× the inter-quartile range. Any data points outside of this are outliers, marked as

filled circles.

The mean time in milliseconds taken for mutation analysis with each of the techniques

for each DBMS and schema is shown in Table 7.2, where lower values are better. In each

row, the fastest technique for that DBMS and schema is highlighted. Table 7.3 presents

the same results but with the time taken for each technique scaled compared to the

time taken by the Original technique (i.e., a result of 0.5 means taking half as long as

Original, while 2.0 means taking twice as long), such that lower values are better. This

is summarised across all schemas using a mean in Table 7.4.

Research questions

RQ1: Are the mutation scores obtained by the novel analysis techniques as accurate as

those from the Original technique?

As described in the Summary of results, the mutation scores recorded for each of

the novel mutation analysis techniques — Full schemata, Just-in-Time schemata, Up-

Front schemata, Minimal schemata, Minimal+ schemata and Virtual mutation — were

consistent with those from the Original technique, for all DBMSs and schemas, across all

30 repeat trials. This provides assurance that the implementation of the six techniques

is correct and free from any significant bugs, as well as allowing them to be compared

solely by their efficiency, as they are exactly as effective as the “gold standard” Original

technique.

RQ1 Summary: Yes, all of the novel techniques consistently return the expected mu-

tation scores.
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RQ2: Do the novel techniques perform more efficiently than the Original technique, which

is the most efficient technique and what impact does the choice of DBMS have on the time

taken?

Full schemata: For both HyperSQL and SQLite, this technique performed worse than

the Original technique, with a higher mean time taken across all 32 schemas for both.

In the worst cases, this increase was up to ∼3 minutes and ∼67 minutes for HyperSQL

and SQLite, respectively. When using PostgreSQL, Full schemata was more efficient for

91% of the schemas, saving up to 66 seconds compared to the Original technique in the

best case. In the case of 2 of the 3 remaining schemas where the Full schemata technique

is slower, the difference is relatively small, however for the iTrust schema it takes ∼20

minutes longer, therefore is likely to be of practical significance. Therefore, this technique

is of limited benefit, only improving upon the Original technique when using PostgreSQL,

and may be detrimental to efficiency for some schemas.
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Table 7.2: Mean time taken (ms) for mutation analysis.

Highlighted times represent the lowest values in their respective rows.

DBMS Schema
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HyperSQL

ArtistSimilarity 98 115 118 144 72 73 55
ArtistTerm 653 722 238 409 198 204 122
BankAccount 401 472 233 284 275 272 124
BookTown 5263 6422 3219 3031 1382 1001 628
BrowserCookies 1534 1703 510 998 1216 1205 512
Cloc 1 73 79 8 96 81 0
CoffeeOrders 1999 2340 670 1238 688 674 369
CustomerOrder 3796 4177 1400 2868 1265 1242 853
DellStore 3827 4303 2713 2915 1735 1291 332
Employee 392 443 239 269 456 436 180
Examination 2372 2632 941 1686 1674 1570 656
Flights 1039 1120 351 561 600 584 293
FrenchTowns 2173 2736 1034 1651 1295 1223 553
Inventory 124 143 122 140 147 149 89
Iso3166 50 57 107 119 66 69 38
JWhoisServer 4220 4734 3167 3072 2541 2026 906
MozillaExtensions 4000 4573 2575 3290 4598 3453 1028
MozillaPermissions 133 153 126 153 187 177 67
NistDML181 211 243 140 180 134 128 92
NistDML182 1834 2165 602 1515 1148 1068 672
NistDML183 257 294 149 199 162 156 91
NistWeather 887 980 358 526 552 544 322
NistXTS748 141 162 127 148 161 154 80
NistXTS749 364 431 194 272 241 241 141
Person 244 271 163 214 266 258 95
Products 1237 1376 465 678 688 671 364
RiskIt 5647 6214 2687 4002 2107 1976 904
StackOverflow 1629 1849 1015 886 695 619 110
StudentResidence 582 652 305 361 395 391 214
UnixUsage 3323 3755 1027 2724 1169 1098 625
Usda 3642 4241 3056 2618 1722 1238 296
iTrust 415076 592731 168878 124094 196976 105451 56369

Postgres

ArtistSimilarity 3427 3082 2413 2283 1281 1460 57
ArtistTerm 23055 20889 14740 14577 3409 3973 122
BankAccount 10956 9782 6647 7239 3778 3704 125
BookTown 396018 329902 224523 249077 18866 14059 622
BrowserCookies 86805 84506 55734 62294 30386 29353 509
Cloc 1 1060 1060 9 1078 845 0
CoffeeOrders 72746 66864 40749 52050 12651 12175 375
CustomerOrder 204817 204721 114883 150517 23410 22283 862
DellStore 73100 50435 30503 39374 13034 14878 332
Employee 9489 8611 5506 6002 6161 5684 183
Examination 79400 77374 43327 52070 23063 21287 661
Flights 28824 28025 16074 18297 9980 8693 297
FrenchTowns 134387 141307 85588 95351 34519 32641 543
Inventory 4444 3985 2958 3006 3442 3323 89
Iso3166 1298 1125 831 809 977 970 40
JWhoisServer 184691 178770 124084 116863 29746 26280 896
MozillaExtensions 559688 538220 404378 386553 124270 80231 1013
MozillaPermissions 5379 4744 4032 3846 4381 2942 68
NistDML181 7318 6658 4944 4530 2769 2439 91
NistDML182 101707 101514 55694 59513 22984 20160 674
NistDML183 6938 6196 3975 4544 2752 2323 89
NistWeather 23394 21967 12980 15151 7972 8006 321
NistXTS748 3756 3456 2324 2326 2668 2428 81
NistXTS749 11759 10836 7406 8530 4345 3992 141
Person 4370 3911 2555 2759 2928 2879 94
Products 41441 38375 24355 30034 10943 11012 379
RiskIt 536439 532351 330288 362498 40099 41609 881
StackOverflow 45975 35124 29535 30363 12256 9916 109
StudentResidence 15346 14179 9121 10607 5260 5225 213
UnixUsage 198718 198474 113680 148323 21912 19942 636
Usda 117963 86286 50770 68638 16063 14973 297
iTrust 24988581 26161311 11290218 10417891 1255578 801756 56037

SQLite

ArtistSimilarity 53 68 42 32 43 40 56
ArtistTerm 302 382 221 161 106 97 136
BankAccount 192 239 143 106 140 133 138
BookTown 6103 19098 26792 4150 849 545 667
BrowserCookies 874 1037 675 463 598 560 529
Cloc 1 25 55 8 74 61 0
CoffeeOrders 1074 1320 931 642 333 314 416
CustomerOrder 3163 3827 2666 1882 668 636 946
DellStore 2072 2912 2909 1348 782 477 329
Employee 164 199 119 78 213 202 193
Examination 1401 1561 1037 729 701 646 671
Flights 508 578 320 222 259 230 308
FrenchTowns 1331 1629 1179 754 597 530 556
Inventory 61 75 49 32 79 78 91
Iso3166 32 38 26 20 43 43 47
JWhoisServer 3177 4408 3960 1897 1399 966 864
MozillaExtensions 3900 8254 9819 2232 3705 2608 955
MozillaPermissions 66 76 58 35 115 103 63
NistDML181 108 133 79 53 77 66 94
NistDML182 1830 2030 1160 851 783 605 701
NistDML183 111 140 81 55 79 69 90
NistWeather 396 503 277 221 224 214 337
NistXTS748 63 77 48 32 81 71 79
NistXTS749 180 224 130 99 126 120 152
Person 105 123 68 54 122 111 92
Products 593 734 445 297 318 300 406
RiskIt 8045 13829 13612 4618 1390 1129 901
StackOverflow 694 866 769 318 344 274 107
StudentResidence 255 317 198 147 175 171 227
UnixUsage 2933 3683 2798 1618 552 503 667
Usda 2289 4179 4968 1476 877 512 286
iTrust 669019 4708413 5716508 500727 228962 125281 54412



Table 7.3: Proportion of mean time taken for mutation analysis compared to Original
technique.

Highlighted proportions represent the lowest values in their respective rows.
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HyperSQL

ArtistSimilarity 1.000 1.173 1.204 1.469 0.735 0.745 0.561
ArtistTerm 1.000 1.106 0.364 0.626 0.303 0.312 0.187
BankAccount 1.000 1.177 0.581 0.708 0.686 0.678 0.309
BookTown 1.000 1.220 0.612 0.576 0.263 0.190 0.119
BrowserCookies 1.000 1.110 0.332 0.651 0.793 0.786 0.334
Cloc 1.000 73.000 79.000 8.000 96.000 81.000 0.000
CoffeeOrders 1.000 1.171 0.335 0.619 0.344 0.337 0.185
CustomerOrder 1.000 1.100 0.369 0.756 0.333 0.327 0.225
DellStore 1.000 1.124 0.709 0.762 0.453 0.337 0.087
Employee 1.000 1.130 0.610 0.686 1.163 1.112 0.459
Examination 1.000 1.110 0.397 0.711 0.706 0.662 0.277
Flights 1.000 1.078 0.338 0.540 0.577 0.562 0.282
FrenchTowns 1.000 1.259 0.476 0.760 0.596 0.563 0.254
Inventory 1.000 1.153 0.984 1.129 1.185 1.202 0.718
Iso3166 1.000 1.140 2.140 2.380 1.320 1.380 0.760
JWhoisServer 1.000 1.122 0.750 0.728 0.602 0.480 0.215
MozillaExtensions 1.000 1.143 0.644 0.822 1.149 0.863 0.257
MozillaPermissions 1.000 1.150 0.947 1.150 1.406 1.331 0.504
NistDML181 1.000 1.152 0.664 0.853 0.635 0.607 0.436
NistDML182 1.000 1.180 0.328 0.826 0.626 0.582 0.366
NistDML183 1.000 1.144 0.580 0.774 0.630 0.607 0.354
NistWeather 1.000 1.105 0.404 0.593 0.622 0.613 0.363
NistXTS748 1.000 1.149 0.901 1.050 1.142 1.092 0.567
NistXTS749 1.000 1.184 0.533 0.747 0.662 0.662 0.387
Person 1.000 1.111 0.668 0.877 1.090 1.057 0.389
Products 1.000 1.112 0.376 0.548 0.556 0.542 0.294
RiskIt 1.000 1.100 0.476 0.709 0.373 0.350 0.160
StackOverflow 1.000 1.135 0.623 0.544 0.427 0.380 0.068
StudentResidence 1.000 1.120 0.524 0.620 0.679 0.672 0.368
UnixUsage 1.000 1.130 0.309 0.820 0.352 0.330 0.188
Usda 1.000 1.164 0.839 0.719 0.473 0.340 0.081
iTrust 1.000 1.428 0.407 0.299 0.475 0.254 0.136

Postgres

ArtistSimilarity 1.000 0.899 0.704 0.666 0.374 0.426 0.017
ArtistTerm 1.000 0.906 0.639 0.632 0.148 0.172 0.005
BankAccount 1.000 0.893 0.607 0.661 0.345 0.338 0.011
BookTown 1.000 0.833 0.567 0.629 0.048 0.036 0.002
BrowserCookies 1.000 0.974 0.642 0.718 0.350 0.338 0.006
Cloc 1.000 1060.000 1060.000 9.000 1078.000 845.000 0.000
CoffeeOrders 1.000 0.919 0.560 0.716 0.174 0.167 0.005
CustomerOrder 1.000 1.000 0.561 0.735 0.114 0.109 0.004
DellStore 1.000 0.690 0.417 0.539 0.178 0.204 0.005
Employee 1.000 0.907 0.580 0.633 0.649 0.599 0.019
Examination 1.000 0.974 0.546 0.656 0.290 0.268 0.008
Flights 1.000 0.972 0.558 0.635 0.346 0.302 0.010
FrenchTowns 1.000 1.051 0.637 0.710 0.257 0.243 0.004
Inventory 1.000 0.897 0.666 0.676 0.775 0.748 0.020
Iso3166 1.000 0.867 0.640 0.623 0.753 0.747 0.031
JWhoisServer 1.000 0.968 0.672 0.633 0.161 0.142 0.005
MozillaExtensions 1.000 0.962 0.723 0.691 0.222 0.143 0.002
MozillaPermissions 1.000 0.882 0.750 0.715 0.814 0.547 0.013
NistDML181 1.000 0.910 0.676 0.619 0.378 0.333 0.012
NistDML182 1.000 0.998 0.548 0.585 0.226 0.198 0.007
NistDML183 1.000 0.893 0.573 0.655 0.397 0.335 0.013
NistWeather 1.000 0.939 0.555 0.648 0.341 0.342 0.014
NistXTS748 1.000 0.920 0.619 0.619 0.710 0.646 0.022
NistXTS749 1.000 0.922 0.630 0.725 0.370 0.339 0.012
Person 1.000 0.895 0.585 0.631 0.670 0.659 0.022
Products 1.000 0.926 0.588 0.725 0.264 0.266 0.009
RiskIt 1.000 0.992 0.616 0.676 0.075 0.078 0.002
StackOverflow 1.000 0.764 0.642 0.660 0.267 0.216 0.002
StudentResidence 1.000 0.924 0.594 0.691 0.343 0.340 0.014
UnixUsage 1.000 0.999 0.572 0.746 0.110 0.100 0.003
Usda 1.000 0.731 0.430 0.582 0.136 0.127 0.003
iTrust 1.000 1.047 0.452 0.417 0.050 0.032 0.002

SQLite

ArtistSimilarity 1.000 1.283 0.792 0.604 0.811 0.755 1.057
ArtistTerm 1.000 1.265 0.732 0.533 0.351 0.321 0.450
BankAccount 1.000 1.245 0.745 0.552 0.729 0.693 0.719
BookTown 1.000 3.129 4.390 0.680 0.139 0.089 0.109
BrowserCookies 1.000 1.186 0.772 0.530 0.684 0.641 0.605
Cloc 1.000 25.000 55.000 8.000 74.000 61.000 0.000
CoffeeOrders 1.000 1.229 0.867 0.598 0.310 0.292 0.387
CustomerOrder 1.000 1.210 0.843 0.595 0.211 0.201 0.299
DellStore 1.000 1.405 1.404 0.651 0.377 0.230 0.159
Employee 1.000 1.213 0.726 0.476 1.299 1.232 1.177
Examination 1.000 1.114 0.740 0.520 0.500 0.461 0.479
Flights 1.000 1.138 0.630 0.437 0.510 0.453 0.606
FrenchTowns 1.000 1.224 0.886 0.566 0.449 0.398 0.418
Inventory 1.000 1.230 0.803 0.525 1.295 1.279 1.492
Iso3166 1.000 1.188 0.812 0.625 1.344 1.344 1.469
JWhoisServer 1.000 1.387 1.246 0.597 0.440 0.304 0.272
MozillaExtensions 1.000 2.116 2.518 0.572 0.950 0.669 0.245
MozillaPermissions 1.000 1.152 0.879 0.530 1.742 1.561 0.955
NistDML181 1.000 1.231 0.731 0.491 0.713 0.611 0.870
NistDML182 1.000 1.109 0.634 0.465 0.428 0.331 0.383
NistDML183 1.000 1.261 0.730 0.495 0.712 0.622 0.811
NistWeather 1.000 1.270 0.699 0.558 0.566 0.540 0.851
NistXTS748 1.000 1.222 0.762 0.508 1.286 1.127 1.254
NistXTS749 1.000 1.244 0.722 0.550 0.700 0.667 0.844
Person 1.000 1.171 0.648 0.514 1.162 1.057 0.876
Products 1.000 1.238 0.750 0.501 0.536 0.506 0.685
RiskIt 1.000 1.719 1.692 0.574 0.173 0.140 0.112
StackOverflow 1.000 1.248 1.108 0.458 0.496 0.395 0.154
StudentResidence 1.000 1.243 0.776 0.576 0.686 0.671 0.890
UnixUsage 1.000 1.256 0.954 0.552 0.188 0.171 0.227
Usda 1.000 1.826 2.170 0.645 0.383 0.224 0.125
iTrust 1.000 7.038 8.545 0.748 0.342 0.187 0.081



Table 7.4: The proportion of mean times taken for mutation analysis compared to
Original technique, summarised as a mean across all schemas.
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HyperSQL 1.000 1.151 0.627 0.808 0.689 0.644 0.319
Postgres 1.000 0.918 0.598 0.653 0.333 0.308 0.010
SQLite 1.000 1.542 1.313 0.556 0.662 0.586 0.615

Up-Front schemata: This technique was more efficient than the Original technique

for the majority of schemas across all three DBMSs, reducing the average time taken

for mutation analysis for 91%, 97% and 72% of schemas for HyperSQL, PostgreSQL

and SQLite, respectively. For HyperSQL, in the best case Up-Front schemata saved 4.1

minutes, while in the worst case it increased the time taken by only 78ms, averaging to

an overall time saving of approximately 1/3. This improvement was higher when using

PostgreSQL, reducing the time taken by 3.8 hours in the best case, increasing it by 1

second in the worse case, and on average saving 40% of the time compared to the Original

technique. However, for SQLite the Up-Front schemata technique only yielded a 670ms

decrease in time taken in the best case, whilst taking 84 minutes longer in the worst case,

which is 8.5 times higher the Original technique. As shown in Table 7.4, taking a mean

across all schemas this equates to 30% slower than the Original technique. In summary,

the Up-Front schemata technique provides a significant technique for most schemas when

using either HyperSQL or PostgreSQL, but is not beneficial if using the SQLite DBMS.

Just-in-Time schemata: Regardless of which DBMS is used, this technique has at

least similar performance to the Original technique, if not vastly better. The mean time

taken for mutation analysis was faster for 97% of schemas for PostgreSQL and SQLite, and

81% for HyperSQL. In the worst cases, the mean time was 69ms, 8ms and 7ms higher than

for the Original technique for HyperSQL, PostgreSQL and SQLite, respectively, while in

the best cases ∼5 minutes, ∼4 hours and ∼3 minutes were saved, respectively. Over all

DBMSs, the time saving was approximately 1/3, with a higher average time saving than

any other technique when using SQLite. In summary, this technique consistently yields

efficiency improvements over the Original technique, and is the most efficient choice when

using SQLite.

Minimal schemata: When using the PostgreSQL DBMS, this technique reduces the
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time taken for mutation analysis for all but one schema, Cloc, which was ∼1 second

slower on average. However, this schema is an extreme example, where as there are no

constraints the test data set generated is empty. As a result, those techniques which do

prior transformation of the schema regardless of this (i.e., Up-Front schemata, Minimal

schemata and Minimal+ schemata) are likely to take longer than those techniques which

do not, and can in essence return results with no work. In the best case when using Post-

greSQL, the Minimal schemata technique reduces the time taken for mutation analysis

by ∼6.6 hours, representing a saving of 95%, with an average reduction in time taken

of 2/3. Although this technique only improves efficiency for 75% and 78% of schemas for

HyperSQL and SQLite, respectively, those schemas where it does worse than the Original

technique are generally small. As a result the prior transformation of the schema is a

more significant proportion of the time spent, however, in real terms the additional time

taken is generally small — 598ms and 73ms in the worst cases for HyperSQL and SQLite,

respectively. In addition, the best cases reflect significant time savings of 3.6 minutes and

7.3 minutes, with overall averages over all schemas of 31% and 34%. Overall, the Minimal

schemata technique provides a notable improvement in time taken for mutation analysis

regardless of DBMS, especially for larger schemas.

Minimal+ schemata: The results show that this technique outperforms the Minimal

schemata technique for ∼88% of schemas across all DBMSs, which is expected given

it attempts to improve upon Minimal schemata by reducing the number of constraints

where possible. In addition, where the Minimal+ schemata technique is less efficient the

time taken is within ∼350ms of the Minimal schemata technique, and often less than

100ms different. Comparing to the Original technique, the Minimal+ schemata technique

is between 31% and 67% faster on average, depending on which DBMS is being used. In

the best cases Minimal+ schemata is 5.2 minutes, 6.7 hours and 9 minutes faster than

the Original technique, while in the worst cases it is 80ms, 844ms and 60ms slower, on

average, for HyperSQL, PostgreSQL and SQLite, respectively. In summary, the Minimal+

schemata technique performs similarly or better than the Minimal schemata technique

irrespective of the DBMS, with large potential time savings compared to the Original

technique. Additionally, where slower than the Original technique the difference is often

small, and likely to be practically unimportant.

Virtual: The Virtual mutation analysis technique was more efficient than the Original

technique for 84% of schemas when using SQLite and 100% of schemas when using either
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HyperSQL or PostgreSQL. However, of those 16% where the Virtual technique was slower,

it took only an average of 30ms longer at most. As shown in Table 7.4, this technique

achieved an average reduction in time taken of 68% for HyperSQL, 99% for PostgreSQL

and 39% for SQLite. These correspond to average best case time savings of 6 minutes, 6.9

hours and 10 minutes, respectively. The results of Table 7.2 also show that the Virtual

technique is more efficient than all other techniques for 30/32 schemas for HyperSQL, 32/32

schemas for PostgreSQL and 8/32 schemas for SQLite. In the cases where the Virtual

technique is slower than another technique, it is never by more than 310ms, which is

a relatively small duration. Therefore, overall the Virtual mutation analysis technique

is the most efficient, although does rely upon the correctness of the model of DBMS

behaviour internal to SchemaAnalyst and thus cannot be used when introducing a new

DBMS or additional DBMS functions, for example.

RQ2 Summary: Of the novel techniques, only Full schemata does not yield efficiency

improvements. The amount of time saved by each technique does depend on the DBMS

being used. The Virtual technique is, on average, the most efficient for HyperSQL and

PostgreSQL, while Just-in-Time schemata is the fastest technique for SQLite. However,

the Virtual technique is close to matching this when averaging across all schemas, and

therefore has the greatest efficiency.

RQ3: Is the Virtual mutation analysis technique more efficient than those which rely on

communication with a DBMS?

The results in Tables 7.2 and 7.3 show that for 94% and 100% of schemas for Hy-

perSQL and PostgreSQL, respectively, the Virtual technique obtains the lowest mean

time taken, whilst being only 2ms and 70ms slower than the fastest technique, Up-Front

schemata, for the remaining 6% of schemas for HyperSQL. Table 7.4 reveals that on av-

erage the Virtual technique is ∼3.1 and ∼100 times faster than the Original technique

for HyperSQL and PostgreSQL, respectively. In real terms this equates to ∼6 minutes

and ∼7 hours faster, respectively, in the best case (when testing the iTrust schema).

However, when using the SQLite DBMS the Virtual mutation analysis technique is

fastest for only 25% of schemas, compared to 47% for Just-in-Time schemata and 28%

for Minimal+ schemata. Further examining the results of Table 7.2 with reference to

Table 7.1 reveals that the complexity of the schema may influence which technique is the

most efficient. For example, of the 5 schemas which had the highest mean time taken
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for the Original technique, the Virtual technique was fastest for 4 while the Minimal+

schemata was fastest for the other one. These schemas — iTrust, RiskIt, BookTown,

MozillaExtensions and JWhoisServer — generally have high numbers of tables, columns

and constraints, compared to other schemas, and therefore produce larger numbers of

mutants. For these five schemas, the Virtual technique is at best ∼71 seconds faster than

the next most efficient technique, Minimal+ schemata, and ∼10 minutes quicker than the

Original technique. For all schemas, where the Virtual technique is not fastest, it is at

most 310ms slower (CustomerOrder) and only 65ms slower on average. This suggests

that while the Virtual technique is not always the fastest, in practical usage it is likely

the best choice as where it is better than other techniques the different is great, while

where it is not the difference is relatively small.

RQ3 Summary: In general, yes the Virtual technique is more efficient. If using SQLite,

it may be marginally slower for small schemas, but is much faster for larger schemas.

7.7 Summary

This Chapter described the algorithms and implementation of six different novel tech-

niques for mutation analysis of relational database schemas, which apply the concepts of

optimisations previously applied to mutation analysis of other artefacts to a new domain.

These include the use of mutant schemata and parallelisation, as well as minimisation of

the test artefact alongside a reduction of the number of tests executed. Each of these

techniques was then compared to the existing, unoptimised Original technique, in terms

of both accuracy (measured by the accuracy of the mutation score) and efficiency (ac-

cording to the time taken). This involved an empirical experiment featuring 32 schemas,

including many from real-world sources, and three DBMSs, to maximise the generalis-

ability of the results. As all six novel techniques achieved the same mutation score as

the Original technique across all schemas, DBMSs and repeat trials, only the relative

efficiency was used to compare techniques. The Virtual technique generally performed

similarly or better than the other five techniques, and consistently significantly reduced

the time taken for mutation analysis compared to the Original technique. In the best

case, this led to a time saving of almost 7 hours compared to the Original technique,

when using PostgreSQL. Whilst both Just-in-Time schemata and Minimal+ schemata
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were faster than the Virtual technique when using SQLite, this difference was generally

very small, and unlikely to be practically significant. However, these two techniques still

remain valuable as a means of periodically checking the accuracy of the model of DBMS

behaviour in SchemaAnalyst, to ensure the mutation score achieved by the Virtual tech-

nique is not made inaccurate when support is added for any additional DBMSs or SQL

features.
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Chapter 8

Conclusions and Future Work

8.1 Summary of Contributions

As outlined in Chapter 1, this thesis aimed to apply mutation analysis to evaluate test

suites that were produced as a technique for schema testing, which attempt to insert data

into a database as a means of exercising the integrity constraints of the SQL schema used

to create it. This required a number of challenges to be addressed:

1. Determine how to produce schema mutants whose constraints contain possible pro-

grammer mistakes, including faults of omission and commission;

2. Investigate how the choice of DBMS may cause some mutants to be syntactically

or semantically invalid – referred to as quasi-mutants;

3. Understand how the overlap of different SQL features may lead to the production

of equivalent (mutant ≡ original) or redundant (mutantx ≡ mutanty) mutants;

4. Determine how to remove equivalent, redundant and quasi-mutants automatically,

to prevent them impacting upon the effectiveness and efficiency of mutation anal-

ysis; and

217



5. The development of several techniques to reduce the computational cost of mu-

tation analysis, by exploiting properties of database schemas and implementing

domain-specific parallels of techniques used to optimise other applications of mu-

tation analysis.

Chapter 3: “The SchemaAnalyst tool” described the design and implementation de-

tails of the SchemaAnalyst tool, which was used as a framework within which to imple-

ment this mutation analysis approach. Most importantly, this provided an intermediate

representation of SQL that could be manipulated programmatically, which supported the

specific SQL dialects of three different DBMSs. The mutation framework and mutation

analysis portions of the SchemaAnalyst tool represent work that is entirely my own and

therefore form a novel contribution of this thesis.

Chapter 4: “Mutation Operators for Relational Database Schemas” provided formal

definitions for a collection of 14 mutation operators for injecting faults into the con-

straints of an SQL schema. These produced mutants by adding, removing or swap-

ping columns in PRIMARY KEY (PKColumnA, PKColumnR, PKColumnE), FOREIGN

KEY (FKColumnPairA, FKColumnPairR, FKColumnPairE) and UNIQUE constraints

(UColumnA, UColumnR, UColumnE), adding and removing NOT NULL constraints (NNA

and NNR), swapping relational operators and removing elements from IN lists in check

expressions (CCRelopE and CInListElementR), and removing check constraints (CR).

Implementing these operators in the SchemaAnalyst tool allowed a wide range of mutants

to be generated that are able to represent schemas containing both faults of omission and

commission for all major SQL constraints. In addition, for each of these operators ex-

pressions were given that can calculate how many mutants they will generate for a given

schema mathematically based upon the schema’s attributes, without having to execute

the operator. This allows the number of mutants per operator to be determined ahead

of mutation analysis, which may prove useful for the purposes of selective mutation (re-

ducing the number of mutant operators applied) or mutant sampling (including only a

certain number or proportion of mutants per operator).

Chapter 5: “Evaluating Coverage Criteria for Relational Database Schemas Using

Mutation Analysis” makes use of the mutants generated by the prior Chapter to evaluate

the data generation component otherwise implemented in the SchemaAnalyst tool. This

compares the INSERT statements produced using two different data generation algorithms
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– Random+ and AVM– and according to nine coverage criteria, in terms of how many

mutants they are able to kill. The latter consists of five constraint coverage criteria – APC,

ICC, AICC, CondAICC and ClauseAICC – and four column coverage criteria – UCC,

AUCC, NCC and ANCC. In addition, the ability of the data generated by each criteria

to kill mutants produced by different operators is compared. A range of combinations

of criteria are also compared according to mutation score, to determine how test suites

can be combined to kill a higher proportion of mutants. Through the investigation of

four research questions, this experiment revealed a number of useful results. Firstly, that

AVM algorithm is consistently better at generating data to satisfy the coverage criteria

than the Random+ algorithm, especially for those criteria higher in the subsumption

hierarchy – and therefore are generally more difficult to satisfy. Next, the discussion of

the second research question showed that the coverage criteria that kills the most mutants

depends upon the data generation algorithm applied – with ClauseAICC and AUCC

killing the highest proportion of mutants for AVM and Random+, respectively. Thirdly,

that the constraint coverage criteria (APC, ICC, AICC, CondAICC, ClauseAICC) are

better at killing mutants modelling faults of commission (where constraints are over-

specified), while column coverage criteria (UCC, AUCC, NCC, ANCC) kill a higher

proportion of those modelling faults of omission (where constraints are missing or under-

specified). Finally, the fourth research question investigated whether coverage criteria

could be combined from the constraint coverage criteria, null column coverage and unique

column coverage categories, to give an overall increase in mutation score. Overall, the

combination of ClauseAICC, UCC and ANCC was best if using the AVM algorithm, or

ClauseAICC, AUCC and ANCC with the Random+ algorithm, with a best case mean

proportion of mutants killed of 94% compared to the best of 60% for a single criterion.

These results suggest that to produce data that detects the highest proportion of faults

the AVM algorithm and the combined set of coverage criteria is likely to be the best

choice.

Chapter 6: “Automatically Identifying Ineffective Mutants” more closely explored the

types of mutants produced by the schema integrity constraint operators, identifying three

types of mutants that were detrimental to mutation analysis collectively described as in-

effective mutants. Firstly, equivalent mutants are functionally identical to the original

schema (mutant ≡ original) and are a commonly studied occurrence when applying mu-

tation analysis in other contexts. As there cannot exist a test case that returns a different

result for the original and such a mutant, it cannot be killed during mutation analysis
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and therefore artificially lowers the mutation score obtained from the truthful value, po-

tentially concealing when a test suite is mutation adequate. These mutants therefore

reduce the accuracy of mutation analysis, as well as increasing both the execution cost

– as all tests must be executed for every equivalent mutant – and the human-cost asso-

ciated with attempting to produce an adequate test suite. Secondly, redundant mutants

are functionally identical to one or more other schema mutants (mutantx ≡ mutanty).

These mutants may bias the possible mutation scores achieved by a test suite towards

particular types of mutants, making it more difficult to compare two or more data gen-

eration techniques. In addition, computation time is wasted analysing each subsequent

redundant mutant as by definition they are guaranteed to return the same results as each

other. Finally, quasi-mutants are cases where the fault modelled by a mutation makes the

schema syntactically or semantically invalid for at least one DBMS, but valid for another.

This term is therefore intended to capture how a mutant may be still-born in some cases

and not others, depending on the DBMS used. These mutants do not impact directly on

mutation analysis, however their presence does preclude the application of some optimi-

sations (discussed in a later Chapter). After defining a series of patterns that describe

how to identify each of these types of ineffective mutant, applying DBMS-specific rules

but without communicating with a DBMS, Chapter 6 evaluated how implementations

of these rules could be applied after the generation of mutants to remove them entirely

automatically. An empirical evaluation of this implementation showed that the static

analysis approach used to detect quasi-mutants was significantly faster than executing

the CREATE TABLE statements for a mutant with a DBMS, consistently taking multiple

orders of magnitude less time. Removal of equivalent mutants was shown to often be

time-cost effective, taking less time than the time saved by not analysing the mutants,

meaning this improved both the efficiency and effectiveness of mutation analysis. Iden-

tifying and removing redundant mutants proved more expensive – as each mutant must

be compared with each other – and therefore often increasing the time taken, as the

infrequency of redundant mutants meant that time was rarely saved by removing them

from the pool of mutants. However, it is arguable that paying this cost, which is on the

scale of seconds, is worthwhile to improve the ability of mutation analysis to compare

different data generation techniques with less bias towards certain mutants. In addition,

if the prevalence of redundant mutants were to increase – for example when applying

higher-level mutation – this may become time-cost effective.

Chapter 7: “Improving the Efficiency of Mutation Analysis for Relational Database
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Schemas” investigated how different techniques for mutation analysis inspired by the

literature (discussed in Section 2.3.5) can be applied when performing mutation of re-

lational database schema integrity constraints. This led to the implementation of five

algorithms that apply different optimisations to the problem, in an attempt to reduce

the computational cost of execution. The Full schemata technique combines all mutant

schemas into a single meta-mutant, reducing the number of CREATE TABLE statements

executed from |mutants| to 1, such that a specific mutant schema can be ‘activated’ by

prefixing INSERT statements with a mutant identifier (e.g., ‘m1 ’). The Minimal schemata

and Minimal+ schemata techniques then attempt to improve upon Full schemata by re-

ducing the duplication of tables between mutants, such that only the mutated part of

each is included. This requires the remapping of FOREIGN KEY constraints to a shared

set of reference tables, whose state must be managed to ensure the correctness of results.

Two parallel techniques were also developed, which make use of multiple connections to

a DBMSs where possible (PostgreSQL) or multiple database instances (HyperSQL and

SQLite). The Just-in-Time schemata algorithm creates the tables in the database for

each mutant just prior to its analysis and removes them just after analysis, with the

mutant tables prefixed with an identifier to avoid namespace collisions. Meanwhile, the

Up-Front schemata technique creates a single database containing all mutants, much like

the Full schemata approach. In both cases, the execution of the INSERT statements in

the test suite is done in parallel, using a fixed number of threads in a pool. In addition to

the five techniques inspired by existing optimisation strategies, a Virtual mutation anal-

ysis approach was developed. This removes the need for communicating with a DBMS,

which can be expensive even when the database is held entirely in memory, by exploiting

the fitness functions of the data generation component of SchemaAnalyst to model the

expected behaviour of a target DBMS. An empirical evaluation using 32 schemas and

all three supported DBMSs showed that all six of the techniques were able to obtain the

same mutation scores as an unoptimised implementation. The efficiency of each technique

depended on the DBMS chosen, with Virtual mutation being most efficient for the vast

majority of schemas when using HyperSQL or PostgreSQL, while Just-in-Time schemata

proved marginally faster when using SQLite.
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8.2 Future Work

The work included in this thesis has investigated a number of problems faced when

using mutation analysis to evaluate schema testing techniques, which test the integrity

constraints of relational database schemas, and explored a variety of approaches to tackle

these. This leads to a number of interesting opportunities for further work, the most

significant of which are described below.

8.2.1 Schema mutants as models of real-world faults

As discussed in Section 2.3.1, mutation operators are used to inject syntactic faults into

a software artefact to produce mutants that model possible programmer mistakes. As

these are then used to evaluate the fault-finding capability of a test suite using mutation

analysis, it is important that they accurately model the types of faults the programmer

may make. While the 14 operators formally described and discussed in Chapter 4 are

based upon both anecdotal evidence and personal intuitions about the types of mistakes

made in integrity constraints, their accuracy in modelling real-world faults has not been

empirically evaluated.

To determine the types of mistakes commonly made in integrity constraints, it may

be possible to examine the changes made to constraints between different versions of a

database schema in the version control history of an open source database application,

such as in the approach of Curino et al. [28]. By tracking schema evolution in this way

it may be possible to determine where constraints have been added or removed during

development, which may represent cases where programmer faults were being corrected.

Although it may prove difficult to identify these cases, such repositories may feature bug

or issue trackers that contain extra information to help with this problem.

Once a likely case has been identified, the mutation operators could be applied to the

version of the schema prior to the fix being applied to produce a set of mutants. Those

mutants could then be compared to the fixed version of the schema using the equivalence

detection code already implemented in Section 6.3.1. Where faults are produced from

multiple changes, which could be detected automatically, this may involve generating

higher-order mutants by applying multiple mutation operators (see Section 2.3.5). This
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may lead to particular pairs or sequences of operators being identified that model a

certain type of fault, which could be used in place of producing all higher-order mutants,

which is generally prohibitively expensive. The higher the proportion of likely faults in

the repository that can have corresponding mutants generated in this way, the better the

mutation operators are at generating realistic faults.

8.2.2 Mutation and testing of column data types

While integrity constraints allow the schema designer to express a variety of limitations

on the data that can be accepted into the database, even in a schema with no integrity

constraints the data type specified for each column restricts the acceptable data. Referred

to as domain constraints [100], these represent the most basic type of constraint applied

to a column, and are mandatory in a SQL database schema. However, as with other types

of constraint it is possible that a mistake by the schema designer leads to an error in an

application using it to create a database. It therefore stands to reason that mutation

operators that alter the type of a column may be useful to include when producing

mutants to evaluate a given schema testing technique.

Given the large number of SQL types and the potentially huge number of mutants

that could be generated when the number of columns in a schema increases, it may

be necessary to investigate whether particular types of data type definition mistakes

are made when designing a schema. This may require techniques to extract schema

evolution information, as in the mentioned work of Curino et al. [28], to determine a

smaller subset of data types that are commonly interchanged during development of a

database application. Possible types with a higher likelihood of faults occurring may

be where DBMSs handle certain types differently or between data types that are very

similar, and therefore have subtly different use cases.

Where the mutants produced have seemingly incompatible types – for example, stor-

ing a decimal value in an integer column – the DBMS behaviour may make it difficult to

kill them, as types may be coerced to the correct types prior to being stored. It would

therefore likely be necessary to produce a coverage criterion that requires a data genera-

tion technique to create data of different types to then include in INSERT statements, in

order to kill a high proportion of these mutants. Such a coverage criteria could then be
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combined with the existing constraint, unique column and null column criteria to give a

data generation configuration that can detect a wider range of faults in database schemas.

8.2.3 Database application schema mutation

The schema testing approach considered in this thesis assumes that the schema is being

tested in isolation from other parts of an application. As such, the mutation operator

have only been applied to a standalone schema. However, a database created using a

schema is of little use without an application to interact with it, using it to store and

retrieve data. Therefore, it may be useful to consider how mutation of a schema can be

incorporated into the testing of a schema and application together.

Producing mutants of a schema embedded within an application may provide addi-

tional insight into the fault-finding capability of the application test suite, such as how

effective data validation prior to accessing the database is at ensuring data being stored

is valid according to the business logic of the application. This would help the tester gain

additional confidence in the correctness of the behaviour of their application, by reducing

the likelihood of undetected bugs being present.

8.2.4 Realistic test data generation

Once data is generated according to the criteria tested in Chapter 5, the schema testing

approach we previously proposed [62] requires the tester to examine it to determine

whether the sets of data accepted and rejected by the DBMS, according to the integrity

constraints, match their intentions. Where they identify data wrongly categorised they

must modify the constraints, adding to or removing from them as necessary to resolve

the problem. This process should be repeated until the tester is convinced the DBMS

returns the expected result for all items of data. However, as the data produced by the

current data generation process in the SchemaAnalyst tool is initially seeded by random

values or a set of default values, it is likely any data generated does not have certain

characteristics of real data such as using string values that are easy for a human tester

to read and recognise. Considering the tester must manually reason about each item of

test data such readability is important as a means of reducing the human-time cost of
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this testing approach. It may also be easier for the tester to consider data that closely

models real data intended to be used in the application, as they may already be familiar

with reasoning about this data.

Where data already exists for a particular schema – for example, if testing a schema

that has previously been used as part of another application or for where a number of

hand-derived test cases have been produced – this could be used to produce a pool of

values that could be used to seed the data generation process. These values could then

be modified as needed to meet the specific test requirements produced by the coverage

criterion in use, according to a test data generation approach that changes the current

proposed data such as the AVM algorithm. If data is not available for the schema under

test, data types such as character strings could be seeded using dictionary values, which

may still be easier for the tester to recognise quickly when manually inspecting the gener-

ated test cases. It may also be possible to include a measure of string readability as part

of the fitness function used during data generation, which measures how close produced

data is to meeting the test requirements given by a coverage criteria. Alternatively, this

could be incorporated as a separate step after generating data values that satisfy the test

requirements, post-processing the data in an attempt to improve its readability without

altering its fitness according to the original fitness function.

Evaluating the effectiveness of these attempts to produce more realistic test data

would likely require a human study, in which the time taken for human analysis of test

data is measured with and without readable and realistic test data being used. This

could be incorporated as part of a wider investigation into schema testing, in which

individuals are given a description of the data for which they should design a schema and

are provided with the SchemaAnalyst tool to assist them in identifying possible mistakes.

The schemas created during this experiment would also be useful in determining where

common mistakes are made, by recording the revisions the individual makes between

different versions of their schema and asking them to identify the test cases they found

useful in motivating these changes.

8.2.5 Scalability of mutation analysis for very large schemas

While the largest schema included in the empirical experiment of Chapter 7 is relatively

complex – with 42 tables, 309 columns and 134 integrity constraints – it is still possible
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that in a practical setting schema testing may be applied to larger schemas. As such, it

is important to know how well the mutation analysis techniques presented in this thesis

– particularly those techniques known to be the most efficient (Just-in-Time schemata,

Minimal+ schemata and Virtual mutation) – scale when the complexity of the schema

increases further.

Similar scalability analysis has already been applied to the data generation component

of SchemaAnalyst by Kinneer et al. [68]. In this approach, the complexity of the schema

under test was increased by synthetically ‘doubling’ parts of it, such as the number

of constraints present, and measuring the corresponding change in execution time, to

determine whether it can be described by a linear function or one of a higher order. This

doubling approach could be re-purposed for testing the scalability of mutation analysis

in a similar manner, artificially scaling a schema and then measuring the time taken by

each of the mutation analysis techniques previously identified as the most efficient.

As the size of the schema increases so should the generated test suite, to provide

adequate coverage according to the coverage criteria within SchemaAnalyst. However,

executing such a large number of test cases for each mutant is likely to become very

expensive, thus making mutation testing infeasible. To mitigate this issue, it may become

necessary to employ techniques such as test case prioritization [32] or test suite reduction

[61], to reorder or remove tests such that execution cost is lowered. A conceptually

perpendicular option may be to reduce the number of mutants produced for such schemas

by employing selective mutation techniques (see Section 2.3.5), using an empirical analysis

to determine a reduced set of operators that yield a mutation score that accurately models

the score obtained by the full set of operators.

8.3 Concluding Remarks

The reliable storage of data forms an important part of a huge number of different appli-

cations, with relational databases being commonly employed to provide this functionality.

Although prior research has focussed on testing both the DBMSs managing databases

and the applications using them to store data the integrity constraints expressed in a

schema, which provide the ‘last line of defence’ against the storage of incomplete or low
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quality data, are not commonly tested. To evaluate such a schema testing technique,

this thesis explored the use of mutation analysis to model faults in the constraints of a

relational database schema. A set of mutation operators were proposed that modified

each of the main types of constraint in an SQL schema. These were then used to com-

pare a range of different data generation approaches for schema testing. Next, techniques

were described to remove three types of ineffective mutant, which otherwise negatively

impact upon both the effectiveness and efficiency of mutation analysis. Finally, a series

of optimised mutation analysis algorithms were described, implemented and evaluated to

improve its efficiency. Overall, the work of this thesis therefore provides an automated

approach for evaluating test suites produced by schema testing techniques that is both

effective for comparing different approaches and computationally efficient, such that its

use in both a practical setting and large scale academic experiments is feasible.
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Appendix A

Using the Mutation Framework

A.1 Introduction

This appendix describes how the mutation framework, discussed in Section 3.6, can be

used to perform experiments such as those in the contribution Chapters of this thesis.

These experiments make use of the mutation operators of Chapter 4, optionally the

ineffective mutant removal techniques detailed in Chapter 6, and either the Original

mutation technique described in Section 1.3.2 or an optimised mutation analysis approach

from Chapter 7. Both the mutation framework and the SchemaAnalyst itself will be

made available online via the SchemaAnalyst website (http://schemaanalyst.org/).

The appendix is divided into three Sections:

Section A.2: “Shared Configuration” briefly details the global configuration files in

SchemaAnalyst, which are specify values for options used in multiple places across

the tool, including the mutation framework.

Section A.3: “Generating Mutants” describes how mutants can be generated with-

out performing mutation analysis, such that the number produced under different

configurations (e.g., with and without ineffective mutants) can be compared.

Section A.4: “Executing Mutation Analysis” details how to execute the muta-

tion analysis component of the framework to evaluate the quality of a test suite,
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including using the data generation component to produce SQL INSERT statements

and describing how to make use of the optimisations discussed in the prior Chapters

of this thesis.

A.2 Shared Configuration

The global configuration files for SchemaAnalyst, residing in config/, are Java properties

files that are used as a singular point to specify various options for parts of the tool, such

that they do not need to be passed as arguments to all relevant commands. To allow users

to maintain their own copies of these files that are not committed to the version control

system, the configuration system automatically loads versions suffixed with .local if they

exist (e.g., database.properties.local takes precedence over database.properties).

There are three main configuration files used by SchemaAnalyst– database, locations

and logging. The database file contains options relating to DBMS communication,

locations is used to determine where various files important to SchemaAnalyst are

located, and logging contains options relating to the java.util logging system. The

properties contained in each are described in the tables below:
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Properties file database

Property Description

dbms The DBMS to use (note: this may affect parts of the tool that do not

connect to a DBMS but that must have DBMS-specific behaviour, such

as ineffective mutant removal).

postgres port The port used to connect to Postgres.

postgres username The username used to connect to Postgres.

postgres password The password used to connect to Postgres.

postgres host The network host used to connect to Postgres.

postgres database The name of the Postgres database.

postgres driver The class name for the Postgres JDBC driver.

sqlite path The directory to store the SQLite database files in.

sqlite driver The class name for the SQLite JDBC driver.

sqlite in memory Whether to use the faster ‘in-memory’ mode of SQLite.

hsqldb path The directory to store the HyperSQL database files in.

hsqldb username The username used to connect to HyperSQL.

hsqldb password The password used to connect to HyperSQL.

hsqldb driver The class name for the HyperSQL JDBC driver.

hsqldb in memory Whether to use the faster ‘in-memory’ mode of HyperSQL.

Properties file locations

Property Description

lib dir Where the required libraries (.jar) files are located.

src dir Where the Java source files are located.

build dir Where the compiled Java class files are located.

dist dir Where the distributable .jar file should be saved.

dist name The name of the .jar distributable file.

config dir Where the configuration files are located.

database dir Where database files should be stored.

results dir Where results files should be stored.

schema src dir Where schema SQL files are located.

case study src dir Where the Java files produced by parsing schema files should be stored.

case study package The package parsed schemas will be stored.

test src dir Where the tests for SchemaAnalyst are located.

test package The name of the test package for SchemaAnalyst.

Properties file logging

Property Description

handlers The java.util logging handlers to use.

.level The logging level to use (e.g., WARNING, INFO, FINE).
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A.3 Generating Mutants

To avoid the cost of running the entire mutation analysis process to measure the number

of mutants produced by a particular set of operators, or how many are discarded by

the ineffective mutant removal process, the mutation framework includes functionality to

generate mutants without executing them. This is implemented in the AnalysePipeline

class within the mutation.analysis.util package, which given the name of a mutation

pipeline will create a report detailing the number of mutants produced for each operator,

removed by each ineffective mutant removal phase and the overall number of effective

mutants remaining for each operator. The command is executed using the following

parameters:

Class org.schemaanalyst.mutation.analysis.util.AnalysePipeline

Parameter name Required Description

casestudy X The class name of the schema to use, which has been parsed

into the SchemaAnalyst intermediate representation.

dbms X The DBMS to use (Postgres|SQLite|HyperSQL).

mutationPipeline The mutation pipeline to use to generate mutants (default:

AllOperatorsWithRemovers).

outputfolder The directory to output results into (default: as specified in

configuration file).

By default, this will produce a file at the location results/analysepipeline.dat,

which is in a comma-separated value (CSV format) and usually contains many lines of

results per execution. As an example, consider the following mock output:

results/analysepipeline.dat:

dbms,casestudy,pipeline,type,operator,count,timetaken

Postgres,parsedcasestudy.ArtistSimilarity,AllOperatorsWithRemovers,produced,NNCA,3,1

Postgres,parsedcasestudy.ArtistSimilarity,AllOperatorsWithRemovers,removed,EquivalentMutantRemover,1,27

Postgres,parsedcasestudy.ArtistSimilarity,AllOperatorsWithRemovers,retained,NNCA,2,NA

The first three columns specify the dbms, case study (or schema) and pipeline used,

respectively – Postgres, ArtistSimilarity and AllOperatorsWithRemovers in this case.

The type column describes what sort of data is listed in the given column, which must

be produced, removed or retained (the number of mutants remaining after removal).

Next, the class name of the mutation operator or remover applied is listed – in this case,

the NNCA (NOT NULL column addition) was used to create three mutants, one of which

was removed for being equivalent, leaving two mutants remaining. The final column lists

the time taken in milliseconds, for either production or removal.
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A.4 Executing Mutation Analysis

To create data to exercise the integrity constraints of a schema, using the SchemaAna-

lyst data generation component, and then perform mutation analysis to evaluate it, the

MutationAnalysis class from the mutation.analysis.executor package is used. This

is a highly configurable class whose runtime parameters can be used to set a number

of options for both the data generation phase and the mutation analysis phase. The

available parameters are detailed in the table below:

Class org.schemaanalyst.mutation.analysis.executor.MutationAnalysis

Parameter name Required Description

casestudy X The class name of the schema to use, which has been parsed into

the SchemaAnalyst intermediate representation.

criterion The coverage criterion to use to generate data for.

dataGenerator The data generator to use to produce SQL INSERT statements.

maxevaluations The maximum fitness evaluations for the search algorithm to use.

randomseed The seed used to produce random values for the data generation

process.

mutationPipeline The mutation pipeline to use to produce and, optionally, remove

mutants.

technique The mutation technique to use (e.g., original, fullSchemata, mini-

malSchemata).

useTransactions Whether to use SQL transactions to improve the performance of

a technique, if possible.

Executing this class produces a single results file in CSV format that contains one line

per execution, located at results/newmutationanalysis.dat. This contains a number

of fields:

dbms The DBMS.

casestudy The schema.

criterion The integrity constraint coverage criterion.

datagenerator The data generation algorithm.

randomseed The value used to seed the pseudo-random number generator.

coverage The level of coverage the produced data achieves according to the criterion.

evaluations The number of fitness evaluations used by the search algorithm.

tests The number of test cases in the produced test suite.
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mutationpipeline The mutation pipeline used to generate mutants.

scorenumerator The number of mutants killed by the generated data.

scoredenominator The total number of mutants used for mutation analysis.

technique The mutation analysis technique.

transactions Whether SQL transactions were applied, if possible.

testgenerationtime The time taken to generate test data in milliseconds.

mutantgenerationtime The time taken to generate mutants in milliseconds.

originalresultstime The time taken to execute the test suite against the non-mutated schema.

mutationanalysistime The time taken to perform analysis of all of the mutant schemas.

timetaken The total time taken by the entire process.

Due to architectural differences between the Virtual mutation analysis technique and

other techniques, it must instead be executed using the MutationAnalysisVirtual class

within the same package, which produces results in the same format. In addition, if it is

necessary to retrieve information about the execution time for each mutant individually,

the MutantTiming technique is provided. This is a specialised version of the Original

technique that is instrumented to record this additional information.

A.5 Summary

This appendix has described how to run two important parts of the mutation framework

– mutant generation through the AnalysePipeline class, and mutation analysis through

the MutationAnalysis and MutationAnalysisVirtual classes. These were used to pro-

duce the results of the empirical studies in the main Chapters of this thesis, and may

also be used to perform other experiments related to the mutation analysis of relational

database schemas.
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