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Abstract

In this Ph.D. Thesis we investigate the viability of using quantum dot ensembles
as a quantum memory architecture through the use numerical simulations to study
population transfer within quantum dots. This is followed by an investigation into the
effects of high order wavemixing on the population transfer within two level systems,
which was born from effects noted while simulating quantum dots.

We study the initialisation of an ensemble of inhomogeneously broadened quantum
dots, introducing a novel initialisation method utilising pump field with a slow frequency
sweep. We focus on the properties of such an initialisation procedure and conclude that
the maximum initialisation fidelities are determined entirely by the Zeeman splittings
and decay rates of the quantum dots.

We study several possibilities for performing π rotations on the population of an
ensemble of quantum dots, and show the RCAP protocol is the most applicable. We
study this protocol in the context of quantum dots and give the optimal parameters to
use to generate high fidelity π pulses.

We then bring together our work on quantum dots population transfer with the
work of others covering the write and read procedures on quantum dots to provide a
feasibility analysis of the complete quantum memory protocol.

The work on wavemixing presented in this thesis uses a novel approach to analyse
wavemixing effects which is used to predict the population transferred in two level
simulations of wavemixing processes. We provide simulation confirmation of our
approach to analyse wavemixing effects and then go on to calculate the disruptive
effects of wavemixing caused by high intensity lasers on some simple systems. Finally
we show that large orders of wavemixing can, at least in principle, be used for coherent
population transfer.
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Chapter 1

Introduction: Quantum
Dots/Quantum Information

1.1 Quantum Information Processing

Quantum information processing has been shown to be capable of greatly increasing
the efficiency of certain computational problems such as factoring large integers [70],
searching databases [37] and simulating quantum systems [22]. Quantum communi-
cation enables the creation of distributed quantum networks allowing, among other
things, faithful transmission of quantum states over long distances via teleportation
and the ability to have completely secure communication between remote locations
using Quantum key distribution.

At the core of a Quantum Computer is the qubit, a quantum state that can be
represented by any quantum system with two (or more) well defined eigenstates,
pictorially represented by the three dimensional Bloch sphere, Fig 1.1. Physically
there are many different qubits that have been used; For example, the spin of a single
electron in silicon with a phosphorus donor [59], the hyperfine levels and phonon modes
in trapped ions[73], the charge state of superconducting devices [12], and many more.
Throughout this thesis we will be concentrating on two physical qubits implementations:
the photonic qubit, where the information is encoded in the state of a single photon,
which could be its polarisation, channel, arrival time or photon number and the
encoding of a qubit in an ensemble of electron spins, which we shall discuss in detail
later. To perform quantum information processing successfully, qubits must satisfy the
famous DiVincenzo criteria [25][24] and need to be capable of being initialised, rotated,
interacted with other qubits, stored, transported and measured. The combination of
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photons and electron spin ensembles provides the possibilities for easy transportation
and quantum gates with photons and stable storage in the spin ensembles.

Fig. 1.1 The qubit, represented by the Bloch sphere above has not only the classical
states "on", |↑•⟩ or |Z⟩, and "off", |↓•⟩ or |−Z⟩, but also superpositions of these two
with a phase ϕ given by 1√

2

(
|↑•⟩ + eiϕ|↓•⟩

)
, which gives the states represented by |X⟩

and |Y ⟩ for ϕ equal to 0 and π
2 respectively. In general a quantum state is given by

α|↑•⟩ +β|↓•⟩, where |α|2 + |β|2 = 1 corresponds to pure states which are on the surface
of the Bloch sphere and |α|2 + |β|2 < 1 corresponds to mixed states which are inside
the Bloch sphere.

Manipulations of the qubits within a quantum computer are all performed by
unitary gates that are either single qubit rotations around the surface of the qubits
Bloch sphere, for example the Hadamard gate; or multi qubit gates in which the
rotation of one qubit is conditional on the state of another qubit, for example the
controlled not (CNOT) gate. When performing a gate such as the CNOT gate it is
important that the state of the second qubit is rotated without classically measuring the
control qubit and therefore collapsing its state and destroying the quantum correlations
in the system. Single qubit rotations and the CNOT gate together are an example of a
universal set of quantum gates [2] and can therefore be used to construct any other
quantum gate.

1.1.1 Quantum Memories

A quantum memory is a physical system that can store the state of a qubit and return
it for use later; it must be capable of preserving the full information within the qubit,
including any entanglement with other qubits. An operational quantum memory cannot
use the classical approach of measure and write down as this destroys the quantum
nature of the information encoded within the qubit and any entanglement with other
qubits.
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Quantum memories are an integral part of realising many current ideas within
quantum communication and quantum information processing and are particularly
important for scaling up from single gates to fully functional quantum computers and
within linear optical quantum computers. [48]

Direct entanglement of two photons requires them to interact. One option for
interacting light could be through a material with highly non-linear properties, such
that the existence of one photon changes how the second photon travels through the
medium creating a controlled gate. The response of materials to single photons is
however too weak to implement this approach. A different approach uses the photon
statistics at beam splitters to entangle two photons, known as linear optical quantum
computing. The linear optical entangling gates can generate entanglement between
two photons, however the gates have only a probabilistic chance for success and require
further measurements [42] on one or more ancilla modes to determine whether the gate
was successful. Since the success of the gate is conditional on the measurements of the
ancillae the scheme becomes exponentially slower to run for higher gate numbers when
all gates need to be successful simultaneously, this is of course not scalable. Currently
all proposed implementations of linear optical quantum computers require some form
of quantum memory [43]. Quantum memories allow various stages of the computation
to be stored temporarily until further gates have been performed successfully, making
the use of the large network of gates required for quantum computing a possibility.

Photons are the obvious choice of carrier for quantum communication due to
their speed and weakly interacting nature, the qubit information can be encoded
in many ways including the polarisation, path and timing of the photon. However,
before quantum repeaters were considered, long distance quantum communication for
Quantum Key Distribution and for quantum networks was not considered to be feasible
with the current optical technologies. This was because of the exponential absorption of
photons in the fibre optic channels used making it exponentially expensive to faithfully
communicate a quantum state. Quantum repeaters make communication over long
distances feasible with lossy channels by exchanging and purifying entanglement with
neighbouring quantum repeaters, which can be placed sufficiently close such as to have
a reasonable probability of transferring the state [6]. The quantum repeaters in turn
swap the entanglement with their neighbours until pairs of maximally entangled states
are generated at the desired locations, which can be arbitrarily far apart. This protocol
changes the communication fidelity from one which is exponentially decreasing with
length to one which is only polynomially decreasing with length. One of the central
components of all quantum repeater protocols is a quantum memory, for example the
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DLCZ protocol [26], which uses entangled atomic ensembles. Generally the three level
Raman memory is discussed for this application, but it should be possible to use any
type of optical quantum memory with photon retrieval to the same end.

All processes within the quantum computer will operate at a fidelity which is below
unity and therefore each process introduces errors into the calculation. These errors
would quickly build up and degrade the calculation. However due to quantum error
correction these errors can be removed.

There are three possible errors that can occur in a photonic quantum memory. The
first is photon loss when the photon is not returned. The second error is when noise
that creates an extra photon alongside the signal photon. If the computational scheme
can detect multi-photon errors and discard them then these can be considered to be a
simple loss, else the error would lead to a computational error. The third possibility
is when the original photon is lost while a noise photon is also generated. Without
quantum error correction these will result in computational errors.

Some fault tolerant quantum computing schemes have been shown to be tolerant
to up to 50% loss rate[78], however these do not generally include corrections for
computational errors. A more recent paper [3] describes a scheme which can still
tolerate a high rate of loss, up to 25% while simultaneously including a tolerance to
computational errors of 0.6%. A quantum memory would have to function within these
bounds to be useful within a quantum computer.

1.1.2 Quantum Memory Process

The quantum memory process for can be separated into four distinct processes:

1. Initialisation:

Preparing the memory state to be ready to store a qubit.

2. Write in:

Transferring the qubit state from the external photonic qubit to a qubit encoded
within the ensemble memory.

3. Storage:

Performing any necessary actions to keep the qubit from being lost/decohering
during storage.

4. Read out:
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Transferring the state of the qubit from the memory back out to an external
photonic qubit.

1.1.3 Quantum Memory Implementations

While an optical qubit could be encoded in many ways, an optical quantum memory
can be reduced to being a pair of single photon storage devices. For the memories we
will consider here, only path amplitude and not polarisation can be stored in a single
device, so for a polarisation encoded qubit the qubit is first transformed into a path
encoded qubit as shown in figure 1.2. The black box single photon storage devices can
be anything that stores a single photon and deterministically releases it at a later time,
preferably on demand.

a b

Fig. 1.2 a.) An incoming polarisation encoded qubit is transformed into a channel
encoded qubit through a polarising beam splitter. A channel encoded qubit can then
be stored within the two single photon storage devices. The qubit is then jointly
stored between the two single photon storage devices, each single photon storage device
stores one of the original polarisation amplitudes independently b.) Reconstruction of
the original qubit is achieved by releasing the photon stored between the two devices
simultaneously back through the same optical circuit.

In this thesis we will be considering quantum memories based on ensembles of
Quantum Dots (QDs). Two potential options are Raman transfer and Electromag-
netically Induced Transparency (EIT). In three level Λ systems (see figure 2.2). For
EIT ∆ (shown in figure 2.2) is set to 0, whilst for Raman transfer ∆ ≫ Ω1,Ω2, δ. Both
systems have been widely studied in recent years [15, 30, 31] and both offer promise
for viable quantum memories. On one level EIT and Raman memories are similar
techniques as they both use ensembles of three level lambda systems, using the collective
coupling enhancement of

√
N between the light and the atoms where N is the number
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of interacting atoms/dots [47]. Both use a signal and control pulse that propagate
together to generate a collective atomic coherence, which we from now on shall refer
to as a "spin wave", in the ground states; as such these memory implementations
are sometimes analysed using similar methods [32]. However, compared to EIT, the
read and write operations of Raman transfer discussed later use different physical
methods. EIT generates a high dispersion from the interference between two absorption
pathways, absorption directly into the excited state and absorption into the ground
state mediated via the control pulse. This has the effect of allowing the signal pulse to
propagate through the medium at a reduced speed where it would normally have been
instantly absorbed. To store the signal the power of the control pulse is adiabatically
reduced, slowing the pulse further until the signal is absorbed as a spin wave in the
ground states of the ensemble. Raman memories however detune the control and signal
sufficiently from resonance such that absorption into the excited state can be safely
ignored, leaving only the coherent absorption of the signal into the second ground state
via the control pulse. Both methods store the state in a collective spin wave excitation
across the ensemble. The two approaches are each suitable for different applications.
EIT is more suitable for use when photon absorption time is longer than the atomic
lifetime (Γ−1) whereas the broadband pseudo state that is created in a fast Raman
transition is capable of storing much shorter, broadband photons [53].

The Raman memory protocol requires an ensemble with two stable ground states
and a third exited state, which is optically coupled to both ground states via different
polarisations, thus enabling them to be coupled separately. Since the Raman protocol
uses an off resonance transition it is fairly robust to inhomogeneities in the ensemble,
unlike EIT which requires each atom to be on resonance with both the control pulse
and the input photon as large inhomogeneities can destroy the transparency [54]. This
condition is particularly important later when we consider the inhomogeneities between
QDs, and leads us to only consider the Raman protocol where relevant.

Currently one of the more popular Raman memory experiments uses the Λ system
defined by the hyperfine levels of caesium gas as ground states to store the spin wave
and an excited P orbital for the transition [63]. The transition couplings are selected
via field polarisation and can therefore be addressed individually. The output fields
go through both polarisation and spectral filters allowing the weak signal field to be
distinguished from the much stronger control pulse. Current experiments are not yet
optically thick and therefore the transmitted signal is larger than the absorbed signal.
This experiment intrinsically contains Doppler shifted inhomogeneous broadening.
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A third QM implementation that is often discussed is the photon echo approach.
The technique can be performed on an ensemble of either two or three level systems.
Several different pulse schemes are commonly used but they all work by allowing the
dipoles to dephase during storage and be rephased later at a chosen retrieval time
which induces the emission of an output pulse by the ensemble. The problem with
this approach is that there is a fundamental signal to noise ratio that is below unity
[65] and applies to the commonly used schemes. As such this approach will not been
considered further here.

1.2 Quantum Dots

A Quantum Dot (QD) is something that can confine an electron or a hole in all three
dimensions. Instead of having a continuum of possible energy states like particles in a
bulk, sheet or wire, particles in a QD can only exist at specific discrete energy levels;
transitions between these levels produces discrete spectral lines. As a result of this
discreteness QDs are frequently referred to as artificial atoms. Quantum dots require
extremely small dimensions, usually on the order of nm, to confine the particles in well
defined quantum states.

Semiconductor QDs are of particular interest as potential quantum memories
because of their integrability into nano structure solid state photonic circuits. Other
potential quantum memories, such as NV centres in diamond and gas based memories
[15], require additional architecture to interface them with semiconductor devices. QDs
have the advantage of being fabricated using similar techniques and materials and
are of appropriate dimensions such that they should be integrable into semiconductor
hardware currently being developed [7].

In fabrication, as the length scales of components decrease, traditional nano-
fabrication techniques such as lithography become increasingly costly and impractical.
This has led to the use of techniques such as self-assembly which allow large numbers
of QDs to be produced relatively simply and cheaply. Stranski–Krastanov epitaxial
growth uses lattice-mismatched growth to nucleate small droplets of, for example,
InGaAs within a GaAs substrate [62] and can create structures of 10’s of nanometres
across. The position of self assembled QDs is in general not controlled, although the
dots can be placed on selected sites through prior lithographic patterning of the surface
if necessary [66]. However the size, shape and composition of the QDs produced using
self assembly is currently only partially controlled and therefore varies slightly between
any two dots, hence any properties that depend on the size and shape and composition
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of the QDs will also vary. The differences between the individual QD in a particular
ensemble produces an energy variation between their energy levels [64], resulting in
inhomogeneous broadening of the emission spectra. From now on we will refer to
these Stranski–Krastanov self assembled QDs as simply "Quantum Dots" (QDs) unless
explicitly stated otherwise.

The QDs may either be neutral or charged depending on the presence of any dopants
in the substrate or any fields applied to the system. Here we are interested in the
case of ensembles of charged QDs as these provide a large number of systems with
a pair of stable ground states given by a single electron spin (|↓•⟩, |↑•⟩). The lifetime
of the ground state electrons is very long and has been demonstrated to be of the
order of milliseconds [44], orders of magnitude larger than any gates performed on
the active photons in the computer. For individual dots population transfer times
can be as small as 38ps [60]. While manipulation of an ensemble with inhomogeneous
broadening would generally require longer gate times, these are still well within the dot
coherence time, as we shall show later. These ground states are optically coupled to
two unstable trion states with a lifetime of around 1ns [11], made up of two electrons
and a heavy hole. The hole spin determines the trion state (|↑•↓•↓◦⟩, |↑•↓•↑◦⟩). There are
various selection rules possible depending on the geometry of the fields, described in
section 1.2.1. These couplings allow for manipulation of quantum information held in
the state of the ground state electron, while using the electrons inherent stability for
storage.

With the QDs and transitions being considered here, the inhomogeneous broadening
presents itself primarily in differences between the energy gap Ex required to generate
an exciton which is the energy gap between the lower levels and the upper levels in figure
1.4. This inhomogeneous broadening means that we can only consider manipulations
that are insensitive to the exact value of Ex, this is contrary to much of the QD research
based upon single QDs which relies upon resonant fields, for example [60].

1.2.1 The Model

The research presented in this thesis is independent of the underlying heterostructure
and the types of state used in the implementation, as any ensemble of systems with a
set of basis states that are governed by the Voigt geometry Hamiltonian in equation
(1.4) will be consistent with the transfer mechansms that we present later. In this
section however we will consider the specific case of the interaction of the electron and
heavy hole negative trion spin states in QDs and their optical transitions. This will be
the example we refer back to throughout the thesis.
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We assume negligible light hole-heavy hole mixing, the tight confinement in a QD
leads to an energy splitting of 10’s of meV between the light and heavy holes [19]
allowing us to safely ignore the effects of the light hole states. We use the following
basis states |ψ⟩={|↓•⟩, |↑•⟩,|↑•↓•↓◦⟩, |↑•↓•↑◦⟩}, where ↑◦ represents an "up" spin hole and
↓• represents a down spin electron. We are interested in the coupling between the
ground state electron and the excited heavy-hole trion state of charged QDs under
the effect of an external magnetic field and arbitrary laser coupling. We assume that
the electron-trion transition can be modelled as a dipole, the wavelength of light
used is approximately 1µm while the average dot size is under 100nm so this should
be a reasonable approximation. This results in dynamics that are governed by the
Hamiltonian (1.1) below, as given by ([19, 77]).

H =


ωBg

e
z cos(θ) ωBg

e
x sin(θ) e−itω−Ω−∗ 0

ωBg
e
x sin(θ) −ωBg

e
z cos(θ) 0 e−itω+Ω+∗

eitω−Ω− 0 ET +ωBg
h
z cos(θ) ωBg

h
x sin(θ)

0 eitω+Ω+ ωBg
h
x sin(θ) ET −ωBg

h
z cos(θ)

 (1.1)

Where Ω+ and Ω− are left and right circularly polarised light. ET is the excitation
energy of the trion state, ωB = 1

2µB|B|, θ is the angle of the magnetic field to the
growth direction shown in figure 1.3 and g’s are the electron/hole g factors. ω+ and
ω− are the frequencies of the left/right circularly polarised light respectively. For
θ = 0 there are two optical transitions between the trion and electron states and two
dark transitions. Diagonalisation of the bare states for θ ̸= 0 results in four optical
transitions between the trion and electron states due to the non zero off-diagonal
components. There are two magnetic field configurations which are commonly used,
the Faraday geometry where θ = 0 and the Voigt geometry θ = π/2, where HF and
HV are the Hamiltonians in the Faraday Geometry and Voigt geometry respectively.

The Hamiltonian HF below is for the Faraday geometry with θ = 0 where we can
see that each lower state is coupled to a single upper state and there are no terms
coupling the pairs together.

HF =


ωBg

e
z 0 e−itω−Ω−∗ 0

0 −ωBg
e
z 0 e−itω+Ω+∗

eitω−Ω− 0 ET +ωBg
h
z 0

0 eitω+Ω+ 0 ET −ωBg
h
z

 (1.2)
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θ

B

Fig. 1.3 The magnetic field and sample orientation for the Hamiltonian in equation
(1.1), where QDs are grown on the lighter coloured plane. Circularly polarised radiation
is directed into the growth plane.

This Hamiltonian can be compared to the Voigt geometry Hamiltonian with θ= π/2
below.

HV =


0 ωBg

e
x e−itω−Ω−∗ 0

ωBg
e
x 0 0 e−itω+Ω+∗

eitω−Ω− 0 ET ωBg
h
x

0 eitω+Ω+ ωBg
h
x ET

 (1.3)

To see the dynamics in the basis of the bare states we first transform into a set of
basis states that diagonalises HV for Ω’s= 0 which results in the interaction picture
that will be used throughout this thesis, given by the states: |ψ′⟩ ={ 1√

2(|↑•⟩ + |↓•⟩),
1√
2(|↑•⟩ − |↓•⟩), 1√

2(|↑•↓•↓◦⟩ + |↑•↓•↑◦⟩), 1√
2(|↑•↓•↓◦⟩ − |↑•↓•↑◦⟩)}. This results in the Hamiltonian

H ′
V :

H ′
V =


ωBg

e
x 0 Ω∗

he
−iωt Ω∗

ve
−iωt

0 −ωBg
e
x Ω∗

ve
−iωt Ω∗

he
−iωt

Ωhe
iωt Ωve

iωt ET +ωBg
h
x 0

Ωve
iωt Ωhe

iωt 0 ET −ωBg
h
x

 (1.4)

Where Ωh and Ωv correspond to horizontally and vertically polarised light respec-
tively. Ωhe

iωt = 1
2

(
Ω+eiωt +Ω−e

iωt
)

and Ωve
iωt = 1

2

(
Ω+eiωt −Ω−e

iωt
)

for ω+ = ω− =
ω. In general there will be external control of the frequencies of the incoming polarised
radiation so the frequencies can be varied independently, such that Ωve

iωt → Ωve
iωvt

and Ωhe
iωt → Ωhe

iωht.
In this thesis we consider quantum dots measured in the Voigt geometry, where the

magnetic field is perpendicular to propagation direction of light. This arrangement
includes indirect couplings between the two ground states via the excited states,
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Fig. 1.4 The Faraday and Voigt geometries. For both cases there are two ground states
of spin up and spin down electrons: |↑•⟩ and |↓•⟩ (|1⟩ and |2⟩) and two excited trion
states: |↑•↓•↑◦⟩ and |↑•↓•↓◦⟩ (|3⟩ and |4⟩). a.) The Faraday geometry has two couplings
from |1⟩ → |3⟩ and |2⟩ → |4⟩ by circular polarised radiation Ω− and Ω+ respectively,
cross couplings are forbidden. b.) The Voigt geometry states are optically coupled
together with horizontally and vertically polarised radiation Ωh and Ωv respectively,
as shown by the dotted lines. The energy gaps between the levels are Eh and Ee

determined by the g factors and the external magnetic field and ET given by the trion
excitation energy.

resulting in the possibility of coherent population transfer between the states whist
not resulting in strong decoherence that would generally be associated with a direct
coupling. The dynamics for the Voigt geometry are given by the Hamiltonian in
equation (1.4) which is widely used in the literature [29, 60, 82]. The selection rules in
this geometry have been demonstrated to allow for complete and fast manipulation of
single QDs [60].

1.2.2 Quantum Dot Parameters

While the actual values for the QD parameters vary between different experiments
we will consider the following dot parameters as the "typical QD ensemble" quoted
throughout this thesis. These values have been chosen, where relevant, to be closer to
the favourable side of reported results with the assumption that the growth processes
would be modified towards building the optimal memory conditions.

The trion excitation energy ET can vary from 1 to 1.5 eV, where relevant we have
used ET = 1.2 eV here. Inhomogeneous broadening in ET can be between 5 and 50
meV [50, 58], we will assume 10mev broadening here. While the ground state and
trion splittings vary between experiments and depend on the magnetic field used
[56, 60, 68, 83], they are generally on an order of 0.1mev when in large (> 6T ) magnetic
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fields, we will use Ee ≈Eh ≈ 0.1 meV unless otherwise stated. Trion spontaneous decay
time is around 1ns [50, 72], corresponding to Γ31 = Γ32 = Γ42 = Γ41 = Γ = 0.004 meV
(which will be defined later in section 2.5.4). In a typical dot the decay rate Γ’s may
not be identical and will be influenced by the shape of the dot, we will however assume
the decay rates to be identical. A standard deviation of about 20% [11] for the dipole
strength has been measured between dots, which is not critical to any of the protocols
considered here.

Spin lifetimes, the time taken before a spin flip on average occurs, are dependent on
the magnetic field and have been measured in the 10’s of milliseconds [44]. Decoherence
times, defined by the loss of phase information of the qubit, have been measured to be
of a few µs [61]. These times mean that initialisation must be performed within a time
which is less than a few ms, ideally much less and the complete write to read storage
time must be performed faster than µs.

Throughout the simulation code behind this thesis a consistent set of "code units"
of 1 code unit of energy = 1meV and h̄= 1 has been used. These units have also been
used in all relevant plots unless otherwise specified.

1.2.3 QD Growth Limitations

The model given by section 1.2.1 is only valid for the light propagating normal to the
growth plane because of the asymmetries of quantum dots in the growth axis, both
from their width in the growth plane and their strain. For a QM using this geometry
there would need to be many layers grown to assemble a large enough ensemble. The
number of layers required is beyond current achievements. However, this is an active
area of research, with current groups capable of creating 10’s of layers of QDs [39, 76].
Because of these limitations we will now discuss the consequences of trying to store
an in-plane propagating photon in QD ensembles, which would only require a few dot
layers for the free space case, or a single dot layer for a planar waveguide case.

While there are many examples of optical experiments with light normal to the
growth plane [79], there are significantly fewer with optical fields propagating along the
growth plane, and these have not yet used strong fields to access the Voigt geometry,
some examples: [49, 55]. Bastard 1988 [5] derives coupling strengths in quantum wells
between radiation propagating in-plane and shows that only one polarisation, that with
an in-plane electric field, couples to the heavy holes. Transitions for radiation polarised
with its electric field normal to the growth direction are forbidden. We assume that
this is generally true as the dots are thin in the z direction such that the results in
reference [5] should be valid. For thicker dots, however there may be more bulk-like
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properties which would potentially allow access to the full Voigt geometry given in
figure 1.4b. In this thesis we therefore consider two cases, one with the full Voigt
geometry and one with only access to a single polarisation.

θ

B

Fig. 1.5 The magnetic field and sample orientation for in-plane optical setup. Magnetic
field B is placed at an angle ϕ to the growth direction. Only one polarisation couples
to the heavy-hole QD transitions. The central band indicates the approximate volume
of the sample assumed to be affected by incoming radiation which in general will not
be confined within a waveguide.

As we assume do not have access to the out-of-plane polarisation, this leaves only
the in-plane polarisation available for transitions. The coupling of this polarisation to
the trion states depends on the orientation of the magnetic field, given by ϕ in figure
1.5. If the magnetic field is completely in-plane ϕ= π

2 or completely out-of-plane ϕ= 0
then the coupling of the in-plane propagating, in-plane polarised radiation will be to
the equivalent of either the horizontally or vertically polarised transition in figure 1.4b
respectively. Not both at the same time, however, such that each ground state couples
to a different excited state. If however we consider the magnetic field orientations
between ϕ= 0 and ϕ= π

2 then it will be possible to couple to all four Voigt couplings
at the same time with a single polarisation, the Hamiltonian for this case is given in
equation (1.5). This is the equivalent to applying a diagonally polarised radiation in
the Voigt geometry.

Hϕ =


ωBg

e
x 0 cos(ϕ)Ω∗e−iωt sin(ϕ)Ω∗e−iωt

0 −ωBg
e
x sin(ϕ)Ω∗e−iωt cos(ϕ)Ω∗e−iωt

cos(ϕ)Ωeiωt sin(ϕ)Ωeiωt ET +ωBg
h
x 0

sin(ϕ)Ωeiωt cos(ϕ)Ωeiωt 0 ET −ωBg
h
x

 (1.5)
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Because we are only interested in the case when we have coupling that links both
ground states together via the excited levels we must set ϕ to a value in the interval
(0, π

2 ), of which we choose π
4 to maintain equal strength to both h and v couplings.

Hπ
4

=


ωBg

e
x 0 1√

2Ω∗e−iωt 1√
2Ω∗e−iωt

0 −ωBg
e
x

1√
2Ω∗e−iωt 1√

2Ω∗e−iωt

1√
2Ωeiωt 1√

2Ωeiωt ET +ωBg
h
x 0

1√
2Ωeiωt 1√

2Ωeiωt 0 ET −ωBg
h
x

 (1.6)

This results in a Hamiltonian with the same couplings as shown in figure 1.4b
but without the selection rules since there is only one incoming radiation mode.
Differentiation between different signals must now be done spectrally rather than
through polarisation, limiting the options for population transfer schemes. We will
refer to this as the in-plane geometry and will investigate the consequences in section
3.



Chapter 2

Introduction: Optics Theory

Throughout this thesis we look at the interaction between isolated quantum systems
and an electromagnetic (EM) field through the electric dipole interaction. A fully
quantum approach should take into account all modes of the system:

H =Hmatter +Hinteraction +Hfield (2.1)

However, a general EM field in free space is constructed from an infinite number of
modes, which is not possible to simulate in full. One approach is to only consider a
limited number of modes, or in the case of the Jaynes-Cummings model, a single field
mode. This is useful for cavity dynamics, but not for the free space models we consider
here. Instead, we take a semi-classical approach to the interaction of light and matter
since in the following work we only directly model many-photon interactions with QDs.
That is to say that we treat the matter dynamics quantum mechanically and the EM
dynamics classically:

H =Hmatter +Hinteraction (2.2)

where

Hmatter =
∑

i

σiEi (2.3)

and

Hinteraction =
∑
i ̸=j

σx
ijΩij . (2.4)
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Ei is the energy of each level respectively. σij is defined as the operator |i⟩⟨j| and
σi’s are the shift operators defined as σi = σii. Ωij = Ω∗

ji = µijEF, where µij is the
electric dipole moment coupling the levels i and j and EF is the external electric field.

The Hamiltonian H for any system determines its dynamics. Specifically the
state of a system |ψ(t)⟩ is given by the time dependent Schroedinger equation, which
throughout this thesis will be used with h̄= 1:

d

dt
|ψ(t)⟩ = −iH|ψ(t)⟩ (2.5)

The time independent Schroedinger equation can be used to determine stationary
states when the Hamiltonian of a system is time independent, or only changes with
time adiabatically, where E is an eigenvalue of H:

E|ψ(t)⟩ =H|ψ(t)⟩ (2.6)

2.1 Transformations

Physics contains many symmetries that allow us to look at a system from a different
point of view without altering the dynamics of the system. For an example in classical
mechanics, throwing a tennis ball on a speeding train, the ball will follow the same
path despite having vastly different speeds to observers on the train and on the ground
respectively. We can use the same principle in quantum systems to rewrite the dynamics
in different frames. Firstly we can choose any energy zero that we wish by adding a
factor of E0 onto each diagonal term:

Hmatter =
∑

i

σi(Ei +E0) (2.7)

Which does not change the evolution of the system. We can also consider a general
transformation to a new set of basis states: |ψU ⟩ = U |ψ⟩, where U is any unitary
transformation. Given a Hamiltonian H that generates the dynamics of |ψ⟩ we can
determine the Hamiltonian HU that generates the dynamics of |ψU ⟩ [75]:

HU = U †HU − iU †U̇ (2.8)

A specific transform that we will use several times in this thesis is the rotating
frame, where U = eiωtSz .
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2.2 Continuous Wave Example

We now look, for example at the case of a two level system interacting with a monochro-
matic electric field. Ω = Ω0 cos(ωt+ϕ) with E1 = 0 and E2 = (ω+∆), or since we are
free to set the zero of energy however we wish this is identical to using E1 = −(ω+∆)/2
and E2 = (ω+ ∆)/2. ϕ determines the phase of the coupled field. For simplicity we
will consider the case for ϕ= 0.

H = 1
2(σ1 −σ2)(ω+∆)+ 1

2(σ12 +σ21)Ω0 cos(ωt) (2.9)

The bare system (when Ω0 = 0) will undergo Larmor precession if the state is not
completely in either of the eigenstates |ψ1⟩ or |ψ2⟩ at t= 0. This means the state of
the system will rotate at an angular frequency given by ωL = E2 −E1, such that:

|ψ(t)⟩ =

 e− i
2(E2−E1)t

e
i
2(E2−E1)t

 |ψ(0)⟩ (2.10)

Fig. 2.1 Larmor precession on the Bloch sphere, the precession moves around the angle
ϕ whilst keeping a constant angle θ .

We can rewrite Ω = 1
2Ω0

(
eiωt + e−iωt

)
which leaves two terms rotating in opposite

directions. One of these terms will be rotating in the same direction as the bare
system, and one will be counter rotating. The term rotating with the bare system is
significantly closer to resonance and will dominate the dynamics of the system. The
counter rotating term has considerably less effect on the system if Ω0 ≪ ω and is zero
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at the lowest order in perturbation theory [75]. The counter rotating term can also be
considered as a second independent coupling which is highly detuned from resonance.
This is discussed in section 2.5.1, or for the case Ω0 ≫ ω this is discussed in detail in
chapter 4. The elimination of the counter rotating term is known as the rotating wave
approximation and will be used repeatedly within this thesis.

After using the rotating wave approximation to write Ω = Ω0eiωt, we can then use
the transformation from equation (2.8) with U = eiωt

1
2(σ1−σ2) to transform us into the

rotating frame that eliminates the time dependence in equation (2.9), resulting in the
following Hamiltonian:

Hr = 1
2(σ1 −σ2)∆+ 1

2(σ12 +σ21)Ω0 (2.11)

It is always possible to find a time independent frame if the graph of the couplings
between states does not contain any loops [28], meaning there are two or more paths to
transfer population between two states. This will be elaborated on further in section 4.

2.3 Approximations

Although we are only looking at the state of two level systems to define a qubit, real
systems contain many more levels that may or may not be important to the overall
dynamics of the two levels of interest.

Particularly we may wish to reduce a large Hamiltonian to a two level effective-
Hamiltonian by removing these extra energy levels, while still capturing the main
dynamics of the levels in the system that make up our qubit. Firstly we can consider
simply ignoring the coupling between an energy level and the levels of interest. Since
there are near infinite energy levels in any real systems that could potentially be
accounted for, ignoring energy levels is by far the most common method of simplification,
usually with minimal discussion. The results are only valid if the eliminated state
remains relatively unpopulated throughout the process. This leaves us with much
smaller Hamiltonian, with dynamics that are easier to describe.

If we wish to reduce the Hamiltonian further we can eliminate energy levels that are
important to the dynamics of the system but are not going to contain large amounts
of population using Adiabatic Elimination. Adiabatic elimination leaves a smaller
Hamiltonian which can more clearly isolate the dynamics of the levels of interest. It
is a commonly used method, but is particularly non-rigorous and must be performed
carefully, as we will now demonstrate.
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Fig. 2.2 The energy level diagram for the three level Λ system with the Hamiltonian
given by equation (2.12), this setup will be used repeatedly in this thesis and is used to
transfer population between the two lower states while keeping the upper, intermediate
state relatively unoccupied. ∆ is the detuning between the lower levels and the upper
level, this is generally large to ensure that very little population is transferred into the
upper state. δ is the two photon resonance detuning between the two lower levels, this
is generally small to ensure rapid population transfer between the two lower states.
The Ω’s are determined by the external field and give the strength of the couplings
between the three energy levels.

We first take the Hamiltonian associated with the three level Λ system shown in
figure 2.2, already placed into the time independent rotating frame. We also include
an arbitrary reference energy E0 which should not affect the dynamics of the system:

Hr = 1
2


−δ+E0 0 Ω1

0 δ+E0 Ω2

Ω∗
1 Ω∗

2 2∆+E0

 (2.12)

Here we are interested in the dynamics of levels one and two, and want to ignore
level three. δ and Ω’s are assumed to be small compared to ∆, which provides limits
to the frequencies and strengths of the external fields. Whilst the Ω’s could contain
a complex phase we have not included this because it doesn’t add any qualitative
changes to the results. To demonstrate the adiabatic elimination process we use the
Schröedinger equation (2.5) with the state |ψ(t)⟩ = [|ψ1(t)⟩, |ψ2(t)⟩, |ψ3(t)⟩] and the
Hamiltonian (2.12), while assuming that d

dt |ψ3(t)⟩ = 0. This assumption, along with
|ψ3(0)⟩ = 0 leads to zero population being transferred into the upper state.

d
dti|ψ1(t)⟩ = 1

2(−δ+E0)|ψ1(t)⟩ + 1
2Ω1|ψ3(t)⟩

d
dti|ψ2(t)⟩ = 1

2(δ+E0)|ψ2(t)⟩ + 1
2Ω2|ψ3(t)⟩

d
dti|ψ3(t)⟩ = 1

2(Ω1|ψ1(t)⟩ +Ω2|ψ2(t)⟩)+(∆+ 1
2E0)|ψ3(t)⟩

(2.13)
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setting d
dt |ψ3(t)⟩ = 0 leaves us with |ψ3(t)⟩ = − 1

2∆+E0
(|Ω1ψ1(t)⟩ + Ω2|ψ2(t)⟩). Sub-

stituting for |ψ3(t)⟩ into the first two equations and rearranging into the form d
dt [|ψ1(t)⟩, |ψ2(t)⟩] =

−iHr
eff[|ψ1(t)⟩, |ψ2(t)⟩] gives:

Hr
eff = 1

2

 −δ− |Ω1|2
E0+2∆

Ω1Ω2
2∆

Ω1Ω2
2∆

∗
δ− |Ω2|2

E0+2∆

 (2.14)

This leaves the unphysical situation where the final dynamics are dependent on
the frame in which the system is viewed. Other approaches [38] allow the dynamics
to be analysed without eliminating the upper level, but the results from these have
not been extended to more complicated Hamiltonians. The result above for E0 = 0
is commonly used and successfully reproduces the actual dynamics of the Λ system,
this is sometimes called the natural frame [13]. Specifically the natural frame is the
frame where the energy zero is exactly half way between the two levels of interest. A
more rigorous approach which solves the problem exactly is shown in [13] and confirms
that the accepted result from the three level adiabatic elimination method is accurate,
given the previous parameter assumptions. The result gives:

Hr
eff = 1

2

 −δ− |Ω1|2
2∆

Ω1Ω2
2∆

Ω1Ω2
2∆

∗
δ− |Ω2|2

2∆

 (2.15)

Throughout this thesis we will be considering the four level trion system shown in
figure 1.4. In many papers the fourth level is simply ignored during the theoretical
analysis (for example: [82]), leaving the three level Λ system from figure 2.2. The
fourth level is ignored because level three is either placed on or near resonance with the
lower levels of the system, or the transition 1−3−2 is placed on or near two photon
resonance, whereas the fourth level is placed off resonance on both measures. The
elimination of the fourth level is then justified in the same way we justified the rotating
wave approximation earlier, by assuming the counter rotating term is insignificant.
One is left with a Λ system from which adiabatic elimination can be used again to
obtain the two level dynamics.

However in this thesis we are interested in the effect of the fourth trion level on the
system and therefore we want to consider the adiabatic elimination for the fourth level
too. There is not currently a higher level extension to the method described in [13], but
we can use the non-rigorous adiabatic elimination approach if we appropriately identify
the natural frame we have checked this through a numerical comparison for every case
used here. To complicate the setup we can see there is also no frame available that
gives a completely time independent Hamiltonian. We choose the frame that would be
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a natural frame and rotating frame for the Λ system 1 → 3 → 2 since this transition
provides the dominant dynamics, setting the zero energy to exactly half way between
the two ground state levels. This frame includes a time dependence for the 1 → 4 → 2
coupling, since we will be keeping this coupling off resonant for the simulations too.
The choice of zero energy relative to the upper energy levels would be identical if
1 → 4 → 2 transition was placed on resonance instead, and so leads to an identical
effective Hamiltonian, and as such the exact choice appears irrelevant. This choice of
frame leads to the following Hamiltonian:

eEE

hEE

TEE

Fig. 2.3 The energy level diagram for the Hamiltonian given in equation (2.16). There
are two couplings applied Ω1 and Ω2 which have the selections rules shown. ∆ and ∆4
are the large detunings between the lower levels and the level |ψ3⟩ and |ψ4⟩ respectively.
δ is the two-photon resonance detuning and is generally small. Ee and Eh are the
lower and upper state energy splittings.

H =


δ
2 0 Ω1

2
Ω2
2 e

−iEet

0 − δ
2

Ω2
2

Ω1
2 e

iEet

Ω1
2

Ω2
2 ∆ 0

Ω2
2 e

iEet Ω1
2 e

−iEet 0 ∆4

 (2.16)

Note that if equation (2.16) was rewritten in the natural frame of the 1 → 4 → 2
transition instead the energy of the lower levels would be swapped, but the average
energy would not be altered in comparison to the upper levels, further validating
this choice of frame for adiabatic elimination. δ,∆ and ∆4 are determined from
the laboratory frame coupling terms Ω1eiω1t and Ω2eiω2t, the trion creation energy
ET and the electron/hole Zeeman splittings Ee/Eh. This gives δ = Ee +ω1 −ω2,
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∆ = Ex − ω1+ω2+Eh
2 and ∆4 = ET − ω1+ω2−Eh

2 . The four level Hamiltonian reduces to
the following two level effective Hamiltonian when the two upper levels are eliminated
through adiabatic elimination:

Heff = 1
4

 −2δ+ Ω1
2

∆ + Ω2
2

∆4

(
1
∆ + e−2iEet

∆4

)
Ω1Ω2(

1
∆ + e2iEet

∆4

)
Ω1Ω2 2δ+ Ω1

2

∆4
+ Ω2

2

∆

 (2.17)

Here we can more clearly see the analogy between making the rotating wave
approximation in section 2.2 and ignoring the fourth level from the system. In both
cases we have two coupling terms, one which is on or close to resonance and one that
can be considered to be rotating quickly if Ω1Ω2

4∆ , δ ≪ Ee. The coupling via the fourth
level is rotating at a rate of 2Ee.

2.4 Ensemble considerations

In this thesis we will consider each dot to be an independent system which is not
affected by the state of the other dots in the ensemble, this allows us to simulate
the dynamics of the dots individually, simplifying the problem considerably. Using
this assumption is to say that we ignore dipole-dipole coupling, which appears to be
generally valid even for moderately dense dot growth [10] and ignore the effects of
scattered light on the other dots in the ensemble.

While many of the memory processes can be modelled by considering the dots
individually, accurate modelling of the read and write processes cannot. Mapping
a photon onto an ensemble spin wave requires considering the properties of the full
ensemble, specifically these considerations result in the collective enhancement of

√
N

in the coupling between the dots and the photon mode over what would be naively
assumed from the single dot case [23, 31]. A Gorshkov et al [31] and subsequent papers
have thoroughly investigated the fidelity of these transitions including the case of free
space and with the inclusion of inhomogeneous broadening (introduced in section 1.2).
Their analysis is limited to Λ systems and does not include noise. We discuss the
effects of these points later.

2.5 Common transfer protocols

This thesis investigates methods of population transfer within isolated quantum systems.
In this section we cover some important transfer protocols and methods, while we have
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simulated the results in all of the figures shown in this section for consistency with
later sections, the results are commonly understood and available in the literature:

Rabi: Basic rotations around the two level Bloch sphere.
Stimulated Raman: Extending Rabi to multilevel systems.
Adiabatic Rapid Passage (ARP): Adiabatic population transfer with level

crossings.
Pumping: Incoherent transfer using spontaneous emission.

2.5.1 Rabi

Rabi oscillations or Rabi flopping is the most basic population transfer beyond Larmor
precession discussed in section 2.2, and viewed from an appropriate frame these are
one and the same thing. More generally the population will rotate around the axis of
the eigenbasis of the system, given by the eigenvectors, at a rate given by the energy
splitting of the eigenvalues. During Rabi oscillations the direction of the eigenvectors
are altered by the application of a strong resonant coupling by an angle θ given in
figure 2.1. Because the state is no longer in the eigenbasis it then rotates, displaying
the familiar Rabi oscillations.

The Hamiltonian for a two level example in the rotating frame is given by:

Hr = 1
2

 −∆ Ω
Ω ∆

 . (2.18)

For a completely resonant system ∆ = 0 the eigenvalues are ±1
2Ω and the eigenvec-

tors, which give the quantisation direction, are |ψ′
1,2⟩ = 1√

2(|ψ1⟩ ± |ψ2⟩). If the system
is in state |ψ1⟩, then it is now in a superposition of the eigenbasis with the coupling
applied and will rotate with a frequency given by the eigenvalue splitting Ω. Once the
coupling is removed the eigenbasis will return to |ψ⟩ and the state will have rotated
around by an amount given by the strength of the applied field multiplied by the time
in which it was applied. This can be calculated from the area under the figure 2.4a, or
the area between the eigenvalues in figure 2.4b. This gives a rotation angle of 5π for
case of figure 2.4c, two and a half complete rotations.

If ∆ ̸= 0 then the dressed state eigenvectors will not be orthogonal to the bare
state eigenvectors and transfer will not be along a great circle on the Bloch sphere, so
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Fig. 2.4 The dynamics during Rabi oscillations. for ∆ = 0 a.) The intensity of the
coupling Ω due to the external field over time, with a Gaussian profile. b.) The
instantaneous eigenvalues of the Hamiltonian over time when viewed in the rotating
frame. c.) The population of the bare states over time, several Rabi oscillations can be
seen

complete transfer cannot occur. In general the peak height of the oscillations is given
by

Ω√
Ω2 +∆2 (2.19)

and the rotation frequency is given by the energy splitting
√

Ω2 +∆2.

If the same coupling is applied over a longer time scale, particularly so that the
angle θ through which the state moves changes much more slowly than the energy
splitting of the states:

dθ

dt
≪
√

Ω2 +∆2, (2.20)

then the population will follow the eigenstates as they rotate. Viewed from the bare
state basis the population temporarily mixes together in a superposition state, known
as state mixing or adiabatic following.
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Fig. 2.5 a.) The Gaussian pulse that is applied adiabatically to two level system
b.) The eigenvalues of the Hamiltonian (2.18) with a small detuning ∆(= 0.02), the
eigenvalues of the systems still change significantly with the applied field. c.) The
state of the system follows the eigenstates of the system and temporarily creates a
large population in the previously unpopulated state. As the coupling is adiabatically
removed the state follows the eigenstate back to its original population.

The population moved during state mixing is calculated from the angle θ in figure
2.1 through which the eigenvalues move. The temporary population transfer is given
by:

ρ11 = 1
2 − 1

2 cos(θ) = 1
2 − ∆

2
√

∆2 +Ω2 (2.21)

Where ρ is the density matrix and ρij = |i⟩⟨j|. The state mixing population can
alternatively be calculated by recognising that the eigenvalues rotate by exactly half
the angle of the maximum Rabi oscillation height from equation (2.19), which gives a
population transfer of:

ρ11 = sin
(

1
4 arccos

(
1− 2Ω2

∆2 +Ω2

))2
(2.22)

Equations 2.21 and 2.22 are equivalent, demonstrating the connection between
state mixing and Rabi oscillations.
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While state mixing will be a visible effect in many of the simulations shown
throughout this thesis, it generally does not affect the results significantly because the
process is reversed completely as the coupling is removed. Exceptions to this occur if
the population is transferred into an unstable state or the population is intentionally
manipulated with adiabatic following through Adiabatic Rapid Passage 2.5.3.

2.5.2 Stimulated Raman

The stimulated Raman transition is the natural extension to Rabi flopping for transfer
between two levels which are not directly coupled together. The process is used to
transfer population population between two unconnected states, for example the two
lower levels in the Λ system in figure 2.2, through an intermediary level whilst not
significantly populating the intermediate level. The Hamiltonian is given by equation
(2.23), however this protocol can be viewed best from the perspective of the two level
effective Hamiltonian given in equation (2.15) in which the upper of the three Λ system
levels was removed using adiabatic elimination. If δ is set to zero and Ω1 = Ω2 then
the system will be on two photon resonance. The two level subsystem can now be
manipulated to create Rabi transfer as described in the previous section, an example
numerical simulation for the three level Λ system is shown in figure 2.6 with ∆ = 1,
δ = 0 and Ω1max = Ω2max = 0.101. As in the previous section the number of oscillations
depends on the intensity of the coupling and the time for which the coupling is applied,
the rotation angle through which the population is rotated is given by the area A in
figure 2.6b. The numerical simulation result shown in figure 2.6c is for the three level
problem, however it is indistinguishable to the eye from the result of a simulation on
the two level system after adiabatic elimination.

Hr = 1
2


−δ 0 Ω1

0 δ Ω2

Ω∗
1 Ω∗

2 2∆

 (2.23)

The maximum height of the oscillations is also dependent on the two-photon
detuning δ. However, if intensities of the couplings are not equal, |Ω1| ≠ |Ω2|, then
there will also be a time dependent Stark shift that will cause a time dependent
detuning in the two level system. Assuming δ is not equally time dependent to cancel
out the Stark effect there cannot then be complete population transfer. This requires
a careful tuning of δ which is dependent on the Ω’s if complete transfer is required.
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Fig. 2.6 The dynamics during a Stimulated Raman transition a.) The strength of the
couplings during the transition, there are two couplings with identical strengths in this
example, using different strength couplings will cause a detuning. b.) The eigenvalues
of the Hamiltonian in the rotating frame. The area A determines the angle through
which the system rotates, determining the number of oscillations c.) The population of
the bare states throughout the transition, showing one and a half full oscillations

2.5.3 Adiabatic Rapid Passage

Adiabatic Rapid Passage (ARP), also know as a Landau-Zener transition is an extension
of state mixing mentioned in section 2.5.1. It occurs whenever two eigenstates slowly
intersect, such that the population follows the states, but which are also coupled
strongly together, such that the eigenvalues also repel each other, creating an avoided
crossing. This is shown in figure 2.7b. If this crossing happens slowly enough the
population in the two states will follow the rotation in the eigenbasis completely [41].
This occurs when dθ

dt ≪ |Ω| where dθ
dt is the rate of change of the angle of the eigenvectors

of the system and Ω is the coupling strength between the levels. If the initial state
is |1⟩ or |2⟩ then θ corresponds to the θ in figure 2.1, however if the initial state is
another state the relevant angle θ is the angle through which the state moves from its
initial position, in whichever direction it moves (whilst in the rotating frame).

The ARP transition is very important for manipulating systems where the exact
parameters are unknown, because the small changes in the parameters will not signifi-
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cantly affect the fidelity of the transition assuming it is performed slowly enough. This
is contrary to population transfer through a Rabi rotation, where the angle through
which the states rotate is very sensitive to the coupling strengths and detunings in the
system. The disadvantage of ARP is that it is only capable of performing complete
population inversions (π rotations) to a high fidelity.

An ARP transition can occur between two levels in any size system, reference
[80] creates an ARP transition between two levels in quantum dots for example. The
Hamiltonian for a two level transition is given by:

Hr =
 −δ(t) Ω

Ω δ(t)

 , (2.24)

where Ω is non-zero near t0 and δ(t) = ∆t × (t− t0) where we can see that t0 is the time
at which the avoided crossing occurs and ∆t is the rate at which the eigenvalues cross.
The eigenvalues over time for this system are

√
Ω2 + δ(t)2 and are shown in figure 2.7b

The transition transfers population between the two states and will occur completely
if dδ(t)

dt ≪ |Ω2|, whist if the transition is performed faster the fidelity of transfer, originally
derived by Landau and Zener[45, 84]. is given by:

|α|2 = 1−σ = e
− |Ω|2π

∆t2 , (2.25)

where we consider the case when the state is initially in |ψ1⟩ and finishes the transition
in state α|ψ1⟩ +β|ψ2⟩, σ is the fidelity of the transfer. This is the usually the stated
formula, however it is only valid for the specific case for starting in an eigenstate,
α0 = 0,1. If the initial population is in a superposition of states α0 ≠ 0,1, as will
generally be the case, the unitary transform is given by: [1, 69, 71]

UARP =
 cos χ

2 eiϕ sin χ
2

−e−iϕ sin χ
2 cos χ

2

 , (2.26)

where sin χ
2

2 = 1−σ and the angle ϕ determines the angle on the Bloch sphere through
which the population is transferred. While this does not affect the outcome of the
transition if the transfer is complete, ϕ will determine the phase of the final population
during incomplete transfer, which will be discussed when we encounter a consequence
of this phase in section 4.5.1.

The example ARP transfer is shown in figure 2.7. A smoothly varying coupling Ω,
in this case a Gaussian, is applied to a two level system with energy levels that cross
when viewed from the rotating frame. the bare state energies (dotted) are shown to
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cross and the eigenvalues of the system are shown to undergo an avoided crossing. In
the laboratory frame this crossing can be induced by a chirped coupling term which
changes frequency to pass through resonance with the two level system, or alternatively
a modification of the two level systems energy levels to pass through resonance with a
constant frequency coupling. The dressed states picture will be identical for both of
these cases and both will be used in this thesis.
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Fig. 2.7 a The strength of the coupling Ω used in c. which is given by a Gaussian profile,
b The eigenvalues of a two level system going through a Landau-Zener crossing. Dotted
lines correspond to the bare state energies, or for Ω = 0 solid lines demonstrating
an avoided crossing. c The population during the transition with Ωmax = 0.1 and
dE
dt = 1/1000.

In general ARP can occur in any size Hamiltonian, through any pair of states whose
eigenvalues undergo an avoided crossing. Some different protocols using ARP are
introduced in chapter 3. Particularly STImulated Raman Adiabatic Passage: STIRAP,
Raman Chirped Adiabatic Passage: RCAP and Stark Chirped Raman Adiabatic
Passage: SCRAP.

2.5.4 Incoherent Pumping

The previous models shown in this chapter are based upon equation 2.5 and only
considered the interaction of the quantum system with one or two coupling terms Ω.
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This is sufficient if interactions with the surrounding environment are negligible, but
not realistic for many situations. We will be considering quantum dots in free space
throughout much of this thesis. In free space we need to not only consider the single
laser mode Ω but also the interactions with all other possible optical modes.

The optical modes form a continuum of states in free space which are treated as a
reservoir of harmonic oscillators [16], computing the state of the whole environment is
not a practical solution. The interactions with the environment can be in the form
of spontaneous emission into the reservoir causing a decrease of energy in the system
or absorption of a photon from the bath leading to an increase of the energy of the
system. In later sections we assume that the number of photons in the environment is
small enough to be able to discount the possibility of absorption. This is also known as
the zero temperature approximation. We also take the Markov approximation, which
assumes that the interaction of the system with the environment does not depend on
the previous state of the system. This means that any information transferred into the
environment is therefore lost. This is a non-unitary process which we model with a
master equation approach, in which the environment is traced out to leave the original
system dynamics and some non unitary terms which account for the interaction with
the environment. This results in the following master equation, known as the Lindblad
equation. [16, 52]

d
dtρ= −i[H,ρ]− 1

2
∑
(i,j)

Γij

(
σ+

ijσ
−
ijρ+ρσ+

ijσ
−
ij −2σ−

ijρσ
+
ij

)
, (2.27)

Where the Γ’s account for the rate of spontaneous emission into the environment.
Spontaneous emission is an incoherent process. Incoherent processes are non-unitary

and will destroy or degrade any information stored in the quantum state. Whilst this
is often something to be avoided within quantum computing, pumping can be used to
take advantage of the incoherent process to wipe information of the system’s previous
states and place the system in a new, known state. Incoherent processes are therefore
to be avoided during any computational step but can be used effectively to initialise a
state.

For a three level Λ system spontaneous emission occurs from the excited state (3)
to the two lower energy states (1,2), which means Γ32,Γ31 = Γ and Γij = 0 for all
{i, j} ̸= {3,2} or {3,1}. This system can be used to generate incoherent pumping by
applying a strong resonant coupling between the lower level that is to be evacuated and
the upper level. This transfers population continuously between those two levels. The
upper level |3⟩ is an excited state that can decay through spontaneous emission into the
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environment with roughly equal probability down to the two lower states. The lower
state |2⟩ that is not coupled to the pumping field accumulates population which cannot
be transferred back to either of the other levels as there is no coupling to transfer the
population out, until eventually (almost) all of the population is transferred into state
|2⟩. The Hamiltonian for resonant pumping in a Λ system is as follows:

H = 1
2


0 0 Ω
0 E2 0
Ω 0 2∆

 (2.28)

Where ∆ gives the detuning of the coupling from resonance and Ω the strength of
the coupling, this is equivalent to the Hamiltonian in (2.12) with E0, δ, Ω2 = 0. E2 is
the (arbitrary) energy of the second level. The approximate population transfer rate
due to pumping can be found through putting the Hamiltonian (2.28) into equation
(2.27) with the relevant Γ’s mentioned above. Applying adiabatic elimination of the
upper state (|3⟩) gives the following equation:

d
dtρ11 = − ΓΩ2ρ11

4(Γ2 +∆2)+Ω2 (2.29)

Which results in the following time evolution:

ρ11 = e
− tΓΩ2

4Γ2+4∆2+Ω2 (2.30)

This is assuming that the upper state never has a significant amount of population.
For the case when a large population is transferred into the upper state the transfer
must be considered in terms spontaneous decay from this upper state population. The
transfer rate from ρ33 is then given by d

dtρ33 = ρ33
∑i Γi where the Γi’s are all the decay

paths out of state 3.

2.5.5 Transfer Protocol Summary

We introduced Rabi oscillation and its multilevel extension the Stimulated Raman
transfer that can rotate the state of a system by an arbitrary angle on the Bloch sphere
defined by the strength and time of the pulse applied. The protocols are therefore not
robust on systems with inhomogeneities since these will alter the rotation angle and
therefore the final state reached. The coupling must be turned on and off quickly to
ensure that the system does not simply undergo state mixing which induces no overall
population transfer.
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Fig. 2.8 a.) The coupling between |ψ1⟩ and |ψ3⟩ is turned on at a particular time and
left running until the desired fidelity of pumping is reached. This can be of any pulse
shape as long as the pump is strong enough to move a significant amount of population
between the states. Here we use a constant pump strength b.) The energy level diagram
for resonant pumping, for efficient pumping Ω >> ∆. Γ shows decay down to |ψ2⟩
via spontaneous emission. Emission also transfers population from |ψ3⟩ → |ψ1⟩ but
this population will then be transferred back via the coupling Ω. c.) The simulated
population throughout the pumping process, showing diagonal terms of the density
matrix ρii. The oscillations are Rabi oscillations due to the speed in which the pump
is turned on, an adiabatically applied pump would avoid these. The dotted line is the
fit given by equation (2.30).

Adiabatic Rapid Passage is a robust protocol but can only reliably perform π

rotations, which is sufficient for spin echo. This makes it a very useful protocol for
ensembles with inhomogeneous broadening but is not applicable to applications that
require arbitrary rotations. The protocol requires the state to follow the eigenbasis
and so must be performed adiabatically.

Incoherent pumping uses spontaneous emission into the background environment
to pump the system into a particular state and will destroy any information in the
state in the process. The transfer follows an exponential decay towards the final state.
Spontaneous emission is useful for initialising systems but causes unwanted decoherence
when it affects the system during any coherent process, such as the memory protocol
considered here and generally needs to be minimised.



Chapter 3

Quantum Memories

In this section We will look at the feasibility of using GaAs self assembled QDs as an
optical quantum memory. We investigate the four stages: Initialisation, Write, Storage
and Read.

Plots in this chapter display the "code units" of 1 code unit of energy = 1meV and
h̄= 1 unless otherwise specified.

3.1 Initialising QD ensemble

Initialisation requires moving the state of every dot in the entire ensemble to a known
state, in our case one of the ground states. This needs to be independent of what
state the dot was in previously, for this process we will be using pumping introduced
in section 2.5.4. Pumping in a Λ system has no theoretical limit to the fidelity the
pumping can reach because there is no mechanism to transfer population out of the
final energy level. However, pumping in the Voigt geometry (figure 3.1) effectively
has two pumps: one pumping from |1⟩ → |2⟩ and one from |2⟩ → |1⟩, since applying a
single laser field of any polarisation will couple to both ground states simultaneously
and act to pump population in both directions. We will first consider pumping with
horizontally polarised light, since this gives the largest gap between the two resonances,
and therefore, we would assume, the best initialisation fidelity. We will also consider the
in-plane geometry case discussed in section 1.2.3, which from a modelling perspective
is the equivalent of using an out-of-plane diagonally polarised laser that couples equally
to both the horizontally and vertically polarised dipole transitions. This case therefore
provides four resonant conditions.
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Fig. 3.1 Pumping in the Voigt geometry with horizontally polarised light Ωh results in
direct couplings only between levels 1 → 3 and 2 → 4. However, due to spontaneous
decay from the upper states, population can be transferred down through any of the Γ
decay routes shown.

The evolution of an individual dot is given by the Lindblad master equation (2.27)
with Γ31 = Γ32 = Γ42 = Γ41 = Γ else Γi,j = 0 and H given by:

H =


−∆13

2 0 Ω
2 0

0 −∆24
2 0 Ω

2
Ω
2 0 ∆13 0
0 Ω

2 0 ∆24

 (3.1)

The system will come to equilibrium when the pump rate from both pumps is
equal. Equation (2.30) gives the approximate pump rate for pumped Λ system with a
single pump when ∆> Ω, however we can obtain the equilibrium point directly from
considering the steady state solution of the four-level equations from which we can
derive the populations to which the states will asymptotically approach. This achieved
by setting d

dtρ= 0 in equation (2.27), providing the following solutions:

ρ11∞ =
4
(
Γ2 +∆13

2
)

+Ω2

4
(
2Γ2 +∆13

2 +∆24
2 +Ω2

)
ρ22∞ =

4
(
Γ2 +∆24

2
)

+Ω2

4
(
2Γ2 +∆13

2 +∆24
2 +Ω2

)
ρ33∞ = Ω2

4
(
2Γ2 +∆13

2 +∆24
2 +Ω2

)
ρ44∞ = Ω2

4
(
2Γ2 +∆13

2 +∆24
2 +Ω2

)

(3.2)
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The initialisation fidelities dependence on the parameters Ω,Γ are shown in figures
3.2 and 3.3 and are potentially counter-intuitive. The stronger the laser coupling and
the stronger the coupling to spontaneous emission the weaker the fidelity of transfer
will be, although the faster the system will tend to the equilibrium.
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Fig. 3.2 Steady state solutions for the population of all four states ρ11,ρ22,ρ33,ρ44
under monochromatic pumping as given by equation (3.2). a.) shows the steady state
solution dependence on laser strength Ω while on resonance Γ = 0.001. For a low
enough Ω the system will pump into level ρ22 to a high fidelity. b.) shows the strong
frequency dependence on the pumping fidelity with Γ = 0.001 and Ω = 0.02. For a
complete view of the parameter space see figure 3.3.

This dependence on Ω is due to the increased strength of the detuned pump even
while the other pump is close to resonance and highlights the importance of optimising
the properties of an initialisation pulse for any individual system for both the time
to reach the fidelity and the final fidelity desired. This trade off is not present while
pumping in a Λ system.

Resonant pumping has already been performed in individual QDs [81], however
the technique does not allow for the initialisation of an ensemble. An ensemble of
inhomogeneously broadened dots cannot be initialised with a monochromatic laser
since, due to the inhomogeneous broadening, there is no single resonance frequency
that can be used. We must consider a different approach which we introduce next.

3.1.1 Sweeping Pump

The problem with attempting to initialise a large ensemble of inhomogeneously broad-
ened QDs is that no two dots share the same resonant condition, the inhomogeneously
broadened energies ∆ET are generally spread by at least fifty times the gap between
the two resonances (section 1.2.2). If a single frequency is chosen it is only possible
to initialise a small number of the QDs. Instead we propose a slowly sweeping pump
frequency ω that sweeps through the full dot range. The higher energy transition of
each dot will always pump into the same state for each dot, therefore as the pump



36 Quantum Memories

0

1

0.5

Fig. 3.3 Density plot of steady state solution for the dot state under a monochromatic
pump. The two resonance cases where populations are pumped completely into either
|1⟩ or |2⟩ are shown as dark and light respectively. An increase in Ω increases reverse
pumping, reducing the final fidelity of the pumping even when on resonance with one
of the dot states. Figure 3.2 provides cross sections for the Ω = 0 and ∆ on resonance
cases.

frequency sweeps through the two resonances of each dot it will first reverse pump,
and then pump into the desired state, initialising each dot in turn as they fall onto
resonance with the pump. There will be an amount of reverse pumping as the frequency
continues past the resonances of the dot as we can infer from figures 3.2b and 3.3.

3.1.2 Pump Model

From equation (2.29) which gives the pumping in a single Λ system we can derive the
transfer rate between two ground state levels. We treat the transfer as two independent
transfer rates:

d
dt |ψ1(t)⟩ = ΓΩ2

(
1−|ψ1(t)⟩

4(Γ2 +∆2)+Ω2 − |ψ1(t)⟩
4(Γ2 +(Ee +Eh +∆)2)+Ω2

)
, (3.3)

where ∆ = 0 is the condition for ∆13 = 0 and ∆24 = Ee +Eh, ψ1(t) = 1 −ψ2(t) as
we assume no significant population is in the excited states. This is a questionable
assumption for resonance conditions while Ω> Γ, but has been found to hold well for
all relevant cases presented here and also we shall see later that the best initialisation
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parameters are also for Ω< Γ. Figure 3.4 shows both full 4-level numerical simulations
(points) and the solution to the two level equation (3.3) (line) and demonstrates that
this approximation holds well for the cases we consider here.

Fig. 3.4 Pumping with a single polarisation and a linear chirp. Γ = 0.004, Ee +Eh = 0.2
and d

dt∆ = 6×10−5. The population of the dot transfers first into level 2 and then back
into level 1 as the pulse becomes on resonance with the 1-3 and 2-4 transitions. Four
examples for different pump field strengths Ω are shown. Points correspond to complete
4-level simulations, lines correspond to the two level approximation in equation 3.3.

The in-plane geometry initialisation discussed in section 1.2.3 has dynamics governed
by the Hamiltonian given by equation (1.6). This Hamiltonian has the same four
couplings as the Voigt geometry, but with only one incoming laser coupling Ω that
couples to all four transitions. We assume again spontaneous emission dominates the
effects allowing us to use the same assumption that we made for equation (3.3). This
is a safe assumption since in the long time limit oscillations due to the couplings will
be damped leaving only state mixing. State mixing is insignificant if Ω ≪ Ee, which
is true for our cases here. This leads to four resonances and the following population
evolution after extending the model in equation (3.3):

d
dt |ψ1(t)⟩ =ΓΩ2

(
1−|ψ1(t)⟩

4(Γ2 +∆2)+Ω2 − |ψ1(t)⟩
4(Γ2 +(Ee +Eh +∆)2)+Ω2 +

1−|ψ1(t)⟩
4(Γ2 +(Ee +∆)2)+Ω2 − |ψ1(t)⟩

4(Γ2 +(Eh +∆)2)+Ω2

) (3.4)

For both equation (3.3) and equation (3.4) we will consider a linearly swept pump,
sweeping through the full energy range of the inhomogeneously broadened ensemble.
This corresponds to a linear sweep of the detuning ∆, such that ∆ passes from negative
to positive for each dot or visa versa during the pump. The population transfer for an
example sweep is shown in figure 3.4.
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We find that there are two distinctly different behaviours that occur for the in-plane
geometry, dependent on whether Eh <Ee or Eh >Ee. This is because of order of the
resonance conditions that can be seen in equation (3.4) changes. In the former the
population is pumped {|ψ0⟩ → |2⟩ → |1⟩ → |2⟩ → |1⟩}, whereas in the latter case the
population is pumped {|ψ0⟩ → |2⟩ → |2⟩ → |1⟩ → |1⟩}. For the latter case the second
two pumps both pump into the same level, leading to a higher fidelity initialisation.
Reversing the pump direction reverses the order of the pumps and therefore which spin
state is initialised, but does not change the behaviour which is still determined by Ee

and Eh. The difference can be seen in figure 3.5.
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Fig. 3.5 In-plane pump sweep, where Ωh = Ωv. Simulations with the same parameters
as for figure 3.4 with the polarisation of the electric field rotated by π

2 , such that
Ωh,Ωv → 1√

2Ω. For a.) Eh = 0.09, Ee = 0.11 and for b.) Eh = 0.11, Ee = 0.09.

We can see from closely comparing the final state values in figures 3.4 and 3.5b
that although the in-plane initialisation has a similar fidelity for Eh > Ee for this
short sweep example, there is also a faster transfer out of the initialised state. When
extended to the large energy sweeps required for initialisation of an ensemble this will
mean both in-plane cases will perform poorly compared to the out-of-plane, single
pump polarisation case in figure 3.4. This shown more clearly later in figure 3.9.

For a inhomogeneously broadened ensemble the sweep would have to last consider-
ably longer than in figures 3.4 and 3.5. Sweeping through a larger energy allows for
more transfer out of the desired state if Ω is too large. For a typical ensemble (section
1.2.2) the inhomogeneous broadening ∆E is at least 50 × (Ee +Eh). An example
initialisation of a typical QD ensemble using a horizontally polarised pulse is shown
in figure 3.6. Firstly we can see that the mechanism does work for a proof of concept
at least, with a 96% fidelity in this case. The pumping fidelity in the ensemble does
depend on the excitation energy ET for each dot, the dots initialised first will be
reverse pumped for longer. However we can see from figure 3.6b that the variation
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Fig. 3.6 a.) An example initialisation of an ensemble of dots with 10meV inhomogeneous
broadening, starting values chosen for clarity. Ω = 0.003 and frequency sweep rate
1.9×10−6. Each dot is initialised in turn as the frequency of the sweep passes through
resonance. b.) The final fidelity σ of each dot in the ensemble, a lower the excitation
energy ET results in a dot being initialised earlier, giving a longer time for reverse
pump effects to occur, reducing the final fidelity.

of the pumping fidelities between those dots with a low and high ET is only a small
percentage difference overall.
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Fig. 3.7 A single dot state against logarithmic time with the same parameters as in
figure 3.6 while being initialised with an especially long linear sweep of constant sweep
rate 1.9×10−6.

Figure 3.7 shows a single dot initialised by a particularly long sweep pulse with a
logarithmic time axis. We can see that there is no visible transfer for ∆E ≫ (Ee +Eh).
While the average fidelity of initialisation will be marginally better for ensembles with
a smaller inhomogeneous broadening, we can see that this effect is not important in
the large broadening limit, ∆E ≫ (Ee +Eh). Since our typical ensemble is within the
large broadening limit, we will now go on to investigate the properties of the fidelity in
this limit. All following results are taken to be that of a 15meV sweep with the dot
central energy at 0.2meV unless otherwise specified. The time T taken to perform the
sweep is given in each case which determines the sweep rate.
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3.1.3 Optimising Initialisation

In the previous section we have shown that it is possible to initialise an ensemble of
QDs using a pump with a frequency sweep that passes through resonance with all
of the dots relevant states as shown for an example in figure 3.6. We now go on to
calculate the optimal sweeping conditions from numerical simulations of the equations
introduced in section 3.1.2.

Fit curves (red) for figure 3.8 are given by T = α 1
Ω +β 1

Ω2 where {α,β} = {8100,78},
{5300,65} and {3900,44} for a.) b.) and c.) respectively. In the large T limit the fits
all tend to T = β 1

Ω2 . Both in-plane initialisation cases are optimal for lower Ω because
of the larger reverse pumping shown in figure 3.5. The maximum fidelity for each T is
given in figure 3.9 for all three cases. We can see that increasing the time T does not
significantly benefit the fidelity of the initialisation beyond around T = 5 ×106 in code
units or 20µs.

The above simulations are for our "typical dot ensemble" Ee +Eh = 0.2meV and
Γ = 0.004 = 1ns−1. The limits are now completely determined by these parameters,
figure 3.10 shows how the fidelities are altered by modifications to these parameters.
An increase in the splitting Ee +Eh corresponds to an increase in the initialisation
fidelity for all times T. Increasing Γ (corresponding to a lower trion lifetime) leads to a
faster initialisation process, requiring less time to perform the initialisation but has a
maximum fidelity which is worse than a dot with a smaller Γ, leading to a trade off
between speed and fidelity.

Since the initialisation time of our typical ensemble is considerably less than the
spin lifetime (10’s of milliseconds) it would be optimal to choose dots with a longer
lifetime or smaller Γ to increase the initialisation fidelity.

The fidelities shown in figures 3.9 and 3.10 are, for the case of large broadening and
optimal Ω, given completely by Γ and Ee +Eh. Specifically we find that the fidelity is
given completely by the ratio Γ

Ee+Eh
. The fidelities are shown in figure 3.11.

3.1.4 Initialisation Conclusions

We have introduced a new pumping scheme suitable for initialising QDs. We have
shown that there are limitations to the achievable pumping rate and fidelity for the
initialisation of QDs because of the double Λ energy level structure. We introduced
an initialisation scheme for use within inhomogeneously broadened ensembles with a
sweeping pump pulse that initialises dots in turn as it passes through resonance.
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Fig. 3.8 The fidelity of pumping a single quantum dot in an ensemble with 15mev
inhomogeneous broadening for a.) Vertically polarised pump b.) In-plane pump
Ee > Eh c.) In-plane pump Eh > Ee. Ω is the coupling strength and T is the total
time to perform the sweep. Shading corresponds to the fidelity through Ln(1−σ) the
fit for maximum fidelity is given by the red line for each case.
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Fig. 3.9 Maximum initialisation fidelities for different sweep rates for the three cases
given in figure 3.8 by red lines: Single polarisation (bottom), mixed polarisation
Eh >Ee (middle) and mixed polarisation Eh <Ee (top). Time T is the time taken for
the total time to complete the 15meV sweep, which determines the rate of sweep.
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Fig. 3.10 Initialisation fidelity for a.) Γ = 0.004, varying splitting Ee +Eh and b.)
Ee +Eh = 0.2, varying decay rate Γ.
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Fig. 3.11 Maximum initialisation fidelity obtainable for dots with parameters Γ and
(Ee +Eh). Red line indicates typical dot parameters.
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We have shown that a typical QD ensemble can be initialised to a fidelity of 0.95
in a time of around 20µs, or to a maximum of 0.97 in 200µs. The maximum fidelity is
only based upon Γ and the Zeeman splittings (Ee +Eh). The time required to perform
an optimal sweep is proportional to the inhomogeneous broadening of the ensemble
and the decay rate Γ. The width of the inhomogeneous broadening of the ensemble
does not affect the maximum fidelity when ∆E ≫ (Ee +Eh). A slower decay rate Γ
and larger Zeeman splittings (Ee +Eh) both generally lead to a better final fidelity.
Within the typical parameter regime the maximum fidelity is determined entirely by

Γ
Ee+Eh

.
We have shown that if a diagonally polarised or diagonal in-plane pump is used

then initialisation is still possible, but the fidelity is reduced to 0.91. For this case
the fidelity is considerably better if Eh >Ee (up to 0.94), but still below the fidelity
possible for the horizontally polarised case (up to 0.96) which is the case we primarily
investigated.

3.2 Storage

The quantum state will be stored collectively across all the dots in the system as an
atomic coherence, which we refer to as a spin wave. That is to say that the phases of the
electron spin in each dot in the ensemble are aligned such that they will each contribute
constructively to the output mode of the photon when a control pulse is present.
Knowing the state of an individual dot does not give knowledge of the existence of a
spin wave. It is therefore essential that the coherence time of not only the individual
dots but the full ensemble is greater than the storage time. When using ensembles of
dots there will be both inhomogeneities in the local fields and in the individual dot
properties to contribute to the T ∗

2 decoherence time. While the T2 spin coherence time
is of the order of µs [61] in single QDs and T ∗

2 is the measured decohenece time of the
ensemble. Ensemble decoherence times of approximately T2 are possible after a spin
echo to rephase the spin to account for local, slowly varying inhomogeneities in the
Overhauser field from the background nuclear spins. In an ensemble each dot’s spin
also needs to be in phase during readout. The T ∗

2 coherence time is of the order of ns
with no spin rephasing techniques used [27], therefore an important part in any QD
based memory will be a method to either rephase or synchronise the dot spins.

Here we will be investigating the options for spin echo to rephase the spins. However
it is worth noting that there have also been promising demonstrations[35, 36] that
constructively use the background nuclear spins to synchronise an ensemble of dots
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to fixed precession frequencies. There are currently limits on the magnetic field that
can be used B< 1T which would reduce the Zeeman splitting of the electron spin,
something that generally wants to be set as large as possible.

3.2.1 π Pulses

The inhomogeneities in magnetic field generated by the background nuclear spins (the
Overhauser field) leads to variations in the spin precession time in individual dots.
The relative phase between the state of any two dots being given by ϕ= ∆ωt where
∆ω is the difference in the precession rate of the two dots. The extra phase ϕ causes
the ensemble to become dephased over time. However if the population is inverted
by performing a π pulse on the stored excitation the accumulated phase difference
will also be inverted, and so the total accumulated phase between any two dots will
become ϕ = ∆ωt2 − ∆ωt1 where t1 is the time before the π pulse and t2 is the time
after the π pulse, such that the spin precession times will remain the same ϕ tends
to zero when t1 = t2. A second π pulse is required to return the ensemble back to its
original state. Spin echo is therefore only successful if the precession rate ∆ω has not
varied significantly during the process.

We need to consider the possible methods for inverting the population. Due to
the inhomogeneous broadening of the ensemble we can neglect any protocols whose
rotation angle depends on the pulse area of the lasers and rather focus on protocols
which employ a variation of the ARP method introduced in section 2.5.3. Spin echo
can be realised with a mixture of either π or π

2 pulses, here we will consider the case for
spin echo with only π pulses, as these can be realised to a high fidelity with an ARP
transition 2.5.3. We do not believe there are any processes that would reliably perform
a reliable π

2 rotation or any other fractional rotation on an ensemble of inhomogeneously
broadened dots.

Two protocols will be discussed, both of which are usually applied to three level Λ
systems, which we extend to the Voigt geometry. The protocols combine the Raman
protocol and ARP by generating a two photon coupling between the ground states
which is far detuned from the upper state and then sweeping this coupling through
resonance with the ground states. The two we will investigate are STImulated Raman
Adiabatic Passage (STIRAP) and Chirped Raman Adiabatic Passage (RCAP).
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3.2.2 STIRAP

STIRAP is a process used in Λ systems where two monochromatic lasers are applied
sequentially in a way that performs a π pulse on the ground states. This is best
understood when we observe the eigenvalues of the state as the lasers are applied.
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Fig. 3.12 c.) The energy level diagram of the Λ system. a.) Coupling intensity profiles
of Ω1 and Ω2 throughout the STIRAP process. Either or both pulses can be strong and
will contribute to the Rapid Adiabatic Passage process and can be applied in either
order. b.) The eigenvalues in the rotating frame throughout the process. The two lower
levels cross twice, but the first does not transfer a significant amount of population
due the small value of Ω2. δ = 0.05, ∆ = 2. d.) The population transfer during the
process. State mixing can be seen in the occupation of the upper level initially due to
the strong coupling Ω1. Population transfer between states 1 and 2 can be seen whilst
Ω1 is decreasing, causing an avoided crossing between the two lower levels.

Stimulated Raman Adiabatic Passage (STIRAP) [8, 14, 20, 21] in its simplest form
works on a three level Λ system with one unstable state and two stable ground states.
The protocol uses two monochromatic pulses to perform a π rotation on the state of
the two lower levels without a significant amount of population occupying the unstable
state that is coupled to the lower states and could spontaneously decay, destroying the
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state. The levels are coupled via the same two photon interaction used in section 2.5.2,
with the same Hamiltonian:

H3 =


−E0/2 0 Ω1/2

0 E0/2 Ω2/2
Ω1/2 Ω2/2 ∆

 (3.5)

The STIRAP protocol creates an ARP level crossing via the Stark shift of a strong
laser. One strong laser pulse and one weak pulse are applied to the system, partially
overlapping (figure 3.12a). The strong pulse creates a Stark shift causing the ground
state eigenvalues to cross twice. During the first crossing the weaker pulse is not
applied and therefore there is no two-photon coupling and the crossing does not
transfer population. But for the second crossing, because of the partial overlapping
of the two pulses the crossing has the two-photon Raman coupling. This creates an
avoided crossing between the lower levels (figure 3.12b) which transfers population
using adiabatic rapid passage, introduced in section 2.5.3. If performed in the limit
equation (2.25) tends to 1, the crossing results in one complete π rotation on the state
of the lower levels.

The Hamiltonian (3.5) can be reduced to the following effective Hamiltonian through
adiabatic elimination:

Heff = 1
4

 −2δ+ Ω1
2

∆
1
∆Ω1Ω2

1
∆Ω1Ω2 2δ+ Ω2

2

∆4

 (3.6)

This gives the strength of the coupling between the lower levels Ωeff = Ω1Ω2
2∆ and the

detuning of the coupling from the lower levels ∆eff = δ+ Ω1
2−Ω2

2

4∆ where δ=E0 −(ω1 −ω2)
is the bare two-photon detuning. The detuning ∆eff is dependent on the strength of
the two couplings, specifically we can see that if δ > 0, Ω1 is small then an increase
in Ω2 will cause the value of the detuning to change sign. When performed in the
adiabatic limit this change of sign will cause an ARP population transfer. There are
also some extensions to higher level systems [8] [57].

3.2.3 STIRAP in the Voigt geometry

We have shown how STIRAP works in the three level Λ system in 3.2.2, we want to
see how the protocol implementation changes for the Voigt geometry in QDs, first
introduced in figure 1.4. We shall see that the STIRAP protocol no longer works
on our four level system. The Voigt geometry effectively contains two Λ couplings
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1 → 3 → 2 and 1 → 4 → 2 which are resonant under different conditions and have
opposite selection rules. The effects of the second pair of couplings has two relevant
effects that we need to take into account. Firstly there is a new resonance condition
that should be avoided as it may cause unwanted population transfer both coherently
and incoherently. Secondly there will be modifications to the Stark shifts induced by
the couplings since now both lasers will couple to all four levels.

H4 =


−E0/2 0 Ω1/2e(−iω1t) Ω2/2e(−iω2t)

0 E0/2 Ω2/2e(−iω2t) Ω1/2e(−iω1t)

Ω1/2e(iω1t) Ω2/2e(iω2t) Ex +Eh/2 0
Ω2/2e(iω2t) Ω1/2e(iω1t) 0 Ex −Eh/2

 (3.7)

The four level Hamiltonian equation that describes a charged QD in the Voigt
geometry (equation (3.7)) can again be reduced to a two level effective Hamiltonian
using adiabatic elimination when we are only interested in the dynamics of the two
ground states:

Heff =
 −∆eff/2 Ωeff/2(1+ e−i(ω1−ω2)t)

Ωeff/2(1+ ei(ω1−ω2)t) ∆eff/2

 (3.8)

Ignoring the quickly rotating coupling term we find that the Hamiltonian can be
written as:

Heff = 1
4

 −2δ+ Ω1
2

∆ + Ω2
2

∆4
1
∆Ω1Ω2

1
∆Ω1Ω2 2δ+ Ω2

2

∆ + Ω1
2

∆4

 (3.9)

This can be compared to the effective Hamiltonian for the Λ system from equation
(3.6). We know that the protocol in the three level case creates an avoided crossing
by using the Stark shift cause by the strong couplings to modify the energy levels of
the lower states, altering the sign of ∆eff = δ+Ω2

1
1

4∆ −Ω2
2

1
4∆ . But if we investigate the

Voigt geometry’s two level effective Hamiltonian we can see there are now two new
terms which mostly cancel out the relative shift which was present for the Λ system.
∆eff = δ+ Ω2

1
(

1
4∆ − 1

4∆4

)
+ Ω2

2
(

1
4∆4

− 1
4∆

)
. Since ∆ and ∆4 are also approximately

equal (assuming Ee,Eh ≪ ∆) then these extra effects will almost completely eliminate
the change in the relative Stark shift between the ground states. This means a large
increase in either of the Ω’s will not have a significant effect on the relative energy shift
between the two levels and will not be able to cause the required sign change in ∆eff.
This has been confirmed through simulations shown in figure 3.13.
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Fig. 3.13 The STIRAP protocol in the Voigt geometry (c). The coupling strength
profiles, identical and with the same parameters shown in figure 3.12. b.) The
eigenvalues for the attempted transition, both lower levels are now shifted almost
equally as both lower levels are now coupled to the upper levels via the strong laser.
This prevents the level crossings that are required for the STIRAP process. d.) This
results in the population only temporarily being transferred into the other states
through state mixing but without no overall transfer we saw in the Λ system.
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If ∆ was chosen to be of a similar order to the upper and lower levels’ energy
splitting Eh and Ee then it may be possible to still induce a significant avoided crossing
from only modifying the magnitude of the laser couplings. In this limit we are modifying
the frequencies to amplify the difference between the detunings ∆ and ∆4 to the point
we can neglect the effects of the fourth level and revive the Λ system dynamics. This
method would require careful tuning of the lasers close to resonance with the dots
and so we would no longer be able to address a large ensemble of inhomogeneously
broadened QD’s simultaneously.

STIRAP is therefore not a suitable protocol for performing π pulses in an ensemble
of QDs, for either in-plane geometry or the out-of-plane Voigt geometry, we will now
go on to introduce an alternative method.

3.2.4 RCAP

Raman Chirped Adiabatic Passage (RCAP) was presented as an alternative to STIRAP
[17] [18]. RCAP uses the same Λ type systems from figure 2.2 and also uses an avoided
crossing to transfer the population robustly. The main difference from STIRAP is that
RCAP generates the avoided crossing by chirping one of the lasers rather than through
a Stark shift induced by the lasers.

The lasers are setup in a Raman configuration where the lower levels are both
detuned from the upper energy level and close to two photon resonance between each
other as for stimulated Raman transfer in section 2.5.2 and STIRAP in section 3.2.2.
For RCAP the crucial avoided crossing is induced between the lower two levels by a
chirped laser that sweeps through two photon resonance. Either laser can be swept in
either direction for successful population transfer. The pulses do not in general need
to be the same intensity, but have been set to in figure 3.14 to avoid Stark shifts from
altering the resonance condition.

If we inspect the effective Hamiltonian (2.15) then we can see that there is an
adiabatic increase and decrease in the off diagonal elements (the coupling intensity)
and a sweeping coupling frequency which induces an avoided crossing between the two
states which causes the population transfer. This shows that RCAP can be considered
to be identical to an ARP transition when looked at from the perspective of two
level effective Hamiltonian. The transition probabilities can therefore also be derived
from the effective Hamiltonian (2.15), assuming the original conditions for adiabatic
elimination hold. Equation (2.25) can be used to calculate the transition probability
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Fig. 3.14 The dynamics of a RCAP transition, performed in a three level Λ system from
figure 2.2 without the inclusion of spontaneous decay a.) The intensity of the couplings
during the transition, in this case both are of identical strength, but in general they can
be of different strengths b.) The eigenvalues of the Hamiltonian in the rotating frame.
∆ = 1, dE

dt = 0.001 The two lower energy levels undergo an avoided crossing as in figure
2.7b, the upper level is Stark shifted slightly, but otherwise remains detuned throughout
the process c.) The population transferred throughout the transition. There is a near
complete transfer from level |ψ1⟩ to |ψ2⟩ and a small amount of population transferred
to the upper level through state mixing during the middle of the transition, although
hard to see here.
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substituting ∆ → ∆eff and Ω → Ωeff. we can see that the fidelity of the transfer should
be given by:

σ = 1− e
−
(

Ω2
2∆

)2
1
dE
dt

π
2 (3.10)

We first cover the three level Λ system case to later compare to the Voigt geometry
case. Spontaneous emission is the cause of the loss of fidelity in figure 3.15b and occurs
due to state mixing raising a proportion of the population into the upper state. State
mixing, introduced in section 2.5.1 is when, due to the Ω coupling, the eigenvectors of
the system become a mixture of the original bare states. Since the protocol is performed
adiabatically, the state remains in an eigenstate throughout the whole process, and
because this eigenstate contains a proportion of the bare state |3⟩ it is capable of
spontaneously emitting a photon, decohering the state. State mixing will always occur
but will be small if Ω is small. The state mixing populations in a two level system are
given by equation (2.21).
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Fig. 3.15 A set of example fits for RCAP in a three level Λ system with spontaneous
decay with ∆E = ±10−4,∆ = 5,10,15. Fits from equation (3.10) are given as the red
line, results from numerical simulations with the inclusion of spontaneous emission are
given as blue points, Γ = 0.04. A smaller ∆ case corresponds to a smaller Ω required
for transfer. A comparison between the two graphs shows that there is an asymmetry
in ∆E , the sweep rate of the chirp, for higher values of Ω.

ρ33 = 1
2 − ∆

2
√

∆2 +Ω2 (3.11)

There are two contributions to the population in the upper state |3⟩, one from
state mixing with each of the lower states |1⟩ and |2⟩. Whether these contributions
would be constructive or destructive depends on the phase of the mixed populations.
The difference between the two plots in figure 3.15 is due to either destructive or
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constructive interference respectively for the state |3⟩ population. The fits do not
include the effects of spontaneous emission equation (3.10) and demonstrate the effects
of spontaneous emission to the final fidelity. The upper state populations for two
example simulations are given in figure 3.16, showing the cases for nearly complete
constructive, and destructive interference. An alternative view on this asymmetry is
to notice that, of the two ground states in the dressed state picture, one will have a
higher energy and one lower. If the bulk of the population is in the ground state that
has the higher energy (closest to the excited energy) it will have the maximum level of
mixing while if the bulk of the population is in the lower state then there will be a
minimal amount of state mixing.
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Fig. 3.16 The population of the excited state |3⟩ throughout the RCAP process. The
two lines show close to complete constructive/destructive interference and are for ∆E is
positive/negative respectively, or for the initial population in state |1⟩/|2⟩ respectively.
Switching either of these parameters will change the behaviour of population in the
upper level. The dotted fit gives the maximum population if the contributions are
completely constructive and the population is split evenly between the two ground
states. In both cases Ω = 1, ∆ = 5.

In general population in the upper state |3⟩, which determines the amount of
spontaneous emission, will depend on both the initial state and the direction of the
sweep for the Λ system. This leaves the amount of spontaneous emission complicated
to predict exactly, but leaves a maximum value which can be easily determined
from equation (3.11). The total population transferred throughout the process via
spontaneous decay is given by the integral of the total population in the unstable state
during the transfer:

2Γ
∫
dt

(
1
2 − ∆

2
√

∆2 +Ω2

)
(3.12)
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3.2.5 RCAP in the Voigt geometry

To identify the effects of the fourth level on the RCAP transition we again consider the
two level effective Hamiltonian for the Voigt geometry (2.17) which has two diagonal
terms, one of which is identical to the Λ case and one which is rotating. We assume
that the rotating term can be ignored as we did for the rotating wave approximation.

Since RCAP induces an adiabatic crossing by sweeping the frequencies (changing
ω) of the lasers rather than relying on the induced Stark shift (changing Ω), it should
be expected to perform similarly in both the three level Λ system and four level Voigt
geometry, since the detuned 1 → 4 → 2 transition will be detuned and should not
significantly affect the dynamics of the transition. We compare simulation results for
the three and four level transition probability in figure 3.16.

0.2

0.4

0.6

0.8

1.0

0.5 10.25 0.75

Fig. 3.17 Comparing the 3 level Λ system fidelities with the 4 level Voigt geometry
fidelities. ∆ = 1, ∆E = 0.5×10−4. The four level case has a poorer fidelity due to the
spontaneous emission from the fourth level.

The second effect of the fourth level is to alter the effective detuning, which is
slightly beneficial as we can see from the same arguments as presented in section 3.4.
The fourth level means that it is possible to use different strength Ω’s without having
to worry about readjusting the resonance conditions to account for the Stark shift.
Here have set Ωh = Ωv.

We can see from figures 3.17 and 3.15 that the four level RCAP transfer probability
obeys the same Landau-Zener condition (equation (3.10)) as the three-level Λ system,
with an added loss of fidelity which we will see is due to spontaneous emission.

The population transfer via spontaneous emission does differ for large Ω between
the 3 and 4 level systems. The total population in the upper state levels |3⟩ and |4⟩
through state mixing would naively be more than the population for the upper state
for the Λ system, if only because there are now two levels to decay from. We find that
this is generally true, however the state mixing induced population in the upper levels
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Fig. 3.18 The upper state populations ρ33 and ρ44 for different initial conditions and
sweeping conditions. Each plot shows the population for a positive and negative sweep.
a.) and b.) correspond to the population starting in state ρ11, c.) and d.) correspond
to starting in state ρ22. For all cases the populations of state ρ33 oscillate between
maximum and minimum values, which are bounded by 2 times equation (3.11), the
doubling is due to constructive interference. The state ρ44 population varies depending
on the initial condition and sweep direction, as we also saw in figure 3.16, and is also
bounded by 2 times equation (3.11).

3 and 4 is similarly dependent on the initial state and sweeping direction as for the Λ
case. The populations are shown in figure 3.18. One of the levels |3⟩ oscillates between
the maximum and minimum values shown in figure 3.16, whilst the level |4⟩ population
has similar dependence to the Λ case. If the level which holds the most population
at the start of the simulation has the higher energy in the rotating frame, state |4⟩
will contain a larger population throughout the process. This results in a contribution
between 0.5 and 1.5 times the maximum Λ decay rate, given by equation (3.12), which
can be controllable if the initial state is in a known ground state.

From equations (3.10) and (3.12) we can derive the total population transfer with
the RCAP protocol.

σ = 1− e
−

(
Ω2
2∆

)2

∆E
π
2 −2aΓ

∫
dt

(
1
2 − ∆

2
√

∆2 +Ω2

)
(3.13)

Where a depends on the initial conditions and sweep direction, and varies between
0.5 and 1.5 depending on the sweep direction and initial conditions.
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Fig. 3.19 RCAP sweep fidelities for a.) positive sweep, which shows low spontaneous
emission losses b.) negative sweep which shows high spontaneous emission losses. The
red curve shows the optimal Ω dependence on ∆ for maximum fidelity in both cases.
The colour function is fitted to a log scale from -6 to 0. Simulations used a Ω Gaussian
function with a FWHM of 1800 in code units and a sweep rate of 4.8×10−5.

We can see from figures 3.19 and 3.20 that the system behaviour when performing
a positive or negative sweep is qualitatively similar, but the positive frequency sweep
offers an overall higher fidelity of transfer. An RCAP transition performed on an
ensemble of dots would have a spread of ∆’s equal to the the inhomogeneous broadening,
10meV for our typical ensemble. We can see from figure 3.20 that to perform an RCAP
transition with a fidelity Ln(1−σ)< 5 (a 1% loss) simultaneously on every dot in the
ensemble would require a pulse detuned by at least 15meV from the closest dot for a
positive sweep with Ω ≈ 0.8 or 25meV from the closest dot for a negative sweep with
Ω ≈ 1.0. The value of Ω used is also less critical for larger detunings.

The spontaneous emission is dependent on the pulse width of the lasers, while
the fidelity of the RCAP transition is only dependent on the strength of the coupling
around the crossing, and the assumption that the system changes adiabatically. If the
pulse is too short and the process is not completely adiabatic the Rabi oscillations
begin to appear [51] while a longer laser pulse increases the spontaneous emission
during the process, which should be minimised. The previous RCAP examples in
this section (3.2.4) all use an identical Gaussian FWHM for each Ω pulse which was
chosen to be 1800 in code units. Now we consider the cases for different transition
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Fig. 3.20 The fidelity of the RCAP protocol for an identical Ω pulse on dots with
varying ∆ (in meV), for example inhomogeneously broadened dots. The Ω’s used are
{0.325,0.625,0.925,1.225}, a.) and b.) show transfers with a positive and negative
sweep respectively. Data points taken from numerical simulations in figure 3.19, fit
given by equation (3.13).

times changing the FWHM of the Ω pulse to identify the range of the FWHM that
will create a successful RCAP transition.

In figure 3.21 we consider the effects of modifying the pulse width in the numerical
simulations, showing how the width of the laser pulses influences the fidelity of the
transition. All simulations run for 3.21a are run with parameters that would be
expected to have a 99% fidelity according to the Landau-Zener fidelity in equation
(3.10) which does not account for spontaneous emission or the lack of adiabadicity
due to the length of the Gaussian pulse, ∆E is modified with Ω to ensure this fidelity.
Figure 3.21b was run for identical ∆E to a, but for double Ω, which should result
in a fidelity beyond the numerical accuracy of the simulations. We can isolate losses
due to three other effects in the simulation as a reduction from 99% in a, or ≈ 1 in b.
The simulations were run with a linear frequency sweep. For larger pulse widths the
frequency sweep exceeded double the ground splitting energy Ee and therefore induced
a second RCAP transition from |1⟩ → |4⟩ → |2⟩, leading to a sharp loss of fidelity for
larger t shown in the figure. This is a fidelity loss mechanism that does not exist in the
original Λ system and further constrains the parameters which can be used. Smaller
pulse widths broke the adiabatic condition, and therefore the state underwent Rabi
oscillations rather than adiabatically following the path of the eigenstates. This is
particularly visible for the cases in 3.21b where the larger Ω corresponds to a larger
pulse area, creating several distinct oscillations. For 3.21a the pulse area for smaller t
was not large enough for multiple oscillations and can be simply seen as a complete
lack of transfer. For each set of parameters there is a useful area of parameter space
which is the flat shelf between the two significant losses of fidelity at each end.
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Fig. 3.21 Plots for the total fidelity of an RCAP pulse for varying pulse widths. a.)
All simulation parameters set such that the Landau-Zener fidelity in equation (3.10)
is fixed to σ = 0.99. ∆ = 10 for all cases, setting Ω sets the rate of sweep. b.) Ω is
doubled to 2Ω with the rate of sweep identical to a.), such that the Landau-Zener
fidelity in equation (3.10), σ ≈ 1, beyond the numerical accuracy of the simulations.
b.) shows clearly the Rabi oscillations that are barely visible in a. for low widths.

Spontaneous emission can be seen in 3.21a for the largest Ω’s and largest Gaussian
widths, however in figure 3.21b the spontaneous emission clearly creates a significant
dip for larger pulse areas, for a more complete analysis of the spontaneous emission see
figure 3.20. While using a larger Ω generally allows for shorter pulse, and therefore
a shorter gate time, for the largest Ω sweep in 3.21b we can also see that the usable
area of parameter space has vanished since the condition for the lack of adiabadicity at
small t now overlaps with the condition of the total sweep frequency being less than
Ee. There are therefore no advantages at any point of parameter space in trying to
use an Ω which would optimise the Landau-Zener condition significantly beyond the
desired fidelity of the transition.

The smallest possible FWHM for the highest Ω in figure 3.21a is roughly 700 in
code time, this translates to 700×1000× h̄

1.6×1019 = 4.6×10−10 = 46 ns in real time.
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3.2.6 π Rotation Conclusions

We showed that the STIRAP protocol cannot be used in the Voigt geometry but that
RCAP protocol instead is a suitable protocol for performing π pulses in QDs.

We have found that the Landau-Zener formula with losses from spontaneous
emission included fits the results well, given by equation (3.13). The ideal parameters
are approximately ones which result in the fidelity of the ARP transition being equal
to 1− the spontaneously emitted population. We have shown that there is an initial
state and sweep direction dependence on the fidelity losses due to spontaneous emission
for the RCAP protocol, because this determines whether the contributions to the
population level in the unstable upper state are constructive or destructive.

We have shown that when the lasers are further detuned from resonance the
transition is less sensitive to relative detuning between each dot in figure 3.20. The
amount of inhomogeneous broadening therefore defines how far the laser pulses need
to be detuned from resonance (∆), but does not provide a strict limit on the fidelity of
the rotation achievable for a given amount of inhomogeneous broadening.

We have shown there are two limits to the length of the pulses that can be used.
The pulses must be long enough that the whole process is adiabatic whilst being short
enough that the frequency sweep does not overlap with the resonant frequency of the
second Λ system in the Voigt geometry. We have demonstrated that these limits do
not overlap for a wide area of parameter space, as shown in figure 3.21 which allows for
a large variation in the parameters used for the RCAP transition. This is necessary for
the protocol to be used on ensembles containing dots with varying parameter values.

Since the fidelity σ of the RCAP transition is mostly governed by the Landau-Zener
formula the maximum fidelities achievable are only limited by the time within which
the transitions is performed.

We have shown in figure 3.20 simulations in which a fidelity of 0.997 is achieved
across an ensemble with 10mev inhomogeneous broadening for a pulse with a FWHM
of 120ns. A single dot state can be flipped with a pulse FWHM of 46ns to a fidelity of
0.99 shown in figure 3.21.

3.3 Wave Mixing Losses
There is one more contribution to a loss of fidelity of the RCAP process which we will
discuss. We do not include this loss in the conclusions of this chapter because the
process is unlikely to be relevant to any actual implementation of the RCAP process.
It is however an interesting physical phenomenon that is valid in other models and
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will be the topic of the next chapter of this thesis. The process relies on Ω ≳ ∆. This
parameter regime would also introduce a significant amount of spontaneous emission
in a real QD system, however spontaneous emission has been removed from the model
for this section to isolate the behaviour of the Wave Mixing transfer.

Fig. 3.22 An extension to figure 3.19, showing RCAP fidelity for lower ∆ and larger
Ω. Darker areas correspond to higher fidelity, lighter to poorer fidelity, the y axis was
chosen empirically to emphasis the steps. The gaps between the steps are approximately
the ground state splitting energy Ee. The parameter Eh was set to zero for these
simulations to isolate the effect.

While numerically investigating the parameter space close to resonance with the
dots a curious loss of fidelity was noticed at specific values of Ω and ∆, particularly
when ∆ was small and Ω was large, this was for larger Ω’s than necessary for the RCAP
protocol to be successful. An example result for this is shown in figure 3.22 which
is the an extension of the parameter space covered in figure 3.19. The simulations
covered in this figure do not include the effects of spontaneous emission and yet still
yield very poor fidelities for large values of Ω which was not expected, within the
parameter regime of figure 3.22 virtually all of the plot should be expected to be
dark, with a fidelity beyond the numerical accuracy of the simulations and with a
thin lighter line at small Ω. This loss in fidelity indicated a different mechanism that
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was not yet accounted for conceptually in the model. The fidelity loss occurred with
characteristic sharp steps shown in figure 3.19 and shows a highly non-linear effect
with a large change in the behaviour of the system with only a small increase in Ω.
The factor (2Ω2 +∆2) 1

2 was determined empirically as the factor which approximately
determined the critical value of Ω, and is noted to be approximately the Stark shift
caused by the two applied lasers which guided us to the solution. We also noted that
the steps were separated by an energy equal to the energy difference between the two
lasers applied which is also the ground state energy level splitting. The effect does
not occur for the same parameters in the Λ system and is therefore directly due to
the inclusion of the fourth level in the Voigt geometry. We have discovered that these
steps are due to high orders of wavemixing due to the interaction of the two external
lasers with the dot, creating extra resonance conditions that would otherwise be absent
in the system. These new resonances interact in a Stark Chirped Rapid Adiabatic
Passage (SCRAP) interaction that is described in section 4.1. The full analysis of the
mechanism including the generation of the different resonance conditions is given in
chapter 4.

Here we briefly include a model considering the consequences of wavemixing within
the RCAP protocol we were discussing above. If we assume that the only function of
the fourth level is to generate wave mixing resonances, we can treat the system as a
single Λ system, generating RCAP transfer plus a single extra wavemixing coupling
with a frequency determined through wavemixing. This results in the Hamiltonian:

HΛ+W M =


−δ/2 0 Ω1/2 0

0 δ/2 Ω2/2 ΩWM/2
Ω1/2 Ω2/2 ∆ 0

0 ΩWM/2 0 −∆WM

 (3.14)

Figure 3.23a gives the eigenvalues for this Hamiltonian when the parameters are
set for the standard Λ RCAP transition with a large Ω. The fourth level is coupled
via a wave mixing resonance to level two, this coupling undergoes two weakly avoided
crossings with level two due to the Stark shift of the applied RCAP lasers. Each
crossing will transfer population, destroying the fidelity of the protocol. Figure 3.23b
shows the population during a numerical simulation run with the four level RCAP
parameters and clearly shows two crossings between level two and level four behind
the desired 2 → 1 transfer, as we would expect from the model in equation (3.14).
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Fig. 3.23 RCAP with the inclusion of wavemixing, see figure 3.14 for RCAP transfer
without wavemixing. a.) Eigenvalue diagram for an RCAP pulse coupled with a wave
mixing resonance coupling to the fourth level, showing eigenvalue energy E against time.
This plot gives a qualitative picture. b.) An example of a the population during 4-level
RCAP transfer from a simulation with poor fidelity in figure 3.22 with Ωmax = 1.25,
∆ = 2.4 and dE

dt = 4×10−5.

In general there will can be many transfers throughout the process, from either
of the lower levels into either of the upper levels. Figure 3.23b was chosen to show a
clean example with only one pair of crossings to present the concept.

From the wave mixing theory which we introduce in the next chapter we should
expect an infinite ladder of resonances spaced at energies of 2Ee. We can see the ladder
from the steps in figure 3.22. However, the actual spacing for the resonances in figure
3.22 is Ee, for these simulations Eh was set to 0 for simplicity. It is possible to deduce
that setting Eh to 0 ensures the resonances with the third and fourth levels are evenly
spaced. We can then see that the steps alternate between transfer to the third and
fourth levels, so while the resonance with each individual level is separated by 2Ee this
leads to the spacing of Ee shown in figure 3.22 because we need to account for transfer
into both upper levels.

The reason for the steps to be so sharp, with a small change in Ω causing a
large change in the behaviour in the system is because as Ω is increased the Stark
shift increases, if this Stark shift is just large enough to pass through a resonance
created through wave mixing there will be a population transfer causing the change in
behaviour.

For parameter sets with ∆ ≫ Ω the wave mixing resonances would not be strong
enough to cause and noticeable transfer and the Stark shift will will be smaller, and
therefore less likely to induce a crossing at all. The quantitative details regarding
how wave mixing generates extra resonances within the system is left until the next



62 Quantum Memories

chapter 4, including an analysis of when wavemixing should be expected to interfere
with systems similar to this.

3.4 Read/Write

In this section we discuss the read and write processes, which includes both the ability
of the memory to absorb and emit the signal photons well as the ability to distinguish
the retrieved signal photon from other photons also produced during the readout
process, this ultimately leads to an analysis of the feasibility of the overall quantum
memory. We will refer to any non-signal photons produced during the readout as noise
photons.

3.4.1 Noise Sources

Each process performed on the ensemble in the memory protocol will be imperfect, and
have a fidelity (or probability of success) σ. These imperfections will either reduce the
probability of retrieving the photon, increase the number of noise photons on retrieval
or both.

The noise can be filtered from the signal in several ways. The first is through
polarisation. The control pulse contains around 1010 photons, but will be polarised
orthogonally to the signal photon, which in theory allows these photons to be filtered
out completely. Off the shelf polarisation filters with an extinction ratio of 104 : 1 have
a transmission ratio of 95% − 98% [67]. A back of the envelope calculation gives a
requirement for two or three filters in series giving a transmission rate of between 86%
and 96%.

The second filter mechanism is through frequency. The signal photon will be emitted
from the 2 → 3 → 1 transition with an energy E31 − ∆. There will also be photons
emitted though the 1 → 4 → 2 transition which have a frequency of E31 − ∆ + 2Ee

and the same polarisation as the signal photon, which can be filtered spectrally. Any
remaining control field that is not successfully filtered through polarisation can also
be filtered spectrally as it will have an energy of E31 − ∆ +Ee. The experimental
implementation of spectral filtering is beyond the scope of this thesis, but for simplicity
we assume the idealised condition where the filters can eliminate these sources of
extra photons. These filtering assumptions leave only the transfer of population from
2 → 3 → 1 to be considered towards the noise contribution as this will have both the
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same polarisation and frequency as the signal photon. Temporal filtering is not possible
as the noise occurs during the signal photon emission.

The final filtering mechanism we discuss is spatial filtering. Noise that is both of
the same polarisation and frequency as the signal photon will not be distinguishable
from the signal if it reaches the detector. The detector size is determined by the
distribution of the signal photon field which will depend on many factors including
the input photon distribution and diffraction. If we considered the ensemble to be
embedded in a waveguide, the probability of a spontaneously emitted photon being
into the mode that reaches the detector is given by β

2 where β is the probability of the
emission into the waveguide mode. While we are considering the free space case in this
thesis, we will borrow this terminology. The equivalent β is then determined by the
overlap of the emission probability of a dipole emitter with the detector area. A wider
ensemble of dots would decrease diffraction, allowing for a smaller detector but would
also increases the amount of noise by increasing the number of dots. The optimisation
of the size and shape of the ensemble is an important factor when designing a quantum
memory but is beyond the scope of this thesis. We shall leave β as an unknown
parameter in this analysis.

We can therefore see that embedding the ensemble in a waveguide is actually counter
productive to the quantum memory operation. The signal photon will be returned in
the same mode that was received and so will be directed towards the detector regardless
of the existence of a waveguide but we also need to minimise the spontaneously emitted
photons that reach the detector. Therefore embedding the memory into a wave guide
with large β is actually counter productive, since a high β waveguide will preferentially
emit noise into the direction of the detector, greatly increasing the final noise detection.
Assuming that the levels of noise are not trivial, free space or a waveguide with a
particularly low β is therefore necessary for the quantum memory to function.

3.4.2 Photon Storage

It is important to understand that the spin wave which stores the information of the
photon is stored in the coherences between the electron spins in each dot, rather than
in the raw population in state |2⟩. These coherences define not only the existence of
the photon state but (when combined with the control pulse) the direction in which
it will be emitted, which happens to be in the direction of the control pulse. While
an amount of population in state |2⟩ is a part of the spin wave, we shall see that
the majority of the population will have no correlations across the ensemble. This
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population will partially pumped out as noise during read meaning that the angular
distribution of the noise photons will be the same as a single dipole emitter.

In a collection of papers by A.V. Gorshkov et al [32–34] have given a detailed
analysis of the properties of Λ ensemble memories. This was achieved by considering
how to reliably map an incoming photon onto a spin wave across the ensemble of Λ
systems. Their findings have shown that the parameter that fundamentally limits
the retrieval fidelity is the optical depth of the ensemble. This is because the ratio
between collectively enhanced emission into the desired signal modes and spontaneous
decay into undesired modes depends only on the optical depth [33]. Inhomogeneous
broadening does reduce the fidelity of the transition for a given arrangement of dots,
but this can be overcome by increasing the number of dots, and therefore the optical
depth of the memory further.

Papers [32, 33] show that the fidelity of the read and write process in an ensemble
of Λ systems is completely determined by the resonant optical depth, defined by
d= ln

(
Incident radiation

Transmitted radiation

)
for monochromatic resonant light:

d= g2NL

Γc , (3.15)

where g2 = µ2
ijν/(2h̄ϵ0AL) and N is the total number of dots. Note that the resonant

optical depth refers to the maximum spectral absorption, not the spectrally integrated
absorption. Stronger optical coupling also increases the spectral width of the peak such
that resonant optical depth is actually independent of the absorption coefficients of
the dots themselves. This can be seen clearly by using Fermis golden rule to substitute
Γ = µijν

3/(3πϵ0h̄c3), which gives in the following:

d≈ nLλ2, (3.16)

where n is the atom/dot density, L is the physical length of the sample and λ is the
wavelength of the photon. This is extended in [34] for ensembles with inhomogeneous
broadening to the resonant optical depth d′ = d Γ

∆I , where ∆I is the inhomogeneous
broadening width and Γ is the decay constant between the pair of levels coupled to the
photon mode.

The read/write protocol we will consider here is Stimulated Raman transfer in-
troduced in section 2.5.2 which has been demonstrated for use a a quantum memory
protocol with experiments using caesium vapour[63]. For both the caesium experiments
and the analysis by A.V. Gorshkov et al only Λ systems are used. For the case of
quantum dots in the Voigt geometry we must deal with a fourth level creating a double
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Λ system. Next we will discuss the effect of the fourth level in the systems and how, if
at all it will interfere with the protocol.

Starting from the Hamiltonian in equation (2.17) that describes the two level
effective dynamics in the Voigt geometry, we will first look at the two photon detuning.
Here Ω2 is a single photon and Ω1 is the control pulse, so Ω2 ≪ Ω1 and so we can ignore
the Stark shift from the Ω2 field. The effective detuning for the three level Λ system is
∆Λ

eff = δ− Ω1
2

∆ and for the Voigt geometry is ∆eff = δ−Ω2
1
(

1
∆ − 1

∆4

)
≈ δ since ∆ ≈ ∆4.

We can see that the detuning in the Voigt geometry is actually much more stable
than the detuning in the original Λ case almost completely removing the resonance
dependence on the control laser power Ω1, simplifying the experimental procedure.
While we believe this decrease in detuning should offer a slight improvement to the
transition over the basic Λ system if large intensity controls are required, it should
however not fundamentally alter the dynamics, and therefore the analysis by A.V.
Gorshkov et al should still be relevant to the Voigt geometry.

The second effect of the fourth level in the Voigt geometry is to introduce a second
coherent transition mode during write 1 → 4 → 2 with the same strength as the desired
1 → 3 → 2 transition but detuned by 2Ee. The strength of the coupling is given by
Ωeff = Ω1Ω2

2∆ . Since we are in the Raman regime Ω1,Ω2 ≪ ∆ and because Ω2 is also
a single photon field, Ω2 ≪ Ee which implies that Ωeff ≪ Ee, therefore the transition
probability via level four will be many times smaller than the transition via level
three and its interference with storage of the photon can be ignored, as we did for the
rotating wave approximation.

The 1 → 4 → 2 transition can however incoherently pump population into state |2⟩.
This is not possible within the Λ system since the control pulse is not directly coupled
to state |1⟩ in the Λ case. The amount of population pumped via level four can be
calculated by integrating equation (2.29) over the read pulse of length T and is given
by:

TΓΩ2

4∆2 +Ω2 , (3.17)

which will add noise to the system. We therefore directly use the results from Λ system
memories and add an extra noise contribution to the system due to the pumping during
write and read.
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3.4.3 Loss and Noise Contributions

We only consider the photons emitted from pumping 2 → 3 → 1 as noise as we assume
all other contributions will be filtered out to a level in which they are insignificant.
The rate of emission during readout can be determined from the rate of pumping given
in section 2.5.4 which is proportional to the population in state |2⟩. If there were
global coherences across the ensemble that corresponded to emission in a particular
mode then there would be directionally controlled emission, here we shall argue that
there are no coherences across the ensemble except for the desired signal. We therefore
assume that the noise photons will be emitted in random directions with a probability
density determined by the emission probability of a dipole. Since the emission is
directly proportional to the population in state |2⟩ we will now go on to discuss the
various contributions to the level |2⟩ population during readout and the loss of the
signal photon incurred from each the four sections of the memory: Initialisation, Write,
Storage and Read.

Initialisation: The fidelity of initialisation σinit contributes directly to the pop-
ulation in state |2⟩. Here we also make the naive assumption that the imperfect
initialisation only reduces the optical depth by reducing the number of resonators in
state |1⟩ absorbing the photon while not further impeding the read/write process. The
assumption that the population in state |2⟩ during write doesn’t interfere with the
process should be investigated within the model of ref [34] or similar with an inclusion
of imperfect initialisation and is beyond the scope of this thesis.

Write: Imperfect write, as described in ref [34] contributes directly to loss of the
photon with probability of success σwrite. However in the Voigt geometry there is also the
separate process of pumping described in section 3.4.2 that pumps population through
level four, contributing to the state |2⟩ population. The total pumped population
1−σP write can be calculated from section 2.5.4.

Storage: Decoherence during storage contributes linearly to the loss [32] of the
photon on retrieval with the fidelity due to decoherence given by σdec. The fidelity of
the two π pulses σπ for the spin echo contribute to both loss of the photon and extra
population in state |2⟩.

Read: ref [33] shows that the read and write processes have the same fidelity
σwrite = σread, we can also infer that the amount of pumped population will be the
same, however since the population is not transferred before the noise is created, but
rather during during noise emission we can infer that the relevant contribution for the
noise is half of that during write σP read = 1

2σP write.
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The final fidelity of the photon retrieval is given by:

σout, total =
∏
i

σi loss = σwriteσdecσ
2
πσreadσfilter (3.18)

and the final population in level 2 contributing to noise is given by:

ρ22 = 1−
∏
i

σi noise = 1−σinitσP writeσ
2
πσP read (3.19)

where σiloss and σinoise correspond to the fidelities of every process relevant to either
state loss or to noise generation respectively.

3.4.4 Noise Example

We now calculate the signal retrieval and noise output for our typical ensemble.
Fidelities with optimal parameters for initialisation (figure 3.11) and π pulses (figure

3.20) for the typical ensemble have been calculated to be σinit = 0.97 and σπ > 0.997
respectively. σdec is completely dependent on the properties of the dots and the length
of time that the state is stored for. Here we will choose an example of a 0.1µs storage
time for an ensemble with a decoherence time of T2 = 3µs which gives σdec = 0.97.

The fidelities associated with write and read are strongly dependent on the optical
depth of the dot ensemble and the intensity of the control field used. For our typical
ensemble d′ ≈ d∆I

Γ = d
2500 . We assume that we can choose the length of the ensemble

and therefore choose d to be a value such that it is not the dominant loss term and
as such we will set d′ = 40 resulting in a write/read fidelity σwr = 0.99 [34] which
gives N = 100000×

(
width

λ

)2
. At a fairly dense dot distribution of 4×1014m−2[46] the

number of dots per layer that are in an area λ2 would be approximately 100. 1000
layers would be required for the full memory with these parameters, which is an order
of magnitude beyond current achievements [39, 76].

While the method for optimisation of the control field Ω for inhomogeneously
broadened ensembles is discussed at length in ref [34], its value is not explicitly stated
for our case. For the sake of providing an example we will use the value

Ωopt ≈ ∆√
ΓTd′ , (3.20)

which can be inferred from the similar case with a Lorentzian inhomogeneous broadening
profile case, rather than the Gaussian profile in typical dot ensembles. The optimal
control field also only accounts for optimal retrieval and does not consider minimising
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the noise output. Therefore a control field that is also optimised to minimise noise may
differ significantly from this in reality. We therefore use this only as rough example to
infer the plausibility for the overall quantum memory process.

The population pumped from state 1 → 4 → 2 during write and read can be
calculated from equation (3.17) after substituting in Ω from equation (3.20). The total
transferred population during write becomes 1

d′ = 0.025 = 1−σP write.

The above parameters provide the expected retrieval efficiency of the photon:

σout, total = 0.99×0.97×0.9972 ×0.99×0.94 = 0.89 (3.21)

We can see that the largest loss factors are the losses due to the polarisation filters,
which is fixed and the T2 decoherence which is directly dependent on the storage time,
the other parameters are limited by properties of the dot ensemble or protocols which
can be optimised further if necessary, and therefore not directly limiting the feasibility
of the memory.

The total uncorrelated population contributions from initialisation, write, read and
two RCAP transitions in equation (3.19) is:

ρ22 = 1−0.97×0.975×0.9972 ×0.987 = 0.072. (3.22)

We can see that the largest contribution to noise is the initialisation procedure.
This value was found to be limited by the properties of the dots themselves and cannot
easily be reduced. See section 3.1 for full details. This is therefore a minimum level
of noise that must be sustained by memory protocol and could potentially break the
feasibility of the quantum memory protocol, if this level of noise is too high.

The total pumped population from 2 → 3 → 1 during readout gives the number of
noise photons emitted. This population transfer can be derived from equation (2.29),
from Ω given by equation (3.20), the definition of optical depth in (3.16) and while
assuming Γ ≪ ∆ and 4Td′Γ ≫ 1. This results in the following number of noise photons:

NT
Γ( ∆2

ΓT d′ )ρ22

4(Γ2 +∆2)+( ∆2
ΓT d′ )

≈ ρ22∆I

4Γ

(
width
λ

)2
, (3.23)

where "width" is the width of the dot ensemble, specifically the section of the ensemble
that can be considered active in the memory protocol. Equations (3.23) and (3.22)
result in an emission of 45

(
width

λ

)2
noise photons by the ensemble.
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The probability of an emitted noise photon being received at the detector β
2

determines the total number of noise photons that are detected, which is

Detected Noise = 45β
(

width
λ

)2
, (3.24)

in the limit that this expected number of photons is much less than 1.
β, which is based upon the size of the detector, is dependent on the spread of

the emitted signal as the detector must be wide enough to capture the photon. The
spread is dependent on many factors including diffraction due the size and shape of the
ensemble. Finding the ensemble shape which minimises equation (3.24) is an important
part of designing the quantum memory but is beyond the scope of this thesis.

To be within a correctable level of error with the 10% loss rate calculated above
the probability of a computational error must be less than 0.0035[4] for current error
correction protocols. There are two photon storage modules per quantum memory and
therefore double the photons calculated above will reach the quantum computer. If we
assume that there is no mechanism to detect multi-photon errors in the computation
then the noise expectation per each photon memory operation must be half this, 0.0017.
If the detected noise in equation (3.24) can be minimised below 0.0017 photons per
readout then the memory can function within current fault tolerance models. If the
computation can differentiate multi photon events then computational errors will
only occur when the signal photon is simultaneously lost while a noise photon is
created. This will result in a factor of 10 fewer computational errors in our example, a
considerably less strict condition.

3.4.5 In-plane Read/Write

Ultimately storage and retrieval with the in-plane geometry is unlikely to be a viable
memory method, but we have included a brief discussion here for completeness. The
in-plane geometry storage would require the strong control and weak signal pulses to
be distinguished spectrally rather than through polarisation as is the case for the out-
of-plane Voigt geometry, which in itself would be a significant challenge. The Raman
transition still exists 1 Ω−→ 3 γ−→ 2 and there is now a second Raman transition 1 Ω−→ 4 γ−→ 2,
shown in figure 3.24a where γ refers to the photon field and Ω the control field. For
both cases the phases align and so these two transitions combine constructively.

There is also significant transfer through 1 Ω−→ 3 Ω−→ 2 and 1 Ω−→ 4 Ω−→ 2, because the
control pulses now couple to both sides of each Λ system and can generate coherent
transfer between the levels. This control-control transfer is detuned and strong so
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Fig. 3.24 two independent coupling mechanisms present during an in-plane geometry
read/write

will create fast oscillating population transfer. The population transferred by the
control-control coupling will be larger than the population transferred by the photon-
control coupling despite the detuning, since γ is a single photon and Ω is a strong
laser pulse, composed of approximately 1010 photons for a nJ control pulse used in
current experiments [63]. If the amplitude of these oscillations is considerably less than
1 then the fast oscillations will not significantly effect the dynamics of the spin wave
coherences, and so the final state of population transferred through the photon-control
process would not be significantly changed while the population transferred through
the control-control interaction would be on average half the height of the oscillations,
contributing to the final noise population only. The pulses are not applied adiabatically
with respect to the lower levels, and so the control-control coupling will induce Rabi
oscillations rather that temporary state mixing. The height of the rabi oscillations will
be given by:

rabiheight = 1
2

Ω2
eff

Ω2
eff +E2

e
. (3.25)

An approximate value for the Ω and therefore Ωeff is given in section 3.4.4, applying
that to equation (3.25) with the values for our typical ensemble results in a maximum
oscillation height of around 0.4. This transfer is not much less than 1 and so will
interfere with the dynamics of the spin wave and also the average transfer of 0.2 per
dot for each transition will generate significantly more noise than the out-of-plane case,
which is also likely to be limited by its noise emission.

3.5 Quantum Memory Conclusions

We have investigated the potential for QDs to be used as a quantum memory, par-
ticularly focussing on protocols for the initialisation and π pulses required for a fully
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functioning memory. We combined this with the research by A Gorshkov [34] for the
fidelity of the write and read process itself to discuss the feasibility of using QDs as a
quantum memory.

We have shown that there are limits to the fidelity of retrieval which can be achieved
in our typical ensemble, which are primarily based on the quality of the optical filters
to differentiate the signal photon and the decoherence while the state is stored. The
ability to build the necessary hardware (> 1000 layers of QDs) is also a significant
barrier for realisation. Assuming that the hardware requirements can be achieved
we have shown that retrieval rates can be placed within the limits of fault tolerant
quantum computing.

We have calculated the expected noise photon count for a typical memory to be
around 45 photons, compared to 1 signal photon. The number of noise photons is
primarily influenced by the initialisation fidelity, the number of dots in the ensemble
and the intensity of the read control pulse. The initialisation fidelity is limited almost
entirely by the Zeeman splittings (Ee and Eh) and the decay rates Γij of the QDs.
The optimisation of the read control pulse is beyond the scope of this thesis, further
work in this area may lead to an improved control pulse intensity profile which both
maximises the returned signal while minimising the noise emission, decreasing the
expected number of noise photons. The total number of noise photons emitted during
readout provides a strict limit to the probability β of an emitted noise photon entering
the detector or quantum computer.

We have shown that for both the initialisation and π pulse protocols that the
inhomogeneous broadening of the quantum dots does not pose a significant reduction
in fidelity. The write and read protocols do however suffer from a reduced efficiency
for large inhomogenous broadening, requiring significantly more dots for broadened
ensembles, which in turn leads to significantly more noise being emitted.





Chapter 4

Wave Mixing

In this section we depart from considering the properties of quantum dots specifically
and move onto the properties of some more general theoretical models of wave mixing.
This research was motivated by the anomalies noted at the end of the previous chapter,
specifically we argued that the steps in figure 3.22 were due to population transfer
involving N-wave mixing.

Wave mixing in its broadest terms is the effect of multiple photons interacting
within a physical medium to create new photons with frequencies that are given by a
sum of the incoming photon frequencies. The energy level diagram for a 4-wave mixing
example is shown in figure 4.1. Here there are two lasers applied to the system, Ω1

and Ω2 of different frequencies ω1 and ω2, such that ω2 −ω1 = δω. From the internal
atom dynamics we can consider the photons interaction though virtual levels which do
not get significantly populated, in the same way we described the Raman transition
previously. Two photons from laser 2 and a photon from laser 1 can interact to create
an output photon ω3 in red.

Wave mixing creates extra couplings between the energy levels in the system at
frequencies that would not otherwise occur. This leads to a spectrum of evenly spaced
delta functions, or when viewed from the point of view of the internal dynamics, creates
an array of resonance conditions that in general need to be avoided. This research was
motivated by a loss of fidelity within the simulations of a population transfer protocol
done in the previous chapter that was caused by large orders of wave mixing. As four
and six wave mixing are commonly abbreviate 4 wave mixing and 6 wave mixing, we
will collectively refer to higher orders as N-wave mixing where N refers to (an often
arbitrary) wavemixing order number.

In general we could consider any number of different incoming frequencies, here we
will only consider the case of two frequencies from two incoming lasers, or equivelantly
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Fig. 4.1 The energy level diagram for 4-wave mixing for a two level system. Three
incoming waves shown in black generate the fourth outgoing wave, shown in red, which
is not of the same frequency. The two dotted lines can be considered as virtual levels
and act like Raman transitions.

from a single laser before taking the rotating wave approximation, therefore including
its own counter rotating term in the Hamiltoninan. Wave mixing can occur whenever
the graph of couplings (examples in figure 4.2) contains a closed loop which is not
self resonant (defined below). This is to say that there are two paths through which
population can be transferred between two energy levels in the system, and that these
two paths are not resonant under the same conditions. These two paths provide a loop
through which population can be transferred around the system, through which the
frequency accumulated by traversing the loop once is given by the frequency difference
between the two coupling paths. The self resonant case is the trivial case when there is
no frequency accumulated. The frequency accumulated can be calculated by summing
the frequencies of each coupling term in the Hamiltonian that is involved in the loop,
taking special care to include the sign of the frequencies. This is valid regardless
of whether the lab frame or a rotating frame is chosen. For example, the graph for
the four level system from equation (3.7) is shown in figure 4.2 with the closed loop
in red. From appropriately adding and subtracting the frequencies of the coupling
terms in equation (3.7) we find that the accumulated frequency from one rotation is
2ω1 −2ω2 = 2δω. Self-resonance therefore only occurs at the trivial case for ω1 = ω2.

Wave mixing is generally considered from the perspective of the optical interactions
with a medium, which mediates interactions between incoming photons. Wave mixing
calculations are generally used to determine the frequencies and modes of output
photons, which are calculated through perturbation theory. The response of the
medium can then be written in terms of the incoming electric field and the n’th rank
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Fig. 4.2 a.) The coupling graphs between the states of a quantum dot in the Voigt
geometry from the previous chapter. The closed loop is shown in red. b.) shows the
ground state two level equivalent system coupling graph after adiabatic elimination,
which is the equivelent of two lasers coupled to a single two level system.

non-linear susceptibility tensor [52, 75]. This approach is also only appropriate when
the electric fields are sufficiently weak that perturbation theory is valid. In this chapter
we instead wish to consider wave mixing from the perspective of the dynamics of
an isolated atom with a linear dipole interaction. We have developed an alternative
approach that allows the effects of large orders of wave mixing on the atom dynamics
to be calculated.

We will now go on to build a model through which these mixing effects can be
fully understood. Using this we can identify how strong these extra couplings are,
and with which parameters they will occur. This can then be used to calculate when
transfer events occur and how much transfer will occur. We will then go on to propose
a protocol where this normally disruptive process can be used in a controlled way to
achieve coherent population transfer.

4.1 SCRAP

We have found that the transfer of population with wave mixing investigated in this
chapter is very similar to the Stark Chirped Rapid Adiabatic Passage (SCRAP) protocol
which we will introduce now.

The simplest case of Stark Chirped Rapid Adiabatic Passage (SCRAP) consists
of a two level system with two couplings. One strong coupling is far detuned from
resonance and used only to Stark shift the energy splitting of the two level system and
one weak coupling is applied with a resonance just above the bare state energy of the
system. The pulses are applied sequentially with an overlap, the same as for STIRAP
3.2.2. Also similar to STIRAP, the Stark shift causes two avoided crossings to occur
between the energy level splitting and the weak pulse, but since the weak pulse is only
applied with a partial overlap, only one crossing transfers population.



76 Wave Mixing

Δ

Ω1
Ω2

Fig. 4.3 Energy level diagram for a SCRAP protocol. For SCRAP Ω1 is a strong pulse
with a large detuning ∆ which is used to induce a Stark shift, while Ω2 is a weak pulse
detuned slightly above the energy level splitting with δ small and positive that causes
an avoided crossing to occur as the Stark shift changes the energy splitting of the
states.

The two-level SCRAP case has the energy level structure given in figure 4.3 with the
dynamics shown in figure 4.4, this can be a successful protocol to transfer population
with a very high fidelity. However, for our four level case there is a complete overlap
between the weak resonance, caused by wavemixing and the Stark shift caused by both
RCAP lasers, meaning that both resonances will occur, and for general parameters
neither are likely to be of a high fidelity. We can see one example for this in figure 3.23.

4.2 Theoretical Formulation

The two level system in figure 4.3 with Hamiltonian given in equation (4.1) has two
frequencies coupled to it and is the simplest possible example with a non self resonant
closed loop of couplings required for wave mixing, assuming δ ̸= 0.

We also note that this is an identical Hamiltonian to equation (2.9), which is a two
level system coupled to a single wave before the rotating wave approximation is applied.
In general, for this Hamiltonian, the faster rotating term is eliminated because for most
situations its effects are irrelevant. However as we are interested in these effects this
term cannot be eliminated. While wave mixing effects are often investigated through
perturbation theory this is also insufficient for our purposes as we want to consider
high order effects involving large incoming electric fields.

This Hamiltonian is inherently time dependent. The time dependence also cannot
be considered to be adiabatic, which presents difficulties in calculating the eigenvalues
of the system as these need to be considered in a time independent frame. Instead we
have developed the following technique to produce a time independent Hamiltonian
which we can then solve:
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Fig. 4.4 a.) The coupling strengths for the SCRAP protocol, the large pulse is detuned
away from resonance by ∆ = 1 and Stark shift the energy splitting of the levels whist
the weaker pulse is detuned slightly above resonance by δ = 0.1, such that the Stark
shift sweeps through resonance with the state b.) The dressed state representation
of the process, showing the avoided crossing. Since it is not possible to write the
Hamiltonian in a time independent frame this plot shows how the dressed states look
if the effects of the Stark coupling and resonant coupling are dealt with separately. c.)
The bare state populations throughout the process, an amount of population in state
|ψ2⟩ through state mixing before the avoided crossing causes nearly complete transfer
from |ψ1⟩ into |ψ2⟩.

We first redefine the variables for this chapter, such that E0 → ∆ , Ωeff → Ω and
ω2 −ω1 → δ giving us the Hamiltonian:

H = 1
2

 −∆ Ω(1+ eiδt)
Ω(1+ e−iδt) ∆

 (4.1)

We then use the time independent Schrödinger equation:

Hψ = i
dψ

dt
(4.2)
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Where

ψ(t) =
 α(t)
β(t)

 (4.3)

This results in the following pair of coupled equations:

dα(t)
dt

= −i1
2α(t)∆+ i1

2Ω(1+ e(iδt))β(t)

dβ(t)
dt

= i1
2β(t)∆+ i1

2Ω(1+ e(−iδt))α(t)
(4.4)

We now define an infinite set of states

|ψ∞(t)⟩ = (...,αk−2(t),βk−1(t),αk(t),βk+1(t),αk+2(t),βk+3(t),αk+4(t),βk+5(t), ...)
(4.5)

Where the αk’s and βk’s are are identical to the original α and β, but are now
treated as independent variables. We shall see later that each copy of α and β represents
a new virtual level introduced in figure 4.1. Using this new set of states we can rewrite
equation (4.4) as:

dαk(t)
dt

= −i1
2αk(t)∆+ i1

2Ω(βk−1(t)+βk+1(t)e(iδt))

d
βk+1(t)
dt

= i1
2βk(t)∆+ i1

2Ω(αk+2(t)+αk(t)e(−iδt)),
(4.6)
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which results in an infinite set of chain-linked states. This set of equations can be
written out in the form of the Schrödinger equation using the infinite set of states from
equation (4.5) and a corresponding infinite Hamiltonian:

d

dt



...

β−1(t)

α0(t)

β1(t)

α2(t)

β3(t)

α4(t)
...



= i

2



. . . . . . 0 0 0 0 0 0

. . . −∆ Ω 0 0 0 0 0

0 Ω ∆ Ωe(−iδt) 0 0 0 0

0 0 Ωe(iδt) −∆ Ω 0 0 0

0 0 0 Ω ∆ Ωe(−iδt) 0 0

0 0 0 0 Ωe(iδt) −∆ Ω 0

0 0 0 0 0 Ω ∆ .. .

0 0 0 0 0 0 . . . . . .





...

β−1(t)

α0(t)

β1(t)

α2(t)

β3(t)

α4(t)
...


(4.7)

Equations (4.7) have identical dynamics to equations (4.4), but can now be trans-
formed into a time independent rotating frame. This gives:

d

dt



...

β′
−1(t)

α′
0(t)

β′
1(t)

α′
2(t)

β′
3(t)

α′
4(t)
...



= i

2



. . . . . . 0 0 0 0 0 0

. . . −∆+2δ Ω 0 0 0 0 0

0 Ω ∆+2δ Ω 0 0 0 0

0 0 Ω −∆ Ω 0 0 0

0 0 0 Ω ∆ Ω 0 0

0 0 0 0 Ω −∆−2δ Ω 0

0 0 0 0 0 Ω ∆−2δ . . .

0 0 0 0 0 0 . . . . . .





...

β′
−1(t)

α′
0(t)

β′
1(t)

α′
2(t)

β′
3(t)

α′
4(t)
...


(4.8)

Where the rotating states are no longer identical, but related by α′
k(t) = αk(t)eiδ k2 t

and β′
k(t) = βk(t)eiδ k+1

2 t. The starting population of each state is given by:

|ψ∞(0)⟩ = (...,α(0),β(0),α(0),β(0),α(0),β(0),α(0),β(0), ...), (4.9)
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Fig. 4.5 Energy levels of the expanded Hamiltonian in the rotating, time independent
frame (equation (4.8)), for the case of 8 wave mixing, when ∆ = 3δ. |α8⟩ is on resonance
with |β1⟩ and there are 6 intermediate levels: |α8⟩ → |β7⟩ → |α6⟩ → |β5⟩ → |α4⟩ →
|β3⟩ → |α2⟩ → |β1⟩

which importantly is not normalised in the normal sense of a wavefunction, by summing
up each term, since this isn’t a real system, instead this state is normalised such that
|αk(t)|2 + |βm(t)|2 = 1 for all k and m. In an infinite system the dynamics are identical
for each α′

k(t) and each β′
k(t) and they will therefore evolve identically. We can therefore

write, without loss of generality, that the state of the extended system will be given by:

|ψ′
∞(t)⟩ = (...,α(t)e

i
2 δ(k−2)t,β(t)e

i
2 δ(k−2)t,α(t)e

i
2 δkt,β(t)e

i
2 δkt,α(t)e

i
2 δ(k+2)t,

β(t)e
i
2 δ(k+2)t,α(t)e

i
2 δ(k+4)t,β(t)e

i
2 δ(k+4)t, ...)

(4.10)

Where α(t) and β(t) are exactly the population in the upper and lower state of our
original two level system. From now on I will refer to the infinite matrix in equation
(4.8) as the expanded Hamiltonian. Using this time independent Hamiltonian it is now
possible to explore the eigenvalues of the system.

4.3 Calculating N-wave mixing strength

Given the expanded Hamiltonian we can now identify the strength and location of
high order N-wave mixing resonances. This can be done exactly by calculating the
eigenvalues of the expanded Hamiltonian, equation (4.7). Resonances occur at avoided
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crossings shown in figure 4.6 with the strength of an effective coupling Ωeff given
by the minimum separation of the eigenvalues when on resonance with the N-wave
mixing transition, which is is also when the effective detuning ∆eff = 0. In general
∆eff = ∆−∆resonance. For small Ω these occur when Nδ≈ ∆ by considering the coupling
between each αk(t) with all of the relevant βk(t) levels rather than just the two levels
directly coupled. For higher Ω the Stark splitting needs to be taken into account.
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Ω4eff

Fig. 4.6 Eigenvalues of the extended Hamiltonian for δ = 0.1, Ω = 0.1 and can be
rescaled without altering the topography by keeping δ/Ω constant. Eigenvalues are
calculated numerically for a truncated matrix sufficiently large to include the correct
dynamics, in this case a 30×30 matrix.

Given the infinite, repeating nature of the expanded matrix shown in Figure 4.6,
we only need to consider the two central eigenvalues to understand all of the dynamics
of the system. All other eigenvalues are translations of these two and exhibit identical
crossings. In Figure 4.6 the two central large avoided crossings correspond to the system
on resonance, while the avoided crossings both to the left and right of these correspond
to 4,6,8, ... etc wave mixing cases. Two crossings are expanded, corresponding to 4
wave mixing and 6 wave mixing respectively. The plot is for δ/Ω = 1 and scales linearly
with δ and Ω.
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Calculating the effective coupling strength for each order of wave mixing is the
equivalent to calculating the coupling between two levels connected together by N − 2
intermediate levels. We can solve this equations as follows, using a truncated version of
the extended Hamiltonian. Where l+(N −1) = k gives the order of wave mixing being
calculated and n is the number of states included beyond the states being calculated.

We use the time independent Schrödinger equation (4.11) on the extended Hamil-
tonian to get reach equation (4.12).

Eψ =Hψ (4.11)

Eψl−n = ∆l−nψl−n +Ωψl−n+1
...

Eψl−1 = ∆l−1ψl−1 +Ωψl +Ωψl−2

→Eψl = ∆lψl +Ωψl+1 +Ωψl−1

Eψl+1 = ∆l+1ψl+1 +Ωψl+2 +Ωψl

...
Eψk−1 = ∆k−1ψk−1 +Ωψk +Ωψk−2

→Eψk = ∆kψk +Ωψk+1 +Ωψk−1

Eψk+1 = ∆k+1ψk+1 +Ωψk+2 +Ωψk

...
Eψk+n = ∆k+nψk+n +Ωψk+n−1

(4.12)

We solve for ψk+1,ψk−1,ψl+1,ψl−1 and substitute these into the ψl and ψk (arrowed)
equations to give the coupling between the two states of interest:

Eψl =+∆leffψl +Ωeffψk

Eψk =−∆keffψk +Ωeffψl

(4.13)

Which give us the effective Hamiltonian for the specific N-wave mixing crossing:

HN = 1
2

 −∆eff Ωeff
Ωeff ∆eff

 (4.14)

See Appendix C for an example of this process for 6 wave mixing.
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An N-wave mixing coupling will be resonant when the detuning for that level,
∆eff = 0, with a strength given by Ωeff. The terms for ∆’s and Ωeff are calculated
using computing software and are in general neither simple nor informative in their full
form so have been omitted. The terms include factor of E which should be recursively
replaced with Ωeff, in reality a single replacement is sufficient, with all further cases of
E set to zero, see figure C.1 in appendix C. Table 4.1 gives the first order approximation
in Ω2 and ∆ for different orders of wave mixing. These are plotted in Figure 4.7.

Lowest Order Approximations, (for Ω1 = Ω2 = Ω)
∆eff Ωeff (at ∆eff = 0)

4WM δ−∆+ 2(−176δ+71∆)Ω2

225δ2
Ω3

4δ2

6WM 2δ−∆+ (−86δ+13∆)Ω2

144δ2
Ω5

64δ4

8WM 3δ−∆+ (−243δ+25∆)Ω2

576δ2
Ω7

2304δ6

10WM 4δ−∆+ (−524δ+41∆)Ω2

1600δ2
Ω9

147456δ8

12WM 5δ−∆+ (−965δ+61∆)Ω2

3600δ2
Ω11

14745600δ10

14WM 6δ−∆+ (−1602δ+85∆)Ω2

7056δ2
Ω13

2123366400δ12

16WM 7δ−∆+ (−2471δ+113∆)Ω2

12544δ2
Ω15

416179814400δ14

18WM 8δ−∆+ (−3608δ+145∆)Ω2

20736δ2
Ω17

106542032486400δ16

20WM 9δ−∆+ (−5049δ+181∆)Ω2

32400δ2
Ω19

34519618525593600δ18

22WM 10δ−∆+ (−6830δ+221∆)Ω2

48400δ2

24WM 11δ−∆+ (−8987δ+265∆)Ω2

69696δ2

26WM 12δ−∆+ (−11556δ+313∆)Ω2

97344δ2

28WM 13δ−∆+ (−14573δ+365∆)Ω2

132496δ2

30WM 14δ−∆+ (−18074δ+421∆)Ω2

176400δ2

Table 4.1 Approximate solutions plotted in figure 4.7. Ωeff solutions became too
complicated to compute beyond 20 wave mixing.

The solutions to Ωeff could not be calculated directly beyond N = 20 using the
above method, but the following relation can be seen to be true for N = 4 → 20:

Ωeff(N+2) = Ωeff(N)
Ω2

N2δ2 (4.15)

We can check the functions calculated for ∆eff = 0 against the numerical eigenvalues
calculated directly from the extended matrix for validity. The value of ∆ required
to make ∆eff = 0 will be called ∆resonance since it is the initial detuning ∆ required
to place the the level on NMW resonance. Figure 4.8 shows the eigenvalues of the
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Fig. 4.7 a) Plot of ∆eff = 0 (resonance) for N = 4 through 14 for varying coupling
power, aka Stark shift. This plot scales linearly with δ. b) Ωeff on resonance.

extended matrix for different values of Ω. The calculated crossing values from table 4.1
are shown as vertical lines, we can see that the results approximately fit the numerical
eigenvalue calculations except for the case of ∆ < 1. This effect can be seen again
in figure 4.9 and is due to the limitation of using a second order function for the fit.
Appendix C includes a discussion on the problems of creating a higher order function
with our method.

As a general discussion point, we can consider the value of (N−2)
2 δ−∆resonance to be

the AC Stark shift induced by the two lasers. This value is the amount through which
the detuning needs to be altered from the naive bare state solutions for resonance
of the N-wave mixing states to occur, which is the equivalent of saying the energy
difference in the gap of the bare states and dressed states of the two level system. This
calculation is not trivial for two applied lasers and will have different forms depending
on whether the two lasers are the same intensity or very different intensities. Here we
have assumed that they are equal for simplicity. Ultimately a numerical calculation of
∆resonance is superior to any analytical results presented here.

Figure 4.9 compares the expected avoided crossing locations against the numerically
measured minima that can be seen in figure 4.8 for a wider parameter space. Again we
can see that the numerical eigenvalue results are close to our analytic function with
the exception of when ∆resonance is close to zero. Here there is a small deviation away
from the fit for the low order wave mixing cases.

The above calculations were performed for the case Ω1 = Ω2. Calculating the terms
for Ω1 ̸= Ω2 results in an expression for ∆eff which is neither simple nor insightful. A
more useful approach is to understand that ∆eff can be calculated from the Stark shift,
of which there are many approximations depending on the assumptions that can be
made, for example the approximation used in figure 3.22: ∆′ ≈

√
∆2 +Ω2

1 +Ω2
2, valid

for ∆>> δ.
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Fig. 4.8 N-wave mixing resonance crossings for 4 through 14 wave mixing and varying
Ω’s. Central four eigenvalues plotted for each case. Vertical black lines are the
approximate solutions presented in table 4.1.
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Fig. 4.9 Comparison between the resonance conditions given in table 4.1 (dotted) and
the numerically calculated eigenvalue minimums of the extended Hamiltonian for wave
mixing order 4 through 22. An extension from figure 4.8.

The result for the lowest orders of Ωeff when Ω1 ̸= Ω2 is however a simple result and
compatible the relation given in equation (4.15). We have found that we can express
the general coupling strength of an N-level wave mixing transition as:

Ωeff(N) = Ω
N
2

1 Ω
N
2 −1

2

(2δ)N−2
((

N−2
2

)
!
)2 (4.16)
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Where Ω1 is closer to resonance with the bare state than Ω2. This is of course only
valid if we assume that the relation continues beyond the orders which are calculable
with this approach.

This formula can be considered to be a specific case of the result for adiabatic
elimination in higher level systems with any value Ω’s and ∆’s. We have two "end
levels" and multiple in between levels which are all detuned from resonance such that
we can remove then using adiabatic elimination. The coupling strength in the limit
of small Ω’s is simply

∏iΩi∏i(2∆i)
. While the analytical results for large Ω’s are opaque.

A combination of intuition and numerical analysis has suggested that the coupling
constant should actually be given by

∏iΩi∏i(2∆′
i)

where the ∆′
i are the detunings of each

level from resonance after the Stark shift due to the applied strong coupling is accounted
for. Normally this would be a complicated function to calculate, dependent on every
other ∆ and Ω. However, in the case for N-wave mixing this is simple, because each
level, by definition, has to be at set intervals of δ from resonance with the N-wave
mixing field at the point of resonance, which is the point at which we observe its effects.
At this time the ∆ primes can just be written down independently of the detuning of
the original two level system, entirely in terms of δ and N . This leads exactly to the
form of equation (4.16). Currently this relation is purely conjecture and has not been
proven. We attribute this to the potentially surprising result that even with extremely
strong Ω’s, equation (4.16) does not appear to require any additional higher order
terms to accurately predict coupling strengths, as is demonstrated later in figure 4.13.
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4.4 Modelling N-wave mixing transfer
We test the accuracy of our model by comparing our results with numerical simulations
of the original two level system. In a numerical model we are free to vary the system
parameters as necessary to isolate the single N-wave mixing transfer in which we are
interested.

To isolate single N-wave mixing transfers we consider a system coupled to two
monochromatic sources of constant intensity, close to resonance with an N-wave mixing
mode such that ∆ = ∆res − δ

2 . The energy splitting between the atom levels is then
increased linearly over time until it reaches ∆ = ∆res + δ

2 . This approach ensures the
system will cross the N-wave mixing mode in a controlled way, keeping all of the terms
in the Landau-Zener formula constant throughout the transition minimising the effects
from inaccuracies in the analytical approximations for ∆, Ω and δ. It should be noted
that, while changing the splitting does actually change the effective laser coupling, it
does so in a way that is easily accounted for, since we are only interested in the coupling
strength at the point of the crossing itself, which by definition is when ∆eff = 0, fixing
the detuning in Ωeff and therefore fixing Ωeff.
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Fig. 4.10 a.) Path traversed during the simulation. b.) Ω intensity during a typical
simulation, simulations below use this intensity curve shape rescaled with different
maximum intensities Ωmax and total times T.

The whole process must be performed adiabatically, the numerical setup, shown
in Fig 4.10 has an adiabatic rise in Ω to initialise the system, followed by a flat
monochromatic period of Ω where the crossing occurs which is described above. This
is then followed by an adiabatic removal of the lasers to reach a steady value for the
transferred population. The detuning is swept during the first and last stages to ensure
that there are no N-wave mixing modes crossed during the rise and fall of Ω, as shown
in fig 4.10. During the central stage where the crossing occurs, ∆ is swept linearly.
This is then be compared to the theoretical values calculated previously.
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The population of one of the bare states during a typical transition is shown in
figure 4.11. State mixing increases as Ω is adiabatically increased. During the crossing
the population rotates by an angle of up to π while also oscillating because of the two
interfering frequencies applied, as Ω is adiabatically decreased the populations in the
bare states stabilise and the fidelity of the transfer can be determined.
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b

Fig. 4.11 Bare state population during typical simulations, showing a low fidelity (σ)
and high fidelity transfer. Examples are for 20wave mixing, Ω = 6.5, δ = 1 and 18wave
mixing, Ω = 6, δ = 1 respectively

Despite the large oscillations the population still closely obeys the Landau-Zener
formula given in (2.25), confirming that the adiabatic condition for the crossing
is unaffected. For 4.11a Ωeff = 6.519

218(9!)2 , dE/dt = 0.01 and for 4.11b: Ωeff = 617

216(8!)2 ,

dE/dt = 0.001 leading to expected population transfer of e
−πΩ2

eff
2dE/dt of 0.34 and 10−19

(which is within numerical accuracy of zero) respectively. Figure 4.12 shows the
fidelity of transfer for three different sweep rates dE/dt and varying Ω compared with
the expected fidelities from combining our results with the Landau-Zener formula,
confirming the formulas presented in table 4.1.

From the results in figure 4.12 we can then calculate Ωeff for each mixing order.
These are shown in 4.13. There is a clear maximum value of Ωeff which is the same for
every mixing order. This makes sense geometrically since there δ limits how wide any
avoided crossing can be, however this limit is lower than would be naively expected.
Modifying the path to account for the bump in ∆eff seen in figure 4.9 and generally
being more careful may increase the

We have examined the N-wave mixing effects in a very controlled way to isolate
the properties of the crossings to compare the analytic solutions with numerical data,
and in doing so confirmed the validity of the results in table 4.1.
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Fig. 4.12 Fidelity of an N-wave mixing-ARP transition and its dependence on Ω for N
from 4 through to 20. The fit assumes that the Landau-Zener formula holds exactly
for the effective coupling strength given in table 4.1.
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Fig. 4.13 Effective N-wave mixing coupling strength dependence on Ω for 4 through to
20 wave mixing, for varying Ω

4.5 Modelling disruptive N-wave mixing effects

In general the N-wave mixing effects we are considering are neither intentional nor
desired, involving multiple crossings with each transferring small amounts of population
in an uncontrolled manner.
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We now consider the case with the path shown in figure 4.14, in which a pair of
strong Gaussian-enveloped monochromatic pulses are coupled to a two level system.
The Gaussian pulse generates a time dependent Stark shift, which, if the pulses are
sufficiently strong, will cause crossings to occur with one or more N-wave mixing virtual
levels. Every crossing will transfer an amount of population between the levels which
we can calculate using Table 4.1.
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Fig. 4.14 a.) Example path traversed during the simulation b.) Ω intensity during
the simulation, given by an adiabatic rise to height Ωmax, a period of constant Ω,
followed by an adiabatic removal of Ω. The Purpose of this path is to drive the system
adiabatically with zero crossings during periods of changing Ω and then driving the
system with constant Ω and varying ∆ across exactly one avoided crossing. Following
simulations run with different total times T and strengths Ωmax, which scale with the
shape of b.

We first set up a simple two level system without wave mixing to investigate the
population transfer that occurs when two Landau-Zener crossings occur with a Gaussian
shaped coupling term and Gaussian shaped eigenvalues. We then compare these results
to the actual population transfer that occurs during N-wave mixing simulations.

4.5.1 Geometric Phase

To calculate the population transfer for the path taken in figure 4.14 we must first
consider the effects of multiple ARP crossings. To do this we now introduce a two
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level model with similar dynamics as a pair of N-wave mixing crossings. Within this
example we set the detuning ∆ and off-diagonal coupling Ω as follows:

∆ = 1.5 − e
−

20(t−T
2 )2

T2

(
1+ ∆k

1000

)

Ω = e
−

20
(
t− T

2
)2

T2

(
1+ ∆k

1000

)
1
2Ωmax

(4.17)

Where T is the time elapsed in the simulation, ∆k determines how far the states
cross over and Ωmax is a constant. We can consider this system in the frame where
one bare state set constant, representing the fixed N-wave mixing virtual state and the
second state’s energy following a Gaussian profile, representing the real state being
driven by a strong Stark shift which punches through the steady N-wave mixing state.
The coupling between the states is given by the same Gaussian, and importantly will
have the same value at the crossing points independent of ∆k, as would be expected
during an N-wave mixing transition.

A

Fig. 4.15 Eigenvalues the two level system with equations (4.17), set to simulate a
single N-wave mixing crossing pair with a path as described in figure 4.14. A is the
area between the two eigenvalues, ∆k determines how far the states cross over

Simulations run with equations (4.17) undergo two transitions, as the base state
energies cross twice. Although we know the angle rotated on the Bloch sphere we do
not currently know the direction. Therefore the two transfers can either be constructive,
destructive or somewhere in between. Two typical results are shown in figure 4.16, one
constructive and one destructive.

We treat the transfer as a rotation by θ determined by the Landau-Zener formula at
an angle ϕ determined by the phases of the system. The maximum transfer is therefore
given by the angle 2θ and the minimum rotation angle is zero, if both transition are the
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Fig. 4.16 The population during two typical simulations for T = 1000, Ωmax = 1/300
and ∆k = 953 and 1000 respectively. Each has two transfer points. ∆k is chosen in the
first simulation such that the transfers are constructive and in the second simulation
destructive, resulting in no overall change in the state.

same fidelity. Only the relative values of ϕ between the two crossings are important as
this completely determines the constructive/destructive nature of the transitions. The
relative angle between the two transitions is determined by the area A shown in figure
4.15 and is known as the geometric phase [9]. For small angles the final population
transfer is given by.

||ψ1final⟩|2 = 1
2 (1− cos(2arccos(1−2σ))) 1

2(sin(A)+1), (4.18)

which takes the maximum possible transfer from two consecutive ARP transfers
multiplied by a function of the geometric phase factor A which accounts for whether
the transfers were constructive or destructive. This is a simplistic method that does
not account for the dynamics of the first peak, giving an infinite answer as the levels
first touch due to the unrealistic infinitely flat crossing angle. A complete approach is
given in [69], the addition is not necessary for the analysis performed later and has not
been included.

Figure 4.17 shows an initial rise in the population transfer followed by an oscillatory
and decreasing population transfer as ∆k is increased. The initial increase is due to the
two levels starting to cross over and having infinite gradient, our treatment fails because
it is not relevant to consider the transfer as the product of two independent avoided
crossings at this point, a complete derivation of a similar setup is done in section 2
in [69] which also fits correctly for A ≈ 0. For the purposes in this thesis the result
in equation (4.18) will be sufficient as the majority of the graph is well represented
by the fit. The oscillations are due to the geometric phase accumulated between the
two crossing points and the slow decrease in transfer is due to ∆t increasing in line
with the shape of the stretched Gaussian, Ω at the point of crossing remains constant
throughout.
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Fig. 4.17 The final populations for simulations run with equations (4.17) (blue, solid)
fit given by equation (4.18) (red, dotted). Black line corresponds to the value of ∆k

when the bare states touch just once.

4.5.2 N-wave mixing disruptive transfer

We now use the results from the section 4.5.1 to calculate the population transfer
that occurs in systems with strong Gaussian pulses inducing multiple Landau-Zener
crossings with N-wave mixing virtual levels. The parameter path for this is shown in
4.14, which when considered through the extended Hamiltonian results in the eigenvalue
diagram in figure 4.18.
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Fig. 4.18 Coloured lines: resonance conditions given from table 4.1 for δ = 1, Ωmax = 6.
Black line included for ∆ = 3.5 reference, giving the Landau-Zener crossing points
between the N-wave mixing virtual levels.

We use the resonance conditions from table 4.1 to calculate when the system with
bare state detuning ∆ = 3.5 will be on resonance with the N-wave mixing virtual levels
and undergo a Landau-Zener crossing. The Stark shift modified resonance conditions
are shown in figure 4.18 with the black line for ∆ = 3.5 showing both when resonances
are expected to occur and the rate of the energy sweep at each crossing. This can be
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used to determine the location and fidelity of each Landau-Zener crossing. The area A
gives the relative phase between the highest two crossings.
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Fig. 4.19 Bare state population during a typical simulation. ∆ = 2.5, δ = 1, Ωmax = 3.1
Black lines are the crossing points for 8wave mixing (outer pair) and 10 wave mixing
(inner pair). We can see after the first 8 wave mixing crossing the Rabi oscillations no
longer reach back to 1, indicating a small population transfer, the population transfer
after each 10 wave mixing crossing is indicated by a more pronounced step. The total
population transferred during this simulation is roughly 0.15.

The maximum possible transfer from a set of ARP population transfers can be
calculated by summing up the total angle rotated by each transition, assuming that
they act constructively:

σmax = 1
2

1− cos
 n∑

j=1
arccos(1−2σj)

 , (4.19)

unless the sum reaches more than a full π rotation of the Bloch sphere, in which case
the maximum is simply 1. This equation is generated with the same method as the
first part of equation (4.18) and sums up the angle each ARP transfer rotates on the
Bloch sphere and returns this value in terms of the total population transfer This
equation is used to fit the to the simulation data shown in 4.20 and should provide an
upper bound to the results. We can see from 4.20 that the actual upper bound is a
small deviation from this result, and we believe is due to the deviations between the
numerical and analytical results for ∆resonance shown in figure 4.9.

The geometric phase accumulated between each transition determines whether the
pairs of transfers will be constructive or destructive, and is calculated in the same
method as section 4.5.1. A full treatment should take into account the interferences
between each pair of transitions. Here we are primarily interested in validating our
model, so we have only included the highest order as this dominates the transfer.
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Fig. 4.20 Blue: data, Black: fit. Population transfer for simulations with a pair of
Gaussian pulses as described in 4.14 for various Ωmax, clearly showing steps due to
each order of wavemixing crossed and oscillations to the geometric phase accumulated
between transitions. The five steps correspond to 10 → 18wave mixing.

Accounting for the phases between pairs of transfers from different orders of wave
mixing is not trivial.

σ = σmax
1
2(sin(A)+1), (4.20)

where A, shown in figure 4.18, is the area enclosed between the highest order crossing
with the detuning energy ∆, which for the example in the figure is the 16 wave mixing
crossing with ∆ = 3.5.

10 5

10 4

0.001

0.01

Fig. 4.21 Blue: data, Black: fit. A subsection of data from figure 4.20 with a fitting
curve defined by equation (4.20)
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Figure 4.21 shows the data and fit for an N-wave mixing transition. While the fit
in the figure qualitatively matches the numerical simulations well the oscillation width
quickly deviates from the numerical values, this is due to the imperfect match between
the calculated and actual values for ∆resonance which were shown in figure 4.9.

4.6 Smooth curve

The transfer probability for the situations with a large number of steps or low Ω
resolution is better represented by a smooth function which is continuous in N ignoring
the discreteness of the steps above. To calculate this we require the functions Ωeff(N)
and ∆resonance(N) for N ∈ R. These functions were given in table 4.1 for integer N
only. We can directly extrapolate Ωeff(N) from equation (4.16) to give:

Ωeff(n) = Ω2n+1

(2δ)2nΓ(n+1)2 (4.21)

Where Γ is the gamma function, the continuous variable extension to the factorial.
There is however no exact relation for ∆resonance(N) (the value of ∆ required to make
∆eff = 0). Instead we have approximated ∆resonance(N) by noting that the dependence
on N scales approximately linearly with δ. We (arbitrarily) pick the 28 wave mixing
∆resonance equation from 4.1 to derive:

∆(n) = −1121nΩ2δ+784n3δ3

−365Ω2 +784n2δ2 (4.22)

Where n is the number of the equation in table 4.1 and N = 2n+2. Given a known
∆, δ and Ω a (generally non-integer) value for n can be found from equation (4.22).
We can then calculate a smooth approximate solution for the total population transfer,
ignoring the discontinuous steps by generalising equation (4.18):

σtotal = 1/2
(

1− cos
(∫

arccos(σ(n))
∣∣∣∣∣dndt

∣∣∣∣∣dt
))

(4.23)

Where σ(n) is the population transfer probability at the the point n, given by:

σ(n) = e

Ωeffn
|d∆
dt |

π
2

= e

(
Ω2n+1

(2δ)2nΓ(n+1)2

)
|d∆
dΩ

dΩ
dt |

π
2

(4.24)
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Fig. 4.22 Simulation data (points) and smooth fit from equation (4.23) (line) for the
path given in figure 4.14. Steps in the data are partially visible, simulation precision is
10−6, limiting the comparison between fit and data to transfer probabilities ≳ 10−6.

and

d∆
dΩ = 1185408n3Ωδ3(

365Ω2 −784n2δ2
)2 (4.25)

can be derived from equation (4.22).

Figure 4.22 shows some example comparisons between the simulation data and the
fit given in equation (4.23). The fit assumes that all transfers are constructive and
therefore can be considered to be a maximum transfer function. We can see that while
the fit should be an upper bound to the results, some lie above the fit. As was the
case in figure 4.21 this is due to inaccuracies in the analytically calculated ∆resonance

which leads to an underestimate in the transfer probability.

We calculate the smooth transfer function for a wider parameter space with δ = 1
and Gaussian FWHM= 1000. We then generalised the curves’ parameters based on
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their scaling with δ and the FWHM. The contour plot for this data is given in figure
4.23. The contour lines fi correspond to lines of a (maximum) transfer probability:

σtotal = 10−19+i ×FWHM× δ. (4.26)

This plot therefore allows a calculation of the expected transfer for a completely
general set of parameters δ,∆,Ω and FWHM. Assuming that the two laser couplings
applied are of the same strength, Ω1 = Ω2. This plot can therefore be used to determine
whether an experiment with intense Gaussian pulses will suffer from losses due to wave
mixing which are large enough disrupt the result.

For example if we run an experiment with ∆ = 5meV, δ = 0.6meV, Ω = 6meV and
a FWHM = 10,000 in code units, = 650ns, we get the factors ∆

δ = 8.3 and Ω
δ = 10,

which corresponds to the line f13 in figure 4.23. From equation (4.26) we can calculate
the transfer due to wavemixing to be σtotal = 10−19+13 ×10,000×0.6 = 0.006, which
means that there should be up to 0.6% population transfer during the process due. If
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Fig. 4.23 Contour plot for fit fi corresponds to a total transfer σtotal = 10−19+i ×
FWHM × δ for σtotal > 1. This plot can be used to infer the approximate transfer
probability for any ∆, δ, FWHM and Ω (for Ω1 = Ω2).
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however Ω is increased to 8meV, corresponding to line f15 in figure 4.23 the population
transfer will be 100 times higher, resulting in up to 60% transfer during the process
while if an Ω of 4meV (f10) was used the transfer due to wavemixing would only be
around 6×10−7. Demonstrating the sensitivity of wavemixing transfer where relatively
small variations in the parameters can result in orders of magnitude difference in the
total population transfer.

4.7 N-wave mixing SCRAP
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Fig. 4.24 Four wave mixing SCRAP protocol. a.) Energy level diagram, energy levels
given by solid line, resonances given by dotted lines including the 4 wave mixing virtual
detuned slightly above resonance. ∆ = 0.15, δ = 0.2. b.) Temporal profile of Ω1 and
Ω2. c.) The eigenvalues of the extended Hamiltonian, each pair of levels corresponds
to |ψ1⟩ and |ψ2⟩ and repeated infinitely. Both pulses generate a significant amount of
Stark shift, the non-avoided crossing is clear at t=60,000 while the avoided crossing
at around t=110,000 is strongly separated by the combination of the pulses. d.) the
population during the process showing a large proportion of state mixing before and a
strong transfer at the second level crossing. Also not small jump at t=60,000 due to
the first crossing. A thinner or more delayed Ω2 would prevent this.

So far we have only considered the disruptive effects of wavemixing. However,
given the results from the previous section we know that the N-wave mixing-SCRAP
transition is a coherent process and can potentially be used for controlled population
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Fig. 4.25 14 wave mixing-SCRAP example a.) wave mixing levels up to 18 shown
∆ = 0.65, δ = 0.3. b.) Two pulses applied to the system Ω1: long pulse centred at t1
and Ω2 short pulse centred at t2. c.) Eigenvalues of the extended matrix showing a
large Stark shift crossing many levels caused by Ω1. The weaker pulse Ω2 is chosen
to intersect at the 14 wave mixing crossing causing an avoided crossing. All other
crossings are benign. d.) The populations of each level during the transition. The
large state mixing population is due to Ω1 while the sharp crossing t2 is the SCRAP
crossing.

transfer in quantum information protocols. SCRAP is an ARP transition and can
therefore only be used robustly for π rotations. One example for a controlled N-wave
mixing-SCRAP transition was provided in figure 4.10 which isolated a single transition
in a numerical simulation using a complicated and carefully tuned path. Performing a
similar path in an actual experiment would be impractical.

The simplest, most practical scheme that we have come up with for controlled
population transfer is directly analogous to the Stark Chirped Rapid Adiabatic Passage
(SCRAP) transfer 4.1. SCRAP involves two lasers, one strong laser far detuned from
resonance that induces a Stark shift in the energy splitting of the system, and one
weak laser that is detuned slightly above resonance with the bare state splitting of the
system such that as the Stark shift is increased the system passes through resonance
with the weak laser, inducing population transfer.
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Fig. 4.26 The fidelity of the N-wave mixing-SCRAP transition for the parameters given
in figure 4.25 with a varying time delay for the second pulse t2. The position of the
second pulse determines which N-wave mixing transition becomes avoided, creating
SCRAP transfer. Each drop is due to wave mixing and is labelled by it’s order.

For small orders of wave mixing our N-wave mixing-SCRAP protocol uses two
strong, far detuned lasers to induce the Stark shift in the system and simultaneously
generate a weak N-wave mixing field on resonance to cause the population transfer.
An example N-wave mixing-SCRAP crossing is shown in figure 4.24 for a 4 wave
mixing case. In general the first eigenvalue crossing should transfer an insignificant
amount of population and the second should have near complete transfer. This example
was chosen to show a small transfer at the first crossing, which can be seen from the
oscillations that begin at that point. A temporally thinner second pulse would eliminate
the first, unwanted population transfer

For high wave mixing orders methods including two pulses of roughly equal length
will not work as the pulses will generally induce several crossings in a similarly messy
situation that generated the steps in the previous section. For higher orders of wave
mixing we found that we require one very strong and long pulse to provide the majority
of the Stark shift and one weaker, but still strong short pulse to generate the wave
mixing transition to ensure only a single avoided crossing occurred and to give the
ability to control which crossing was used. The short pulse must be shorter than
the time between subsequent crossings. Short enough to only create a single avoided
crossing, while wide enough to be adiabatic. An example for 14 wave mixing is shown in
figure 4.25 but in theory any level wave mixing is possible with suitably high intensity
fields and appropriate detunings.

For transfer with high wave mixing order the timing of the short pulse is important
to determine the order of wave mixing that is used for transfer. Figure 4.26 shows
the final transfer for the parameters used in figure 4.25 but for different values of t2.
Figure 4.25d shows the population during an optimal 14 wave mixing example, but
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we can see that varying the delay between the pulses allows for anything from 8 wave
mixing to 18 wave mixing transfer to be generated for the same Stark pulse. For wave
mixing orders that are too small the strength of the Stark laser at the point of crossing
is not sufficient to generate complete population transfer since the crossing occurs at
the tail of the Gaussian. For wave mixing orders that are too high the pulses are not
of sufficient strength to generate complete population transfer for this example. For
this example we created high fidelity crossings for wave mixing 10 through 14.

This section was provided to indicate the possibilities of the N-wave mixing-SCRAP
transfer protocol. We have not begun to analyse the transfer probabilities here, however
we would expect equation (4.16) to fit the data regarding the strength of transfer.

4.8 Wave Mixing Conclusions

We have identified the source of loss in figure 3.22 and found a general solution to the
strength of large order wave mixing couplings. This was done by generating an infinite
Hamiltonian that was still an exact solution to the two level wave mixing problem
and then approximating the Raman strength of distant levels within the extended
Hamiltonian, creating a table of coupling strengths and resonance conditions calculated
up to 20 wave mixing, and a relation between the coupling strengths that is expected
but not proven to continue to any wave mixing order.

The solutions were tested against an idealised numerical model of wave mixing
transfer and then a two level equivalent to the unwanted transfer problem originally
found in the previous chapter. The solution broadly fits the numerical simulations for
both the strength and location of the resonances. We have also shown that geometric
phases can be generated from the relative energies of the virtual levels. We have found
that the calculations for the resonance conditions are not good enough to provide a close
quantitative fit for the geometric phase accumulated between crossings, calculation of
the resonance conditions numerically from the eigenvalues of the extended matrix is
expected to improve this fit significantly. We have not found a general solution to the
resonance conditions for Ω1 ̸= Ω2, this is best approximated on a case by case basis.

We have provided a general smooth approximation to the problem of unwanted
transfer for arbitrary δ,∆,Ω and FWHM for the case of Ω1 = Ω2, this case is useful
for setups with two lasers of the same intensity, or more commonly accounting for the
effects of the counter rotating term for a single laser pulse. We provided a process
which could be extended for cases Ω1 ̸= Ω2 if an appropriate function for the Stark
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shift is used in place of equation (4.22). This can be used to identify parameter areas
where experiments with strong couplings should avoid to minimise wave mixing effects.

We go on to provide some examples of controlled wave mixing transfer which are
based upon the SCRAP protocol, N-wave mixing-SCRAP. These methods could in
principle be used to transfer population coherently in real systems using high orders
of wave mixing, however due to the extreme sensitivity to all parameters involved
(Ω’s, ∆ and δ) we feel it is unlikely to be a practical protocol. The only exception to
this is if there is a problem in obtaining the required frequencies in the lab required
for transfer. Because of the sensitivity to the parameters these transfer mechanisms
could potentially be used to make precise measurements of the system and its optical
couplings.





Chapter 5

Conclusions

5.1 Quantum Memory

We introduced a complete quantum memory algorithm capable of single photon storage
and retrieval using an ensemble of self-assembled quantum dots, analysing in detail
the initialisation protocol and π pulse transfer required for spin echo.

We introduced a novel initialisation protocol which is capable of initialising an
ensemble of quantum dots with a large inhomogeneous broadening to a reasonable
fidelity of around 97%, which we have found is limited by the decay rate Γ and the
electron and hole zeeman splitting of the dots in the ensemble. We have shown that
the maximum initialisation fidelity is independent of the inhomogeneous broadening of
the ensemble. Increased inhomogeneous broadening linearly increases the time required
to intialise the ensemble.

We found that the RCAP π pulse is the most appropriate protocol for performing
a spin echo during photon storage. We calculated the amount of spontaneous decay
during each RCAP transition and found that the fidelity losses due to spontaneous
emission during the π pulse is within the limits provided by fault tolerant quantum
computing. The fidelity of the π pulses is primarily limited to the time available to
run the pulse and can be performed satisfactorily in under 100ns. We also found that
the losses due to spontaneous emission are dependent on the direction of the frequency
sweep that is taken.

We considered both the case of an in-plane geometry which only uses a single
polarisation to couple to all four of the Voigt geometry transitions and could be realised
with current fabrication techniques and an out-of-plane version which requires roughly
1000 layers of quantum dots to be stacked, which is beyond current fabrication abilities.
We found that the initialisation process can be achieved for the in-plane case, if at a
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reduced fidelity and π pulse transfer should also be achievable to a reasonable fidelity.
The write and read processes however are not possible for the in-plane geometry, this
rules out the creation of quantum memory using this geometry but could still lead to
experimental studies which confirm initialisation and/or π rotation feasibility.

We gave a rough analysis of the signal fidelity and noise probability that would
be expected from a typical memory. We found that the photon losses are within the
thresholds for fault tolerant quantum computing. We have calculated the noise for an
example ensemble, which can be used to calculate the noise output from the memory
into the quantum computer after further study to determine the spread of the outgoing
photon.

5.2 Quantum Memory Future Work

An analysis of the optimal size and shape of the control and signal field (and therefore
the ensemble) will allow a fully calculation of the measured noise into the quantum
computer, and will therefore answer the question of the viability of the memory. Several
of the calculations surrounding the noise output that were used were speculative and
intended only to provide a rough conclusion as to the memory viability. These
assumptions should be revisited, particularly the optimised control pulse strengths
for the write and read protocols that we used in calculations, since these had been
considered in terms of photon retrieval efficiency only. A study with an optimisation
that accounts for both the signal and noise generation during readout will be necessary
for a complete analysis of the memory.

A study into the the in-plane selection rules for different quantum dots is necessary
to determine whether one or two linear polarisations are accessible in all cases. If
it is possible to manufacture ensembles in which transitions with both polarisations
are accessible the results presented in this thesis from the full Voigt geometry will be
applicable to an in-plane propagating photon, considerably increasing the feasibility of
realising the QM.

We have found that the primary source of noise is the initialisation process, it
may therefore be feasible to consider multimode storage where an individual dot can
contribute to storing multiple spin waves, using angular multiplexing, for example [74].
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5.3 Wave mixing

We identified the source of loss presented at the end of chapter 3 as N-wave mixing
and found a novel solution to the problem through the use of an infinite Hamiltonian
matrix, which allows a calculation of wave mixing to large orders. We then found
approximate solutions to this matrix through adiabatic elimination at the parameter
conditions relevant to population transfer and confirmed the results of the N-wave
mixing strengths through numerical simulations for wave mixing orders between 4 and
20. We found a good agreement between theory and simulation for the strength of the
transition and found a reasonable agreement between the theory and simulation for
the detuning required for resonance, which is the equivalent to the Stark shift. This
demonstrates the success of our extended Hamiltonian approach.

We used these solutions to calculate the (generally disruptive) population transfer
via N-wave mixing for a pair of Gaussian pulses applied to the two level system and
compared to numerical simulations, this included the geometric phases that are due
to the multiple crossings which create oscillations in T and Ω in the total transfer
probability. This research recreated a similar scenario to the one that generated the
stepped plot 3.22 which is a general problem for experiments where intense couplings
are applied.

The case for two Gaussian pulses causing N-wave mixing population transfer was
concluded by calculating a smooth transfer function which ignores features such as
the steps and geometric phases and focusses instead on the approximate population
transfer. This result gives the transfer probability when two equal Gaussian pulses are
applied for a wide range of parameters relevant to experiments with multiple intense
adiabatic couplings.

We identified the possibility of a controlled and coherent transfer using N-wave mix-
ing and the SCRAP protocol, N-wave mixing-SCRAP. We introduced two approaches
to achieving N-wave mixing-SCRAP, one for low order N-wave mixing and one for
higher order N-wave mixing and presented some preliminary results for each case which
are sucessful for almost complete transfer. These protocols are very sensitive to both
the detunings and strengths of the lasers, whilst there are no practical applications
immediately obvious for these transfer protocols they may be of use for determining
the properties of some systems because of this sensitivity.
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5.3.1 Wave Mixing Future Work

The methods presented provide only an approximate solution to the eigenvalues of the
extended Hamiltonian, an exact solution for the infinite tri-diagonal matrix may still be
possible [40]. The results in equations (4.16) and (4.15) are compatible with the intuitive
expectations of Raman coupling and adiabatic elimination extended to multiple level
systems and fit simulations well despite being the lowest order approximation. We
therefore suspect, but have been unable to prove, that this is the exact solution. An
exact solution to the extended Hamiltonian should be able to confirm this result after
further research.

The results for destructive transfer probability were limited to the case where
two equal Gaussian pulses are applied to the system. The theory presented is easily
extended to non Gaussian shaped pulses, however it is not trivial to extend it to two
different strength pulses, as different parameter regimes call for different approximations
to the Stark shift.

We presented two example methods of controlled N-wave mixing-SCRAP transfer
used for coherent population transfer. A complete analysis of these transfer techniques
could identify whether these protocols have any benefits over current population transfer
protocols or whether it could be used to analyse the interaction between light pulses
and atomic systems, given the sensitive dependence on several parameters.

The analysis was completed without once considering the emission spectrum of the
system. The emission due to wave mixing will be a series of δ functions. The properties
of the emission would be expected to be given by the emission between the relevant
orders within the extended Hamiltonian.
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Appendix A

Modelling Techniques

A.1 Mathematica NDSolve

The majority of the results presented in this thesis are generated through numerical
simulations run in Mathematica. Here I provide an example of the code used and some
discussion around how it was used.

In[1]:= (*Initialising Required parameters...*)
Do[sigma[b, a] = Normal[SparseArray[{{4, 4} -> 0, {a, b} -> 1}]], {a, 4},
{b, 4}];
rho = 0;

Do[rho = rho + p[b, a][t]*sigma[a, b] /. {p[4, 4][t] ->
1 - p[3, 3][t] - p[2, 2][t] - p[1, 1][t]}, {a, 4}, {b, 4}];

(*defining the density matrix rho*)

rotation[w_] = SparseArray[{Band[{3, 1}] -> Table[Exp[-I*w*t], {i, 2},
{j, 2}],

Band[{1, 3}] -> Table[Exp[I*w*t], {i, 2}, {j, 2}]}, {4, 4}, 1] //
Normal;

rhor[w_] = rho*rotation[w]; (*used to transform into a frame that
rotates with the laser frequency, reducing simulation run time*)

rho0 = {{1, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}};
(*define starting state*)
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We then set up a command "run" which, once called, generates the equations and
then implements the Mathematica command NDSolve to run the simulation.

In[2]:= run[w_, w2_, ohmx_, ohmy_, Ee_, Ex_, Eh_, gam_, prec_, T_] := Do[

H = Ee*sigma[1, 1] + (Ex + Ee)*sigma[3, 3] + (Ee + Ex + Eh)*sigma[4, 4] +
(1/2)*ohmx*(Exp[-I*w*t]*sigma[1, 3] + Exp[I*w*t]*sigma[3, 1] +
Exp[-I*w*t]*sigma[2, 4] + Exp[I*w*t]*sigma[4, 2]) +
(1/2)*ohmy*(Exp[-I*w2*t]*sigma[1, 4] + Exp[I*w2*t]*sigma[4, 1] +

Exp[-I*w2*t]*sigma[2, 3] + Exp[I*w2*t]*sigma[3, 2]);

SetAttributes[Equal, Listable]; (*Allows == to act on elements of a matrix*)

lindblad = (D[rhor[w], t] == -I*(H.rhor[w] - rhor[w].H) +
gam/2 (2 sigma[3, 1].rhor[w].sigma[1, 3] + 2 sigma[3, 2].rhor[w].sigma[2,

3] - (sigma[1, 3].sigma[3, 1] + sigma[2, 3].sigma[3, 2]).rhor[w] -
rhor[w].(sigma[1, 3].sigma[3, 1] + sigma[2, 3].sigma[3, 2]) +
2 sigma[4, 1].rhor[w].sigma[1, 4] + 2 sigma[4, 2].rhor[w].sigma[2,

4] - (sigma[1, 4].sigma[4, 1] + sigma[2, 4].sigma[4, 2]).rhor[w] -
rhor[w].(sigma[1, 4].sigma[4, 1] + sigma[2, 4].sigma[4, 2])));

temp = Solve[Delete[Flatten[lindblad], 16],
Delete[Flatten[D[rho, t]], 16]];(*the final component #16 is redundant and

needs to be removed each time*)

equations = Flatten[{Delete[Flatten[D[rho, t]] == Flatten[(D[rho, t] /. temp)],
16], Delete[Flatten[rho == rho0] /. t -> 0, 16]}];

ClearAttributes[Equal, Listable];

output = NDSolve[equations, Delete[Flatten[rho], 16], {t, 0, T},
MaxSteps -> 1000000, WorkingPrecision -> prec*MachinePrecision];

, {1}]

The precision of the simulation is determined by the "WorkingPrecision" attribute,
normally set to "MachinePrecision" which results in an accuracy of roughly 10−6,
if resolution below this is required the precision can be increased. The remaining
parameters for run[...] define the simulation parameters.
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an example RCAP transition:

In[3]:= Ee = 1;
Eh = 1;
T = 4000;
d = 0.1;
del = 15;
omega = 1 Exp[-(t - T/2)^2*30/T^2];

In[4]:= run[(1200 - Ee - del) - d + t*d/T, (1200 - del), omega, omega, Ee, 1200, Eh,
0.004, 1, T];
p[1, 1][t] /. output(*output from NDSolve is in the form of an
InterpolatingFunction...*)

Out[4]= {InterpolatingFunction[{{0.’,4000.’}},"<>"][t]}

In[5]:= Plot[p[1, 1][t] /. output // Re, t, 0, T](*plot the real part of the output.
The imaginary part should be 0 by definition, but numerical inaccuracies
introduce a small imaginary component*)

Out[5]=
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A.2 Bugs/Issues
While running NDSolve Mathematica saves all of the data points for that run. Many
of the simulations in this thesis will run out of memory on a standard desktop before
the simulation has finished, losing all of the data. For more demanding simulations the
NDSolve should be split into N parts and stitched together afterwards.

Running a full density matrix form of the code ρ′[t] = −i[H,ρ] is more demanding
than running a wave function form of the code ψ′[t] = −iHψ. However spontaneous
emission can only be included for the full density matrix case, much of the research
was performed on the vector code then the parameters copied into the density matrix
code for the final analysis with the inclusion of spontaneous emission. The code run
for initialisation would take days to run fully, the approximations made in section 3.1.1
reduced the equations to a single parameter, and the time to run to seconds. Again
the parameters were re-run for the full equations for selected cases to confirm validity,
some examples presented in figure 3.4. The results presented would not be possible
without these approximations.
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Extended Matrix

The extended matrix in section 4 can be generated by the following two commands:

In[6]:= n1 = 8;
Hna = SparseArray[{{i_, i_} →→→ ∆∆∆[i - 1], {i_, j_} /; (i - j) ==

1 →→→ ΩΩΩ[j]/2, {i_, j_} /; -(i - j) == 1 →→→ ΩΩΩ[i]/2},
{n1, n1}] // Normal;

Hna /. Table[ΩΩΩ[i] →→→ ΩΩΩ1, {i, 1, n1 - 1, 2}] /. Table[ΩΩΩ[i] →→→
ΩΩΩ2, {i, 2, n1 - 1, 2}] /. Table[∆∆∆[(n1 - 4)/2 + i] →→→
(-1)^i*∆∆∆in/2 + i*δδδin - (-1)^i*δδδin - δδδin - δδδin*Floor[i/2],
{i, -(n1 - 4)/2, 3 + (n1 - 4)/2}];

% //MatrixForm

Out[6]//MatrixForm=
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

−3δin+ ∆in
2

Ω1
2 0 0 0 0 0 0

Ω1
2 −∆in

2
Ω2
2 0 0 0 0 0

0 Ω2
2 −2δin+ ∆in

2
Ω1
2 0 0 0 0

0 0 Ω1
2 δin− ∆in

2
Ω2
2 0 0 0

0 0 0 Ω2
2 −δin+ ∆in

2
Ω1
2 0 0

0 0 0 0 Ω1
2 2δin− ∆in

2
Ω2
2 0

0 0 0 0 0 Ω2
2

∆in
2

Ω1
2

0 0 0 0 0 0 Ω1
2 3δin− ∆in

2


Where "n1" defines the size of the matrix created, which should be much larger to

avoid end effects.
Calculating the eigenvalues for this matrix should be a simple case of calling

the "Eigenvalues" command. However, for larger matrices with analytic components
Mathematica struggles to return the values, either providing discontinuous answers
which randomly flip between eigenvalues, or worse, simply returning incorrect answers.
There are however no issues with Numerical calculations and so the plots of eigenvalues
shown in this thesis are calculated through plotting lists of numerical values.
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Calculating 6WM example

Here we present an example of calculating the six wave mixing coupling strength. The
expanded Hamiltonian for N=6, n=3 and the time independent Schroedinger equation
leaves us with the following set of equations:

Eψ1 =
(
4δ+ ∆

2

)
ψ1 + 1

2Ωψ2

Eψ2 = 1
2Ωψ1 +

(
3δ− ∆

2

)
ψ2 + 1

2Ωψ3

Eψ3 = 1
2Ωψ2 +

(
3δ+ ∆

2

)
ψ3 + 1

2Ωψ4

→ Eψ4 = 1
2Ωψ3 +

(
2δ− ∆

2

)
ψ4 + 1

2Ωψ5

Eψ5 = 1
2Ωψ4 +

(
2δ+ ∆

2

)
ψ5 + 1

2Ωψ6

Eψ6 = 1
2Ωψ5 +

(
δ− ∆

2

)
ψ6 + 1

2Ωψ7

Eψ7 = 1
2Ωψ6 +

(
δ+ ∆

2

)
ψ7 + 1

2Ωψ8

Eψ8 = 1
2Ωψ7 − 1

2∆ψ8 + 1
2Ωψ9

→ Eψ9 = 1
2Ωψ8 + 1

2∆ψ9 + 1
2Ωψ10

Eψ10 = 1
2Ωψ9 +

(
−δ− ∆

2

)
ψ10 + 1

2Ωψ11

Eψ11 = 1
2Ωψ10 +

(
−δ+ ∆

2

)
ψ11 + 1

2Ωψ12

Eψ12 = 1
2Ωψ11 +

(
−2δ− ∆

2

)
ψ12

(C.1)

We are looking to rewrite the two arrowed equations in C.1 in terms of only ψ4 and
ψ9. We therefore need to solve the remaining equations for ψ3, ψ5, ψ8 and ψ10.
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Solving the first three equations for ψ3 gives:

ψ1 = Ωψ2
2E+∆−2(4δ+∆)

ψ2 = (2E−8δ−∆)Ωψ3

4E2 −28Eδ+48δ2 −2δ∆−∆2 −Ω2

ψ3 = Ωψ4

2
(

E−3δ− ∆
2 − (2E−8δ−∆)Ω2

2(4E2−28Eδ+48δ2−2δ∆−∆2−Ω2)

)
(C.2)

Solving for ψ10 using the last three equations:

ψ12 = Ωψ11
2E+4δ+∆

ψ11 = − (2E+4δ+∆)Ωψ10

−4E2 −12Eδ−8δ2 +2δ∆+∆2 +Ω2

ψ10 = Ωψ9

2
(

E+ δ+ ∆
2 + (2E+4δ+∆)Ω2

2(−4E2−12Eδ−8δ2+2δ∆+∆2+Ω2)

)
(C.3)
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Solving for ψ8 is done through solving the middle four equations beginning at the
top, and solving for ψ5 is done through solving for the same four equations beginning
at the bottom. Solving for ψ5:

ψ8 = Ωψ7 +Ωψ9
2E+∆

ψ7 = 2EΩψ6 +∆Ωψ6 +Ω2ψ9

4E2 +4E∆+∆2 −4E(δ+∆)−2∆(δ+∆)−Ω2

ψ6 =
1
2Ωψ5 + Ω3ψ9

2(4E2+4E∆+∆2−4E(δ+∆)−2∆(δ+∆)−Ω2)
E− δ+ ∆

2 − EΩ2

4E2+4E∆+∆2−4E(δ+∆)−2∆(δ+∆)−Ω2 − ∆Ω2

2(4E2+4E∆+∆2−4E(δ+∆)−2∆(δ+∆)−Ω2)

ψ5 =

−Ω
(
−(2E+∆)

(
4(E− δ)2 −∆2)+2(2E− δ+∆)Ω2)ψ4 +Ω4ψ9

(2E−4δ−∆)(2E−2δ−∆)(2E+∆)(2E−2δ+∆)+
(
−12E2 +24Eδ−8δ2 +8δ∆+3∆2

)
Ω2 +Ω4

And in reverse to solve for ψ8:

ψ5 = Ωψ4 +Ωψ6
2E+∆−2(2δ+∆)

ψ6 = Ω2ψ4 +2EΩψ7 −4δΩψ7 −∆Ωψ7

4E2 −12Eδ+8δ2 −2δ∆−∆2 −Ω2

ψ7 =
Ω3ψ4

2(4E2−12Eδ+8δ2−2δ∆−∆2−Ω2) + 1
2Ωψ8

E− δ− ∆
2 − EΩ2

4E2−12Eδ+8δ2−2δ∆−∆2−Ω2 + 2δΩ2

4E2−12Eδ+8δ2−2δ∆−∆2−Ω2 + ∆Ω2

2(4E2−12Eδ+8δ2−2δ∆−∆2−Ω2)

ψ8 =

Ω4ψ4 +(2E−4δ−∆)(2E−2δ−∆)(2E−2δ+∆)Ωψ9 +2(−2E+3δ+∆)Ω3ψ9

(2E−4δ−∆)(2E−2δ−∆)(2E+∆)(2E−2δ+∆)+
(
−12E2 +24Eδ−8δ2 +8δ∆+3∆2

)
Ω2 +Ω4

(C.4)
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Substituting these four solutions into the arrowed equations in equation C.1 is
too large to show here, but allows us to calculate Ωeff and ∆eff by separating out the
components of ψ5 and ψ9.

Ωeff =

Ω5(
(2E − 4δ − ∆)(2E − 2δ − ∆)(2E + ∆)(2E − 2δ + ∆) +

(
−12E2 + 24Eδ − 8δ2 + 8δ∆ + 3∆2

)
Ω2 + Ω4

)
∆eff =

1
4

(8δ − 4∆+

−2(2E − 4δ − ∆)(2E − 2δ − ∆)(2E − 2δ + ∆)Ω2 + 4(2E − 3δ − ∆)Ω4

(2E − 4δ − ∆)(2E − 2δ − ∆)(2E + ∆)(2E − 2δ + ∆) +
(

−12E2 + 24Eδ − 8δ2 + 8δ∆ + 3∆2
)

Ω2 + Ω4
+

Ω2

E − 3δ − ∆
2 + (−2E+8δ+∆)Ω2

2(2E−8δ−∆)(2E−6δ+∆)−2Ω2

−
Ω2

E + δ + ∆
2 − (2E+4δ+∆)Ω2

2(2(E+δ)−∆)(2E+4δ+∆)−2Ω2

+

Ω2

E − 2δ − ∆
2 + Ω2(−4E2+4Eδ+2δ∆+∆2+Ω2)

2(2E+∆)(4(E−δ)2−∆2)−4(2E−δ+∆)Ω2

)

(C.5)

At this point we replace E with an eigenvalue λ= ±
√

Ω2
eff +∆2

eff. Either eigenvalue
can be used as all the components of Heff are symmetric in E. The eigenvalues
also contain factors of E, so this approach becomes recursive. Figure C.1 shows the
calculation of the resonance condition (∆eff = 0) for different numbers of replacements.
We find that beyond one replacement the solutions do not vary further when considered
at the lowest order approximation. Further replacements make the computations
considerably more difficult and introduce extra, non-physical poles, so for all further
calculations E is replaced once with the eigenvalue λ and then set to zero.
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Fig. C.1 a.) Plotting how the calculated ∆eff depends on the number of times E is
recursively replaced by λ, an eigenvalue of Heff . b.) Plotting the resonance condition
calculation (after lowest order approximations have been made). 0 corresponds to
setting E straight to zero, 1 corresponds to replacing E with λ then setting E within λ
to zero and 2 corresponds to replacing E with λ twice before setting it to zero
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Once Ωeff and ∆eff have been calculated we are left with two large expressions. To
simplify ∆eff we then perform a series expansion around Ω = 0 to get

∆eff = 2δ−∆− (3δ+∆)(2δ+5∆)Ω2

24δ∆(δ+∆) (C.6)

Which for higher orders is a very large expression. This is then expanded around
the point ∆ = 2δ, corresponding to resonance at Ω = 0 to get:

∆eff = 2δ−∆+ (−86δ+13∆)Ω2

144δ2 (C.7)

To calculate Ωeff we use the condition of ∆eff = 0 to get:

∆ =
2δ
(
144δ2 −43Ω2

)
144δ2 −13Ω2 (C.8)

Which we use to replace ∆ within Ωeff, since we only need to consider the strength
of NWM when on resonance. This leaves Ωeff as an expression in terms of Ω and δ

that we then series expand around Ω = 0 to the lowest order that provides a non-zero
answer. For 6WM this is Ω5, leaving:

Ωeff = Ω5

64δ4 (C.9)
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