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Abstract

Circuit clustering is one of the most crucial steps in a post-synthesis FPGA

CAD flow. It attempts to efficiently fit synthesised logic functions into

FPGA logic clusters. On a FPGA, different clusterings result in different

circuit mappings, which affect FPGA utilisation, routability and timing, and

therefore impact the circuit performance. This research proposes the use of a

Multi Objective Genetic Algorithm (MOGA) as a methodology to solve the

cluster-based FPGA circuit clustering problem.

Four alternative approaches based on MOGA methods are proposed in

this research: RVPack is inspired by the stochastic feature that exists in Evo-

lutionary Algorithms (EAs). GGAPack, GGAPack2, DBPack and HYPack,

T-HYPack (Timing-driven HYPack) are then proposed and developed, which

are fully customised MOGA-based circuit clustering methods. GGAPack

clusters a circuit using a top-down perspective, and DBPack uses a new

bottom-up perspective. HYPack combines GGAPack and HYPack – a hybrid

method. According to experimental results, a few conclusions are drawn: It

is possible to improve the performance of the greedy algorithm based circuit

clustering methods by incorporating randomness. The performance of MOGA

based top-down clustering is poor; however, using MOGA to cluster a circuit

from a bottom-up perspective can produce better solutions. T-HYPack clus-

tered circuit has the best timing performance compared with state-of-the-art

methods. The experimental results also reflect a wider potential for using

GAs to solve FPGA circuit mapping problems.
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Chapter 1

Introduction

1.1 Background

Modern electronics can be dated back to the innovation of solid transistors

(Edgar, 1930), and the Integrated Circuit (IC) (Jacobi, 1952). In earlier

times, electronic systems were built on discrete transistors. Although these

transistors have a reduced size and lower power consumption compared with

valves (Fleming, 1905), the relatively large size, high power consumption,

and the discrete characteristic distribution of transistors are still issues when

implementing complex electronic systems. The IC first appeared in 1949

(patent was published on 15 May 1952) where an integrated-circuit-like

amplifying device was successfully developed and implemented (Jacobi, 1952).

Since IC, the device size, power consumption are gradually decreased, and

the component coherence issues are progressively solved. IC allows a number

of components; this including transistors, resistors or even capacitors and

inductors, implemented on a single silicon chip, which produce a circuit that

is powerful, stable, efficient and portable.

Application-Specific Integrated Circuits (ASICs) have become more popu-

lar since the IC was born – for instance, the 7400 series digital ICs (Lancaster,
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1974). Though an IC can replace a number of discrete transistors or a block

of circuits, the IC integration level, in early times, is still low. The industry

cannot be satisfied with these still-small-scale ICs, and it continues to be

developed. Very-Large-Scale Integrated (VLSI) circuits were invented in the

1970s (Mead and Conway, 1978); today, a very-large-scale IC can contain

billions of components. Rather than implementing a simple application, for

example an amplifier or a logic gate, these ICs enable the possibility to im-

plement higher performance applications, such as a Central Processing Unit

(CPU), Digital Signal Processor (DSP), mixed-signal system, and ultimately

producing an entire electronic system on a single silicon chip, which is known

as SoC (System on a Chip).

With the rapidly increasing needs of complex electronic designs, the

flexibility of application-oriented ICs is extremely limited, and the weaknesses

of these ICs are exposed. These include the time consuming design cycles,

high fabrication and testing costs. In addition, there are also requirements

in testing and research, which need fully customised devices. Obviously,

application-oriented ICs are not able to meet these requirements. In this

case, reconfigurable devices were proposed. These devices are stand-alone ICs,

but integrate a number of reconfigurable resources which allow a designer to

further configure these ICs on the circuit level so different functions can be

realised. Since these reconfigurable ICs can be easily configured, it means that

when producing a design using this type of ICs, it largely decreases the design-

to-market time, and reduces the engineering costs at the microelectronic

level.

FPGA, short for Field Programmable Gate Array, is an important digital

reconfigurable device, usually based on Look-Up Tables (LUTs – normally a

LUT is composed of a set of Static Random Access Memory cells– SRAMs)

and programmable Flip-Flops (FFs), after PLD (Programmable Logic Device,

it contains a “fixed-OR, programmable-AND” plane plus memory, the plane

can be used to implement “sum-of-products” binary logic equations. If a

device does not have the memory, it refers to PLATM–Programmable Logic
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Array.) and CPLD (Complex Programmable Logic Device, it might contain

many PLAs or PLDs that are linked by programmable interconnections on a

single CPLD), and it was initially launched on the market by Xilinx in 1985.

FPGAs were then quickly adapted into the electronic industry. Currently,

FPGA is a common device to be utilised in for example high performance

computing, signal processing, and communication, load-adaptive and fault-

tolerant systems. To get a FPGA properly configured, a Computer Aided

Design (CAD) flow is used. This flow contains a few key steps, which are

circuit synthesis, circuit clustering, clustered circuit placement and routing. By

using this flow, it allows a higher level abstraction design to be automatically

processed and mapped onto targeted FPGAs.

Circuit synthesis – a HDL (Hardware Design Language) described circuit

is automatically synthesised into logic gates (functions).

Circuit clustering – as modern FPGAs use logic clusters in their archi-

tectures, where a logic cluster is a larger logic macro containing a set

of reconfigurable elements that can realise logic functions, synthesised

logic gates (functions) have to be grouped, also referred to separate the

synthesised circuit, into logic clusters to match a FPGA architecture,

at meantime producing less clusters (groups) and cluster interconnects –

circuit connections between logic clusters, where such clustered circuit

uses less FPGA resources.

Placement – clustered logic clusters are placed onto a FPGA.

Routing – FPGA pre-defined routing resources are used to form connections

between the logic clusters in order to form a complete circuit.

Circuit clustering is the first step in post-synthesis processes in FPGA

CAD flow. Hence, the quality of a clustered circuit can significantly affect

the circuit mapping on a FPGA. If a circuit is poorly clustered, the following

CAD processes could not efficiently adjust the circuit and would result in the

mapped circuit having low routability, low speed and high power consumption
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on the FPGA. On the other hand, circuit clustering usually involves different

clustering metrics and also has a number of constraints. As a result, circuit

clustering is always an important and difficult process, and it is also the

reason that circuit clustering is a hot topic in the area of academic research.

In the early stages, circuit clustering is facilitated by a number of greedy

algorithms (Betz and Rose, 1997a; Marquardt et al., 1999; E.Bozorgzadeh

et al., 2001; Singh and Marek-Sadowska, 2002; Cormen et al., 2009). They

are simple and use a bottom-up clustering perspective, where they cluster

a circuit from a local-optimal perspective. When attempts to find a global

optimal solution of a problem, dealing with the problem from a local optimal

perspective is normally difficult to get the global optimality. Therefore, using

the bottom-up methods, the clustered circuit is often less optimal (Feng, 2012).

At the same time, clustering metrics are also considered in these algorithms,

which use a weighted approach. Although this weighted method can deal with

multiple clustering objectives, a better trade off solution is usually difficult to

find (Rajavel and Akoglu, 2011). Recently, it has been helpful to use the graph-

partitioning-based methods in FPGA circuit clustering methods (Marrakchi

et al., 2005; Feng, 2012; Feng et al., 2014a). The graph-partitioning-based

methods can cluster a circuit from a global perspective – this is known as

top-down clustering methods. These methods are considered to produce

better solutions than the greedy algorithms since it uses the global clustering

perspective. However, the graph-partitioning-based method mainly focuses

on minimising circuit interconnects of partitioned circuits, where it might be

difficult to control, for example, which connection is inside a logic cluster, or

how many logic functions are in a logic cluster. This means that these types

of methods cannot efficiently incorporate clustering metrics and constraints

(Marrakchi et al., 2005; Feng, 2012).
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1.2 Motivation

Charles Darwin indicated that the root of a large number of different species

on the planet was based on the principle of mutation and natural selection,

also called natural evolution, and this is the famous theory of Darwin’s natural

selection (Darwin, 1859). Darwin considers individuals that are best adapted

to an environment can survive, and have chances to produce offspring. In

contrast, the less adapted individuals gradually die off, and these individuals

are replaced by better individuals. Darwin called this mechanism ”survival of

the fittest”.

Genetic Algorithms (GAs) are a subset, or one dialect to be more precise,

of Evolutionary Algorithms (EAs), and EAs are the algorithms that imitate

the process of natural evolution, and use the natural evolutionary process

as a model to solve actual problems (Holland, 1975). GAs are popular in

a wide range of areas such as music generation, strategy planning, VLSI

technology and machine learning. When a GA is utilised to solve a problem,

it is normally not necessary to have specific knowledge about the target

problem, which indicates that GAs, or EAs in general, are a model-free

heuristic algorithm, and it is an automatic problem solver (Langeheine, 2005).

The evolved solutions of a GA are usually useful as proved in the “no free

lunch” theorem – “any two optimisation algorithms are equivalent when their

performance is averaged across all possible problems” (Wolpert and Macready,

1997). GAs can be extended for supporting multiobjective problems, and

this is different from the weighting approach which weights all objectives in a

single function to score a solution. In Multi Objective GAs (MOGAs), the

multiobjective mechanism is often based on Pareto optimality (Pareto, 1906).

This means that MOGA can produce trade off solutions for multiobjective

problems (Fonseca and Fleming, 1993).

Research-based FPGA circuit clustering methods have been developed

for almost two decades since VPack (Betz and Rose, 1997a). It is notable

that there are superior methods, for example T-VPack (Marquardt et al.,
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1999) and iRAC (Singh and Marek-Sadowska, 2002). However, these are all

bottom-up and greedy-algorithm-based methods, where these algorithms are

limited by their “models” and the bottom-up clustering perspective (Singh and

Marek-Sadowska, 2002). This implies that these “models” and the clustering

perspective can be further enhanced, so the solutions produced by these

methods can be improved. PPack (Feng, 2012; Feng et al., 2014a) is a new

clustering method based on graph-partitioning methods and uses a top-down

clustering perspective. PPack tests show that it can produce excellent circuit

clustering solutions compared with previous greedy-algorithm-based methods,

but unfortunately PPack cannot efficiently deal with complex clustering

objectives and constraints.

As previously introduced, GAs are a model-free and automatic problem

solver, and can also be applied to multiobjective problems, where the multiob-

jective features can efficiently incorporate targeted objectives of a problem and

also problem constraints. Therefore, MOGA can be used to solve the FPGA

circuit clustering problem. Using different MOGA designs, the MOGA can

either solve the clustering problem from a global perspective, referred as the

top-down clustering method, or a local-optimal perspective, the bottom-up

clustering method.

1.3 Research hypothesis

1.3.1 Statement of hypothesis

The research hypothesis is as follows:

The quality and performance of a multiobjective circuit mapped to a

cluster based FPGA can be improved through the use of evolutionary

algorithms during the circuit clustering stage of a FPGA computer

aided design flow.
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1.3.2 Analysis of hypothesis

Nowadays, FPGAs tend to group a number of basic logic blocks, a basic logic

block can be as simple as one LUT plus one configurable FF, as logic clusters

(Altera Corp., 2001, 2003b,a; Xilinx Inc., 1998, 2010, 2013, 2012b, 2014). This

design can reduce the use of reconfigurable resources, and speed up a mapped

circuit compared with designs that do not use logic clusters. From the FPGA

chip implementation perspective, logic clusters are defined as a large identical

logic macro, thus, a FPGA design can be implemented by simply repeating

the placement of the macro. From the CAD perspective, when preferentially

arranging circuits in logic clusters, it can reduce the difficulties in routing a

circuit on a FPGA, as some connections can be formed within logic clusters.

Circuit clustering is a key step in a FPGA CAD flow, where a large

synthesised circuit is separated into sub circuits. It has to guarantee that each

sub circuit can be mapped onto a FPGA logic cluster, where each sub circuit

meets the hardware constraints of the logic cluster. To increase the quality

of a clustered circuit, a circuit clustering method is required to cluster more

circuit connections in logic clusters, so it can therefore use fewer logic cluster

interconnects. In this case, the final routing stage has fewer connections

to route. At the same time, the clustering method has to maximise the

usage within a logic cluster so fewer logic clusters can be used, which allows

more logic to be mapped onto a FPGA. Clustered CLB number and CLB

interconnect number can be considered as the routability of a clustered circuit.

Apart from the routability, a circuit clustering method is also required

to optimise the performance of clustered circuits. Circuit speed, or timing,

is a key factor that affects the performance of a clustered circuit. A circuit

speed can be determined by the circuit’s critical path delay. The more stages

found in the critical path of a circuit, the lower the circuit speed will be,

and the performance of the circuit will be decreased. An effective clustering

method usually clusters more critical connections inside FPGA logic clusters,

as the FPGA logic cluster has shorter wires and delays, while in the meantime
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leaving equally critical or non-critical connections as FPGA logic cluster

interconnects. When routing such circuits, circuit speed can be improved.

Genetic algorithms are one subset of evolutionary algorithms – the powerful

model-free problem solvers, and can adapt different representations, genetic

operations and selection mechanisms, which means genetic algorithms are

effective for solving or optimising complex engineering problems. On the other

hand, the selection mechanism can be extended to support multiobjective

problems. This implies multiobjective genetic algorithms can be a suitable

method for exploring the approach of solving the FPGA circuit clustering

problem.

1.4 Novel contributions

This doctoral research focuses upon using MOGAs to solve the FPGA circuit

clustering problem in a FPGA CAD flow. To achieve this target, a stochastic

mechanism is first incorporated into a standard greedy-algorithm-based circuit

clustering method. Subsequently, a set of fully customised MOGAs are

developed, which represent complete program frameworks for using MOGAs to

solve the FPGA circuit clustering problem, and also highlight which clustering

perspective (top-down/bottom-up) is efficient for solving this problem. It

is also shown which objectives are more effective at optimising the quality

of a clustered circuit. In addition, this research also propose an on-line

optimisation method to optimise the performance of clustered circuits. This

thesis presents four major methods, which are listed as follows:

1) RVPack, short for Random VPack, FPGA circuit clustering method

is proposed. This method is based on VPack (Betz and Rose, 1997a).

Similar to a GA, which uses stochastic variations to drive evolutions,

randomnesses are injected to the greedy-algorithm-based VPack algo-

rithm. Although, in this case, RVPack might produce less optimised

solutions, some superior solutions can be identified. This method and
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its experiments indicate that it is possible to improve solution qualities

by incorporating stochastic variations in classic-greedy-algorithm-based

circuit-clustering methods.

2) GGAPack/GGAPack2, where GGAPack is short for Grouping Genetic

Algorithm Pack, are fully customised and MOGA based FPGA circuit

clustering methods. These methods cluster a circuit from a global

perspective. Unfortunately, experimental results show that GGAPack

is inefficient at producing highly optimised solutions. However, GGA-

Pack provides a useful GA framework to solve the circuit clustering

problem. GGAPack2 is based on GGAPack – the only difference is

that GGAPack2 produces solutions based on RVPack solutions in stead

of randomly initialise a population. Real mapping tests show that

GGAPack2 solutions are not able to optimise circuit performances,

but GGAPack2 can produce better solutions in terms of basic circuit

clustering requirements. This means that it might be inefficient to

use GAs to solve the FPGA circuit clustering problem from a global

perspective.

3) DBPack, short for DataBase Pack, redesigns the MOGA-based circuit

clustering method, GGAPack, and uses a new bottom-up clustering

perspective, which directly searches a group of basic logic blocks to

form a FPGA logic cluster. This method produces excellent solutions

in the aspect of including circuit connections in logic clusters, and its

solutions are better than iRAC (Singh and Marek-Sadowska, 2002),

where iRAC was considered the state-of-the-art connection-absorption

clustering method. This method indicates that clustering a circuit from

this new bottom-up perspective, and using MOGA, allows the FPGA

circuit clustering problem to be properly solved.

4) HYPack/T-HYPack are short for Hybrid Pack and Timing-driven

Hybrid Pack. These approaches combine the methods of GGAPack

and DBPack. According to HYPack testing results, HYPack produced

solutions are further optimised compared with DBPack. T-HYPack
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solves the FPGA circuit clustering problem by producing clustered

solutions that are similar to the HYPack, but in addition, T-HYPack

also speeds up the clustered circuits on FPGAs. This is facilitated by

using an on-line optimisation method. Although T-HYPack does not

take the circuit critical paths into account, where circuit critical path

is often used in conventional methods, T-HYPack can actually improve

the timing performance of the clustered circuits. These methods,

HYPack/T-HYPack, suggest that bottom-up and top-down clustering

methods can be combined, and an on-line optimisation can be used to

further optimise the performance of clustered circuits.

1.5 Thesis structure

Chapter 1 introduces the background and motivation of this research, and

highlights the research hypothesis and its novel contributions. This chapter

also presents the structure of this thesis.

Chapter 2 first introduces reconfigurable devices, and clarifies their basic

concepts. Then this chapter focuses on FPGAs (Field Programmable Gate

Arrays), which are an important reconfigurable digital device. This includes

FPGA programmable logic and routing architectures. This chapter emphasises

that nowadays FPGAs are cluster-based, and routing architectures are usually

island-styled. In order to provide a background for circuit clustering method

research, it is defined as a cluster-based island style FPGA model.

Chapter 3 explains why Computer Aided Design (CAD) is important in

FPGA design flow. A research based CAD flow is introduced. The definition,

requirements and significances of circuit clustering are explained. The rest of

this chapter reviews a number of state-of-the-art circuit clustering methods,

and comments on their advantages and disadvantages.

Chapter 4 reviews the concept of Evolutionary Computing (EC), which

48



is based on Darwin’s theory of natural selection. EC actually refers to

a set of Evolutionary Algorithms (EAs), and the components of EA are

introduced. The rest of this chapter focuses on Genetic Algorithms (GAs),

and MultiObjective Genetic Algorithms (MOGAs). The MOGA is the major

method that has been used to solve the FPGA circuit clustering problem in

this research.

Chapter 5 introduces the Random VPack, RVPack, FPGA circuit clus-

tering method. This chapter first reviews VPack algorithm in detail, and

highlights how the randomnesses are injected in VPack to produce the RV-

Pack. The experimental setups and result comparisons are presented in the

rest of this chapter.

Chapter 6 presents Grouping Genetic Algorithm based GGAPack and

GGAPack2 FPGA circuit clustering methods. These methods are top-down

clustering methods. This chapter clarifies GA representations, genetic op-

erations, fitness function designs and multiobjective selection schemes. For

GGAPack2, it explains how the RVPack solutions are used in GGAPack2.

The detailed experimental setups, results and result analysis are summarised.

Chapter 7 proposes a new MOGA-based FPGA circuit clustering method,

the DBPack. This method fixes problems that are identified in Chapter 5 –

RVPack. DBPack clusters a circuit using a new bottom-up perspective. Simi-

lar to GGAPack, it introduces GA representation, genetic operations, fitness

function designs and the multiobjective selection scheme. The experimental

setups, results and comparisons follow in this chapter.

Chapter 8 combines GGAPack and DBPack methods, and proposes HY-

Pack, and T-HYPack – the hybrid FPGA circuit clustering methods. HYPack

and T-HYPack are based on DBPack produced solutions, and use GGAPack

method as a second optimiser. In T-HYPack, it also optimises the timing

performance of a clustered circuit by incorporating a FPGA placement and

routing. This work is carried out by an on-line optimisation approach, where

a clustered circuit can be continuously optimised for the timing performance
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on a targeted FPGA. The experimental setups, results and result analysis

are included.

Chapter 9 summarises the findings of the proposed methods, and concludes

this research. This chapter also highlights the future work.
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Chapter 2

Reconfigurable Devices

2.1 Introduction to reconfigurable devices

With the continued rapidly increasing needs of complex electronic system

design, the weaknesses of pre-defined Integrated Chips (ICs), or Application-

Specific ICs (ASICs) are exposed, where these weaknesses include, for example,

longer design-to-market time, higher testing cost and fixed function. It has

to emphasise that the design, fabrication and testing of a new ASIC are the

most expensive and crucial parts in the microelectronics industry. To meet

many testing and research requirements, which required a large number of full-

customisable devices, reconfigurable devices were appeared. Reconfigurable

devices are normal ICs but these ICs supply with a number of configurable

resources, which allow these devices to be configured, referred to as function

updatable, as any type of circuit or for many applications, and therefore avoid

reinvestments in design, fabrication and testing in the microelectronics.

The configurability of a digital system first appeared from the Pro-

grammable Read-Only Memory (PROM), and developed through many other

logic devices such as the Programmable Logic Array (PLATM), Programmable

Logic Device (PLD), and Field Programmable Gate Arrays (FPGA). (Brown
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and Rose, 1996). Similar to basic electronic circuits, reconfigurable devices,

also known as reconfigurable hardware, can be divided into analogue and dig-

ital types. A typical reconfigurable digital device is the Field Programmable

Gate Arrays (FPGAs), its counterpart in the analogue domain being the

Field Programmable Analogue Arrays (FPAAs), and Field Programmable

Transistor Arrays (FPTAs). The typical FPAAs are the Zetex (Zetex Corp.,

1999), Lattice ispPAC series (Lattice Corp., 2000, 2001a,b,c) and Anadigm

AN221E04 (Anadigm Inc., 2003) FPAAs. These devices allow the analogue

building blocks of a circuit to be configured, for example current sources and

operational amplifiers (OPAMPs). Some reconfigurable analogue devices also

provide lower level configurations – transistor levels, the FPTAs, for instance

JPL FPTAs (Stoica et al., 2000) and Heidelberg FPTAs (Langeheine et al.,

2001), are the typical devices. This thesis focuses on reconfigurable digital

devices, in particular FPGAs.

Due to specific needs, the arrangements of interconnects and reconfigurable

fabric structure, where the fabric is defined as a set of reconfigurable building

blocks, and the arrangement refers to an architecture, in reconfigurable de-

vices can be different. However, their architectures can still be classified as

linear, array, mesh, crossbar, data-path, etc. The details of these architec-

tures are well introduced in Trefzer and Tyrrell’s book (Trefzer and Tyrrell,

2015), a book for reconfigurable hardware. On the configurable device, the

configurable fabric structure is normally one of two types – homogeneous or

heterogeneous structures. In a homogeneous structure, the configurable fabric

is formed from identical configurable blocks, and these blocks are arranged

in a regular fashion. In contrast, the heterogeneous structure means that,

apart from some identical configurable blocks, the configurable fabric also

contains a number of specialised blocks, known as hard macros. In addition

to the reconfigurable fabric structures, another important parameter for the

reconfigurable device is the granularity, which indicates the configurable level

of the reconfigurable device. The granularity is usually defined at three levels.

These are: fine-grained, medium-grained and coarse-grained. Table 2.1 shows

that the configurable levels in digital and analogue configurable devices with
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Table 2.1: The configurable levels in digital and analogue configurable devices
with different granularities (Trefzer and Tyrrell, 2015)

Granularity Digital Recfg. Device Analogue Recfg. Device

Fine
Logic Gates, Transistors,

Loop-Up Tables, Current Mirrors,
MUXs... Differential Pairs...

Medium
Flip-Flops, Memories, OPAMPs,

Multipliers... Comparators...

Coarse
ALUs, Filters,

Processors... ADCs, DACs...

Recfg. = Reconfigurable
MUXs = multiplexers
ALU = Arithmetic Logic Unit
ADC, DAC = Analog to Digital Converter, Digital to Analog Converter

different granularities.

2.2 Field Programmable Gate Array (FPGA)

2.2.1 Definition

The Field Programmable Gate Array, abbreviated to FPGA, is a pre-fabricated

IC. It is a digital device which belongs to the category of reconfigurable digital

devices, and has a number of pre-defined reconfigurable resources which allow

the FPGA to be programmed or reprogrammed as any type of digital circuit

or system after it has been fabricated (Brown and Rose, 1996).

It has been commonly considered that the modern FPGA era began with

the first commercial FPGA introduced in 1985 – the Xilinx XC2064 FPGA,

a static RAM, the SRAM (Pavlov and Sachdev, 2008), based FPGA that

has 64 Configurable Logic Blocks (CLBs), 58 inputs and outputs (IOs), and
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internal configurable fabric which is implemented as 4-input Look-Up Tables

(LUTs), (Carter et al., 1986; Xilinx Inc., 1985; Kuon et al., 2007), which

can be classified as fine-grained. Today, FPGAs have grown and developed

significantly. A modern FPGA can contain more than 330,000 logic blocks,

and have thousands of IOs (Kuon et al., 2007; Altera Corp., 2011b; Xilinx

Inc., 2015a). As a result, FPGAs are widely utilised in digital systems, and

used as a central configurable hub between different subsystems.

2.2.2 Applications

In the last two decades, by benefiting from the modern Very-Large-Scale

Integration (VLSI) circuits technology (Weste and Harris, 2010), the FPGA

scale has been increased significantly. FPGAs can be applied to a variety of

applications. The applications of the FPGA can be summarised as follows:

1) From the hardware perspective, the FPGA can implement any logic

circuits (Brown and Rose, 1996). In comparison with complex gate-

level-ASIC-based digital PCBs (Printed Circuit Boards), the use of

FPGAs can simplify the PCB, and lead to the FPGA being an all-in-

one solution for digital logic. Moreover, modern FPGAs have a large

number of configurable resources, including heterogeneous blocks; these

enable the FPGA to build different digital subsystems, or even an entire

system.

2) From the semiconductor industry perspective, due to the flexibility of

the FPGA, FPGAs are widely used to verify new designs, or fast proto-

typing designs. For example, the FPGA can be utilised to investigate

timing and logic verification of a new digital design.

3) From the product perspective, the FPGA can implement high-speed,

high-precision applications. These applications include: ultra high-

speed interfaces, sophisticated controllers, high-speed signal processors,
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advance filters and complex communication systems. (Brown and Rose,

1996).

4) From the research and academic perspective, primitive concepts of recon-

figurable computing were first convinced in Estrin and Viswanathan’s

paper (Estrin, 1960; Estrin and Viswanathan, 1962). Since the avail-

ability of the FPGA, the implementations of these concepts can finally

be accomplished. FPGAs are also utilised in the areas of dynamic

reconfigurable, working-load-adaptive, and fault-tolerant systems. On

the other hand, the FPGA also enables research in FPGA architectures,

and Computer-Aided Design (CAD) algorithms.

2.2.3 Advantages and disadvantages

When FPGAs merge with ASICs level fabrication, according to Gokhale and

Graham’s book (Gokhale and Graham, 2005), a number of advantages are

notable:

1) Since the FPGA is programmable and offered as a standard product, for

a system development, the design-to-market time can be significantly

reduced.

2) Pre-fabricated FPGA products allow designers to focus on the higher

level development, so by using the FPGA, there is no engineering cost

at the microelectronic-level implementations, testings and fabrications.

3) FPGA manufacturers provide a number of different FPGAs, referred

to commercial FPGA products, and these FPGAs are pre-tested by

the FPGA manufacturer. Therefore, FPGA, or FPGA product, can be

a distinct platform to verify new designs without considering the fault

of microelectronic level.

4) When the FPGA is deployed for post-fabricated electronic systems,

the reconfigurability of the FPGA is beneficial as it means that new
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functions or changes can be added or made to the circuit level. This

can be achieved remotely or by an on-line means.

In contrast, the negative effects of using FPGAs are also presented, and

these are:

1) Modern FPGAs utilise SRAM (Pavlov and Sachdev, 2008) as the basic

configurable elements, as well as deploying many pre-defined routing

resources. This means that FPGAs use a greater area, have longer

delays and consume more power compared with ASICs.

2) Although the revised Moore’s law has predicted that the IC integrated

transistor number is doubled every two years (Moore, 1965, 2006),

area overhead is still the major issue in the FPGA and increases the

fabrication cost; the cost is much higher than the ASIC when an ASIC

is used in mass fabrication.

3) From the circuit performance perspective, when implementing the same

application on both an ASIC and FPGA, Kuon and Rose point out

that (Kuon and Rose, 2006), as reconfigurable resources exist in the

FPGA, the FPGA can use up to 20 to 30 times more chip area. At the

same time, the FPGA can be 3 to 4 times slower and consume 10 times

more power than the ASIC. Although the fabrication technology is

continuously developed, the circuit performance on FPGAs might still

be lower than ASICs. This is due to massive reconfigurable resources

in FPGAs.

4) Normally a design or application is mapped to the FPGA using the

CAD flow, the results of of these CAD algorithms can significantly

affect the performance of the design on FPGAs; this is because different

CAD algorithms can produce different mappings and use different

reconfigurable resources of a FPGA. As a result, design or application

performances cannot be guaranteed as the mapping is not unique.
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Figure 2.1: A generic FPGA architecture (Gokhale and Graham, 2005)

2.3 Overview of FPGA architectures

2.3.1 Basic architecture

In general, a FPGA contains at least three types of components, which are

programmable logic block – also known as the basic logic element (BLE),

programmable routing resources and programmable input-output (IO) blocks.

These programmable logic blocks are the smallest logic elements, and can be

connected to each other by using the routing resources to form a circuit. IO

blocks are the interface to link to other circuits outside the FPGA. Figure 2.1

shows a generic FPGA architecture.

If these programmable logic blocks are all identical, this indicates that the

FPGA is a homogeneous structure. However, to meet different application

requirements, the FPGA can have a number of specialised blocks - this is

referred to as a heterogeneous FPGA structure, an example of which is the

SRAM block. The generic heterogeneous FPGA structure is shown in Figure

A.1 in Appendices. How many detailed reconfigurations can be achieved
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Figure 2.2: A generic 4-input Look-Up Table (LUT)

usually specifies the FPGA granularity. If the configurable logics are operated

at the bit level, or small word which is less than 4 bits, the FPGA will be

fine-grained (Trefzer and Tyrrell, 2015). As a fine-grained architecture has

more routing resources, it uses a larger chip area, and further increases the

delay or power of applications. The FPGA granularity is usually balanced,

which is to retain the flexibility, and also keep costs low on the chip size.

2.3.2 Programmable logic architecture

Look-Up Table – LUT

Figure 2.2 shows a 4-input, where 4 indicates the LUT size, SRAM-based

LUT, which has been widely utilised in commercial FPGAs for realising

combinational logic. In fact, the LUT is a truth table of a logic. A LUT

is generally comprised of a main multiplexer, and a number of SRAM cells,

where a size k LUT operates as a k address lines memory block and has 2k

SRAM cells. In Figure 2.2, the left input pins are equivalent to the inputs of

a logic gate. Below the multiplexer, it shows the SRAM cells with pre-loaded

data. If the inputs of the multiplexer are logic “1, 1, 1, 1” to the pin S0, S1, S2

and S3, the multiplexer output will be logic “1”, otherwise it will be logic

“0” as all other SRAM cells have “0” stored in them. This configuration

indicates that the LUT is representing the function of a 4-input “AND” gate.

Although most FPGAs use LUTs for combinational logic, there are a few

architectures, for example Actel ProASIC flash family (Actel Corp., 2009)
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Figure 2.3: A generic FPGA programmable logic block (Gokhale and Graham,
2005)

and QuickLogic pASIC 1, 2, 3 series FPGAs (QuickLogic Corp., 1998, 2000,

2005), that realises the logic by standard logic gates and multiplexers. A

reason of using the standard logic gate, instead of the LUT, is intended to

achieve a more fine-grained FPGA. For instance, a master-slave FF can be

produced by the standard gate in the Actel ProASIC Plus FPGA.

Programmable logic block (BLE)

In most FPGAs, the programmable logic block, or known as BLE used in

Xilinx FPGAs, contains one or more LUTs and a configurable Flip-Flop (FF).

In many devices, there are even more resources, for example, fast carry logic.

The FPGA programmable logic block can be generalised in Figure 2.3. In

this block, the LUT is for the implementation of combinational logic, and

the configurable FF can be configured as a flip-flop or latch used for the

implementation of sequential circuits. The outputs of the LUT and FF are

selectable via a multiplexer controlled by a 1-bit SRAM cell – an example

of the programmability of a FPGA. It is important to emphasise that the

SRAM memory exists in the entire block, which enables it to configure the

block functions in each part of the FPGA. Fast carry logic is usually in the

block as well – it aims to reduce delays and configurable resource usages when
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Figure 2.4: Generic programmable logic cluster, it contains a few logic
programmable blocks, and internal routing resources. The internal routing
resources can be configured to form connections for internal logic blocks.
Moving some connections in the cluster can reduce the routing pressure of
FPGA higher routing architecture.

performing carry logic operations.

The commercial FPGA programmable logic block is more complicated

than the generic one illustrated here. Gokhale and Graham have commented

that commercial FPGA programmable logic blocks are usually designed for

maximising flexibility (Gokhale and Graham, 2005). For example, the config-

urable FF can be configured as combinations of asynchronous or synchronous

sets and resets, and its trigger modes can be negative, positive edges, or the

level trigger. In recent Xilinx and Altera FPGAs, their programmable logic

blocks can support many additional functions. For instance, typical examples

are that the carry logic in Xilinx Virtex FPGA can implement multiplication

functions, and the carry logic in Altera Stratix II FPGA (Altera Corp., 2011a)

is replaced with full adders.

Programmable logic cluster

Arranging a number of simple programmable logic blocks on a FPGA might

use a enormous number of routing resources. A common solution in most
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Table 2.2: Mainstream FPGA LUT sizes, larger logic block names, and larger
logic block sizes over years

FPGA Year LUT Size Name Logic Block Size

Xilinx XC3000 1987 4 CLB 2
Xilinx XC4000 1990 3/4 CLB 1 (3-LUT)/2 (4-LUT)

Altera FLEX 8000 1992 4 LAB 8
Altera FLEX 10K 1995 4 LAB 8

Xilinx Virtex 1998 4 CLB 4
Altera Apex 20K 1998 4 LAB 10
Xilinx Virtex-II 2001 4 CLB 8
Altera Apex II 2001 4 LAB 10
Altera Stratix 2002 4 LAB 10
Altera Cyclone 2002 4 LAB 10
Xilinx Virtex-4 2004 4 CLB 8
Altera Stratic II 2004 3/4 CLB 24 (3-LUT)/16 (4-LUT)

Xilinx Spartan-3E 2005 4 CLB 8 (2 Slices)
Altera Cyclone II 2005 3/4 LAB 16
Xilinx Virtex-5 2006 5/6 CLB 8 (2 Slices)

Altera Cyclone III 2007 3/4 LAB 16
Xilinx Virtex-6 2009 5/6 CLB 8 (2 Slices)

Altera Stratix V 2010 3/4/5 LAB/MLAB 10
Xilinx Virtex-7 2011 5/6 CLB 8 (2 Slices)

Xilinx Zynq-7100 2013 5/6 CLB 8 (2 Slices)

MLAB = Memory Logic Array Block, it is similar to LAB.
Slice – recent Xilinx FPGAs contain 2 slices in each CLB.
Each slice contains 4 programmable logic blocks.
x-LUT = x-input LUT

commercial-LUT-based FPGAs is to group a few programmable logic blocks

together as a programmable logic cluster as shown in Figure 2.4, and arrange

these larger logic clusters on the FPGA. In a programmable logic cluster, it

contains a few logic programmable blocks, and internal routing resources. In

general, the internal routing resources can be configured to form connections

for internal logic blocks. This design allows many programmable logic blocks

to be routed within the clusters, so lower routing pressures are given to

the FPGA higher level structure. Moreover, the use of the cluster can also
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Figure 2.5: Routing-purpose switches used for FPGAs (Gokhale and Graham,
2005)

improve circuit performances as the cluster internal routing wire length is

shorter. Current FPGAs tend to group more than 8 programmable logic

blocks in a larger programmable logic cluster. In different brand FPGAs,

the programmable logic cluster has different names. Xilinx refers to the

programmable logic cluster as Configurable Logic Block, the CLB, and Altera

calls it Logic Array Block, the LAB. Table 2.2 summarises the FPGA LUT

and cluster size for mainstream FPGAs. Note that, in some FPGAs, the

programmable logic cluster, or the programmable logic block, contains two

different sized LUTs, and these LUTs can connect together for particular

functions, increasing the flexibility.

2.3.3 Routing architecture

Routing infrastructure

FPGAs have a number of pre-defined wires and switches both in the pro-

grammable logic block, cluster and the higher level architecture for the purpose

of routing. In terms of different FPGA architectures, the arrangement of

these wires and switches is different. However, the routing-purpose switch can

be generally classified into three types. These are pass transistor, multiplexer

and tristate buffer, Figure 2.5 illustrates each of these. For each switch, there

is a 1-bit programmable SRAM cell which controls the switch state. Among

switch types, both the multiplexer and tristate buffer are active switches, and
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the pass transistor is a passive switch.

From the implementation area perspective, the multiplexer uses most

chip area, and the area grows exponentially as the multiplexer input number

increases. The pass transistor occupies the smallest area, as well as being

lower power, but, due to the transistor gate capacitances and the transistor

conducting resistance, the pass-transistor is also the “slowest” switch, which

is only utilised on occasions when speed is not an issue. To compromise the

area, FPGA architecture uses combinations of these switches as appropriate.

Programmable IO block

To connect other circuits, the FPGA deploys the programmable input-output

(IO) blocks as the interface, and these blocks are around the FPGA chip

die. In general, an IO block comprises multiplexers, tristate buffers and
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flip-flops (FF), and the tristate buffer is the main component to control the

IO signal flow. Figure 2.6 shows a generic FPGA programmable IO block.

“Programmable” means that an IO pad is able to configure as a particular

function based on circuit design requirements, for example, as an input or

output pin, or a high impedance pin.

Figure 2.7: Hierarchical routing architecture FPGA example, if the upper left
corner logic cluster (A) has a signal to the upper right corner logic cluster
(B), a routing flow will be as follows: Level 1, Level 2, Level 3, and back to
Level 2, Level 1 at the right of the figure. (Tsu et al., 1999)
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Common FPGA routing architecture

The routing architecture refers to the position relationship between the FPGA

routing channel, where a channel contains a number of routing-purpose wires,

and the logic cluster or the logic block. It also indicates how the routing

wire connects to the logic cluster, and how many wires and routing switches

are used (Kuon et al., 2007). For most fine-grained commercial FPGAs, as

discussed in Kuon’s review, the routing architecture can be characterised as

hierarchical (Aggarwal et al., 1994) or island-style (Betz et al., 1999; Brown

et al., 1992a). Details of these two architectures are summarised as follows:

Hierarchical routing architecture

The hierarchical routing architecture is commonly used in the Altera FPGAs,

and these FPGAs include the Flex10K (Altera Corp., 2003d), Apex (Altera

Corp., 2003c) and Apex-II (Altera Corp., 2002) series. The main feature of

the architecture is that it separates FPGA logic clusters into a number of

distinct groups (Aggarwal et al., 1994; Tsu et al., 1999) as shown in Figure

2.7. In this design, the connections within the logic cluster can be made at

the lowest routing hierarchy (Level 1) using shorter wires. In contrast, if

a connection is between distant groups, the connection has to travel more

routing hierarchies.

From the geometrical perspective, in this routing architecture, there is

an interesting phenomenon; where even two logic blocks that are physically

adjacent, their connections might be via different routing hierarchies, which

when connecting to them, causes a large circuit delay. Aggarwal (Aggarwal

et al., 1994) have indicated that this architecture can improve performances

for certain circuits as the delay of the architecture is predictable. However, as

the CMOS variability (Bowman et al., 2002) increases, the delay estimation

is becoming more difficult. In theory, for these routing hierarchies, the same

routing hierarchy should have the same propagation delay. However, the

65



Figure 2.8: A generic island-style FPGA routing architecture (Kuon et al.,
2007)

CMOS variability can significantly vary the delay. On the other hand, this

architecture also applies pressures to the design mapping process. If a mapped

circuit cannot match well the feature of the architecture, it will decrease the

utilisation of the architecture. These are the reasons that modern FPGAs

have skipped this type of routing architecture (Tsu et al., 1999).
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Island-style routing architecture

The island-style routing architecture refers to a two-dimensional mesh archi-

tecture, in which the logic cluster is arranged as a mesh, and routing resources

are integrated in the mesh (Kuon et al., 2007). In terms of a logic cluster,

each side of the logic cluster has the routing channel accessible. Figure 2.8

shows a generic island-style FPGA routing architecture. Currently, most

commercial SRAM-based FPGAs, such as Altera Stratix II (Altera Corp.,

2011a), Stratix III (Altera Corp., 2011b) FPGAs, Lattice LatticeXP (Lattice

Semi. Corp., 2007) FPGA and Xilinx Virtex-4 (Xilinx Inc., 2010), Virtex-5

(Xilinx Inc., 2012a), Virtex-6 (Xilinx Inc., 2012b), Virtex-7 (Xilinx Inc., 2014)

FPGAs, etc., are based on this routing architecture.

In this architecture, the routing channels are pre-defined, and each chan-

nel has W routing wires or tracks – the channel width. Apart from the

wires, a number of routing switch boxes are deployed next to logic blocks

or logic clusters, and cut certain wires as a number of wire segments. This

results in this unique architecture having a number of different length wire

segments, which provide a relatively higher routing flexibility, where, to form

a connection, a suitable-length wire can be utilised. Since there are wire

segments surrounding the logic blocks, by staggering them, the start and end

points of each wire can be suitably arranged. As well as this, these logic

blocks and switch boxes are identical components. This means these wires

and components are able to optimise to form a single tile, then this styled

FPGA can be built by replicating the tile (Kuon et al., 2007). The island-style

FPGA is the most common architecture which is used in circuit clustering

methods research, and more details are introduced in Section 2.4.

2.3.4 Heterogeneous block

To provide more flexibility, and extend FPGA functions, FPGAs often inte-

grate different types of heterogeneous blocks. Some of these block types are

67



summarised as follows:

Embedded memory block

Though the FPGA programmable logic block has a reconfigurable FF, the

implementation of memory rich applications are extremely inefficient as the

FF can only store 1-bit data, and it is difficult to configure into different

geometrical sizes. Since the Xilinx XC4000 series FPGAs (Xilinx Inc., 1993),

Xilinx has provided a new feature to its LUTs, which can be used as asyn-

chronous RAMs. This feature has been developed, and currently, Xilinx

FPGA LUT can be configured as synchronous RAMs, dual-ported RAMs

and shift registers. Altera, was first to introduce on memory block in their

FPGA – the Altera FLEX 10K series FPGA (Altera Corp., 2003d). Today,

most FPGAs deploy the memory block in the FPGA architecture (Altera

Corp., 2011b; Xilinx Inc., 2011; Altera Corp., 2012; Xilinx Inc., 2012a,b, 2014;

Altera Corp., 2015).

Arithmetic logic block

It is costly to use programmable logic blocks to implement complex arithmetic

operations; even the long routing wire can increase the circuit delay resulting

in low performances. FPGAs often supply the arithmetic logic block, also

known as the DSP (Digital Signal Processing) block. In most FPGAs, this

block is implemented as an 18x18 multiplier (Xilinx Inc., 2008; Altera Corp.,

2011a). The DSP block can be used in the following operations: addition,

subtraction, multiplication and multiply-accumulate (MAC). The use of these

blocks can significantly speed up applications for example the FFT (Fast

Fourier Transform) and FIR (Finite-Impulse Response).
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Embedded microprocessor block

Although most FPGA configurable logic fabrics can be used to implement

soft cores for control-intensive applications and finally producing the FPGA

as a SoC (System on a Chip), the FPGA manufacturers also place dedicated

embedded microprocessor blocks as larger hardware macros in the FPGA

architecture, and these microprocessors are mostly ARM-, or MIPS-based

32-bit RISC processors, for example, Xilinx Zynq-7000 series integrate high-

performance ARM-cortex cores (Xilinx Inc., 2015b), and drives the FPGA

development to the direction of “CPU + reconfigurable fabric”. There are

two major advantages of using the dedicated processor: Firstly, it saves

the reconfigurable resources, and gives the design more flexibilities. Sec-

ondly, the dedicated processor tends to be power saving, and produce higher

performances, as well as being more secure.

2.4 Cluster-based island-style FPGA and its

model

Most circuit clustering methods research target the cluster-based island-style

FPGA, and using this architecture as a FPGA model. The first reason is that

the commercial FPGAs, for example the Altera FLEX6K, 8K, 10K series

(Altera Corp., 2001, 2003b,a) and Xilinx XC5200, Virtex (Xilinx Inc., 1998,

2010, 2013, 2012b, 2014) series FPGAs , tend to group more programmable

logic blocks in a larger logic cluster, which is known as “cluster-based”, as

well as these clusters are more generic, so research outcomes can be extended

to different FPGA architectures. The other factor is that the implementation

of this architecture can be easily carried out using a hierarchical construction

concept if the FPGA layout tile is well arranged, as mentioned in the previous

section. Therefore, the cluster-based island-style FPGA is popular for research,

specially for the CAD algorithm research. This section introduces a simplified

cluster-based island-style FPGA model, and clarifies the key parameters for

69



BLE  #1

BLE  #N

N BLEs…
…

N Outputs

I Inputs
Clock

N
I

Configurable Logic Block (CLB) 

4-input
LUT FF

Inputs Output

Basic Logic Element (BLE) 

FPGA

Clock

Figure 2.9: Cluster-based FPGA BLE and CLB internal structures (Betz
et al., 1999)

this model.

2.4.1 CLB and BLE model

In this type of FPGAs, the larger programmable logic cluster, called CLB

(Configurable Logic Block) or logic block, contains N programmable logic

blocks, also named BLEs (Basic Logic Elements), and the BLE is the smallest

reconfigurable logic element. The BLE includes a k-input LUT and a recon-

figurable FF for realising both the combinational logic and sequential circuits.

The parameters of the CLB (BLE) are summarised in Table 2.3. As discussed
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Table 2.3: CLB (BLE) model parameters and meanings (Marquardt, 1999)

Parameter Meaning

k The number of inputs of the LUT (size)
N The number of BLEs in the CLB
I The number of inputs of the CLB, for LUTs

Mclk (Clock) The number of clock of the CLB, for FFs

previously, the LUT is based on SRAM and multiplexers - the more input

the LUT has, the more area is taken, and even increasing the LUT size also

requires more routing resources. Therefore, a trade off is usually established

for balancing the LUT size. According to Betz, Rose and Marquardt’s work

(Betz, 1998; Marquardt, 1999), it is area-efficient when the LUT size in BLE

is 4 (k = 4) and the CLB clock number is 1 (Mclk = 1), where the clock can

meet most single clock driven circuits (benchmark circuits). Figure 2.9 shows

the cluster-based island-style FPGA CLB and BLE models.

Inside the CLB, there are a number of BLE outputs that can connect to

other BLE inputs. For any BLE, its output can connect to any other BLEs

via the internal routing resources, also known as the crossbar (Kuon et al.,

2007) or Input Interconnect Block (IIB) (Feng and Kaptanoglu, 2008), the

left multiplexers of the CLB which are shown in Figure 2.9, this type of CLB

will be named as a “full-connected” CLB, and it is the classic model used

in circuit clustering method researches. The advantage of this CLB is that

the number of inputs of the CLB can be less than the total number of BLE

inputs – k × N , which reduce the area of CLB internal routing resources.

The additional benefit of using the full-connected CLB is that this CLB can

simplify the CAD algorithm as these BLEs within the CLB are all identical

to the routing resources (Marquardt, 1999).

Based on the same reasoning which improves the FPGA area efficiency,

the number of BLEs which is the value of parameter N , within the CLB can

be set from 1 to 10, but without the number 2 (N = 2). When N = 2, the

FPGA area efficiency cannot be maintained (Betz, 1998; Marquardt, 1999).
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The value of parameter I highlights the input bandwidth of the CLB. If I

is equal to k ×N , this CLB will be known as input-bandwidth-free CLB, or

stated that the CLB does not have input bandwidth. Otherwise, if the I is less

than k×N , the CLB will be known as input-bandwidth-constraint CLB (Feng,

2012). The input-bandwidth-constraint CLB is widely used, for example, in

Altera Cyclone, Stratix (Leventis et al., 2003; Lewis, 2003) series FPGAs,

and it is also the model used in VPR (Betz and Rose, 1997b), which is a

research-based CAD tool. Note that, nowadays, although not all FPGAs have

this constraint, the input-bandwidth-constraint CLB can actually represent a

type of problem in the CAD algorithm research, especially in the research

of circuit clustering methods. In order to assign a suitable value for I while

optimising the logic utilisation in a CLB, Betz and Rose have suggested that

I value is equal to 2N + 2 (Betz and Rose, 1998). Subsequently, Ahmed and

Rose’s paper (Ahmed and Rose, 2000) has further generalised this relationship

as shown in Equation 2.1.

I = (N + 1)× k

2
(2.1)

2.4.2 Routing architecture model

Figure 2.10 shows the detailed island-style FPGA routing architecture (model),

and it defines the interconnection method of the input or output of the logic

block to the routing channel as well as the arrangement of the wire segment

in the channel. In this architecture, here are X rows × Y columns array

logic blocks (X = Y ), and the logic block use the previous model, so this

FPGA is a fine-grained and homogeneous architecture. For the logic block,

its inputs and outputs are connected to the routing channel via the input and

output connection blocks (Rose and Brown, 1991). To reflect the flexibility

of the connection block, the fraction of wire segment width in the channel,

which refers to the pre-defined channel width W , to the connection number

of the input or output of the logic block is used. Based on the fraction, two
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Figure 2.10: Detailed island-style FPGA routing architecture (Betz et al.,
1999)

parameters, Fc,in and Fc,out, are further defined to indicate the flexibility of

the input and output connection blocks respectively (Kuon et al., 2007).

The switch box (Rose and Brown, 1991), which contains a set of pro-

grammable routing switches, is placed between logic blocks in the island-style

architecture. The function of the switch box is to form connections for the

horizontal and vertical routing channels, and, along with the logic blocks,

produce a functional circuit. Switch box flexibility is defined as the parameter

Fs, where it is the possible connection number that a wire segment can connect

to other wire segments. For example, Fs is 3 in Figure 2.10. For the routing

architecture model, the common switch box models are the disjoint (or also
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Figure 2.11: Disjoint and Wilton switch box (Kuon et al., 2007)

Figure 2.12: The definition of wire segment length, this figure also shows the
staggered wire segments. (Marquardt, 1999; Kuon et al., 2007)

known as subset) (Wu and Marek-Sadowska, 1995) and Wilton (Wilton, 1997)

switch boxes. Figure 2.11 shows these two models. The disjoint switch box

was used in the Xilinx XC4000 series (Xilinx Inc., 1993), and other commercial

FPGAs. However, this switch box has its limitations, where, as shown in

Figure 2.11 (a), the connection can only be made for the same numerical

designation, which limits the routing domains. The Wilton switch box uses

the same number of programmable switches, but it is more flexible (Kuon

et al., 2007).

In this architecture, the lengths of wire segments can be uniform or

different, and the length is defined as a logical length which is suggested by
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Table 2.4: Routing architecture model parameters and meanings

Parameter Meaning

Homogeneous FPGA architecture feature
X × Y FPGA scale (area), X = Y square logic block arrays
W Channel width – the number of tracks
Fc,in Logic block input connection block flexibility
Fc,out Logic block output connection block flexibility
Fs Switch box flexibility

Wire segments length – uniform or different.

how many logic blocks it spans as shown in Figure 2.12 (Betz et al., 1999;

Marquardt, 1999). For instance, a wire has length one, it means that this wire

segment spans one logic block. The wire segments in channels are arranged

in a staggered formation (Kuon et al., 2007), where some wire segments

are over the switch box uncut, but some are cut as shown in Figure 2.10 –

the long wire segment or the short wire segment. This is another feature

of this architecture. Table 2.4 has summarised the key parameters of the

cluster-based island-style FPGA routing architecture model.

2.5 Summary

This chapter introduces the reconfigurable devices, and these devices can

be classified as the reconfigurable digital device and reconfigurable analogue

device. This chapter then focuses on the FPGA, the reconfigurable digital

device. The FPGA definition, applications and the advantages and disad-

vantages have been described. This chapter also reviews the generic FPGA

structure, which covers the programmable logic architectures and routing

architectures – it highlights the BLE, CLB, routing infrastructure, IO block

and hierarchical routing and island-style routing architectures. As the cluster-

based island-style architecture is usually used to modern FPGAs, based on the

generic FPGA structure, this chapter introduces the cluster-based island-style

FPGA model, and clarifies what is the bandwidth-constraint CLB and how
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the routing switch boxes and routing channels are arranged. Apart from these

concepts and arrangements, this chapter also explains how to evaluate the

routing flexibility and estimate the routing wire length. The cluster-based

island-style FPGA architecture is important, so it is typically used in CAD

algorithm research, especially in the circuit clustering algorithm research. The

FPGA CAD flow and classic circuit clustering algorithms will be introduced

next chapter.
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Chapter 3

CAD for FPGAs and Circuit

Clustering Methods

3.1 Why Computer-Aided Design (CAD)?

When the first commercial FPGA was introduced to the market by Xilinx,

there were no CAD (Computer-Aided Design) tools available. Designers

or customers had to implement their applications (or designs) on FPGAs

manually, although Xilinx had provided simple graphic-based tools which

allowed the designer to configure specific logic elements and switches in the

FPGA model, and produced the configuration bitstream automatically by

their design tools (Kuehlmann, 2012). This design implementation method

was extremely complex, even for a small application. In addition, small

changes to their designs would require a new design cycle to be made to

produce a new configuration for the FPGA. Such a design approach also

increases the difficulty of debugging.

Implementing an application on a modern FPGA could involve the config-

uration of hundreds of thousands, or even billions, of FPGA programmable

elements and switches, which is not able to be carried out by “hand”. To

77



fill the design-to-implementation gap, Xilinx first developed CAD tools to

assist FPGA application implementations, with a particular focus on design

automation, subsequently, other vendors have been involved in this devel-

opment. Due to FPGA becoming increasingly popular, the design of CAD

algorithms and tools has aroused the interest of ASIC tool vendors, and has

also become a hot topic in research areas (Kuehlmann, 2012). Nowadays,

there are a number of vendors who supply FPGA CAD tools, and a number

of these tools take advantage of ASIC tool features. These tools significantly

simplify the application implementation process, and also provide essential

testing and verification opportunities for implementing correct applications

on FPGAs.

By applying CAD, it allows designers and customers to implement their

applications on FPGAs at a higher level of abstraction, where the normal

entries are HDLs (Hardware Design Languages), for example VHDL (IEEE,

1988) and Verilog (IEEE, 1995), or circuit schematics. The CAD flow can assist

designers to automatically convert applications as bitstreams to targeting

FPGAs. A CAD flow contains a set of subprocesses, and each process is

implemented for a particular task during FPGA application mapping processes.

One potential advantage of the separation is that these steps can keep the

designed application traceable.

3.2 A complete CAD flow for FPGAs

3.2.1 Overview CAD flow for FPGAs

A complete CAD flow for FPGA is complex; Figure 3.1 shows a simplified

CAD flow, which contain three major steps. This flow summaries steps

necessary for converting a higher level abstraction for an application to a

FPGA configuration bitstream.
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Synthesise to logic blocks

Circuit description, e.g. VHDL, schematics...

Place logic blocks in FPGA

Route connections between logic blocks

FPGA configuration file – bitstream 

Figure 3.1: A simplified FPGA CAD flow (Betz et al., 1999), it is a sequential
process, and contains three steps: Synthesis, placement and routing.

Synthesis and logic block packing

Synthesis means to convert applications, which are implemented in VHDLs,

Verilogs and schematics – the higher level abstraction, into a netlist. The

netlist contains the technology-independent logic design which can be further

realised on FPGAs. There are two goals that a synthesiser has to achieve:

Firstly, the number of synthesised logic gates have to be minimised. Secondly,

the synthesised circuit has to maintain suitable delays (higher speed). Detailed

flow of synthesis and logic block packing is shown in Figure 3.2.

A synthesised circuit might include many redundant logic gates. The

technology-independent logic optimisation is the process that optimises the

number of logic gates, and produces the most compact logic gates (Brayton

et al., 1990; Sangiovanni-Vincentelli et al., 1993; Chen et al., 1992; Cong

and Ding, 1994a,b). Subsequently, the optimised logic design is mapped to

LUTs, and also FFs (Francis et al., 1991a,b), based on the targeted FPGA

architecture, for example, the size of LUT. As discussed in Section 2.3.2,

modern FPGAs have grouped a few basic programmable logic blocks into a

larger logic cluster, and supplied cluster internal routing resources. Therefore,
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Technology-independent logic optimisation  

Netlist of basic gates

Technology map, to LUTs

Packing LUTs to logic blocks

Netlist of logic blocks 

LUT

LUT

LUT

LUT

Figure 3.2: Details of synthesis and logic block packing (Betz et al., 1999)

these LUTs (and FFs) have to be further packed into the larger logic clusters,

and produce a new netlist. To produce a better routing result on the FPGA,

the separation of a circuit has to follow certain rules, and this will be discussed

in section 3.3.

Placement

After the synthesis and logic block packing process, a placement process will

arrange logic blocks onto the FPGA, so further CAD processes can connect

them as a circuit.

In the placement stage, different orientations of the placement can result

in different circuit features. If the placement aims to place all logic clusters

as close as possible, and optimise connection wire lengths, this will be a

wire-length-driven placement. Alternatively, if the placement algorithm

balances wire density on the FPGA, this can be a routability-driven placement.

Additionally, in most cases, the placement is required to optimise circuit speed,

which is a timing-driven placement.
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Mainstream research-based placement algorithms can be divided into three

types, which are min-cut (Dunlop and Kernighan, 1985; Huang and Kahng,

1997), analytic (Kleinhans et al., 1991; Sigl et al., 1991; Srinivasan, 1991; Riess

and Ettelt, 1995; Alpert et al., 1998a) and local search – simulated annealing

algorithm (Kirkpatrick et al., 1983; Sechen and Sangiovanni-Vincentelli, 1985;

Sechen and Lee, 1987; Sun and Sechen, 1995; Swartz and Sechen, 1995).

Of these methods, the simulated annealing algorithm is the most versatile

method, where it is easy to add different optimisation goals and constraints.

To adapt to different FPGA architectures, the simulated annealing is more

suitable. The explanation and comparison, also shown in Table 3.1, of these

three types of methods are described as follows:

1) Min-cut method:

• Basic method: Recursively perform bipartitioning (Alpert et al.,

1998b) for a graph – a circuit, and minimise total connection

lengths (also known as netlength).

• Advantage: It is a standard approach – implementation is easy.

Execution time is short.

• Disadvantage: Sequentially cutting a circuit might result in poor

following cut solutions if the first cut is minimised (optimal). It

is difficult to find a real optimum. Placement is closely linked

to a FPGA architecture. Placement objectives are difficult to be

incorporated, and usually dependant on weighting approaches. It

has a low stability – not a deterministic result.

2) Analytic method:

• Basic method: Minimise netlength without considering the place-

ment overlaps, and then processing the overlaps – a place might be

filled with more functions; It mainly uses the quadratic netlength

minimisation (QC).
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Table 3.1: The comparison of three placement methods (Vygen, 2002)

Method Quality Flexibility Run Time Stability

Min-cut + + + −−
Local search (SA) + + + −− −−

Analytic (QC) + + + + +

+: Positive, ++: More positive
−: Negative, −−: More negative

• Advantage: QC execution time is short, and QC has a determin-

istic solution – it is stable. QC is efficient at dealing with small

component (logic block) placements.

• Disadvantage: If a circuit has buffers inserted, the results can be

changed significantly. Power and delay of a placed circuit can be

increased.

3) Local search method:

• Basic method: Minimise netlength via a search algorithm – simu-

lated annealing algorithm (SA).

• Advantage: SA is flexible (no strong link to a FPGA architecture),

and implementation is easy. Objectives and constraints can be

incorporated by a simple weighting approach.

• Disadvantage: The algorithm convergency is poor. It has a long

execution time. The stability is low as using the random search.

Objectives are weighted.

Routing

A routing process starts once logic block locations have been determined by

placement. The function of routing is to select suitable wire segments and
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switch boxes, by programming switch states in the boxes, to connect discrete

logic blocks as a circuit.

In order to facilitate the routing of FPGA, a common method is to

represent a FPGA routing architecture as a routing resource graph, where it

is either a directed graph (Ebeling et al., 1995; Nag et al., 1998) or undirected

graph (Alexander et al., 1994) according to which type of routing switches the

FPGA uses. To prevent a router (routing method) using too many wires which

are beyond the FPGA routing resources, the router is usually set to connect

a circuit using the shortest path. Similar to the placement, if the router

gives priority to connections on or near the circuit critical path, and routing

them using short wires, this will be a timing-driven routing. Otherwise, if

the router only considers wire density of routed circuits, it will be known as

a routability-driven routing (Betz et al., 1999).

FPGAs routers can be classified in two groups: combined global-detailed

(Alexander et al., 1994; Wu and Sadowska, 1994; Ebeling et al., 1995; Alexan-

der and Robins, 1996; Lee and Wu, 1997), and two-step routers. As their name

suggests, the global-detailed router routes a FPGA in one step. In contrast,

the two-step router will first perform a global routing (Rose, 1990; Chang

et al., 1994) to determine which channel segments a logic block connection

can be used, and then carry out a detailed routing (Greene et al., 1991; Brown

et al., 1992b; Lemieux and Brown, 1993; Lemieux et al., 1997). A FPGA

usually has the limited routing flexibility and also the routing constraint. As

the global-detailed router routes FPGAs in one step which considers the rout-

ing in a global perspective, this router can supply a highly optimised routing

solution. Therefore, the global-detailed router is often utilised to facilitate

the FPGA routing, and its algorithms, normally path-finding algorithms, can

be summarised as follows:

1) Maze router (Lee, 1961):

• Basic method: Maze router finds a path by propagating a “wave”

from a source and waiting it hits a sink. By tracing the sink to

83



the source, a shorter path can be found.

• Advantage: The algorithm is simple, but cannot guarantee to

find the optimal (shortest) path. It allows complex cost functions

which involve more routing objectives.

• Disadvantage: It is inefficient when dealing with multiple-terminal

nets. The algorithm depends on a 2-D grid and 2-D data structure

– complex and more memory used.

2) Dijkstra’s algorithm based and A* routers (Dijkstra, 1959; Tessier,

1998):

• Basic method: Dijkstra’s algorithm builds a tree to find the

shortest path. In the FPGA routing, Dijkstra’s algorithm can

combine to maze router algorithm which uses maze router to

facilitate a small area routing. Maze router is a special case of A*

(or A star), and A* is also similar to Dijkstra’s algorithm, where

the difference is that A* utilises heuristics to optimise the search.

• Advantage: Both routers are better for two-terminal nets. The

optimality of A* can be adjusted by cost functions.

• Disadvantage: They have long execution time as they are iteration

based, but A* is faster; Dijkstra’s algorithm might not find all

possible paths.

3) Pathfinder router (Ebeling et al., 1995):

• Basic method: The Pathfinder router extends maze algorithm,

and increases the algorithm speed by considering the routing on

an “obstacle-free” environment and reusing routing resources. The

algorithm routes nets via iterations of ripping up and re-routing

nets (Prado, 2006).

• Advantage: It produces excellent results, and uses cost functions

to guide the search.

• Disadvantage: The algorithm is complex, and execution time is

long.
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Logic synthesis

Circuit description, 
e.g. VHDL

Circuit packing

(Timing-driven) Placement  

Area, speed on FPGA

(Timing-driven) Routing  

Timing analysis  

FPGA 
architecture 
description

SIS, FlowMap, 
ABC...

VPack, 
T-VPack...

VPR

Figure 3.3: A research based CAD flow for FPGAs (Luu et al., 2011)

3.2.2 CAD flows in academic research

In fact, details of commercial FPGA internal implementations and FPGA

CAD algorithms are usually unavailable. To research them, it is common to

use research based tools. Unlike commercial CAD tools, these are supplied as

an integrated developing environment (IDE) which is an all-in-one solution

for FPGA application mappings. Research based CAD flow uses a set of tools

to form a tool chain (flow), and these tools are focused on one or several

subprocesses in the flow. Figure 3.3 shows a research based CAD flow which

has been widely used for FPGA architecture and CAD algorithm related

researches.
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Logic synthesis

The flow begins with circuit descriptions, for example in VHDL scripts, and

these text-based VHDL scripts are imported to SIS (Sentovich et al., 1992),

FlowMap (Cong and Ding, 1994a) or ABC (Mishchenko et al., 2007) for circuit

synthesising and technology mapping. A FPGA architecture description is

pre-defined and used in the entire CAD flow. In terms of these synthesis

tools, SIS stands for a system for sequential circuit synthesis, and it is defined

as an interactive tool for sequential circuit synthesises and optimisations. It

was a common academic-based synthesis tool in the early time. FlowMap

is an optimised technology mapping algorithm. This algorithm has been

proved that it can reduce the LUT network depth by up to 7%, and also

decrease the number of LUTs by up to 50% compared with previous methods.

Apart from the function of synthesis, ABC, an academic industrial-strength

verification tool, also involves verification approaches for testing binary logics

in the design of synchronous circuits. These tools, algorithms, are active tools

for academics.

Circuit packing

After the synthesis, a circuit netlist is obtained and the netlist will be processed

by a circuit packing algorithm, for instance VPack (Betz and Rose, 1997a)

and T-VPack (Marquardt et al., 1999), which separates the synthesised circuit

to FPGA logic blocks. Based on a new netlist which is produced by the circuit

packing, post-synthesis processing can be achieved by VPR (Betz and Rose,

1997b; Luu et al., 2011). Note that the netlists in this flow and in this thesis

are all referred to a BLIF format – a logic interchange file (Berkeley, 1992).

In this thesis, the circuit packing is the core topic, and previous methods will

be further detailed in Section 3.4.
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VPR

VPR (Betz and Rose, 1997b; Luu et al., 2011) is short for Versatile Placement

and Routing, and is an open-source FPGA CAD tool, which is developed by

the University of Toronto for assisting FPGA architecture and FPGA CAD

algorithm researches, and can also be used to mapping designs to commercial

FPGAs.

This tool allows a researcher to specify a FPGA architecture and fabri-

cation technology as a plain-text file, as well as a circuit netlist which is in

BLIF format. Subsequently, using the architecture and netlist files, the VPR

will place the netlist described logic functions on the FPGA, and route them

as a functional circuit. After placement and routing processes, the VPR will

analyse the mapped circuit, and indicate its area and timing information on

the FPGA.

Placement in VPR was a simulated annealing algorithm as VPR is designed

to deal with various FPGA architectures. The routing uses the global-detailed

router, and it is based on “Pathfinder negotiated congestion algorithm” (Brown

et al., 1992b; Ebeling et al., 1995; Betz and Rose, 1997b).

VPR supports delay estimations of a mapped circuit. To obtain an

accurate delay, the best approach is to use SPICE (Nagel and Pederson, 1973).

However, it is impossible to utilise SPICE to measure delays for an entire

circuit on FPGAs as the routed circuit is huge which causes an extremely long

SPICE execution time – a few minutes for a large logic block. As logic blocks

and routing switch boxes on FPGAs are identical components, the VPR only

measures different configuration delays of one logic block and one routing

switch box via SPICE and stores them as a look-up table (defined in the

architecture description file) (Luu et al., 2011). Once their configurations are

determined, delays of logic blocks and switch boxes can be quickly obtained.

Currently, the delay estimation is focusing on routing wires, where these

are other sources of delays. To provide delays, VPR models these wires as

RC-trees (Rubinstein et al., 1983; Khellah et al., 1993) and incorporates the
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Elmore delay model (Elmore, 1948). In this case, if the length of a wire is

identified, its delay can be estimated. By adding logic block, switch box and

wire delays, the entire circuit delay is provided.

3.3 Circuit clustering

3.3.1 Definition

In an FPGA CAD flow, circuit clustering, also known as circuit packing in a

more general way – refers both circuit clustering and circuit partitioning, is a

process to separate a synthesised circuit as sub circuits, and allow each separate

circuit to be filled by FPGA logic clusters, the CLBs, without conflicting to

CLB hardware constraints – for example CLB size, input number, where each

sub circuit can be enclosed and connected (routed) by CLB and CLB internal

routing resources (Betz and Rose, 1997a). On the other hand, the circuit

clustering also indicates how better to group the basic programmable logic

blocks (their functions), the BLEs, which each BLE is paired from LUTs and

FFs based on their connections and this process is known as pattern match

(Betz and Rose, 1997b,a), into the CLBs – BLE combinations. Figure 3.4

shows the process of circuit clustering.

The reason of using the circuit clustering to describe the process of circuit

separation, is that most methods are based on greedy algorithms to directly

group CLBs without using graph-based partitioning techniques. Betz and

Betz’s colleague (1999) have commented that if a circuit is first separated

as a few large blocks, and each large block is recursively divided as small

pieces – graph-partitioning-based techniques, this will be referred to as circuit

partitioning. In contrast, the circuit clustering means that an entire circuit

is separated into many small pieces directly – into clusters. As a result,

according to the proposed methods in this thesis, using circuit clustering

can more precisely reflect the process of separating circuits to FPGA CLBs.
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Figure 3.4: An example to show the process of circuit clustering (Marquardt,
1999)

Note that, for simplicity, circuit separation (packing) has been generalised as

circuit clustering to review different methods.

3.3.2 Significances and limitations

Circuit clustering is a fundamental process in the CAD flow, and the quality of

the clustered circuit can significantly impact placement and routing processes

which have a knock-on effect on the performance of a mapped circuit. Similar

to other post-synthesis CAD processes, if the circuit clustering optimises

FPGA routing wire density, for example the number of tracks used, which

allows a larger circuit to be routed on a resource limited FPGA, it will be a

routability-driven circuit clustering. If it reduces the mapped circuit delay

and improves its speed, this will be a timing-driven circuit clustering. As well

as routability- and timing-driven, there is also power-driven circuit clustering.

Note that the “x”-driven means the clustering priority is on “x”. Since the

circuit clustering is the first stage in post-synthesis processes, if a circuit

has not been well clustered, its performance can be difficult to improve via
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subsequent CAD processes.

When clustering BLEs into CLBs, the circuit clustering method can

produce various solutions, and even if the clustered circuit has the same

number of clustered CLBs among solutions, their BLE combinations within

the CLBs and the CLB interconnects can be different. In addition, a circuit

clustering process is also limited by clustering constraints, for example, the

CLB input number and the BLE number in each CLB. On the other hand,

the circuit clustering method has to optimise for instance, routability, timing

and power. This indicates that it is difficult to find a unique solution for

circuit clustering problem, or even there are no best solution existing. From

the computational complexity perspective, the circuit clustering is a grouping

problem, and similar to multi-bin packing problem – packing a set of items

into bins – also a well-known NP-hard problem (Bovet and Crescenzi, 2006;

Fukunaga and Korf, 2007), but with more constraints and requirements.

This means that this type of problems would not be effectively solved by an

algorithm in a polynomial time. Therefore, an exact algorithm would not

be existing, and it is “hard”. Note that the circuit clustering in this thesis

mainly refers to the routability- and timing-driven circuit clustering.

3.3.3 Requirements of circuit clustering

In general, basic requirements of circuit clustering, which refer to routability-

driven circuit clustering, are as follows: Firstly, a clustering method is required

to cluster all BLEs, the synthesised circuit, into FPGA CLBs while maximising

CLB utilisation – using fewer CLBs. Secondly, the clustering method has to

reduce (optimise) the CLB interconnects, known as nets or CLB exposed nets,

where the more circuit connections that are included in the CLBs, the fewer

interconnects appear between CLBs after the clustering. Figure 3.5 shows an

example and helps to explain why fewer CLB interconnects are better, where

routing a clustered circuit that has fewer CLB interconnects can use fewer

routing tracks (Marquardt, 1999; E.Bozorgzadeh et al., 2001).
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Figure 3.5: Mapping results under different CLB interconnect numbers, when
a clustered circuit has fewer CLB interconnects (nets), the routed circuit can
have fewer tracks (Marquardt, 1999). Therefore, a narrow channel width is
used on the FPGA.

Problem formulation

Based on RPack (E.Bozorgzadeh et al., 2001), a routability-driven circuit

clustering method, and the cluster-based island-style FPGA model, where its

CLB has the following parameters: I – CLB input number, N – BLE number

within the CLB and one clock, the circuit clustering problem can be formulated

– giving a synthesised circuit that has a set of BLEs: B = {b1, b2, ..., bn}, and

a set of empty CLBs which are from a FPGA: C = {c1, c2, ..., cm}. When

clustering BLEs into CLBs, the following conditions have to be respected:

Equations 3.1-3.4:

INPUT(ci) ≤ I i = 1, 2, ...,m (3.1)

BLE(ci) ≤ N i = 1, 2, ...,m (3.2)
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ci ∩ cj = ∅ i, j = 1, 2, ...,m, i 6= j (3.3)

m∑
i=1

BLE(ci) = B i = 1, 2, ...,m (3.4)

The more CLBs the clustered circuit has, the more FPGA area can be

used. Additionally, the more CLB interconnects exist, the higher the usage

of routing tracks.

BLE(ci)→ N (minimise |C|) i = 1, 2, ...,m (3.5)

∪mi=1Net(ci)→ 0 i = 1, 2, ...,m (3.6)

Hence, a routability-driven circuit clustering method usually optimises two

aspects of a clustered circuit, which are shown in Equations 3.5-3.6: Equation

3.5 represents circuit absolute areas on a FPGA. Note that actual FPGA area

usages can be increased by excessive inputs and outputs (pads) of the circuit,

but, in general, the fewer CLBs there are, the less area used on the FPGA.

As shown in Figure 3.5, the CLB interconnect (net) number also has to be

as small as possible; this condition is represented by Equation 3.6. Since

the above two parameters are important, and affect FPGA whether or not

successfully implementing a target circuit, as a result, these two parameters

can be considered a “golden rule” to evaluate the quality of the clustered

circuit.

Extending the problem

Although a well clustered circuit has fewer CLB and CLB interconnects, the

routed circuit can still have a worse routability or timing (Chen and Cong,
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2004). The main reason is that the clustered circuit involves many non-

suitable CLB interconnects, where the interconnects are the set of common

connections of the clustered CLBs which are determined by the CLB internal

BLEs. For this reason, the final routed circuit might have spiral wires (Chen

and Cong, 2004) which extend total wire lengths (increase delays) or use

more routing tracks in FPGA channels. On the other hand, though there are

fewer CLB interconnects, this cannot guarantee that all the circuit on or near

critical path connections are well arranged (Marquardt, 1999), so larger circuit

delays might be caused. This is also the reason that the timing-driven circuit

clustering methods (Marquardt et al., 1999; Bozorgzadeh et al., 2004; Feng,

2012) usually have a circuit static timing analysis (Hitchcock et al., 1983)

before clustering, and clusters the circuit on or near critical path connections

preferentially in CLBs, where the CLB internal routing resources have short

wires, so the delay is small.

At the beginning of this section, it was mentioned that there are routability-

driven, timing-driven and power-driven circuit clustering methods, so circuit

clustering is a comprehensive problem. For example, if a clustered circuit has

fewer interconnects and uses short wires (wire lengths), when it is mapped onto

a FPGA, it first indicates that the circuit is routable, and then suggests that

this clustering method might also optimise the timing or power. Therefore

this is the reason that circuit clustering methods usually start with the

routability. However, based on the above discussions, it can also be concluded

that, to evaluate a circuit clustering method, only using the “golden rule”

is not enough. As a result, to fully evaluate a circuit clustering method,

its clustering result has to be implemented on a FPGA, or using VPR as

a FPGA simulator. On the FPGA, the routed circuit area, channel width

reflects the routability, the implemented circuit critical path delay indicates

the circuit speed, as well as the total routing wire lengths implies the power

consumptions.
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3.3.4 MCNC-20 benchmark

The MCNC-20 (Microelectronics Center of North Carolina) benchmark suite

is a popular in benchmarking the performance of circuit clustering methods

(Yang, 1991). “20” means that this suite contains 20 benchmark circuits, and

these circuits are from the ISCAS’85 (sps, 1985), ISCAS’89 (Brglez et al.,

1989) and other industry or academic resources. In circuit clustering method

research (VPR based), these benchmarks are usually synthesised as the BLIF

netlist files. The benchmark circuit details have been listed in Appendices in

Tables A.1 - A.2. In this suite, after synthesis, where the LUT size K is set

to 4, when it performs pattern match, the largest benchmark has more than

8,000 BLEs. In contrast, the smallest benchmark has around 1,000 BLEs.

Note that these benchmarks are used exclusively in this work to assess the

efficiency of the new circuit clustering algorithms developed.

3.4 Previous methods

This section reviews a few well-known circuit clustering methods (algorithms).

For most methods, they are targeting the CLB-input-bandwidth-constraint

cluster-based island-style FPGAs, and having the FPGA model k,N, I,Mclk

set to 4, 8, 18, 1 respectively, these parameters refer to Chapter 2. In contrast,

there are also methods for the input-bandwidth-free CLB FPGA, where the

I is set to 32 (k ×N) representing no constraint.

According to these methods, their clustering perspectives can be mainly

classified as bottom-up and top-down methods. Bottom-up means clustering

a circuit by moving BLEs into CLBs sequentially, and CLBs are constructed

one by one. Top-down refers to using circuit partitioning methods, which view

a circuit from a global perspective, and separates the circuit by recursively

partitioning it until each part of the circuit is able to fit to FPGA CLBs.
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3.4.1 Bottom-up methods

Bottom-up FPGA circuit clustering methods were initially introduced in

VPack (Betz and Rose, 1997a) – a heuristic algorithm, and was the circuit

clustering method used in early VPR based CAD flows. VPack was also an

initial FPGA circuit clustering algorithm that considered the CLB utilisation

and the circuit routability. Subsequently, a number of circuit clustering

algorithms were developed based on the VPack algorithm, involving more

clustering metrics, for example the timing.

In bottom-up methods, a seed BLE has to be selected via a specified

method. Then, the seed is directly moved into an empty CLB. To cluster

more suitable BLEs in the CLB, these algorithms usually use an attraction

function, also known as cost function, to determine which is the best candidate

BLE that can be moved next, and the attraction function is weighted by

a number of clustering objectives – which are used to accomplish different

clustering metrics routability, timing, etc. The value of the function is known

as the “gain”. Bottom-up circuit clustering processes can be summarised in

the following steps:

1) Select a seed BLE, and copying (moving) the seed BLE to an empty

CLB.

2) Treat all BLEs within the CLB as an entity to calculate gains of

unclustered BLEs to this CLB by an attraction function.

3) Rank gains and determine the highest gain BLE (higher gain BLE is

better).

4) Check the CLB constraints, if it can fill the highest gain BLE, then clus-

tering (moving) it into the CLB, and returning to STEP 2. Otherwise,

storing the CLB and staring to cluster next CLB.

The clustering process is iterative, and refers to the greedy algorithm

(Cormen et al., 2009) (a type of heuristic algorithms) – CLB are built sequen-
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tially and continuously until all BLEs are clustered into CLBs. In addition,

algorithms like VPack (Betz and Rose, 1997a) and T-VPack (Marquardt et al.,

1999) also implement a hill-climbing algorithm to deal with zero-gain BLEs.

The differences in these bottom-up methods usually indicate the different

seed BLE selection methods and attraction function designs.

VPack

The input of VPack (Betz and Rose, 1997a) is a BLIF format file, and VPack

will perform the pattern match and cluster BLIF file represented circuit into

CLBs, then generate a new netlist (also in BLIF format). Detailed VPack

algorithm is introduced in Section 5.2.

Attraction(B) = |Nets(B) ∩Nets(C)| (3.7)

To construct a CLB, VPack will select a seed BLE according to input and

output number of unclustered BLEs. A BLE which has the most inputs and

outputs will be the seed. The reason for using this BLE is that it potentially

increases the probability of including more connections within a CLB. The

attraction function in VPack, shown in Equation 3.7, indicates the number

– the gain – of common connections between a constructing CLB and other

unclustered BLEs; a higher gain BLE suggests that a BLE has more common

connections with the CLB. The main aims of VPack are to optimise CLB

usages and increase CLB included connections. Detailed clustering flow of

VPack is shown in Appendices in Algorithm A.1.

T-VPack

T-VPack (Marquardt et al., 1999) is an extension of VPack, and it is short for

Timing-driven VPack which optimises clustered circuit delays. In T-VPack, its

seed selection is the same as VPack. The difference from VPack is that, before
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Figure 3.6: The CLB, BLE delay model used in T-VPack

the clustering process, T-VPack will analyse circuit timings and incorporate

the timing information in its attraction function.

Without considering FPGA routing delays, T-VPack models, as shown in

the Figure 3.6, CLB and BLE delays in three stages:

1) From A to B: The delay between the routing channel and the CLB.

2) From B to C: The delay of CLB internal routing resources.

3) From C to D: The delay of the BLE itself.

Based on this delay model, using Hitchcock and Frankle proposed timing

analysis methods (Frankle, 1992; Hitchcock et al., 1983); T-VPack will traverse

a synthesised circuit in two directions, which are from its inputs (FF outputs

considered as input) to outputs and its outputs (FF input considered as

output) to inputs, which determine two (signal) time points of each circuit

connection: Tarrival and Trequired respectively, and further deriving the time

difference – see Equation 3.8 – a time “slack” of each connection is obtained.

Slack(net) = Trequired(net)− Tarrival(net) (3.8)

During the slack calculation, T-VPack recodes the maximum slack as

Maxslack. Therefore, the criticality of each circuit connection can be repre-
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sented using Equation 3.9, where the higher criticality of a connection means

that the connection is near or on the circuit critical path.

Connection Criticality(net) = 1− Slack(net)

Maxslack
(3.9)

When clustering BLEs into CLBs, these higher criticality connections have

to be reasonably arranged, for example, clustering some of them in CLBs for

reducing circuit-on-FPGA delays. In T-VPack, it has weighted the timing

information in the attraction function, as shown in Equations 3.10-3.11.

Attraction(BLE) = α× Criticality(BLE)+

(1− α)× Nets(BLE) ∩Nets(CLB)

G

(3.10)

G = #BLEinputs+ #BLEoutputs+ #BLEclocks (3.11)

Where Attraction(BLE) is the gain of a BLE to the constructing CLB,

and Criticality(BLE) is based on the highest criticality connection on the

BLE. α is a proportionality coefficient, which adjusts the ratio between the

timing and the common connections when producing the gain. In Marquardt’s

experiment (Marquardt et al., 1999), they indicate that α = 0.75 can produce

the best clustered circuit.

RPack

RPack (E.Bozorgzadeh et al., 2001) is short for Routability-driven FPGA

circuit clustering algorithm and it is an improved VPack algorithm. Reducing

CLB interconnects is a major feature of this method. The initial RPack (and

also T-RPack (Bozorgzadeh et al., 2004) – timing-driven RPack) algorithm

is similar to VPack and T-VPack. The only difference is that the attraction
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Figure 3.7: An example circuit for showing connection gains in the RPack,
CLB relevant connections, (a), mean these connections share current CLB
connections. Independent connections, (b), mean these connections either
can be absorbed in the current CLB or not sharing connections to the current
CLB.

function of RPack is improved.

Gain(B,C) = f(Nets(B), Nets(C)) =
∑

iεNets(B)

g(i, Nets(C), B) (3.12)

g(i, Nets(C), B) =



1 + fin(P (i, B), P (i, C))

+ fout(P (i, B), P (i, C)) iεNets(C)

− 1× T (i, B) otherwise

(3.13)
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Table 3.2: Gains of each connection in Figure 3.7 circuit, gain calculations
are based on Equations 3.12 - 3.13

In-pin Gain for Output Edge Total
Connection Gain Congestion Gain Gain

N1 0 0 1 1
N2 1 0 1 2
N3 0 1 1 2
N4 -1 0 0 -1
N5 1 1 1 3
N6 0 0 0 0

In RPack, its attraction is defined as in Equations 3.12, where the RPack

is designed to analyse the relationships between each connection of BLE

B and connections of constructing CLB C, and accumulating gains of each

connection of the BLE: g(i, Nets(C), B). Detailed gain calculations are shown

in Equation 3.13.

In Equation 3.13, the BLE connection gain has been divided into three

types, which are: Firstly, fin(P (i, B), P (i, C)) is called an in-pin (input-

pin) gain, and it is produced on input connections of CLB C. Secondly,

fout(P (i, B), P (i, C)) is the gain that reflects output congestions of CLB C

when it clusters the BLE B into CLB C. Note that when a BLE connection

is already in CLB, a fixed gain “1” is added, and it is known as “edge gain”.

Thirdly, −1 × T (i, B) is the other in-pin gain that indicates a new input

added to CLB C ; If an input connection, which does not exist in CLB C, can

be fully absorbed by CLB C, −1× T (i, B) will return as “0”; otherwise, it

will be “-1”. To demonstrate how gains are calculated for connections, Figure

3.7 shows an example circuit, and the calculated gains of connections are

listed in Table 3.2.
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A

CLB

B

CLB

a), Degree=4, Separation=18, c=1.125

B

CLB

b), Degree=4, Separation=8, c=0.5

Figure 3.8: BLE A has a larger “c”, in contrast, BLE B has a smaller “c”.
For example, a CLB can accommodate 5 BLEs, using smaller “c” BLE as a
seed can absorb 4 connections in a CLB; squares represent BLEs. When uses
BLE A as a seed, no matter how to cluster 5 BLEs, the CLB cannot include
4 connections (Singh and Marek-Sadowska, 2002).

iRAC

iRAC (Singh and Marek-Sadowska, 2002) was an outstanding circuit clustering

method to include connections in input-bandwidth-constraint CLBs, whilst

at the same time using fewer tracks in the routing. Similar to VPack, it

deals with BLIF files. Using iRAC to cluster circuits can significantly reduce

CLB interconnects, so the post routing has fewer channel tracks and shorter

wires, which improve circuit routability and reduce power. However, the

disadvantage of iRAC is that the clustered circuit has more clustered CLBs,

which puts it at risk of using more FPGA areas.

The iRAC models the connection connectivity of circuits based on graph

theory (Gross and Yellen, 2005), and produces a new seed BLE selection

method and a new attraction function. To find the best seed, the connectivity

factor (c) of a BLE is defined, Equation 3.14.
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c =
separation

degree2
(3.14)

Where the separation signifies terminal number of a connection, and

degree is the different connection number of a BLE. Figure 3.8 illustrates

how the connectivity factor is used to determine a best seed of a CLB; when

c is smaller in a BLE, as shown in Figure 3.8 b), and assuming the CLB can

accommodate 5 BLEs, this means that using this BLE (BLE B) as seed can

absorb more connections in a CLB.

To continuously select a suitable BLE X that clusters into CLB C, iRAC

accumulates all connection gains of each unclustered BLE, and defines at-

traction function as shown in Equation 3.15, where ω(x) is equal to 2/r, r is

terminal number of a connection x, x is the CLB already included connection,

and ax represents the number of terminals of the connection x. The constant

n is the CLB size (referred to as N in the FPGA model). k is an adjustable

coefficient, and its value is set by incorporating Rent’s rule (Landman and

Russo, 1971; Donath, 1979). The main function of k is to maintain that if a

candidate BLE is clustered in the CLB, it will not add more interconnects

between CLBs. Note that Rent’s rule will be further introduced in Section

7.3.3.

G(X,C, x) = k[2nω(x)× (1− ax)] (3.15)

MO-Pack

The MO-Pack (Rajavel and Akoglu, 2011) is designed to improve the clustered

circuit for several performance metrics after routing, for example timing, power

and routability. MO is short for Many Objectives, and the MO in this method

means that its attraction function involves a few clustering objectives. The

entire algorithm flow is similar to other bottom-up methods, and seed selection

method is based on iRAC. Equation 3.16 shows the attraction function of
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MO-Pack. Note that this MO is different from the Multi Objective (MO)

which is used in this thesis. The Many Objectives are implemented by a

weighted cost function, and this method is coarse. The new MO (Multiple

Objective) methods that are produced in this thesis, Chapters 6-8, allow

more sophisticated objectives are involved into the clustering process, and the

multiple objective evaluation is based on the principle of Pareto optimality

(Pareto, 1906).

Cost(B,C) = (α× criticality)+

(1− α− γ)
|Nets(B) ∩Nets(C)|

G
+

(γ × k ×
∑

iεNets(B)

1 + pic
pi

)

(3.16)

Where: B is an unclustered BLE, C is a CLB under construction, α is a

trade-off coefficient for delay optimisations, γ is a coefficient for optimising

the number of connections included in the constructing CLB, G normalises

the shared connection number in the CLB, Pic is the number of connections

that are already in the CLB, Pi is the total terminal number of connection i

in the CLB and k is equal to either “1” or “1.15” for the multi-terminal or

two-terminal connection respectively.

3.4.2 Top-down methods

The popularity of the top-down FPGA circuit clustering method has rapidly

increased in recent years as it views the clustering process from a global

perspective. To facilitate a top-down circuit separation, most circuit clustering

methods in this category are based on graph partitioning approaches. The

reason is that a circuit can be treated as a hypergraph: G(V,E), where

the set V , vertices of a graph, represents circuit components and the set E,

hyperedges of the graph, signifies circuit connections.
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A simple partitioning process will refer to the graph bipartitioning method

– giving a circuit and treating it as a hypergraph, then the method cuts the

hypergraph into almost half, where, in the partitioning process, the method

optimises vertex combinations in two parts and aims to find the minimised

edges (or known as min-cut) between these two parts (Alpert et al., 1998b).

By repeating the bipartitioning process for already cut parts, a large circuit

is clustered into pieces, and fitted in a FPGA CLB.

Currently, the top-down circuit clustering methods usually deploy hMETIS

(Karypis and Kumar, 1999) hypergraph partitioning algorithm, and these

methods can be viewed as different extensions of the hMETIS. hMETIS is a

standalone tool for performing a k-way graph partitioning based on a multilevel

paradigm. Compared with traditional graph partitioning methods, the k-way

multilevel partitioning can not only produce well optimised solutions, but

also achieve solutions quickly even if a graph has a large number of vertices.

Note that, similar to other FPGA circuit clustering methods, the top-down

circuit clustering methods also deal with BLIF format files.

LIP6-ASIM Laboratory’s circuit clustering method

The method presented in Marrakchi’s paper (Marrakchi et al., 2005) does

not have a specific name. This clustering method is designed for the CLB

input-bandwidth-constraint CLB FPGAs, and its clustering process can be

divided into two major steps: At the first step, a circuit is partitioned into sub

circuits by the hMETIS, and each sub circuit can be fitted or nearly fitted to

a FPGA CLB. “Nearly” means that each sub circuit might be sightly larger

than the CLB size, or clustering constraints cannot be met. In the second

step, an extra BLE moving process is implemented, which moves or swaps

BLEs in the partitioned sub circuits and ensures each sub circuit can fit to

CLBs. To maintain a high solution quality, the BLE moving or swapping in

the sub circuits is evaluated by an attraction function, and the function is

similar to that of the RPack. Since there is an extra step in this method,
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it will degrade the quality of hMETIS produced results. However, its final

solution is still better than most of the bottom-up methods in reducing CLB

interconnect number, routing tracks and wire lengths, but the circuit delay is

not considered.

PPack, T-PPack

PPack (and T-PPack, which is short for timing-driven PPack) (Feng, 2012;

Feng et al., 2014a) attempts to solve the circuit clustering problem for the

bandwidth-constraint-free CLB FPGAs, which means that all LUT inputs

can be accessed on the CLB. In this case, the CLB input number is N × k,

for example, the CLB input number is 32, where N = 8 and k = 4. Since

the constraint has been removed, the clustering problem can be solved using

a circuit partitioning method, and PPack is such a method. PPack utilises

hMETIS to directly cluster a targeted circuit. If a partitioned circuit cannot

be fitted into a CLB due to being oversized, PPack will emulate hMETIS

method to move unsuitable BLEs. Therefore, PPack is one of the best

methods that reduces CLB interconnects of a clustered circuit, and also has

fewer routing tracks and wire lengths in the post routing. As tracks and

wire lengths have been largely reduced, PPack also has better performances

for reducing circuit delays. T-PPack is an improvement of PPack which is

implemented for speeding up circuits on FPGAs. Similar to other timing-

driven circuit clustering methods, a circuit timing analysis is preformed before

the partitioning and timing information is weighted on edges of a hypergraph

(the targeted circuit). When partitioning the hypergraph, hMETIS can

preferentially arrange on or near circuit critical path connections into CLBs.

3.4.3 Other methods

Methods in this category refer to two different types of methods, which are

hybrid methods and post-routing-assisted methods. “Hybrid” means that
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this type of method combines the bottom-up (greedy algorithms) and top-

down (circuit partitioning methods) methods, and “post-routing-assistant”

indicates that the methods or the combined methods produce better solutions

by incorporating the placement and routing processes in the CAD flow. The

reason is that using the CLB number and CLB interconnect as clustering

objectives might not fully evaluate the quality of a clustered circuit as discussed

in 3.3.3. Utilising the placement and routing processes in the clustering

method and executing them as a loop, it can continuously adjust or optimise

a solution based on real mappings.

HDPack (Chen et al., 2007) is a typical example of the hybrid method

category. At the start, HDPack uses the circuit partitioning method to

preferentially cluster BLEs into small sub circuits, where they are better for

including small (fewer terminals) connections. Then these small sub circuits

(each sub circuit might have only 1 BLE) are further clustered using seed-based

(bottom-up) methods. In addition, the HDPack also incorporates placement

process in the CAD flow, which can roughly determine which regions are

more congested based on a FPGA model, and extra adjustments can be

produced for the clustered circuit. Similar to HDPack, which involves the

placement process, Un/DoPack (Tom et al., 2006) and T-NDPack (Liu and

Akoglu, 2009) involve the entire mapping process – post synthesis processes,

and uses either pure bottom-up and top-down methods or hybrid methods.

Un/DoPack and T-NDPack also introduce the concept of depopulation (Tom

et al., 2006) in their methods – depopulation means that, in a routing process,

whitespace will be inserted to the congested regions of the targeted FPGA,

and all CLBs in the congested region will be unpacked and re-packed, where

some BLEs are packed to the whitespace. Therefore, CLBs in that region will

not be “too-full”, and it essentially relieves routing congestions.
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3.4.4 Advantages and disadvantages

It is notable that bottom-up methods are popular in solving the FPGA

circuit clustering problem. This is due to the fact that the bottom-up

circuit clustering methods are easy to implement, and useful solutions can

be obtained quickly. In addition, the clustering objective can be weighted in

their attraction functions. As the seed BLE selection and attraction function

exist in these methods, where it is uncertain whether or not the above two

functions can supply the best BLE in each clustering step, the produced

solution is usually local-optimal only. The same problem is also presented in

their deterministic results. Although BLE selection methods, both for the seed

selection and attraction function, are improved in some methods, for example

iRAC, the best BLE might not be unique, so the deterministic result can imply

that the greedy algorithm produces worse solutions. Weighting objectives in

a single attraction function is able to meet the multiobjective optimisation

needs, but the simple weighting can also destroy the proportionality between

objectives. As well as this, since VPack, the hill-climbing algorithm is widely

utilised in bottom-up methods – however, this extra algorithm might have

limited improvements on results.

In contrast, the top-down FPGA circuit clustering methods have also been

proven to be able to solve this problem. As the top-down method considers

the targeted circuit from a global perspective and also focuses on circuit

connections, the clustered circuit can be optimised on CLB interconnects

after clustering. This is the reason that these methods can produce better

solutions than the bottom-up method. However, using graphs to cluster a

circuit can be difficult to involve clustering constraints. Although there are

methods that combine both the top-down and bottom-up methods and use

the top-down method as the first step, the quality of the results is usually

decreased from the second step – the bottom-up methods. Apart from the

two major types of methods, there are also methods that incorporate the

placement and routing, but the optimisation is still based on a complex

weighted cost functions, where optimising one objective might affect another
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objective.

3.5 Summary

This chapter first reviews why the CAD is important, and then introduces

a typical CAD flow for FPGAs. In addition, a research based CAD flow

is highlighted. Subsequently, the chapter focuses on the circuit clustering

process in the FPGA CAD flow. Requirements and significances are intro-

duced for that process. A few classic FPGA circuit clustering methods have

been described, and the advantages and disadvantages of these methods are

discussed. Based on the discussion, the main issues are extracted as follows:

First is the clustering order. If the circuit clustering method clusters a circuit

from a global perspective, the clustered solution can be evaluated from the

global perspective. This means an optimal solution can be identified. Second

is the seed and BLE selections in the bottom-up methods. Using the above

bottom-up circuit clustering methods, the performance of clustered circuits is

limited by the seed and BLE sections. Third is the Multiple Objective ap-

proach. Although current circuit clustering methods start to consider multiple

performance metrics of a clustered circuit, the Multiple Objective approach

is usually coarse, which uses a weighted cost function. In the next Chapter

4, a new optimisation method, MultiObjective Genetic Algorithm (MOGA),

is introduced. By using this method, a set of new clustering methods are

proposed. These methods potentially solve the issues that are identified in

the classic circuit clustering methods.
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Chapter 4

Evolutionary Computing

4.1 Evolutionary Computing (EC)

The concept of Evolutionary Computing (EC), or also known as evolutionary

computation, can be traced back to the later 1940s. For example Turing

proposed “genetical or evolutionary search” in 1948 and Bremermann’s ex-

periment of “optimization through evolution and recombination” (Bäck et al.,

1997; Fogel, 1998; Eiben and Smith, 2007), and it is a subfield of Artificial

Intelligence (AI) in computer science. EC is actually defined as a set of

Evolutionary Algorithms (EAs), and these EAs are based on Darwinian evo-

lutionary principles. This is the reason that these algorithms are called EAs.

EAs can be classified in the family of trial and error problem solvers (Bei

et al., 2013), and considered as automatic problem solvers and optimisation

methods via a stochastic character or metaheuristic. Since the 1960s, EC

is further described as four dialects, which are: Evolutionary Programming

(Fogel et al., 1966), Genetic Algorithms (GAs) (Holland, 1973), Evolution

Strategy (ES) (Rechenberg, 1973) and Genetic Programming (GP) (Koza,

1990). Due to the nature of evolution, it means that EAs are suitable solvers

in many cases for complex problems, which include scientific and industrial

areas (Greiner et al., 2013), such as design optimisation, result searching,

109



system control and event scheduling. In addition, EA is still an active topic

for research (Sun et al., 2014). The remarkable advantage of EAs is that they

can produce better solutions for a targeted problem, but without the need

for fully understanding the problem.

4.2 The inspiration of nature

In 1895, Charles Darwin indicated that the root of a large number of different

species existing on our planet was based on the principle of mutation and

natural selection (Darwin, 1859) – the theory of Darwin’s natural selection.

This theory was considered a scientific explanation for the evolution of dif-

ferent forms of life (Coyne, 2009). It was said that there were around 2

million of classified species, which did not include unknown ones (May et al.,

1988). Evolution not only produces new species, but also forces the low level

species to evolve as high level species which are much more suitable for their

environment. During evolution, when individuals reproduce, the offspring

with characteristics best suited to their natural environment are the most

likely to survive and reproduce, which can eventually lead to new species

being born. This process can be extracted as a useful bio-inspired model for

solving engineering problems.

4.2.1 The theory of Darwin’s natural selection

From a macroscopic perspective, the theory of Darwin’s natural selection can

be briefly explained as follows: given a set of members of a species, as well as a

natural environment, the number of members increases via reproduction at a

rate influenced by the environment. In this case, the growth of such individuals

in a population might be limited by necessary resources which are provided

by the environment, for example food. Consequently, individuals which are

not able to adapt the environment tend to die off before reproduction. The
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Figure 4.1: Why giraffes have long necks, explanation based on the theory of
Darwin’s natural selection (Rikizo and Suzuki, 1974).

individuals that best adapt to the environment survive, and continuously

replace the less-adapted individuals from their gene pool. This process reflects

the mechanism of natural selection, or the “survival of the fittest” in Darwin’s

words, and how the individuals fit to the environment is termed as fitness.

The fitness can be determined by the individual’s physical and behavioural

features, and also its physiological features, where these features are defined as

phenotype – the observable characteristics or traits of an organism. During the

evolution, “stronger” individuals have higher fitnesses. Hence, they are most

likely to produce offspring, and pass their genetic information, which is known

as genotype – the collection of individual’s genetic information, to the next

generation. In this process, the higher fitness individuals’ genetic information

is inherited by their offspring, and so the offspring have similar traits and
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characteristics as their parents. Apart from the inhabitation which is from the

progenitors to the progeny, a small amount of inhabited genetic information is

also changed during reproduction by variations, which are caused by random

mutation. These small variations cause differences in the offspring, and

further result in different fitnesses of offspring – where some individuals might

be better than their parents, but some might not. Ultimately, evolution is

converged to a balance point (speed) by the reproduction and selection, and

it is continuously pushing the evolution. Figure 4.1 shows an example that

helps to explain why giraffes have long necks under evolution based on the

theory of Darwin’s natural selection.

4.2.2 Basic concepts of evolution

Chromosome and gene

To introduce the chromosome and gene, we have to start from DNA. DNA is

short for DesoxyriboNucleic Acid, and it is the basic storage of entire genetic

information. In general, DNA comprises of a long chain of base pairs in which

each pair is a carrier of some genetic information. The genetic information is

stored as DNA, and exists in the nucleus of an organism cell which is known

as the genome. The genome is further separated into a few chromosomes.

Note that, for some organisms, they might have a single chromosome in the

nucleus, other than the genome. Compared with a chromosome, a gene or

allele refers to a series of base pairs which is determined by the phenotypical

traits, and its locations on the chromosome are called locus. In evolution,

different genotypes can be created by changing an allele on a locus of a

genotype, and the phenotype is the genotype’s physical realisation, where it

reflects specific behaviours of the genotype. Figure 4.2 illustrates chromosome

and gene of an organism.
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Figure 4.2: Chromosome and gene of an organism, a cell contains a genome (a
few chromosomes) or a single chromosome depending on the type of organism.
Genetic information is stored on DNA, and DNA comprises of a long chain
of base pairs. A set of base pairs is called a gene, which controls organism’s
physical traits. The position of gene is known as locus (GENCODYS, 2010).

Cell reproduction

The types of cell reproduction are amitosis, mitosis and meiosis. Amitosis

is for a eukaryotic cell division but without nuclear envelope breakdown,

chromosomes condensed and visible spindle are formed. Opposite to amitosis,

mitosis divides eukaryotic cells into two involving nuclear envelope breakdown,

chromosomes condensed and visible spindle are formed. Among these cell

reproduction types, meiosis is a major type for an organism with sexual

reproduction, and it is important as it allows parent genetic information to

be mixed for offspring (Starr, 2007). Meiosis is facilitated in two major steps

(Toole and Toole, 1999; Starr, 2007) as shown in Figure 4.3: In the first step,

paternal and maternal chromosomes of a diploid cell, are aligned and formed

as homologous chromosomes, where a diploid cell refers a cell that contains

two sets of chromosomes and each set is inherited from each parent. Note
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Figure 4.3: Detailed process of meiosis: A diploid cell contains paternal and
maternal chromosomes, or called chromatids (single pair). In the interphase,
chromatids are self copied. In the first step of meiosis, chromosomes are
aligned and formed as homologous chromosomes – tetrad. The paris of
chromatids are joint at random crossing points – chiasmata. In the second
step of meiosis, chromatids are first divided into two cells, and further divided
into four sets of chromosomes stored in gametes.

that a diploid cell has both the paternal and maternal genomes, and these

genomes are self copied formed as two chromatids. As each chromatid has

two pairs of homologous chromosomes, in this case, it is called tetrad. Then

the pairs of chromatids are joint at a few random crossing points, known as

chiasmata, and the exchanged parts between the chiasmata is called crossing

over. In this way, it allows the paternal and maternal genetic information

to be mixed. Subsequently, these mixed chromatids are obtained at the end

of the first step. In the second step, these chromatids are first divided into

two cells, and further divided into four sets of chromosomes stored in four

separated cells – gametes. Since each cell only has one set of chromosomes

(the mixed genome), it is called haploid.
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Haploidy and diploidy cells

Although there are not only haploid and diploid (cells) creatures, these two

are related to higher-level creature evolutions. For example, human beings

are diploid creatures, but the gamete is haploid since meiosis exists. However,

when the mating process occurs, two gametes are merged and produce a new

diploid cell, where paternal and maternal genomes are inherited simultaneously.

Subsequently, a new child grows from the new diploid cell, and its development

process is known as ontogenesis. Compared with the diploidy creatures, in

the haploid creatures, the genome is directly copied to a new cell, and the

new cell is further developed in the ontogenesis process. In this way, the

responses of the genome in ontogenesis are all passed to the offspring, most

of EAs are based on this process (Langeheine, 2005). On the other hand, in

the diploid creatures, their phenotypes are dependant on the mixed maternal

and paternal genomes, and so are not fully correlated to a former genome.

Mutations

Mutation is an important mechanism to drive evolution, and involves vari-

ations in the evolutionary process. Mutation can occur at the gene level,

chromosome level or the genome level. This section focuses on the first two

levels as these concepts are close to EAs. The smallest mutation happens at

the gene level, where partial base pairs are replaced by other base pairs in

the DNA. However, this might not change the phenotypical traits. On the

chromosome level, the mutation can occur on a single chromosome, or two or

more chromosomes. On a single chromosome, one or more genes might be

deleted, and these genes will no longer be in the genome. In addition, the

order of some genes on a chromosome can be reversed (180◦) and reinserted in

the chromosome itself. For two chromosomes, where these two chromosomes

need to be initially homologous, but later non-homologous, the mutation is

usually classified as duplication and translocation. In a duplication muta-

tion, a segment of one chromosome is inserted into the other chromosome
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– this segment is omitted from the first chromosome and it is duplicated in

the second chromosome. Similar to the crossing over, the genetic material

changes since the duplication causes the genetic material position to shift on

chromosomes, and this phenomenon is known as translocation (Toole and

Toole, 1999).

Ontogenesis

Ontogenesis is a relatively complex process which involves the conversion

of the DNA stored genetic information into phenotypical traits under a

particular environment. In terms of a genome, it can carry a large amount of

genetic information, but not all the information can be used to encode the

phenotype. Put simply, a genotype to phenotype mapping can be summarised

as the following two major steps: First, to guide a protein synthesis, the

DNA attached genetic information will convert to a special substance called

messenger RNA (RiboNucleic Acid), and this process is known as transcription.

Second, the messenger RNA will instruct the amino acids to form different

proteins, and these proteins are the sources to produce and control traits of

an organism or creature.

4.3 Evolutionary Algorithm (EA) and its com-

ponents

EAs are a set of algorithms that imitate the process of natural evolution, which

uses the evolutionary process as a model to solve or optimise actual problems.

A population concept is used in these algorithms, and the population contains

a number of individuals – potential solutions of a targeted problem. The

environment is represented by a cost function which allows an individual to

be evaluated and numerically scored – the fitness. Under the environment,

individuals produce their offspring, referred to as evolutionary loop, and
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Figure 4.4: A generic flow of EAs (Langeheine, 2005)

the variations are involved by variation operators, for example a mutation

operation, in each generation. In the process of evolution, the higher fitness

individuals survive. In contrast, poor fitness individuals die out. Figure 4.4

shows a generic flow of EAs.

EAs start from a population of individuals, and each individual has for

example at least a chromosome which is used to encode the solution of a

target problem. In the initial population step, an individual has an initial

random solution to the problem, and then individuals are assigned fitness

by the cost function. In the evolutionary iterations, best individuals are

selected to produce offspring, and variations are applied to new offspring.

Subsequently, they are evaluated by the cost function again. Using a selection

mechanism, highly fit individuals are selected to form a new generation and

are involved in the next step of the evolutionary loop. When the termination

condition is met, evolution stops and the fittest individuals are filtered out;

these solutions can be viewed as the ultimate solutions of the problem.
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Table 4.1: Binary code of x, and the result of y for finding the minimum
value of Equation 4.1.

Binary string x value y value

01111110 126 4
10000000 128 0
10000010 130 4
10000011 131 9

4.3.1 Representation

In order to solve an actual problem, an EA has to represent its solution in

certain ways – this is called the representation. The representation refers to a

special data structure, which is used to enclose all parameters of a problem, the

genotype; where these parameters are the solution of the problem. Normally,

the solution is carried and defined as at least one chromosome in an individual

in the EA, and genes reflect all parameters of the problem. The actual solution

of the problem, for instance using an EA to find suitable component values of a

circuit and finally producing the circuit, is the phenotype. The representation

is usually selected based on the problem, and also considers how the variations

are applied. The following five representations are commonly used by EAs,

which are: binary strings, integers, real numbers, graphs or hybrids.

Taking the binary string and integer representations as examples: the

binary string, also known as binary codes, is simple, but versatile. It is a

popular representation used in EAs. The typical application of binary codes

is to represent values, or show certain relationships. For example, finding the

minimum value y for Equation 4.1, and defining x range is 0 − 255. x can

be encoded as 8-bit binary string, and Table 4.1 lists some values of x and y,

when“x” is “10000000”, then y is minimum. In addition, the binary string

can also present for example the status of switches in a circuit, which can

define the circuit function or topology as shown in Figure 4.5.
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Figure 4.5: Binary string can be used to represent the status of switches in a
circuit: (a), binary code can control “on” and “off” of a switch, so input of
a circuit is controllable. (b), binary code can also control a set of switches,
for example controlling an inverter is connected in a ring oscillator loop or
not – referred to a circuit topology, then the frequency of the oscillator is
adjustable.

y = (x− 128)2 (4.1)

In some cases, the binary string might not be able to effectively present

a problem, for example the grouping problem. In this type of problem,

the integer representation is usually used. Figure 4.6 shows the integer

representation for a multiple-bin packing problem – packing 8 items into

4 bins, and the bin index is from 0-3. In this problem, each item can be

specified as an integer, and each integer value can indicate to which bin the

item is allocated.

4.3.2 Variation

Variation is a primary operation that drives the evolution in EAs. It applies

small random changes to existing individuals, which changes a bit of the

encoded parameters, to create new offspring. In general, mutation and

recombination are two common variation operators, or commonly referred to

as genetic operators in most EAs.
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0  1  1  0  2  2  3  3Representation:

Item 0 Item 7 ...

0, 3Bin 0: 1, 2Bin 1:  Meaning:

Figure 4.6: An example of the integer representation – multiple-bin packing:
Each integer can be used to represent an item. The value of integer helps to
explain which bin the integer matched item is packed. As shown in the figure,
items “0” and “3” have a value of “0”, these items is packed in bin “0”.

Mutation operator

The mutation operator applies small random changes to a genotype, and it

happens when only one parent producing one offspring. The main task is

to produce a new offspring by directly copying the parent, and randomly

manipulating some encoded parameters of the solution on the parent. As

an optimisation problem is referred to the traverse of solution domain, the

mutation can sightly change the searching area which allows the EA to

effectively find the optimal “point” for a solution.

The mutation operation has to match the representation, for instance, the

most fundamental mutation operation for binary string is called flipping a

bit, which means that every bit in the string would be flipped with an equal

probability. This probability is known as mutation rate. Mutation has to

be different in the integer representation case. Figure 4.7 shows two integer

representation mutation operations, and these are inspired by biological

mutation, which are the gene locus swapping and the inversion operations.

Note that the integer crossover is not limited to these two methods, and

mutation can be further extended. For example, in the Grouping Genetic

Algorithm (Falkenauer, 1994), mutation is performed on a higher level of

abstraction, and this mutation will be introduced in the following Chapter 6.

120



0  1  1  0  2  2  3  3Parent:
Swapping:

0  3  1  0  2  2  1  3Offspring:

0  1  1  0  2  2  3  3Parent:
Inversion:

0  2  0  1  1  2  3  3Offspring:

Figure 4.7: Two mutation operations for integer representation: gene swapping
and gene inversion. Gene swapping: Any two genes can be swapped on a
chromosome. Gene inversion: The order of a segment of genes is inverted and
inserted into the original chromosome.

Recombination operator

Recombination operator recombines parent’s genetic information in order

to produce offspring. This operation usually produces two children in each

operation. As this process is similar to the crossing over in meiosis of

an organism, this operation is called crossover. The number of crossover

operations that happen in a generation, like the mutation rate, is controlled

by a crossover probability, or known as crossover rate. Figure 4.8 lists a few

typical crossover operations, which are single-point (or 1-point), two-point,

uniform and arithmetic crossover operations. To begin with, the parent’s

genetic information, the genomes, are represented as two vectors, ~a and ~b.

Note that the arithmetic crossover operation cannot be applied to binary

codes.

In the single-point crossover operation, these two vectors are split at a

random point and exchanged for producing offspring. Two-point crossover

operation, which can be further extended to the n-point crossover operation,

indicates that n random segments of vectors are swapped. Uniform crossover

is different from the previous two operations. It treats each vector as an

independent element and assigns a random decimal number ranging from 0 to

1 at each crossover operation. If the assigned number is greater than 0.5, the

corresponding vector will be swapped, otherwise, it will be directly copied.

The arithmetic crossover operation can be described by Equations 4.2-4.3,
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Figure 4.8: Different crossover operations (Langeheine, 2005): There are four
common crossover operations, which are single point crossover – two vectors
crossover at a random point, two point crossover – two vectors crossover
at two random points, uniform crossover – any element of vectors can be
crossovered under a probability and arithmetic crossover – two vectors are
executed an arithmetic calculation and generated two new vectors.

where the vectors ~c, ~d are two genomes of generated individuals.

~c = k~a+ (1− k)~b (4.2)

~d = (1− k)~a+ k~b (4.3)

Where k is a proportional coefficient. When k is equal to 1
2

as shown in

the Figure 4.8, the new genomes of individuals are created by inheriting 50%

of each individual of the parent.
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4.3.3 Evaluation

In EAs, an individual, or a solution, is generally evaluated by a cost function,

but, in multiobjective EAs, they might use a few cost functions where each

function evaluates one major property of the solution, and this will be

introduced in the following sections. Using the function, it allows the solution

to be given a numeric score, and the score indicates how the close the solution

is to the optimal solution of a targeted problem. Therefore, all genetic

information encoded parameters of the individual have to contribute to the

score. Since the cost function or the evaluation reflects the environment

in biological evolution, the function is usually called fitness function in EA

related literatures. In most cases, as discussed previously, an EA can be

viewed as searching all solution spaces of a problem and finding the maximum,

so a higher fitness value often suggests a better solution. As shown in Equation

4.4, where f is a fitness function, and s, s′ are two possible solutions, s is

considered a better solution as its fitness is higher than s′.

f(s) > f(s′) (4.4)

Unfortunately, in real world problems, when maximising a property of

a problem, other unexpected properties can also be maximised. These are

usually referred to as constraints of the problem, and have to be avoided

in order to accomplish a valid solution. A classic method to avoid invalid

solutions in the evolution is to implement a penalty along with the original

fitness function as presented in Equation 4.5.

fitness(s) = f(s)− penalty (4.5)

Where s is a solution, the fitness(s) is the new fitness function that

incorporates a penalty, for example the penalty can be either a large fixed

value or a function of s: penalty = fpenalty(s) (Greenwood and Tyrrell, 2007).

123



Figure 4.9: 3-D fitness landscape (Verel, 2015)

In a special condition, if s is a valid solution, the penalty can be considered

as “0”, so fitness value is only contributed by f(s). From the evolutionary

perspective, this penalty can essentially decrease the fitness of an invalid

solution, and result in the solution not being selected for reproduction. Note

that, to better present the circuit properties, experiments in this thesis are

set up to minimise the fitness, where a smaller fitness value means that a

better solution can be found.

It has been introduced that the EA can be treated as a tool that traverses

solution spaces for a problem, and this can be further considered as an

optimisation task on a 3-D fitness landscape as shown in Figure 4.9, where the

hyperplane is formed by all combinations of the genotype, the search space.

The landscape itself features peaks and valleys, and its altitude represents

fitness values. In the evolution, variations are the mechanisms to move

a population on the searching space, and the ultimate goal is to find the

maximum fitness or the minimum fitness on the landscape depending in

the problem. In fact, the smoothness (or ruggedness) of the landscape and

searching range is strictly determined by the combination of representation

and fitness function. If the landscape is smooth enough and has only one

summit, a global optimal can be found easily. Otherwise, the search might
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find a local optimal. Moreover, the most difficult scenario is also shown in

the Figure 4.9, where the landscape contains a few flat surfaces, and a global

maximum is surrounded by a flat surface (not the highest surface). This is

called the needle in haystack problem. A search might not be lucky enough

to get the global maximum, and focus on a surface instead – local optimal.

Therefore, a robust EA usually has the suitable representation and fitness

function, and the fitness function needs to be precise which provides a smooth

fitness landscape and supplies enough gradients to avoid flat searching space.

Even if the EA gets stuck into a worse fitness, the fitness function can guide

the search to finally find the optimal solutions.

4.3.4 Selection

So far, some components of EAs have been reviewed, but, in addition to

these, another important feature of the EA is the selection mechanism or

the selection and replacement which is linked to the natural selection in

the biological system. Eiben, Smith and Michalewicz (Eiben and Smith,

2007; Michalewicz, 2013) have indicated that an EA can be divided into two

phases, which are the exploration phase and exploitation phase. Taking the

fitness landscape again, in the exploration phase – at the beginning of an

EA, a population can be initialised and dispersed on the searching space, so

the recombination operator moves the population on a large range on the

searching space, and the mutation operator assists the population to search

the population adjacent space. Ultimately, the population converges on a

small region of the searching space due to the selection mechanism. As the

population is converged in the small region, the combination operator no

longer provides large movements on the search space for the population, and

the search is mainly conducted by the mutation operator, which is referred

to as exploitation. Therefore, the selection can significantly alter the effect

of the above two phases – the convergence speed – and further determine

whether or not the EA can successfully solve a problem, where if the EA

quickly converges in a suboptimal area, termed premature convergence, the
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EA might not find an optimal solution.

To discuss the selection methods, the population model in EAs has to be

introduced. Figure 4.4 shows the basic evolutionary process in EAs – the

population produces offspring, and higher fitness offspring increases the chance

to produce their offspring in the future. In artificial evolution, the population

can be modelled as the generational model or the steady-state model. In the

generational model, the population is renewed entirely at each generation. In

contrast, the steady-state model refers to only the partial population, the

worst individuals, being replaced in a generation, and how many percent of

individuals in the population are replaced is called the generation gap. During

selection, the probability of an individual being selected is termed selection

pressure. The typical (major) selection methods are:

1) Uniform selection: an individual is selected from a population with an

equal probability. The fitness of the individual is not considered, and

this method is usually used in Evolution Strategy (ES).

2) Fitness proportionate selection: an individual is selected based on a

fitness probability – the higher fitness individual has a higher probability

of being selected.

3) Fitness ranking selection: all individuals are ranked according to their

fitnesses, and assigned an index, for example, the best one is ranked

as “1”. Similar to the fitness proportional selection, but individuals

are selected based on ranking indexes (Bäck et al., 2000). The multiob-

jective selection can be also classified in this category, and it will be

detailed in section 4.4.2.

4) Truncation selection: µ individuals (population) produce λ offspring,

and these individuals are combined (µ + λ) and ranked using their

fitnesses. The best µ individuals are formed as a new population.

5) Tournament selection: Randomly takes q > 1 individuals from the pop-

ulation using the uniform selection, and selects a best fitness individual
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from q individuals. This above selection process is repeated until all

the necessary individuals have been found.

Apart from the truncation selection, which keeps a small number of the

best individuals generation by generation – a mechanism known as elitism; all

other selections are pure stochastic. This means that a best individual might

be lost in the future evolution unless a number of elite solutions are kept.

4.3.5 Termination conditions

The termination condition indicates when the EA is stopped, and can be

commonly divided into four criteria:

1) Use the convergence: If an EA executes for k generations but there is

no improvements on results, the EA is terminated.

2) Use a fixed number of generations: The EA evolves the solution for a

fixed number of generations, then it is stopped.

3) Results is enough: The EA might not find the best solution, but the

solution is good enough.

4) EA finds known best optimal solution, the target solution.

4.4 The Genetic Algorithm

The beginning of this chapter clarifies that EAs are a suggested set of algo-

rithms, which are described in four dialects. Genetic Algorithm (GA) is one

of them, and it is a robust optimisation and searching method for solving

complex problems (Holland, 1975; Goldberg and Holland, 1988). It is popular

in music generation, VLSI technology, strategy planning, machine learning,
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Figure 4.10: A flow of simple genetic algorithm

etc. (Srinivas and Patnaik, 1994). GA was proposed by Holland (Holland,

1975), and it was referred to as a Simple Genetic Algorithm (SGA). Subse-

quently, the SGA has been enhanced by adapting different representations,

genetic operations (variation operators) and selection mechanisms. This is

also the outstanding advantage of the GA, which means that almost any of

the components and features of EAs that are previously discussed can be

utilised in the GA. In this thesis, a modified GA has been used for solving the

circuit clustering problem, which is the main methodology in this research.

4.4.1 Simple Genetic Algorithm (SGA)

In the SGA, a solution is encoded by a binary string, and the string is described

as the chromosome of an individual. The genetic operators are the single-point

crossover and “flipping a bit” mutation. The selection uses the roulette wheel

selection (Zhong et al., 2005), which belongs to the fitness proportionate

selection scheme. Figure 4.10 shows the SGA flow. At the beginning, a

population is initialised, and the population is generated randomly – the

chromosome of an individual is generated as random binary codes. Then the

population is evaluated against a fitness function, and all targeting properties
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of a problem can be weighted in the function. Some outstanding individuals

are filtered by the selection – half of the initial population size – and these

individuals produce offspring by the genetic operations. After the genetic

operation, a new half of the population is generated and combined as a

new population – the steady-state population model. The GA executes for

many generations and stops according to a termination condition. A genetic

algorithm usually has the population size from 30 to 200. The crossover rate is

around 0.5 to 1.0, and mutation rate is from 0.001 to 0.05. These parameters

are the control parameter of a GA, and these parameters are usually used as

empirical data for adjusting a GA performance (Srinivas and Patnaik, 1994).

4.4.2 Multi-Objective Genetic Algorithm (MOGA, or

MOEA)

In the real world, optimising a problem can involve multiple optimisation

targets, say objectives, such as area, routability, delay and power consumption

when mapping a circuit on FPGAs, and these objectives can be partially

conflicted (Greiner et al., 2003). Especially, in the circuit clustering problems,

these conflictions are, for example, the increase of the number of BLEs in a

CLB might use more inputs and outputs of the CLB, and the reduction of

interconnects between CLBs might increase as more CLBs are used. To enable

the GA to work for multiple objective problem optimisation, a standard GA

framework, as shown in Figure 4.10, can be extended as MultiObjective GA

(MOGA). This is typically achieved by using two methods:

First, the targeting objectives can be weighted in a single fitness function

as introduced before, in which the fitness can represent all features of the

objectives. However, this might change the optimisation ability of the GA

for a particular objective, so the weighting factor of each objective has to be

carefully selected. Although the weighting proportions can be adjusted, if in

a worst case there are a few conflicted objectives in a problem, the weighted

fitness can cause the optimisation to get stuck in a local optimal or an invalid
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solution to be produced.

The other approach to deal with multiobjective optimisation in GA is to

use the concept of Pareto optimality (Pareto, 1906); this is implemented in

the selection mechanism – it can be categorised as a fitness ranking selection.

Pareto optimality, also called Pareto efficiency, stats an resource allocation

method for a set of individuals in a society, where it is not possible to make

any one individual better off without making at least one indivdiual worse

off. This concept is proposed by an Italian engineer and economist, Vilfredo

Pareto, based on his research in economic efficiency and income distribution.

This concept is well known, and widely applied to for example economical

and engineering areas. It is an efficient approach to deal with multiobjective

optimisation problems. Compared with the standard GA, or the SGA, which

uses only one fitness function in its selection, this method deploys a few

fitness functions matching to each objective that have to be optimised in

the evaluation and selection. Instead of searching one global or near global

solution according to one fitness function, especially when there are a set of

conflicted objectives, this method allows that the GA finds a set of tradeoffs

of solutions throughout n-dimensional fitness spaces – via n fitness functions.

The set of tradeoffs is referred to as Pareto set, or non-dominated front. If

solution A dominates B, then the domination relationship can be presented

as the following Equation 4.6.

A dominates B⇔ ∀i ∈ {1, 2, ..., n} ai > bi, and ∃i ∈ {1, 2, ..., n} ai > bi

(4.6)

Where ai and bi are the fitness of objective i in the solutions A and

B. Then the non-dominated fronts, or Pareto fronts, can be defined based

on the solution domination relationships. This is normally processed by a

non-dominated sort method in many MOGAs. After sorting, the first Pareto

front solutions are the best tradeoff solutions. In many cases, finding Pareto

fronts, particularly the first Pareto front, are usually useful for engineering.
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Using this method to evaluate solutions can avoid the weighting proportions

used in the single fitness function which limits the GA optimisation ability,

and enable the GA to handle more conflicting objectives.

Using GA to solve multiobjective problems can be traced back to the 1990s,

where Fonseca and Fleming’s MOGA (Multi-Objective GA) (Fonseca and

Fleming, 1993), Srinivas and Deb’s NSGA (Non-dominated Sorting GA) and

Horn’s NPGA (Niched-Pareto GA) (Horn et al., 1994; Srinivas and Deb, 1995)

have drawn much attentions in this area. These methods are built on the SGA,

or more generally referred to as EA, and extend to the multiobjective EA

(MOEA). This multiobjective (MO) extension can be summarised in two steps:

First, the evaluation involves multiple objectives, and the individual fitness

assignment is based on the non-dominated sorting. Second, the diversity of

individuals on the same Pareto front needs to be maintained. Although these

methods are able to solve multiobjective problems, Zitzler (Zitzler et al., 2000)

have indicated that the previous methods lack the convergence property. They

proposed a method that used elitism to improve the convergence property of

MOEAs. In the MOEA, the non-dominated sorting is a computing density

process, so it consumes more time on a computing system. NSGA-2 (Deb

et al., 2002) then was introduced. This method uses a fast non-dominated sort

to replace the conventional sort method, which reduce the computing complex

from O(MN3) down to O(MN2) where M is the number of objectives and

N is the population size, and utilises crowding distance method to select

individuals. The detailed method is reviewed in Chapter 6. Compared with

other MOGAs or MOEAs, this method overcomes the major drawbacks, and

also reduces the computing density. It fast became a state-of-art multiobjective

GA, and its multiobjective sorting and selection methods can be also used

for different GAs.

131



4.4.3 Constraint handling in MOGAs

The real world optimisation problem not only comes with a few objectives,

but also has constraints. For example, when designing a water pipe for

maximising flow, the larger the diameter used, the more flow can get through.

However, the diameter cannot be infinite. The cost and feasibility need to be

balanced, and these are the constraints, so constraint handling is important.

The constraint handling methods in MOGAs can be classified in four types:

1) Penalty function approach (Srinivas and Deb, 1995; Deb et al., 2000b):

Similar to the penalty added in a single fitness function, to control

constraints for MOGAs, the adding-penalty method can be used. To

prevent the MO selection treating the penalty as an objective in an

optimisation problem, which misleads the GA evolution, the penalty

needs to add to all fitness functions. Note that, when adding the

penalty, all functions have to be normalised.

2) Filtering infeasible solutions via the selection: Jiménez and Verdegay

proposed a method (Jiménez and Verdegay, 1998) to control constraints

in the selection which implemented a binary tournament selection for

comparing solution feasibilities. In this process, two solutions are

compared, where if one is infeasible, the solution is abandoned. If both

solutions are feasible, Horn’s NPGA (Horn et al., 1994) is used to find

the best one. On the other hand, if both solutions are infeasible, it will

keep the one that is closer to the constraint boundary.

3) Elaborating constraint handling: This method was proposed by Ray

(Ray et al., 2001). It suggests firstly performing a non-dominated sort

by using the fitness only, and performs another non-dominated sort by

purely using the constraint violations. Ultimately, using non-dominated

sort sorts both the fitness function and the constraint violations. By

combining the above sorts, the infeasible solutions are filtered.

4) Constraint-domination principle method (Deb et al., 2000a): It differ-
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entiates infeasible solutions from feasible solutions when performing

the following non-dominated sort procedures:

It defines the principle as: “a solution i constrained dominates a solu-

tion j” if any of the following statement is true:

1. i is feasible, j is not.

2. Both i and j are feasible. However, i has smaller constraint viola-

tions.

3. Both i and j are feasible. Moreover, i dominates j.

4.5 Advantages and disadvantages

The use of EC, otherwise known as EAs, to solve problems has a number of

advantages. Firstly, the EA is not like most of the heuristic algorithms which

need to have specific knowledge on the targeted problem. This indicates that

EA is a model-free heuristic algorithm, and can be used as a general problem

solver. Compared with other model-free heuristic algorithms, such as random

search, local search, tabu search and simulated annealing, where most of them

do not respect the fitness landscape, or even the simulated annealing uses

one individual which can be viewed as a simplified EA (Eiben and Smith,

2007), EAs are able to produce better solutions. In addition, there is a “no

free lunch” theorem, and it proves that EA performs no worse in terms of

conventional heuristic algorithms (Wolpert and Macready, 1997). Secondly,

the EA can be extended for supporting multiobjective problems, and also the

EA use the population model. It is not only useful for real world problems,

but also supplying more possible solutions. Thirdly, due to the population

that exists, it enables that the EA to be easily parallelised for optimising

its computational intensities (Koza, 1999). Apart from the population, the

EA components, such as representation, fitness, variation and selection are

independent. These components can be reused, and easily tested.
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However, the EAs are not problem free – the disadvantages can be sum-

marised as the following: First, the EA can easily work on a problem, but

it is difficult to guarantee that the EA can find the optimal solution for the

problem. This is even more difficult for NP-hard problems. Second, since

the EA uses a population, and other complex computations, such as fitness

assignment, non-dominated sort, selection and the evolutionary iteration

(generation based), results in the EA taking a longer time to solve a problem

compared to conventional approaches. Third, an outstanding EA relies on the

well designed representation, fitness function, variation operation, selection,

or calibrated parameters. These designs are usually difficult, and have to

involve a number experiments or extra self-adaptation mechanisms, or a

strong understanding of an experienced designer.

4.6 Summary

This chapter introduces the concept of Evolutionary Computing (EC), and

highlights that Evolutionary Computing is a set of Evolutionary Algorithms

(EAs). The basic concepts and terms are described from the biological per-

spective. According to these biological terms, the components of Evolutionary

Algorithms are introduced. The chapter focuses on the Genetic Algorithm

(GA), which is one dialect of the Evolutionary Algorithms. The advantage and

disadvantages of Evolutionary Algorithms are discussed. Genetic Algorithm is

an automatic problem solver, and it is suitable for solving or optimising com-

plex engineering problems. The proposed FPGA circuit clustering methods in

this thesis are based on Genetic Algorithms, and use Genetic Algorithms as a

main methodology. In the first method, stochastic variations are adapted to

classic circuit clustering approaches. Subsequently, three Genetic Algorithm

based clustering methods are proposed. To effectively evaluate solutions, the

proposed Genetic Algorithm based methods are incorporated Pareto optimal-

ity for multiobjective schemes. These proposed methods will be introduced

in the following chapters.
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Chapter 5

RVPack: Bottom-Up Circuit

Clustering Approach Using A

Stochastic Perspective Greedy

Algorithm

5.1 Introduction

This chapter introduces Random VPack (RVPack) – an extension of the VPack

algorithm. VPack (Betz and Rose, 1997a) is a notable FPGA circuit clustering

algorithm, which is implemented using the greedy algorithm (Cormen et al.,

2009). The main advantages of this algorithm are that it is simple, effective

and flexible. Unfortunately, there are also some disadvantages. These include

inefficient cost-function design, non-optimal BLE selection, and the non-

global building strategy. To improve the VPack algorithm, randomness can

be injected reducing the effects of these disadvantages. Instead of obtaining

a deterministic output, the random variations enable VPack to produce a

number of stochastic solutions, and better solutions might be identifiable.
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This chapter is organised as follows: Section 5.2 introduces the VPack

algorithm in details and clarifies disadvantages, and problems of VPack in

Section 5.3. An extended method, RVPack is proposed, and its implementation

is described in Section 5.4. Experimental configurations and results are

presented in Section 5.5 and Section 5.6 respectively, with discussion in

Section 5.7. Then the summary of this chapter is in Section 5.8

5.2 The VPack algorithm in detail

The VPack algorithm clusters a large synthesised circuit into sub circuits,

and each circuit is fitted on an island-style FPGA CLB. The key to VPack is

the greedy algorithm (Cormen et al., 2009). The synthesised circuit contains

hundreds or thousands of BLEs that are paired from LUTs and FFs via the

pattern match (Betz and Rose, 1997b). Within a CLB, BLEs cluster in a

sequential manner; the clustering process is stopped when the CLB constraints

are met, such as, when there is no more space for BLE allocation, no more

input available, etc. This is what the term ”greedy” refers to. Otherwise the

process continuous.

To construct a CLB, a seed BLE is needed. The seed has to have the

largest number of inputs, this allows the seed to have an increased probability

of forming more connections inside the CLB. Clustering BLEs in this way, a

single CLB tends to have fewer connections, resulting in less interconnects

between CLBs after clustering, which can also be understood as CLB exposed

nets. Using the seed BLE as a reference, the next BLE is determined by a cost

function. Absorbing the BLE, the clustering algorithm treats both the seed

and the new BLE as an entirety to process more BLEs. The priority of BLE

selection is quantifiable, and described as “gain”, which is the value of the

cost function. In VPack, the gain reflects the common connections between

the constructed CLB and unclustered BLEs. Since the circuit is large, and

the clustering using a bottom-up perspective, this may well be no common

connection (zero gain) between a constructed CLB and unclustered BLEs.
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Figure 5.1: VPack circuit clustering flow

To deal with the zero gain BLEs, VPack adopts a hill-climbing algorithm

to attempt to insert suitable BLEs into space-remaining CLBs. “Space-

remaining CLB” means that the CLB has remaining hardware resources for

allocating certain BLEs. The clustering flow of VPack is shown in Figure 5.1

(Marquardt, 1999; Betz and Rose, 1997a; Betz, 1998; Betz et al., 1999), and

the algorithm pseudocode is provided in Appendices in Algorithm A.1. As

introduced before, the VPack clustering process can be classified into three

blocks – these are: the seed selection, BLE absorption and the hill-climbing.

To analyse the VPack algorithm in detail, figures are used to introduce the

entire clustering process. Figure 5.2 shows a synthesised combinational-logic

circuit schematic, represented as BLEs. This example circuit contains six

4-input BLEs, marked from BLE-1 to BLE-6. The entire circuit has eight
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Figure 5.2: A synthesised combinational-logic circuit containing six BLEs

inputs and one output. To simplify the schematic, unused pins of the BLEs

have been removed.

Seed selection

Assuming that the clustering conditions are as follows: each CLB can accom-

modate two BLEs, and CLB input constraints are not considered. According

to VPack, the seed BLE has to be determined preferentially. In the above

figure, where the number of inputs of each BLE has been listed in Table 5.1,

BLE-4 is the first BLE to have the maximum number of inputs, so BLE-4 is

selected as the seed.

Table 5.1: The number of inputs for each BLE

BLE index # of inputs

BLE-4 4
BLE-5 4
BLE-1 3
BLE-2 3
BLE-3 2
BLE-6 2
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Table 5.2: “Gain” values obtained via the cost function

BLEs index Gain

BLE-1 2
BLE-2 1
BLE-3 1
BLE-5 2
BLE-6 1

BLE absorption

Subsequently, using BLE-4 as a reference, the gains of the rest of the BLEs

are calculated by a cost function. Equation 5.1 shows the cost function of

VPack, where B represents unclustered BLEs, and C is the CLB that is under

construction. This function indicates the number of inputs and outputs that

B and C have in common, which is the gain.

Attraction(B) = |Nets(B) ∩Nets(C)| (5.1)

After applying the cost function, corresponding gain values of BLEs are

calculated, and these values are listed in Table 5.2. As the VPack algorithm

is designed to pick the highest gain BLE in a CLB, in this case BLE-1 is

selected as it is the first BLE to obtain the highest gain. When the BLE-1

is absorbed, the constructed CLB is shown as Figure 5.3. Since there is no

space for more BLEs, the clustering process of this CLB is finished, and the

CLB is stored. However, the entire clustering process is not stopped until all

BLEs are clustered into CLBs. Under this clustering scheme, connections are

formed inside CLBs, and fewer interconnects are produced between CLBs.
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Figure 5.3: A CLB contains two BLEs with one connection inside the CLB,
where BLE-4 is the first BLE to have the maximum number of inputs (the
seed), and BLE-1 is the first BLE to obtain the highest gain. o 1 is the
included connection in the CLB.

Hill-climbing

In the gain calculation, zero gain BLEs can be obtained. Taking Figure

5.1 as an example again, there are BLEs that have no connection between

them, such as BLE-1 to BLE-6, and BLE-2 to BLE-1. These BLEs are

the main source of the zero gain. On the other hand, zero gain is also a

common phenomenon when the clustering process is close to the end. This is

because most of the common-connection BLEs have already been included in

CLBs. In addition, since clustering constraints are also present in practice,

the CLB usage is low where clustered CLBs still have resources to allocate

to certain BLEs. To improve the CLB usage, a hill-climbing algorithm has

been implemented in VPack. Once the VPack detects the top ranked BLE

has zero gain, the hill-climbing is triggered.

Figure 5.4 interprets how the hill-climbing works. Compared with the

previous clustering conditions, a CLB input constraint is applied, which limits

the input number from eight to six. This constraint results in certain BLEs

being unable to fit in a CLB, and leaves a few CLBs that are not full (low

CLB usage). This phenomenon usually occurs when the CLB has more BLEs

(> 2 BLEs per CLB). Note that the figure is only used as an example to

illustrate the hill-climbing algorithm.

In Figure 5.4, there are N-1 clustered CLBs which are on the left. CLB-N
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Figure 5.4: An example illustrates how the hill-climbing works. There are N-1
clustered CLBs are on the left, the N th CLB, CLB-N – present CLB, is on
the right. Since the CLB input constraint, zero-gain BLE-Z cannot be fitted
in CLB-N, but can be clustered in CLB-2 as they have common connections.

is the CLB that is under construction. After assigning gains, assuming that

the top ranked BLE is BLE-Z and it has zero gain to CLB-N. As there are

many clustered CLBs, the hill-climbing is triggered and manages to traverse

all clustered CLBs whether or not they have spaces for allocating the zero

gain BLE-Z. In this traversal, the not-full CLB-2 is searched, and then the

hill-climbing will attempt to add BLE-Z to CLB-2. There are two possible

outcomes: either the BLE-Z can be added, or the BLE-Z cannot be added. If

the BLE-Z cannot be added, the algorithm will keep trying the next available

CLB until all CLBs have been checked. If the BLE is still not able to be added,

it will be added to the present CLB or a new CLB based on CLB hardware

constraints. Although the success rate is low in practice, the hill-climbing

algorithm can still improve the usage of a CLB, and reduce the number of

CLB interconnects.
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5.3 Disadvantages of the VPack algorithm

In this section, the problems of each block, which are the seed selection, BLE

absorption and the hill-climbing, are identified.

Imprecise seed selection

Seed BLE is the infrastructure of a CLB. In VPack, seed BLE is defined

as the BLE with the largest number of inputs. However, there are a large

number of BLEs that have this feature, which increases the difficulty of

determining the suitable seed. To examine the seed selection, the synthesised

and pattern-matched MCNC-20 benchmark suite is used as a reference. In

this examination, these BLEs are synthesised as 4-input LUTs, and clustered

to 8-BLE-18-input input-bandwidth-constraint CLBs. For sequential circuits,

a clock input is used on the CLB for connecting the reconfigurable FF of

BLE. The FPGA and CLB structures refer to Chapter 2.

SuitableSeed # perCLB =

∑N
k=1 SuitableSeed # of CLB(k)

N

k = 1, 2, 3, ...N (5.2)

Equation 5.2 then is defined to investigate the average suitable seed

number found in each CLB clustering; where k is the index of clustered CLBs,

SuitableSeed # of CLB is the suitable (possible) seed number for a CLB,

and SuitableSeed # perCLB is the average seed number per CLB. Based on

the equation, the proportional relation of average seed number per CLB to

total BLE number is presented in Figure 5.5. The red-coloured part in each

bar in the figure indicates that there are a number of BLEs can be selected

as a seed for a CLB. For example, in the benchmark “clma”, average 2,535

BLEs can be a seed, but in practice, only one seed, or saying the best seed
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Figure 5.5: Average number of possible seed per CLB in the MCNC-20
benchmarks, each bar shows the number of BLEs in each benchmark, and
red-coloured part in each bar indicates the average possible seed number for
each CLB clustering.

BLE, is expected for each CLB clustering. This means that the seed selection

is imprecise in VPack.

Coarse BLE absorption

HighestGainCLB # perPacking =∑N
k=1HighestGainCLB # of PackingStep(k)

N

k = 1, 2, 3, ...N (5.3)

The BLE absorption, adding a BLE to a CLB, also faces the same problem

as the seed selection. Table 5.2 is an example to help explain this. The cost
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Table 5.3: Statistics for average highest gain BLE number of appearances per
absorption in the VPack

Benchmark BLEs Benchmark BLEs

alu4 10 ex5p 6
apex2 7 frisc 19
apex4 8 misex3 8
bigkey 27 pdc 12
clma 39 s298 27
des 14 s38417 20

diffeq 13 s38584.1 29
dsip 23 seq 9

elliptic 30 spla 9
ex1010 11 tseng 21

function, which is shown in Equation 5.1, is called at each BLE absorption

and the gains of the unclustered BLEs are refreshed. The table shows

that more than one BLEs can obtain the same gain. This means that

the highest gain BLE is not unique. To monitor how many the highest

gain BLEs appear in each BLE absorption, Equation 5.3 is defined and

implemented in the VPack algorithm to count the average highest gain BLE

number for each absorption, the recorded data is collected in Table 5.3. In

the equation, k indicates each absorption, or considered as each time the

cost function is called. HighestGainCLB # of PackingStep(k) is total

number of BLEs that have the maximum gain at the kth step absorption.

HighestGainCLB # perPacking is the average number of highest gain BLEs

per absorption throughout the clustering process. Although the highest gain

BLE number is dependent on the circuit, the large BLE number still indicates

that the BLE selections are coarse.

Inefficient hill-climbing

The VPack algorithm is a bottom-up clustering algorithm, where the con-

struction of the present CLB is not linked to already clustered CLBs, hence
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zero gain BLEs are obtained frequently. However, this does not mean that

these zero gain BLEs are useless. The hill-climbing algorithm is an extension

to deal with these BLEs. The hill-climbing picks a zero gain BLE, and adds

the BLE to a space-remaining CLB. The nature of a hill-climbing algorithm

means it always performs a “first-come-and-first-serve” rule. When the first

available CLB is found, the BLE is added; despite the fact that there might be

a better CLB to accommodate the BLE, the hill-climbing is stopped. Because

of this feature, the clustered circuit often gets stuck in a particular solution

pattern – a local optimum, and reduces the solution optimisation level.

5.4 The Random VPack (RVPack)

5.4.1 Motivation

In the previous section, the VPack algorithm and its problems have been

reviewed. This section introduces the extended VPack algorithm, known

as Random VPack (RVPack). The RVPack algorithm is designed to keep

the originality of VPack whilst improving the clustered circuit (solution)

quality. Injecting random variations in the VPack clustering process is a

fundamental intention in the RVPack. Using the same clustering scheme,

these variations can drive VPack to produce different solutions other than

a deterministic clustering solution. Compared with VPack, RVPack offers

greater possibilities to create better solutions, and the best circuit clustering

solution is identifiable.

5.4.2 Implementation

The RVPack algorithm uses a stochastic perspective to rebuild the VPack

algorithm. This section clarifies how the random variations are injected into

the VPack, and shows how the randomness affects the clustered circuits
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Figure 5.6: CLB-X is the first CLB clustered by VPack, and it is a unique
solution. CLB-Y is the first CLB clustered by RVPack, and it is a possible
solution. This means that RVPack can produce different clustering solutions.

(solutions) in different clustering stages.

Randomness in seed selection

Assuming that RVPack still clusters BLEs into 2-BLE input-constraint-free

CLBs, and starting from the seed selection. Using Figure 5.2 as an example

circuit again, BLE-4 and BLE-5 have the largest input among all unclustered

BLEs, and both BLEs can be the seed. Rather than using BLE-4, RVPack

deploys a pre-selection to all suitable seeds, which offers equal opportunities

for them to become the seed. To facilitate this selection, all largest-input

BLEs are pre-selected by a time-based-pseudo-random-number generator

under a uniform probability. When a new seed is needed, RVPack counts all

the largest input BLEs and marks these BLEs with new indexes that start

from zero. The random number generator then provides a random integer

ranged from zero to the total number of largest-input BLEs minus one. The

index matched BLE is used as a seed. If there is only one largest-input BLE,

RVPack uses the unique BLE as a seed.
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Randomness in BLE absorption

Another change in the RVPack algorithm is the absorption of the highest

gain BLEs. After picking the seed for a CLB, the gain of each unclustered

BLE is calculated. Similar to the seed selection, there are likely to be a large

number of BLEs that have the highest gain. To create various solutions,

randomness is applied to these highest gain BLEs. In the same way as the

seed selection, the highest gain BLEs are counted and marked. An additional

random number generator is used to choose which BLE is the next BLE to

be added to a CLB under construction. By using both the random seed and

random BLE absorption methods, the clustered circuit can be significantly

changed. Figure 5.6 shows two CLBs from VPack and RVPack. CLB-X is

the first CLB that is created by VPack. CLB-Y is a feasible solution from

RVPack. In the RVPack case, the BLE-4 and BLE-5 might be grouped, but

this combination cannot happen in the VPack case since the BLE-1 and

BLE-4 are already in the same CLB.

Randomness in hill-climbing

The RVPack algorithm also considers hill-climbing in the clustering process.

In contrast to VPack, it uses the “first-come-and-first-serve” rule to allocate

a zero gain BLE. The RVPack algorithm utilises a random insertion. Once

the hill-climbing conditions are met, the random insertion will traverse all

space-remaining CLBs and record them. These recorded CLBs are then

randomly selected to receive the zero gain BLE. Similar to the previous two

modifications, this random selection is under a uniform probability.

Figure 5.7 illustrates how this random hill-climbing affects the results.

Assuming that CLB-2 and CLB-5 are two available CLBs, where the zero

gain BLE can be inserted. The random insertion is able to produce different

clustering solutions. For example, in solutions A and B, these clustered

circuits present different circuit features.
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Figure 5.7: Different clustering solutions are obtained when the zero gain
BLE is inserted into different CLBs, for example CLB-2 or CLB-5

5.5 Experimental setups

Experiments are set up to investigate the stochastic properties of RVPack. To

examine the stochastic outputs of RVPack, one hundred RVPack programs

are executed. The outputs are accumulated for analysis. In the experiments,

two major aspects are reviewed: First, what do the RVPack results look like

compared with the original VPack? Second, are there any improvements that

the RVPack can achieve?

Figure 5.8 illustrates the execution and testing flows for RVPack. Each

RVPack reads one synthesised MCNC-20 benchmark (Yang, 1991) netlist

and performs the circuit clustering. RVPack produces the clustered circuit

as a new netlist, and the netlist is used in VPR (Luu et al., 2011; Betz and

Rose, 1997b; Betz et al., 1999). VPR simulates the real mapping conditions,

and supplies a FPGA mapping report, which includes the FPGA area usage,

channel width and critical path delay. Note that same VPR tests are also
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Figure 5.8: RVPack executing and testing flow: Each synthesised MCNC-20
benchmark netlist is processed by RVPack. RVPack produces new netlists to
VPR for further testing. The flow is the same as to VPack.

implemented to VPack.

According to Marquardt’s thesis (Marquardt, 1999), a FPGA model,

which refers to the cluster-based island-style homogeneous FPGA architecture

and its fabrication technology details, can be set up in VPR for efficiently

evaluating a clustered circuit. The details of the FPGA model are summarised

in Table 5.4. In this model, FPGA area is set as resizable, which means the

area of FPGA is determined by the number of clustered CLBs and the number

of pads (circuit IOs) of a clustered circuit, and VPR always attempts to use a

minimum area to implement the circuit. The “clustersize” indicates a single

FPGA CLB area (physical size – based on the CLB structure and FPGA

fabrication technology), and it is normally a square block. This indicates

that if the CLB array physical size is determined, the FPGA maximum pad

number can be calculated. Though the use of CLB number can be small in

a circuit, to arrange a large number of pads of the mapped circuit, FPGA

area can be enlarged. In Table 5.4, K, I,N,Mclk are the parameters of FPGA
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Table 5.4: FPGA model details for evaluating clustered circuits in VPR
(Marquardt, 1999)

Parameter Setting

FPGA Architecture Homogeneous
FPGA size Resizable – X ∗ Y CLBs, based

on CLB and pad number

Pads, each side of FPGA Pads =
∣∣∣2×√clustersize∣∣∣

BLE, CLB – K, I,N,Mclk K, I,N,Mclk = 4, 18, 8, 1, for most
circuit clustering methods

Channel width W Depending on the max. W
used for the mapped circuit

Switch box type Wilton
Switch box flexibility – Fs 3

In. connect. block flex. – Fc,in 0.25
Out. connect. block flex. – Fc,out 1

Wire segments Segment length 4, uniform
Routing switch type 50% tris. buffers,

50% pass transistors
Technology TSMC’s 0.35µM CMOS process

BLE and CLB models, and also used to VPack and RVPack circuit clustering.

The reason of using these parameters refers to Chapter 2. The channel width

W is a pre-defined parameter in fabricated FPGAs, but this is also a variable

in VPR, where VPR keeps using the minimum W to map a circuit. This

means the value of W , the channel width, can reflect the routability of a

clustered circuit.

These tests were implemented on a high performance computing cluster,

where the cluster uses SGE (Sun Grid Engine) (Oracle Corp., 2010) to

automatically schedule computing tasks, so all single-thread RVPack and

VPR programs can run in parallel using multiple processors. The execution

time was recorded, and defined as the cluster-processor-occupying time. The

computing cluster has 128 identical processors, and each processor can execute

one program, so that the program execution time is the cluster-processor-

occupied time. Note that the execution time is dependent on the processor
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and operating system types. In these tests, the cluster processors were all

identical Intel Xeon processors, and the operating system is the 64-bit CentOS

V6.7.

5.6 Experimental results

In this section, the RVPack results are reviewed with discussions in Section

5.7. The results are shown in two levels: First, the direct outputs are

taken from RVPack, which includes the number of CLBs, the number of

CLB interconnects and execution time. Second, the reported information is

obtained from VPR. This includes the FPGA area usage, routing channel

width, routing wire-length and the critical path delay. Each comparison

focuses on a single feature of the solutions, and the comparisons use the

VPack as a baseline (More method comparisons are presented in following

chapters). Detailed results and variation box plots have been included in

Appendices.

5.6.1 RVPack direct outputs

CLB usage

Figure 5.9 shows the CLB number comparisons. For the MCNC-20 bench-

marks, the sums of the clustered CLBs in the RVPack worst case, best case

and VPack are 7,581, 7,534 and 7,551 respectively. These RVPack results

indicate that improvements can be obtained in the RVPack best case, which

is 0.23%, but there is also 0.40% deteriorations when compared to the results

in the RVPack worst case.
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Figure 5.9: RVPack CLB number for MCNC-20 benchmarks compared to
VPack, lower is better. Data boxplot and detailed data are provided in
Appendices in Figure A.5 and Table A.3.
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Figure 5.10: RVPack CLB interconnect number for MCNC-20 benchmarks
compared to VPack, lower is better. Data boxplot and detailed data are
provided in Appendices in Figure A.6 and Table A.4.

CLB interconnect

Figure 5.10 shows the CLB interconnect number comparisons for the MCNC-

20 benchmarks. The total CLB interconnects in the RVPack worst case, best

case and the VPack are 44,980, 43,349 and 49,840 respectively. Compared

with VPack, RVPack worst case improvement is 9.75%, and the RVPack best

case improvement is 13.02%.
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Table 5.5: RVPack execution time comparisons, single execution. Data
boxplot and detailed data are provided in Appendices in Figure A.7 and Table
A.5.

Benchmk. Long. Short. VPack Benchmk. Long. Short. VPack

alu4 4 2 2 ex5p 2 1 2
apex2 6 4 5 frisc 17 13 15
apex4 3 2 2 misex3 3 2 3
bigkey 5 3 4 pdc 34 22 29
clma 109 73 98 s298 8 4 5
des 4 3 4 s38417 59 42 49

diffeq 3 2 3 s38584.1 55 39 50
dsip 3 2 3 seq 5 3 5

elliptic 19 12 16 spla 20 16 19
ex1010 34 24 30 tseng 2 1 1

Unit: Second
Benchmk. = Benchmark
Long. = RVPack longest execution time
Short. = RVPack shortest execution time
VPack = VPack execution time
Shorter time is better.

Execution time

Since circuit processing time of each CLB is variable, which is dependent

on different BLE combinations as well as cost function calculation time is

based on unclustered BLEs, when randomness is involved, the entire-program-

execution time is affected. Table 5.5 shows the differences of RVPack execution

time. Note that VPack execution time is fixed and it is a subset of RVPack.

This is due to the VPack clustered solution being deterministic.
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Table 5.6: Worst case RVPack on FPGA area usage, X × Y arrays, for
MCNC-20 benchmarks compared to VPack, lower is better. Data boxplot
and detailed data are provided in Appendices in Figure A.8 and Table A.6.

Benchmark RVPack* VPack Benchmark RVPack* VPack

alu4 15*15 15*15 ex5p 12*12 12*12
apex2 16*16 16*16 frisc 22*22 22*22
apex4 13*13 13*13 misex3 14*14 14*14
bigkey 36*36 36*36 pdc 25*25 25*25
clma 33*33 33*33 s298 16*16 16*16
des 42*42 42*42 s38417 29*29 29*29

diffeq 14*14 14*14 s38584.1 29*29 29*29
dsip 36*36 36*36 seq 16*16 15*15

elliptic 22*22 22*22 spla 22*22 22*22
ex1010 25*25 25*25 tseng 15*15 15*15

RVPack* = RVPack worst case

5.6.2 RVPack VPR results

FPGA area usage

After comparing the basic information from the RVPack experiments, VPR is

used to map these clustered MCNC-20 benchmark circuits onto the targeted

FPGA. Table 5.6 shows the RVPack worst case and the VPack FPGA area

usages for the MCNC-20 benchmarks. In general, the RVPack (no matter

whether worst or best cases) uses the same areas as the VPack. Only for

the “seq” benchmark, does RVPack use more area in the worst case, which is

16× 16 CLBs vs. 15× 15 CLBs for VPack.

Channel width

Figure 5.11 shows the routed channel width for RVPack and VPack. The

results indicate that the injected randomness affects the final FPGA routing.

In the RVPack best case, the channel width is significantly reduced. For
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Figure 5.11: RVPack on FPGA channel width for MCNC-20 benchmarks
compared to VPack, lower is better. Data boxplot and detailed data are
provided in Appendices in Figure A.9 and Table A.7.

the MCNC-20 benchmarks, the sums of channel width in the RVPack worst

case, best case and VPack are 1,036, 864 and 986 respectively. These figures

illustrate that the well clustered circuits can reduce the channel width up to

12.37%, but, on the other hand, a worse clustered circuit can increase the

channels to 4.83% compared with the VPack results.

Wire length

Wire length is another factor to evaluate the clustered circuit quality. Shorter

wires mean that fewer wire lengths are used when connecting the clustered

circuit on FPGA. If shorter wires are achieved, the FPGA uses less power

or the mapped circuit speed is increased. Figure 5.12 shows the RVPack

and VPack total wire lengths for each MCNC-20 benchmark. The sums of

wire lengths in the RVPack worst case, best case and for VPack are 585,911,

518,179 and 558,315. In the RVPack best case, it shortens the wire lengths

7.19% compared with VPack, or extends the wire lengths to 4.71% in its

worst case.
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Figure 5.12: RVPack on FPGA wire length compared to VPack for MCNC-20
benchmarks, lower is better. Data boxplot and detailed data are provided in
Appendices in Figure A.10 and Table A.8.
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Figure 5.13: RVPack on FPGA critical path delay compared to VPack for
MCNC-20 benchmarks, lower is better. Data boxplot and detailed data are
provided in Appendices in Figure A.11 and Table A.9.

Delay

When the BLE combinations are changed in CLBs, mapped circuit timings

are affected. Figure 5.13 compares the critical-path delay for the RVPack

clustered circuits in best case, worst case and for VPack. The sums of

delays of the MCNC-20 benchmarks are 3.70306 ∗ 10−01, 2.16193 ∗ 10−01 and

2.53159 ∗ 10−01 µS respectively. In the RVPack best case, it improves circuit
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speeds by up to 14.60% compared with VPack. However, the worst case

RVPack clustered circuit is 31.64% slower than VPack.

5.7 Discussion

In the previous section, the RVPack experimental results are presented. These

results indicate that the RVPack can consistently improve on the VPack results.

The fundamental difference between the two methods presented in this chapter

is that the RVPack injects randomness into the original VPack algorithm.

This means that the RVPack results have random features. Although they

can sometimes produce better results, they can also produce worse results

than VPack. This is due to the RVPack only using randomness, or saying a

random search, and there is no guide (or direction) introduced, so that results

are stochastic.

The RVPack algorithm is an extension of VPack, however, the RVPack

does not fix all the problems that are identified in VPack. RVPack is only a

method to reduce the effects of the problems. Moreover, the use of randomness

changes the results, but the changes are not significant, which means that

the optimisation level is still low. Compared with injecting randomness to

all three key processes of VPack, injecting randomness to one process would

also change the result in VPack as this can change the BLE combination of a

CLB.

Although the single set execution time of RVPack is similar to VPack, to

produce a better result, RVPack has to execute many times; this increases the

relative execution time significantly. For example, the previous experiment

has a hundred executions for each benchmark. To obtain the same result as

the experiment, the total execution time of one benchmark is around one

hundred times that for VPack. However, since RVPack uses a random search,

this indicates that a useful result might be produced at any execution, which

means a better result might be found when the RVPack is executed less than
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hundred times.

The RVPack, results show that it can reduce the CLB numbers of the

clustered circuits, but the real mapping, VPR emulation, indicates that

the area optimisation is small. The main problem is that VPR maps a

clustered circuit on a FPGA under X by Y CLBs array, where X is equal to

Y . Unless the CLB number is significantly reduced, the FPGA area usage

changes are invisible. Another problem discovered is in the CLB interconnects.

From the experiments, no matter whether the RVPack worst or best cases,

RVPack always produces fewer CLB interconnects than VPack. One potential

conclusion is that, since the randomness is injected to all key processes in

VPack, the total effects of these processes can produce such results. If only

considering the RVPack basic results, one execution result is better than

VPack.

The reduction of channels in RVPack is reasonable. The 12.37% channel

width reduction (best case) leads to the conclusion that the RVPack clustered

circuits can save more routing tracks and increase the FPGA routability.

Furthermore, RVPack also presents better results on the wire lengths and

circuit delays. However, RVPack clustered circuits might have even worse

performances on the wire lengths and circuit delays in the worst case, this

means that RVPack produced solutions are unstable.

5.8 Summary

This chapter introduced the VPack algorithm in detail, and the problems of

VPack have also been examined. Subsequently a rebuilt algorithm, RVPack,

has been proposed to partially reduce the effects of these problems by injecting

randomness into the VPack algorithm. The experimental results showed that

RVPack was able to produce better solutions than VPack in terms of CLB

number, CLB interconnects, channel widths, wire lengths and delays. It also

proved that incorporating stochastic variations could improve the clustered
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circuit quality for a standard greedy algorithm. GA utilises both the stochastic

variation and fitness, so it is important to facilitate circuit clustering by using

GAs. The GA-based circuit clustering methods will be introduced in the

following chapters.
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Chapter 6

GGAPack: Top-Down Circuit

Clustering Approach Using

MOGAs

6.1 Introduction

In Chapter 5, the VPack algorithm has been reviewed, and an enhanced

circuit clustering method, the RVPack algorithm, has been described. That

chapter proves through a number of experiments that the involvement of

stochastic variations in a standard greedy clustering algorithm can improve

solution quality. In this chapter, a new circuit clustering method, GGAPack,

is introduced for FPGAs, which is based on the Grouping Genetic Algorithm

(GGA) (Falkenauer, 1994) and MOGA (Fonseca and Fleming, 1993; Srinivas

and Deb, 1995; Horn et al., 1994; Zitzler et al., 2000). This method not

only inherits the stochastic features of RVPack, but also benefits from the

GA (Holland, 1992) powerful searching ability. Compared with unguided

stochastic searching, the random search, the GA utilises fitness to guide

optimisation. It enables the GA to explore more effective solutions for a

problem rather than blind searching. In addition, the use of MO features
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in GA can also supply the best tradeoff solutions, which is better than the

solutions produced by the objective weighting approach, where the weighting

method is often used in new circuit clustering methods for involving more

clustering metrics.

This chapter is organised as follows: Section 6.2 presents the motivation

of the GGAPack algorithm. Section 6.3 introduces how GGAPack is imple-

mented. It includes the GA chromosome representation, genetic operations,

multiple objective mechanism and the fitness functions. The initial experi-

ments and results, shown in Section 6.4, indicate that it is inefficient to use

the GGAPack algorithm to cluster a circuit from scratch. Based on GGAPack,

the GGAPack2 algorithm is proposed in Section 6.5.1. The experimental

setups and results presented in Section 6.5. At the end of this chapter, a

discussion is enclosed in Section 6.6, and a summary is in Section 7.7.

6.2 Motivation

Classic circuit clustering algorithms, such as VPack (Betz and Rose, 1997a),

RPack (E.Bozorgzadeh et al., 2001; Bozorgzadeh et al., 2004), T-VPack

(Marquardt et al., 1999) and iRAC (Singh and Marek-Sadowska, 2002), are

based on bottom-up methods, which build a solution starting from one

particular CLB. Apart from VPack which only considers circuit common

connections, referred to VPack cost function in Chapter 5 in Equation 5.1,

most of them involve many clustering metrics in their cost functions. Although

these methods are efficient, the clustered circuits are usually considered

less than optimal. On the other hand, researchers are also enthusiastic to

investigate the top-down circuit clustering algorithms, and attempting to

solve the clustering problem from a global perspective, for example the PPack

algorithm (Feng, 2012). The core of these methods is usually composed

of graph partitioning approaches (Kernighan and Lin, 1970; Fiduccia and

Mattheyses, 1982; Karypis and Kumar, 1999), which clusters a circuit based

on its connections. However, using connections as a major clustering objective,
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reduces the clustering universality; even PPack cannot deal with CLB input

constraints.

Evolutionary algorithms, and in particular Genetic Algorithm (GA), have

strong searching abilities, and implement fitnesses to guide the search. Mean-

while, the GA can be extended as MOGA, hence the GA, or in particular

MOGA, can be a potential approach to solve FPGA circuit clustering problems.

The GGA (Falkenauer, 1994) was implemented for solving the bin-packing

problem (Garey et al., 1973), but the GGA targeted problem has many similar

aspects to the circuit clustering problem. For example, the bin-packing aims

to pack items to bins while using fewer bins. This can be viewed as clustering

the BLEs into CLBs. As well as this, the packed items have certain require-

ments, for instance, in a bin, the sum of the items’ weight is not allowed to

exceed the bin weight limitation, and the total item worth of each bin has to

be maximum. These can be treated as the circuit properties in the circuit

clustering problem. To deal with multiple circuit clustering metrics, based on

the GGA and MOGA, the GGAPack circuit clustering algorithm is proposed.

6.3 GGAPack implementation

The GGAPack is a top-down circuit clustering algorithm. In the same way

as RVPack, GGAPack reads the synthesised netlist as input and generates

a new netlist for the VPR testing. The GGAPack utilises the GGA repre-

sentation and genetic operations. To incorporate multiple circuit properties

and clustering metrics, the GGAPack has also been expanded to support

multiobjective optimisations. The multiobjective optimisation is based on the

NSGA-2 (Deb et al., 2002), which evaluates and selects GA individuals via

the Pareto optimality and crowding distance. The details of the GGAPack

are explained in the following section.
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Figure 6.1: An example shows the GGAPack chromosome encoding scheme.
The length of chromosome is dependent on the number of BLEs, and each
gene position is used to describe the BLE index. The value of gene indicates
which CLB the gene represented BLE is allocated.

6.3.1 Representation

In the GGAPack, an integer string has been selected to encode the chromosome.

These integer values in the chromosome present the CLB index, and the gene’s

position is used to encode the BLE index. Figure 6.1 is an example to illustrate

this representation.

This example chromosome shows a 12-BLE clustering problem. Below

the chromosome, these boxes are considered as CLBs and these CLBs are

translated from the chromosome. In terms of the chromosome, it represents

four CLBs, and CLB indexes are from “0” to “3”. Each integer position, or

saying gene position, in the chromosome is used to encode each independent

BLE, and these gene values indicate which CLBs the BLEs are allocated.

Inside the chromosome, its gene number is equal to BLE number, hence the

length of chromosome is variable and dependent on the BLE number. Taking

CLB “1” as an example, it shows that BLE-0, BLE-3, BLE-5 and BLE-6 are

inside the CLB. These genes, which the BLEs are in the CLB “1”, have the

integer value of “1”. By using this encoding scheme, clustering of a circuit is

able to be represented, and the number of different integer values can reflect

how many CLBs the chromosome has.
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6.3.2 Reproduction

Both crossover and mutation operations are implemented in the GGAPack

algorithm to create new individuals. These genetic operations have two

functions:

1) The crossover operation is intended to exchange BLE combinations

(CLBs) between different individuals – solutions.

2) The mutation operation is designed to generate new BLE combinations

for CLBs.

Crossover in GGAPack

The GGAPack crossover operation can be summarised in six steps, as follows:

1) Select two individuals randomly from the population, and copy them

as new individuals.

2) Randomly determine which CLBs between the copied individuals are

performing BLE combination exchanges – crossover.

3) Inject the chosen CLBs into copied individuals of each other.

4) Eliminate CLBs that contain these injected BLEs.

5) Reinsert released (freed) BLEs back to CLBs under clustering con-

straints.

6) Store the two copied and crossovered individuals as offspring.

To demonstrate the GGAPack crossover operation, Figure 6.2 (a) presents

an example of two randomly selected and copied individuals from the GGA-

Pack population. These copied individuals are the individual X and indi-

vidual Y , and represent two clustering solutions. In these two individuals,
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Figure 6.2: Determining the CLBs for performing the crossover operation.
(a), the CLBs are determined randomly, and dashed-box genes indicate that
gene represented BLEs are appeared in the selected CLBs. (b), these selected
CLBs are directly injected in two individuals of each other.

the crossover CLBs, the exchange-purposed CLBs, have to be selected. For

example, in the figure, the crossover CLBs are the three CLBs shown in

dark black, and these CLBs will perform the CLB internal BLE combination

exchange. In fact, in the GGAPack crossover, the number of crossover CLBs

in each individual is configurable, and controlled by a pre-defined range. To

mark the selected CLBs, CLB indexes are used. However, the GGAPack

individuals contain a number of same index CLBs. For instance, there are

two individuals, and these individuals have the same index CLBs but describe

different BLE combinations. Therefore, the CLB “index” is only meaningful
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Figure 6.3: Injecting CLBs into each other and eliminating CLBs that contain
injected BLEs, this figure continues Figure 6.2

in an individual itself. Note that the use of the CLB index to identify BLE

combinations has no impact on the crossover operation as the crossover oper-

ation only uses the index to find a CLB in the crossover individual, and is

not concerned with the actual meaning of the index – value.

After determining the crossover CLBs, these CLBs are directly injected

into two “crossover individuals” of each other, as shown in Figure 6.2 (b).

Subsequently, the crossover operation checks injected-CLB contained BLEs,

and eliminates the individual CLBs that contain the injected BLEs. The

BLEs that do not appear in the injected CLBs need to be freed for reinsertion.

Figure 6.3 shows an example of the elimination process. Once the injection

process is finished, the injected CLBs are reserved in the injected individual, as

shown in Figure 6.4. Next, the crossover operation has to reinsert freed BLEs

and these two individuals are stored as offspring. In the GGAPack, a random

reinsertion is implemented. Under the clustering constraints, these BLEs

are randomly inserted to individual current CLBs. To check the clustering

constraints, BLEs need to be converted to actual sub circuits. This conversion

will be introduced in Section 6.3.4. Note that once a BLE combination

is determined (a subcircuit), the number of BLEs and input numbers are

calculable. If these BLEs cannot be fully inserted into the current CLBs, new
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Figure 6.4: After the CLB exchange, a few BLEs are freed from CLBs.
Meanwhile, the injected CLBs, referred to CLB internal BLE combinations,
have been exchanged. The question mark gene means that the gene does not
have a value – matched to freed BLEs. This figure continues Figures 6.2-6.3

CLBs are created with new index numbers assigned.

Mutation in GGAPack

The mutation operation is executed after the crossover operation to generate

enough offspring individuals to constitute a population. In GGAPack, the

mutation operation is designed to randomly eliminate two CLBs in one

crossover generated individual – offspring. However, it could be a problem

whether or not the mutation operation destroys the solutions which are

generated by the crossover operation. In practice, this has little chance

of happening as each individual contains a number of CLBs. Figure 6.5

illustrates the GGAPack mutation operation. Individual Z is an individual

before the mutation. Individual Z z is a possible individual after the mutation.

Similar to the crossover operation, these freed BLEs need to be reinserted,

where the BLEs can insert to current CLBs, or new CLBs with new CLB

index numbers.
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Figure 6.5: The GGAPack mutation operation randomly eliminates two CLBs.
In the figure, the CLBs are the CLB-0 and CLB-6. After the mutation, the
BLEs with these two CLBs are freed. These freed CLBs are needed to insert
back to existing CLBs, or new CLBs.

6.3.3 Multiobjective selection

It is difficult to evaluate a solution that relies on a single or a weighted fitness

function, especially for real world problems. The reasons are referred to

Chapter 4. Circuit clustering is such a real world problem, and comes with

a few conflicting objectives that need to be balanced or judged. Therefore,

single objective GA cannot meet, or hardly meet, the complex clustering

requirements. Unfortunately, the GGA is a single objective GA, and it

limits the application areas that it can solve. To better solve the circuit

clustering problem, a multiobjective evaluating mechanism is incorporated

into GGAPack.

The multiobjective evaluating mechanism indicates how the GA sorts its

individuals under multiple fitnesses – objectives, and how the GA selects the

individuals for further evolutions. In GGAPack, the NSGA-2 method (Deb

et al., 2002) has been utilised to sort and select individuals for next evolving

iteration. The “sort” is based on the Pareto optimality (Pareto, 1906), and
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the “select” is facilitated by the crowding distance (Deb et al., 2002). The

multiobjective system, in GGAPack, is implemented to replace the ranking-

based method in the single objective GGA. In NSGA-2, the Pareto optimal

ranking is achieved by a fast-non-dominated sort, and the detailed algorithm

is shown in Appendices in Algorithm A.2. In the fast-non-dominated sort,

each fitness value of an individual can be compared and set up domination

relations to other individuals’ fitness values. After the sort, individuals P are

sorted on different Pareto fronts Fi. Individuals on the first Pareto front, F1,

are the best non-inferior individuals – solutions.

The number of sorted individuals is greater than the population size as

the input of the sort is a sum of the population and the offspring. In the

next evolutionary iteration, only a few better individuals, half of the sum,

have to be used as a new population. However, the sorted individuals are on

different Pareto fronts, and therefore cannot directly be picked. Although

we need the individuals that are on Pareto fronts, normally the first Pareto

front, individual number is usually mismatched to the GA population size

and falling into three situations:

1) The first Pareto front has the same number of individuals as the

evolutionary process needs

2) More first Pareto front individuals are found and greater than the GA

population size, note that the number of sorted individuals is greater

than the GA population size – GA intermediate population – referred

to Figure 6.7.

3) Less individuals are on the first Pareto front, different Pareto front

individuals are required.

Only in the first situation can the first Pareto front individuals be directly

used as a new GA population. Otherwise, additional selection work is required.

To select individuals and preserve a better individual diversity, the NSGA-

2 defines the concept of crowding distance, also called density-estimation
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Figure 6.6: Crowding distance calculation of an individual. Solid black dots
represent the same Pareto front individuals under the objective-1-and-2-fitness
space. The crowding distance of individual i can be calculated by nearest
neighbours – individual i− 1 and i+ 1 – the perimeter of a cuboid which is
formed by individual i− 1 and i+ 1.

metric, to estimate solution density surrounding a particular solution, and

use a crowed-comparison operation to select suitable solutions (individuals)

for continued evolutions.

In the first step of crowding distance based selection approach, it calculates

the average distance of two points on either side of a targeted point along

with each of the objective fitness. The crowding distance of the targeted point

refers to the quantity that is estimated by the perimeter of a cuboid which is

formed by using the nearest neighbours as vertices. This can be illustrated by

Figure 6.6, where these solid black dots indicate same Pareto front individuals,

and the crowding distance of i is represented as the average side length of

the cuboid, which is shown as a dashed box. To assign the crowding distance

which is associated with all objective fitnesses, it requires to sort all individuals

according to each objective fitness in an ascending manner. For each objective,

an infinite distance is always assigned to boundary individuals. All other

individuals are assigned a distance value based on a normalised difference

in objective fitnesses of two adjacent solutions as shown in Figure 6.6. The

overall crowding distance of an individual is then calculated as the sum of

each distance value corresponding to every objective fitness. Algorithm A.3
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in Appendices clarifies the crowding distance assignment.

In the second step of crowding distance based selection approach – the

crowed-comparison operation, this operation will select required individuals

from Pareto fronts in order to match GA population size. If many individuals

are on the same Pareto front, for example 1st Pareto front, crowed-comparison

operation will select the individuals that only have larger crowding distances.

This also indicates that the boundary individuals are always selected. On

the other hand, if, for example, fewer individuals are on the 1st Pareto front,

the crowed-comparison operation will select the individuals on the following

Pareto fronts based on the indivdiual’s crowding distance.

6.3.4 Evaluating the evolved designs

In the GGAPack, multiple fitness functions are defined to evaluate the

individuals. To calculate fitnesses, individual chromosomes are converted in

two steps: First, the chromosome is translated to CLBs by the chromosome

representation method that is introduced in Section 6.3.1. Second, the CLB

features are processed using their BLE pin properties, and these CLBs circuit

features are accumulated as entire clustered circuit properties used in fitness

calculations. To produce the fitness, after the GGAPack reads the synthesised

circuit, after the pattern matched, BLE connections are checked. During the

check, the following information is obtained for each BLE pin:

1) Is the pin used as the whole circuit IO (otherwise known as system

IO)?

2) If the pin is an input, which (BLEs) pins share the same input? Which

(BLE) pin drives this BLE?

3) If the pin is an output, what are the fanout pins for this pin?

171



Once a set of BLE is determined and grouped, the BLE pins are unique.

Using the above information, circuit properties of the BLEs are carried out

as follows:

1) How many BLEs in the set? and what are the BLEs?

2) What connections are inside the set of BLEs?

3) Which signals need to be used to connect other sub circuits? The

connections of a sub circuit refer to the connections of a CLB or further

understood as CLB interconnects.

As mentioned in Section 6.3.2, the above conversion is also used by the

genetic operations for reinserting the freed BLEs back to the individual CLBs.

To achieve basic circuit clustering targets which optimise CLB number

and CLB interconnect number, the GGAPack has implemented three fitness

functions, as shown in Equations 6.1-6.2.

f obj1(x) = # of CLBs (6.1)

f obj2(x) = # of global nets (6.2)

f obj3(x) = (# of CLB absorbed nets)−1 (6.3)

These fitness functions are designed to return smaller values when a

better individual is found. Equation 6.1 describes the number of CLBs. For

a clustered circuit, fewer CLBs are expected. Equation 6.2 indicates the

number of interconnects between CLBs. Equation 6.3 reflects an indirect

factor, which is the connections the CLBs include. Both Equation 6.2 and
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Equation 6.3 push the evolution to find individuals, or saying solutions, that

have fewer interconnects between CLBs.

6.3.5 Summary of GGAPack

At the beginning of the GGAPack, initial individuals are randomly generated,

where each BLE is randomly allocated to a CLB. This means that every initial

individual has BLE number CLBs. The initial individual number is set to two

times the population size, and these individuals are exported to the GA loop.

In the GA loop, fitnesses of these individuals are assigned by multiple fitness

functions as described in 6.3.4, and half of the best individuals are selected as

a new population by the multiobjective selector. Next, the new population

produces their offspring via the GGAPack genetic operations. GGAPack then

combines the population and the offspring together for the next evolution. In

GGAPack, the GA is executed for a fixed number of generations. On the last

generation, a final individual will be filtered from the first Pareto front. The

individual that has the fewest CLBs and fewest interconnects between CLBs

is used as the ultimate solution. Subsequently, the individual represented

solution is translated and saved as a new netlist. The GGAPack flow chart is

shown in Figure 6.7, and the detailed algorithm is summarised in Algorithm

A.4 in Appendices.

6.4 Initial experimental results

6.4.1 GGAPack experimental setups

Initial experiments have been set up for investigating GGAPack results. Since

the GA outputs are stochastic, the GGAPack was executed for one hundred

times, and the results are collected for statistical analysis. The targeted

FPGA architecture was the same as used in Section 5.5 for VPack and
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Figure 6.7: The flow of GGAPack: The population is initialised randomly
– each BLE is in a CLB with a random CLB index. Individuals are as-
signed multiple fitnesses by multiple fitness functions. MO selection uses the
non-dominated sort and crowding distance (NSGA-2 method) to form new
population. GGAPack, the GA, iterates for a fixed number of generations
then stops. The best individual is filtered and translated as a netlist.

RVPack, where the CLB has I = 18, N = 8, one clock and the BLE contains

4-input LUT and a reconfigurable FF, and the experiments are based on the

MCNC-20 benchmarks (Yang, 1991). For the initial experiments, GGAPack

outputs, solution-quality-related results, are directly compared to other circuit

clustering algorithms, which are the CLB numbers and CLB interconnect

numbers. The detailed testing flow is shown in Figure 6.8. As the pattern

match is a duplicated process, each GGAPack program starts from the pattern

matched netlist – the BLEs. These tests are still carried out on the same

high performance computing cluster, referred to Section 5.5, where execution

time of each program is the cluster-processor-occupying time.

Before loading GGAPack to the computing cluster, a number of GA pa-

rameters have to be chosen in order to produce useful results: First, according

to the optimal CLB number of the MCNC-20 benchmark, the generation

number is estimated. This is accomplished using the largest benchmark

“clma”. The “clma” has 8,383 BLEs, when clustering this benchmark into a

8-BLE CLB, the optimal CLB number is 1,048 (8,383 over 8). In GGAPack,
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Figure 6.8: GGAPack executing and testing flow. Before forwarding the
synthesised MCNC-20 netlist (LUTs + FFs) to GGAPack, a duplicated
process, the pattern match, can be first performed, so that the GGAPack
deals with the BLEs directly.

mutation is the primary operation to create the CLBs, and in each generation

two CLBs are eliminated. If this operation is carried out on all CLBs (the

initial individual has one BLE per CLB), this will mean that the smallest

mutation number is at least 4,192 (8,383 over 2). However, that is an ideal

situation as the mutation does not happen to every effective CLB. In practice,

the random-CLB-eliminating mutation can also occur to well clustered CLBs.

In order to move all BLEs in an optimal CLB number, or a near optimal

CLB number, the generation number is set to ten times the minimum re-

quirement – the smallest mutation number. To simplify the problem, the GA

generation number of each benchmark is rounded to 40,000, and this can also

ensure smaller benchmarks have enough generations to evolve. Figure A.2

in Appendices shows GGAPack GA convergence under different generations.

Test indicates that 40,000 generations are enough.

Second, the crossover rate of GA is adjusted. To get an efficient crossover

rate, the crossover rate has been tested under a range, which is from 0.2

to 0.8 based on the GA empirical settings that are introduced in Chapter

4. The testing shows that if the rate is set to 0.6, as shown in Figure 6.9
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Figure 6.9: Box plot of CLB numbers vs. different crossover rates of GGAPack
executions. The test is based on “clma” – the largest benchmark in MCNC-
20. For each crossover rate, GGAPack executes for 100 times, final CLB
number means that each GGAPack executes for 40,000 generations. When
the crossover rate is 0.6, the GA result variation is small, and CLB number
is small as well.

– testing GGAPack performance of different crossover rates based on the

largest benchmark “clma”, the GA can achieve small number of CLBs in a

short time, and its results also have small variations. The figure only shows

the testing results of “clma”, however, the crossover rate is not linked to a

particular benchmark; even when the benchmark is changed, the GA is still

efficient. For the population size, to speed up the GA, it is set to 10, as, in

GGAPack, experiments show that the population size does not significantly

affect the quality of GA results, where this can be proofed by the graph

of GA convergence vs. different population size as shown in Figure A.3 in

Appendices.

The GA parameters for GGAPack are summarised as follows:

1) Population size: 10.

2) Crossover rate: 0.6

3) Mutation rate: eliminating 2 CLBs per generation.
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Figure 6.10: GGAPack clustered CLB number for MCNC-20 benchmarks
compared to VPack and RVPack, lower is better. Data boxplot and detailed
data are provided in Appendices in Figure A.12 and Table A.10.

4) Generation number: 40,000

6.4.2 GGAPack direct outputs

This section presents initial experimental results from GGAPack. These

results are directly compared. The experimental result analysis is similar

to RVPack, which is described in Chapter 5. In this analysis, VPack and

RVPack, (referred to its best case results) are used as baselines, because the

direct outputs of GGAPack are in competition with them. Detailed results

and variation box plots have been included in Appendices.
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Figure 6.11: GGAPack clustered CLB interconnect for MCNC-20 benchmarks
compared to VPack and RVPack, lower is better. Data boxplot and detailed
data are provided in Appendices in Figure A.13 and Table A.11.

CLB usage

Figure 6.10 shows clustered CLB number comparisons for the MCNC-20

benchmarks, the comparisons covers GGAPack, VPack, RVPack. The sums

of GGAPack CLB number in the worst and best cases are 7,892, 7,780. These

numbers are greater than the VPack’s 7,551 and RVPack’s 7,534. As can

be also seen from the figure, the GGAPack has more clustered CLBs when

dealing with large benchmarks.
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CLB interconnect

Figure 6.11 compares CLB interconnects between GGAPack, VPack and

RVPack. The sums of the MCNC-20 benchmark CLB interconnects for

GGAPack CLB interconnect number in the worst and best cases, VPack and

RVPack are 50895, 47825, 49840 and 43349 respectively. In the best case,

GGAPack has 4% improvements compared to VPack, but its results are worse

than RVPack. According to Figure 6.11, it clearly shows that the worse CLB

interconnect number is mainly caused by a few large benchmarks. This means

that GGAPack has a limited performance for large scale circuits.

6.5 Further experimental results

6.5.1 Seeding GGAPack with semi-optimal solutions

– GGAPack2

The GGAPack algorithm has been initially tested using the MCNC-20 bench-

marks, referred to the previous Section 6.4, and the results show that GGA-

Pack has better clustered results for small scale circuits. These results are

better than VPack and RVPack (best case). However, the GGAPack perfor-

mance is poor for large scale circuits. The main concern of this phenomenon

is that the GGAPack has an insufficient evolutionary time or evolution

lasts too short. GGAPack builds solutions from scratch as well as using a

global perspective. This implies that the GGAPack has to deal with a huge

searching space. Although the GA generation numbers can be increased, the

actual number is not able to be infinite. Moreover, optimisation time is also

important.

To improve GGAPack solution qualities, the GA initial conditions can

be provided so that the GA searching space is narrowed. To achieve this,

a set of semi-optimal solutions can be used as initial population of GA.
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Figure 6.12: GGAPack2 working flow: A new mechanism has be added in
GGAPack2 which allows it to read clustered solutions that are produced by
other circuit clustering algorithms. This mechanism reads the solutions and
translates them as chromosomes for GGAPack individuals.

In order to distinguish from GGAPack, GGAPack that incorporates with

initial conditions is called GGAPack2. The only difference is that GGAPack2

involves a new mechanism which allows it to use RVPack’s results. Figure 6.12

shows GGAPack2 work flow. Other than generating the initial individuals

randomly, GGAPack2 takes the RVPack’s stochastic results as the GA initial

conditions. Since RVPack supplies a number of solutions, and it is greater

than the GGAPack population number, a pre-selection process is implemented.

The principle of the selection is similar to the multiobjective selection, which

utilises the same fast-non-dominated sort, crowding distance and fitness

functions. By using the multiobjective selector, only the best and the number

matched results are kept and translated as individuals in the GGAPack

evolution.

6.5.2 GGAPack2 experimental setups

To investigate GGAPack result qualities, new experiments have been set

up. Similar to GGAPack, GGAPack2 is executed for one hundred times for
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Figure 6.13: GGAPack2 executing and testing flow: Similar to GGAPack, each
synthesised and pattern matched MCNC-20 benchmark netlist is processed
by GGAPack2. GGAPack2 then produces new netlists to VPR for further
testing.

analysing the stochastic features of results. The targeted FPGA architecture

is the same as GGAPack, VPack and RVPack. As the GGAPack2 results are

improved compared with GGAPack, the results of GGAPack2 not only cover

GGAPack2 direct outputs, which are the CLB numbers, CLB interconnect

numbers and the execution time, but also include GGAPack2 VPR results.

The FPGA model used in VPR is the same as to Section 5.5, the VPR results

cover real FPGA area usage, channel width, wire-length and the circuit critical

path delay. GGAPack2 testing flow is illustrated in Figure 6.13. All the tests

are based on the MCNC-20 benchmarks (Yang, 1991), and GGAPack2 starts

from the pattern matched netlist. These tests are carried out on the same

computing cluster.

According to GGAPack GA parameter settings, there are some changes in

GGAPack2 which allow GGAPack2 fully benefits from RVPack’s results – the

GA initial conditions. Other than using the population size 10 in GGAPack,
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GGAPack2 population size is set to 50, which the diversity of RVPack results

can be better preserved. The increase of population size can also increase

GA execution time. To compensate the long execution time, GGAPack2

generation number has been reduced from 40,000 to 10,000. The testing shows

that this generation reduction does not significantly affect the GGAPack2

performance as GGAPack2 convergence is fast, where large generation number

is useless.

The GA parameters for GGAPack2 have been summarised as follows:

1) Population size: 50

2) Crossover rate: 0.6

3) Mutation rate: eliminating 2 CLBs per generation.

4) Generation number: 10,000

6.5.3 GGAPack2 direct outputs

This section presents experimental results from GGAPack2. Apart from real

FPGA mapping comparisons which GGAPack2 results are exported to the

VPR, GGAPack2 direct outputs are also compared with GGAPack. The

experimental result analysis is similar to RVPack and GGAPack. In this

analysis, VPack, RVPack–best case results and RPack are used as baselines.

The reason is that the direct outputs GGAPack2 are in competition with them.

Detailed results and variation box plots have been included in Appendices.

CLB usage

Figure 6.14 shows clustered CLB number comparisons for the MCNC-20

benchmarks, the comparisons covers GGAPack2, GGAPack, VPack, RVPack

and RPack. The sums of the MCNC-20 benchmark CLB numbers for above
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Figure 6.14: GGAPack2 clustered CLB number compared to GGAPack,
VPack, RVPack and RPack for MCNC-20 benchmarks, lower is better. Data
boxplot and detailed data are provided in Appendices in Figure A.15 and
Table A.13.

circuit clustering algorithms are summarised in Table 6.1. The results show

that the GGAPack2 can better reduce CLBs number for a clustered circuit.

In the best case, GGAPack2 reduces CLB number up 0.79% 0.57% and 0.78%

compared to VPack, RVPack and RPack respectively.

CLB interconnect

Figure 6.15 compares CLB interconnects between GGAPack2, GGAPack,

VPack, RVPack and RPack. The sums of the MCNC-20 benchmark CLB

interconnects for different circuit circuit clustering algorithms are summarised

in Table 6.2. The results indicate that, even the worst case results, the

GGAPack2 can better include connections in CLBs compared with the VPack
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Table 6.1: Sums of clustered CLB numbers for the MCNC-20 benchmarks
between different algorithms – sorted in ascending order, lower is better.

Algorithm CLBs

GGAPack2 Best 7,459
GGAPack2 Average 7,475
GGAPack2 Worst 7,491

RVPack 7,534
RPack 7,550
VPack 7,551

GGAPack Best 7,780
GGAPack Average 7,836
GGAPack Worst 7,892
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Figure 6.15: GGAPack2 clustered CLB CLB interconnect number compared
to GGAPack, VPack, RVPack and RPack for MCNC-20 benchmarks, lower is
better. Data boxplot and detailed data are provided in Appendices in Figure
A.16 and Table A.14.
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Table 6.2: Sums of clustered CLB interconnects for the MCNC-20 benchmarks
between different algorithms – sorted in ascending order, lower is better.

Algorithm CLB Interconnects

RPack 38,300
GGAPack2 Best 39,445

GGAPack2 Average 41,001
GGAPack2 Worst 42,557

RVPack 43,349
GGAPack Best 47,825

GGAPack Average 49,360
VPack 49,840

GGAPack Worst 50,895

0	
  

5,000	
  

10,000	
  

15,000	
  

20,000	
  

25,000	
  

30,000	
  

35,000	
  

alu
4	
  

ap
ex
2	
  

ap
ex
4	
  

big
ke
y	
  
clm

a	
  
de
s	
  

diff
eq
	
  
ds
ip	
  

ell
ip:
c	
  

ex
10
10
	
  
ex
5p
	
  
fris
c	
  

mi
sex
3	
  

pd
c	
  
s2
98
	
  

s3
84
17
	
  

s3
85
84
.1	
   seq

	
  
sp
la	
  
tse
ng
	
  

Ex
ec
u&

on
	
  T
im

e	
  
(S
)	
  

MCNC-­‐Benchmarks	
  

GGAPack	
  Shortest	
  
GGAPack2	
  Shortest	
  

Figure 6.16: Shortest execution time compared to GGAPack and GGAPack2
for MCNC-20 benchmarks, lower is better. Data boxplot and detailed data
are provided in Appendices in Figures A.14, A.17 and Tables A.12, A.15.

and RVPack, but not better than RPack. In the best case, GGAPack2 can

reduce the CLB interconnects by up to 9.01% compared to RVPack, and

20.86% compared to VPack.

Execution time

Table 6.3 summarises the GGAPack, GGAPack2 longest and shortest (single

run), RVPack average and VPack execution time. RVPack average execu-
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tion time refers to the RVPack one-hundred-execution average time. The

RPack execution time cannot be comparable since the RPack source code is

inaccessible.

Table 6.3: Single execution time comparisons for GGAPack, GGAPack2,
RVPack (average) and VPack

GGAPack GGAPack2

Benchmark Long. Avg. Short. Long. Avg. Short. RVPack VPack

alu4 525 378 231 4,297 3,973 3,648 2.99 2
apex2 2,388 2,215 2,042 6,028 5,653 5,278 4.85 5
apex4 668 428 187 3,860 3,582 3,303 2.01 2
bigkey 2,092 1,318 544 4,922 4,607 4,292 3.78 4
clma 27,929 21,773 15,617 46,679 38,511 30,342 93.1 98
des 2,063 1,646 1,228 4,574 4,365 4,155 3.13 4

diffeq 623 428 233 4,038 3,759 3,480 2.99 3
dsip 737 442 147 3,602 3,490 3,378 2.34 3

elliptic 6,536 5,555 4,574 16,032 13,530 11,027 14.24 16
ex1010 11,745 9,729 7,712 25,590 21,834 18,078 28.47 30
ex5p 174 118 61 3,279 2,841 2,402 1.16 2
frisc 8,156 6,513 4,869 17,833 15,355 12,876 14.86 15

misex3 1,006 660 313 3,590 3,423 3,256 2.49 3
pdc 13,832 11,200 8,568 26,297 21,892 17,487 27.83 29
s298 2,136 1,631 1,125 6,656 5,681 4,705 4.74 5

s38417 14,963 12,417 9,871 31,888 26,198 20,507 48.4 49
s38584.1 13,323 11,250 9,176 29,138 24,666 20,193 45.2 50

seq 2,144 2,080 2,016 5,243 4,843 4,443 4 5
spla 8,738 7,598 6,457 18,790 15,771 12,752 17.67 19

tseng 58 34 9 2,250 2,169 2,088 1.03 1

SUM 119,836 97,408 74,980 264,586 226,138 187,690 325.28 345

Unit: Second
Long. = longest execution time
Avg. = average execution time
Short. = shortest execution time
RVPack = RVPack average execution time
Shorter time is better.
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The table shows that the GA based method has a large execution time.

However, it is undeniable that the GA consumes so much time because

its results are produced by evolution. Figure 6.16 compares the shortest

execution time for GGAPack and GGAPack2. If the MCNC-20 benchmark

execution time is accumulated for both clustering algorithms, the total time

for GGAPack and GGAPack2 will be 74,980 and 187,690 respectively. This

shows that the GGAPack2 consumes more than double the amount of time

than the GGAPack.

6.5.4 GGAPack2 VPR results

The rest of the experimental results are produced using VPR, and detailed

variation box plots are attached in Appendices. The VPR emulates real

FPGAs, and allows the clustered circuits to be further tested. In the following

comparisons, GGAPack2 results are used. The first comparison is for the

FPGA area usages. The area-testing-experiment conditions are similar to

the RPack, so the results presented in the RPack literature are used in this

comparison.

FPGA area usage

Table 6.4 shows the area usages for the clustered MCNC-20 benchmarks on

the targeted FPGA between GGAPack2, VPack (for the RVPack, the best

case results are the same as the VPack) and RPack. In both the best and

worst cases, GGAPack2 uses the same areas. These results also suggest that

GGAPack2 uses the same FPGA area as RPack for each clustered benchmark.

The difference is that VPack occupies more area for the benchmark “alu4”.
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Table 6.4: GGAPack2 on FPGA area usage, X × Y arrays, for MCNC-20
benchmarks compared to VPack, RVPack and RPack, lower is better. Data
boxplot and detailed data are provided in Appendices in Figure A.18 and
Table A.16.

Benchmarks GGAPack2 VPack (RVPack) RPack

alu4 14*14 15*15 14*14
apex2 16*16 16*16 16*16
apex4 13*13 13*13 13*13
bigkey 36*36 36*36 36*36
clma 33*33 33*33 33*33
des 42*42 42*42 42*42

diffeq 14*14 14*14 14*14
dsip 36*36 36*36 36*36

elliptic 22*22 22*22 22*22
ex1010 25*25 25*25 25*25
ex5p 12*12 12*12 12*12
frisc 22*22 22*22 22*22

misex3 14*14 14*14 14*14
pdc 25*25 25*25 25*25
s298 16*16 16*16 16*16

s38417 29*29 29*29 29*29
s38584.1 29*29 29*29 29*29

seq 15*15 15*15 15*15
spla 22*22 22*22 22*22

tseng 15*15 15*15 15*15

Channel width

Figure 6.17 shows the FPGA routing channel width between GGAPack2,

RVPack and VPack. RPack is not involved as the results presented in its

literature cannot be matched to the current VPR testing conditions, so the

comparison cannot be set up. The difference in results could be caused by

a different version of VPR, and that version VPR is not available. For the

MCNC-20 benchmarks, the sums of the channel width for the GGAPack2 best

case, worst case, RVPack and VPack are 1,204, 964, 864 and 986 respectively.

Compared with VPack, in the best case, GGAPack2 produced solutions save
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Figure 6.17: GGAPack2 on FPGA channel width compared to RVPack and
VPack for MCNC-20 benchmarks, lower is better. Data boxplot and detailed
data are provided in Appendices in Figure A.19 and Table A.17.
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Figure 6.18: GGAPack2 on FPGA wire length compared to RVPack and
VPack for MCNC-20 benchmarks, lower is better. Data boxplot and detailed
data are provided in Appendices in Figure A.20 and Table A.18.

2.23% channels, or in the worst case, a GGAPack2 solution may use 18.11%

more channels. In addition, the results also indicate that GGAPack2’s best

solution uses more channels than RVPack, which is 14.12% more channels.

Wire length

Figures 6.18-6.19 compare the wire lengths and critical path delays of clustered

circuits, and these use RVPack and VPack as references. Figure 6.18 presents
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Figure 6.19: GGAPack2 on FPGA critical path delay compared to RVPack
and VPack for MCNC-20 benchmarks, lower is better. Data boxplot and
detailed data are provided in Appendices in Figure A.21 and Table A.19.

GGAPack2, RVPack and VPack summed wire lengths of the MCNC-20

benchmarks. The wire lengths of GGAPack2 worst case, best case, RVPack

and VPack wire lengths are 761,798, 590,573, 518,179 and 558,315 respectively.

In both best and worst cases, the GGAPack2 solutions are worse than RVPack

and VPack.

Delay

Figure 6.19 presents the mapped-circuit critical path delays for GGAPack2,

RVPack and VPack. For the MCNC-20 benchmarks, accumulated delays for

GGAPack2 best case, worst case, RVPack and VPack are 3.95224 ∗ 10−01,

2.30457 ∗ 10−01, 2.16193 ∗ 10−01 and 2.53159 ∗ 10−01 µS respectively. In the

best case, the GGAPack2 solution mapped on a FPGA are faster than VPack

by 8.97%. However, in the worst case, the delays are higher than VPack by

35.94%. In both cases, the GGAPack2 solutions have poor performances on

critical path delays compared with RVPack.
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6.6 Discussion

In Section 6.4-6.5, results of GGAPack and GGAPack2 are compared. This

section discusses the finds and problems from the experimental results of

GGAPack and GGAPack2.

Firstly, the GGAPack direct output comparisons show that building

clustered solutions from scratch and using a global perspective are not able

to produce better solutions for all the MCNC-20 benchmarks, especially for

the large benchmarks. The major cause of the less then optimised results is

the short evolution time. As GGAPack searches the solutions from scratch,

the GA searching spaces are huge. Therefore, a larger generation number

is always expected. In fact, although the number could be increased, the

evolution cannot be set to an infinite length. This has to take into the actual

computing resources.

On the other hand, the use of the GGAPack clustering method (GGA-

Pack2) to be a second level optimiser can improve the CLB usage, and reduce

the CLB interconnects when compared with VPack, RVPack and RPack. If

we only consider the circuit separation, which cuts a large circuit into pieces,

GGAPack2 will be a useful method for producing better solutions. As a result,

GGAPack2 can prove that the design of the GGAPack genetic operations are

effective – CLB exchange and CLB elimination methods, as well as the use of

multiple fitness functions are also useful for guiding the GA to find expected

solutions.

For the execution time comparisons, it is noted that GGAPack2 uses

more time than GGAPack. To compare these two algorithms, the obvious

difference is that GGAPack2 uses a large population size, which requires more

time. Despite GGAPack generation number being greater than GGAPack2,

its actual execution time is shorter. This suggests that the fitness calculation

and multiobjective sort are the most time-costed sections in the GGAPack

algorithm. Moreover, the other reason that GGAPack2 has a longer execution
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time is that GGAPack2 optimises the solutions from RVPack, where the

GGAPack2 individuals have a number of optimised solutions. It indicates that

GGAPack2 individual has more BLEs in a single CLB (since well clustered).

Note that evaluating a fewer BLE CLB is faster than a CLB that has more

BLEs.

In the real mapping tests using VPR, it shows that the GGAPack2

clustering method does not provide effective improvements for optimising

the channel widths, wire lengths and critical delays. This has to recall the

GGAPack BLE reinsertion process. To save routing tracks and wires and to

reduce the circuit delays, the circuit clustering methods have to form more

common connections between CLBs. Unfortunately, the GGAPack reinsertion

process is a random operation. This reduces the real-mapping performance

of inputted RVPack solutions, which means that the CLB interconnects will

not be well arranged after the GGAPack execution. Though the GGAPack2

clustered circuit has less CLB interconnects, the real mapping performances

are poor.

Beside the problems that are found in GGAPack, it also highlights a few

meaningful aspects. The first is that GGAPack has provided a GA framework

for the circuit clustering problem. It introduces the fitness conversion method,

especially for circuit evaluations, and the multiobjective selection process.

Because the multiobjective (MO) optimisation is used, this allows GGAPack

to incorporate any additional objective fitness functions without changing

the algorithm. However, to a certain extent, GGAPack also shows that

clustering circuits from scratch using the GA and a top-down perspective can

be inefficient.

6.7 Summary

This chapter introduced the GGAPack and GGAPack2 algorithms, which were

the GA-based top-down circuit clustering algorithms. The motivation and
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detailed implementations were presented, and the GGAPack and GGAPack2

results were compared with other state-of-the-art clustering algorithms. The

experimental results showed that GGAPack was not as efficient as the greedy

algorithms. In contrast, GGAPack2 has better direct-output results compared

to some greedy-algorithm-based circuit clustering methods. This indicates

that GA based method can partial solve the circuit clustering problem. In

addition, these methods (algorithms) also helped define a set of potential

processes of using the GA to solve a circuit clustering problem. However, VPR

tests showed that the GGAPack2 clustered circuits have worst performances on

FPGAs, such as channel widths, wire lengths and delays. On the other hand,

by implementing these two methods, the major problems were identified, for

example, it could be inefficient by using a GA-based top-down circuit clustering

method, especially the circuit scale is large, as well as using the random

reinsertion during the genetic operations, it might reduce the performance of

a previously clustered circuit, referred to GGAPack2. This work can further

inspire the circuit clustering algorithm designs, for example the DBPack in

the next chapter.
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Chapter 7

DBPack: Bottom-Up Circuit

Clustering Approach Using

MOGAs

7.1 Introduction

In Chapter 6, the GGAPack and GGAPack2 methods were proposed. These

two methods are based on MOGAs, and constructing CLBs using a top-down

perspective. The results indicate that GGAPack cannot effectively improve

the clustered circuit on-FPGA and its performance. To cope with major

problems identified in GGAPack, this chapter introduces a new MOGA based

circuit clustering method, known as DBPack, and uses a new perspective to

view the circuit clustering problem. DBPack utilises a number of discrete

MOGAs to build CLBs, and builds CLBs from scratch. Clustering a circuit

using DBPack algorithm assists the GA search ability, and enhances the GA

fitness function efficiency for a single CLB. In addition, the use of MOGA

can also extend the clustering flexibility.
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The organisation of this chapter is followed as: Section 7.2 presents the

motivation of DBPack. Section 7.3 explains the implementation of DBPack,

including the GA representation, genetic operations, fitness function design

and the solution selection. Section 7.4 describes how the experiments are

created to all the testing of DBPack. Experimental results are presented in

Section 7.5 with the discussion in Section7.6, and a summary in Section 7.7.

7.2 Motivation

Clustering circuits using a top-down perspective can be considered as an

effective approach since CLBs are evaluated at the same time and the BLE

combinations of CLBs are changed or optimised from a global perspective.

However, the solution qualities of GGAPack, a MOGA-based top-down circuit

clustering method, in particularly using GA to search an entire solution of

clustered circuit, are poor.

The low-quality solution issue is caused by three major problems. First

of these is the huge searching space in GGAPack. Building solutions from

a global perspective are better for searching global optimal solutions, but

possible BLE combinations can be an astronomical number. This results in

GA having an extremely low convergence speed. However, such long evolution

might not be produced by current computing systems. Second is the design

of GGAPack genetic operations, which use a random reinsertion to reinsert

freed BLEs back to CLBs after these operations. Unfortunately, the random

reinsertion is a major problem that reduces the solution performance for

real FPGA mappings as reinsertion process only focuses on CLB hardware

constrains without considering CLB interconnects, for example, some circuit

critical connections. Third is the design of fitness functions in GGAPack.

Due to the fact that GGAPack individuals contain a complete solution, the

fitness calculation of a solution has to be achieved from the global perspective.

Therefore, it limits the sensitivity of the fitness function for evaluating a

single CLB change, and finally results in that a GA is convergent at a local
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optimality.

DBPack is a new circuit clustering algorithm based on the MOGA. It

utilises a number of discrete MOGAs to build a solution. In the DBPack

clustering process, each discrete GA focuses on a single CLB construction.

It is similar to other bottom-up circuit clustering algorithms, but not the

same – DBPack utilises a GA to directly group BLEs as a CLB instead of

incrementally clustering single BLE into a CLB. This particular design means

that the GA searching space is reduced, the fitness functions are effective to

a single CLB and each CLB can be viewed as an entirety to be optimised.

DBPack is short for Database Packer. The database describes that each CLB

solution is identified from a large number of individuals – GA population (a

set of solutions).

7.3 DBPack implementation

DBPack uses a new bottom-up perspective to build CLBs – clustering BLEs

to CLBs. Rather than incrementally adding BLEs to a CLB, which is used

in greedy algorithm based methods, DBPack utilises a MOGA to search a

group of best BLEs (BLE combination) for a CLB – CLB per GA. When

DBPack is in a process of building CLBs, clustered CLB interconnects are

known, this means that an optimisation objective can be set up in MOGA to

optimise CLB interconnects based on already built CLBs, which is from a

global perspective. Although DPBack is a bottom-up algorithm, the global

optimisation is considered. Moreover, since the building of CLB is facilitated

by the MOGA in DBPack, this indicates that DBPack can work with a

number of clustering objectives, which is flexible. Therefore, any clustering

related objectives can be defined as fitness functions and added to DBPack

without changing its core algorithm, for example, in this implementation,

five clustering objectives are used. As with the GGAPack, DBPack reads a

synthesised and pattern matched netlist as an input, and produces a new VPR

compatible netlist. In this section, the DBPack implementation is introduced.
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It includes the GA chromosome representation, genetic operations, fitness

functions and solution selection. DBPack genetic operations cannot deal with

clustering constraints, unlike the GGAPack, so an extra MOGA constraint-

handling approach is required. This is accomplished by invoking penalties,

and this method is introduced in Section 7.3.3.

7.3.1 Representation

Binary string has been used to encode DBPack GA’s chromosome. The use

of this particular encoding style has the following two benefits: First, this

encoding scheme is simple, and the classic-binary-string genetic operations

(Maulik et al., 2011) can be incorporated without complex conversions. Second,

this chromosome representation is sufficient to provide the complexity for

DBPack targeted-problem domain, this can be shown with the DBPack

experimental results in Section 7.5.

The DBPack GA chromosome has a number of genes, and these genes

are used to represent BLE selectivities for a CLB. The number of genes in

the chromosome is determined by the unclustered BLE number, hence the

chromosome length is variable. Each gene is used to encode each BLE index

and its selectivity. A gene that has the binary value “1” means that the BLE

index corresponding to that gene position is selected for a CLB. Otherwise,

the gene has the binary value “0” suggests that the corresponding BLE is

not selected. In DBPack, the circuit clustering is performed by a number

of discrete GAs, and each GA starts with different chromosomes, but the

longest chromosome appears at the first GA.

Figure 7.1 shows an example chromosome for a 12-BLE circuit clustering

problem. In this example, the “1” valued genes, which are BLE-2, BLE-3,

BLE-6 and BLE-8, represent a possible BLE combination for a CLB. If these

BLEs are the ultimate solution of the CLB, these BLEs are removed. The

next CLB (GA) construction starts from the chromosome shown in Figure

7.2. However, relative BLE indexes are not changed, and these remaining
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Figure 7.1: DBPack chromosome for 12-BLE circuit clustering problem: In
the chromosome, the position of gene is used to encode the BLE index, and the
gene value indicates the selectivity of corresponding BLE, where “1” means
selecting the BLE, “0” indicates a non-selected BLE.
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Figure 7.2: The remaining BLE indexes are based on the longest chromosome.
If some BLEs are used to build a CLB, these BLE’s genes are removed from the
chromosome. Next GA chromosome is based on the remaining (unclustered)
BLEs, but their indexes still use the longest chromosome.

BLE indexes are still based on the longest chromosome.

7.3.2 Reproduction

Crossover in DBPack

In DBPack, each discrete GA has both crossover and mutation operations

implemented as the genetic operation in order to reproduce individuals. The

crossover is a typical one-point binary coding crossover, and the crossover

operation is controlled by a crossover rate, which determines how many

individuals are crossovered or directly copied. In a GA generation, two

individuals are randomly selected from the population to perform the crossover,
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Figure 7.3: DBPack GA crossover operation. This crossover operation creates
two offspring. The crossover point is determined randomly. Then original
individuals are crossovered to generate offspring
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New 

Individual:

0 1

1

Mutation Gene

Figure 7.4: DBPack GA mutation operation. The mutation operation is the
classic “flipping a bit ” mutation, and it occurs to one crossovered offspring.
Each mutation operation flips one gene, and only one gene.

and the crossover point of their chromosomes is randomly determined as well.

Then these two individuals produce another two individuals. Figure 7.3

illustrates DBPack GA crossover operation.

Mutation in DBPack

The “flipping a bit” mutation operation (Maulik et al., 2011) is utilised in

DBPack, and this mutation operation is shown in Figure 7.4. This mutation

operates after crossover, and is performed on all crossovered offspring. For each

crossovered offspring, DBPack mutation operation is designed to randomly flip

one gene, and only one in the individual’s chromosome. This is different to a
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Figure 7.5: Box plot of generations vs. different mutation rates when finding
a optimal solution. For each mutation rate, GA executes 100 times. M01:
mutation rate 0.01%, M02: mutation rate 0.02% to M15: mutation rate 0.15%.
M16 is one gene, and only one gene mutation operation.

standard binary-coding-chromosome mutation operation, where the standard

mutation operation uses a mutation rate to control how many genes are flipped.

The reason for implementing this mutation is that this unique design can save

evolution generations in reaching DBPack clustering requirements. Figure 7.5

illustrates the relationship between mutation rates and generation number

when using only mutation operation to find all BLEs of “alu4” benchmark

(1152, BLEs, genes) – an “one max” problem – it is also an extreme condition

of DBPack. In this test, each chromosome is randomly initialised – “0” or

“1”, and the “one max” means that all genes require to be “1”. Apart from

the single gene flip mutation, all others use a rate controlled mutation which

the mutation ranges are from 0.01% to 0.15%. Compared with the rate-

controlled mutation, this “flip only one gene” mutation reduces the number

of generations by an average of 50% when the GA finds theexpected solution.
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7.3.3 Multiobjective evaluation

Objective functions

At each CLB construction, DBPack involves a number of fitness functions to

guide the GA evolution to search suitable BLEs. These fitness functions not

only describe which objectives need to be optimised, but also handle clustering

constraints. In DBPack, the MO selection is still based on the NSGA-2 (Deb

et al., 2002), which selects the best individuals using the fast-non-dominated

sort and crowding distance, and the detailed algorithm pseudocode is shown

in Appendices in Algorithms A.2-A.3. To clarify clustering requirements,

clustering objectives are preferentially described as objective functions, and

are shown in Equations 7.1-7.5. Each function represents one optimisation

objective of the searched BLEs, and all functions are defined to return smaller

values when the function represented objective is better. The calculation

of these objective functions uses BLE pin properties, where the individual

chromosome is firstly converted to a BLE set, and these BLE circuit features

are further determined by BLE input-and-output-pin relationships. This is

similar to GGAPack fitness calculations in Section 6.3.4.

fBLE(x) = (# of BLEs)−1 (7.1)

f internal connects.(x) =



2, (# of inter. cons. = 0)

(# of inter. cons.)−1

, (# of inter. cons. > 0)

(7.2)

f increased nets(x) = # of increased CLB interconnect nets (7.3)
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f input(x) = # of inputs (7.4)

f output(x) = # of outputs (7.5)

Compared with the global perspective clustering method GGAPack, these

objective functions are redesigned to meet the clustering requirements in

DBPack. Explanations of these functions are as follows: Equation 7.1 rep-

resents the number of BLEs for a CLB. To increase the CLB usage, a CLB

has to fill with as many BLEs as possible. Equation 7.2 shows how many

circuit connections a CLB can contain, or how many connections a particular

BLE combination, the BLEs, can include, to put it another way. Similar to

BLE number, if a clustered circuit has fewer interconnects between CLBs,

it will mean that there are more connections inside CLBs. Equation 7.2,

presents two situations: When the BLEs have no included connection, it

returns a large constant. Otherwise, it presents a function relationship of

CLB included connections. Equation 7.3 is to set up a global optimisation

for CLB interconnects. If there are already clustered CLBs, current clustered

CLB interconnects are known. When a new CLB is added, how many new

interconnects appeared is calculable. If the “increased net” number has a low

value, the clustered circuit has fewer CLB interconnects or more common

connections within current CLB interconnects. Equations 7.4-7.5 are the

controls of the CLB input and output numbers, and these are inspired by

Rent’s rule.

Rent’s rule

T = tgp (7.6)

Rent’s rule is an exponential relationship discovered by E. F. Rent (Land-

man and Russo, 1971). It is a trend between the number of connections T
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at the boundaries of an integrated circuit and its internal logic component

number g. Equation 7.6 explains the relationship. Apart from T and g, t is a

constant. No matter how connection and component numbers are changed, p

is a value that is always less than “1”, and it is normally between 0.5 and 0.8.

When the p is smaller, the integrated circuit boundaries have fewer connec-

tions. However, the integrated circuit contains more internal connections. In

DBPack, this relationship is used and transferred in the designed objective

functions. Equations 7.2, 7.4 and 7.5 represent this relationship. When a BLE

combination, treated as an integrated circuit, has fewer inputs and outputs,

as well as more internal connections, a smaller p is obtained.

Constraints handling

In the process of searching targeted BLE combinations, DBPack GA’s opera-

tions cannot control clustering constraints, and solution evolutions are only

dependant on GA fitness functions. Beside the objective functions, DBPack

GAs have to have an extra mechanism to control the CLB input and BLE

numbers when clustering a circuit for CLB bandwidth-constraint FPGAs.

However, this cannot be achieved by simply adding new objective functions.

If these constraints are presented as objectives in the MO selection, these

objectives might dominate other objectives and lead to the GA producing

invalid solutions. To handle constraints, penalties are implemented in the

fitness functions to eliminate unsatisfied individuals – solutions. Equations

7.7-7.8 are the defined penalty functions. When the evolved BLE combina-

tions are valid to these constraints, both functions have no effects. Once the

BLE combinations are invalid for the targeted CLB type, these functions

produce penalty violations. In these penalty functions, Equation 7.7 presents

the BLE number constraint, and Equation 7.8 is to control the input number

of the BLEs. Note that N = 8 and I = 18 are used in the following DBPack

experiments, but these values are changeable to match to different FPGA

architectures. A and B are two proportional coefficients. These two parame-

ters adjust penalty violation levels. Experiments show, A = 7, B = 2 are the
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most efficient settings, where the penalty violations have to be small enough.

If these penalty violations are too large, penalty violations will degrade the

GA population diversity, and result in no useful solutions found in GA.

fBLE penalty(x) =



0, (# of BLEs ≤ N)

# of BLEs / A

, (# of BLEs > N)

(7.7)

f input penalty(x) =



0, (# of inputs ≤ I)

# of inputs ∗B

, (# of BLEs > I)

(7.8)

Fitness functions

The objective functions and penalty functions have been set up for DBPack.

According to Deb, Kalyanmoy (Deb et al., 2001, 2000b) and Srinivas (Srinivas

and Deb, 1995) introduced method, which the penalty needs to add to all

objective functions to handle constraints, DBPack fitness functions have been

defined as in following Equations 7.10-7.11, where Equation 7.9 shows the

sum of the penalties. Designing fitness functions in this way, when the GA

has an invalid solution, the individual fitness values are higher. This leads to

the individual being eliminated in the following evolutions.

fpenalty(x) = fBLE penalty(x) + f input penalty(x) (7.9)

f obj1(x) = fBLE(x) + fpenalty(x) (7.10)
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f obj2(x) = f internal connects.(x) + fpenalty(x) (7.11)

f obj3(x) = f increased nets(x) + fpenalty(x) (7.12)

f obj4(x) = f input(x) + fpenalty(x) (7.13)

f obj5(x) = f output(x) + fpenalty(x) (7.14)

7.3.4 Solution selection

This section describes how a solution individual is identified from the GA

final population. In DBPack, each CLB construction uses a MOGA, and the

GA executes for a fixed number of generations. At the last generation, all

individuals can be considered as possible solutions for a CLB. However, the

individuals present a number of solutions. As a feature of MO, these solutions

are not identical but form a trade-off Pareto surface in “x” dimensions, where

“x” is number of objectives (objective fitness). Therefore, a solution selection

process is required. The flow of DBPack implemented solution selection

process is shown in Figure 7.6, and the detailed algorithm pseudocode is listed

in Appendices in Algorithm A.5.

In order to identify the solution individual, the selection process checks

all final generation individuals. Individuals that are on the first Pareto front

and having n (n = N) BLEs and less than or equal I inputs, are temporarily

stored. In practice, the GA might not find any solution which has n = N

BLEs, so n is deductible until individuals are found. The key to this process

is to find all maximum BLE solutions. Subsequently, these temporarily stored

individuals are ranked based on their included connections. The individual

205



Start

n = N

Check all 1st Pareto front 
solutions, if: Input <= I and

BLE number = n,
then store the solution in T set

Is T an empty set?

n = n - 1

Sort T based on 
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connections

Pick the most 
internal  

connection 
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End

No

Yes

Figure 7.6: The flow of DBPack solution selection process. All 1st Pareto
front individuals in the GA’s final generation indicate possible solutions for a
CLB. If the selection process cannot find the suitable solution where n = N ;
a solution that has n BLEs, it will perform n− 1 and try the process again,
until it finds the useful solution.

that has the most included connections is selected as a CLB.

7.3.5 Summary of DBPack

The DBPack execution flow is shown in Figure 7.7. The Pseudocode of

DBPack algorithm is summarised in Algorithm A.6 in Appendices. DBPack

clusters BLEs by using a number of discrete GAs, and the number of GAs are

dependent on whether or not the algorithm has unclustered BLEs. Therefore,

discrete GA number also indicates the number of CLBs. In each GA, the

initial population is randomly generated and based on the unclustered BLEs.

Here “random” means that individual chromosome is generated as a random

binary string. Then the individuals are evolved under multiple clustering

objectives. In DBPack, each GA produces its CLB based on unclustered

BLEs. Until all BLEs are clustered, DBPack will translate these clustered

CLBs as a new netlist.
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Figure 7.7: DBPack circuit clustering flow. GA evolution is similar to
GGAPack. The major difference is that the DBPack uses a number of
discrete GAs to deal with CLB constructions. Once all BLEs have been
clustered in CLBs, DBPack will translate all CLBs as a netlist. This netlist
can be tested using VPR.
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Figure 7.8: DBPack executing and testing flow: before forwarding the synthe-
sised MCNC-20 netlist (LUTs + FFs) to DBPack, the duplicated process –
the pattern match, is first performed, so the DBPack deals with synthesised
BLEs directly. As these programs are executed on a 128-CPU computing
cluster, there are maximum 128 DBPack and VPR programs can be executed
simultaneously.

7.4 Experimental setups

To evaluate DBPack clustered circuits, experiments have been set up. The

testing is based on the MCNC-20 benchmarks (Yang, 1991). For each bench-

mark, DBPack is executed one hundred times to investigate its stochastic

features. Similar to GGAPack, DBPack uses the synthesised and pattern

matched netlist as an input. After applying the DBPack algorithm, a new

netlist is generated, and the netlist is readable for VPR (Luu et al., 2011;

Betz and Rose, 1997b; Betz et al., 1999). The targeted FPGA architecture is

an island style FPGA as shown in Section 5.5. In this FPGA, it contains a

number of CLBs, and each CLB has I = 18 inputs, N = 8 BLEs and outputs.

BLE comprises of a 4-input LUT and one reconfigurable FF.
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Similar to RVPack and GGAPack, the experiments focus on two aspects:

First, DBPack direct output comparisons – this includes the CLB number,

CLB interconnects and the execution time. Second is the clustered circuit

real-mapping-performance comparisons. DBPack outputs are exported to

VPR, and VPR emulates the real FPGA mappings. The real mapping com-

parison contains FPGA area usage, channel width, wire length and the circuit

critical path delay. All experimental results are produced by a computing

clustering, referred to Section 5.5. As with previous clustering algorithm tests,

the execution time is the computing-cluster-processor-occupying time. The

DBPack execution and testing flow is illustrated in Figure 7.8.

To get satisfactory results, the GA parameters are calibrated. During the

calibration, the largest MCNC benchmark “clam” is used. Three parameters

are set for DBPack GA, which are the GA generation number, population

size and the crossover rate.

At the beginning, the GA generation number is set to a large value, for ex-

ample hundred of thousands, and the other two parameters are determined by

random numbers. To speed up the GA, both the population size and crossover

rate use small numbers. Using these settings, the results of first executed

GAs, clustering the first CLB, are satisfied. Note that when clustering the

first CLB, the GA has the largest searching space. “Satisfied” suggests that

the GA can have a large number of individuals, the possible CLBs, on the

first Pareto front. These individuals also have the most internal connections

and their BLE numbers are maximum. However, satisfied individuals are

significantly reduced when the unclustered BLEs are decreased – at the end

of the clustering process. To maintain a selectable number of individuals on

the first Pareto front, the population size is increased. An attempt is also

made to reduce the generation number to reduce the run time. Note that the

generation number was set to a huge number, so slightly reducing the number

does not immediately affect the results. Figure A.4 in Appendices shows that

the reduced generation number is still enough for DBPack to produce useful

results.
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Figure 7.9: Box plot of generation numbers (when BLE number is 8) vs.
different crossover rates of DBPack executions – clustering first CLB. The test
is based on “clma” – the largest benchmark in MCNC-20. For each crossover
rate, DBPack first GA executes for 100 times, and stops at when found BLE
number is 8 (a CLB can contain 8 BLEs). When the crossover rate is 0.6, the
GA generation numbers and variations are small when a solution has 8 BLEs.

Now keeping the generation number and population size of GAs constant,

the crossover rate is further calibrated. The core purpose of this calibration

is to adjust its rate to reduce the generation number required when the GAs

find suitable solutions compared with uncalibrated GAs. Figure 7.9 shows

that GA generation number used when a solution has 8 BLEs under different

crossover rates. In this crossover rate test, experiments are set up based on

benchmark “clma”, and for each mutation rate, GA has executed for 100

times to show result variations. This test reflects when crossover is 0.6, GA

is fast to find a solution that has 8 BLEs. Once the rate is determined, the

population number is adjusted again. To maximise the GA performance and

short evolutionary time, DBPack GA parameters are set as follows:

1) Population size: 200, building CLBs from scratch.

2) Crossover rate: 0.6

3) Mutation rate: one gene, only one per offspring.
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Figure 7.10: DBPack clustered CLB number for MCNC-20 benchmarks
compared to VPack, RVPack, GGAPack2, RPack, T-VPack and iRAC, lower
is better. Data boxplot and detailed data are provided in Appendices in
Figure A.22 and Table A.20.

4) Generation number: 15,000

7.5 Experimental results

7.5.1 DBPack direct outputs

This section shows DBPack clustered results for the MCNC-20 benchmarks,

and it also presents how DBPack solution selection works under the MO

selection scheme. This is facilitated by a DBPack GA execution which

constructs a CLB of the largest “clma” benchmark. For DBPack direct output

comparisons, VPack (Betz and Rose, 1997a), RVPack, GGAPack2, RPack

(E.Bozorgzadeh et al., 2001; Bozorgzadeh et al., 2004), T-VPack (Marquardt
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Table 7.1: Sums of clustered CLB numbers for the MCNC-20 benchmarks
between different algorithms – sorted in ascending order, lower is better.

Algorithm CLB number

GGAPack2 7,459
DBPack Best 7,469

DBPack Average 7,489
T-VPack 7,498

DBPack Worst 7,509
RVPack 7,534
RPack 7,550
VPack 7,551
iRAC 7,971

et al., 1999) and iRAC (Singh and Marek-Sadowska, 2002) clustering results

are used as references. Both RVPack and GGAPack2 refer to their best case

results. For clustered circuit real-FPGA-mapping tests, VPack, RVPack and

T-VPack are used. RPack and iRAC are not involved as no experimental

results and source code of these are available. Additionally, GGAPack2 is not

compared because its results are poor – worst than VPack. Detailed results

and variation box plots are enclosed in Appendices.

CLB usage

The first comparison is for clustered CLB numbers. Figure 7.10 shows the CLB

number comparison between different FPGA circuit clustering algorithms for

the MCNC-20 benchmarks. The sums of the clustered MCNC-20 benchmark

CLB numbers for these algorithms are summarised in Table 7.1. As the table

shows, DBPack has fewer number of CLBs for benchmarks if considering

the sum, and its CLB usage, in whichever case, is better than most of

circuit clustering methods. Only in the worst case, DBPack uses more CLBs

than T-VPack. In the best case, the improvements of DBPack to T-VPack,

RVPack, RPack, VPack and iRAC are 0.39%, 0.86%, 1.07%, 1.09% and 6.30%

respectively. However, GGAPack2 still has the highest CLB usage, although
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Figure 7.11: DBPack clustered CLB interconnect number for MCNC-20
benchmarks compared to VPack, RVPack, GGAPack2, RPack, T-VPack
and iRAC, lower is better. Data boxplot and detailed data are provided in
Appendices in Figure A.23 and Table A.21.

the real mapping results are poorer than other algorithms.

Table 7.2: Sums of clustered CLB interconnects and improvements compared
to DBPack best case results for MCNC-20 benchmarks between different
algorithms – sorted in ascending order, lower is better.

Algorithm CLB interconnects Improved

DBPack Best 24,813 0.00% (Reference)
DBPack Average 25,357 2.15%
DBPack Worst 25,901 4.20%

iRAC 28,077 11.62%
T-VPack 37,239 33.37%
RPack 38,300 35.21%

GGAPack2 39,445 37.10%
RVPack 43,349 42.76%
VPack 49,840 50.21%
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Figure 7.12: DBPack shortest execution time compares to GGAPack2. Data
boxplot and detailed data are provided in Appendices in Figure A.24 and
Table A.22.

CLB interconnect

Figure 7.11 presents the clustered MCNC-20 benchmark CLB interconnect

number comparison for different algorithms. The sums of the clustered MCNC-

20 benchmark CLB interconnects and improvements are summarised in Table

7.2. The results indicate that DBPack can include most circuit connections

in clustered CLBs, which leads to fewer CLB interconnects after clustering

compared with other algorithms. In the best case, DBPack is able to reduce

the CLB interconnects by up to 50.21% compared with VPack, and there

is also an 11.62% CLB interconnect reduction compared to the outstanding

connection-absorption circuit clustering method, iRAC. Moreover, DBPack

uses no more CLBs.

Execution time

However, execution time in DBPack is longer than other greedy algorithms,

and it is also longer than GGAPack2 – the GA based method. This is a major

problem when utilising GAs for performing the clustering. In the execution

time comparison, GGAPack2 is used as a baseline. Figure 7.12 shows the

shortest execution time for GGAPack2 and DBPack. As can be seen, DBPack
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Table 7.3: A clustered CLB in benchmark “clma”

Parameter Count

# of BLEs 8
# of inputs 14

# of outputs 1
# of clocks 0

# of CLB internal connections 7
# of increased CLB interconnects 4

clearly has a longer execution time, and even its shortest clustering time is

more than twice that of GGAPack2.

Solution analysis

DBPack GA has involved a maximum number of circuit clustering objectives

in the construction of a CLB, five objectives, and each GA evolved under

the MO selection scheme. As a result, DBPack GA is the best example to

show how multiple objectives are incorporated, and how the best individual

is selected as a CLB.

To observe this solution selection, the GA’s fitnesses are captured. Table

7.3 presents a CLB in the benchmark “clma”, and it is constructed by DBPack

GA. It is also the best solution, referred to solution selection method, among

all solutions – individuals. Figure 7.13 shows six 2-D fitness plots of individuals

on the last generation when building this CLB.

Figure 7.13(a) shows the population fitnesses between the BLE and the

input numbers, and also shows the first Pareto front individuals. As these

individuals are well evolved, they are all on the first Pareto front. However,

these coordinate points are discontinuous, and less than the number of

individuals.
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Figure 7.13: 2-D fitness plots for objectives at the GA last generation, when
clustering a CLB in benchmark “clma”. Generation number is 15,000 –
maximum. The black dot is the selected individual – the determined CLB.
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Two factors cause this phenomenon: First, the definition of the fitness

functions – DBPack GA fitnesses represent real circuit properties, so the

fitness is determined by discontinuous circuit properties. Second, there are

duplicated fitness individuals. Although searched BLE combinations are

different, the fitness can be the same.

To illustrate DBPack solution selection process, fitness plots, which are

shown in Figures 7.13(b)-7.13(f), can be used. Figure 7.13(b) illustrates the

individual fitness relationship between the input number and the BLE number.

The black dot is the selected individual – the solution, where the fitness value

is 0.125 – the smallest fitness value – the best fitness value for this objective,

and it has 8 BLE, referred to Equation 7.1 in Section 7.3.3. To clarify why

this individual is selected as a solution, consider Figure 7.13(c). This figure

indicates the fitness relationship between the CLB internal connections and

the input numbers. Similar to Figure 7.13(b), the black dot is the selected

individual. Note that all black dots in different figures represent the same

individual. As can be seen in Figure 7.13(c), only the black dot individual

has the most connections included in the CLB. Under the same principle,

in Figure 7.13(d), only the black dot individual represented CLB has fewer

output and most included connections. Figures 7.13(e)-7.13(f) help to explain

why the individual that increases three CLB interconnects is selected.

7.5.2 DBPack VPR results

This section focuses on clustered circuit real-mapping performance analysis

for DBPack.

FPGA area usage

The first comparison is the FPGA area usage. According to VPR mapping

reports, when mapping the DBPack clustered MCNC-20 benchmarks in both

the best and worst cases, it uses exactly the same FPGA area compared to
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Figure 7.14: DBPack on FPGA channel width for MCNC-20 benchmarks
compared to T-VPack RVPack and VPack, lower is better. Data boxplot and
detailed data are provided in Appendices in Figure A.26 and Table A.24.

RVPack, RPack and T-VPack. As discussed in the previous Section 2.4.2,

although DBPack has fewer CLBs, the actual area usage is not optimised

because VPR implements circuit on a X × Y array, and X = Y . If the

clustered CLB number is not significantly reduced, the area will not be

optimised. Beside this, the other supplementary issue is that VPR has to

allocate the input and output (IO) of a clustered circuit. The MCNC-20

benchmarks, for example the benchmark “bigkey”, contain many-IO circuits.

When mapping these circuits onto the FPGA, no matter how many CLBs

are used, the IO pads have to be allocated, and these pads can enlarge the

circuit on-FPGA area – the mapping area usage.
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Figure 7.15: DBPack on FPGA wire length for MCNC-20 benchmarks com-
pared to T-VPack RVPack and VPack, lower is better. Data boxplot and
detailed data are provided in Appendices in Figure A.27 and Table A.25.

Channel width

As DBPack has reduced the CLB interconnect, when mapping DBPack

clustered circuits onto FPGAs, it results in the mapped circuits having

narrower channel widths. Figure 7.14 shows the channel width comparison

of the clustered MCNC-20 benchmarks between DBPack both cases and

main-stream circuit clustering algorithms. The sums of the channel widths

are 882, 744, 816, 864 and 986 for DBPack worst and best cases, T-VPack,

RVPack and VPack respectively. In both the best or worst cases, DBPack

uses less channels than VPack. In the best case, DBPack reduces channels by

24.54% and 8.82% compared with VPack and T-VPack. In contrast to the

best case, DBPack occupies 9.68% more channels than T-VPack in its worst

case.
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Figure 7.16: DBPack on FPGA circuit-critical-path delay for MCNC-20
benchmarks compared to T-VPack RVPack and VPack, lower is better. Data
boxplot and detailed data are provided in Appendices in Figure A.28 and
Table A.26.

Wire length

Figure 7.15 illustrates the wire length comparison of the mapped MCNC-20

benchmarks via different circuit clustering algorithms. For large benchmarks,

routing DBPack clustered circuits on the FPGA uses more wires than T-

VPack, but, for the entire MCNC-20 benchmarks, DBPack wire length is

shorter than T-VPack in its best case. The overall wire lengths for DBPack

worst case, best case, T-VPack, RVPack and VPack are 572,201, 495,317,

504,230, 518,179 and 558,315 respectively.
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Delay

Despite DBPack does not consider the mapped-circuit timing optimisations,

the reduced CLB interconnects can actually speed up the mapped circuits.

Figure 7.16 is the mapped MCNC-20 benchmark circuit-critical-path delay

comparison between different algorithms. DBPack results have better timing

performances in the best case. However, DBPack results also have worse timing

performances when compared in the worst case. The sums of the clustered

and mapped MCNC-20 benchmark circuit-critical-path delays for DBPack

worst case, best case, T-VPack, RVPack and VPack are 3.46892 ∗ 10−01,

2.12634 ∗ 10−01, 2.28657 ∗ 10−01 2.16193 ∗ 10−01 and 2.53159 ∗ 10−01 µS

respectively.

7.6 Discussion

The DBPack experimental results have been reviewed in the previous section,

and notable improvements can be highlighted for DBPack. First of all,

DBPack clustered circuits have the minimum CLBs and CLB interconnects.

This is better than other algorithms, specially iRAC which was considered

as an outstanding connection absorption FPGA circuit clustering algorithm.

Benefiting the low CLB and CLB interconnect numbers is the main reason

why DBPack clustered circuit mapped onto FPGAs has narrower channels,

shorter routing-wire lengths and better timing performances.

In addition, another reason DBPack increases the opportunities of making

circuits use fewer tracks, shorter wires and faster speeds is that the DBPack

clustering objectives can optimise the common connections for a circuit

effectively. On the other hand, the MOGA and multiple fitness functions

maintain excellent flexibility for the DBPack. Anything related to the single

CLB construction can be represented as fitness functions involved in DBPack.

However, DBPack is not issue free. The obvious issue is the clustering order.
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DBPack still uses a bottom-up clustering perspective, which means that the

new CLB building is only dependent on the unclustered BLEs. Although there

is a global optimisation fitness function – CLB interconnects, the optimisation

is limited. Moreover, there is no BLE change or interaction between clustered

CLBs and an under clustering CLB. Therefore, this clustering method still

limits the quality of the clustered solutions.

One advantage of DBPack is that it deploys a few fitness functions to guide

the evolution, but this can also be a negative. First, the fitness functions are

designed using the real circuit parameters. This means that the fitnesses are

imprecise, and have resolution problems. Another problem with the multiple

fitness functions is the longer execution time. It should be emphasised that

in the MOGA, the more fitness functions used, the more time is spent in

its MO selection, so DBPack uses more evolutionary time than GGAPack2

although the searching space is narrowed. Apart from the fitness functions,

the longer execution time is also caused by the discrete GAs and the fixed

GA generations. Since the GA settings are based on the biggest MCNC-20

benchmark, this increases the execution time for smaller benchmarks as each

GA has to execute a same generation number regardless of when the suitable

result is found.

7.7 Summary

This chapter presents the novel DBPack algorithm. It is a GA-based circuit

clustering algorithm, and also uses a new bottom-up perspective to cluster

circuits for FPGAs. The design and implementation of DBPack solves the

major problems in GGAPack, but does not include the clustering perspective.

The experimental results show that DBPack can produce better clustering

solutions. For the CLB number and CLB interconnect comparisons, DBPack

results are outstanding compared with other state-of-the-art algorithms. Un-

fortunately, DBPack has its own issues – for example, the longer execution

time, and the stochastic results due to the use of the GA. However, there
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is no doubt that the DBPack provides a new way to use the GA to solve

the FPGA clustering problem. In order to facilitate a top-down perspective

clustering, the DBPack method can be combined with GGAPack to produce

a hybrid circuit clustering method, which will be introduced next chapter.
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Chapter 8

HYPack/T-HYPack: Hybrid

Circuit Clustering Approach

Using MOGAs

8.1 Introduction

In the previous chapters, GGAPack and DBPack were introduced. Both

algorithms are based on MOGAs. The obvious difference between these

algorithms is the CLB clustering order, where GGAPack clusters a circuit

from a global perspective, and DBPack builds CLBs using a new bottom-up

perspective. Tests show that GGAPack cannot produce better clustered

circuits for optimising real mapping performances, and the major problems

are the individual evaluation mechanism (fitness) and the reinsert operation.

DBPack builds the CLB by directly searching BLEs, and the fitness functions

are effective for a single CLB, so the clustered circuit not only has fewer CLBs

and CLB interconnects but also presents better real mapping performances.

This chapter introduces the HYPack and T-HYPack circuit clustering methods.

HYPack method starts from the CLB number and CLB interconnect number

optimisations. The method is then extended to optimising timing of clustered
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circuits - this is T-HYPack, which is short for Timing-driven HYPack.

This chapter is organised as follows: Section 8.2 presents the motivation,

and explains HYPack and T-HYPack. The implementations of these methods

are introduced in Section 8.3. Section 8.4 describes how experiments are

created to test HYPack and T-HYPack. The results are compared in Section

8.5, and discussed in Section 8.6. A summary of the chapter is given in

Section 8.7.

8.2 Motivation

Previous experiments have shown that the GGAPack2 method, actually

referred to as GGAPack, is useful for optimising the CLB number and CLB

interconnects. This proves that the designs of GGAPack representation,

genetic operations and its fitness functions are feasible for solving the circuit

clustering problem – for fewer CLBs and fewer CLB interconnects. However,

actual mapping performances are unsatisfactory. This is mainly due to the

random reinsertion operation where the freed BLEs are randomly inserted

into CLBs only based on hardware constraints, with no common connection

considerations.

The HYPack is short for hybrid circuit clustering method, and attempts

to solve the circuit clustering problem from a global perspective, similar to

GGAPack. The HYPack algorithm is based on GGAPack, but enhances

the free BLE reinsertion by incorporating DBPack method – the key word

“hybrid” indicates that this algorithm combines two clustering perspectives

(methods) together, and also uses DBPack produced solutions as GGAPack

GA initial population. Therefore, HYPack contains two clustering phases.

Subsequently, the HYPack algorithm has been extended as a timing-driven

circuit clustering method, T-HYPack. To fully optimise clustered circuits,

T-HYPack involves VPR (Luu et al., 2011; Betz and Rose, 1997b; Betz et al.,

1999) in the HYPack evolution process, and uses VPR to emulate real FPGA
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mappings. Compared with conventional circuit clustering methods, T-HYPack

clustering is no longer an independent procedure, and its implementation can

set up interactions between the circuit clustering and the circuit routing of a

FPGA which is similar to HDPack (Chen et al., 2007) and Un/DoPack (Tom

et al., 2006) clustering methods.

8.3 Implementation

8.3.1 MOGA based hybrid two-phase circuit cluster-

ing – HYPack

HYPack is a design to combine the methods of GGAPack and DBPack, and

review whether this combination produces better results or not. In HYPack,

the circuit clustering is in two phases. HYPack starts optimisations from

semi-optimised solutions – the DBPack results, and uses these results as

initial population of the GGAPack. This means that HYPack utilises DBPack

method as a pre-circuit-clustering tool, which clusters circuits from scratch.

This process is called first phase. In this phase, DBPack is executed many

times to generate enough stochastic results. Subsequently, a GGAPack-like

method is involved as the second phase. To match the second phase GA

population size, the first phase results are selected by a MO selector and

fitness functions which are the same as in GGAPack. In phase two, only better

results are converted to GA individuals. Figure 8.1 presents the working flow

of HYPack. As phase one, DBPack, is introduced in Chapter 7, and phase two

method is the same as GGAPack which is in Chapter 6, the details of these

two methods are not reintroduced. This chapter focuses on how the HYPack

method uses DBPack algorithm to reinsert the freed BLEs after the second

phase GA genetic operations – referred to GGAPack genetic operations.
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Figure 8.1: HYPack working flow. In phase one, DBPack executes for many
times to generate enough stochastic clustering solutions. In phase two, these
results are selected and used the GGAPack to further optimise the solution.
The free BLE reinsertion process in the GGAPack is replaced and uses the
DBPack method, where freed BLEs are represented as a DBPack chromosome,
and apply DBPack genetic genetic operations to cluster these BLEs as CLBs.

Figure 8.2 illustrates a situation after-crossover of an individual in the

HYPack second phase. Compared with original GGAPack, in which these

freed BLEs are directly inserted back into current CLBs. HYPack will

reserve the freed BLEs and continue its mutation operation – the same as

to GGAPack mutation, which randomly eliminates two CLBs. Figure 8.3

shows an example individual, based on the Figure 8.2, after both crossover

and mutation operations. On the right of the figure, these “free BLEs” are

the total freed BLEs after two genetic operations. It has to be emphasised

that, in real individuals, each individual contains a number of CLBs, so

eliminated CLBs are a small proportion to other CLBs. After individuals
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Figure 8.2: An individual after GGAPack crossover operation, some BLEs
are freed during this process. Detailed GGAPack crossover operation is
introduced in Section 6.3.2. The gene with “?” means the genes represented
by this BLEs does not belong to any CLBs.

perform crossover and mutation operations in GGAPack-like GA, these freed

BLEs which are reserved in the individual need to be reinserted by using

DBPack method. Figure 8.4 shows how these BLEs are converted as a new

chromosome for DBPack GAs.

In this reinsertion process, the DBPack method only produces new CLBs

with new indexes back to the global-perspective-optimisation GA individuals

BLE Index:

CLB Index: 4
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Individual x:

1
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2

1, 8, 9
7, 11

Free BLEs

121 4 ? 24 1 1 42 ?Chromosome:
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CLB Index:

Individual x :

1

0, 3, 5, 6
1, 2, 4, 7, 8, 9, 10, 11

Free BLEs

1?1 ? ? ?? 1 1 ?? ?Chromosome:

Figure 8.3: An individual after both crossover and mutation operations, where
the mutation is designed to randomly eliminate two CLBs. These CLBs are
CLB-2 and CLB-4. Note that this figure is based on the Figure 8.2. After
these two operations, freed BLEs are reserved in this individual, and waiting
for the BLE reinsertion process to cluster them into CLBs.
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Figure 8.4: Each individual, freed BLEs are reinserted by DBPack method.
According to the index of the freed BLEs, a new chromosome is created for
DBPack. This chromosome is the longest chromosome, and BLE indexes are
based on this chromosome when performing the DBPack to cluster them.

– HYPack phase-two GA individuals. This implies that DBPack method

will not reinsert a single BLE into a phase-two-GA individual presented

CLBs. In addition, since the reinsertion DBPack deals with a small number

of BLEs, so DBPack GA generation number has been reduced to compromise

the execution time. The same as GGAPack, in the last generation of the

phase-two GA, a best individual will be selected as the final solution, and

translated as a netlist.

8.3.2 Timing-driven HYPack – T-HYPack

T-HYPack is an implementation to optimise the timing performance of

DBPack clustered circuits, in addition to maintaining other circuit properties

such as the CLB number, CLB interconnects and FPGA area usage. In order

to optimise the timing of mapped circuit, connections of a clustered circuit

should be legitimately arranged. The reason is that the FPGA CLB internal-

connection-propagation delays are significantly lower than the connections
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between CLBs – CLB interconnects (Marquardt, 1999).

The conventional methods, for example T-VPack (Marquardt et al., 1999),

normally cluster target circuits by incorporating the connection criticality.

This is achieved by performing a static timing analysis (Hitchcock et al.,

1983) before clustering. Subsequently, the circuit clustering method clusters

the target circuit, and attempts to arrange the most critical connections

inside CLBs while leaving the less critical, or non-critical connections as CLB

interconnects. The goal of the method is to avoid unnecessary delays that

are produced by certain CLB interconnects.

However, there are many factors that affect the timing of a clustered

circuit. First, it is the CLB and CLB interconnect numbers. The fewer

CLBs used when mapping the clustered circuit onto a FPGA, the shorter the

interconnect wires can be. By the same principle, the smaller the number of

CLB interconnects produced, the narrower the routing channels are. Second,

is how the CLB interconnects are determined. As different clusterings can

form different CLB interconnects, if these connections contain more critical

connections, where CLB internal BLEs are badly grouped, the mapped circuit

might have larger propagation delays, or the routing wires might be longer –

consuming more power. Third, it is the position of the clustering step in the

FPGA CAD flow. Since the circuit clustering process is usually regarded as

an independent process, the rest of mapping is just using its clustered circuits.

This means that the clustered circuit might be satisfiable for the basic circuit

clustering requirements – for example CLB and CLB interconnect number,

but worse for the real mapping performances.

As DBPack clustered circuits contain many superior timing-performed

solutions, this indicates that DBPack clustered circuits can be used or further

optimised on timings. T-HYPack is based on HYPack, and an extra step is im-

plemented to perform on-line circuit evaluations. Rather than independently

clustering circuits, T-HYPack evaluates and optimises the clustered circuits

with VPR, which emulates a real FPGA. When T-HYPack produces a new

solution, or receives the solutions from DBPack at the beginning, the solutions
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Figure 8.5: T-HYPack involves VPR for evaluating a solution. After the
genetic operation and the reinsertion processes, an individual is converted
and assigned fitnesses as in HYPack. At the same time, the individual is
exported as a netlist to VPR. VPR then is executed, and its outputs are
extracted and represented as new fitnesses for this individual. All fitnesses
are used in T-HYPack MO selection.

are not only evaluated on the basic circuit clustering requirements, such as the

CLB number, CLB interconnects and the CLB internal connection number,

but also comparing their mapping performances. Figure 8.5 illustrates how

HYPack involves VPR as a real mapping evaluator, and how VPR outputs

are composed as fitnesses used in the GA loop.

On the left of the figure is HYPack fitness calculation flow, where an

individual is firstly converted as an actual circuit according to the BLE input

and output relationships, the method has been shown in Section 6.3.4, and the

fitness values are assigned. On the right of the figure, the greyed parts show

the VPR flow and the new fitness functions. For each individual, the individual

represented circuit, after assigning HYPack fitnesses, is translated as a VPR

readable netlist, and VPR emulates a real FPGA mapping. Subsequently, the

VPR output is used to compose new fitness criteria. The new fitness functions

are represented in Equations 8.1-8.2. Compared with HYPack, T-HYPack

has five fitness functions which are shown in Equation 8.1-8.5. Similar to the
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GGAPack fitness functions, all these fitness functions to return smaller values

when a better solution is found.

f obj1(x) = Critical delay (Seconds) (8.1)

f obj2(x) = Wire length (8.2)

f obj3(x) = # of CLBs (8.3)

f obj4(x) = # of global nets (8.4)

f obj5(x) = (# of CLB absorbed nets)−1 (8.5)

As HYPack and T-HYPack algorithms are similar to GGAPack, Algorithm

A.4 in Appendices, HYPack and T-HYPack algorithm pseudocode are not

reintroduced. However, the solution picking has to be emphasised; when T-

HYPack is executed for a fixed number of generations, on the last generation,

the best individual is filtered from the first Pareto front. Unlike HYPack,

referred to GGAPack – it is the second-phase method of HYPack, which

saves the individual with fewer CLBs and number of CLB interconnects as a

solution, T-HYPack selects the individual with the best timing performance

and the fewest CLBs. The individual is then converted as a netlist, and

regarded as the best solution.
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Figure 8.6: HYPack, T-HYPack executing and testing flow

8.4 Experimental setups

The experimental setups are the same as RVPack, GGAPack and DBPack. To

test HYPack and T-HYPack, the MCNC-20 benchmarks are used. For each

benchmark, the HYPack starts from the synthesised and pattern matched

netlist. As HYPack clusters the circuit using both the GGAPack and DBPack

methods, this means that HYPack execution time is longer. To get useful

results and maintain lower requirements of computing resources, each bench-

mark in HYPack is managed to execute ten times. In addition, as T-HYPack

involves VPR in the evolution where VPR mapping is extremely slow when

circuit is large, it significantly increases the entire evolution time, especially

for large benchmarks. Therefore, the T-HYPack only uses ten small MCNC-20

benchmarks for testing; “small” refers to a synthesised benchmark that has

1,000-1,500 BLEs. The same as HYPack, ten executions are produced for

each benchmark.

The targeted FPGA is the island style FPGA as shown in Section 5.5,

which contains a number of CLBs. Each CLB can map 8 4-input-LUT BLEs,

and the CLB has 18 inputs and 8 outputs. Like RVPack, HYPack and T-

HYPack are executed on the same computing cluster, and their test flows are
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shown in Figure 8.6. As T-HYPack has already involved VPR, where the real

mapping results can be obtained directly from T-HYPack executions, there is

no need to forward T-HYPack results to VPR again. For HYPack, only the

CLB number, CLB interconnect number and execution time – HYPack direct

outputs, are compared with other circuit clustering algorithms. The results

of HYPack are only to show how HYPack meets the basic circuit clustering

requirements. For T-HYPack, the result comparisons will cover the FPGA

area usage, channel width, wire length and the timing. In contrast to previous

circuit clustering method result comparisons, introduced in Chapters 5-7,

which only compare one aspect of results at a time, in T-HYPack, the best

timing performed solutions are identified, and listed. This helps to show how

T-HYPack can solve the circuit clustering problem effectively, and optimise a

solution from various aspects – area usage, channel width, wire length and

the timing – the MO feature of T-HYPack.

According to GGAPack and DBPack GA settings in Chapters 6-7, the GA

parameters of HYPack and T-HYPack are determined. Since HYPack and

T-HYPack mainly refer to second level optimisers – the second phase, where

both methods start from DBPack solutions and DBPack solutions are already

optimised, the generation and population numbers in both GAs are reduced to

compensate the execution time. Moreover, the generation and population size

reductions are also applied to the reinsertion process – reinsertion DBPack

GAs, because the freed BLEs are in a limited number. Although the generation

number is small, HYPack and T-HYPack still produce better solutions and

the results are shown in Section 8.5. HYPack and T-HYPack GA parameters

are summarised as follows:

HYPack GA parameters:

1) Population size: 6

2) Crossover rate: 0.6

3) Generation number: 4,000
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T-HYPack GA parameters:

1) Population size: 10

T-HYPack designs to more benefit from the MO feature.

2) Crossover rate: 0.6

3) Generation number: 1,000

Reinsertion DBPack GA parameters (for both HYPack and T-HYPack):

1) Population size: 200

2) Crossover rate: 0.6

3) Mutation rate: one gene, and only one gene per offspring.

4) Generation number: 2,000

8.5 Experimental results

8.5.1 HYPack direct outputs

This section presents experimental results for HYPack. The CLB number,

CLB interconnect number and execution time are compared for HYPack.

Reference methods are VPack (Betz and Rose, 1997a), RVPack – best case

results, GGAPack2 – best case results, RPack (E.Bozorgzadeh et al., 2001;

Bozorgzadeh et al., 2004), T-VPack (Marquardt et al., 1999), iRAC (Singh

and Marek-Sadowska, 2002) and DBPack – best case results, as HYPack is

competitive to them. Again, to show the variations of GA output, the best

and worst case results are compared. The detailed results and variation box

plots have been included in Appendices.
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Figure 8.7: HYPack clustered CLB number for MCNC-20 benchmarks com-
pared to VPack, RVPack, GGAPack2, RPack, T-VPack, DBPack and iRAC,
lower is better. Data boxplot and detailed data are provided in Appendices
in Figure A.29 and Table A.27.

Table 8.1: Sums of clustered CLB numbers for MCNC-20 benchmarks between
different algorithms – sorted in ascending order, lower is better.

Algorithm CLB number

GGAPack2 7,459
DBPack 7,469
T-VPack 7,498
RVPack 7,534
RPack 7,550
VPack 7,551

HYPack Best 7,575
HYPack Average 7,609
HYPack Worst 7,643

iRAC 7,971

CLB usage

The first comparison is for the CLB number comparison; it uses all MCNC-20

benchmarks. Figure 8.7 shows the clustered MCNC-20 benchmark CLB236
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Figure 8.8: HYPack clustered CLB interconnects for MCNC-20 benchmarks
compared to VPack, RVPack, GGAPack2, RPack, T-VPack, DBPack and
iRAC, lower is better. Data boxplot and detailed data are provided in
Appendices in Figure A.30 and Table A.28.

number comparison between HYPack worst and best cases, VPack, RVPack,

GGAPack2, RPack, T-VPack, DBPack and iRAC. The figure indicates that

HYPack uses no more CLBs apart for some of the large circuits. Table

8.1 summaries the clustered MCNC-20 benchmark CLB numbers between

different algorithms. The table shows that HYPack CLB usage is worse than

other algorithms when compared with the total CLB numbers. This is due

to the DBPack method only deals with freed BLEs by creating new CLBs.

However, the CLB usage is still better than iRAC no matter in the worst and

best cases. The improvement is by 4.96% compared to iRAC in the HYPack

best case.
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Table 8.2: Sums of clustered CLB interconnects and improvements compared
to HYPack best case results for MCNC-20 benchmarks between different
algorithms – sorted in ascending order, lower is better.

Algorithm CLB interconnects Improved

HYPack Best 24,074 0.00% (Reference)
HYPack Average 24,244 0.71%
HYPack Worst 24,413 1.39%

DBPack 24,813 2.98%
iRAC 28,077 14.26%

T-VPack 37,239 35.35%
RPack 38,300 37.14%

GGAPack2 39,445 38.97%
RVPack 43,349 44.46%
VPack 49,840 51.70%

CLB interconnect

Figure 8.8 shows the clustered MCNC-20 benchmark CLB interconnect com-

parison between HYPack worst case and best case, VPack, RVPack, GGA-

Pack2, RPack, T-VPack, iRAC and DBPack. This comparison indicates that

HYPack creates the fewest CLB interconnects. The sums of the clustered

MCNC-20 benchmark CLB interconnects and improvements of different al-

gorithms are listed in Table 8.2. The data presented in the table indicates

that HYPack is the best circuit clustering algorithm for absorbing circuit

connections; it is 50.70% better than VPack, and 14.28% better than iRAC.

Execution time

Figure 8.9 compares the shortest execution time of GA-based circuit clustering

methods. This includes GGAPack2, DBPack and HYPack. The figure shows

that HYPack is the most time-consumed-clustering method. In the comparison

of the total shortest execution time, HYPack uses about eight times the

execution time of DBPack. Furthermore, another feature is found from the
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Figure 8.9: The shortest execution time comparison between GGAPack2,
DBPack and HYPack for MCNC-20 benchmarks, lower is better. Data boxplot
and detailed data are provided in Appendices in Figure A.31 and Table A.29.

Table 8.3: Sums of shortest, average and longest execution time for MCNC-20
benchmarks between GGAPack2, DBPack and HYPack – sorted in ascending
order.

Algorithm Shortest Exe. Time Avg. Exe. Time Longest Exe. Time

GGAPack 74,980 97,408 119,836
GGAPack2 187,690 226,138 264,586

DBPack 398,367 689,345 980,322
HYPack 3,157,988 3,445,669 3,733,349

Unit: Second
Exe. = execution
Avg. = average
Shorter time is better.

figure – HYPack has almost identical execution time for small benchmarks.

This means that, for these small benchmarks, each GA generation execution

time in HYPack is nearly the same – the number of freed BLEs are nearly the

same. Rather than only comparing each benchmark shortest execution time,

Table 8.3 summarises the MCNC-20 benchmark total execution time for GA

based methods. This includes the longest, average and shortest execution

time, and lists as a reference.
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Figure 8.10: T-HYPack clustered CLB number for selected ten MCNC-20
benchmarks compared to HYPack, VPack, RVPack, GGAPack2, RPack, T-
VPack, DBPack and iRAC. lower is better. Data boxplot and detailed data
are provided in Appendices in Figure A.32 and Table A.30.

8.5.2 T-HYPack outputs

This section presents experimental results for T-HYPack. For the CLB

number and CLB interconnects comparisons, VPack, RVPack, GGAPack2,

RPack, T-VPack, iRAC, DBPack and HYPack results are used. The used

results of RVPack, GGAPack2, DBPack and HYPack refer to their best case

results. For the real mapping FPGA area usage, channel width, wire length

and delay comparisons are facilitated by VPack, RVPack – best case results,

T-VPack and DBPack – best case results. The detailed results and variation

box plots have been included in Appendices.

CLB usage

As introduced before, T-HYPack only uses ten of the smaller MCNC-20

benchmarks. Figure 8.10 shows the T-HYPack clustered circuit CLB numbers

compared with other algorithms for the ten-small MCNC-20 benchmarks.

Table 8.4 lists the sums of CLB numbers of ten selected benchmarks between

these algorithms. The table suggests that T-HYPack average results are

better than some greedy-algorithm-based clustering methods. In the best
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Figure 8.11: T-HYPack clustered CLB interconnect number for selected ten
MCNC-20 benchmarks compared to HYPack, VPack, RVPack, GGAPack2,
RPack, T-VPack, DBPack and iRAC. lower is better. Data boxplot and
detailed data are provided in Appendices in Figure A.33 and Table A.31.

case, T-HYPack results are better than HYPack, DBPack and all greedy

algorithm based clustering methods except GGAPack2. However, in the worst

case, T-HYPack results is poor compared with recent methods. This table

also points out that the result variation of T-HYPack is wider.

Table 8.4: Sums of clustered CLB numbers for ten selected MCNC-20 bench-
marks between different algorithms – sorted in ascending order, lower is
better.

Algorithm CLB number

GGAPack2 1,823
T-HYPack Best 1,832

DBPack 1,832
HYPack 1,833
T-VPack 1,843

T-HYPack Average 1,845
RVPack 1,849

T-HYPack Worst 1,858
RPack 1,869
VPack 1,871
iRAC 1,958
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Table 8.5: Sums of clustered CLB interconnects for ten selected MCNC-20
benchmarks between different algorithms – sorted in ascending order, lower
is better.

Algorithm CLB interconnects

HYPack 6,215
T-HYPack Best 6,234

DBPack 6,338
T-HYPack Average 6,435
T-HYPack Worst 6,635

iRAC 6,831
T-VPack 9,214

GGAPack2 9,236
RPack 9,875

RVPack 10,777
VPack 12,977

CLB interconnect

Figure 8.11 shows the comparison of T-HYPack clustered ten-smaller MCNC-

20 benchmark CLB interconnect number between T-HYPack worst case and

best case, HYPack, VPack, RVPack, GGAPack2, iRAC and DBPack. In

general, T-HYPack has fewer clustered CLB interconnects. However, for

the benchmark “bigkey” and “dsip”, DBPack, HYPack and T-HYPack have

more CLB interconnects than iRAC. Table 8.5 summarises the total CLB

interconnects for the ten smaller MCNC-20 benchmarks among different

algorithms. The table indicates that T-HYPack CLB interconnect number in

the best case is greater than HYPack. The table also indicates that T-HYPack

average and worst case results have more CLB interconnects than DBPack,

but the results are better than greedy algorithm based algorithms.

Execution time

T-HYPack involves VPR in the evolution loop, which causes in a longer

execution time. Because the working conditions are different, to compare the
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Table 8.6: Single execution time comparisons for ten small MCNC-20 bench-
marks

HYPack T-HYPack

Benchmk. Long. Avg. Short. Long. Avg. Short.

alu4 148,362 136,782 125,202 556,099 537,515 518,931
apex2 230,977 176,156 121,334 1,334,968 1,267,149 1,199,329
apex4 130,651 127,027 123,403 865,983 831,007 796,030
bigkey 134,457 130,495 126,533 1,509,886 1,250,763 991,640
diffeq 155,831 141,010 126,188 592,586 558,935 525,284
dsip 132,564 127,748 122,932 3,562,884 3,271,641 2,980,398
ex5p 135,992 128,826 121,659 935,335 849,473 763,610

misex3 184,403 154,916 125,429 851,424 805,957 760,490
seq 129,889 126,835 123,780 1,144,545 1,103,508 1,062,471

tseng 133,184 126,852 120,520 377,341 360,632 343,923

Unit: Second
Benchmk. = benchmarks
Long. = longest execution time
Avg. = average execution time
Short. = shortest execution time
Shorter time is better.

Table 8.7: T-HYPack, RVPack, T-VPack, DBPack and the VPack on FPGA
area usages, X × Y arrays, for ten small MCNC-20 benchmarks, lower is
better.

Benchmark T-HYPack RVPack T-VPack DBPack VPack

alu4 14*14 14*14 14*14 14*14 15*15
apex2 16*16 16*16 16*16 16*16 16*16
apex4 13*13 13*13 13*13 13*13 13*13
bigkey 36*36 36*36 36*36 36*36 36*36
diffeq 14*14 14*14 14*14 14*14 14*14
dsip 36*36 36*36 36*36 36*36 36*36
ex5p 12*12 12*12 12*12 12*12 12*12

misex3 14*14 14*14 14*14 14*14 14*14
seq 15*15 15*15 15*15 15*15 15*15

tseng 15*15 15*15 15*15 15*15 15*15
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Figure 8.12: T-HYPack on FPGA channel widths for ten small MCNC-20
benchmarks compared to DBPack, T-VPack, RVPack and VPack, lower is
better. Data boxplot and detailed data are provided in Appendices in Figure
A.36 and Table A.34.

execution time can be meaningless. Therefore, T-HYPack execution time

comparison chart is not shown, but each benchmark single execution time is

still provided for reference. Table 8.6 shows single HYPack and T-HYPack

longest, average and shortest execution time for the ten selected MCNC-20

benchmarks.

FPGA area usage

Table 8.7 shows T-HYPack, RVPack, T-VPack, DBPack and VPack on FPGA

area usages for the ten smaller MCNC-20 benchmarks. The results imply

that T-HYPack uses the same area as, for example, RVPack, T-VPack and

DBPack, but a smaller area usage than VPack, which is in the benchmark

“alu4”.

Channel width

Figure 8.12 presents the routed FPGA channel width of the ten selected

MCNC-20 benchmarks between T-HYPack, DBPack, T-VPack, RVPack and
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Figure 8.13: T-HYPack on FPGA wire lengths for ten small MCNC-20
benchmarks compared to DBPack, T-VPack, RVPack and VPack, lower is
better. Data boxplot and detailed data are provided in Appendices in Figure
A.37 and Table A.35.

VPack. The sums of the channels are 362, 330, 306, 352, 362 and 430 for

T-HYPack worst case, best case, DBPack, T-VPack, RVPack and VPack

respectively. The figure indicates that DBPack has the fewest channels used

in its best case compared to other algorithms. Therefore, DBPack can be the

algorithm in reducing the mapping channel width, while improving the FPGA

routability. In the best case, T-HYPack can reduce channels by 6.25%, 8.84%,

23.26% compared to T-VPack, RVPack and VPack respectively. However, in

the worst case, T-HYPack uses 2.76% more channels than T-VPack.

Wire length

Figure 8.13 compares clustered-circuit-routed wire lengths between T-HYPack,

DBPack, T-VPack, RVPack and VPack. For the ten selected MCNC-20

benchmarks, the sums of the wire lengths are 113,135, 106,259, 106,048,

116,157, 117,336 and 134,404 respectively for T-HYPack worst case, best case,

DBPack, T-VPack, RVPack and VPack. The results suggest that T-HYPack

achieves the shortest wires compared to other algorithms in both the worst

and best cases. In T-HYPack best case, it reduces the wire lengths by up

to 8.51%, 9.44% and 20.94% compared to T-VPack, RVPack and VPack.
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Figure 8.14: T-HYPack on FPGA circuit-critical-path delay for ten small
MCNC-20 benchmarks compared to DBPack, T-VPack, RVPack and VPack,
lower is better. Data boxplot and detailed data are provided in Appendices
in Figure A.38 and Table A.36.

However, T-HYPack uses 0.20% more wire lengths compared to DBPack.

Delay

The next comparison is for the timing of clustered and mapped circuits.

Figure 8.14 shows the mapped-circuit critical-path delays of T-HYPack worst

case, best case, DBPack, T-VPack, RVPack and VPack for the ten selected

MCNC-20 benchmarks. Based on the comparison, T-HYPack has the best

timing performance for its clustered circuits. The sums of critical path delays

of ten benchmarks for T-HYPack worst case, best case, DBPack, T-VPack,

RVPack and VPack are 7.08908 ∗ 10−02, 6.78532 ∗ 10−02, 7.41984 ∗ 10−02,

9.37445 ∗ 10−02, 8.49561 ∗ 10−02 and 1.04538 ∗ 10−01 µS respectively. In the

best case, T-HYPack improves the mapped circuit speed by up to 8.55%

27.62%, 20.13%, 35.09% compared to DBPack, T-VPack, RVPack and VPack.
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Table 8.8: Best timing performed T-HYPack results compared to T-VPack

Benchmk. Algo. CLBs CLB inter. CH Wire-Len. Delay (nS)

alu4 T-VP. 192 804 34 9410 8.33
T-HYP. 192 528 34 8864 7.15

apex2 T-VP. 240 1249 44 15681 11.05
T-HYP. 238 834 44 15824 8.75

apex4 T-VP. 165 863 52 12072 9.74
T-HYP. 162 645 46 10588 7.60

bigkey T-VP. 214 1040 26 15619 6.44
T-HYP. 214 669 14 13640 4.49

diffeq T-VP. 189 1033 28 7686 6.22
T-HYP. 188 565 26 6817 7.14

dsip T-VP. 172 762 18 14368 6.21
T-HYP. 172 704 22 15157 4.58

ex5p T-VP. 139 767 46 9780 10.01
T-HYP. 136 592 46 9618 7.68

misex3 T-VP. 178 840 38 10429 8.93
T-HYP. 178 579 42 9925 7.08

seq T-VP. 221 1055 42 14480 8.93
T-HYP. 225 758 44 13800 7.22

tseng T-VP. 133 801 24 6632 7.80
T-HYP. 132 456 20 4545 6.15

Benchmk. = benchmark, Algo. = algorithm
CLB inter. = CLB interconnects, CH = channel widths
Wire-len. = wire lengths
T-VP. = T-VPack
T-HYP. = T-HYPack
Lower is better.

Comprehensive comparison of best timing solutions

Previous chapters only compare each aspect of the clustered circuits. However,

this is not able to present all features of a solution, as a clustered circuit

might have one aspect superior and other features worse. Table 8.8 lists the

best timing performed solutions between T-HYPack and T-VPack. This table

shows all features of clustered circuits, and also indicates that T-HYPack

247



VPack: Routing succeeded with a channel width 28. T-HYPack: Routing succeeded with a channel width 20.

Figure 8.15: Different routings of “tseng” benchmark when using VPack
and T-HYPack circuit clustering methods. Routing VPack clustered “tseng”
circuit on FPGA uses up to 28 tracks in the routing channel. Routing T-
HYPack clustered “tseng” circuit on FPGA uses up to 20 tracks in the routing
channel.

will better solve the circuit clustering problem. To clearly show the routing

congestion and wire length reductions in T-HYPack, Figure 8.15 presents

FPGA routing examples – the smaller benchmark ”tseng” final routings on

FPGA when using VPack and T-HYPack circuit clustering methods.

8.6 Discussion

Section 8.5 has reviewed HYPack and T-HYPack results. In HYPack, full

MCNC-20 benchmarks are used in tests. In T-HYPack, tests are carried out

by ten smaller-scale MCNC-20 benchmark circuits. Compared to HYPack,

T-HYPack clustered circuits have been further tested for their real FPGA

mapping performances.

According to HYPack results, the CLB usage of clustered circuits is low.

This means that HYPack has more clustered CLBs for targeted circuits. The
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problem is produced by the phase-two GA reinsertion process. In order to

speed up the evolution time, DBPack reinsertion only regroups the freed

BLEs as new CLBs, rather than reinserting these BLEs back into individual

current CLBs. This is why the similar method, the GGAPack, has fewer

CLBs. However, HYPack is the best method to absorb circuit connections

compared to reference algorithms, which produces a clustered circuit with

fewer CLB interconnects.

In the real mappings, T-HYPack, which is based on HYPack, involves VPR

as a mapping emulator and uses the Pareto optimality principle (MOGA), so

T-HYPack generated results have a number of aspects, such as CLB number,

CLB interconnect, channel width, etc., which are better than other algorithms.

In not affecting the FPGA mapping area, as well as optimising the routability,

T-HYPack has the strongest optimisation on timing of its clustered circuits.

Due to T-HYPack incorporating with VPR as an extra plugin, this suggests

that this plugin, VPR, can be enhanced or replaced, where anything related

to the circuit clustering can be considered without the change of T-HYPack

algorithm.

It is notable that GA-based HYPack and T-HYPack take much longer

to produce results. It is a major issue, which is also the reason why the

larger benchmarks cannot be tested, and has not been addressed in current

designs and implementations. On the other hand, one feature in HYPack

execution is identified, which is the almost identical execution time for smaller

benchmarks. This indicates that the GA-based reinsertion process uses the

same time; fixed generation number is used in DBPack-based reinsertion,

and the unchangeable time extends entire algorithm execution time. If an

adaptive generation number can be implemented to both the BLE reinsertion

GA and even in HYPack phase-two GA, the entire evolution time can be

reduced. Moreover, the designs of current HYPack, T-HYPack are single-

thread programs. If a method can be achieved which parallels these program

codes on a process basis to run them on a high-performance computing cluster,

solutions can be produced quicker.
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8.7 Summary

This chapter introduced HYPack and T-HYPack. These methods are defined

as hybrid clustering algorithms, which combine the top-down and bottom-up

perspectives when clustering a circuit. The “hybrid” is also apparent in the

use of VPR in GA evolution loop. The design motivations are clarified, and

detailed implementations are presented. In Section 8.5, test results show that

HYPack and T-HYPack have superior clustering performances. However,

these tests also point to the drawbacks of these algorithms - for example,

the execution time - which have not been solved. In short, the HYPack

and T-HYPack provides a useful GA-based methods to solve the circuit

clustering method, and the results are better than other existing conventional

approaches, for example VPack and T-VPack in terms of CLB usage, CLB

interconnects and timing.
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Chapter 9

Conclusion and Future Work

This chapter summarises and concludes the key findings of the proposed

methods. The research hypothesis is then reviewed, and the conclusion of

this research is made. In addition, the proposed methods reveal a set of

new opportunities to solving FPGA CAD problems, so the future works are

highlighted.

9.1 Key findings

The summaries and conclusions of key findings are based on the proposed

methods:

RVPack

1. Greedy algorithm based FPGA circuit clustering methods use a bottom-

up clustering perspective, and these methods have to rely on seed

selection and cost function in the clustering process. Hence, a highly

optimised solution can be difficult to produce.
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2. Although seed selection and cost function are improved in new greedy

algorithm based clustering methods, the seed and selectable BLEs are

not unique. In the worst case, for example in VPack, when dealing with

the “clma” benchmark, there are 30.24% BLEs which can be a seed,

and an average of 39 BLEs can be selected into a CLB. This is another

reason that affects the solution quality of the greedy algorithm based

methods.

3. A hill-climbing algorithm is used in most greedy algorithm based meth-

ods. The efficiency of hill-climbing is low. The efficiency rate is also

unstable when using different seed or BLE selections.

4. RVPack is inspired by EAs, which use stochastic features in seed and

BLE selections and also in hill-climbing. Though RVPack is based on

VPack, it produces some superior solutions. On the targeted FPGA

model, the best RVPack solution can reduce CLB number by up to

0.23%, and CLB interconnect number by up to 13.02% compared with

VPack. In VPR tests, RVPack best solution also reduces channel width,

wire length and circuit delay by up to 12.37%, 7.19% and 14.60%

respectively compared with VPack.

5. RVPack single execution time is similar to VPack, however, it uses a

random search. This means that, to find a better solution, RVPack

might be required to execute multiple times. In this thesis, 100 RVPack

executions are processed, and this is the time-cost.

GGAPack and GGAPack2

1. MO GGA based method, GGAPack, can represent the problem of

FPGA circuit clustering, and clustering constraints can be controlled

in GGA genetic operations. Due to the use of Pareto optimality,

GGAPack and GGAPack2 produced solutions are usually the best trade

off. Unfortunately, GGA genetic operations and its MO selection scheme

are complex which use more computing time, therefore a larger number
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of GA generations cannot be tested with the computing resources

available.

2. GGAPack is assumed to have better solutions as it uses a top-down

clustering perspective. The solution quality of GGAPack is low which

is unexpected. Since it is a top-down GA based clustering method, the

huge search space is the major issue that affects the quality of solutions.

This can be viewed from its experimental results – the worse solutions

are obtained for the larger benchmark.

3. GGAPack2 uses RVPack solutions as initial conditions of the GGAPack

GA. A per-selection process is required which uses extra time. On

the other hand, RVPack solutions can significantly affect the ultimate

solution quality of GGAPack2. GGAPack2 produced solutions are

better than RVPack and GGAPack, but the real mapping shows that

GGAPack2 solutions perform worse. This is caused by its random rein-

sertion processes as common circuit connections cannot be reasonably

arranged.

4. Both GGAPack and GGAPack2 use three fitness functions (objectives)

in their MO section schemes. The resolution, sensitivity to a single

CLB, of these functions is relatively low as these functions require the

evaluation of an entire solution. The fitness values are also not smooth

as they directly use the circuit parameters, for example, CLB number

and CLB interconnects. Therefore, designing fitness functions in this

way cannot efficiently solve the clustering problem, which a solution

usually gets stuck at a local optimum.

5. GGAPack and even GGAPack2 have longer execution times than the

greedy algorithm based methods, and GGAPack2 uses about twice the

execution time compared with GGAPack. This means if a clustered

circuit is close to the optimal, which means a clustered circuit has

fewer CLBs and CLB interconnects, these will increase fitness function

calculation time – it is caused by the design of GGAPack program.

As both methods are based on GAs, their single execution time is
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extremely long compared to greedy algorithm and graph-partitioning

based methods.

6. Experimental results indicate that GGAPack cannot produce a solution

that uses fewer CLBs than VPack and RVPack. However, in the

best case, GGAPack solution can reduce CLB interconnects by up

4% compared with VPack – this is worse than the RVPack best case.

GGAPack2 is better at reducing the CLB number, where it reduces CLB

number by up to 0.79% 0.57% and 0.78% compared with VPack, RVPack

best case and RPack respectively. This is better than most of the greedy

algorithm based methods. In the best case, GGAPack2 can reduce the

CLB interconnects by up to 9.01% compared with RVPack best case,

and 20.86% compared with VPack. In the real mapping, GGAPack2

uses the same area compared with RVPack best case solutions. This is

slightly better than VPack. Testing results indicate GGAPack2 best

case solution reduces 2.23% channel widths compared to VPack, but no

improvement on the wire length. GGAPack2 best solution mapped on

a FPGA is faster than VPack by 8.97%, but in both cases, GGAPack2

solutions have poor performances on critical path delays compared with

RVPack best case solutions.

7. Experimental results are based on 100 executions of GGAPack and

GGAPack2 respectively. Result quality can be limited by the number

of GA executions.

DBPack

1. To solve the huge search space problem that is identified in GGAPack

and GGAPack2, DBPack is proposed. Instead of searching all CLBs

at the same time, DBPack focuses on the clustering of a single CLB

via MOGAs. In this design, fitnesses are more precise on evaluating

one CLB. Although this method still uses a bottom-up clustering

perspective, because there is no seed and BLE selections, the quality of
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solutions is relatively higher than most greedy-algorithm-based FPGA

circuit clustering methods.

2. DBPack GA uses the binary coding representation. This means that

standard binary coding genetic operations to be easily incorporated.

Experiments show that, in the binary coding representation GA, it is

efficient to use the “flipping only one bit” mutation. As the program

complexity of genetic operation is simple, the execution time of each

GA generation is shorter. However, due to each GA only being able

to cluster one CLB, a number of GAs are required for clustering all

BLEs in CLBs as well as each GA has to execute a large number of

generations. This actually increases execution time – referred to as the

completed circuit clustering time.

3. In DBPack, there are five fitness functions (objectives). These fitness

functions represent real circuit properties, and use the Rent’s rule to

optimise solutions. In addition, there is also a fitness function to set

up a semi-global perspective optimisation. The constraint controlling

is achieved by incorporating penalties in these functions. The penalty

level has to be low, otherwise, the population diversity of the GA can

be reduced. Experiments indicate that these fitness functions can guide

a GA to find useful solutions. Meanwhile, at the end of evolution,

there is no individual solution that goes against the constraints. This

means that the penalty method can effectively control the clustering

constraints.

4. There are still issues – for example, the clustering of the current CLB

has no strong interaction to other clustered CLBs; there are a number

of best trade off solutions at the end of a CLB clustering but only one

is used as a final solution of a CLB. The suitable solutions are rich at

the beginning of clustering. However, the number of useful solutions is

significantly decreased at end of clustering, as most BLEs are clustered

in CLBs. These issues can cause the DBPack to still produce low quality

solutions and non-optimal solutions.
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5. Experimental results show that DBPack can produce high quality circuit

clustering solutions. In the best case, DBPack clustered CLB number

is fewer than most greedy algorithms and graph-partitioning based

methods, but it is slightly higher than GGAPack2. The DBPack best

case solution can reduce CLB interconnects by up to 11.62%, 33.37%,

50.21% compared with iRAC, T-VPack and VPack respectively. In real

mapping tests, DBPack solutions use the same FPGA areas compared

with RVPack best case, RPack, T-VPack. A best DBPack solution

can reduce channel widths by up to 24.54% and 8.82% compared with

VPack and T-VPack, and all DBPack solutions have shorter wire lengths

compared with VPack and T-VPack. By benefiting from the narrowed

channel widths and shorter wire lengths, though DBPack is not intended

to speed up a circuit on the FPGA, its produced solutions can also

optimise the timing. In the best case, the DBPack solution has better

timing performances than T-VPack.

6. These experimental results are based on 100 executions of DBPack. No

matter in the best case or worse case, DBPack can produce a solution

that has fewer CLBs, and CLB interconnects compared with most

circuit clustering methods, such as VPack, T-VPack, RPack, T-RPack,

HDPack and iRAC.

HYPack and T-HYPack

1. HYPack and T-HYPack prove that it is possible to combine DBPack

and GGAPack methods together as a hybrid FPGA circuit clustering

method. The produced solutions are first generated by DBPack, and

then optimised by GGAPack method, which uses GGAPack as a second

optimiser. The design of HYPack and T-HYPack can be considered

as the top-down circuit clustering method. However, the produced

solutions are not yet optimal.

2. When combining DBPack and GGAPack methods together, this in-

creases the program complexity. This also means that more computing
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resources are required, and a longer execution time is needed. This is

the main reason that there are only 10-execution solutions presented

in this thesis. The DBPack and GGAPack use different sets of fitness

functions. In order to produce better clustered circuits in HYPack or

T-HYPack, two sets of fitness functions should be designed properly.

3. T-HYPack presents a feasible approach to incorporate real mappings

in a GA based circuit clustering method – this thesis names it as on-

line optimisation. The testing results indicate this method is powerful

enough to optimise clustering metrics for a solution, and this can be

extended to optimise more clustering metrics and objectives, for example

power consumption, or the effects of CMOS variability. However, these

require accessing the placement and routing processes in each GA

generation. This costs a large amount of computing resources. Under

the current computing facility, the long execution time results in only

10 small MCNC-20 benchmarks being tested.

4. When HYPack is dealing with MCNC-20 benchmark circuits, for some

small benchmarks, their single execution time is similar, and most of

the execution time is shared by the DBPack reinsertion process. The

reinsertion DBPack GA uses a fixed number of generations – if a circuit

is small and is only required to process a small number of freed BLEs,

the fixed GA generation number will cost time, but without finding any

improved solutions.

5. The best HYPack solutions can reduce clustered CLB interconnects of

DBPack by a further 2.98%. In terms of the clustered CLB number,

HYPack uses slightly more CLBs, but its solutions are still better than

iRAC no matter whether in the worst or best cases. T-HYPack tests use

10 small MCNC-20 benchmarks. In the best case, T-HYPack solution

has a similar CLB number compared with GGAPack2, which is smaller

than all other methods. The CLB interconnect number is also small,

and it is just behind HYPack. In the real mapping, T-HYPack solution

uses the same areas compared with other state-of-the-art FPGA circuit
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clustering methods. T-HYPack best solutions can reduce channels

by 6.25%, 8.84%, 23.26% compared to T-VPack, RVPack best case

and VPack respectively, and also reduces the wire lengths by up to

8.51%, 9.44% and 20.94% compared with the previous three methods.

As T-HYPack considers timing in the GA loop, the T-HYPack best

solution can speed up a mapped circuit by up to 8.55% 27.62%, 20.13%,

35.09% compared with DBPack best case, T-VPack, RVPack best case

and VPack respectively. This improvement is huge.

6. These results are only based on 10 executions of HYPack and T-HYPack,

so the performance investigation of these methods might be limited.

9.2 Hypothesis and thesis conclusion

In the previous section, the key findings of proposed methods are highlighted.

The limitations and issues are also discussed. These limitations and issues

cover the method implementations and experiment setups. This section

reviews the research hypothesis, and emphasises how these proposed methods

tackle the hypothesis and draw the conclusion of this thesis.

The hypothesis of this doctoral research is as follows:

The quality and performance of a multiobjective circuit mapped to a

cluster based FPGA can be improved through the use of evolutionary

algorithms during the circuit clustering stage of a FPGA computer

aided design flow.

Apart from RVPack, which uses the evolutionary algorithm inspired and

greedy algorithm based method to cluster circuits, GGAPack (GGAPack2),

DBPack and HYPack (T-HYPack) are all based on fully customised multiob-

jective genetic algorithms, which belong to the set of evolutionary algorithms.

The research first targets clustered circuit quality, which includes the CLB
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Table 9.1: Comprehensive comparisons for proposed methods – RVPack,
GGAPack2, DBPack and HYPack via full MCNC-20 benchmarks, figures
indicate improvements and higher is better.

Method CLBs CLB interc. Areas CH W. Len. Delays Flex. Exe. Time

VPack 0% 0% - 0% 0% 0% - +
RPack 0.01% 23.15% + N.A. N.A. N.A. - +

T-VPack 0.70% 25.28% + 17.24% 9.69% 9.68% - +
iRAC -5.56% 43.67% N.A. N.A. N.A. N.A. - +

RVPack 0.23% 23.15% + 12.37% 7.19% 14.60% - +
GGAPack2 1.22% 21.30% + 2.23% -5.78% 8.97% + -

DBPack 1.09% 50.21% + 24.54% 11.28% 16.01% + -
HYPack -0.32% 51.70% N.A. N.A. N.A. N.A. + -

CLB interc. = CLB interconnects
CH = Channel widths
W. Len. = Wire Lengths
Flex. = Flexibility
Exe. = Execution
+ = Positive
- = Negative,
N.A. = Data not available

number, and CLB interconnects. The performance is reflected by the clustered

circuit real mappings, for example the circuit delays on a FPGA. The overview

comparisons and conclusions of proposed methods and other methods are

summarised in Tables 9.1-9.2. Table 9.1 compares the clustered circuits based

on the entire MCNC-20 benchmarks, and Table 9.2 compares the clustered

circuits based on 10 selected MCNC-20 benchmarks.

According to these tables, it can be concluded that these proposed methods,

especially DBPack, HYPack and T-HYPack, can produce a clustered circuit

with fewer CLBs and CLB interconnects. In HYPack, the CLB interconnect

reduction is by up to 51.70% compared with VPack. The proposed T-HYPack

method can even speed up a clustered circuit by up to 35.09% compared with

VPack as well.

Table 9.3 is a general comparison, and this comparison covers more well-
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Table 9.2: Comprehensive comparisons for proposed methods – RVPack,
GGAPack2, DBPack, HYPack and T-HYPack via 10 selected MCNC-20
benchmarks, figures indicate improvements and higher is better.

Method CLBs CLB interc. Areas CH W. Len. Delays Flex. Exe. Time

VPack 0.00% 0.00% - 0.00% 0.00% 0.00% - +
RPack 0.11% 23.90% + N.A. N.A. N.A. - +

T-VPack 1.50% 29.00% + 18.14% 13.58% 10.33% - +
iRAC -4.65% 47.36% N.A. N.A. N.A. N.A. - +

RVPack 1.18% 16.95% + 15.81% 12.70% 18.73% - +
GGAPack2 2.57% 28.83% + 6.98% 2.59% 15.20% + -

DBPack 2.08% 51.16% + 28.84% 21.10% 29.02% + -
HYPack 2.03% 52.11% N.A. N.A. N.A. N.A. + -

T-HYPack 2.08% 51.96% + 23.26% 20.94% 35.09% + -

CLB interc. = CLB interconnects
CH = Channel widths
W. Len. = Wire Lengths
Flex. = Flexibility
Exe. = Execution
+ = Positive
- = Negative
N.A. = Data not available

known circuit clustering methods from 1999 to 2014 – first timing-drive

FPGA circuit clustering method, T-VPack, was published in 1999. Note that

these methods do not appear in result analysis parts in this thesis as these

methods real mapping tests are slightly different from this thesis and their

source codes are not available. However, these methods are all compared with

T-VPack, and this data is collected from their literatures (Marquardt et al.,

1999; Singh and Marek-Sadowska, 2002; Bozorgzadeh et al., 2004; Chen et al.,

2007; Rajavel and Akoglu, 2011; Feng, 2012; Feng et al., 2014b).

Based on Table 9.3, it shows that DBPack and T-HYPack are better at

including circuit connections in clustered CLBs. The circuit speed improve-

ments are 20.85% and 27.62% in DBPack and HYPack respectively. The

improvements are outstanding and beyond all other timing-driven FPGA

circuit clustering methods. Currently, DBPack and T-HYPack are the best
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Table 9.3: A general comparison for well-known FPGA circuit clustering
methods, figures indicate improvements and higher is better.

Method CLBs CLB interc. Channel widths Wire lengths Delays

T-VPack 0.00% 0.00% 0.00% 0.00% 0.00%
T-RPack N.A. 7.01% 2.66% N.A. 5.00%

iRAC -6.24% 25.86% 16.10% 25.00% -4.35%
DPack N.A. 9.20% N.A. 17.70% 7.80%

HDPack N.A. 12.70% N.A. 23.20% 6.10%
MO-Pack N.A. 10.73% 11.44% 12.60% -1.44%
PPack* N.A. N.A. 19.80% 17.20% -4.30%

T-PPack* N.A. N.A. 17.00% 15.10% 3.60%
DBPack 0.59% 31.21% 13.00% 8.70% 20.85%

T-HYPack 0.54% 32.34% 6.25% 8.52% 27.62%

CLB interc. = CLB interconnects
N.A. = Data not available or not compatible
* = PPack and T-PPack cluster circuits for input-bandwidth-free CLB FPGAs.

methods to improve the performance of a clustered circuit based on MCNC-20

benchmarks. However, the channel width and wire length are not the best

as T-HYPack only considers delays in its MO schemes. If channel width

and wire length are involved and represented as clustering objectives, better

results could be obtained.

By reviewing previous tables, it can be concluded that evolutionary al-

gorithm based circuit clustering methods can optimise clustered circuits in

FPGA CAD flows. Although these proposed methods have to execute for a

longer time, the method flexibilities and solution qualities are outstanding -

even beyond most of the well-known and state-of-the-art methods.
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9.3 Future work

This section highlights the future works.

1. This thesis used VPack as an example and proposed RVPack FPGA

circuit clustering method. The results are better than the original

VPack. As all greedy algorithm based methods can be affected by the

multiple seed and absorbable BLE issues, the solution can be improved.

iRAC has huge improvements on VPack; therefore, if randomnesses are

injected to iRAC, even better solutions could be produced by iRAC.

The implementation can be similar to RVPack, which uses a random

generator to select available BLEs, hence a RiRAC (Random iRAC)

might be worth developing.

2. This thesis introduced a set of MOGA based FPGA circuit clustering

methods, such as GGAPack, DBPack and HYPack. Each method has

to be dependent on precise GA parameters in order to produce high

quality solutions. However, these GA parameters in this thesis might

not be appropriately tuned as there is a computing resource limitation.

These parameters can be either adjusted by hand or using another

program. Once these parameters are best tuned, better results might

be obtained. Therefore, an automatic GA tuning algorithm is worth

developing.

3. The proposed methods are all multiobjective, and benefiting from the

“model free” feature of GAs. This implies that these methods can in-

corporate a number of clustering objectives. As electronics nowadays

tend to require low power and use deep-nano technologies, power con-

sumption and CMOS variability can be considered in a FPGA circuit

clustering method. These optimisations can help a circuit to further

reduce the requirement of power, and increase the tolerance to CMOS

variabilities. In the short term, these proposed methods are worth

having the ability of optimising the channel width and routing wire
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length. This can be facilitated by extracting the information in VPR,

and adding these key information in GA MO schemes.

4. EAs in general solve problems by using artificial evolution, so there

is no model. The results show that GA based methods have excellent

solutions for the targeted problem. Once these solutions are obtained,

an investigation can be set up to review how BLEs are arranged in

CLBs, for example in the FPGA circuit clustering process. This might

be able to illustrate a model, where it shows which types of BLEs are

grouped. Based on the model, similar to RVPack, GA inspired greedy

algorithm based circuit clustering method might be possible to design,

and this can significantly reduce the execution time when dealing with

a large circuit.

5. GA based methods use population models, and this population rep-

resents a larger number of solutions – individuals. When the GA is

evolving, these individuals are processed sequentially. This means that

GA can be easily parallelised. If these proposed methods are parallelised

and executed on a larger computing cluster with a larger number of pro-

cessors and memories, the single execution time of a GA based circuit

clustering method can be significantly reduced. Therefore, parallelised

DBPack and HYPack (T-HYPack) are worth developing. Especially

in T-HYPack, if these time costly VPR executions are parallelised,

large population and generation numbers can be tested in T-HYPack

so better results can be obtained.

6. A CAD flow contains a set of algorithms. Especially in post-synthesis

process, these clustering, placement and routing can be treated as a set

of optimisation problems. These processes either use random search

or heuristic algorithms, for example greedy algorithm. As EAs are

powerful for solving these complex problems, EA based CAD flow can

be produced, or used as a second optimiser. Conventional methods

produce a quick solution, and then EAs are used for further optimising

the solution. As introduced before, EAs or GAs use population model.
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On the other hand, EA based FPGA CAD flow can produce a set of

circuit mapping solutions. Some solutions might have fast speeds, and

others might save more power. These mappings can be stored, and

mapped to a FPGA reconfigurable fabric depending on the requirement

of applications. A performance or power-saving adaptive system can

therefore be produced.
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Appendices

Appendices present supplementary graphs, tables, algorithms and experiment

results for main chapters.
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Figure A.1: An example of the heterogeneous FPGA structure (Farooq et al.,
2011)
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Table A.1: Synthesised MCNC-20 benchmarks

Benchmark Func. Inputs Outputs LUTs FFs Nets

alu4 ALU 14 8 1522 0 1536
apex2 Misc. Func. 39 3 1878 0 1917
apex4 Misc. Func. 9 19 1262 0 1271
bigkey Key Encription 263 197 1707 224 2194
clma Bus Interface 383 82 8381 33 8797
des Data Encription 256 245 1591 0 1847

diffeq Application 64 39 1494 377 1935
dsip Encription 229 197 1370 224 1823

elliptic Application 131 114 3602 1122 4855
ex1010 Misc. Func. 10 10 4598 0 4608
ex5p FSM 8 63 1064 0 1072
frisc CPU 20 116 3539 886 4445

misex3 Misc. Func. 14 14 1397 0 1411
pdc Misc. Func. 16 40 4575 0 4591
s298 Logic 4 6 1930 8 1942

s38417 Logic 29 106 6096 1463 7588
s38584.1 Logic 39 304 6281 1260 7580

seq Arithmetic Func. 41 35 1750 0 1791
spla Logic 16 46 3690 0 3706
tseng Application 52 122 1046 385 1483

Func. = Function
Misc. = Miscellaneous
FSM = Finite-State Machine
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Table A.2: Synthesised MCNC-20 benchmarks after the pattern match

Benchmark Inputs Outputs BLEs Nets P2P Cons.

alu4 14 8 1522 1536 5408
apex2 39 3 1878 1916 6692
apex4 9 19 1262 1271 4497
bigkey 263 197 1707 1936 6313
clma 383 82 8383 8445 30462
des 256 245 1591 1847 6110

diffeq 64 39 1497 1561 5296
dsip 229 197 1370 1599 5645

elliptic 131 114 3604 3735 12634
ex1010 10 10 4598 4608 16078
ex5p 8 63 1064 1072 4002
frisc 20 116 3556 3576 12772

misex3 14 14 1397 1411 4968
pdc 16 40 4575 4591 17139
s298 4 6 1931 1935 6951

s38417 29 106 6406 6435 21344
s38584.1 39 304 6447 6485 20840

seq 41 35 1750 1791 6193
spla 16 46 3690 3706 13808

tseng 52 122 1047 1099 3760

P2P = Point-to-Point
Cons. = Connections
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Algorithm A.1 Pseudocode for VPack

Let: UnclusteredBLEs be the number of BLEs that are not in any CLB
C be the set of BLEs that are in the present CLB
CLBs be the clustered CLBs, each CLB contains a set of BLEs

Input: Netlist of LUTs and FFs (Registers)
N = CLB Size
I = Input number per CLB

Output: clustered CLBs
UnclusteredBLEs = PatternMatchToBLEs(LUTs, FFs); /*Pair LUTs,
FFs as BLEs*/
CLBs = ø;
while (UnclusteredBLEs != ø) { /*More BLEs to cluter*/

C = GetBLEwithLargestInputs(UnclusteredBLEs); /*Seed selec-
tion*/

while (|C | < N && |Inputs of C | < I ) {
SelectedBLE = MaxGainLegalBLE(C , UnclusteredBLEs);
if (SelectedBLE == ø)

break;
else {

if (Gain of SelectedBLE == 0 && |CLBs| != 0) {
if (hill-climbing(CLBs, SelectedBLE) NOT succeed)

C = C ∪ SelectedBLE;
} else

C = C ∪ SelectedBLE;
UnclusteredBLEs = UnclusteredBLEs - SelectedBLE;

}
}
CLBs = CLBs ∪ C ;

}
SaveNetlist(CLBs);
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Algorithm A.2 Pseudocode for fast-non-dominated sort

Let: P be the set that needs to be sorted.
for(each p ∈ P){

Sp = ø; np = 0;
for(each q ∈ P){

if(p ≺ q){ /*If p dominates q*/
Sp ∪ {q}; /*Adding q to the set of solutions dominated by p*/

}else if(q ≺ p){
np = np + 1; /*Incrementing the domination counter of p*/

}
}
if(np == 0){ /*p belongs to the first Pareto front*/

Prank = 1;
F1 ∪ {p};

}
}
i = 1; /*Initialising the Pareto front counter*/
while(Fi ! = ø){

Q = ø; /*Used for storing the numbers of the next Pareto front*/
for(each p ∈ Fi){

for(each q ∈ Sp){
nq = nq − 1;
if(nq == 0){ /*q belongs to the next front*/

qrank = i+ 1;
Q = Q ∪ {q};

}
}

}
i = i+ 1;
Fi = Q;

}
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Algorithm A.3 Pseudocode for crowding-distance assignment

Let: L be the set of solutions on the same Pareto front.
l = |L|;
for(i = 0; i < l; i+ +){

L[i]distance = 0; /*Initialising distance*/
}
for(each objective m){

L = sort(L,m); /*Sort using each objective value (fitness)*/
L[0]distance = L[l − 1]distance = ∞; /*Boundary points are always

selected*/
for(i = 1; i < l − 1; i+ +) { /*Other points*/

L[i]distance = L[i]distance + (L[i+ 1].m−L[i− 1].m)/(fmaxm − fminm );
}

}
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Algorithm A.4 Pseudocode for GGAPack

Let: P be a storage for population individuals.
P’ be a temporary storage for individuals, or mating pool. /* 2*P

size */
S be a solution individual.
CLBs be the clustered CLBs, each CLB contains a set of BLEs

Input: UnclusteredBLEs = Pattern matched netlist from LUTs and FFs
(Registers)

G = Maximum generation number
PopSize = Population size

Output: clustered CLBs

P’ = GenerateInitialPopulation(PopSize*2 , UnclusteredBLEs);

i = 0;
while (i < G) { /*Evolving loop*/

i = i+ 1;
P’ = FitnessCalculation(P’ ); /*Evaluating individuals*/
P = MultiobjectiveSelect(P’ ); /*Fast-non-dominated sort and

crowding distance*/
P’ = P + GeneticOperations(P); /*Genetic operations, crossover

and mutation*/
}

S = PickBestIndividual(P’ ); /*First Pareto front, and fewer CLBs, inter-
connects*/
CLBs = TranslateToCLBs(S);
SaveNetlist(CLBs);
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Algorithm A.5 Pseudocode for DBPack solution picking process

Let: P s be the set of last generation population.
T be the maximum BLE solution individuals.
N = CLB Size
I = Input number per CLB

Output: F t, the solution individual.

T = ø;
n =N ;

while(T is ø){
for(each p ∈ P s ){

if(p on 1st Parto front && BLE(p) == n && Input(p) <= I ){
T = T ∪ p;

}
}
if(T== ø){

n = n− 1; /*Reducing one BLE, collect suitable individuals
again.*/
}else{

break;
{

}

F t =MostInternalConnect(T ); /*Return the one that has the most internal
connections*/
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Algorithm A.6 Pseudocode for DBPack

Let: P be a storage for population individuals.
P’ be a temporary storage for individuals, or mating pool. /* 2*P

size */
S be the set of BLEs from a solution individual.
CLBs be the clustered CLBs, each CLB contains a set of BLEs

Input: UnclusteredBLEs = Pattern matched netlist from LUTs and FFs
(Registers)

G = Maximum generation number
PopSize = Population size

Output: clustered CLBs

CLBs = ø;

while (UnclusteredBLEs ! = ø){
P’ = GenerateInitialPopulation(PopSize , UnclusteredBLEs);
P’ = FitnessCalculation(P’ ); /*Evaluating individuals*/
P = MultiobjectiveSelect(P’ ); /* Fast-non-dominated sort and

crowding distance*/
i = 0;
while(i < G){

i = i+ 1;
P’ = P + GeneticOperations(P); /*Combine population and

offspring*/
P’ = FitnessCalculation(P’ ); /*Evaluating individuals*/
P = MultiobjectiveSelect(P’ );

}
S = SolutionPickAlgorithm(P);
UnclusteredBLEs = UnclusteredBLEs - S ;
CLBs = CLBs ∪ S ;

}

SaveNetlist(CLBs);
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Figure A.2: GGAPack GA convergence under different evolution time – CLB
numbers vs. GA generations. Gen. is short for generation number. The
benchmark is “clma” – the largest benchmark in MCNC-20. Test shows that
a large generation number is not able to further improve result quality. Short
GA stops at 40,000 generations, long (large) GA stops at 60,000 generations.
Since 25,000th generation, there is no change in the results in both GAs.
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Figure A.3: GGAPack GA convergence under different population sizes –
CLB numbers vs. GA generations. Pop. is short for population size. The
benchmark is “clma” – the largest benchmark in MCNC-20. There is no huge
difference, maximum is 2% - 3% in CLB numbers, when the population size is
large, but a large population size can significantly slow down a GA execution
time - a generation execution time is equal to individual evolution time by
population size - when the population size is 100, entire GA execution time
will be at least 10 times (1,000%) than the one that has population size 10.
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Figure A.4: DBPack GA convergence – BLE numbers (smallest BLE number
among entire population) vs. GA generations when clustering the first CLB
for benchmark “clma” – the largest benchmark in MCNC-20. There are two
curves: The “Actual” curve shows the smallest BLE number found in GA
population – one or a few individuals have this feature. Note that, in order
to reduce the clustered CLB number for a clustered circuit, the BLE number
is required to match or close to the CLB’s BLE number, which is 8 (one
CLB contains, N = 8, 8 BLEs) in this DBPack test. The other curve “Best”
(best to a CLB) shows when individual has BLE number as 8 – this indicates
the required BLE number individual (solution) is found. When generation
number is equal to around 500, “BLE=8” solutions are appeared. Larger
generation number designs to fully evolve individuals, where more Pareto
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MCNC-20 Benchmarks

alu
4

ap
ex

2

ap
ex

4

big
ke

y
clm

a
de

s
dif

fe
q

ds
ip

ell
ipt

ic

ex
10

10
ex

5p fri
sc

m
ise

x3 pd
c

s2
98

s3
84

17

s3
85

84
.1 se

q
sp

la
tse

ng

C
LB

s

100

200

300

400

500

600

700

800

900

1000

1100
RVPack Clustered CLB Number for MCNC-20 Benchmarks

Figure A.5: Boxplot of RVPack clustered CLB number for MCNC-20 bench-
marks

Table A.3: Medians of Figure A.5 – boxplot of RVPack clustered CLB number
for MCNC-20 benchmarks

Benchmark Median Benchmark Median

alu4 199 ex5p 140
apex2 243 frisc 451
apex4 166 misex3 180
bigkey 214 pdc 597
clma 1,066 s298 244
des 204 s38417 803

diffeq 189 s38584.1 807
dsip 172 seq 225

elliptic 456 spla 479
ex1010 599 tseng 133
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MCNC-20 Benchmarks
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Figure A.6: Boxplot of RVPack clustered CLB interconnect number for
MCNC-20 benchmarks

Table A.4: Medians of Figure A.6 – boxplot of RVPack clustered CLB
interconnect number for MCNC-20 benchmarks

Benchmark Median Benchmark Median

alu4 1,123 ex5p 869
apex2 1,451 frisc 2,631
apex4 1,001 misex3 1,010
bigkey 1,313 pdc 3,360
clma 6,519 s298 1,624
des 1,493 s38417 4,575

diffeq 1,031 s38584.1 4,159
dsip 1,131 seq 1,331

elliptic 2,567 spla 2,652
ex1010 3,531 tseng 790
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MCNC-20 Benchmarks

alu
4

ap
ex

2

ap
ex

4

big
ke

y
clm

a
de

s
dif

fe
q

ds
ip

ell
ipt

ic

ex
10

10
ex

5p fri
sc

m
ise

x3 pd
c

s2
98

s3
84

17

s3
85

84
.1 se

q
sp

la
tse

ng

S
ec

on
ds

0

20

40

60

80

100

RVPack Execution Time for MCNC-20 Benchmarks

Figure A.7: Boxplot of RVPack execution time for MCNC-20 benchmarks

Table A.5: Medians of Figure A.7 – boxplot of RVPack execution time for
MCNC-20 benchmarks

Benchmark Median Benchmark Median

alu4 3.00 ex5p 1.00
apex2 5.00 frisc 15.00
apex4 2.00 misex3 2.00
bigkey 4.00 pdc 27.00
clma 92.00 s298 5.00
des 3.00 s38417 49.00

diffeq 3.00 s38584.1 45.00
dsip 2.00 seq 4.00

elliptic 14.00 spla 18.00
ex1010 28.50 tseng 1.00
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MCNC-20 Benchmarks
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Figure A.8: Boxplot of RVPack on FPGA area usages for MCNC-20 bench-
marks

Table A.6: Medians of Figure A.8 – boxplot of RVPack on FPGA area usages
for MCNC-20 benchmarks

Benchmark Median Benchmark Median

alu4 15 ex5p 12
apex2 16 frisc 22
apex4 13 misex3 14
bigkey 36 pdc 25
clma 33 s298 16
des 42 s38417 29

diffeq 14 s38584.1 29
dsip 36 seq 15

elliptic 22 spla 22
ex1010 25 tseng 15
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MCNC-20 Benchmarks
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Figure A.9: Boxplot of RVPack on FPGA channel widths for MCNC-20
benchmarks

Table A.7: Medians of Figure A.9 – boxplot of RVPack on FPGA channel
widths for MCNC-20 benchmarks

Benchmark Median Benchmark Median

alu4 42 ex5p 52
apex2 48 frisc 56
apex4 50 misex3 42
bigkey 30 pdc 76
clma 74 s298 54
des 28 s38417 44

diffeq 28 s38584.1 36
dsip 28 seq 46

elliptic 50 spla 64
ex1010 58 tseng 24
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Figure A.10: Boxplot of RVPack on FPGA wire lengths for MCNC-20 bench-
marks

Table A.8: Medians of Figure A.10 – boxplot of RVPack on FPGA wire
lengths for MCNC-20 benchmarks

Benchmark Median Benchmark Median

alu4 12,905 ex5p 9,427
apex2 16,637 frisc 32,983
apex4 11,318 misex3 11,734
bigkey 17,970 pdc 60,554
clma 95,542 s298 15,122
des 21,355 s38417 42,152

diffeq 7,906 s38584.1 37,346
dsip 15,853 seq 15,353

elliptic 28,607 spla 42,229
ex1010 47,109 tseng 6,419
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Figure A.11: Boxplot of RVPack on FPGA circuit-critical-path delays for
MCNC-20 benchmarks

Table A.9: Medians of Figure A.11 – boxplot of RVPack on FPGA circuit-
critical-path delays for MCNC-20 benchmarks

Benchmark Median (∗10−02µS) Benchmark Median (∗10−02µS)

alu4 1.09 ex5p 0.95
apex2 1.20 frisc 1.55
apex4 0.99 misex3 1.05
bigkey 0.71 pdc 1.91
clma 2.72 s298 1.47
des 1.16 s38417 1.57

diffeq 0.84 s38584.1 1.05
dsip 0.65 seq 1.09

elliptic 1.35 spla 1.71
ex1010 1.88 tseng 0.76
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MCNC-20 Benchmarks
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GGAPack Clustered CLB Number for MCNC-20 Benchmarks

Figure A.12: Boxplot of GGAPack clustered CLB number for MCNC-20
benchmarks

Table A.10: Medians of Figure A.12 – boxplot of GGAPack clustered CLB
number for MCNC-20 benchmarks

Benchmark Median Benchmark Median

alu4 193 ex5p 141
apex2 250 frisc 460
apex4 167 misex3 181
bigkey 214 pdc 654
clma 1,158 s298 242
des 204 s38417 825

diffeq 188 s38584.1 809
dsip 172 seq 227

elliptic 452 spla 514
ex1010 651 tseng 131
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GGAPack CLB Interconnect Number for MCNC-20 Benchmarks

Figure A.13: Boxplot of GGAPack clustered CLB interconnect number for
MCNC-20 benchmarks

Table A.11: Medians of Figure A.13 – boxplot of GGAPack clustered CLB
interconnect number for MCNC-20 benchmarks

Benchmark Median Benchmark Median

alu4 1,071 ex5p 823
apex2 1,461 frisc 2,599
apex4 950 misex3 992
bigkey 1,279 pdc 3,956
clma 7,746 s298 1,315
des 1,384 s38417 5,549

diffeq 1,004 s38584.1 5,435
dsip 1,199 seq 1,337

elliptic 2,741 spla 3,060
ex1010 4,093 tseng 862
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GGAPack Execution Time for MCNC-20 Benchmarks

Figure A.14: Boxplot of GGAPack execution time for MCNC-20 benchmarks

Table A.12: Medians of Figure A.14 – boxplot of GGAPack execution time
for MCNC-20 benchmarks

Benchmark Median Benchmark Median

alu4 339.00 ex5p 115.50
apex2 2,207.00 frisc 6,865.50
apex4 301.00 misex3 543.00
bigkey 1,611.50 pdc 11,644.00
clma 23,439.00 s298 2,075.00
des 1,993.50 s38417 13,398.00

diffeq 388.00 s38584.1 11,903.00
dsip 230.00 seq 2,077.50

elliptic 5,366.00 spla 7,684.50
ex1010 10,071.00 tseng 25.00
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GGAPack2 Clustered CLB Number for MCNC-20 Benchmarks

Figure A.15: Boxplot of GGAPack2 clustered CLB number for MCNC-20
benchmarks

Table A.13: Medians of Figure A.15 – boxplot of GGAPack2 clustered CLB
number for MCNC-20 benchmarks

Benchmark Median Benchmark Median

alu4 192 ex5p 136
apex2 238 frisc 447
apex4 162 misex3 176
bigkey 214 pdc 586
clma 1,053 s298 242
des 200 s38417 801

diffeq 188 s38584.1 806
dsip 172 seq 220

elliptic 451 spla 469
ex1010 590 tseng 131
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GGAPack2 CLB Interconnect Number for MCNC-20 Benchmarks

Figure A.16: Boxplot of GGAPack2 clustered CLB interconnect number for
MCNC-20 benchmarks

Table A.14: Medians of Figure A.16 – boxplot of GGAPack2 clustered CLB
interconnect number for MCNC-20 benchmarks

Benchmark Median Benchmark Median

alu4 963 ex5p 768
apex2 1,264 frisc 2,364
apex4 864 misex3 905
bigkey 1,103 pdc 3,117
clma 6,256 s298 1,248
des 1,324 s38417 4,406

diffeq 878 s38584.1 4,017
dsip 1,019 seq 1,168

elliptic 2,435 spla 2,432
ex1010 3,319 tseng 762
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GGAPack2 Execution Time for MCNC-20 Benchmarks

Figure A.17: Boxplot of GGAPack2 execution time for MCNC-20 benchmarks

Table A.15: Medians of Figure A.17 – boxplot of GGAPack2 execution time
for MCNC-20 benchmarks

Benchmark Median Benchmark Median

alu4 3,978.00 ex5p 2,916.50
apex2 5,651.50 frisc 15,605.00
apex4 3,518.00 misex3 3,437.00
bigkey 4,596.00 pdc 22,714.00
clma 41,776.00 s298 5,769.50
des 4,326.50 s38417 28,586.50

diffeq 3,641.50 s38584.1 26,808.50
dsip 3,492.00 seq 4,768.50

elliptic 14,597.00 spla 16,705.00
ex1010 22,445.50 tseng 2,165.50
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GGAPack2 Area Usage on FPGA for MCNC-20 Benchmarks

Figure A.18: Boxplot of GGAPack2 on FPGA area usages for MCNC-20
benchmarks

Table A.16: Medians of Figure A.18 – boxplot of GGAPack2 on FPGA area
usages for MCNC-20 benchmarks

Benchmark Median Benchmark Median

alu4 14 ex5p 12
apex2 16 frisc 22
apex4 13 misex3 14
bigkey 36 pdc 25
clma 33 s298 16
des 42 s38417 29

diffeq 14 s38584.1 29
dsip 36 seq 15

elliptic 22 spla 22
ex1010 25 tseng 15
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GGAPack2 Routing Channel Width on FPGA for MCNC-20 Benchmarks

Figure A.19: Boxplot of GGAPack2 on FPGA channel widths for MCNC-20
benchmarks

Table A.17: Medians of Figure A.19 – boxplot of GGAPack2 on FPGA
channel widths for MCNC-20 benchmarks

Benchmark Median Benchmark Median

alu4 46 ex5p 54
apex2 54 frisc 70
apex4 54 misex3 46
bigkey 36 pdc 84
clma 92 s298 44
des 42 s38417 56

diffeq 38 s38584.1 44
dsip 32 seq 54

elliptic 56 spla 74
ex1010 78 tseng 26
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GGAPack2 Routing Wire Length on FPGA for MCNC-20 Benchmarks

Figure A.20: Boxplot of GGAPack2 on FPGA wire lengths for MCNC-20
benchmarks

Table A.18: Medians of Figure A.20 – boxplot of GGAPack2 on FPGA wire
lengths for MCNC-20 benchmarks

Benchmark Median Benchmark Median

alu4 13,153 ex5p 11,202
apex2 20,130 frisc 44,745
apex4 13,474 misex3 13,048
bigkey 20,990 pdc 70,933
clma 124,399 s298 15,748
des 28,335 s38417 55,864

diffeq 11,093 s38584.1 43,684
dsip 18,628 seq 18,066

elliptic 33,975 spla 50,377
ex1010 65,231 tseng 6,532
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GGAPack2 Final Routing Delay on FPGA for MCNC-20 Benchmarks

Figure A.21: Boxplot of GGAPack2 on FPGA circuit-critical-path delays for
MCNC-20 benchmarks

Table A.19: Medians of Figure A.21 – boxplot of GGAPack2 on FPGA
circuit-critical-path delays for MCNC-20 benchmarks

Benchmark Median (∗10−02µS) Benchmark Median (∗10−02µS)

alu4 1.04 ex5p 1.04
apex2 1.28 frisc 1.69
apex4 1.09 misex3 1.06
bigkey 0.71 pdc 2.03
clma 3.02 s298 1.70
des 1.28 s38417 1.75

diffeq 1.10 s38584.1 1.10
dsip 0.68 seq 1.11

elliptic 1.53 spla 1.82
ex1010 2.03 tseng 0.77
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DBPack Clustered CLB Number for MCNC-20 Benchmarks

Figure A.22: Boxplot of DBPack clustered CLB number for MCNC-20 bench-
marks

Table A.20: Medians of Figure A.22 – boxplot of DBPack clustered CLB
number for MCNC-20 benchmarks

Benchmark Median Benchmark Median

alu4 193 ex5p 137
apex2 239 frisc 448
apex4 162 misex3 178
bigkey 214 pdc 581
clma 1,059 s298 242
des 199 s38417 804

diffeq 189 s38584.1 806
dsip 172 seq 223

elliptic 454 spla 467
ex1010 589 tseng 132
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DBPack CLB Interconnect Number for MCNC-20 Benchmarks

Figure A.23: Boxplot of DBPack clustered CLB interconnect number for
MCNC-20 benchmarks

Table A.21: Medians of Figure A.23 – boxplot of DBPack clustered CLB
interconnect number for MCNC-20 benchmarks

Benchmark Median Benchmark Median

alu4 553 ex5p 604
apex2 852 frisc 1,284
apex4 651 misex3 596
bigkey 740 pdc 1,927
clma 3,630 s298 478
des 915 s38417 2,921

diffeq 601 s38584.1 2,576
dsip 727 seq 758

elliptic 1,292 spla 1,487
ex1010 2,300 tseng 471
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DBPack Execution Time for MCNC-20 Benchmarks

Figure A.24: Boxplot of DBPack execution time for MCNC-20 benchmarks

Table A.22: Medians of Figure A.24 – boxplot of DBPack execution time for
MCNC-20 benchmarks

Benchmark Median Benchmark Median

alu4 8,295.00 ex5p 5,421.00
apex2 11,469.50 frisc 32,439.50
apex4 6,804.50 misex3 7,585.50
bigkey 10,213.50 pdc 46,917.50
clma 90,665.50 s298 11,928.50
des 9,541.50 s38417 62,108.50

diffeq 8,857.50 s38584.1 60,437.00
dsip 8,477.00 seq 10,656.50

elliptic 32,442.50 spla 34,476.50
ex1010 47,142.50 tseng 5,445.00
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DBPack Area Usage on FPGA for MCNC-20 Benchmarks

Figure A.25: Boxplot of DBPack on FPGA area usages for MCNC-20 bench-
marks

Table A.23: Medians of Figure A.25 – boxplot of DBPack on FPGA area
usages for MCNC-20 benchmarks

Benchmark Median Benchmark Median

alu4 14 ex5p 12
apex2 16 frisc 22
apex4 13 misex3 14
bigkey 36 pdc 25
clma 33 s298 16
des 42 s38417 29

diffeq 14 s38584.1 29
dsip 36 seq 15

elliptic 22 spla 22
ex1010 25 tseng 15
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DBPack Routing Channel Width on FPGA for MCNC-20 Benchmarks

Figure A.26: Boxplot of DBPack on FPGA channel widths for MCNC-20
benchmarks

Table A.24: Medians of Figure A.26 – boxplot of DBPack on FPGA channel
widths for MCNC-20 benchmarks

Benchmark Median Benchmark Median

alu4 34 ex5p 46
apex2 44 frisc 46
apex4 44 misex3 36
bigkey 18 pdc 62
clma 70 s298 20
des 23 s38417 52

diffeq 26 s38584.1 50
dsip 24 seq 42

elliptic 38 spla 52
ex1010 58 tseng 20

299



MCNC-20 Benchmarks

alu
4

ap
ex

2

ap
ex

4

big
ke

y
clm

a
de

s
dif

fe
q

ds
ip

ell
ipt

ic

ex
10

10
ex

5p fri
sc

m
ise

x3 pd
c

s2
98

s3
84

17

s3
85

84
.1 se

q
sp

la
tse

ng

U
ni

t

×104

0

1

2

3

4

5

6

7

8

9

10

DBPack Routing Wire Length on FPGA for MCNC-20 Benchmarks

Figure A.27: Boxplot of DBPack on FPGA wire lengths for MCNC-20
benchmarks

Table A.25: Medians of Figure A.27 – boxplot of DBPack on FPGA wire
lengths for MCNC-20 benchmarks

Benchmark Median Benchmark Median

alu4 9,258 ex5p 9,766
apex2 16,069 frisc 29,716
apex4 11,000 misex3 10,942
bigkey 14,259 pdc 54,363
clma 93,955 s298 7,628
des 20,825 s38417 54,313

diffeq 7,076 s38584.1 50,502
dsip 16,193 seq 14,215

elliptic 25,135 spla 36,597
ex1010 46,962 tseng 4,984
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DBPack Final Routing Delay on FPGA for MCNC-20 Benchmarks

Figure A.28: Boxplot of DBPack on FPGA circuit-critical-path delays for
MCNC-20 benchmarks

Table A.26: Medians of Figure A.28 – boxplot of DBPack on FPGA circuit-
critical-path delays for MCNC-20 benchmarks

Benchmark Median (∗10−02µS) Benchmark Median (∗10−02µS)

alu4 0.96 ex5p 1.00
apex2 1.14 frisc 1.42
apex4 1.02 misex3 1.04
bigkey 0.53 pdc 1.85
clma 2.55 s298 1.47
des 1.17 s38417 1.73

diffeq 0.90 s38584.1 1.13
dsip 0.58 seq 0.98

elliptic 1.51 spla 1.62
ex1010 1.84 tseng 0.75
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HYPack Clustered CLB Number for MCNC-20 Benchmarks

Figure A.29: Boxplot of HYPack clustered CLB number for MCNC-20 bench-
marks

Table A.27: Medians of Figure A.29 – boxplot of HYPack clustered CLB
number for MCNC-20 benchmarks

Benchmark Median Benchmark Median

alu4 192 ex5p 136
apex2 238 frisc 447
apex4 162 misex3 178
bigkey 214 pdc 603
clma 1,103 s298 242
des 200 s38417 831

diffeq 188 s38584.1 806
dsip 172 seq 222

elliptic 453 spla 486
ex1010 604 tseng 132
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HYPack CLB Interconnect Number for MCNC-20 Benchmarks

Figure A.30: Boxplot of HYPack clustered CLB interconnect number for
MCNC-20 benchmarks

Table A.28: Medians of Figure A.30 – boxplot of HYPack clustered CLB
interconnect number for MCNC-20 benchmarks

Benchmark Median Benchmark Median

alu4 527 ex5p 594
apex2 836 frisc 1,245
apex4 634 misex3 552
bigkey 683 pdc 1,821
clma 3,459 s298 466
des 885 s38417 2,719

diffeq 556 s38584.1 2,534
dsip 706 seq 740

elliptic 1,271 spla 1,404
ex1010 2,212 tseng 457
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HYPack Execution Time for MCNC-20 Benchmarks

Figure A.31: Boxplot of HYPack execution time for MCNC-20 benchmarks

Table A.29: Medians of Figure A.31 – boxplot of HYPack execution time for
MCNC-20 benchmarks

Benchmark Median Benchmark Median

alu4 527 ex5p 594
apex2 836 frisc 1,245
apex4 634 misex3 552
bigkey 683 pdc 1,821
clma 3,459 s298 466
des 885 s38417 2,719

diffeq 556 s38584.1 2,534
dsip 706 seq 740

elliptic 1,271 spla 1,404
ex1010 2,212 tseng 457
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Figure A.32: Boxplot of T-HYPack clustered CLB number for MCNC-20
benchmarks

Table A.30: Medians of Figure A.32 – boxplot of T-HYPack clustered CLB
number for MCNC-20 benchmarks

Benchmark Median Benchmark Median

alu4 192 dsip 172
apex2 238 ex5p 137
apex4 162 misex3 178
bigkey 214 seq 224
diffeq 190 tseng 132
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T-HYPack CLB Interconnect Number for MCNC-20 Benchmarks

Figure A.33: Boxplot of T-HYPack clustered CLB interconnect number for
MCNC-20 benchmarks

Table A.31: Medians of Figure A.33 – boxplot of T-HYPack clustered CLB
interconnect number for MCNC-20 benchmarks

Benchmark Median Benchmark Median

alu4 532 dsip 696
apex2 836 ex5p 598
apex4 642 misex3 578
bigkey 679 seq 747
diffeq 601 tseng 456
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T-HYPack Execution Time for MCNC-20 Benchmarks

Figure A.34: Boxplot of T-HYPack execution time for MCNC-20 benchmarks

Table A.32: Medians of Figure A.34 – boxplot of T-HYPack execution time
for MCNC-20 benchmarks

Benchmark Median Benchmark Median

alu4 535,447.00 dsip 3,309,867.50
apex2 1,264,309.50 ex5p 877,343.50
apex4 816,778.00 misex3 826,523.50
bigkey 1,279,867.00 seq 1,112,237.50
diffeq 580,460.00 tseng 360,889.00
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T-HYPack Area Usage on FPGA for MCNC-20 Benchmarks

Figure A.35: Boxplot of T-HYPack on FPGA area usages for MCNC-20
benchmarks

Table A.33: Medians of Figure A.35 – boxplot of T-HYPack on FPGA area
usages for MCNC-20 benchmarks

Benchmark Median Benchmark Median

alu4 14 dsip 36
apex2 16 ex5p 12
apex4 13 misex3 14
bigkey 36 seq 15
diffeq 14 tseng 15
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T-HYPack Routing Channel Width on FPGA for MCNC-20 Benchmarks

Figure A.36: Boxplot of T-HYPack on FPGA channel widths for MCNC-20
benchmarks

Table A.34: Medians of Figure A.36 – boxplot of T-HYPack on FPGA channel
widths for MCNC-20 benchmarks

Benchmark Median Benchmark Median

alu4 35 dsip 22
apex2 44 ex5p 51
apex4 44 misex3 39
bigkey 16 seq 44
diffeq 26 tseng 20
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Figure A.37: Boxplot of T-HYPack on FPGA wire lengths for MCNC-20
benchmarks

Table A.35: Medians of Figure A.37 – boxplot of T-HYPack on FPGA wire
lengths for MCNC-20 benchmarks

Benchmark Median Benchmark Median

alu4 8,805 dsip 15,420
apex2 15,466 ex5p 9,523
apex4 10,605 misex3 10,157
bigkey 13,766 seq 13,795
diffeq 7,229 tseng 4,759
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T-HYPack Final Routing Delay on FPGA for MCNC-20 Benchmarks

Figure A.38: Boxplot of T-HYPack on FPGA circuit-critical-path delays for
MCNC-20 benchmarks

Table A.36: Medians of Figure A.38 – boxplot of T-HYPack on FPGA
circuit-critical-path delays for MCNC-20 benchmarks

Benchmark Median (nS) Benchmark Median (nS)

alu4 7.30 dsip 4.68
apex2 8.90 ex5p 7.94
apex4 7.93 misex3 7.45
bigkey 4.54 seq 7.51
diffeq 7.32 tseng 6.21
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List of Abbreviations

ABC A System for Sequential Synthesis and Verification.

ADC Analog-to-Digital Converter.

AI Artificial Intelligence.

ALU Arithmetic Logic Unit.

ASIC Application-Specific Integrated Circuit.

BLE Basic Logic Element.

BLIF Berkeley Logic Interchange Format.

CAD Computer-Aided Design.

CH Channel Width.

CLB Configurable Logic Block.

CMOS Complementary Metal-Oxide Semiconductor.

CPU Central Processing Unit.

DAC Digital-to-Analog Converter.

DNA DesoxyriboNucleic Acid.

DSP Digital Signal Processor.
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EC Evolutionary Computation.

EDA Electronic Design Automation.

ES Evolution Strategy.

FPAA Field Programmable Analogue Array.

FPGA Field Programmable Gate Array.

FPTA Field Programmable Transistor Array.

GA Genetic Algorithm.

GP Genetic Programming.

IC Integrated Circuit.

IDE Integrated Development Environment.

IIB Input Interconnect Block.

IO Input and Output.

LUT Look Up Table.

MAC Multiply-ACcumulate.

MCNC Microelectronics Center of North Carolina.

MIPS MIPS instruction set microprocessor – originally short for Micropro-

cessor without Interlocked Pipeline Stages.

MO MultiObjective.

MOEA MultiObjective Evolutionary Algorithm.

MOGA MultiObjective Genetic Algorithm.

MUX MUltipleXer.

313



NP Non-deterministic Polynomial-time.

NPGA Niched-Pareto Genetic Algorithm.

NSGA Non-dominated Sorting Genetic Algorithm.

PAnDA Programmable Analogue and Digital Array.

PCB Printed Circuit Board.

PLD Programmable Logic Device.

PROM Programmable Read-Only Memory.

RAM Random-Access Memory.

RISC RISC instruction set microprocessor – Reduced Instruction Set Com-

puting.

RNA RiboNucleic Acid.

SGA Simple Genetic Algorithm.

SGE Sun Grid Engine.

SIS A System for Sequential Circuit Synthesis.

SoC System on a Chip.

SPICE Simulation Program with Integrated Circuit Emphasis.

SRAM Static Random-Access Memory.

TSMC Taiwan Semiconductor Manufacturing Company.

VHDL VHSIC Hardware Description Language.

VHSIC Very High Speed Integrated Circuit.

VLSI Very-Large-Scale Integration.

VPR Versatile Placement and Routing.
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