
 

 

 

MODELLING DRIVING BEHAVIOUR AT 
MOTORWAY WEAVING SECTIONS 

 

 

 

 

 

 

 

Andyka Kusuma 
 

Submitted in accordance with the requirements for the degree of 

Philosophy of Doctoral Degree 
 

 

 

 

 

The University of Leeds 

Institute for Transport Studies 

September 2015



 



 
-ii- 

The candidate confirms that the work submitted is his own and that 
appropriate credit has been given where reference has been made to the 
work of others. 

 

This copy has been supplied on the understanding that it is copyright 
material and that no quotation from the thesis may be published without 
proper acknowledgement. 

 

 

© 2015. The University of Leeds and Andyka Kusuma 

 



 



-iii- 

 

Acknowledgement 

Completing a PhD is a very lonesome endeavour for the last four years, I realise this 
work could not be succeeding without advices, supports, and helps from copious people 
that I desire to say my thanks.  

First of all, I would like to say my special thanks to my supervisors; Dr Ronghui Liu, 
Dr Charisma Choudhury, and Mr Francis Montgomery for their valuable guidance, 
support and encouragement along this process 

Many thanks to The Directorate General for Higher Education, Ministry of Education 
and Culture, Republic of Indonesia and for the opportunity and financial support for me 
to pursuing this PhD degree. Department of Civil Engineering, Faculty of Engineering, 
Universitas Indonesia for their assistance in this PhD research. To Dr Tzu-Chang Lee 
for his assistance and permission to use the trajectory extractor application. Dr Arief 
Gusnanto, for the discussion and sharing his experience doing a PhD. 

A PhD is more than doing a research and I would like to thank my fellow in ITS who 
the process enjoyable. Special thanks for my Indonesian fellow in ITS, Munajat Tri 
Nugroho, Fahmi, Probo Hardini, Aswin Siregar, and my colleague Irfan Rifai for their 
continuous supports, discussions and strengthens during this process.  

Last but not least, I would like to say my special thanks to my family, especially my 
lovely wife Lola Arieza for her passion, invaluable supports to continue working when 
everything is impossible. My parents Mr. Dede K.E Idris and Mrs. Hedijanti Joenoes, 
my brother and sister Fikar R. Kusuma, Nevine R. Kusuma for their inspiration and for 
keeping me during their doa’ for this journey. 





-v- 

Abstract 

This research focuses on the understanding of driving behaviour in motorway weaving 
sections, particularly the lane-changing and acceleration behaviours which are 
significant factors in characterising the operations of weaving section.  

Drivers’ lane-changing behaviour is a series interdependent decisions according to a 
particular lane-changing plan (latent). An intensive interaction with neighbouring traffic 
increases the lane-changing complexity in weaving section. The drivers’ choices in 
weaving section can be significantly affected by the actions of the neighbourhood 
drivers and moving as a group (i.e. platoon and weaving). Furthermore, the intensity of 
lane-changing has significant impact on the acceleration behaviour in weaving section 
traffic which may response differently from the stimulus (i.e. leave a space for pre-
emptive lane-changing). 

An analysis of detailed trajectory data collected from moderately congested traffic flow 
of a typical weaving section in the M1 motorway, UK (J 42-43). The data reveals that a 
substantial proportion (23.4%) of the lane-changing at weaving section exhibits such 
group behaviour (i.e. platoon and weaving).  The current study extends the state-of-the-
art latent plan lane-changing model which account explicitly the various mechanisms. 
The model constitutes that the driver is most likely performing a pre-emptive lane-
changing at the beginning of weaving section and moving toward kerbside (left 
direction). Moreover, the driver aggresiveness affects significantly on weaving and least 
on platoon lane-changing.  

The proposed acceleration model allows the car-following behaviour 
(acceleration/deceleration) corresponds with both stimulus (positive/negative relative 
speed). The model is conditional on gap threshold and reaction time distributions 
(probabilistic model) capturing the heterogeneity across drivers. most of traffic response 
differently from the stimulus condtions where 43.5% falls in deceleration with positive 
relative speed.  

All the parameters in each model are estimated jointly using Maximum Likelihood 
Estimation technique and reveal significant differences. The results show promising 
contribution towards improving the fidelity of microscopic traffic performance analysis.  
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&',) # − dM" : Vector of explanatory car-following * variables associated with driver 

n at time # − M  

í"
àâ # − M"   : Vector of explanatory variables of desired speed of driver $ driver at 

time # − M" 

í"
G #  : Vector of explanatory variables associaed	with driver $ for lane R at 

time # 

í"
G&,F  : Vector of individual $ attributes associated with action R< with 

intermediate Y  

í"
W,G,F #     : Vector of explanatory variables associated with driver $ lane changing 

mechanism m and critical gap X  

í"
W #      : Vector of explanatory variables associated with driver n at time # for 

critical gap X   



 -xxii- 

 

í"
W,GZ #      : Vector of explanatory variables associated with driver n at time # for 

critical gap X, target lane RE and lane changing mechanism m  

í"
GZ #  : Vector of explanatory variables associaed	with	driver n for lane RE at time 

# 

íB
õ : Explanatory variables of the reaction time distribution 

úG : Estimated parameters of individual specific random effect P" for lane R  

úG
Z : Estimated parameters of individual specific random effect P" for direction 

RE  

úW,F  : Estimated parameters of individual specific random effect P" for critical 
gap X and lane changing mechanism	Y 

N : Vector of estimated parameters  

N&' : Estimated parameters of car following 

N&',KB)K : High sensitivity value, if the gap to the front vehicle is relatively close 

N&',GO\ : Low sensitivity value. If the gap is relatively large 

N&',ù : Estimated sensitivity parameter for the subject vehicle speed   

N&',∆1 : Estimated sensitivity parameter for the relative distance between the 
subject and front vehicle 

N&',),û  : Estimated sensitivity parameter for the traffic density for car-following * 

Nàâ : Estimated constant desired speed 

N''  : Estimated constant sensitivity 

NW : Vector of estimated parameters for critical gap X  

NG : Vector of estimated parameters associated with target lane l 

NG
Z : Vector of estimated parameters associated with target lane RE 

NW,G
Z : Vector of estimated parameters for critical gap X  
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NW,F      : Vector of estimated parameters for critical gap X and lane changing 
mechanism Y 

NGO&   : Vector parameters of the estimated curve, and	ü #  a normally distributed 
error term. 

NHIJ, N†O.IJ, Nû : Estimated parameters of MLC, Number of lane changing, and density 
respectively 

NB
õ  : Specific constant parameter of reaction time 

ü" #  : Random error term 

ü"
&',) : Random error term associated with acceleration g for driver n at time #, ( 

ü"
&',))~|(0, ¢&',)

ë
) 

ü"
&',.&&,/ : Random error term associated with car-following acceleration, conditional 

on positive ∆Ö for driver n at time # 

ü"
&',.&&,0  : Random error term associated with car-following acceleration, conditional 

on negative ∆Ö for driver n at time # 

ü"
&',12&,/  : Random error term associated with car-following deceleration, conditional 

on positive ∆Ö for driver n at time # 

ü"
&',12&,0  :  Random error term associated with car-following deceleration, 

conditional on positive ∆Ö for driver n at time # 

ü"
''(#)     : Random error term associated with car-following under free flow regime 

for driver n at time # 

ü"
&@ #    : Random error term associated with critical gap for driver n at time  

ü"
&@ # ~|(0, ¢£

ë) 

ü"
W #     : Random error term associated with critical gap j for driver n at time #,  

ü"
W~|(0, ¢W

ë
) 

ü"
G #   : Random term associated with the utility of the target lane R for driver $ at 

specific time # 

ü"
G #   : Random error term associated with target lane R for nth driver at time # 

ü"
W(#)  : Random error term associated with critical gap j for driver n at time # 



 -xxiv- 

ü"
W,G,F #   : Random error term associated with critical gap j and lane changing 

mechanism	Y for nth driver at time #, ( ü"
W,G,F)~|(0, ¢W,F

ë
) 

ü"
&',),+,      : Random error term of car-following * associated with conditional -# for 

driver n at time # ( ü"
&',),+,)~|(0, ¢&',),+,

ë
) 

ü"
&',.&&,/      : Random error term of car-following acceleration associated with positive 

∆Ö for driver n at time #  

ü"
&',.&&,0 : Random error term of car-following acceleration associated with negative 

stimulus	∆Ö for driver n at time #  

ü"
&',12&,/    : Random error term of car-following deceleration associated with 

positive	∆Ö for driver n at time #  

ü"
&',12&,0  :  Random error term of car-following deceleration associated with 

negative	∆Ö for driver n at time # 

d  § 0,1 , a parameter for sensitivity lag 

•K, ¢K   : Mean and standard deviation of the non-truncated headway distribution 

•õ, ¢õ : Mean of the R$ M"  distribution and standard deviation of the R$ M"  
distribution 

M"        : Reaction time of vehicle $ 

MF.A : Upper bound of the reaction time distribution 

MFB" : Lower bound of the reaction time distribution 

P"  : Individual specific random error term to account for unobserved driver 
characteristics, assumed to follow normal distribution P"~|(0,1) 

¶  : Span size or degree of smoothing 

¢âHâ
ë   : Variance of the space mean speed 

σ&',),∆ù
Z  : Standard deviation of car-following distribution * of vehicle $ associated 

with ∆ÖE 

σ&',.&&,/  : Standard deviation of acceleration car-following distribution of vehicle $ 
associated with relative positive speed 
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σ&',.&&,0 : Standard deviation of acceleration car-following distribution of vehicle $ 
associated with relative negative speed 

σ&',12&,/ : Standard deviation of deceleration car-following distribution of vehicle $ 
associated with relative positive speed 

σ&',),+,    : Standard deviation of car-following distribution * of vehicle $ associated 
with stimulus -# 

σ'' : Standard deviation of free flow distribution of vehicle $  

¢''
ë : Variance of free-flow error terms 

ρë : Adjusted rho-bar 

© .  : Probability distribution functions of a standard normal distribution random 
variable 

Φ .  : Cumulative distribution functions of a standard normal distribution random 
variable 

´ *" #   : 1 if the driver accelerates; 0 otherwise. 

´ ∆Ö"
+, # − M"  : 1 if the relative speed is positive, 0 otherwise.  

´"
G2', #    : 1 if driver changes to the left lane at time t; 0 otherwise 

´"
&V@ #     : 1 if driver changes to the current lane at time t; 0 otherwise 

´"
@B)K, #  : 1 if driver changes to the right lane at time t; 0 otherwise 

´"
û #   : Dummy variable with value 1 if final target R is c	(c = 0,1,2) lanes away 

from current position 
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Chapter 1 Introduction 

 Background 

Driving in a weaving section is challenging, because the driver has to adjust his/her path 

and maintain the safest gap towards the neighbourhood vehicle in a relatively short-

length of road section. The operation at a weaving section is characterised by the 

complexity of traffic interaction (complex traffic interaction) during the lane-changing 

movement and acceleration behaviour (Sarvi et al., 2011). Indeed, these characteristics 

are slightly different from the basic section of motorway network. The high intensity of 

lane-changing movement in weaving movement leads drivers to interact and adjust their 

speed to maintain their driving in a safe manner. While aggressive movement may 

contribute to traffic disruption and accident risk, Golob et al (2004) found that 23.9% 

of the accidents in weaving section involve a sideswipe collision. These concerns 

require researchers and engineers to work hand in hand in developing an analysis tool 

which can capture driver characteristics in a weaving section. 

Over the last decade, weaving section traffic has become an important topic in highway 

transport research area. The recent update of Highway Capacity Manual (HCM) has an 

improved analysis algorithm for a typical weaving section traffic performance which 

incorporates the geometric information as a critical factor in the operation of weaving 

section (HCM, 2010). However, the algorithm has difficulties in identifying the 

operational problem precisely and providing a unique optimum solution for improving 

the traffic performance. Implementing a long run traffic survey and various potential 

solutions directly into the traffic are some of the other approaches, which require the 

traffic engineer to identify the main problem directly in a typical weaving section. 

However, these approaches are prohibitively expensive and inefficient. 

Microscopic simulation tools, therefore, are extensively used in the traffic research area 

for evaluating alternative strategies for transport planning and operation in recent times, 
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such as: MITSIM (Yang and Koutsopoulos, 1996), CORSIM (Halati et al., 1998), 

DRACULA (Liu, 2007), and VISSIM (PTV, 2011). It replicates real traffic conditions 

and it is an efficient way to analyse different scenarios, in particular motorway network 

i.e. weaving section. This approach analyses the complexity of traffic interaction 

explicitly through a detailed individual driver behaviour. Driving behaviour models, 

which include lane-changing model, acceleration model, and route choice model, form 

the core of these simulation tools. The lane-changing model describes the lateral 

movement of vehicle that incorporates target lane selection and gap acceptance while 

the acceleration model represents a response of stimulus and driver sensitivity in 

maintaining a safe gap toward the front vehicle. The behaviour models are also very 

important for safety studies and air quality analysis. 

Both lane-changing and acceleration behaviours of individual drivers are affected by 

several factors including the characteristics of the observation area, the subject vehicle, 

and neighbouring traffic condition. The relative speed explains the interaction between 

the subject and object vehicles explicitly. It has a direct impact on both individual lane-

changing and acceleration decision together with type of vehicle and position. Having 

a good knowledge of the network (i.e. curvature, speed limit, and location of slip road) 

and individual driver capability also influence the strategies and tactics in individual 

driver decision. In fact, driver decision varies depending on traffic condition.  

The lane-changing characteristics in weaving section may differ from the other parts of 

the motorway network. The action of neighbouring traffic may significantly affect the 

lane-changing strategy in the weaving section, where the traffic is required to adjust 

their lanes in a relatively short length of the road. Moreover, it is common that the lane-

changing vehicle in this section moves in a group due to the limitation of the length of 

the road. For instance, if the current lane front vehicle changes lanes in the same 

direction, the subject vehicle may be inclined to move as a platoon and accepts smaller 

gaps to complete the lane-changing manoeuvre. Similarly, the acceptable gap of 

weaving lane-changing may differ as opposed to the isolated/solo lane changing 

strategies. These issues have not been addressed in the existing lane-changing model.  

Most existing lane changing studies are focused on isolated lane-changing (i.e. Toledo 

et al. 2007, 2005; Choudhury, 2007). Those studies omit the various lane-changing 

strategies, which are significant components in the weaving section lane-changing 

decision-making process in particular. 
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The weaving section traffic has to adjust their speed preparing for a pre-emptive lane 

changing and leave a safe gap toward the current lane front vehicle. The acceleration 

behaviour in this section, therefore, is slightly different from the basic section of 

motorway sections. For example, if the subject vehicle faces adjacent lane merging 

vehicle, the movement requires acting differently from the stimulus though the current 

lane front vehicle moves faster than the subject vehicle that decelerates and leaves the 

gap for the adjacent lead vehicle to merge. However, the current acceleration models 

represent the acceleration decision as strictly correlated with the stimulus condition (i.e. 

Ahmed, 1999; Subramanian, 1996; Toledo, 2003). Those models neglect the impact of 

different stimulus conditions in the acceleration behaviour that frequently appear in the 

weaving section traffic. 

There has been extensive research on improving driving behaviour models emphasising 

on more complex traffic condition such as weaving traffic, which very often are the 

sources of traffic bottlenecks. A fidelity in characterising the individual driver 

behaviour (i.e. lane-changing and acceleration behaviour) improves the applicability of 

the microscopic traffic simulation in responding to the variation of traffic scenarios in 

a particular facility such as weaving section, and the analysis of scenarios which may 

not be presented in the current real traffic conditions (Alexiadis et al., 2004).  

Current Ph.D. research, therefore, proposes a novel state-of-the-art in lane-changing and 
acceleration models. The proposed lane-changing model incorporates various lane-
changing strategies that are relevant with the front/lead vehicle movement and car-
following behaviour in each relative speed conditions. The individual driver may prefer 
different lane-changing strategies (i.e. isolated/solo, platoon, and weaving) 
corresponding to the front/lead vehicle movement. This study considers those lane-
changing strategies in the gap acceptance model which is the second level (action) of 
the proposed lane-changing modelling framework. Note that the gap acceptance model 
in this thesis incorporates both the accepted and rejected gaps. Meanwhile, the proposed 
acceleration model approach lessens the relationship between acceleration behaviour 
and stimulus. This study allows different responses (acceleration and deceleration on 
each positive and negative stimulus. Those concerns in the proposed lane changing and 
acceleration models shall improve the driving behaviour models performance.  

Both the proposed modelling frame work assist the engineer/practitioners in 
understanding the nature of driving behaviour particularly in weaving section. This 
leads the highway engineer to come up with safer weaving section designs which 
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minimise the conflict and accident risk due to an intensive merging and diverging 
movements in the weaving section. A well designs of engineering interventions assists 
the engineers to distribute properly both the movements along the section (for example; 
lane-marking redesign, speed policy, application of ramp metering, and geometric 
improvement).  

 Research Objectives  

The main objective of this research is to improve the state-of-the-art and proposed a 
lane-changing and acceleration behaviours modelling frameworks in a weaving section, 
which is one of the critical sections in multilane motorway networks. Both models are 
estimated to be based on the same set of individual vehicle trajectory dataset. 

The current study investigates the effects of group behaviour in further details and 

proposes a lane-changing modelling framework which explicitly incorporates various 

impact of the group behaviour as part of individual lane-changing mechanism (i.e. 

isolated/solo, platoon and weaving movement). This issue becomes critical in a weaving 

section, where the traffic has to adjust its lanes in a particular length of the road. The 

decision-making process of lane changing is a result of the target lane choice and gap 

acceptance of individual driver. This process is a hidden (latent) plan while it is only 

possible to observe the individual driver decision either changes lane or maintain at the 

current lane. This research is therefore developing a lane-changing model that 

incorporates the impact of various lane changing mechanisms in the decision-making 

process. It is worth noting that the proposed modelling framework considers both 

accepted or rejected lane-changing conditions 

This study aims to imitate the acceleration behaviours in the car-following regime and 

free-flow regime. The proposed model relaxes the car-following regime stimulus in the 

previous studies by allowing the acceleration behaviour to relate with each stimulus. 

This framework provides an opportunity for capturing a wider range of acceleration 

behaviours associated with different types of stimulus. 

An empirical analysis of traffic surveillance data summarises the weaving section 

characteristics including speed, acceleration, gap acceptance, lane-changing location 

and direction, and lane-changing strategy. The use of loop detector of Motorway 

Incident Detection and Automatic Signalling (MIDAS) (DMRB, 1994) provides an 

aggregate data of speed, traffic flow and lane occupancy while the extracted vehicle 
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trajectory dataset represents all vehicle movements inside the observation area. The 

study applies both datasets to estimate the lane-changing and acceleration models. 

 Research Methodology 

The proposed research initially requires the description of aims and objectives to 

provide research direction in modelling. A significant number of literature reviews 

supported the background for the modelling development both lane changing and 

acceleration models.   

This study extends the general framework of latent plan model that incorporates the 

phenomena of group behaviour as intermediate plan (lane changing mechanisms). 

Consequently, the proposed lane-changing decision-making process framework follows 

a schematic procedure, namely: target lane, intermediate plan, and gap acceptance 

respectively. The decision-making process is latent (unobserved) while the observation 

can only capture the turning movement corresponding with the intermediate plan (lane-

changing strategies). A driver, who tends to change lane, has to accept both gaps with 

lead vehicle and lag vehicle at the target lane simultaneously or he/she has to stay at the 

current lane. There are three types of lane-changing strategies: isolated/solo, platoon, 

and weaving. Platoon lane changing appears when the front vehicle at the current lane 

performs a lane changing during the same period, while the observed vehicle will be 

involved in weaving when the vehicle swaps lanes with the neighbouring vehicle. The 

driver involves in solo lane changing, if he/she changes lane individually as the 

front/lead vehicle maintains at their current lane. Several attributes are involved and 

explain the driver’s decision, such as vehicle attributes, traffic attributes, individual 

characteristics, and previous decision effect. Individual characteristics in this model is 

captured by the level of aggressiveness, which varies among individuals. 

The acceleration model is a function of driver sensitivity component (driver attributes) 

and stimulus as a linear function of relative speed between the front vehicle and the 

observed vehicle. The sensitivity may have a positive or negative value. This study that 

applies gap threshold, classifies the acceleration into two regimes: car-following regime 

and a free flow regime, while reaction time represents the driver aggressiveness in 

responding to the stimulus. This study suggests that the distribution of both values 

follow the lognormal distribution with truncation on both sides. In fact, it is similar with 

the observed gap acceptance distribution profile while the application of lognormal 
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distribution in gap distribution implies that a high proportion of traffic accepts short 

reaction time.  Furthermore, the proposed acceleration model extends the car-following 

regime conditions by allowing different acceleration behaviours (acceleration and 

deceleration) in each stimulus conditions (relative positive speed and negative relative 

speed). Given this assumption, the model has four decisions in the car-following regime: 

acceleration with the relative positive speed, acceleration with negative relative speed, 

deceleration with positive relative speed, and deceleration with negative relative speed. 

This assumption relaxes the limitation of the previous studies and provides an 

opportunity to observe various car-following behaviours especially in the weaving 

sections where some traffic may act differently from the stimulus.  

The study uses two types of surveillance data: traffic video recording and MIDAS. The 

traffic video records all the vehicle movement at the observed weaving section area. 

However, it requires an extraction process to gather the individual vehicle trajectory 

data by means of vehicle trajectory extractor application developed by Lee et al. (2008). 

The extracted trajectory data should be fitted /smoothed to minimise the unusual 

oscillations in the speed and acceleration profiles. All analysis is based on the fitted 

vehicle trajectory data. Meanwhile, MIDAS is based on loop detector data, which 

provides aggregated traffic characteristics such as speed, lane occupancy, and types of 

vehicle. It is necessary to validate the traffic video recording with MIDAS data to ensure 

the quality of trajectory data. The fitted and validated data will be used in the estimation 

process to explain the individual driver characteristics in both lane-changing and car-

following behaviours. 

The traffic movement analysis shows that the traffic at the observation area is 

moderately congested with level of service C based on HCM 2010 algorithm (see. 

Appendix-A ). A significant capacity drop occurs when the weaving ratio is moderate 

or high (Wang et al., 2014). Detailed analysis of the trajectory dataset illustrates that 

both front and lead vehicles movement on the current and target lanes affects the lane 

changing tactical. There are three different lane-changing strategies in this study 

namely: individual/solo (76.6%), platoon (10.7%), and weaving (12.7%). Meanwhile, 

the cooperative lane-changing strategy is likely to appear during congested traffic flow 

which is beyond of the scope of this work.  

Both the lane-changing and acceleration models are estimated separately using the same 

set of data source. Meanwhile, all the parameters of each model are estimated jointly 
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under the likelihood estimation procedure. The estimation process in this study is 

performed in R programming application developed by R Development Core Team 

(2010). In the microscopic model algorithm, the parameters of lane-changing and 

acceleration models vary depend on the weaving section geometric and driving 

behaviours which are presented in the vehicle trajectory dataset. Adopting the proposed 

modelling framework, this study suggests to re-estimate the modelling parameter due 

to the transferability of the proposed modelling framework for different trajectory 

dataset. The thesis validates modelling results with the observed trajectory dataset and 

pervious researches findings. 

  Thesis Outline 

The remaining of this thesis is systematised as follows: 

Chapter 2 contains a literature review of related studies in this research area including 
the weaving section characteristics, lane changing model and car-following model. This 
chapter provides a background and supporting details for the modelling developments 
in the following chapters.  

Chapter 3 presents a general framework and the estimation procedure for the proposed 
latent plan decision-making process. This proposed model provides a flexibility to 
incorporate intermediate plan during the decision-making process.  

Chapter 4 elaborates the application of the proposed latent plan model in the lane-
changing movement. The proposed model integrates several lane changing strategies in 
weaving section (i.e. individual, platoon and weaving) into the modelling framework as 
an intermediate plan. This component is observed at the time when the vehicle executes 
lane-changing movement. 

Chapter 5 discusses the proposed acceleration model that lessens the relationship 
between acceleration decision (response) and relative speed (stimulus). This relaxation 
provides flexibility in capturing various decisions in car-following regime. 
Furthermore, this chapter presents as well the estimation procedures of the proposed 
modelling. 

Chapter 6 describes the data collection process, data extraction and management process 
and data analysis. The data collection process section discusses the selection of site and 
detailed application of both data sources at the observation area: the traffic surveillance 
camera and particular MIDAS loop detectors. Meanwhile, the data extraction and 
management include the vehicle trajectory extraction process, fitting method of the 
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vehicle trajectory data and validation process of the fitted trajectory with MIDAS loop 
detectors data. The data analysis section presents the traffic characteristics analysis 
based on both data sources including speed, acceleration, lane utilisation and traffic 
proportion. Moreover, analysing the vehicle trajectory data provides more detailed 
individual vehicle movement characteristics such as relative speed, gap acceptance, lane 
changing strategies and location.  

Chapter 7 presents the estimation processes and results of the proposed lane-changing 
and acceleration models. A comparison of both lane-changing and acceleration models 
resulted in discounted models performed in terms of the goodness-of-fit including: 
Adjusted Rho-bar, Chi-square test and Akaike Information Criterion (AIC). 
Furthermore, this chapter validates the current result with the observed dataset and  
previous studies result. 

Chapter 8 summarises all works in this research, discusses the limitation of the studies, 
and identifies the opportunities and direction for further researches in the driving 
behaviour research area in weaving section traffic.
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Chapter 2 Literature Review 

This chapter presents a review of both weaving section characteristics and driving 
behaviour models. In terms of traffic, weaving section has a slight different 
characteristic in comparison to other multilane facilities. The traffic in weaving section 
has to adjust its position in the relatively short length of the weaving section. This 
specific characteristic affects the driving behaviour which focuses on two aspects: (1) 
lateral movement or lane-changing movement; (2) acceleration movement. This section 
discusses several relevant existing studies with the proposed study including the 
characteristics of weaving section, lane-changing behaviour and acceleration behaviour. 

 Weaving Section 

 Geometry 

A weaving facility is defined as a section of motorway connecting a pair of closely 
spaced junctions. In the UK, DMRB (DMRB, 2006) defines the distance of weaving 
section as between 100-3,000m with respect to designed speed and hourly traffic 
volume. Meanwhile, HCM specifies the length of weaving section is between 150-762m 
(500-2,500ft) which is slightly shorter compared to DMRB definition.  

Design Manual for Roads and Bridges 

DMRB (2006) defines that the weaving section length is a distance between the ends of 
the merging taper to the beginning of the diverging taper as shown in Figure 2.1. 

Figure 2.1 The UK weaving segment layout (DMRB, 2006) 
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They state the length of weaving section as a distance between the ends of merging taper 
and the beginning of the diverging taper. Meanwhile, the desirable length of motorway 
weaving section is between 2,000-3,000 m. They found that there is no weaving 
interaction if the section is longer than 3,000 m (DMRB, 2006). However, there is a 
difficulty for the road traffic authorities to fulfil the minimum desirable weaving section 
length due to spatial limitation issues. This condition has stimulated the highway 
engineers and designers to come out with a minimum length of weaving section as 
shown in Figure 2.2. 

Figure 2.2 Weaving Length Diagram (DMRB, 2006) 

DMRB (2006) defines several types of weaving section in the UK as shown in Figure 
2.3. The classification of the weaving section in the UK is totally based on the 
appearance of auxiliary lane, lane gain and lane drop: 
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Figure 2.3 Type of weaving sections according to DMRB (DMRB, 2006) 

 

 

(a) Basic weaving section layout 

 

(b) Parallel merge/diverge as for Taper Merge/Diverge by notional layout 

 

(c) Lane gain or lane drop 

 

(d) Lane gain only 

 

(e) Lane drop only 
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Highway Capacity Manual 

 In comparison to the DMRB, HCM (2010) has different terms and approach for the 
weaving section length. The length in HCM is expressed as the distance (feet) between 
the merge and diverge that form the weaving section. Furthermore, they divide the 
weaving section length into two parts namely the short length and base length (see 
Figure 2.4).  

Figure 2.4 US weaving section layout (HCM, 2010) 

Where; 

jI : Long length. The distance between physical barriers marking the ends of merging 
and diverging gore areas. 

jq	: Base length. The distance between the respective gore areas at the on- and off-
ramps. 

j+  : Short length. The distance between the end points of any barrier markings (solid 
white lines) that prohibit or discourage lane-changing j+ = 0.77	w	jq 

It is the fact that there is also a situation where  j+ = jq, when there is no solid marking 
on the pavement. Those two parameters are based on the field measurement. 

In HCM 2010, the characteristics of weaving section vary depend on three parameters, 
namely volume ratio between weaving and non-weaving traffic, the estimated 
maximum length of weaving section (jF.A), and the short length (j+). jF.A and j+	 
justify whether the observed location is analysed as a weaving section or two separate 
junctions. There are two conditions in these regards; when the value of j+ is less than 
the jF.A value (j+< jF.A), the observed location is analysed as weaving section. When 
j+ is greater than or equal to the maximum (j+ ≥ jF.A), the observed location is 
analysed as two separate junctions. The estimated maximum length of weaving section 
can be expressed as follows: 

!"

!#

!$
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jF.A = 	 5,728(1 + Öä)
5.Ø − [1,566|\G]    (2.1) 

Where; 

jF.A : The maximum length of weaving section (based on the short length definition) 
(ft) 

Öä : Volume ratio (Volume of weaving/Total traffic in the segment) 

|\G : Number of lanes for weaving manoeuvre.  

Considering the algorithm, it may be the case that the analysis approaches vary over the 
observation period due to the traffic characteristics. For example, a particular weaving 
section can operate as two separate junctions due to a low number of weaving traffic 
while it acts as a weaving section, concerning the increased weaving traffic. This 
approach is slightly different compared to previous HCM 2000 version, where the 
weaving section characteristics are determined on basis of the observed weaving section 
length.   

Moreover, the new version of HCM (2010) classifies the weaving section based on the 
ramp location as follows: 

• One-sided weaving section is the one where weaving manoeuvres do not require 
more than two lane changes to be successfully completed. 

• Two-sided weaving section is the one where at least one weaving manoeuvre 
requires three or more lane changes to be successfully completed or in which a 
single-lane on-ramp is closely followed by a single-lane off-ramp on the motorway’s 
opposite side. 

These classifications are different in comparison to HCM 2000 version which classifies 
the weaving section based on the minimum number of lane-changing required. There 
are three types of weaving section in HCM 2000 namely type A (1 lane-changing), type 
B (2 lanes changing), and type C (more than 2 lanes changing).  Table 2.1 summarises 
the type of weaving sections both in HCM 2000 and 2010.
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A summary of weaving section characteristics in DMRB and HCM is presented in 
Table 2.2 which incorporates the minimum lane changing for merging and diverging 
from the weaving section and the availability of weaving section.  

Table 2.2 Summary of weaving section characteristics in DMRB and HCM  

Source Type Min. Lane Changing Auxiliary 
Lane 

Merging Diverging 

DMRB    
( 2006) 

Basic weaving section 1 1 No 

Parallel merge and diverge 1 1 Partial 

Lane gain/lane drop 1 1 Yes 

Lane gain only None 1 No 

Lane drop 1 None No 

HCM      
( 2010) 

One-sided ramp 1 1 Yes 

One-sided ramp with major weave 1 1 No 

Two-sided with single-lane ramp None 2 Yes 

Two-sided with three lane-change 1 1 No 

 Capacity analysis 

Weaving section capacity is defined as the maximum number that is able to pass the 
weaving section during a specific period of time, under prevailing road, environment, 
traffic and traffic control conditions (HCM, 2000). Several factors affect the weaving 
section capacity including number of lanes, the proportion of weaving and non-weaving 
traffic, traffic composition, driver characteristic and geometric configuration (Shoraka 
and Puan, 2010).  

The capacity and operational of weaving section has been an important issue since mid-
1980’s. HCM 1985 initiated the analyse of weaving performance which relied on the 
average operating speed of both weaving and non-weaving traffic (Leisch and Leisch, 
1984). The proposed algorithm provides unrealistic speed result, which is slightly lower 
compared to the observed speed, in various sections. Cassidy et al. (1989) compared 
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contradictorily eight major freeway weaving sections and found that the weaving speeds 
are not as sensitive to geometric factors as previously believed. Furthermore, Stewart et 
al. (1996) simulated the HCM 1994 weaving section analysis algorithm using the 
INTEGRATION  (Van Aerde, 1994). They found that the number of lanes on weaving 
capacity affects the traffic performance significantly compared to the length. However, 
the empirical lane capacity model/value for the estimation of weaving section capacity 
is unavailable in the study. 

Roess and Ulerio (2000) raised several issues in HCM 1997 weaving section analysis 
algorithm such as; under-predicted speeds of weaving and non-weaving vehicle, 
unsystematic calibration algorithm, and missing real model for capacity of weaving 
section. They, therefore, proposed the weaving section capacity as a function of the 
combination of weaving movement (freeway-to-ramp, and ramp-to-freeway) and non-
weaving (freeway-to-freeway and ramp-to-ramp) flows, length, width and weaving 
section geometry. Although this algorithm is adopted in HCM 2000, there is no closed-
form solution for capturing the interaction among those listed variables. Trial and error 
procedures are performed in estimating the traffic performance for given value of 
volume ratio (VR), length of weaving section (") and type of weaving section.  

By focusing on the capacity analysis of weaving section type A and B to which it is 
associated, Lertworawanich and Elefteriadou (2001, 2003) defined the weaving section 
capacity as a function of maximum traffic flow, volume ratio (VR) between the rap and 
main traffic and number of lane changing. Later, Lertworawanich and Elefteriadou 
(2007) proposed an algorithm of weaving section capacity analysis for typical weaving 
sections. This study finds that the weaving section length and gap acceptance affect the 
weaving section capacity significantly. In addition, longer length weaving section 
provides more opportunity for the weaving vehicle to change lane, which resulted in 
increased capacity. In fact, this model neglects individual lane choice effect and 
variation of gap acceptance of individual that affects the possible number of lane 
changing in the weaving section. 

Awad (2004) adopted Neural Network Technique (NNT) algorithm to estimate the 
weaving section capacity. The NNT algorithm is similar to the architecture of the human 
brain and neurons systems which consists of three layers; input, hidden and output layer. 
All nodes are interconnected across layers. Although the complexity is increased, the 
NNT modelling framework work properly in type B and C only. The algorithm of NNT, 
however, is difficult to be interpreted as the correlation between the layers is presented 
inconsistently. For example: some factors in the input layer may not be included to the 
following layers. 
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By improving the HCM 2000 algorithm, Roess et al. (2008) and Roess and Ulerio 
(2009) formulated the weaving section level of service as a relationship of the average 
speed (weaving and non-weaving traffic) and overall density. They represented this 
relationship as a single function rather than varying on the basis of weaving section 
specification. Later, HCM (2010) adopts this approach in their algorithm, which 
requires detail information on the geometric information (e.g., number of lanes and 
weave length) and the total hourly volume rates and the HCM weaving volume to total 
volume ratio (VR). Although the algorithm gives different outcomes of predicted 
density and level of, Bloomberg (2011) found that the outcomes of both HCM 2000 and 
HCM 2010 have similar pattern including: 

• The density decreases with the increased of weaving section length,  
• The density increases with the weaving volume,  
• A sharp reduction appears when the observed section classification changes 

from weaving to basic   

The new algorithm of weaving section analysis in HCM 2010 will be subsequently 
presented in Appendix-A later on.  

Meanwhile, Skabardonis and Mauch (2015) identified the limitation in HCM 2010 
analysis method that predicts the capacity in moderate traffic flow properly. The 
algorithm underrated the traffic density and overrated the congested traffic and 
uncongested traffic condition respectively. Those conditions hold the weaving section 
to be in D level of utility. 

Various specification of analysis algorithm has been introduced in analysing the 
weaving section capacity and traffic performance. Nevertheless, they find difficulty in 
identifying the optimum model and the impact of each observed variables that 
contribute in the operational of weaving section due to lack of real traffic data. 
Neglecting the variation of individual driver characteristics may mislead the model or 
result in improper traffic analysis which is clearly seen in all version of Highway 
Capacity Manual including the recent HCM 2010. In fact, the proposed empirical 
algorithms are strictly fitted for particular traffic condition only. This condition affects 
the decision of the traffic engineers equipped with incorrect counter measurement 
programme or solution to improve the weaving section traffic performance.  A 
significant number of researchers are therefore considering this opportunity to analyse 
the weaving section traffic characteristics by using a high-level of data details 
(microscopic level), which contribute to the weaving section performance. The reviews 
of the weaving section traffic characteristics are presented in the following section. 
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 Traffic characteristics 

Weaving traffic involves two or more streams of traffic travelling in the same direction 
crossing each other along or change lane in a relatively short section between an on- 
and off-ramp without any assistance from traffic control. As mentioned earlier, the 
weaving section length in the UK is between 2,000 – 3,000 m (DMRB, 2006) while it 
is slightly shorter in US, which is between 150 – 762 m (HCM, 2000).  

According to Cassidy (1990), the term of conflict area in this study is defined as a 
location where most traffic disruption appears between the auxiliary lanes and curb side 
of the main traffic along the weaving section. Figure 2.5 illustrates the schematic of 
weaving section conflict area. 

Figure 2.5 Weaving section conflict area 

Due to the movement complexity, weaving section accidents are more likely to involve 
changing-lanes vehicles, because the requirement for either merging or diverging 
vehicles, or both, to execute a lane change is a defining feature of weaving sections. 
Therefore, it is necessary to include the safety aspect consideration in the weaving 
section design. This ensures the vehicle to move safely through the weaving section. 
Golob et al. (2004) analysed the accident characteristics at weaving section by using the 
Traffic Accident Surveillance and Analysis System (TASAS) in year 1998. The study 
focused on three major types of freeway accidents: rear-end, sideswipe and hit an object. 
36.8% of accidents in weaving section occur in the middle lanes of weaving sections 
where 23.2% of accidents is classified as sideswipes accident due to a high proportion 
of lane-changing traffic. The analysis shows that weaving section of type A has the 
lowest accident risk compared to type B and C. Meanwhile, type B has the most severe 
accident risk as the minor on ramp traffic has to merge and diverge from the main traffic 
in particular length. Most of the accidents in type C weaving section occurs during the 
congested traffic associated with slowing and stopping traffic. (see  Table 2.1 for the 
HCM 2000 weaving section designs).  

Wang et al. (1993) proposed a microscopic traffic simulation INTRAS (integrated 
traffic simulation) and empirical observation to analyse the impact of individual 
movements on the capacity of the weaving section. The study defined that the weaving 
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section traffic performance is significantly affected by the total flows and lane-changing 
activity in associated with the availability gaps in the traffic streams. The simulation 
constitutes the first 250ft (76.2m) of weaving section as the critical zone due to a high 
proportion lane-changing movement in that area. In fact, this work focuses only on the 
lane-changing movement between the auxiliary lane and kerbside lane, while they 
ignore the lane-changing movement in the other lanes. 

Lane changing in a weaving section is more challenging to be performed compared to 
other motorway or urban road facilities. Al-Kaisy et al. (1999) simulated an empirical 
dataset of weaving section traffic, which was developed by Cassidy (1990), using an 
INTEGRATION microscopic traffic simulation (Van Aerde, 1994). This application 
allows tracking the individual vehicle movement. They identified that the traffic tend to 
change lane at the first attempt as they reach the end of merge gore particularly in the 
congested traffic, while the moderate traffic shifts the lane-changing movement towards 
the downstream. Although it has similar pattern, this distribution pattern of the 
estimated and observed lane-changing location fits properly only in the congested traffic 
while the estimated lane-changing location is overrated or underrated in other traffic 
condition. There is an unclear explanation regarding the difference in the result between 
the predicted and observed lane-changing location. Moreover, an empirical modelling 
explaining the lane-changing movement is unavailable in the study. 

By analysing the NGSIM vehicle trajectory data set, Bham (2006) identified the lane-
changing movement characteristics in weaving section. An intensive lane changing 
occurs in the first 91 m (300ft) of the weaving section where 76% of the lane-changing 
traffic change lane in this particular area. The intensive lane-changing between the 
kerbside and auxiliary lanes makes the traffic on those lanes to be more vulnerable due 
to higher possibility of conflicting point compared to the other lane-changing 
movement. The study result is relatively similar to Wang et al. (1993) as both studies 
identifies the upstream area of weaving section as a point due to high lane-changing 
proportion in the area. 

Skabardonis and Kim (2010) subsequently adopted the Caltrans Highway Design 
Manual (CALTRANS, 2007). They confirm the previous research finding showing that 
the kerbside and auxiliary lane as the critical zone, particularly in upstream traffic (i.e. 
Wang et al., 1993; Bham, 2006; Wang et al., 2014) . Moreover, a high concentration 
diverging manoeuvre in the upstream triggers a bottleneck condition especially when 
the on-ramp traffic flow is relatively small compared to main lanes traffic.  In contrast, 
the increased of on-ramp traffic flow reduces the attraction of the auxiliary lane. This 
condition ends the bottleneck condition and distributes the lane-changing movement 
toward the downstream of the weaving section. In that case, both number of lane-
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changing and spatial distribution affect the released of bottleneck in weaving section 
significantly. Despite the dataset of microscopic-level details, this study focuses only 
the aggregate analysis in macroscopic level and without any consideration in the impact 
of traffic interaction.  

Al-Jameel (2011, 2013) studied the UK motorway weaving traffic characteristics by 
combining two types of data: Motorway Incident Detection and Automated Signalling 
(MIDAS) and vehicle trajectory data. The application of HCM 2000 algorithm in this 
study reports several significant driving characteristics in the UK weaving sections: 

• The weaving section effective length equals to the whole length weaving section 
if the section is less than 300m; while the effective length equals 200m, if the 
weaving section is greater than 300m. 

• A high proportion of traffic segregates them from the main traffic at the first 
250m due to prepare lane changing. Based on two observations, above 85% of 
traffic segregates from the traffic at the first 250m.  

• 70% of the bottleneck location occurs over the first 250 m of the weaving section 
and as a result, a bottleneck builds up 70m from the on-ramp. The bottleneck 
effect starts while the VR equal to 0.27. This is slightly lower compared to HCM 
2000 finding which is 0.35. 

• More details on merging and diverging traffic show that 80% of merging points 
is in the first 100m while the diverging movement in this area is 90%.  

• The proportion of weaving driver, who accepts the first available gaps, is higher 
than the corresponding percentage of drivers in isolated merging section. 

This study works in microscopic level of detailed which allows to identify the traffic 
characteristics in the UK typical weaving sections. However, this study focuses on 
empirical analysis of both traffic surveillance data methods (MIDAS loop detector, and 
vehicle trajectory data). It omits the impact of traffic interactions that affect the driving 
behaviour in weaving section significantly. 

Meanwhile, Knoop et al. (2012) studied the characteristics of discretionary lane-
changing movement, in the merging and diverging area in two different motorway 
section, namely A270 (Eindhoven, Netherlands) and M42 (Birmingham, UK). The 
traffic video trajectory data were extracted from A270 (Eindhoven, Netherlands), while 
the loop detector data were collected from M42 (Birmingham, UK). Both observation 
areas are classified as two separate junctions instead of single weaving section due to 
large distance between the entry- and off- slip road. In this case, the lane changing 
towards the kerb lane is slightly higher than toward the median lane which is most likely 
occurred in the downstream traffic. This finding demonstrates that weaving section 
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length has significant impact on the driving behaviour, lane-changing movement in 
particular. 

The complexity of the weaving section movement appears also during the acceleration-
deceleration behaviour. Sarvi et al. (2011) presented the complexity of interaction and 
identified the acceleration-deceleration behaviour on the congested freeway weaving 
section. A vehicle trajectory dataset of two weaving sections in Hakozaki (Tokyo, 
Japan) and Southbank (Melbourne, Australia) have been extracted. The relative speed 
and spacing headway captured the relationship between the observed vehicle and the 
neighbouring traffic at the current and target lane. By extending the non-linear GM 
model Gazis et al. (1959), the estimation indicated that the acceleration behaviour of 
the weaving traffic is slightly different  from the non-lane changing traffic. Various 
reaction time values have been tested while the estimation resulted in 0.72 sec as the 
optimum value. Nevertheless, the study focuses on the acceleration behaviour rather 
than the lane-changing movement in weaving section itself. The lane-choice during the 
movement is inexplicitly explained in the model. 

Similarly, Wan et al. (2014) modelled the vehicle interactions during merging in a 
congested weaving section where the cooperation behaviour takes the important role 
during the lane-changing process. This study represents the interaction in the response-
stimuli and car-following theory as they believe that it captures the interaction between 
the observed and neighbouring traffic (Putative leader and Putative lag) simultaneously 
during the lane-changing movement. Furthermore, the use of car-following visual 
information algorithm allows this study to capture the dynamic acceleration-
deceleration behaviour during the lane-changing process. A set of NGSIM data of five 
lanes weaving section used in the estimation implying that the lateral separation 
between the observed vehicle and target lane traffic cannot be omitted in the lane-
changing process. The cooperation (yield) behaviour of the putative leader and lag 
appears in the lane-changing process during the congested traffic.  

The literature in weaving section research area shows that moving in the section is more 
challenging compared to the other part of a motorway network. In this case, the traffic 
has to adjust their movement in a relatively short length of the section without any 
assistance from traffic management instruments. There are several contributing factors 
in the weaving section traffic performance including; the road geometric characteristics 
(i.e. number of lanes, length of the sections), and the driving behaviour (i.e. lane 
changing, acceleration and gap acceptance behaviours). The literature reveals that 
studying a microscopic level of detail would provide better knowledge in understanding 
the nature of the driving behaviour in weaving section. Several microscopic studies in 
weaving section demonstrate that the kerbside lane and auxiliary lane are critical 
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conflict areas due to high proportion of lane changing traffic in upstream traffic. This 
traffic characteristic requires individual driver to interact and respond to the change of 
downstream traffic condition including the lane-changing movement, acceleration 
behaviour. The listed microscopic studies in weaving section traffic focus on aggregate 
individual characteristics of both lane changing and acceleration behaviours in weaving 
section. The variation of individual driver characteristics during their movement in 
weaving section has not been incorporated into the model.  Following Section 2.2 and  
2.3 will provide and discuss the existing lane changing and car-following model which 
formwork for the modelling development later on. 

 Lane Changing Models 

Over the past decades, the number of studies in the lane-changing model has contributed 
significantly to the development of micro simulation. Figure 2.6 illustrates a schematic 
lane-changing movement, where the subject vehicle changes lane to the right direction. 

 Modelling the lane-changing movement is particularly complex, since the model has 
to capture both decision of target lane and gap acceptance behaviour. The lane-changing 
model can be generally classified into three modelling approaches: models made on 
basis of lane-changing rules, game theory based approach on the interactive behaviour, 
and discrete choice models of lane-changing choices. 

Figure 2.6 Schematic lane-changing movement 

 Rule-based lane changing models 

Gipps’ model 

Gipps (1986) was among the first who develop a lane-changing modelling framework 
based on a rule-based approach that captured the safety, necessity and desirability of 
the lane changing movement. Moreover, the study identifies several objectives of lane 
changing: 
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• Safe target lane gap:  The driver changes lane if the gap at target lane is 
acceptable in order to minimise the collision risk. 

• Avoiding of permanent obstruction: The driver executes the lane-changing 
while approaching the obstruction (i.e. on street parking on curb side lane)  

• The existence of transit lanes: A non-transit vehicle will change lane in avoiding 
to enter the transit lanes. 

• Driver’s intention for turning movement: The driver aggressiveness is increased 
when approaches the mandatory lane-changing point 

• Facing the heavy vehicle: Moving behind the heavy vehicle is less preferable 
due to their lower speed. 

• Increasing speed: Changing the lane may provide an opportunity for the vehicle 
to gain a speed advantage. 

Based on those reasons, the lane-changing characteristics can be classified into two 
groups: 

• Mandatory lane-changing (MLC): If the driver must change lane in order to 
maintain the drivers’ path plan (i.e. merging, diverging, avoiding of permanent 
obstruction) 

• Discretionary lane-changing (DLC): If the lane-changing driver aims to improve 
driving environment (i.e. increased, speed, avoiding the heavy vehicle) 

The lane-changing model in his study is designed in in correspond with Gipps’ car 
following model (Gipps, 1981), which is presented in car-following model section. This 
model considers the driver breaking rate limit as a significant factor while calculating 
the lane-changing vehicle safe speed. The model is consequently written as follows: 

Where; 

$%&'( ) + )+  : Maximum safe speed for vehicle n with respect to the preceding vehicle 
at time  ) + )+  

,%            : Most severe breaking which the driver is able to undertake 

)+            : Time length between consecutive calculation of speed and position  

-./% )            : Observed vehicle location at the time ) 

$%&'( ) + )+   

= ,%)+ + ,%1)+1 − ,%
2 -./%45 ) − -678)ℎ%45 − -./% )

−$%&'( ) )+ − $%45&'( ) 1/,

5/1

 (2.2) 
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-678)ℎ%45     : Length of the front vehicle  

,            : An estimated of breaking rate by the driver of vehicle 7 

The study assumed that the lane-changing process follows a decision tree with a series 
of lane-changing condition. At the lowest level of the decision tree, the driver faces a 
binary choice; to change or not change the lane. However, the lane-changing model has 
several limitations: the goal of the lane-changing movement is determined 
deterministically, the model presumed that individual driver decision in an identic 
traffic condition is homogeneity rather than non-homogeneity. Note that each driver 
still has different preference in facing an identic condition. The lane-changing is a 
model that strictly based on function of speed where the parameters are not estimated 
formally.  

Wei’s Heuristic lane-changing model  

Wei et al. (2000) developed a heuristic lane-changing model by identifying the 
individual vehicle movement characteristics. They incorporated a pre-emptive lane-
changing scenario and identified gap acceptance as a critical factor in the lane changing 
process. The lane-changing appears if the vehicle accepts all the available gaps: (1) gap 
to lead vehicle at target lane ;<='>, (2) gap to lag at target lane ;<'?, and (3) gap to front 
vehicle at current lane ;@AB. The gaps are compared to a specific gaps threshold, which 
is based on the vehicle trajectory dataset. If one of the gaps is smaller than the threshold, 
the driver rejects to execute the movement and maintain it at current lane while seeking 
for the next gap. Instead of MLC and DLC, this study incorporated pre-emptive lane 
changing if the driver pretends to execute the DLC only if the speed advantages and 
disadvantages threshold are greater than the threshold. Moreover, the study 
demonstrates that the vehicle speed affects the lane-changing duration significantly. If 
the speed is slower than 10mph (16.1kph), the lane-changing vehicle requires 2.3-2.5 
sec to complete the movement. In this case a faster vehicle than 10mph requires longer 
period between 3.0 and 7.5 sec. This modelling framework fits with the urban street 
network with six or more lanes. 

Although a microscopic level dataset (i.e. vehicle trajectory data) is used in the current 
study, the research focuses partially on the gap acceptance behaviour as part of the lane-
changing model. It neglects the objective of lane-changing movement. Similar to Gipps’ 
model, the model ignores the traffic interaction and presumes that the drivers are 
homogeneous as the responds of different driver with same traffic condition are identic. 
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Application of the rule-based lane-changing model in microsimulation 

Several number of micro-simulation tools adopt the rule-based lane-changing approach 
(i.e. Hidas, 2002; Kesting et al., 2007; Liu, 2010; Zhang et al., 1998). This section 
discusses briefly the modelling framework of those existing micro simulations. 

Zhang et al. (1998) adopted the rule-based algorithm in the multi regime microscopic 
traffic simulation (MRS). Similar with the existing rule-based algorithm, the simulation 
classifies the lane-changing characteristics into two categories; MLC and DLC. In such 
rule-based model, the critical gap, acceleration and deceleration behaviour have 
significant roles during the lane-changing process. Moreover, the model demonstrates 
that MLC critical gap is decreased as the vehicle approaches the MLC point. The 
simulation is able to replicate the acceleration behaviour during the lane changing. Note 
that the traffic has to adjust their acceleration in order to find a safest gap for executing 
the lane-changing movement. Several lane-changing strategies are incorporated in this 
micro simulation:  

• Without changing in acceleration: The vehicle accepts the adjacent gap directly. 

• Require acceleration / deceleration: If the vehicle fails to meet one of the gaps at 
the target lane. 

• The movement of both target lane lead and lag vehicles: There is an occurrence 
when both target lane lead and lag vehicle adjust their speed in order to leave 
space for the subject vehicle to merge. 

• An immediate stop of subject vehicle: It commonly occurs when the subject 
vehicle fails to execute MLC as he/she reaches the final point of MLC. 

This algorithm is transformed into CORSIM structure that which codes under the visual 
c++. The simulation demonstrated that the appearance of MLC affects the performance 
of weaving section significantly.  By incorporating various components of driving 
behaviour (i.e. lane-changing, gap acceptance, acceleration behaviour) the detail of the 
road infrastructure can improve the simulation outcome significantly in representing the 
real traffic condition. However, the study encounters a difficulty to validate the result 
due to the limitation on the real-world data set. None of empirical driving behaviours 
model is presented in the study. 

Hidas (2002) developed Simulation of Intelligent Transport System (SITRAS). This 
simulation is structured on basis of a multi-agent simulation system where all vehicles 
are modelled as an autonomous agent. The multi-agent based approach is able to 
replicate the complexity of traffic interaction between the vehicles. The driver has to 
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react and decide based on his/her best knowledge due to the surrounding traffic 
movements. SITRAS has four lane-changing modules: 

• Route building 

• Vehicle generation 

• Route selection: based on individual driver characteristics 

• Vehicle progression: relates to the proposed driving behaviour theory (car-
following and lane-changing theory) 

The simulation identifies the lane-changing movement with a small gap acceptance as 
a potential disturbance in the target lane. This modelling framework applies in a basic 
motorway section and fit well under the uncongested traffic flow. Meanwhile, the 
courtesy lane-changing tactical has insignificant impact in those type of traffic. 
Moreover, the model concentrates more in the acceleration behaviour adopting Gipps' 
(1986) model rather than the lane-changing itself. The target lane-choice is included 
implicitly in the modelling framework, despite the unavailable empirical lane-changing 
model. Similar to Zhang et al., (1998), the study finds difficulty to validate the 
simulation outcome due to the real traffic data absence. Later, he developed Analysis 
of Road Traffic and Evaluation by Micro simulation (ARTEMiS) by using the game-
theory approach, which incorporates the courtesy/cooperative lane-changing strategy. 
The details of the game-theory will be presented in the following section. 

Similar to Hidas (2002), Kesting et al. (2007) identified the lane-changing 
characteristics based on the car-following driver behaviour. They introduced 
Minimising Overall Breaking Induced by Lane-changing (MOBIL) algorithm for a 
wide class of car-following behaviour. The algorithm defined that the target lane 
attractiveness and risk depend on the vehicle acceleration. Moreover, the model 
includes the general safety and incentive criteria for the overtaking manoeuvre. The 
safety criterion in this study relates with the gap at the target lane gap, which based on 
the movement of target lane lag vehicle. In addition, the target lane lag vehicle shall 
decelerate less C6/%D5

<'?  than the critical acceleration threshold	 C6/F'G= .  

The condition can be written as follows: 

C6/%D5
<'? ≥ C6/F'G=     (2.3) 

This study applies MOBIL’s safety criteria into Intelligent Driver Model (IDM) which 
is developed by Treiber et al. (2000). Furthermore, the study introduces the driver 
heterogeneity based on the types of vehicle, namely slow vehicle $% = 80	KL/ℎ  and 
fast vehicle $% = 120	KL/ℎ . The politeness parameter in his study assists the 
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simulation to characterise the lane-changing rate degree of both drivers aggressiveness 
(or politeness) factor and lane changing location are found to affect lane changing rate, 
with lane-changing increases significantly around the mandatory lane-changing 
location (i.e. at the end of a link or at an off-ramp). However, the modelling of politeness 
factor is non-existent in the works. Moreover, other simulation parameters including the 
acceleration threshold and maximum safe distance are deterministic rather varying 
during the lane-changing process. 

Liu (2010) defined a lane-changing decision-making process into three phases: (1) the 
aim of lane changing, (2) target lane selection, (3) executing the lane changing if the 
target lane gap is acceptable. By adopting Gipps’ rule-based lane-changing 
classification, this study further described MLC as situations where a turning vehicle 
having to get into the correct lane which allows that particular junction turnings, or a 
bus needing to get into/out of a bus layby. Meanwhile, DLC movement included 
advanced lane changing in anticipation of junction turns further downstream. The lane 
changing occurs if both lead and lag gaps are acceptable. The driver in MLC regimes 
becomes more aggressive by accepting smaller gap as he/she approaches the end point 
of MLC movement. Please note that the vehicle in DLC movement occurs if the 
available gap at target lane is larger than a minimum safety gap ;&O%: 

;&O% ) = $% ) P% +
$%1 )
2C6/%

−
$%D51 )
2C6/%D5+ + C%&O% (2.4) 

Where; 

;&O% )  : Minimum accepted gap at the target lane at time ) 

$% )  : Vehicle 7 speed at time ) 

$%D5 )  : Preceding vehicle 7+1 speed at time ) 

P%          : Reaction time of vehicle 7 

C6/% : Deceleration of vehicle 7 

C6/%D5+  : Deceleration of preceding vehicle 7+1 speed at time t 

C%&O% : Minimum deceleration of vehicle 7 

The algorithm is simulated in Dynamic Route Assignment Combining User Lear and 
Micro simulation (DRACULA), developed by the University of Leeds (Liu et al., 1995). 
In spite of incorporating the gap acceptance, the goal of lane changing in DRACULA 
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is deterministic in associated with a particular observed traffic condition. The structure 
of model omits the variation of individual driver (heterogeneity) characteristics (i.e. 
driver aggressiveness) that affects the lane-changing decision as discussed in Kesting 
et al. (2007). This condition, indeed, misleads the outcome or analysis of lane-changing 
model. 

To summarise the discussion on rule-based approach, it is clear that most of them have 
limitations: (1) limited goals/tactical on lane changing are included, (2) ignoring the 
interaction between the traffic. The goals in the rule-based are deterministic and 
predefined for particular traffic condition. The main challenge of rule-based is to 
identify the exact goal of lane-changing movement, as the decision is a result of several 
possible goals that can be hidden from the observation. Traffic interaction during the 
lane-changing movement is inevitable. Note that the individual driver decision varies 
in associated with the traffic condition rather than homogeneous. Lane choice is a 
critical component in lane-changing movement that does not describe and incorporated 
appropriately in the rule-based algorithm. Imprecision in determining the goal and 
identifying the goal in the rule-based model leads to unrealistic outcome and modelling 
interpretation. 

 Game theory models 

Kita (1999) introduced a “game theory” approach where lane changing is modelled as 
a two drivers, non-zero-sum, non-cooperative game. This modelling framework 
simplifies the traffic interaction explicitly by classifying the influence of neighbouring 
traffic (direct and indirect) instead of incorporating a large number of the influence of 
neighbouring traffic as explanatory variables. The rule of the game depends on the 
lateral vehicle movement, for example: (1) subject vehicle tends to merge (merge or 
pass), (2) target lane lag vehicle maintain to drive at target lane (giveaway or not). This 
strategy affects structure the pay-off matrix. By using a bimatrix game, the algorithm 
allows unique equilibrium solution of mixed strategy, which relates to both probabilities 
of merging (subject vehicle) and giveaway (target lane lag vehicle). The game is 
represented as the utility function of the pay-off based on several available gaps (i.e. 
gap to lead vehicle, gap to the collision, etc.), the aim is to take the safest action. This 
model incorporates the time to collusion that expresses the accident risk (time to 
collusion) while the speed in the modelling is constant. Moreover, the parameters are 
estimated by a maximum likelihood estimation procedure. This framework is simple 
and straightforward in representing the interaction between the subject vehicle and the 
neighbouring traffic during the lane-changing movement. The availability of real data 
traffic in this study allows the simulation outcome of proposed modelling framework to 
be validated. However, the structure does not consider the individual driver lane-choice 
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and the heterogeneity of individual driver decision, which is important component in 
lane-changing modelling framework.  

Wang et al. (2005a) and Wang (2006) extended the game theory that incorporated the 
decision-making process during the lane-changing movement. In this case, the driver 
manages his/her speed (accelerate or decelerate) in according to maximise the chance 
of available gaps by considering either the nearside traffic and remaining distance to the 
MLC movement. Thus, this model has five sub-models: acceleration model, gap-
selection model, gap-acceptance model, merge model and cooperation model, that 
represents both cooperative lane changing behaviour and courtesy yielding. The 
cooperative behaviour of traffic that allows the lag vehicle to create gaps and facilitate 
the merging movement, affects the traffic performance of merging during the congested 
period significantly. The probability of this type of movement is drawn randomly from 
a binomial distribution. While the courtesy yielding occurs if the target lag vehicle 
decelerates and allow the subject vehicle to merge at the target lane. Similarly with 
cooperative lane changing, the decision distribution in courtesy yield follows a binomial 
distribution corresponds to the specification of the range of target lane lag gap ;<'? ; 
;&O% < ;<'? < ;&'(.  

The simulation demonstrates that the vehicle in both cooperative and courtesy lane 
changing tactical are forced to accept the first gap. The proportion of taking the first 
gap is decreased while the acceleration lane length is longer than 100m. In addition, the 
drivers prefer to delay the movement and accept the following gap. The model finds 
that gap selection, acceleration and deceleration behaviour, and cooperative lane- 
changing model are significant components in order to mimic the dynamic interaction 
during gap creation and lane changing behaviour lane changing movement. The study 
explains the lane changing characteristics in more details compared to the previous 
game theory model. Introducing various lane changing tactical and the availability of 
real data traffic improve the reliability of the model. Instead of estimating from real 
traffic data, all parameters in this study are based on the various study rather than 
estimated directly from the real traffic data. This simplification can mislead the 
simulation outcome considering that the parameters may be inappropriate for the real 
traffic condition. 

Hidas (2005) developed Analysis of Road Traffic and Evaluation by Microsimulation 
(ARTEMiS) by extending the application of game theory approach. The lane changing 
in ARTEMiS is classified into three groups based on relative gaps between leader and 
follower as follows: 

• Typical lane changing: The vehicle moves immediately through the target lane 
(left or right) as a result of an evaluation on the target lane traffic condition. The 
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subject changes lane in relatively free traffic without interfering the traffic at the 
target lane. 

• Courtesy lane changing: This type of lane changing is related to forced lane-
changing movement. The driver of high priority courtesies with both target lane 
lead and lag vehicle when calling for a space to merge into the target lane. An 
indication of the courtesy lane changing appears if the gap at target lane is 
constant or narrower before the lane-changing movement. The gap will be 
subsequently increased as the subject vehicle joins the target gap traffic 

• Cooperative lane changing: This type is contradicted to the forced lane changing. 
The traffic in target lane increases to provide a gap for the subject vehicle to 
merge. The gap will be subsequently narrower after the movement. 

Moreover, ARTEMiS identified that the cooperative lane-changing phenomena appears 
under the congested traffic flow both in the freeway section and signalised urban 
section. This framework has explicitly relaxes the inefficiency and unreliability on 
simulating the complexity traffic interaction particularly in congested traffic flow that 
appears in SITRAS (Hidas, 2002). 

Liu et al. (2007) improved the game theory approach by assuming that the vehicle aims 
to maintain the driving conditions. They sets aside the assumption of constant variable 
speed proposed by Kita (1999). Furthermore, the study includes the minimum safety 
gap and remaining distance to MLC point as one of the attributes in the players’ payoff 
function. The game strategy allows the subject vehicle either to merge or pass and seek 
for the next available target lane gap, while target lag vehicle strategy is either to 
maintain or giveaway by decelerating the vehicle. The pay-off function demonstrates 
that the aggressiveness of subject vehicle increases if the target lag vehicle chooses not 
to giveaway. This characteristic is significantly shown by increased acceleration 
behaviour. A pre-emptive deceleration movement allows the target lag vehicle to move 
in comfortable deceleration rate. The non-linear programming is performed in the 
estimation to minimise the total deviation between observation and predicted merging 
choice. This study finds that the target lane lag vehicle tends to maintain and minimise 
speed variation, while the subject vehicle merges towards the target lane in relative short 
period of time to minimise the potential disruption in the target lane (i.e. delay, 
uncomfortable deceleration and incident). Similar to Kita (1999), the framework 
simplifies the lane-changing movement into two-players game between lead and lag 
vehicles while the rest neighbouring traffic are not taken into consideration. This 
assumption is unrealistic in the real traffic condition where the vehicle has to interact 
with the neighbouring traffic, particularly with the target lane lead and lag vehicles 
during the lane-changing process. 
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Those listed game theory models discuss the ability well in representing the interaction 
between the subject vehicle and the target lane traffic, especially the target lane lag 
vehicle. The vehicles in this model are assumed to cooperate and manage their 
movement by accelerating or decelerating situated on several parameters i.e. speed, 
breaking ability, and gap acceptance. The microscopic simulations demonstrated that 
the cooperation and courtesy lane-changing strategies likely to occur during the 
congested traffic flow. Although it will simplify the traffic interaction, there is a 
limitation in representing the interaction between subject and neighbouring traffic. This 
modelling framework simplifies the lane-changing movement as a two-player game 
between the subject and lag vehicles and ignores the impact of target lane lead vehicle 
movement that leads to unrealistic modelling result. The lane choice and variations of 
individual driver decision are incorporated in this game-theory modelling specification. 

 Discrete choice models 

MITSIM’ lane-changing model 

Yang and Koutsopoulos (1996) introduced the random utility approach in the context 
of lane changing. They applied this approach in Microscopic Traffic Simulation 
(MITSIM) that establishes laboratory environment for testing and evaluating designs of 
Advanced Traffic Management System (ATMS) and Advanced Traveller Information 
(ATIS). Adopting Gipps’ model, MITSIM structures the lane-changing movement into 
three phases: (1) defining the need and type of lane changing, (2) defining the target 
lane choice, and (3) observing and accepting the target lane gaps to change lane. This 
study classifies the lane changing into two types:  

• Mandatory Lane-changing (MLC): When the vehicle that changed lane as a 
reaction of avoiding lane closure in responding to the Variable Message Sign 
(VMS), has merged or diverged from main lane traffic. The probability of the driver 
involved in MLC at the distance from MLC location CRST  is written as follows: 

U "V%RST = 6WX
C%RST − C+

YRST + YZ[.ST\.. "V + Y]. K , CRST > C`a

1													, CRST ≤ C`a
 (2.5) 

Where; 

U "V%RST : Probability of vehicle n starts MLC manoeuvre 
C%RST  : Remaining distance to the mandatory lane-changing point of driver 7    

at time ()), ∞ if no mandatory lane changing is required. 
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C@B        : Critical distance from MLC location which is associated to particular 
message sign (i.e. last message for exit sign). 

\.. "V : Number of lane changing required from the current lane toward the 
desired target lane. 

K : Traffic density of the road section. 
YRST, YZ[.ST, Y] : Estimated parameters of MLC, Number of lane changing, and 

density respectively 

Once the vehicle is classified as MLC, this status will remain attributed to the 
vehicle until the lane changing occurs or it moves into the downstream link. 

• Discretionary Lane-changing (DLC) occurs if the subject vehicles aim to improve 
their driving environment (i.e. increasing speed, overtake slow traffic). This type 
of movement depends significantly on the traffic condition at both target lane and 
current lane. Impatience and speed indifference factors affect the driver decision 
in DLC movement significantly.  Note that the driver uses those two factors to find 
the safest lane-changing speed, that allows the vehicle to merge smoothly and 
create less disruption at the target lane traffic. 

The target lane choice is related to several criteria including lane-changing regulation, 
lane use privilege, lane connection, signal state and incident, prevailing traffic 
conditions, driver’s desired speed, and maximum speed on the lane. The driver will then 
observe the available gap at the target lane in order to execute the lane changing 
movement.  

Minimum acceptable gap of the DLC movement is given as follows: 

;%
&O%,d = ;%+

d + e%
d     f -6gC, -g8   (2.6) 

Where; 

;%
&O%,d : Minimum accepted gap f at the target lane of vehicle 7 

;%+
d : Average accepted gap f of vehicle 7 

e%
d  : Random error term of gap f 

Meanwhile, the gap acceptance for MLC is decreased in according to the vehicle 
remaining distance to MLC location	 CRST . The driver in MLC is assumed to be more 
aggressive by accepting smaller gaps as he/she approaches the MLC location. MLC gap 
acceptance model is subsequently written as follows: 
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;%
&O%,d   

=
;&'(�,d

;&O%�,d + ;&'(�,d − ;&O%�,d

;&O%�,d

-./% − -./&O%

-./&'( − -./&O%  

-./% ≥ -./&'(

-./&O% < -./% < -./&'(

-./%	 ≤ -./&O%
 (2.7) 

Where; 

;%
&'(h,d: Upper bound of f gap acceptance at the target lane 

;%
&O%h,d : Lower bound of f gap acceptance at the target lane  

-./%     : Observed vehicle 7 location  

-./&'( : The end point of the observation  

-./&O%	: The starting point of the observation 

MITSIM lane-changing model provides greater flexibility in capturing the traffic 
interaction compared to the rule-based and game-theory approaches. The lane changing 
decision in this method is assumed to be affected by several factors such as driver 
impatient factor, relative speed, and appearance of the heavy vehicle. However, the 
modelling framework is not well developed as none of lane choice and gap acceptance 
parameters are estimated in this stage. 

Dynamic discrete-choice model 

Ahmed et al. (1999) performed an extensive work on modelling lane change decisions 
with discrete choice modelling approach. Similar with Yang and Koutsopoulos (1996), 
lane changing is shaped as a result of the two-step process: (1) lane selection and (2) 
gap acceptance. The model captures the decision of lane changing as a probability of 
target lane and gap acceptance function that are estimated based on MLE. 

The decision-making process in this study is latent as the dataset can only capture the 
action of lane-changing movement. Note that the driver must accept both gaps (lead and 
lag) at the target lane in order to change lane. The lane-changing movement is classified 
into two groups MLC or DLC. 



-34- 

 Figure 2.7 Lane-changing modelling structure (Ahmed, 1999) 

Figure 2.7 demonstrates the lane-changing decision-making process in correspond with 
the type of lane changing. In this case, the MLC driver faces a binary condition whether 
to change lane or delay for the better lane-changing movement (i"V). Several 
explanatory variables may affect MLC movement decision, such as remaining distance 
to MLC, the number of lane-changing required, the density of the target lane, etc. MLC 
condition does not apply to the lane-changing driver if he/she prefers not to respond or 
delay the movement (i"V). Furthermore, the driver evaluates the current lane 
condition and the adjacent lane (left, right) in order to decide whether it requires DLC 
(change lane under discrete lane changing at the first attempt) or j"V. The driver will 
most likely change lane towards the target lane that provides better driving environment 
for the driver. As discussed in Yang and Koutsopoulos (1996), impatience factor and 
speed indifference factor have significant impact on DLC decision. Once the driver 
defines the target lane, he/she observes and defines the safest gaps (lead and lag) for 
changing lane. If the gaps are rejected, the driver should stay at the current lane and 
seeks for the next available gaps. 

The lane-changing decision is discrete based on time and correlated for each individual. 
The probability of the individual lane changing is a function of the lane utility where 
the random component of the function consists of two elements: individual-specific 
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random term (driver heterogeneity) and random term. The lane change utility can be 
written as follows: 

k% ) = Y. l% ) +	m% + e% )    (2.8) 

Where; 

k% )  : Utility of lane change of driver 7 at specific time ) 

Y : Vector of estimated parameters  

l% )  : Vector of explanatory variables associated with	7 driver at time ) 

m% : Individual specific random error term to account for unobserved driver 
characteristics, assumed to follow normal distribution m%~\(0,1) 

e% )  : Random error term 

Meanwhile, Ahmed et al. (1996) applied probit model to formulate the gap acceptance 
model that captures the interaction between the subject vehicle and neighbourhood 
vehicles at the target lane. This approach is suggested by Daganzo, (1981), who was 
among the first to introduce the application of probit model in the gap acceptance model. 
The gap acceptance in this study incorporates driver heterogeneity that representing the 
individual driver characteristics over the observation period. The driver 7 accepts the 
available gaps f at time ) ;%

d )  if it is larger than the critical gaps, which are the 
minimum unobservable gaps. Considering such assumption, the gap acceptance model 
can be written as follows: 

;%
@B,d ) = exp	 l%

d ) . Yd + m% + e%
d )      f	 ∈ -6gC, -g8  (2.9) 

Where; 

;%
@B,d )  : Critical gap f of driver n at time ) 

l%
d )    : Vector of explanatory variables associated with driver n at time ) for critical 

gap f   

Yd  : Vector of estimated parameters for critical gap f  

e%
d )   : Random error term associated with critical gap j for driver n at time ), 

e%
d~\(0, sd1) 
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The critical gap follows the lognormal distribution. The conditional probabilities of 
accepting the available gap can be written as follows: 

U ;%
d ) ≥ ;%

@B,d ) m%  

= U -7 ;%
d ) ≥ ;%

@B,d ) , m%   

= Φ
-7 ;%

d ) − l%
d ) . Yd + m%

sd  (2.10) 

Where ; 

Φ : Cumulative standard normal distribution 

Then, the probability of lane-changing modelling framework in Figure 2.7 can be 
written as follows: 

U "V%<
h ) |m% = U -% ) -/% ) , -%+ ) ,i"V, m% U -/% ) -%+ ) ,i"V, m% ∗  

U -%+ ) i"V, m% + U -% ) -/% ) , -%+ ) , j"V,i"V, m% ∗  

U -/% ) -%+ ) , j"V,i"V, m% U -%+ ) j"V,i"V, m% ∗  

	 U j"V i"V, m% U i"V , m%  (2.11) 

Where; 

U "V%<
h ) |m%  : The probability of lane change in direction l’ at time ) 

-% )   :  Changing lane toward lane - in direction l’  

-/% )   :  Accepting available gaps at the direction of lane l 

-%+ )   ∈{left, current (cur), right}  
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The unconditional of the lane-changing likelihood function is written by: 

"V% = U "V%
<=Gw ) |m%

xy
z{|} w

~y

%�5

U "V%@AB ) |m% xyÄÅÇ w ∗
É

4É

Z

%�5

  

U "V%
BO?Ñw ) |m%

xy
ÇÖÜá} w

	à m 	Cm (2.12) 

Where; 

â%
<=Gw )    : 1 if driver changes to the left lane at time t; 0 otherwise 

â%@AB )     : 1 if driver changes to the current lane at time t; 0 otherwise 

â%
BO?Ñw )  : 1 if driver changes to the right lane at time t; 0 otherwise 

The heterogeneity attribute in the lane changing and gap acceptance models is particular 
probabilistic function rather than deterministic value as previously believed in Kesting 
et al. (2007). It represents the variation decision of individual in different traffic 
conditions during the observation as a conditional function of the lane-changing 
probability in Equation 2.12.  

A significant finding in this research says that the distance to the intended turning point 
affects significant lane-changing decision particularly in the upstream traffic, while it is 
less significant on the behaviour at the beginning of the observed road stretch. The 
distance effect arises as the driver enters the middle section of the observed road stretch. 
Note that lane changes driver at this road section begins to adjust their speed in order to 
prepare lane changes or turning movement through the target lane. Moving towards the 
end of the observation, lane change driver has settled in the correct lane, and maintain 
their drive towards the intended turning point.  

This modelling framework extends the rule-based framework explicitly where the lane-
changing decision is described to be whether MLC or DLC. As discussed earlier in 
Section 2.2.1, it is exceptionally difficult to identify the lane-changing characteristic or 
goal precisely and directly from traffic observation. Note that the lane-changing 
decision is a result of several goals that may be hidden from the direct observation. 

Integrated lane-changing model 

Toledo (2003), therefore, suggested a joint model for lane choice and gap acceptance 
where the MLC and DLC lane changing conditions are integrated into a single 
framework. The proposed model captures trade-offs among the various concerns and 
avoids identifying MLC trigger situation. Furthermore, the modelling framework is able 
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to incorporate with dynamic changing of the traffic situation. In the real traffic, the 
driver requires evaluating and updating his/her short-term plan decision in at specific 
time step (i.e. 1sec) whether moving to lane -+; left, right or maintain at the current lane. 
An application of random utility choice approach assists to capture the 
interdependencies and correlation over all levels of decision-making process. The target 
lane choice model, therefore, can be defined as multinomial logit model with the 
conditional probability of choosing a specific lane as follows:  

U -%+ ) m% =
6WX Y<h. l%<

h ) +	ä<h. m% m%
6WX Y<h. l%<

h ) +	ä<h. m% m%<
  

-+ ∈ {-6à), /åçç67), çé8ℎ)} (2.13) 

Where; 

U -%+ ) m%  : Probability of driver n choosing the specific target lane -+ at time ) 

l%<
h )  : Vector of explanatory variables associaed	with	driver n for lane -+ at 

time ) 

Y<h : Vector of estimated parameters associated with target lane -+ 

m% : Individual specific random error term to account for unobserved driver 
characteristics, assumed to follow normal distribution m%~\ 0,1  

ä<h : Estimated parameters of individual specific random term m% for lane -+  

The driver observes and seeks the safest gaps (lead and lag) at the target lane for lane 
changing. Similar with the previous research prerequisites, the lane-changing 
movement occurs if the minimum acceptable gaps in the target lane is larger than the 
critical gaps (i.e. Ahmed, 1999; Hwang and Park, 2005). It is worth noting that the 
critical gap varies among the drivers due to driver preferences and traffic characteristics 
at both current and target lane.  

The critical gaps of lane-changing model are written as follows: 

	;%
@B,d,<h ) = exp l%

d,<h ) . Yd,<h + ädm% + e%
d,<h )  f	 ∈ -6gC, -g8  (2.14) 

Where; 

;%
@B,d,<h )  : Critical gap f at the direction of target lane -+ of driver n at time ) 
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l%
d,<h )    : Vector of explanatory variables associated with driver n at time ) for critical 

gap f, target lane -+ and lane-changing mechanism m  

Yd,<h : Vector of estimated parameters for critical gap f  

äd : Estimated parameters of individual specific random effect m% for critical gap 
f  

e%
d,<h )     : Random error term associated with critical gap j for driver n at time ), 

e%
d,<h~\(0, sd1) 

The probability of gap acceptance with conditional on lane direction individual specific 
error term is written as follows: 

U -/% ) -%+ ) , m%   

= U g//6X)	-6gC	8gX -%+ ) , m% U g//6X)	-g8	8gX -%+ ) , m%   

= U ;%<='>,<
h
) ≥ ;%@B,<='>,<

h
) -%+ ) , m% ∗  

U ;%
<'?,<h ) ≥ G%

@B,<'?,<h ) -%+ ) , m%   

= Φ
-7 ;%<='>,<

h
) − l%<='>,<

h
) . Y<='>,<h + ä<='>m%

s<='> ∗  

Φ
-7 ;%

<'?,<h ) − l%
<'?,<h ) . Y<'?,<h + ä<'?m%
s<'?  (2.15) 

Where; 

U -/% ) -%+ ) , m%  : The probability of gap acceptance with conditional on lane 
direction individual specific error term 

;%<='>,<
h
)  : Available lead gap at target lane -+ for driver 7 at time ). 

;%
<'?,<yh )   : Available lag gap at target lane -+ for driver 7 at time ). 

Φ ∙            : Cumulative standard normal distribution 

A Next Generation SIMulation (NGSIM) trajectory data that includes location and 
speed at specific discrete time, is used to estimate the modelling parameters collectively 
with acceleration model. Moreover, the modelling estimation demonstrates that path 
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plan variable assists this study in order to capture the group variables such as the 
distance between the current position and the intended turning point at the target lane. 
MITSIM demonstrates that the integrated lane-changing modelling framework 
improves the simulation ability while the congestion is built up and discharged.  In fact, 
the target lane choice is beyond the scope of the model and this modelling framework, 
that it is not applicable in a general lane-changing context.  

Explicit target lane choice model 

Toledo et al. (2005) and Choudhury (2007) extended further the discrete-choice 
approach where the choice set of lanes is assumed to include all available lanes as 
opposed to adjacent lanes.  The modelling structure removes the limitation on the target 
lane choice tactic that appears in the previous lane-changing models. The model 
framework presumes that the driver changes lane towards the target lane due to various 
factors and goals. Lane changing consists of two level decision-making processes: (1) 
target lane choice and (2) gap acceptance. Note that the process is presumed to be latent 
as it is unobserved in driver choice at the observation period. 

Figure 2.8 An explicit lane-changing modelling framework (Toledo et al., 2005) 

The target lane choice model sets up all available lanes that are eligible for the driver. 
Given the illustration in Figure 2.8 the utilities of target lane can be written as follows:  

k%< ) = Y<. l%< ) +	ä<. m% + e%< )  - ∈ {1, 2,3, . . . , "} (2.16) 

Where; 

k%< )  : Target lane - utility of driver n at time t 

l%< )  : Vector of explanatory variables associated with driver n for lane - at time ) 

Y< : Vector of estimated parameters associated with target lane l 
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m% : Individual specific random error term to account for unobserved driver 
characteristics, assumed to follow normal distribution m%~\ 0,1  

ä< : Estimated parameters of individual specific random term m% for lane - 

 e%< )  : Random error term associated with target lane - for nth driver at time ) 

L : Number of available lanes in the section 

Assuming that the random error term e%<  is independent and identically distributed (IID). 
Note that the error term in multinomial logit follows Gumbel distribution corresponds 
to the difference of random variables which has logistic form. The probability of target 
lane choice of the multinomial logit model with conditional on the individual specific 
error term can be written as follows: 

U -% ) m% =
6WX Y<. l%< ) +	ä<. m% ) m%
6WX Y<. l%< ) +	ä<. m% m%<

 - ∈ {1, 2,3, . . . , "} (2.17) 

Where; 

U -% ) m%  : Probability of driver n choosing the specific target lane - at time ) 

Same gap acceptance modelling and joint estimation procedure in Toledo (2003) is 
adopted in those researches. All the estimated parameters are based on the NGSIM 
trajectory dataset. The estimation suggests that the driver’s decision in target lane choice 
is significantly affected by several explanatory variables; lane average speed, spacing, 
relative speed with the lead vehicle, number of lane change and path plan. In this case, 
the driver preference on changing lane is significantly decreased while approaching the 
MLC point. Meanwhile, the relative speed variable affects the decision of gap 
acceptance behaviour. Moreover, specifying the full set of available lanes in the target 
lane choice set will improve the goodness-of-fit as well as MITSIM’ simulation results. 

Furthermore, Choudhury (2007) extended the application of latent plan lane-changing 
modelling framework in the freeway merging that incorporates normal, courtesy and 
forced lane-changing tactical. The estimation indicates that the decision of merging is 
affected significantly by relative speed and the remaining distance to the end of merging 
point. In this case, the driver tends to involve in a forced lane changing by accepting 
smaller critical gap as he/she approaches the end of on-ramp. The study reports the 
cooperation tactic is likely to occur in congested traffic that is similar to the previous 
research findings in the game theory models as discussed in Section 2.2.2. 
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The application of discrete choice modelling in the lane-changing behaviour has been 
developed since the first appearance in late 90’s. Toledo (2003) presented a significant 
improvement in this modelling framework by suggesting a single utility instead of 
varying based on the objective of lane-movement (DLC or MLC). This approach 
presumes the lane changing as the trade-offs between several attributes and avoids 
improper identification of the MLC cause. This assumption simplifies the structure of 
lane-changing model into two levels; (1) target lane choice and (2) gap acceptance. The 
discussion of gap acceptance model will be discussed in following sections. In fact, the 
decision-making process in target lane choice is latent (hidden) from the direct 
observation. It is only the action (gap acceptance) which can be observed directly from 
the trajectory dataset.   

The latent plan framework, as one of a discrete choice modelling specification, provides 
flexibility in capturing the traffic interaction, lane-changing strategies and correlation 
among the individual decision during the lane-changing process. However, those listed 
models (i.e. Ahmed, 1999; Choudhury, 2007; Toledo, 2003; Toledo et al., 2005) focus 
explicitly in the isolated lane-changing movement. Meanwhile, those listed models omit 
the differences between individual and group lane changing which may affect 
significantly the weaving section performance. 

 Gap acceptance models 

Gap acceptance is one of the significant components of the lane changing model 
together with the modelling specification, and lane changing tactic. Significant number 
of studies has been performed with various structures and assumptions since early 60’s. 
Herman and Weiss (1961) presumed the gap acceptance by following the exponential 
distribution, while Drew et al. (1967) and Ashworth (1970) assumed lognormal and 
normal distributions respectively. In fact, those earliest studies were focused on the 
mean gap acceptance and ignored the gap acceptance resulted from series of gap 
acceptance decisions (rejected and accepted gaps). The decision-making characteristic 
is actually identical with the nature of panel data as each individual has more than one 
observation. 

Daganzo (1981), is therefore proposed the probit model that includes the correlation 
among the series of time gap acceptance decisions of each individual at T-intersection. 
In this case, the mean minimum value of the gap acceptance model known as the critical 
gap is a random variable that is normally distributed across the population. The function 
of critical gap for the driver 7 at time ) is expressed as follows: 

;%@B ) = ;% ) + e%@B )      (2.18) 
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Where; 

;%@B )  : Critical gap of driver n at time )  

;% )  : Critical gap attribute of driver 7 at time ) 

e%@B )  : Random error term associated with critical gap for driver n at time, 
e%@B ) ~\(0, sú1) 

The error term in this case is presumed as the difference between the critical gap and 
the observed value. The estimation is performed under the maximum likelihood method. 
The probability density of the accepted/rejected gap should be then expressed as 
conditional probability on the unknown parameters. The study found that the typical 
driver rejects the first large gap due to the hesitation and subsequently much smaller 
gap. 

By applying the same dataset, Mahmassani and Sheffi (1981) threated the gap 
acceptance dataset as cross-sectional instead of panel data as suggested by Daganzo 
(1981). The critical gap in this study is distributed normally. The mean critical gap is 
represented as function of explanatory variables that allows for incorporating the impact 
of various factor on the driver gap acceptance behaviour. In fact, this study introduced 
the function of rejection number that captures the driver impatience factor, as the 
attribute of proposed critical gap model. The study found that incorporating the 
impatient factor affects the driver decision significantly. Meanwhile, the estimation 
result denotes that the driver tends to be more aggressive (accepting smaller gap) as the 
delaying time is increased. However, the assumption of normal distribution in both 
studies performed by Daganzo (1981) and Mahmassani and Sheffi (1981) resulted in 
critical gap value of negative value that is unrealistic.  

Ahmed (1999) extended the probit gap acceptance modelling framework to capture the 
lane-changing behaviour on the merging area. The gap varies among the driver and for 
each driver in different traffic condition. This variation is represented as an individual 
specific. As discussed earlier, the gap acceptance is the second level of lane-changing 
decision making process. The drivers, should agree the lane choice in the first instance 
before observing the acceptable gap and lag at the target lane. His study introduced the 
exponential form of critical gap that ensures the critical gap to be a non-negative value 
instead of normal distribution as used by previous studies. The heterogeneity in gap 
acceptance explains the variation of individual driver in accepting or rejecting gaps 
formulated as truncated probabilistic function. This approach has been used widely in 
the recent development of gap acceptance model by Toledo et al (2005), Farah et al 
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(2009), and Choudhury et al (2010). It should be noted that all those studies measured 
the gap on basis of distance. 

Skabardonis (2002) used CORSIM algorithm to assess the operation of weaving 
sections. The capacity of this algorithm is defined to be associated with minimum 
headway of the acceleration behaviour, the critical gap for lane-changing movement 
and the vehicle characteristics. However, the models have limited attributes that 
representing the traffic interaction during the movement in weaving section. They 
model the lane-changing model based on speed function while the acceleration acts as 
sensitivity factor (level of aggressiveness). In this case, the sensitivity factor remains 
constant since the vehicle is generated. This assumption may not present the real-traffic 
condition appropriately where the individual driver sensitivity varies over the 
observation period. 

Bham (2008) studied the characteristics of rejected gap (mean and median), and the 
largest rejected gap in a mandatory lane-changing behaviour on a multilane freeway 
facility during the congested and uncongested traffic. The study utilises NGSIM 
trajectory data set. The gap in this study is represented in time form, which is a function 
of the distance gaps and the follower’s speed, instead of the distance gap-based that was 
previously used by Ahmed (1999), Choudhury (2007), and Toledo (2003). In this case, 
the vehicle observes sufficient time gap when executing the lane changing in safe 
manner. The statistical test of goodness-of-fit and Kologromov-Smirnov (KS) show that 
the distribution profile of gap acceptance fits properly with the lognormal and gamma 
distribution. Assuming the critical gap as a random variable in a stochastic method, the 
study uses the maximum likelihood estimation for estimating the lead and lag gaps in 
the target lane for the mandatory lane changing. The estimation results constitute that 
the critical lag is slightly greater than the critical gap in both congested and uncongested. 
Moreover, the merging drivers from the on-ramp traffic in both traffic conditions are 
found to be slightly more aggressive as they accept smaller gaps compared to the drivers 
changing lanes towards the off-ramp. In the merging context, the critical gaps are found 
to be significantly different in congested conditions when the driver is merging 
normally, expecting a courtesy yielding from the mainline driver or forcing in 
Choudhury et al. (2007). However, the models are developed for MLC conditions and 
do not involve any lane choice component. Yet, the proposed gap acceptance model 
deficiencies in attributes are explaining the gap acceptance decision. 

Recently, Chu et al. (2015) observed the impact of cooperation behaviour and accident 
in the driver gap acceptance characteristics using a binary (accept or reject) logit model 
framework. In this case, the study classifies the lane-changing behaviour into three 
categories as follows: 
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• Chase-merging: if the observed driver passes the lead vehicle and executes the 
gap in front the lead vehicle 

• Direct-merging: if the observed driver checks his/her position and accept the 
available gap at the target lane 

• Yield-merging: if the vehicle delay and accept the gap behind the lag gap 

The use of inverse time to collusion variable (TTC-1) explains the accident risks. The 
lane-choice is based on a binary logit structure to accept or reject the movement. The 
maximum likelihood algorithm assists the estimation process based on a particular 
merging section at Nagoya urban expressway traffic data. The estimation illustrates that 
the lane changing in high traffic density has higher probability to occur in the chase 
merging, while the longer acceleration lane results in higher direct-merging tactic.  
Yield-merging occurs if the density in the target lane is relatively low (< 40 
veh/km/lane). Nonetheless, this gap acceptance model focuses only on the gap with the 
target lane lead vehicle while the lag gap is ignored. The impacts of lane-choice, 
variation of individual driver and group behaviour are omitted in this model. 

To summarise it, gap acceptance behaviour is affected significantly by the lane choice 
and strategies. Several studies have been conducted to identify the gap acceptance 
characteristics focussing on the distribution profile and the modelling specification. In 
general, the gap can be measured on basis of distance and time. Most of the recent gap 
acceptance model developments use critical gap terms to represent the mean value of 
gap acceptance which varies among the individual and traffic conditions instead of gap 
acceptance terms. The critical gap lies between the observed accepted gap and rejected 
gaps. The analysis of vehicle trajectory dataset in the recent development of gap 
acceptance suggests that distribution of gap acceptance to follow the lognormal 
distribution. This assumption denotes that most the driver in the population accepts 
smaller gap when performing the lane-changing movement and ensures the critical gap 
from the unexpected value (i.e. avoid the negative value of critical gap).  The 
heterogeneity in the gap acceptance model represents the variation of individual driver 
decisions. The literature in the gap acceptance provides a strong groundwork for the 
proposed gap acceptance as part of lane-changing model in Chapter 4. 



-46- 
 Car Following Models 

 Car-following model demonstrates the following driver reaction towards leader driver 
behaviour. After reviewing the existing car-following model framework, the model can 
be classified into two groups: car-following model and acceleration model. 

Figure 2.9 Schematic of car-following movement 

Figure 2.9 demonstrates the car-following situation, where the subject vehicle satisfies 
and maintains the movement at the current lane. 

 Car Following Models 

Pipes (1953) developed a mathematical analysis for modelling the car-following 
behaviour by using Laplace transformation procedure. The vehicle in this case is 
assumed to obey a postulate of California traffic codes saying that the subject vehicle 
requires a space with the lead vehicle by a length of car (± 15 feet) for every 10 mil/hr 
of the subject vehicle speed. The study defines that the minimum safest time headway 
between the following and the leader vehicle is 1.02 sec. However, the finding has 
limitation since it is only applicable when the following vehicle obeys such code. 

A massive work in car-following model has been done by General Motors’ (GM) 
laboratory, Gazis et al. (1959) presented a car following behaviour as a response of 
sensitivity-stimulus framework. Considering the driver reaction time, the response can 
be written as follows: 

ù6ûX.7û6%()) = ü67)é†é)°%	 ) 	 ü)éLå-åû%	 ) − P%    (2.19) 

Where; 

 P% : Driver 7 reaction time. 

Driver reaction time represents the time lag between the appearance of stimuli and the 
individual driver response. The discussion of driver reaction time will be discussed in 
Section 2.3.3.  

: Subject/observed vehicle
: Front vehicle at the current lane
: Lead vehicle at the target lane
: Subject vehicle trajectory
: Lead/front vehicle trajectory
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GM’s first generation model presumes that the relative speed between the subject and 
front vehicle role as the stimulus component. Chandler et al. (1958) and Gazis et al. 
(1959) write the car-following model as follows: 

g% ) = Y@G ∆$%() − τ%)      (2.20) 

Where; 

g% )  : Acceleration of vehicle 7 at time	) 

Y@G : Estimated sensitivity parameters of car following 

∆$%() − τ%) : The relative speed between the speed of leader vehicle $%45  and subject 
vehicle $%  at time t − τ% . 

Both reaction time τ%  and sensitivity parameter Y@G  are estimated on basis of the 
experimental data on the GM’ test track. The observation requests the following 
(subject) vehicle to follow and maintain the safest gap with the front vehicle. Various 
combinations of τ% and Y@G values are tested in the experimental design with 
assumption that the driver prefers a combination of those values with highest 
correlation. This estimation finds that the average values for both τ% and Y@G are 1.55 
sec and 0.37 sec-1 respectively.  

Due to significant difference in the sensitivity parameters (0.17 to 0.74), the second 
generation proposed two states of sensitivity in correspond to the available gaps. The 
model applies a high sensitivity value Y@G,ÑO?Ñ , if the gap to the front vehicle is 
relatively close. If the gap is relatively large, the model employs the lower sensitivity 
value Y@G,<[§ . Then, the acceleration model is given as follows: 

g% ) =
Y@G,ÑO?Ñ
.ç

Y@G,<[§
∆$%() − τ%)  (2.21) 

However, there is difficulty to define the appropriate value of Y@G,ÑO?Ñ and Y@G,<[§. It is 
also unrealistic while the acceleration behaviour considers only the relative speed 
component. In addition, the relative speed varies based on the relative distance as well. 
This limitation leads the next research to include the distance component as part of 
sensitivity terms. Gazis et al., (1959) proposed the third generation of GM model as 
follows: 
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g% ) =
Y@G

∆C%())
	 ∆$%() − τ%)  (2.22) 

Where; 

∆C%()) : Relative distance between the subject and front vehicle at time ) 

The experiments have been done in three different locations, namely GM track, Holland 
tunnel and Lincoln tunnel. The study reports that the sensitivity term is increased while 
the relative distance becomes smaller. 

Table 2.3 Parameters for third generation of GM’ model (Gazis et al., 1959) 

Location No. of driver Y@G(mph) τ (sec) 

GM’ test track 8 27.4 1.5 

Holland tunnel 10 18.3 1.4 

Lincoln tunnel 16 20.3 1.2 

The fourth generation of GM’ model incorporates the subject vehicle speed into the 
sensitivity component. Further improvement in the fifth generation has slightly changed 
the GM model into a non-linearity form. This model allows to capture different 
sensitivity terms for each sensitivity components that improves and generalises the 
sensitivity term. Gazis et al. (1961) formulated the fifth GM model as follows: 

g% ) = Y@G
$%() − τ%) •Ä|,¶

∆C%()) •Ä|,∆ß
	 ∆$%() − τ%)  (2.23) 

Where; 

$%() − τ%) : Speed of vehicle 7 at time ) − τ%  

Y@G,® : Estimated sensitivity parameter for the subject vehicle speed   

Y@G,∆> : Estimated sensitivity parameter for the relative distance between the 
subject and front vehicle 

The relative speed is stimulus of car-following behaviour while both the speed and 
headway/gap represent the individual driver sensitivity. However, the parameters 
estimation method is a result of trial and error method resulting in the non-optimum 
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model. All GM’s modelling framework disregards the impact of the variations of 
individual driver car-following behaviour during the observation period. 

In that case, Lee (1966) extended the GM model by incorporating the previous 
information on car-following behaviour for the current decision. The application of 
transform technique allows the modelling algorithm to represent the information as 
“memory function”. The study presumes that the driver response depends on the series 
of previous relative speed. The formula is given as follows: 

g%
@G ) = i ) − )+ ∆$% )+ C)+

w

©
 (2.24) 

Where; 

i .  : Memory function that represents the current driver behaviour based on series of 
the previous information. 

However, the model disregards the driver sensitivity attribute which affects the 
individual driver decision. The study focuses only on the modelling development while 
the estimation of parameters in the proposed model are not presented. In that sense, it 
is difficult to validate the accuracy of the model. 

Koshi et al. (1992) proposed a variation of GM model by incorporating two car 
following regime. Note that the car-following characteristics in both regime are slightly 
different. The modelling demonstrates that the driver awarness level in congested flow 
regime varies significantly in order to maintain both speed and gap toward the front 
vehicle. Note that less overtaking manoeuvre possibility is available in this regime, 
while driving in free-flow regime is capable to maintain the level of awarness. The 
modelling is based on the hypothetical mathematical equation associated with the 
observed traffic data. Conversely, there is no validation process or statistical test that 
proofs the validity of modelling framework. 

Acceleration model 

In early 1980’s, a new paradigm in car-following model is proposed to incorporate the 
non car-following movement related to the development of micro simulation tools. 
Gipps (1981) proposed an acceleration model with several properties, namely ability to 
mimic the traffic behaviour, the parameters associated with specific driver 
characteristics and consistency during the estimation. The maximum acceleration is 
strictly constrained by two conditions: driver’s desired speed and safest gap. The 
assumption is that the subject vehicle driver prefers the speed where he/she can safely 
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stop due to the lead vehicle movement. Hence, the new speed of subject vehicle is given 
by: 

$% ) + P  

= min	{$% ) + 2.5g%P 1 − $% ) $≠Æ 0.025 + $% ) $≠Æ , 

,%P + ,%1 − ,% 2 -./%45 ) − -678)ℎ%45 − -./% ) − $% ) P − $%45 ) 1 , } 

(2.25) 

Where; 

$% )   : Driver 7 speed at time ) 

$≠Æ  : Desired speed 

,% : Most severe breaking of individual driver 7 wishes to undertake 

,  : Estimated the sever breaking of the object vehicle in front 

-./% ) : observed of driver 7 location at time ) (based on the front rear of the subject 
vehicle) 

-678)ℎ%45 : the length of the front vehicle 

The model finds three key factors, which control the acceleration behaviour: desired 
speed distribution, driver reaction time, and ratio of mean breaking rate. Though the 
model parameters are not estimated thoroughly and the reaction time remain the same 
for all observed driver.  

Yang and Koutsopoulos (1996) developed an acceleration model for MITSIM. The 
driver acceleration behaviour in associated with headway is classified into the following 
three regimes:  

• Car-following: This regime calculates the vehicle acceleration resulted from its 
association with the front vehicle. 

• Free-flowing regime: When the headway is larger than upper headway threshold 
ℎ∗,&'(  . The vehicle moves on his desired speed.  

• Emergency regime : When the headway is smaller than lower headway threshold 
ℎ∗,&O% . The vehicle decelerates to avoid an accident and increases 

the headway to the front vehicle. 
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However, their modelling framework ignores the driver reaction expectation for the 
stopped vehicle due to computational efficiency. The study estimates the parameter in 
based on generated traffic data rather than real traffic data. 

Ahmed (1999) improved the acceleration model that omits the restriction on sensitivity 
and stimuli components. The driver sensitivity is a function of explanatory variables 
associated with car-following behaviour while the stimulus is a function or relative 
speed between the current lane front vehicle and the subject vehicle. The framework 
allows different modelling specification in correspond with car-following behaviour 
namely acceleration and deceleration. Adopting Subramanian (1996), the proposed 
model classifies the car-following into two different regimes: car-following (if the 
vehicle follows the leader), free-flow regime (if the vehicle would like to maintain the 
desired speed). The headway threshold ℎ∗ , that is assumed to be constant for all 
drivers, is applied to differentiate between those two regimes. This condition is written 
as follows: 

g% ) = g%
@G ) 												éà	ℎ% ) − P% < ℎ%∗

g%
GG ) 												.)ℎ6çØéû6															

 (2.26) 

Where; 

g%
@G )  : Acceleration under car-following regime at time ) 

g%
GG )  : Acceleration under free-flow regime at time ) 

ℎ% ) − P%  : Time headway at time ) − P%  

ℎ%∗          : Headway threshold for driver 7 

Furthermore, the car-following acceleration regime occurs if the relative speed is 
positive. When the relative speed is negative, the vehicle moves in the car-following 
deceleration regime. The general formulation of the car-following movement is given 
as follows: 

g%
@G,? ) = ü l%

@G,? ) ∆$% ) − P% + e%
@G,? 8 ∈ {g//, C6/} (2.27) 

Where; 

g%
@G,? )            : Acceleration 8 under car-following regime of driver n at time ) 

ü .   : Function of sensitivity 
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l%
@G,? )  : Vector of explanatory car-following 8 variables associated with driver 

n at time ) 

∆$% ) − P%  : Stimulus, a function of relative speed ∆$% ) − P%  

e%
@G,?               : Random error term associated with acceleration g for driver n at time ), 

( e%
@G,?)~\(0, s@G,?1) 

Extending the fifth generation GM’ model, the sensitivity component in Ahmed (1999) 
incorporates the density. Then, it can be written: 

ü l%
@G,? ) − ∞P% = Y@G,?

$%()) •Ä|,Ü,¶

∆C%()) •Ä|,Ü,∆ß
	K% ) •Ä|,Ü,± (2.28) 

Where; 

Y@G,?,]        : Estimated sensitivity parameter for the traffic density for car-following 8 

While the driver moves under the free-flow regime, the acceleration formulation was 
given as follows: 

g%
GG ) = YGG $%≠Æ ) − P% − $% ) − P% + e%

GG (2.29) 

Where; 

YGG  : Estimated parameters of car following under free-flow regime 

$%≠Æ ) − P%   : Driver 7 desired speed 

e%
GG   : Random error term of acceleration under free-flow regime 

The presumption is that the headway threshold ℎ∗  is distributed normally that 
truncated in both sides. Probability of the driver in the car-following is written by: 

U% /gç − à.--.Øé78	g)	)éL6	)  

U ℎ% ) < ℎ%∗ =

1

1 −
Φ ℎ% ) − ≤Ñ

sÑ
− Φ ℎ&O%∗ − ≤Ñ

sÑ

Φ ℎ&'(∗ − ≤Ñ
sÑ

− Φ ℎ&O%∗ − ≤Ñ
sÑ

0

 

ℎ% ≤ 	ℎ&'(∗  

éàℎ&O%∗ ≤ ℎ∗ ≤ ℎ&O%∗  

≥)ℎ6çØéû6 

(2.30) 
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The distribution function of the acceleration with a conditional of car-following regime 
and reaction time is given by: 

à g% ) ℎ∗, P% = à g%
@G ) ℎ∗, P% 	 à g%

GG ) ℎ∗, P%  (2.31) 

Then, the unconditional likelihood function is formulated as follows: 

V¥%  

= à g%
@G ) ℎ∗, P% 	. à g%

GG ) ℎ∗, P%

~y

%�5

Ñµ∂∑
∗

ÑµÖy
∗

∏µ∂∑

©

Z

%�5

à ℎ∗ à P% Cℎ∗CP% (2.32) 

Both the headway threshold and reaction time distribution are random variables that 

follow a specific distribution. Those attributes represent the heterogeneity of the 

variations of individual driver decisions. All parameters in models are estimated jointly 

using maximum likelihood approach.  However, the condition in car-following regime 

is strictly limited. It fits in a condition where a high proportion of traffic responses 

appropriately the types of stimulus. Note that the vehicle accelerates if the current lane 

front vehicle is faster than the subject vehicle, and decelerates if the current lane front 

vehicle is slower. Actually, the driver in real traffic may act differently towards the 

respond, for example: giving a priority for merging vehicle or preparing a lane-changing 

movement. The vehicle will decelerate even though the front vehicle is faster than 

his/her vehicle. 

Toledo (2003) integrated the acceleration model with lane-changing model into a single 

driving behaviour modelling framework. In this case, the acceleration is the action 

component located at the lowest level of the decision-making process of the proposed 

model. The study classifies the acceleration into three different conditions: 

• Stay-in-the-lane acceleration: If the driver satisfies with the current lane and does 
need lane-changing movement. 

• Acceleration during lane changing: If the driver requires lane-changing 
movement towards the target lane. 

• Target gap acceleration:  This situation appears during the lane-changing process 
when the lane-changing driver rejects the adjacent gaps and stays at the current 
lane for seeking the following safest gaps. 
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By adopting Ahmed (1999) modelling framework and estimation procedure, this 
modelling framework incorporates the effect of the front vehicle as the stimulus of the 
car-following behaviour. This study applies two different car-following regimes for 
each type of conditions by specifying the headway threshold: constrained (if 
ℎ% ) < ℎ∗), and unconstrained (if ℎ% ) ≥ ℎ∗). The estimation found that both 
headway and relative speed (sensitivity components) have significant effect in the driver 
decision in the target gap acceleration condition including the density as one of 
significant explanatory variables, to capture the downstream traffic condition effect on 
car-following behaviour. Meanwhile, the subject vehicle is less significant in 
deceleration movement.  

The acceleration model is relatively more flexible compared to the basic car-following 
models such as GM’s model. It allows various specifications, depending on the 
objective and traffic characteristics. A massive improvement of acceleration model was 
presented by Ahmed (1999). His study defines the acceleration behaviour as a respond 
of stimulus and individual driver sensitivity. The modelling framework classifies the 
acceleration into two regimes: car-following and free-flow regime based on a specific 
time threshold. The acceleration in the study is presumed to be the response of stimulus 
and driver sensitivity. In this case, the driver requires a particular time length to 
recognise, interpret and make a decision based on the neighbouring traffic condition. 
This time length is also known as driver reaction time that will be discussed in the 
following section. Both headway threshold and reaction time represent the 
heterogeneity of individual driver decision during the observation period as random 
variable. However, the conditional of acceleration behaviour is strictly limited in 
capturing the variation of car-following behaviours associated with each stimulus 
particularly in the car-following regime. 

 Extended car-following models 

Wang’s model 

By adopting Gipps (1981), Wang et al. (2005b) developed  a car-following  which 
incorporates motorway traffic flow characteristic; traffic breakdown, hysteresis and 
shock wave propagation during the traffic congestion build up. The study focuses on 
the car-following during the traffic build up (i.e. from uncongested to congested traffic 
flow). In this case, three car-following regimes: alert (shorter reaction time and higher 
rate of acceleration and deceleration), close-following and non-alert (if the vehicle 
speed is higher than 50 km/h). As discussed in Dijker et al. (1998), the modelling 
algorithm in this study presumes that the shifting driving regime from a non-alert, to 
alert depends on the individual speeds during the process. This assumption considers 
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that the driver would be most likely under non-alert state during the traffic build and 
changing slightly towards the alert states as the congestion appears on the downstream 
traffic. 

The micro simulation demonstrates that the reaction time, acceleration and deceleration 
behaviour varies with respect to the car-following regimes. Furthermore, the sensitivity 
analysis the driver reaction time affects the capacity and lane occupancy significantly 
while speed threshold for classifying the traffic condition in car-following (congested 
and uncongested) is less significant. However, all the parameters are based on previous 
research result rather than estimated directly from the observed vehicle trajectory data. 
The reaction time has totally same value for all individual drivers and traffic condition. 

Time-gap based model 

Zhang and Kim (2005) proposed a car-following for multiphase vehicular traffic flow. 
Instead of constant gap-time to the front vehicle, this approach applies a dynamic gap 
approach that works as gap-distance and traffic phase. Several modelling forms are 
represented in order to capture various car-following characteristic in different regimes: 
steady state condition, congested-uncongested traffic, transition region, acceleration-
deceleration and free-flow. A simulation demonstrates the ability of the car-following 
model in capturing the capacity drop and traffic hysteresis. This study disregards the 
reaction time of individual drive. In fact, a rigorous framework of the parameters 
estimation is unavailable in this current work. 

Tordeux et al. (2010) developed an adaptive time gap car-following model. The study 
consequently incorporates both time-gap and targeted safety as the component of speed 
function as part of the car-following model. There are two level of estimations in this 
model; (1) the target-gap (linear optimisation), and (2) modelling parameters 
(maximum likelihood). This study reported a significant different car-following 
characteristic between vehicle types and increased accident risk in correspond to the 
increased speed. Note that the heavy vehicle requires a larger gap compared to small 
vehicle. This model incorporates the reaction time as the function of speed between the 
subject and front vehicle and the number of vehicle in an interaction that is relatively 
difficult to examine directly from the observed traffic. Furthermore, the analysis of 
study focuses on gap-acceptance behaviour rather than the characteristics of car-
following behaviour itself. 

Visual angle car following model  

Brackstone et al. (2002) introduced visual angle model which is a physiological or 
action point type models for the next vehicle decision to determine whether or not the 
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subject vehicle exceeds a specific angular velocity threshold. This approach considers 
the width of front vehicle in determining the safe headway between the subject and front 
vehicles (time to collusion). Similar to Tordeux et al. (2010), the study concentrates in 
defining the safest gap analysis instead of the car-following characteristics itself. 

Al-obaedi and Yousif (2009) developed a car-following model based on visual angular 
velocity threshold by using the UK traffic characteristics. The threshold velocity is 
related to function of relative speed between the subject and front vehicles. This model 
integrates the reaction time as an attribute of visual angle parameter. The reaction 
decreases as the relative speed increased. Nevertheless, there is no rigorous framework 
for estimating the reaction time distribution. The study adopts the reaction time model 
by Hoffmann and Mortimer (1994).   

Similar to the previous research, Yousif and Al-Obaedi (2011) implemented this visual 
angular approach in car-following model that captures two car-following conditions: 
small-small and small-heavy. This approach extends the acceleration model by 
incorporating the relative speed, headway and the front vehicle width as a consideration 
to maintain the safest car-following movement. The study presumes that the vehicle 
acceleration shall appear when the absolute angular velocity is higher than a particular 
threshold (negative angular velocity value) while deceleration has a positive angular 
velocity value. Although a large number of observations (4 million) were utilised in the 
study, the modelling estimation reports that the required spacing of those two scenarios 
is relatively similar. In other words, the drivers in the UK are less sensitive with the 
variation of front vehicle type as they accept similar gap. 

Latent class model 

Recently, Koutsopoulos and Farah (2012) introduced the latent plan modelling 
framework in the acceleration behaviour. This study focuses only on the car-following 
regime.  The drivers face discrete situation with various type of choice; acceleration, 
decelerate and do nothing as a response of stimulus. The decision in acceleration 
behaviour, therefore, is presented as a probabilistic form and result of a function of 
explanatory variables (i.e. relative speed, gaps and speed). The acceleration framework, 
developed by Ahmed (1999), is adopted to represent the acceleration/deceleration mean 
value of the driver population. NGSim vehicle trajectory dataset is used in the 
estimation under the maximum likelihood approach. Although the result of proposed 
model is better than GM model, this model requires to be extended to the acceleration 
behaviour in other regimes. The modelling is relatively complex and employs a massive 
work particularly in the model specification. 
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A rigorous work from GM model in early 1960 has presented several series of car-
following models that captured the acceleration and deceleration characteristics. 
However, this model has a limitation in observing the car-following behaviour in the 
other regimes (i.e. congested and uncongested, alert and non-alert) as we do believe that 
they are different. The acceleration/deceleration behaviour is characterised by several 
factors including the stimulus, sensitivity and reaction time. Various modelling 
specification have presented the importance of those attributes that can be defined as 
deterministic value or probability approach. Though, we do believe that individual 
driver reaction time of individual varies, depending on traffic condition. Following 
section discusses the driver reaction time.  

 Driver reaction time 

Driver reaction time, by definition, represents a time lag between the appearance of 
stimulus and the response of the driver including the perception time and foot movement 
time (O’Flaherty, 1986). Note that this time length varies depending on several factors 
such as: space headway and visibility to the front object, and the driver preferences.  

Gazis et al. (1960) studied the driver reaction time on the non-alerted traffic condition. 
This study observed the reaction time of 87 drivers when approaching a signalised 
intersection. In this case, the driver reaction time was a time lag between the appearance 
of amber light and brake light of the observed vehicle. The study reported that all 
vehicles have responded the stimulus within 61m (200ft) from the interaction with a 
reaction time median, mean and standard deviation 1.12, 1.14 and 0.32 sec., 
respectively.  

Table 2.4 summarises the driver reaction time from different experiments. Note that the 
analysis is based on the real traffic observation. An empirical model of reaction time 
has yet developed in this study.  

Table 2.4 Reaction time from experimental data (Seconds) 

Researchers No. of sample  Median Mean Std dev 

Gazis et al. (1960) 87 1.12 1.14 0.32 

Wortman and Matthias (1983) 837 1.14 1.30 0.6 

Chang et al., (1985) 579 1.10 1.30 0.74 

Sivak et al. (1982) 1,644 1.07 1.21 0.63 
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Analysing those previous studies, Taoka (1989) suggested that the distribution of 
reaction time fits with lognormal distribution due to the imbalance and unsymmetrical 
of distribution tail. The distribution is skewed to left side considering that a high 
proportion of traffic prefers short reaction time while less traffic accepts long reaction 
time. The range of the median is between 1.07 and 1.14 sec while the mean value is 
between 1.14 and 1.30 sec and the largest value of standard value is 0.74 sec. 

Furthermore, Subramanian (1996) defined a driver reaction time as a result of the 
interaction between several human factors including age, gender, weather condition, 
weaving section geometry, vehicle characteristics and traffic condition. The reaction 
time distribution in this study was presumed to follow a lognormal distribution with a 
specific upper and lower value. This approach is well known as a truncated lognormal 
distribution. In this case, the driver reaction time distributes between 0	 P&O%   and 6 
sec P&O%  with the median, mean and standard deviation as 2.19, 2.29 and 1.42 sec 
respectively. Given the assumption, the driver reaction time distribution can be written 
as follows: 
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Where; 

≤∫ : Mean of the -7 P%  distribution  

s∫ : Standard deviation of the -7 P%  distribution 

Similarly, Ahmed (1999) defined the reaction time distribution as truncated lognormal 
distribution within 0 and 3 sec. The estimated median, mean and standard deviation of 
driver reaction are 1.31, 1.34 and 0.31 sec respectively. Meanwhile, Toledo (2003) 
found the reaction time distribution is between 0 and 6 sec where the mean, median and 
standard deviation values are 0.85, 1.10 and 1.00 sec respectively. Overall, it is worth 
noting that the variations of reaction time distribution parameters between those studies 
depend significantly on several factors including the modelling framework, data 
collection method and location, and the estimation process. The reaction time of 
individual driver varies depending on the traffic condition during the observation 
period. It is a conditional form that explains the heterogeneity of individual driver as 
regards the acceleration probability function.  
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 Summary and Limitations of Existing Models 

 Summary 

Weaving section is a unique multilane motorway facility, where two junctions are 
connected in relatively short distance. The traffic in weaving section is relatively more 
complex. In fact, two or more traffic streams that move in same direction, have to adjust 
their lane in relatively short distance without any traffic control assistance. The 
movement complexity raises the safety issue that shall be included into consideration 
during the design process. 

Since early 1980, a significant number of studies have been performed in analysing the 
weaving section traffic performance and driving behaviours including the lane-
changing and acceleration behaviours. Number of studies have been done and found 
several critical issues in weaving section performance such as; weaving section 
geometrics (i.e. weaving length, number of lanes, number of lane-changing), and traffic 
characteristics (i.e. volume ratio, density, speed). It is worth noting that this approach 
has limitation in representing the driving characteristic and interaction. Similar to other 
multilane facilities, the individual vehicle involves in lane changing and car-following 
movements in order to adjust and move towards their target lane. It is worth to note that 
an erroneous assumption in modelling framework (i.e. neglecting the impact of 
surrounding vehicle movement) will extend the modelling complexity. Indeed, this 
leads to an unrealistic result and interpretation. 

 Limitations of existing models 

A large number of lane-changing and car-following (acceleration) models have been 
studied. The literature review reveals the strategy and tactic limitations on both existing 
models that have been discussed as follows: 

Lane-changing 

Most existing studies focus on the lane-changing issue as an isolated individual action 
ignores the impact on the surrounding traffic movement. In fact, the vehicle in weaving 
section has to change lane reasonably in different strategies and tactic in correspond to 
the front and lead vehicle movement. This issue in lane-changing behaviour, to our best 
knowledge, has not been explored in the previous studies. Furthermore, the impact of 
surrounding vehicle movement can be classified into two conditions:  

• Impact of the front vehicle in the current lane: The subject vehicle movement is 
associated with platoon regime if the front vehicle moves towards the surrounding 
lane. 
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• Impact of the leading vehicle in the target lane: The subject vehicle movement is 
associated with weaving regime if he/she shifts the lane with the target lane leading 
vehicle 

The literature review of lane-changing model reveals that decision-making process can 
be grouped into two levels including the lane-choice and gap acceptance model. The 
application of latent plan, which is one of discrete-choice model, provides flexibility in 
capturing the traffic interaction, lane-changing strategies and correlation among the 
individual decision during the lane-changing process. In that sense, it is acceptable to 
incorporate the impact of front and lead vehicle movement as an intermediate lane-
changing plan. The details of decision-making framework will be presented in Chapter 
3. 

Acceleration 

The existing acceleration model presumes that acceleration behaviour is highly 
correlated with the relative speed. Please note that the vehicle will accelerate if the front 
vehicle moves faster than subject vehicle ∆$D , and decelerate when the front vehicle 
is slower than the subject vehicle ∆$4 . However, this ideal situation does not always 
occur in the real traffic situation where the traffic faces a disruption from the 
neighbourhood vehicle and has to prepare a pre-emptive lane-changing movement. 
Although the relative speed is positive, facing this situation suggests the subject vehicle 
to decelerate in order to provide a safest gap for the upcoming movement.  

This study will consequently omit those limitations on the proposed modelling 
framework that will be discussed in Chapter 4 and 5. A successful story of implementing 
those assumptions will broaden the horizon to understand various characteristic, 
strategy and tactic in correspond with both individual and group lane-changing 
movement. Moreover, this will assist the transportation authority when designing road 
geometric and traffic management policies.
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Chapter 3 Modelling Framework 
of Decision Making- 
Process 

This chapter discusses a modelling framework of decision-making process with 
unobserved or latent component. A large number of studies have been presented in 
modelling a decision-making process with different approaches and assumptions. A 
brief discussion on existing models provides a background on extending the latent-plan 
modelling framework later in this chapter. 

This chapter consists of five sections. Firstly, Section 3.1 discusses various approaches 
in existing planning behaviour models. Then, the following Section 3.2 presents detail 
information of the proposed latent plan modelling framework, and modelling 
specification. This proposed modelling framework incorporates the intermediate 
tactical, which will be the general structure of lane changing behaviour decision-making 
process in Section 3.3. A comparison with the other discrete choice modelling 
frameworks presents the advantage of latent plan model as shown in Section 3.4. 
Meanwhile, Section 3.5 summarises the discussion of the proposed modelling 
framework. 

 Planning Behaviour Models 

Explaining the planning behaviour process is a complex task as it is a latent component 
that is hidden and cannot be captured directly from the observation. It is only the action 
of the individual, which can be obtained directly from the observation. Ajzen (1991) 
suggested that the individual behaviour varies depend on traffic condition. This 
variation on the individual behaviour appears as a result of interaction among several 
components including the intention to perform a particular behaviour. This complexity 
provides a great challenge for the researchers to develop analytical tools with different 
approach i.e. artificial intelligence. 
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Artificial Intelligence (AI) algorithm concerns in capturing an action of individual 
(agent) to achieve a particular plan. In general, AI specifies the planning behaviour 
problem as: current state of particular system, possible action of the system, and observe 
sequence of actions which transforms the system into a single action. Furthermore, this 
algorithm can incorporate and assess a plan in the choices set.  

Feldman and Sproull (1977) introduced Decision-Theoretic-Planning (DTP) which 
transforms the decision of individual plan into a numerical utility model. The algorithm 
captures the trade-off and risk of individual plans rather than guaranteeing an 
appearance of particular action. This concept relaxes the limitation of classical AI 
theory. DTP involves as a problem solver tool to find the optimum plan to achieve a 
specific goal. In this case, the application of utility explores all the possible plans and 
suggests the plan with the highest utility. However, this study finds difficulty to find an 
optimum solution for DTP with a large number of plan choices due to estimation 
complexity.  A suggestion on limitation may result on finding less optimal solution.  
Therefore, estimating an utility of a single plan choice is extremely expensive and time 
consuming since the number of outcomes is significantly large (Blythe, 1999). Instead 
of the utility approach, some other studies in artificial intelligence area adopt 
probabilistic approach (i.e. Shafer, 1987; Horvitz et al., 1988; Smets and Kennes, 1994) 
and conditional planning (i.e. Bertoli et al., 2006; Son and Baral, 2001). 

Markov decision process (MDP) is an optimisation model of discrete-stage with a 
sequential decision-making process in a stochastic environment (White and White, 
1989). The key characteristic of MDP: the current state condition has a significant 
impact on the transition probability, which captures the evolution of decision-making 
from the current to the following state. MDP conditional probability consists of two 
components: state û  and action g  components. Moreover, Rust (1994) adopted MDP 
algorithm to define the decision-making process conditional on the set of primitives 
k, X, Y . In fact, the utility function k û, g  represents the individual’s preference at 

particular time, X û′ û,g  denotes the transition MDP probability, and Y¡ 0, 1  is a 
weighted factor of the utility function to represents the individual confidence of the 
future condition. MDP algorithm has been applied in DTP choice model (i.e. Dean and 
Givan, 1997; Dean et al., 1993; Dearden and Boutilier, 1997; Precup et al., 1998) by 
incorporating reward component for individual for choosing a particular state.  

Furthermore, Boutilier et al. (2000) applied dynamic programming to solve a DTP 
problem with a large number state spaces in a MDP framework. Note that the increased 
of state spaces grow exponentially in corresponds with the availability of plans. This 
research adopts the dynamic Bayesian network to proof the potential independence of 



- 63 - 

   

  

action’s effect, regularities of an action in various states, and effect of reward 
component on the decision-making process. 

Rabiner and Juang (1986) introduced Hidden Markov Model (HMM), which is a 
stochastic process with partially unobservable (latent) component. Moreover, the latent 
component can be captured through the other set of stochastic process with a sequence 
of observed symbols. A simple explanation of HMM is a coin toss; the observer, who 
has to close his/her eyes, flips a coin into the air and opens his/her eyes once the coin 
fall into the ground. The observer in this case does not know the process of the coin toss 
(i.e. how many does the coin flip), he/she knows only the outcome whether face or tail. 
Moreover, it is necessary in HMM to define a finite number of states, time step, 
probability distribution and the latent component, which are the challenge for the 
modellers. A large number of studies in different area applied HMM algorithm such as: 
speech recognition (i.e. Rabiner, 1989; Zhang and Levinson, 2004), food science (Eddy, 
1996), and graphology (Yang et al., 1995). However, there is a limitation in capturing 
individual behaviour and choice in decision-making process as HMM focuses on a 
process without any involvement of choice modelling. 

Overall, analysis of planning behaviour is a complex task due to the involvement of 
several hidden components, which affect the individual decision or response. A 
variation of the individual decision increases the complexity as well. The application of 
Markovian algorithm in the planning behaviour modelling relaxes those limitations. 
Although a large number of studies in planning behaviour adopt the algorithm in 
different assumption and approach, it has less focus on decision-making process aspect 
and ability to capture the variation of choice among the individual. However, The pieces 
of literature in Markov decision process provide a basic idea to perform the driving 
behaviour modelling, which will be presented in the following section. 

 Latent Plan Models 

Choudhury (2007) presented a rigorous work on the latent plan modelling framework, 
in driving behaviour research area. The individual choice in this framework is made 
under discrete condition. Briefly, Discrete choice model, by definition, is the probability 
of individuals choosing a given option is a function of their socioeconomic 
characteristics and the relative attractiveness of the option. The basic assumption of the 
discrete choice model is each individual faces same set alternatives. However, they pick 
only one set of alternatives that give them the highest utility (Ortúzar and Willumsen, 
2007; Train, 2009). The properties of discrete choice model are presented in Appendix-
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B The general framework of latent plan model consist of two-levels: targeted plan and 
action. The plan choice in this framework is unobserved (latent) component. 
Meanwhile, the action is observed component, which reflects the plan choice at that 
time. The individual choices vary over a sequence of observations with a time step )’ 
sec (i.e. 1sec).  

Figure 3.1 General framework of decision-making process  

As discussed in Choudhury (2007), and Choudhury et al. (2010), the following list 
describes the latent plan model main features: 

• Individuals choose among a particular plans (tactical/strategy). The choice 
subsequent relates with the preferred strategy or tactical. The modelling framework 
presumes the individual plan is latent while both intermediate strategy and the final 
action are observed. 

• Both the plan and action choices are conditional on the preferred plan that fits with 
the utility maximisation theory. In this case, the correlation of each action represents 
the interdependencies of successive decisions. 

• The individual choice depends on his/her preference for the available plan. 
Therefore, the utility of each individual varies in corresponding with the number of 
observation and the size of the choice set.  

• The observable component of utility function captures the individual behaviour 
attributes while the heterogeneity is unobserved and varies among observed variable.  

• The current plan in latent plan framework anticipates the future condition and may 
incorporate expected maximum utility (EMU) which captures the correlation of the 
decision among the chosen plan. 
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 Latent Plan Modelling Framework 

This PhD thesis extends the general latent plan modelling framework, which was 
developed by Choudhury (2007). The proposed latent plan modelling framework in this 
thesis incorporates the intermediate plan L as part of the action of individual 7 at time 
) with respect to the previous chosen plans, intermediate strategies and actions. This 
intuitive is significant issues on planning behaviour model as each individual may 
execute a plan in different strategies or plan Thus, the proposed latent plan models can 
be presented as shown in Figure 3.2. 

Figure 3.2 The Proposed latent plan modelling framework with intermediate plan 

This extended latent plan framework represents the two level of the decision-making 
process: plan and action. The individual plan -% )  is latent while the decision in the 
action -/%& )  conditional on the intermediate plan m is observable component from 
the dataset (i.e. trajectory data). It is worth noting that the individual plan -% )  and 
action plan -/% )  refer to the general latent plan modelling framework as discussed 
in Choudhury (2007). Meanwhile, the proposed latent plan modelling in this PhD thesis 
introduces the intermediate plan L , which changes the lane plan modelling structure 
as shown in Figure 3.2.  

Furthermore, both of individual n plan and action at any time ) are significantly affected 
by the explanatory variables l% )  and individual-specific constant m% . The 
explanatory variables l% )  are an observed component. In fact, the individual-
specific constant m%  captures the individual characteristics, which are latent and 
independent over time periods. 
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Figure 3.3 presents the proposed latent plan modelling framework which incorporates 
the intermediate plan. Similar with the general framework, the proposed framework 
consists of two decision levels: plan choice, and action conditional on the initial and 
intermediate plans. The available plan choices (-) in the upper level of modelling 
framework are the latent component. The selection of plan choice affects the 
intermediate plan and action in lower level of the structure. In that case, the variation of 
the individual choice set and corresponding utility depends significantly on the selected 
plan. 

Figure 3.3 The proposed choice plan modelling framework 

For example, the application of choice plan model in lane-changing movement classifies 
the decision-making process into two levels: target lane choice behaviour (plan) and 
gap acceptance (action) with conditional on lane-changing strategy. The individual 7 
has to choose the available lane choice set while the action will take place directly after 
the individual agrees to the plan and strategy and if the gap at target lane is acceptable. 
Otherwise, the driver maintains at the current lane. The target lane choice is latent since 
it cannot be captured directly from the observation. It is only the lane-changing 
movement that can be observed. In the real traffic, the individuals have different 
preference on lane-changing strategy/tactical whether moving individually or as a group 
(i.e. platoon or weaving) though they move in the same plan and action. This 
strategy/tactical, which is observed together with the movement, is part of the 
intermediate plan of the lane-changing movement.  

Several explanatory variables l% )  explain the lane-changing behaviour such as lane 
attributes (i.e. average speed, density, distance), vehicle attributes (i.e. type of vehicle, 
speed) and available gaps at target lane. Meanwhile, the driving characteristics m%  
represent the driver aggressiveness, driver’s knowledge of the particular path. This 



- 67 - 

   

  

attribute is latent which remain constant for the individual 7.  The extended latent plan 
model in lane-changing movement will be discussed more details in Chapter 4. 

 Probability of observed trajectory 

The application of trajectory data captures series of all individual movement during over 
a particular path and time period with conditional on the previous plan and action, which 
is based on the proposed latent plan framework in Figure 3.3. 

Figure 3.4 The development of individual n decision-making process in a latent-plan 
modelling framework. 

Figure 3.4 illustrates the evolution of the individual n decision making process over the 
observation period. The upper level in the figure represents the advancement of the 
individual 7 plan starts from time t=0 -% 0  to the last plan at time √  -% √ . 
Meanwhile, the individual 7 observed action in the lower level is affected by the chosen 
plan - at the same time period. It is worth noting that the action of individual n is 
conditional on a particular intermediate plan L and the movement lc itself. 

Therefore, the probability of individual 7 of specific movement "V is a sum of all 
probabilities of the observed possible plans - for executing action -/ conditional on 
intermediate strategy L with intermediate strategy/tactical L at particular time ). Then, 
the probability of movement can be written as follows:  

U "V% ) m% = U -% ) m% U -/%& ) -% ) ,L% ) , m%
&<∈S

 (3.1) 

Where; 

U "V% ) m%  : Probability of individual n of choosing movement "V at time ) with 
conditional on driver characteristics m 
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U -% ) m%  : Probability of individual 7 for choosing plan - at time ) with conditional 
on individual characteristics m 

U -/%& ) -% ) ,L% ) , m% : Probability for individual 7 of choosing m	-/ at time ) with 
conditional on intermediate plan m and individual characteristics m 

"% : Number of choice set of individual 7 

L%  : Intermediate plan choice set of individual 7 

√% : Number of observed time period of individual 7 

Presuming the individual n plans, and actions are independent over a particular period. 
The joint probability of individual n involves in a decision-making process of the 
proposed latent plan modelling framework is given by: 

U "V% 1 , "V% 2 ,… , "V% √ m%  

(3.2) 

= U -% ) m% U -/% ) -% ) ,L% ) , m%
&<

~y

%�5

 

Note that the sequence length in Equation 3.2 is total length √ of the observation for the 

individual n when executes action "V at time t. Therefore, the joint probability function 

of individual n is a product of summation of probabilities for choosing particular plan, 

and action. The probability of choosing specific plan is conditional on individual 

characteristics while the probability of choosing specific action is conditional on plan 

choice l, intermediate plan m and individual characteristics m. Giving the description, 

the unconditional probabilities of a sequence of decision of the individual can be 

expressed by: 

U "V% 1 , "V% 2 ,… , "V% √  

= U "V% 1 , "V% 2 ,… , "V% √ m%
≈

	à m% 	C† 
(3.3) 
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Where; 

à m%  : A distribution of individual-specific random term 

 Latent plan modelling specification 

The probability of individual plan and action of the proposed latent plan modelling 
framework are estimated based on the utility maximisation approach. This estimation 
algorithm is used in the previous research i.e. Choudhury (2007), Choudhury et al. 
(2010), and Choudhury and Ben-Akiva (2013) . More detail of modelling specification 
will be discussed below. 

Plan choice 

This research assesses the plan choice based on the utility maximisation and may 
incorporate the EMU (Expected Maximum Utility). The utility of latent plan choice 
consists of three components including the explanatory variables, individual-specific, 
and a random error term. Assuming that the individual 7 choose a plan, which provides 
the highest utility in corresponds with his/her preferences. The utility of individual n of 
determining plan l at time ) is written by: 

k%< ) = k l%< ) , ∆%« ) , m%, e%< )  

∆%< ) = » LgW k%<,5,& ) , k%<,1,& ) , … , k%<,<@,& ) , … , k%<,<@,& √    (3.4) 

Where; 

k%< )   : Utility of plan - of individual 7 at specific time ) 

l%< )   : Attributes of individual 7 plan - at time ) 

∆%< )   : EMU of individual 7 action associated with plan - at time t 

k%<,<@,& )  : Utility of action -/ with intermediate plan L in corresponds with particular 
plan - at time ) 

m%  : Individual-specific random effect 

e%< )   : Random utility component associated with the plan - for individual 7 at time ) 

 

 



- 70 - 

   

  

Action choice 

As discussed earlier, the individual 7 action choice sets depend on the driver decision 
on the plan (upper level) and the observed intermediate plan. The utility of action choice 
set varies associated with the availability of choice sets for the selecting plan. The 
individual 7 chooses the action choice with highest utility value. The action choice 
utility can be derived as follows: 

k%<,<@,& ) = k l%<,<@,& ) , m%, e%<,<@,& )     (3.5) 

Where; 

l%<,<@,& )  : Attributes of individual 7 plan l and action -/ with intermediate L at time ) 

m% : Individual-specific random effect 

e%<,<@,& )  : Random utility component associated with the plan -, action -/ and 
intermediate plan L for individual 7 at time ). 

In this case, the conditional probabilities of individual n for choosing plan l 
U -% ) m%  and action -/ with intermediate plan L U -/%& ) -% ) ,L% ) , m%  are 

based on both utilities of plan choice k%< )  and action choice respectively 
k%<,<@,& ) . The probability specification itself is subject to the assumption of the 

random error terms distribution. Meanwhile, the current study presumes the distribution 
of both random terms as IID (Independently, Identically, extreme value Distributed). 
This assumption leads the proposed choice model as logit model. 

 A comparison of latent plan with other discrete choice models 

The general framework of latent plan model has similarity structure hierarchical nested 
logit (HL) model, which was developed by McFadden (1978). This algorithm is one of 
the discrete choice models, which allows a correlation among the group of the choice 
set. Vovsha and Bekhor (1998) introduced a cross-nested logit (CNL) model. This 
approach is a generalisation of two levels hierarchical logit with a correlation of among 
the choice set with a different degree of the choice set. The Recent development of CNL 
choice probabilities was performed by Papola (2004) .  
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Figure 3.5 Cross-nested logit (CNL) logit model with intermediate plan 

The probability of individual for choosing an action at the lower level of given CNL 
framework is written as follows: 

U "V% = U -% U -/%& -%,L%

S

<�5

 (3.6) 

Where;  

U -%    : Probability of individual 7 for choosing plan - 

U -/%& -%,L% : Probability of individual 7 for choosing plan - conditional on plan 
choice - and intermediate plan choice L. 

U "V%   : Probability of individual n for choosing movement "V associated with 
intermediate plan L and action -/ 

" : Number of available choice set of individual 7  

L+  : Number of available intermediate plan choice set of individual 7 

The probability of choosing a particular movement "V of individual 7 in CNL is the 
summation of all joint probabilities of the action choice over both available plans and 
intermediate plans (tactical). Note that the utility of lower level in CNL is independent 
from the upper level. Therefore, the utility of the action -/ associated with intermediate 
plan L at lower level for plan - can be formulated as follows: 

k%ST,< = k l%<@,&, l%, e%<,<@,&            (3.7) 
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Where; 

l%<@,&  : Vector of individual 7 attributes associated with action -/ with intermediate L  

l%  : Vector of explanatory variables associated with individual 7 

e%<,<@,&  : Random error term component 

Given the utility component, the action choice of individual 7 in CNL neglects the 
impact of the plan choice at an upper level. A large number of choices in CNL 
framework raise an estimation issue as the complexity is increased. In this case, all the 
choices in CNL are observable factors. This assumption is less, where some part of 
decision-making process in driving behaviour model is latent (i.e. individual 
characteristic). In comparison, the discussion of the hidden plan earlier implies that the 
ability of latent plan model relaxes those issues of CNL. 

The recent development of latent class model (LCM) has similarity with the latent plan 
model. The LCM presumes that individual behaviour depends on the observed attributes 
and individual characteristics, which varies among the latent attributes (Greene and 
Hensher, 2003). It is worth noting that the number of observation and choice set for all 
individual may vary for each individual. Therefore, the LCM is written by: 

U "V% = U -% U -/%& -%,L%

S

<�5

 (3.8) 

Where; 

U -%    : Probability of individual 7 for choosing class plan - 

U -/%& -%,L% : Probability of individual n for choosing specific-choice -/ conditional 
on class-plan - and class-intermediate plan L. 

"   : Number of classes 

The heterogeneity in tastes across individual varies among the available classes (Hess 
and Ben-Akiva, 2011). The utility of particular class choice, therefore, can be expressed 
as follows:  

k%<,ST = k -, l%<@,&, l%, e%<,<@,&         (3.9) 
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Where; 

l%<@,& : Vector of attributes of action -/ conditional on intermediate L 

l%  : Vector of attributes of individual 7 

In addition, the class-plan in LCM is affected only by the individual characteristics. 
This assumption leads the utility of class-plan to be written as follows: 

k%< = k l%, e%<      (3.10) 

However, the LCM has the limitation in permitting different restriction of specification 
both in the models and class specific choices probabilities. The specification of classes 
in LCM is strictly observed from the dataset. This situation gives difficulty the LCM to 
cope with the situation changes during the observation. In contrast, the latent plan model 
relaxes that limitation as the framework provides flexibility in capturing the unobserved 
component, which may change time by time.   

 Summary 

This section presents the proposed latent plan modelling framework, which extends the 
general latent plan modelling framework by incorporating the intermediate plan. It is 
worth noting that all individuals in this framework involve in two levels of decision-
making process: plan choice (upper level), and action choice (lower level). Introducing 
an intermediate plan in this study provides an opportunity to capture various strategies 
or tactical of individual when executing an action. The action choice at any instance 
depends on the plan choice and the intermediate plan at the same time. In this case, the 
plan choice is unobserved/latent while the intermediate plan and action are observed. 
The plan choice of individual is affected by plan attributes and individual-specific 
component, which is independent for a subsequent of plan choice. The individuals 
choose a plan with the highest utility value. 

 The latent plan has the similar framework with two discrete choice models, which are 
cross-nested logit model and latent class model. However, those approaches have 
various limitations in capturing the individual behaviour such as flexibility in dealing 
with changes, the large number of choices, and hidden component (i.e. individual 
characteristics). The appearance of latent plan relaxes those limitations and provides 
better interpretation of the decision-making process especially in driving behaviour 
research area where some of the components are latent. 
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Chapter 4 Lane Changing Model 

This chapter discusses the lane changing modelling framework in weaving section 
which is part of multilane motorway facility. The lane changing process consists of two 
phases; (1) target lane choice, (2) gap acceptance. The target lane choice modelling 
structure allows flexibility depend on both geometric configuration (i.e. number of lane 
changing required, the existence of special lane, and length of the section) and traffic 
attributes (i.e. speed, and density). Meanwhile, the current study extends the state-of-
the-art lane-changing model by introducing a different type of lane changing 
mechanisms (individual, platoon and weaving) as part of the gap acceptance model. The 
proposed lane-changing model is based on a moderate traffic flow.  

The rest of this section is systematised as follows: Section 4.1 provides the background 
of the lane-changing model. A brief discussion on a potential lane changing mechanisms 
in weaving section is presented in Section 4.2. Section 4.3 will discuss the proposed 
lane changing modelling framework which includes both the target lane and gap 
acceptance model with respect to the type of lane changing mechanisms. Furthermore, 
this section discusses briefly the modelling attributes (such traffic, surrounding vehicle 
attribute and path-plan). Furthermore, the likelihood function of the proposed model is 
presented in Section 4.4 Note that both the target lane and gap acceptance model are 
estimated jointly. Section 4.5 summarises the discussion on the lane-changing 
modelling framework. 

 Background 

Lane-changing (LC) behaviour is complex since two opposing directions of lane 
changes occur simultaneously in such traffic streams particularly. In the weaving 
section, lane changing is significant factors in characterising the operational of weaving 
section as the traffic involves a complex interaction at a particular short length of road 
section (Skabardonis, 2002). DMRB (2006) recommended that the distance of weaving 
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section is between 2,000m – 3,000m. The lane change traffic occurs while the through 
drivers make frequent overtaking manoeuvres as well to pass merging or diverging 
vehicles (which tend to be slower) or make pre-emptive lane changes to help an 
incoming driver to merge with the mainstream traffic.  

The lane changing intensity, of the merging (and diverging) traffic crossing to join the 
mainline carriageway (and to the exit lane, respectively), presents special operational 
problems, congestion and incident (HCM, 2010; Jin, 2010; Liu and Hyman, 2012; 
Toledo and Katz, 2009). This behaviour in weaving section creates common points of 
bottleneck particularly in the upstream traffic due to a high proportion of lane-changing 
movement occurs in this area (i.e. Al-Jameel, 2013; Bham, 2006; Skabardonis and Kim, 
2010; Wang et al., 1993). 

Similar with other multilane facilities, the driver in weaving section performs a lane 
changing in order to perceive better driving environment (i.e. overtaking, merging and 
diverging). It is worth noting that the lane changing movement is a result of two level 
decision-making processes: 

1) Target lane choice (plan): the decision in this level is latent that avoids direct 
observation from the examination (i.e. traffic video recording) 

2) Gap acceptance and lane change execution (action): this is an observable decision 
making process that provides gap acceptance information in the target lane 
direction. 

Moreover, the target lane choice implies the vehicle lane-changing direction with 
respect to the subject vehicle current lane. The driver has to accept both gaps at the 
adjacent lane correspond with the lane changing direction. In fact, it is unlikely that lane 
change is executed at the first attempt. The driver might observe and reject several gaps 
before turning his/her lane rather than accepting the first available gaps (lead and lag). 
In the weaving section, it is common that some of proportion lane changing driver 
perceives a pressure to move in a group movement including platoon or weaving due to 
a limitation of section length. The pressure is increased with the remaining distance 
toward the exit of weaving section. 

Driving rules and speed limit, which varies among countries, affects significantly the 
motorway lane utilisation. In the UK motorway networks, highway agency defines the 
speed limit for the small vehicle as 110 km/h (70 mi/h) while HGV speed limit is 100 
km/h (60 mi/h). The vehicle tends to change lane when there is a perceived need such 
as improving the speed and overtaking the front vehicle. Yousif et al. (2013) analysed 
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the lane distribution at a particular UK motorway section within 1,000m from the merge 
and diverge area by utilising Motorway Incident Detection and Automatic Signalling 
(MIDAS). The study developed a regression function and found that most of traffic 
(60%) concentrates moving on the lower speed lanes (kerbside lanes) under a free-flow 
(uncongested) traffic condition. Furthermore, this study reported that the appearance of 
HGV in slow lane affects the lane distribution significantly especially during the 
congested traffic conditions.  

A substantial development on lane-changing modelling framework during the last 
decades provides flexibility in capturing lane-changing characteristics in various traffic 
scenarios and tactics. However, most of lane-changing models focus on the isolated/solo 
lane-changing movement (i.e. Toledo et al., 2005; Choudhury, 2007) and ignore the 
impact of group behaviour in their modelling structures. Disregarding the impact of the 
neighbouring traffic in modelling framework can lead to unrealistic traffic 
characteristics, especially in weaving sections where there is a significant presence of 
group behaviours and the effects of lane changing mechanisms are more dominant. The 
current study addresses this research gap, extending the state-of-the-art random utility-
based models and explicitly captures the lane changing mechanisms depending on the  
the lead/front vehicle movement. 

 Lane Changing Mechanisms in Weaving Section 

Weaving sections are subjected to a complex of lane-changing movements. Contrary to 
basic motorway sections, where a driver selects a target lane and finds a suitable gap to 
change lanes, in weaving sections, drivers’ choices can be significantly affected by the 
actions of the neighbouring drivers.  For instance, if the leader vehicle is changing lanes 
in the same direction, the subject driver may be inclined to move as a platoon and accept 
smaller lead gaps to complete the lane change manoeuvre. Similarly, the acceptable 
gaps may be different if there is a weaving manoeuvre as opposed to an isolated lane 
change. The current research extends the state-of-the-art lane changing models by 
explicitly incorporating the type of lane change (individual/solo, platoon and weaving) 
in the modelling framework.  

HCM (2000) defines the platoon as a group of vehicles from the same traffic stream 
travelling together. Meanwhile, weaving is the crossing of two or more traffic streams 
in same traffic direction in a particular road length without any assistance of traffic 
control devices. The front vehicle in the current lane in the same traffic stream with the 
subject vehicle is termed as the front vehicle. While the target lane lead vehicle is termed 
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as the lead vehicle. Figure 4.1 illustrates variations of lane changing mechanisms in a 
five lane weaving section namely solo, platoon and weaving lane changing mechanisms. 

Figure 4.1 Schematic diagram of lane-changing mechanisms 

 Solo lane changing mechanism 

Solo …  lane changing involves no group behaviour (i.e. no platoon or weaving lane-
changing manoeuvres) (see Figure 4.1 a). The lane-changing vehicle moves 
individually toward the target lane while the front and lead vehicle maintain at their 
lane. This type of mechanism has relatively less complexity compared to the other two 
lane change mechanisms. In fact, the subject vehicle moves individually while both 
target lane lead and current lane front vehicles maintain to drive at their lane. 

 Platoon lane changing mechanism 

Platoon X  lane changing is a situation whereby the subject and the preceding vehicle 
from the same traffic stream change lanes together one after another. As shown in 
Figure 4.1 (b), the subject vehicle at lane 2 moves together with the front vehicle 
towards lane 3 in order to merge with the main traffic. In this case, the complexity of 
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platoon lane change movement is less compared to solo lane-changing mechanism. 
Instead of triggering an interaction with target lane traffic, the subject vehicle in this 
mechanism follows the front vehicle movement in safely manner. This movement, 
therefore, perceives less impact on driver aggressiveness. 

 Weaving lane changing mechanism 

Weaving Ø  lane changing occurs if the subject vehicle and a lead vehicle from traffic 
stream on the left/right, cross each other at the same period. In other words, the subject 
vehicle and the adjacent vehicle swap their lanes to follow their preferred path. The 
adjacent vehicle initiating the weaving is termed as lead vehicle in this thesis. Figure 
4.1 (c) illustrates an example of lane changing with weaving mechanisms. Both subject 
vehicle at lane 3 and lead vehicle at lane 2 swap their lane between each other. Indeed, 
weaving lane change mechanism is more difficult and requires higher level of driver 
aggressiveness corresponding with the movement complexity compared to the platoon 
movement. In addition, the vehicle has to adjust their lane without assistance of traffic 
control device in relatively short period of time to avoid a delay in the downstream 
traffic. 

The three different lane changing mechanisms yield differing sensitivities towards the 
positions and speeds of the front/lead vehicles in the current and target lanes and lead 
to variations in the acceptable gaps for the lane change. It may be noted that, in very 
congested conditions, drivers in the mainline often slow down to assist the vehicles 
entering/exiting from/to the ramps. This research deals with driving behaviour in 
moderately congested situations and hence the cooperative merging is beyond the scope 
of the research.  

 Lane Changing Modelling Framework 

This section discusses the structure of the lane-changing model by incorporating 
different types of lane changing mechanism. A wide range of factors affect the lane-
changing decision i.e. speed, lane occupancy, relative speed, travelling time at the 
current lane, number of lane-changing required, and the involvement of front/lead 
vehicle type of movement. 

The proposed model structure is thus an extension of the freeway lane changing model 
proposed by Toledo et al. (2005) where the decision framework consists of choices of 
target lanes and gap acceptance but there is no explicit consideration of the lane 
changing mechanisms.  
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Given the choices of the target lanes and the lane changing mechanisms, the subject 
driver will accept/reject the available gaps. The acceptable gap can vary depending on 
the lane changing mechanisms. The acceptable gap is, however, (latent) unobserved in 
the data and only the final decision of the driver (Change Left, Change Right or No 
Change) is observed. The observed plans/decisions are shown in rectangles and the 
unobserved (latent) ones are shown in ovals in Figure 4.2. 

Figure 4.2 An example of the lane-changing framework for individual driver n in lane 
3 of a 5-lane weaving section 

An example of lane changing structure for a subject driver in lane 3 is shown in Figure 
4.2. The driver first selects a target lane, which is the most preferred lane considering 
the traffic conditions and his/her path plan. The choice of the target lane indicates the 
preferred direction of lane change. For example, for a subject driver in lane 3 (as shown 
in Figure 4.2), lanes 2 and 1 are at the left hand side and lanes 4 and 5 are on the right 
hand side. If the target lane is the same as the current lane, the lane changing is not 
required (the observed action is ‘No LC’). If the target lane is 1 or 2, the driver looks 
for suitable gaps on the left. If the target lane is lane 4 or 5, the driver seeks suitable 
gaps on the right. A lane change is observed when the driver finds an acceptable gap in 
the desired direction and moves to that lane. Otherwise, he/she stays in the current lane. 
It may be noted that the choice of target lane is unobserved in the trajectory data since 
the driver may or may not be successful in moving to the target lane. 

The driver seeks for suitable gaps in the adjacent lane in the direction of the target lane 
and executes a lane change if he/she finds an acceptable gap. The acceptable gap can be 
different depending on the lane-changing mechanism (namely: solo, platoon or 
weaving). The observed actions of the front vehicle and lead vehicle in the current and 
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target lanes respectively (see Figure 4.2) define the selected lane-changing mechanism. 
If the front vehicle is also changing lanes in the same direction, the subject driver has 
the option to execute (or not execute) a platoon lane change; whereas if the front vehicle 
in the current lane is not changing lanes in the same direction but an adjacent vehicle in 
the target lane is making a change to the current lane, the subject driver has the option 
to execute (or not execute) a weaving lane change. The lane-changing mechanism is 
therefore observed in the data. 

The different lane-changing mechanisms yield differing sensitivities towards the 
positions and speeds of the front/lead vehicles in the current and target lanes and lead 
to variations in the acceptable gaps (lead and lag) for the lane changing. It may be noted 
that, in very congested conditions, the drivers in the mainline often cooperate with the 
vehicles entering/exiting from/to the ramps. This research, however, deals with driving 
behaviour in moderately congested situations and hence the cooperative merging is 
beyond the scope of the research 

The next section will discuss the detailed specification of both levels of decision-making 
process in the lane-changing model: (1) target lane model and (2) gap acceptance model. 

 Target lane modelling 

The previous discussion demonstrates that the driver prefers the lane with highest utility 
value. In the proposed lane changing model, this study adopts the target lane choice 
model which was proposed by Toledo (2003). Presuming that all the observed drivers 
have same set of available lanes over the road stretch, the utility function of the driver 
7 for choosing lane - at specific time ()) is written as follows:  

k%< ) = k%< ) + e%< )      (4.1) 

Where: 

k%< ) 	 : Target lane - of driver n at time ) 

k%< ) 	 : Systematic part of the utility of target lane - of driver n at time ) 

e%< )  : Random term associated with the utility of the target lane - of driver n at time 
) 

The target lane choice is implied on the subject driver’s preference for moving to the 
specific lane. The driver has to decide either to stay at the current lane or change the 
lane with respect to perceived better driving environment. In terms of the target lane 
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model, the lane changing decision is represented as a target lane utility function. Note 
that the driver prefers moving toward the target lane that provides the highest utility 
value compared to all set of available lanes. Moreover, several attributes may affect the 
systematic part of target lane utility k%< : 

• Traffic attributes 

Several factors can be included as traffic attributes i.e. traffic density, speed, 
average lane speed, etc. In this case, the traffic tends to move towards a lane with 
less traffic to avoid delays or travel at higher speed. An increased of lane traffic 
density affects the target lane utility negatively. While both speed and lane average 
have a positive impact on the target lane utility.  

• Vehicles attributes 

This attribute captures both vehicle characteristics and interaction with 
neighbouring traffic, which affects the target lane utility i.e. speed, gap/headway, 
relative speed between the subject and neighbouring traffic, and type of vehicle. 
Facing a slow moving front vehicle triggers the subject vehicle for changing lane 
to move at the desired speed and perform the overtaking manoeuvre. Also, the 
interaction between the neighbourhood vehicle and subject vehicle can be 
represented as relative speed as well.  

Many cases demonstrate that small subject vehicles tend to avoid tailgating with 
heavy vehicles as front vehicle due to a safety issue. Heavy vehicles tend to move 
slower and obscure the subject vehicle capturing the downstream traffic condition. 
This situation results in a negative impact on the target lane utility function. 

• Path-plan  

This attribute represents the chosen path of the driver in order to arrive at the desired 
target lane. The path plan in the current research consists of two components: (1) 
remaining distance of the subject vehicle towards the mandatory lane changing, (2) 
number of lane change required from the current lane through the desired target 
lane.  In this case, the target lane utility decreased significantly if the driver requires 
a large number of lane change while he/she reaches the end point of a mandatory 
lane change.  
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• Driver characteristics 

The driver characteristics (e.g. age, experiences, stress level, aggressiveness, etc.) 
have a significant impact on the lane changing behaviour. The current study 
considers the driver characteristics due to the relative target lane location from the 
current lane (left or right). The driver characteristics are however generally latent 
in the video recordings and represented by statistical distributions (i.e. Choudhury, 
2007; Toledo et al., 2005)  

Incorporating the attributes into the target lane utility of choosing target lane - of driver 
7 at time ) can therefore be written as follows:  

k%< ) = Y<l%< ) +	ä<m% + e%< )    - ∈ {1, 2,3, . . . , "}  (4.2) 

Where; 

l%< )  : Vector of explanatory variables associaed	with driver n for lane - at time ) 

Y< : Vector of estimated parameters associated with target lane l 

m% : Individual specific random error term to account for unobserved driver 
characteristics, assumed to follow normal distribution m%~\ 0,1  

ä< : Estimated parameters of individual specific random term m% for lane - 

 e%< )  : Random error term associated with target lane - of driver n at time ) 

L : Total number of available lanes in the section 

The choice modelling presumes the random error term e%<  is independently and 
identically distributed (IID). This assumption of random error term leads the target lane 
choice as MNL, which is the simplest specification of discrete choice modelling. The 
structure of random error terms will be discussed in Appendix-A . The probability of 
lane choice l conditional on individual specific random term m% , therefore, can be 
written as:  

U -% ) m% =
6WX k%< ) m%
6WX k%< ) m%<

 - ∈ {1, 2,3, . . . , "} (4.3) 

Where; 

U -% ) m%  : Probability of individual n is choosing the specific target lane - at time ) 
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The target lane - choice constitutes the lane changing direction of the individual driver 
whether changing to left or right. There is no lane changing required if the driver is 
satisfied with the current lane condition. In this case, the driver maintains his/her vehicle 
in the current lane. As shown in Figure 4.2, the vehicle at lane 3 requires one lane 
change to the left (kerb-side) toward lane 2. If such vehicle chooses lane 3 as its target 
lane, then no lane change is required. If lane 4 is the target lane, it requires one lane 
change to right lane (far-side) of the road section. 

 Gap acceptance 

Gap acceptance is the second level of lane-changing decision-making process as seen 
in Figure 4.2. The lane-changing driver evaluates both lead and lag gaps at the adjacent 
lane that corresponds with the direction of desired target lane and lane-changing tactical 
whether the action can be taken or not. Note that this action takes place if the driver 
accepts both gaps simultaneously. 

This study represents the gap as time-based, which is a function of distance gap toward 
the object vehicle and subject vehicle speed. In this case, the distance gap is the clear 
spacing between the rear edge of the lead vehicle and the front edge of the following 
vehicle. Therefore, the lead gap is defined as a function of the clear spacing between 
the target lane lead vehicle rear edge and the observed vehicle front edge. Meanwhile, 
the lag gap is defined as a function of clear spacing between the rear edge of the subject 
vehicle and the front edge of target lane lag vehicle, and the subject vehicle speed. The 
detail of gap measurement is shown in Figure 4.3. 

Figure 4.3 Lead and lag gaps definition 

Where: 

 : Subject vehicle 7  

  : Lead vehicle 7 − 1 at the target lane 

 : Lag vehicle 7 + 1 at the target lane 
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;%<='>	< )  : Gap of vehicle 7 to the leading vehicle at the target lane, at time )  sec. 

;%
<'?	< )  : Gap of vehicle 7 to the lag vehicle at the target lane, at time )  sec. 

This thesis adopts the gap-acceptance modelling framework which was developed by 
Ahmed (1999). The model presumes that the lane-changing driver considers only lead 
and lag gaps at the chosen target lane and omit the other gaps around them. The driver 
in this situation compares both lead and lag gaps with specific gaps threshold, which is 
known as critical gaps ;@B . That is to say, the lane changing of individual 7 at time ) 
is executed if both gaps are slightly greater than the critical gaps. Therefore, the gap 
acceptance can be expressed as follows: ;%<='> ) ≥ ;%@B )  and ;%

<'? ) ≥ ;%@B ) . 
Meanwhile, the driver delays the movement and maintain at the current lane if one of 
the gaps fails to meet the criteria. 

Critical gaps are expressed as a random variable where their means are a function of 
explanatory variables. In the state-of-the-art models (e.g. Ahmed et al., 1996; 
Choudhury, 2007; Toledo and Katz, 2009; Toledo et al., 2005; etc.), they assume the 
critical gaps follow a lognormal distribution. This assumption ensures the critical gaps 
to be always non-negative values. The driver critical gaps are correlated and not 
constant or static rather they vary across observations associated with the surrounding 
traffic condition. Those listed models include the individual-specific error term to 
explain the correlations among the critical gap decisions of each individual driver. 
However, those existing gap acceptance models do not address the effect of lane 
changing mechanisms in the critical gap values. 

Incorporating the lane-changing mechanisms, this PhD thesis formulates the critical gap 
model as follows: 

;%
@B,d,<,& ) = exp	 l%

d,<,& ) Yd,<,& + äd,&m% + e%
d,<,& )  

 f	 ∈ -6gC, -g8 , L	 ∈ û, X, Ø  (4.4) 

Where; 

;%
@B,d,<,& )  : Critical gap f at the direction of target lane - of individual n at time ) for 

lane changing mechanism L  

l%
d,<,& )     : Vector of explanatory variables associated with driver n at time ) for critical 

gap f, target lane l and lane changing mechanism m  
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Yd,& : Vector of estimated parameters for critical gap f and lane changing 
mechanism L 

äd,&  : Estimated parameters of individual specific random effect m% for critical 
gap f and lane changing mechanism	L 

e%
d,<,& )  : Random error term associated with critical gap j and lane changing 

mechanism	L for driver n at time ), ( e%
d,<,&)~\(0, sd,&1) 

m   : Lane changing mechanism, solo (s), platoon (p) or weaving (w) 

Lane change at time ) occurs if the driver accepts both corresponding lead and lag gaps. 
The probability of accepting available gaps at the direction of lane - at time  
-/% ) = 1 , which is relative to individual specific random term m%, can be expressed 

as follows: 

U -/% ) = 1 -% ) ,L% ) , m%  

= U g//6X)	-6gC	8gX -% ) ,L% ) , m% 	 U g//6X)	-g8	8gX -% ) ,L% ) , m%  

= U ;%<='>,<,& ) ≥ ;%@B,<='>,<,& ) -% ) ,L% ) , m% ∗ 

U ;%
<'?,<,& ) ≥ ;%

@B,<'?,<,& ) - ) ,L% ) , m%                (4.5) 

Where; 

;%<='>,<,&, ;%
<'?,<,&: Available lead and lag gaps at target lane l with mechanism m forn 

driver 7 

As discussed earlier, the critical gap follows the lognormal distribution. The conditional 
probabilities of accepting the available gap can be written as follows: 

U ;%
d,<,& ) ≥ ;%

@B,d,<,& ) -% ) ,L% ) , m%   

= U -7 ;%
d,<,& ) ≥ ;%

@B,d,<,& ) -% ) ,L% ) , m%   

= Φ
-7 ;%

d,<,& ) − l%
d,<,& ) Yd,<,& + äd,&m%
sd,&  

(4.6) 

Where; 
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Φ .  : Cumulative standard normal distribution 

Deriving Equation 4.5 and 4.6, the probability of lane changing at the rejected gaps 
(-/% ) = 0) is written as; 

U -/% ) = 0 -% ) ,L% ) , m% = 1 − U -/% ) = 1 -% ) ,L% ) , m%   

= 1 − 	Φ
<%  y

À,z,µ w 4 Ãy
À,z,µ w •À,z,µDÕÀ,µŒy

æÀ,µ
  

(4.7) 

Gap acceptance is a result of the interaction between the subject vehicle and the traffic 
in the adjacent lane in the direction of the target lane. Such interaction can be 
represented by variables like relative speed between the subject vehicle and lead and/or 
lag vehicle on the target lane, types of vehicle, distance to exit, etc. The discussion on 
the estimation of gap acceptance modelling parameter will be conducted in Section 
7.1.4. 

 Likelihood Function 

The likelihood function is applied to estimate the parameters for the lane-changing 
modelling. As discussed earlier, the lane-changing behaviour is a result of two level 
decisions making process namely (1) target lane choice model and (2) gap acceptance 
model. The likelihood function of observing a lane change at time ), therefore, is a joint 
probability of choosing target lane - and accepting the available gap at the direction of 
lane - with conditional on individual specific m , and lane changing mechanisms L . 
As discussed earlier, the individual specific m  is assumed to follow normal 
distribution m%~\ 0,1 . The likelihood function can be expressed as follows: 

U "V%<
h
% ) |m% = U -% ) m% 	 U -/% ) -% ) ,L% ) , m%

&<∈<+

 

-+ ∈ -6à), çé8ℎ), /åçç67) , -	 ∈ 1,2, … ,5 ,L{û, X, Ø}    (4.8) 

Where;  

U "V%<+ )  : The probability of lane change in direction l’ at time ) with conditional on 
driver characteristics m 

Both U - ) .  and U -/% ) .  are given by Equations 4.3 and 4.5 respectively. The 
trajectory data consist of observations sequence of the same driver over the study area. 
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Assuming that the observations from different drivers are independent over time, the 
joint probability of the sequence observations can be specified as follows: 

U "V%<
h 1 |m% U "V%<

h 2 |m% U "V%<
h 3 |m% … U "V%<

h √% |m%   

=	 U -% ) m% 	 U -/% ) -% ) ,L% ) , m%
&<

~y

%�5

 (4.9) 

Where; 

 √% : Number of observed time period for driver 7 (1, 2, 3, …., √%) 

Integrating Equation 4.9, unconditional likelihood function "%  of the observed lane 
changing behaviour over the distributions can be written as follows: 

"V% = 	 U -% ) m% 	 U -/% ) -% ) ,L% ) , m%
&<

~y

%�5

à m
≈

Cϑ (4.10) 

Note that à m  is a standard normal probability density function. Following the IID 
distribution of the error terms, the log-likelihood function for all \ individual 
observation is given by; 

" = ln "V%
Z

%�5

 (4.11) 

The maximum likelihood estimations of the model parameters are found by maximizing 
this function. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimisation algorithm 
is used for the maximization. More details of BFGS algorithm can be seen in Appendix-
C . 

 Summary 

This chapter presents the development of the modelling framework and estimation 
procedure of the proposed lane-changing model in a weaving section. The current study 
extends the state-of-the-art latent plant lane changing models to explicitly account the 
difference in behaviour under different lane changing mechanisms with respect to the 
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type of leader vehicle movement. In this case, there are three types of lane changing 
mechanism: 

• Platoon  : if the front vehicle is at the current lane changes lane  

• Weaving : if the leader vehicle is at target lane changes lane 

• Individual/solo: if both front and leader vehicle do not change lane.   

Driver’s decision in the lower level of lane changing decision-making process depends 
on those on the upper-level decisions. The observed lane changing direction is implied 
in the driver’s latent target lane choice, while gap acceptance model incorporates the 
lane changing mechanisms. Both target lane choice and gap acceptance model 
parameters are jointly estimated based on vehicle trajectory data collected using 
Maximum Likelihood Estimation technique. The developed models can have a 
significant impact on improving the fidelity of the microsimulation results of the 
weaving sections. However, this modelling framework is based on a moderate traffic 
flow where such cooperation lane-changing behaviour is less significant. The estimation 
result of the proposed modelling framework is presented in Section 7.1. 
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Chapter 5 Acceleration Model 

This chapter discusses the acceleration model framework in weaving section. The 
proposed acceleration model has four modelling components: (1) car-following regime, 
(2) free-flow, (3) gap threshold distribution, and (4) driver reaction time. This study 
extends the state-of-art of acceleration model framework which relaxes the condition 
for individual driver response. The flexibility of the proposed modelling framework 
allows this study capturing the drivers’ car-following behaviour which is different from 
the stimulus condition. Both gap threshold and reaction time distribution capture the 
individual driver heterogeneity.  

This chapter presents a discussion according to the following sequences:  Section 5.1 
discussed the background of the acceleration model in brief. The acceleration modelling 
framework is presented in section 5.2. Furthermore, this section discusses the modelling 
specification of the car-following regime, the free-flow regime, gap threshold 
distribution, and driver reaction time distribution in more details. Section 5.3 presents 
the likelihood algorithm for all parameters in the acceleration model, which are 
estimated jointly. A summary of acceleration model is presented in Section 5.4. 

 Background 

Car-following behaviour is one of important aspects of the motorway traffic operation 
and driving in safe condition (Yousif and Al-Obaedi, 2011b). In this case, the vehicle 
in a particular road section interacts with the neighbouring traffic to maintain a safety 
distance towards the front vehicle. The driver, therefore, has to adjust his/her speed 
whether increasing (acceleration) or decreasing (deceleration) the current speed as the 
response of driver sensitivity and the stimulus from the neighbourhood. Figure 5.1 
illustrates a schematic of the car-following movement. 
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Figure 5.1 Schematic car-following movement 

Where; 

 : Subject vehicle 7 

 : Object vehicle 7 − 1 

$%()) : Speed of the subject vehicle at time   (m/sec) 

$%45()): Speed of the object vehicle at time   (m/sec) 

g%
? )    : Acceleration of vehicle 7 at time  (m/sec2) 

g%45
? ) : Acceleration of vehicle 7 − 1 at time  (m/sec2) 

 : Space gap between the subject and front vehicle at time ) (m) 

8  : “acc” (g//6-6çg)é.7 ≥ 0	L/û6/1) or “dec“ (C6/6-6çg)é.7 < 0	L/û6/1) 

Similar to lane changing movement, car-following movement in weaving section is a 
complicated situation where the vehicle has to response the stimulus in a relatively short 
of period and length of the road section. Sarvi et al. (2011) reported that the proportion 
of weaving and non-weaving traffic affects the car-following behaviour and the traffic 
performance on the weaving section significantly.  

A large number of car-following models have been developed since the first appearance 
of GM’s model by Pipes (1953). In fact, the GM’s modelling specification has a 
limitation in capturing the interaction between the subject vehicle and the neighbouring 
traffic (i.e. object vehicle movement). Gipps (1981) has accordingly defined an 
acceleration modelling framework that incorporated various properties to resemble the 
traffic interaction during the car-following movement process. Yang and Koutsopoulos 
(1996) proposed three car-following regimes: car-following, free-flow, and emergency 
regime. Ahmed  (1999) presented a rigorous improvement in acceleration model by 
specifying both stimulus and sensitivity component as a function of explanatory 
variables. This modelling structure has the flexibility to represent the traffic interaction 
during the acceleration decision-making process. Due to the time gap threshold, this 
study classified the car-following movement into two regimes:  

t

t

t

t

( )tdnΔ
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• Car-following: if the available gap with the front vehicle is less than the gap 
threshold. The subject vehicle is likely to perceive a stimulus based 
on the interaction between his/her vehicle with the front vehicle. 

• Free-flow : if the available gap with the front vehicle is greater than the gap 
threshold. In this case, the driver in car-following situation faces a 
relatively large gap with less traffic interaction compared to the car-
following regime. The stimulus for the free-flow regime is a function 
of desired speed and current vehicle speed. 

Furthermore, Ahmed (1999) included the driver reaction, which is a time lag between 
the appearance of stimulus and driver response, as conditional specification into 
acceleration model. Later, Toledo (2003) and Toledo et al. (2007) integrated the 
acceleration model as part of driving behaviour modelling behaviour together with the 
lane-changing model. The acceleration model in those models is developed under be 
continuous approach which provides a flexibility in capturing car-following behaviour 
in various traffic condition. As discussed in the literature, further development of car-
following model has been carried out with various specifications i.e. including the 
traffic flow characteristics (Wang et al., 2005b), time-gap based (i.e. Tordeux et al., 
2010; Zhang and Kim, 2005), and latent plan (Koutsopoulos and Farah, 2012).  

A brief discussion of the existing acceleration model reveals limitation in capturing the 
car-following behaviour in different stimulus condition. In fact, the current models 
presume that the acceleration or deceleration decision corresponds with a specific 
relative speed condition.  The assumption neglects several car-following scenarios such 
as: fast approaching vehicle (a vehicle which intends to join a downstream traffic), 
courtesy movement (creating a safe gap for the neighbouring traffic to merge on the 
current lane). The present study extends the state-of-the-art acceleration model which 
allows flexibility in capturing various car-following behaviours in each stimulus 
condition, particularly in the car-following regime. Thus, the car-following regime 
consists of four sub-models: (1) acceleration with positive relative speed, (2) 
acceleration with negative relative speed, (3) deceleration with positive relative speed, 
and (3) deceleration with negative relative speed. More details of the modelling 
specification will be discussed later in this chapter. 

 Acceleration Modelling Framework 

This section presents the structures of the proposed acceleration model structure, which 
consists of two regimes: (1) car-following (/à) and (2) free-flow àà 	regimes. Instead 
of gap threshold, this study uses the gap threshold distribution ;%∗ to classify the 
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acceleration condition. It is intuitively more sensible for the driver measuring the gap 
(front edge of subject to rear edge of the front/lead vehicle) and consistent with the gap 
acceptance model in the lane-changing model. Therefore, the condition for acceleration 
regime can be written as follows:  

g% ) = g%
@G ) 												éà	;% ) − P% < ;%∗

g%
GG ) 												.)ℎ6çØéû6															

    (5.1) 

Where; 

g% )  : Acceleration of vehicle 7 at time	) (m/sec2) 

g%
@G )   : Acceleration of vehicle 7 under car-following regime at time ) (m/sec2) 

g%
GG )   : Acceleration of vehicle 7 under free-flow regime at time ) (m/sec2) 

;% ) − P%  : Available gap event for vehicle 7 at the observed time () −	P%) (sec) 

;%∗        : The threshold value of the available gaps at time ) (sec) 

P%        : Reaction time of vehicle 7 (sec) 

Based on the criteria, the subject vehicle falls into the car-following regime if the 
available gap at time ) − P%  is smaller than the gap threshold. Meanwhile, the vehicle 
drives in the free-flow regime, if the gap is greater than the threshold. The vehicle in 
the car-following regime has to make a decision correspond to the neighbouring traffic 
condition. Meanwhile, the free-flow regime allows the vehicle moving along with 
his/her desired speed. Mathematically, those situations are represented as a function of 
the stimulus and driver sensitivity. 

The reaction time captures the time length for the driver to response the stimulus. As 
mentioned earlier, this attribute incorporates both the interpretation time and foot 
movement. In fact, this unique variable cannot be captured directly from the observed 
vehicle trajectory data. The reaction time in this study, therefore, is presented as a 
random number, which follows a specific distribution. The detailed of reaction time 
distribution is elaborated in Section 5.2.4. 

Following sections will discuss the modelling specification of the car-following regime, 
free flow regime, the distribution of gap and reaction in more details. 
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 Car following regime 

Adopting the acceleration modelling framework by Ahmed (1999), this acceleration 
behaviour in the car-following regimes is represented as a function of both the stimulus-
sensitivity, and random error components. Thus, the car-following /à  regime form in 
the proposed acceleration model is given as follows: 

g%
@G,? ) = ü l%

@G,? ) 	 ∆$% ) − P% + e%
@G	   (5.2) 

Where; 

g%
@G,? )            : Acceleration 8 under car-following regime of driver n at time ) 

ü .   : Function of sensitivity 

l%
@G,? )  : Vector of explanatory car-following 8 variables associated with driver 

n at time ) 

∆$% ) − P%  : Stimulus, a function of relative speed ∆$% ) − P%  

e%
@G,?               : Random error term associated with acceleration g for driver n at time ) 

The acceleration is a response of the stimulus-sensitivity components whether the 
driver’s response would be accelerate g//  or decelerate C6/  due to the neighbouring 
traffic condition (stimulus). An acceleration condition appears when the vehicle 7 speed 
increases during the specific time period. If the vehicle 7 speed is decreased during the 
specific time period, the vehicle will move under the deceleration regime. This 
condition can be expressed as follows: 

8 = g//			, $% ) ≥ $% ) − ∆)
C6/			, .)ℎ6çØéû6     (5.3) 

Where; 

8 : Driver’s response g//6-6çg)6(g//), C6/6-6çg)6(C6/)   

$% )  : Vehicle 7 speed at time ) 

$% ) − ∆)  : Vehicle 7 speed at time ) − ∆) 

∆) : Observation time step (i.e. 1 sec) 
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Meanwhile, the stimulus is represented as the function of relative speed between the 
object vehicle and subject vehicle at time ) − P% . The stimulus condition is given by: 

û) = +			, ∆$ ) − P% ≥ 0
−			, .)ℎ6çØéû6      (5.4)  

Where; 

û) : The condition of stimulus 

The proposed acceleration model allows different of response (acceleration or 
deceleration) from each stimulus condition, which is a function of relative speed 
(positive or negative). This extension relaxes the limitation on the existing acceleration 
model car-following regime assumptions where the car-following behaviour is strictly 
based on the specific relative speed condition. This study defines that vehicle involves 
in acceleration when the object vehicle moves faster while the vehicle decelerates if the 
object vehicle is slower than his/her vehicle. It is worth noting that the proposed 
acceleration model in this thesis classifies the zero difference in speed as acceleration 
with positive relative speed. The proposed, therefore, car-following regime condition is 
written as follows: 

g%
@G,?,—“ ) =

g%
@G,'@@,D ) , éà	g%

@G,? ) ≥ 0	g7C	∆$ ) − P% ≥ 0	
g%
@G,'@@,4 ) , éà	g%

@G,? ) ≥ 0	g7C	∆$ ) − P% < 0
g%
@G,>=@,D ) , éà	g%

@G,? ) < 0	g7C	∆$ ) − P% ≥ 0
	g%
@G,>=@,4 ) 	, ≥)ℎ6çØéû6																																														

   

8¡ g//, C6/ ; û)¡{+, −} (5.5) 

Where; 

g%
@G,?,Fw )  : Car-following 8 of vehicle 7 associated with stimulus û)  at time ) 

g%
@G,'@@,D )  : Car-following acceleration of vehicle	7 associated with positive û) at time 

) 

g%
@G,'@@,4 ) : Car-following acceleration of vehicle	7 associated with negative û) at time 

) 

g%
@G,>=@,D ) : Car-following deceleration of vehicle 7 associated with positive û) at time 

) 
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	g%
@G,>=@,4()): Car-following deceleration of vehicle 7 associated with negative û) at 

time ) 

The driver sensitivity component in the proposed acceleration model can be explained 
by several attributes, such as: vehicle speed, traffic density, remaining distance to exit, 
and type of vehicle (small or heavy vehicle). A fast moving vehicle is very sensitive if 
the neighbouring traffic is changed dramatically. For example, the vehicle in faster 
speed has to decelerate more compared to slow moving vehicle if an incident appears 
at the downstream. Small vehicles tend to decelerate and increase the gap while facing 
a heavy vehicle in front. As discussed earlier, a high proportion of traffic in a multilane 
facility such as weaving section adjusts their lane and performs a pre-emptive lane 
changing at the beginning of the section. The vehicle has to decelerate and adjust the 
speed to unify with or prepare for a lane-changing movement. 

Integrating the condition of car-following behaviour (Equations 5.2) and stimulus 
condition (Equation 5.3), the car-following regime model can be modelled as follows: 

g%
@G,?,Fw ) = ü l%

@G,? ) 	 ∆$%Fw ) − P% + e%
@G,?,Fw 

8	 ∈ g//, C6/ , û)	 ∈ +,−   (5.6) 

Where; 

g%
@G,?,Fw )   : Car-following 8 of driver 7 under car-following regime associated with 

stimulus û) at time ) (m/sec2) 

ü .   : Function of sensitivity car-following acceleration at time )  

l%
@G,? )    : Vector of explanatory car-following 8 variables associated with the 

sensitivity of driver n at time ) 

∆$%Fw ) − P%  : Stimulus, a function of relative speed between the subject and object 
vehicle at time ) − P% . (m/sec) 

e%
@G,?,Fw     : Random error term of car-following 8 associated with conditional û) for 

driver n at time ). 

All random error terms e%
@G,'@@,D, e%

@G,'@@,4, e%
@G,>=@,D, e%

@G,>=@,4  represent the 
unobservable components on both car-following acceleration and deceleration with 
respect to variation of relative speed. This acceleration model presumes that the error 
term is normally distributed and independent of each condition of car-following regime 
and driver overtime period ( e%

@G,?,Fw)~\(0, s@G,?,Fw1). The detailed of the error term 
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structure will be discussed in Appendix-A . Furthermore, both reaction time and gap 
distributions in this modelling framework capture the correlation between the car-
following behaviour of individual driver 7.  

Considering the assumption on the error function, the general form of car-following 
regime distribution for the car-following acceleration and deceleration with respect to 
relative speed conditional on reaction time is written by: 

Where; 

à g%
@G,?,Fw ) P%  : Function car-following distribution 8 of driver 7 associated with 

stimulus û) and reaction time P at time ) 

σ@G,?,Fw , s@G,?,Fw1 : Standard deviation and variance of car-following distribution 8 of 
vehicle 7 associated with stimulus û) 

’ .   : Probability distribution functions of a standard normal distribution 
random variable 

Then, the distribution for all those four car-following regime conditions is given by: 

à g%
@G,?,Fw ) P%   

= à g%
@G,'@@,D ) P%

x ?y w ∗x ∆®y÷◊ w4∫y ∗ 

à g%
@G,'@@,4 ) P%

x ?y w ∗ 54x ∆®y÷◊ w4∫y ∗ 

à g%
@G,>=@,D P%

54x ?y w ∗x ∆®y÷◊ w4∫y * 

à g%
@G,>=@,4 P%

54x ?y w ∗ 54x ∆®y÷◊ w4∫y  

 

 

 

 

(5.8) 

 

à g%
@G,?,Fw ) P%  

=
1

σ@G,?,Fw ’
g%
@G,?,Fw ) − ü l%

@G,? ) 	 ∆$%Fw ) − P%
σ@G,?,Fw  

 

 

(5.7) 
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Where; 

â 8% )     : 1 if the driver accelerates; 0 otherwise. 

â ∆$%Fw ) − P%  : 1 if the relative speed is positive, 0 otherwise.  

 Free flow regime 

The free-flow is a condition when a vehicle has more freedom to drive through the 
observation area. The current research defines that this regime shows that one of the 
following vehicles faces a larger gap than gap threshold. Consequently, the free-flow 
model is written as: 

g%
GG()) = YGG V%≠Æ ) − P% − $% ) − P% + e%

GG())     (5.9) 

Where; 

g%
GG())             : Acceleration of vehicle 7 under free-flow condition at time ) 

YGG   : Estimated constant free sensitivity 

V%≠Æ ) − P%  : Desired speed of driver 7 at time ) − P%  

V%≠Æ ) − P% − $% ) − P%  : Function of stimulus driver 7 at time ) − P%  

e%
GG()) : Random error term associated with the free flow car-following regime 

for driver n at time ) 

The free-flow modelling structure implies that the stimuli for the driver under this 
regime decision is a function of the difference between the vehicle desired speed and 
the actual vehicle speed at time ) − P . The sensitivity is presumed to be constant. 
Similar to car-following regime, several explanatory variables explain the driver 
decision in free-flow regime i.e. speed limit, type of vehicle, speed, road geometry, and 
etc. The function of desired speed is give as follows: 

V%≠Æ ) − P% = Y≠Æl%≠Æ ) − P%    (5.10) 

Where; 

Y≠Æ : Estimated constant desired speed 

l%≠Æ ) − P%  : Vector of explanatory variables of desired speed of driver 7 driver at time 
) − P% 
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A substitution of the vehicle desired speed V%≠Æ component in Equation 5.9 with 5.10 
derives the free-flow car-following model as follows: 

g%
GG()) = YGG Y≠Æl%≠Æ ) − P% − $% ) − P% + e%

GG())  (5.11) 

The free-flow modelling structure expects that the vehicle in a free flow regime will 
accelerate when the desired speed is higher than the actual speed. The vehicle 
decelerates when the actual vehicle speed is higher than the desired speed.  

Similar to the car-following modelling, the random error term in the free-flow model 
e%
GG())  represents the unobservable variables during the vehicle movement in a free-

flow regime. It is assumed to be normally distributed and independent for each different 
driver over a specific time period e%

GG ) ~	\ 0, sGG1  . Moreover, both the reaction 
time and the gap threshold distribution in this model capture the correlation of each 
driver decision over the observation period. As discussed above, the structure of error 
term is presented in Appendix-A . 

Considering the assumption of error term, the free-flow acceleration distribution with 
conditional on reaction time is written as follows: 

à g%
GG ) P% =

1
σGG ’

g%
GG ) − YGG Y≠Æl%≠Æ ) − P% − $% ) − P%

σGG  (5.12) 

Where;  

à g%
GG ) P%  : Function of free-flow car-following regime of vehicle 7 at time ) is 

depending on reaction time P 

σGG, sGG1  : Standard deviation and variance of free-flow car-following regime of 
vehicle 7 

’ .   : Functions of a standard normal distribution’s random variable 

 Gap threshold distribution 

The time gap threshold assists to classify the car-following condition into two groups; 
(1) car-following regime or (2) free-flow regime. As mentioned earlier, the vehicle 
moves under the car-following regime if the gap toward the front vehicle is less than a 
specific gap threshold. The vehicle involves in the free-flow regime when the available 
gap is greater than the threshold. The gap threshold varies depend on the driver’s 
aggressiveness, vehicle characteristics, road geometric and neighbouring traffic 
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condition. Those factors are captured in the time gap threshold that is distributed over 
the driver population. 

Instead of using normal distribution as suggested by Ahmed (1999), this thesis presumes 
the gap threshold distribution follows the lognormal distribution as a high proportion 
prefers a short gap. The vehicle traffic trajectory in the current study demonstrates that 
the gap is skewed to the left-hand side, where a large proportion of traffic moves in 
smaller gap. More details of the observed gap distribution toward the front vehicle are 
shown in Figure 6.12. In addition, Yin et al. (2009) studied the vehicle trajectory saying 
that the lognormal distribution fits adequately with the vehicle trajectory in low-
moderate traffic. Furthermore, the use of both side truncations ensures the gap to be 
positive and finite number.  

Giving this description, the truncated lognormal distribution of gap acceptance is 
expressed as follows: 

à ;%∗ =

1
;%∗. σ 

’ ln	(;%∗) − ≤ 
s 

Φ -7 ;∗,&'( − ≤ 
s 

− Φ -7 ;∗,&O% − ≤ 
s 

0

 
éà	;∗,&O% ≤ ;%∗ ≤ ;∗,&'( 

(5.13) 
≥)ℎ6çØéû6 

Where; 

à ;%∗   : Function of time gap threshold distribution 

;%∗  : The threshold value of the available gap (sec) 

;∗,&O%, ;∗,&'( : Minimum and maximum value of the gap threshold (sec) respectively 

≤ , s   : The mean and standard deviation of the truncated gap distribution 

’ .  : Probability distribution functions of a standard normal distribution 
random variable 

Φ .  : Cumulative distribution functions of a standard normal distribution 
random variable 

As derived from Equation 5.13, the probability of the driver in the car-following regime 
can be expressed as follows: 
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U% /gç − à.--.Øé78	g)	)éL6	) = U ;% ) ≤ ;%∗    

= 1 −
Φ

-7 ;% ) − ≤ 
s 

− Φ
-7 ;∗,&O% − ≤ 

sÑ

Φ -7 ;∗,&'( − ≤ 
s 

− Φ -7 ;∗,&O% − ≤ 
s 

0

 

;∗,&O% ≤ ;%∗ ≤ ;∗,&'( 

 

≥)ℎ6çûØéû6 

(5.14) 

The mean, variance and median of the gap threshold distribution are given by; 

L6g7 = exp	 ≤ + 0.5s 
1

Φ -7 ;&'( − ≤ 
s 

− s 

Φ -7 ;&'( − ≤ 
s 

− Φ -7 ;&O% − ≤ 
s 

 (5.15) 

L6Cég7 = exp ≤ + s Φ45	 0.5 Φ
-7 ;&'( − ≤ 

s 
− Φ

-7 ;&O% − ≤ 
s 

 
(5.16) 

†gçég7/6 = exp1ºŸDæŸ 6WXæŸø − 1
Φ -7 ;&'( − ≤ 

s 
− 2s∫

Φ -7 ;&'( − ≤ 
s 

− Φ -7 ;&O% − ≤ 
s 

 
(5.17) 

 Driver reaction time 

Similar to the previous researches (i.e Ahmed, 1999; Subramanian, 1996; Toledo, 
2003), the current study presumes the driver reaction time as a random variable that 
follows the truncated lognormal distribution. In this case, high proportion of driver 
requires a short reaction time while fewer drivers require large reaction time. The 
reaction time distribution is truncated due to avoid finiteness reaction time. Therefore, 
the probability density function of reaction time is written as follows: 

 

à P% =

1
P%s∫

’ -7 P% − ≤∫
s∫

Φ -7 P&'( − ≤Ñ
sÑ

− Φ -7 P&O% − ≤Ñ
sÑ

0

 

éà	P&O% < P% ≤ P&'( 

 

≥)ℎ6çûØéû6 

(5.18) 
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Where; 

P% : Driver 7 reaction time 

≤∫, s∫  : Mean and standard deviation of distribution -7 P%  respectively 

P&O% : Lower bound of the reaction time distribution 

P&'( : Upper bound of the reaction time distribution 

Then the mean, variance and median of the driver reaction time distribution can be 
expressed as follows: 

 

L6g7 =	= exp	 ≤∫ + 0.5s∫
1

Φ -7 P&'( − ≤∫
s∫

− s∫

Φ -7 P&'( − ≤∫
s∫

− Φ -7 P&O% − ≤∫
sÑ

 
 

(5.19) 

L6Cég7 = exp ≤∫ + s∫Φ45	 0.5 Φ
-7 P&'( − ≤∫

s∫
− Φ

-7 P&O% − ≤∫
s∫

 (5.20) 

†gçég7/6 = exp1ºΩDæΩ 6WXæΩø − 1
Φ -7 P&'( − ≤∫

s∫
− 2s∫

Φ -7 P&'( − ≤∫
s∫

− Φ -7 P&O% − ≤∫
s∫

 (5.21) 

Note that the mean value of the reaction time distribution ≤∫ represents as a function of 
the explanatory variables. Then, the function is written:  

≤∫ = lO∫. YO∫     (5.22) 

Where; 

lO∫ : Explanatory variables of the reaction time distribution 

YO∫  : Specific constant parameter of reaction time 

As discussed earlier, driver reaction time captures the time length between the 
appearance of stimulus and the driver response. The lO∫ represents the affecting factors 
of the driver reaction time, which has been mentioned earlier in this section. In fact, 
each driver has different reaction time for each traffic condition. The reaction time may 
consist of three components: driver perception, foot movement and vehicle responses. 
Driver perception represents the time length, which the driver requires for interpreting 
the neighbouring traffic condition. The driver reacts based on the traffic condition by 
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moving his/her foot in order to accelerate or decelerate. This relates with the driver’s 
foot movement time. The vehicle respond relates with the vehicle mechanical system 
reaction on the drive’ inputs namely throttle, break, and gear shifting.  

Several factors affect the driver reaction time such as: traffic condition 
(congested/uncongested), driver physical condition (i.e. age, gender, level of tiredness), 
driving time (daytime/night), and weather condition (dry, rainy or snowy). Driving in 
congested traffic condition stimulates the drivers to increase their alert and reduce their 
reaction, whilst the moderately congested one can relax and delay their response as 
regards these stimuli. In terms of the driver ages, older people need longer reaction time 
compared to the younger ones. Elder drivers may maintain large gap in this case. Lack 
of visibility during the bad weather and nigh time increases the driver alert level that 
requires a short driver reaction time compared to the normal daytime driving.  

 Likelihood Function 

The likelihood procedure assists the estimation procedure for all parameters in 
acceleration model that include the car-following, free-flow, gap distribution and 
reaction time distribution. Given Equation 5.7 and 5.15, the distribution of acceleration 
of individual driver 7 at time ) conditional on gap threshold ;∗  and reaction time P  
is written by: 

à g% ) ;%∗, P% = à g%
@G,?,Fw ) P%

x  y w4∫y à g%
GG ) P%

54x  y w4∫y  (5.23) 

Where; 

â ;% ) − P% = 1, if	the	;% ) − P% ≤ 	;%∗	
0, ≥)ℎ6çØéû6        (5.24) 

The density functions of the car-following and free-flow regimes are presented in 
Equation 5.8 and 5.12 respectively. It is worth noting that the driver 7 acceleration 
behaviour is independent, while the gap threshold ;%∗  and the reaction time P%  
capture the heterogeneity of the driver	7 acceleration behaviour over time √ period. 
Then, the dependant joint density of the driver 7 acceleration decisions 
g% 1 , g% 2 , g% 3 , … , g% √  is given by: 
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à g% 1 |;%∗, P% à g% 2 |;%∗, P% à g% 3 |;%∗, P% … à g% √% |;%∗, P%  

=	 à g% ) |;%∗, P%

~y

%�5

 (5.25) 

Deriving from the Equation 5.26, the unconditional distribution of driver 7	acceleration 
behaviour during the observation period is given by: 

à g% 1 , g% 2 , g% 3 , … , g% √%   

= 		 à g% ) |;%∗, P%

~y

%�5

	à ;∗ 	à P 	
 ∗,µ∂∑

 ∗,µÖy

∫µ∂∑

∫µÖy

C ;∗ 	C P  (5.26) 

With an assumption that all drivers in the population are independent, the log-likelihood 
""  function for driver n is written as follows: 

"" = ln à g7 1 , g7 2 , g7 3 , … , g7 √%
Z

%�5

 
(5.27) 

Then, the application of Maximum Likelihood Estimation (MLE) method expresses the 

estimated parameters that maximise the mean acceleration value. Similar to lane-

changing model, the likelihood estimation process in the acceleration model follows the 

Broyden-Flecther-Goldfarb-Shanno (BFGS) optimisation algorithm. The detailed of 

BFGS is discussed in Appendix-C . 

 Summary 

This chapter presents a modelling specification and the likelihood estimation procedure 
of the proposed acceleration model, which consists of four components: the car-
following regime, the free-flow regime, the gap distribution and the reaction time 
distribution. A gap threshold distribution in the proposed model defines whether the 
car-following event is in the car-following regime or free-flow regime.   

This research extends the state-of-the-art relationship between car-following behaviour 
and stimulus condition during car-following regime. This modelling relaxes the 
assumption on the previous acceleration model that specifies the car-following 
behaviour that is corresponded with a specific stimulus condition.  The driver 
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accelerates or decelerates due to the stimulus from the neighbouring traffic. In this case, 
the stimulus is represented by the relative speed between the subject and front/lead 
vehicle. Consequently, the car-following regime in the proposed model has four sub-
model components: acceleration with positive relative speed g%

@G,'@@,D , acceleration 
with negative relative speed g%

@G,'@@,4 , deceleration with positive relative speed 
g%
@G,>=@,D , and deceleration with negative relative speed g%

@G,>=@,4 . The reaction time 
in this model represents the level of driver’s aggressiveness. An aggressive driver 
requires a smaller reaction time while a conservative driver requires a longer reaction. 
All modelling components are estimated jointly by the likelihood estimation procedure. 
The estimation procedures and results of the proposed acceleration model are presented 
in Section 7.2. 
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Chapter 6 Empirical Traffic Data 

This chapter presents the site characteristics, data collection, data extraction process, and 
data analysis. This work uses two types of traffic surveillance data sources, namely 
MIDAS (Motorway Incident Detection and Automatic Signalling) and the traffic video 
observation. 

The observation was taken on the M1 between Junction (J) 41-43, which is part of 
motorway network in the north-south UK stretches between Wakefield and Leeds on 
Thursday, 16th May 2013 during the time period of 16:30-18:30. The afternoon and early 
evening period traffic flow at this section of the motorway is moderately congested (as 
shown by the MIDAS data in Section 6.2). Traffic through this section is mixed between 
long distance and local commuting traffic.  J42 is an interchange for M1 and M62, whilst 
J43 links the M1 and M621 motorway toward to Leeds. Note that, the road is under good 
condition without any road works, improvements and side frictions during the 
observation period. Due to the site condition and the video recording’s capability and its 
availability of the video recording tool, the study emphases the traffic video recording 
only for the first 320 metres of the weaving section between J42-43. 

This chapter is presented as follows; Section 6.1 describes an overview of the 
observation site. Section 6.2 will discuss the MIDAS loop detector data, following by 
the extraction and data management. The detailed of traffic video recording process, 
vehicle trajectory extraction and management of trajectory dataset are presented in 
Section 6.3. Section 6.4 presents the overview of the traffic characteristics in weaving 
section including the traffic flow, speed analysis, characteristics of the observed vehicle 
and the relationship with the neighbouring traffic. The detailed of lane changing 
characteristics will be discussed in Section 6.5. This section classifies the weaving 
section in associated with the types, location, gap acceptance and group behaviour. 
Meanwhile, Section 6.6 summarises the findings of the data analysis. 
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 Site Description 

The observation site selection is important phase in order to gather a clear view of the 
driving behaviour in the weaving section. Moreover, there are several site requirements 
applied during the site selection. The site should have less obstacles such as road works, 
road geometric, and clear sight distance for traffic video recording. 

Figure 6.1 Road alignment and loop detectors location (source: Google Earth) 

The observation covers the section of M1 between junctions 41 and 43. The section 
between J41-42 is a three-lanes dual carriageway. The section between J42-43 is a five-
lanes dual carriageway that consists of three lanes for through traffic (lane 3, 4, and 5) 
and two auxiliary lanes (lane 1 and 2) that can be seen in Figure 6.2 . The distance of 
the weaving section between J41-42 and J42-43 are 1,250m and 1,265m respectively, 
which are slightly shorter than the 2,000m  distance defined by (DMRB, 2006). 

Most of the motorway networks in England are equipped with loop detectors located at 
~500m apart and on each lane of the main carriageway as well as on-/off-ramps. They 
are part of the Management Incident Data Analysis (MIDAS) system (DMRB, 1994). 
The MIDAS system provides one-minute average traffic flow, speed, occupancy and 
types of vehicle. There are 15 MIDAS loop detectors over the site; their locations are 
marked in Figure 6.1 and Figure 6.2 . 
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The video recording was made from an over-bridge located 620 metres downstream 
from J42, and was made facing the traffic from J42.  It was able to record all five lanes 
of traffic, for the first ~320m from the merge at J42 (between points i and \ in Figure 
6.2. 

However, the speed and flow information available in the MIDAS data with larger 
spatial and temporal coverage have only limited details. Contrarily, the trajectory data 
extracted from the video recordings is enormously detailed that captured the traffic 
characteristics but then with limited spatial and temporal coverage. These data sources 
are complement accordingly. 

 MIDAS Loop Detector 

MIDAS data provides traffic characteristics based on traffic censors, mainly the loop 
detectors in order to inform the Regional Control Centre (RCC). MIDAS (DMRB, 1994) 
loop detectors provide basic traffic data such as traffic volume, spot speed, level of 
occupancy, and headway for each lane. The Highway Agency (HA) has installed this 
system almost in all UK’s main road network (i.e. M1, M6, M25) to improve the road 
traffic performance. Furthermore, MIDAS data have been widely  used to capture the 
traffic characteristic and driving behaviour on a specific motorway network (Al-Jameel, 
2011; Wang, 2006). Both researchers utilised MIDAS as validation instrument and 
preliminary indicator of the traffic at the observed location. 

MIDAS aggregates the data for a period on basis of 1 minute period and stores them in 
binary format at the website www.midas-data.org.uk (Mott MacDonald, 2013). In terms 
of the data management, the system stores the data based on the regional control centre, 
where the loop detector is located, and the observation day. In fact, the observed section 
is under the North East Regional Control Centre. All the data can be accessed and is 
downloadable with permission from HALOGEN (Highway Agency Logging 
Environment) support system. 
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 Identifying the loop detector location 

The loop detector ID (xxxxy) in the form of a unique number indicates the approximate 
loop detector location. The “xxxx” consists of four digit numbers that indicates the loop 
detector position relative to the road chainage, while ’y’ is a character, indicating the 
carriageway as it is seen in Table 6.1. 

Table 6.1 Road carriageway information in associated with loop detector ID 

Approaches Type Observing Traffic 

Northbound 

A Main / Through 

J Exit slip road 

K Entry slip road 

Southbound 

B Main / Through 

L Exit slip road 

M Entry slip road 

Table 6.2 shows all loops detector together with the lane-coverage over the observation 
area between J 41-42 while Table 6.3 shows all loop detectors in J 42-43. 

Table 6.2 Loop detector location and lane coverage at J 41-42 

Section Loop Detector ID Lane Coverage 

J41 - J42 

4985 A 3, 4, and 5 

4985 K S1, and S2 

4990 A 3, 4, and 5 

4995 A 3, 4, and 5 

4998 A 3, 4, and 5 

5002 J S1, and S2 

5004 A 3, 4, and 5 

 



   

 

-112- 

Table 6.3 Loop detector location and lane coverage at J 42-43 

Section Loop Detector ID Lane Coverage 

J42 – J43 

5005 K S1 

5011 A 3, 4, and 5 

5017 A 1, 2, 3, 4, and 5 

5021 A 1, 2, 3, 4, and 5 

5026 A 1, 2, 3, 4, and 5 

5028 A 1, 2, 3, 4, and 5 

5034 A 3,4,5 

1133 B 3,4,5 

For example, the distance between two loop detectors 5021A and 5017A, the 
estimation, initially, divides the ‘xxxx’ element of the loop detector ID with 10 (default 
number) in order to define the loop detector relative location. The relative location of 
5021 A and 5017 A) are thus 502.1 km (5021/10) and 501.7 km (5017/10). Note that 
the chainage of M1 section refers to London as the benchmark. The distance between 
those two loop detectors is thus 502.1-501.7=0.4 km or 400 m. 

 Managing MIDAS loop detector data 

 The downloaded binary-format files of MIDAS loop detector are required to be 
reformatted into CSV files. MIDAS provides the conversion application namely ‘TCD 
to CSV GUI’. This application is can be downloaded freely from www.midasinfo.co.uk. 
The application aids the extraction and filters the loop detector information based on 
the road network, carriageway and the loop detector ID’s. 

Figure 6.3 TCD to CSV GUI interface 
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Figure 6.3 shows the interfaces of TCD to CSV GUI. It shows the example of loop 
detectors conversion at the observed section (J41 to J43). 

The converted MIDAS output files consists of several information namely the loop 
detector ID, observation time and date, flow category, mean spot speed (km/h), total 
flow (number of vehicles), average occupancy (%), and average headway/gap (sec). In 
addition, all MIDAS data are aggregated into one-minute data for each observed lane. 
Following list presents the detail information of MIDAS loop detector data; 

• MIDAS defines the traffic flow category as the total vehicle that passes the loop 
detector within one-minute period of time. Moreover, there are five vehicle 
categories in MIDAS in terms of the length of vehicle as shown in Table 6.4. 

Table 6.4 Vehicle categories in MIDAS 

 
 
 
 
 
 
 
 

• The speed (km/h) is the average speed for all vehicles for one-minute period on 
each lane. 

• Total flow (veh/h) is the total of vehicles that passing the loop detector during one-
minute period. MIDAS records the flow in the lane basis. 

• The average occupancy level is defined as a percentage of time that the detector 
considered as vehicle presence during one-minute period. The occupancy level will 
vary from 0 – 100 %.  

• The headway is defined as the average time between successive vehicles that 
passed the counting site during the observation time. The units of the headway are 
1/10ths of a second. MIDAS loop detector is able to record and measure the headway 
among the vehicle, if it is between 0.0 to 25.4 sec. In this case, the loop detector 
uses maximum default value (25.4 sec) for the aggregated one-minute period 
headway analysis, if the recorded headway is larger than 25.4 sec. 

MIDAS data have a significant role in the validation process of the traffic video dataset 
and illustrates the traffic characteristic at the observation location. This PhD research 
utilises MIDAS data to capture the ambient of the downstream traffic that it might affect 

Vehicle Categories Length of Vehicle (metres) 

1 0 – 5.2 

2 5.2 – 6.6 

3 6.6 – 11.6 

4 >11. 6 
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the driving behaviour in the weaving section. Several previous studies used MIDAS 
data as their based line dataset in the validation processes, for example; Al-Jameel 
(2011), and Wang (2006). 

 Vehicle Trajectory Data 

Traffic surveillance is a method to capture the driving behaviour at the observation 
location. This research classified the traffic surveillance method based on their data 
extraction approach. In general, there are two well-known systems, namely automatic 
and manual systems.  

The automatic system is somewhat an advanced image processing where the video 
contains the metadata of the vehicle characteristics, for example; NGSIM. This method 
needs extensive methodology and it is a large scale project. NGSIM is widely used in 
the USA, where many of researches utilise the NGSIM data to develop driving 
behaviour modelling (i.e. Koutsopoulos and Farah, 2012; Toledo et al., 2007b, 2005) 

The manual traffic surveillance camera is relatively modest and demands less 
operational cost when compared to the automatic traffic surveillance systems. Standard 
recording devices (i.e. video camera, memory stick and tripod) and installation 
procedures simplified the data collection process. This approach is commonly used for 
investigating the driving behaviour especially in i.e. Al-Jameel (2011), Kusuma and 
Koutsopoulos (2011), Wang (2006), Yousif and Al-Obaedi (2011). However, this 
approach requires an extensive effort on the data extraction and data management 
processes. 

 Traffic video recording 

The traffic video recording in this research assists the researcher in capturing the vehicle 
characteristics and movements in the observation area. This study should obtain 
permission previously from the Highways Agency for utilising their CCTV on the 
observed location, with the purpose for gathering high quality and clear image of the 
traffic movement. Unfortunately, the request was declined due to the data protection 
regulation. The research is consequently decided to observe and record the traffic with 
a standard video camera.  
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Figure 6.4 Traffic video camera recording (main camera) 

Figure 6.4 illustrates the traffic video recording process. The video recording was made 
from an overbridge located at Sharp lane, 620m downstream from J42. This study uses 
two different cameras to record both upstream and downstream traffic movement. The 
main camera (Canon MVX200) faced the upstream traffic at J42 and recorded all of 
five traffic lanes. Second camera (Kodak Zi8) faced the J43 and recorded the traffic 
between the overbridge and the exit ramp. The trajectory data was extracted using a 
semi-automated vehicle trajectory extractor application by	Lee et al. (2008). Due to the 
software limitation, the detailed trajectory data are only available for the first 320 m 
from J42 (between points M and N in Figure 6.2). The rest of the data have been 
exclusively used for creation of local origin-destination analysis and number of lane 
changes. In addition, the speed and flow information from MIDAS database has been 
used to validate the trajectory data. As mentioned previously, the video recording was 
taken on Thursday 16th June 2013. More details of the video recording location can be 
seen in Figure 6.2. 

 Vehicle trajectory extraction process 

This research applies the Trajectory Extractor software (Lee et al., 2008) to identify and 
record the positions of individual vehicles over the observed weaving section. The 
software is specifically designed for video recordings of traffic moving along the sight 
(longitudinally). Meanwhile, NGSIM (FHWA, 2006) is operated for recordings of 
traffic moving horizontally across the frame.   
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Figure 6.5 The interface of trajectory extraction software (Lee et al., 2008) 

Moreover, the Traffic Extractor software provides the information including the type 
and the (x, y) coordinates of the observed vehicles for each time frame. This software 
classifies the vehicle type based on the vehicle length, and in our study they are grouped 
into:  

• Small vehicles (average length 4.3m) 

• Van (5m) 

• Heavy vehicles (11m) 

The data extraction process is a semi-automatic vehicle trajectory extractor application. 
Briefly, the extraction process follows the following process: 

1. Define the type vehicles and the observed vehicle ID, once the subject vehicle 
enters the observation area. 

2. The observer requires to direct the cursor toward the middle section of the vehicle 
front rear.  

3. Clicking the cursor, the application records the observed vehicle type, location  
(x, y coordinates) and time frame into a vehicle trajectory database (csv format). 
Then, the video will move forward at specific time step. The study setup the time 
step to be 1 sec as suggested in the previous study. 

4. Follow the step 2 and 3 to record the observed vehicle trajectory at the observation 
area. 
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5. Once the vehicle passes the observation, the observer may continue with the 
following observed vehicle by followed the step 1.  

Identifying the specific object location (x, y coordinates) at the observation area is 
critical phase in the vehicle trajectory extraction process. This phase is aimed to ensure 
that the video footage presents the observed location in the real world. Hence, a high 
quality aerial map is used as the baseline map. This phase needs to be done before the 
extraction process. 

The object location identification process in this research has been done for two times 
which are Google Maps and Google Earth. The first validation process used the Google 
maps. However, there is a difficulty in identifying the geographical of co-ordinate and 
performing the distance measurement due to unavailability of the features in a google 
maps. The current work, therefore, uses the Google Earth which is a free open source 
and provides flexibility for the user to mark and identify the geographical co-ordinate 
of the interested point. This application is the extension of Google Maps which is 
equipped with spatial measurement features.  

The vehicle trajectory extractor (Lee et al., 2008) adopts the photogrammetry approach 
for transforming the pixel of the video footage to the geographical coordinate (real 
world) or vice versa (Mikhail et al., 2001). Briefly, an eight-parameters transformation 
method for each (x,y) coordinates is adopted in the transformation process. The 
estimation requires at least four references points in the real-world condition which 
correspond with a specific point in the video footage. Note that, the current research 
proposes 20 references points (see Figure 6.2), where the minimum reference point is 
four. A large number of reference points assists to increase the accuracy level of the 
transformation process. The references points in the x-axis are located for every 80m 
(x-axis) over the observation area.  

The extraction process takes a significant role in order to ensure the data quality. This 
phase is time consuming, and requires high concentration during the extraction 
processes. This study acknowledged several factors which affect the data quality: the 
video footage quality, playback control and obscuring view from the leading vehicle. 
High variations of speed and acceleration profiles in the raw trajectory dataset indicate 
the appearance of measurement error during the extraction process. Hence, this research 
uses the locally weighted regression method to smoothing the vehicle trajectory profile. 
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 Locally weighted regression 

Locally weighted regression is a method to estimate a regression surface through a 
multivariate smoothing procedure. Cleveland (1979) introduced this method by 
adapting the iterated weighted least squares technique in order to minimise the deviation 
points that distort the smoothed data. Furthermore, Cleveland et al. (1988) extended the 
discussion regarding the concept, properties and the estimation algorithm  of the locally 
weighted regression. Their research applied the algorithm in numerous applications 
such as explanation of graphical analysis explanation, fitting the field data distribution 
due to the objective function, and the simulation results. Moreover, they found as well 
that the locally weighted regression is involved while the dependent variables are a 
function of the independent variable. 

This approach has been widely used in microscopic behaviour modelling for smoothing 
the vehicle trajectory in order to gather less variation in both speed and acceleration of 
the observed vehicle (e.g. Punzo et al., 2011; Toledo et al., 2007a). Assuming that the 
vehicle trajectory is a function of time ! : 

" !, $
%&'

= )*+ ! + - ! 	     (6.1) 

Where; 

" !, $
%&'  : Function of the observed vehicle fitted location at the time !  by the local 

regression  

)*+ !  : Observed vehicle location at the observed time 

$
%&'  : Vector parameters of the estimated curve, and	- !  a normally distributed 

error term. 

The fitting process is estimated locally by using the weighted neighbourhood points 
with their distance to the observed point. The proportion of neighbourhood points in the 
estimation depends on the span size or degree of smoothing /  that varies between 0 
and. ∞. A larger span size leads the fitting result into a linear form. On the other hand, 
small span size is less neighbourhood points in order to try fitting the observation in a 
curve forms. 

The estimated function " !, $
%&'  follows the weighted least-square estimation with the 

N observation of each vehicle inside the defined time !  window. Moreover, the 
objective function of the locally weighted regression is aimed to minimise the deviation 
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between the observed vehicle trajectory and the global polynomial curve. The Equation 
is written as; 

min
4

567 − " !, $
%&' 9

: 567 − " !, $
%&'      (6.2) 

Where; 

 567 : Column vector of the N position observations used to estimate a trajectory 
function,  

:  : [NxN] matrix with elements corresponding to weight of observations used for 
local regression. 

The computation process of locally weighted regression involves three elements 
namely; 

• The locally weighted objective function.  

• The span size which is the parameter that control the Degree of Smoothing / . 

• The weight assignment for each observed vehicle location within the local 
regression span. 

Several weight conditions ; < 	have been applied in order to represent the time 
function <  between the observed location and the interested point. Cleveland et al., 
(1988) defined that the smooth weight shall produce smoother estimates. Higher 
weights to the observed data will be more fit to the point of the interest and satisfy the 
below condition: 

;(<) ≥ 0           (6.3) 

; < = 0 for < ≥ 1                 (6.4) 

;(<) is non-increasing for < ≥ 0              (6.5) 

Moreover, Cleveland et al. (1988) found that a tricube weight function is decent option 
to capture the optimum results. The tricube function is written: 

; !B, ! = 1 − < !B, !
C C   (6.6) 

while, 

< !B, ! =
! − !B

DB
 (6.7) 
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Where; 

; !B, ! : Weight assigned to the observation at time ! in fitting a curve centred at !B 

< !B, ! : Normalised measure of the time difference between !B and ! 

DB : Distance from !B to the nearest point outside the span of N points to be 
considered in fitting the curve 

The weight assignment and the span size affect significantly the bias and the variance 
of the fitted locations in opposite direction (Cleveland et al., 1988). Additionally, the 
bias has linear relationship with the span size or degree of smoothing / 	, which varies 
between 0 and ∞. A large span size leads the fitting result into a linear form. A small 
span size on the other hand focuses on the neighbourhood points and tries to fit a higher 
order polynomial curve. 

This PhD thesis has tried several span sizes value 0.8, 0.9, and 1 with second polynomial 
order when fitting the trajectory. Note that, the acceleration is the second derivative of 
the vehicle trajectory. The estimation is performed by using “R” programming package, 
which known as LOESS. Moreover, the Mean Absolute Error (MAE) assists to evaluate 
the goodness-of-fit between the observed vehicle trajectory data and the fitted vehicle 
trajectory corresponding with those observed span size. MAE is written as follows: 

EFG =
)*+ ! − )*+(!)

H
IJK

L
 (6.8) 

Where; 

)*+ !   : The observed vehicle location 

)*+(!) : The estimated vehicle location 

!, L : Observation time period for each vehicle 

Figure 6.6 illustrates the distribution of goodness of fit from the observed span size. 
The Mean Absolute Error (MAE) distribution of observed individual vehicles is skewed 
to the left with mean values of 0.089m, 0.12m, 0.125m due to various span size 0.8, 0.9 
and 1, respectively. A relatively small average MAE indicates that the measurement 
provides a reliable trajectory data. By analysing both Mean Absolute Errors (MAE) and 
the vehicle profiles, a span size 0.8 has been selected (MAE ±0.089m). The 0.8 span 
size provides optimum computational iteration result and relatively smooth profile of 
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the estimated vehicle trajectory, speed and acceleration in comparison to the other tested 
span sizes. It is worth noting that the result of MAE does not represent the average 
measurement error of the trajectory dataset. The value represents the deviation between 
the observed and the fitted trajectory dataset. 

Overall, the loop detector data captures and identifies the aggregated traffic 
characteristics over the specific section of the road, whilst the vehicle trajectory data 
assists in disaggregated traffic with level of details. Additionally, the second-by-second 
individual vehicle trajectory data were extracted for the first 320m of the weaving 
section and across all five lanes (including two auxiliary lanes). 

Figure 6.6 Distribution of goodness of fit between the observed vehicle trajectory 
data and the fitted different span sizes (a) 0.8, (b) 0.9 and (c) 1 
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Figure 6.7 An example of locally weighted regression estimation with different span 
size 

 Traffic Analysis    

MIDAS loop detector located 160m downstream from the merge nose of J42 (Figure 
6.2) showed that the evening peak occurs between the 16:45-17:45, with the total flow 
5,646 veh/h. MIDAS data analyse under HCM 2010 algorithm implies that the weaving 
section is in a moderate traffic flow with Level of Service (LOS) C. Detail weaving 
section capacity analysis is presented in Appendix-A  
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However, this study faces a limitation in extracting all vehicles trajectory during the 
one-hour evening peak period due to the limitation of software and human resources. 
As mentioned earlier, the extraction process is performed semi-automatically where the 
researcher has to follow individual vehicle with specific time step. In this case, the 
trajectory is extracted with 1-sec time step. Consequently, the current work focuses only 
on the highest 15 min of the one-hour evening period, between 17:15-17:30. 

 Traffic flow variation 

During 17:15-17:30, MIDAS loop detector (5017A) data recorded 1,453 vehicles. The 
traffic flow variations denote that the main lanes traffic (lane 1, 2, 3) take 59.1% of the 
total traffic during the auxiliary lane, that is around 40.9% in average during the 15 min 
period.  Also, most of the traffics prefer to move in lane 3 and 4. Contrarily, less traffics 
move on lane 5 (far-side) which is designated for the fast moving traffic. 

Detailed analysis of the MIDAS loop detector data has been performed to investigate 
the variations of flow patterns in the weaving section. Figure 6.8 shows the propagation 
of one hour aggregated traffic flow and speed respectively between J 41-J42 (Detectors 
4985A- 4998A) and J42-J43 (Detectors 5011A-5028A) respectively over the afternoon 
peak period. Noted that, detector 5004 is located between the two weaving sections 

40% of the traffic observed between J41-J42 took the exit at J42 towards M62 or leave 
the motorway network. Even higher traffic flow entered the motorway using the on-
ramp at J42, which ultimately resulted in an increased in total flow in between J42-J43 
compared to that between J41-J42. Exact proportion of the on-ramp traffic is 
unavailable due to malfunctioning loop detectors located at J42.  

The speed propagation analysis (see Figure 6.8) shows that there is a speed drop at 
Detectors 4990A and 5017A, located at the start of the two weaving sections (J41-J42 
and J42-J43). This could be due to increased lane-changing activities.  The average 
speeds are in the range of 105-112km/h at the J41-J42 (4985A–4998A), and 109-
112km/h at the J42-J43 section (5011A-5028A), which is around the speed limit 
(112km/h). The presence of auxiliary lanes in J42-43 provides additional capacity and 
could contribute to discharge the delay and isolate the slow moving merging and 
diverging traffic from the mainline 

Figure 6.8 illustrates that both weaving sections reach the peak traffic flows between 
16:45:00-17:45:00. It is worth pointing out that the significant different in total traffic 
flow between those sections are due to the difference in number of lanes (Figure 6.2). 
A low traffic condition is shown from Detectors 4998A to 5011A, the section between 
off- and on-ramps at J42. 
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 (a) Traffic flow propagation 

 (b) Speed propagation 

Figure 6.8 Aggregated traffic flow (a) and speed (b) at the weaving section 
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From the video recording, we extracted 17,981 trajectory data points from 1,386 
vehicles observed during the period. From the vehicle trajectories, we can trace their 
origin and destination movements over the section between J42 – J43. As shown in 
Figure 6.9, the observed weaving section has two origin nodes (A and B) and two 
destination nodes (C and D). The observed OD traffic volumes are shown in parenthesis 
in Figure 6.9. 

Figure 6.9 Schematic of origin-destination in the weaving section (based on traffic 
video recording) 

Analysing both video cameras recording during the highest 15 minutes period (17:15-
17:30), several key findings of the observation are listed below: 

• 731 (52.7 %) of the traffic observed in the video data made lane changes during the 

observation period.  

• 458 vehicles MNOP + MQOR  required a mandatory lane-changing movement 

whether to exit from the motorway through lane 1 and 2 or merged into the main 

traffic on lane 3, 4, and 5. This type of lane changing is approximately 62.7% of 

the total lane-changing traffic.  

• Around 95.0% of the total lane-changing traffic took place in the upstream section 

while a small proportion (5%) of lane-changing traffic resulted after the overbridge. 

• Most vehicles made a single lane change (73.8% of total lane-changing traffic) 

while the rest made multiple changes.  

• The maximum number of lane changes caused by vehicles was 3. This situation 

typically took place for vehicles that merged or diverged from the main traffic.  

• The traffic composition (of the 1,386 vehicles from the video recordings) were as 

follows: Small vehicles (84.9%), Vans (10.6%), and Bus and heavy vehicles: 

(4.5%). 

Furthermore, the detailed of origin destination on the observed weaving section (Figure 

6.9) is presented in Table 6.5. The analysis is based on the fitted trajectory second-by-
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second trajectory data and incorporates the lane-changing movement over the 

observation area. The vehicle trajectory dataset assists in identifying the subject vehicle 

characteristics (i.e. speed and acceleration). Meanwhile, 662 out of 731 lane changing 

vehicles (95%) involves in the lane-changing movement in the first 320m of the 

weaving section. Giving this proportion of the movement lets the study to focus on the 

upstream movement as less traffic (5%) change lane on the part of the weaving section. 

It is worth noting that the extracted traffic flow is slightly slower than the MIDAS as it 

recorded 1,453 vehicles resulting in 4.61% difference between the two measurements.  

The potential spatial inaccuracies in the data have been a concern in this case and in 
spite of best efforts, the data are likely to have errors due to the limitations of the video 
recording tool, pixel resolution, frame rate, camera vibration, camera synchronization 
and longitudinal and lateral angles. The locally weighted regression (Cleveland and 
Devlin, 1988) has been consequently used to smooth the observed trajectories and to 
minimise the errors as shown in Figure 6.7. 

Table 6.5  Proportion of traffic movement origin and destination in the first 320 m 

Origin 

Destination 

1 2 3 4 5 

No. % No. % No. % No. % No. % 

1 251 18.1% 55 4.0% 3 0.2% 0 - 0 - 

2 26 1.9% 90 6.5% 119 8.6% 49 3.5% 10 0.7% 

3 57 4.1% 157 11.3% 74 5.3% 10 0.7% - - 

4 4 0.3% 25 1.8% 78 5.6% 185 13.3% 14 1.0% 

5 0 - 9 0.6% 15 1.1% 31 2.2% 124 8.9% 

Total 338 24.4% 336 24.2% 289 20.9% 275 19.8% 148 10.7% 

Table 6.5 demonstrates that the traffic proportion of main lanes (lane 3, 4, and 5) and 
auxiliary lane traffic (lane 1 and 2) have a relatively similar proportion. Note that the 
traffic proportions are 51.37% and 48.63% respectively. In terms of the vehicle 
movements, a significant vehicle proportion on lane 1(18.1%), 4(13.3%), and 5(8.9%) 
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prefers to maintain their lane through the end observation area. While the situation on 
lane 2 and 3 is slightly different, most of the traffic on those two lanes involve in the 
lane changing traffic. Most of the traffic (8.6%) on lane 2 changes lane through lane 3. 
On the other hand, there is a significant proportion of traffic (11.3%) on lane 3 which 
moves through lane 2. More details of lane changing movement will be discussed in 
Section 6.5. 

 Speed analysis 

This section compares the space-mean mean speeds (SMS) obtained from the fitted 
trajectory data and the time-mean speed (TMS) from the MIDAS data. The MIDAS 
data of 1min time resolution, collected from the loop detector 5017A (located 160m 
from the on-ramp nose at J42 and within the video recording section) is used in this 
aspect. 

For the trajectory data, the SMS are initially calculated by using the fitted vehicle 
trajectory data. These are converted to TMS using the following relationship:  

SHTU = SUTU +
VWXW
Y

ZWXW

       (6.9) 

Where;   

SHTU : The aggregated time-mean speed 

SUTU : The aggregated space-mean speed  

Table 6.6 shows all lanes with 1min aggregate of the traffic flow, the mean speed of 
vehicle trajectory data and the loop detector data. The result shows that 15min average 
TMS is lower than the loop detector data (see the Δ in Table 6.6). The average Δ is 
relatively low which varies between 2.37% (lane 2) and 5.81% (lane 5) during the 
15min period. As the result, trajectory extraction process performed appropriately and 
the data are reliable. However, there are situations when the vehicle trajectory mean 
speeds are slightly higher than the average speeds i.e. lane 1 at 17:28-17:29 (-0.05%); 
lane 2 at 17:21-17:22, 17:26-17:27, and 17:29-17:30 (-0.13%, -3.28%, and -1.44%) ; 
lane 3 at 17:28-17:29 (-1.68%); lane 3 at 17:16-17:17 (-0.43%). The speed difference 
between the trajectory and loop detector dataset are relatively small which vary between 
-0.13% and -3.28%. This error may occur due to the video quality, obscured views 
and/or measurement errors in controlling time steps. 
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 Characteristics of subject vehicle 

The characteristics of subject vehicle including the speed and acceleration are analysed 
based on the fitted trajectory data. Figure 6.10 illustrates the interactions between 
subject and neighbouring traffic including current lane front vehicle, and both target 
lane lead and lag vehicles. 

Figure 6.10  Interaction between subject and neighbouring traffic (front, lead and lag 
vehicles) 

Table 6.7 describes the descriptive statistics of speed and acceleration of subject vehicle 
characteristics, which are based on the fitted trajectory dataset of 1,386 vehicles (17,981 
observation). The analysis shows that the speed in the observation varies between 18.76 
m/sec (67.52 km/h) and 37.87 m/sec (136.34 km/h) with mean value 26.75. 19.5% of 
the traffic moves over the speed limit in corresponds with the UK traffic rule. Note that 
the speed limit on the UK’ motorways is 31.11 m/sec (112 km/h or 70 mi/h).  

Table 6.7 Descriptive statistics of subject vehicle characteristics  

Variable Mean Std Dev Median Minimum Maximum 

Speed (m/sec) 26.75 4.51 25.96 18.76 37.87 

Acceleration (m/sec2) -0.96 1.27 -1.03 -4.36 5.04 

Positive (m/sec2) 1.07 1.29 0.47 0.00 5.04 

Negative (m2/sec) -1.32 0.85 -1.23 -4.36 0.00 

Furthermore, the acceleration in the area varies between -4.36 and 5.04 m/sec2 with the 
mean value is -0.96 m/sec2. The mean value implies that most of the traffic (84.9%) 
tends to decelerate in the upstream traffic. This finding is similar with the speed 
propagation profile between loop 5011 A and 5017A in Figure 6.8 (b). It demonstrates 
that the traffic speed is decreased in the upstream traffic as the traffic requires 
adjustment of their lane or creating a safest distance for the lane-changing vehicle mer-
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ging into their lane. Note that the  distribution of both speed and acceleration of the 
observed vehicles (1,386 veh ≈ 17,981 observations) are presented in  Figure 6.11. 

Figure 6.11  Distribution of subject vehicle speed and acceleration  

 Characteristics of relationship between the subject and neighbouring 
traffic 

Driving behaviour on the motorway is significantly affected by the relationship between 
subject and neighbourhood vehicles, which are the front vehicle at a current lane, and 
both lead and lag vehicles at target lane. 

As shown in Figure 6.10, this thesis represents the interaction between the subject and 
neighbouring traffic as gaps. There are three types of gap namely; front gap, lead gap 
and lag gap. This study measures those three gaps as follows: 
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• Front gap : a time distance between the subject vehicle front rear and the object 
vehicle back rear at the current lane. 

• Lead gap  : a time distance between the subject vehicle front rear and the object 
vehicle back rear at the adjacent / target lane.  

• Lag gap  : a time distance between the subject vehicle back rear and the object 
vehicle front rear at the adjacent / target lane. 

The time distance gap is a space distance between the subject vehicle front rear and 
object back rear or vice versa divided by the subject vehicle speed. It is worth noting 
that the gap measurement is based on fitted trajectory dataset. 

Table 6.8 summarises the descriptive statistic of those variables related to the subject 
vehicle characteristics. It is worth to note that the descriptive statistic of the relationship 
between the subject vehicle and target lane traffic reflect only the value of both accepted 
lead and lag gaps. Meanwhile, the descriptive statistic of the relation with the current 
lane front vehicle is estimated based on the entire data set. 

Table 6.8 Descriptive statistics of related characteristics to subject vehicle 

Variable Mean Std.Dev Median Minimum Maximum 

Relation with the front vehicle at the current lane 

Relative Speed*) (m/sec) -0.76 4.92 -0.51 -13.49 11.17 

Gap (sec) 3.65 2.51 2.95 0.60 12.37 

Relation with the lead vehicle at the target lane 

Relative Speed *)(m/sec) -1.91 4.38 -1.71 -12.78 11.11 

Gap (sec) 3.27 2.48 2.71 0.04 10.98 

Relation with the lag vehicle at the target lane 

Relative Speed**)(m/sec) 1.35 5.94 1.00 -10.80 16.32 

Lag (sec) 5.24 3.48 4.15 0.59 14.16 

∗)	$%&'	()	*)(+,	-%ℎ. 01%%' − 0345%6,	-%ℎ. 01%%';∗∗)	$&8	-%ℎ. 01%%' − 	0345%6,	-%ℎ. 01%%' 

Figure 6.12 illustrates the distribution of relative speed and accepted gaps between the 
subject, and neighbouring traffic including the front, lead and lag vehicles. The relative 
speed mean values between the subject and the current lane front vehicle and target 
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lane’s lead and lag vehicles are -0.76, -1.91 and 1.35 m/sec respectively. This value 
illustrated that most of the subject vehicle faced a slower front and lead vehicle while 
the lag traffic tended to be faster than the subject vehicle. This finding confirms 
repeatedly our previous discussion that the traffic tended to decelerate in the upstream 
traffic, even though the traffic flow is relatively moderate.  

Figure 6.12 Relative speed and gap acceptance between the subject and front vehicle 
(a, and b), lead vehicle (c, and d)* and lag vehicle (e, and f)* at target lane  

*Based on observations associated with execution of lane changes only  

In terms of gap acceptance, the accepted gap at target lane varies between 0.04 sec and 
10.98 sec with mean value of 3.27 sec and median value 2.71 sec, while the accepted 
lag is distributed between 0.59 sec and 14.16 sec with mean value of 5.23 sec and 
median value of 4.15 sec. The values denote that large proportion of traffic accepts 
smaller gaps rather than a large gap. Moreover, the distribution profiles of gaps fit with 
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lognormal distribution as they skew to the left hand side. This finding confirms our 
assumption in the proposed gap-acceptance model in Chapter 4. 

Figure 6.13 Acceleration vs relative speed of front vehicle 

Figure 6.13 illustrates the relationship between the acceleration and relative speed with 
front vehicle. 82% of weaving section traffic involves in deceleration while 43.5% and 
38.5% of the deceleration events fall in positive and negative relative speed. In fact, the 
rest of vehicle trajectory data are acceleration events (18%). Furthermore, this finding 
is confirmed as well by the speed propagation profile between loop detectors 5011-5017 
(see Figure 6.8) where the speed tends to decrease from 120 km/h to 80 km/h. 

The relationship between acceleration vs relative speed of front vehicle supports the 
acceleration model hypothesis saying that the traffic moves under decelerating regime 
over the beginning of weaving section. Although the front vehicle moves faster, the 
subject vehicle at the beginning of weaving section tends to accelerate in corresponds 
to anticipate or pre-emptive lane changing movement. Therefore, it is necessary to omit 
the relationship between stimulus and response conditions to capture the acceleration 
behaviours in weaving section due to the high proportion of lane changing. 

 Lane occupancy 

As mentioned earlier, the lane occupancy defines as a percentage of time that the 
detector records the presence of a vehicle on basis of one-minute period. An increased 
percentage of lane occupancy implies that the higher possibility of congestion appears 
at the specifically observed lane. 
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Figure 6.14  Variation of lane occupancy during the observation period 

Figure 6.14 represents the occupancy during the observation period showing that lane 
3 has the highest occupancy with average of 9.44%. It means that the loop detector in 
lane 1 is utilised as much as 9.44% in average over one-minute period. Meanwhile, the 
average occupancy for the other lanes as follows; lane 1 (8.81%), lane 2 (8.21%), lane 
4 (7.48%), and lane 5 (3.37%). These findings illustrate that the lane 3 is relatively more 
congested and preferable. Note that it is relatively more accessible (i.e. exit from- and 
merging toward the through traffic) compared to the other lanes in the observation area.  

This variable in the modelling specification is considered as explanatory variables that 
affect the target lane choice negatively. In that sense, the parameters of the occupancy 
variable in the model is expected to be negative. 

 Lane Changing Characteristics 

In this section, the study classifies the lane changing in terms of: the vehicle’s origin 
lane (before lane-changing), the direction, and the number of lane-changed. From these 
basic characteristics, this study identifies the vehicles’ lane-changing mechanisms 
including the platoon effect in lane-changing and the involvement in weaving 
movement.  
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 Lane changing types and strategies 

In terms of number of lane-changing performed in the observation area, this study 
classifies lane changes types into two groups; (1) single lane-changing (SLC) is a 
vehicle with one lane change over the observation area; (2) compound lane-changing 
(CLC) is a vehicle with more than one lane-change within the observation area. 
Moreover, the study postulates two CLC strategies:  

Staggered : if the CLC driver has to drive at the intermediate lane and prepare for the 
following lane-changing to reach its ultimate target lane. 

Direct : if the CLC driver moves directly to the target lane. 

Figure 6.15 Schematic illustrations of lane changing strategies associated with transit 
time length 

The transit time (,:;<=>) is the preferred time length of the lane-changing vehicle, who 
involves in CLC, to stay and wait at the intermediate lane before performing the 
following lane-changing. By analysing the fitted trajectory dataset, the transit time 
(,:;<=>) threshold in this study is 2 sec whether the observed vehicle involves in 
staggered or direct CLC. With 2 sec transit time threshold, 14% of the CLC are direct 
CLC where the observed vehicle moves directly to the ultimate target lane. Among the 
86% of the staggered CLC, 21% of staggered LC took 3sec transit time and the other 
20% took 4sec. 

This research structures the relative movement ID (A[BCD]) that consists of unique 
sign and number that relates to each characteristic type. 

A  : Origin lane (lane numbers as per. Figure 6.2 ) 

B : LC direction left (-) and right (+) 

C : Number of lane-changing 1, 2, or 3. 
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D : The type of strategies (0) Direct SLC, (1) Staggered CLC, (2) Direct CLC, and 
(3) Staggered-Staggered CLC, (4) Direct-Direct CLC, (5) Staggered-Direct 
CLC, and (6) Direct-Staggered CLC. 

For example, 2[+10] indicates a relative movement for SLC from lane 2 to the right 
direction with 1 lane changing required and none of lane changing strategies are 
required. Meanwhile, 4[-21] indicates a relative movement for the vehicles at lane four 
who moves to left with 2 lane changing required and direct lane changing strategy. 

The video trajectory result shows that 662 vehicles (48.2% of the observed traffic) 
involves in lane-changing movement during the observation period. In addition, 483 
vehicles (35.5%) perform SLC and 179 vehicles (12.6%) perform multiple lane change 
(CLC). More details of the types of lane changing are presented in Figure 6.16 as 
follows: 

• Most of the lane changes are SLC (73.8%) while the rest are CLC.  

Figure 6.16 Types of lane-changing based on number of lane-changing and strategies 

• The maximum number of lane changes made by vehicles is 3. This situation 
typically occurs for vehicles merging or diverging from the main traffic.  

• Most of the SLC appears between lane 3 and lane 2 and vice versa. The most 
frequently observed type of lane change is an SLC from lane 3 to lane 2 on the 
left (3[-10]) (23.3%), which consists of traffic diverging from the mainline. This 
is followed by SLC from lane 2 to lane 3 on the right (2[+10], 18.0%) and SLC 
from lane 4 to lane 3 on the left (4[-10], 12.2%) respectively.  
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• A majority of the CLC prefers staggered LC strategy (18.6%) rather than direct 
one. Performing a direct CLC in a fast moving traffic may be difficult. The CLC 
drivers prefer to observe and wait for the safest headway to perform multiple lane 
changes. Such high level of direct CLC is unexpected, as the highway regulations 
stipulate staggered LC for safety concerns. CLC from lane 3 to lane 1 (3[-21]), 
which involves two lane changes on the left, has the largest share in the CLC 
traffic (7.3%). 

 Lane changing location 

The lane-changing locations for each vehicle involved in lane changing is analysed 
using the fitted trajectory dataset. Note that the distance measurement is referred to the 
observation starting point ? (see Figure 6.2). Figure 6.17 illustrates that the lane-
changing vehicle tends to pre-position their lane relatively at the beginning of weaving 
section. The first 50.0-100.0m is preferable range for performing the first lane-changing 
with 19.3% of the total lane-changing traffic. This finding is in the range of previous 
studies such as Wang et al. (1993),  and Bham (2008) 

Moreover, an intensive lane changing in the beginning of weaving section may create a 
delay towards the upstream traffic. In comparison to the previous research, Al-Jameel 
(2011) found that the lane-changing movement created a bottle neck situation. It was 
built around the first 70.0m and enforced the driver to delay the lane changing towards 
the approximately 150.0m from the beginning weaving section.  

Figure 6.17 Proportion of lane-changing location 

The mean value of lane-changing location in the current study is 175.8m, where the 
SLC location occurs at 170.0m in average.  Meanwhile, the location for the first, second, 
and third movement of CLC are 106.3m, 245.7m, 298.5m respectively. Those average 
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values indicate that SLC vehicles tend to delay the lane changing towards the 
downstream, considering that target lane is next to their current lane. On the other hand, 
the CLC vehicles tend to plan ahead and perform the first lane change rather earlier 
since they have to travel one or more transit lanes before reaching the target lane. 

 Lane changing gap acceptance 

Performing the lane changing, each driver evaluates the lead and lag gaps at the target 
lane at the time	(#). The details of lead and lag gaps measurement are discussed in 
Section 6.4.4. 

The accepted gap is a condition when the observed vehicle initiates (start to change the 
direction) the lane-changing process. Furthermore, the lane-changing driver expects 
that the gap at the target lane is increased during the lane-changing process.  

Table 6.9 Lane-changing accepted gap associated with types and strategies (unit: sec) 

Table 6.9 shows the minimum and the average accepted headways for both directions 
of the SLC and CLC. Compared to the SLC traffic, the CLC drivers are relatively more 
aggressive when they tend to accept smaller headway at the 1st CLC manoeuvre. This 
situation occurs since the CLC drivers are making pre-emptive lane changes at the 
beginning of the section, as they are required to make multiple mandatory lane changes 
closer while reaching their target lane or exit.  

In fact, the left lane-changing vehicles are more aggressive compared to the right lane-
changing vehicles as they accept smaller gap. The right lane-changing drivers consider 
initiating the lane nearly after the leading vehicle at the target lane just passed them. 
They prefer to have large lag in order to merge with the fast lane traffic. Moreover, the 

Direction Type of 
Gap 

SLC 
CLC 

1st  2nd 3rd 

Min Mean Min Mean Min Mean Min Mean 

Left 
Lead 0.04 3.33 0.06 1.96 0.06 1.01 0.06 0.54 

Lag 0.09 5.27 0.04 2.36 0.04 1.2 0.05 0.63 

Right 
Lead 0.06 3.87 0.62 2.47 0.04 3.44 1.2 5.42 

Lag 0.04 4.68 0.62 2.4 0.55 4.94 3.44 9.6 



 

 

-140- 

left CLC vehicles tend to accept smaller gap while gap acceptance tends to increase at 
the right CLC. Given the descriptive statistic, this study draws several hypotheses for 
the lane-changing movement as follows; (1) moving toward to the right lane is more 
difficult and challenging compared to the left lane-changing as the driver merge towards 
a fast moving traffic, (2) the left lane-changing movement perceive higher priority due 
to UK driving rule. In that sense, the driver tends to accept smaller gap compared to 
right lane-changing movement, (3) the lane-changing drivers seek for lager lag gap 
rather lead gap in order to merge safely toward the target lane.  

 Group behaviours 

The group behaviour in lane changing movement is a situation when both current lane 
front vehicle and target lane vehicle are involved in the lane-changing movement as 
well. The video recording showed that the lane vehicles often tend to change lanes in 
groups (i.e. platoon, weaving, etc.). A platoon lane-changing situation occurs when two 
or more vehicles from the same origin lanes move to the same target lane 
simultaneously or exactly after each other. Meanwhile, the weaving movement occurs 
when two vehicles interchange lanes simultaneously or exactly after each other. In some 
cases, two vehicles merge into the same lane from two different directions sequentially 
exactly after each other and in another cases exactly after a vehicle makes a lane change, 
his/her following vehicle makes a lane change in the opposite direction. There is indeed 
a slightly different characteristic between the isolated/solo and group lane-changing 
behaviours including platoon and weaving.  

The group lane changing actions have a substantial effect on the capacity of the weaving 
section. As discussed earlier, the lane-changing vehicle will be involved in platoon lane 
changing when the subject and front vehicle changes lane relatively at the same time 
while the weaving lane-changing movement appears when subject and target lane 
vehicle swap their lane relatively at the same time period. Moreover, both type of leader 
movement in the current study has different consequence on lane changing behaviour 
compared to solo lane-changing movement. 

The trajectory data have been analysed to explore potential platoon effects, weaving 
lane-changing mechanism as part of group behaviours in the weaving sections. This 
study classifies the lane changes in terms of presence or absence and type of group 
behaviour into three categories, as follows: 

• No platoon or weaving / Solo (76.6%) 

• Platoon (10.7%) 

• Weaving (12.7%) 
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23.4% of the lane-changing traffic involves in the group behaviour where the majority 
(12.7%) performs the weaving manoeuvre. Lane 3 and 2 traffic take the largest share of 
weaving traffic compared to the other lanes. The data illustrates that 3.6 % of the lane-
changing traffic involve weaving lane-changing mechanisms when changing lane from 
lane 3 toward lane 2 (diverging from with the main traffic). Similarly, most of platoon 
lane changing appears to change lane from lane 3 toward lane 2 which is 3.5% of the 
lane-changing traffic.  

The group behaviour has significant share on the lane-changing traffic. For the in-depth 
study, this finding is significant input and consideration on the proposed lane-changing 
modelling framework with different lane changing mechanisms (platoon, weaving, and 
solo) and the traffic simulation as well. 

 Summary 

This section offers an insight and presents an empirical observation of the lane-changing 
characteristics at the particular weaving section traffic during moderate traffic flow 
using both disaggregated individual vehicle trajectory and aggregated loop detector 
data. In fact, working with the microscopic data is a massive work and requires high 
concentration during the data collection, extraction and managing processes. Adopting 
the same data extraction process and analysis in different traffic condition and weaving 
section types may result in different driving characteristics. As the consequence, the 
empirical result of this study is required to be revalidated for different traffic and 
weaving sections. 

This section offers insight and presents a general framework of empirical observation 
of the driving characteristics at the weaving section using both disaggregated individual 
vehicle trajectory and aggregated loop detector data. In fact, working with the 
microscopic data is a massive work and requires high concentration during the data 
collection, extraction and managing processes. It is worth that the observation focuses 
on moderate traffic flow. Adopting the framework of data extraction process and 
analysis in different traffic condition and weaving section types may result from 
different driving characteristics. As the consequences, the empirical outcome of this 
study requires being revalidated for different traffic and weaving sections. 

This PhD study uses a traditional video camera to record all the traffic characteristics 
and movements over the observation area. In fact, there is a limitation in capturing the 
traffic movements for the whole area of weaving section due to the availability and 
capacity of the video camera recording. As the consequence, this study exclusively 
focuses on the beginning of the weaving sections area (320m). Note that, there is only 
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5% of traffic that performs the lane changing after the observation area. Several factors 
should be addressed during the video traffic recording to ensure the data quality i.e. the 
recording tool, coverage area, and site condition. A good quality of aerial map (i.e. 
Google Earth) is required to transforms the video footage pixel with the real world 
coordinate using the photogrammetry algorithm. In the next step, the trajectory extractor 
application extracts the vehicle trajectory which requires an intensive work and focuses 
to identify the precise location of the observed vehicle at the specific time period. 
Several factors may affect the vehicle trajectory data quality such as: the video footage 
quality, playback control and obscuring view from the leading vehicle.  The 
measurement error issues raise when there are high variations in both speed and 
acceleration profiles. A fitting algorithm, therefore, is applied in the managing data 
process minimising the extreme variation of the speed and acceleration profile due to 
measurement errors. 

Meanwhile, MIDAS loop detector assists to mimic the traffic in macroscopic level. 
They provide the traffic flow, occupancy, and speed at 1-minute aggregate level. The 
current study uses MIDAS in the data validation process as the baseline data. In 
addition, the validation process in this study is applied for two variables; traffic flow 
and speed. 

Overall, the data finds that the weaving section traffic was not highly congested over 
the observation period. This gives more opportunity to capture a lane changing under 
free-flow traffic. In fact, high proportion (82%) at the beginning of weaving section 
decelerates in order to cooperate with the merging and diverging traffic (average 
acceleration -1.2m/sec2). A significant proportion (48.2%) is involved in lane-changing 
at the first 320m of weaving section in order to pre-emptive the, many of which are part 
of compound lane-changing for the upcoming traffic or pre-condition their target. 
Compared to the SLC drivers (35.5%), the CLC drivers (12.7%) for both directions at 
the first manoeuvre are more aggressive by accepting smaller gaps. In terms lane-
changing direction, the left lane-changing vehicles accept smaller gap compared to the 
right lane-changing vehicles. This condition appears due to several lane-changing 
characteristics; (1) moving toward to the right lane is more difficult and challenging 
compared to the left lane-changing as the driver merge towards a fast moving traffic, 
(2) the left lane-changing movement perceive higher priority due to UK driving rule. In 
that sense, the driver tends to accept smaller gap compared to right lane-changing 
movement, (3) the lane-changing drivers seek for lager lag gap rather lead gap in order 
to merge safely toward the target lane.
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Chapter 7 Estimation Process and 
Results 

This chapter presents the estimation process and result of the lane-changing and 
acceleration models using the vehicle trajectory dataset in Chapter 6. The statistical 
assessment and interpretation of the parameters are presented as well in this chapter. 
All the modelling components and attributes in each model are jointly under the 
likelihood approaches, which were presented in the previous Chapter 4 and Chapter 5. 

The structure of this chapter is represented as follows; Section 7.1 presents the 
estimation for lane changing model along with the description of modelling setup, result 
and discussion of the lane changing model components including the target lane choice 
and gap acceptance models. Similar structure is used to describes the proposed of 
acceleration model in Section 7.2. Section 7.3 summarises the estimation and findings 
of both proposed models. 

 Estimation of Lane Changing Model 

The proposed lane-changing model consists of two components, namely target lane 
choice model and gap acceptance model. Those components capture the decision-
making process on the lane-changing behaviour. Note that, the target lane choice is the 
upper level while the gap acceptance is the lower level of the lane changing decision-
making process. As discussed in Chapter 4, the proposed lane-changing model 
hypotheses that the driver has a different lane-changing characteristic as a response to 
the front and lead vehicle movement at the current and target lane vehicle. In this case, 
there are three types of lane-changing movement: solo, platoon and weaving. The 
current modelling framework incorporates this situation as an action plan that is 
represented in the gap acceptance model. 
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 Lane changing modelling setup 

This process estimates all beta parameters in both level models using the maximum 
likelihood approach simultaneously. The estimation corresponds with the conditional 
individual latent variables @ .  

Details below illustrate the estimation algorithm of lane-changing model: 

1. Identify the variables that correspond to each level of the lane changing decision 
process models. It is mentioned earlier in Chapter 4; there are two levels of decision 
process during the lane changing movement namely (1) target lane and (2) gap 
acceptance. Further details of the potential variables were discussed already in 
Chapter 6.  

2. Setup the reasonable ranges of individual latent variables @  which is assumed to 
be normally distributed	@=~B(0,1).  

3. Based on the observed variables at step 1 and the conditional individual latent 
variable, the beta parameters are estimated using the maximum likelihood method 
(Equation 4.10). 

4. The iteration process provides the beta parameters that correspond with a specific 
conditional individual latent variable that maximise the log-likelihood value. 

5. Follow step 1 to 4 for the different boundary of individual latent variable and 
modelling specification until the maximum log-likelihood value is obtained. 

This study examines several modelling specifications with different ranges of the 
conditional individual latent variable accordingly, which is any discrete value between 
-5 (lower bound) and 5 (upper bound). The estimation demonstrates that the optimum 
range of conditional individual latent is between -3 and 3 compared to the other 
conditional individual latent variable. It may be noted that this field provides higher 
log-likelihood in comparison to other conditional individual latent variable range. 

The application of Maximum Likelihood package (Henningsen and Toomet, 2010) in 
“R” programming assists the iteration procedure to find the optimum beta parameters 
that maximise the likelihood function. Furthermore, the iteration process is performed 
under Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm which is a relatively more 
efficient algorithm compared to other method i.e. Newton-Raphson (NR) algorithm. 
The detailed of BFGS algorithm is presented in Appendix-C  
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 Lane changing model estimation result 

Table 7.1 Lane-changing model estimation results 

Modelling Variables Parameter Std error t-value 
Target Lane Model 

Lane 2 constant 0.800 0.067 11.92 
Lane 3 constant 1.049 0.067 15.60 
Lane 4 constant 0.070 0.079 0.89 
Lane 5 constant -1.290 0.144 -8.99 

Average speed (m/sec) 0.0174 0.004 4.70 
Occupancy (%) -0.00185 0.012 -0.16 

Relative speed to the front veh (m/sec)* 0.0487 0.006 8.80 
No of lane changing required -10.223 0.525 -19.48 

Exponent component of distance to exit (km) -0.135 1.356 -1.47 
α left direction 0.0644 0.142 0.45 
α right direction -0.0667 0.133 -0.50 

Critical Gap Solo 
Gap constant FG;,HI<J,>  -0.864 0.172 -5.01 

Relative speed with lead veh at target lane 
(m/sec) * -0.0204 0.006 -3.52 

Relative speed with front veh at current lane 
(m/sec) * -0.00730 0.009 -0.81 

α gap -1.440 0.282 -5.10 
σ gap 0.150 0.039 3.85 

Critical Gap Platoon 
Gap constant FG;,HI<J,K  -2.360 0.422 -5.59 

Relative speed with lead veh at current lane 
(m/sec) * -0.263 0.020 -13.03 

α gap -1.200 0.793 -1.51 
σ gap 1.692 0.423 4.00 

Critical Gap Weaving 
Gap constant FG;,HI<J,L  -0.539 0.143 -3.76 

Relative speed with lead veh at target lane 
(m/sec) * -0.127 0.034 -3.70 

α gap -1.680 0.377 -4.46 
σ gap 0.410 0.091 4.50 

Critical Lag for All Types 
Lag Constant FG;,H<M  0.421 0.103 4.09 

Relative speed with lag veh at target lane 
(m/sec) ** 0.0146 0.0051 2.84 

α lag -2.420 0.560 -4.32 
σ lag 0.872 0.207 4.21 

Number of observation 17,891 
Number of driver 1,386 
Number of parameters 28 
Final Log-Likelihood -6512.663 
Adjusted Rho-Bar Square 0.342 

∗ 	$%&'	()	*)(+,	-%ℎ. 01%%' − 0345%6,	-%ℎ. 01%%';	∗∗ 	$&8	-%ℎ. 01%%' − 	0345%6,	-%ℎ. 01%%'	
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The estimation result is based on the highest 15 min traffic flow (17:15-17:30) during 
the afternoon peak hour period between 16:45-17:45. During the observation period 
there are 1,386 vehicles where 48.2% are involved in lane-changing movement. 

The proposed model (unrestricted) is compared with a reduced form (restricted) model 
that ignores the effect of lane changing mechanisms in the model structure. Such 
reduced form model assumes same critical gap functions disregard the lane changing 
mechanism (e.g. Toledo et al., 2005; Choudhury, 2007). Note that the unrestricted 
model (28 parameters) incorporates various type of lane-changing mechanism with 
respect to leader movement characteristic while the restricted model consists of 20 
parameters. Both restricted and unrestricted models are estimated with the same 
trajectory data. The detail of restricted lane-changing model is illustrated in Figure 7.1. 

Figure 7.1 Lane-changing modelling framework (Choudhury, 2007; Toledo et al., 
2005) 

Table 7.2  Lane-changing modelling comparison 

Statistics Restricted Unrestricted 

Number of observations 17,981 

Number of drivers 1,386 

Initial likelihood value L 0  -9935.222 

Final likelihood value L β∗  -6544.203 -6512.663 

Number of parameters (no par) 20 28 

Chi-square test value χ&  63.080 (15.51) 

Adjusted rho-bar ρ&  0.339 0.342 

Akaike Information Criterion AIC  -6564.203 -6540.663 
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Pearson (1900) introduced a Chi-square test χV , which is commonly used in a 
likelihood ratio test. This statistical test analyses the improvement of goodness-of-fit 
between two models with a large number of the dataset (Wilks, 1938). This study 
compares a particular case of lane-changing model (unrestricted model), which 
incorporates the lane-changing mechanism, and a conventional lane-changing model 
(restricted model). 

Based on the estimated likelihood value, Chi-square test can be formulated as follows: 

χJ[V = −2 ∗ −L β∗,^_	` − L β∗,ab^_`  

 = 63.080 > χgV(15.51)           (7.1) 

Where; 

χJ[V      : Chi-square test value on a specific degree of freedom 

L β∗,^_`   : Final likelihood value of restricted model 

L β∗,ab^_`  : Final likelihood value of unrestricted model 

By applying Equation 7.1, the chi-square test value χV  is 63.080, significantly larger 
than the critical value of χV Distribution with 8 degrees of freedom at 5% level of 
confidence (15.51).  Note that the degree of freedom is the difference between the 
number of parameters of unrestricted and restricted models +(. 1&). 3+)%0,)i6,%' −
+(. 1&). )%0,)i6,%'; 28 − 20 = 8 .  The result of chi-square test confirms that the 
inclusion of the lane changing mechanisms in the decision framework results in an 
improved goodness-of-fit even after discounting for the increase in the number of 
parameters.  

Adjusted Rho-bar ρV  measures a fraction of between the final and initial likelihood 
value by incorporating the modelling complexity (number of the parameters). Note that 
the value of ρV is between 0 and 1. Therefore, it can be formulated as follows: 

ρV = 1 −
L β∗ − No. par

L 0  (7.2) 

Where; 

ρV  : Adjusted rho-bar 

L β∗  : Final likelihood value 



 

 

-148- 

L 0   : Initial likelihood value 

No.par: Number of parameters 

Akaike (1973, 1974, 1981) developed a statistical analysis tool that is known as Akaike 
Information Criterion (AIC) which measures the relative quality of various statistical 
models for the given dataset. This approach provides information to choose an optimum 
model from several alternatives of modelling specification. AIC penalises the final 
likelihood value with the number of the parameter to incorporate the modelling 
complexity. Thus, this statistical analysis is expressed by:  

AIC = L β∗ − no. par     (7.3)  

Given the values in Table 7.1, Adjusted Rho-bar ρV  for the unrestricted model (0.342) 
is slightly greater than restricted model (0.339). Meanwhile, AIC analysis reports that 
the unrestricted model (-6512.663) has higher AIC value compared to the restricted 
model (-6544.203). Indeed, the model with higher ρV and AIC is chosen (see. Ben-
Akiva and Lerman, 1985).   

An asymptotic t-test aims to observe the difference in the coefficient. In this case, this 
studies paper aims to test whether the parameter in particular lane-changing mechanism 
differ from the other mechanisms. Based on the information of the estimation result and 
covariance matrix, the t-test for the null hypothesis	FG;,HI<J,K = FG;,HI<J,> is expressed 
by: 

FG;,HI<J,K − FG;,HI<J,>

-&) FG;,HI<J,K + -&) FG;,HI<J,> l/V =
−1.496
0.456

= −3.281	
(7.4) 

Then, the t-test result for the null hypothesis FG;,HI<J,K = FG;,HI<J,L equals -4.086. Both 
results reject the null hypotheses at the 5% level of significance, as they are greater than 
the critical value (1.703). This finding provides a noteworthy support that the 
differences between the platoon lane-changing mechanism and the other mechanisms 
are significant. While the other attributes remain equal, the platoon lane changing 
movement is more aggressive as this type of movement accepts smaller gap in 
comparison to the other mechanisms. 

All those statistical analysis including the Chi-square test, Adjusted Rho-bar, and AIC 
confirm that inclusion of the lane changing mechanisms in the decision framework 
results in a statistically significant improvement in the goodness-of-fit even after 
discounting for the increase in the number of parameters. These findings are in line with 



 

 

-149- 

the Asymptotic t-test results, which denote that the parameters for platoon and weaving 
are statistically different from those of solo lane changes. Following sections discuss 
the estimation result of both target lane choice and gap-acceptance models, which are 
estimated jointly, in more details.  

 Target lane choice model 

A linear utility function in the current study measures the target lane choice modelling 
by presuming that all drivers perceive same set of lane choice and move towards the 
target lane with the highest utility value. Furthermore, the lane change appears if the 
driver moves towards the neighbourhood lane that provides the best driving 
environment. The estimation result in Table 7.1 demonstrates several attributes, which 
affect the target lane choice of the driver such as relative speed, average speed, 
occupancy, and path-plan impact. Though, the estimation result specifies that some 
variables cannot be included in the modelling due to statistically insignificant or 
unexpected signs issue.    

The modelling specification on lane specific constant variable is relative to lane 1. The 
lane specific constants denote that, with the other characteristics being equal, the traffic 
prefers to move on the lane 3 and 2 respectively as both two lanes provide flexibility in 
terms of merging or diverging from the main traffic beyond the study area. A slight 
difference of lane specific constant constitutes a tough completion between lane 3 and 
2 In contrast, all else being equal, the driver tends to avoid lane 5 (fast lane traffic) 
which is further away from the entry and exit ramps and is the fastest lane.  

As expected, both target lane average speed and current lane front vehicle relative speed 
have positive signs. This sign denotes that both affect the specific target lane utility 
positively. The average lane speed variable captures average vehicle speed on a 
particular lane at certain period. In the meantime, the relative speed represents speed 
difference between current lane front vehicle and subject vehicle. 

Occupancy variable in target lane choice model explains the traffic density on each 
particular lane during the observation period. This variable represents the percentage of 
time length when the observation range occupies a loop detector in the observation area. 
Note that loop detector records the occupancy at one-minute aggregated period. This 
current study presumes that the occupancy remains the same over 1 minute aggregated 
time. This current study presumes that the occupancy remains the same over one-minute 
aggregated time. The target lane model expects that the increased of lane occupancy 
affects negatively the driver preference on a specific lane as shown in the estimation 
result Table 7.1. This finding implies that the increased of lane occupancy affects 
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negatively the target lane choice. In the other words, the target lane choice is less 
preferable as the occupancy is increased. 

The required number of lane changing and the exponent of remaining distance to the 
mandatory lane-changing point (exit) explain the path plan impact on individual driver 
lane choice. The iteration results show that the parameters for both variables are 
negative (see Table 7.1). In this case, the target lane utility is decreased together with 
the increased of number of lane changing required toward the particular target lane to 
maintain the path. Furthermore, the magnitude diminishes as the vehicle approaches the 
mandatory lane-changing point (off-ramp).  This effect is represented by the negative 
exponent of remaining distance to exit pJq>:.Irq: = −0.135  

Figure 7.2 Impact of path plan lane changes on lane utility 

For example, if a driver needs to take the exit, at 0.2 km away from the off-ramp, Lane 
3 has an additional disutility of 10.2*(0.2-0.135) units, while lane 4 has an additional 
disutility of 20.4*(0.2-0.135) units, etc.  At 0.1 km away from the off-ramp, the disutilities 
are 10.2*(0.1-0.135) units and 20.4* (0.1-0.135) units, respectively. This is shown 
schematically in Figure 7.2, where the disutility of being on the incorrect lane amplifies 
significantly as he/she approaches the end of weaving section. In terms of probabilities, 
this translates to the fact that the drivers have substantially high probabilities of making 
pre-emptive lane changes if they are multiple lanes away from the ‘correct’ lane. 

Individual specific term captures the driver aggressiveness with respect to the target 
lane location either left or right of the current lane location. A positive sign on the left 
lane changing direction implies that the aggressive drivers are more likely moving to 
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the left lane rather than a right lane during moderately congested traffic. It is worth 
noting that the UK driving rule mandates provision of precedence to the approaching 
traffic from the right lane. On the other hand, moving toward the right/far-side lane 
requires more cautious as the driver merges toward the higher speed lane. It is important 
for the driver to ensure and change in a safe manner and minimises the accident risk for 
both subject vehicle and neighbouring traffic. The parameters are statistically 
insignificant though. However, they have been retained as they capture the correlation 
between the lane choice and the gap acceptance decisions of the same driver. 

Giving the estimation result in Table 7.1, the target lane utility can be written as 
follows: 

s=H , = FH + 0.0174	V=H , − 0.00185	occ=H , + 0.0487	∆x=H ,  

'=Irq: ,
yz.l{|

−10.224	B(. }~ , + �HÄ@= + Å=H ,  
(7.5) 

Where; 

FH  : Lane $ specific constant 

V=H ,  : Average speed at lane $ of driver + at time (,) (m/sec)	

Occ=H ,   : Lane $ occupancy level of driver + at time (,) (percentage (%)) 

∆x=H ,  : Relative speed between driver + and the leading vehicle at lane $ at time (,) 

'=Irq: ,  : Remaining distance to the mandatory lane changing point of the driver + at 
time ,, ∞ if no mandatory lane changing is required. 

B(. }~ ,  : Number of lane changing required toward the target lane at time , 

�HÄ : Estimated parameters of individual specific random effect @= for direction 
$Ñ  

$Ñ 																 ∈ $%*,, )i8ℎ,  depends on the orientation of target lane $ with respect to the 
current lane. 

The choice of the target lane indicates the direction of lane-change (e.g. stay in the 
current lane, look for gaps in the right, look for gaps in the left) and the driver looks for 
acceptable gaps in that direction. 
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Figure 7.3 Variation of target lane utilities at remaining distance to exit (a) 1.2km, (b) 
0.6km, (c) 0.1km  
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Figure 7.3 illustrates the variation of the target lane utility for various path plan and 
lane location of the observed vehicle. As discussed earlier, the path plan incorporates 
number of lane changing required and the subject vehicle remaining distance toward 
the exit. The analysis observes the target lane utility value for three various remaining 
distance values; 1.2km, 0.6km, and 0.1km. Meanwhile, the other variables in target lane 
choice are default values; avg.speed (30m/sec), occupancy (8%), and relative speed 
between the subject and observe vehicle (-1m/sec). 

The analysis illustrates that target lanes utility varies significantly correspond with the 
driver’s current lane and the path plan variable, which has an adverse impact on the 
target lane choice behaviour. The target lane utility decreases significantly due to the 
increased number of lane changing towards the target lane and if the vehicle approaches 
the mandatory lane changing location (exit slip road), as shown in Figure 7.2. The 
variation of target lane utility confirms that the driver prefers to perform a pre-emptive 
lane changing movement at relative early weaving section rather than delaying until the 
mandatory lane-changing point. 

 Gap acceptance model 

The gap acceptance is second level of lane change decision-making process. Note that 
the subject vehicle has to accept both gap and lag at the target lane at the particular 
time(,). As discussed earlier, three different mechanisms of lane changes have been 
considered here: solo, platoon and weaving. 

Solo critical gap  

The estimation of solo gap acceptance model defines that both relative speed to the lead 
vehicles at current lane and target lane are applied as explanatory variables. More details 
on the estimation result are presented in Table 7.1. 

Estimation result indicates that the relative speed between the subject and lead vehicles 
has stronger impact in solo gap acceptance decision-making process rather than the 
relative speed with current lane front vehicle. As expected, both relative speed 
parameters have negative signs. The signs imply that the critical gap increases slightly 
with the relative speeds (gap opening). A lane change vehicle under this situation tends 
to minimise the accident risk by accepting a large of the critical gap while performing 
the lane change.  

Given the estimation result in Table 7.1, the critical gap model for solo lane-changing 
mechanism can be expressed as follows: 
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Ü=
G;,HI<J,H,> , = exp	 −0.864 − 0.0204	∆x=H , − 0.00730	∆x=GH ,

− 	1.440	ϑ=
HI<J,>(,) + Å=

HI<J,> ,  
(7.6) 

Where; 

Ü=
G;,HI<J,H,> ,   : Solo lead critical gap at target lane $ of driver + at time , 

∆x=H(,) : Relative speed between driver  + and the lead vehicle in the direction 
of the target lane $ at time , 

∆x=GH ,  : Relative speed between driver + and the front vehicle at current lane $ 
at time , 

Å=
HI<J,> , 	~	B(0, 0.150V) 

Platoon critical gap  

Estimation result in Table 7.1 demonstrates that the critical gap in platoon lane-
changing mechanism is significantly affected by the relative speed at the current lane. 
This finding is intuitive as for the platoon mechanisms; the front vehicle in the current 
lane has a more dominant role rather the target lane lead vehicle. As expected, the 
relative speeds in all lane-changing mechanisms have a negative sign indicating that the 
critical gaps of the lane-changing vehicle are decreased along with the increased of 
relative speed. 

The critical gap acceptance model with platoon mechanism can be written as follows: 

Ü=
G;,HI<J,H,K , = exp −2.360 − 0.263	∆x=GH , − 1.200	@=

HI<J,K 			+ Å=
HI<J,K ,  (7.7) 

Where; 

Ü=
G;,HI<J,H,K ,  : Platoon lead critical gap at target lane $ of driver + at time , 

Å=
HI<J,K , 	~	B(0, 1.692V)  

Weaving critical gap  

The critical gap acceptance in a weaving mechanism is significantly affected by the 
relative speed of the target lane lead vehicle as shown in Table 7.1 As expected, the 
relative speed has a negative sign. The lane change vehicle in weaving mechanism 
accepts shorter gap if the target lane lead vehicle moves faster than the subject vehicle. 
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In contrast, a lane change vehicle that faces slow moving lead traffic prefers a large gap 
to minimise the accident risk while performing the weaving movement.  

The weaving critical gap was formulated as follows; 

Ü=
G;,HI<J,H,L , = exp	 −0.539 − 0.127∆x=H , − 1.680	ϑ=

HI<J,L + Å=
HI<J,L ,  (7.8) 

Where; 

Ü=
G;,HI<J,H,L ,  : Weaving lead critical gap at target lane $ of driver + at time , 

Å=
HI<J,L , 	~	B(0, 0.410V)  

The estimated constants for the critical gaps are found to be statistically different from 
each other mechanism showing that the platoon lane-changing driver accepts the 
smallest critical gap compared to the solo and weaving mechanisms. In this case, the 
driver decision in a platoon lane-changing mechanism is affected significantly by the 
relative speed with the current lane front vehicles, which change lane relatively at the 
same time. Meanwhile, the relative speed with the target lane lead vehicle affects 
individual driver decision in solo and weaving mechanism. The relative speeds in all 
lane-changing mechanisms are negative denoting that the observed vehicle prefers for 
a smaller gap if the current lane front vehicle or the target lane lead vehicle moves faster 
than the subject vehicle (i.e. gap opening up). 

An aggressive driver is defined as the one who requires a smaller critical gap all else 
being equal. The estimation results indicate that levels of aggressiveness has various 
effects on the critical gaps depending on the lane changing  mechanism. This attribute 
has a negative sign for all critical gap models where the effect of aggressiveness is most 
(i.e. reduction in critical gap is the largest) on weaving manouevres and least on platoon 
lane changes. The complexity of the weaving mechanism requires the drivers to be more 
alert and respond quickly due to the change of traffic situation during the lane-changing 
movement. Indeed,  This characteristic raises a safety issue as stated in Golob et al. 
(2004) where a significant proportion of accident in the weaving section is a swideswipe 
collusion. In contrast, the platoon lane changing requires less level of aggressiveness. 
The driver in this mechanism is relatively relaxes and follow the movement of front 
vehicle, who takes the role to initiate an interaction for creating space with the target 
lane traffic. 
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Figure 7.4 shows the variation of lead critical gap median value with the different lane-
changing mechanism as a function of relative speed. The critical gap in all mechanisms 
is increased with the relative speed. In all lane-changing mechanism, the analysis of 
critical gaps confirms that the critical gap is slightly increased with relative speed 
between the subject and both current lane front vehicle and target lane lead vehicles. 
The platoon lane-changing mechanism, which tends to be the simplest lane-changing 
movement, has the lowest critical gap compared to solo and weaving lane-changing 
mechanisms. Meanwhile, the weaving mechanism has the largest critical gap among 
those three mechanisms due to the complexity of the weaving lane-changing 
mechanism. Furthermore, the variation of the weaving lane-changing critical gap is 
significantly sensitive to the relative speed changes compared to the other mechanisms. 

Figure 7.4 Variation of median critical lead gaps and observed accepted gaps in 
different lane-changing mechanism as a function of relative speed 

Furthermore, Figure 7.4 compares the estimated critical gap with the observed accepted 
gap for those three lane-changing mechanisms as a function of relative speed. This 
process aims to validate the variation of estimated critical gap with the observed critical 
gap. Thus, this study represents nonlinear regression to capture the relationship between 
the observed accepted gap (dependent variable) and relative speed (explanatory 
variable) for given fitted trajectory vehicle dataset. Similar to the critical gap, the 
regression results show that the observed accepted gap is increased with the relative 
speed between the subject vehicle and front/lead vehicles. The analysis confirms that 
the estimated critical gaps in all lane changing mechanisms are slightly smaller 
compared to the observed accepted gaps as expected. The significant differences 
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between those values denote that individual driver tends to relax and finds of a large 
gap for changing lane in a safe manner. 

Critical lag gap 

The difference in critical lag gap specification is depending on the lane changing 
mechanism that revealed statistically insignificant differences. A common critical lag 
gap model has been retained accordingly, which is intuitively acceptable due to several 
issues i.e. less upstream traffic, movement priority, and courtesy movement of the lag 
vehicle at the target lane. The dataset analysis illustrates that more than 50% of the lane 
changing appears when the lag is larger than 3 sec. Moreover, the lag distribution has a 
longer tail (larger standard deviation) compared to both acceptable gaps with current 
lane’s front vehicle and target lane’s lead vehicle (see Figure 6.12). Table 7.1 shows 
that the critical lag gap is affected by the relative speed with respect to target lane lag 
vehicle. A positive sign of this attribute implies indicating that the critical lag gap of the 
lane-changing vehicle is larger if the lag vehicle in the target lane is moving faster (i.e. 
gap closing). Similar to the critical lead gaps, the critical gaps are found to be smaller 
for aggressive drivers. Given the estimation result in Table 7.1, the lag critical gap is 
written as follows; 

Ü=
G;,H<M,H , = exp	 0.421 + 0.015	∆x$&8=H , − 2.418	ϑ=

H<M + Å=
H<M ,  (7.9) 

Where; 

Ü=
G;,H<M,H ,    : Lag critical gap at target lane $ of driver +	at time , 

∆x. $&8=H (,)  :  Relative speed between the driver + and the lag vehicle in the direction 
of the target lane $ at time , 

Å=
H<M , 	~	B(0, 0.863V)  

The specific individual constant of lag gap model is slightly larger compared to all 
critical gap mechanisms. This finding implies that the lane-changing driver is more alert 
when accepting the lag due to the difficulty in interpreting the lag vehicle behaviour 
(i.e. observe through the mirror) rather than the downstream traffic movement. This is 
in agreement with the findings of Bham (2008) for uncongested situations.  
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Figure 7.5 Variation of median critical lag gap and observed accepted lag gap in 
different lane-changing mechanism as a function of relative speed 

Figure 7.5 shows the variation of median and descriptive statistic of  the lag gap as 
function of relative speed. As expected, the median value of critical lag is slightly 
smaller compared observed lag acceptance as expected.  

 Estimation of Acceleration Model 

The proposed acceleration model consists four components: car-following regime 
model, free-flow regime model, gap threshold distribution and reaction time 
distribution. As discussed earlier in Chapter 5, the model extends the car-following 
regime condition by relaxing the relationship between car-following behaviour and 
stimulus condition. In this case, the study specifies four different sub-models in the car-
following regime; acceleration with positive relative speed, acceleration with negative 
relative speed, deceleration with positive relative speed, and deceleration with negative 
relative speed. 

 Acceleration modelling setup 

The proposed acceleration model estimation follows the maximum likelihood approach 
with a conditional on gap threshold distribution Ü∗  and the driver reaction time ä  as 
discussed in Section 5.3. Briefly, these are the procedures of acceleration model: 

1. Define the reasonable value for upper and lower bound of both truncated gap 
threshold distribution Ü∗  and reaction time distribution ä . The current model 
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presumes that the lower boundaries of both distributions are the minimum value of 
the observable gap towards the front vehicle. This assumption simplifies the 
modelling estimation procedure.  

2. Specify the explanatory variables on both car-following regime and free-flow 
regime. The proposed model considers several explanatory variables i.e. speed, 
gap/headway to front vehicle, distance to exit, no. of front vehicle at the current 
lane, occupancy, relative speed between subject and object vehicles, and relative 
speed between the subject vehicle and the speed limit 

3. Perform the estimation for all beta parameters with maximum likelihood method 
condition on headway threshold and driver reaction time. The likelihood function 
of acceleration model can be seen in Section 5.3. 

4. Follow step 1 to 3 for different values of Üã<r	&+'	äã<r  and the modelling 
specification until the maximum log-likelihood is obtained. 

Same with the lane-changing model, the iteration process is performed in R 
programming under Maximum Likelihood package (Henningsen and Toomet, 2010) 
with Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. 

 Acceleration model estimation result 

By applying the same dataset with lane changing modelling estimation, all beta 
parameters in the acceleration model are estimated jointly using the likelihood method 
conditional on gap threshold and reaction time distributions. As mentioned earlier, the 
study presumes that the lower bound of the reaction time and gap threshold distributions 
equal minimum observed gap, which is 0.6 sec (see Table 6.8). This assumption 
simplifies the number of combinations of both distributions in the estimation process. 
In that case, the estimation process requires only setup the upper bound of both gap 
threshold and reaction time distribution.  

Several modelling specifications with different upper boundary values of both attributes 
have been tested in the estimation process (stage 3) to identify the optimum acceleration 
model. Table 7.3 shows the estimated maximum likelihood values from different 
combination of both gap threshold and reaction time distribution. Note that the lower 
boundaries of both distributions are 0.6 sec as discussed earlier. The iteration results 
imply that the acceleration model likelihood function reach the maximum for condition 
äã<r = 4 sec, Üã<r = 11 sec, while the lower boundaries of both distributions 
äãq==	Üãq= = 0.6 sec. The estimation results of the proposed acceleration model are 
presented in Table 7.4. 
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Table 7.3 Estimated likelihood value for different upper boundaries of gap threshold 
and reaction time distribution 

Reaction Time 
(sec) 

Gap Threshold (sec) 
10 11 

3 -24268.39 -23816.35 
4 -24355.86 -23810.51 
5	 -24462.64 -24500.95 

All parameters in all modelling components have expected signs and significant t-value, 
expect the parameters for the gap threshold distribution. Although both constant and 
standard deviation of the reaction time distribution have expected sign, the t-value 
indicates that the parameters are less significant. This condition may appear as there is 
none of vehicle trajectory dataset which are appropriate to explain the driver reaction 
time. However, we need to retain those parameters representing the reaction time, which 
is critical component in acceleration model. 

Similar to the lane changing model, the application of asymptotic t-test is used to 
capture the difference among the constant on the car-following regime models.  Given 
the estimated parameters and covariance matrix, the tested null hypothesis F6*,&66,− =
F6*,&66,+ of t-test is expressed by: 

FG[,<GG,y − FG[,<GG,å

-&) FG[,<GG,y + -&) FG[,<GG,å l/V =
−0.0311
	0.00115

= −26.992 (7.10) 

Then, the t-test result for the null hypothesis F6*,'%6,+ = F6*,'%6,− equals 6.221. Given 

the results, it is possible to reject the null hypothesis at 5% level of significance as they 

are greater than the critical value (1.711).  Those values imply that individual driver 

acceleration and deceleration behaviour are significantly different in each type of 

stimulus (positive relative speed or relative negative speed). 

The following sections will present and discuss estimation result of acceleration model: 
car-following regime, free-flow, gap threshold distribution and reaction time 
distribution. 
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Table 7.4 Acceleration model estimation results 

Modelling Variables Parameters Std. error t-value 

Car-following regime 
Acceleration with ΔV (+) 

Constant 0.0312 0.00115 27.10 
Relative speed (m/sec) 0.890 0.089 9.96 
Space gap (m) 0.505 0.049 10.32 
σG[,<GG,å 1.086 0.026 41.843 

Acceleration with ΔV (-) 
Constant 0.000119 0.000002 50.150 
Relative speed  (m/sec) -0.0762 0.0142 -5.359 
Space gap (m) 0.0697 0.0265 2.627 
Speed (m/sec) -2.592 0.032 -84.339 
σG[,<GG,y 1.601 0.016 52.744 

Deceleration with ΔV (+) 
Constant -0.876 0.016 -54.340 
Relative speed  (m/sec) -0.0670 0.0074 -9.020 
Distance to exit (km) 4.822 0.096 50.375 
σG[,JIG,å 0.826 0.009 87.738 

Deceleration with ΔV (-) 
Constant -1.136 0.039 -29.436 
Relative speed (m/sec) 0.396 0.010 40.745 
Space gap (m) -0.0496 0.0015 -32.919 
σG[,JIG,y 0.911 0.007 123.271 

Free-flow regime 
Constant 0.0773 0.0043 18.163 
Desired speed constant 14.444 0.734 19.675 
No. of front vehicles -0.817 0.106 -7.723 
σ[[ 0.795 0.009 92.415 

Gap threshold distribution (0.6 sec < Ü∗ < 11 sec) 
Constant 0.799 0.177 4.519 
σé∗ 	 0.998 0.655 1.523 

Reaction time distribution (0.6 sec < τ < 4 sec) 
Constant 0.859 0.524 1.639 
σè	 0.100 0.371 0.271 

Number of observation 17,891 
Number of driver 1,386 

Number of parameters 25 
Initial Log-Likelihood -41682.34 
Final Log-Likelihood -23810.51 

Adjusted Rho-Bar Square 0.429 

∗)	$%&'	()	*)(+,	-%ℎ. 01%%' − 0345%6,	-%ℎ. 01%%' 
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 Car following regime 

 The proposed acceleration modelling framework specifies the driver’s car-following 
behaviour or response as a function of stimulus and sensitivity component. As discussed 
in earlier there are four sub-models in the car-following regime; acceleration with 
positive relative speed, acceleration with negative relative speed, deceleration with 
positive relative speed, and deceleration negative relative speed.  

The stimulus component is a function of relative speed between the object vehicle and 
subject vehicle at the same traffic streams. In fact, the term of stimulus is slightly 
different when the subject vehicle faces a merging movement of the adjacent lead 
vehicle. This movement governs the subject vehicle to consider and response the 
stimulus from the merging vehicle rather than the front vehicle at his/her current lane.  
In the estimation, a dummy notation is introduced to identify the resources of stimulus; 
(1) if the adjacent lane lead vehicle tends to merge and (0) if no merging effect. 

Several explanatory variables explain individual acceleration and deceleration 
behaviour in the car-following regimes including space gap, speed, and remaining 
distance toward the exit (off-ramp of weaving section).  

The space gap explains individual driver sensitivity in three car-following conditions: 
acceleration with positive relative speed, acceleration with negative relative speed, and 
deceleration with negative relative speed. This variable fits well in the acceleration 
model instead of time gap which is used in the lane-changing model. In this case, the 
distance gap is a clear distance between front edge of subject vehicle and rear edge of 
the object vehicle in the same traffic stream. Note that, the modelling specification using 
time gap provides an unexpected result and sign in the overall model. Incorporating the 
gap with merging adjacent vehicle as explanatory variable results a similar problem as 
well. This study therefore considers only the space gap with the current lane front 
vehicle as one of the sensitivity component. Intuitively, this condition is acceptable as 
the driver consider to maintain the safe gap toward the front vehicle and leave gap the 
for the neighbouring traffic to merge safely into his/her current lane. 

More detailed analysis and discussions on estimation result of car-following regime 
model are presented below. 

Acceleration with positive relative speed 

Estimation result defines both the positive relative speed and space gap to explain the 
car-following acceleration during positive relative speed. The relative speed represents 
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the stimulus component of the car-following regime model while the gap captures the 
driver’s sensitivity in corresponding to the appearance of the stimulus. 

As shown in Table 7.4, both the relative speed and gap have positive sign. The positive 
sign in the relative speed denotes that the vehicle acceleration increases correspond to 
the increment of the relative speed between the subject and object vehicle. Furthermore, 
the increased positive relative speed leads the gap between those vehicles to become 
larger. This condition allows the vehicle to accelerate faster compared to situation where 
subject vehicle faces smaller relative speed and gap.  

The acceleration with positive relative speed model is given by: 

&=
G[,<GG,å , = 0.0312	 Ü= , z.|z| 	 ∆xå , − ä= z.gêz + Å=

G[,<GG,å(,)          (7.11) 

Where; 

&=
G[,<GG,å ,   : Car-following acceleration of driver +, conditional on positive ∆x at 

time , 

Ü= ,    : Available space gap towards the front vehicle at the observed time (,)  

∆xå , − ä= :  The absolute value of the relatively positive speed between the speed 
of the object vehicle x=yl  and subject vehicle x=  at time t − τ= . 

τ=  : Reaction time of vehicle + (sec) 

Å=
G[,<GG,å , 	~B(0, 1.086V)  

Acceleration with negative relative speed 

This modelling specification captures a situation where the subject vehicle tends to 
approach the object vehicle. The negative relative speed represents the stimulus of the 
car-following while both space gap and speed explain the driver’s sensitivity component 
of the acceleration model.  

Table 7.4 summarises the result of the car-following acceleration with negative relative 
speed. The negative sign in the relative speed implies that the vehicle acceleration 
decreases with the increased of the subject vehicle speed. As expected, the space gap in 
the sensitivity component has positive sign. The speed, which is the denominator of the 
sensitivity, has a negative sign. The vehicles under this stimulus condition accelerate 
faster when the gap is relatively large while they accelerate less as the gap toward front 
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vehicle become small. The parameters explain that the subject vehicle prefers to join 
the downstream traffic in a convenience movement during the short period.  

The car-following acceleration with negative relative speed can be expressed by: 

&=
G[,<GG,y , = 0.000119 ∗

∆'= , z.zìîz

x= , yV.|êV ∗ ∆xy , − ä= yz.zîìV + Å=
G[,<GG,y(,) (7.12) 

Where; 

&=
G[,<GG,y ,   : Car-following acceleration of driver +, conditional on negative ∆x at 

time , 

∆'= ,   : The distance between the subject vehicle + and the object vehicle + −
1 in front at time , (m) 

∆ïy , − ä= : The absolute value of the negative relative speed between the speed of 
the object vehicle x=yl  and subject vehicle x=  at time t − τ= . 

Å=
G[,<GG,y , ~B(0, 1.601V)  

Deceleration with positive relative speed 

This modelling specification represents the situation when the subject vehicle 
decelerates in order to providing a safe gap for the neighbourhood lead vehicle that is 
about to merge into current lane or preparing for lane-changing movement. Similar to 
the previous car-following modelling regime, relative speed represents the stimulus for 
the car-following regime. Meanwhile, the remaining distance to exit explains the driver 
sensitivity during the car-following deceleration with positive relative speed. 

As expected, the positive relative speed in this modelling specification has a negative 
sign. This sign implies that the deceleration is slightly decreased correspond to the 
relative speed increment. The vehicle deceleration in this condition is relatively more 
relax compared to the vehicle which faces negative relative speed. A positive sign for 
the remaining distance implies that the subject vehicle decelerates more aggressive 
when it gets closer to the exit in order to leave a large gap for the neighbourhood to 
merge safely. 

Therefore, the deceleration with positive relative speed is given by: 

&=
G[,JIG,å , = −0.876 ∗ '=Irq: , ñ.gVV ∗ ∆xå , − ä= yz.zìîz + Å=

G[,JIG,å(,) (7.13) 
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Where; 

&=
G[,JIG,å , : Car-following deceleration of vehicle +, conditional on positive ∆x at time 

, 

'=Irq: ,  : Remaining distance to the mandatory lane changing point of the +:ó driver 
at time (,). 

Å=
G[,JIG,å , ~B(0, 0.826V)  

Deceleration with negative relative speed 

Estimation result defines that both relative speed and gap affect the deceleration 
behaviour while facing a negative relative speed. It is worth noting that the relative 
speed captures the stimulus component of car-following regime decision. In the 
meantime, the space gap represents the driver’s sensitivity that affects his/her response. 

As shown in Table 7.4 a positive sign of negative relative speed implies that the subject 
vehicle deceleration is increased of the negative relative speed. Note that the negative 
relative speed indicates that the subject vehicle is significantly faster than the object 
vehicle. The subject vehicle reduces slightly the deceleration with the decreased of 
negative relative speed. Meanwhile the gap has negative signs as well. This finding 
confirms that the vehicle deceleration tendency is more aggressive in correspond with 
the decreased of gap between the subject and object vehicles. 

The car-following deceleration with negative relative speed is written as follows: 

&=
G[,JIG,y , = −1.136 ∗ Ü= , yz.zñêì ∗ ∆xy , − ä= z.{êì + Å=

G[,JIG,y(,)       (7.14) 

Where; 

&=
G[,JIG,y ,  : Car-following deceleration of vehicle +, depending on negative ∆x at time 

, 

Å=
G[,JIG,y , ~B(0, 0.911V) 

Sensitivity analysis 

The sensitivity analysis in this study presents the impact of various variables in car-
following regime behaviour. Unless the observed explanatory variables are varied, the 
other variables in the sensitivity analysis are constant at the mean value as summarised 
in Table 7.5. 



 

 

-166- 

Table 7.5  Variables default value for sensitivity analysis 

Variables Value 

Space gap (m) 80 m 

Speed !  25 (m/sec) 

Remaining distance "#$%&  1 km 

Positive Relative Speed ∆!(  3 m/sec 

Negative Relative Speed ∆!)  -3 (m/sec) 

 

Figure 7.6 Car-following acceleration sensitivity with various factors and depending 
on relative speed condition: positive relative speed (a and c), and negative 
relative speed (b, d and e) 
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Figure 7.6 illustrates the variation of mean acceleration value depending on relative 
speed. Note that all figures on the left side (a, and c) relates to positive relative speed 
while the right side (b, d, and e) relate to negative relative speed 

In terms of relative speed, the slope of acceleration with positive relative speed is 
decreased in correspond with the increased relative speed. This finding implies that the 
vehicle acceleration is significantly affected by the drive aggressiveness and vehicle 
capability to respond the stimulus appearance. Meanwhile, the slope of acceleration 
with negative relative speed is decreased gradually as the subject vehicle becomes faster 
than the object vehicle due to safety issue. 

Figure 7.7  Car-following deceleration sensitivity with various factors and relative 
speed condition dependent: positive relative speed (a and b) and negative 
relative speed (c and d) 

Figure 7.7 shows the mean value of deceleration behaviour with relative speed in 
different explanatory variables. Both figures on the left side (a, and c) relate with the 
deceleration with positive relative speed while the right side represents the variation of 
negative relative speed (b, and d)  

The slope of the deceleration with positive relative speed decreases correspond with the 
increased of relative speed. This finding is intuitively acceptable, as the driver requires 
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less effort to decelerate and provide a safe gap for the neighbourhood vehicle to merge 
toward the current subject lane. If the positive relative speed is small, the subject vehicle 
requires slightly higher deceleration in this regard. 

In the negative relative speed, the deceleration is increased significantly with respect to 
increasing relative speed (a negative value). The variation mean value demonstrates that 
the vehicle in this condition is more sensitive to the change of negative relative speed 
between 0 and -2 m/sec. Then, the slope of deceleration decreases corresponds with the 
increased of negative speed. This finding confirms that the limitation in vehicle 
mechanism and driver's aggressiveness have a significant impact on the deceleration 
capacity. 

As discussed earlier, the remaining distance component has a significant effect on the 
deceleration with positive relative speed. The slope of deceleration is decreased 
significantly at the beginning of weaving section. This finding confirms that the traffic 
tends to decelerate at the beginning of weaving section to pre-emptive the neighbouring 
traffic movement and their plan to move safely over the weaving section. 

 Free flow regime 

Similar to the car-following regime, the driver’s response to a free flow regime is a 
function of the stimulus and driver’s sensitivity. The stimulus component in a free-flow 
regime modelling specification is a function of the desired speed V=òô , which is an 
explanatory function variable and observed speed at the time , − ä . The estimation 
result defines the number of lead vehicles as an explanatory of desired speed. 
Meanwhile, the sensitivity constant represents the driver’s sensitivity during the free-
flow movement. The free-flow regime modelling specification is performed under 
linear form instead.  

The acceleration behaviour in free-flow traffic regime is affected by the number of 
current lane front vehicles (see Table 7.4) . The number of the lead vehicle in a free-
flow regime model has a negative sign. The negative sign implies that the vehicles 
decelerate more aggressive due to the increased number of the front vehicle during the 
free-flow regime. Equation  7.15 expresses the estimated free-flow regime model: 

 &=
[[ , = 0.0733 ∗ (14.444 − 0.817 ∗ ö=(t)) − x= , − ä= + Å=

[[(,)  (7.15) 

Where: 

&=
[[ ,     : Acceleration of vehicle + under free-flow regime at time , 
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ö=(t) : Number of vehicle in front of vehicle + at time , 

x= , − ä=  : Vehicle + speed at time , − ä= 

Å=
[[ , ~N(0, 0.801V)  

The sensitivity analysis represents the impact of the number of front vehicle variable in 
the free-flow movement behaviour. A linear function of the free-flow regime indicates 
that the vehicle decelerates aggressively with respect to the increased traffic on the 
downstream. This analysis confirms that the traffic tends to decelerate at the beginning 
of weaving section, though the vehicle moves under a free-flow regime as shown in 
Figure 7.8. 

Figure 7.8 Free-flow sensitivity with respect to the number of vehicles 

 Gap threshold distribution 

The gap threshold (sec) distribution assists to classify a regime of each car-following 
event whether it falls into a car-following or free-flow regime. The current study 
describes the distance toward the front vehicle as the gap (distance between the front 
vehicle back-edge and the subject vehicle front-edge). As discussed in Section 5.2.3, 
the current study presumes that the gap threshold distribution follows a lognormal 
distribution which is truncated in both sides (lower and upper boundaries).  

The truncated lognormal distribution in the proposed model fits with the profiles of the 
gap acceptance between the subject and front vehicle distribution where a high 
proportion of traffic prefers a small headway during their movement as seen in Figure 
6.12 (b). Furthermore, the proposed acceleration model suggests that the lower 
boundary of the truncated lognormal distribution equals to the minimum observable gap 
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between the subject and the front vehicle. Assuming that none of the observed vehicle 
accepts gap that is smaller than 0.6 sec in order to maintain the safest gap between them. 
This assumption simplifies the estimation process.  

The application of truncated lognormal distribution is certainly avoiding the negative 
value and finiteness of gap that never occurs in the real traffic. The proposed 
acceleration model incorporates the gap threshold distribution as a conditional 
specification of the car-following behaviour joint density. 

Given Equation 5.13, the gap threshold distribution can be expressed as follows: 

* Ü=∗ =
1

Ü=∗. 2.506
õ

ln	(Ü=∗) − 0.799
0.998

0
 

i*	0.6 ≤ Ü=∗ ≤ 11 

û,ℎ%)üi0% 
(7.16) 

The joint estimation defines that the gap is distributed between 0.6 and 11 sec. The 
proposed acceleration model suggests that the minimum gap threshold equals to the 
minimum observable gap between the subject and the front vehicle. Note that no vehicle 
accepts gap that is smaller than 0.6 sec in order to maintain the safest gap between them. 
This assumption simplifies the estimation process.  

Several possible values between 10, 11, and 12 sec were observed as the maximum gap 
threshold value. However, the estimation result suggests that the gap threshold 
maximum value equals 11 sec. The dataset shows that approximately 2% of the traffic 
facing headway larger is than 11 sec. 

Further, the probability of the vehicle + on a car-following regime at time , is 
formulated as follows: 

Figure 7.9 presents both gap threshold distribution and probability of car-following 
based on the given Equation 7.16 and 7.17 respectively. The median, mean and standard 

†= 6&) − *($$(üi+8	&,	,i°%	, = † Ü= , ≤ Ü=∗    

= 1 −
Φ

$+ Ü= , − 0.799
0.997 − Φ

$+ Ü∗,ãq= − 0.799
0.997

Φ $+ Ü∗,ã<r − 0.799
0.997 − Φ $+ Ü∗,ãq= − 0.799

0.997
0

 

0.6 ≤ Ü=∗ ≤ 11 

 

û,ℎ%)üi0% 

(7.17) 
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deviation of the gap distribution threshold are 2.07, 2.66 and 2.82 sec. The descriptive 
statistic values are estimated based on Equations 5.15, 5.16 and 5.17. 

Figure 7.9 Gap threshold distribution and probability of car-following regime as a 
function of the time gap  

Figure 7.10 Comparison of mean gap threshold distribution between the estimated 
result, Ahmed (1999) and Herman and Potts (1961) 
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Figure 7.10 measured the distance between subject and front vehicle as headway 
(distance between the front vehicle front-rear and the subject vehicle front-rear). The 
mean value of headway threshold distribution in Ahmed (1999) equals to 3.17 sec. 
Although the current model has the lower average value slightly, the estimated gap 
threshold has the similar pattern with Ahmed's study. Both studies show that the 
gap/headway is increased correspond to the increased speed mean value. Herman and 
Potts (1961) defined the headway threshold as a constant at 61m (200 ft) for all variation 
of speed. This assumption leads to being an unrealistic result as the traffic in the real-
world need larger gap due to the increased of the speed and maintains a safety distance 
toward the front vehicle. 

 Reaction time distribution 

Similar to gap threshold distribution, the reaction time distribution follows a lognormal 
distribution with a truncation on both sides. This assumption implies that a high 
proportion of driver prefers a short reaction time while less proportion of driver requires 
a large reaction time distribution. Moreover, both side truncated lognormal distribution 
ensures that the population reaction time shows a positive and finite value. The 
proposed acceleration model specifies the reaction time distribution as conditional form 
of the acceleration model joint density function together with the gap threshold 
distribution.  

Based on Equation 5.15 and estimation result, the probability density function of 

reaction time can be expressed as follows: 

* ä= =
1

ä=0.010
õ

$+ ä= − 0.859
0.100

0
 

i*	0.6 < ä= ≤ 4 

(,ℎ%)üi0% 
(7.18) 

The estimation result defines that the driver’s reaction time is between 0.6 and 4 sec. In 
this case, the proposed car-following model presumes that minimum value of reaction 
time distribution equals to the gap threshold distribution lower bound. This assumption 
suggests that none of the subject vehicles prefers a reaction time that is less than 0.6 sec 
to maintain the safest headway/gap towards the front vehicle.  
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Figure 7.11 Probability Density Distribution Function (PDF) and Cumulative 

Distribution Function (CDF) of driver reaction time 

Figure 7.11 illustrates both probability density function and cumulative distribution 
function of reaction time. By applying Equations 5.18, 5.20, and 5.21 The reaction time 
distribution median, mean and standard deviation values are 2.36, 2.37 sec and 0.06. 

As described in Section 5.2.4, the model included several explanatory variables that 
affect the driver’s reaction time such as types of vehicle, traffic density/occupancy, the 
front vehicle speed. However, incorporating those explanatory variables provides an 
unexpected result including smaller likelihood value, insignificant t-statistic value and 
sign of explanatory variables. Consequently, the current study includes the specific 
constant only that represents the mean value of driver’s reaction time.  

Furthermore, this study compares the estimated reaction time distribution with the 
previous studies comprising Ahmed (1999), Toledo (2003) studies as shown in Table 
7.6. Note that current study and both previous studies presume the relative speed 
between subject and front vehicle as the stimulus component of the car-following 
behaviour 
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Table 7.6 Variation of reaction time distribution parameters from different studies 

Studies 
Reaction time 

threshold 
Sample 

Size 
(veh) 

Median 
(sec) 

Mean 
(sec) 

Std. dev. 
(sec) Lower Upper 

This study 0.6 4 1,386 2.36 2.37 0.25 
Toledo (2003) 0 6 442 0.85 1.1 1 
Ahmed (1999) 0 3 402 1.31 1.34 0.31 

The estimated median, mean of reaction time distribution in this study are slightly larger 
compared to the previous works. Meanwhile, the standard deviation is slightly smaller 
compared to Ahmed (1999) and Toledo (2003). The difference in the estimated 
parameters of reaction time distribution appears because of several factors such as 
characteristics of site location, the traffic condition, the length of observation period, 
the modelling framework and the estimation procedure. Note that the current study 
focuses on the weaving section with a moderate traffic condition where the traffic tends 
to relax during their movement in the observation area.  

This research covers a significant large of dataset compared to both previous studies. 
Having a real knowledge of the road network and traffic condition affects the awareness 
of the drivers when moving on a particular stretch of road. The driver tends to relax in 
this condition and prefers longer reaction time. In general, the estimated mean, median 
and standard deviation are within the range of acceptable reaction time value.  

Overall, extending the acceleration model framework particularly in the car-following 
regime model allows variation of stimulus conditions in both car-following behaviours. 
This proposed model provides a new horizon and flexibility in capturing various car-
following behaviours as the responses of stimulus and driver’s sensitivity. The 
extension of acceleration model in this study allows four different car-following 
behaviours: acceleration with positive relative speed, acceleration with negative relative 
speed, deceleration with positive relative speed, and deceleration with negative relative 
speed. The sensitivity term in both car-following and free-flow regime models 
represents the unobservable variable. This study presumes that both gap threshold and 
reaction time distribution follow lognormal distribution as a conditional form of the 
likelihood estimation. Note that the model faces same issues with the previous 
acceleration to incorporate the driver sensitivity and socio demographic data to explain 
individual driver reaction time due to the inevitability of information in the current 
dataset. Having the socio demographic data (i.e. gender, and age) assist to improve the 
accuracy in predicting the driver reaction time. 
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 Summary 

The lane changing model in the current research captures two levels of the decision-
making process during the lane-changing movement: target lane choice and gap 
acceptance. The proposed model incorporates various lane-changing mechanisms, 
which corresponds with the lead/front vehicle movement during the lane changing 
process. The study observes three different lane-changing mechanisms: solo, platoon 
and weaving. Those lane-changing tactics are part of the gap acceptance behaviour. 
Furthermore, the model includes the heterogeneity component capturing the variation 
of driver preference during the lane changing process which is identic with the level of 
driver’s aggressiveness. 

Parameters in both target lane choice and gap acceptance model were estimated jointly 
with likelihood estimation procedure with conditional on the heterogeneity. The target 
lane is a function of several explanatory variables including the average speed, 
occupancy, relative speed of the current lane front vehicle and target lane lead vehicle, 
path plan and heterogeneity. The estimation result indicates that most of traffic prefers 
lane 3 while they avoid moving on the far-side lane (lane 5). The path plan variable 
confirms that the driver prefers performing a pre-emptive lane changing at the 
beginning of weaving section. Interpreting the heterogeneity variable, it is more likely 
that the aggressive driver in the moderate traffic flow prefer left lane rather than right 
lane. 

Various lane-changing mechanisms have a significant effect on the critical gap 
acceptance. The solo gap acceptance is a function of both relative speeds towards the 
front and the lead vehicle respectively. The platoon lane changing is significantly 
affected by the relative speed between the subject and front vehicle at the current lane, 
which changes lane. Meanwhile, the weaving lane changing is affected by the relative 
speed of target lane lead vehicle. All the relative speeds in critical lead gap are negative 
denoting that the subject vehicle requires a smaller gap if the current lane front vehicle 
and target lane lead vehicle move faster than his/her speed. The aggressive driver is an 
individual who accepts smaller critical gap all else being equal. The driver 
aggressiveness varies associated with the lane-changing mechanisms. The weaving 
lane-changing mechanism, which tends to face a largest reduction critical gap, is the 
most aggressive driver compared to the other lane-changing mechanisms. 

The difference of specification in critical lag gap associated with lane-changing 
mechanism is insignificant. The current study, therefore, retain the common critical lag 
gap model. A positive sign of relative speed between target lane lag and subject vehicles 
explains that the critical lag gap is increased as the lag vehicle moves faster than the 
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subject vehicle (i.e. gap closing). Individual-specific constant of critical lag gap is 
sligtly larger compared to the critical lead gaps of all lane-changing mechanisms. This 
finding denotes that individual driver is more vigilant with accepting available lag due 
to difficulty intepreting the lag vehicle behaviour rather than the current lane front 
vehicle and the target lane lead vehicle. 

The proposed lane-changing framework shows interesting result and practical 
implication in the weaving section design process. For example, parameter values 
indicate that (a) all else being equal, platooned lane-changing involves smaller gap (b) 
for aggressive drivers, the critical gaps of weaving lane changes are significantly 
smaller (c) platoon and weaving drivers are more sensitive to relative speed changes 
and increase their critical gaps significantly with negative relative speed, and (d) lane-
changing is more likely to occur at the beginning of a weaving area, particularly if 
multiple lane changes are required to follow the path. The implications of (a) and (b) 
can be considered from a safety point of view:  platoon and weaving lane-changing 
mechanisms are potentially unsafe and should, therefore, be discouraged.  An 
intervention on the traffic management may require maintaining a large gap among the 
traffic, equalises the vehicle speed and critical gap among those lane-changing 
mechanism resulting on the improvement of lane-changing efficiency according to (c) 
condition. Spreading the merging and diverging traffic across the weaving section 
would minimise the conflict intensity at the beginning of weaving section according (d). 
Indeed, this can improve the safety aspect of weaving section. 

This section compares the estimated of both critical gaps and lag, with the observed 
accepted gaps and lag as a function of relative speed. This phase is part of validation 
process. In this case, the study represents the observed accepted gap as non-linear 
regression. The analysis illustrates that the median of critical gaps is relatively smaller 
compare to the regression of the observed accepted gaps for all variation of relative 
speed. Similar condition appears in the critical lag. The differences between those 
values denote that individual driver tends be conservative by finding large gap and lag 
for changing lane in a safe manner. 

Meanwhile, the proposed acceleration model defines the car-following behaviour as a 
function of the stimulus and driver’s sensitivity components. In this case, the stimulus 
is a relative speed’s linear function of an absolute value while the sensitivity is a 
function of explanatory variables as regards particular observation period. Furthermore, 
the application of gap threshold distribution in this study classifies the car-following 
condition into two regimes: car-following regime and the free-flow regime. The 
extension on the car-following behaviour and relative speed assumptions lessen the 
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limitation in capturing various stimulus (relative speed between the subject and object 
vehicles) condition impacts over the decision in the car-following regime. In this case, 
there are four types of decision in the car-following regime: acceleration with positive 
relative speed, acceleration with negative relative speed, deceleration with positive 
relative speed, and deceleration with relative negative speed. 

All parameters in the acceleration model were estimated jointly using the likelihood 
estimation procedure conditional on gap threshold and reaction time distributions. The 
estimation result shows that the sensitivity term in acceleration with positive relative 
speed is a function of space gap, while the acceleration with negative relative speed is 
a function of space space gap and speed. The sensitivity component in deceleration with 
positive relative speed is a function of remaining distance toward the mandatory lane 
changing location. Meanwhile, the deceleration with negative relative speed sensitivity 
component is a function of gap. In the free-flow regime, the model indicates that the 
vehicle tends to decelerate in correspond with the increased number of vehicle. Both 
the gap threshold and reaction time distribution is presumed to follow a truncated 
lognormal distribution with the lower boundary equals 0.6 sec. This assumption is based 
on minimum gap acceptance toward the front vehicle in the vehicle trajectory dataset. 
Note that, no vehicle accepts smaller gap than 0.6 sec toward the front vehicle. 
Meanwhile, the upper boundaries for the gap threshold and reaction time are 4 sec and 
11 sec respectively. Given the estimation result, the mean and standard deviation of the 
gap threshold distribution are 2.66 and 2.82 sec, while for the values for reaction time 
distribution are 2.36 and 0.06 sec respectively. 

As a final point of this section, both estimation results of the lane-changing model and 
car-following model were estimated based on a same dataset that consists of 1,386 
vehicles and 17,981 events. The dataset was gathered from the traffic video trajectory 
data during the highest 15 minutes period of a particular motorway weaving sections. 
The fact is that the appearance of auxiliary lanes and short distance between the entry 
point (beginning of weaving section) and mandatory lane changing location (beginning 
of weaving section) has significant impact on the estimation result. However, even in 
its current form, the developed models have a strong potential to improve the fidelity of 
microsimulation tools in the context of improved simulation of weaving sections in 
moderate congestion levels. 
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Chapter 8 Conclusion 

This chapter summarises the research and highlights the main contributions of this 
Ph.D. thesis. Directions for the further research are discussed at the end. 

 Research Summary 

Driving in a weaving section is a unique condition and complex, where the driver 
requires adjusting his/her path and maintains the safe space toward the front/lead 
vehicle in a relatively short length of the road. In this case, the lane-changing and 
acceleration behaviours are critical which affect the traffic performance in weaving 
section.  

Lane changing in a weaving section is challenging where the driver requires deciding 
lane choice and available gap simultaneously during his/her movement in a weaving 
section. In the real traffic, the lane-changing vehicle in weaving section may move with 
different strategies (mechanisms) due to the complexity of weaving section traffic 
condition. The similar condition appears in acceleration behaviour, where the driver 
may response differently with the stimulus condition. Those conditions have significant 
impact on the driver behaviour models, which is omitted by the previous studies. These 
limitations of the previous models challenge this Ph.D. study to develop new modelling 
frameworks for both driving behaviours in weaving section particularly in moderate 
traffic flow condition. 

Lane-changing model 

This current research extends the state-of-the-art random utility-based lane-changing 
model to explicitly incorporate the effect of lane changing mechanism (platoon, 
weaving and solo) in the modelling framework as an intermediate plan. Thus, it changes 
the structure of the hierarchical of lane-changing process slightly as follows target lane 
choice, lane-changing mechanisms, and gap acceptance. The lane choice is latent 
(unobserved) while it is only the executed lane-changing movement (action) that can be 
observed. The driver requires accepting both gaps correspond with the lane changing 
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mechanisms (solo, platoon, and weaving) to change the lane. Otherwise, the driver stays 
in the current lane. The plans and actions of the driver conditional on individual-specific 
are presumed to be independent over a period. Individual-specific latent variable of 
level aggressiveness captures the interdependencies among the decisions plan (target 
lane) choice and action of the same driver. The level of aggressiveness in the target lane 
choice in the proposed model is related to the relative location of the target lane. 
Meanwhile, individual aggressiveness in the action level is associated with the gap 
acceptances and lane changing mechanisms. Therefore, the estimated lane-changing 
latent plan can be structured as shown in  Figure 8.1 (} denotes the number of available 
lane choice while }’ denotes the lane-changing direction associated with current lane) 

Figure 8.1 Estimated modelling framework for lane-changing decision making 
processes 

All the parameters in the proposed lane-changing model were estimated jointly with 
likelihood estimation procedure. The target lane is a function of several explanatory 
variables including the average speed, occupancy, the relative speed of the front vehicle, 
path plan and individual-specific constant. In general, the estimation results on the lane 
constant indicate that most of the traffic prefers to move on the middle lane and curbside 
lane. Moving on the fast lane (far-side lane) is less preferable during the less congested 
traffic condition. The path-plan captures the disutility of driving in the wrong lane. The 
magnitude increased significantly when approaching the mandatory lane-changing 
point. In additions, this finding indicates that the driver is most likely perform a pre-
emptive lane changing if the final target lane is multiple away from the current lane. 
Individual-specific constant in the target lane choice model captures the driver 
aggressiveness with respect to the target lane location either left or right of the current 
lane location. A positive sign on the left lane changing direction implies that aggressive 
drivers are more likely to choose a left lane over a right lane. 
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The estimation results indicate significant differences in parameters as well as 
influencing variables among the three types of lane changing mechanisms. This is 
supported by statistically significant improvements in the goodness-of-fit results as well 
as asymptotic t-tests. Furthermore,	both of critical lead and lag gaps are significantly 
affected by the relative speed. The solo lane-changing mechanism is explained by the 
relative speed between the subject vehicle and both current lane front and target lane 
lead vehicles. Meanwhile, the platoon and weaving are affected by the relative speed 
between the subject vehicle and the current lane front vehicle, the relative speed 
between the subject vehicle and the target lane lead vehicle respectively. All the relative 
speeds has negative signs indicating that the subject vehicle accepts smaller gap if the 
current lane front vehicle and target lane lead vehicle move faster than the subject 
vehicle. 	

Individual-specific constant captures the level of aggressiveness that varies depends on 
the lane-changing mechanisms. In comparison among those three mechanisms, the 
aggressiveness affects significantly the weaving movement which receives the largest 
critical gap reduction due to the movement complexity while least impact on the platoon 
lane-changing mechanism. Changing lane in a weaving mechanism, therefore, requires 
higher level of aggressiveness, as the driver needs to be more alert and responds swiftly 
due to the change of traffic situation during the lane-changing movement. Meanwhile, 
the driver in platoon mechanism is relatively relaxed as this type of movement receive 
less effect of aggresiveness compared to the other mechanism. The lane-changing traffic 
in platoon mechanism needs only to follow the front vehicle movement, who trigers the 
interaction for creating a space at the target lane. 

This study retains the critical lag gap model to be same for all type lane-changing 
mechanisms. Differentiating the critical lag is statistically insignificant difference. The 
relative speed in the critical lag gap model has positive sign implying that the critical 
lag gap is increased with the relative speed (i.e. lag gap closing). Individual-specific 
constant of critical lag gap is sligtly larger compared to the critical lead gaps of all lane-
changing mechanisms. This finding denotes that individual driver is more vigilant with 
accepting available lag due to difficulty intepreting the lag vehicle behaviour rather than 
the current lane front vehicle and the target lane lead vehicle. 

The median, median and standard deviation of the estimated critical lead gaps of all 
lane-changing mechanisms are;  solo: 0.42, 0.43, and 0.05 sec; platoon:  0.10, 0.29, and 
0.89 sec; weaving: 0.68, 0.93, and 1.03 sec. 
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The parameter values in the proposed lane changing model estimation results imply 
several key findings: 

(a) All else being equal, platooned lane-changing involves smaller gap. 
(b) For aggressive drivers, the critical gaps of weaving lane changes are significantly 

smaller. 
(c) Platoon and weaving drivers are more sensitive to relative speed changes and 

increase their critical gaps significantly with negative relative speed. 
(d) Lane-changing is more likely to occur at the beginning of a weaving area, 

particularly if multiple lane changes are required to follow the path. 

Further, those four key findings imply the weaving section design in various aspects 
such as; 

1. The implication of findings (a) and (b) can be considered from a safety point of 
view:  platoon and weaving lane-changing mechanisms are potentially unsafe and 
should, therefore, be discouraged. 

2. An engineering intervention in the weaving section could include advice on 
keeping a safer headway. Advice/intervention (such as; the variable speed limit, 
ramp metering) to equalise vehicle according to findings (c), reduce the critical gap 
and therefore improve lane-changing efficiency 

3. For finding (d), an improvement on weaving section geometric or lane-marking to 
separate lane changing for merging from lane-changing for diverging would 
minimise the intensity of lane-changing at the beginning of weaving area and 
spread lane-changing across the whole weaving area. This can improve safety as 
well as the traffic performance of the weaving section.  

Though, this study provided the opportunity to observe higher shares of platoon and 
weaving mechanisms, it lacked observations on other mechanisms (e.g. courtesy and 
forced lane changings). The results therefore may not be directly applicable to 
congested or over saturated situations. 

Acceleration model 

Acceleration model is a function of the stimulus and the driver sensitivity attributes. 
The stimulus is represented by the relative speed between the front vehicle and lead 
vehicle. The proposed model classifies the acceleration behaviour in two conditions: 
car-following regime and a free-flow regime. This classification depends on the gap 
threshold.  Similarly with the driver reaction time, this study presumes that gap 
threshold is assumed to be a random variable that is independent between individuals 
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and follows the lognormal distribution with truncation in both sides. This assumption is 
identical with the distribution of the observed gap between the observed vehicle and the 
front vehicle (see Figure 6.12). Meanwhile, the lognormal assumption in the reaction 
time implies that a high proportion driver prefers small reaction time.  

Focusing on the car-following regime, this study relaxes the assumption on the previous 
studies allowing each car-following behaviour (acceleration or deceleration) relate to 
both relative speed conditions (positive and negative). Therefore, there are four types 
of car-following behaviours: acceleration with positive relative speed, acceleration with 
relative negative speed, deceleration with relative positive, and deceleration with 
relative negative speed. This proposed structure provides flexibility in capturing some 
traffic, which acts differently from the stimulus. Although perceiving a positive 
stimulus, a high proportion of traffic prefers decelerates at the beginning of weaving 
section due to several reasons i.e. maintain the safest distance with the front vehicle, 
leave a safe space for the neighbourhood vehicle to merge at the same lane, and prepare 
for lane-changing movement.  

Estimating with the same dataset with lane-changing model, all the parameters in the 
proposed acceleration model is estimated jointly under the likelihood estimation 
procedure. The estimation results show several key findings on the acceleration 
behaviours as follows: 

• The driver sensitivity of the car-following acceleration with positive relative speed 
condition is a function of space gap while the car-following acceleration with 
negative speed is a function of space gap and speed. 

• The car-following deceleration with positive relative speed sensitivity is a function 
of remaining distance towards the exit. The parameters in this stimulus condition 
indicates that the observed vehicle tends to decelerate higher in the beginning of 
weaving section compared to the end of weaving section. 

• The sensitivity of car-following deceleration with relative negative speed is a 
function of headway. 

• The free-flow acceleration is a function of number of vehicle on the current lane. 
In fact, the vehicle tends to decelerate higher as the number vehicle is increased. 

The median, mean and standard deviation of the gap threshold distribution are 2.07, 
2.66 and 2.82 sec. Then, the median, mean and standard deviation of reaction time 
distribution are 2.36, 2.37 and 0.06 sec. 

The research however has several limitations. First of all, the data used for the research 
includes trajectory data extracted from video recordings, which though widely used, 
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have known limitations such as the possibilities of spatial measurement errors, 
capability of the recording tools, and absence of driver characteristics and information 
about indicators. The used of semi-automatic vehicle trajectory extractor for a large 
observation area may contribute to the measurement error. Indeed, the quality of dataset 
affects the estimation results. This study, therefore, requires a proven algorithm to 
transfer the pixel into coordinate and fitted the trajectory vehicle. The quality of the 
models would certainly be improved with better data.  

Secondly, the proposed models are estimated using data collected from moderately 
congested traffic conditions. Though this provided the opportunity to observe higher 
shares of platoon and weaving mechanisms, it lacked observations on other 
mechanisms, as such courtesy and forced lane changings. The results therefore may not 
be directly applicable to congested or over saturated situations (as modelled by 
Choudhury, 2007; Hidas, 2005; Wan et al., 2014; Wang, 2006). 

However, even in its current form, the developed models have a strong potential to 
improve the fidelity of microsimulation tools in the context of improved simulation of 
weaving sections in moderate congestion levels. The current models are yet to be 
validated in any microsimulation tool. Moreover, it will be interesting to test the 
transferability of the modelling framework in other weaving sections and other 
congestion levels. Another potential direction of extension can be to investigate the 
effect of the lane changing mechanism on acceleration behaviour.  

 Contributions 

This thesis contributes to improve state-of-the-art of lane-changing and acceleration 
models in following aspects: 

• This study offers an insight of driving characteristics and general modelling 
framework for lane changing and acceleration behaviours at particular weaving 
section with moderate traffic. The lane-changing mechanisms have significant 
impact on lane-changing characteristics. Meanwhile, relaxing the relationship of 
sensitivity and stimulus condition allows to capture various acceleration phenomena 
which does not considers in the previous study. 

• An extended of latent plan lane-changing modelling framework is proposed. This 
framework incorporates the various lane-changing strategies (i.e. individual/solo, 
platoon and weaving), correspond with the front/lead vehicle movement. The lane 
changing strategies become critical in a weaving section, where the vehicle has to 
adjust the lane in a relative short length of the road The empirical traffic data 
constitute that significant traffic proportion (23.4%) involves in a group behaviour 
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where 12.7% performs a weaving manoeuvre and 10.7% in platoon lane-changing 
mechanism. The flexibility of the latent plan modelling framework allows 
integrating that strategies/mechanism as an intermediate plan.  

• The proposed acceleration model relaxes the condition of stimulus in the car-
following regime. This approach relates each car-following behaviour with both 
stimulus conditions whether positive or negative. In this case, the stimulus 
condition is a function of the relative speed between the subject and object vehicle. 
This framework provides an opportunity to capture the variation of car-following 
behaviours, especially in the weaving section where some of the traffic may act 
differently with the stimulus due to maintaining the safe space in order to anticipate 
the lane-changing movement of neighbourhood vehicle or preparing for pre-
emptive lane-changing movement. The vehicle trajectory analysis implies that 
43.5% of the traffic falls in deceleration with positive relative speed while 38.5% 
involves in deceleration with negative relative speed. Giving the traffic condition, 
it confirms that most of the traffic in the beginning of weaving section decelerates 
and tends to response differently from the stimulus condition.  

• For each of the lane-changing and acceleration models, all the parameters are 
estimated jointly using a likelihood estimation procedure. Both models are 
estimated based on the same set of vehicle trajectory data. Each model is estimated 
separately. In comparison with the previous studies, the estimation result goodness-
of-fit implies that incorporating various lane-changing mechanisms in the proposed 
latent plan lane-changing model and relaxing the relationship between the stimulus 
and individual driver respond in the acceleration model produce better 
understanding on the driving characteristic in the weaving section particularly. 
Moreover, the developed of the proposed lane-changing and acceleration models 
have a strong potential to improve the fidelity of microsimulation tools in the 
context of improved simulation of weaving sections in moderate congestion levels. 

• The estimation results of lane changing model imply that lane-changing 
mechanisms are critical in the lane-changing decision-making process particularly 
in a moderate traffic flow.  The use of path impact captures the disutility of being 
on the wrong lane which increases significantly as the traffic approach the 
mandatory lane-changing point (off-ramp). In this case, the traffic prefers to 
perform a pre-emptive lane changing at the beginning of weaving section. 
Individual-specific constant represents the driver heterogeneity in terms of the level 
of aggressiveness when choosing a specific target lane choice and critical gap in 
various lane-changing mechanisms Interpreting the heterogeneity variable, it is 
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more likely that the aggressive driver in the moderate traffic flow prefer left lane 
rather than right lane. Meanwhile, in critical gap model, the driver aggressiveness 
is most in weaving mechanism and least on platoon mechanism. Identifying various 
lane-changing mechanism characteristics assists the researchers and engineers to 
address the conflict (i.e. spreading the merging and diverging traffic due to high 
lane-changing intensity in upstream traffic) by intervening the traffic with optimum 
solutions (i.e. improvement of marking and signing, the installation of ramp 
metering and road geometry improvement). 

• The result indicates that relaxing the stimulus condition in acceleration provides 
better interpretation of the car-following behaviour in the weaving section. The 
remaining distance toward the mandatory lane changing location affects the 
decision on the deceleration with positive stimulus. A positive sign of remaining 
distance implies that the vehicle tend to decelerate higher at the beginning of 
weaving section to provide a safe space towards the front vehicle and preperation 
to adjust their lane. Assuming that the minimum gap threshold and reaction time 
are equal, it simplies the estimation procedure and is intuitively acceptable as the 
aggressive driver may maintain the gap at the minimum reaction time. The gap term 
is more realistic in representing the distance between the subject and front vehicle 
rather than the headway, as it is more difficult for the driver to measure in the real 
traffic. 

 Direction for Further Research 

A large number of studies have been carried out on the lane-changing behaviour and 
car-following behaviour. The proposed lane-changing latent plan modelling framework 
and acceleration model provide a significant enhancement in capturing various lane-
changing and acceleration behaviours respectively. In fact, these modelling frameworks 
retain the opportunities for further development. Some of further research direction is 
discussed as follows: 

• This thesis presents the extension of latent plan modelling framework for lane-
changing behaviour in the weaving sections. The framework incorporates explicitly 
various lane-changing mechanisms associated with the front/lead vehicle 
movement as the intermediate plan. The application of this framework for different 
traffic characteristics and other multilane facilities offers a benefit for the modelling 
development.  

• Incorporating the state-dependence condition in the lane-changing modelling 
allows capturing the impact of the interdependencies and causalities relationship 
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among the lane-changing decision. Thus, it is a need to find or develop an algorithm 
and estimation procedure which able to integrate this component.  

• An integration of the proposed lane-changing and acceleration models is an 
advance development. This integration provides enormous benefits in 
understanding the nature of driving behaviour as holistic approach and fits properly 
with driving behaviour in the real traffic as shown in Figure 8.2. However, the 
increased of modelling complexity requires an advance estimation procedure and 
tools. 

Figure 8.2 The proposed integrated driving behaviour 

• In terms of driver heterogeneity and reaction time, this study finds difficulty to 
generate a related attribute for those components from the video trajectory dataset. 
The study, therefore, suggests to combines individual trajectory data set with the 
socio-demographic data (i.e. gender and age).  

• Data collection, extraction and management process play one of the key roles in 
ensuring the quality of modelling result. A low quality of dataset will provide an 
inaccurate result and misleading interpretation on the model. Several factors affect 
this quality such as, the traffic recording quality, the location of camera, recording 
angle. This stage is challenging and time consuming, as the current available 
trajectory extraction requires us to follow and track the observed vehicle semi-
automatically. It requires a high concentration from the extractor. An obscuring 
from the lead vehicle increased the difficulty on having an accurate dataset. Indeed, 
a video application with ability on detection moving object helps to solve the issues 
and provide more accurate vehicle trajectory dataset. It is also suggested to use an 
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advance video recording tools (i.e. HD quality), which provide a good and clean 
video recording. 

• This result presents interesting practical implications, which may improve the 
fidelity of microscopic traffic simulation tools, particularly in the context of 
weaving section traffic analysis. Note that the current models are yet to be validated 
in the microsimulation tools. Moreover, it will be interesting to test the 
transferability of the modelling frameworks in other weaving sections and 
variations of traffic flow condition. 
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Appendix-A Discrete Choice Model 

General Framework of Discrete Choice Model 

The discrete choice modelling framework is developed based on the random utility 
approach which originally hypotheses that: 

• Each individual is a part of homogenous population that act rationally and have 
perfect information. It assumes that the individuals accept the choice (i.e. lane 
choice, available gaps) that maximizes their utility. 

• The observed objects faces the same set alternatives $ = 	 1, 2, 3…}  and set of 
measured vectors of measured attributes of the individuals and their alternatives. $ 
given individual + is endowed with a set of attributes x ϵ X and in general will face 
a choice set $(+)	¶	$. 

• Each option $	¶	} is related with a net utility function (s). However, the researcher 
cannot receive complete information about all the elements considered by the 
individual making a choice. We, therefore, presumes that the utility of individual + 
of choosing alternative	$ can be represented by two components: 

• Schematic part s=H  : function of the measured attributes 

• Random term Å=H   : the idiosyncrasies and each individual specific tastes 
together with any observation or measurement errors which is created by the 
researcher. 

Hence, this the discrete choice model can be expressed as follows; 

ß®© = 	ß®© + ™®©      (A.1) 

Assuming that, all individuals share the same set of alternatives and face the same 
constraints from a point of view (Ortúzar and Willumsen, 2007).  According to 
Equation A.1 above shows that the s represent subscript +, it means that a function 
of the attributes x and this may differ from one individual to the other individual 
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and assumes that the residual Å are random variable with mean 0 and the probability 
distribution to be specified; 

s=H = FH´=H 	      (A.2) 

 Where; 

FH : Vector of estimated parameters associated with choice l 

´=H  : Vector of explanatory variables associaed	with individual + for choosing $  

Note that the estimated parameters are constant for all individual n (fixed-

coefficient-model) which varies across the alternative 

• Each individual (driver) choose the maximum utility alternative, that the individual 
chooses $ if only if; 

s=H ≥ s=≤, ≥	© ∈ ¥       (A.3) 

Where 	} denotes available alternatives for individual +. That is the equation can 
be transformed into; 

s=H − s=≤ ≥ 	 Å=H − Å=≤      (A.4) 

As it is difficult to observed the Å=H − Å=≤  can be observed with the certitude if 
holds. Thus the probability of choosing one set of alternative $ is written by; 

†=H = †)(4	 Å=≤ ≤ Å=H +	 s=H −	s=≤ 	, )$ ∈ }  (A.5) 

However, the distribution of the error term is undefined hence is not possible to 
derive an analytical expression for this model. The only thing that the researcher 
can assumes that the residuals are random variable that follows with a certain 
distribution. We can denote the function of error term is * Å = 	* Ål, ÅV, *, Å= . 
Let the probability of utility function in Equation A.5 is transform to; 

†=H = * Å 'Åµ∂   (A.6) 

Where; 

∑B =
Å=≤ ≤ Å=H +	 s=H −	s=≤ ,

s=H + Å=H > 0
∀	$ ∈ } (A.7) 
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It is necessary to classify of random utility models that produce by the utility 
function with independent and identically distributed (IID) residuals across the plan 
choices, time, and individuals. Therefore, the * Å  can be moldered into; 

*	 Ål,ÅV, … . Å∂ = 	 8	 Å=
∂

=

 (A.8) 

Note that, the error structure is given by 

6(- Å=H , Å=ÑH
Ä = πH∫

0
 

i*	, = ,Ñ, + = +Ñ&+'	$ = $′
û,ℎ%)üi0%  

(A.9) 
6(- Å=H , -=Ä = 0	∀	,, $, +, +′ 

 

6(- s=H , s=Ä
HÄ =

�H V + πH∫

�H V

�H�HÄ

0

 

i*	$ = $Ñ, + = +Ñ&+'	, = ,′
i*	$ = $Ñ, + = +Ñ&+'	, ≠ ,Ñ 

i*	$ ≠ $Ñ, + = +Ñ&+', ∀,
û,ℎ%)üi0% 	 

(A.10) 

where  πH∫is the standard deviation of error random terms Å=H . Moreover, the 
different on Å=H  distribution assumptions indicates to different discrete choice model 
approaches (i.e. probit or logit). 

The utility distribution represent by 8	 Å+  that associated with option then the 
general expression reduces into; 

†H = 8 ÅH ' ÅH 8 Å≤ 'Å≤
ΩæyΩøå¿æ

y∾≤¬H

∾

y∾
 (A.9) 

The formula A.9 above can extended in fact that a two dimensional geometric 
together with extensions to the more general case of correlation and unequal 
variances, hence the Equation A.9 can be expressed as; 

†H = 	 8	 ÅH ' ÅH Ü	(ÅH + sH − s≤)
q	¬√

∾

y∾
 (A.10) 
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Where; 

Ü	 ƒ = 	 8	 ƒ 'ƒ
≈

y∆
 (A.11) 

The assumption of IID constitutes that the alternative is independent while a 
combination or correlation between alternatives will usually violate in this 
condition 

Multinomial Logit Model (MNL) 

MNL is a simplest and  practical of discrete choice model where the random residual is 
distributed IID Gumble (Domencich and McFadden, 1975). The general framework of 
MNL can be expressed as follows: 

†=H =
%ƒ1 FH	s+

$

%ƒ1 F≤	s+
}

H∈≤
 

(A.12) 

The utility function is commonly is represented as linear function where the estimated 
parameters F  of the alternatives relate with a standard deviation of Gumbel variation 
as written by: 

The MNL follows the principle of Independence Irrelevant Alternative (IIA) saying 
that: where any two alternatives having a non-zero probability of being chosen, the ratio 
of choices probability over the other alternatives remains unchanged by the presence of 
any additional alternative in the choice set (Luce and Suppes, 1965). 

FV = «V
6πV (A.13) 
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Appendix-B HCM 2010 Weaving 
Section Analysis 

Volume adjustment 

All demands in the analysis shall be converted into to their ideal equivalent condition 
using this expression: 

»q =
…q

† À. *ÃÕ. *K
 

(B.1) 

Where; 

»q  : Flow rate for traffic flow i in ideal condition (pc/h) 

…q  : Hourly traffic volume for flow i in prevailing condition (veh/h) 

† À : Peak hour factor …lyóŒœ; 4 ∗ …l|yãq=  

*ÃÕ  : Proportion of heavy vehicle traffic 

*K   : Proportion of driver factor 

i   : F-F (freeway-to-freeway), F-R (freeway-to-ramp), R-F (ramp-to-freeway), R-R 
(ramp-to-ramp), w (weaving), nw (non-weaving) 

Critical lane-changing movement 

The minimum hourly rate of lane-changing movement in one-sided weaving section can 
be expressed as follows: 

}~ãq= = »µy–. }~µy– + »–yµ. }~–yµ  (B.2) 
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Meanwhile, the formula for two-sided weaving section is written by 

}~�q= = »µyµ. }~µyµ  (B.3) 

Where; 

}~ãq= : Minimum number of lane-changing required by all weaving vehicles to execute 
the movement in hourly rate, lc/h 

}~µy– : Minimum number of lane-changing required for each vehicle in the ramp-to-
freeway flow 

}~–yµ : Minimum number of lane-changing required for each vehicle in the freeway-
to-ramp 

}~µyµ : Minimum number of lane-changing required for each vehicle in the ramp-to-
ramp 

Maximum length of weaving section 

The section length in HCM is based on the traffic volume ratio between weaving and 
non-weaving, and number of available lanes for lane-changing. Giving the }> 
parameter, the maximum length (}—“”	) of weaving section is written as follows: 

}ã<r = 	 5728(1 + x∑)l.ì − [1566BLH]    (B.4) 

Where; 

}ã<r : The maximum length of weaving section (based on the short length definition) 
(ft) 

x∑ : Volume ratio (Volume of weaving/Total traffic in the segment) 

BLH : Number of lanes for weaving manoeuvre. 

}ã<r and }>	 justify whether the observed location is analysed as a weaving section or 
two separate junctions. There are two conditions in this regard, if the value of }> is less 
than the }ã<r value (}>< }ã<r). And then, if the }> is greater than or equal to the 
maximum (}> ≥ }ã<r) than the observed location is analysed as a separate two 
junctions. 
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Weaving section capacity 

HCM (2010) defines two methods for determining the weaving section capacity which 
are by the density or demand traffic flow. Note that the smallest value of those results 
is taken into consideration for determining the weaving section V/C ratio. The weaving 
section capacity associated with density is given by: 

While, the formulation for weaving section associated with demand traffic flow is 
expressed as follows: 

~L = ~÷LH. B. *ÃÕ. *K 
(B.6) 

Where; 

~L  : Total weaving section capacity (veh/h) 

~òLH  : Capacity per lane of weaving section under ideal condition associated with 
density (pc/h/ln) 

~÷LH  : Capacity per lane of weaving section under ideal condition associated with 
demand traffic flow (pc/h/ln) 

Then, the following step is to compare the total weaving section capacity ~L  from 
those two equations (B.5 and B.6). Giving the smallest value of ~L, the volume and 
capacity (v/c) ratio can be written mathematically: 

- 6 = 	
». *ÃÕ. *K
~L

 (B.7) 

If the v/c ratio is greater than 1.00, the section fails to perform a smooth traffic 
movement and result a Level of Service F. The analysis is ended in this case. 
Meanwhile, the analysis will be continued if the v/c ratio is less than 1.00. 

Lane-changing rate 

The lane-changing rate is affected by two components including the weaving vehicle 
and non-weaving vehicle. Both components are estimated separately with different 
formula. The total lane-changing rate for weaving vehicles can be expressed as follows: 

~L = ~òLH. B. *ÃÕ. *K (B.5) 



-206- 

 

}~L = 	}~ãq= + 0.39 }> − 300 z.|. BV. 1 + ◊ÿ V  (B.8) 

Where; 

}~L  : Lane changing hourly rate of weaving vehicle over the weaving section (lc/h) 

}~ãq= : Minimum equivalent hourly rate of weaving vehicle lane changing within the 
weaving section (lc/h) 

}>     : Length of weaving section associated with short length definition (ft) (see. 
Figure 2.2) 

B   : Number of available lanes in weaving section 

◊ÿ        : Interchange density 

Meanwhile, the lane-changing rate for non-weaving vehicles which firstly initiates by 
estimating the non-vehicle index: 

◊=L =
}>. ◊ÿ. »=L
10000 	 (B.9) 

Note that two models are applied to estimate the lane-changing rate of non-weaving 
vehicle in weaving section:  

}~=Ll = 0.206. »=L + 0.542. }> − 192.6	. B 	 (B.10) 

And,  

}~=Ll = 2135 + 0.223 »=L − 2000  (B.11) 

Following condition is used to define the final lane-changing rate of weaving section; 

i*	◊=L 	≤ 1300: 

	}~=L = }~=Ll	 (B.12) 

i*	◊=L 	≥ 1950: 

	}~=L = }~=LV (B.13) 
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i*	1300 < ◊=L < 1950 

	}~=L = }~=Ll	 + }~=LV	 − }~=Ll	 .
◊=L − 1300

650  (B.14) 

Then, the total lane-changing rate of all vehicles  }~<HH  is estimated by : 

}~<HH = }~L + }~=L (B.15) 

Weaving section speed 

The space-mean speeds of both weaving and non-weaving traffic are the critical input 
in the weaving section analysis. They are estimated separately as shown in equation  

xL	 = xãq= +	
xã<r − xãq=

1 +	 0.226 }~<HH
}>

zîìê  
(B.16) 

 And 

Then, the average speed of all vehicles in weaving section can be written as follows: 

Where; 

xL  : Average speed of weaving vehicle in the weaving section (mi/h) 

x=L  : Average speed of non-weaving vehicle in the weaving section (mi/h) 

xã<r  : Maximum predicted speed (mi/h) 

xãq=  : Minimum predicted speed (15 mi/h) 

x∑  : Volume ratio (Volume of weaving/Total traffic in the segment) 

»L  : Total traffic flow per hour of weaving traffic (pc/h) 

»=L : Total traffic flow per hour of non-weaving traffic (pc/h). 

 

x=L = xã<r − 0.0072. }~ãq= − 0.0048.
»
B  

(B.17) 

x =
»L +	»=L
»L
xL

+ »=L
x∂L

 
(B.18) 
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An estimation of Level of Service (LOS) of the observed weaving section 

Phase Calculation 

Specifying input 
data 

PHF = 0.971 ; Heavy vehicles (†⁄) = 7% €⁄ = 1.5 ; Recreational 

vehicles = 0%; Driver population = regular commuters *K = 1 ; 

FFS= 70 mi/h ; ~òLH= 1200 pc/h/ln for FFS =70 mi/h; Interchange 

Density (ID) = 0.49, Terrain = level.  

 

Volume 
adjustment 

*ÃÕ =
l

lå‹› fi›yl å‹› fi›yl
 = l

låz.zî l.|yl
= 0.967 

Using Equation B.1 the flow rate for all four traffic flow in ideal 
condition (pc/h) is given;  

»–y– =2288 pc/hr; »–yµ =804 pc/hr ;	»µy– =1186 pc/hr ; »µyµ =1741 
pc/hr 

Then the flow for weaving and non-weaving  traffic is expressed ; 

»L = 804 + 1186 = 1990 pc/hr; 

»=L = 2288 + 1741 = 4029 pc/hr; =x∑ = 1990
6019= 0.33 

Configuration 
characteristics 

For one-sided weaving section; }~µy– = 1;  }~–yµ=1 ; BLH=2 

By Applying Equation B.2, the critical lane-changing movement 
equals;	}~ãq= = 1990	$6/ℎ 

D

C !"#"$ 1634$)*ℎ/ℎ
!-#"$ 754$)*ℎ/ℎ

!"#- 1113$)*ℎ/ℎ
!-#- 2147$)*ℎ/ℎ
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Maximum 
weaving length 

The maximum weaving section length is estimated based on 
Equation B.4 which is }ã<r= 5934.68 ft > 4149.2 ft ≈ 1265	° }>  

Capacity of the 
weaving section 

Capacity controlled by density: 

~òLH = ~ò[H 438.2 1 + x∑ l.ì + 0.0765}> + 119.8BLH  

         = 1317 pc/h/ln 

Based on Equation B.5, the estimated capacity controlled by density 
equals, 6363 veh/ln 

Capacity controlled by maximum weaving flow rate: 

~÷LH = 3500
x∑= 10586 pc/h 

Based on Equation B.6, the estimated capacity controlled by density 
equals, 10227 veh/h 

Controlling value of weaving section capacity is ~L =6363 veh/h 

The estimated v/c ratio is 0.91 (Equation B.7) (Less than 1, Not 
LOS F) 

Lane-changing 
rates 

For weaving vehicles, }~L =	2823 lc/h (Equation B.8) 

For non-weaving vehicle ; 

◊=L   = 819 < 1300 (Equation B.8) 

}~=L= 2116 lc/h 

Total lane-changing rate: }~<HH = }~L + }~=L= 4939 lc/h 
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Speeds Average speed of weaving vehicle; 

 xL = 68.41 mi/h (Equation B.16) 

Average speed of non-weaving vehicle 

x=L = 49.90 mi/h (Equation B.17) 

Average speed of all vehicles; 

x= 54 .80 mi/h (Equation B.18) 

Density and 
Level of Service 

ÿ =
÷
∂
Õ

 =  
ìzlê

|
|ñ.g

 = 22 pc/mi/ln 

Level of service C (Exihibit 24-9, HCM (2010) ) 
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Appendix-C Broyden-Fletcher-
Goldfarb-Shanno 
Algorithm 

Broyden-Fletcher-Goldfarb-Shanno (BFGS) is a quasi-Newton, a class of hill-climbing 
technique that estimates the parameters in non-linear optimisation problem. The quasi-
Newton algorithm assists the iteration process to constraint the optimum solution of the 
secant function ‡·yl  in defining the displacement of vector. Moreover, BFGS is the 
most effective compared to the other algorithms in solving non-linear optimisation 
problem (Nocedal and Wright, 2006; Lewis and Overton, 2009). 

The iteration in a quasi-Newton uses an approximation value of Hessian matrix, which 
is based on the difference in gradient ‚·yl  between iteration process, rather than the 
true value of Hessian matrix. It is worth noting that estimating the true Hessian value is 
computationally expensive. BFGS uses the inverse of Hessian matrix to define the 
direction (	1) during the iteration process. Instead of solving a linear system, the search 
direction in BFGS is a multiplication of a matrix/vector, which can be expressed as 
follows: 

1 = − ·∇*· (C.1) 

In this case, the use of inverse Hessian  ·  chanBFGSges the secant equation as 
follows: 

 ·‚·yl = 0·yl (C.2) 

Therefore, the optimisation process is given by: 

°i+i°i0%   −  ·yl ‰, 0345%6,	,(	  =  ⁄,  ·‚·yl = 0·yl (C.3) 
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where the unique solution 

 · = ◊ − Â·yl0·yl‚·yl⁄  ·yl ◊ − Â·yl‚·yl + 0·ylÂ·yl0·yl⁄  (C.4) 

Defining the initial value is a critical phase which affect the efficiency of the iteration 
process. In practice, the optimum initial value is a scalar multiple of the identity matrix 
where the scaling factor is the true Hessian Eigen values. 

 

 

 

 

 

 


