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Abstract 

 

Background: Cancer associated fibroblasts (CAFs), are known to promote stromal-epithelial 

paracrine interactions, stromal remodelling and angiogenesis, within the tumour 

microenvironment. In oral squamous cell carcinomas, elevated expression of a myofibroblast 

CAF marker, alpha-smooth muscle actin (αSMA) and the matricellular proteoglycan versican are 

both predictive of invasive phenotypes and poor prognosis. The molecular mechanisms 

underlying myofibroblast transdifferentiation are poorly characterised. Here, the role of 

microRNA-145, a small non-coding RNA which negatively regulates multiple gene transcripts, 

was investigated in stromal fibroblasts. 

Methods: Normal oral fibroblasts (NOFs) and fibroblasts isolated from OSCC (CAFs) were treated 

with cancer cell line conditioned medium and TGF-β1, and the expression of miR-145, versican 

and myofibroblasts markers αSMA, collagen-1a (COL1A1), and fibronectin-1 with extra domain 

A (FN1-EDA) were assessed by qRT-PCR, immunoblotting and immunocytochemistry. A synthetic 

precursor miR-145 was used to overexpress miR-145 in fibroblasts prior, or subsequent to, TGF-

β1 treatment and the myofibroblast phenotype was investigated by assessing molecular 

markers, cell contractility and the ability to promote paracrine cancer cell migration. Versican 

expression was investigated and loss of function experiments were used to investigate its effect 

on myofibroblast phenotype. Putative genes involved in myofibroblast regulation were also 

assessed by qRT-PCR. Similar experiments were performed in primary dermal fibroblasts.  

Results: CAFs had a significantly higher miR-145 expression than NOFs, but no difference in 

myofibroblast markers was observed. TGF-β1 induced the expression of miR-145 and 

myofibroblast markers, and promoted contractility and cancer cell paracrine migration. miR-145 

gain of function experiments attenuated and rescued the TGF-β1-induced myofibroblast 

phenotype. miR-145 negatively regulated versican, and versican loss of function had a small 

effect on myofibroblast phenotype. miR-145 and versican had similar effects in dermal 

fibroblasts.  

Conclusions: miR-145 inhibits and reverses oral and dermal myofibroblast transdifferentiation. 

Therefore, exogenously delivering miR-145 to the tumour microenvironment and fibrotic areas 

could potentially treat deleterious myofibroblasts. 
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1.1 Introduction to Cancer 

Cancer is the leading cause of mortality worldwide, it was estimated that 7.6 million people died 

in 2008 as a result of cancer (Globocan cancer project, International Agency for research on 

cancer (IARC)). Cancer is a collective term for diseases where normal cells undergo uncontrolled 

division and growth to form a tumour anywhere in the body.  These tumours arise from normal 

cells that have mutations in key genetic pathways which control cellular proliferation, growth 

and apoptosis. 

For many decades a major effort in medical research has been focused on pinpointing the 

genetic alterations present in cancer cells. This has shed light on the complex multi-stage process 

that is tumourigenesis and has highlighted the many somatic mutations, epigenetic changes, 

and chromosomal modifications that contribute to neoplasms and their progression. In the 

classic review by Robert Weinberg and Douglas Hanahan (2000), six key characteristics or 

‘hallmarks’ that cells must possess to be cancerous were identified. They recognized that cells 

must become transformed to grow indefinitely without the need for the growth signals, to 

escape apoptosis, and to evade anti-growth signals, as well as having the ability to stimulate 

angiogenesis, invade tissue and metastasise (Hanahan & Weinberg, 2000). Since then research 

has elucidated that inflammation is critical in most tumours, and so has been labelled the 7th 

hallmark of cancer (Colotta et al., 2009). Furthermore, cancer has been likened to a ‘wound that 

does not heal’, hence inflammatory mediators have been recognised to play a part in cancer 

progression (Dvorak, 1986). 

Like the initial oncogenesis within tumour cells, metastasis can also be seen as a multistage 

process and involves many molecular changes (Valastyan & Weinberg, 2011), sometimes 

described as the invasion-metastasis cascade. It involves: the local invasion of transformed cells 

through adjacent extracellular matrix and stroma, the intravasation of cells into nearby 

vasculature and/or lymphatics, the survival in the bloodstream, the dissemination to distant 

sites by extravasation, and the survival of the micro-metastases in their new environment 

enabling them to colonize and form a secondary tumours. The process of metastasis is 

responsible for 90% of deaths caused by cancer (Gupta & Massagué, 2006).   

A significant event in the invasion-metastasis cascade is the epithelial-to-mesenchymal 

transition (EMT), whereby epithelial cells undergo changes in morphology, cell adhesion 

molecule expression and motility which collectively result in a phenotypic switch to a 

mesenchymal-like cell (reviewed in Thiery, 2002; Kalluri & Weinberg, 2009). The transition 

allows the deconstruction of the normal epithelial sheets to allow the migration and invasion of 
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the cells. This tissue re-organizational event is seen in wound healing and in early 

embryogenesis, but is also seen in carcinomas where transformed epithelial cells at the invasive 

front migrate through the basement membrane, a specialized dense extracellular matrix 

structure which provides a barrier at the basolateral side of cells (Kalluri & Zeisberg, 2006), and 

invade the surrounding stroma. EMT involves many molecular changes within the epithelial cells, 

but also requires the secretion of proteases and chemokines from surrounding stromal cells, 

namely fibroblasts and macrophages, to encourage their migration.  

Through considerable research a view has emerged that malignant cells do not act 

autonomously, but grow, interact and adjust alongside a stromal environment. These stromal-

epithelial interactions are a two-way paracrine cellular signalling mechanism which can 

stimulate changes in both the cancerous cells and the stroma to support the tumour’s 

progression and its metastasis. In this way, the stroma ‘evolves’ alongside the tumour cells. An 

example of this was described by Hill et al., (2005) where they showed transformed epithelia 

that had undergone oncogenic stresses had non-cell autonomous effects on the surrounding 

‘non-malignant’ stroma causing alterations and creating a more permissive environment in 

which a cancer could grow (Hill et al., 2005). 

 

1.2 Head and neck cancers.  

Head and neck cancers mainly present, in around 90% of cases, as squamous cell carcinomas, 

referred to collectively as head and neck squamous cell carcinoma (HNSCC) (Sanderson & 

Ironside, 2002). HNSCC is defined as a tumour of squamous epithelial origin within the upper 

aerodigestive tract from the lips to the oesophagus. This region consists of paranasal sinuses, 

oral cavity, nasopharynx, oropharynx, larynx and the hypopharynx (Leemans, Braakhuis, & 

Brakenhoff, 2011). Tumours presenting in the oral cavity are the most common kind of HNSCC 

and are the sixth most prevalent cancer worldwide (American Cancer Society: Cancer Facts and 

Figures. 2009). Oral cancers mainly present as oral squamous cell carcinoma (OSCC), in 2008, 

the UK had an incidence of 8.49 per 100,000 people for oral and pharyngeal cancer with a 2.73 

per 100,000 mortality rate (European cancer observatory database, IACR).   

 Most cases of HNSCC are diagnosed late, and some can develop from premalignant conditions, 

the most common ones being leukoplakia and erthyoplakia, which present as white and red 

patches respectively (Greer, 2006). Late stage HNSCC can be very aggressive with low survival 

rates and have only 40% 5 year survival due to high incidences of regional metastasis (Vikram et 



24 
 

al., 1984).  Positive neck lymph node metastasis decreases the chance of survival by around 50% 

(Sotiriou et al., 2004). Distant metastatic sites include the lung and liver (Lin et al., 2007). If 

caught at an early stage, however, prognosis is good. The standard treatment for HNSCC is 

platinum based chemotherapies combined with surgery.  

Major risk factors of HNSCC include tobacco usage, alcohol consumption, genetic predisposition, 

and infection by certain high-risk human papillomaviruses (HPVs) especially in oropharyngeal 

squamous cell carcinomas, predominantly HPV-16 (Leemans et al., 2011) . A popular custom of 

chewing of khat or betel quid leaves, in certain countries, is associated with higher incidence of 

the disease. Also there have been occupational risks reported (Sanderson & Ironside, 2002). 

Epstein Barr Virus (EBV) has been identified to cause head and neck cancers, specifically those 

of the nasopharynx. Diet and oral health are also reported to have some influence in preventing 

cancer in the oral cavity, by promoting healthy oral epithelium. 

 

The incidence of HPV positive tumours is increasing and is responsible for the rise in tongue, 

tonsil and oropharygeal neoplasms in the UK and US (Leemans, Braakhuis & Brakenhoff, 2011). 

The virus allows the integration of 2 oncogenes, E6 and E7, into the host cell’s genome, these 

viral genes then inactivate endogenous tumour suppressor cell cycle regulators, p53 and 

retinoblastoma (RB), respectively to result in oncogenesis (Hausen, 2002). HPV positive status 

provides a good prognosis; however, smoking is correlated with high risk of death in 

oropharyngeal cancers (Ang et al., 2010). 

 

Many of the molecular alterations contributing to the heterogeneous HNSCC cases remain 

poorly characterised. However, it is known that epidermal growth factor (EGF) signalling is 

aberrant in a larger number of HNSCC incidences, which is attributed to angiogenesis, increase 

tumour growth and invasion (Pai & Westra, 2009). The EGFR is overexpressed in around 90% of 

all HNSCC cases (Kalyankrishna & Grandis, 2006) and 30% are as a result of  chromosomal 

amplifications (Sheu et al., 2009). In addition, a constitutively active mutant form of EGFR has 

been identified in HNSCC, which caused hyperproliferation (Sok et al., 2006). Therefore, an 

effective clinically used treatment for certain HNSCCs is cetuximab, an EGF receptor monoclonal 

antibody. The response rate to cetuximab is around 20%, but when responsive it proves to be 

an effective treatment for patients with recurrent or metastatic HNSCC, on its own or in 

combination with chemo/radiotherapy (Burtness et al., 2005; Sharafinski et al., 2010). 

 



25 
 

A high proportion of OSCC have mutations in TP53 (the gene encoding p53), they are present 

even in HPV positive cells despite the inactivation of p53 mentioned previously (Leemans et al., 

2011). Most HNSCC have mutations in the TGF-β pathways which allow the loss of the inhibitory 

effect on proliferation. Interestingly, experimental loss of Smad4, necessary for TGF-β signal 

transduction into the nucleus, in mice caused spontaneous HNSCC (Bornstein, et al., 2009). 

Other pathways reported to be altered in HNSCC are HGF signalling, NFκB, ET-1, renin 

angiotensin system and the PI3K-PTEN-AKT axis which are interconnected with TGF-β and EGF 

signalling (Leemans, Braakhuis & Brakenhoff, 2011). 

 

In addition to altered intracellular signalling there appears to be a modified secretome in HNSCC. 

Stokes et al., (2012) showed that HNSCC patients had elevated protease secretions (MMPs, 

ADAM and ADAMTS), whereas MMP9 levels were decreased in metastatic HNSCC. However, 

Lotfi et al., (2015) found that serum from OSCC patients contained elevated MMP2 and MMP9, 

and this was found to be correlational with the presence of lymph node metastases.  

 

As survival rates have not significantly increased over the last 40 years, and there are low survival 

rates for advanced stages of HNSCC, it is important that research is aimed at the development 

of further effective target-based therapies. Therefore, identifying druggable targets within the 

disease and identifying biomarkers would be hugely beneficial. Marsh et al., (2011) found the 

best independent poor prognosis marker for OSCC to be of stromal origin, more accurately 

predictive than TNM staging or any tumour markers, highlighting the importance for 

investigating the oral tumour microenvironment for understanding tumour progression, and 

developing future therapeutics.  

 

1.3 Tumour Microenvironment 

1.3.1 Cells of the tumour  microenvironment 

There are a variety of distinct non-malignant cell types surrounding transformed cells in solid 

tumours. Collectively, these cells and matrix are known as the tumour stroma, which plays an 

active role in cancer survival and progression. Similar to under normal physiological conditions, 

the transformed cells maintain an inter-communication with surrounding stromal cells. These 

stromal-epithelial interactions allow the neoplastic cells to provide factors that change the 

stromal cell phenotype to in-turn actively provide trophic paracrine signalling to encourage the 

metastasis of the tumour.  
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The non-malignant stromal cells can form up to 90% of the cells present in a tumour (Weinberg, 

2006) and consists of a diverse population of specialised cells and a dense extracellular matrix. 

The cells that comprise the stromal environment include bone marrow-derived cells (BMDC), 

immune cells, vascular and lympathic endothelial cells, mesenchymal-derived smooth muscle 

cells, adipocytes, nerves, pericytes, fibroblasts and mesenchymal stem cells (reviewed in Joyce 

& Pollard, 2009). Many of these cells are usually protective and help to inhibit malignancy but 

within the cancer microenvironment they can be stimulated by the neoplasm to encourage its 

survival and metastatic dissemination into new sites. 

Stromal cells can promote tumourigenesis in epithelial cells with genetic predisposition to be 

transformed. These compromised epithelial cells form tumours with less latency and greater 

efficiency when co-injected into mice with matrigel (basement membrane matrix derived from 

a sarcoma) or stromal fibroblasts (Elenbaas et al., 2001; Noël et al., 1993). Further information 

on the role of stromal fibroblasts in tumour progression will be discussed in section 1.4. 

Irradiated mammary stromal cells were able to cause carcinomas when epithelial cells were 

added to mammary fat pads (Barcellos-Hoff & Ravani, 2000). However, the non-irradiated 

epithelial cell line used in the study (COMMA-D) despite being ‘non-tumourigenic’, caused a 

tumour in a sham-irradiated control (1 out of 6). This suggests that the irradiated stromal 

environment may reduce the latency of tumour formation, rather than inducing the 

transformation of the epithelial cells. Nonetheless, radiation has been reported to have 

numerous pro-tumourigenic changes to the stroma including, elevated EGF (Schmidt-Ullrich et 

al., 1996) and TGF-β growth factor signalling, ECM modulation (Barcellos-Hoff et al., 1993) and 

changes in the level of adhesion molecules (Akimoto et al., 1998). So it is no surprise that 

radiation to the stroma has been associated with the initiation of tumours.   

Stromal-epithelial interactions are paramount for tumour development. It is known that factors 

secreted by cancerous cells can activate the stromal compartment to support the tumour by 

releasing growth factors, chemokines, extracellular matrix proteins and proteases (reviewed in 

Allen & Louise Jones, 2011). An example of this was shown when human immortalised 

keratinocytes overexpressing PDGF-BB caused tumours to develop when injected in nude mice. 

This effect was not due to the keratinocytes, as they did not express a receptor to PDGF, but was 

a result of the activation and proliferation of adjacent fibroblasts which responded by signalling 

to the keratinocyte compartment to proliferate to form a tumour (Skobe & Fusenig, 1998).  
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Angiogenesis is a crucial event in the tumour microenvironment for the survival of newly formed 

tumours (Carmeliet & Jain, 2000). Stromal and tumour cells secrete endothelial growth factors 

which orchestrate neoangiogenesis; the main players belonging to the VEGF (vascular 

endothelial growth factor) family (Carmeliet et al., 1996). Neoangiogenesis in tumours allows 

the cells to receive the nutrients and oxygen that the tumour needs to grow as well as providing 

a route for dissemination to occur. 

The regulation of the tumour microenvironment is key in promoting a permissive cancer 

environment for cancer progression. Therapeutically targeting the microenvironment is 

therefore a valid method of preventing the spread of cancers (reviewed in Hanna, Quick & 

Libutti, 2009).  This could be achieved by attempting to regulate secretion of key growth factors 

found in the tumour environment, regulating the ECM remodelling by controlling the activity of 

MMPs (Kessenbrock, Plaks, & Werb, 2010), or controlling the secretion of ECM component from 

fibroblasts. Preventing the recruitment of immune cells, stopping angiogenesis, and preventing 

the activation of fibroblasts (discussed below) would also be beneficial to aid the prevention of 

tumour growth and metastasis. Possible future treatments will no doubt be combined therapies 

targeting both the underlying cause of malignancy in the oncogenic cells and targeting multiple 

aspects of the microenvironment. 

An example of an approved drug that can target the microenvironment to halt tumour 

progression is bevacizumab (Avastin). Bevacizumab, a monoclonal antibody (mAb) to VEGF-A, 

works by blocking neovascularisation and is currently a used in combinational treatment for 

certain glioblastoma, metastatic colorectal cancers, advanced non squamous cell non-small cell 

lung cancers, advanced cervical cancer, platinum resistant ovarian cancer and metastatic kidney 

cancers (Avastin, 2012; accessed on 26.3.15 ).  

 

1.3.2 Extracellular matrix and its role in cancer. 

The extracellular matrix (ECM) is a meshwork of macromolecules including collagen, fibronectin, 

laminin, elastin and proteoglycans which provides a platform for cells to adhere to and to move 

on (Boy, 2002). The ECM is mainly synthesised and modified by stromal fibroblasts. Its assembly 

is regulated and it is remodelled under pathological and physiological conditions. The ECM is a 

crucial regulator of cellular shape, by manipulation of the cytoskeleton, cell behaviour, and 

cellular signalling (Kim, Turnbull, & Guimond, 2011). The extracellular matrix can be modulated 

by several growth factors including TGF-β1, PDGF, bFGF and EGF (Matrisian & Hogan, 1990). 
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Fibroblasts and macrophages secrete extracellular proteases in the form of matrix 

metalloproteinases (MMPs) and serine proteases which also modulate and re-organise the ECM 

(Kessenbrock et al., 2010). MMPs are a zinc-dependent secreted or, to a lesser extent, 

membrane bound protease family which act to degrade the ECM; thereby playing a key role in 

tumourigenesis and metastasis. Closely related to MMPs, are ADAMs, a class of predominantly 

transmembrane metalloproteinases. A subset of these, ADAM-TS (a disintegrin and 

metalloprotease- with thrombospondins) are secreted and can associate with the ECM. 

Members of the ADAM-TS function to modulate the stromal environment through the 

processing of collagen and the cleavage of the aggrecans (ADAMTS-1,-4, -5, -8, -9, -15). Also, 

ADAMTS-1 and -8 prevent VEGF- mediated angiogenesis through their TS motifs. (reviewed in 

Blobel, 2005).  

Proteases achieve their pro-tumourigenic/metastatic influence by several methods: they aid the 

dissociation of cells, they can ‘create a clear path’ through the ECM for cells to migrate, they can 

release ectodomains of membrane bound growth factors (ADAMs), or release soluble growth 

factors sequestered in the extracellular matrix e.g. bFGF, TGF-β1, PDGF, and HB- EGF (reviewed 

in Joyce & Pollard, 2009; Blobel, 2005). Proteases also activate latent extracellular growth 

factors and other pro-MMPs which require proteolytic cleavage for their activation (Kessenbrock 

et al., 2010). For example, MMPs secreted from stromal fibroblasts process latent TGF-β1 in the 

pericellular space (Lyons, Keski-Oja, & Moses, 1988), and the active form can stimulate EMT in 

transformed epithelia and fibroblast activation (Bierie & Moses, 2006). 

 

1.3.3  Inflammation within the microenvironment 

Cancers often arise from sites of chronic inflammation (Colotta et al., 2009). This due, in part, to 

the immune cells present which secrete many chemokines, proteases and growth factors, for 

example TGF-β, TNF-α, ILs, MMPs, VEGFs, CXCL8 (C-X-C motif ligand 8) and COX-2 

(cyclooxygenase 2) (reviewed in Murdoch et al., 2008). These recruit more immune cells and 

promote changes in stromal cells to increase stromal-epithelial signalling that will support the 

formation of tumours. However, there is no simple correlation between other immune cells 

within a tumour and the prognostic outcome.  

Bone marrow-derived macrophages are recruited to the tumour site by chemotaxis driven by 

tumour secreted chemokines CSF-1 (macrophage colony stimulating factor), MCP-1 (monocyte 

chemotactic protein-1), and VEGF (Bingle, Brown, & Lewis, 2002); here they are known as 
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tumour associated macrophages (TAMs). Macrophage infiltration within a tumour is indicative 

of a poor prognosis, in more than 80% of cancers (Joyce & Pollard, 2009). They infiltrate into the 

tumour to assist the destruction and clearance of transformed cells, but they are often activated 

to provide pro-tumourigenic signalling. One such signalling factor secreted by TAMs is TNF-α, 

which in turn activates the NF-κB pathway. This results in the survival and proliferation of the 

cancer cells through the downstream activation of anti-apoptotic proteins Bcl-XL and COX-2 

(responsible for the production of prostaglandin E which causes many pro-oncogenic changes) 

(Weinberg, 2006). TNF-α has also been reported to increase cancer cell invasion by the 

enhanced secretion of matrix metalloproteases (MMPs), in particular MMP9 (Stuelten et al., 

2005). 

Macrophages are differentially activated and can be classified as M-1 or M-2. M-1, or ‘classically 

activated macrophages’ are activated by IFN-, TNF-α (cytokines released by T cell helper 1) or 

pathogenic recognition patterns, whereas the M-2 subtype is activated by IL-4 and IL-13 

(cytokines released by T cell helper 2) (reviewed in Laoui et al., 2011). The M-1 population is 

involved in antigen presentation and hence promoting the immune system to target the tumour, 

alternatively the M-2 subtype is generally seen as pro-tumourigenic as it secretes cytokines and 

is capable of promoting angiogenesis (Joyce & Pollard, 2009).  

High numbers of eosinophils, a class of leukocytes commonly seen in parasitic infections and 

allergic responses, have been identified as an indicator of poor prognosis in OSCC  (Martinelli-

Kläy et al., 2009). Their abundance within a tumour results in the increase in secretion of TGF-β, 

TNF-α, and interleukins (ILs) which aid the recruitment of inflammatory mediators to provide a 

more permissive environment for invasion of the cancer.  

 

1.3.4 Transforming growth factor-beta’s role within the tumour microenvironment.  

There is a plethora of research that points to the effects of altered TGF-β signalling in 

tumourigenesis, both within the malignant cells and within the surrounding stroma. TGF-β’s role 

in the tumour microenvironment is complex, due to its ability to halt cancer progression or 

actively encourage tumour formation and metastasis under certain circumstances. Many studies 

have shown that alterations in stromal-epithelial TGF-β signalling often result in neoplasms 

(reviewed in Bierie & Moses, 2006), its overexpression has been reported in many tumours. It 

often predicts angiogenesis and metastasis, and therefore prognosis (Bierie & Moses, 2006; Levy 

& Hill, 2006).  
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The canonical TGF-β signalling pathway, is part of a wider superfamily including activins, bone 

morphogenic proteins (BMPs), growth and differentiation factors (GDFs) and nodal which are 

important in important in development, differentiation and hormone and cell homeostasis 

(Weiss & Attisano, 2013). The TGF-β family itself are mainly involved with immunosuppression, 

ECM maintenance and apoptosis. There are 3 main TGF-β ligands TGF-β1, TGF-β2, TGF-β3, which 

work through transmembrane serine-threonine kinase receptors TGF-β RI, TGF-β RII, TGF-β RIII 

(Yue & Mulder, 2001). Mainly active TGF-β ligands bind to TGF-β RII which recruits and cross 

phosphorylates TGF-β RI, which in turn phosphorylates receptor smads, smad2 and smad3 which 

are joined with co-smad, smad4 and can translocate into the nucleus to regulate transcription.  

TGF-β ligands can be secreted in their latent form and can be activated in several ways including 

cleavage by MMP2 and MMP9 (Yu & Stamenkovic, 2000), αvβ6 and other integrins (Munger et 

al., 1999), thrombospondin-1 (Schultz-Cherry & Murphy-Ullrich, 1993) and by mechanical stress 

(Wipff et al., 2007). The latent forms of TGF-β have an N termini, which require cleaving, called 

the latency associated peptide (LAP), together they are referred to as the small latent complex 

(SLC) (Annes, Munger, & Rifkin, 2003). The SLC can be bound by the latent TGF-β binding protein 

1 (LTBP1), both referred to as the large latent complex (LLC). The LLC can be sequestered within 

the ECM and in order for TGF-β to be activated it must be cleaved from the LAP and LTBP1. 

An increase in TGF-β signalling in stromal fibroblasts promotes tumourigenesis (Kuperwasser et 

al., 2004). The group showed that when fibroblasts overexpressing TGF-β, HGF or both (via 

retroviral infection) were engrafted with human epithelia in a mouse mammary fat pad grafts, 

carcinomas developed, whereas those with normal stroma did not. It was argued that the some 

of the human epithelial cells added must have already undergone some genetic alterations to 

account for the speed at which the tumours arose. 

However, separate studies showed the converse; that is, a loss of TGF-β signalling in stromal 

fibroblasts resulted in carcinogenic lesions (Bhowmick, Chytil, et al., 2004; Forrester et al., 2005). 

Genetic deletion of 2 introns of the TGF-β receptor II (TGF-βRII) in fibroblasts in mice (via a 

conditional Cre-lox recombination, under the control of a fibroblast specific promoter (FSP-1)) 

resulted in the increased proliferation of both the stromal fibroblast and epithelial 

compartments, allowing the formation of invasive neoplastic lesions in the prostate and 

forestomach (Bhowmick, Chytil, et al., 2004). The study implicates that TGF-β signalling is 

responsible for preventing the proliferation of both epithelial and stromal fibroblasts in vivo. 

They also showed evidence that the hyperproliferation seen when TGF-β signalling was lost was 

mediated through HGF, as HGF levels were elevated and c-Myc , the HGF receptor, was activated 
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in the mouse epithelial cells. A similar study in which a conditional TGF-β RII receptor knockout 

mouse was made, showed the same thing, that the loss of TGF-β signalling resulted in 

tumourigenesis (Forrester et al., 2005). TGF-β is important for tissue homeostasis, it control  the 

inappropriate proliferation and differentiation of tumour cells, but also can be utilised in the 

tumour microenvironment to tumour growth, invasion and metastasis (Massagué, 2008). 

There appears to be a switch in tumourigenesis when TGF-β signalling turns from being anti-

tumourigenic to pro-tumourigenic. The presence of bone marrow derived cells in the tumour 

microenvironment has been suggested to be the cause of this change in response to TGF-β. Yang 

& Moses, (2008) put forward the hypothesis that transgenic attenuation of TGF-β signalling, for 

example by TGF-βRII or smad4 deletion, (Kitamura et al., 2007; Lu et al., 2004; Yang et al., 2008) 

acts to recruit Gr-1+CD11b+ myeloid cells into the tumour microenvironment. Once adjacent to 

the tumour, these myeloid immune suppressive cells are stimulated to release more TGF-β and 

activate MMP secretion (MMP2, MMP13 and MMP14), promoting EMT, migration, angiogenesis 

and invasion of cancer cells.  

TGF-β signalling is key in stromal organization, it is involved in the production and modulation 

of the ECM, as well as being able to inhibit proteases and increase production of proteases 

inhibitors (Ito et al., 2004). Moreover, TGF-β1 is key in the activation of the epithelial to 

mesenchymal transition (EMT), hence has a role in metastasis (Bierie & Moses, 2006), it is also 

one of the main cytokines responsible for producing ‘activated’ stromal fibroblast.  

 

1.4 Fibroblasts 

Fibroblasts are a dominant cell type found within the connective tissues embedded within the 

fibrillar matrix (a loosely organized ECM consisting of collagen I and fibronectin) (Tarin & Croft, 

1969). They are the most abundant stromal cell type in the tumour environment and are 

responsible for the synthesis of the basement membrane and other extracellular matrix 

components (Allen & Louise Jones, 2011). Fibroblasts in tumours contribute towards a 

histologically desmoplastic stroma phenotype characterised by increased ECM resulting in a 

‘stiffening’ of the tissue (Cardone et al., 1997).  

Fibroblasts are genetically heterogeneous and have poorly defined markers, which restrict their 

study (Kalluri & Zeisberg, 2006). Fibroblast specific protein 1 (FSP1), desmin, alpha smooth 

muscle actin (αSMA), vimentin and fibroblast activation protein (FAP) are examples of such 

fibroblasts markers, however none of the above are both completely exclusive to fibroblasts and 
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inclusive for all fibroblast subtypes (Kalluri & Zeisberg, 2006). Some markers are site or 

‘activational state’ specific, for example desmin is found mainly within dermal fibroblasts; a list 

of CAF markers can be found in table 1.1. αSMA (gene name: ACTA2) is a commonly used marker 

of myofibroblasts, but this is not exclusive to myofibroblasts, it is also expressed in 

phenotypically normal fibroblasts, pericytes and smooth muscle.  

 

Marker Expression  Function/detail Reference 

αSMA myofibroblast, SMC,  

low fibroblast,  

Intermediate 

filament associated 

protein 

(Tomasek et al., 

2002) 

FAP (fibroblast 

activation protein) 

Myofibroblast, 

fibroblasts 

Transmembrane 

serine protease 

(Rettig et al., 1993) 

Podoplanin Myofibroblast, 

myoepithelial cell, 

lymph endothelial 

cell 

Transmembrane 

glycoprotein, actin 

assembly and 

migration 

(Wicki & Christofori, 

2006) 

Paladin 41g Myofibroblast, 

smooth muscle cell  

Cell adhesion, 

motility and actin 

assembly 

(Najm & El-Sibai, 

2014) 

Cadherin-11 Myofibroblast, 

smooth muscle cell  

Involved in actin 

cytoskeletal 

scaffolding 

(Vered et al., 2010) 

 Table 1.1: Fibroblast markers. Reviewed in (De Wever et al., 2008; Kalluri & Zeisberg, 2006)  

In addition to the cell surface and cytoskeletal markers listed in table 1.1. Myofibroblasts have 

secreted extracellular markers including various collagens, mainly type I, III, IV and V (Hinz, 

2007), SPARC (secreted protein acidic rich in cysteine), tenascin- c, fibronectin 1 with extra 

domain A isoform (FN1-EDA), MMPs (MMP) and TIMPs (De Wever et al., 2008; Kalluri & Zeisberg, 

2006). Most of which play a role in matrix remodelling and invasion. As no markers exclusively 

identify myofibroblasts it is necessary to use a combination of markers to study myofibroblasts 

experimentally.  
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1.5 Cancer Associated Fibroblasts 

A large subsection of fibroblast within tumours display an ‘activated’ phenotype, termed cancer 

associated fibroblast (CAFs; or carcinoma/ tumour associated fibroblasts). These CAFs are 

heterogeneous and show slightly different phenotypes and form distinct populations with 

different markers and characteristics. Higher recruitment or activation of CAFs in tumours may 

reflect the prognostic outcome (Cardone et al., 1997). The number of CAFs within tongue 

squamous cell carcinomas have been found to be directly correlated with disease outcome 

(Bello et al., 2011).  

The mechanisms by which these CAFs arise are under dispute (Augsten, 2014; Kalluri & Zeisberg, 

2006). There are numerous hypotheses, one of which is that normal fibroblasts are activated by 

signals in their environment to undergo the genetic changes to transform their phenotype to 

become myofibroblasts. Such stimuli include exogenous toxins e.g. alcohol and cigarette smoke, 

DNA damaging agents, radiation and endogenous stimuli from an adjacent arising tumour. It is 

also argued that myofibroblasts are transdifferentiated smooth muscle cells, pericytes, 

fibrocytes or mesenchymal stem cells. Another theory is that the myofibroblasts are epithelial 

cells which have undergone EMT (Kalluri & Neilson, 2003). 

The secretome of CAFs creates an environment, which encourages invasion and angiogenesis. 

CAFs are known to secrete an array of growth factors, cytokines and proteases which act to 

remodel the stroma and promote tumour progression, including: EGF, IL-6, bFGF, SDF-1, VEGF, 

HGF, EGF, TGF-β, CXCL14, IL-1, IL-6, IL-8 MMPs, and TIMPs (Otranto et al., 2012; Studebaker et 

al., 2008). 

 

1.5.1 The role of fibroblasts in the tumour microenvironment. 

There have been multiple studies looking at the effect of CAFs in tumour progression compared 

to phenotypically normal fibroblasts in co-culture. CAFs have been shown to create a permissive 

environment for tumours to proliferate. For example, in an in vivo 3D co-culture model of breast 

tissue study, both normal fibroblasts and CAFs were able to reduce the proliferation of a normal 

mammary epithelial cell line. However, when a genetically altered mammary cell line was 

introduced in the co-culture, only normal mammary fibroblasts and not mammary CAFs were 

able to prevent the proliferation (Sadlonova et al., 2005). It is possible that the fibroblast’s 

capacity to negatively regulate proliferation is due to enhanced TGF-β signalling, described 

earlier. When TGF β RII is deleted in fibroblasts (Bhowmick et al., 2004) both the tumour and 
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the stroma overproliferate. Taken together these studies may suggest that CAFs are only able to 

stimulate already transformed epithelial cells (Sadlonova et al., 2005). 

A similar 3D culture study showed that CAFs could promote proliferation in the same normal 

mammary fibroblast cell line (Shekhar et al., 2001). Sadlonova et al., (2005) observed that the 

previous study used a higher fibroblast to epithelial cell ratio than they had, and when using the 

same ratio of CAF to epithelia cell they indeed saw that CAFs permitted the proliferation of 

normal epithelial cells. This suggests that it is not only the activational state of the adjacent 

fibroblast but the number that can influence a tumour.  

Some studies have suggested that CAFs have transforming abilities (Hayashi & Cunha, 1991)  

However, a study from Olumi et al., (1999) gave evidence to suggest that epithelial cells must 

already be transformed to benefit from stromal fibroblasts. They compared the abilities of CAFs 

and normal stromal fibroblasts to both initiate and support tumour progression in a prostate 

cancer model. In the study, CAFs were grown with initiated or normal prostatic epithelial cells 

and studied in vitro, as well as being used in collagen grafts in mice. CAFs were only able to 

initiate carcinoma formation when grafted with initiated cancer epithelial cell line BPH-1. 

Similarly in vitro examination showed that CAFs cause tumourigenic hallmarks such as increased 

epithelial proliferation and decreased cell death only when co-cultured with genetically 

abnormal epithelial cells. Overall the study suggested that CAFs encourage tumour progression 

when a carcinoma is already initiated, rather than being involved in the initial genetic 

transformation of the cells (Olumi et al., 1999).  

 

1.5.2 Myofibroblasts  

Myofibroblast-like CAFs share a phenotype similar to myofibroblasts present in wounds and 

fibrosis (Hinz et al., 2007). Myofibroblasts are characterised by an altered shape, an elevated 

expression in alpha smooth muscle actin (αSMA) (Hinz et al., 2001), increased proliferation, 

elevated secretion of metalloproteases (specifically MMP- 2, 3 and 9), extracellular matrix 

components (Rodemann & Müller, 1991), growth factors and cytokines (Bhowmick et al., 2004) 

(figure 1.1). Myofibroblasts are also characterized ultra-structurally by having contractile 

cytoskeletal microfilaments, increased focal adhesions comprising gap junctions and adherens, 

and having cell to cell and cell to matrix attachments (reviewed in Hinz., 2007).  

In normal wound healing myofibroblasts play an important role in the granulation layer, 

contracting to close the open wound. Physiologically normal wound healing can be divided into 
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3 phases, the inflammatory phase, proliferation phase and the regeneration phase (reviewed in 

Darby et al., 2014; Otranto et al., 2012). In the inflammatory phase, is immune cells infiltrate 

into the wound and release cytokines. The proliferation phase allows the generation of the 

granulation layer, in which neoangiogenesis, proliferation and activation of fibroblasts into 

myofibroblasts occurs. It is in this phase where myofibroblasts contract and close the open 

wound. The final phase is the regeneration phase where there is extensive remodelling of the 

granulation tissue; this is achieved mainly by ECM modifications by MMPs. There is also the 

deposition of collagen type I and elastin in this phase. The myofibroblasts then undergo 

apoptosis (Desmoulière et al., 1995). Organ fibrosis and fibromatosis occur when myofibroblasts 

are inappropriately and chronically activated. One reason for this continuous activation of 

myofibroblasts is a delay in apoptosis (Teofoli et al., 1999).  

Myofibroblasts are often found in desmoplastic reactive stromas of invasive tumours (Kawashiri 

et al., 2009). Myofibroblasts promote tumour growth and angiogenesis via the secretion of 

chemokines, ECM molecules and growth factors. Orimo et al., (2005) showed that human breast 

CAFs, which experimentally behaved like myofibroblasts and were mostly positive to αSMA, 

strongly promoted tumour growth and angiogenesis within a human xenograft and that this was 

facilitated by stromal cell derived factor-1 (SDF-1)/ CXCL12. The elevated levels of SDF-1 

contributed to tumour growth, via the paracrine activation of CXCR4 receptors leading to 

proliferation, and neoangiogenesis via the recruitment of endothelial progenitor cells (EPCs) 

which are principal in forming new blood vessels. Interestingly the researchers showed a 

statistically significant positive correlation between the CAFs’ contractility and their likelihood 

to form tumours, suggesting that the myofibroblast sub-population of the CAFs are the most 

tumourigenic. Immunohistochemical analysis of patient samples showed αSMA positive CAFs 

also co-localised with the staining for SDF-1 suggesting that the pro-tumourigenic characteristics 

of myofibroblasts could be mediated by the secretion of SDF-1 (Orimo et al., 2005). SDF-1 is one 

example of how a secreted molecule in the tumour microenvironment can have pleiotropic 

effects to result in tumour progression.  

Many studies investigating myofibroblasts in the tumour microenvironment suggest that they 

cause aggressive invasive tumours, however very few studies to date have shown their 

prognostic value. They have been shown to predict unfavourable outcomes in OSCC, colorectal, 

and breast tumour types studied (Kellermann et al., 2007; Tsujino et al., 2007; Surowiak et al., 

2007).  For OSCC, αSMA stromal staining, indicating the presence of myofibroblasts was the 

strongest independent marker of poor prognosis (Marsh et al., 2011). In this study, all aspects 
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of the tumour were classified; stage, grade, type of invasion, lymph node, tumour depth and 

surgical margins as well as sex and age, and immunohistochemistry was performed for αSMA, 

αvβ6, EGFR, EP4 (prostaglandin receptor), p53, and p16. αSMA was found to be the most 

predictive of mortality, with ~50% of patients with high αSMA staining dying within 3 years.  This 

study also investigated oral myofibroblasts in vitro using organotypic models and transwell 

migration assays and found that they promoted the invasion of OSCC cell lines, attributing to 

their aggressive phenotype.  

The presence of myofibroblasts has been identified to correlate with the classification of bladder 

tumours. An immunohistochemistry study using sections from both non-invasive and invasive 

UCCs identified that, in this cohort, myofibroblasts were only present in the invasive bladder 

tumours (Alexa et al., 2009). Whereas in a similar study, myofibroblasts were found in both non-

invasive and invasive bladder carcinomas, however an alternative pattern of distribution 

between non-invasive and invasive tumours was seen (Shimasaki et al., 2006).  

 

1.5.3 Senescent fibroblasts 

Another fibroblast phenotype which is found in abundance in CAF populations is the senescent 

fibroblast (Campisi & Fagagna, 2007). These are defined as having undergone indefinite growth 

arrest (in G0) but still metabolically active. Like myofibroblasts, they have an altered secretome, 

which includes some common released MMPs and cytokines e.g. IL-6. The secretome of 

senescent cells is termed the senescence associated secretory phenotype (SASP) (Coppe et al., 

2009). They are distinctive from myofibroblasts as they have an increase in p16 and p21. 

Senescence can be induced in a number of ways, for example exposure to irradiation, natural 

ageing, DNA damaging and chemotherapeutic agents. In vitro, treatment with cisplatin, H2O2 

and allowing fibroblasts to undergo many rounds of cell division (replicative senescence) are 

ways of inducing this phenotype (reviewed in Rodier & Campisi, 2011).  

Distinct CAF phenotypes have been identified surrounding genetically stable or genetically 

unstable OSCCs (GS-OSCC or GU-OSCC). Lim et al., (2011) classified OSCCs depending on the 

presence of inactivating mutations/ chromosomal deletions of TP53 and p16INK4A and found that 

fibroblasts surrounding genetically unstable OSCCs (GU-OSCC; loss of TP53/p16INK4A) were 

senescent and have a transcriptionally different profile to fibroblasts from GS-OSCCs (wild type 

TP53/p16INK4A). This senescence, associated with CAFS from GU-OSCCs, was induced by ROS, 

TGF-β1 and TGF-β2 secreted by GU- keratinocytes (Hassona et al., 2012). The GU-OSCC 

senescent CAFs had oxidative DNA damage indicated by 8-oxo-dG, SA-β gal staining and 
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increased expression of a profile of oxidative stress genes. GU-OSCC CAFS also were able to 

induce the invasion of a H357 cancer cell line. A more recent study showed that this invasion, 

which was only induced by GU-OSCC not GS-OSCC or normal keratinocytes, was attributed to 

the presence of active MMP2 in GS-OSCC CAF SASP (Hassona et al., 2014).  

 Fibroblast activation may not be classified accurately in the literature, research groups use 

slightly different markers/criteria to classify different fibroblasts. It may be that myofibroblasts 

and senescent fibroblasts may not be exclusive phenotypes. A possible hypothesis is that 

myofibroblasts are a middle phenotype between normal fibroblasts and senescent fibroblasts. 

Jun & Lau, (2010) hypothesise that myofibroblasts can become senescent in chronic fibrosis 

through CCN1 mediated oxidative stress.  Understanding the molecular mechanism behind the 

acquisition of both will help to understand if they are completely distinct phenotypes. 

 

1.5.4 Regulation of the myofibroblast transition. 

The molecular mechanisms underlying the transdifferentiation from phenotypically normal 

fibroblasts to myofibroblasts remain to be fully delineated. Two autocrine loops have been 

considered to be responsible for the transdifferentiation of myofibroblasts, TGF-β and SDF-1. 

(Kojima et al., 2010) and in vitro it can be modelled by exogenous application of TGF-β1 (Rønnov-

Jessen & Petersen, 1993). In various fibroblasts including cardiac, pulmonary, dermal and 

oral/gingival fibroblasts (Desmoulière et al., 1993; Hinz et al., 2001; Lewis et al., 2004; Reed et 

al., 1994). Connective tissue growth factor (CTGF/ CCN2), endothelin-1 (ET-1) and angiotensin II 

(Ang II) have also been implicated promoting fibrosis and inducing myofibroblasts, suggesting 

that they may also play a role in this transdifferentiation process (Bai et al., 2013; Garrett et al., 

2004; Swigris & Brown, 2010).  

Myofibroblasts can be induced from primary oral fibroblasts by co-culture with the modified 

OSCC-derived cell line VB6 cell line (H357 oral cancer cell line stably transfected with αvβ6) 

(Marsh et al., 2011). An inhibitor to αvβ6 integrin, showed that it was required for the activation 

of latent TGF-β1, which had been previously shown in other cells, and that αvβ6 was required 

for myofibroblast transdifferentiation. Immunohistochemical analysis showed that αSMA 

staining was correlational αvβ6 staining suggesting that the integrin is responsible for 

myofibroblast activation in tumourigenesis perhaps through TGF-β1 activation. In addition to 

TGF-β signalling, αvβ6 also acts as a receptor to fibronectin, and tenascin-c (Annes, Chen, 

Munger, & Rifkin, 2004), and is overexpressed in many tumours  including colon (Bates et al., 
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2005), lung (Elayadi et al., 2007), cervical (Hazelbag et al., 2007) breast (Moore et al., 2014) and  

OSCCs and is associated with poor prognosis (Thomas, Nyström, & Marshall, 2006). As it is not 

expressed highly on healthy epithelia, but on epithelial cells undergoing remodelling, for 

example in wound healing, embryogenesis or in cancers (Breuss et al., 1995), targeting αvβ6 has 

great shown potential for anti-cancer therapies, especially in breast in combination with 

trastuzumab, a HER2 monoclonal antibody (Moore et al., 2014). However, it is important to note 

that, like TGF-β signalling discussed above, αvβ6 appears to have dual roles as both a tumour 

suppressor and a promoter. Blocking αvβ6 or the downstream TGF-β pathway in pancreatic 

ductal adenocarcinoma (PDAC) causes an increase in the proliferation and invasion of PDAC 

cells, therefore works as a tumour suppressor through the activation of smad4 in this 

circumstance (Hezel et al., 2012).  

A study of the role of MRTF-A/B (Myocardin related transcription factors A and B) in rat 

embryonic fibroblasts highlighted their role in myofibroblast transdifferentiation. MRTF A and B 

are important transcription factors similar to myocardin which along with serum response factor 

co-activate smooth muscle contractile genes (including αSMA) which are under the control of a 

CArG box. Using a MRTF-A/B targeting siRNA resulted in the reduction of TGF-β1 mediated 

smooth muscle contractile genes associated with the myofibroblast phenotype (Crider, et al.,  

2011), this study also suggested that MRTF-A was sufficient to induce the myofibroblast 

phenotype. Another study showed that MRTF-A expression was required for myofibroblasts 

associated contractility and showed that a small drug known to induce myofibroblasts, 

isoxazole, worked through MRTF-A (Velasquez et al., 2013).  

Smad3 has been identified to work together with MRTF-B to fine tune the controlled expression 

of CArG induced smooth muscle genes in epithelial cells (Masszi et al., 2010). Smad3, a main 

downstream effector of TGF-β signalling, has been found to bind MRTF-B and inhibit it’s action 

on the αSMA promoter in a porcine renal tubular epithelial cell line induced to become 

myofibroblasts by a combined low calcium and TGF-β1 treatment.   

The extracellular environment appears to have a large influence on myofibroblast 

transdifferentiation. Fibroblasts can undergo myofibroblast transdifferentiation in response to 

a stiff environment, it is an important mechanism in fibrosis and has been shown in many 

fibroblasts using collagen gels including gingival (Arora, Narani, & McCulloch, 1999), aortic ( 

Chen, et al., 2011), cardiac (Galie, Westfall, & Stegemann, 2011) and pulmonary (Goffin et al., 

2006).  One study MKL1 (also known as MRTF-A) loss of function study showed that MRTF-A was 

required for matrix stiffness induction of myofibroblast phenotype (Huang et al., 2012) 
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Contraction of 3D collagen gels has also been shown to be able to activate latent TGF-β1 (Wipff 

et al., 2007). Further evidence for MRTF-A being involved in TGF-β1 induced myofibroblast 

transdifferentiation, PGE2 is able to inhibit αSMA expression through the regulation of MRTF-A 

and SRF (Penke et al., 2014). 

ECM molecules have also been reported to induce myofibroblasts. Versican, an extracellular 

proteoglycan (discussed in detail in section 1.7) has been reported to be necessary for dermal 

myofibroblast transdifferentiation (Hattori et al., 2011). In one study, which used genetically 

modified TIMP knockout mice referred to as TIMPless, the dysregulation of the ECM by the 

action of ADAM10 was able to induce myofibroblast like CAF phenotype (Shimoda et al., 2014).  

 In addition an isoform of fibronectin has been implicated to be important as marker and inducer 

of the myofibroblasts phenotype. Fibronectin is an extracellular glycoprotein, made up of two 

identical ~220 kDa sized monomers. It is found in two forms, plasma or cellular fibronectin in 

the ECM. The cellular form allows the incorporation of 2 extra type III domains A and B (EDA and 

EDB, respectively) by alternative splicing (Pankov & Yamada, 2002). Fibronectin with extra 

domain A (FN1-EDA) expression can be induced on TGF-β treatment (Balza, Borsi, Allemanni, & 

Zardi, 1988; Borsi, Castellani, Risso, Leprini, & Zardi, 1990) and is commonly found in the ECM of 

activated fibroblasts (Kalluri & Zeisberg, 2006) and therefore used as a marker of myofibroblast 

transdifferentiation in this study.   

The accumulation of FN1-EDA has found to be necessary for TGF-β1 dermal myofibroblast 

transdifferentiation (Serini et al., 1998). It also has been labelled pro-fibrotic, essential for 

pulmonary fibrosis and TGF-β responsiveness (Muro et al., 2008) and is found at higher levels in 

idiopathic pulmonary fibrosis (Kuhn & McDonald, 1991). Proposed mechanisms for FN-EDA pro-

fibrotic action are through TLR signalling as it has been shown to act as a TLR4 ligand 

(Bhattacharyya et al., 2014) it has also been reported to interact with α4β1 (Shinde et al., 2015) 

and α4β7 integrins activating MAPK/ERK1/2 signalling (Kohan, et al., 2010) which results in 

induction of αSMA expression. FN1-EDA has other reported roles within the tumour 

microenvironment, it is documented to promote EMT  through α9β1 (Ou et al., 2014; Sun et al., 

2014), and neoangiogenesis through increasing in expression of VEGF-C (Xiang et al., 2012). 

Exosomes, secreted extracellular vesicles that are passed between communicating neighbouring 

cells, are released by cancerous cells. Exosomal TGF-β cargo is responsible for the induction of 

the myofibroblast transition in stromal fibroblasts (Webber et al., 2010). microRNA 21 

expression promotes TGF-β1 induced myofibroblast transition within ovarian fibroblasts, and 
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appears to regulate the transition through its target PCD4 (programmed cell death 4) (Yao et al., 

2011). Another microRNA, miR-146a has been reported to negatively regulate TGF-β1 induced 

myofibroblast activation. miR-146a was able to regulate TGF-β effector Smad4 protein level (Liu 

et al., 2012), however the authors only judged the inhibition of myofibroblast activation based 

on αSMA expression and no functional assays were performed. Also, microRNA-31 has also been 

reported to act cell autonomously within fibroblast to prevent CAF activation. Its expression is 

lost in endometrial CAFs compared to matched controls and its overexpression prevents in vitro 

cancer cell invasion and migration; this is thought to be due to the loss of its target homeobox 

gene SATB2, whose expression stimulated those traits (Aprelikova et al., 2010). Interestingly, all 

the aforementioned microRNAs have roles in the regulation of metastasis. miR-21 promotes 

metastasis, whereas both miR-146a and miR-31 expression prevent metastasis (Hurst, Edmonds, 

& Welch, 2009) 

 

Figure 1.1 Myofibroblast transition schematic. Normal stromal fibroblasts can 

become activated in the tumour microenvironment to become myofibroblast-like cancer 

associated fibroblasts (CAFs). These myofibroblasts, are characterised by an altered shape, an 

increase in alpha smooth muscle actin (αSMA) stress fibres (shown in red), and a contractile 

phenotype. They are also responsible for the enhanced secretion of extracellular matrix 

components (shown in blue), cytokines and proteases (shown in green) which meditate further 

stromal-epithelial interactions to support tumour growth and metastasis.   
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1.5.5 Genetic alterations in CAFs 

CAFs are generally considered to be genetically stable, however there is some evidence in the 

literature that supports the view that tumours may have genetic alterations in the stroma, 

specifically in CAFs. This view is controversial in the field, and many think that recently reported 

genetic alterations within the stroma is artifactual and is a result of tumour cell contamination. 

Nonetheless, attempts have been made to identify the consequential associated altered 

stromal-epithelial signalling.  

 

Genetic mutations within the stromal compartment have been identified in the HNSCC tumour 

microenvironment and found to be capable of altering the signalling in both the stoma and 

epithelia (Bebek, Orloff, & Eng, 2011). Commonly the genetic mutations and chromosomal 

alterations that occur within the stroma are frequently found in malignant cells also, for example 

mutations in the P53 gene TP53.  Loss of heterogeneity/ allelic imbalance studies have also  

identified that there were TP53 mutations within invasive breast carcinoma CAFs, but not the 

epithelium, and this was found to be correlated with positive lymph node status (Patocs et al., 

2007). It seems apparent that p53 in fibroblasts plays a non-autonomous role to halt 

proliferation, neoangiogenesis and metastasis within a tumour (reviewed in Bar, Moskovits & 

Oren, 2010). P53-null fibroblasts, when co-inoculated with tumour cells in mice, had less latency 

in forming tumours than wild type fibroblast controls (Kiaris et al., 2005). Loss of p53 in these 

cells also drives angiogenesis via the loss of regulation of anti-angiogenic thrombospondin-1 

(Tsp1; Dameron et al., 1994). It is thought that under normal physiological conditions p53 

downregulates chemokine SDF-1/CXCL12 in fibroblasts, when p53 is lost within the fibroblasts 

there is an increase in the secretion of SDF-1 hence providing pro-migratory and invasion signals 

to encourage metastasis (Moskovits et al., 2006).  

 

Hill et al., (2005), when studying the co-evolution of the stromal and epithelial compartment in 

a prostate cancer murine model in which Rb is inactive, found that p53 is needed in the stromal 

compartment to prevent fibroblast proliferation. The authors hypothesized that transformed 

epithelium puts an oncogenic evolutionary selective pressure for p53 inactivation on the stroma, 

by paracrine growth factor signalling. Functional p53 will prevent the proliferation of the 

fibroblasts whereas cells lacking p53, or with a mutant p53, can proliferate creating a more 

reactive stromal environment which can secrete additional factors to support the tumour 

evolution. Another group has found that cancer cells can produce factors which prevent the 

activation of stromal p53 (Bar et al., 2009). Of course the loss of p53 does not have to result 
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from a null or inactivating mutation or chromosomal alteration, it could be a result of epigenetic 

or signalling changes within the stromal cells. 

 

The expression of tumour suppressor PTEN has also been reported to be lost in stroma (Kurose 

et al., 2002). The genetic deletion of PTEN in a conditional fibroblasts specific knockout was 

responsible for increased tumourigenesis when used in a mammary tumour model, associated 

with ECM remodelling, angiogenesis and macrophage infiltration (Trimboli et al., 2009). 

A subpopulation of fibroblasts, which were positive for FSP1, in oro-pharyngeal squamous cell 

carcinomas had inactivated (hyperphosphorylation) tumour suppressive retinoblastoma (Rb) 

(Pickard et al., 2012). In vitro studies showed that fibroblasts depleted of Rb increased the 

invasion of transformed epithelium in 3D organotypic cultures. This was found to be due to 

increased stromal levels of KGF (keratinocyte growth factor; also known as fibroblast growth 

factor 7; FGF7) which drives invasion through increased secretion of MMP1 via the activation of 

the AKT pathway. This suggests that altered paracrine signalling mediated from transformed 

epithelium may promote the oncogenic activation of the adjacent fibroblasts.  

 

1.5.6 FSP1 positive fibroblasts 

Furthermore an FSP1 positive CAF subpopulation has been reported to be distinct from the 

population of αSMA positive myofibroblasts (Sugimoto et al., 2006). Most studies show that 

FSP1 positive fibroblasts are scattered throughout the tumour stroma whereas αSMA positive 

fibroblasts were mainly found located next to blood vessels (Zhang et al., 2011); however 

pericytes have αSMA expression, possibly confounding interpretation of these findings. 

Although a discrete CAF population, FSP1 positive CAFs also appear to have a pro-tumourigenic 

role. Studies using FSP1 knockout mice have revealed that the presence of FSP1 is needed for 

metastasis and increases the incidence of tumour formation (Grum-Schwensen et al., 2005). In 

a two-stage in vivo mouse carcinogenesis model FSP1 positive fibroblasts proliferated at an early 

stage of carcinogenesis, when they were depleted from the model there were decreased levels 

of inflammatory mediators IL-6 (interleukin-6), TNF-α (tumour necrosis factor-alpha), and MCP-

1 (monocyte chemotactic protein -1), the latter was found to recruit macrophages to further 

add to tumour progression ( Zhang et al., 2011). FSP1 has however been shown to mark invasive 

carcinoma cells, which may explain why the depletion of FSP1 so dramatically reduces 

metastasis (Strutz et al., 1995).  
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FAP (fibroblast activation protein), another marker of CAF phenotype, is also involved in stromal 

fibroblasts’ influence on tumourigenesis. FAP, also found on pericytes, is a type II 

transmembrane peptidase belonging to the dipeptidylaminopeptidase family. Experimental 

deletion and pharmacological inhibition of FAP resulted in the attenuation of tumour growth 

and myofibroblast activation both in models of lung and colon cancer (Santos, Jung, Aziz, Kissil, 

& Puré, 2009), suggesting that targeting the stromal compartment can have a marked effect on 

both the tumour and stroma.    

 

1.5.7 Fibroblasts as drug targets 

CAFs are identified as a suitable drug target for treating the tumour microenvironment, this is 

partly due to them being generally non proliferative and genetically stable. CAFs have also been 

implicated in aiding drug resistance in cancer cells (Johansson et al., 2012; Kinugasa, Matsui, & 

Takakura, 20144), therefore targeting CAFs alongside current therapies may be beneficial. The 

presence of CD-44 positive CAFs were found to protect lung cancer cells from the toxic effects 

of 5-FU (Kinugasa et al., 2014).  Of relevance to HNSCC, several studies have implicated HGF, 

which is secreted by CAFs, to interfere with EGF signalling (Wang et al., 2009; Yamada et al., 

2010) and recently a study found that CAFs secretions prevent the action of cetuximab via the 

action of MMPs (Johansson et al., 2012). However, this study failed to use normal fibroblasts to 

investigate whether normal fibroblasts may infer a similar resistance to cetuximab.  

 

1.5.8 CAFs in HNSCC 

The body of evidence points towards the pro-tumourigenic role of CAFs in tumour progression. 

Over the past 10 years much research has been done to investigate CAFs effects in HNSCC.  Barth 

et al., (2004) were the first to show myofibroblasts in OSSC stroma (Barth et al., 2004). 

Subsequent studies revealed that they are indicative of poor prognosis (Kellermann et al., 2007) 

and suggest significantly lower 5 year survival rates and are more likely to have local 

reoccurrence (Vered, et al., 2010).  Marsh et al., (2011; discussed in section 1.3.3) showed that 

the presence of myofibroblasts predicted aggressive OSCC with poor patient outcomes.   

Many groups have attempted to identify the ways in which myofibroblasts modulate tumour 

cells. Myofibroblasts were shown to increase tumour volume when injected, with SCC9 cell lines, 

into nude mice (Sobral et al., 2011). These myofibroblasts were identified to be secreting activin 
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A, a member of the TGF-β superfamily, which was responsible for the influence on tumour 

proliferation and tumour volume. 

Conditioned media from OSCCs were able to transdifferentiate gingival myofibroblasts, this was 

found to be due to the secretion of TGF-β1, in turn the myofibroblast were shown to secrete 

HGF/SF (scatter factor) to promote the paracrine invasion of the OSSC cells (Lewis et al., 2004b). 

In addition, SF has been previously shown to induce the expression of MMP2 and MMP9 in H357 

cells and normal oral keratinocytes (Bennett et al., 2000), highlighting the elegant ways that 

malignant cells and stroma synergistically interact. MMP2 and MMP9 have also been shown to 

be released by SSC9 cells in response to myofibroblasts conditioned media, to promote tumour 

invasion (Sobral et al., 2011). Kellermann et al., (2008) also confirmed this two way cross-talk 

showing that tongue SCC cells can transdifferentiate fibroblasts to myofibroblasts, which in turn 

release factors which influence the SCC cells by increasing their proliferation. Several groups 

have also showed that myofibroblasts release factors which stimulate OSCC migration and 

invasion. 

 

1.6 MicroRNAs 

1.6.1 Introduction to microRNA 

MicroRNAs are evolutionary conserved short non-coding RNA, of 18-22 nucleotides in length, 

which have a post-transcriptional role in the control of gene expression (Ambros et al., 2003). 

Each microRNA has a seed sequence of 2-7 nucleotides which gives the microRNA specificity for 

its targets (reviewed in Huntzinger & Izaurralde, 2011). The microRNA seed sequence binds to 

near perfect complementary sequences mainly in the 3’ untranslated region (UTR) of their 

mRNA targets and less frequently to complementary sequences in the coding region of their 

target. The nature of the binding reflects the fate of the transcript; if the mature microRNA binds 

perfectly to the ‘seed’ sequence, the mRNA is degraded by the RISC (RNA induced silencing 

complex) components. If it does not bind perfectly, the transcript is downregulated either 

because translational machinery cannot carry out translation, or the mRNA is deadenylated 

(Giraldez et al., 2006). Each microRNA has multiple targets and has pleiotropic effects; hence as 

a class they converge on almost all genetic pathways. As they have many targets they can play 

integral roles in transcriptional networks and cellular phenotypes. According to bioinformatics 

data, as a class they are the most common method by which the cell controls expressional 

heterogeneity and they make up 30% of all genetic regulatory molecules (Lim et al., 2005). 
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1.6.2 microRNA biogenesis 

MicroRNAs undergo post-transcriptional processing into their mature form by a series of RNase 

III enzymes (figure 1.2.) (reviewed in Chong et al., 2010; Siomi & Siomi, 2010). The precursor 

microRNAs are transcribed in the nucleus as a long hairpin stem loop primary microRNAs, and 

then are processed by a complex including Drosha, a RNase III enzyme, and DGCR8 (also known 

as Pasha), a RNA binding protein. The result of the Drosha/DGCR8 cleavage is around 70 

nucleotide stem loop precursor pre-miRNA. This is able to be transported through nuclear pores 

by Exportin-5 mediated export using Ran small GTPase. Once in the cytosol, the pre-microRNA 

is subsequently processed by another RNase III enzyme, Dicer, to become a single stranded RNA 

between 22-23 nucleotides in length. As a mature miRNA of around 22 nucleotides it is then 

incorporated into the RNA Silencing Complex (RISC complex) which mediates the silencing of the 

target mRNA transcript.  
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Figure 1.2. The biogenesis of microRNA-143/-145 cluster: a simplified 
schematic. microRNA-143/145 cluster is co-transcribed as a bicistronic pair as a stem-loop 
primary transcript, this is then cleaved by the Drosha/ DGCR8 in the nucleus to a smaller stem-
loop precursor miR around 70 nucleotides in length. The premiR is exported from the nucleus 
by exportin-5, in the cytosol it that is further cleaved by dicer to a mature miR which can then 
be incorporated into the RISC complex to result in the downstream inhibition of target 
transcripts (figure modified from Rangrez et al., 2011). 

 

1.6.3 microRNAs in malignancies 

microRNAs can act as tumour suppressors or as oncogenes, termed oncomiRs. miRNAs were 

first identified to be misregulated in cancers when miR-15 and miR-16-1 where located  at the 

13q14 locus which is commonly deleted within B-cell chronic lymphocytic leukaemia (CLL) (Calin 

et al., 2002). These microRNAs have since found to negatively regulate the expression of the 

anti-apoptotic BCL2, therefore providing a mechanism for the formation of leukaemia (Cimmino 

et al., 2005). The primary precursor to miR-15-1, and miR-16a has even been identified to be 

mutated in some cases of CLL (Calin et al., 2005). 

More than half of the known microRNAs are found at fragile sites in chromosomes, where 

deletions, amplifications and translocations may occur, explaining why they are commonly 

misregulated in malignancies (Calin et al., 2004). Translocations have also been reported to 

result in the swapping, shortening or loss of 3’UTRs leading to inappropriate targeting or loss of 

regulation over specific mRNAs targets, perhaps leading to tumourigenesis (Mayr, Hemann, & 

Bartel, 2007).  

microRNA-21, an ‘oncomiR’ overexpressed in many cancers, contributes to oncogenesis by 

targeting PTEN and tropomyosin-1 (TPM-1), amongst other tumour suppressor genes (Zhu et al., 

2008). In addition, the overexpression of this miR in glioblastoma cells has been associated with 

modulation of the ECM leading to increased invasion as it targets two MMP inhibitors (reviewed 

in Gabriely et al., 2008; Wentz-Hunter & Potashkin, 2011). 

Differential microRNA expression profiles have been reported between invasive and non-

invasive bladder urothelial carcinomas (Wszolek et al., 2009), highlighting their potential use as 

biomarkers. Invasive UCC displayed high levels of miR-21 and miR-99a whereas they had low 

levels of certain miRs, some of which had previously been reported to be involved in EMT: miR-

30, miR-31, mir-141, miR-200a, miR-200b, miR200c. The reintroduction of the miRs (except miR-

30b) resulted in an in vitro reduction of invasion, suggesting that the loss of these miRs directly 

orchestrates the invasion process. Tumours with low expressional levels of miR-200c, miR-141, 
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and miR-30b, had dramatically lower survival rates. It is thought that expression of the miR-200 

family is required to be reduced to allow EMT to occur (reviewed in Korpal & Kang, 2008) and 

has been reported to be downregulated in several invasive tumours. It is found to be 

downregulated in OSCC and saliva from these patients (Wiklund et al., 2011) and is found to be 

significantly reduced in the urine of bladder tumour patients (Wang et al., 2012).  

microRNAs have been hypothesised to have alternative roles in the mechanisms leading to 

metastasis. microRNA-21 and micro-RNA 29a have been reported to behave as ligands for the 

TLR (Toll-like receptor) family of receptors (Fabbri et al., 2012). The microRNAs were transported 

to the macrophage by cancer exosomes.  This activation of TLR 8 leads to the downstream 

activation of NF-κB subsequently leading to the secretion of TNF-α and IL-6 to evoke a pro-

metastatic response.  

Some miRs have been identified to play important roles in stroma remodelling. miR-21 has been 

shown to have several effects in modulating the stroma, and stromal-epithelial interactions in 

several tumour types (Bullock et al., 2013; Kadera et al., 2013; Uozaki et al., 2014). miR-21 

overexpressing fibroblasts promote colorectal cancer cells invasion through the regulation of 

MMP2, give protection against oxaliplatin, and were shown to promote myofibroblast 

transdifferentiation (Bullock et al., 2013). However, MRC5, a foetal fibroblast lung cell line were 

used in this study, there is some concern using foetal fibroblasts as a model for adult fibroblasts 

(Rolfe & Grobbelaar, 2012; Walraven et al., 2014). However, another study showed if miR-21 

was inhibited this prevented the myofibroblast transdifferentiation (Yao et al., 2011) in MRC-5 

cells, a foetal lung fibroblasts cell line. Interestingly, miR-21 has been identified to be expressed 

the oral tumour stroma and predict poor prognosis (Hedbäck et al., 2014).  

 

1.6.4 The 143/145 microRNA cluster.  

The microRNA 143/145 cluster is found on chromosome 5 (q33.1) as around 2kb (Liu et al., 2012) 

co-transcribed as a bicistronic primary microRNA pair.  

The cluster is involved in the transcriptional networks regulating vascular smooth muscle cell 

(VSMC) fate (Cordes et al., 2009; Davis-Dusenbery et al., 2011; Xin et al., 2009). miR-143/5 are 

central in regulating myocardin and myocardin related transcription factors. These genes, along 

with serum response factor (SRF) activate the transcription of contractile smooth muscle genes 

including αSMA, through the binding of CArG box (a DNA sequence motif found in SMC gene 

promoters). There is also a CArG box in the upstream enhancer of miR-143/5 (Xin et al., 2009), 
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allowing them to be in a central feedback cascade controlling VSMC differentiation and 

maintenance.  

TGF-β1 and BMP4 are both involved in promoting smooth muscle repair, and are able to induce 

the expression of the cluster in VSMCs (Davis-Dusenbery et al., 2011; Long & Miano, 2011). The 

cluster fine tunes the smooth muscle phenotype by regulating myocardin and MRTFs, miR-145 

has been shown to directly target MRTF-B and also some negative regulators of myocardin for 

example KLF4/5 (Krüppel like factor 4/5) (Xin et al., 2009). miR-143/5 was shown to regulate 

KLF4 expression, with miR-145 having a more dominant effect (Davis-Dusenbery et al., 2011). In 

addition to negatively regulating myocardin, KLF4 can bind SRFs to prevent its binding to 

myocardin or MRTFs and alter the CArG box chromatin to prevent the activation of SMC genes 

(Liu et al., 2004), therefore KLF4 also controls the expression of the miR-143/5 cluster through 

the CArG box.  

PDGF causes dedifferentiation of the VSMC, to a more proliferative phenotype, through the 

downstream loss of myocardin expression due to its negative regulation of miR-145 (Cheng et 

al., 2009). miR-143 complements the action of miR-145 by targeting Elk-1, a transcription factor 

able to inhibit smooth muscle differentiation through regulating myocardin (Cordes et al., 2009). 

Once induced to become smooth muscle cells the cluster is downregulated to allow 

proliferation, therefore PDGF contributes towards a proliferative smooth muscle phenotype 

whereas TGF-β1 and BMP4 contribute towards a contractile phenotype.  

These studies have suggested that miR-145 is key in SMC differentiation, however, a miR-

143/145 knockout mouse study showed a show that the cluster is dispensable for the 

differentiation (Xin et al., 2009). However, these mice did possess vasculature with reduced 

vascular tone, and were unable to respond to vascular injury due to their inability to switch 

between the proliferative and contractile phenotypes. This study showed that both miR-143 and 

miR-145 have predicted targets that are involved in actin cytoskeleton organisation (Rho Kinase 

and Rock 1), actin polymerisation (actin-related protein 2/3 complex, and gamma actin) and 

actin binding (various targets including cofilin; Xin et al., 2009). MiR-143/145 have also been 

discovered to target Fascin Homolog 1 (FSCN1), which is also involved in actin maintenance as a 

actin bundling protein (Liu et al., 2012). miR-143/5 cluster has been reported to have been 

transferred from vascular smooth muscle cells to endothelial cells via specialised cell-cell 

connections called tunnelling nanotubes (Climent-Salarich et al., 2015).  
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Databases such as DIANA have identified multiple predicted targets of miR-145 within the TGF-

β signalling family. Recently, some of these predicted targets have been verified, TGF-βRII (Zhao 

et al., 2015) and smad3 (Huang et al., 2014). TGF-β1 has also been shown to induce the 

expression of the miR-143/5 cluster (Long & Miano, 2011), suggesting that miR-145 could be an 

integral part of TGF-β signalling. 

miR-145 is overexpressed in pulmonary arterial hypertension (PAH), and chronic hypoxia mouse 

models of PAH (Caruso et al., 2012), however it’s molecular contribution to pathogenesis is yet 

to be outlined. Pulmonary arterial hypertension, is a disease caused by vascular smooth muscle 

cells proliferating in arteries of the lung, resulting in a narrowing of the pulmonary blood vessels 

increasing the pulmonary blood pressure and eventually leads to right heart failure. Preclinical 

studies have shown potential for using anti-miR-145 oligonucleotides to inhibit miR-145-

mediated effects in PAH (McLendon et al., 2014). 

The loss of microRNA-145 is reported to be involved in chondrocyte differentiation, as it directly 

targets the 3’UTR of a critical transcription factor in chondrogenesis, Sox-9 (Yang et al., 2011). 

As well as being key in specialised differentiation, miR-145 plays an important role in general 

differentiation. In embryonic stem cells miRNA-145 is upregulated when cells are differentiating 

this allows the downregulation of its pluripotency gene targets KLF4, OCT4, and SOX2 (Xu et al., 

2009). Additionally, miR-145 also has reported involvement in the gut epithelial and smooth 

muscle cell maturation (Zeng, Carter, & Childs, 2009). 

 

1.6.5 miR-143/145 tumour suppressor activity 

The co-transcribed microRNA-143/145 cluster has been documented to be downregulated in 

many malignancies. microRNA-145 was first identified in humans in colorectal 

adenocarcinomas, where it was found to be downregulated compared to normal colonic tissue 

(Michael et al., 2003). Its expression has since been reported to be to be lost in a number of 

human malignancies including: B cell, bladder, breast, liver, lung, ovary, prostate, pituitary, 

colorectal, (reviewed in Suh et al., 2011) and head and neck malignancies (Oesophageal SCC (Wu 

et al., 2011), and nasopharyngeal (Chen et al., 2009)  

The miR-143/-145 cluster is thought to have a role in oncogenesis as loss of expression has been 

found in early stage colorectal adenomas (Akao et al., 2010). In colorectal cancers the mature 

forms of both miR-143 and miR-145 are downregulated, however the precursor levels aren’t, 

suggesting that the processing of the miRs is altered contributing to oncogenesis (Michael et al., 
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2003). Other studies have identified differential post-transcriptional processing of miRNAs via 

the regulation of the processing machinery (reviewed in Siomi & Siomi, 2010; Chong et al., 2010). 

miR-143/5 processing has been identified to be specifically regulated by drosha via p53 (Suzuki 

et al., 2009). DNA damage causes p53 to indirectly interact with non-coding RNA processing 

machinery Drosha to increase the cleaving of the co-transcribed pre-miR-143 and pre-miR-145 

to their mature forms.  

One way miR-143 could contribute towards carcinogenesis is via the downregulation of KRAS, 

this has been explored in oral cancer. Chen et al., (2009) used a luciferase reporter assay to show 

that miR-143 directly targets KRAS through binding to its 3’UTR. The loss of KRAS results in 

attenuation of ERK 1/2 phosphorylation in the MAPK signalling pathway, and is responsible for 

the loss of proliferation and increased apoptosis seen when miR-143 is upregulated in cells.  

MiR-143/5 is involved in a KRAS feedback loop, and acts as a break to prevent oncogenic RAS 

signalling. An active KRAS mutant repressed the expression of the miR-143/145 cluster via a 

RREB1 (Ras-responsive element-binding protein-1) in the cluster’s promoter (Kent et al., 2010). 

Also, miR-145 was found to target RREB1, in addition to miR-143 targeting KRAS, allowing for 

feedback loops to be established within Ras oncogenic signalling. Moreover, when miR-143 and 

miR-145 were re-expressed in a mutant KRAS positive pancreatic ductal adenocarcinoma cell 

line, the cells were unable to form tumours in immunocompromised mice, perhaps suggesting 

that miR-143/145 cluster mediates the tumour suppressive activity associated with KRAS, on top 

of the other oncogenic signalling on which the miRs converge (Kent et al., 2010).  

As the downregulation of the miR-143/-145 cluster is important in cancers and tumour initiation, 

the therapeutic implications of this have been highlighted. Kitade & Akao, (2010) have 

attempted to overcome the limitation of nuclease digestion presented by RNAi based 

therapeutic strategies, by the chemical addition of an aromatic residue to the passenger stand 

of the miRNA duplex, this gave the miR-143  5 to 8- fold increased stability. Introduction of this 

modified miR-143 intravenously into colon tumour mice models, resulted in the dose –

responsive reduction in tumour size. 

Another reported function of miR-143 is regulating cancer metabolism (R. Fang et al., 2012). The 

activity of the metabolic pathway mTOR results in the upregulation of hexokinase 2 isoform 

(HK2), an enzyme associated with aerobic glycolysis which is commonly upregulated in tumours. 

This upregulation greatly benefits tumour growth as it provides ATP by binding and facilitating 

an ATP transporter ion channel, VDAC, in the outer mitochondrial membrane. The regulation is 
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achieved through the negative regulation of miR-143, which targets HK2 via binding to its 3’UTR 

in cancer cell lines (Peschiaroli et al., 2012).  

The miR-143/5 cluster has also been implicated in the EMT process. Both miR-143 and miR-145 

were found to be at lower levels in the bone metastasis compared to the primary prostastic 

tumour site (Peng et al., 2011). This study found that overexpression led to an inhibition of the 

EMT process in both in vitro assays and in vivo studies. In addition, miR-145 has been shown to 

suppresses cellular invasion (Sachdeva & Mo, 2010), via directly targeting mucin-1, a cell surface 

proteoglycan pro-metastatic gene. Studies from bladder tumours have revealed that miR-143/5 

cluster targets plasminogen activator inhibitor -1 (PAI-1), an inhibitor of serine protease 

plasminogen (which cleaves plasminogen to plasmin, another protease involved in coordinating 

fibrinolysis) involved in various processes including fibrosis, angiogenesis and ECM component 

degradation and is commonly upregulated in cancers (Villadsen et al., 2012). 

MicroRNA-145 has been implicated to be involved with growth factor signalling pathways. The 

Insulin like growth factor (IGF) has been noted to be one of the pathways affected. miR-145 

targets both a receptor type 1 insulin-like growth factor receptor I (IGF RI) and IRS-1, a  docking 

protein which transduces the insulin signal from the receptor to downstream cystolic signalling 

proteins. miR-145 was found to directly target IRS-1 3’UTR through 2 separate binding sites 

(shown by luciferase reporter assay), the ectopic expression of miR-145 resulted in decreased 

IRS-1 protein levels but there was an increase in IRS-1 mRNA transcript levels suggesting that 

miR-145 acts to prevent the translation of IRS-1 and that there may be a positive feedback loop 

involve (La Rocca et al., 2009). In this study they failed to the downstream effectors of the IGF 

pathway e.g. Ras or MAPK/ERK pathway. In their study, mir-145 transfection correlated with 

growth inhibition, which can be assumed to be due to the loss of IRS-1. Truncation experiments 

confirmed that miR-145 was able to negatively regulate translation of IGF-R1 by binding to its 

3’UTR.  

Research has shown that miR-145 could be used as a putative biomarker.  Low levels of miR-145 

correlate with an aggressive cancer and poor prognosis in prostate.  The downregulation of the 

miR-143/145 cluster is strongly associated with OSCC (oesophageal SCC), and also the incidence 

of lymph node metastasis (Liu et al., 2012). Interestingly the downregulation of miR-143 and 

miR-145 was statistically associated with heavy drinking and smoking habits. The microRNA 

143/-145 cluster are one of several microRNAs which are significantly downregulated in HPV 

positive cases of PSCC (pharyngeal squamous cell carcinoma) compared to HPV negative (Lajer 

et al., 2012).  
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Sachdeva et al., (2009) showed that tumour suppressor p53 negatively regulates proto-

oncogene c-myc through the induction of miR-145. They discerned that PI3K/ Akt pathway is 

able to mediate the induction of miR-145 expression via p53. As the PI3K/AKT and p53 pathways 

are central and converge on many downstream signalling networks, miR-145 regulation is 

important in normal cellular growth and the cell cycle. In particular they revealed that p53 is able 

to bind to a p53 response element in miR-145’s promoter sequence and activate its transcription, 

miR-145 in turn directly targets transcription factor and proto-oncogene c-myc. Their data 

suggests that miR-145’s tumour suppressor characteristics are at least in part due to the silencing 

of c-myc (Sachdeva et al., 2009). Suh et al., (2011) studied 47 cancer cell lines and found a strong 

correlation between p53 mutations and the hypermethylation, hence downregulation, of miR-

145. The authors showed that a mutant form of p53 was unable to induce miR-145 expression, 

perhaps highlighting why the loss of basal levels of miR-145 is so common in cancers. As 

mentioned previously p53 is also able to regulate miR-145 at the processing level as well as the 

transcriptional level (Suzuki et al., 2009). 

Despite the above data, the miR-143/5 cluster has been recently suggested to be expressed 

exclusively in the mesenchymal compartment of the gut in mice and humans (Chivukula et al., 

2014), despite previous studies implicating a role for the miR-143/5 cluster as a tumour 

suppressor in colorectal epithelium (Akao et al., 2010; Chen et al., 2009). The authors of this 

controversial paper suggest that previous results could have been due to mesenchymal 

contamination. They investigated whether the expression of miR-143/5 in epithelium could be 

a result of the aberrant Wnt pathway inducing its expression in early oncogenesis and 

subsequently it being downregulated in tumour progression. Using mice models of adenomas 

with constituently active Wnt, they found no evidence of miR-143/5 expression changing, 

suggesting that the downregulation of miR-143/5 in previous studies must be a result of 

mesenchymal contamination. Conditional knockout studies showed that miR-143/5 in the 

mesenchymal compartment was found to be required for normal epithelial regeneration 

through regulating IGF signalling in intestinal subepithelial myofibroblasts.  

 

1.6.6 miR-143/-145 cluster and the tumour microenvironment. 

MiR-145 has recently been identified as a potential helpful biomarker in several cancers. miR-

145 is downregulated in the serum of ovarian cancer (Liang et al., 2015) and in the saliva of 

patients with OSCC compared with healthy controls (Zahran et al., 2015)  
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MicroRNA microarrays comparing CAFs isolated from invasive bladder tumours and normal 

fibroblasts isolated from foreskin showed a significant downregulation in the miRNA-143/145 

cluster in the CAFs; however the same down regulation was not seen when they attempted to 

validate using qRT-PCR analysis of a small cohort (n=3) (Enkelmann et al., 2011). Conversely in 

the same study, both microRNA microarray and qRT-PCR data revealed an upregulation of miR-

16 and miR-320 in bladder CAFs compared to normal bladder fibroblasts. Studies from cardiac 

and pulmonary fibrosis have reported miR-145 to promote the myofibroblasts phenotype, 

suggesting miR-145 may play a role in regulating fibroblast transdifferentiation towards 

myofibroblasts (Gras et al., 2015; Wang et al., 2014; Yang et al., 2013).  

Data from our lab has shown that miR-145 is involved with stromal-epithelial interactions (Pal 

et al., 2013). Normal oral fibroblasts downregulate miR-145 is response to cigarette smoke, 

which in turn promotes the paracrine migration of OSCC cancer cell lines.  

Angiogenesis may be regulated in part by miR-145 expression. miR-145 targets p70S6K1 which 

is immediately downstream of mammalian target of rapamycin/ (mTOR), a molecule central in 

the cellular functions such as apoptosis, cell cycle regulation, proliferation and growth (Xu et al., 

2012). Xu et al., showed that miR-145, via loss of p70S6K1, is capable of halting angiogenesis 

and cellular growth by the inhibition of angiogenic regulators HIF-1α and VEGF. They 

hypothesised that loss of tumour miR-145 expression results in the downstream activation of 

angiogenic factors via the mTOR pathway.   

Data from Lu et al., (2013) confirmed unpublished data from our lab that suggests miR-145 

targets the transmembrane protease ADAM-17. They showed that miR-145 directly targets 

ADAM-17 via binding to its 3’UTR, and downregulates EGFR expression. ADAM-17 is also 

referred to as TNF-α converting enzyme (TACE), due to its ability to process TNF-α, therefore 

overexpression of ADAM-17 due to loss of inhibition by miR-145, could increase the release of 

TNF-α in the inflammatory response. ADAM-17 also cleaves heparin-binding EGF-like growth 

factor (HB-EGF) (Merlos-Suárez et al., 2001), therefore miR-145 may indirectly increase EGF 

growth signalling to promote EMT and tumour growth (Hinsley et al., 2012). ADAM-17 has also 

been reported to play a role in angiogenesis, so loss of miR-145 may promote neovascularisation 

through ADAM-17. miR-145 has been published to target other proteases including MMPs, for 

example MMP-11 (Wu et al., 2014) 

ADAMTS levels are also important in cancer, like ADAMs, they can influence growth factor 

signalling and ADAMTS-1 and -4, are involved in proteolytic cleavage of an extracellular 
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proteoglycan versican. This cleavage produces a form which can function independently. Both 

cleaved and uncleaved versican are strongly implicated in the tumour microenvironment. miR-

143 has been reported to post-transcriptionally regulate versican, in smooth muscle cells by 

binding to its 3’ UTR (Wang, Hu, & Zhou, 2010). Preliminary data from our lab also suggest that 

miR-145 is able to regulate versican levels. This study aims to assess this regulation and its 

significance within CAFs.  

 

1.6.7 miRNA therapies  

 miRNA mimics and antimirs are being developed for the therapeutic treatment of diseases or 

and cancer. The development of this new class of drugs comes with several challenges to 

overcome in addition to ensuring that the miRNA has minimal off-target effects (reviewed in van 

Rooij, Purcell, & Levin, 2012). Nucleic acids are unstable and are subject to degradation by 

nucleases, therefore an appropriate delivery system needs to be used for protection and also to 

ensure delivery to the appropriate cells. RNAs have a negative charge and therefore the miRNA 

needs to be of a neutral charge, to be uptaken into a cell. Various technologies have been 

developed to overcome these limitations. To overcome nuclease degradation nucleic acids can 

be stably modified. Locked nucleic acids (LNA) have been generated (Koshkin et al., 1998), these 

have an extra bridge between 2’O and 4’ on the ribose moiety, making the nucleic acid more 

stable. Peptide nucleic acids (PNA) have also been synthesised, where the nucleic acids 

phosphodiester backbone is replaced with N-(2-aminoethyl)-glycine, these are also neutrally 

charged so it does not require further packaging (Zhang, Wang, & Gemeinhart, 2013). Delivery 

vectors in vitro can be viral vectors or lipid liposomal based however these are not suitable for 

in vivo use as they inflict an immune response and are toxic (Zhang et al., 2006). Most commonly 

studied delivery technique in vivo is the polyethylenimide (PEI) polymer, are long pronated 

polymers which can bind nucleic acid (Boussif et al., 1995) which can package the nucleic acids 

for delivery.  

 Targeting the miR cargo to the correct cells is the next challenge to overcome. PNAs can be 

directly targeted to the tumour microenvironment. AntimiR-155 was conjugated to a pHLIP 

peptide with an ability to be induced into an alpha helix transmembrane structure at low pH, in 

the tumour microenvironment, which can be incorporated into adjacent cells’ plasma 

membrane (Cheng et al., 2015). In an acidic environment (around pH 6), like that found in 

tumours, sites of inflammation or ischaemia, the pHLP peptide can incorporate into the plasma 

membrane of surrounding cells, the disulphide bond between pHLP and the antmiR is reduced 

http://en.wikipedia.org/w/index.php?title=N-(2-aminoethyl)-glycine&action=edit&redlink=1
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in the cytosol and the antimiR is released to decrease miR-155 levels by RNAi. This treatment 

strategy was tested on mouse miR-155 overexpressing lymphoma model, where it was able to 

reduce miR-155 levels, reduce tumour size and increase survival.  

Some miRNAs show incredible potential as they target many oncogenes at once for example 

miR-34, which a mimic is currently in phase 1 clinical trials for the treatment of primary advanced 

liver cancer.  The drug MRX38, a miR-38 mimic encapsulated in liposomal based delivery system, 

is in a phase 1 clinical trials. Another miR therapy in clinical trials is antimiR-122 (drug name: 

Miravirsen) which seems to be so far successful in Phase 2a trials for treating hepatitis C infection 

(Gebert et al., 2014). A miR-145 inhibitor is currently in preclinical studies for use in treating 

pulmonary arterial hypertension (Caruso et al., 2012) which is being developed by miRagen 

Therapeutics, Inc. (miRagen Therapeutics | microRNA Based Therapeutics)   

 

1.7  Versican 

Versican (VCAN, also known as PG-M, and CSPG-2) is a large extracellular chondroitin sulphate 

proteoglycan which is a member of the aggrecan family. Other members of this gene family 

include aggrecan, neurocan and brevican; these structurally similar molecules all have roles in 

extracellular matrix (ECM) assembly. Versican is widely expressed in adult connective tissues in 

smooth muscle, skin, blood vessels, glandular epithelium, and nervous system (Bode-Lesniewska 

et al., 1996; Yao et al., 1994).  

Versican is a large structurally complex proteoglycan approximately 74 - 450 kDa in size 

(Ricciardelli et al., 2009). Proteoglycans are proteins that contain glycosaminoglycan (GAG) 

chains. Versican is classed as a chondroitin proteoglycan as it has 15 - 20 chondroitin sulphate 

side chains attached to its GAG domains. The versican gene spans 15 exons on chromosome 5 

(Nasos, Zimmermanng, & Iozzon, 1994), and two GAG exons are alternatively spliced, to produce 

4 isoforms V0, V1, V2, and V3 (Zimmermann & Ruoslahti, 1989). Each isoform consists of two 

globular domains G1 and G3, but differs by the presence of two GAG chains, α and β. G3 has two 

EGF repeats and lectin binding domains (Lebaron, 1996). V0 is the full length versican which 

contains both α and β GAG domains, V1 contains only β GAG, V2 contains only α GAG domain 

and V3 contains no GAG domains, in addition to the two globular domains (figure 1.3.; reviewed 

in Ricciardelli et al., 2009) Each isoform, therefore, has slightly different functions in 

physiological and pathological situations. 
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Versican’s name reflects its biological versatility both in development, maintenance and disease. 

It has roles in many cellular processes e.g. adhesion, proliferation, migration and apoptosis 

(Ricciardelli et al., 2009). It is an integral part of the extracellular matrix and interacts with 

several key extracellular matrix components, such as fibronectin, collagen I and laminin (Wu et 

al., 2005). Like other members of the aggrecan gene family, versican is able to interact with 

hyaluronan (a ubiquitous polysaccharide present in the ECM; HA) and form aggregates, 

associating with it through versican’s N terminus (G1 domain) (LeBaron, Zimmermann, & 

Ruoslahti, 1992) and also through its GAG chains (Wu et al., 2005). Versican is also known to 

interact with hyaluronan’s receptor CD44, it is thought to behave as a ligand, independent of 

hyaluronan binding as there is an association in the presence of hyaluronidase (Kawashima et 

al., 2002). CD44, versican and HA have been reported to form a complex (Hattori et al., 2011). 

Hyaluronan also can influence cellular signalling, it can activate EGF signalling by interacting with 

EGFR (Simpson et al., 2010), in addition to converging on the NFκB pathway, through physically 

interacting with TGF-β receptor I at the cell membrane. Through this interaction, HA is able to 

activate the TGF-β RI leading to the activation of the TGF-β pathway and increase migration in a 

breast metastatic cell line (Bourguignon et al., 2002). On the other hand, HA can dampen the 

TGF-β response through CD44 and TGF-β RI interaction in proximal tubular epithelial cells (Ito et 

al., 2004). The differences seen could reflect the different CD44 isoforms in the diverse cell 

types.  

CD44 has also been found to act as a docking platform for MMP9 (Yu & Stamenkovic, 1999). 

Docked MMP9 was shown to, in turn cleave latent TGF-β2 and TGF-β3 (Yu & Stamenkovic, 2000) 

promoting tumour invasion and angiogenesis. 
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Figure 1.3. A schematic showing the structure of the versican isoforms. 
Modified from (Ricciardelli et al., 2009) 
 

There are several CD44 isoforms that have implicated roles in HNSCC, such as chemosensitivity 

to cisplatin, cellular proliferation and migration (Wang et al., 2009). CD44, and therefore HA 

have been reported to activate EGF signalling, a pathway aberrantly activated in a large 

proportion of HNSCC cases. Bourguignon et al., (2002) showed that CD44 and EGFR form a 

complex. Several studies have showed that interaction can lead to the downstream activation 

of tumour associated signalling pathways Ras, Rho A, MAPK and PI3-K (reviewed in Wang & 

Bourguignon, 2011). Furthermore, CD44 is used as a cell surface marker to identify the presence 

of cancer stem cells in breast and prostate, implicating further its significance in cancers.   

HA and versican complex formation is crucial in regulating the ECM structure and cellular 

phenotype. Mice embryonic fibroblasts expressing a versican construct with decreased ability 

to interact with HA (due to a subdomain deletion in the G1 domain), Cspg2Δ3/Δ3, undergo 

premature senescence due to a less stable ECM (Suwan et al., 2009). These Cspg2Δ3/Δ3 cells 

have markedly reduced amount of versican and HA in the extracellular environment, in the 

mutant cells HA was only found associated with CD44 at cell membranes suggesting that 

efficient HA and versican interaction is required for HA to amalgamate into the ECM and for 
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complete matrix assembly. The authors proposed that a decrease in versican and HA complexes 

resulted in a greater amount of free HA activating CD44, leading to the downstream activation 

of MAPK allowing early senescence. It could be hypothesized that the opposite could be true, a 

pathological accumulation of versican in the tumour environment leading to a larger ECM with 

increase HA accumulation and subsequent lower CD44 activation and less ERK1/2 

phosphorylation resulting in increased survival and proliferation.    

 

1.7.1 Versican in cancer.  

In the tumour environment, versican is secreted mainly by the fibroblasts in the adjacent stroma. 

This secretion is elevated by paracrine signalling from the cancer, as shown in studies where 

conditioned media from cancer cell lines induced an increase in release of versican in mammary 

fibroblasts (Ricciardelli et al., 2009; Sakko et al., 2001). Specifically TGF-β1 induces versican 

secretion in human smooth muscle cells, gingival fibroblasts amongst other normal cell types 

(Haase et al., 1998; Kähäri, Larjava & Uitto, 1991). The presence of a TGF-β1 antibody was able 

to block induced versican expression in response to both exogenous TGF-β1 and conditioned 

media in prostate fibroblasts (Sakko et al., 2001), suggesting that TGF-β1 signalling is one of the 

primary ways that cancer cells are able to regulate versican levels. In addition to expression by 

stromal cells, versican mRNA has been detected in the cytosol of epithelial tumour and 

melanoma cell lines (Gulyás & Hjerpe, 2003; Touab et al., 2002). 

High stromal versican levels are correlated with poor prognostic outcome and a more aggressive 

phenotype in many cancers, including breast (Ricciardelli et al., 2002), pharyngeal (Pukkila et al., 

2004) oral squamous cell carcinoma (Pukkila et al., 2007), and bladder (Said et al., 2012). In 

addition, versican expression has been detected to be greater in metastatic sites (Pukkila et al., 

2004). The same study’s data suggested that versican expression is greater in the earlier stages 

of pharyngeal tumours, however similar immunohistological studies have not seen any 

correlation with versican expression and the staging (Pukkila et al., 2007; Suwiwat et al., 2004). 

The presence of versican also increases the chance of relapse in prostate and breast 

malignancies. One study showed that high peritumoural versican levels were 6 fold more likely 

to relapse (Ricciardelli et al., 2002). On the other hand, versican levels found in epithelial cells 

have been indicative of a longer disease free survival in colon cancer (de Wit et al., 2012).  

Versican can cause proliferation and inhibit apoptosis in NIH3T3 fibroblasts (Sheng et al., 2005). 

Versican is an anti-adhesive molecule due to its negatively charged chondroitin sulphate side 
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chains (Ricciardelli et al., 2009), therefore another method by which it could promote cancer 

progression and relapse is by allowing cancer cell invasion through a non-cohesive extracellular 

matrix, allowing dissemination of cancer cells. It also destabilises focal adhesions between cells 

which is believed to permit cellular proliferation and hence tumour growth.  

Versican has been implicated in muscle invasive bladder carcinomas, where it is expressed highly 

(Said et al., 2012). Rho-GTP dissociation inhibitor 2 (Rho-GDI2), a molecule preventing invasion 

which is lost in these tumours, works through the action of versican. When Rho-GDI2 was 

introduced into a bladder urothelial cell line, versican expression was decreased by more than 

8-fold. Specifically, GDI was able to downregulate V1 and V3 isoforms. When Rho-GDI2 was 

introduced into a cancer urothelium and macrophage co-culture system there was a decrease 

in versican expression and a reduction in the release of pro- inflammatory mediators MCP-1 

(also known as CCL2) and IL-6, suggesting that versican induces an inflammatory response 

resulting in the recruitment of macrophages. The presence of macrophages was shown to be 

crucial for the GDI2-mediated upregulation of versican to promote invasion and metastasis, as 

the depletion of macrophages in mice inhibits versican’s ability to stimulate lung-metastasis. 

This study eloquently revealed versican’s pro-metastisic role through the regulation of 

inflammation with the tumour microenvironment.  

Versican has been found to act as an agonist for TLR-2 (Toll-like receptor-2) present on 

macrophages resulting in activation and subsequent secretion of chemokines TNF-α (tumour 

necrosis factor-alpha) and IL-6 (interleukin-6) (Kim et al., 2009). These metastatic mediators can 

then recruit more inflammatory mediators, increase permeability of blood vessels and activate 

the NF-KB pathway which is anti-apoptotic and pro-proliferative; all of which will aid metastasis. 

This in vivo study went on to show that both recombinant knock out of TLR-2 and the silencing 

of versican, in the cancer cells used to inoculate the mice, significantly attenuated metastatic 

spread and improved survival. It was clear from this study that versican is able to strongly affect 

the tumour microenvironment by behaving as a ligand, however it is not clear whether this 

effect was through its association with hyaluronan. 

Extracellular versican levels are responsible for change in cellular phenotype. Hattori et al., 

(2011) reported that pericellular, the extracellular compartment surrounding the cell, 

accumulation of versican, via the loss of ADAMTS-5 mediated cleavage, was responsible for the 

acquisition of myofibroblast phenotype within dermal fibroblasts. ADAMTS-5 -/- knockout mice 

dermal fibroblasts had an attenuation of versican cleavage shown by a reduction in detection, 

via immunoblotting, of an epitope specific to the ADAMTS-5-cleaved versican product (DPEAAE 
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epitope) compared to the wild type. Moreover there was an increase in the unprocessed 

versican levels shown by an increase in detection of anti-GAGβ which is present in both V0 and 

V1. These ADAMTS-5-/- fibroblast had an extensive pericellular matrix and characteristics that 

resemble myofibroblasts: altered cell shape, increased αSMA expression, and greater 

contractility (Hattori et al., 2011). This phenotype could be rescued by the addition of ADAMTS-

5 and by crossing ADAMTS-5 -/- mice with haploinsufficient VCAN, suggesting that the 

phenotype was due to accumulation of versican. Again, heterologous expression of full-length 

versican induced a myofibroblast phenotype within ADAMTS-5 -/-, VCAN hdf/+ fibroblasts; 

suggesting that it was in fact accumulation of pericellular versican inducing dermal 

myofibroblast differentiation. 

Hattori et al., (2011) also showed evidence to suggest that the myofibroblast phenotype was 

related to increased TGF-β signalling and HA. ADAMTS-5 -/- fibroblasts had an increase in psmad 

2/3 levels, and when an inhibitor to TGF-β R was added there was a reduction in αSMA 

expression and contractility. Likewise, inhibiting the synthesis of HA, which had previously been 

shown to be involved with the myofibroblast transition (Meran et al., 2007), had the same 

ameliorating effect on the myofibroblast phenotype. This study further exposes the links 

between HA, versican, and TGF-β signalling, and indeed the action of ADAMTS family members, 

which appear to contribute towards myofibrotic phenotype (Hattori et al., 2011). 

ADAMTS-1 and -4 are able to proteolytically cleave versican at the Glu441-Ala442 bond resulting 

in a truncated form of versican (Ricciardelli et al., 2009). This cleaved version of versican co-

stained with both ADAMTS-1 and ADAMTS-4 in malignant prostate cancer sections.  A separate 

study has suggested that higher levels of this cleaved form in cancers contributes to invasion, as 

an antibody to the neoepiptope formed by ADAMTS cleavage inhibited cancer cell migration 

(Arslan et al., 2007). How these cleaved products of versican contribute to cancer and metastasis 

needs to be explored further. 

 

1.7.2 Regulation of versican   

 Versican expression is regulated by a number of molecules including a range of cytokines and 

growth factors. Platelet derived growth factor (PDGF), was able to stimulate an increase in 

versican levels in human gingival fibroblasts and arterial smooth muscle cells, where PDGF was 

also able to cause a greater number of HA/versican aggregates (Evanko et al., 2001). Other 

growth factors, EGF and IGF-1 (Syrokou et al., 1999), as well as steroid hormones, (Russell et al., 
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2003) androgens (Read et al., 2007), and IL-α (Qwarnström et al., 1993), to name a few, have 

also been reported to increase versican levels.  

microRNA-143 has been identified to post-transcriptionally regulate versican. Wang et al, (2010) 

showed that myocardin is responsible for the downregulation of versican via transcriptional 

activation of miR-143, in smooth muscle cell differentiation. miR-143 is able to directly bind to 

a complementary sequence within the versican 3’UTR to result in the downregulation of versican 

in smooth muscle cells. However, co-transcribed microRNA-145 did not bind to versican’s 3’UTR 

(Wang et al., 2010). Scanning bioinformatical databases did not reveal any putative binding sites 

within the versican gene. However, preliminary data from our lab suggests that miR-145 may 

regulate versican.  

 

1.8  Aims and Objectives 

The main aim of this study was to assess the role of miR-145 within fibroblasts in the 

tumour microenvironment, termed cancer associated fibroblasts (CAFs). As 

myofibroblast CAFs are the most well characterised CAF and are recognised to promote 

invasive tumours with poor prognositic value, the roles of miR-145 within the 

myofibroblast phenotype of CAFs were assessed. The main hypothesis was that miR-145 

regulates the myofibroblast phenotype in CAFs.  

The study intended to assess the expression of miR-145 in fibroblasts isolated from 

OSCCs and normal oral fibroblasts treated with TGF-β1 (induced myofibroblasts) and to 

use miR-145 mimics and antimiRs to test the gain of function and loss of function effects 

of miR-145 on the myofibroblast phenotype. The study planned to investigate the 

myofibroblast phenotype by assessing the expression of molecular myofibroblast 

markers, contractility and ability to promote the paracrine migration and invasion of an 

oral cancer cell line.  

The work outlined in this thesis aimed to identify and validate novel targets for miR-145. 

The study intended to validate preliminary data that suggested miR-145 regulates 

extracellular proteoglycan versican, and understand the nature of this regulation. In 

addition to investigating the role of versican in regulating the myofibroblast phenotype.  
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The main objectives of the study were to:  

 Optimise the dose and time duration of TGF-β1 treatment for inducing the 

myofibroblast phenotype in normal oral fibroblasts (NOFs). 

 Characterise normal oral fibroblasts and fibroblasts isolated from OSCC, CAFs, responses 

to TGF-β1 and conditioned media from oral cancer cell lines, by assessing common 

markers of myofibroblast phenotype  by assessing the presence of α- smooth muscle 

actin (αSMA) stress fibres, the increased expression of extracellular matrix markers 

collagen 1a (COL1A) and fibronectin-1 with extra domain A (FN1-EDA), increased ability 

to contract, and increase ability to promote the paracrine migration and invasion of 

cancer cells. 

 Investigate the ability of the conditioned media from oral cancer cell lines cal27, H357 

and VB6 to promote the myofibroblast phenotype in NOFs and CAFs. 

 Determine the expression of molecular markers of myofibroblasts in fibroblasts isolated 

from genetically stable and unstable OSCCs compared to normal oral fibroblasts. 

 Assess the expression of microRNA-143 and miR-145 in TGF-β1 induced myofibroblasts 

and CAFs compared to NOFs. 

 Perform miR-145 gain of function and loss of function experiments within TGF-β1 

induced myofibroblasts and CAFs and assess the expression of myofibroblast markers.  

 Investigate the effect of miR-145 in fibroblast‘s promoting paracrine migration and 

invasion of H357 cells. 

 Examine the expression of versican isoforms in TGF-β1 induced oral myofibroblasts and 

CAFs.  

 Investigate the expression of versican in NOFs and CAFs overexpressing miR-145.  

 Investigate how miR-145 regulates versican by cloning versican’s regulatory regions. 

 Examine the effect of a versican siRNA on the myofibroblast phenotype in TGF-β1 

induced myofibroblasts. 

 Determine the regulation of versican in the tumour microenvironment by investigating 

metalloproteases which cleave versican in induced myofibroblasts and CAFs. 

 Confirm targets for miR-145 which had been previously published and identifying new 

target to understand the role of miR-145 in the myofibroblast phenotype better. 

  Investigate the role of miR-145 and versican in the myofibroblast phenotype of dermal 

fibroblasts, and establish whether they have the same effect as it does in oral 

fibroblasts.  
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2.1 Materials  

2.1.1 Reagents  

All chemicals used were purchased from Sigma Aldrich (UK), unless otherwise stated. 

2.1.2 Recombinant proteins and peptides 

Recombinant human transforming growth factor-beta 1 (TGF-β1) was purchased from R & D 

systems (UK) and reconstituted in 4 mM hydrochloric acid with 1 mg/ml bovine serum albumin 

(BSA) at a concentration of 20 µg/ml. Endothelin-1 synthetic peptide, which has sequence 

matched with porcine and human was purchased from Sigma Aldrich, and was made up in sterile 

water to a concentration of 10 µM. Recombinant platelet derived growth factor-BB (PDGF-BB) 

was purchased from R & D systems (UK), and reconstituted in 4 mM HCl to a final concentration 

of 100 µg/ml. All peptides and recombinant proteins were stored at −20oC and used within a 

month following reconstitution. 

2.1.3 Cell lines 

The cell lines used in this study are shown in table 2.1 

Table 2.1 Head and neck cell lines used. 

Cell Line Name Tissue Origin site Source 

BICR16 OSCC tongue Provided by K.Hunter 

Cal27 OSCC tongue Purchased from ATTCC 

H357 OSCC tongue Gift from S.Prime (University of Bristol) 

VB6 (αvβ6 integrin 

stable transfection) 

OSCC tongue Generated by G.Thomas  (at Eastman 

Dental Institute UCL  (Thomas et al., 

2001)) 

2.1.4 Primary cells 

Human normal primary cells were isolated with South Yorkshire ethical committee approval at 

the Charles Clifford Dental hospital).  Fibroblasts isolated from OSCCs were kindly given by Prof. 

Ricardo Coletta at University of Campinas, Piracicaba, Sao Paulo, Brazil. Fibroblasts isolated from 

genetically characterised OSCCs were given by Prof Ken Parkinson, and isolated at Beatson 

Institute for Cancer Research (Lim et al., 2011).  All Primary cells used are listed in the table 1.2. 
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Table 2.2 Human primary cells used 

Cell Type Cell name Source 

Normal gingival Fibroblasts OF26, DENF008, DENF316, 

DENF319 

 

Charles Clifford Dental 

Hospital, Sheffield 

 MNF4, MNF5, MNF6 Prof Ricardo Coletta 

(University of Campinas, Sao 

Paulo) 

 HNOF1, HNOF2, HNOF5 Prof Ken Parkinson (Lim et 

al., 2011) 

Fibroblasts isolated from 

Genetically stable OSCC 

BICR37, BICR59, BICR69, 

BICR70, BICR73 

Prof Ken Parkinson (Lim et 

al., 2011) 

Fibroblast isolated from 

genetically unstable OSCC 

BICR3, BICR18, BICR31, 

BICR63, BICR78 

 Prof Ken Parkinson (Lim et 

al., 2011) 

Fibroblasts isolated from 

OSCCs 

MCA, MC5, MC6, MC15 University of Campinas, Sao 

Paulo - Prof Ricardo Coletta 

Fibroblasts from dysplasias E2 Prof Ken Parkinson (Lim et 

al., 2011) 

Dermal Fibroblast HDF Promocell 

 HDF 283, HDF286 Prof Sheila MacNeil 

 

2.1.5 Bacterial Strains 

The chemically component E.coli strain DH5α was purchased from New England BioLabs (UK), 

and was used for propagating plasmid DNA. 

2.1.6 Antibodies 

Mouse anti-human alpha smooth muscle actin (anti-αSMA) monoclonal antibody (clone 1A4; 

1:1,000 for western blotting), mouse anti-human β-actin monoclonal antibody (clone AC-74; 

1:4,000 for western blotting), and rabbit anti-human glyceraldehyde 3-phosphate 
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dehydrogenase (GAPDH) monoclonal antibody (1:7,500 for western blotting) were purchased 

from Sigma Aldrich (UK).  Goat anti-human full length versican polyclonal antibody was bought 

from R & D systems (UK) (1:1,000, for western blotting). Rabbit anti-human neoepiptope 

versican (ab19345) polyclonal antibody (1:1,000, for western blotting) was purchased from 

Abcam (UK). The secondary horseradish peroxidase (HRP) conjugated antibodies used were anti-

rabbit IgG (Cell Signalling Technologies; 1:5,000) , anti-mouse IgG (Cell Signalling Technologies; 

1:3,000) and ZyMAXTM  rabbit anti-goat IgG (Invitrogen, UK; 1:3,000). 

2.1.7 Plasmids 

The pGL3 basic plasmid vector was purchased from Promega (UK). 

2.1.8 Tissue Culture 

All reagents used in tissue culture were purchased from Sigma Aldrich (UK): Dulbecco’s modified 

eagle medium (DMEM), foetal bovine serum (FBS),  L-glutamine, phosphate buffered saline 

(PBS), trypsin /EDTA (ethylenediaminetetraacetic acid), Ham’s F12 media, epidermal growth 

factor (EGF), cholera toxin, insulin, hydrocortisone, insulin, adenine, amphotericin B, penicillin 

and streptomycin, 3,3,5-tri-iodothyronine, and apo transferrin. Difco trypsin, for use in the 

isolation of primary cells, was purchased from BD Worldwide (UK). 

Reduced serum OptiMem and Oligofectamine transfection reagents were purchased from Life 

Technologies (UK). Fugene HD 6 from Promega (UK) was used in Dual Luciferase reporter assay 

to introduce vectors into reciprocal B16 cells. 

All culture plates were purchased from Griener Bio one (UK). Porous membrane (8μm) transwell 

inserts for use in cell migration assay were purchased from Scientific Laboratory Supplies (SLS; 

UK).  Glass coverslips with a diameter of 13mm were purchased from VWR International (UK). 

2.1.9 Oligonucleotides 

Synthetic oligonucleotides for gain of function/ loss of function experiments were bought from 

Life Technologies (UK) and shown in table 2.3. 
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Table 2.3: List of oligonucleotides.  

Oligonucleotide    

 

Part number 

Versican siRNA   

 

AM16708  14606 

MRTF-B siRNA    

 

AM16708   115972 

Silencer select negative siRNA #1  

 

4390843 

Silencer select negative siRNA #2  

 

4390847 

Negative premiR control #1  

 

AM17110 

Negative premiR control #2  

 

AM17111 

premiR miRNA precursor 143  

 

AM17100  PM19855 

premiR miRNA precursor 145  AM17100  PM11480 

antimiR miRNA inhibitor antimiR-145  

 

AM17000  AM11480 

 

2.1.10 Primers 

Primers were synthesised by Sigma Aldrich, and the sequences are shown in Table 2.4.  
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Table 2.4. SYBR green primer sequences  

 

Primer Sequence Reference 

U6 Forward 5’ CTCGCTTCGGCAGCACA 3’  (Baroukh et al., 2007) 

U6 Reverse 5′ AACGTTCACGAATTTGCGT 3’ (Baroukh et al., 2007) 

αSMA Forward 5’ GAAGAAGAGGACAGCACTG 3’ (Yue et al., 2008) 

αSMA Reverse 5’ TCCCATTCCCACCATCAC 3’ (Yue et al., 2008) 

Versican Forward 5’CTGATAGCAGATTTGATGCCTACT

GC 3’ 

(Wang et al., 2010) 

Versican Reverse 5’ 

GTGGTTCTTTGGATAAACTGGGTGA

TG 3’ 

(Wang et al., 2010) 

Fibronectin-1 with 

EDA (FN1-EDA) 

domain Forward 

5’ TGGAACCCAGTCCACAGCTATT 3’  

Fibronectin-1 with 

EDA (FN1-EDA) 

domain Reverse 

5’ GTCTTCTCCTTGGGGGTCACC 3’  

Collagen 1a (COL1a) 

Forward 

5’GTGGCCATCCAGCTGACC 3’  

Collagen 1a (COL1a) 

Reverse 

5’ AGTGGTAGGTGATGTTCTGGGAG 

3’ 

 

Connective Tissue 

Growth Factor 

(CTGF) Forward 

5’ GGGAAATGCTGCGAGGAGT 3’  

Connective Tissue 

Growth Factor 

(CTGF) Reverse 

5’AGGTCTTGGAACAGGCGCTC 3’  
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Matrix 

metalloprotease 2 

(MMP2) Forward 

5’ 
AATAATTCCGCTTCCAGGGCACATCC 
‘3 

 

Matrix 

metalloprotease 2 

(MMP2) Reverse 

5’ 

TTATTGCGGTCGTAGTCCTCAGTGGT 

‘3 

 

Myocardin Forward 5’ CGAGTCTGATCCGGAGAAAGG 3’  

Myocardin Reverse 5’ 

CTGTGAAAGAGGCCATAAAAGGTAA 

3’ 

 

Myocardin Relative 

Transcription Factor 

–A (MRTF-A) Forward 

5’ TGTGTCTCAACTTCCGATGG 3’  

Myocardin Related 

Transcription Factor 

–A (MRTF-A) Reverse 

5’ TTCACCTTTGGCTTCAGCTC 3’  

Myocardin Relative 

Transcription Factor 

–B (MRTF-B) Forward 

5’ GCAACTGCTGCACAAATAACC 3’  

Myocardin Related 

Transcription Factor 

–B (MRTF-B) Reverse 

5’ TTGATAAAGGGCTGCTGGAC 3’  

TGF-β Receptor II 

Forward 

5’ AGTCGGATGTGGAAATGGAGG 3’  

TGF-β Receptor II 

Reverse 

5’ GGAAACTTGACTGCACCGTTGT 3’  
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2.2 Methods: 

2.2.1 Cell culture 

Isolation of primary cells from oral biopsies 

Human primary normal oral fibroblasts were isolated from biopsies taken from patients at the 

Charles Clifford Dental Hospital undergoing routine dental treatments with informed consent 

(see section2.2.5). 

Isolation of normal oral keratinocytes. 

Biopsy tissue was incubated in 0.1% (w/v) Difco trypsin at 4 oC overnight to remove the 

epithelium. Keratinocytes were obtained from the biopsies by gentle scraping of the connective 

tissue into the Difco trypsin, using a scalpel. The remaining tissue was used to isolate normal 

oral fibroblasts (section 0). The tryspin mixture containing the keratinocytes was subsequently 

centrifuged at 1200 rpm for 5 min, resuspended in Green’s media and grown on an irradiated 

mouse fibroblast feeder layer (i3T3). Green’s media, is made up of 66% (v/v) DMEM, 21.6% (v/v) 

Ham’s F12 media, 5 ng/ml epidermal growth factor (EGF) 8.47 ng/ml cholera toxin, 5 µg/ml 

Sox9 Forward 5’GACCAGTACCCGCACTT 3’ (van Baal et al., 2012) 

Sox9 Reverse 5’ TTCACCGACTTCCTCCG 3’  

Krϋppel like factor 4 

(KLF4) Forward 

5’ CCCAATTACCCATCCTTCCT 3’ (Davis-Dusenbery et al., 

2011) 

 

Krϋppel like Factor 4 

(KLF4) Reverse 

5’ CGTCCCAGTCACAGTGGTAA 3’  

Krϋppel like Factor 5 

(KLF5) Forward 

5’ CTTCCACAACAGGCCACTTACTT 3’ (C. Chen, Bhalala, Qiao, & 

Dong, 2002) 

 

Krϋppel like Factor 5 

(KLF5) Reverse 

5’ 

AGAAGCAATTGTAGCAGCATAGGA 

3’ 
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Insulin, 4 µg/ml Hydrocortisone, 5 µg/ml Insulin, 0.025 µg/ml Adenine, 0.625 µg/ml 

Amphotericin B, 100 i.u./ml Penicillin, 100 µg/ml Streptomycin, 1.36 ng/ml  3,3,5-Tri-

iodothyronine, and 5 µg/ml Apo Transferrin. This study did not use the keratinocytes 

subsequently. 

Isolation of normal oral fibroblasts. 

After the isolation of normal oral keratinocytes, the remainder of the biopsy was finely cut up 

using the scalpel and left in 0.5% collagenase A at 37 oC in a CO2 humidified incubator overnight. 

After 14-18 h incubation the collagenase and cells were centrifuged at 2000 rpm for 10 min. The 

cells were resuspended, and grown in Dulbecco’s modified eagle medium (DMEM) 

supplemented with 10% (v/v) foetal bovine serum (FBS) and 2 mM L-glutamine, supplemented 

with 0.625 µg/ml ampotericin B and 100 i.u./ml penicillin and 100 µg/ml streptomycin, in a T75 

tissue culture flask.  

Routine Cell Culture 

Primary fibroblasts were used within 3–9 passages. Primary normal oral fibroblasts were 

maintained in antibiotic free DMEM containing 10% (v/v) FBS, and 2 mM L-glutamine. The 

primary fibroblasts were routinely grown in T175 treated culture flasks. Fibroblasts isolated from 

OSCCs were cultured in the above media supplemented with penicillin and streptomycin (100 

i.u.ml and 100 µg/ml, respectively). Human dermal normal fibroblasts were cultured in fibroblast 

growth media with additional fibroblast supplement (Promocell, UK) and supplemented with 

penicillin and streptomycin (100 i.u./ml and 100 µg/ml) and 0.625 µg/ml ampothericin B. 

Fibroblast culture media was changed once a week. 

Cell lines, unless otherwise stated, were cultured in DMEM media containing 10% (v/v) FBS with 

2 mM L-glutamine. Cal27 cell line was grown in DMEM with high glucose content (4500mg/ml 

glucose and L-pyridoxine.HCl). SCC4 cell line was cultured in medium consisting of DMEM: F12 

Ham’s Nutrient Media supplemented with 400 ng/ml hydrocortisone, 2mM L-glutamine and 

10% (v/v) FBS.  All cell lines were routinely cultured in T75 flasks, passaged once a week and the 

culture media was changed twice a week. 

When confluent, all primary cells and cell lines were passaged using trypsin/EDTA (trypsin/ 

ethylenediaminetetraacetic acid. The cells were washed twice with phosphate buffered saline 

(PBS), and an appropriate amount of trypsin/EDTA was added according to the flask size (2 ml 

for T175, 1.5 ml for T75, 600 µl for T25, and  300 µl for 6 well plate), and the flask was placed in 

the incubator for 2-5 min. After separation of cells from the culture flask or plate, serum 
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containing media was used to neutralise the enzymatic action of the trypsin/EDTA. The cell 

suspension was then centrifuged at 1000 xg for 5 min, resuspended in fresh culture media and 

the appropriate amount was placed in a new flask to grow. 

All cells were incubated at 37 ̊ C with 5% (v/v) CO2. Around every 3 months, all cells were checked 

for the presence of mycoplasma using the EZ- PCR mycoplasma kit (GeneFlow) on conditioned 

media from the cells. 

Freezing down cells for cryoprotecting 

Cell pellets were resuspended in a freezing down media containing 10% (v/v) DMSO (dimethyl 

sulfoxide), 50% (v/v) FBS and 40% (v/v) cell specific culturing media so that the media contained 

around <5 x 105 cells per ml. Cryovials containing 1 ml of the cell suspension were placed in a 

Nalgene ‘Mr Frosty’ freezing container (ThermoScientific), filled with isopropanol to allow slow 

freezing of the cells, of -1oC  per minute. The freezing container was placed at 80 oC for 24 h 

before the cryovials were placed in liquid nitrogen for long term storage. To recover the cells 

were thawed quickly and mixed with pre-warmed culture media, centrifuged at 1,000 xg for 5 

min, to remove the DMSO, then resuspended in culture media and grown in T25/T75 flasks 

depending on the number of cells. 

Seeding cells onto coverslips. 

Prior to seeding the cells the coverslips were sterilised in the culture plates by the addition of 

70% industrial methylated spirits (IMS) and incubated for 20 min, the plates were then left to 

dry and subsequently washed twice with PBS to remove any IMS. Cells were seeded normally 

(250,000) into six well plates containing coverslips. 

Cell line conditioned media preparation 

Cal27, H357 or αvβ6 stably transfected H357 cells were seeded at 1x106 cells/flask in T25 (high 

cell density) or T75 (low cell density) and left overnight. The media was then replaced with 1 ml 

(high cell density) or 3 ml (low cell density) of the respective serum free media, after 24 h this 

conditioned media was collected for immediate use or stored at −20 oC for future use within 3 

weeks. 

TGF-β1 Treatment 

Oral fibroblasts were seeded at 250,000 cells/well in a 6-well plate. They were grown in serum 

free DMEM plus L-glutamine 24 h before being subsequently treated with 0.5-50 ng/ml 

recombinant human TGF-β1 (reconstituted in 4 mM HCl plus 1 mg/ml BSA) for 48 h. After 

treatments the media was collected, and stored at −20 oC for future use in a cell migration assay. 
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siRNA and pre-miRNA Transfection 

Primary human oral fibroblasts were transfected in a 6 well plate at a density of 250,000 

cells/well (around 60% confluency). Versican siRNA, myocardin related transcription factor- B 

(MRTF-B) siRNA, premiR-143, premiR-145 and antisense miR-145 oligonucleotides (Life 

technologies) were transiently transfected into oral fibroblasts using an oligofectamine 

(Invitrogen) lipid-based protocol, scramble siRNA and silencer siRNA #1, silencer siRNA #2, Cy3 

fluorescently labelled conjugated silencer siRNA #1 (negative siRNA non-targeting controls) or 

negative premiR control #1  (Life Technologies) were used as controls. 50nM synthetic precursor 

microRNA or siRNA were mixed with Oligofectamine and OptiMEM I (Life-Tech) and added to 

the cells. After 4 h, 500 µl 20% (v/v) FCS DMEM plus L-glutamine or OptiMEM, depending on 

whether serum starvation was required, were added. Cells were incubated in the transfection 

media for 24 h, and subsequently used in functional assays and/or treated with 5 ng/ml TGF-β1. 

Fibroblast conditioned media preparation 

Conditioned media was collected for downstream use in paracrine cancer cell transwell 

migration assays. Media was collected from fibroblasts that had been transfected (section 

1.2.1.10) then treated with TGF-β1 for 48 h (this was the same media that was used to treat the 

fibroblasts and was exposed to the cells for 48h). The fibroblasts which were treated with TGF-

β1 for 48 h then subsequently transfected were grown in the transfection mixture for 24 h, then 

the media was replaced with 1 ml serum free media to generate conditioned media and to allow 

downstream transfection effects to occur.  Conditioned media was frozen for a maximum of 3 

weeks, then before use it was thawed to 37 oC and centrifuged at 2500 xg. 

Harvesting Cells 

Cells were then harvested using trypsin/EDTA (Sigma), collected in 0.1% (w/v) bovine serum 

albumin (BSA) plus DMEM and L-glutamine, washed in phosphate buffered saline (PBS) and 

pelleted for downstream RNA/protein analysis. To examine extracellular versican levels 

fibroblasts were harvested via scraping into 30 µl RIPA (Radio-Immunoprecipitation Assay) 

buffer (Sigma) on ice. 

Cell Migration Assay 

Conditioned media collected from the transfected and TGF-β1 (5 ng/ml) treated fibroblasts was 

thawed, passed through a 0.2 µM filter and 500 µl placed into the bottom of the well in a 24-

well plate. H357 cells, previously serum-starved using DMEM supplemented with L-glutamine, 

were resuspended into 0.1% (w/v) BSA DMEM plus L-glutamine (2 mM) and seeded at a density 

of 100,000 cells/well into the top of the migration transwell chamber (Scientific Laboratory 
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Supplies). The chamber was placed on top of filtered conditioned media (through a 0.2 µm pore) 

from untreated, treated and/ or transfected oral fibroblasts. Cells were allowed to migrate for 

~18 h at 37oC and 5% (v/v) CO2. The transwell chambers were swabbed to remove non-migrated 

cells in the top of the chamber, washed in PBS and placed in 100% (v/v) methanol for 10 minutes 

to fix the migrated cells to the underside of the membrane. These cells were then stained using 

0.1% (w/v) crystal violet, placed in PBS and imaged at 4 randomly selected fields of view per 

transwell at 40x magnification using a light microscope. Migrated cells were then counted using 

the ImageJ Software. 

Collagen I gel contraction assay 

Collagen gels were prepared, on ice, by the mixing rat tail collagen I in a 1:1 ratio with 10X 

concentrated DMEM. Transiently transfected or un-modified normal human primary oral 

fibroblasts were resuspended in 10% (v/v) FCS DMEM (and L-glutamine) and added to the 

collagen at a density of 250,000 cells, or 100,000 per well, and 0.5 M NaOH was used to 

neutralise the solution. The gel mixture was placed into a 24-well plate and incubated at 37 oC 

with 5% (v/v) CO2 for 45 min. DMEM with 10% (v/v) FBS was then added to the gels and left to 

incubate for 4 h, after serum starvation overnight. The gels were carefully detached from the 

sides of the wells and treated with 5 ng/ml TGF-β1. Photographs were taken at 24 h and 48 h, 

the contractility of the gels was then measured by the measuring the diameter of the gel, using 

ImageJ. 

2.2.2 Molecular cloning  

Preparation of versican promoter- pGL3-basic construct 

Total DNA was isolated from fibroblasts using Wizard® Genomic DNA Purification kit (Promega).  

The putative versican promoter region was amplified from human genomic DNA. Primer design 

was based on -653 +118 around the transcriptional start site (Rahmani et al., 2005; Nasos, 

Zimmermanng, & Iozzon, 1994; Read et al., 2007) including sequences for Mlul I and Kpn I 

restriction endonucleases. The following primers were used: 

Long Forward 5’ AATAGGTACCGAATTCTTACACTTTCCCTCTAGGTCC 

 

Short Forward 5’ AATAGGTACCGAATTCTTACATTTCCC 

 

Long Reverse 5’ AATAACGCGTTGTCCACAACACCTAATGTTCT 
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Short Reverse 5’ AATAACGCGTTGTCCACAACACCTAA 

 

Standard PCR was performed with Phusion DNA polymerase (NEB), using Phusion buffer 5X HF. 

Amplification was carried out using a thermal cycle of 98 oC for 30 s, then 40 cycles of: 98 oC for 

10 s, 60 oC for 30 s, 72 oC for 30 s and a final extension 72 oC for 10 min. 

The resulting amplicon was subsequently ligated into a luciferase reporter vector (pGL3-basic 

vector; Promega), which contains a gene for ampicillin resistance.  The ~750 bp PCR product was 

purified using a PCR clean up column (Qiagen) before double digestion with restriction 

endonucleases Mlu I and Kpn I (NEB) buffered by NEB buffer 2 and incubated at 37 oC for  ~6 h.  

The pGL3b vector was also subjected to double digestion using the same enzymes. The two 

digested DNA fragments were then electrophoresed on a 1% (w/v) agarose gel and the correct 

band size was excised and the DNA was extracted using a gel extraction kit (Bioline). The 

linearised vector and DNA product were then ligated at different ratios of 1:3 and 1:5 (vector: 

product) using T4 ligase (NEB). Ligation mixtures were then transformed in chemically 

competent E.Coli. 

 

Transformation of the Construct into Chemically Competent E.Coli. 

The ligation mixture (2 µl) was added, on ice, to DH5-alpha chemically competent E. coli (NEB) 

for 30 min. The cells were then heat shocked at 42 oC for 30 s, and placed back on ice for 5 min. 

The cells were then grown in SOC (super optimal broth with catabolite repression) medium 

(NEB) shaking vigorously (250 rpm) at 37 oC for 1 h before being spread on amplicilin (100 µg/ml) 

LB (Lysogeny Broth) plates, to select for amplicin resistance, and incubated at 37 oC overnight. 

Colonies were randomly selected and grown overnight in amplicilin LB broth at 37oC with 

shaking. 

Colony Screening 

Plasmid miniprep from selected colonies was performed using QIAprep Spin Miniprep Kit 

(Qiagen). These preps were then subjected to a number of screens to assess whether the cloned 

sequence was integrated into the plasmid. Firstly, a PCR using the original primers used to 

amplify the promoter region was performed using GoTaq® Flexi Polymerase (Promega) 

supplemented with 1.2 mM MgCl2. Secondly an overnight digest was performed on the preps 

using Mlu I. The PCR products/ digested DNA were electrophoresed on 1.2% (w/v) agarose gel 

to visualise the size of the DNA. Minipreps which appeared positive for the cloned sequence 
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were verified by DNA sequencing, performed at Core Genomic Facilities, University of Sheffield 

Medical School, using pGL3-basic primers forward RVprimer3 5´-CTAGCAAAATAGGCTGTCCC-3´ 

and reverse GLprimer2 5´-CTTTATGTTTTTGGCGTCTTCCA-3´ (Sigma) (sequences were obtained 

from Promega pGL3-basic guidelines). Sequences were viewed using Finch TV software and 

analysed using Blast (NBCI). 

Luciferase Reporter Assay 

pGL3-basic luciferase reporter vector containing the versican promoter region, VCANp-Luc (0.1, 

0.5, 1, or  10 µg) was co-transfected with Renilla plasmid control (0.1 µg) using Fugene 1 µl/0.3 

µg (Promega) into B16 cell line, supplemented with 0.5% FCS, for 48 h. VCANp-Luc and Renilla 

control vector transfected cells were also co-transfected with premiR-145, premiR-143 or pre-

miR negative control #1 (50 nM), to examine the transcriptional effect miR-145 has on the 

versican promoter. Cells were lysed using passive lysis buffer (Promega) and Renilla and Firefly 

Luciferase activity was measured using a dual-luciferase reporter assay kit (Promega) using a 

Glowmax microplate luminometer (Promega). Firefly luciferase levels were normalised to 

Renilla luciferase to assess promoter activation. 

2.2.3 Molecular analysis 

Primer design for quantitative Real Time PCR (qRT-PCR) 

The primers used for SYBR green qRT-PCR are mentioned in table 1.2. Some sequences for the 

primers were taken from previous publications, primer sequences without references were 

designed in house. The transcript sequences were found using mRNA RefSeq (PubMed, NBCI) 

database and isoform domains were located using Ensemble. Primers for SYBR Green qPCR were 

designed so the product would be around 100 nucleotides, and where appropriate they were 

intron spanning. Primers were designed to be sequences between 18-23 nucleotides in length.  

Primers were in silico validated via the primer BLAST tool (NCBI) and were checked to be 

appropriate for PCR use with a GC content of 35–65%, a melting temperature of 60–68oC and 

minimal or no primer dimer/ secondary structures formation. 

Primer validation and measuring primer efficiency 

Primers were in silico validated using the primer BLAST tool (NCBI).  A dissociation melt curve 

step was used when performing qRT-PCR to ensure the primers were only amplifying one 

product.  The amplication efficacy was calculated for each set of primers by creating a standard 

curve via serially diluting cDNA generated using 2 µg RNA starting template. The CT values 

generated from a qRT-PCR reaction were plotted against the log of the amount of starting 
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genetic material. The slope of this graph was calculated using graphpad prism 6. This number 

was then used in the ThermoFisher qPCR amplification efficiency calculator to work out the % 

efficiency and the amplification factor which can be incorporated into delta delta CT method, 

specific to each primer set when calculated the relative quantification of a certain gene. 

Real Time quantitative PCR (qRT-PCR) Analysis 

Total RNA was extracted from pelleted fibroblasts using the RNeasy (Qiagen) kit according to 

the manufacturer’s instructions. RNA was quantified using a Nanodrop 1000 spectrophotomer 

(Thermo). RNA isolated from normal and diseased bladder urothelium and stromal tissue was 

provided by Dr Jim Catto. RNA (100 ng) was then reversed transcribed using a high capacity 

cDNA Reverse Transcription kit (Applied Biosystems), according to the manufacturer’s protocol 

using a DNA engine Peltier Thermal cycler (MJ Research). Specific mature microRNAs were 

reverse transcribed using 10 ng of RNA using specific Taqman Reverse Transcription microRNA 

probe/primers for miR-143, miR-145 and RNU 48 as a control (Applied Biosystems). cDNA was 

then used in SYBR green or Taqman real time quantitative PCR reaction using a 7900HT fast Real 

Time-PCR system. Sequences of primers used for SYBR analysis (Sigma) are supplied in table 1.1. 

Taqman probes for microRNA-143, miR-145, RNU 48 and versican isoforms V0, V1, V2 and V3 

were purchased from Applied Biosystems. Quantification was calculated using delta delta CT 

values and were normalised to endogenous controls U6 (SYBR green), β2macroglobin (B2M) or 

RNU 48 (Taqman). 

qRT-PCR analysis 

The quantification of gene expression was calculated via the delta delta CT method (2∆∆CT) 

(Livak & Schmittgen, 2001). The CT value is the number of thermal cycles at which the amount 

of fluorescence reaches a detectable threshold. It corresponds to the amount of template at the 

start of the reaction.   

 

 

 

Amplification efficiencies for each set of primers were assessed by using a standard curve of 

cDNA. 2 µg RNA was reverse transcribed and serially diluted to create 6 standard dilutions, which 

were used in a qRT-PCR reaction for a particular SYBR green primer. CT values were plotted on 

a semi-log scale the line of best fit was calculated (Bio-Rad). The efficiency (E) is calculated: 
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Which can be made into a percentage:  

 

Only primer sets with <80% efficiency were used in this study (see appendix). 

Western Blotting 

Cell lysates were prepared by adding 30 µl RIPA buffer supplemented with complete mini 

protease inhibitor cocktail (Roche) and benzonuclease (Sigma) to cell pellets washed in PBS. 

Alternatively the RIPA buffer was added directly to the wells to lyse the cells, in order to not lose 

any extracellular matrix components. The protein concentration was then assessed using a 

bicinchoninic acid (BCA) assay kit (Thermo) using BSA to generate a standard curve. Absorbance 

of standards and test samples was measured at 595 nm using a POLARstar Galaxy 

spectrophotometer (BMG LABTECH). 

If appropriate, total protein lysates were treated with chondroitinase ABC (Sigma; 0.003–0.01 

units/ml) at 37o C for 3 h, or on ice as a control. Total protein (20-30 µg) was resolved by 3–8% 

(w/v) SDS-polyacrylamide gel (Life-Technologies) electrophoresis (SDS-PAGE) in Tris-acetate 

buffer (Life-Technologies). The protein was transferred onto a nitrocellulose membrane 

(Millipore) by wet transfer or iBlot dry transfer (Invitrogen), blocked with 5% (w/v) milk and 3 % 

(w/v) bovine serum albumin (BSA) in Tris buffered saline with 0.05% (v/v) Tween 20 (TBS-T) to 

prevent non-specific binding. The primary antibody was diluted in aforementioned blocking 

solution and incubated at 4 oC overnight. The membrane was washed 3 times (for 5 min each) 

with TBS-T, and subsequently incubated with a horseradish peroxidase- conjugated (HRP) 

secondary antibody diluted 1 in 3000 in the above blocking solution, for 1 h at room 

temperature. The membrane was then washed 3 times in TBS-T, and developed using enhanced 

chemoluminescent (ECL) Western Blotting Substrate (Pierce) and HRP activity of the secondary 

antibody was exposed on an x-ray film (Thermo Scientific) and developed using a Compact X4 

Developer (Xograph Imaging Systems). 

Nitrocellulose membranes were stripped of antibodies by incubation in 50 ml stripping buffer 

(62.5 nM Tris, 2% (v/v) SDS, 100 mM β-mercaptoethanol) at 50 oC for 30 min. The membranes 

were then washed 4 times with TBS-T, and blocked and reprobed as above. 
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Densitometry  

The size of detected bands by immunoblotting were quantified used ImageJ analysis software. 

The scanned blot was converted to an 8- bit image and boxes were drawn, of the same size, 

around each band assigning them a lane using the ‘plot lanes’ command. The area of each 

analysed lane was measured, which corresponds to the size of the band. These were adjusted 

against the size of the loading control bands to calculate the relative protein quantification and 

the process repeated for each repeat.  

Immunocytochemistry 

For visualising the α smooth muscle actin stress fibres the fibroblasts were stained with a FITC 

conjugated anti-alpha smooth muscle actin mouse antibody (clone 1A.4; 1:100). Fibroblasts 

were seeded on coverslips (see section0) and transfected and/or treated. The coverslips were 

then removed, and the cells remaining in the culture plate could be harvested and used for 

molecular analysis. The fibroblasts on the coverslips were washed with PBS twice and 

subsequently fixed using 100% methanol for 10 min. Fibroblasts were then permeabilised by 

using 4 mM sodium deoxycholate (diluted in PBS), by washing with it once and then keeping the 

coverslips in 4 mM sodium deoxycholate for 10 min. Coverslips were then blocked in 2.5% (w/v) 

BSA in PBS for 30 min before incubating in 25 µl FITC-conjugated αSMA diluted in blocking buffer 

antibody overnight in the dark at 4 oC. After antibody incubation, the coverslips were washed 

twice with PBS, keeping the coverslips in the dark to prevent the FITC bleaching. The coverslips 

were mounted on normal microscope slides using mounting media containing DAPI 

(vectorshield). The slides were viewed using a Ziess Axioplan 2 fluorescence light microscope at 

40x, and imaged using Proplus 7.0.1 image software. The fluorescence intensity was measured 

using ImageJ software. The background fluorescence was subtracted, pixel intensity measured 

and normalised to the cell number to give the quantified fluorescent intensity per cell.  

2.2.4 Statistical Analysis 

Where appropriate data was subjected to a two- tailed student’s t-test to test for statistical 

significance. The student’s t-test was either paired or unpaired, paired was used when the same 

patient cells were used in the same experiment, but treated or transfected differently, and 

unpaired was used when the cells/ RNA being compared were taken from different patients. T-

tests were carried out in Microsoft excel. 

All graphs were drawn and other statistical analyses were performed, using GraphPad Prism 6. 

The Pearson correlation coefficient was used to assess the correlation between mRNA 

expression of αSMA and V0/V1 versican in CAFs. Mann Whitney U statistical tests were used to 
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assess the difference in expression patterns between CAFs and NOFs for specific genes. Multiple 

ANOVAs were used for assessing any statistical difference between subsets of CAFs and NOFs. 

Error bars on graphs represent the standard error mean (SEM), unless otherwise stated. 

2.2.5 Ethical Approval 

The isolation of human primary normal fibroblasts from dermal, gingival or buccal tissue and 

from OSCCs has been ethically reviewed by Sheffield Research Ethics Committee (09/H1308/66 

and 13/NS/0120, respectively).  
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Chapter 3: The characterisation of stromal 

oral fibroblasts. 
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3.1 Aims and objectives  

The aim of the work presented in this chapter was to characterise the response of normal oral 

fibroblasts (NOFs), and fibroblasts isolated from OSCCs to TGF-β1 or conditioned medium from 

cancer cells, in inducing the myofibroblast phenotype. The chapter objectives were to optimise 

the conditions of the TGF-β1 and conditioned media (from oral cancer cell lines) treatments in 

CAFs and NOFs, by assessing the effect on the expression of markers of myofibroblast. In 

addition, work outlined in this chapter planned to compare the expression of myofibroblast 

markers and the miR-143/5 cluster between CAFs and NOFs, and its expression in induced 

myofibroblast.  

 

3.2 The characterisation of normal oral fibroblasts 

Fibroblasts are the most abundant cell type within the tumour microenvironment and have been 

reported to be responsible for promoting stromal remodelling and disease progression (Kalluri 

and Zeisberg, 2006; Bhomwick et al., 2004). There are many different subtypes of cancer 

associated fibroblasts, or CAFs, within the tumour microenvironment with different roles. Some 

are noted to be tumour suppressive and others types are known to actively promote a 

desmoplastic stroma and a more invasive tumour, for example the myofibroblast-like CAF.   

In order to study the role of fibroblasts within the tumour microenvironment and to investigate 

any role microRNA-145 may possess in controlling tumour stromal interactions of fibroblasts, 

normal gingival fibroblasts were cultured and exposed to factors that are prevalent in the 

tumour microenvironment and that are known to promote changes in normal fibroblasts in vitro 

to them behave more like bona fide oral CAFs surrounding tumours.   

TGF-β1, a growth factor with pleiotropic roles within the tumour microenvironment (Bierie and 

Moses, 2006), has been used to induce the oral myofibroblast phenotype in several previous 

studies (Smith et al., 2006, Sobral et al., 2011). Many studies in fibroblasts from different origins 

use TGF-β1 treatments ranging from 0.25 ng/ml to 10 ng/ml to induce a myofibroblast 

phenotype (Kojima et al., 2010; Lewis et al., 2004; Serini et al., 1998; Thannickal et al., 2003). 

Numerous have shown a TGF-β1 dose of 5 ng/ml sufficient to induce a myofibroblast phenotype 

(Desmoulière et al., 1993; Grotendorst, Rahmanie, & Duncan, 2004; Yao et al., 2011). Our lab 

also found that a concentration of 5 ng/ml TGF-β1 was sufficient for inducing a significant 

induction of the myofibroblast  phenotype in the NOFs tested as judged by the expression of 

myofibroblast marker alpha smooth muscle actin (figure 3.1), so this dose was used 

subsequently in this study.    
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A time-course experiment of TGF-β1 treatment was performed to assess the changes over 

myofibroblasts markers over a 72 h treatment period. NOFs treated with 5 ng/ml TGF-β1 or 

serum free media for 24 h, 48 h, or 72 h. Fibroblasts were harvested and total protein lysate and 

RNA extracted for qRT-PCR for myofibroblast markers. After 24 h and 48 h TGF-β1 treatment 

caused αSMA to be significantly upregulated by ~13 fold, after 72 h αSMA levels were ~2.5 fold 

higher than their respective untreated control (figure 3.1A). Immunoblotting using a monoclonal 

antibody for αSMA showed that there was a small increase in αSMA protein with TGF-β1 

treatment at each time point (figure 3.1B).  

Additional myofibroblast markers, COL1A1 and FN1-EDA were also assessed at each time point 

of TGF-β1 treatment by qRT-PCR. In these NOFs, there was no significant difference in COL1A1 

transcript levels at each time point between untreated and TGF-β1 treated fibroblasts. At 24 h 

TGF-β1 treated DENF319s had a ~1.1 fold, not significant, increase in COL1A1 transcript levels 

(figure 3.2A), compared with 48 h and 72 h were the COL1A1 transcript levels had decreased by 

~0.8 and ~0.65 fold (not significant) relative to untreated at each of the time points, respectively.  

On the other hand TGF-β1 caused a significant increase by ~6, ~7.5, and ~4.5 fold in FN1-EDA 

transcript levels, relative to each untreated time point (figure 3.2B). 

Immunoblotting total protein lysates from NOFs treated with 5 ng/ml TGF-β1, revealed that the 

treatment caused a trend of an increase in αSMA protein, quantified to be ~6 fold greater than 

untreated NOFs (figure 3.3 A and B). 

αSMA is a contractile cytoskeletal component which contributes to the contractile nature of 

myofibroblasts, and helps to remodel the surrounding stromal environment (Hinz et al., 2001). 

Myofibroblasts use their contractility most obviously in wound healing to bring the granulation 

layer of wounds together, before re-epithelisation (Skalli and Gabbiani, 1988). The ability of 

fibroblasts to contract, therefore, is a marker of the myofibroblast phenotype, and contractility 

assays are commonly used to verify the phenotype of myofibroblast in in vitro studies. The 

contractility of fibroblasts was assessed here using a rat tail collagen I contractility assay. 

Fibroblasts were mixed with rat tail collagen 1 and DMEM, at a density 250,000 per well and left 

to form a gel. These gels were detached from the well and TGF-β1 containing media or serum 

free media was added for 48 h. The amount of contraction was assessed by the reduction of the 

gel diameter. TGF-β1 (5 ng/ml) was able to induce NOF contraction (figure 3.3C).   
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Figure 3.1: TGF-β1 treatment caused an increase in αSMA expression. DENF319 

NOFs were seeded at a cell density of 250,000/ 6 well overnight, then serum starved for 20 h 

and subsequently treated with 5 ng/ml TGF-β1, or serum free media as a control for 24 h, 48 h 

and 72 h. After treatment fibroblasts were harvested, and used for molecular analysis. RNA was 

isolated, quantified and 100 ng was used in a total cDNA preparation. qRT-PCR was performed 

with the cDNA with primers to amplify αSMA and U6 as a reference gene (A). Cell pellets were 

lysed with protein RIPA lysis buffer and 20 µg total protein was resolved on a 3–8% (w/v) tris 

acetate gel and transferred to a nitrocellulose membrane for immunoblotting. A monoclonal 

αSMA antibody was used to detect αSMA protein and β-actin was used as a loading control (B) 

Each bar on the figure represents the mean relative quantification of αSMA transcript levels 

compared to endogenous U6, for each treatment relative to the relevant untreated timepoint. 

Statistical analysis was performed by a paired two tailed student’s t-test, and statistical 

significance is shown on the figure by *p<0.05, ***p<0.001, ****p<0.0001 compared to the 

control at each timepoint. Error bars represent the SEM. N=3, independent experiments. 
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Figure 3.2: TGF-β1 treatment resulted in an increase in the expression of 

myofibroblast marker FN1-EDA, but not COL1A1 in DENF319s. DENF319 NOFs 

were seeded at a cell density of 250,000/ 6 well overnight, then serum starved for 20 h and 

subsequently treated with 5 ng/ml TGF-β1, or serum free media as a control for 24 h, 48 h and 

72 h. After treatment fibroblasts were harvested, and used for molecular analysis. RNA was 

isolated, quantified and 100 ng was used in a total cDNA preparation. qRT-PCR was performed 

with the cDNA with primers to amplify COL1A1, FN1-EDA and U6 as a reference gene. Each bar 

on the figure represents the mean relative quantification of COL1A1 (A) and FN1-EDA (B) 

transcript levels compared to endogenous U6, for each treatment relative to the relevant 

untreated timepoint. Statistical analysis was performed by a paired two tailed student’s t-test, 

and statistical significance is shown on the figure by **p<0.01, ****p<0.0001, compared to the 

control at each timepoint. The significance is compared to the untreated equivalent 

transfection.  Error bars represent the SEM. N=3, independent experiments. 
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Figure 3.3: TGF-β1 treatment caused non-significant increase in αSMA protein 

in NOFs and induced fibroblasts contraction. (A and B) DENF319 NOFs were seeded 

at a density of 250,000 per six wells were treated with TGF-β1 for 48 h or serum free as a control. 

Cell pellets were lysed with protein RIPA lysis buffer and 20 µg was resolved on a 3–8% (w/v) tris 

acetate gel and transferred to a nitrocellulose membrane for immunoblotting. A monoclonal 

αSMA antibody was used to detect αSMA protein and β-actin was used as a loading control. In 

A, serum free treated cell lysates were run in lane 1 – 3, and TGF-β1 treated lysates were run in 

lane 4-6. The amount of αSMA detected was quantified by densitometry using ImageJ and 

shown in B. Error bars represent SEM. N=3, technical repeats. C NOFs were counted and 

resuspended in a 1:1 mixture of rat tail collagen 1 (in 0.1 M acetic acid): DMEM and neutralised 

with NaOH, at a density 250,000 NOFs per 300 µl collagen gel. The mixture was aliquoted into 

wells (300µl/well) and left to set in an incubator at 37 oC with 5% (v/v) CO2. After the gels had 

set, media was added to the wells at 4 h later the media was replaced with serum free media 

for overnight serum starvation. The gels were detached from the sided of the wells and treated 

with 5 ng/ml TGF-β1, or serum containing as a control. The figure shows a representative 

photograph of gels after 48 h TGF-β1 treatment (C).  N=4, independent experiments. 
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Immunocytochemistry was performed on NOFs treated with 5 ng/ml TGF-β1 for 48 h using a 

FITC-conjugated αSMA antibody, to assess whether TGF-β1 treatment was able to induce αSMA 

stress fibres which are typical of the myofibroblast phenotype. NOFs (DENF319) were seeded 

onto coverslips, then TGF-β1 treated for 48 h. The coverslips were methanol fixed, 

permeabilised, incubated with FITC-αSMA antibody in PBS containing 2.5% (w/v) BSA and 

mounted onto slides using a DAPI containing medium to visualise the nucleus. A negative control 

was used to assess whether the fibroblasts possess any background fluorescence, this was 

performed by just blocking the fibroblasts on coverslips with the PBS containing 2.5% (w/v) BSA 

rather than incubating with the primary FITC-αSMA antibody. TGF-β1 treatment induced 

myofibroblast-like αSMA stress fibres compared to controls (figure 3.4). The negative control 

showed that the NOFs had little or no detectable auto-fluorescence. 

Within the tumour microenvironment, it is thought that fibroblasts can be transdifferentiated 

into heterogeneous CAF phenotypes by a number of stimuli e.g. HGF, PDGF-BB, IL-8, EGF, ET-1, 

SDF-1, FN1-EDA, have all been published to play a role (mentioned in Chapter 1). In vivo it is 

likely a combination of cancer and stromal derived growth factors play an important role in the 

transdifferentiation of myofibroblasts. Therefore, the effect of oral cancer cell-derived secreted 

factors on the fibroblast phenotype was assessed by treating NOFs with OSCC cell lines Cal27, 

H357 and VB6 (H357 cell line stably overexpressing αvβ6) conditioned media. It has been 

previously published that a H357 cell line stably overexpressing αvβ6 integrin causes 

myofibroblast transdifferentiation in oral fibroblasts, which are capable of promoting the 

paracrine invasion of OSCC cells (Marsh et al., 2011). The effect of Cal27, an invasive OSCC cell 

line, H357 and VB6 conditioned media’s effect on fibroblast phenotype was assessed by qRT-

PCR and immunoblotting in NOFs and CAFs.  

TGF-β1 was used as a positive control, which resulted in a ~13 fold increase in αSMA transcript 

levels in DENF316 cells (figure 3.5A). TGF-β1 treatment of NOFs also caused a ~2.25 fold and 

~3.25 fold increase (not significant) in αSMA protein levels (figure 3.6 and 3.7). Conditioned 

media from Cal27 cell line caused a significant ~3.5 fold increase in αSMA transcript levels when 

used to treat NOFs (figure 3.5A), there was no increase in αSMA protein compared to untreated 

controls (figure 3.6A and B), immunocytochemistry visualised that was stronger αSMA staining 

in Cal27 treated cells, but there was no visual induction of αSMA stress fibres (figure 3.6C). 
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Figure 3.4: TGF-β1 induced αSMA stress fibre formation in NOFs. DENF319 NOFs 

were seeded at a density of 250,000 per 6 well plates with 8mm coverslips in the bottom, cells 

were serum starved for 20 h then treated with 5 ng/ml TGF-β1 for 48 h. The coverslips were 

washed in PBS, before being fixed in 100% methanol for 10 min, they were then permeablised 

using 4 mM sodium deoxycholate for 10 min, and blocked using 2.5% (w/v) BSA in PBS for 30 

min before incubation with a primary FITC-conjugated αSMA antibody at 4 oC overnight. The 

coverslips were then washed in PBS before mounting on microscope slides using DAPI containing 

mounting medium. Fluorescent images were taken using a microscope, using Pro-plus 7 imaging 

software at 40x magnification. Negative control were coverslips incubated with 2.5% BSA in PBS 

rather than incubated with the FITC-αSMA antibody. Representative pictures are shown. N<3, 

independent experiments. 
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Figure 3.5: NOFs treated with conditioned media from Cal27 cancer cell line 

had an increased expression of αSMA. NOFs (DENF316; A) and CAFs (MCA; B) were 

seeded at a density of 250,000 per six well, serum starved for 20 h and treated with serum free 

media, 5 ng/ml TGF-β1, or conditioned media collected from a Cal27 or VB6, a H357 cell line 

stably transfected with the integrin αvβ6, for 48 h. The conditioned medias were collected by 

seeding 1x106 of the cancer cell line in a T75 flask, overnight before conditioning serum free 

media for 24 h using serum free medium. After treatment, fibroblasts were harvested and the 

RNA was isolated and used to generate cDNA for qRT-PCR analysis using primers designed to 

amplify αSMA and U 6, as an endogenous control.  Each bar on the figure represents the mean 

relative quantification of αSMA transcript levels compared to endogenous U6, for each 

treatment relative to untreated. Statistical analysis was performed by a paired two tailed 

student’s t-test, and statistical significance is shown on the figure by *p<0.05, **p<0.01, 

***p<0.001. The significance is compared to the αSMA levels in the fibroblasts treated with 

serum free media. Important significant data highlighted in red. Error bars represent the SEM.  

N=3, independent experiments. 
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VB6 and H357 cells were plated at two different densities and used to collect conditioned media 

for NOF treatment, allowing two different concentrations of conditioned media to be tested. 

The high density conditioned media was prepared by seeding 1x106 cells in a T25 flask leaving 

overnight and placing 1 ml serum free media for 24 h to be conditioned. The low density 

conditioned media was prepared by seeding 1x106 cells in a T75 flask, leaving overnight and 

placing 3ml serum free media for 24 h to be conditioned. VB6 conditioned media caused a 

significant decrease in αSMA transcript levels (by ~0.35 fold) (figure 3.5A), but an increase in 

αSMA protein levels (by ~1.25 fold not significant; figure 3.6 A and B) in NOFs. The high density 

VB6 and H357 conditioned media caused a ~1.2 fold increase (not significant) in αSMA protein, 

compared to untreated NOFs (figure 3.7). The low density VB6 conditioned media treatment 

(less concentrated), seemed to have caused a larger increase (not significant) in αSMA protein 

compared to the high density VB6 conditioned media. The low density conditioned media 

treatment caused a ~2 fold increase in αSMA protein in the NOFs, compared to untreated NOFs 

and the low density H357 conditioned media caused a trend of a ~1.4 fold increase in αSMA 

protein. Immunocytochemistry revealed that VB6 was unable to induce significant stress fibre 

formation (figure 3.6C), although there were slightly more individual fibroblasts with strong 

αSMA stress fibre staining.  

The effect of conditioned media on the transdifferentiation of fibroblasts was also tested on 

MCA CAFs, fibroblasts isolated from an OSCC. NOFs treated with TGF-β1 and cal27 conditioned 

media caused an increase in αSMA transcript levels by ~1.8 fold and ~3 fold respectively (figure 

3.5B; not significant) and the treatment of MCA CAFs with VB6 conditioned media resulted in a 

~0.3 fold decrease (not significant) in αSMA in these fibroblasts. Interestingly, TGF-β1 treatment 

did not induce a significant increase in αSMA expression.  

 

3.3 A comparison of normal oral fibroblasts to oral cancer associated fibroblasts 

The NOFs used in this study were isolated from human gingiva of patients from the Charles 

Clifford Dental Hospital commonly undergoing a tooth extraction, these cells are labelled with 

the prefix DENF or OF. Some NOFs, referred to as HNOFs, were used as comparisons for the CAFs 

were provided by Prof. Ken Parkinson. The CAFs were isolated from OSCC were from either the 

University of Campinas, Sao Paulo, (MCA, MC15 and MC6) or the Beatson Institute for Cancer 

Research (BICR-3, -59, -63, -70). BICR CAFs were isolated from either genetically stable or 

unstable OSCCs and previously well characterised (Hassona, et al., 2014; Hassona et al., 2013; 

Lim et al., 2011).  
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Figure 3.6: Conditioned media from VB6 cancer cell line caused no increase in 

αSMA protein, and no αSMA stress fibre formation. NOFs were seeded at a density 

of 250,000 cells per 6 well and left overnight before being were serum starved for 20 h and 

treated with serum free media, 5 ng/ml TGF-β1, or conditioned media from Cal27 or VB6, a H357 

cell line stably transfected with the integrin αvβ6, for 48 h. (A and B) After treatment, fibroblasts 

were harvested and total protein lysates were extracted with RIPA buffer. Total protein was 

quantified using a BCA assay and 20 µg was resolved on a 3–8% (w/v) tris acetate gel, transferred 

to a nitrocellulose membrane for immunoblotting with a monoclonal anti- αSMA antibody and 

GAPDH as a loading control. Each bar on the figure represents the mean relative quantification 

of αSMA protein levels compared to endogenous GAPDH (B). Error bars represent the SEM. (C) 

Glass coverslips were placed in 6 well plates and 250,000 DENF319 NOFs were seeded as normal, 

serum starved and treated with serum free media, 5 ng/ml TGF-β1, or conditioned media from 

Cal27 or VB6. After treatment, the coverslips were washed in PBS, before being fixed in 100% 

methanol for 10 min, they were then permeablised using 4 mM sodium deoxycholate for 10 min, 

and blocked using 2.5 % (w/v) BSA in PBS for 30 min before incubation with a primary FITC-

conjugated αSMA antibody at 4 oC overnight. The coverslips were then washed in PBS before 

mounting on microscope slides using DAPI containing mounting medium. Fluorescent images 

were taken using a microscope, using Pro-plus 7 imaging software at 40x magnification. 

Representative pictures are shown. N=2, independent experiments. 
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Figure 3.7: Conditioned media from cancer cell lines had no effect on αSMA 

protein. NOFs treated with were serum starved and treated with serum free media, 5 ng/ml 

TGF-β1, or conditioned media from H357 cancer cell lines and VB6, a H357 cell line stably 

transfected with the integrin αvβ6, at high and low density, for 48 h. The high density 

conditioned media was prepared by seeding 1x106 cells in a T25 flask leaving overnight and 

placing 1 ml serum free media for 20 h to be conditioned. The low density conditioned media 

was prepared by seeding 1x106 cells in a T75 flask, leaving overnight and placing 3ml serum free 

media for 20 h to be conditioned. After conditioned media treatment, fibroblasts were 

harvested and total protein lysates using RIPA buffer. Total protein was quantified using a BCA 

assay and 20 µg was resolved on a 3–8% (w/v) tris acetate gel, transferred to a nitrocellulose 

membrane for immunoblotting with a monoclonal anti- αSMA antibody and GAPDH as a loading 

control.  Each bar on the figure represents the mean relative quantification of αSMA protein 

levels compared to endogenous GAPDH. Statistical analysis was performed by a paired two 

tailed student’s t-test, and statistical significance is shown on the figure by *p<0.05. The 

significance is compared to the αSMA levels in the fibroblasts treated with serum free media. 

Error bars represent the SEM.  N=3, independent experiments. 
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As there was a certain amount of biological variability amongst NOFs and CAFs, and to assess if 

CAFs are able to maintain their phenotype in vitro, a fibroblast screen of 10 NOFs and 10 CAFs 

was used to assess if there was any difference between the two groups, and within the subtypes 

of the groups i.e. between genetically stable and unstable CAFs, or between NOFs from Sheffield 

NOFs and BICR NOFs. The NOF and CAF population were assessed by examining the molecular 

myofibroblast markers by immunoblotting and qRT-PCR.  

Immunoblotting for αSMA protein, revealed that there was no clear difference between αSMA 

expression between NOFs and CAFs. BICR31, BICR37 and BICR63 had a higher amount of αSMA 

immunoreactivity in these samples (figure 3.8). However, this immunoblot was only performed 

once, due to some of the CAFs being slow growing and time constraints. Also, not all CAFs and 

NOFs were compared in this small cohort. 

On the other hand, all NOFs and CAFs available in this study were used in the qRT-PCR analysis. 

There was a small, not significant, increase (average ~1.1 fold) in αSMA expression in the CAF 

population compared to the NOFs (figure 3.9A).  By comparing the αSMA expression of the 

different types of CAFs and NOFs from different institutions, there was no difference between 

NOFs and BICR NOFs and CAFs from genetically stable and unstable OSCC had a similar αSMA 

expression (figure 3.9B). 

There was no difference in the average expression of FN1-EDA between NOFs and CAFs, but 

there was more variability between the difference types of CAFs and NOFs from different 

institutes (figure 3.10). BICR NOFs expression of FN1-EDA was ~3 fold higher than NOFs from 

Sheffield and CAFs from genetically stable OSCCs had on average ~3 fold higher FN1-EDA 

expression than CAFs from genetically stable OSCCs, however these trends did not reach 

statistical significance using a Mann Whitney U test.   

For collagen 1a (COL1A1), CAFs on average had a ~1.2 higher expression (not significant) than 

NOFs (figure 3.11). BICR NOFs expression of COL1A1 was on average ~1.4 fold higher than NOFs, 

and CAFs from genetically stable OSCCs had ~1.3 fold higher expression of COL1A1 than CAFs 

from genetically unstable OSCCs (figure 3.11B), however this data was not found to be 

significant.   

To investigate whether CAFs were able to release factors which stimulated paracrine migration 

of OSCC cancer cell lines, a transwell migration assay was used. Conditioned media from NOFs, 

DENF316 and DENF319, and CAFs from Brazil, MCA, and MC15 were collected and placed in the 

bottom of a transwell to be used as a chemo-attractant for stimulating cancer cell migration.  
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Figure 3.8: There was no difference in αSMA protein expression between  CAFs 

isolated from genetically stable and unstable tumours, and NOFs. CAFs isolated 

from genetically stable OSCCs (N=4), unstable OSCCs (N=4), oral dysplasia (N=1), all originally 

from Prof Erik Parkinson and NOFs (from Sheffield; N=4) were cultured. Cell pellets from these 

cultures were then resuspended in RIPA protein lysis buffer and total protein was quantified 

using a BCA assay. Total protein lysates (20µg) were resolved on 3–8% (w/v) tris acetate gels and 

transferred onto nitrocellulose membranes for immunoblotting. A monoclonal anti-human 

αSMA antibody was used to detect αSMA levels in this CAF/NOF screen. β-actin was used as a 

loading control. N=1. 

 

 

 

 

 

 



95 
 

A      B 

 

 

 

 

 

 

 

 

 

Figure 3.9: There was no difference in αSMA transcript expression between  

the NOFs and CAFs tested. Fibroblasts isolated from OSCC, CAFs (9), and NOFs (10) were 

grown, RNA was isolated and 100 ng was used to generate total cDNA for qRT-PCR analysis using 

primers designed to amplify αSMA, and U 6, as an endogenous control. The fold endogenous 

change of target αSMA compared to reference gene U 6 is plotted on each graph, each dot 

representing a different NOF/CAF. The line represents the mean fold endogenous for each set 

of fibroblasts. A compares the expression of αSMA between NOFs and CAFs, whereas B shows 

the expression of αSMA in different subsets of CAFs. Error bars display the SD.  
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Figure 3.10: There was no difference in FN1-EDA expression between the NOFs 

and CAFs tested. Fibroblasts isolated from OSCC, CAFs (9), and NOFs (10) were grown, RNA 

was isolated and 100 ng was used to generate total cDNA for qRT-PCR analysis using primers 

designed to amplify FN1-EDA, and U 6, as an endogenous control. The fold endogenous change 

of target FN1-EDA compared to reference gene U 6 is plotted on each graph, each dot 

representing a different NOF/CAF. The line represents the mean fold endogenous for each set 

of fibroblasts. A compares the expression of FN1-EDA between NOFs and CAFs, whereas B shows 

the expression of FN1-EDA in different subsets of CAFs. Error bars display the SD.  
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Figure 3.11: There was no difference in COL1A1 expression between the NOFs 

and CAFs tested. Fibroblasts isolated from OSCC, CAFs (10), and NOFs (10) were grown, RNA 

was isolated and 100 ng was used to generate total cDNA for qRT-PCR analysis using primers 

designed to amplify COL1A1, and U6, as an endogenous control. The fold endogenous change of 

target COL1A1 compared to reference gene U6 is plotted on each graph, each dot representing 

a different NOF/CAF. The line represents the mean fold endogenous for each set of fibroblasts. 

A compares the expression of COL1A1 between NOFs and CAFs, whereas B shows COL1A1s 

expression in different subsets of CAFs. Error bars display the SD.  
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H357 cells were seeded in the top of a transwell migration chamber with an 8 µM porous 

membrane to allow migration through to the media for 38 h. Cells were then fixed to the 

membranes and stained with 0.1% (w/v) crystal violet. Photographs were taken at 40x with a 

light microscope of 4 representative views, and counted to calculate relative migration. 

Conditioned media from DENF316, DENF319, MCA and MC15 all stimulated a similar level of 

H357 migration (figure 3.12). 

 

3.4 miR-143/miR-145 cluster in stromal oral fibroblasts 

miR-143 and miR-145 have been identified as tumour suppressors miRNAs in OSCCs. A previous 

study from our lab identified miR-145 as been downregulated in gingival fibroblasts in response 

to cigarette smoke extract, and that it plays a key role in stromal epithelial interactions in OSCC 

(Pal et al., 2011). miR-145 is also reported to be downregulated in invasive bladder CAFs and in 

scleroderma, an autoimmune fibrotic disorder. Therefore, it can be hypothesised that miR-145 

plays a role in the myofibroblast-like CAF phenotype and is important in regulating stromal-

epithelial interactions. To investigate this in this study, first the endogenous expression of miR-

143 and miR-145 was assessed in NOFs and CAFs by qRT-PCR.  

The expression of mature of both miR-143 and miR-145 was significantly higher in CAFs 

compared to NOFs in our study (figure 3.13). The expression of miR-143 in CAFs was ~20 fold 

higher than in NOF, and the expression of miR-145 was ~4 fold higher. The expression of miR-

143 was ~2 fold higher in CAFs isolated from genetically stable OSCC compared to genetically 

unstable OSCCs. But the statistically significant result was the difference in miR-143 between 

CAFs isolated from genetically stable OSCC and the NOFs from Sheffield (~63 fold higher in CAFs; 

figure 3.14A).  The expression of miR-145 in CAFs from genetically stable OSCC was ~13 fold 

higher than NOFs from Sheffield, again the only significant difference between the different 

subtypes in the cohort (figure 3.14B). There was ~1.6 fold higher expression of miR-145 in CAFs 

isolated from genetically stable OSCC compared to unstable OSCCs. 

The effect of TGF-β1 on mature miR-145 expression was assessed by qRT-PCR. 4 NOFs, DENF316, 

DENF319, DENF008 and OF26 were each treated with TGF-β1, RNA isolated and used for specific 

miR-145 and RNU 48 cDNA preparation for qRT-PCR analysis. This revealed that TGF-β1 treated 

NOFs have a greater expression of mature miR-145 (figure 3.15). This difference was found to 

be statistically significant in 2 of the 4 NOFs tested, DENF319 (~1.5 fold increase) and OF26 (~1.4 

fold increase).  Although not found to be statistically significant, TGF-β1 treatment resulted in a  
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Figure 3.12: NOFs and CAFs stimulated a similar level of paracrine H357 

migration. Conditioned media was collected from DENF316, DENF319 (NOFs), MCA and MC15 

(CAFs). Conditioned media was prepared by seeding fibroblasts at a density of 250,00 per six 

well plate, leaving overnight and then leaving serum free media for 24 h to condition. The 

conditioned media was spun at >2500xg to remove cellular debris then placed in the bottom of 

a transwell migration assay plate. H357 cells were seeded at 100,000 cells per well into an 8µm 

porous transwell with 1 mg/ml mitomycin c and allowed to migrate for 38 h. The ability of the 

conditioned media to promote migration was assessed by methanol fixing cells attached to the 

membrane after 38 h, staining the cells with 0.1% (w/v) crystal violet, taking photographs at 40x, 

and calculating the average number of cells in the representative photographs. Error bars 

represent the SEM.  N=3, independent experiments. 
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Figure 3.13: CAFs had a greater expression of miR-143 and miR-145 than NOFs 

tested. Fibroblasts isolated from OSCC, CAFs (10), and NOFs (10) were grown, RNA was isolated 

and 10 ng was used to generate cDNA for qRT-PCR analysis using primers designed to amplify 

miR-143, miR-145 and RNU 48, as an endogenous control. The fold endogenous change of target 

miR-143 (A) or miR-145 (B), compared to reference gene RNU 48 is plotted on each graph, each 

dot representing a different NOF/CAF. The line represents the mean fold endogenous for each 

set of fibroblasts. Statistical analysis was performed by Mann-Whitney test, and statistical 

significance is shown on the figure by **p<0.01, ****p<0.0001. Error bars display the SD.  
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Figure 3.14: miR-143 and miR-145 expression was higher in CAFs isolated 

from genetically stable compared to NOFs. CAFs isolated from genetically stable OSCCs 

(N=5), unstable OSCCs (N=5), oral dysplasia (N=1), normal gingiva (BICR NOFs; N=3) all originally 

from Prof Ken Parkinson and NOFs (from Sheffield; N=7) were cultured. RNA was isolated and 

10 ng was used to generate cDNA for qRT-PCR analysis using gene specific primers (Taqman) 

designed to amplify miR-143, miR-145 and RNU 48, as an endogenous control. The fold 

endogenous change of target miR-143 (A), and miR-145 (B) compared to reference gene RNU 

48 is plotted on each graph, each dot representing a different NOF/CAF. The line represents the 

mean fold endogenous for each set of fibroblasts. Statistical analysis was performed by multiple 

ANOVA, and statistical significance is shown on the figure by *p<0.05, **p<0.01. Error bars 

display the SD. 
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~2 fold and ~1.2 fold increase in miR-145 expression in DENF316 and DENF008 respectively. 

Again, there was some variability in the miR-145 expression in response to TGF-β1. 

The effect of TGF-β1 on miR-143 and miR-145 expression was also examined by performing qRT-

PCR on NOFs treated with varying doses of TGF-β1. The TGF-β1 dose response samples were 

used to assess miR-143 and miR-145 expression (figure 3.16). DENF316s were treated with 0.5, 

5 or 50 ng/ml TGF-β1 for 48 h, and molecularly assessed by qRT-PCR for mature miR-143 and 

miR-145 levels. miR-143 expression, decreased (by ~0.25 fold) with 0.5 ng/ml TGF-β1, and then 

increased to ~1.25 and 1.5 after 5 and 50 ng/ml treatment respectively. There was a steady trend 

in an increase in miR-145 expression with the increment of TGF-β1 treatment at 5 ng/ml (~1.5 

fold) and 50 ng/ml (~2 fold). The trend suggests that TGF-β1 caused the increased expression of 

miR-143 and miR-145, however the increases did not reach statistical significance.   

The effect of TGF-β1 on miR-145 expression was also examined in CAFs. 4 CAFs; BICR-3, BICR-

59, BICR-63 and BICR-70 were each treated with TGF-β1, RNA isolated and used for specific miR-

145 and RNU 48 cDNA preparation for qRT-PCR analysis. This experiment was performed in 

duplicate for each CAF, so repetition is needed to validate the findings. But the data suggest that 

TGF-β1 is able to increase the expression of miR-145 in CAFs also (figure 3.17). The miR-145 

levels increase by ~4.5 (significant), ~3 and ~12.5 fold in BICR-59, BICR-63 and BICR-3 

respectively. In BICR-70 CAFs, however, there was no increase in miR-145 after TGF-β1 

treatment (~0.5 fold decrease).  

Next, the effect oral cancer cell lines conditioned media have on NOF and CAF miR-145 

expression was assessed. DENF316 (NOF) and MCA (CAF) were treated with conditioned media 

from Cal27 and VB6, a stably expressing integrin αvβ6 H357 cell line, and used for qRT-PCR to 

assess miR-145 levels compared to serum free treated and TGF-β1 controls. In both DENF316 

and MCA fibroblasts, αvβ6 conditioned media treatment caused the significant downregulation 

of miR-145 (~0.5 fold decrease, compared to untreated fibroblasts; figure 3.18). In DENF316 and 

MCA both TGF-β1 and Cal27 conditioned media caused no significant change in miR-145 levels. 

Contrary to data described above TGF-β1 did not cause any increase in miR-145 levels, and cal27 

conditioned media treatment resulted in a small decrease in expression, but ~0.25 fold 

compared to untreated controls.  In MCA CAFs, TGF-β1 caused a small increase in miR-145 levels 

(~1.25 fold, not significant) and Cal27 conditioned media had no effect.    
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Figure 3.15: TGF-β1 caused an increase of miR-145 expression only in certain 

NOFs. DENF316, DENF319, DENF008 and OF26 were seeded at a density of 250,000 cells per 

six well overnight, serum starved for 20 h and treated with 5 ng/ml TGF-β1, or serum free media 

as a control for 48 h. After treatment fibroblasts were harvested, RNA isolated and 100ng was 

used in a total cDNA preparation. qRT-PCR was performed with the cDNA with gene specific 

primers (Taqman) to amplify miR-145 and RNU 48 as a reference gene. Each dot on the figure 

represents the relative quantification of miR-145 transcript levels compared to endogenous RNU 

48, for each treatment relative to untreated, the line represents the mean relative difference. 

Statistical analysis was performed by a paired two tailed student’s t-test, and statistical 

significance is shown on the figure by *p<0.05, **p<0.01. The significance is compared to the 

untreated equivalent transfection.  Error bars represent the SEM. N=3-7, independent 

experiments. 
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Figure 3.16: Dose response of TGF-β1 treatment caused a trend of increasing 

miR-143 and miR-145 expression. DENF316 normal oral fibroblasts were seeded at a 

density of 250,000 cells per 6 wells overnight, serum starved for 20 h and subsequently treated 

with 0.5, 5 or 50 ng/ml TGF-β1, or serum free media as a control for 48 h. After treatment 

fibroblasts were harvested, total RNA isolated and 10 ng used in miRNA specific cDNA 

preparation using specific primers to mature miR-143, miR-145 and RNU 48. qRT-PCR was 

performed with the cDNA with primers to amplify miR-143, miR-145 and RNU 48 as a reference 

gene. Each bar on the figure represents the mean relative quantification of miR-143 (A) or miR-

145 (B) transcript levels compared to endogenous RNU 48, for each treatment relative to the 

relevant untreated. Error bars represent the SEM. N=3, independent experiments. 
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Figure 3.17: TGF-β1 caused an trend of an increase in miR-145 expression in 

CAFs, but not in BICR-70. BICR-3, BICR-59, BICR-63, and BICR-70 were seeded overnight at 

a density of 250,000 cells per 6 wells, serum starved for 20 h before subsequent treatment with 

5 ng/ml TGF-β1, or serum free media as a control for 48 h. After treatment fibroblasts were 

harvested, RNA isolated and 10 ng was used in cDNA using gene specific primers to amplify miR-

145 and RNU 48 (Taqman). qRT-PCR was performed with the cDNA with primers to amplify miR-

145 and RNU 48 as a reference gene. Each dot on the figure represents the relative 

quantification of miR-145 transcript levels compared to endogenous RNU 48, for each treatment 

relative to untreated, the line represents the mean relative difference. N=2, independent 

experiments for each CAF. 
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Figure 3.18: NOFs and CAFs treated with VB6 conditioned media had 

decreased expression of miR-145.  NOFs (DENF316; A) and CAFs (MCA; B) were seeded 

at a density of 250,000 cells per 6 well, serum starved for 20 h and treated with serum free 

media, 5 ng/ml TGF-β1, or conditioned media collected from a Cal27 or VB6, a H357 cell line 

stably transfected with the integrin αvβ6, for 48 h. Conditioned media was collected by seeding 

the cell line at a density of 1x106 in a T75 overnight and replacing with 3 ml serum free media to 

condition for 24 h. After treatment, fibroblasts were harvested and the RNA was isolated and 10 

ng was used to generate specific cDNA for mature miR-143, miR-145 and RNU48 using gene 

specific primers (Taqman). qRT-PCR analysis was performed using primers designed to amplify 

miR-145 and RNU 48, as an endogenous control. Each bar on the figure represents the mean 

relative quantification of miR-145 transcript levels compared to endogenous RNU 48, for each 

treatment relative to untreated. Statistical analysis was performed by a paired two tailed 

student’s t-test, and statistical significance is shown on the figure by **p<0.01. The significance 

is compared to the miR-145 levels in the fibroblasts treated with serum free media. Error bars 

represent the SEM. N=3, independent experiments. 
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3.5 Summary 

In this chapter, the effect of TGF-β1 and conditioned media from cancer cell lines on NOFs on 

markers of myofibroblasts transdifferentiation and the miR-145 expression were assessed. 

Conditioned media from Cal27, H357, and VB6 did not significantly induce myofibroblast 

transdifferentiation of NOFs, however Cal27 and VB6 showed some increase in αSMA transcript 

and protein levels respectively. Conditioned media from VB6 was able to significantly 

downregulate miR-145 expression. TGF-β1 treatment induced significant upregulation of 

myofibroblasts molecular markers αSMA and FN1-EDA, and also induced αSMA stress fibre 

formation and contraction of the fibroblasts. The optimal duration of TGF-β1 treatment for 

inducing myofibroblast transdifferentiation was optimised to be for 48 h (5 ng/ml). TGF-β1 

treatment increased the expression of miR-145 in NOFs and CAFs. There was no identified 

difference in the expression of myofibroblasts markers between NOFs and CAFs, however the 

expression of miR-143 and miR-145 in CAFs was significantly higher than that in NOFs.  
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Chapter 4: The role of miR-145 in the control 

of pro-tumourigenic phenotypic changes in 

stromal oral fibroblasts. 
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4.1 Aims and objectives  

The overall aim of this chapter was to investigate the role of miR-145 in oral myofibroblast 

transdifferentiation. To do this, the objectives were to use gain of function and loss of function 

experiments to assess the effect of miR-145 on the NOF and CAF induced myofibroblasts 

phenotypes by looking at molecular myofibroblast markers and fibroblasts contractility. In 

addition, this chapter planned to determine whether manipulating miR-145 expression in NOFs 

and CAFs had any paracrine effects on cancer cell migration and invasion, by using transwell 

assays using conditioned media from the fibroblasts as a chemotaxis stimulus.   

 

4.2 miR-145 inhibited markers of oral myofibroblast transdifferentiation.  

Myofibroblasts are typically characterised by having contractile cytoskeletal αSMA stress fibres 

(Hinz, 2007). TGF-β1 is able to induce transdifferentiation of normal fibroblasts to 

myofibroblasts in many different fibroblasts including human gingival fibroblasts (Lewis et al., 

2004). In order to investigate the effect of miR-145 on the myofibroblast phenotype, two 

primary NOF cultures were transiently transfected with a synthetic premiR-145 oligonucleotide 

to overexpress mature miR-145, and were subsequently treated with 5 ng/ml TGF-β1 for 48 h. 

A negative non-targeting premiR was used as a control, and the effect of overexpressing co-

transcribed miR-143 was also investigated using premiR-143. The effect on myofibroblast 

phenotype was molecularly assessed by qRT-PCR and immunoblotting. Fibroblasts were 

harvested after TGF-β1 treatment and used for total protein or RNA extraction. The expression 

of the well-characterised myofibroblast molecular markers αSMA, collagen 1a (COL1A1) and 

specific fibronectin 1 isoform with extra domain A (FN1-EDA), were all assessed by qRT-PCR. The 

best-described marker of myofibroblast transdifferentiation, αSMA, was also assessed via 

immunoblotting and immunocytochemistry.  

Synthetic oligonucleotides of premiR-143 and premiR-145 were used to overexpress mature 

miRNA levels in the NOFs tested. The precursor miRNA is in the form of a chemically synthesised 

double stranded RNA which is processed by the cell’s machinery to result in the correct miRNA 

strand being introduced into the RNA induced silencing complex (RISC), leading to downstream 

effects on gene expression by binding to complementary sequences in the 3’UTRs of mRNA 

targets. To assess whether these precursor miRNAs were effective in overexpressing the mature 

miRNAs, specific cDNA was generated using miR-143, miR-145 or RNU 48 Taqman probes. The 

cDNA preparations were then used in qRT-PCR reactions to assess the levels of each miRNA  
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Figure 4.1: premiR-143 transfection resulted in the overexpression of mature 

miR-143. Two primary NOFs, DENF316 and DENF319 (A and B respectively), were seeded at a 

density of 250,000 cells per six well and transiently transfected with premiR-143, premiR-145 or 

a negative non-targeting premiR (50 nM) 24 h prior to treatment with 5 ng/ml TGF-β1 for 48 h. 

After treatment, fibroblasts were harvested and the RNA was isolated and 10ng was used to 

generate specific miR-143 and RNU 48 cDNA using specific Taqman probes. qRT-PCR analysis 

was performed using primers for miR-143 and RNU 48 (Taqman). Each bar on the figure 

represents the mean relative quantification of miR-143 transcript levels compared to 

endogenous RNU 48, for each transfection plus/minus treatment relative to untreated negative 

premiR. Statistical analysis was performed by a paired two tailed student’s t-test, and statistical 

significance is shown on the figure by ***p<0.001 and ****p<0.0001. If not indicated by a bar, 

the black significance asterix are compared to the untreated, negative premiR transfected, 

negative control. Blue significance asterix indicate significance compared to the untreated 

counterpart, e.g.  premiR-143 transfected, TGF-β1 treated compared with premiR-143 

transfected, untreated. Important significant data is shown in red. Bars also indicate statistical 

comparisons.  Error bars represent the SEM. N=3, independent experiments. 
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Figure 4.2: premiR-145 transfection resulted in the overexpression of mature 

miR-145. Two primary NOFs, DENF316 and DENF319 (A and B respectively), were seeded at a 

density of 250,000 cells per six well and transiently transfected with premiR-143, premiR-145 or 

a negative non-targeting premiR (50 nM) 24 h prior to treatment with 5 ng/ml TGF-β1 for 48 h. 

After treatment, fibroblasts were harvested and the RNA was isolated and 10ng was used to 

generate specific miR-145 and RNU 48 cDNA using specific Taqman probes. qRT-PCR analysis 

was performed using primers for miR-145 and RNU 48 (Taqman). Each bar on the figure 

represents the mean relative quantification of miR-145 transcript levels compared to 

endogenous RNU 48, for each transfection plus/minus treatment relative to untreated negative 

premiR. Statistical analysis was performed by a paired two tailed student’s t-test, and statistical 

significance is shown on the figure by *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. If not 

indicated by a bar, the black significance asterix are compared to the untreated, negative premiR 

transfected, negative control. Blue significance asterix indicate significance compared to the 

untreated counterpart, e.g.  premiR-143 transfected, TGF-β1 treated compared with premiR-

143 transfected, untreated. Important significant data is shown in red. Bars also indicate 

statistical comparisons. Error bars represent the SEM.  N=3, independent experiments. 
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relative to RNU 48, a small nuclear RNA used as endogenous reference gene. RNU 48 was 

selected from a screen of endogenous controls including RNU 44, B2M and U6, as it showed the 

least fluctuation in CT values between samples. Transfection of premiR-143 in NOFs for 24 h 

resulted in an overexpression of mature miR-143 (Figure 4.1). Transfection of premiR-145 

resulted in the overexpression of mature miR-145 (Figure 4.2). TGF-β1 treatment caused an 

increase in endogenous miR-145 expression in DENF319 (B), but not in DENF316 (A).  Of interest, 

the overexpression of miR-143 and miR-145 was several fold higher in DENF316 then DENF319, 

and TGF-β1 caused a significant increase in miR-145 levels in DENF319 and not in DENF316 NOFs. 

Surprisingly, premiR-145 transfection also caused a premiR-145 transfection also caused a small 

but significant increase in miR-143 in DENF319 in the absence of TGF-beta, but not in its 

presence (Figure 4.1B). However, this was only observed in one of the primary cultures tested 

so requires further investigation. 

As seen previously in chapter 3, TGF-β1 caused an increase in αSMA expression in NOFs. In both 

primary NOFs used, TGF-β1 caused a significant increase in αSMA transcript levels in fibroblasts 

transfected with negative premiR, and with premiR-143 (Figure 4.3). The two primary fibroblasts 

show some differences in αSMA expression in response to TGF-β1 treatment and the 

overexpression of miR-143 and miR-145. TGF-β1 treatment caused a greater response in 

DENF316 than DENF319, TGF-β1 caused a ~110 fold increase in αSMA expression in DENF316 

NOFs compared to ~11 fold in DENF319 NOFs. Overexpression of miR-143 caused a reduction in 

the TGF-β1 mediated αSMA expression compared to negative premiR transfected NOFs, the 

TGF-β1 increases were ~34 fold (compared to ~110 fold; significant) and a ~10 fold (compared 

to ~11 fold; not significant) in DENF316 and DENF319 respectively (Figure 4.3A and B). In 

DENF316, the reduction in TGF-β1 mediated αSMA between negative premiR transfected and 

premiR-1 a significant reduction in the activation of αSMA expression.  

In contrast, fibroblasts transfected with premiR-145 do not show an increase in αSMA at 

transcript and at protein levels. miR-145 overexpression inhibited the increase in αSMA 

expression, associated with TGF-β1 treatment, in both the NOFs tested. NOFs overexpressing 

miR-145 had a 95% and 82% (DENF316 and DENF319 respectively) reduction in TGF-β1 

associated increase in αSMA compared to treated negative premiR control. miR-145 

overexpression also prevented the TGF-β1 induced increase in αSMA protein, whereas miR-143 

did not (figure 4.3C). Untreated DENF319 overexpressing miR-145 also had a significant decrease 

in αSMA. 
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Figure 4.3: miR-145 overexpression attenuated TGF-β1 induced α smooth 

muscle actin expression. Two primary NOFs, DENF316 and DENF319 (A and B respectively), 

were seeded at a density of 250,000 per six well, and were transiently transfected with premiR-

143, premiR-145 or a negative non-targeting premiR (50 nM) 24 h prior to treatment with TGF-

β1 for 48 h. After treatment, fibroblasts were harvested and the RNA was isolated, quantified 

and 100 ng was used to generate cDNA for qRT-PCR analysis using primers designed to amplify 

αSMA and U6, as an endogenous control. Each bar on the figure represents the mean relative 

quantification of αSMA transcript levels compared to endogenous U6, for each transfection 

plus/minus treatment relative to untreated negative premiR. Statistical analysis was performed 

by a paired two tailed student’s t-test, and statistical significance is shown on the figure by 

*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. If not indicated by a bar, the black significance 

asterix are compared to the untreated, negative premiR transfected, negative control. Blue 

significance asterix indicate significance compared to the untreated counterpart, e.g.  premiR-

143 transfected, TGF-β1 treated compared with premiR-143 transfected untreated. Bars also 

indicate statistical comparisons.  Important significant data is shown in red.  Error bars represent 

the SEM. C Total protein lysates were prepared from the NOFs transfected with each premiR, 

then TGF-β1 treated. Protein lysate was prepared using RIPA protein lysis buffer, quantified and 

30 µg was run on a 3–8% (w/v) tris acetate gradient gel and transfected to a nitrocellulose 

membrane and immunoblotted for αSMA and GAPDH as the loading control. The figure shows 

a representative blot. N=3, independent experiments for each NOF.  
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Myofibroblasts are often identified in vitro by visualising their striking cytoskeletal αSMA stress 

fibres. To investigate the effect of miR-145 overexpression on the integrity of these stress fibres, 

NOFs were seeded onto coverslips in order to perform immunocytochemistry using a FITC-

conjugated αSMA antibody. Once seeded, NOFs were transiently transfected with premiR-143, 

premiR-145 or negative premiR, then treated with TGF-β1. The TGF-β1 treatment caused a 

significant increase in mean fluorescence intensity (by 4.5 fold), and caused the formation of 

αSMA stress fibres, which are typical of myofibroblasts (figure 4.4). In fibroblasts overexpressing 

miR-143 there was no difference in the amount of αSMA stress fibres visualised, but a slight 

reduction in the mean fluorescence per cell (not significant). However, in fibroblasts 

overexpressing miR-145 there was a marked reduction in the amount of fluorescence and stress 

fibres present, however this did not reach significance. 

To investigate miR-145’s functional effect on the myofibroblast phenotype, a collagen 1 

contractility assay was used to assess the effect of miR-145 on the TGF-β1-induced oral 

myofibroblast-associated contractility. NOFs transiently transfected with premiR-143, premiR-

145 or negative premiR were resuspended in a mixture of rat tail collagen I: DMEM, allowed to 

set and used to assess TGF-β1 stimulated contraction. In this study, TGF-β1 was shown to 

significantly cause contraction of the gels, consistent with the myofibroblast phenotype (seen in 

figure 3.4C). miR-145 was able to significantly reduce TGF-β1’s ability to induce gel contraction, 

shown by the lack of reduction in gel diameter (Figure 4.5). miR-143 overexpression also caused 

a smaller, but significant reduction in induced myofibroblast contractility.  

Next, other known markers of myofibroblast transdifferentiation were analysed to investigate 

whether miR-145 was able to affect the whole myofibroblast phenotype or just αSMA 

expression. A specific fibronectin-1 isoform, fibronectin with extra domain A (FN1-EDA), is 

reported to be a bona-fide marker of myofibroblasts as well as being necessary for myofibroblast 

transition (Serini et al., 1998). In both NOFs analysed, FN1-EDA gene expression was increased 

in TGF-β1 induced myofibroblasts (figure 4.6) by ~3 fold in DENF316 (this did not reach statistical 

significance) and ~1.6 fold in DENF319. The overexpression of miR-143 had different effects on 

the TGF-β1 induced myofibroblast phenotype in the two NOFs. In DENF316, overexpression 

caused a further increase in FN1-EDA on TGF-β1 treatment (~12 fold, compared to negative 

premiR, untreated NOFs) compared to TGF-β1 treated NOF transfected with control premiR 

(Figure 4.6A). However, in DENF319, overexpression of miR-143 did not cause a significant 

change (~1.3 fold compared to negative premiR transfected, untreated NOFs) in FN1-EDA levels 

on TGF-β1 treatment compared to TGF-β1 treated NOF transfected with control  
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Figure 4.4: miR-145 overexpression prevented αSMA stress fibre formation. 

NOFs were seeded at a density of 250,000 cells per six well onto coverslips overnight, then were 

transiently transfected with negative premiR, premiR-143 or premiR-145 (50 nM) for 24 h prior 

to being treated with TGF-β1 for 48 h. The coverslips were washed in PBS, before being fixed in 

100% methanol for 10 min, then permeablised using 4mM sodium deoxycholate for 10 min, and 

blocked using 2.5% (w/v) BSA in PBS for 30 min before incubation with a primary FITC-

conjugated αSMA antibody at 4 oC overnight. The coverslips were then washed in PBS before 

mounting on microscope slides using DAPI containing mounting medium. Fluorescent images 

were taken using a microscope, using Pro-plus 7 imaging software at 40x magnification. 

Representative pictures are shown in A. The amount of fluorescence intensity per cell was 

quantified using Image J, and displayed in B as the mean relative fluorescent intensity for 

DENF316. Statistical analysis was performed by a paired two tailed student’s t-test, and 

statistical significance is shown on the figure by *p<0.05, negative premiR treated compared to 

treated. Error bars show the SEM. N=3, independent experiments. 
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Figure 4.5: miR-145 overexpression prevented TGF-β1 induced myofibroblast 

contractility. NOFs were transiently transfected with negative premiR, premiR-143 or 

premiR-145 (50 nM). After 24 h the NOFs were harvested, counted and resuspended in a 1:1 

mixture of rat tail collagen 1 (in 0.1 M acetic acid) and DMEM and neutralised with NaOH, at a 

density 250,000 per 300 µl. The mixture was aliquoted into wells (300 µl/well) and left to set in 

an incubator at 37 oC with 5% (v/v) CO2. After the gels had set, media was added to the wells at 

4 h later the media was replaced with serum free media for overnight serum starvation. The gels 

were detached from the sided of the wells and treated with 5 ng/ml TGF-β1, or serum 

containing/free media as controls (not shown). Photographs were taken at 0 h, 24 h and 48 h. 

The level of contraction was assessed at 48 h by measuring the diameter of the gel with ImageJ 

image analysis software. The figure shows a representative photograph of gels containing 

transfected NOFs after 48 h TGF-β1 treatment in A.  The quantified level of contraction is shown 

in a histogram in B as a % of gel contraction compared to negative premiR transfected untreated 

control. Statistical analysis was performed by a paired two tailed student’s t-test, and statistical 

significance is shown on the figure by ****p<0.0001, **p<0.01, treated premiR-143/5 compared 

to treated negative premiR. Important significant data is shown in red. N=3, independent 

experiments. Error bars show the SEM.  
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premiR (Figure 4.6B). miR-143 overexpression also caused a significant ~0.3 fold decrease in 

FN1-EDA levels in untreated DENF319 NOFs. miR-145 overexpression was also able to cause a 

~0.8 fold downregulation in FN1-EDA levels in untreated DENF319, but not DENF316s. miR-145 

overexpression was able to significantly attenuate the TGF-β1 associated elevated FN1-EDA 

expression, in both NOFs. In DENF316s, miR-145 overexpression reduced the TGF-β1 mediated 

FN1-EDA expression (~3 fold increase in negative transfected controls) to ~1.6 fold compared to 

untreated negative transfected FN1-EDA levels.  In DENF319s, miR-145 overexpression reduced 

the TGF-β1 mediated FN1-EDA expression (~1.7 fold increase in negative transfected controls) 

to ~0.5 fold compared to untreated negative transfected FN1-EDA levels.   

Another marker investigated was collagen 1a (COL1A1). Myofibroblasts are known to module 

their extracellular environment by the elevated secretion of ECM structural molecules and ECM 

remodelling agents (Kalluri and Zeisberg, 2006). Increased collagen secretion is typical of true 

myofibroblasts in healing wounds, where it helps to strengthen the wound area. Therefore, the 

change in COL1A1 mRNA was investigated in NOFs overexpressing miR-143 or miR-145, treated 

with TGF-β1. Again, patient specific differences were seen in the two NOFs in response to TGF-

β1 and in miR-143’s effect in the cells (figure 4.7 A and B). In DENF316 TGF-β1 provoked elevated 

expression of COL1A1 (~2 fold), whereas in DENF319 this was not observed (~0.8 fold). miR-143 

overexpression caused a further TGF-β1 mediated elevation in COL1A1 ~4.5 fold increase in 

DENF316, no difference was seen in DENF319 between TGF-β1 negative transfected NOFs and 

NOFS overexpressing miR-145 treated. miR-145 overexpression in both untreated and treated 

NOFs caused a marked, significant downregulation in COL1A1. COL1A1 decreased by ~0.8 and 

~0.5 fold in DENF316 and DENF319 respectively, in untreated miR-145 overexpressing NOFs. 

Similar COL1A1 levels were seen in premiR-145 transfected NOFs treated with TGF-β1, COL1A1 

expression decreased from ~0.7 and ~0.8 fold in DENF316 and DENF319 respectively compared 

to untreated negative transfected NOFs.  

Another way myofibroblasts act to reorganise the ECM is by regulating the expression, secretion 

and activation of proteases, such as MMPs and ADAMs (Kalluri and Zeisberg, 2006). These 

specifically cleave ECM molecules and receptors, allowing for invasion of cancer cells, ligand 

release and altered cellular signalling. MMP2, is one such MMP which has been highlighted to 

be important in promoting paracrine invasion by breaking down the ECM to create a path for 

the cancer cells to migrate through, and by the releasing of chemokines that have been 

sequestered in the ECM, promoting migration (Zhang et al., 2006). MMP2 has also recently been 

highlighted to have a role in OSCC (Fuller et al., 2012; Hassano et al., 2014). The expression of  



118 
 

A      B 

 

 

 

 

 

 

 

 

Figure 4.6: miR-145 overexpression attenuated TGF-β1 induced fibronectin 1 

(with extra domain A) expression. Two primary NOFs, DENF316 and DENF319 (A and B 

respectively), were seeded at 250,00 cells per 6 well and were transiently transfected with 

premiR-143, premiR-145 or a negative non-targeting premiR (50nM) 24 h prior to treatment 

with TGF-β1 for 48 h. After treatment, fibroblasts were harvested and the RNA was isolated, 

quantified and 100 ng was used to generate total cDNA for qRT-PCR analysis using primers 

designed to amplify FN1-EDA and U6, as an endogenous control. Each bar on the figure 

represents the mean relative quantification of FN1-EDA transcript levels compared to 

endogenous U6, for each transfection plus/minus treatment relative to untreated negative 

premiR. Statistical analysis was performed by a paired two tailed student’s t-test, and statistical 

significance is shown on the figure by *p<0.05, **p<0.01, ***p<0.001. If not indicated by a bar, 

the black significance asterix are compared to the untreated, negative premiR transfected, 

negative control. Blue significance asterix indicate significance compared to the untreated 

counterpart, e.g. premiR-145 transfected, TGF-β1 treated compared with premiR-145 

transfected untreated. Bars also indicate statistical comparisons.  Important significant data is 

shown in red.  Error bars represent the SEM.  N=3, independent experiments. 
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Figure 4.7: miR-145 overexpression inhibited collagen 1a expression. Two 

primary NOFs, DENF316 and DENF319 (A and B respectively), were seeded at a density of 

250,000 cells per six well and were transiently transfected with premiR-143, premiR-145 or a 

negative non-targeting premiR (50 nM) for 24 h prior to treatment with TGF-β1 for 48 h. After 

treatment, fibroblasts were harvested and the RNA was isolated and 100 ng was used to 

generate cDNA for qRT-PCR analysis using primers designed to amplify COL1A1 and U6, as an 

endogenous control. Each bar on the figure represents the mean relative quantification of 

COL1A1 transcript levels compared to endogenous U6, for each transfection plus/minus 

treatment relative to untreated negative premiR. Statistical analysis was performed by a paired 

two tailed student’s t-test, and statistical significance is shown on the figure by *p<0.05, 

**p<0.01, ***p<0.001, ****p<0.0001. If not indicated by a bar, the black significance asterix are 

compared to the untreated, negative premiR transfected, negative control. Blue significance 

asterix indicate significance compared to the untreated counterpart, e.g.  premiR-145 

transfected, TGF-β1 treated compared with premiR-145 transfected untreated. Bars also 

indicate statistical comparisons.  Important significant data is shown in red.  Error bars represent 

the SEM. N=3, independent experiments. 
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MMP2 was investigated in NOFs transfected with premiRs, then TGF-β1 treated. In DENF316 

NOFs, induction of the myofibroblast phenotype with TGF-β1 caused a ~2 fold increase in MMP2 

expression (figure 4.8), however TGF-β1 treatment caused a significant ~0.5 fold decrease in 

MMP2 expression. In DENF319 NOFs, overexpression of miR-145 caused a downregulation of 

MMP2 in both treated and untreated NOFs (figure 4.8B). Overexpression of miR-143 and miR-

45 in DENF316 NOFs caused a significant reduction in the TGF-β1 mediated increase in MMP2 

(to ~1.4 and 1.3 fold greater than untreated negative control transfected, respectively NOFs). 

In the untreated fibroblasts miR-143 and miR-145 overexpression had no effect on MMP2 

transcript levels (figure 4.8A). miR-143 overexpression and TGF-β1 treatment in DENF319, 

separately, were able to decrease MMP2 expression in DENF319 NOFs to ~0.5 fold relative to 

negative premiR transfected, untreated NOFs (figure 4.8B). miR-145 overexpression was able to 

downregulate MMP2 levels by ~0.8 fold. miR-143 and miR-145 overexpression were able to 

further decrease MMP2 in TGF-β1 treated NOFs, which were both decrease by ~0.7 fold, 

compared to negative transfected, untreated DENF319s. 

 

4.3 miR-145 attenuated the protumourigenic paracrine effects of oral 

myofibroblasts 

The presence of myofibroblasts in the tumour stroma is indicative of poor prognosis in many 

cancers including OSCC (Marsh et al., 2011). This is likely to be due to the altered secretome and 

ECM remodelling capabilities of myofibroblasts, which is postulated to promote the migration 

and invasion of surrounding transformed cells, creating a more invasive tumour. To investigate 

whether TGF-β1-induced functional myofibroblasts are able to promote the paracrine migration 

and invasion of OSCC cells. H357 cells were seeded in the top of a transwell migration chamber 

with an 8 µM porous membrane, with or without a layer of Matrigel, to analyse migration or 

invasion respectively. The chambers were placed above conditioned media prepared from 

fibroblasts transfected with premiRs and then treated with TGF-β1. The assay plates were 

incubated for 38/ 72 h to allow the cells to migrate/invade. After this time, cells were fixed to 

the membranes and stained with 0.1% (w/v) crystal violet. Photographs were taken at 40x with 

a light microscope of 4 representative views, and counted to calculate relative migration or 

invasion.   
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Figure 4.8: MMP2 expression was altered by miR-143 and miR-145 

overexpression. Two primary NOFs, DENF316 and DENF319 (A and B respectively), were 

seeded at a density of 250,000 cells per six well and were transiently transfected with premiR-

143, premiR-145 or a negative non-targeting premiR (50 nM) 24 h prior to treatment with 5 

ng/ml TGF-β1 for 48 h. After treatment, fibroblasts were harvested and the RNA was isolated 

and 100 ng was used to generate total cDNA for qRT-PCR analysis using primers for MMP2 and 

U6, as an endogenous control. Each bar on the figure represents the mean relative quantification 

of MMP2 transcript levels compared to endogenous U6, for each transfection plus/minus 

treatment relative to untreated negative premiR. Statistical analysis was performed by a paired 

two tailed student’s t-test, and statistical significance is shown on the figure by *p<0.05, 

**p<0.01, ***p<0.001, ****p<0.0001. If not indicated by a bar, the black significance asterix are 

compared to the untreated, negative premiR transfected, negative control. Blue significance 

asterix indicate significance compared to the untreated counterpart, e.g.  premiR-145 

transfected, TGF-β1 treated compared with premiR-145 transfected untreated. Bars also 

indicate statistical comparisons.  Important significant data is shown in red.  Error bars represent 

the SEM.  N=3, independent experiments. 
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Conditioned media from TGF-β1 induced myofibroblasts (DENF316) caused a significant increase 

(~1.6 fold) in migration (figure 4.9) and invasion (~2.5 fold) of H357 cells (figure 4.10). The 

overexpression of miR-143 and miR-145 was able to completely inhibit the pro-migratory effect 

of the TGF-β1 treated NOF-derived conditioned media (figure 4.9). miR-145 overexpression was 

also able to inhibit the TGF-β1 induced increase in invasion in a dose dependent manner (figure 

4.10) in DENF316 NOFs 5 nM premiR-145 reduced invasion to ~2 fold and 50 nM completely 

inhibited the TGF-β1 induced increase in invasion. However, in DENF319 fibroblasts TGF-β1 

induced myofibroblasts conditioned media stimulated less invasion (~0.9 fold) compared to the 

untreated control (figure 4.11). MiR-145 overexpression caused a significant reduction (~0.6 

fold) in the amount of invasion, but there was no difference when NOFs overexpressing miR-145 

were treated with TGF-β1. 

 

4.4 miR-145 was able to rescue the myofibroblast phenotype  

To test whether miR-145 has the potential to be used therapeutically to reverse the 

myofibroblast phenotype and subsequently reduce the harmful effects of myofibroblasts-like 

CAFs in the tumour microenvironment or true myofibroblasts in chronic fibrosis, the ability of 

miR-145 to rescue the myofibroblast phenotype was investigated. An experiment was 

performed in which the oral myofibroblast phenotype was induced using TGF-β1, and then miR-

145 was overexpressed. Two different doses of premiR-145 were used for the transfection and 

were incubated for 24 h or 48 h to optimise the conditions required for miR-145 to have any 

effect. NOFs were seeded, serum starved and treated with 5 ng/ml TGF-β1 for 48 h to induce 

the myofibroblast phenotype and serum free media was used as an untreated control.  After 

treatment, the fibroblasts were transiently transfected with negative premiR (50 nM) or either 

5 nM/50 nM premiR-145 to overexpress miR-145, and were left to transfect for either 24 h or 

48 h. The fibroblasts were then harvested for molecular analysis to investigate any change in the 

markers of myofibroblast transdifferentiation.  

qRT-PCR analysis of αSMA transcript levels, showed that there was a significant upregulation of 

αSMA mRNA with TGF-β1 treatment (~34 fold increase at 24 h, ~4 fold at 48 h; figure 4.12). The 

transfection of the lower dose of premiR-145 (5 nM) caused a further upregulation at both 24 h 

and 48 h after transfection (~57 fold at 24 h and ~8 fold at 48 h, compared to negative premiR 

transfected untreated NOFs). The higher dose of premiR-145 (50 nM) reduced the expression of 

αSMA mRNA in both 24 h and 48 h after transfection (~28 fold at 24 h and ~2 fold at 48 h),  
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Figure 4.9:  Overexpression of miR-143 and miR-145 in NOFs reduced the TGF-

β1’s effect on paracrine migration of H357 cancer cells.  Conditioned media was 

collected from DENF316 NOFs transfected with negative premiR, premiR-143 or premiR-145 (50 

nM) for 24 h then treated with 5 ng/ml TGF-β1 for 48 h or serum free media as a control. The 

conditioned media was spun at >2500xg to remove cellular debris then placed in the bottom of 

a transwell migration assay plate. H357 cancer cell line were seeded at 100,000 cells per well 

into an 8µm porous transwell with 1 mg/ml mitomycin c and allowed to migrate for 38 h. The 

ability of the conditioned media to promote migration was assessed by methanol fixing cells 

attached to the membrane after 38 h, staining the cells with 0.1% (w/v) crystal violet, taking 

photographs at 40x, and calculating the average number of cells in the representative 

photographs. The figure shows the relative H357 cancer cell migration compared to untreated, 

negative premiR. Statistical analysis was performed by a paired two tailed student’s t-test, and 

statistical significance is shown on the figure by **p<0.01. The significance is compared to the 

treated negative premiR, unless indicated by the bar. Error bars represent the SEM. N=3, 

independent experiments. 

  

n
e
g

a
ti

v
e
 p

re
m

iR

p
re

m
iR

-1
4
3
 

p
re

m
iR

-1
4
5
 

0 .0

0 .5

1 .0

1 .5

2 .0

H 3 5 7  m ig ra tio n

C o n d itio n e d  m e d ia  fro m  D E N F 3 1 6

 f ib ro b la s ts , tra n s fe c te d  th e n  tre a te d

r
e

la
ti

v
e

 H
3

5
7

c
a

n
c

e
r
 c

e
ll

 m
ig

r
a

ti
o

n

u n tre a te d

T G F -B e ta  1
**

**

**



124 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10:  Overexpression of miR-145 in DENF316 NOFs attenuated TGF-

β1’s ability to promote paracrine invasion of H357 cancer cells. Conditioned 

media was collected from DENF316 NOFs transfected with negative control premiR, premiR-143 

or premiR-145 (50 nM) for 24 h then treated with 5 ng/ml TGF-β1 for 48 h or serum free media 

as a control. The conditioned media was spun at >2500xg to remove cellular debris then placed 

in the bottom of a transwell migration assay plate. H357 cancer cell line were seeded at 100,000 

cells per well into an 8 µm porous Matrigel coated transwell, with 1 mg/ml mitomycin c and 

allowed to migrate for 38 h. The ability of the conditioned media to promote invasion was 

assessed by methanol fixing cells attached to the underside of the transwell membrane after 38 

h, staining the cells with 0.1% (w/v) crystal violet, taking photographs at 40x, and calculating the 

average number of cells in the representative photographs. The figure shows the relative H357 

cancer cell invasion compared to untreated, negative premiR. Statistical analysis was performed 

by a paired two tailed student’s t-test, and statistical significance is shown on the figure by 

**p<0.01, ***p<0.001. If not indicated by a bar, the significance is compared to the treated 

negative premiR. Error bars represent the SEM.  N=3, independent experiments. 
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Figure 4.11 TGF-β1 reduced the amount paracrine invasion of H357 cancer 

cells in DENF319 NOFs.  Conditioned media was collected from DENF319 NOFs transfected 

with negative premiR, premiR-143 or premiR-145 (50 nM) for 24 h then treated with 5 ng/ml 

TGF-β1 for 48 h or serum free media as a control. The conditioned media was spun at >2500xg 

to remove cellular debris then placed in the bottom of a transwell migration assay plate. H357 

cancer cell line were seeded at 100,000 cells per well into an 8 µm porous Matrigel coated 

transwell, with 1 mg/ml mitomycin c and allowed to migrate for 38 h. The ability of the 

conditioned media to promote invasion was assessed by methanol fixing cells attached to the 

underside of the transwell membrane after 38 h, staining the cells with 0.1% (w/v) crystal violet, 

taking photographs at 40x, and calculating the average number of cells in the representative 

photographs. The figure shows the relative H357 cancer cell invasion compared to untreated, 

negative premiR. Statistical analysis was performed by a paired two tailed student’s t-test, and 

statistical significance is shown on the figure by **p<0.01, ***p<0.001. If not indicated by a bar, 

the significance is compared to the untreated negative premiR. Error bars represent the SEM.  

N=3, independent experiments. 
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Figure 4.12: miR-145 overexpression (50 nM)  reduced αSMA transcript levels 

in TGF-β1 induced myofibroblasts. DENF316 NOFs were treated with 5 ng/ml TGF-β1 or 

serum free media, then transiently transfected with 5 nM premiR-145, 50 nM premiR-145 or a 

negative non-targeting premiR. The transfection was left for either 24 h or 48 h before being 

harvested. RNA was isolated and 100 ng was used to generate total cDNA for qRT-PCR analysis 

using primers for αSMA and U6, as an endogenous control. Each bar on the figure represents 

the mean relative quantification of αSMA transcript levels compared to endogenous U6, for each 

transfection plus/minus treatment relative to untreated negative premiR. Figure A shows the 

relative αSMA transcript levels in samples left for 24 h to transfect and B shows samples left for 

48 h to transfect. Statistical analysis was performed by a paired two tailed student’s t-test, and 

statistical significance is shown on the figure by *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 

If not indicated by a bar, the black significance asterix are compared to the untreated, negative 

premiR transfected, negative control. Blue significance asterix indicate significance compared to 

the untreated counterpart, e.g. premiR-145 transfected, TGF-β1 treated compared with premiR-

145 transfected untreated. Bars also indicate statistical comparisons.  Important significant data 

is shown in red.  Error bars represent the SEM.  N=3, independent experiments. 
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however, this trend only was significantly different from the negative premiR transfected TGF-

β1 treated NOFs in the 48 h after transfection (figure 4.12B). At 48 h after transfection 50 nM 

premiR-145 was able to rescue the TGF-β1 induced αSMA expression as there was no significant 

difference in αSMA levels between untreated 50 nM premiR-145 transfected and TGF-β1 

treated, 50 nM premiR-145 transfected. In the other NOF tested, DENF319, 48 h after 

transfection, there was a ~13 fold increase in αSMA in TGF-β1 treated NOFs, this was reduced 

to ~3 fold when transfected with 50 nM premiR-145 (Figure 4.13A). Therefore, miR-145 was able 

to markedly reverse the TGF-β1 induced myofibroblast increase in αSMA mRNA.  

The same samples taken at 48 h after transfection were used to isolate total protein lysates and 

immunoblotting was performed to assess αSMA protein levels. αSMA protein levels were 

increased in NOFs induced to be myofibroblasts by TGF-β1, the TGF-β1 increase was quantified 

to be ~2 fold greater than untreated controls. miR-145 (50 nM) was able to slightly reduce the 

amount of αSMA protein, to ~1.5 fold (figure 4.13 B and C). The change in αSMA protein levels 

was small compared to the dramatic change in mRNA expression perhaps reflecting αSMA 

reported long half-life. 

Next, the effect of the overexpression of miR-145 on the presence of αSMA-positive stress fibres 

in oral myofibroblasts was assessed. NOFs were seeded on coverslips and induced to 

transdifferentiate to myofibroblasts using 5 ng/ml TGF-β1, and were then transiently 

transfected with premiR-145 (5 nM or 50 nM) or a negative premiR for 48 h. The coverslips were 

then removed, methanol fixed, cells permeabilised and used for immunocytochemistry for 

αSMA stress fibres using a FITC-conjugated αSMA antibody. NOFs treated, then transfected with 

either negative premiR or the lower dose of premiR-145 (5 nM) stained brightly for stress fibres 

compared to their corresponding controls (figure 4.14A). When quantified, premiR-145 (5 nM) 

transfected induced myofibroblasts had a significant increase (~2.5 fold) in the amount of total 

fluorescence per cell, however, although negative premiR transfected induced myofibroblast 

increase (also ~2.5 fold) in fluorescence did not reach significance, it was clear from the images 

that there was an induction of stress fibre formation. There was a reduction in the amount of 

total fluorescence and width of stress fibres when TGF-β1 induced myofibroblasts were 

transfected with the higher dose of premiR-145 (50 nM) (figure 4.14). The data shown here was 

obtained using DENF319 NOFs but similar results were obtained using DENF316s. 

The most well-characterised marker of myofibroblast phenotype, αSMA, was partially reduced 

on overexpression of miR-145. But to more fully investigate the effect of miR-145 on induced 

myofibroblasts, it was necessary to analyse the effect on other markers of myofibroblast,  
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Figure 4.13: miR-145 significantly reduced TGF-β1 induced αSMA transcript 

levels. DENF319 NOFs were treated with 5 ng/ml TGF-β1 or serum free media, then transiently 

transfected with 5 nM premiR-145, 50 nM premiR-145 or a negative non-targeting premiR. The 

transfection was left for 48 h before being harvested. RNA was isolated and 100 ng was used to 

generate total cDNA for qRT-PCR analysis using primers for αSMA and U6, as an endogenous 

control. Total protein lysates were prepared my resuspending cell pellets in RIPA protein lysis 

buffer and quantifying using a BCA assay. 30 ug was loading on 3-8 tris-acetate SDS-PAGE gel, 

then transferred to a nitrocellulose membrane for immunoblotting using antibodies raised to 

human αSMA and GAPDH as a loading control. Each bar on the figure A represents the mean 

relative quantification of αSMA transcript levels compared to endogenous U6, for each 

transfection plus/minus treatment relative to untreated negative premiR. B shows the 

quantified amount of protein in each sample and C shows a representative immunoblot. 

Statistical analysis was performed by a paired two tailed student’s t-test, and statistical 

significance is shown on the figure by *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. If not 

indicated by a bar, the black significance asterix are compared to the untreated, negative premiR 

transfected, negative control. Blue significance asterix indicate significance compared to the 

untreated counterpart, e.g. premiR-145 transfected, TGF-β1 treated compared with premiR-145 

transfected untreated. Bars also indicate statistical comparisons.  Important significant data is 

shown in red.  Error bars represent the SEM.  N=3, independent experiments. 
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Figure 4.14: miR-145 overexpression reduced αSMA stress fibre formation. 

NOFs were seeded onto coverslips overnight, treated with 5 ng/ml TGF-β1 for 48 h, or serum 

free media, then were transiently transfected with negative premiR, or premiR-145 (at two 

doses, 5 nM or 50 nM). The coverslips were washed in PBS, before being fixed in 100% methanol 

for 10 min, they were then permeablised using 4 mM sodium deoxycholate for 10 min, and 

blocked using 2.5% (w/v) BSA in PBS for 30 min before incubation with a primary FITC-

conjugated αSMA antibody at 4 oC overnight.  The coverslips were then washed in PBS before 

mounting on microscope slides using DAPI containing mounting medium. Fluorescent images 

were taken using a fluorescent light microscope, using Pro-plus 7 imaging software at 40x 

magnification. Representative pictures are shown in A.  The amount of fluorescence intensity 

per cell was quantified using Image J, and displayed in B as the mean relative fluorescent 

intensity for DENF319. Statistical analysis was performed by a paired two tailed student’s t-test, 

and statistical significance is shown on the figure by *p<0.05, premiR-145 (5 nM) treated 

compared to treated.  N=3, independent experiments. Error bars show the SEM. 
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namely COL1A1 and FN1-EDA. Each myofibroblast marker assessed had a greater fold change in 

the treated NOFs at 24 h than 48 h (figure 4.12, 15, 17). DENF316s were treated with TGF-β1 

then transfected with miR-145 (5 nM or 50 nM) or negative premiR for 24 h or 48 h, and COL1A1 

and FN1-EDA transcript levels were assessed via qRT-PCR. At 24 h after transfection there was 

an increase in COL1A1 in treated NOFs transfected with a low doses of premiR-145 (5 nM) (~3.3 

fold increase), but no significant change in negative premiR transfected NOFs (~1.3 fold increase) 

(figure 4.15). There was also no change in COL1A1 levels in TGF-β1 induced myofibroblasts 48 h 

after transfection in DENF316. miR-145 at the highest dose (50 nM) was able to significantly 

decrease COL1A1 mRNA levels in untreated NOFs at 24 h and 48 h after transfection, by ~0.5 

fold in DENF316s and ~0.9 fold in DENF319s. In DENF319 NOFs TGF-β1 caused a significant 

upregulation of COL1A1 marker at 48 h (~1.7 fold) when transfected with negative premiR after 

TGF-β1 treatment. TGF-β1 treated NOFs transfected with the low dose of premiR-145 (5 nM) 

transfection showed a similar level of COL1A1 (~1.7 fold increase), but when transfected with 

the high dose there was a significant attenuation of the COL1A1 expression (~1 fold; figure 4.16). 

miR-145 transfected at a high dose was also able to downregulate COL1A1 mRNA levels in 

untreated NOFs in DENF319s (~0.9 fold decrease).  

The other myofibroblast molecular marker assessed was FN1-EDA. At 24 h after transfection of 

premiR-145 at the highest dose (50 nM) there was a significant inhibition (~2 fold increase) of 

the increase in FN1-EDA compared to treated, negative premiR transfected (~3 fold increase). 

Treated NOFs transfected with 5 nM premiR-145, also had a significant increase in FN1-EDA 

expression at 24 h after transfection (~7 fold) compared to untreated miR-145 (5 nM) (figure 

4.17). However, at 48 h after transfection both in NOFs (figure 4.17 and 4.18), the highest dose 

of miR-145 (50 nM) was not able to significantly reduce FN1-EDA expression compared to the 

negative premiR, treated control (~3 and ~4 fold increases, respectively). 

Finally, to confirm miR-145 was overexpressed in a dose dependant manner in these rescue 

experiments, qRT-PCR was performed to assess the levels of mature miR-145 in treated then 

transfected NOFs. RNA isolated from the experiments was used to generate specific miR-145 

and RNU 48 cDNA, the used in a qRT-PCR reaction using primers specific for miR-145 and RNU 

48. In DENF316, 24 h after transfection the lower dose of premiR-145 produced a ~25 fold 

overexpression of the mature miRNA; this falls to ~8 fold overexpression at 48 h after 

transfection. The higher dose of premiR-145 (50 nM) caused an overexpression of ~55 fold after 

24 h which had fallen to ~35 and ~20 fold, untreated and treated respectively (figure 4.19). In  
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Figure 4.15: miR-145 overexpression in TGF-β1 induced myofibroblasts 

reduced COL1A1 expression at 24 h, but not at 48 h after transfection in 

DENF316 NOFs. DENF316 NOFs were treated with 5 ng/ml TGF-β1 or serum free media, then 

transiently transfected with 5 nM premiR-145, 50 nM premiR-145 or a negative non-targeting 

premiR. The transfection was left for either 24 h or 48 h before being harvested. RNA was 

isolated and used to generate total cDNA for qRT-PCR analysis using primers for COL1A1 and U6, 

as an endogenous control.  Each bar on the figure represents the mean relative quantification 

of COL1A1 transcript levels compared to endogenous U6, for each transfection plus/minus 

treatment relative to untreated negative premiR. Figure A shows the relative COL1A1 transcript 

levels in samples left for 24 h to transfect and B shows samples left for 48 h to transfect. 

Statistical analysis was performed by a paired two tailed student’s t-test, and statistical 

significance is shown on the figure by *p<0.05. If not indicated by a bar, the black significance 

asterix are compared to the untreated, negative premiR transfected, negative control. Blue 

significance asterix indicate significance compared to the untreated counterpart, e.g. premiR-

145 transfected, TGF-β1 treated compared with premiR-145 transfected untreated. Bars also 

indicate statistical comparisons.  Important significant data is shown in red.  Error bars represent 

the SEM.  N=3, independent experiments. 
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Figure 4.16:  miR-145 overexpression in TGF-β1 induced myofibroblasts 

reduced COL1A1 expression at 48 h after transfection in DENF319 NOFs.  

DENF319 NOFs were treated with 5 ng/ml TGF-β1 or serum free media, then transiently 

transfected with 5 nM premiR-145, 50 nM premiR-145 or a negative non-targeting premiR. The 

transfection was left for 48 h before being harvested. RNA was isolated and 100 ng was used to 

generate total cDNA for qRT-PCR analysis using primers for COL1A1 and U6, as an endogenous 

control. Each bar on the figure represents the mean relative quantification of COL1A1 transcript 

levels compared to endogenous U6, for each transfection plus/minus treatment relative to 

untreated negative premiR. Statistical analysis was performed by a paired two tailed student’s 

t-test, and statistical significance is shown on the figure by *p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001. If not indicated by a bar, the black significance asterix are compared to the 

untreated, negative premiR transfected, negative control. Blue significance asterix indicate 

significance compared to the untreated counterpart, e.g. premiR-145 transfected, TGF-β1 

treated compared with premiR-145 transfected untreated. Bars also indicate statistical 

comparisons.  Important significant data is shown in red.  Error bars represent the SEM.  N=3, 

independent experiments. 
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Figure 4.17: miR-145 overexpression in TGF-β1 induced myofibroblasts 

reduced FN1-EDA expression at 24 h, but not 48 h after transfection in 

DENF316. DENF316 NOFs were treated with 5 ng/ml TGF-β1 or serum free media, then 

transiently transfected with 5 nM premiR-145, 50 nM premiR-145 or a negative non-targeting 

premiR. The transfection was left for either 24 h or 48 h before being harvested. RNA was 

isolated and 100 ng was used to generate total cDNA for qRT-PCR analysis using primers for FN1-

EDA and U6, as an endogenous control. Each bar on the figure represents the mean relative 

quantification of FN1-EDA transcript levels compared to endogenous U6, for each transfection 

plus/minus treatment relative to untreated negative premiR. Figure A shows the relative FN1-

EDA transcript levels in samples left for 24 h to transfect and B shows samples left for 48 h to 

transfect. Statistical analysis was performed by a paired two tailed student’s t-test, and 

statistical significance is shown on the figure by *p<0.05. If not indicated by a bar, the black 

significance asterix are compared to the untreated, negative premiR transfected, negative 

control. Blue significance asterix indicate significance compared to the untreated counterpart, 

e.g. premiR-145 transfected, TGF-β1 treated compared with premiR-145 transfected untreated. 

Bars also indicate statistical comparisons.  Important significant data is shown in red.  Error bars 

represent the SEM.  N=3, independent experiments. 
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Figure 4.18: miR-145 overexpression did not reduce FN1-EDA expression in 

TGF-β1 induced oral myofibroblasts. DENF319 NOFs were treated with 5 ng/ml TGF-β1 

or serum free media, then transiently transfected with 5 nM premiR-145, 50 nM premiR-145 or 

a negative non-targeting premiR. The transfection was left for 48 h before being harvested. RNA 

was isolated and 100 ng was used to generate total cDNA for qRT-PCR analysis using primers for 

FN1-EDA and U6, as an endogenous control. Each bar on the figure represents the mean relative 

quantification of FN1-EDA transcript levels compared to endogenous U6, for each transfection 

plus/minus treatment relative to untreated negative premiR. Statistical analysis was performed 

by a paired two tailed student’s t-test, and statistical significance is shown on the figure by 

*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. If not indicated by a bar, the black significance 

asterix are compared to the untreated, negative premiR transfected, negative control. Blue 

significance asterix indicate significance compared to the untreated counterpart, e.g. premiR-

145 transfected, TGF-β1 treated compared with premiR-145 transfected untreated. Bars also 

indicate statistical comparisons.  Important significant data is shown in red.  Error bars represent 

the SEM.  N=3, independent experiments. 
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Figure 4.19: Validation of the overexpression of miR-145 using premiR-145 in 

DENF316 NOFs. DENF316 NOFs were treated with 5 ng/ml TGF-β1 or serum free media, then 

transiently transfected with 5 nM premiR-145, 50 nM premiR-145 or a negative non-targeting 

premiR. The transfection was left for either 24 h or 48 h before being harvested. RNA was 

isolated and 100 ng was used to generate specific cDNA for RNU 48 and miR-145 using specific 

primers, this cDNA was then used in qRT-PCR analysis using primers for miR-145 and RNU 48, as 

an endogenous control.  Each bar on the figure represents the mean relative quantification of 

mature miR-145 transcript levels for compared to endogenous U6, each transfection plus/minus 

treatment relative to untreated negative premiR. Figure A shows the relative FN1-EDA transcript 

levels in samples left for 24 h to transfect and B shows samples left for 48 h to transfect. 

Statistical analysis was performed by a paired two tailed student’s t-test, and statistical 

significance is shown on the figure by *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. If not 

indicated by a bar, the black significance asterix are compared to the untreated, negative premiR 

transfected, negative control. Blue significance asterix indicate significance compared to the 

untreated counterpart, e.g. premiR-145 transfected, TGF-β1 treated compared with premiR-145 

transfected untreated. Bars also indicate statistical comparisons. Important significant data is 

shown in red.  Error bars represent the SEM.  N=3, independent experiments. 
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Figure 4.20: Validation of the overexpression of miR-145 using premiR in 

DENF319 NOFs. DENF319 NOFs were treated with 5 ng/ml TGF-β1 or serum free media, then 

transiently transfected with 5 nM premiR-145, 50 nM premiR-145 or a negative non-targeting 

premiR. The transfection was left for 48 h before being harvested. RNA was isolated and 100 ng 

was used to generate specific miR-145 and RNU 48 cDNA for qRT-PCR analysis using primers for 

miR-145 and RNU 48, as an endogenous control. Each bar on the figure represents the mean 

relative quantification of miR-145 transcript levels compared to endogenous RNU 48, for each 

transfection plus/minus treatment relative to untreated negative premiR. Statistical analysis 

was performed by a paired two tailed student’s t-test, and statistical significance is shown on 

the figure by *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. If not indicated by a bar, the black 

significance asterix are compared to the untreated, negative premiR transfected, negative 

control. Blue significance asterix indicate significance compared to the untreated counterpart, 

e.g. premiR-145 transfected, TGF-β1 treated compared with premiR-145 transfected untreated. 

Bars also indicate statistical comparisons. Important significant data is shown in red.  Error bars 

represent the SEM.  N=3, independent experiments. 
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DENF319 premiR-145 (5 nM) transfection was only able to cause a small overexpression (~5 fold) 

of mature miR-145 in untreated NOFs, whereas 50 nM caused a ~139 and ~50 fold 

overexpression of miR-145 in untreated and treated DENF319 respectively (figure 4.20) 48 h 

after transfection.  

To fully investigate the role of miR-145 in the myofibroblast transdifferentiation, an attempt to 

knock-down miR-145 was made using an anti-sense anti-miR-145 to inhibit mature miR-145 via 

RNAi.  NOFs were transiently transfected with antimiR-145 at 3 different concentrations in 0.5 

nM, 5 nM and 50 nM, with a mock (water) control for 48 h. The fibroblasts were then harvested, 

RNA isolated and used to prepare miR-145 and RNU 48 specific cDNA for use in qRT-PCR. qPCR 

revealed that the antimiR-145 oligonucleotide was not able to downregulate mature miR-145 

levels at either concentration tested (figure 4.21). 

 

4.5 miR-145 partially reversed the pro-tumourigenic effects of oral myofibroblasts 

Transwell paracrine migration and invasion assays were used to assess miR-145’s ability to effect 

the paracrine effects of myofibroblast. Conditioned media was collected from NOFs treated with 

5 ng/ml TGF-β1 for 48 h to induce myofibroblast differentiation, then transiently transfected 

with negative premiR, or premiR-145 (5 nM or 50 nM). This conditioned media was placed in the 

bottom of a transwell migration/invasion assay, with an 8 µM porous membraned transwell with 

or without a Matrigel layer (migration/invasion respectively) placed on top of the media. H357 

cells were seeded in the transwell and allowed to migrate/invade through towards the 

conditioned media for 38 h/72 h. The migrated cells were then methanol fixed to the membrane 

and stained with crystal violet to visualise. Representative pictures were taken with a light 

microscope at 40x and the number of cells migrated were counted using ImageJ software.  

Media from TGF-β1-treated NOFs promoted the migration of the H357s cells 1.5 fold more 

than untreated controls (figure 4.22). In DENF316 NOFs, the overexpression of miR-145 

(highest dose) was able to significantly inhibit the effect of TGF-β1 (figure 4.22A), however in 

DENF319 neither 5 nM nor 50 nM premiR-145 was able to reverse the effect of TGF-β1 on the 

fibroblasts’ ability to stimulate cancer cell migration (figure 4.22B) and all treated conditions 

stimulated ~1.5 fold more migration than the untreated control. miR-145 overexpression in 

untreated DENF316 NOFs caused an increase (~1.4 fold) in cancer cell migration, although this 

trend did not reach significance.  
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Figure 4.21: antimiR-145 failed to knock-down mature miR-145 levels in 

DENF316 NOFs. NOFs were transiently transfected with 0 nM, 0.5 nM, 5 nM, 50 nM antimiR-

145 for 48 h. RNA was isolated and 10 ng used to generate specific cDNA for RNU 48 and miR-

145 using gene specific Taqman primers, this cDNA was then used in qRT-PCR analysis using 

primers for miR-145 and RNU 48, as an endogenous control.  Each bar on the figure represents 

the mean relative quantification of mature miR-145 transcript levels compared to endogenous 

RNU 48, for each transfection plus/minus treatment relative to untreated negative premiR. Error 

bars represent the SEM. N=3, independent experiments. 
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Figure 4.22: miR-145 reversed TGF-β1’s paracrine pro-migratory effect on 

H357 cancer cell migration in DENF316 NOFs, not DENF319s. Conditioned media 

was collected from DENF316 or DENF319 NOFs (A and B respectively) were treated with 5 ng/ml 

TGF-β1 for 48 h or serum free media as a control, then transfected with negative premiR, or 

premiR-145 (5 nM or 50 nM) for 24 h then. The conditioned media was spun at >2500xg to 

remove cellular debris then placed in the bottom of a transwell migration assay plate. H357 

cancer cell line were seeded at 100,000 cells per well into an 8 µm porous transwell with 1 mg/ml 

mitomycin c and allowed to migrate for 38 h. The ability of the conditioned media to promote 

migration was assessed by methanol fixing cells attached to the membrane after 38 h, staining 

the cells with 0.1% (w/v) crystal violet, taking photographs at 40x, and calculating the average 

number of cells in the representative photographs. The figure shows the relative H357 cancer 

cell migration. Statistical analysis was performed by a paired two tailed student’s t-test, and 

statistical significance is shown on the figure by *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 

If not indicated by a bar, the black significance asterix are compared to the untreated, negative 

premiR transfected and blue significance asterix are compared to the TGF-β1 treated, negative 

transfected. Bars also indicate statistical comparisons. Error bars represent the SEM. N=3, 

independent experiments. 
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TGF-β1-treated NOFs were unable to cause a significant change in invasion when the 

conditioned media from treated, then transfected NOFs was used in the invasion assays. In 

DENF316, TGF-β1 treated NOF-derived conditioned media caused a slight, but not significant 

increase (~1.5 fold) in H357 invasion (figure 4.23A) whereas in DENF319 there was a slight 

decrease (~0.2 fold decrease) in invasion (figure 4.23B). Again, miR-145 overexpression had 

opposing effects in the two cultures tested. In DENF316, premiR-145 transfection in untreated 

NOFs caused an increase (~2.5 fold) in invasion (not significant; figure 4.23A), whereas in 

DENF319 premiR-145 (50 nM) also caused a significant reduction (~0.75) fold in cancer cell 

invasion in untreated NOFs and both doses caused a further decrease in invasion in treated 

DENF319s (figure 4.23B).  

 

4.6 Mir-145 effect on cancer associated fibroblasts.  

To assess miR-145s effect on fibroblasts isolated from OSCCs, referred to as CAFs, miR-145 was 

transiently overexpressed in 4 different CAFs and myofibroblasts molecular markers were 

assessed. qRT-PCR revealed that miR-145 overexpression in 3 out of 4 of the CAFs (BICR-3, BICR-

59 and BICR-63) tested caused a reduction of the myofibroblasts markers αSMA, COL1A1 and 

FN1-EDA (figure 4.24). BICR-3, BICR-59 and BICR-63 each had a ~0.6 fold decrease in αSMA when 

transfected with premiR-145 (figure 4.24A) compared to CAFs transfected with negative non 

targeted premiR. COL1A1 transcript levels were reduced in the 3 CAFs overexpressing miR-145 

by ~0.92 ~0.94, and ~0.5 fold in BICR-59, BICR-63 and BICR-3 respectively (figure 4.24B). FN1-

EDA transcript levels were also decreased in these 3 miR-145 overexpressing CAFs by ~0.8 fold 

compared to negative control transfected cells (figure 4.24C).  In BICR-70 primary CAFs, the miR-

145 overexpression caused a ~0.25 fold reduction in COL1A1 transcript levels, however αSMA 

and FN1-EDA increased on average by ~8 fold and ~7 fold respectively (figure 4.24). 

A similar effect of miR-145 reducing the markers of myofibroblast markers expression was seen 

in NOFs. Also, miR-145 was able to prevent TGF-β1 inducing the myofibroblasts phenotype in 

NOFs. Therefore, to assess whether miR-145 had a similar effect on preventing TGF-β1 effects 

in CAFs, the transfection was repeated, then TGF-β1 treatment experiment assessing molecular 

markers via qRT-PCR, immunoblotting and immunocytochemistry. TGF-β1 was able to cause an 

increase in markers of myofibroblasts markers αSMA, COL1A1 and FN1-EDA (figure 4.25, 4.28 

and 4.29) in the 4 CAFs tested. Like with the NOFs, TGF-β1 treatment produced a different 

magnitude of response from each of the CAFs. TGF-β1 caused αSMA transcript levels to increase  
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Figure 4.23: miR-145 decreased invasion in DENF319 not DENF316 NOFs. 

Conditioned media was collected from DENF316 or DENF319 NOFs (A and B respectively) 

treated with 5 ng/ml TGF-β1 for 48 h or serum free media as a control, then transfected with 

negative premiR, premiR-145 (5 nM or 50 nM) for 48 h. The conditioned media was spun at 

>2500xg to remove cellular debris then placed in the bottom of a transwell invasion assay plate. 

H357 cancer cell line were seeded at 100,000 cells per well into a 8 µm porous Matrigel coated 

transwell, with 1 mg/ml mitomycin c and allowed to migrate for 38 h. The ability of the 

conditioned media to promote invasion was assessed by methanol fixing cells attached to the 

underside of the transwell membrane after 38 h, staining the cells with 0.1% (w/v) crystal violet, 

taking photographs at 40x, and calculating the average number of cells in the representative 

photographs. The figure shows the relative H357 cancer cell invasion compared to untreated, 

negative premiR. Statistical analysis was performed by a paired two tailed student’s t-test, and 

statistical significance is shown on the figure by **p<0.01, ***p<0.001. If not indicated by a bar, 

the black significance asterix are compared to the untreated, negative premiR transfected and 

blue significance asterix are compared to the TGF-β1 treated, negative transfected. Bars also 

indicate statistical comparisons.  Error bars represent the SEM.  N=3, independent experiments. 
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Figure 4.24: miR-145 overexpression reduced the expression of αSMA, 

COL1A1 and FN1-EDA myofibroblast markers in CAFs. Primary CAFs BICR-3, BICR-

59, BICR-63 and BICR 70 were transiently transfected with premiR-145 (50 nM) or a negative 

non-targeting premiR 24 h, they were then left in serum free media for a further 48 h before 

harvesting. The RNA was isolated and 100 ng was used to generate total cDNA for qRT-PCR 

analysis using primers designed to amplify αSMA, FN1-EDA, COL1A1 and U6, as an endogenous 

control. Each bar on the figure represents the mean relative quantification of αSMA (A), COL1A1 

(B) and FN1-EDA (C) transcript levels compared to endogenous U6, for each transfection 

plus/minus treatment relative to untreated negative premiR. N=2, independent experiments per 

CAF. 
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Figure 4.25: miR-145 overexpression prevented TGF-β1 stimulated increase 

in αSMA mRNA levels in CAFs. Primary CAFs BICR-3 (A), BICR-59 (B), BICR-63 (C) and BICR 

70 (D) were transiently transfected with premiR-145 (50 nM) or a negative non-targeting premiR 

24 h prior to the treatment with 5 ng/ml TGF-β1 or serum free media as a control. The RNA was 

isolated and 100 ng was used to generate total cDNA for qRT-PCR analysis using primers 

designed to amplify αSMA and U6, as an endogenous control. Each bar on the figure represents 

the mean relative quantification of αSMA transcript levels compared to endogenous U6, for each 

transfection plus/minus treatment relative to untreated negative premiR. N=2, independent 

experiments per CAF. 
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by ~10, ~40, ~100, ~30 fold increases in BICR-3, BICR-59, BICR-63 and BICR-70 respectively (figure 

4.25).  In each CAF tested, overexpression of miR-145 prior to TGF-β1 treatment was able to 

reduce the TGF-β1 increase in myofibroblast marker expression. Overexpression in BICR-3, BICR-

59 and BICR-63 CAFs was able to completely prevent any induction in αSMA in response to TGF-

β1, the αSMA transcript levels were ~1.4 fold, ~0.4 fold, and ~1.3 fold compared to negative 

transfected, untreated CAFs. BICR-70 CAFs that were transfected with premiR-145 on the other 

hand, only partially reduced the TGF-β1 stimulated increase in αSMA transcript levels, from ~30 

fold to ~12.4 fold (figure 4.25D). Similar effects of miR-145 were observed in αSMA at the protein 

level (figure 4.26). Immunoblotting revealed that CAFs treated with TGF-β1 had a significantly 

higher αSMA protein expression, quantified to be ~5 fold higher by densitometry. This increase 

in αSMA was prevented in CAFs that were overexpressing miR-145, where the detectable 

protein was ~1.5 fold higher than untreated, negative premiR transfected controls.  

Similar effects of miR-145 were observed in αSMA at the protein level (figure 4.26). 

Immunoblotting revealed that CAFs treated with TGF-β1 had a significantly higher αSMA protein 

expression, quantified to be ~5 fold higher by densitometry. This increase in αSMA was 

prevented in CAFs that were using a fluorescently tagged antibody to αSMA, αSMA stress fibres 

were visualised in CAFs that were transfected then treated with TGF-β1. TGF-β1 was able to 

cause a marked increase in αSMA staining and stress fibre formation in each of the CAFs that 

were treated. The increase in fluorescence was quantified to be ~5 fold, ~2 fold, and ~8 fold than 

untreated endogenous fluorescence in BICR-3, BICR-59, and BICR-63 CAFs respectively (figure 

4.27). microRNA-145 caused a small reduction in TGF-β1 induced stress fibre formation and a 

reduction in total quantified fluorescence to ~4 fold, ~1.75 fold and ~2.5 fold in BICR-3, BICR-59 

and BICR-63 CAFs respectively. Overexpression of microRNA-145, without TGF-β1 also caused a 

small increase in fluorescence intensity (~2.5 fold, ~1.7 fold and ~1.25 fold in BICR-3, BIR-59 and 

BICR-63 CAFs), but this was not accompanied by a visual increase in stress fibre formation. It is 

worth noting that miR-145 only partially inhibited TGF-β1 induced αSMA fibre formation in CAFs, 

compared to it being able to almost completely block the process in NOFs (figure 4.4).  

In response to TGF-β1, 3 out of 4 of the CAFs tested (BICR-59, BICR-63 and BICR-70) had an 

increase in COL1A1 expression by ~2.6 fold, ~3.4 fold and 4.2 fold increase in BICR-3, BICR-59, 

BICR-63 and BICR-70 respectively (figure 4.28). Only BICR-3 CAFs no change in COL1A1 transcript 

levels relative to untreated controls (figure 4.28A). The overexpression of miR-145 was able to 

inhibit the TGF-β1 induced increase in COL1A1, the COL1A1 levels in CAFs overexpressing miR-  
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Figure 4.26: miR-145 overexpression prevented TGF-β1 induced αSMA 

increase in protein expression in oral CAFs. BICR-59 (shown here), BICR-63 and BICR-

70 CAFs were transiently transfected with premiR-145 (50 nM) or negative non-targeting 

premiR-145 for 24 h prior to 5 ng/ml TGF-β1 treatment for 48 h. Total protein lysates were 

isolated, 20 µg was resolved on a 3–8% (w/v) tris-acetate gel and transferred to nitrocellulose 

membrane for immunoblotting. Antibodies raised to human αSMA and GAPDH as a loading 

control, were used to assess the amount of αSMA in samples (A), the amount detected was 

quantified using Image J and shown in B. N=3, independent experiments for BICR-59, N=1 for 

BICR-63 and BICR-70. SEM represents SEM. Statistical analysis was performed by a paired two 

tailed student’s t-test, and statistical significance is shown on the figure by *p<0.05, compared 

to untreated, negative premiR transfected control. 
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Figure 4.27: miR-145 overexpression reduced αSMA stress fibre formation in 

CAFs. CAFs were seeded onto coverslips overnight, treated with 5 ng/ml TGF-β1 for 48 h, or 

serum free media, then were transiently transfected with negative premiR, or premiR-145 (50 

nM). The coverslips were washed in PBS, before being fixed in 100% methanol for 10 min, they 

were then permeablised using 4 mM sodium deoxycholate for 10 min, and blocked using 2.5% 

(w/v) BSA in PBS for 30 min before incubation with a primary FITC-conjugated αSMA antibody 

at 4 oC overnight.  The coverslips were then washed in PBS before mounting on microscope slides 

using DAPI containing mounting medium. Fluorescent images were taken using a fluorescent 

light microscope, using Pro-plus 7 imaging software at 40x magnification. Representative 

pictures from BICR-63 are shown in A. The amount of fluorescence intensity per cell was 

quantified using Image J, and displayed in B as the mean relative fluorescent intensity for BICR-

3, BICR-59 and BICR-63. N=2, independent experiments per CAF. 
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Figure 4.28: miR-145 overexpression prevented TGF-β1 stimulation of 

COL1A1 expression in CAFs. Primary CAFs BICR-3 (A), BICR-59 (B), BICR-63 (C) and BICR 70 

(D) were transiently transfected with premiR-145 (50 nM) or a negative non-targeting premiR 

24 h prior to the treatment with 5 ng/ml TGF-β1 or serum free media as a control. The RNA was 

isolated and used to generate cDNA for qRT-PCR analysis using primers designed to amplify 

COL1A1 and U6, as an endogenous control. Each bar on the figure represents the mean relative 

quantification of COL1A1 transcript levels compared to endogenous U6, for each transfection 

plus/minus treatment relative to untreated negative premiR. N=2, independent experiments per 

CAF. 
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Figure 4.29: miR-145 overexpression prevented TGF-β1 stimulation of FN1-

EDA expression in CAFs. Primary CAFs BICR-3 (A), BICR-59 (B), BICR-63 (C) and BICR 70 (D) 

were transiently transfected with premiR-145 (50 nM) or a negative non-targeting premiR 24 h 

prior to the treatment with 5 ng/ml TGF-β1 or serum free media. The RNA was isolated and used 

to generate cDNA for qRT-PCR analysis using primers designed to amplify FN1-EDA and U6, as 

an endogenous control. Each bar on the figure represents the mean relative quantification of 

FN1-EDA transcript levels compared to endogenous U6, for each transfection plus/minus 

treatment relative to untreated negative premiR. N=2, independent experiments per CAF. 
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145 were ~0.4 fold, ~0.9 fold, ~0.2 fold, and ~1.2 fold compared to negative transfected, 

untreated BICR-3, BICR-59, BICR-63 and BICR70 CAFs respectively.  

The final myofibroblasts marker assessed by qRT-PCR was FN1-EDA, this also was significantly 

increased in response to TGF-β1 treatment in 3 out of the 4 CAFs tested (BICR-59, BICR-63 and 

BICR-70), by ~8 fold, ~10 fold and ~10.5 fold compared to untreated CAFs (figure 4.29). In BICR-

3 CAFs, TGF-β1 increased FN1-EDA transcript levels by ~1.5 fold compared to untreated, 

although this was not found to be significant (figure 4.29A). Again, miR-145 prevented the TGF-

β1 stimulated FN1-EDA expression in 3 out of four of the CAFs (BICR-59, BICR-63, and BICR-70), 

as CAFs overexpressing miR-145 which were TGF-β1 treated had ~0.4 fold, ~0.9 fold, and ~3.4 

fold compared to untreated, negatively transfected BICR-59, BICR-63 and BICR-70 CAFs 

respectively. However, microRNA-145 overexpression of BICR-3 CAFs did not change the TGF-β1 

effect on FN1-EDA expression, both negative transfected and premiR-145 transfected CAFs had 

a ~1.5 fold increase in FN1-EDA expression when treated with TGF-β1.  

TGF-β1 treated NOFs produced conditioned media which was able to stimulate the paracrine 

migration of oral cancer cells, miR-145 was able to inhibit these pro-tumourigenic effects of the 

TGF-β1 on NOFs. To investigate whether TGF-β1, and microRNA-145 were able to have similar 

effects in CAFs as NOFs, conditioned media was collected from CAFs that were transiently 

transfected with premiR-145 prior to treatment with TGF-β1 or serum free media as a control 

and used in a transwell oral cancer migration assay. The effect of miR-145 on the CAF’s ability 

to stimulate paracrine migration varied in the different CAFs tested, in BICR-59 CAFs there was 

no difference migration in CAFS overexpressing miR-145, in BICR-63 CAFs miR-145 

overexpression there was a ~1.25 fold increase in paracrine migration (figure  4.30). On the other 

hand, in BICR-70 and MCA CAFs there overexpression of miR-145 caused a decrease in paracrine 

migration, by ~0.5 fold and ~0.3 fold respectively. In each of the 4 CAFs tested, TGF-β1 treatment 

decreased the CAFs ability to stimulate paracrine migration by ~0.4 fold, ~0.1 fold, ~0.2 fold and 

~0.3 fold in BICR-59, BICR-63, BICR-70 and MCA CAFs respectively. In the conditioned media 

from CAFs that were overexpressing miR-145 and treated with TGF-β1, it appeared that miR-

145 had no effect on preventing TGF-β1 effect. The amount of paracrine migration in these cells, 

was similar to that of the conditioned media from negative transfected, TGF-β1 treated CAFs. 

However, there was a significant ~1.25 fold increase in paracrine migration in BICR-59 CAFs 

overexpressing miR-145 and TGF-β1 treated, compared to miR-145 overexpressing, untreated 

BICR-59 CAFs conditioned media. Overall, miR-145 had no clear effect on preventing the CAFs’ 

paracrine migration of oral cancer cells.   
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Figure 4.30: TGF-β1 treatment in CAFs did not stimulate the paracrine 

migration of oral cancer cells. Conditioned media was collected from primary CAFs BICR-

59, BICR-63, BICR 70 and MCA which were transiently transfected with premiR-145 (50 nM) or a 

negative non-targeting premiR 24 h prior to the treatment with 5 ng/ml TGF-β1 or serum free 

media as a control. The conditioned media was spun at >2500xg to remove cellular debris then 

placed in the bottom of a transwell migration assay plate. H357 cancer cell line were seeded at 

100,000 cells per well into an 8 µm porous transwell with 1 mg/ml mitomycin c and allowed to 

migrate for 38 h. The ability of the conditioned media to promote migration was assessed by 

methanol fixing cells attached to the membrane after 38 h, staining the cells with 0.1% (w/v) 

crystal violet, taking photographs at 40x, and calculating the average number of cells in the 

representative photographs. The figure shows the relative H357 cancer cell migration compared 

to untreated, negative premiR. N=2, independent experiments per CAF. 
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4.7 Summary 

Results showed that gain of function of miR-145 was able to inhibit and reverse TGF-β1 mediated 

myofibroblasts transdifferentiation in NOFs. Unfortunately, no loss of function experiments 

were successfully performed. miR-145 was also able to reduce myofibroblast markers in non-

treated CAFs and inhibit TGF-β1 induced myofibroblasts markers. miR-145 was also able inhibit 

and reverse TGF-β1 mediated paracrine migration of cancer cells when overexpressed in NOFs. 

However, the effect of TGF-β1 in NOFs effect on paracrine invasion was less clear as different 

NOFs had different responses. The chapter successfully identified a role for miR-145 in oral 

myofibroblast transdifferentiation. 
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Chapter 5: The role of proteoglycan versican 

in stromal oral fibroblasts. 
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5.1 Aims and objectives   

This results chapter aimed to investigate the role of versican in the myofibroblast 

transdifferentiation of oral fibroblasts. Specifically, the work objectives were to assess which 

versican isoforms are expressed in normal oral fibroblasts and oral CAFs, as well as elucidating 

the effect of TGF-β1 treatment on versican expression. The work in this chapter also aimed to 

investigate the effect of miR-143 and miR-145 overexpression on versican expression. Using a 

versican siRNA, the work planned to examine the effect of versican in the myofibroblast 

phenotype in CAFs and TGF-β1 induced oral myofibroblasts. Versican’s effect on cancer cell 

paracrine migration was also established. In addition, work aimed to determine the regulation 

of versican in the tumour microenvironment by investigating the expression of 

metalloproteases, ADAMTS-1 and -4, which cleave versican in induced myofibroblasts and CAFs, 

compared to NOFs, and identifying the presence of the truncated form of versican in these cells.  

 

5.2 TGF-β1 induced the expression of proteoglycan versican in normal oral 

fibroblasts.  

The extracellular proteoglycan versican has been reported to be play important roles in cancer 

including migration, adhesion and proliferation (Ricciardelli et al., 2009) and is associated with 

poor prognosis in OSCC (Pukkila et al., 2006), amongst other carcinomas. It is mainly expressed 

by fibroblasts and CAFs are reported to express it at high levels. Versican is reported to be 

necessary for myofibroblast transdifferentiation in dermal fibroblasts (Hattori et al., 2012). TGF-

β1, a known inducer of myofibroblast differentiation, is known to upregulate the expression of 

many extracellular matrix components including versican in many different fibroblasts (Yeung et 

al., 2013).  

Here, the effect of TGF-β1 on versican expression in human gingival fibroblasts (NOFs). NOFs 

(DENF319) were treated with 5 ng/ml TGF-β1 for 24 h, 48 h or 72 h, or with serum free media 

as a negative control. After the indicated times, the NOFs were harvested, RNA extracted and 

used to generate total cDNA, and total protein lysates were also generated. qRT-PCR was 

performed using primers to amplify versican V0, V1, V2 and V3 isoforms and U6 as a reference 

gene. Versican V2 and V3 isoforms were considered to be not expressed in these NOFS as their 

CT values were above 35. V2 CT value was undetermined and V3 average CT value was 38.3. The 

relative transcript levels of the expressed versican isoforms, V0 and V1, in treated NOFs were 

compared to the untreated NOFs at the relevant timepoint. Both versican isoforms were 

upregulated in response to TGF-β1 stimulation, V0 was unchanged after 24 h, but was then  
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Figure 5.1: TGF-β1 induced versican expression in oral fibroblasts. DENF319 

NOFs were seeded, serum starved and treated with 5 ng/ml TGF-β1, or serum free media as a 

control for 24 h, 48 h and 72 h. After treatment fibroblasts were harvested, RNA isolated and 

used in a total cDNA preparation. qRT-PCR was performed with the cDNA with primers to amplify 

V0 and V1 versican isoforms and U6 as a reference gene. Each bar on the figure represents the 

mean relative quantification of V0 (A) and V1 (B) transcript levels compared to endogenous U6, 

for each treatment relative to the relevant untreated timepoint. Statistical analysis was 

performed by a paired two tailed student’s t-test, and statistical significance is shown on the 

figure by ***p<0.001, ****p<0.0001. The significance is compared to the untreated equivalent 

transfection.  Error bars represent the SEM. N=3, independent experiments. 
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significantly increased by ~6 fold after 48 h, then by ~4 fold after 72 h (figure 5.1). V1 isoform 

was significantly different at each timepoint by ~3 fold, ~4 fold and ~3 fold respectively.  For 

both isoforms 48 h stimulation was the peak response, which corresponds with the length of 

TGF-β1 treatment used to induce myofibroblast transdifferentiation in NOFs.  

The change in versican protein levels on TGF-β1 treatment were assessed by immunoblotting.  

Total protein lysates were generated from the fibroblasts treated with TGF-β1 for 24 h, 48 h and 

72 h. Protein lysates were resolved on a gradient gel, then transferred to a nitrocellulose 

membrane for immunoblotting using antibodies raised to human versican, αSMA and β-actin as 

a loading control. αSMA was used as a positive control to ensure TGF-β1 was stimulating these 

NOFs to become myofibroblastic. Immunoblotting for versican produced a ladder of bands of 

variable molecular weights due to its different sized isoforms and the differentially chondroitin 

sulphate side chains (figure 5.2). Attempts to remove the chondroitin sulphate chains to produce 

a uniform band were unsuccessful due to non-specific protein degradation occurring during 

incubation with chondroitinase (data not shown). There was an increase in versican in the 

protein levels on TGF-β1 treatment compared to untreated NOFs, especially after 48 h and 72 h 

(Figure 5.2A), this correlated with a slight increase in αSMA protein expression in these 

fibroblasts. Untreated 48 h NOFs appeared to have more versican protein then other untreated 

NOFs.  

As a 48 h, 5 ng/ml TGF-β1 treatment was used throughout this study to induce the myofibroblast 

phenotype versican protein levels were also assessed in NOFs treated for 48 h. TGF-β1 treatment 

caused a clear increase in versican protein levels in all but one repeat, and again this correlated 

with the increase in αSMA (figure 5.2B). Image J was used to quantify the change in αSMA, TGF-

β1 caused a ~1.3 fold increase in versican protein expression (figure 5.2C). 

In chapter 4, the NOFs used varied in their response to TGF-β1, as determined by the variable 

αSMA expression. The versican response to TGF-β1 was also tested in these NOFs. Only some of 

the NOFs examined had significantly increased versican V0 and V1 transcript levels (figure 5.3). 

TGF-β1 treated DENF319 and OF26 NOFs had a significantly higher V0 expression (~3 fold and 

2.5 fold higher respectively), than their untreated counterparts. DENF008 had a ~3 fold higher 

expression of V0 when treated with TGF-β1 but this was not a significant change. There was no 

difference in V0 levels in DENF316 treated NOFs, however there was around a ~1.8 fold increase 

in versican V1 expression in these NOFs. This fold increase in versican V1 was similar to that seen 

in DENF008, however this was not found to be significant. There was a significant induction (~2.5 

fold increase) of V1 expression on TGF-β1 treatment in DENF319. There was no change in V0  
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Figure 5.2: TGF-β1 treatment caused a non-significant increase versican 

protein levels in normal oral fibroblasts. NOFs (DENF319) were treated with 5 ng/ml 

TGF-β1 for 24 h, 48 h or 72 h or with serum free media as an endogenous control. Each time 

duration of the TGF-β1 or serum free media is indicated by the + on the figure. (A). Or were 

treated with 5 ng/ml TGF-β1 for 48h in B. The NOFs were then harvested, and total protein 

lysates were generated. C Protein (20 µg) was resolved on a 3–8% (w/v) tris acetate gradient 

gels, before being transferred to nitrocellulose membranes for immunoblotting. Antibodies 

raised against human versican and αSMA were used to assess relative protein levels, and β-actin 

was used as a loading control. Blots shown are representative. N=3, independent experiments 

(A). N=3, technical repeats (B and C). 
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Figure 5.3: TGF-β1 had a variable effect on versican expression in NOFs. 

DENF316, DENF319, DENF008 and OF26 were seeded, serum starved and treated with 5 ng/ml 

TGF-β1, or serum free media as a control for 48 h. After treatment fibroblasts were harvested, 

RNA isolated and used in a total cDNA preparation. qRT-PCR was performed with the cDNA with 

primers to amplify V0 and V1 versican isoforms and U6 as a reference gene. Each dot on the 

figure represents the relative quantification of V0 (A) and V1 (B) transcript levels compared to 

endogenous U6, for each treatment relative to untreated, the line represents the mean relative 

difference. Statistical analysis was performed by a paired two tailed student’s t-test, and 

statistical significance is shown on the figure by ***p<0.001, ****p<0.0001. The significance is 

compared to the untreated equivalent transfection.  Error bars represent the SEM. N=3-7, 

independent experiment. 
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versican in OF26 NOFs on TGF-β1. Overall, there was a variable but general increase in the two 

versican isoforms tested. 

 

5.3 The expression of versican in oral cancer associated fibroblasts was lower than 

that of normal oral fibroblasts. 

Versican is reported to be found at higher levels within the tumour microenvironment of many 

tumours including breast, prostate, lung, colorectal, and oral (reviewed in Ricciardelli et al., 

2009). It is known to be expressed in high levels in CAFs (Yeung et al., 2013). V0 and V1 isoforms 

expression was therefore investigated in fibroblasts isolated from OSCC compared to NOFs. The 

CAF cohort included 10 fibroblasts taken from genetically stable and unstable tumours. The 

genetically stability of the tumours was judged based on the presence/absence of inactivating 

mutations in P53 and P16INKA and the presence/absence of loss of heterozygosity and copy 

number alteration mutations in these OSCCs (Lim et al., 2011). CAFs were isolated and kindly 

provided by Prof. Erik Parkinson. qRT-PCR was used to investigate the endogenous levels of 

versican V0 and V1 in these CAFs. The CAF population was compared to normal fibroblasts from 

the same institution (BICR NOFs) and normal fibroblasts collected from the School of Clinical 

Dentistry, Sheffield, collectively. Surprisingly, versican V0 was found to have a significantly 

(Mann-Whitney test) lower level of expression in the CAF population compared to the NOFs 

(figure 5.4A), whereas there was no difference in versican V1 (figure 5.4B). 

When the expression of versican from CAFs isolated from genetically stable and unstable CAFS 

were compared to BICR NOFs and NOFs isolated in the School of Dentistry in Sheffield. NOFs 

from Sheffield had much higher levels (significant by a multiple comparison ANOVA) of versican 

V0 than BICR NOFs, and CAFs from genetically stable and unstable OSCCs (figure 5.5A). However, 

BICR NOFs and the CAFs expression were a similar of V0 transcript. For V1 versican, CAFs from 

genetically stable OSCCs had the highest level of expression comparatively to both NOFs and 

CAFs from genetically unstable OSCCs, however this was not significant (figure 5.5B). As the CAF 

cohort was small, it is unknown if this data is representative of the CAF gene profile.  

The expression of versican at protein level was also investigated in the CAFs. Total protein from 

NOFs and CAFs was resolved on a gel and transferred to a nitrocellulose membrane for 

immunoblotting. A human full-length polyclonal versican antibody was used to detect versican 

protein in the screen, and a β-actin antibody was used as a loading control. As versican has 

different isoforms of different molecular weights and each protein has a varying number of  
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Figure 5.4:  versican V0 was downregulated in OSCC CAFs. Fibroblasts isolated from 

OSCC, CAFs (10), and NOFs (10) were grown, RNA was isolated and used to generate cDNA for 

qRT-PCR analysis using primers designed to amplify V0, V1 versican and U6, as an endogenous 

control. The fold endogenous change of target versican V0 (A) or versican V1 (B), compared to 

reference gene U6 is plotted on each graph, each dot representing a different NOF/CAF. The line 

represents the mean fold endogenous for each set of fibroblasts. Statistical analysis was 

performed by Mann-Whitney test, and statistical significance is shown on the figure by 

**p<0.01. Error bars display the SD.  
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Figure 5.5:  A subset of NOFs had a higher versican V0 expression than in OSCC 

CAFs. CAFs isolated from genetically stable OSCCs (N=5), unstable OSCCs (N=5), oral dysplasia 

(N=1), normal gingiva (BICR NOFs; N=3) all originally from Prof Ken Parkinson and NOFs (from 

Sheffield; N=7) were cultured. RNA was isolated and 100 ng was used to generate cDNA for qRT-

PCR analysis using primers designed to amplify V0, V1 versican and U6, as an endogenous 

control. The fold endogenous change of target versican V0 (A) or versican V1 (B), compared to 

reference gene U6 is plotted on each graph, each dot representing a different NOF/CAF. The line 

represents the mean fold endogenous for each set of fibroblasts. Statistical analysis was 

performed by multiple ANOVA, and statistical significance is shown on the figure by **p<0.01, 

***p<0.001. Error bars display the SEM.  
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Figure 5.6: There was no clear pattern of versican protein expression in the 

different subsets of NOFs and oral CAFS tested. CAFs isolated from genetically stable 

tumours. CAFs isolated from genetically stable OSCCs (N=4), unstable OSCCs (N=4), oral 

dysplasia (N=1), all originally from Prof Erik Parkinson and NOFs (from Sheffield; N=4) were 

cultured. Total protein lysates (20 µg) were resolved on 3–8% (w/v) tris acetate gels and 

transferred onto nitrocellulose membranes for immunoblotting. A polyclonal anti-human full 

length versican antibody and a monoclonal anti-human αSMA antibody was used to detect 

versican and αSMA levels in this CAF/NOF screen. β-actin was used as a loading control. N=1. 
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chondroitin sulphate side chains attached, immunoblotting produced a ladder of bands of 

different sizes, with varying molecular weights from 72kDa - >300kDa (figure 5.6).  Generally, 

there was no clear pattern seen, however, there seemed to be a greater amount of protein 

detected in NOFs tested than the CAFs. There was also a greater amount of protein detected in 

CAFs taken from genetically stable OSCCs compared to CAFs from unstable OSCCs, which was 

perhaps consistent with the slight increase in V1 versican transcript levels (Figure 5.5B). The 

pattern of the bands was also different between the NOF and the CAF population with the NOFs 

having more bands of varying sizes, whereas CAFs tended to have detectable bands at higher 

molecular weights >250kDa. αSMA is shown as for a comparison, (shown previously; figure 3.8). 

However, there was no apparent correlation between high αSMA expressing CAFs and versican 

isoform expression tested by Pearsons correlation (αSMA vs V0 R= 0.474 p=0.197 and αSMA vs 

V1 R=0.01 p=0.981). 

 

5.4 miR-145 regulated the expression of proteoglycan versican.   

Studies in smooth muscle cells have shown that versican is a functional target of miR-143 (Wang 

et al., 2010) and that myocardin fine-tunes the smooth muscle phenotype by downregulating 

the ECM, specifically versican through miR-143 binding to its 3’UTR. miR-145 was not found to 

have an effect on versican in these cells, as miR-145 was not found to bind to versican’s 3’UTR, 

therefore presumed not to regulate versican. Versican has been suggested to be necessary for 

the myofibroblast transdifferentiation in dermal fibroblasts (Hattori et al., 2012), its potential 

regulation by the miR-143/145 cluster was investigated. NOFs were transiently transfected with 

premiR-143, premiR-145 or a negative non-targeting premiR, before being treated with TGF-β1 

for 48 h to induce myofibroblast transdifferentiation. Fibroblasts were harvested, and RNA and 

protein was extracted for molecular analysis of versican expression via qRT-PCR and 

immunoblotting. 

Total cDNA was prepared to investigate V0 and V1 versican isoform levels in two transfected 

then TGF-β1 treated fibroblasts (DENF316 and DENF319). In both NOFs (DENF316 and DENF319) 

overexpression of miR-145 caused a marked downregulation of versican V0 in untreated (~0.98 

and 0.91 fold) and treated (~0.91 and 0.97 fold decrease) NOFs (figure 5.7). Overexpression of 

miR-143 was only able to cause a downregulation of versican V0 in some instances and this was 

smaller than the downregulation by miR-145, in treated DENF316s (~0.5 fold; figure 5.7A) and 

untreated DENF319s (~0.7 fold; figure 5.7B). TGF-β1 did not cause an increase in V0 in this 

experiment in either NOFs, again reflecting the variable response to TGF-β1 seen in figure 5.3. 
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Figure 5.7: miR-145 overexpression downregulated versican V0 transcript 

levels. Two primary NOFs, DENF316 and DENF319 (A and B respectively), were transiently 

transfected with premiR-143, premiR-145 (50 nM) or a negative non-targeting premiR 24 h prior 

to treatment with TGF-β1 for 48 h. After treatment, fibroblasts were harvested and the RNA was 

isolated and used to generate cDNA for qRT-PCR analysis using primers designed to amplify 

versican V0 and U6, as an endogenous control.  Each bar on the figure represents the mean 

relative quantification of V0 transcript levels compared to endogenous U6, for each transfection 

plus/minus treatment relative to untreated negative premiR. Statistical analysis was performed 

by a paired two tailed student’s t-test, and statistical significance is shown on the figure by 

*p<0.05, **p<0.01, ***p<0.001. If not indicated by a bar, the black significance asterix are 

compared to the untreated, negative premiR transfected, negative control. Blue significance 

asterix indicate significance compared to the untreated counterpart, e.g.  premiR-143 

transfected, TGF-β1 treated compared with premiR-143 transfected untreated. Bars also 

indicate statistical comparisons. Red asterix indicate important significant data. Error bars 

represent the SEM. N=3, independent experiments. 
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Figure 5.8: miR-145 overexpression downregulated versican V1 transcript 

levels. Two primary NOFs, DENF316 and DENF319 (A and B respectively), were transiently 

transfected with premiR-143, premiR-145 or a negative non-targeting premiR (50 nM) 24 h prior 

to treatment with TGF-β1 for 48 h. After treatment, fibroblasts were harvested and the RNA was 

isolated and used to generate cDNA for qRT-PCR analysis using primers designed to amplify 

versican V1 and U6, as an endogenous control.  Each bar on the figure represents the mean 

relative quantification of V1 transcript levels compared to endogenous U6, for each transfection 

plus/minus treatment relative to untreated negative premiR. Statistical analysis was performed 

by a paired two tailed student’s t-test, and statistical significance is shown on the figure by 

*p<0.05, **p<0.01. If not indicated by a bar, the black significance asterix are compared to the 

untreated, negative premiR transfected, negative control. Blue significance asterix indicate 

significance compared to the untreated counterpart, e.g.  premiR-143 transfected, TGF-β1 

treated compared with premiR-143 transfected untreated. Bars also indicate statistical 

comparisons. Red asterix indicate important significant data. Error bars represent the SEM. N=3, 

independent experiments. 
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On investigating versican V1 transcript levels in these cells, miR-145 was able to cause a 

significant downregulation of V1 (figure 5.8) but this was not as marked as the downregulation 

seen in the V0 isoform (figure 5.7).  In DENF316, overexpression of miR-145 caused a ~0.6 fold 

decrease in V1 versican transcript levels in untreated NOFs and ~0.2 fold decrease in TGF-β1 

treated NOFs (figure 5.8A), and in DENF319 V1 versican levels were downregulated by ~0.9 fold 

in untreated cells and ~0.7 fold in TGF-β1 treated DENF319s (figure 5.8B). Again, miR-143 

overexpression was only able to cause the significant downregulation of versican V1 in TGF-β1 

treated DENF316s (~0.3 fold reduction) and untreated DENF319s (~0.5 fold reduction).  As with 

the V0 isoform, TGF-β1 failed did not stimulate an increase in V1 versican expression in this 

experiment. 

The overexpression of miR-145 was also able to cause an almost complete reduction in detected 

versican protein levels shown by immunoblotting (figure 5.9). Protein lysates from NOFs 

overexpressing miR-145 were compared to lysates from NOFs overexpressing miR-143 and with 

NOFs with depleted versican levels, using a versican targeting siRNA. NOFs (OF26) were 

transiently transfected with premiR-145, premiR-143, negative premiR, antimiR-145, negative 

siRNA and versican siRNA for 24 h prior to treatment with TGF-β1 for 48 h.  Total protein lysates 

were resolved on a gel and transferred to a nitrocellulose membrane for immunoblotting with 

a versican antibody and GAPDH antibody as a loading control. NOFs overexpressing miR-143 had 

no difference in versican protein levels compared to negative premiR transfected controls 

(figure 5.9). On the other hand, NOFs overexpressing miR-145 had almost undetectable levels 

of versican protein, and this was comparable to the level of versican protein in NOF where 

versican was knocked down using a targeted siRNA. AntimiR-145 was unable to knock down 

miR-145 levels (as seen in Chapter 4; figure 2.22), so its effect on versican will be ignored in this 

figure (figure 5.9).  

To fully assess the role of the versican regulation in NOFs, the ability of miR-145 to rescue the 

TGF-β1 stimulated increase in versican protein levels was tested. NOFs were treated with TGF-

β1 for 48 h to induce oral myofibroblasts, then were transiently transfected with miR-145 (5 nM 

or 50 nM) for 48 h to allow its downstream effects. NOFs were harvested, RNA and protein were 

extracted to assess versican expression via qRT-PCR and immunoblotting. Total cDNA was 

generated and versican V0 and V1 primers were used in a qRT-PCR reaction. Overexpression of 

miR-145 at both the doses used (5 and 50 nM) was able to cause a significant reduction of 

versican V0 (~0.7 fold and ~0.9 fold reduction; figure 5.10A) and V1 (~0.99 and ~0.97 fold 

reduction; figure 5.10B) in untreated NOFs. miR-145 overexpression was also able to cause a  
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Figure 5.9: Overexpression of miR-145, not miR-143, caused a marked 

downregulation of versican protein expression. Primary NOFs (OF26), were 

transiently transfected with premiR-143, premiR-145 or a negative non-targeting premiR, 

antimiR-145, versican siRNA or negative non targeting siRNA (50 nM) for 24 h prior to treatment 

with 5 ng/ml TGF-β1 for 48 h. After treatment, fibroblasts were harvested and protein lysates 

were generated.  Total protein lysates (20 µg) were resolved on 3–8% (w/v) tris acetate gels and 

transferred onto nitrocellulose membranes for immunoblotting. A polyclonal anti-human full 

length versican antibody was used to detect versican protein levels in the transfected then 

treated NOFs. GAPDH was used as a loading control. N=3, independent experiments. 
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Figure 5.10: miR-145 overexpression reduced versican V1 expression in TGF-

β1 induced myofibroblasts. DENF319 NOFs were treated with 5 ng/ml TGF-β1 or serum 

free media, then transiently transfected with 5 nM premiR-145, 50 nM premiR-145 or a negative 

non-targeting premiR. The transfection was left for 48 h before being harvested. RNA was 

isolated and used to generate total cDNA for qRT-PCR analysis using primers for versican V0 and 

V1, and U6, as an endogenous control. Each bar on the figure represents the mean relative 

quantification of V0 (A) and V1 (B) transcript levels compared to endogenous U6, for each 

transfection plus/minus treatment relative to untreated negative premiR. Statistical analysis 

was performed by a paired two tailed student’s t-test, and statistical significance is shown on 

the figure by *p<0.05, **p<0.01, ***p<0.001 and ****p<0.0001. If not indicated by a bar, the 

black significance asterix are compared to the untreated, negative premiR transfected, negative 

control. Blue significance asterix indicate significance compared to the untreated counterpart, 

e.g.  premiR-145 transfected, TGF-β1 treated compared with premiR-145 transfected untreated. 

Bars also indicate statistical comparisons.  Important significant data is shown in red.  Error bars 

represent the SEM. N=3, independent experiments. 
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downregulation of versican V1 in induced myofibroblasts, 5 nM overexpression caused a 

downregulation by ~0.3 fold and 50 nM caused a further downregulation by ~0.7 fold (figure 

5.10B). The expression of versican V0, however, was not significantly reduced in induced 

myofibroblast when transfected with miR-145 at the 5 nM dose or 50 nM dose (figure 5.10A). 

TGF-β1-induced myofibroblasts had an increased V1 isoform expression than untreated 

controls. Assessing the protein levels in TGF-β1 treated, then transfected NOFs by 

immunoblotting revealed that miR-145 was able to reverse the increase in versican protein 

expression in TGF-β1 induced oral myofibroblasts (figure 5.11). miR-145 transfected after TGF-

β1 treatment, had a greatly reduced effect on versican protein levels than miR-145 transfected 

before TGF-β1 treatment (figure 5.9). 

 

5.5 Versican knock-down had a small effect on oral myofibroblast 

transdifferentiation.  

Versican has been shown to be pivotal in the dermal myofibroblast transdifferentiation (Hattori 

et al., 2010). Due to miR-145’s ability to inhibit oral myofibroblast transdifferentiation, and 

markedly reduce versican levels, it was hypothesised that miR-145 controls oral myofibroblast 

transdifferentiation through its regulation of versican. To test this hypothesis, versican loss of 

function experiments were performed. A versican targeting siRNA was used to transiently 

deplete NOFs of versican to see any effect on the TGF-β1 induced myofibroblasts 

transdifferentiation. Two different NOFs (DENF316 and DENF319) were transiently transfected 

with versican siRNA or negative siRNA for 24 h prior to TGF-β1 treatment, or serum free media 

for 48 h. Fibroblasts were harvested, RNA and protein lysates extracted and used to assess 

myofibroblast markers and versican expression for validation of the knock-down via qRT-PCR 

and immunoblotting and immunocytochemistry. 

The versican knock-down was shown to be efficient as both versican V0 and V1 isoforms were 

significantly decreased. Both versican V0 (figure 5.12) and V1 (figure 5.13) expression was 

reduced by ≤0.9 fold compared to negative siRNA transfected NOFs (both for DENF316 and 

DENF319). 

To assess the effect of versican depletion on the myofibroblast phenotype, myofibroblast 

marker αSMA was assessed by qRT-PCR, immunoblotting and immunocytochemistry. The 

knockdown of versican levels was able to significantly dampen the increase in αSMA transcript 

expression in response to TGF-β1 in DENF316, ~40 fold increase in αSMA in versican depleted  
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Figure 5.11: miR-145 overexpression reduced versican protein levels in 

induced oral myofibroblasts. DENF316 NOFs were treated with 5 ng/ml TGF-β1 or serum 

free media, then transiently transfected with 5 nM premiR-145, 50 nM premiR-145 or a negative 

non-targeting premiR. The transfection was left for 48 h before being harvested. Total protein 

lysates (20 µg) were resolved on 3–8% (w/v) tris acetate gels and transferred onto nitrocellulose 

membranes for immunoblotting. A polyclonal anti-human full length versican antibody and a 

monoclonal anti-human αSMA antibody was used to detect versican and αSMA protein levels in 

the TGF-β1 treated then transfected NOFs.  Β-actin was used as a loading control. Figure A shows 

is a representative blot, B shows the quantified amount of protein determined by densitometry. 

The error bars represent SEM. N=3, independent experiments. 
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Figure 5.12: Versican siRNA knocked down versican V0 transcript levels in 

normal oral fibroblasts. Two NOFs, DENF316 (A) and DENF319 (B) were transiently 

transfected with a versican targeting siRNA or a negative non targeting siRNA (50 nM) as a 

control for 24 h, prior to 5 ng/ml TGF-β1 treatment for 48 h. RNA was isolated and used to 

generate total cDNA for qRT-PCR analysis using primers for versican V0 and U6, as an 

endogenous control. Each bar on the figure represents the mean relative quantification of 

versican V0 transcript levels compared to endogenous U6, for each transfection plus/minus 

treatment relative to untreated negative premiR. Statistical analysis was performed by a paired 

two tailed student’s t-test, and statistical significance is shown on the figure by *p<0.05, 

**p<0.01, ****p<0.0001. If not indicated by a bar, the significance is compared to the untreated 

equivalent transfection, or negative siRNA in the case of the untreated versican siRNA. Red 

asterix indicate important significant data. Error bars represent the SEM. N=3, independent 

experiments for each NOF. 
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Figure 5.13: Versican siRNA knocked down versican V1 transcript levels in 

normal oral fibroblasts. Two NOFs, DENF316 (A) and DENF319 (B) were transiently 

transfected with a versican targeting siRNA or a negative non targeting siRNA (50 nM) as a 

control for 24 h, prior to 5 ng/ml TGF-β1 treatment for 48 h. RNA was isolated and used to 

generate total cDNA for qRT-PCR analysis using primers for versican V1 and U6, as an 

endogenous control. Each bar on the figure represents the mean relative quantification of 

versican V1 transcript levels compared to endogenous U6, for each transfection plus/minus 

treatment relative to untreated negative premiR. Statistical analysis was performed by a paired 

two tailed student’s t-test, and statistical significance is shown on the figure by *p<0.05, 

**p<0.01, ***p<0.001, ****p<0.0001. If not indicated by a bar, the black significance asterix are 

compared to the untreated, negative premiR transfected, negative control. Blue significance 

asterix indicate significance compared to the untreated counterpart, e.g.  premiR-145 

transfected, TGF-β1 treated compared with premiR-145 transfected untreated. Bars also 

indicate statistical comparisons.  Important significant data is shown in red.  Error bars represent 

the SEM. N=3, independent experiments. 
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Figure 5.14: Versican knock-down in DENF316 NOFs reduced the TGF-β1 

induced increase in αSMA transcript levels, but not in DENF319s. Two NOFs, 

DENF316 (A) and DENF319 (B) were transiently transfected with a versican targeting siRNA or a 

negative non targeting siRNA (50 nM) as a control for 24 h, prior to 5 ng/ml TGF-β1 treatment 

for 48 h. RNA was isolated and used to generate total cDNA for qRT-PCR analysis using primers 

for αSMA and U6, as an endogenous control. Each bar on the figure represents the mean relative 

quantification of αSMA transcript levels compared to endogenous U6, for each transfection 

plus/minus treatment relative to untreated negative premiR. Statistical analysis was performed 

by a paired two tailed student’s t-test, and statistical significance is shown on the figure by 

*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. If not indicated by a bar, the black significance 

asterix are compared to the untreated, negative siRNA transfected, negative control. Blue 

significance asterix indicate significance compared to the untreated counterpart, e.g.  premiR-

145 transfected, TGF-β1 treated compared with premiR-145 transfected untreated. Bars also 

indicate statistical comparisons.  Important significant data is shown in red.  Error bars represent 

the SEM. N=3, independent experiments. 
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NOFs compared to ~100 fold in negative siRNA controls (figure 5.14A). However, in DENF319 

NOFs there was no difference versican depleted NOFs αSMA expression in response to TGF-β1, 

both around ~10 fold increase in αSMA expression (figure 5.14B). The effect on the induction of 

αSMA protein levels was assessed by an immunoblot. There was no difference between the 

amount of protein detected in versican depleted NOFs and negative siRNA when treated with 

TGF-β1 (figure 5.15). The experiment was performed in both DENF316 and DENF319 in triplicate, 

these immunoblots quantified by densitometry and shown in figure 5.15B. TGF-β1 treatment 

caused an increase in αSMA in all transfections; negative premiR, premiR-143, premiR-145, 

antimiR-145, versican siRNA by ~8, ~12, ~6, ~13 and ~9 fold respectively. All these TGF-β1 

mediated increases in αSMA protein were found to be statistically significant apart from 

antimiR-145, which will be ignored due to it not effectively knocking down miR-145 levels. The 

TGF-β1 mediated increase in αSMA was reduced in NOFs overexpressing miR-145, however this 

wasn’t statistically significant using the densitometry data.  

Immunocytochemistry revealed that versican knock-down in NOFs had no effect on TGF-β1 

ability to induce αSMA stress fibres which are typical of myofibroblasts. NOFs were seeded onto 

coverslips before being transfected, then TGF-β1 treated. Fibroblasts on coverslips were fixed, 

permeabilised and incubated with a FITC conjugated αSMA antibody, visualised on a fluorescent 

light microscope and quantification of fluorescence was measured. There was no visible or 

quantified difference between NOFs transfected with versican siRNA or negative siRNA in their 

responses to TGF-β1 (figure 5.16).  

The expression of other myofibroblast phenotypic markers COL1A1 and FN1-EDA were 

determined by qRT-PCR. A similar pattern of expression was seen in DENF316 NOFs to αSMA 

expression, NOFs with endogenous levels of versican and knocked down versican NOFs on TGF-

β1 stimulated αSMA stress fibres (figure 5.16). Versican knock-down prevented some induction 

of the markers of myofibroblasts phenotype (figure 5.17). In DENF319, however, differences 

between the response of versican knock-down NOFs and negative siRNA transfected NOFs to 

TGF-β1 was not seen. For DENF316 NOFs versican reduced the TGF-β1 induction of COL1A1 

expression from ~4.5 fold (negative siRNA, TGF-β1 treated DENF316s) to ~1.5 fold (still 

significantly different to untreated controls; figure 5.17A), and FN1-EDA from ~12 fold to ~7 fold 

(figure 5.18A). For DENF319s TGF-β1 treatment did not cause a significant increase in COL1A1 

expression, versican knock-down in untreated NOFs caused a significant reduction in COL1A 

transcript levels, by ~0.5 fold (figure 5.17B), FN1-EDA transcript levels increased to ~1.7 fold on  
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Figure 5.15: Versican knock-down had no effect on TGF-β1 induced increase 

in αSMA protein levels in oral fibroblasts. Two NOFs, DENF316 (shown in A) and 

DENF319, were transiently transfected with negative premiR, premiR-143, premiR-145, antimiR-

145, negative control siRNA, or versican siRNA (50 nM) for 24 h prior to treatment with 5 ng/ml 

TGF-β1 or serum free media. Total protein lysates (20 µg) were resolved on 3–8% (w/v) tris 

acetate gels and transferred onto nitrocellulose membranes for immunoblotting. A monoclonal 

anti-human αSMA antibody was used to detect αSMA protein levels in the transfected then 

treated NOFs.  GAPDH was used as a loading control. Figure A shows a representative DENF316 

blot. Densitometry was performed using image J for both DENF316 and DENF319 in triplicate 

and shown in B. Statistical analysis was performed by a paired two tailed student’s t-test, and 

statistical significance is shown on the figure by *p<0.05, **p<0.01. If not indicated by a bar, the 

significance is compared to the untreated equivalent transfection. N=3, independent 

experiments for both NOFs.  
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Figure 5.16: Versican knock-down had no effect on TGF-β1 stimulated αSMA 

stress fibre formation.  NOFs (DENF316) were seeded onto coverslips overnight, transiently 

transfected with negative siRNA, or versican siRNA (50 nM) 24 h prior to being treated with 5 

ng/ml TGF-β1 for 48 h. The coverslips were washed in PBS, before being fixed in 100% methanol 

for 10 min, they were then permeablised using 4 mM sodium deoxycholate for 10 min, and 

blocked using 2.5% (w/v) BSA in PBS for 30 min before incubation with a primary FITC-

conjugated αSMA antibody at 4 oC overnight. The coverslips were then washed in PBS before 

mounting on microscope slides using DAPI containing mounting medium. Fluorescent images 

were taken using a microscope, using Pro-plus 7 imaging software at 40x magnification. 

Representative pictures are shown in A.  The amount of fluorescence intensity per cell was 

quantified using Image J, and displayed in B as the mean relative fluorescent intensity for 

HDF283. Statistical analysis was performed by a paired two tailed student’s t-test, and statistical 

significance is shown on the figure by *p<0.05, negative premiR treated compared to treated. 

Error bars show the SEM. N=3, independent experiments. 
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Figure 5.17: Versican knock-down in DENF316 NOFs reduced the TGF-β1 

induced increase in COL1A1 transcript levels, and decreased COL1A1 

transcript levels in DENF319.   Two NOFs, DENF316 (A) and DENF319 (B) were transiently 

transfected with a versican targeting siRNA or a negative non-targeting siRNA (50 nM) as a 

control for 24 h, prior to 5 ng/ml TGF-β1 treatment for 48 h. RNA was isolated and used to 

generate total cDNA for qRT-PCR analysis using primers for COL1A1 and U6, as an endogenous 

control. Each bar on the figure represents the mean relative quantification of COL1A1 transcript 

levels compared to endogenous U6, for each transfection plus/minus treatment relative to 

untreated negative premiR. Statistical analysis was performed by a paired two tailed student’s 

t-test, and statistical significance is shown on the figure by **p<0.01, ***p<0.001, 

****p<0.0001. If not indicated by a bar, the black significance asterix are compared to the 

untreated, negative premiR transfected, negative control. Blue significance asterix indicate 

significance compared to the untreated counterpart, e.g.  premiR-145 transfected, TGF-β1 

treated compared with premiR-145 transfected untreated. Bars also indicate statistical 

comparisons.  Important significant data is shown in red.  Error bars represent the SEM. N=3, 

independent experiments. 
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Figure 5.18: Versican knock-down in DENF316 NOFs reduced the TGF-β1 

induced increase in FN1-EDA transcript levels, but not in DENF319s.  Two NOFs, 

DENF316 (A) and DENF319 (B) were transiently transfected with a versican targeting siRNA or a 

negative non-targeting siRNA (50 nM) as a control for 24 h, prior to 5 ng/ml TGF-β1 treatment 

for 48 h. RNA was isolated and used to generate total cDNA for qRT-PCR analysis using primers 

for FN1-EDA and U6, as an endogenous control. Each bar on the figure represents the mean 

relative quantification of FN1-EDA transcript levels compared to endogenous U6, for each 

transfection plus/minus treatment relative to untreated negative premiR. Statistical analysis 

was performed by a paired two tailed student’s t-test, and statistical significance is shown on 

the figure by *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. If not indicated by a bar, the black 

significance asterix are compared to the untreated, negative premiR transfected, negative 

control. Blue significance asterix indicate significance compared to the untreated counterpart, 

e.g.  premiR-145 transfected, TGF-β1 treated compared with premiR-145 transfected untreated. 

Bars also indicate statistical comparisons.  Important significant data is shown in red.  Error bars 

represent the SEM.  N=3, independent experiments. 
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TGF-β1, this was unchanged in NOFs were versican was knocked down (figure 5.18B). Versican 

knock-down did cause a significant reduction in FN1-EDA transcript levels in untreated NOFs.  

One of versican’s well characterised roles in the tumour microenvironment is to stimulate cancer 

cell migration (Riccidarelli et al., 2009). Versican’s effect on stimulating paracrine cancer cell 

migration was also assessed by a transwell migration assay. Conditioned media was collected 

from NOFs transfected with negative siRNA, or versican siRNA, then TGF-β1 treated and used in 

the bottom of a transwell migration assay to stimulate an oral cancer cell migration. H357 cell 

line was seeded into the top of a transwell chamber and allowed to migrate through an 8µm 

porous membrane for 38 h. The membranes were then methanol fixed and stained with 0.1% 

(w/v) crystal violet and imaged using a light microscope at 40x magnification to count and assess 

relative migration. In this particular experiment conditioned media from TGF-β1 treated NOFs 

was unable to stimulate paracrine migration, and conditioned media from versican knocked 

down NOFs had a significant reduction in cancer cell migration of around ~0.3 fold in both 

untreated and treated samples (figure 5.19). 

 

5.6 The effect of versican in CAFs.  

Versican is known to have important roles in ovarian CAFs (Yeung et al., 2013), and has been 

reported to be responsible for dermal myofibroblasts transdifferentiation (Hattori et al., 2011). 

In addition, this chapter has described data which can lead to the hypothesis that versican plays 

a role in oral CAFs. To list a few, versican V0 is downregulated in the CAF cohort used in this 

study (figure 5.4), TGF-β1 induced oral myofibroblasts have a significantly upregulated 

expression of versican (figure 5.1), miR-145 regulates versican expression in NOFs (figure 5.7) 

and versican knock-down in NOFs appeared to have some effect on the myofibroblasts markers 

expression. Therefore, the potential role of versican in oral CAFs was investigated. 

As miR-145 was able to prevent TGF-β1 effects in CAFs and versican knock-down was able to 

dampen the TGF-β1 mediated effects in one of the two NOFs tested; the effect of miR-145 

overexpression on versican expression was investigated by immunoblotting in CAFs (figure 

5.20). As with the NOFs, TGF-β1 treatment in CAFs led to an increase in versican protein 

expression, quantified to be ~3.5 fold higher than endogenous levels. CAFs overexpressing miR-

145 inhibited this increase. CAFs overexpressing miR-145 had a marked reduction in versican 

protein levels, however densitometry using all the repeats failed to show a difference between 

negative control transfected CAFs and CAFs overexpressing miR-145.  
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Figure 5.19: Versican knock-down in oral fibroblasts attenuated their ability 

to stimulate the paracrine migration of cancer cells. Conditioned media was 

collected from DENF316 NOFs transfected with negative siRNA or versican siRNA (50 nM) for 24 

h then treated with 5 ng/ml TGF-β1 for 48 h or serum free media as a control. The conditioned 

media was spun at >2500xg to remove cellular debris then placed in the bottom of a transwell 

migration assay plate. H357 cancer cell line were seeded at 100,000 cells per well into an 8 µm 

porous transwell with 1 mg/ml mitomycin c and allowed to migrate for 38h. The ability of the 

conditioned media to promote migration was assessed by methanol fixing cells attached to the 

membrane after 38 h, staining the cells with 0.1% (w/v) crystal violet, taking photographs at 40x, 

and calculating the average number of cells in the representative photographs. The figure shows 

the relative H357 cancer cell migration compared to untreated, negative premiR. Statistical 

analysis was performed by a paired two tailed student’s t-test, and statistical significance is 

shown on the figure by **p<0.01. The significance is compared to the treated negative premiR. 

Error bars represent the SEM.  N=3, independent experiments. 
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Figure 5.20: miR-145 prevented TGF-β1 increase in versican expression in 

CAFs. BICR-59 CAFs were transiently transfected with premiR-145 (50 nM) or a negative non-

targeting premiR 24 h prior to the treatment with 5 ng/ml TGF-β1 or serum free media as a 

control. Total protein (20 µg) was resolved on a 3–8% (w/v) tris acetate gel and transferred to 

nitrocellulose for immunoblotting. A polyclonal versican antibody and a β-actin antibody was 

used as a control, to detect versican levels in these samples. The immunoblot shown in A is a 

representative blot. The detectable differences were quantified by densitometry using Image J. 

Error bars represent the SEM. N=3, independent experiments.  
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As miR-145 appears to regulate versican in CAFs as well as NOFs, versican may be able to 

mediate some of miR-145’s anti-myofibroblast effects in CAFs.  To test this, versican levels were 

knocked down using a versican targeting siRNA in CAFs, to investigate any effect on the in vitro 

phenotype and the TGF-β1 induced phenotype. 

The effect of versican knock-down in CAFs on myofibroblasts markers αSMA, COL1A1 and FN1-

EDA was assessed by qRT-PCR.  There was a ~6 fold increase in αSMA in CAFs treated with TGF-

β1. Versican knock-down was able to dampen the increase (to ~3.5 fold increase). Versican 

siRNA transfected CAFs had a ~0.85 fold decrease in αSMA transcript levels compared to 

negative siRNA transfected CAFs (figure 5.21A). Versican knock-down in CAFs caused a ~0.7 fold 

decrease in COL1A1 expression, and TGF-β1 caused no difference in COL1A1 in these CAFs (~1.1 

fold compared to negative siRNA transfected CAFs) (figure 5.21B). TGF-β1 treated versican 

knocked down CAFs had a small ~2 fold increase in COL1A1 transcript levels compared to 

versican knocked down untreated cells.  Versican knock-down also resulted in a ~0.9 fold 

decrease in FN1-EDA transcript levels (figure 5.21C). TGF-β1 induces a ~2 fold increase in FN1-

EDA expression, which is prevented if transfected with versican siRNA beforehand.   

The effect of versican knock-down on αSMA protein expression in CAFs was assessed by 

immunoblotting and immunocytochemistry. Immunoblotting revealed that versican knock-

down had no effect on αSMA expression either in untreated CAFs or TGF-β1 treated CAFs (figure 

5.22). Densitometry of these blots revealed there was a slight decrease in the TGF-β1 induced 

αSMA expression from ~2.5 fold to ~1.75 fold compared to untreated and negative siRNA 

transfected CAFs (figure 5.22B). Immunoblotting with a versican antibody was used to validate 

that versican levels were decreased in CAFs transfected with a versican targeting siRNA. Versican 

siRNA was able to decrease versican levels on average by ~0.5 fold in these CAFs (figure 5.23). 

Immunocytochemistry using a FITC-tagged αSMA antibody was used to visualise the αSMA 

stress fibres associated with the myofibroblast phenotype. TGF-β1 was able to induce αSMA 

stress fibres in both versican knocked down CAFs and negative siRNA transfected CAFs to similar 

levels, the fluorescence in both TGF-β1 treated CAFs was quantified to be ~5.5 fold higher 

compared to untreated (figure 5.24). 

The effect of versican in CAFs to promote the paracrine migration of cancer cells was also 

investigated using conditioned media from MCA and MC15 CAFs. CAFs were transiently 

transfected with versican siRNA or negative siRNA (figure 5.25A), then treated with TGF-β1 

(figure 5.25B). After treatment the conditioned media was collected and used in a transwell 

paracrine migration assay assessing H357 cells migration through the conditioned media.  
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Figure 5.21: Versican knock-down in CAFs dampened the TGF-β1 induced 

myofibroblast markers αSMA, COL1A1 and FN1-EDA. CAFs (BICR-59s) were 

transiently transfected with versican siRNA (50 nM) or a negative non-targeting siRNA 24 h prior 

to treatment with 5 ng/ml TGF-β1 for 48 h. After treatment, fibroblasts were harvested and the 

RNA was isolated and used to generate cDNA for qRT-PCR analysis using primers designed to 

amplify αSMA, COL1A1, FN1-EDA and U6, as an endogenous control. Each bar on the figure 

represents the mean relative quantification of αSMA (A), COL1A (B) and FN1-EDA (C) transcript 

levels compared to endogenous U6, for each transfection plus/minus treatment relative to 

untreated negative siRNA. N=2, independent experiments for each CAF. 
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Figure 5.22: Versican knock-down in CAFs had no effect on TGF-β1 induced 

αSMA protein expression. CAFs were transiently transfected with versican siRNA (50 nM) 

or a negative non-targeting siRNA (50 nM) 24 h prior to treatment with 5 ng/ml TGF-β1 for 48 

h. Total protein lysates (20 µg) were resolved on a 3-8% (w/v) tris acetate SDS PAGE gel and 

transferred to a nitrocellulose membrane for immunoblotting. A monoclonal αSMA antibody 

and a monoclonal β-actin antibody used to assess αSMA protein levels in these samples.  Figure 

A shows a representative blot of BICR-63, densitometry was performed using image J for all CAFs 

tested shown in B. Error bars represent SEM. N=1 for each BICR-3, BICR-63, BICR-70 CAF.  
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Figure 5.23: Versican siRNA knocked down versican levels in CAFs. CAFs were 

transiently transfected with versican siRNA (50 nM) or a negative non-targeting siRNA 24 h prior 

to treatment with 5 ng/ml TGF-β1 for 48 h. Total protein lysates (20 µg) were resolved on a 3–

8% (w/v) tris acetate gel and transferred to a nitrocellulose membrane for immunoblotting. A 

polyclonal versican antibody and a monoclonal β-actin antibody used to assess versican protein 

levels in these samples.  Figure A shows a representative blot of BICR-3, densitometry was 

performed using image J for all CAFs tested shown in B. Error bars represent SEM. N=1 for each 

BICR-3, BICR-63, BICR-70 CAF.  
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Figure 5.24: Versican knock-down in CAFs had no effect on TGF-β1 induced 

αSMA stress fibre formation.  CAFs (BICR-63, shown here, and BICR-70) were seeded onto 

coverslips overnight, transiently transfected with negative siRNA, or versican siRNA (50 nM) 24 

h prior to being treated with 5 ng/ml TGF-β1 for 48 h. The coverslips were washed in PBS, before 

being fixed in 100% methanol for 10 min, they were then permeablised using 4 mM sodium 

deoxycholate for 10 min, and blocked using 2.5% (w/v) BSA in PBS for 30 min before incubation 

with a primary FITC-conjugated αSMA antibody at 4 oC overnight. The coverslips were then 

washed in PBS before mounting on microscope slides using DAPI containing mounting medium. 

Fluorescent images were taken using a microscope, using Pro-plus 7 imaging software at 40x 

magnification. Representative pictures are shown in A.  The amount of fluorescence intensity 

per cell was quantified using Image J, and displayed in B as the mean relative fluorescent 

intensity for HDF283. Error bars show the SEM. N=2, independent experiments for each CAF. 
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Figure 5.25: Versican knock-down in CAFs had no effect on normal or TGF-β1 

stimulated paracrine oral cancer cell H357 migration. Primary CAFs (MCA and 

MC15), were transiently transfected with premiR-145 (50 nM) or versican siRNA or non-

targeting control premiR/ siRNA (50 nM) for 24 h (A). MCA CAFs were also transiently transfected 

with versican siRNA or a non-targeting siRNA for 24 h prior to treatment with TGF-β1 (5 ng/ml) 

for 48 h (B). After treatment (A) or transfection (B), fibroblasts, conditioned media was collected 

for used in a transwell migration assay H357 were seeded in the transwell and allowed to 

migrate for 38 h through an 8 µm porous membrane to conditioned media. The membranes 

were methanol fixed and stained with 0.1% (w/v) crystal violet to visualise and count the cells. 

The figures shows the relative migration of H357 cancer cells compared to negative premiR 

transfected and untreated control. The error bars represent SEM. (A) N=3, independent 

experiments for each CAF. (B) N=2, independent experiments. 
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Versican knock-down in CAFs appeared to have no effect on stimulating H357 migration in either 

MCA or MC15 CAFs (figure 5.25A). Treatment of TGF-β1 had no effect on MCA ability to promote 

H357 migration (figure 5.25B). This was compared to the effect of miR-145 overexpression in 

the CAFs, in figure 5.25A, which was able to reduce the paracrine migration of H357s cells in 

both of the CAFs tested, however this trend did not reach statistical significance. By comparing 

the migration of CAFs transfected with negative premiR and negative siRNA in MCA and MC15 

it highlights that the negative siRNA, used as a control, has some non-specific effects. 

Conditioned media from negative siRNA transfected CAFs had a reduced ability to stimulate 

paracrine migration compared to negative premiR transfected CAFs (figure 5.25A). This may 

explain why versican had no effect on migration in this assay.  

The data described above suggests that versican knockdown reduced the expression of 

myofibroblast markers and has a small reduction on TGF-β1 induced expression of αSMA and 

FN1-EDA. The protein data however suggests that versican has little effect on CAF TGF-β1 

induced αSMA expression and stress fibre formation. It is worthy of note that the qRT-PCR 

versican siRNA experiments were performed in BICR-59 CAFs only, whereas different 

combinations of CAFs (BICR-63, BICR-3 and BICR-70) were used in the immunoblotting and 

immunocytochemistry experiments and MCA and MC15 CAFs were used in the paracrine 

migration studies. The used of different CAFs could explain why versican had a variable effect 

on the overall CAF phenotype. CAFs are a heterogeneous population with many distinct 

phenotypes within the tumour microenvironment, the effect of versican knock-down may vary 

somewhat from CAF to CAF, therefore it would be beneficial to repeat this experiment in many 

different primary CAFs and ensure there are a substantial number of repeats for each CAF.  

 

5.7 Examining the proteolytic cleavage of versican in oral myofibroblasts.  

Versican can be regulated and processed by proteases in the extracellular environment resulting 

in products different functional cleaved domains which can function independently. Versican 

can undergo catabolism by a select number of secreted peptidases belonging to the ADAMTS 

protease family (Riccidarelli et al., 2009). In the study aforementioned by Hattori et al., 2010, an 

ADAMTS5 knockout mouse, responsible for versican degradation in the extracellular 

environment, was able to cause the transdifferentiation of normal dermal fibroblasts to 

myofibroblasts. TIMPs inhibitors have also been shown to be responsible for CAF production 

(Shimaoda et al., 2014), perhaps this is through their regulation of versican. Some of the 

products that result from the proteolytic cleavage of versican can have specific roles within 
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cancers. For example, the globular domains, G1 and G3, of versican are reported to have several 

roles in cell proliferation and cell proliferation (Ricciadarelli et al., 2009). ADAMTS-1 and 

ADAMTS4, the expression of which is reported to be elevated in malignant prostates (Sandy et 

al., 2001), has been identified as responsible for the proteolytic cleavage of versican at the 

Glu441-Ala442 bond. This cleaved form of versican has a suggested role in promoting invasion 

in prostate tumours and was found to be associated poor prognosis (Arslan et al., 2007). 

Therefore, an aim was to find investigate the proteolytic cleavage of versican in OSCC. 

In order to find evidence for the processing of versican, the expression of ADAMTS-1 and 

ADAMTS-4 were assessed in NOFs treated with TGF-β1. NOFs were treated with TGF-β1 for 24 

h, 48 h and 72 h, then were harvested, RNA extracted and used to generate total cDNA for qRT-

PCR to assess the transcript levels of ADAMTS-1 and ADAMTS-4. TGF-β1 caused an increase in 

expression of both ADAMTSs (figure 5.26). ADAMTS-1 expression increased by ~4 fold after 24 

h of TGF-β1 treatment compared to untreated control, at 48 h and 72 h the ADAMTS-1 transcript 

levels were around ~3 fold greater than controls (figure 5.26A). After 24 h of TGF-β1 caused a 

~12 fold increase in ADAMTS-4 transcript levels, this increased decreased to ~5 fold greater than 

untreated controls and after 72 h of TGF-β1 treatment, this had further decreased to ~1.5 fold 

greater expression than controls (figure 5.26B).  

Next, there was an investigation into whether these ADAMTSs were able to function to cleave 

pericellular versican at the Glu441-Ala442 bond, as previously published. An antibody raised 

against this ADAMTS mediated cleaved form of versican, referred to as truncated versican, and 

was used to assess expression of cleaved versican in NOFs treated with TGF-β1. Total protein 

lysates were prepared from NOFs treated with 24 h, 48 h, and 72 h TGF-β1 or untreated 

controlled, were resolved on a gel and transferred to a nitrocellulose membrane for use in 

immunoblotting. Faint bands at ~65 kDa corresponding to the size of the truncated versican was 

detected in lysates from untreated NOFs (figure 5.27). Interestingly, no bands were detected in 

TGF-β1 treated NOFs. This data requires further confirmation due to problems with detecting 

any immunoreactivity in subsequent repeats of this experiment. 

The expression of ADAMTS-1 and ADAMTS-4 was also investigated in the previously described 

CAF cohort compared to NOFs. 10 CAFs from genetically stable and unstable OSCCs were grown 

and RNA isolated for cDNA generation and compared to 10 NOFs. qRT-PCR was used to assess 

the transcript levels of the ADAMTS. There was no difference in ADAMTS-1 and ADAMTS-4 

expression in CAFs compared to NOFs (figure 5.28). There was also no difference in the 

expression of either ADAMTSs in different subsets of CAFs (figure 5.29). 
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Figure 5.26: TGF-β1 induced ADAMTS-1 and ADAMTS-4 expression in oral 

fibroblasts. DENF319 NOFs were seeded, serum starved and treated with 5 ng/ml TGF-β1, or 

serum free media as a control for 24 h, 48 h and 72 h. After treatment fibroblasts were 

harvested, RNA isolated and used in a total cDNA preparation. qRT-PCR was performed with the 

cDNA with primers to amplify ADAMTS-1 and ADAMTS-4 isoforms and U6 as a reference gene. 

Each bar on the figure represents the mean relative quantification of ADAMTS-1 (A) and 

ADAMTS-4 (B) transcript levels compared to endogenous U6, for each treatment relative to the 

relevant untreated timepoint. Statistical analysis was performed by a paired two tailed student’s 

t-test, and statistical significance is shown on the figure by ***p<0.001, ****p<0.0001. The 

significance is compared to the untreated equivalent transfection.  Error bars represent the SEM. 

N=3, independent experiments. 

 

 

 

 

 

 

 

2
4
h

4
8
h

7
2
h

2
4
h

4
8
h

7
2
h

0

2

4

6

8

A D A M -T S 1

r
e

la
ti

v
e

 A
D

A
M

-T
S

1
 e

x
p

r
e

s
s

io
n

 c
o

m
p

a
r
e

d
 t

o
 e

n
d

o
g

e
n

o
u

s
 U

6

T G F - 1  tre a te d

*

*
***

2
4
h

4
8
h

7
2
h

2
4
h

4
8
h

7
2
h

0

5

1 0

1 5

2 0

A D A M -T S 4

r
e

la
ti

v
e

 A
D

A
M

-T
S

4
 e

x
p

r
e

s
s

io
n

c
o

m
p

a
r
e

d
 t

o
 e

n
d

o
g

e
n

o
u

s
 U

6

T G F - 1  tre a te d

****

****

*



190 
 

A      B 

 

 

 

 

 

 

 

Figure 5.27: Truncated versican was detected in NOFs but not TGF-β1 treated 

NOFs. NOFs (DENF319) were treated with 5 ng/ml TGF-β1 for 24 h, 48 h or 72 h, or with serum 

free media as an endogenous control. The NOFs were then harvested, and total protein lysates 

were generated. Protein (20 µg) was resolved on a 3–8% (w/v) tris-acetate gradient gels, before 

being transferred to nitrocellulose membranes for immunoblotting. Antibodies raised against 

human the truncated versican, produced from ADAMTS-1 and -4 cleavage was used to assess 

relative protein levels, and β-actin was used as a loading control. The figure shows the 

immunoblot and the quantified amount of detectable protein by densitometry is shown in B. 

N=1.   
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Figure 5.28:  There was no difference between ADAMTS-1 and ADAMTS-4 

expression between NOFs and CAFs. Fibroblasts isolated from OSCC, CAFs (10), and 

NOFs (10) were grown, RNA was isolated and used to generate cDNA for qRT-PCR analysis using 

primers designed to amplify ADAMTS-1, ADAMTS-4 and U6, as an endogenous control. The fold 

endogenous change of target ADAMTS-1 (A) or ADAMTS-4 (B), compared to reference gene U6 

is plotted on each graph, each dot representing a different NOF/CAF. The line represents the 

mean fold endogenous for each set of fibroblasts. Error bars display the SD.  
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Figure 5.29:  There was no difference in ADAMTS-1 and ADAMTS-4 expression 

in CAFs isolated from different genetically stable OSCCs. CAFs isolated from 

genetically stable OSCCs (N=5), unstable OSCCs (N=5), oral dysplasia (N=1), normal gingiva (BICR 

NOFs; N=3) all originally from Prof Ken Parkinson and NOFs (from Sheffield; N=7) were cultured. 

RNA was isolated and used to generate cDNA for qRT-PCR analysis using primers designed to 

amplify V0, V1 versican and U6, as an endogenous control. The fold endogenous change of target 

versican V0 (A) or versican V1 (B), compared to reference gene U6 is plotted on each graph, each 

dot representing a different NOF/CAF. The line represents the mean fold endogenous for each 

set of fibroblasts. Statistical analysis was performed by multiple ANOVA, and statistical 

significance is shown on the figure by **p<0.01, ***p<0.001. Error bars display the SEM.  
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5.8 Summary  

Results from this chapter showed that versican has a small effect on oral myofibroblast 

transdifferentiation and promoting paracrine migration. The results outlined in this chapter 

showed that NOFs express two isoforms, V0 and V1, which were both upregulated in response 

to TGF-β1. The expression of V0 versican was lower in CAFs than NOFs, whereas there was no 

significant difference in V1 versican expression. The expression miR-145 and not miR-143, 

negatively regulates versican expression. Versican depletion in 1 out of 2 NOFs and CAFs 

dampened the TGF-β1 induced myofibroblast markers, but had no effect on αSMA protein, 

stress fibre formation. Versican depletion in NOFs, but not CAFs, significantly inhibited cancer 

cell paracrine migration. The effect of versican on TGF-β1 induced myofibroblast paracrine 

migration was not able to be determined due to the negative non-targeting siRNA prevented 

TGF-β1 from increasing paracrine migration. The expression of ADAMTS-1 and ADAMTS-4, 

known to cleave versican, were shown to be elevated with TGF-β1 treatment, and experiments 

assessing the amount of cleaved versican showed that there was more in untreated NOFs than 

TGF-β1, however there were insufficient n numbers.  
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Chapter 6: Examination of the mechanism of 

the regulation of oral myofibroblast 

transdifferentiation by miR-145 
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6.1 Aims and objectives  

The aim of this results chapter was to investigate the molecular mechanisms by which miR-145 

regulates myofibroblast transdifferentiation. In an attempt to confirm published targets and 

identify novel ones, the objectives were to determine the effect of miR-145 on the expression 

smooth muscle transcript factors myocardin, myocardin related transcription factors (MRTFs) 

and myocardin inhibitors Krüppel like factor 4 (KLF4) and KLF5, in addition to assessing the 

expression of putative targets Sox-9, TGF-β Receptor II, and connective tissue growth factor 

(CTGF). The effect of MRTF-B on myofibroblast transdifferentiation was also assessed by a loss 

of function experiment. To further investigate how miR-145 regulates versican transcript levels, 

versican’s promoter region was cloned and used in a dual luciferase reporter assay to assess 

whether the regulation involves the promoter, and bioinformatics was used to identify any 

putative binding sites.  Finally, the effect of miR-145 on ADAMTS-1 and -4s was assessed, to 

further understand how miR-145 the controls versican expression and influences the 

myofibroblast phenotype.  

 

6.2 miR-145 effect on myofibroblast markers 

Data discussed in chapter 4 provided some evidence for miR-145 regulating the myofibroblast 

markers tested in untreated fibroblast, miR-145 downregulated αSMA (figure 4.3), and FN1-EDA 

(figure 4.6) in DENF319, and COL1A1 in both NOFs (figure 4.7). To investigate the potential 

targets of miR-145 an overexpression dose response was performed. NOFs (DENF316) were 

transiently transfected with 0, 0.5, 5, 50 nM premiR-145 for 48 h, the NOFs were then harvested 

for qRT-PCR analysis of the myofibroblast markers. The premiR dose response caused an 

overexpression of miR-145 of ~2 fold in 0.5 nM transfections, ~11 fold in 5 nM transfections, and 

~15 fold in 50 nM transfections compared to mock transfected control (figure 6.1A). Unlike 

previous data in figure 4.3, miR-145 overexpression at the highest dose (50 nM) caused no 

difference in αSMA, whereas 5 nM overexpression caused a small increase in αSMA (~1.5 fold; 

figure 6.1B).  This dose (5 nM) also caused an ~1.7 fold increase in COL1A1 levels, however 0.5 

and 50 nM did not cause a significant change in COL1A levels in these cells (figure 6.2A). 

Overexpression of miR-145 did not have an effect on FN1-EDA levels at any dose (figure 6.2B).  
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Figure 6.1: Overexpression of miR-145 by 5 nM premiR-145 transfection, 

caused a small increase αSMA. DENF316 NOFs were transiently transfected with premiR-

145 0.5 nM, 5 nM or 50 nM or a mock (water) for 48 h. Fibroblasts were harvested and the RNA 

was isolated and used to generate cDNA for qRT-PCR analysis using primers designed to amplify 

miR-145 and RNU 48 and αSMA and U6, as an endogenous control.  Each bar on the figure 

represents the mean relative quantification of miR-145 (A) and αSMA (B) transcript levels 

compared to endogenous RNU 48 and U6 respectively, for each transfection plus/minus 

treatment relative to untreated negative premiR. Statistical analysis was performed by a paired 

two tailed student’s t-test, and statistical significance is shown on the figure by *p<0.05. If not 

indicated by a bar, the significance is compared to the untreated equivalent transfection, or 

negative premiR in the case of the untreated premiRs. Error bars represent the SEM. N=3, 

independent experiments. 
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Figure 6.2: Overexpression of miR-145 by 5 nM premiR-145 transfection, 

caused a small increase COL1A1. DENF316 NOFs were transiently transfected with 

premiR-145 0.5 nM, 5 nM or 50 nM or a mock (water) for 48 h. Fibroblasts were harvested and 

the RNA was isolated and used to generate cDNA for qRT-PCR analysis using primers designed 

to amplify COL1A1, FN1-EDA and U6, as an endogenous control.  Each bar on the figure 

represents the mean relative quantification of COL1A1 (A) and FN1-EDA (B) transcript levels 

compared to endogenous U6, for each transfection plus/minus treatment relative to untreated 

negative premiR. Statistical analysis was performed by a paired two tailed student’s t-test, and 

statistical significance is shown on the figure by *p<0.05, ***p<0.001 and ****p<0.0001. If not 

indicated by a bar, the significance is compared to the untreated equivalent transfection, or 

negative premiR in the case of the untreated premiRs. Error bars represent the SEM. N=3, 

independent experiments. 
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6.3 miR-145 effect on chondrogenic transcription factor Sox-9 

miR-145 has been previously shown to directly target chondrogenesis master regulator Sox-9 

(Yang et al., 2011). This also has been shown to play a role in stromal epithelial interactions in 

HNSCC (Yu et al., 2013). Consequently, the effect of miR-145 overexpression, and TGF-β1 

treatment on sox-9 expression was studied to investigate if miR-145 regulates myofibroblast 

transdifferentiation through sox-9 regulation. NOFS (OF26) were transiently transfected with 

premiR-145 or negative non-targeting premiR then treated with TGF-β1 for 48 h to induce 

myofibroblasts. Both miR-145 overexpression and TGF-β1 treatment were able to downregulate 

sox-9 transcript levels (by ~0.3 fold and ~0.4 fold respectively; figure 6.3). Combined miR-145 

overexpression, then TGF-β1 treatment caused significantly less downregulation by ~0.25 fold.  

 

6.4 miR-145 effect on smooth muscle transcription factors 

The data outlined in chapter 4 showed that miR-145 prevents TGF-β1 mediated αSMA 

expression. This is the opposite of how miR-143 and miR-145 are known to ‘master regulate’ 

smooth muscle differentiation by mediating TGF-β1 regulated key transcription factors which 

control the smooth muscle phenotype and αSMA expression. Specifically, miR-145 is 

documented to target KLF4 (Cordes et al., 2009), which can then regulate myocardin to induce 

CArG box transcriptional activation, including αSMA.  miR-145 has also been reported to target 

myocardin related transcription factor-B MRTF-B (Xin et al., 2009) which are known to co-

activate the CARG box to allow downstream smooth muscle gene expression.  This seems to be 

opposed to what is suggested by our data in oral fibroblasts, that miR-145 expression represses 

αSMA expression.  

To further delineate miR-145 mechanism of negatively regulating TGF-β1 mediated αSMA 

expression in oral fibroblasts, the effect of miR-145 and TGF-β1 on these smooth muscle 

transcription factors, myocardin, myocardin related transcription factors (MRTFs) and 

transcription factors KLF4/5, which known to regulate myocardin. NOFs (OF26) were transiently 

transfected with premiR-145 for 24 h, then treated with 5 ng/ml TGF-β1 for 48 h, subsequently 

these fibroblasts were used for qRT-PCR analysis investigating the gene expression of the above 

transcription factors.  

In untreated NOFs there was no detectable expression of myocardin, however when miR-145 

was overexpressed in these NOFs there was detectable expression (figure 6.4). The same 

occurred when the NOFs were treated with TGF-β1, and there was further induction (not  
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Figure 6.3: miR-145 and TGF-β1 treatment downregulated Sox-9 expression 

in NOFs. OF26 NOFs were transiently transfected with premiR-145 or a negative non-targeting 

premiR 24 h prior to treatment with TGF-β1 for 48 h. After treatment, fibroblasts were harvested 

and the RNA was isolated and used to generate cDNA for qRT-PCR analysis using primers 

designed to amplify sox-9 and U6, as an endogenous control. In figure B, each bar shows the fold 

endogenous of sox-9 relative to U6. Statistical analysis was performed by a paired two tailed 

student’s t-test, and statistical significance is shown on the figure by *p<0.05 and **p<0.01. If 

not indicated by a bar, the black significance asterix are compared to the untreated, negative 

premiR transfected, negative control. Blue significance asterix indicate significance compared to 

the untreated counterpart, e.g. premiR-145 transfected, TGF-β1 treated compared with premiR-

145 transfected untreated. Bars also indicate statistical comparisons.  Important significant data 

is shown in red.  Error bars represent the SEM.  N=5, independent experiments. 
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Figure 6.4: miR-145 and TGF-β1, both induced the expression of myocardin in 

NOFs. OF26 NOFs were transiently transfected with premiR-145 or a negative non-targeting 

premiR 24 h prior to treatment with TGF-β1 for 48 h. After treatment, fibroblasts were harvested 

and the RNA was isolated and used to generate cDNA for qRT-PCR analysis using primers 

designed to amplify myocardin and U6, as an endogenous control. In figure B, each bar shows 

the fold endogenous of myocardin relative to U6. Statistical analysis was performed by a paired 

two tailed student’s t-test, and statistical significance is shown on the figure by ****p<0.0001. 

The black significance asterix are compared to the untreated, negative premiR transfected, 

negative control. Blue significance asterix indicate significance compared to the untreated 

counterpart, e.g. premiR-145 transfected, TGF-β1 treated compared with premiR-145 

transfected untreated. Bars also indicate statistical comparisons. Error bars represent the SEM.  

N=5, independent experiments. 
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significant) of expression when cells were overexpressing miR-145 and TGF-β1 treated. This 

suggests that miR-145 may block the inhibition of myocardin, which led to the investigation of 

the effect of miR-145 on the known inhibitors of myocardin function KLF4 and KLF5.  

TGF-β1 treatment decreased KLF4 transcript levels by 0.4 fold, however this was not found to 

be significant (figure 6.5A). The overexpression of miR-145, had no effect on KLF4 transcript 

levels, however when NOFs overexpressing miR-145 were treated with TGF-β1 there was a 

significant 0.5 fold decrease in KLF4 transcripts. TGF-β1 treatment increased the expression of 

KLF5 expression by ~2.75 fold (figure 6.5B), overexpression of miR-145 prior to this treatment 

prevented the TGF-β1 mediated increase in KLF5 expression.   

The expression of MRTF-A and B were also examined. Although miR-145 and TGF-β1 had no 

effect on MRTF-A expression, NOFs overexpressing miR-145 and treated with TGF-β1 had half 

the MRTF-A transcript levels compared to control NOFs (figure 6.6A). Overexpression of miR-

145 downregulated MRTF-B transcript levels by ~0.3 fold (figure 6.6B). TGF-β1 caused a 0.4 fold 

decrease in MRTF-B.  NOFS both overexpressing miR-145 and treated with TGF-β1 showed 

further downregulation of MRTF-B, reduced by ~0.6 fold compared to control NOFs.   

 

6.5 MRTF-B effect on myofibroblast transdifferentiation.  

MRTF-B (and MRTF-A) is also been reported to be involved with myofibroblast 

transdifferentiation in rat embryonic fibroblasts (Crider et al., 2011). The bioinformatical 

database TargetScan revealed that there are 4 putative miR-145 binding sites in MRTF-B 3’UTR.  

miR-143 has one predicted binding site in MRTF-B 3’UTR.  Combined with the data in figure 6.6B 

it was hypothesised that miR-145 regulates oral myofibroblast transdifferentiation by the direct 

regulation of MRTF-B. To investigate this further, the expression of MRTF-B was examined in 

two NOFs overexpressing miR-143 or miR-145, then treated with TGF-β1. In DENF316, 

overexpression of miR-145 did not decrease MRTF-B transcript levels but increased them by ~2.7 

fold (figure 6.7A), miR-143 also caused an increase in MRTF-B expression by ~1.6 fold compared 

to controls. TGF-β1 had no effect on MRTF-B in these NOFs, but damped the mir-145 mediated 

increase in MRTF-B levels (~1.3 fold increase), and miR-143 overexpressing NOFs treated with 

TGF-β1 had a reduction MRTF-B by 0.6 fold compared to control NOFs. In DENF319, 

overexpression of miR-145 resulted in a decrease in MRTF-B expression by ~0.75 fold compared 

to control NOFs in TGF-β1 treated and untreated NOFs, however these trends were not 

statistically significant (figure 6.7B). Similarly, miR-143 overexpression caused a decrease in  
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Figure 6.5: miR-145 overexpression combined with TGF-β1 treatment 

resulted in the downregulation of KLF4 and miR-145 inhibited TGF-β1 

mediated increased KLF5 expression. OF26 NOFs were transiently transfected with 

premiR-145 or a negative non-targeting premiR (50 nM) 24 h prior to treatment with TGF-β1 for 

48 h. After treatment, fibroblasts were harvested and the RNA was isolated and used to generate 

cDNA for qRT-PCR analysis using primers designed to amplify KLF4, KLF5 and U6, as an 

endogenous control.  Each bar on the figure represents the mean relative quantification of KLF4 

(A) and KLF5 (B) transcript levels compared to endogenous U6, for each transfection plus/minus 

treatment relative to untreated negative premiR. Statistical analysis was performed by a paired 

two tailed student’s t-test, and statistical significance is shown on the figure by *p<0.05, 

**p<0.01, or ***p<0.001. If not indicated by a bar, the black significance asterix are compared 

to the untreated, negative premiR transfected, negative control. Blue significance asterix 

indicate significance compared to the untreated counterpart, e.g. premiR-145 transfected, TGF-

β1 treated compared with premiR-145 transfected untreated. Bars also indicate statistical 

comparisons.  Important significant data is shown in red.  Error bars represent the SEM.  N=5, 

independent experiments. 
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Figure 6.6: miR-145 overexpression combined with TGF-β1 treatment 

resulted in the downregulation of both MRTF-A and MRTF-B, also MRTF-B was 

downregulated by miR-145 and TGF-β1 treatment. OF26 NOFs were transiently 

transfected with premiR-145 or a negative non-targeting premiR (50 nM) 24 h prior to treatment 

with TGF-β1 for 48 h. After treatment, fibroblasts were harvested and the RNA was isolated and 

used to generate cDNA for qRT-PCR analysis using primers designed to amplify MRTF-A, MRTF-

B and U6, as an endogenous control.  Each bar on the figure represents the mean relative 

quantification of MRTF-A (A) and MRTF-B (B) transcript levels compared to endogenous U6, for 

each transfection plus/minus treatment relative to untreated negative premiR. Statistical 

analysis was performed by a paired two tailed student’s t-test, and statistical significance is 

shown on the figure by **p<0.01, or ****p<0.0001. If not indicated by a bar, the black 

significance asterix are compared to the untreated, negative premiR transfected, negative 

control. Blue significance asterix indicate significance compared to the untreated counterpart, 

e.g. premiR-145 transfected, TGF-β1 treated compared with premiR-145 transfected untreated. 

Bars also indicate statistical comparisons.  Important significant data is shown in red.  Error bars 

represent the SEM.  N=5, independent experiments.  
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Figure 6.7: miR-145 overexpression caused an increase in MRTF-B expression 

in DENF316s NOFs and a trend in a decrease in MRTF-B DENF319 NOFs.  Two 

primary NOFs, DENF316 and DENF319 (A and B respectively), were transiently transfected with 

premiR-143, premiR-145 or a negative non-targeting premiR (50 nM) 24 h prior to treatment 

with TGF-β1 for 48 h. After treatment, fibroblasts were harvested and the RNA was isolated and 

used to generate cDNA for qRT-PCR analysis using primers designed to amplify MRTF-B and U6, 

as an endogenous control.  Each bar on the figure represents the mean relative quantification 

of MRTF-B transcript levels compared to endogenous U6, for each transfection plus/minus 

treatment relative to untreated negative premiR. Statistical analysis was performed by a paired 

two tailed student’s t-test, and statistical significance is shown on the figure by *p<0.05, 

**p<0.01, ***p<0.001, or ****p<0.0001. If not indicated by a bar, the black significance asterix 

are compared to the untreated, negative premiR transfected, negative control. Blue significance 

asterix indicate significance compared to the untreated counterpart, e.g. premiR-145 

transfected, TGF-β1 treated compared with premiR-145 transfected untreated. Bars also 

indicate statistical comparisons.  Important significant data is shown in red. Error bars represent 

the SEM. N=3, independent experiments. 
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Figure 6.8: A MRTF-B targeting siRNA was knocked down MRTF-B transcript 

levels.  Two NOFs, DENF316 and DENF319 (A and B, respectively) were transiently transfected 

with a MRTF-B targeting siRNA or a negative non- targeting siRNA (50 nM) for 24 h prior to TGF-

β1 (5 ng/ml) treatment for 48 h. Fibroblasts were harvested and the RNA was isolated and used 

to generate cDNA for qRT-PCR analysis using primers designed to amplify MRTF-B and U6, as an 

endogenous control.  Each bar on the figure represents the mean relative quantification of 

MRTF-B transcript levels compared to endogenous U6, for each transfection plus/minus 

treatment relative to untreated negative premiR. Statistical analysis was performed by a paired 

two tailed student’s t-test, and statistical significance is shown on the figure by *p<0.05, 

**p<0.01 and ****p<0.0001. If not indicated by a bar, the black significance asterix are 

compared to the untreated, negative premiR transfected, negative control. Blue significance 

asterix indicate significance compared to the untreated counterpart, e.g. premiR-145 

transfected, TGF-β1 treated compared with premiR-145 transfected untreated. Bars also 

indicate statistical comparisons.  Important significant data is shown in red.  Error bars represent 

the SEM. N=3, independent experiments. 
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MRTF-B expression by ~ 0.7 fold compared to control NOFs, in both TGF-β1 treated and 

untreated DENF319s. MRTF-B transcript levels were also reduced in DENF319s treated with TGF-

β1, by ~0.8 fold. The expression patterns of DENF319 were similar to that of OF26 described 

above.  

To assess if MRTF-B plays an important role in oral myofibroblast transdifferentiation, a MRTF-

B targeting siRNA was used to deplete NOFs of MRTF-B transcript levels before inducing 

myofibroblasts transdifferentiation with TGF-β1 treatment. DENF316 NOFs transiently 

transfected with MRTF-B siRNA did not on average show decreased MRTF-B levels, as MRTF-B 

were reduced by ~0.3 fold compared to control NOFs, which was not significantly different to 

negative control siRNA NOFs (figure 6.8A). However, DENF316 transfected with MRTF-B siRNA 

and treated with TGF-β1 had knocked down MRTF-B levels (~0.7 fold reduced from control 

NOFs). DENF319s transfected with MRTF-B siRNA had significantly reduced MRTF-B levels by 

~0.8 fold, this was similar to the reduction produced by TGF-β1 treatment (figure 6.8B). 

Using the same cDNA the effect on MRTF-B depletion on the acquisition of the myofibroblasts 

phenotype was assessed by qRT-PCR analysis for myofibroblast markers.  In DENF316s, TGF-β1 

treatment induced αSMA expression to ~105 fold greater than untreated NOF controls, MRTF-

B depletion reduced the TGF-β1 mediated αSMA to ~30 fold (figure 6.9A). However, in DENF319, 

MRTF-B knock-down had no effect on the response to TGF-β1, both negative and MRTFB siRNA 

transfected NOFS treated with TGF-β1 had a ~11 fold increase in αSMA transcript levels (figure 

6.9B).  COL1A1 expression showed a similar pattern of expression, MRTF-B knock-down was able 

to reduce a TGF-β1 mediated increase in COL1A levels (to ~2 fold increase compared to ~4.5 

increase in negative siRNA TGF-β1 treated NOFs) in DENF316 NOFs only (figure 6.10A). In 

DENF319 NOFs TGF-β1 treatment alone did not cause an increase in COL1A1 expression, but 

MRTF-B knock-down and TGF-β1 increased COL1A1 expression to ~1.5 fold compared to control 

NOFs (figure 6.10B). MRTF-B knock-down alone resulted in a 0.4 fold reduction in COL1A1 

transcript levels in DENF319s. Finally, FN1-EDA expression followed a similar trend. MRTF-B 

knock-down was able to reduce TGF-β1 increase in FN1-EDA expression from ~12 fold to ~7 fold, 

although these trends did not reach statistical significance. Whereas, in DENF319 MRTF-B knock-

down increase TGF-β1 mediated FN1-EDA expression from ~1.8 fold to ~3 fold (figure 6.11), and 

MRTF-B knock-down alone caused a ~0.4 fold decrease in FN1-EDA, compared to DENF319 NOF 

controls.  

Immunoblotting and immunocytochemistry were also used to assess MRTF-B knock-down’s 

effect on αSMA protein expression. Immunoblotting revealed that MRTF-B knock-down had no  
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Figure 6.9: MRTF-B knock-down reduced TGF-β1 mediated αSMA expression 

in DENF316 NOFs not DENF319. Two NOFs, DENF316 and DENF319 (A and B, 

respectively) were transiently transfected with a MRTF-B targeting siRNA or a negative non- 

targeting siRNA (50 nM) for 24 h prior to TGF-β1 (5 ng/ml) treatment for 48 h. Fibroblasts were 

harvested and the RNA was isolated and used to generate cDNA for qRT-PCR analysis using 

primers designed to amplify αSMA and U6, as an endogenous control.  Each bar on the figure 

represents the mean relative quantification of αSMA transcript levels compared to endogenous 

U6, for each transfection plus/minus treatment relative to untreated negative premiR. Statistical 

analysis was performed by a paired two tailed student’s t-test, and statistical significance is 

shown on the figure by *p<0.05, **p<0.01, ***p<0.001 and ****p<0.0001. If not indicated by a 

bar, the black significance asterix are compared to the untreated, negative premiR transfected, 

negative control. Blue significance asterix indicate significance compared to the untreated 

counterpart, e.g. premiR-145 transfected, TGF-β1 treated compared with premiR-145 

transfected untreated. Bars also indicate statistical comparisons.  Important significant data is 

shown in red. Error bars represent the SEM. N=3, independent experiments. 

 

 

 

 

  

n
e
g

a
t i

v
e
 s

iR
N

A

M
R

T
F

-B
 s

iR
N

A

n
e
g

a
t i

v
e
 s

iR
N

A

M
R

T
F

-B
 s

iR
N

A
 

0

5

1 0

1 5

2 0

D E N F 3 1 9

r
e

la
ti

v
e

 a
lp

h
a

-S
M

A
 e

x
p

r
e

s
s

io
n

c
o

m
p

a
r
e

d
 t

o
 e

n
d

o
g

e
n

o
u

s
 U

6

T G F -B e ta  1  tr e a te d

***

n
e
g

a
t i

v
e
 s

iR
N

A

M
R

T
F

-B
 s

iR
N

A

n
e
g

a
t i

v
e
 s

iR
N

A

M
R

T
F

-B
 s

iR
N

A
 

0

5 0

1 0 0

1 5 0

2 0 0

D E N F 3 1 6

r
e

la
ti

v
e

 a
lp

h
a

-S
M

A
 e

x
p

r
e

s
s

io
n

c
o

m
p

a
r
e

d
 t

o
 e

n
d

o
g

e
n

o
u

s
 U

6

T G F -B e ta  1  tr e a te d

***

***

**

****



208 
 

A                   B 

 

 

 

 

 

 

 

Figure 6.10: MRTF-B knock-down reduced TGF-β1 mediated COL1A1 

expression in DENF316 NOFs not DENF319. Two NOFs, DENF316 and DENF319 (A and 

B, respectively) were transiently transfected with a MRTF-B targeting siRNA or a negative non- 

targeting siRNA (50 nM) for 24 h prior to TGF-β1 (5 ng/ml) treatment for 48 h. Fibroblasts were 

harvested and the RNA was isolated and used to generate cDNA for qRT-PCR analysis using 

primers designed to amplify COL1A1 and U6, as an endogenous control.  Each bar on the figure 

represents the mean relative quantification of COL1A1 transcript levels compared to 

endogenous U6, for each transfection plus/minus treatment relative to untreated negative 

premiR. Statistical analysis was performed by a paired two tailed student’s t-test, and statistical 

significance is shown on the figure by *p<0.05, **p<0.01, and ***p<0.001. If not indicated by a 

bar, the black significance asterix are compared to the untreated, negative premiR transfected, 

negative control. Blue significance asterix indicate significance compared to the untreated 

counterpart, e.g. premiR-145 transfected, TGF-β1 treated compared with premiR-145 

transfected untreated. Bars also indicate statistical comparisons.  Important significant data is 

shown in red.  Error bars represent the SEM. N=3, independent experiments. 
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Figure 6.11: MRTF-B knock-down reduced TGF-β1 mediated FN1-EDA 

expression in DENF316 NOFs, and increased TGF-β1 mediated FN1-EDA 

expression in DENF319. Two NOFs, DENF316 and DENF319 (A and B, respectively) were 

transiently transfected with a MRTF-B targeting siRNA or a negative non- targeting siRNA (50 

nM) for 24 h prior to TGF-β1 (5 ng/ml) treatment for 48 h. Fibroblasts were harvested and the 

RNA was isolated and used to generate cDNA for qRT-PCR analysis using primers designed to 

amplify FN1-EDA and U6, as an endogenous control.  Each bar on the figure represents the mean 

relative quantification of FN1-EDA transcript levels compared to endogenous U6, for each 

transfection plus/minus treatment relative to untreated negative premiR. Statistical analysis 

was performed by a paired two tailed student’s t-test, and statistical significance is shown on 

the figure by **p<0.01, and ****p<0.0001. If not indicated by a bar, the black significance asterix 

are compared to the untreated, negative premiR transfected, negative control. Blue significance 

asterix indicate significance compared to the untreated counterpart, e.g. premiR-145 

transfected, TGF-β1 treated compared with premiR-145 transfected untreated. Bars also 

indicate statistical comparisons.  Important significant data is shown in red. Error bars represent 

the SEM. N=3, independent experiments. 
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effect on TGF-β1 mediated increase in αSMA protein expression (figure 6.12), which was also 

quantified by densitometry (figure 6.12B). In addition, immunocytochemistry using a FITC-

conjugated αSMA antibody showed that there was no difference in TGF-β1 mediated αSMA 

stress fibre assembly in MRTF-B knocked down NOFs, however quantification of fluorescence 

showed a small not significant decrease in the amount of total fluorescence (figure 6.13). Bigger 

n numbers were needed for this experiment. 

 

6.6 Other miR-145 possible targets  

Connective Tissue Growth Factor (CTGF) has a complex relationship with tumour progression; it 

has been reported to both promote and inhibit tumour progression (Jacobson & Cunningham, 

2012). In OSCC, it prevents tumour growth and invasion (Chuang et al., 2011; Moritani et al., 

2003; Yang et al., 2012). In other tumours such as breast, CTGF has been shown to promote 

tumour growth (Chien et al., 2011). It has also been shown to be required for myofibroblast 

transdifferentiation (Garrett et al., 2004) and is a reported to be a direct target of miR-145 (Lee 

et al., 2013). Therefore, the effect of miR-145 overexpression on CTGF was investigated in oral 

fibroblasts. In an overexpression dose response 5 nM dose of premiR-145 was the only one to 

cause a significant downregulation of CTGF transcript levels (by ~0.5 fold; figure 6.14A).  miR-

145 overexpression (50 nM) did not cause a downregulation in CTGF expression in DENF316, it 

caused a ~3 fold increase, but it caused a ~0.5 fold downregulation in DENF319s (figure 6.14 B 

and C).  

miR-143 overexpression alone caused a similar trend, in DENF316s miR-143 overexpression 

resulted in a ~6 fold upregulation of CTGF, but in DENF319 it caused a ~0.5 fold decrease in CTGF 

levels. TGF-β1 caused a large upregulation of CTGF in both DENF316 and DENF319, but like with 

other myofibroblast markers there were different degrees of activation in the NOFs, ~78 fold 

and ~15 fold respectively. miR-145 was able to reduce this TGF-β1 mediated CTGF expression in 

DENF316s to ~14 fold compared to ~78 fold in negatively transfected TGF-β1 mediated CTGF 

expression (figure 6.14A). miR-143 was also able to reduce TGF-β1 mediate to ~48 fold, however 

this was not found to be a significant change compared to TGF-β1 treated, negative premiR 

transfected DENF316s. Both miR-143 and miR-145 overexpression were able to reduce the TGF-

β1 mediated increase in CTGF expression in DENF319s, miR-143 overexpressing, TGF-β1 treated 

NOFs had ~10 fold CTGF expression and miR-145 overexpressing TGF-β1 treated NOFs had ~5 

fold CTGF expression, compared to untreated DENF319 controls (figure 6.14C). 
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Figure 6.12: MRTF-B knock-down did not reduce TGF-β1 induced αSMA 

protein expression. Two NOFs, DENF316 (shown here) and DENF319, were transiently 

transfected with negative premiR, premiR-143, premiR-145, antimiR-145, negative control 

siRNA, MRTF-B siRNA or versican siRNA (50 nM) for 24 h prior to treatment with 5 ng/ml TGF-

β1 or serum free media. Total protein lysates (20 µg) were resolved on 3–8% (w/v) tris acetate 

gels and transferred onto nitrocellulose membranes for immunoblotting. A monoclonal anti-

human αSMA antibody was used to detect αSMA protein levels in the transfected then treated 

NOFs.  GAPDH was used as a loading control. Figure A shows a representative DENF316 blot. 

Densitometry was performed using image J for DENF316 in triplicate and shown in B. Statistical 

analysis was performed by a paired two tailed student’s t-test, and statistical significance is 

shown on the figure by *p<0.05. If not indicated by a bar, the significance is compared to the 

untreated equivalent transfection. N=3, independent experiments for both NOFs. 
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Figure 6.13: MRTF-B knock-down decreased the total αSMA-FITC 

fluorescence, but there was no observed effect on TGF-β1 induced αSMA stress 

fibres.  NOFs (DENF316) were seeded onto coverslips overnight, transiently transfected with 

negative siRNA, or MRTF-B siRNA (50 nM) 24 h prior to being treated with 5 ng/ml TGF-β1 for 

48 h. The coverslips were washed in PBS, before being fixed in 100% methanol for 10 min, they 

were then permeablised using 4 mM sodium deoxycholate for 10 min, and blocked using 2.5% 

(w/v) BSA in PBS for 30 min before incubation with a primary FITC-conjugated αSMA antibody 

at 4 oC overnight. The coverslips were then washed in PBS before mounting on microscope slides 

using DAPI containing mounting medium. Fluorescent images were taken using a microscope, 

using Pro-plus 7 imaging software at 40x magnification. Representative pictures are shown in A.  

The amount of fluorescence intensity per cell was quantified using Image J, and displayed in B 

as the mean relative fluorescent intensity for NOFs negative premiR treated compared to 

treated. Error bars show the SEM. N=2, independent experiments. 
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Figure 6.14: miR-145 reduced TGF-β1 induced CTGF expression. DENF316 NOFs 

were transiently transfected with premiR-145 0.5 nM, 5 nM or 50 nM or a mock (water) for 48 

h (A). Two primary NOFs, DENF316 and DENF319 (B and C respectively), were transiently 

transfected with 50 nM premiR-143, premiR-145 or a negative non-targeting premiR (50 nM) 24 

h prior to treatment with TGF-β1 for 48 h. Fibroblasts were harvested and the RNA was isolated 

and used to generate cDNA for qRT-PCR analysis using primers designed to amplify CTGF and 

U6, as an endogenous control. Each bar on the figure represents the mean relative quantification 

of CTGF transcript levels compared to endogenous U6, for each transfection plus/minus 

treatment relative to untreated negative premiR. Statistical analysis was performed by a paired 

two tailed student’s t-test, and statistical significance is shown on the figure by *p<0.05, 

**p<0.01, ***p<0.001, or ****p<0.0001. If not indicated by a bar, the black significance asterix 

are compared to the untreated, negative premiR transfected, negative control. Blue significance 

asterix indicate significance compared to the untreated counterpart, e.g. premiR-145 

transfected, TGF-β1 treated compared with premiR-145 transfected untreated. Bars also 

indicate statistical comparisons.  Important significant data is shown in red. Error bars represent 

the SEM. N=3, independent experiments. 
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DIANA miR-Path pathway analysis software highlighted miR-145 as targeting several parts of the 

TGF-β1 pathway, including smad4, smad4, smad5 and TGF-β R II. A recent paper validated TGF-

β RII as a direct target of miR-145 (Zhao et al., 2014). To investigate whether miR-145 may 

regulate oral myofibroblast transdifferentiation through the regulation of TGF-β R II, the 

expression was assessed by qRT-PCR. Overexpression of miR-145, caused a 0.5 fold decrease in 

TGF-β RII (figure 6.15). Interestingly, TGF-β1 treatment itself caused a 0.5 fold decrease in TGF-

β RII and combined miR-145 overexpression and TGF-β RII resulted in a similar amount of 

downregulation of TGF-β R II.  

 

6.7 miR-145 regulation of versican  

In chapter 5, miR-145 was shown to negatively regulate versican expression. An overexpression 

dose response was used to shown miR-145 dose dependent regulation of V0 and V1 versican 

isoforms (figure 6.16). V0 expression reduced by 0.4 and 0.6 fold in 5 nM and 50 nM premiR-145 

doses respectively (figure 6.16A). V1 expression reduced by ~0.4 and 0.5 fold in 5 nM and 50 nM 

premiR-145 respectively (figure 6.16B).  

miR-143 has been shown to directly target versican (Wang et al., 2010), in this study miR-145 

did not bind the versican 3’UTR. Bioinformatic databases also do not show predicted binding for 

miR-145 in the 3’UTR. Therefore, miR-145 is not thought to directly target versican. To 

investigate if this regulation was brought about through regulation of the activity of the versican 

promoter by miR-145, the promoter region of versican was cloned into the pGL3 basic luciferase 

reporter vector and used in a dual luciferase reporter (DLR) assay. The pGL3 basic vector 

contains the firefly luciferase gene to monitor transcriptional activity, it lacks any eukaryote 

regulatory elements, therefore making it ideal to insert a promoter upstream of the luciferase 

gene. The DLR was optimised by co-transfecting the BICR16 cell line, a OSCC cell line known to 

endogenously express versican, with different ratios of Renilla control vector with empty pGL3-

basic or the versican promoter construct (VCANp-pGL3b) (1:5, 1:10, 1:50, 1:100) to achieve a 

read-out relative Renilla: Luciferase ratio of around 1, (figure 6.17A), a ratio of 1:10 appeared to 

give the nearest read out to 1, therefore was used in the DLR assay. BICR16 cells were co 

transfected with Renilla: VCANp-Luc (1:10) and negative premiR, premiR-143, premiR-145 or 

antimiR-145 for 48 h. The cells were then lysed and lysates were used to assess the luciferase 

activity of the VCANp-luc construct using a dual luciferase assay. There was no significant 

difference in promoter activity between any of the transfection conditions (figure 6.17B). 
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Figure 6.15 miR-145 and TGF-β1 downregulated TGF-β Receptor II expression 

in normal oral fibroblasts. OF26 NOFs were transiently transfected with premiR-145 or a 

negative non-targeting premiR (50 nM) 24 h prior to treatment with TGF-β1 for 48 h. After 

treatment, fibroblasts were harvested and the RNA was isolated and used to generate cDNA for 

qRT-PCR analysis using primers designed to amplify TGF-βRII and U6, as an endogenous control.  

Each bar on the figure represents the mean relative quantification of TGF-βRII transcript levels 

compared to endogenous U6, for each transfection plus/minus treatment relative to untreated 

negative premiR. Statistical analysis was performed by a paired two tailed student’s t-test, and 

statistical significance is shown on the figure by **p<0.01, ***p<0.001 or ****p<0.0001. If not 

indicated by a bar, the black significance asterix are compared to the untreated, negative premiR 

transfected, negative control. Blue significance asterix indicate significance compared to the 

untreated counterpart, e.g. premiR-145 transfected, TGF-β1 treated compared with premiR-145 

transfected untreated. Bars also indicate statistical comparisons. Important significant data is 

shown in red. Error bars represent the SEM. N=5, independent experiments. 
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A                   B 

 

 

 

 

 

 

Figure 6.16: miR-145 negatively regulated versican in a dose dependent 

manner. DENF316 NOFs were transiently transfected with premiR-145 0.5 nM, 5 nM or 50 nM 

or a mock (water) for 48 h. Fibroblasts were harvested and the RNA was isolated and used to 

generate cDNA for qRT-PCR analysis using primers designed to amplify versican V0, V1 and U6, 

as an endogenous control.  Each bar on the figure represents the mean relative quantification 

of versican V0 (A) and versican V1 (B) transcript levels compared to endogenous U6, for each 

transfection plus/minus treatment relative to untreated negative premiR. Statistical analysis 

was performed by a paired two tailed student’s t-test, and statistical significance is shown on 

the figure by *p<0.05, ***p<0.001, and ****p<0.0001. If not indicated by a bar, the significance 

is compared to the untreated equivalent transfection, or negative premiR in the case of the 

untreated premiRs. Error bars represent the SEM. N=3, independent experiments. 
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A      B 

  

    C 

 

 

 

Figure 6.17: miR-145 had no effect on the promoter activity of versican.  

Optimisation (A). BICR16 cell line was co-transfected with VCANp-Luc (pGL3-basic luciferase 

reporter vector containing the versican promoter region), or empty pGL3 basic vector 

(0.5, 1, 5, or 10 µg) with Renilla plasmid control (0.1 µg) for 48 h.  To examine the 

transcriptional effect miR-145 has on the versican gene (B). BICR16 cells were 

transfected with VCANp-Luc (1 µg) and Renilla (0.1 µg), were also co-transfected with 

mock (water), negative non-targeting premiR, premiR-143, premiR-145, or antimiR-145 

(50 nM). Cells were lysed using passive lysis buffer and Renilla and Firefly Luciferase 

activity was measured using a dual-luciferase reporter assay kit using a Glowmax 

microplate luminometer. Firefly luciferase levels were normalised to Renilla luciferase 

and plotted on the figure as relative luciferase units. Error bars represent SEM. N=3. C 

shows an alignment of the mature miR-145 sequence with versican mRNA transcript, 

miR-145’s seed sequence and putative binding site is highlighted in capitals. Alignment 

was performed using multalin online software using the versican mRNA transcript 1 

sequence and the complementary miR-145 seed sequence. N=3, independent 

experiments. 
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Bioinformatic software were used to further investigate miR-145s regulation of versican. A 

promoter and miRNA interaction online database confirmed that there was no putative binding 

site for miR-145 within the versican promoter (Piriyapongsa et al., 2014). The presence of miR-

145 binding sites within the coding region of versican was investigated using alignment online 

software multalin (Corpet, 1988). The miR-145 complementary seed sequence was aligned to 

versican’s mRNA transcript variant 1 sequence obtained from the NCBI database. A putative 

binding site was identified in an exon region of versican’s sequence (6796-6805), in which 7 out 

of 8 nucleotides within the miR-145 seed sequence complemented the transcript sequence 

(figure 6.17C).   

The control of versican proteolytic cleavage by ADAMTS-1 and -4 may also be important, as 

cleaved versican may promote invasion in OSCC, like in prostate cancers (Carmela Ricciardelli et 

al., 2009). The effect of miR-145 on ADAMTS-1 and -4 was investigated. Overexpression of miR-

145 resulted in a ~0.4 fold downregulation of ADAMTS-1, in both untreated and TGF-β1 treated 

NOFs (figure 6.18A).  TGF-β1 caused a ~3 fold increase in ADAMTS-1 and a ~4 fold increase in 

ADAM TS-4 compared to untreated controls (figure 6.18 A and B). Overexpression of miR-145 

caused a ~0.5 fold decrease in ADAMTS-4 transcript levels, overexpression of miR-145 prevented 

the TGF-β1 mediated increase of ADAMTS-4 to ~1.3 fold (figure 6.18B). 
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A            B 

 

 

 

 

 

Figure 6.18: miR-145 overexpression downregulated ADAMTS-1 and -4 

expression and prevented TGF-β1 mediated ADAMTS-1 and -4 increase. 

DENF316 NOFs were transiently transfected with premiR-145 0.5 nM, 5 nM or 50 nM or a mock 

(water) for 48 h. Fibroblasts were harvested and the RNA was isolated and used to generate 

cDNA for qRT-PCR analysis using primers designed to amplify ADAMTS-1, ADAMTS-4 and U6, as 

an endogenous control.  Each bar on the figure represents the mean relative quantification of 

ADAMTS-1 (A) and ADAMTS-4 (B) transcript levels compared to endogenous U6, for each 

transfection plus/minus treatment relative to untreated negative premiR. Statistical analysis 

was performed by a paired two tailed student’s t-test, and statistical significance is shown on 

the figure by *p<0.05, **p<0.01 and ****p<0.0001. If not indicated by a bar, the black 

significance asterix are compared to the untreated, negative premiR transfected, negative 

control. Blue significance asterix indicate significance compared to the untreated counterpart, 

e.g. premiR-145 transfected, TGF-β1 treated compared with premiR-145 transfected untreated. 

Bars also indicate statistical comparisons.  Important significant data is shown in red.  Error bars 

represent the SEM. N=3, independent experiments. 
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6.8 Summary  

Data outlined in this chapter showed that miR-145 significantly regulates the expression of 

several transcription factors, growth factors and ECM components that have been published to 

be involved in the regulation of the myofibroblast phenotype. Data showed that both TGF-β1 

treatment and miR-145 overexpression independently downregulated MRTF-B, Sox-9 and TGF-

βR II and the combined treatment of TGF-β1 and miR-145 resulted in the downregulation of 

KLF4 and MRTF-A. miR-145 was able to inhibit TGF-β1 mediated increase in KLF5 expression. 

miR-145 caused the downregulation of CTGF, and prevented TGF-β1 mediated increase in 

expression. Both TGF-β1 and miR-145 induced the neo-expression of myocardin.  

Data from this chapter confirmed that miR-145 negatively regulates versican as a miR-145 dose 

response showed a step-wise reduction in the expression of both versican isoforms. In the 

investigation into the nature of this regulation, it was found that miR-145 had no effect on the 

versican promoter region, however a putative miR-145 binding site for versican was identified 

in versican’s coding region.  Data also showed that miR-145 downregulates the expression of 

ADAMTS-1 and -4, metalloproteases that can proteolytically cleave versican, in NOFs, and 

prevents the TGF-β1 mediated increase in their expression.  
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Chapter 7: The role of miR-145 in the 

acquisition of the dermal myofibroblast 

phenotype. 
  



222 
 

7.1 Aims and objectives   

The overall aim of this results chapter was to establish whether miR-145 had similar effects on 

dermal myofibroblast transdifferentiation as observed in oral fibroblasts. Therefore, the 

objectives were to characterise the TGF-β1 mediated dermal myofibroblast transdifferentiation 

and perform miR-145 gain of function experiments to determine whether miR-145 was able to 

prevent and rescue dermal myofibroblast formation. The effect of versican on TGF-β1 induced 

dermal myofibroblasts was also assessed.  

 

7.2 TGF-β1 treatment induced myofibroblast transdifferentiation in normal 

dermal fibroblasts. 

The data outlined in chapter 4 showed that TGF-β1 was able to induce the myofibroblast 

phenotype in normal oral fibroblasts, however TGF-β1 treatment induced a variable level of 

response from different primary oral fibroblasts. TGF-β1 is known to cause myofibroblast 

transdifferentiation in many fibroblasts of different origins including dermal (Hinz., 2010). In our 

study, dermal fibroblasts were used to compare miR-145 effects in oral fibroblast to a well 

characterised fibroblast. First, the effect of TGF-β1 treatment on dermal fibroblasts was 

investigated. Three different human dermal fibroblasts (HDFs) were used in this investigation: 

promocell HDF, HDF283, and HDF286. Each were grown and treated 5 ng/ml TGF-β1 for 48 h. 

After treatment the fibroblasts were harvested and RNA isolated. qRT-PCR was used to analyse 

the αSMA, versican V0 and V1 and miR-145 expression. 

 In all dermal fibroblasts tested, the TGF-β1 treatment stimulated an increase in the main 

myofibroblast marker αSMA (figure 7.1). Each HDF had a similar level of increase in expression, 

around ~15-20 fold compared to the respective untreated HDF. TGF-β1 had a more variable 

effect on mature miR-145 expression in different dermal fibroblasts. TGF-β1 treatment was able 

to cause an increase (~3.5 fold) in miR-145 in promocell HDFs (figure 7.2), although there was a 

small increase in miR-145 expression in HDF286 or HDF283, this was not significant. 

Unlike in oral fibroblasts (figure 5.3), TGF-β1 consistently caused an increase in versican V0 and 

V1 expression for each HDF analysed (figure 7.3). In HDF283s, there was only a small increase 

(~3.5 fold) in versican V0 isoform expression in response to TGF-β1, whereas HDF283s had the 

biggest increase (~10 fold) in V1 versican expression in response to TGF-β1, but this result is 

likely due an outlier in the data set.  Both HDF286 and promocell HDFs had a similar increase in 

V1 versican isoform levels (~3.5 fold) however V0 levels were increased by ~22 fold in promocell  
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Figure 7.1: TGF-β1 effect on αSMA transcript levels was similar in different 

human dermal fibroblasts. Different HDFs, promocell HDF, HDF283, and HDF286 were 

treated 5 ng/ml TGF-β1 for 48 h. After treatment the fibroblasts were harvested and RNA 

isolated and used to generate total cDNA for qRT-PCR analysis using primers for αSMA and U6, 

as an endogenous control.  Each dot on the dot plot represents a single repeat of the experiment 

showing the relative quantification of αSMA transcript levels compared to U6, for each TGF-β1 

treatment relative to untreated control. The mean quantification was shown by the horizontal 

bar. Statistical analysis was performed by a paired two tailed student’s t-test, and statistical 

significance is shown on the figure by ****p<0.0001. Error bars represent the SEM. N=3, 

independent experiments. 
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Figure 7.2: TGF-β1 caused an increase in miR-145 levels in HDF286 dermal 

fibroblasts. Different HDFs, promocell HDF, HDF283, and HDF286 were treated 5 ng/ml TGF-

β1 for 48 h. After treatment the fibroblasts were harvested and RNA isolated and used to 

generate specific miR-145 and RNU48 cDNA and used for qRT-PCR analysis using primers for 

miR-145 and RNU 48, as an endogenous control. Each dot on the dot plot represents a single 

repeat of the experiment showing the relative quantification of miR-145 transcript levels 

compared to RNU 48, for each TGF-β1 treatment relative to untreated control. The mean 

quantification was shown by the horizontal bar. Statistical analysis was performed by a paired 

two tailed student’s t-test, and statistical significance is shown on the figure by *p<0.05. Error 

bars represent the SEM.  N=3, independent experiments. 
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Figure 7.3: TGF-β1 increased the expression of versican V0 and V1 in human 

dermal fibroblasts. Different HDFs, promocell HDF, HDF283, and HDF286 were treated 5 

ng/ml TGF-β1 for 48 h. After treatment the fibroblasts were harvested and RNA isolated and 

used to generate total cDNA for qRT-PCR analysis using primers for versican V0 and V1 and U6, 

as an endogenous control.  Each dot on the dot plot represents a single repeat of the experiment 

showing the relative quantification of versican V0 (A) and V1 (B) transcript levels compared to 

U6, for each TGF-β1 treatment relative to untreated control. The mean quantification was 

shown by the horizontal bar. Statistical analysis was performed by a paired two tailed student’s 

t-test, and statistical significance is shown on the figure by *p<0.05, **p<0.001, ***p<0.0001 

and ****p<0.0001. Error bars represent the SEM. N=3, independent experiments. 
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HDFs compared to ~6.5 fold in HDF286s, showing some variability in response to TGF-β1 

treatment. 

 

7.3 miR-145 inhibited myofibroblast transdifferentiation in normal dermal 

fibroblasts 

The data presented in chapter 4 showed that miR-145 was able to inhibit the TGF-β1 induced 

myofibroblast transdifferentiation of NOFs. This anti-fibrotic role of miR-145 has been the 

opposite of that suggested by published data from studies in pulmonary and cardiac fibrosis 

(Yang et al., 2013, Wang et al., 2014). However, a recently published study showed an anti-

fibrotic effect of miR-145 in vascular smooth muscle cells (Zhao et al., 2014). To further 

investigate miR-145’s effect on myofibroblasts of a different cellular origin, human dermal 

fibroblasts were used. miR-145 is reported to be downregulated in scleroderma (Zhu et al., 

2013), an autoimmune skin fibrotic disorder, therefore it can be hypothesised that miR-145 my 

play an anti-fibrotic role in human dermal fibroblasts (HDFs) also. 

To investigate if miR-145 plays a role in TGF-β1 induced dermal myofibroblasts, the experiments 

performed in the NOFs were repeated in the HDFs. Normal HDFs (HDF286 and Promocell HDF) 

were cultured, seeded, and transfected with negative premiR, premiR-145 (50nM) or a nuclease 

free water control, mock, for 24 h. Subsequently the fibroblasts were treated with TGF-β1 for 

48 h. Fibroblasts were then harvested, and total RNA and protein were isolated to molecularly 

assess myofibroblast markers. qRT-PCR was used to assess the transcript levels of αSMA, 

COL1A1 and FN1-EDA. The expression of αSMA was also evaluated via immunoblotting and 

immunocytochemistry.  The results outlined below are from HDF286s but are representative of 

other HDFs tested. 

Firstly, αSMA, the main marker of myofibroblast phenotype was assessed. TGF-β1 induced a ~20 

fold increase in αSMA transcript levels in mock transfected HDF, and ~13 fold increase in 

negative premiR transfected HDF (figure 7.4A). However, transfected with premiR-145 prior to 

the treatment of TGF-β1 had no significant increase in αSMA, ~2 fold compared to mock, 

untreated control. Immunoblotting revealed that HDF overexpressing miR-145 also inhibited the 

TGF-β1 associated increase in αSMA protein levels (figure 7.4 B and C). Therefore, like in oral 

fibroblasts, miR-145 was able to inhibit the TGF-β1 induced increase in αSMA expression in 

dermal fibroblasts.  
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Figure 7.4: miR-145 overexpression attenuated TGF-β1 induced α smooth 

muscle actin expression in human dermal fibroblasts. Two primary HDF, HDF286 

(A) and Promocell (B and C), were transiently transfected with mock (nuclease free water), a 

negative non-targeting premiR or premiR-145 (50 nM) 24 h prior to treatment with 5 ng/ml TGF-

β1 for 48 h. After treatment, fibroblasts were harvested and the RNA was isolated and used to 

generate cDNA for qRT-PCR analysis using primers designed to amplify αSMA and U6, as an 

endogenous control. Each bar on the figure represents the mean relative quantification of αSMA 

transcript levels compared to endogenous U6, for each transfection plus/minus treatment 

relative to untreated negative premiR (A). B and C Total protein lysate (20 µg) was run on a 3–

8% (w/v) tris acetate gradient gel and transferred to a nitrocellulose membrane and 

immunoblotted for αSMA and GAPDH as the loading control. Protein changes were quantified 

by densitometry using Image J and are shown in figure B, relative to GAPDH. Figure C shows a 

representative blot. Statistical analysis was performed by a paired two tailed student’s t-test, 

and statistical significance is shown on the figure by *p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001. If not indicated by a bar, the black significance asterix are compared to the 

untreated, negative premiR transfected, negative control. Blue significance asterix indicate 

significance compared to the untreated counterpart, e.g. premiR-145 transfected, TGF-β1 

treated compared with premiR-145 transfected untreated. Bars also indicate statistical 

comparisons.  Important significant data is shown in red.  Error bars represent the SEM.  N=3, 

independent experiments. 
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MiR-145’s effect on αSMA stress fibre formation was assessed via immunocytochemistry. HDF 

were seeded on coverslips, then transfected and treated as above. After treatment the 

coverslips were washed, fixed, permeablised and incubated with a FITC-conjugated αSMA 

antibody.  TGF-β1 caused an increase in bright αSMA stress fibres, which are typical of 

myofibroblasts, in mock and negative premiR transfected HDFs (figure 7.5A). This increase in  

fluorescence was calculated to be ~3 fold (not significant) and ~4 fold (significant) (figure 7.5B) 

in mock and negative premiR transfected treated HDFs respectively. Overexpression of miR-145 

slightly decreased the increase in total fluorescence (figure 7.5B), which increased by ~2 fold but 

visually completely inhibited this TGF-β1 increase in αSMA stress fibre formation (figure 7.5A). 

The changes in myofibroblast markers COL1A1 and FN1-EDA were also assessed by qRT-PCR. 

TGF-β1 was able to increase the expression of both COL1A and FN1-EDA in mock (~2.5 fold and 

~4 fold) and negative premiR transfected (~4.5 and ~6.5 fold) HDFs (figure 7.6), although the 

increase in COL1A for mock (~2.5 fold), treated HDFs was not significant (figure 7.6A). The 

overexpression of miR-145 caused an inhibition of the TGF-β1 associated increase in both these 

markers (~0.4 fold for COL1A and ~0.8 fold for FN1-EDA) and also caused a significant decrease 

in untreated HDFs (~0.1 and ~0.5 fold for COL1A and FN1-EDA respectively). Interestingly, the 

transfection of negative premiR induced an increase in both the markers of myofibroblasts.    

Lastly, the ability of premiR-145 transfection to overexpress mature miR-145 levels was 

validated by qRT-PCR. Specific miR-145 and RNU 48 cDNA was generated using specially 

designed miR-145 and RNU 48 stem loop primers. This cDNA was used in qRT-PCR reactions 

using miR-145 and RNU 48 Taqman probes. Mature levels of miR-145 were increased by an 

average of ~30 and ~60 fold in untreated and treated HDFs respectively (figure 7.7). Negative 

premiR transfected cells had a significantly lower levels (~0.3 fold) of miR-145 than mock 

controls, in untreated cells. TGF-β1 caused a significant increase in miR-145 levels (~2.5 fold, 

compared to negative premiR, untreated control) in negative premiR transfected HDFs, which is 

consistent with the data in Figure 7.2, however mock transfected cells did not have a significantly 

altered expression of miR-145 when treated with TGF-β1. 

 

7.4  The effect of versican in the dermal myofibroblasts transdifferentiation.  

miR-145 regulated versican expression in oral fibroblasts (Chapter 6). As versican has been 

implicated in being important in the dermal myofibroblast transdifferentiation (Hattori et al., 

2011), an investigation was carried out as to whether miR-145 regulates the myofibroblast  
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Figure 7.5: miR-145 overexpression prevented αSMA stress fibre formation in 

human dermal fibroblasts. HDF286 were seeded onto coverslips overnight, transiently 

transfected with mock (nuclease free water) negative premiR, or premiR-145 (50nM) 24 h prior 

to being treated with 5 ng/ml TGF-β1 for 48 h. The coverslips were washed in PBS, before being 

fixed in 100% methanol for 10 min, they were then permeablised using 4 mM sodium 

deoxycholate for 10 min, and blocked using 2.5% (w/v) BSA in PBS for 30 min before incubation 

with a primary FITC-conjugated αSMA antibody at 4oC overnight.  The coverslips were then 

washed in PBS before mounting on microscope slides using DAPI containing mounting medium. 

Fluorescent images were taken using a microscope, using Pro-plus 7 imaging software at 40x 

magnification. Representative pictures are shown in A.  The amount of fluorescence intensity 

per cell was quantified using Image J, and displayed in B as the mean relative fluorescent 

intensity for HDF286. Statistical analysis was performed by a paired two tailed student’s t-test, 

and statistical significance is shown on the figure by *p<0.05, negative premiR treated compared 

to treated.  Error bars show the SEM. N=3, independent experiments. 
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Figure 7.6: miR-145 overexpression attenuated TGF-β1 induced collagen 1a 

and fibronectin 1 (with extra domain A) expression in normal dermal 

fibroblasts. Two primary HDFs, HDF286 (data shown here) and Promocell HDF (data not 

shown), were transiently transfected with mock (nuclease free water), a negative non-targeting 

premiR or premiR-145 (50 nM) 24 h prior to treatment with TGF-β1 for 48 h. After treatment, 

fibroblasts were harvested and the RNA was isolated and used to generate cDNA for qRT-PCR 

analysis using primers designed to amplify COL1A1, FN1-EDA and U6, as an endogenous control.  

Each bar on the figure represents the mean relative quantification of COL1A1 (A) and FN1-EDA 

(B) transcript levels compared to endogenous U6, for each transfection plus/minus treatment 

relative to untreated negative premiR. Statistical analysis was performed by a paired two tailed 

student’s t-test, and statistical significance is shown on the figure by *p<0.05, **p<0.01, 

***p<0.001, ****p<0.0001. If not indicated by a bar, the black significance asterix are compared 

to the untreated, negative premiR transfected, negative control. Blue significance asterix 

indicate significance compared to the untreated counterpart, e.g. premiR-145 transfected, TGF-

β1 treated compared with premiR-145 transfected untreated. Bars also indicate statistical 

comparisons.  Important significant data is shown in red.  Error bars represent the SEM.  N=3, 

independent experiments. 
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Figure 7.7: PremiR-145 transfection resulted in the overexpression of mature 

miR-145 in human dermal fibroblasts. Two primary HDFs, HDF286 (shown here) and 

Promocell HDFs, were transiently transfected with mock (nuclease water), a negative non-

targeting premiR or premiR-145 (50 nM) for 24 h prior to treatment with 5 ng/ml TGF-β1 for 48 

h. After treatment, fibroblasts were harvested and the RNA was isolated and used to generate 

specific miR-145 and RNU 48 cDNA for qRT-PCR analysis using primers for miR-145 and RNU 48, 

as an endogenous control.  Each bar on the figure represents the mean relative quantification 

of miR-145 transcript levels compared to endogenous RNU 48, for each transfection plus/minus 

treatment relative to untreated negative premiR. Statistical analysis was performed by a paired 

two tailed student’s t-test, and statistical significance is shown on the figure by ***p<0.001, and  

****p<0.0001. If not indicated by a bar, the black significance asterix are compared to the 

untreated, negative premiR transfected, negative control. Blue significance asterix indicate 

significance compared to the untreated counterpart, e.g. premiR-145 transfected, TGF-β1 

treated compared with premiR-145 transfected untreated. Bars also indicate statistical 

comparisons.  Important significant data is shown in red.  Error bars represent the SEM.  N=3, 

independent experiments. 
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phenotype by the regulation of versican in HDF. miR-145’s effect on versican expression was 

assessed by qRT-PCR using the total cDNA preps from fibroblasts transfected with negative 

premiR, premiR-145 or a mock control, before TGF-β treatment to induce dermal 

myofibroblasts. Two isoforms of versican V0 and V1 transcript levels were assessed. TGF-β1 

induced dermal myofibroblast had an elevated expression of both V0 (~5 fold) and V1 (~3 fold) 

in both negative premiR and mock transfected HDFs (figure 7.8). MiR-145 overexpressing HDFs 

expressed significantly lower levels of V0 (~0.1 fold, figure 7.8A) and V1 (~0.6 fold, figure 7.8B) 

versican transcript in untreated HDFs. TGF-β1 treatment in HDFs overexpressing miR-145 was 

only able to prevent the increase of V0 versican isoform expression (figure 7.8A) and not V1 

(figure 7.8B), which were not significantly different from the treated controls. Compared to 

mock transfected, negative premiR transfected HDFs had a significantly lower expression of both 

isoforms (~0.5 fold). Again, demonstrating that the negative non-targeting premiR apparently 

has some effect on these HDFs.    

Versican expression was also measured by immunoblotting. Total protein lysates were isolated 

from HDFs transfected with premiR-145 or negative premiR control and then treated. Protein 

(20 µg) was resolved on a tris acetate 3–8% (w/v) gradient gel and transferred to a nitrocellulose 

membrane for immunoblotting using a full length versican antibody. TGF-β1 treatment in 

negative premiR transfected HDFs had a large increase in versican protein levels, quantified to 

increase by ~2 fold (figure 7.9). The overexpression of miR-145 before TGF-β1 treatment 

prevented this increase in versican protein.  

To investigate whether miR-145 ability to inhibit dermal myofibroblast transdifferentiation was 

due to the regulation of V0 versican isoform, a versican targeting siRNA was used to perform a 

loss of function experiment in HDF. HDFs were seeded and transfected with either versican or a 

non-targeting negative siRNA, prior to TGF-β1 treatment to induce the dermal myofibroblast 

phenotype. Myofibroblast marker αSMA expression was assessed by qRT-PCR, immunoblotting 

and immunohistochemistry. The expression of versican isoforms and other myofibroblasts 

markers COL1A1 and FN1-EDA were assessed via qRT-PCR. 

To assess the efficacy of the versican knock-down, V0 and V1 isoform transcript levels were 

assessed by qRT-PCR. The versican siRNA was able to decrease versican V0 transcript levels to 

~0.35 fold (figure 7.10A) and versican V1 transcript levels to ~0.3 fold (figure 7.10B). As seen in 

figure 7.4, TGF-β1 treatment was able to increase versican V0 and V1 expression. Here, TGF-β1 

increased versican V0 expression by ~10 fold, and V1 isoform by ~3.5 fold, this is reduced to ~2 

fold and ~1 fold respectively in HDFs where versican is knocked down. Therefore, the knock-  
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Figure 7.8: miR-145 downregulated V0 and V1 expression in human dermal 

fibroblasts, and attenuated the TGF-β1 associated increase in V0, but not in V1 

versican transcript levels. Two primary HDFs, HDF286 (data shown here) and Promocell 

HDF (data not shown), were transiently transfected with mock (nuclease free water), a negative 

non-targeting premiR or premiR-145 (50 nM) 24 h prior to treatment with TGF-β1 for 48 h. After 

treatment, fibroblasts were harvested and the RNA was isolated and used to generate cDNA for 

qRT-PCR analysis using primers designed to amplify V0 and V1 versican isoforms and U6, as an 

endogenous control.  Each bar on the figure represents the mean relative quantification of 

versican V0 (A) and versican V1 (B) transcript levels compared to endogenous U6, for each 

transfection plus/minus treatment relative to untreated negative premiR. Statistical analysis 

was performed by a paired two tailed student’s t-test, and statistical significance is shown on 

the figure by *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. If not indicated by a bar, the black 

significance asterix are compared to the untreated, negative premiR transfected, negative 

control. Blue significance asterix indicate significance compared to the untreated counterpart, 

e.g. premiR-145 transfected, TGF-β1 treated compared with premiR-145 transfected untreated. 

Bars also indicate statistical comparisons.  Important significant data is shown in red.  Error bars 

represent the SEM.  N=3, independent experiments. 
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Figure 7.9: miR-145 overexpression attenuated TGF-β1 induced versican 

protein expression in human dermal fibroblasts. Two primary HDF, HDF286 (data 

not shown) and Promocell (shown here), were transiently transfected with a negative non-

targeting premiR or premiR-145 (50 nM) 24 h prior to treatment with 5 ng/ml TGF-β1 for 48 h. 

After treatment, fibroblasts were harvested and total protein lysates were prepared. Protein 

lysate (20 µg) was run on a 3–8% (w/v) tris acetate gradient gel and transferred to a 

nitrocellulose membrane and immunoblotted for versican, αSMA and β-actin as the loading 

control. Protein changes were quantified by densitometry using Image J and are shown in figure 

B, relative to GAPDH. Figure A shows a representative blot. Statistical analysis was performed 

by a paired two tailed student’s t-test, and statistical significance is shown on the figure by 

*p<0.05. N=3, independent experiments for each NOF.  
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down adequately prevented the TGF-β1 increase in both isoforms, and was able to knock-down 

endogenous versican levels. 

Hattori et al., (2011) showed that the knock-down of versican in HDFs resulted in the inhibition 

of the myofibroblast transdifferentiation. To investigate whether the transient knock-down of 

versican could affect the myofibroblast phenotype, and therefore could be a mechanism by 

which miR-145 regulates the myofibroblast transdifferentiation, αSMA expression was assessed 

in HDFs transfected with versican siRNA, then treated with TGF-β1. αSMA transcript levels were 

elevated by ~15 fold in HDFs transfected with negative siRNA were treated with TGF-β1 (figure 

7.11). This increase in αSMA was further elevated (~21 fold) in HDFs were versican levels were 

knocked-down, but this was not statistically significantly.  

The effect of versican knock-down on the αSMA stress fibre formation was assessed using 

immunocytochemistry. HDFs were seeded onto coverslips, they were then transient transfected 

with versican siRNA or negative siRNA, prior to treatment with TGF-β1 for 48 h. The coverslips 

were washed, fixed, permeablised and after blocking, were then incubated with a FITC-

conjugated αSMA antibody. TGF-β1 induced αSMA stress fibre formation typical of 

myofibroblasts in HDFs transfected with negative siRNA, when versican was knocked down in 

HDFs, it had no effect on TGF-β1’s ability to induce αSMA stress fibres (figure 7.12). 

The effect of versican’s knock-down on the effect of TGF-β1 to induce other markers of 

myofibroblast phenotype, COL1A1 and FN1-EDA. HDFs with knocked down versican levels had a 

slightly reduced elevation of COL1A1 expression with TGF-β1 treatment (~2 fold, compared to 

~3 fold in negative premiR transfected, then treated) (figure 7.13A). The TGF-β1 induced FN1-

EDA expression was reduced to ~5 fold from ~7 fold compared to negative siRNA HDF (figure 

7.13B). However, these effects were not significant, therefore versican knock-down was not able 

to effect the acquisition of the dermal myofibroblast transdifferentiation. 

 

7.5 miR-145 was able to partially rescue the dermal myofibroblast 

transdifferentiation.  

The data presented in this chapter has outlined miR-145 to have an anti-fibrotic role in dermal 

fibroblasts, in addition to oral fibroblasts (Chapter 4). Overexpression of miR-145 was able to 

prevent TGF-β1 dermal myofibroblast transdifferentiation. Again, to see whether this is 

therapeutically relevant, miR-145 was introduced into induced dermal myofibroblasts to assess 

whether it is able to reverse the myofibroblast phenotype. HDFs were treated with TGF-β1 for  
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Figure 7.10: Versican siRNA reduced V0 and V1 isoform transcript levels. Two 

primary HDFs, HDF286 (data shown here) and HDF283 (data not shown), were transiently 

transfected with mock (nuclease free water), a negative non-targeting siRNA or versican siRNA 

(50 nM) 24 h prior to treatment with TGF-β1 for 48 h. After treatment, fibroblasts were 

harvested and the RNA was isolated and used to generate cDNA for qRT-PCR analysis using 

primers designed to amplify V0 and V1 versican isoforms and U6, as an endogenous control.  

Each bar on the figure represents the mean relative quantification of versican V0 (A) and 

versican V1 (B) transcript levels compared to endogenous U6, for each transfection plus/minus 

treatment relative to untreated negative premiR. Statistical analysis was performed by a paired 

two tailed student’s t-test, and statistical significance is shown on the figure by *p<0.05, 

***p<0.001, ****p<0.0001. If not indicated by a bar, the black significance asterix are compared 

to the untreated, negative premiR transfected, negative control. Blue significance asterix 

indicate significance compared to the untreated counterpart, e.g. premiR-145 transfected, TGF-

β1 treated compared with premiR-145 transfected untreated. Bars also indicate statistical 

comparisons. Important significant data is shown in red. Error bars represent the SEM. N=3, 

independent experiments. 

 

 

 

 

 

 

 

 

n
e
g

a
ti

v
e
 s

iR
N

A

v
e
rs

ic
a
n

 s
iR

N
A

n
e
g

a
ti

v
e
 s

iR
N

A

v
e
rs

ic
a
n

 s
iR

N
A

0

1

2

3

4

5

V e r s ic a n  V 1

r
e

la
ti

v
e

 V
1

 e
x

p
r
e

s
s

io
n

c
o

m
p

a
r
e

d
 t

o
 e

n
d

o
g

e
n

o
u

s
 U

6

T G F -B e ta  1  tr e a te d

****

*

****
**** 

* 

**** 
 
 

n
e
g

a
ti

v
e
 s

iR
N

A

v
e
rs

ic
a
n

 s
iR

N
A

n
e
g

a
ti

v
e
 s

iR
N

A

v
e
rs

ic
a
n

 s
iR

N
A

0

5

1 0

1 5

2 0

V e r s ic a n  V 0

r
e

la
ti

v
e

 V
0

 e
x

p
r
e

s
s

io
n

 c
o

m
p

a
r
e

d
 t

o
 e

n
d

o
g

e
n

o
u

s
 U

6

T G F -B e ta  1  tr e a te d

****

****

**** 
 

 

**** 

 

**** 

 

**** 



237 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.11: Versican siRNA had no effect on TGF-β1 induced αSMA expression. 

Two primary HDFs, HDF286 (data shown here) and HDF283 (data not shown), were transiently 

transfected with mock (nuclease free water), a negative non-targeting siRNA or versican siRNA 

(50 nM) 24 h prior to treatment with TGF-β1 for 48 h. After treatment, fibroblasts were 

harvested and the RNA was isolated and used to generate cDNA for qRT-PCR analysis using 

primers designed to amplify αSMA and U6, as an endogenous control.  Each bar on the figure 

represents the mean relative quantification of αSMA (A) transcript levels compared to 

endogenous U6,  for each transfection plus/minus treatment relative to untreated negative 

premiR. Statistical analysis was performed by a paired two tailed student’s t-test, and statistical 

significance is shown on the figure by *p<0.05, ***p<0.001, ****p<0.0001. If not indicated by a 

bar, the black significance asterix are compared to the untreated, negative premiR transfected, 

negative control. Blue significance asterix indicate significance compared to the untreated 

counterpart, e.g. premiR-145 transfected, TGF-β1 treated compared with premiR-145 

transfected untreated. Bars also indicate statistical comparisons.  Important significant data is 

shown in red.  Error bars represent the SEM.  N=3, independent experiments. 
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Figure 7.12: Versican knock-down had no effect on TGF-β1 induced αSMA 

stress fibre formation in human dermal fibroblasts. HDFs were seeded onto 

coverslips overnight, transiently transfected with negative siRNA, or versican siRNA (50 nM) 24 

h prior to being treated with 5 ng/ml TGF-β1 for 48 h. The coverslips were washed in PBS, before 

being fixed in 100% methanol for 10 min, they were then permeablised using 4 mM sodium 

deoxycholate for 10 min, and blocked using 2.5% (w/v) BSA in PBS for 30 min before incubation 

with a primary FITC-conjugated αSMA antibody at 4 oC overnight. The coverslips were then 

washed in PBS before mounting on microscope slides using DAPI containing mounting medium. 

Fluorescent images were taken using a microscope, using Pro-plus 7 imaging software at 40x 

magnification. Representative pictures are shown in A.  The amount of fluorescence intensity 

per cell was quantified using Image J, and displayed in B as the mean relative fluorescent 

intensity for HDF283. Statistical analysis was performed by a paired two tailed student’s t-test, 

and statistical significance is shown on the figure by *p<0.05, negative premiR treated compared 

to treated. N=3, independent experiments. Error bars show the SEM. N=2, independent 

experiments for each HDF286 and HDF283.  
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Figure 7.13: Versican siRNA had no effect on the TGF-β1 induced COL1A1 and 

FN1-EDA expression. Two primary HDFs, HDF286 (data shown here) and HDF283 (data not 

shown), were transiently transfected with mock (nuclease free water), a negative non-targeting 

siRNA or versican siRNA (50 nM) 24 h prior to treatment with TGF-β1 for 48 h. After treatment, 

fibroblasts were harvested and the RNA was isolated and used to generate cDNA for qRT-PCR 

analysis using primers designed to amplify COL1A1, FN1-EDA and U6, as an endogenous control.  

Each bar on the figure represents the mean relative quantification of COL1A1 (A) and FN1-EDA 

(B) transcript levels compared to endogenous U6, for each transfection plus/minus treatment 

relative to untreated negative premiR. Statistical analysis was performed by a paired two tailed 

student’s t-test, and statistical significance is shown on the figure by *p<0.05, ***p<0.001, 

****p<0.0001. If not indicated by a bar, the black significance asterix are compared to the 

untreated, negative premiR transfected, negative control. Blue significance asterix indicate 

significance compared to the untreated counterpart, e.g. premiR-145 transfected, TGF-β1 

treated compared with premiR-145 transfected untreated. Bars also indicate statistical 

comparisons.  Important significant data is shown in red.  Error bars represent the SEM. N=3, 

independent experiments. 
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48 h, before being transiently transfected with negative premiR, or a low (5 nM) or high (50 nM) 

dose of premiR-145 for 48 h. The fibroblasts were then harvested to analyse their molecular 

markers of myofibroblast phenotype via qRT-PCR, immunoblotting and immunocytochemistry.  

Induced dermal myofibroblasts, transiently transfected with a negative premiR had an elevated 

αSMA mRNA expression of ~20 fold above untreated HDFs (figure 7.14A). Transfection of TGF-

β1 induced dermal myofibroblasts with the high dose of premiR-145 (50 nM) was significantly 

able to completely reduce αSMA transcript levels, to the same level as the untreated control.  

Transfection of the lower dose of premiR-145 (5 nM), slightly reduced αSMA transcript levels to 

~15 fold, however this was not significant. In untreated HDFs controls, both of the doses of 

premiR-145 were able to downregulate αSMA mRNA levels by ~0.2 fold, this was not previously 

seen in HDFs transfected, then treated (figure 7.4).  Similar to oral fibroblasts, premiR-145 (50 

nM) transfection was able to slightly reduce the TGF-β1 induced myofibroblast elevated αSMA 

protein levels (figure 7.14B).  

The myofibroblast associated αSMA stress fibres were visualised by immunocytochemistry using 

a FITC-conjugated αSMA antibody. HDFs were seeded on coverslips before treating them with 

TGF-β1 to induce dermal myofibroblasts, and transfecting with negative premiR, or premiR-145 

(5nM or 50nM). The coverslips were fixed, permeabilised and incubated with the FITC-

conjugated αSMA antibody. Induced myofibroblasts transfected with negative premiR or premiR 

(5 nM) displayed striking αSMA stress fibres, typical of myofibroblasts, and had an increase in 

fluorescence ~2.5 fold above untreated controls (figure 7.15).  Transfection of the higher dose 

of premiR-145 (50 nM) resulted in a decrease in total fluorescence (not significant), and no 

visible change in the amount of αSMA stress fibres.  

The ability of miR-145 to effect myofibroblasts markers COL1A1 and FN1EDA, post myofibroblast 

induction was investigated by qRT-PCR. Both genes saw a dose dependent reduction in 

expression in untreated HDFs, COL1A1 expression was decreased by ~0.4 and ~0.1 fold in premiR 

5nM and 50 nM HDFs respectively (figure 7.16A), and FN1-EDA expression was decreased by 

~0.3 and ~0.2 in 5 nM and 50 nM premiR-145 transfection respectively (figure 7.16B). COL1A1 

levels in induced myofibroblasts increased by ~3 fold compared to untreated HDFs, the higher 

overexpression (50nM dose) of miR-145 caused a significant reduction in COL1A1 (~1.5 fold) 

(figure 7.16A). However, the lower dose (5 nM) caused a small reduction in COL1A1 transcript 

(~2 fold), however this was not a significant change. FN1-EDA levels in TGF-β1 induced 

myofibroblasts increased by ~4 fold compared to untreated HDFs (figure 7.16B). The doses of  
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Figure 7.14: Overexpression of miR-145 in dermal induced myofibroblasts 

reduced αSMA transcript levels, but not protein levels.  HDF286 were treated with 

5 ng/ml TGF-β1 or serum free media, then transiently transfected with 5 nM premiR-145, 50 nM 

premiR-145 or a negative non-targeting premiR. The transfection was left for 48 h before being 

harvested. RNA was isolated and used to generate total cDNA for qRT-PCR analysis using primers 

for αSMA and U6, as an endogenous control.  Total protein lysates were also extracted, and 20 

µg was resolved on a 3-8% (w/v) tris acetate gradient gel and transferred to a nitrocellulose 

membrane and used for immunoblotting using antibodies raised to human αSMA and β-actin as 

a loading control. Each bar on the figure A represents the mean relative quantification of αSMA 

transcript levels compared to endogenous U6, for each transfection plus/minus treatment 

relative to untreated negative premiR. Protein changes were quantified by densitometry using 

Image J and are shown in figure B, relative to GAPDH. Figure C shows a representative blot. 

Statistical analysis was performed by a paired two tailed student’s t-test, and statistical 

significance is shown on the figure by *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. If not 

indicated by a bar, the black significance asterix are compared to the untreated, negative premiR 

transfected, negative control. Blue significance asterix indicate significance compared to the 

untreated counterpart, e.g. premiR-145 transfected, TGF-β1 treated compared with premiR-145 

transfected untreated. Bars also indicate statistical comparisons.  Important significant data is 

shown in red.  Error bars represent the SEM.  N=3, independent experiments for each NOF. 
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Figure 7.15: miR-145 overexpression reduced αSMA stress fibre formation in 

dermal fibroblasts. HDF286s were seeded onto coverslips overnight, treated with 5 ng/ml 

TGF-β1 for 48 h, or serum free media, then were transiently transfected with negative premiR, 

or premiR-145 (at two doses 5 nM or 50 nM). The coverslips were washed in PBS, before being 

fixed in 100% methanol for 10 min, they were then permeablised using 4 mM sodium 

deoxycholate for 10 min, and blocked using 2.5% (w/v) BSA in PBS for 30 min before incubation 

with a primary FITC-conjugated αSMA antibody at 4 oC overnight.  The coverslips were then 

washed in PBS before mounting on microscope slides using DAPI containing mounting medium. 

Fluorescent images were taken using a fluorescent light microscope, using Pro-plus 7 imaging 

software at 40x magnification. Representative pictures are shown in A.  The amount of 

fluorescence intensity per cell was quantified using Image J, and displayed in B as the mean 

relative fluorescent intensity for DENF319. Statistical analysis was performed by a paired two 

tailed student’s t-test, and statistical significance is shown on the figure by *p<0.05, premiR-145 

(5nM) treated compared to treated. N=3, independent experiments. Error bars show the SEM. 
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Figure 7.16: Overexpression of microRNA-145 in induced dermal 

myofibroblasts reduced the transcript levels of myofibroblast markers 

COL1A1 and FN1-EDA. HDF286s were treated with 5 ng/ml TGF-β1 or serum free media, 

then transiently transfected with 5 nM premiR-145, 50 nM premiR-145 or a negative non-

targeting premiR. The transfection was left for 48 h before being harvested. RNA was isolated 

and used to generate total cDNA for qRT-PCR analysis using primers for COL1A1, FN1-EDA and 

U6, as an endogenous control.  Each bar on the figure represents the mean relative 

quantification of COL1A1 (A) and FN1-EDA (B) transcript levels compared to endogenous U6, for 

each transfection plus/minus treatment relative to untreated negative premiR. Statistical 

analysis was performed by a paired two tailed student’s t-test, and statistical significance is 

shown on the figure by **p<0.01, ***p<0.001 and ****p<0.0001. If not indicated by a bar, the 

black significance asterix are compared to the untreated, negative premiR transfected, negative 

control. Blue significance asterix indicate significance compared to the untreated counterpart, 

e.g. premiR-145 transfected, TGF-β1 treated compared with premiR-145 transfected untreated. 

Bars also indicate statistical comparisons.  Important significant data is shown in red.  Error bars 

represent the SEM. N=3, independent experiments. 
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premiR-145 transfected into these myofibroblasts caused a stepwise reduction in FN1-EDA 

levels, the low dose (5 nM) decreased expression to ~2 fold, and the high dose completely 

restored FN1-EDA levels back to untreated levels, around 1 fold.  

The expression of proteoglycan versican was assessed by qRT-PCR and immunoblotting in 

treated then transfected dermal fibroblasts. TGF-β1 induced myofibroblasts had elevated 

expression of both versican isoforms ~3 fold for V0 and ~2 fold for V1 (figure 7.17), a lower fold 

change to that seen in the dermal fibroblasts that were transfected prior to the TGF-β1 

treatment (figure 7.8). miR-145 overexpression was able to cause a significant dose response 

decrease in versican expression of both the isoforms in untreated HDFs (for V0:~0.2 and ~0.02 

fold, for V1:~0.5 and ~0.2 fold; in 5 nM and 50 nM overexpression respectively) and HDFs 

induced to be myofibroblasts. Induced myofibroblasts versican V0 expression was decreased to 

~2 and ~0.5 fold in treated HDFs transfected transfected with premiR-145 5 nM and 50 nM 

respectively. Overexpression of miR-145, reversed the myofibroblast associated increase in 

versican V1 expression at both of the doses of premiR used (~1 fold and 0.8 fold). Interestingly, 

premiR-145 was able reduce the expression of V1 versican in HDFs, but was unable to inhibit its 

increase in expression (figure above 7.8B). miR-145 overexpression in induced myofibroblasts 

was able to reverse the TGF-β1 myofibroblasts associated increase in versican protein levels 

(figure 7.18). 

The efficacy of the overexpression of miR-145 using premiR-145 to transfect TGF-β1 induced 

dermal myofibroblasts was validated by qRT-PCR. Transfection using premiR-145 (5 nM) caused 

an average of ~10 fold increase in mature miR-145 levels in normal HDFs, and this was similar in 

to the level of overexpression in induced dermal myofibroblast which had a ~14 fold 

overexpression (figure 7.19). The transfection of the higher dose of premiR-145 (50nM) caused 

an average of ~200 fold increase in mature miR-145 levels in normal HDF, and in TGF-β1 induced 

myofibroblasts, the transfection only caused a ~33 fold increase.   
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Figure 7.17: Overexpression of microRNA-145 in induced dermal 

myofibroblasts reduced V0 and V1 versican isoform transcript levels. HDF286s 

were treated with 5 ng/ml TGF-β1 or serum free media, then transiently transfected with 5 nM 

premiR-145, 50 nM premiR-145 or a negative non-targeting premiR. The transfection was left 

for 48 h before being harvested. RNA was isolated and used to generate total cDNA for qRT-PCR 

analysis using primers for V0 and V1 versican isoforms and U6, as an endogenous control.  Each 

bar on the figure represents the mean relative quantification of versican V0 (A) and versican V1 

(B) transcript levels compared to endogenous U6, for each transfection plus/minus treatment 

relative to untreated negative premiR. Statistical analysis was performed by a paired two tailed 

student’s t-test, and statistical significance is shown on the figure by *p<0.05. If not indicated by 

a bar, the black significance asterix are compared to the untreated, negative premiR transfected, 

negative control. Blue significance asterix indicate significance compared to the untreated 

counterpart, e.g. premiR-145 transfected, TGF-β1 treated compared with premiR-145 

transfected untreated. Bars also indicate statistical comparisons.  Important significant data is 

shown in red. Error bars represent the SEM. N=3, independent experiments. 
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Figure 7.18: miR-145 overexpression caused a non-significant attenuation of 

TGF-β1 induced versican protein expression in human dermal fibroblasts. 

HDF286 (data shown) and Promocell (data not shown), were treated with 5 ng/ml TGF-β1 for 48 

h, then transiently transfected with a negative non-targeting premiR or premiR-145 (50 nM) for 

48 h. After transfection, fibroblasts were harvested and total protein lysates were prepared. 

Protein lysate (20 µg) was run on a 3–8% (w/v) tris acetate gradient gel and transferred to a 

nitrocellulose membrane and immunoblotted for versican, αSMA and β-actin as the loading 

control. Figure A shows a representative blot. Protein changes were quantified by densitometry 

using Image J and are shown in figure B, relative to β-actin. The figure shows a representative 

blot. N=3, independent experiments for each NOF.  

  

n
e
g

a
ti

v
e
 p

re
m

iR

p
re

m
iR

-1
4
5

n
e
g

a
ti

v
e
 p

re
m

iR

p
re

m
iR

-1
4
5
 

0

2

4

6

v e r s ic a n

v
e

r
s

ic
a

n
 p

r
o

te
in

T G F -B e ta  1  tr e a te d



247 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.19: PremiR-145 caused overexpression of  mature microRNA-145 in 

dermal fibroblasts. HDF286s were treated with 5 ng/ml TGF-β1 or serum free media, then 

transiently transfected with 5 nM premiR-145, 50 nM premiR-145 or a negative non-targeting 

premiR. Fibroblasts were harvested 48 h after initial transfection and the RNA was isolated and 

used to generate specific miR-145 and RNU 48 cDNA for qRT-PCR analysis using primers for miR-

145 and RNU 48, as an endogenous control. Each bar on the figure represents the mean relative 

quantification of miR-145 transcript levels compared to endogenous U6, for each transfection 

plus/minus treatment relative to untreated negative premiR. Statistical analysis was performed 

by a paired two tailed student’s t-test, and statistical significance is shown on the figure by 

***p<0.001 and ****p<0.0001. If not indicated by a bar, the black significance asterix are 

compared to the untreated, negative premiR transfected, negative control. Blue significance 

asterix indicate significance compared to the untreated counterpart, e.g. premiR-145 

transfected, TGF-β1 treated compared with premiR-145 transfected untreated. Bars also 

indicate statistical comparisons.  Important significant data is shown in red.  Error bars represent 

the SEM. N=3, independent experiments. 
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7.6 Summary  

miR-145 was able to inhibit and reverse TGF-β1 induced dermal myofibroblasts. TGF-β1 

treatment in dermal fibroblasts caused an upregulation of miR-145, versican V0 and V1 

expression. Loss of function of versican had no effect on TGF-β1’s ability to induce dermal 

myofibroblasts.  
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Chapter 8: Discussion 
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8.1 Introduction 

Gradual modifications between the tumour and its surrounding stromal microenvironment 

result in tumour progression. It is thought that transformed epithelial cells have altered 

paracrine signalling which can promote pro-tumourigenic stromal remodelling, which in turn 

helps to create a more permissive environment to encourage tumour growth, invasion and 

metastasis (Pietras & Ostman, 2010). Cancer associated fibroblasts (CAFs), in particular, have 

been shown to modulate many important aspects of tumour progression: ECM remodelling, 

cancer cell migration/invasion, angiogenesis, immune cell infiltrate. Myofibroblasts, like CAFs, 

promote invasive tumours and are predictors of poor prognosis (Kellermann et al., 2007; Tsujino 

et al., 2007; Surowiak et al., 2007).  In OSCC, the presence of myofibroblasts is the strongest 

predictor of mortality compared to any of tumour characteristics including stage, grade or lymph 

node status (Marsh et al., 2011). Therefore, it is crucial to discover how myofibroblasts arise and 

identify their contribution towards tumour development. A significant proportion of 

myofibroblast-like CAFs found in the tumour microenvironment are thought to have arisen from 

resident normal fibroblasts. Understanding the molecular mechanism of myofibroblast 

transdifferentiation is therefore key in developing future therapeutics to halt the pro-

tumourigenic contributions of these CAFs.  

Previously our lab found that the downregulation of miR-145 was important for orchestrating 

stromal epithelial interactions between fibroblasts and an OSCC cell line, induced by cigarette 

smoke extract (Pal et al., 2013). The current study investigated the role of miR-145 in the 

fibroblasts within the tumour microenvironment, and found convincing evidence revealing that 

this small non-coding RNA inhibits and partially reverses oral and dermal myofibroblast 

transdifferentiation. It was shown to be involved in stromal remodelling, regulating an 

oncogenic matricellular proteoglycan versican, and regulating paracrine cell migration; 

identifying the tantalising therapeutic potential of microRNA-145 for the treatment of 

desmoplastic stroma and fibrotic disorders.  

 

8.2 Stromal fibroblasts in oral squamous cell carcinomas 

Cancer associated fibroblasts (CAFs) have been found to arise by a number of different 

mechanisms in the tumour microenvironment, including from tumour/normal epithelial cells 

undergoing EMT, adipocytes, fibrocytes, endocytes, pericytes, bone marrow derived and 

resident mesenchymal stem cells (MSCs) (Otranto et al., 2012). This study used normal oral 

fibroblast (NOFs) extracted from normal human gingiva, and treated them with factors that 
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trans-activate them into phenotypes like that of CAFs found within the tumour 

microenvironment. Primary CAFs, fibroblasts isolated from various OSCCs, were also used and 

compared to the NOFs phenotypes. The main CAF under investigation was the myofibroblast-

like CAF, therefore myofibroblast molecular markers αSMA, COL1A1 and FN1-EDA were used to 

assess the fibroblast phenotype. 

Studies have shown OSCC cell lines be able to provoke transdifferentiation of oral fibroblasts 

into myofibroblasts, by co-culture or conditioned media treatment. In most of these cases, the 

growth factor found to be necessary for transdifferentiation is TGF-β1 (Lewis et al., 2004; Marsh 

et al., 2011). Exogenous treatment of fibroblasts with recombinant TGF-β1 is often used to 

induce oral myofibroblast in vitro (Sobral et al., 2011). In this study the optimal treatment of 

TGF-β1 was found to be 5 ng/ml for 48 h to induce NOFs to express markers of myofibroblast 

transdifferentiation. When NOFs were treated with OSCC cell line conditioned media from 

Cal27, H357 and VB6, there was little effect on myofibroblast transdifferentiation, in contrast to 

previous studies. It is likely that the differences seen between the studies are the result of 

differences in precise methodology of the experiments, for example the collection of cancer cell 

line conditioned media. 

In this study when NOFs were treated with conditioned media from VB6 (a H357 cell line stably 

overexpressing integrin αvβ6), there was a slight decrease in αSMA transcript levels and a small 

increase in αSMA protein expression. Marsh et al., (2011) found convincing evidence that co-

culturing VB6 and NOFs resulted in myofibroblast transdifferentiation through promoting TGF-

β1 activation. Marsh et al., (2011) used equal numbers of each VB6 cell line and primary oral 

fibroblasts seeded on coverslips overnight, then after media changed left for 48 h. Whereas our 

study used NOFs treated with conditioned media which was collected for 24 h, and used as a 

treatment for 48 h. Conditioned media growth factors can be exhausted, whereas co-cultures 

provide continual stimulation of both cells. NOFs may require longer exposure to VB6 

conditioned media, or may require cross-talk between the VB6 and fibroblasts or contact 

dependent signalling to induce myofibroblasts.  

Four different NOFs were used in this study, OF26, DENF008, DENF316 and DENF319, although 

most of the experiments used just DENF316 and DENF319. There was a certain amount of 

biological variability observed from the NOFs throughout the results, especially in response to 

TGF-β1 treatment. The best read out for TGF-β1 response was the induced expression of αSMA, 

consistently there was a larger increase in αSMA in DENF316 than DENF319, however even 

within the same primary fibroblasts there was a range of different responses varying from ~ 4 
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fold increase- ~100 fold increase, and sometimes the αSMA increase was not significant due to 

variability. An explanation these differences in the levels of stimulation may be due to the 

recombinant protein itself, when it was prepared, the batch number, storage, number of freeze 

thaw cycles etc. In addition, the response could also be altered by the condition of the NOFs, 

the passage number, stress in culture or confluency of the cells.  

There was some variability of the NOFs in their expression of other myofibroblast markers, 

suggesting that different NOFs express slightly different markers of activation. DENF319, for 

example, consistently had no TGF-β1 mediated increase in COL1A1 expression whereas 

DENF316 mostly showed an increase in COL1A with TGF-β1 treatment. 

 

8.3 Molecular comparison of NOFs and CAFs 

There was no difference in expression of myofibroblast markers between fibroblasts isolated 

from OSCC (CAFs) and NOFs. However, analysis of the myofibroblast markers within NOFs 

showed that NOFs isolated in Sheffield and Beatson Institute had different molecular expression, 

for example BICR NOFs had a higher expression of FN1-EDA. 

 The CAFs used, were previously characterised (Hassona et al., 2014; Hassona et al., 2013; Lim 

et al., 2011), and were classified into separate subtypes depending on the classification of the 

OSCC that they are extracted from. The tumours were classified as genetically stable or unstable 

depending on the number of copy number alterations, amount of loss of heterozygosity, and 

the presence/absence of mutations in p53 and p16 INK4A. Previously CAFs from genetically 

stable OSCC were shown to be molecularly distinct from CAFs from genetically unstable OSCCs,  

which were easily induced into a senescent phenotype by TGF-β1 released from OSCC cell lines 

and could promote invasion through MMP2 secretion. On comparing gene expression of the CAF 

subtypes αSMA was significantly upregulated in GU-OSCC CAFs compared to GS-OSCC CAFs and 

NOFs (Lim et al., 2011).  

Contrary to the findings outlined in Lim et al., (2011), using the same cells, this study found that  

there was no difference in the expression of myofibroblast markers between the GU-OSCC CAFs 

and GS-OSCC CAFs, or NOFs. This surprising result suggests that some of the CAF phenotype may 

have been lost in culture. Some CAFs were very slow growing, therefore extended time in culture 

may have resulted in their gradual change in phenotype. However, in line with the previous 

reports, senescence associated β-galactosidase assays were used in our lab (data not reported 

here) and confirmed that the GU-OSCC CAFs used were senescent. The majority of the CAFs 
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looked microscopically very similar to phenotypically normal fibroblasts, however a number of 

them had a stretched flattened looking appearance, consistent with a senescent cell. In addition, 

immunocytochemistry showed no difference in αSMA staining and observed cell shapes 

between CAFs and NOFs. When NOFs and CAFs were stimulated with TGF-β1 there appeared to 

be no difference between the cell types’ responses; they both displayed bright, vivid αSMA 

stress fibres in response to TGF-β1 treatment.   

CAFs treated with TGF-β1 transdifferentiated readily into myofibroblasts, and generally 

expressed higher levels of myofibroblast markers relative to untreated controls when compared 

to TGF-β1 stimulated NOFs. However, MCA, a CAF from Brazil, showed little response to 

stimulation from TGF-β1, or conditioned media from Cal27 or VB6 OSCC-derived cells.  BICR CAFs 

had a greater induction of expression of αSMA and a greater amount of quantified αSMA stress 

fibres, in response to TGF-β1. TGF-β1 also caused a greater increase in FN1-EDA expression in 

CAFs compared to NOFs, however the increase in FN1-EDA in TGF-β1 treated BICR-3 CAFs was 

not significant. Overall, this data suggests that fibroblasts extracted from the tumour more 

readily respond to TGF-β1 than normal fibroblasts.  

The ability of NOFs and CAFs to stimulate paracrine migration was also compared, and no 

difference was found. The result was  contrary to previous studies, which found that oral 

myofibroblasts and CAFs promoted the paracrine migration and invasion of cancer cells (Sobral 

et al., 2011; Marsh et al., 2011; Hassona et al., 2014). CAFs and myofibroblasts are known to 

have a migratory and invasive secretome, releasing factors such as EGF, HGF, SF, MMPs, TGF-β, 

etc. which are known to promote EMT and invasion (Ostman & Augsten, 2009), therefore the 

data that suggests CAFs did not promote migration and invasion was surprising. The reasons for 

this unexpected result are unclear, but again point to the possibility of phenotypic 

characteristics of CAFs being lost in culture. 

 

8.4 miR-143 and miR-145 cluster in CAFs and TGF-β1 induced myofibroblasts  

Molecularly the only difference observed between NOFs and CAFs was the expression of the 

miR-143/5 cluster. CAFs had a ~20 fold and ~4 fold greater expression of mature miR-143 and 

miR-145 respectively.  For both miR-143 and miR-145, the expression was highest in CAFs from 

GS-OSCC and this was the only subtype of fibroblast where there was a significant difference 

compared to NOFs. This result was the opposite of what was expected, as miR-145 was 

downregulated in CAFs from invasive bladder cancers (Enkelmann et al., 2011), however this 

was only in the microRNA microarray data and was not validated by qRT-PCR. Published data 
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from our lab also suggested that miR-145 is downregulated in in the tumour microenvironment 

as the treatment of NOFs with cigarette smoke extract promoted the downregulation of miR-

145, which stimulated paracrine cancer cell migration.  Our lab and others (Coppe et al., 2008) 

have shown that oral fibroblasts can promote paracrine cancer cell migration in response to 

cigarette smoke extract, suggesting this may be a stromal event in oral tumourigenesis.  

Consistent with higher miR-145 expression in CAFs, TGF-β1 treatment caused an increase in 

mature miR-145 levels in NOFs. For DENF319 and OF26 NOFs this was a significant increase, but 

for DENF008 and DENF316 NOFs the trend indicates that TGF-β1 upregulates mature miR145 

expression, however due to variability in the responses it was not found to be statistically 

significant. In addition, CAFs showed a similar response of the cluster to TGF-β1. TGF-β1 caused 

an upregulation of miR-145 levels in BICR-59, BICR-3 and BIR-63. Taken together, this data is 

consistent with other studies which have previously shown TGF-β1 to increase the expression of 

miR-145 transcription in human coronary smooth muscle cells (Long & Miano, 2011), dermal 

(Gras et al.) and pulmonary fibroblasts (Yang et al., 2013). The study  in smooth muscle  cells 

revealed the presence of a CArG box and SBE (smad binding element) upstream in miR-143/5 

enhancer elements, therefore revealing how TGF-β1 signalling and myocardin/SRF activates the 

expression of miR-145 (Long & Miano, 2011).  

In light of CAFs and TGF-β1 treated NOFs having elevated miR-145 expression, it was surprising 

that treatment of NOFs with conditioned media from VB6, a cell line overexpressing αvβ6, a 

known activator of TGF-β1 signalling (Thomas et al., 2002), caused a significant downregulation 

of mature miR-145 levels in DENF316 NOFs and CAFs. The only NOFs used in this experiment 

was DENF316, which did not shown an increase in miR-145 expression in response to TGF-β1, it 

would be interesting to perform the experiment again using DENF319 NOFs, which have TGF-β1 

mediated miR-145 upregulation, to confirm this result. VB6 conditioned media failed to 

transdifferentiate NOFs into myofibroblasts perhaps reflecting the lack of activation of TGF-β1 

signalling.  

However, the VB6 mediated downregulation of miR-145 is interesting, and implies that miR-145 

may play a key role in both TGF-β1 signalling and myofibroblasts transdifferentiation, if indeed 

VB6 is capable of inducing myofibroblasts transdifferentiation. This result supports the data in 

this thesis which suggests miR-145 may play an anti-myofibroblastic role. The downregulation 

of miR-145 may be an early response of fibroblasts in the transdifferentiation process, it may 

allow TGF-β1 that has been activated by αvβ6 to have its effect. Further work to test this 

hypothesis needs to be done, miR-145 expression should be analysed in NOFs at timepoints in 
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the TGF-β1 and potentially VB6-mediated transdifferentiation process. To investigate whether 

VB6 conditioned media is able to induce myofibroblasts, NOFs could be treated with conditioned 

media for longer time periods. If this is achieved then the effect of overexpression of miR-145 

could be tested to evaluate whether it is able to prevent VB6 induced transdifferentiation. 

 

8.5 Effect of microRNA-145 in oral fibroblasts and CAFs.  

A number of microRNAs have been implicated in orchestrating myofibroblast 

transdifferentiation, for example miR-21 and miR-146a (Sachdeva et al., 2012; Yao et al., 2011). 

One study in ovarian CAFs found that miR-31, miR-214 and antimiR-155 transfection into CAFs 

was able to reverse the CAF phenotype (Mitra et al., 2012). In this study, gain of function assays 

revealed that miR-145 was able to block the and partially reverse TGF-β1 induced oral 

myofibroblasts transdifferentiation in all NOFs tested. miR-145 inhibited the TGF-β1 induction 

of the transcripts of all myofibroblasts markers, with the most dramatic effect on αSMA. The 

inhibition of αSMA expression was also shown by miR-145 preventing protein expression and 

myofibroblasts αSMA stress fibre formations. miR-145 also was able to inhibit the functional 

effect of TGF-β1 induced contractility and paracrine migration (only performed in DENF316). 

There was a certain amount of variability in the response to miR-145 overexpression, which in 

part can be accounted for by the efficiency of individual transfections, due to NOFs being or 

different passages or confluency. Also the biological variability of the NOFs was apparent, miR-

145 is capable of decreasing the endogenous expression of αSMA, COL1A1 and FN1-EDA in 

DENF319, but is only capable of decreasing COL1A1 expression in DENF316. These differences 

in the responses to TGF-β1 and miR-145 can help to reveal information about the genetic 

pathways allowing myofibroblast transdifferentiation. For example, TGF-β1 only caused 

significant upregulation of miR-145 in DENF319 NOFs and not DENF316, and in both NOFs the 

overexpression of miR-145 results in the downregulation of COL1A1. Only in DENF316 and not 

DENF319 TGF-β1 is able to stimulate COL1A1 expression. Therefore, it can be hypothesised that 

DENF319 fail to have an increase in COL1A1 expression as TGF-β1 upregulates miR-145 in these 

cells which in turn decreases the COL1A1. A possible reason why DENF319 NOFs do not show as 

much as a response to TGF-β1 as DENF316, could be that TGF-β1 induces miR-145 expression to 

decrease the activation of the myofibroblast markers. However, the data from the CAFs shows 

that they generally have a higher miR-145 expression, TGF-β1 generally increases miR-145 

expression and they have big responses to TGF-β1 which does not fit with the above reasoning.  
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miR-143, which is co-transcribed and often processed with miR-145,  but is known to have a 

distinct set of targets, also had  some effect on oral myofibroblast transdifferentiation, but it 

was less marked than the effects of miR-145. Overexpression of miR-143 significantly reduced 

the DENF316 TGF-β1-induced αSMA expression only at the mRNA level, miR-143 had no effect 

on the other myofibroblast markers or on any markers in DENF319s. It was able to prevent the 

some functional effects, preventing some myofibroblasts associated contractility of the 

fibroblasts and ability to promote paracrine migration.    

miR-145 was also able to inhibit TGF-β1 myofibroblast transdifferentiation in CAFs, and reduce 

endogenous levels of myofibroblast markers in these cells, suggesting that exogenous delivery 

of miR-145 could be used to reduce myofibroblast activation in CAFs within the tumour 

microenvironment. miR-145 was also able to partially reverse the TGF-β1 induced myofibroblast 

phenotypes, furthering the therapeutic potential of this miRNA. After 48 h of premiR-145 

transfection, miR-145 was able to reduce the activation of αSMA transcript levels, but no other 

myofibroblast markers. miR-145 was also able to reduce the amount of total fluorescence of the 

αSMA stress fibres, however TGF-β1 treated NOFs, transfected with miR-145 still had visible 

stress fibres. As the effect on αSMA protein level was minimal in comparison to the effect on 

transcript levels, it was thought that αSMA protein may have a long half-life therefore it would 

take longer for miR-145 mediated knock-down of αSMA protein. A cycloheximide chase assay 

was used to assess the half-life of αSMA protein; this approach was unsuccessful. Studies from 

mammary fibroblasts highlighted that activated TGF-β1 and SDF autocrine signalling was 

capable of maintaining myofibroblast activation (Kojima et al., 2010), perhaps once 

transdifferentiated, oral fibroblasts may maintain their differentiation through the secretion of 

key cytokines.  

 

8.6 miR-145 effect on protumourigenic effects on myofibroblasts  

TGF-β1 is known to induce EMT in cancer cells (Siegel & Massagué, 2003). Treatment of NOFs 

with TGF-β1 has been shown to secrete factors which promote proliferation and invasion of oral 

cancer cells (Kellermann et al., 2008; Lewis et al., 2004). In this study, the treatment of NOFs 

with TGF-β1 was able to promote paracrine migration in DENF316 NOFs in line with previous 

studies, DENF319 NOFs were not investigated. The TGF-β1 mediated increase in migration was 

inhibited by miR-145 overexpression, but miR-145 had no effect on NOFs endogenous paracrine 

effect on migration. miR-145 therefore may inhibit the myofibroblast associated release the 

chemokines to promote migration of cancer cells. This could be investigated by collecting the 
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conditioned media from NOFs transfected with premiR-145 or negative control premiR then 

treating with TGF-β1 or serum free control and incubating the conditioned media with a cytokine 

array to assess the secretome of the fibroblasts.  

Our group previously showed ET-1 was able to stimulate paracrine migration through ET-1 

activating ADAM-17 mediated cleavage of EGF ligands (Hinsley, et al., 2012). ADAM-17 is a 

known target of miR-145 (Doberstein et al., 2013), therefore miR-145 overexpression in NOFs 

could be preventing ET-1 and perhaps TGF-β1 induced increased in paracrine migration through 

reducing EGF signalling through lack of ADAM-17 mediated release of EGF receptor ligands. 

Myofibroblasts are known to release a myriad factors which could promote paracrine invasion, 

therefore the extent at which the hypothesised ADAM-17 release of ligands contributes to TGF-

β1 induced myofibroblasts paracrine stimulation of migration/ invasion could be assessed 

through using inhibitors of ADAM or knocking down ADAM-17 and measuring ADAM-17 

expression on ET-1 and TGF-β1 treatment. 

Another role for ADAM-17 could be in the regulation of TGF-β1 signalling. In VSMCs,  ADAM-17 

has been shown to cleave a transmembrane protein vasorin into the extracellular environment 

where it can bind to a sequester TGF-β1 and inhibit its action (Ikeda et al., 2004; Malapeira, 

Esselens, Bech-Serra, Canals, & Arribas, 2011). Vasorin may also be a target of miR-145 as there 

is a putative binding site in its 3’UTR (Target Scan 6), therefore vasorin may be another 

mechanism how miR-145 can fine-tune the response of a cell to TGF-β1. It is not known whether 

vasorin is expressed in fibroblasts or whether it is exclusive to VMSCs.  

The presence of myofibroblast are often implicated to lead to invasive tumours (De Wever et 

al., 2008). Inhibitors of TGF-β1 have been shown to inhibit CAF and normal fibroblasts ability to 

stimulate paracrine migration/invasion in several studies (Hassona et al., 2013; Yeung et al., 

2013).  Conditioned media from GU-OSCC CAFs, which were shown to senescent, promoted 

invasion which was inhibited by inhibitors to both TGF-β1 and MMP2 (Hassona et al., 2014). In 

this study, TGF-β1 had different effects in stimulating paracrine invasion on the two different 

NOFs used. TGF-β1 stimulated paracrine invasion in DENF316s and inhibited invasion in  

DENF319s. miR-145 overexpression was able to inhibit the TGF-β1 increase in paracrine 

invasion, in a dose wise response. This change in invasion closely correlated with the expression 

of MMP2 from these cells, suggesting that miR-145 may regulate TGF-β1 induced invasion 

through the regulation of MMP2 expression. In DENF319, again the pro-invasiveness of the NOFs 

was similar to the pattern of MMP2 expression.  miR-145 overexpression was able to 

downregulate MMP2 expression, therefore TGF-β1 may have caused a decrease in invasion 
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through miR-145 mediated downregulation of MMP2 in DENF319. TGF-β1 regulation of miR-145 

appears to be key in the fibroblasts response. Unfortunately, the loss of function experiments 

did not work in this study; it would have been useful to assess whether transient knock-down of 

miR-145 could ameliorate the TGF-β1 decrease in paracrine invasion. It would also be useful to 

determine by zygmography the activity of the expressed MMP2 and other MMPs, for example 

MMP9, together with MMP2 they are both able to promote latent TGF-β1 activation (Yu & 

Stamenkovic, 2000).  

miR-145 was able to reverse the ability of TGF-β1 induced myofibroblasts to promote paracrine 

migration in DENF316 but not DENF319. Overexpression of miR-145 also had less effect on 

invasion when introduced after TGF-β1 treatment in DENF316. However, the levels of MMP2 

were not assessed in these fibroblasts to determine if they also correlated with the level of 

invasion as before.  

CAFs treated with TGF-β1 had a reduced ability to stimulate paracrine migration. This was 

unexpected as previous studies have shown that TGF-β1 treatment of CAFs encourages 

paracrine migration (Yeung et al., 2013) and invasion (Casey et al., 2008; Gaggioli et al., 2007), 

although the effect of CAFs on paracrine invasion was not investigated in this study. miR-145 

had no significant effect on paracrine migration, and in some CAFs the trend of migration looked 

as though it increased on miR-145 overexpression, highlighting doubt for whether miR-145 

mimics would be a suitable drug.  

 

8.7 miR-145 in fibrosis 

Fibrosis is generally described as a failure for normal wound healing to appropriately finish 

(Eckes et al., 2000). Fibrosis and fibrotic disorders are mainly characterised by the appearance 

of an extensive scar produced by extensive deposition of ECM (Leask & Abraham, 2004). 

Myofibroblasts are one of the main cell types orchestrating fibrosis, producing ECM and 

secreting cytokines which promote further fibroblast and immune cell recruitment: TGF-β, 

PDGF, MMPs, IL-1 CTGF (reviewed in Wynn & Ramalingam, 2012). There are many similarities 

between fibrosis and the tumour microenvironment. Therefore, data regarding myofibroblasts 

found in fibrotic disorders is important for understanding the role of miR-145 in myofibroblasts 

in the tumour microenvironment. miR-145 is reported to be downregulated in scleroderma (Zhu 

et al., 2012) an autoimmune fibrotic disorder and in keloids (hypertrophic scars; Li et al., 2013).  

This suggests, in agreement with our data, that miR-145 is anti-fibrotic. However, miR-145 is 

increased in hypertrophic scars (Gras et al.) and idiopathic lung fibrosis (Yang et al., 2013),  and 
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has recently been shown to be involved in inducing dermal, cardiac and pulmonary 

myofibroblasts transdifferentiation (Gras et al., 2015; Wang et al., 2014; Yang et al., 2013), 

suggesting that miR-145 is important in producing myofibroblasts and promoting fibrotic 

disease.  

These studies in pulmonary and cardiac fibroblasts, outlined that miR-145 overexpression was 

able to induce functional myofibroblasts via increasing the expression of myofibroblast marker 

αSMA. Anti-miR-145 was able to prevent TGF-β1 induced dermal and pulmonary myofibroblasts 

transdifferentiation in vitro (Gras et al., 2015; Yang et al., 2013). Knockout mice lacking miR-

143/145 showed reduced bleomycin induced pulmonary fibrosis, and in vitro miR-143/145 -/- 

fibroblasts showed a reduced TGF-β1 induced pulmonary myofibroblast transdifferentiation. In 

addition in the cardiac study, a tail injection of antimiR-145 before coronary artery occlusion to 

induce myocardium infarction, significantly reduced the number of myofibroblasts present, 

hence resulted in a bigger infarct size as there was impaired wound healing and a reduced scar 

thickness (Wang et al., 2014).   

The studies suggested that miR-145 has a similar mechanism of action. They provided evidence 

that miR-145 controls the myofibroblast phenotype, via targeting the KLF4/KLF5 myocardin 

regulators (dermal and pulmonary/cardiac fibroblasts respectively). In lung fibroblasts miR-145 

overexpression resulted in the decrease of KLF4 protein levels, which lead to the authors 

identifying KLF4 as a target of miR-145 (Yang et al., 2013). In the dermal study the authors 

showed that overexpression of KLF4 can inhibit myofibroblast transdifferentiation (Gras et al.). 

Similarily in the cardiac study, KLF5 re-expression was able to ‘rescue’ and prevent the 

acquisition of the myofibroblast phenotype when mouse cardiac fibroblasts were treated with 

a miR-145 mimic. miR-145 was validated to directly target KLF5 in human HEK293 cells and an 

increase myocardin expression in cardiac fibroblasts (Wang et al., 2014).   

In oral fibroblasts, some evidence of miR-145 regulating KLF4 and KLF5 was found. 

Overexpression of miR-145 showed no significant effect on KLF4/5 expression, however in NOFs 

transfected then treated with TGF-β1 KLF4 expression was significantly decreased, and miR-145 

was able to significantly attenuate the TGF-β1 dependent KLF5 increase. Suggesting that unlike 

these two studies, miR-145 does not control the myofibroblast phenotype solely through the 

regulation KLF4/5.  One similarity in our results and these studies results is miR-145s effect on 

myocardin (Wang et al., 2014) where miR-145 overexpression caused an increase on myocardin 

expression, they conclude this was through negative regulator KLF5. 
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The majority of the key experiments were performed in murine fibroblasts or in vivo mouse 

models, differences between human and murine fibroblasts may help explain why these studies 

opposite to the results in this thesis. miR-145 is conserved (miRbase), but it may well have a 

distinct mechanism of action in the different species, as they may have different targets in 

mouse/human and binding sites on targets may not be conserved. However, the areas of KLF4/5 

where miR-145 is reported to bind to is conserved between mouse and human.  

The pulmonary study used some human fibroblasts, they used some primary cells, but MRC-5, a 

pulmonary fibroblast cell line derived from a human foetus, were used for the majority of the 

key experiments. There is a strong possibility that miR-145 has distinct roles in foetal fibroblasts 

compared to adult, especially due to its key roles in smooth muscle differentiation.  Several 

studies have highlighted some of the differences between adult and foetal fibroblast (reviewed 

in Larson, Longaker, & Lorenz, 2010). There seems to be key differences with the fibroblast 

produced ECM, foetal fibroblasts have a greater amount of hyaluronic acid and 

glycosaminoglycans and less TGF-β signalling (Ellis & Schor, 1996). In humans, scars are known 

to begin to form around 24 weeks gestation (Lorenz et al., 1995), before then the foetal wound 

healing is scarless and there are no documented myofibroblasts (Clark & Henson, 1988). The 

MRC-5 fibroblasts cell line was derived from 14 week foetus, therefore at a stage where there is 

no myofibroblast activation, so it seems illogical to use it as the main fibroblast cell line to 

investigate myofibroblast transdifferentiation.  

 

8.8 miR-145 effect in dermal myofibroblasts 

Wound healing in the oral cavity is notably different to skin. Oral mucosal wound healing is 

associated with a fast, scarless wound closure, with a short inflammatory response, compared 

to dermal wound healing which often results in scar formation due to excessive collagen rich 

ECM accumulation (reviewed in Larson et al., 2010). To determine whether oral myofibroblasts 

have separate molecular mechanisms than dermal myofibroblasts, the miR-145 gain of function 

were repeated in TGF-β1 induced dermal fibroblasts. Experiments performed in 3 different 

human primary dermal fibroblasts consistently revealed very similar results to that observed in 

oral fibroblasts. Contrary to the study by Gras et al., (2015) miR-145 significantly inhibited and 

reversed dermal myofibroblasts transdifferentiation. TGF-β1 significantly induced each 

molecular marker, and, similar to the previous dermal study, most TGF-β1 dermal fibroblasts 

had increased miR-145 expression. There was a marked difference between the efficiency of 

miR-145 in reversing dermal TGF-β1 induced myofibroblast than in oral induced myofibroblasts. 
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Overexpression of miR-145 caused a dose responsive reduction of myofibroblast markers αSMA, 

COL1A1 and FN1-EDA in both HDF and TGF-β1 treated HDFs, elegantly showing miR-145 

inhibiting the myofibroblast phenotype.  

Studies have highlighted the differential gene expressions between dermal and gingival 

fibroblasts grown in 3D cultures (Mah et al., 2014; Stephens et al., 2001). Mah et al., (2014) 

showed that fibroblasts from breast skin were more profibrotic than gingival fibroblasts, and 

showed that they had elevated TGF-β signalling, ECM remodelling and myofibroblastic markers 

(αSMA, tenascin c, COL1A, and SDF-1) compared to skin fibroblasts. The reason why mir-145 

appeared to have a more dramatic effect in dermal myofibroblasts than oral myofibroblasts, in 

this study, may be due to their comparatively more inherent profibrotic nature, again reflected 

by their ability to form a scar. miR-145 was able to reduce each marker of myofibroblast in 

dermal myofibroblasts, whereas miR-145 only reduced TGF-β1 mediated αSMA expression in 

oral fibroblasts, and not COL1A or FN1-EDA.  However, no functional assays were performed, 

therefore it is unknown whether TGF-β1 induces functional myofibroblasts and whether miR-

145 reverses their functional effects. Contractility or ‘scratch’ wound healing assay could have 

been performed to further validate the dermal myofibroblast phenotype.  

Overall the data from dermal and gingival fibroblasts suggest that miR-145 is indeed anti-fibrotic 

and discrepancies between the previous studies saying the opposite are likely to be due to the 

fibroblasts which they used, mouse and foetal (Wang et al., 2014; Yang et al., 2013). To confirm 

this human primary fibroblasts from heart and lung, amongst other locations should be tested 

in the future.  It would also be interesting to assess the role of miR-145 in oral fibroblasts from 

different sites of the oral cavity as phenotypic differences have been described for periodontal 

and buccal fibroblasts (Lepekhin et al., 2002).  

 

8.9 Versican  

Versican has been shown to be necessary for dermal myofibroblast transdifferentiation (Hattori 

et al., 2011) and is associated with invasion (Cattaruzza et al., 2004; Yee et al., 2007) and with 

poor outcomes in many cancers including OSCC (Pukkila et al., 2004; Pukkila et al., 2007; 

Ricciardelli et al., 2002; Said et al., 2012). Versican is an extracellular chondroitin proteoglycan, 

of around 74 - 450kDa apparent molecular weight (Ricciardelli et al., 2009). The antibody used 

in this study binds to versican at the Gly1344-Asp1554 epitope in the GAG-β domain which is 

only in V0 and V1 isoforms, therefore the antibody should detect 2 isoforms of differing sizes 

450 kDa and 274 kDa, with different numbers of chondroitin sulphate chains. Therefore, the 
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antibody used produced an immunoblot of many clear bands of different sizes. Versican is an 

integral structural component of the ECM which is involved in cell signalling and maintaining 

ECM, therefore is involved in many cellular processes including adhesion, proliferation, 

apoptosis and motility.  

Loss of function experiments in dermal and oral normal fibroblasts, and oral CAFs, showed that 

versican had little effect on TGF-β1 induced myofibroblast transdifferentiation. Versican siRNA 

had some effect on reducing the TGF-β1 mediated activation of myofibroblasts markers in 

DENF316 and the one tested CAF (BICR-59) but not DENF319, but in dermal fibroblasts versican 

knock-down had no effect on TGF-β1 induced myofibroblast markers. In all fibroblasts assessed, 

versican had no effect on αSMA protein expression or stress fibre formation, suggesting that 

versican may have a small effect on inducing myofibroblasts but is not necessary for 

transdifferentiation, in contrast to previous reports (Hattori et al., 2011). However, this study 

was mainly in mice, which as suggested previously may have distinct molecular mechanisms of 

myofibroblast transdifferentiation; the only human experiments performed were gain of 

function studies showing that a versican overexpression vector had increased TGF-β signalling 

and caused human dermal fibroblasts to transdifferentiate (Hattori et al., 2011). 

Versican expression has been shown to cause a reduction in cancer cell adhesion and increased 

migration (Ang et al., 1999; Onken et al., 2014; Ricciardelli et al., 2007). The TGF-β1 mediated 

release of versican from ovarian CAFs stimulated migration and invasion of ovarian cancer cell 

lines (Yeung et al., 2013). In line with previous studies (Haase et al., 1998; Kähäri, Larjava, & 

Uitto, 1991) here it was found that TGF-β1 stimulated an up regulation of versican expression in 

in oral and dermal fibroblasts, which in NOFs transfected with negative premiR caused an 

increase in paracrine migration, however in negative siRNA transfected NOFs and CAFs there 

was no increase in paracrine migration. This suggests that this particular ‘non-targeting’ siRNA 

control has some off target effects. Versican knock-down was able to decrease paracrine 

migration in NOFs but not in CAFs. Suggesting that versican does promote paracrine migration, 

and TGF-β1 may cause some of its pro-migratory effects via versican upregulation. It also 

suggests that CAFs tested are a distinct phenotype from TGF-β1 treated oral fibroblasts.  

This thesis convincingly outlines that miR-145 negatively regulates versican, more so than 

previously published miR-143 (Wang et al., 2010). microRNAs are thought to generally bind to 

complementary regions in 3’UTR of gene transcripts, however recent studies have shown 

evidence for functional binding sites for miRNA in coding regions  (Duursma et al., 2008), 

promoters (Place et al., 2008) and in 5’ UTRs (Moretti, Thermann, & Hentze, 2010). miR-145s 
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regulation of versican is unlikely to be a direct regulation as there are no putative binding sites 

in the versican 3’UTR (TargetScan).  

To further investigate the regulation of versican by mir-145, the versican promoter was cloned. 

The versican promoter contains AP1 and TCF/LEF transcription factor binding sites. AP1 is a 

transcription factor which is pleiotropically utilised by several cytokines and growth factors 

(Hess, Angel, & Schorpp-Kistner, 2004), providing further evidence that versican is 

transcriptionally regulated by a range of cytokines. β-Catenin, the active transcription factor of 

Wnt signalling, binds to the TCF/LEF sites and actives the transcription of the gene. P53 has also 

been shown to transcriptionally regulate versican through binding to a p53 response element in 

intron 1 of versican (Yoon et al., 2002). However, Pukkila et al., (2004) found no correlation 

between p53 status and versican expression in immunohistological examination of pharyngeal 

squamous cell carcinomas. 

 miR-145 overexpression did not have any effect on the activity of the versican promoter in a 

reporter assay. Using microPIR, a bioinformatics database predicting which microRNAs can bind 

with gene promoters, confirmed that there was not a predicted miR-145 interaction with the 

VCAN promoter (Piriyapongsa et al., 2014). Importantly, this assay suggested that miR-145 does 

not control the regulation of versican through regulating a transcription factor acting on versican 

promoter.  

An alignment was performed using multalin online alignment software (Corpet, 1988) and found 

miR-145 seed sequence can bind the versican transcript  with 7 out of 8 nucleotide 

complementary, in a coding region exon region. This near perfect seed sequence 

complementary in coding region has been shown to promote negative regulation in several 

previous plant studies (reviewed in Brennecke et al., 2005) Therefore, it is possible that this 

interaction may produce the profound downregulation of versican seen in this study. However, 

studies have indicated that binding sites with 3’ UTRs are much more effective at leading to the 

mRNA transcript degradation than binding sites in coding regions (Baek et al., 2008; Fang & 

Rajewsky, 2011). To further investigate the functionality of this potential binding site, 

mutagenesis of the putative binding site in coding region of versican should be performed.  

TGF-β1 may also regulate versican processing in the oral tumour microenvironment by the 

positive regulation of ADAMTS-1 and -4. Higher expression of ADAMTS-1 and -4 have been 

reported in prostate tumours (Ricciardelli et al., 2009). These ADAMTSs are capable of 

proteolytically cleaving versican V1 at the Glu441-Ala442 bond in the GAG-α domain producing 

a DPEAAE neo-epitope (Ricciardelli et al., 2009). This form of versican has been shown to 
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promote invasion in prostate cancer studies (Arslan et al., 2007). Unexpectedly, here it was 

expressed in NOFs but not TGF-β1 treated NOFs, however the immunoblotting was only 

effective once therefore other means of detecting versican cleavage should be carried out. It 

may be that the antibody is not optimised for immunoblotting but is effective in 

immunohistochemistry.  miR-145 overexpression was able to decrease endogenous ADAMTS-1 

and -4 expression and completely block TGF-β1 stimulated expression, but this is unlikely to be 

a direct effect as there is no putative miR-145 binding site in their 3’ UTRs. ADAMTS-1 is 

upregulated in wound healing (Krampert et al., 2005) and lung fibrosis, and has been implicated 

in TGF-β activation (Bourd-Boittin et al., 2011).  

Chondroitinase treatment of versican was performed in this study, however it was unsuccessful. 

Other groups successfully achieved complete digestion of the chondroitin sulphate chains at 

similar doses of 0.02 units/ml for 1 h at 37 oC (Russell et al., 2003). This left 2 immunoreactive 

bands reflecting V0 and V1 isoforms, when a full length versican antibody was used. 

Optimisation of the technique is required to see further see differences in TGF-β1 and the effect 

of miR-145, but also to ensure the immunoreactivity of the neoepitope antibody. Most studies, 

but not all (Didangelos et al., 2012), that have used an antibody to the cleaved DPEAAE neo-

epitope versican have used the chondroitinase treatment before (Hattori et al., 2011; Russell, 

Doyle, et al., 2003), suggesting that the epitope may be hidden by chondroitin sulphate chains. 

This view is supported by data suggesting TGF-β1 induces more GAGs and upregulates the 

posttranscriptional GAG modifying enzymes responsible for the synthesis and adding 

chondroitin sulphate chains to versican in lung fibrosis (Venkatesan et al., 2014), perhaps 

explaining why TGF-β1 caused a decrease in the immunoreactivity of truncated VCAN. 

 

8.10 miR-145 effect on smooth muscle transcription factors 

Many of the same growth factors involved that are involved in fibrosis are also known to play 

roles in regulating smooth muscle and myofibroblast differentiation – PDGF, TGF-β and Ang II 

(Bai et al., 2013; Swigris & Brown, 2010).  TGF-β1 and PDGF are the two main growth factors 

known to control smooth muscle cell phenotypes, the synthetic and contractile. The synthetic 

phenotype is where cells are more migratory and proliferative and contractile/differentiated is 

where there is a high expression of contractile genes.  Both growth factors regulate the miR-

143/5 cluster (Long & Miano, 2011; Quintavalle, Elia, Condorelli, & Courtneidge, 2010) which is 

known to mediate these phenotypes by regulating key smooth muscle effector genes (Xin et al., 

2009).  Myocardin, Myocardin related transcription factors (MRTFs) and serum response factor 
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are all also able to promote the expression of the miR-143/5 cluster in a feedback loop, through 

the presence of a CArG box in the clusters enhancer.  

Myocardin is an activator of the SMC phenotype with SRF turns on CArG box smooth muscle 

genes including αSMA. Myocardin is responsible for repression of versican (Wang et al., 2010) 

in smooth muscle cells. In several cell lines overexpression of myocardin resulted in a marked 

downregulation of versican mRNA, however this also was accompanied by an increase in αSMA 

in a mouse embryonic fibroblast cell line 10T1/2. The authors showed that myocardin regulated 

miR-143 which directly targeted versican via its 3’UTR, and miR-143 was shown to be necessary 

for the myocardin regulation of versican. In our study, although myocardin expression was 

elevated on miR-145 overexpression, miR-143 overexpression in oral fibroblasts did not result 

in down-regulation of versican, whereas miR-145 did. In addition αSMA expression is attenuated 

when myocardin expression is activated; this is the opposite of that observed in smooth muscle 

differentiation.  

In this study, NOFs did not express a detectable background level of myocardin transcript, miR-

145 overexpression caused the detection of myocardin suggesting that it may regulate a 

negative regulator of myocardin. KLF4/5 both negatively regulate myocardin in smooth muscle 

cells, and are putative targets of miR-145. miR-145 has been shown to directly target KLF4 and 

KLF5 in smooth muscle studies (Cheng et al., 2009; Xin et al., 2009) and in pulmonary and cardiac 

fibroblasts respectively (Wang et al., 2014; Yang et al., 2013). However, our qRT-PCR data shows 

that miR-145 does not significantly regulate KLF4/5 at the transcriptional level, this of course 

does not rule out that miR-145 could interfere with KLF4/5 translation in oral fibroblasts. For 

KLF4, both miR-145 overexpression and TGF-β1 led to a small decrease in KLF4, however miR-

145 overexpressing NOFs treated with TGF-β1 had a significant downregulation of KLF4 

suggesting that both high miR-145 expression and TGF-β1 signalling may be needed to regulate 

KLF4. A decreased KLF4 expression in these NOFs correlated with increased myocardin 

expression consistent with miR-145 upregulating myocardin expression via the regulation of 

KLF4.  

Myocardin Related Transcription Factor A and B (MRTF-A/B) are transcription factors that, like 

myocardin, work with SRF to activate smooth muscle contractile genes. MRTF-A/B have also 

been reported to be important for promoting myofibroblast transdifferentiation in rat 

embryonic fibroblasts (Crider et al., 2011). According to TargetScan, miR-145 has 4 putative 

binding sites in MRTF-B 3’UTR (Lewis, Burge, & Bartel, 2005) and has been shown to directly 

bind to the UTR (Xin et al., 2009).  Consistent with this miR-145 and TGF-β caused a decrease in 
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MRTF-B expression in NOFs (in OF26 and DENF319), allowing it to become a potential candidate 

gene to be regulating the oral myofibroblast transdifferentiation. However, in DENF316 miR-145 

caused a significant increase in MRTF-B, nonetheless a MRTF-B targeting siRNA was used to 

investigate whether it plays a significant role in oral myofibroblasts transdifferentiation.  

MRTF-B knock-down had little effect on myofibroblast transdifferentiation. MRTF-B knock-down 

was only able to reduce myofibroblasts activation in DENF316, not in DENF319. Interestingly in 

DENF319 NOFs TGF-β1 caused a downregulation of MRTF-B transcripts, consistent with this NOF 

having TGF-β1 mediated increase in miR-145 expression. As TGF-β1 treatment increased MRTF-

A levels in NOFs tested, a possible amount of redundancy between MRTF-A and B may explain 

why MRTF-B knock-down did not prevent oral myofibroblast transdifferentiation as expected. 

miR-145 was able to prevent the TGF-β1 activation of MRTF-A signalling, this is likely to be due 

to miR-145 dampening TGF-β1 signalling. 

There are many other genes are involved in the regulation of αSMA, some of which are mediated 

by or mediate the expression of miR-145. A positive regulator of αSMA is CCAAT/ enhancer 

binding protein β (C/EBP-β), this is able to decrease miR-145 expression through binding to and 

preventing the p53-mediated regulation of miR-145 (Sachdeva et al., 2012). Homeobox 

transcription factor NK 2 homeobox, (NK2 transcription factor related, locus 5) a coactivator of 

CArG boxes (C. Y. Chen & Schwartz, 1996), transcriptionally activates αSMA and miR-145 (Cordes 

et al., 2009). PPAR-γ activates miR-145 to downregulate smad3 (Zhu et al., 2015). On the other 

hand, a negative regulation of αSMA in myofibroblasts (Jeon et al., 2014), peroxisome 

proliferator-activated receptor (PPAR-γ) also leads to the upregulation of miR-145 (Cordes et al., 

2009). Therefore, αSMA and miR-145 seem to be involved in a complex regulatory loop which 

seems to differ between myo/fibroblasts and smooth muscle cells.  

The miR-145 regulation of Sox-9 was also investigated, as miR-145 has been previously shown 

to  target sox-9 and regulate chondrocyte differentiation from mesenchymal stem cells (Yang et 

al., 2011). Sox-9 has been shown to promote oncogenic proliferation and inhibit senescence 

(Matheu et al., 2012). miR-145 has been shown to target sox-9 aiding in preventing 

tumourigenesis in gliomas (Rani et al., 2013). In a HNSCC study, miR-145 was shown to regulate 

ADAM-17 though its direct interaction with its 3’UTR but also through sox-9 regulation (Yu et 

al., 2013). The loss of miR-145 in tumour initiating cells resulted in higher sox-9 and ADAM-17 

expression and mediated release of IL-6 and soluble IL-6 receptor promoting paracrine migration 

and invasion. Sox-9 has even been shown to regulate versican expression (Lee et al., 2008) 

perhaps providing a mechanism by which miR-145 can regulate versican expression in oral 
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fibroblasts. Our study found that both TGF-β1 and miR-145 was able to downregulate sox-9 

expression, however this was a small change in expression suggesting if it does play a role in the 

regulation of versican, it would not be sufficient to to fully explain the effect miR-145 on versican 

expression.    

 

8.11 miR-145 regulation of the ECM and actin cytoskeleton 

The importance of ECM modulation by MMPs was shown by a study using ‘TIMPless’ a quadruple 

TIMP knockout mouse in which fibroblasts had a myofibroblast like CAF phenotype. The main 

MMP responsible for this phenotypic change was ADAM-10 as an ADAM-10 knockout rescued 

the fibroblasts (Shimaoda et al., 2014). Futhermore, Hinz has outlined 3 things that must occur 

to induce myofibroblast transdifferentiation (Hinz et al., 2007). The presence of activated of 

TGF-β1, specialised ECM, for example FN1-EDA, and extracellular mechanical stress. Mechanical 

stress generated by stiff ECM and cell-matrix junctions such as cadherins. This mechanical 

tension is produced by the increase production of ECM: collagens, fibronectins and 

proteoglycans for example versican. The mechanical stiffness has additional roles in promoting 

myofibroblasts, TGF-β1 can be activated from its latent form through contraction  (Wipff et al., 

2007) and mechanical stimulation can cause CTGF expression has been found to increase in 

gingival fibroblasts (Guo, Carter, & Leask, 2011). 

In this study, in both oral (only DENF319) and dermal fibroblasts miR-145 was able to prevent 

the TGF-β1 induction of myofibroblasts ECM markers and regulated endogenous levels of 

COL1A1 and FN1-EDA. This is consistent with data from  Zhao et al., (2015) study in vascular 

smooth muscle cells, which revealed miR-145 as being able to orchestrate the TGF-β1 cellular 

response by inhibiting TGF-βRII and resulting in the inhibition of TGF-β1 upregulated ECM rather 

than regulating αSMA.  

Connective tissue growth factor (CTGF/ CCN2) is an important in stromal remodelling in both 

fibrosis and tumours including HNSCC (Mullis, Tang, & Chong, 2008). It modulates EMT within 

the tumour microenvironment (Chang et al., 2013) and has been reported to be involved in ECM 

remodelling in fibrosis and to be necessary for dermal myofibroblast TGF-β1 stimulated 

transdifferentiation (Garrett et al., 2004). miR-145 has been shown to directly target CTGF in 

glioma cells (Lee et al., 2013), therefore CTGF expression was assessed in the oral fibroblasts 

characterised here. Like the previous study miR-145 overexpression was able to downregulate 

CTGF transcript levels in DENF319 and OF26 NOFS, but not DENF316 where there was an 

increase. TGF-β1 caused a marked increase in CTGF, suggesting CTGF is as previous studies have 
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suggested a key mediator of TGF-β1 induced transdifferentiation. miR-145 was able to reduce 

the TGF-β1 mediated CTGF increase, but there was still a large fold increase in CTGF expression 

compared to other genes investigated. As CTGF plays a significant role in HNSCCs and fibrosis, it 

would be interesting to further investigate its effects in oral myofibroblasts transdifferentiation.   

Cadherin 11 is important in myofibroblasts phenotype, it can act as a marker as it becomes neo-

expressed in myofibroblasts, but is also important for their contractility (Hinz et al., 2004) and 

mechanoperception. miR-145 negatively regulates cadherin 11 through mucin in breast cancer 

cell lines (Sachdeva & Mo, 2010), miR-145 may in part disrupt TGF-β1 induced myofibroblasts 

contractility through the regulation of cadherin 11.  Another role for cadherin 11 is to bind to β 

catenin The activation of the Wnt pathway has been shown to induce MSCs to become 

myofibroblasts (Sun et al., 2014). 

miR-145 regulates several genes involved in actin cytoskeletal organization and remodelling 

(reviewed Xin et al., 2009) e.g. cofilin, actin-related protein 2/3 complex, Rho kinase ROCK and 

various actin binding proteins. Collectively these are involved in the maintenance of the actin 

cytoskeleton. miR-145 may act to prevent myofibroblast transdifferentiation and prevent stress 

fibre formation in part by collectively targeting the actin machinery.  

 

8.12 miR-145 regulation of the TGF-β signalling pathway 

One explanation of how miR-145 is able to inhibit and reverse TGF-β1 induced oral and dermal 

myofibroblasts is that it can regulate the TGF-β1 pathway itself. Diana pathway software 

identified a number of potential targets of miR-145 within the TGF-β1 pathway including TGF-β 

receptor II, smad3, smad4 and smad5. From the literature, most of these look like promising 

targets (Vlachos et al., 2012).  Smad3 negatively correlates with miR-145 expression (Megiorni 

et al., 2013) and recently the smad3 3’UTR was shown to be a direct target of miR-145 in a 

nasopharyngeal cancer study and contributed to miR-145s tumour suppressive effects (Huang 

et al., 2015). Smad4 and Smad5 were both upregulated in miR-145 knockout mice (Caruso et al., 

2012). It has also been previously shown that miR-145 targets TGF-βRII (Zhao et al., 2015) and 

our results confirmed this regulation. 

To further understand how miR-145 regulates TGF-β signalling. A method of assessing TGF-β1 

signalling needs to establish in these cells. Primers for smad3, 4 and 5 and antibodies for the 

smads phosphorylated and unphosphorylated form could be used to assess the relative activity 

of TGF-β1 signalling, however, a smad reporter assay may be the most sensitive measure of 
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overall TGF-β1 signalling. These are dual luciferase assays using a reporter luciferase gene 

downstream of multiple smad transcriptional response elements under the control of a strong 

promoter.  

In addition miR-145 has been shown to target Ca2+ /calmodulin kinase (CAMKII δ) (Cordes et al., 

2009) which has been previously indicated to be involved with TGF-β1 signal transduction 

(Midgley et al., 2013). 

 

8.13 miR-145 as a protective mechanism. 

A previous study in VSMCs, led authors to hypothesise that miR-145 serves as a checkpoint in 

TGF-β1 based diseases (Zhao et al., 2015). This study validated TGF-βRII as a target of miR-145 

and showed that miR-145 is capable of having differential effects within smooth muscle cells. 

Interestingly, the authors showed that miR-145 can function to prevent TGF-β1 induced matrix 

gene expression, but allow the TGF-β1 mediated increase in αSMA.  They suggested that in the 

presence of miR-145, TGF-β1 promotes a ‘contractile’ phenotype, where matrix genes are 

downregulated, but in the absence of miR-145 it promotes a ‘synthetic’, matrix rich phenotype, 

like that of fibrosis. The study also found evidence for miR-145 having an anti-fibrotic role, as 

the loss of miR-145 increases cardiovascular fibrosis.   

This study supports the data outlined in this thesis outlining an anti-fibrotic role for miR-145, the 

expression of miR may be lost in the acquisition of a myofibroblast phenotype. Data from this 

thesis and published work from this lab has shown miR-145 expression is downregulated in 

response to VB6 conditioned media and cigarette smoke extract in fibroblasts (Pal et al., 2013), 

perhaps the loss of miR-145 is the first checkpoint leading to myofibroblast transdifferentiation.  

 

8.14 Limitations of the study 

The study assessed the myofibroblast phenotype by looking at 3 molecular markers of 

myofibroblasts; αSMA, FN1-EDA and COL1A1, as well as the ability of the fibroblasts to contract, 

although is this enough evidence to confirm that the cells are myofibroblasts. After all, some 

TGF-β1 induced myofibroblasts did not express higher levels of some markers. Some fibroblasts 

display some characteristics of myofibroblasts without expressing αSMA, these cells are thought 

to be en route to complete myofibroblasts transdifferentiation, termed protomyofibroblast 

(Tomasek et al., 2002). It would be valuable to assess extra markers of CAFs and myofibroblasts, 

to confirm that the phenotype assessed in this study were really myofibroblast – like CAFs.  
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In particular tenascin-c, could be an important marker to investigate as it has been documented 

to be important for oral myofibroblast transdifferentiation. Tenascin-c and its receptor αvβ6, 

which were both found to be only expressed in OSCC specimens not normal controls (Ramos et 

al., 1997). Although in vitro tenascin-c was found to be secreted by both the OSCC cell lines and 

fibroblasts, when human SCC cell lines were injected in a murine model tenascin-c was only 

expressed in reactive stroma, where it was identified to be secreted only by the murine CAFs. 

Suggesting tenascin-c could be a suitable marker for CAFs in OSCCs.   

Another marker of myofibroblasts is an increased number of focal adhesions, this could be 

assessed by Scanning Electron Microscopy. In addition the orientation of the smooth muscle 

filaments in indicative of myofibroblasts, a method of assessing the percentage of the same 

orientated fibroblasts could further validate the myofibroblast transdifferentiation. However, in 

line with other studies it is reasonable to assume that the αSMA positive fibroblasts observed in 

this study were myofibroblasts, despite some not consistently expressing other myofibroblast 

markers COL1A (DENF319) or in some cases, FN1-EDA.  

Within the fibroblasts isolated from a tumour there will be a heterogenous population of 

fibroblasts. By using CAFs from OSCC in theory you would be studying an array of different CAF 

subtypes, however due to some being senescent and others growing at different rates and, there 

is a danger the in culture fibroblasts will lose their heterogeneity. FACs sorting CAFs from OSCCs 

immediately and sub culturing individual clones to assess the contribution of different CAFs 

would be one way to address this heterogeneity. In addition by studying just myofibroblast 

markers, and not markers for the senescent phenotype or any other CAF marker, the effect of 

TGF-β1, miR-145 or versican on other CAF populations is unknown.  

The functional assays used in this study often produced varied results, these in vitro assays 

oversimplify a very complex multistep paracrine migration and invasion processes that result 

from a contribution of many different cells of the tumour microenvironment. Using 3D 

organotypic models may be a more physiologically relevant way of assessing invasion. In 

addition another way of quantifying fluorescence in immunocytochemistry, rather than total 

fluorescence, would be useful as the ImageJ software used was not very sensitive to the intensity 

of the stress fibres.   
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8.15 Future work 

The data described in this study has raised many questions regarding the molecular mechanisms 

of myofibroblast transdifferentiation and has pointed to further experiments that could be 

carried out to aspire to complete the study.  

Loss of function experiments were performed in this study, but the antimiR-145 was not 

effective at knocking down miR-145 transcripts; to fully investigate its role within CAFs another 

method of loss of function should be implemented. MiRNA sponges, plasmid constructs 

containing multiple miR-145 binding sites can sequester endogenous miR-145 levels and result 

in stable or transient knock-down. This especially would be important for assessing if miR-145 

acts as a checkpoint, and needs to be downregulated to allow fibrosis. Stable knock-down of 

miR-145 would also help to explain the mechanism behind miR-145s regulation of 

myofibroblasts markers. In addition, it would help to assess whether DENF319 mediates TGF-β1 

effects through miR-145, as the data suggests that both TGF-β1 and miR-145 downregulate 

MMP2 and COL1A, and TGF-β1 leads to the upregulation of miR-145.  

As mentioned previously, the ECM surrounding fibroblasts seems key in the regulation of cellular 

signalling and promoting a stiff mechanical environment to promote myofibroblast 

transdifferentiation. The data presented here has pointed to some of the ways in which 

fibroblasts may remodel the ECM, e.g. TGF-β1 induction of metalloproteases. The TGF-β1 

mediated deposition and remodelling of the ECM, and the potential miR-145 

prevention/reversal of this ECM should be investigated further. Optimisation of the versican 

neo-epitope and chondroitin free immunoblotting should be carried out. MMP2 and MMP9 are 

important for ECM remodelling but also for activating TGF-β1 signalling, therefore zymography 

should be performed to investigate whether they are active in the induced myofibroblasts.  

As experiments performed produced different data than previous myofibroblast studies, a 

greater number of fibroblasts from different sites should be used in future study to reinforce 

our data from oral and dermal fibroblasts. Human adult pulmonary and cardiac fibroblasts would 

be included to see if miR-145 is anti-myofibroblastic in these cells. It would also be useful to 

obtain MRC-5, the foetal pulmonary fibroblasts to confirm what other authors found (Yang et 

al., 2013). Also, increasing the size of the CAF cohort would be important for future study. 

Unfortunately a small cohort of CAFs was used in this study, with only one fibroblast from an 

oral dysplasia, therefore nothing can be deduced from the dysplastic CAF data. The study could 

also look at normal oral fibroblasts from different sites within the oral cavity, e.g. periodontal or 
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buccal fibroblasts, to assess whether the data described could translate to treat myofibroblasts 

in other oral lesions (Pinisetti et al., 2014). 

To assess the true therapeutic value of miR-145 further analysis of miR-145s functional effects 

of myofibroblasts need to be evaluated. More invasion studies could be performed, especially 

as TGF-β1 produced opposite effects in the two NOFs used. In addition the use of in vivo animal 

models would be invaluable to assess whether miR-145 could treat myofibroblasts in models of 

fibrosis or in desmoplastic stroma of cancers. As mentioned previously it may be possible that 

the miR-145 regulation of the myofibroblasts phenotype is different in humans and in mice, 

therefore it may be more appropriate to use 3D organotypic models of carcinomas 

(Moharamzadeh et al., 2012) built using fibroblasts or CAFs that are stably transfected with miR-

145 mimics or antimiR-145, to see the effect on cancer cell invasion. These 3D models are also 

excellent tools for assessing drug delivery efficacy, myofibroblast could be used in the 3D model 

of oral carcinoma and used to test the effect of exogenous miR-145 delivery.   

Tissue specimens from OSCCs should be used to assess myofibroblasts in patients. 

Immunohistochemistry using antibodies to αSMA, versican and cleaved versican could be 

performed to assess its expression in normal oral mucosa, dysplasias, moderate OSCCs and 

metatastic OSCCs. The location of the myofibroblasts within tumour may reveal more 

information about tumourigenesis, Lewis et al., (2004) found myofibroblasts in close proximity 

to the tumour and suggested that the fibroblasts must be transdifferentiated by the tumour 

itself.  

The study has highlighted some similarities and some differences in myofibroblasts and smooth 

muscle cells regulation of αSMA, further experiments investigating the effect of miR-145 in the 

regulation of smooth muscle related transcription factors should be performed in human 

smooth muscle cells to compare the distinct molecular mechanisms controlling the expression 

of contractile genes in the different cell types. In addition, to further delineate miR-145s actions 

in the tumour microenvironment it is important to identify and validate novel transcriptional 

targets and confirm previously published targets. 

 

8.16 Conclusions and clinical relevance 

Data described in this thesis outlines miR-145 as being a key regulator of myofibroblasts 

transdifferentiation, a pro-tumourigenic and pro-fibrotic phenotype. miR-145 overexpression 

was able to prevent and partially reverse TGF-β1 induced oral and dermal myofibroblastic 
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phenotype and associated pro-tumourigenic paracrine effects. Another important finding is that 

miR-145 negatively regulates oncogenic extracellular proteoglycan versican, more so than miR-

143, which had been previously published to target versican, although the mechanism of this 

regulation remains to be delineated. 

Although the exact mechanisms need further investigation, the data suggests that miR-145 is 

able to negatively regulate TGF-β1 signalling and is able to prevent TGF-β1 from stimulating pro-

tumourigenic paracrine effects. The results presented here have pointed to miR-145 being a 

master regulator of myofibroblast phenotype. It suggests that miR-145, regulates smooth 

muscle transcription factors (MRTF-B and KLF4), which can control the expression of contractile 

genes and also several genes that modulate the ECM and cell signalling (versican, ADAMTS-1, 

ADAMTS-4, Sox-9, TGF-RII) that combined have a large effect on the whole  myofibroblast 

phenotype. miR-145 has several predicted targets in the TGF-β1 signalling pathway itself, but 

also dramatically prevents TGF-β1 signalling from inducing genes which aid in facilitating 

myofibroblast transdifferentiation and stromal remodelling, e.g. CTGF, MMP2, KLF5, versican, 

ADAMTS-1, ADAMTS-4, FN1-EDA and COL1A1.  

The study has highlighted the exciting potential of exogenously delivering miR-145 to reverse 

the detrimental effects of myofibroblast in chronic fibrotic disorders and in the tumour 

microenvironment. Specialised delivery techniques to target miRs to the tumour 

microenvironment are currently in development, a miR conjugation  to a low pH induced 

transmembrane structure which inserts into the cell membrane of cells within a low pH 

environment, for example a tumour, is a recent promising breakthrough (Cheng et al., 2014). 

miR-145 gene therapy could be an excellent therapy in HNSCC as miR-145, also a potent tumour 

suppressor, is often downregulated, therefore miR-145 could treat collectively the tumour cells 

and the tumour microenvironment. So far miR-145 delivery via lentiviral transfection to 

xenografts has been successful in halting tumour progression (Yu et al., 2013).  The same study 

also showed a non-gene therapy of curcumin had the same effect of preventing tumour 

progression by the upregulation of miR-145 by direct promoter activation.  However, despite 

the exciting potential miR-145 has shown for a potential therapy for treating both the tumour 

microenvironment and tumour itself, future work to investigate miR-145 exact targets and 

molecular mechanisms in the regulation of myofibroblast transdifferentiation in vitro and in vivo 

are required to progress towards the clinic.   
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Appendix figure 1: An example of a dissociation curve. A melt curve was 

performed using a 7900HT fast Real Time-PCR system and shown in appendix figure 1 where 

change Rn (fluorescence/ change in temperature) is plotted against temperature. A clear single 

peak indicating the amplication of one PCR product.  
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Appendix figure 2: Primer efficiencies CT values vs log of gene number. 2 µg 

RNA was reverse transcribed and the cDNA was serially diluted to create 6 standard dilutions, 

which were used in a qRT-PCR reaction for a particular SYBR green primer. CT values were 

plotted against the number of gene copies on a semi-log scale the line of best fit was 

calculated and used to calculate the amplification efficiencies. This figure shows the graphs for 

the primer efficiencies CT vs log number of gene copies, with the calculated gradients 

adjacent.  
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Primers Gradient Amplification Factor Amplification 
efficiency (%) 

αSMA -3.089 2.11 110.73% 

COL1A -3.122 2.09 109.08% 

FN1-EDA -3.119 2.09 109.23% 

U 6 -3.041 2.13 113.23% 

KLF4 -3.728 1.85 85.46% 

KLF5 -3.171 2.07 106.71% 

SOX9 -2.837 2.25 125.16% 

TGFBRII -3.070 2.12 111.71% 

CTGF -3.076 2.11 111.40% 

MRTF-A -3.897 1.81 80.55% 

MRTF-B -3.170 2.07 106.76% 

SMAD3 -3.058 2.12 112.33% 

VCAN -3.834 1.82 82.32% 

MMP2 -3.717 1.86 85.80% 

 

Appendix table 1: Primer amplification efficiencies. The gradient from CT vs semi 
log gene number graphs were used in an equation to calculate the amplication factor 𝐸 =

10−1/𝑠𝑙𝑜𝑝𝑒. This could then be used to calculate the % amplification efficiency using this 
equation: % 𝐸 = (𝐸 − 1) × 100%. According to Bio-Rad, primers with amplification 
efficiencies between 90-110 % are acceptable for use in qPCR.  
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