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Abstract 

TiO2(B) or “bronze” is a TiO2 polymorph which is difficult to synthesise in a pure 

form and does not commonly exist in minerals. TiO2(B) potentially plays an important 

role in applications both as a photocatalytic component alongside anatase for 

degradation reactions and as an anode material in lithium ion batteries due to its 

distinctive crystal structure which exhibits large channels and voids. In this research, 

TiO2(B) has been successfully synthesised by both a hydrothermal route and a Low 

Pressure Chemical Vapour Deposition (LPCVD) process. Samples were characterised 

using powder-XRD, Raman spectroscopy, TEM, SEM and UV-Vis spectroscopy. 

Phase formation mechanisms for both the hydrothermal route and LPCVD process 

have been proposed.  

Initially, in order to investigate the TiO2(B) phase formation mechanism via a 

sodium titanate phase transformation, hydrothermal synthesis was employed to 

produce TiO2(B) nanorods including an investigation of the products at each stage of 

the reaction. The results were used to propose an integrated reaction mechanism which 

corresponds well with literature.  This involved the structural transformation of a 

sodium titanate intermediate phase which is of interest in relation to the other TiO2(B) 

fabrication methods where Na
+
 ions are present in the system such as CVD on glass 

substrates. As a result, the synthesis of mixed phase TiO2(B) and anatase thin films on 

a soda lime glass substrate has been achieved, for the first time, by LPCVD synthesis. 

Titanium isopropoxide (TTIP) and N2 gas were used as the precursor and carrier gas 

respectively. The optimal LPCVD condition for preparing a mixed phase of TiO2 

containing TiO2(B) was 550
o
C (actual temperature) with a 1 mL/s N2 flow rate. A 

possible thin-film formation mechanism during the LPCVD process has been 

proposed. 

Subsequently a pre-treatment method involving spraying a Na
+
-containing 

solution, such as sodium ethoxide, onto a number of different substrates including 

silicon wafer, fused quartz, highly ordered pyrolytic graphite (HOPG) and pressed 

graphite flake (grafoil) was applied in conjunction with the LPCVD method in order 

to promote the TiO2(B) phase in the thin film products formed on any substrate. 

Finally, the effects of different alkali metal ions (Li
+
, Na

+
 and K

+ 
from alkali 

metal hydroxide solutions) during the pre-treatment step were investigated in relation 

to the phase formation in the thin films produced during the LPCVD process. Only 

Na
+ 

ions were found to encourage the phase formation of TiO2(B), K
+
 ions produced 

only a minority of the TiO2(B) phase, whereas Li
+
 ions did not produce TiO2(B). 
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Phase formation mechanisms have been proposed based on alkali metal migration 

from the pre-treatment layer into the deposited nascent titania film and the formation 

of intermediate titanate phases.  
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Chapter 1 Introduction  

1.1 Background and Rationale 

Despite an unceasingly rising demand for an improved quality of life, the 

consciousness of increasing environmental issues have drawn global society to 

investigate environmentally-benign lifestyles and technologies. One of the largest 

concerns is an insufficiency in global energy production for supporting the 

development of technologies. There is a challenge to develop alternative energy 

resources which permit the use of renewable energy instead of fossil fuels including an 

improvement in the security and efficiency of the energy storage system. 

Utilization of solar energy has become increasingly attractive to many researchers. 

In recent years, the use of semiconductor photocatalysts has been one of the interesting 

methods to change photon energy into fuel. TiO2 semiconductor polymorphs (and in 

some cases polymorph mixtures) are amongst the most widely used materials owing to 

their cost-effective, highly stable and environmentally-friendly nature combined with 

their well-known electronic and optical properties [1]. The use of TiO2 as a 

semiconductor photocatalyst for the water splitting reaction into H2 and O2 was first 

discovered by Fujishima and Honda [2]. Subsequently, TiO2 has been the focus of an 

efficient means of renewable energy production by many researchers as shown by the 

rapid increase in the number of article publications in the last decade illustrated 

graphically in Figure 1-1. This involves not only the application of TiO2 as a 

photocatalyst for the water splitting reaction (to produce hydrogen and oxygen), but in 

addition TiO2 is also employed as a photocatalyst in a number of degradation reactions 

of chemical pollutants. A major factor in the practical application of TiO2 

photocatalysts, is their ability to be reused whilst retaining high photocatalytic 

efficiency. In this respect immobilized TiO2 thin films on rigid substrates are a key 

form if these photocatalysts are to be employed in the various chemical industries and 

in construction materials.  
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Figure 1-1 Graphical representation of the number of research publications which are 

relevant to the study of TiO2 for the water splitting reaction searched from the Scopus 

database during 1980-2015 by using a search text of TiO2 and water splitting in the 

search field of the title, abstract and keywords.  

 

Thin films based on the crystalline anatase phase of TiO2 have been shown to 

possess a higher photocatalytic activity than rutile. Current improvement strategies 

focus on the use of ultrafine nanoparticles in the thin films, the modification of charge 

transfer processes to prevent the recombination reaction between the photogenerated 

electron and hole pair, and the controlled production of phase mixtures in the thin 

films such as anatase/rutile [3] or anatase/TiO2(B) [4] which may potentially provide 

higher photocatalytic activities than pure anatase. 

Additionally, TiO2 has recently been proposed as an electrode material for 

lithiation in lithium-ion batteries and the growth in reported research in this area is 

shown in Figure 1-2. Amongst the titania polymorphs, the TiO2(B) or “bronze” phase 

has attracted considerable interest due to its distinctive monoclinic crystal structure 

which, because of its low-density crystal framework, exhibits larger channels and 

voids [5]
 
as compared with the other titania polymorphs (anatase, rutile and brookite). 

In addition TiO2(B) also shows a higher specific Li storage capacity as compared to 

the tetragonal structures of anatase and rutile
 
[6], [7].  
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Figure 1-2 Graphical representation of the number of research publications which are 

relevant to the use of TiO2 as an electrode in Li-ions batteries derived from the Scopus 

database during 1990-2015 by using a search text of TiO2 and Li-ion batteries in the 

search field of the title, abstract and keywords. 

 

Thus overall TiO2(B) potentially plays an important role in applications both as a 

photocatalyst and as an anode in lithium ions batteries. TiO2(B) was first synthesised 

in 1982 by René Marchand [8] via hydrolysis of K2Ti4O9 followed by calcination at 

500C. Subsequently, a number of studies have investigated the preparation methods 

and the applications of this material. In particular, the number of research articles on 

TiO2(B) published in this decade has dramatically increased as shown in Figure 1-3. 

This highlights the interest in studying improvements in the synthesis methods and the 

further applications of TiO2(B).  
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Figure 1-3 Graphical representation of the number of research publications which are 

relevant to the TiO2(B) phase searched from the Scopus database during 1980-2015 by 

using a search text of TiO2-B and TiO2(B) in the search field of only the research title 

(red bar) comparing with the search field of the mixing of title, abstract and keywords 

(black bar) 

1.2 Aims and Objectives 

Commonly, alkali metal titanates have been used as precursors for TiO2(B) 

preparation in many synthetic methods such as sol-gel [9],[10], hydrothermal [11] and 

solid-state reaction [8]. In this research project we principally chose to use a method 

specialised for thin film production – namely chemical vapour deposition (CVD).  The 

overall aims of my research project were therefore: a) to understand initially the nature 

of TiO2(B) phase formation via the alkali metal titanate phase transformation process 

relevant to hydrothermal synthesis; b) to employ a Low Pressure Chemical Vapour 

Deposition (LPCVD) method to synthesise thin films of TiO2(B) phase on a substrate 

(for the first time); c) to study the phase formation mechanism of titania thin films 

during the LPCVD synthesis process.  
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Specific objectives which developed during the course of the project were as 

follows: 

 As an initial reference point, synthesise TiO2(B) phase nanoparticles using a 

hydrothermal route to study TiO2(B) phase formation during the hydrothermal 

process via the phase transformation process from alkali metal titanate. 

 Synthesise the TiO2(B) phase or a mixed phase of anatase TiO2 and TiO2(B) 

thin films on a general glass substrate by LPCVD method; 

 Synthesise the TiO2(B) phase or a mixed phase of anatase TiO2 and TiO2(B) 

thin films on a number of different substrates such as silicon wafer, fused 

quartz, etc. by a modified LPCVD method; 

 Investigate the mechanism for TiO2(B) phase formation and growth of thin 

films during the LPCVD process; 

 Investigate the effects of the soda-lime glass substrate on the TiO2(B) phase 

formation during the LPCVD process including the effect of Na
+
 ion diffusion 

from the glass substrate into the deposited titania thin films;  

 Investigate the effects of migration of alkali metal ions such as Li
+
, Na

+
 and K

+
 

on titania/titanate phase formation in the thin films during the LPCVD process; 

1.3 Layout of the thesis 

The thesis comprises eight chapters which may be summarised as follows: 

 Chapter 1 contains the background and rationale to the research, an outline of 

research objectives and the layout of the whole thesis; 

 Chapter 2 will review the structure, processing and properties of titanium 

dioxide (TiO2); 

 Chapter 3 will describe and review the methods employed to synthesise the 

TiO2(B) phase including the principles and practice of the characterization 

techniques employed during the research; 

 Chapter 4 will present the synthesis of pure phase TiO2(B) nanorods by a 

hydrothermal synthesis route including the study of TiO2(B) phase formation 

via the phase transformation of an alkali metal titanate;  

 Chapter 5 will present the successful synthesis method and the formation 

mechanism of mixed phase anatase TiO2 and TiO2(B) thin films on soda-lime 

glass substrates by the LPCVD  synthesis method; 

 Chapter 6 will describe the modified LPCVD method by spraying a Na
+
 

containing solution onto a number of substrates prior to thin film deposition by 

CVD. This demonstrates a universal synthesis method for mixed phase 

TiO2(B) and anatase TiO2 thin films on any substrate. A phase formation 
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mechanism related to Na
+
 migration from the pre-treated substrate into the 

deposited TiO2 thin films is proposed; 

 Chapter 7 will describe the effect of different alkali metal ions (Li
+
, Na

+
 and 

K
+)

 during the pre-treatment of a Si-wafer substrate on titania/titanate phase 

formation during the LPCVD process; 

 Chapter 8 will summarize and conclude the research. Finally, potential future 

study will be suggested and recommended. 

1.4 List of publications and presentations 

This work has been published in the following papers and presented at the following 

conferences.  

Papers  

 Y. Chimupala, G. Hyett, R. Simpson and R. Brydson, J. Phys. Conf. Ser., 

2014, 522, 012074.  

 Y. Chimupala, G. Hyett, R. Simpson, R. Mitchell, R. Douthwaite, S. J. Milne 

and R. D. Brydson, RSC Adv., 2014, 4, 48507. 

 Y. Chimupala, P. Junploy, A. Westwood and R. D.  Brydson, J. Mater. Chem. 

A, 2015 (under review) 

Conferences  

 Poster Presentation at European Microscopy Congress 2012 (EMC 2012) in 

Manchester, UK. 

 Poster Presentation at Electron Microscopy and Analysis Group Conference 

2013 (EMAC 2013) in York, UK 

 Poster Presentation at Pure and Applied Chemistry International Conference 

2014 (PACCON 2014) in Khon Kaen, Thailand (obtained a prize for my poster 

presentation at PACCON 2014) 

 Poster Presentation at Microscience Microscopy Congress 2014 (MMC 2014) 

in Manchester, UK. 

 Oral Presentation at 249
th

 American Chemical Society National Meeting & 

Exposition 2015 (249
th

 ACS meeting 2015) in Denver, CO, US 
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Chapter 2 Titanium Dioxide: Structure, Processing & Properties  

This chapter provides information about the crystal structures, the properties and the 

applications of titanium dioxide phases particularly the TiO2(B) phase. In addition, a 

literature review of TiO2(B) for an application for both electrodes in Li ion batteries 

and photocatalysts will be briefly described. 

2.1 Structures of 11 TiO2 Crystalline Phases  

There are many chemical compositions of titanium oxides such as TiO2, Ti2O3, Ti3O5, 

Ti4O7, Ti5O9, Ti6O11, Ti7O13, Ti8O15 and Ti9O17 [1]. Each form exhibits different 

crystal structures providing several applications. TiO2 polymorphs (and in some cases 

polymorph mixtures) are amongst the most widely used materials owing to their cost 

effective, highly stable and environmentally-friendly nature combined with their well-

known electronic and optical properties [2]. There are at least 11 polymorphs of 

Titanium dioxide (TiO2) that have been reported in both bulk phases and/or 

nanocrystalline phases. The formal names of these TiO2 polymorphs are: 1.) Rutile 

TiO2; 2.) Anatase TiO2; 3.) Brookite TiO2; 4.) the bronze-like phase, TiO2(B); 5.) the 

hollandite-like phase, TiO2(H); 6.) the ramsdellite (VO2)-like phase, TiO2(R); 7.) the 

columbite (α-PbO2)-like phase TiO2(II), 8.) the baddeleyite (ZrO2)-like phase, 

baddeleyite TiO2; 9.) the ZrO2 brookite-like phase, OI phase TiO2; 10.) the cotunnite 

(PbCl2)-like phase, OII phase TiO2 and 11.) the fluorite (CaF2)-like phase, cubic TiO2 

[3]–[8]. 

The structural characteristics of the TiO2 crystalline phases are summarised in 

Table 2-1. Only the first 6 polymorphs in the table list, especially rutile, anatase, 

brookite and TiO2(B), are stable at ambient or low-pressure [8]. Typically, three of the 

the TiO2 polymorphs: rutile, anatase and brookite, are recognized to occur naturally, 

whereas there are only a few reports of the presence of the TiO2(B) phase in natural 

samples [9], [10]. Whereas, another five TiO2 phases: TiO2II or srilankite; OI; OII or 

Cotunnite; Cubic or Fluorite and Baddeleyite have been reported to occur at high-

pressure conditions [11].  

A pressure-temperature phase diagram for TiO2 systems is shown in Figure 2-1, 

indicating the stability of anatase phase at atmospheric pressure and room temperature, 

whereas the rutile phase is more stable at high temperature. Interestingly, both rutile 

and anatase phases at high pressures can structurally transform to the TiO2(II) phase. 
 



 
 

 

Table 2-1 Structural data of 11 TiO2 crystalline polymorphs [adapted from [8]] 

Phases Rutile Anatase Brookite TiO2(B) TiO2(H) TiO2(R) TiO2(II) OI OII Baddeleyite Cubic 

Crystal system tetragonal tetragonal 
ortho-

rhombic 
monoclinic tetragonal 

ortho-

rhombic 

ortho-

rhombic 

ortho-

rhombic 

ortho-

rhombic 
monoclinic cubic 

Space group P42/mnm I41/amd Pbca C2/m I4/m Pbnm Pbcn Pbca Pnma P21/c Fm  m 

Group 136 141 61 12 87 62 60 61 62 14 225 

a (Å) 4.5941 3.7842 9.184 12.1787 10.161 4.9022 4.515 9.052 5.163 4.589 4.516 

b (Å) 4.5941 3.7842 5.447 3.7412 10.161 9.4590 5.497 4.836 2.989 4.849 4.516 

c (Å) 2.9589 9.5146 5.145 6.5249 2.970 2.9585 4.939 4.617 5.966 4.736 4.516 

α () 90 90 90 90 90 90 90 90 90 90 90 

 () 90 90 90 107.054 90 90 90 90 90 98.6 90 

 () 90 90 90 90 90 90 90 90 90 90 90 

Density (g/cm3) 4.248 3.895 4.123 3.734 3.461 3.868 4.329 5.251 5.763 5.092 5.761 

Polyhedron type 
Octa-

hedron 

Octa-

hedron 

Octa-

hedron 
Octa-hedron Octa-hedron 

Octa-

hedron 

Octa-

hedron 

Distorted 

augmented 

triangular 

prism 

Triaug-

mented 

triangular 

prism 

Augmented 

triangular 

prism 

Cube 

Polyhedron per unit cell 

volume (1/Å3) 
0.03203 0.02936 0.03108 0.02815 0.02609 0.02916 0.03263 0.03839 0.03958 0.04345 0.04343 

Coordination number  (Ti) 6 6 6 6 6 6 6 7 9 7 8 

Lattice energy (kJ/mol) 0 24.75 18.53 49.16 73.05 68.49 8.86 141.07 141.97 155.55 147.78 

Reference 
ICSD  

9161 

COD 

9008213 

ICSD 

15409 

ICSD  

41056 

COD 

1008514 

ICSD 

75179 

ICSD 

15328 

ICSD 

173960 

ICSD 

27736 

COD 

9015355 

ICSD 

44937 

 Calculated using the program GULP Relative to that of rutile; calculated at 0 K and 0 GPa

- 9
 - 
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Figure 2-1 Pressure-temperature phase diagram for TiO2 system [12] 

However, these four polymorphic forms: anatase, rutile, brookite and TiO2(B) 

have been extensively studied and synthesised in the last two decades due to their 

stability and their ability to be widely utilized in many fields such as treatment of both 

water and air pollution [13], antibacterial surfaces, antifogging materials, self-cleaning 

materials [14], [15], sunscreen [16] and white pigment [17]. 

Based on lattice energy, generally rutile is the most abundant and the most stable 

phase of the TiO2 polymorphs, however it is usually reported to occur at high 

temperatures 700C [18], [19]. The relative stabilities of each phase (in terms of 

packing density) can be investigated by the calculated number of polyhedra per unit 

cell volume of each phase as shown in Table 2-1 which suggests 

rutilebrookiteanataseTiO2(B). Anatase, brookite and TiO2(B) are considered to be 

metastable phases which can be transformed to the more stable rutile phase via an 

external thermal driving force. Crystal densities, range from 4.248 g.cm
-3

 for rutile to 

3.734 g.cm
-3

 for TiO2(B) and decrease in the order rutilebrookiteanataseTiO2(B).  

TiO2 crystalline structures consist of TiO6 octahedral units (building blocks) in 

which six O
2-

 ions are bound to Ti
4+

 forming an octahedral building block presented as 

a blue polyhedral unit in Figure 2-2. These TiO6 octahedral units assemble by either 

edge- or corner- sharing of oxygen atoms [20] as shown in Figure 2-2. In the different 



- 11 - 
 

 

polymorphs, the octahedron shares their edges, corners and/or faces in different 

combinations. These depend on many factors during the phase-formation process e.g. 

temperature, pressure and chemical conditions. The details of each polymorph 

crystalline structure are generally described in terms of their octahedral connections as 

follows: 

Rutile - 2 edge sharing (2 out of 12 edges per octahedron);  

Brookite - 3 edge sharing (3 out of 12 edges per octahedron);  

Anatase - 4 edge sharing (4 out of 12 edges per octahedron); 

TiO2(B) - 4 edge sharing (4 out of 12 edges per octahedron). 

The anatase framework consists of edge-sharing TiO6 octahedra, whereas the 

rutile, brookite and TiO2(B) structures exhibits both edge- and corner- sharing of a 

TiO6 octahedra. The crystal structure of TiO2(B) shows the same number of edge-

sharing octadra as anatase but with a different arrangement in 3D to form a layered 

structure. 

 

Figure 2-2 Schematic representation of a TiO6 octrahedra unit and edge-sharing and corner-

sharing configuration 

 

The crystal structures of these four phases are presented in Figure 2-3 in both ball-

and-stick and polyhedron models. To compare these polymorphs, the views along the 

a, b and c axes in each crystal structure is shown in Figure 2-4. In fact, common 

structural slabs are easily observed in anatase and TiO2(B). The outstanding 

presentation of structural slabs is shown in Figure 2-3(d) and Figure 2-4 viewing along 

c axis [001] of TiO2(B) crystal structure.  

TiO6 Octahedra  Edge-sharing  Corner-sharing 
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Figure 2-3 Crystal structures of Titanium dioxide:(a) anatase; (b) rutile; (c) brookite and 

TiO2(B). Ball-and-stick models are located on the left hand side comparing with the 

polyhedron models as shown on the right hand side. Red balls and blue balls are 

representatives of oxygen atoms and titanium atoms respectively whereas the bright-

blue polyhedron units present an octahedral building unit constructed from a Ti
4+

 ion 

and six of O
2-

 ions.  
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Figure 2-4 Crystal structures of anatase, rutile, brookite and TiO2(B) viewed along a ([100]), 

b ([010]) and c ([001]) axes. All of the structures was drawn at the same scale. Unit cells 

are outlined using blue-thin dash lines.   
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Besides the anatase, rutile and brookite phases, the TiO2(B) or bronze phase has 

attracted significant interest for many researchers over the last decade due to the 

distinctive monoclinic crystal structure which, because of its low-density crystal 

framework, exhibits larger channels and voids and also a higher specific Li storage 

capacity as compared to the tetragonal structures of anatase and rutile [21]–[23] as 

shown in Figure 2-5. As calculated by Crystal Explorer software (Version 3.1, 2012), 

with a standard pore size for occupying small cations such as Li
+
, TiO2(B) shows the 

highest %voids per structural volume of 12.45% whereas anatase, rutile and brookite 

are considerably lower than TiO2(B) with calculated %voids/volume of around 4.63%, 

0.63% and 0.87% respectively.  

 

Figure 2-5 The crystal voids structures of anatase, rutile, brookite and TiO2(B) with 

percentages of crystal voids calculated from Crystal Explorer with isovalue of 0.008

 

e.au
-3 

(e.au
-3 
 electron per cubic atomic units of length: the atomic units of length is 

equal to the Bohr radius). Red and grey balls represent oxygen and titanium atoms 

repectively. The yellow structures display void volumes (Shading = isolated pores or 

connected pore structures). 

standard pore size for Li insertion.  
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2.2 General applications of Titanium dioxide (TiO2) 

Titanium dioxide (TiO2) is a very versatile material which has been utilised in many 

fields of application over the past few decades. There are four types of TiO2 

polymorphs: anatase; rutile; brookite and TiO2(B). The individual applications of each 

phase depend on their physical and chemical properties arising as a result of the crystal 

structures.  

The pigment industry is currently the largest consumer of TiO2. The rutile phase is 

more desired in white pigment applications over other phases due to an appropriate 

brightness of its white colour, higher phase stability and its very high reflective index 

of 2.72 as shown in Table 2-2. As well as whiteness, the powder form of rutile (and 

other TiO2 phases) is also a very effective opacifier. This means TiO2 can be 

employed as a pigment to provide whiteness and opacity at the same time for many 

applications such as paints, coatings, plastics, rubber, glass, papers, inks, cosmetics as 

well as a colouring component in toothpastes. 

Titanium dioxide is one of the well-known semiconductors. The band gap energies 

of TiO2 polymorphs are within the range 3.0-3.4 eV as illustrated in Table 2-2, which 

directly relate to the individual band structure of each of the phases. Based on the band 

gap energies, TiO2 phases can utilize photon energies in the ultraviolet and near-

ultraviolet visible region of the electromagnetic spectrum for desired applications.  

TiO2 semiconductors especially the anatase phase (and in some cases polymorph 

mixtures) are amongst the most widely used materials owing to their electronic and 

their optical properties combined with their cost effective, highly stable and 

environmentally-friendly nature [2], [13], [24]. TiO2 can be applied in several different 

photo-applications, for example being an ingredient in cosmetics (an ultraviolet (UV) 

blocking agent) [16], an optically reflective coating material, an additive in porcelains 

and ceramics [25], [26], a component in dye sensitised solar cells (DSSC) [27]–[29], 

an excellent anti-fogging material and self-cleaning surface [14], [30], and as an anode 

in the photo-electrochemical splitting of water [31]. A further interesting property of 

titania is the ability to catalyse chemical reactions under uv-visible light irradiation e.g. 

for use as a purifier for water and air pollution (photocatalysts for chemical 

degradation) [32]–[34]. Recently, the trend of TiO2 utilization has been altered from 

normally focusing on only the anatase and rutile phases to the TiO2(B) phase instead. 

Potential applications of the TiO2(B) phase have been highlighted by many researchers 

owing to its crystal structure and its specific properties as described in the following 

section. 
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Table 2-2  General physical, chemical and optical properties of TiO2 structures  

Properties Rutile Anatase Brookite TiO2(B) 

Crystal system tetragonal tetragonal orthorhombic monoclinic 

Space group P42/mnm I41/amd Pbca C2/m 

Melting/boiling 

point 

 1,843 °C/ 2,972 °C  

Molar mass  79.866 g/mol  

Solubility in water  insoluble  

Density (g/cm
3
) 4.248 3.895 4.123 3.734 

Volume of cell  (10
6 

pm
3
) 

136.31 62.42 257.63 284.22 

%Voids per unit cell 

volume 

0.63% 4.63% 0.87% 12.45% 

Refractive index  2.72-2.73 2.52-2.55 2.63 n/a 

Band gap energy 

(eV) 

 

3.02 
# 
[35]

 
 3.21

#
 [35]

 
 

/3.2 
##

 [36] 

3.27 
#
 [35]

 
 3.0-3.22 

#
             

[37], [38]  

/3.2 
##

 [36]  
 crystal voids calculated from Crystal Explorer with isovalue of 0.008 e au

-3  

 Polymers, Light and the Science of TiO2, DuPont and [17] 

# derived from experimental data, ## calculated from CASTEP and DMol
3 

2.3 Applications of TiO2(B)  

2.3.1 TiO2(B) for Lithium ion anode batteries  

An additional application of titanium dioxide is as an electrode in Lithium ion 

batteries. TiO2 has been increasingly investigated as an electrode material for lithiation 

owing to its cost effectiveness, environmental friendliness and structural stability over 

multiple charge/discharge cycles [39], [40]. Many polymorphs of TiO2 such as anatase 

and TiO2(B) phases as well as metal titanates such as Li4Ti5O12 have been reported as 

effective anode materials for Li ion batteries. Amongst the titania polymorphs, the 

TiO2(B) or bronze phase attracts considerable interest due to its larger channels and 

pores as compared with the other titania polymorphs as shown in Figure 2-5. Bulk 

TiO2(B) is able to accommodate 0.85 Li
+
 per Ti atom whereas the capacities of 

anatase, rutile and brookite are 0.5, 0.1 and 0.1 respectively [41]. This number can be 

increased by decreasing the particle size and hence surface area, for example it 

becomes 1.0 Li
+
 per Ti atom for TiO2(B) in nanotubular and/or nanoparticulate forms 

[41]. The open pores allow intercalation of Li into the structure and result in TiO2(B) 

having an optimum theoretical charge capacity of around 335 mAh/g (milliampere 

hours per gram) which is higher than for titanates such as Li4Ti5O12 (175 mAh/g) and 
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would be satisfactory for Li-ion battery applications when compared with a typical 

commercial graphite electrode (372 mAh/g). In addition, TiO2(B) anode materials 

provide benefits over graphite electrodes owing to a minor volume expansion during 

Li intercalation (there is 10% of volume expansion in graphite electrode), providing 

low levels of generated heat [39]. Moreover, graphite is very sensitive towards 

electrolytes and can easily be exfoliated, limiting its lifetime and utilization
 
[42]–[45]. 

 

Figure 2-6 Diagram illustrating the lithium ion capacity of conventional electrode materials 

and their electrochemical reduction potentials with respect to lithium metal for anode 

(red) materials including TiO2(B) (green) and cathode materials (blue). [adapted from 

[46],
 
[47]] 

The battery potential is another factor to be considered in Li-ion battery 

applications; this is the difference in electrode potential between the anode and 

cathode shown in Figure 2-6. However, in comparison with other Li-ion battery anode 

materials, the electrochemical reduction potential of TiO2(B) is around 1.5 V relative 

to Li/Li
+
 which is relatively high. This means that, for a given cathode, the battery-cell 

potential from a TiO2(B) anode is lower than for other conventional anode materials 

and this might limit its use.  

Recently, the amount of research which has studied TiO2(B) preparation methods 

and its application in Li-ion anode batteries, has dramatically increased. A list of 

publications related to TiO2(B) for Li-ion anode batteries is summarized in Table 2-3. 
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Table 2-3 Literature articles which have synthesized TiO2(B) for application as an electrode in Li ion batteries 

Ref/Year Phases/Morphologies Synthesized method Properties/Li+ storage capacities 

Giannuzzi et al./ 

2014 [48] 

TiO2(B) nanorods An surfactant-assisted 

nonaqueous sol-gel route 

222 mAh g
-1

 at 0.5 C 

Fehse et al./ 2013 

[49] 

Mixed TiO2(B) and anatase 

phase in different ratio 

Hydrothermal  Capacities exceeding 220 mAh g
-1

 with good capacity 

retention at low cycling rate 

Liu et al./  

2012 [50] 

Porous TiO2(B) constructed by 

nanosheet 

Hydrothermal  Specific capacity and high-rate capability with 213 mAh g
-1

 at 

10 C 

Li et al./  

2011 [51] 

TiO2(B) nanowires Hydrothermal Discharge capacity 220 mAh g
-1

 at a rate of 50 mA g
-1

 

Qu et al./  

2014 [52] 

TiO2(B) nanoparticles/ double-

walled nanotubes 

Hydrothermal 163 mAh g
-1

 at the rate of 2000 mA g
-1

 

Xia et al./           

2014 [53] 

Hierarchical TiO2(B) 

nanowire@-Fe2O3 

Hydrothermal  TiO2(good structural stabilities) and Fe2O3(large specific 

capacity) Large reversible capacity up to 800 mAh g
-1

 

Ren et al./  

2012 [54] 

TiO2(B) nanoparticles Hydrothermal  The first discharge and charge  capacities 322 mAh g
-1 

and 247 

mAh g
-1

 

Etacheri et al./ 

2013 [55] 

Nanosheet-assembled TiO2(B) 

microflowers 

Hydrothermal  A high discharge capacity of 270 mAh g
-1 

at 1 C 

Guo et al./  

2013 [56]  

TiO2(B) nanofiber bundles Hydrothermal  A reversible capacity of 206 mAh g
-1 

at the current density of 

10 mA g
-1

 (0.05 C) 

Armstrong et al./ 

2005  [57],  

TiO2(B) nanowires Hydrothermal  Specific capacity of 200 mAh g
-1 

at rate of 200 mA g
-1

 

Armstrong et al./ 

2005 [58] 

TiO2(B) nanotubes Hydrothermal 325 mAh g
-1

 corresponding to Li0.98TiO2(B) 

Su et al./  

2014 [59] 

TiO2(B) nanowires Hydrothermal Discharge capacity of 226.8 mAh g
-1 

After 20
th
 cycle at 50 mA g

-1
, it remains at 129.0 mAh g

-1
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2.3.2 TiO2(B) for photcatalytic applications  

Titanium dioxide (TiO2) has been introduced in many chemical reactions as an 

effective photocatalyst under UV-visible light irradiation. Here an electron (e
-
) in the 

valence band (VB) of TiO2 is excited to the conducting band (CB) by absorption of an 

external photon which possesses an energy equal or higher than the band gap of the 

TiO2. In the meantime, this generates a positive hole (h
+
) in the VB as shown in Figure 

2-7. The photo-generated electron and hole in the CB and the VB respectively, can 

both migrate to the surface and then directly react with active species to perform a 

reduction reaction and an oxidation reaction respectively. During the charge transfer 

process, a photo-generated electron in the CB can release its energy by coming back to 

the VB. This is called a recombination reaction which is a drawback because it is a 

competitive reaction with the photocatalytic reaction. 

 

 
Figure 2-7 Schematic of TiO2 semicondutor photocatalysis and charge separating reaction 

In principle, the direct band gap energy of TiO2(B) is in the range 3.0-3.2 eV, 

slightly smaller than for anatase (3.2-3.3 eV): which is reported to be the most 

effective photocatalyst of the TiO2 polymorphs. Therefore, one might expect similar 

photo-catalytic activities of TiO2(B) under UV irradiation and/or visible light as 

conventional anatase, which has been widely developed for many applications such as 

photocatalyst and water-splitting devices. Furthermore, TiO2(B) is a potential material 

for applications in anti-fogging, anti-fouling, anti-bacterial materials including self-

cleaning devices, even though only a small amount of research has been focused on 

these applications [22].  

Charge Separation: TiO2 + h   hvb
+ + eCB

- 

 

Recombination  
reaction 

Oxidation reaction 

Reduction reaction 
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Figure 2-8 Schematic description of the different proposed charge transfer processes and 

energy band structures of the mixed phases TiO2(B) and anatase: (a) by Zhanfeng et al, 

2010; (b), by Dongjiang et al, 2009; and (c) by Yang et al, 2009. 
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Many researchers have reported that the anatase phase is considered to have a 

higher photocatalytic activity than TiO2(B) [60]. However mixing different phases of 

TiO2 [33], [34] such as anatase/rutile or anatase/TiO2(B) has been found to result in 

better photocatalytic efficiency than solely pure anatase. The mixed phases directly 

affect the charge transfer process between the different phases possibly reducing 

recombination of photo-generated electrons and so enhancing the photocatalytic 

activity [60], [62].
 
This directly improves the efficiency of oxidative stripping of 

organic molecules from water or air. The phenomenon in the mixed band structures 

has been proposed for the industry standard TiO2 Degussa P25 which is a mixed phase 

of anatase and rutile nano-crystalline powder in a mass ratio of 80:20 anatase:rutile 

[36], [63]. The experimental band gaps of anatase and TiO2(B) phases were 

determined by Dongjiang et al, 2009 to be 3.19 eV and 3.05 eV respectively. It can be 

implied that there is a difference between the valence band (VB) and/or conduction 

band (CB) edge potentials of the two phases when in contact. Most studies describe 

that the VB edge potential of anatase is generally lower than that of TiO2(B) which 

means, electrons in the VB of anatase can absorb a photon energy easier than in 

TiO2(B). However, the relative levels of the CB edge between the two phases are still 

ambiguous. There are three slightly different proposed mechanisms for the charge-

transfer process between mixed phase anatase and TiO2(B), described by Zhanfeng et 

al, 2010; Dongjiang et al, 2009; and Yang et al, 2009 as shown in Figure 2-8. 

In Figure 2-8 (a), Zheng et al. proposed a possible three step irreversible 

interfacial charge transfer process in mixed phase TiO2 nanofibers with interfaces 

between TiO2(B) and anatase, based on Electron Paramagnetic Resonance (EPR) 

observation: () an electron in the valence band (VB) of anatase absorbs an external 

photon and jumps up to the conduction band (CB) leaving a hole in the VB, this 

interfacial electron then migrates from the CB of anatase to the CB of TiO2(B). 

However, this e
-
 transfer process is very slow therefore most of excited electrons 

usually take part in the reduction reaction in the CB of anatase; () The remaining 

holes in the anatase VB interfacially transfer to the VB of TiO2(B) very quickly; () 

this VB hole continuously moves to the surface of TiO2(B) to drive an oxidation 

reaction. Zheng et al concluded that the photo-generated holes can transfer faster to the 

neighbouring TiO2(B) particles than the photo-generated electrons because the 

effective mass of a hole is smaller than that of electrons.  

Another possible electron-hole separation mechanism published by Dongjiang et 

al, 2009, described a slightly different mechanism with the same relative energy band 

structure as proposed by Zheng, as schematically shown in Figure 2-8 (b). This 

mechanism was detected by EPR of TiO2(B) nanofibers with a shell of nano-

crystalline anatase. Dongjiang proposed 4 processes of electron-hole separation: () an 
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electron in the external anatase phase shell is excited by light irradiation leaving a hole 

in the VB of anatase and generating an excited electron in the CB. Due to fast 

diffusivity of the hole, it can rapidly migrate to the adjacent VB in TiO2(B) or the 

surface of the anatase shell; () a photo-generated electron in the CB of anatase 

requires 40 times (40-160 ps) longer to transfer from anatase to TiO2(B) than this 

hole migration. Therefore it can be assumed that only photo-generated holes can 

migrate from anatase through an interface region to TiO2(B) in a one-way process; 

() the remaining photo-induced electrons in the CB of anatase can easily migrate to 

the shell surface and directly react with adsorbed chemical molecules; even though 

this process takes a longer time of 2 s than the interface charge transfer processes 

()&(), this might help to decrease the electron-hole recombination reaction 

probability; (V) similarly, the holes in the VB can migrate to the shell surface of 

anatase and slowly react (10-250 s ) with surface chemical molecules. Only the 

holes in the VB of anatase can produce a reduction reaction of chemical molecules 

since the specific morphology is TiO2(B) nanofibers with a shell of nano-crystallite 

anatase. As a result, more photo-generated electrons than holes are left in the anatase 

phase and excess holes can then diffuse into the TiO2(B) phase to maintain the charge 

balance in the anatase. It should be noted that all processes ()-() are similar to the 

proposed mechanism of Zheng et al, only process (V) is different due to the core-shell 

structure of the nanomaterials.  

The last possible charge transfer process and energy band structure has been 

presented by Yang et al, 2009 as shown in Figure 2-8 (c). The proposed band structure 

is different in two key respects: (1) the CB edge potential of TiO2(B) is higher than 

that of anatase and (2) the band gap of TiO2(B) is 3.2 eV instead of 3.0 eV. However, 

a proposed mechanism was presented by Yang et al without any experimental 

evidence. They reported that excited electrons and holes are generated in the anatase 

phase by absorption of photon energy and the holes prefer to migrate to TiO2(B) 

owing to the higher VB edge potential than in the anatase, subsequently this hole 

migrates to the surface and oxidizes adsorbed species. In addition, photo-generated 

electrons and holes can also occur in TiO2(B) phase, followed by oxidation between 

surface holes and surface chemical molecules. Photo-induced electrons in the CB of 

TiO2(B) usually transfer to anatase due to the lower CB edge potential of anatase. 

Both transferred electrons from TiO2(B) and electrons directly excited to the anatase 

CB can react with surface oxidants (reduction reaction).  
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Table 2-4 Literature articles which have synthesized TiO2(B) for application as a photocatalyst. 

Ref./Year Phases/Morphologies Synthesized method Photo catalytic Reaction 

Bai et al.  

/2009 [61] 

Mesoporous Pt-(anatase/TiO2(B)) 

nanoarchitecture 

A simple soft-chemistry and 

template-free approach 

CHCl3 degradation and H2 evolution 

Zhu et al. 

/2005 [65] 

Bicrystalline phase containing anatase and 

TiO2(B) 

Sol-gel process The degradation of an active organic dye, active 

yellow XRG 

Parayil et al. 

/2013 [66] 

Mixed phase anatase-TiO2(B) Sol-gel process H2 evolution 

Huang et al. 

/2012 [67] 

TiO2(B)/anatase bicrystal phase TiO2 

nanotube 

Hydrothermal Methyl orange degradation 

Mohamed et al. 

/2012 [34] 

Mesoporous bicrystallized TiO2(B)/anatase 

(rutile) phase 

Hydrothermal  Nitrate reduction 

Xiang et al. 

/2010 [68] 

TiO2(B) nanosheet Hydrothermal  Methyl orange degradation 

Wang et al. 

/2010 [69] 

TiO2(B) crystallines/nanopores structure Hydrothermal  Methyl orange degradation 

Hongo et al. 

/2010 [70] 

Mesoporous tatania (a wormhole-like 

structure) containing TiO2(B) 

The evaporation-induced 

self-assembly method 

Acetic acid decomposition 

Liu et al. 

/2011 [71] 

TiO2(B) core and anatase shell-core 

heterojunction nanowires 

Hydrothermal Methyl orange degradation 

Zheng et al. 

/2009 [62] 

Titania nanofibers with mixed anatasae 

and TiO2(B) phases 

Hydrothermal  Sulforhodamine (SRB) degradation 

Wang et al. 

/2014 [72] 

Antase/TiO2(B) heterojunction  Hydrothermal Acetaldehide decomposition 



- 24 - 
 

 

 

Figure 2-9 Summarized diagrams showing applications of TiO2(B) involving both pure 

TiO2(B) and a mixed phase of TiO2(B) with other TiO2 phases. 

Recent research in the field of TiO2(B) for photocatalytic applications is listed in 

Table 2.4. These report that mixed phases containing TiO2(B) exhibit higher 

photocatalytic efficiency than either pure TiO2(B) or pure anatase in every catalysed 

chemical reaction. The number of publications concerning mixed phase TiO2(B) & 

anatase as photocatalysts has extensively grown over the last decade. This implies 

mixed phase anatase & TiO2(B) is a potentially promising material for improvement of 

photocatalytic technology and could be of benefit for the production of water-splitting 

photocatalytic devices.  

To conclude several applications of TiO2(B), are presented in Figure 2-9. 

Generally, the pure TiO2(B) phase usually applies in Li-ion battery anode materials 

whereas the mixed phase between TiO2(B) and anatase applies in photocatalytic 

applications. Both of these applications practically require a high surface area and a 

high stability of materials. The high surface area provides: a large amount of reactive 

sites for photo-catalytic reaction and an improvement in the rate of electron-transfer 

during a charge/discharge process for Li-ion batteries [64], whereas, the higher 

stability of materials for both applications encourages an enhancement of its cycle-life 

time providing a greater utilization. 

2.4 Fabrication method of TiO2(B) phase 

There are two main preparation methods for TiO2(B) that have been proposed since 

1980. Solid state synthesis and wet chemical process (sol-gel and hydrothermal 

methods) have all been reported to prepare TiO2(B) phase. Most of the prior TiO2(B) 

synthetic routes require three basic strategies of: (i) a formation of alkaline metal 
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titanates; (ii) a subsequent cation exchange between the alkali metal cation and 

external protons to form hydrogen titanate structures and (iii) finally, the thermal 

treatment of hydrogen titanate to reconstruct the structure to form TiO2(B) framework. 

2.4.1 Solid State Synthesis  

The TiO2(B) phase was first published by Marchand et al. in 1980 [22]. The first 

preparation method of a new form of titanium dioxide as called TiO2(B) consisted of: 

a synthesis of staring materials K2Ti4O9 by solid state reaction between KNO3 and 

TiO2 in the molar ratio 1:2 at 1000C for 48 hr; the subsequent hydrolysis (cation 

exchange) of K2Ti4O9 in a diluted HNO3 solution (N<0.5) for 3 days followed by 

filtration and vacuum drying at room temperature to form a structure of K2-

xHxTi4O9.nH2O; and the thermal treatment at moderate temperature (500C). In 1986, 

the same group as mentioned above [5] proposed a new idea to complete potassium 

removal from intermediate titanate by increasing the concentration HNO3 to be excess 

3.0 M including structurally comparing of TiO2(B) and K2TI4O9 with the other similar 

forms of layer alkali metal titanate structures e.g. Na2Ti3O7, Na2Ti6O13, and K2Ti8O17. 

Not only the K2Ti4O9 obtained from a solid stage reaction can be employed as 

starting materials for TiO2(B) preparation but this can be achieved by using the other 

layered titanates with the formula A2TinO2n+1(A= Na, K, Cs; 3n6) as was suggested 

by Feist and Davies in 1992 [21]. These A2TinO2n+1 starting materials were produced 

by conventional solid state reaction at 850C of either Na2CO3, K2CO3 or CsNO3 and 

TiO2(anatase). The proton exchange of a variety of layered titanates A2TinO2n+1 

(A=Na, K, Cs) by stirring in acid solution and subsequent dehydration including 

thermal treatment were required to yield TiO2(B) phase.  

The solid state synthetic technique was claimed to be the first synthesis method 

for preparing TiO2(B) phase and it is still employed since the compound products can 

be prepared in large amount, however, it provides many disadvantages of the final 

product such as an aggregation of particles with a rather than the large grain size, poor 

chemical homogeneity and lack of control of the product form [73]. This leads to 

development of a variety of material synthesis methods for preparation of TiO2(B). 

2.4.2 Hydrothermal Synthesis  

An achievement for synthesis of nanocrystalline TiO2(B) by using a variety of wet 

chemical processes such as sol-gel method followed by calcination at moderate 

temperature (around 400-500C) has been suggested [23],[48],[66],[74]-[76]. 

However, the sol-gel method required many starting materials and using multistep 

synthesis followed by calcination. Therefore, it is highly desirable to synthesis 

nanocrystalline TiO2(B) by a simplified technique. The number of preparation steps 
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and starting materials can be  reduced by using a hydrothermal process. However, the 

products after hydrothermal treatment need to be crystallized by a heat treatment 

process at moderate temperatures of 400
o
C. The hydrothermal synthesis method is 

another suitable techniques to synthesise TiO2(B) phase materials as powders, with 

control of particle size, particle morphology and phase formation. This method has 

been extensively employed to synthesise TiO2(B) nanoparticles, nanorods, nanotubes 

or even thin films by many research groups in the last decade [61]-[72].  

In last decade (2004-2014), many researchers have reported the successful 

preparation of pure phase TiO2(B) and/or mixed phase TiO2(B) with anatase via 

hydrothermal synthesis. This research is summarized in Table 2-5. From the literature, 

it can be separated into 2 groups based on the category of solvent employed in the 

hydrothermal system. The first group is the majority and uses the same basic concept 

for the preparation of the TiO2(B) phase via an alkali metal titanate (A2TinO2n+1; 

A=Na,K) intermediate [77]–[79]. Most of them require a proton exchange process and 

finish by calcination to form the TiO2(B) structure. A titanium source e.g. anatase 

TiO2, P25, TTIP or Ti foils have been used as the precursor together with a high 

concentration of alkali metal hydroxide solution (10 M NaOH or KOH). The 

hydrothermal reaction temperature and time is in the range of 150-200C for 1-3 days. 

The primary hydrothermal intermediate products have monoclinic crystal structures 

with the empirical formula of A2TinO2n+1 (A=Na,K) depending on what kind of alkali 

metal solution is used. These intermediate products are immersed in dilute acid 

solution, generally 0.1-1M HCl for the purpose of alkali metal ion-proton exchange at 

the pore sites of A2TinO2n+1 to form the secondary intermediate product of H2TinO2n+1. 

The final step is the calcination of H2TinO2n+1 at a temperature around 350-450C for 

2-5 hr. One-dimensional nanopowders such as nanotubes, nanowires or nanoribbons of 

TiO2(B) are often the final product of these preparation procedures. However, some of 

them might occur as mixed phase anatase and TiO2(B) depending on the final 

calcination temperature.  
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Table 2-5 Literature articles which have used the hydrothermal process to synthesise TiO2(B) materials. This table shows the phase/s and morphology of 

the TiO2 product, synthesis routes and synthesis parameters: A and B refer to the assignment of the anatase and TiO2(B) respectively. 

Ref 

/year 

Phases of Product Morphology 

of Product 

Synthesis Route Hydrothermal 

Conditions 

Post Treatment Precursor 

 [80] 

2004 

B Nanotubes 3 steps synthesis:  

Hydrothermal             

Ion Exchange 0.05 M HCl  

Calcination 

150C for 72 hr Calcination  

@ 400C  

for 4 hr 

Anatase TiO2,         

10 M NaOH, 

0.05 M HCl 

B Nanowires 170C for 72 hr Anatase TiO2,            

15 M NaOH, 

0.05 M HCl 

 [58]  

2005 

B Nanotubes 3 steps synthesis:  

Hydrothermal             

Ion Exchange 0.05 M HCl  

Calcination 

150C for 72 hr,           

70% filling 

Calcination  

@ 400C  

for 5 hr 

Anatase TiO2,             

15 M NaOH, 

0.05 M HCl 

 Nanowires 170C for 72 hr,  

82.5% filling 

 [57] 

2005 

B Nanowires 3 steps synthesis: 

Hydrothermal             

Ion Exchange 0.05 M HCl 

Calcination 

170C for 72 hr Calcination  

@400C         

for 4 hr 

Anatase TiO2,          

15 M NaOH,         

0.05 M HCl 

[78] 

2007 

A2TinO2n+1  

(A= Li, Na

 & K


)  

reported as 

template structure of 

TiO2(B) 

Snowflakes 

(Li2TiO3)  

nanorods 

(Na2Ti3O7 & 

K2Ti8O17 ) 

 

1 step hydrothermal synthesis 

 
180C for 48 hr - TiCl4, 1.5 M 

HCL, DI water,  

25 M of 

LiOH/NaOH / 

KOH 
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Ref 

/year 

Phases of Product Morphology 

of Product 

Synthesis Route Hydrothermal 

Conditions 

Post Treatment Precursor 

 [83] 

2010 
K2Ti6O13


 

(NH4)2Ti6O13

 

TiO2(anatase) 

both of them have 

been reported as 

template structure of 

TiO2(B) 

Nanotubes 

Nanotubes 

Octahedral 

nanocrystals 

3 steps synthesis: 

Hydrothermal                          

Ion Exchange                            

0.1M NH4NO3 

Hydrothermal  

Step 1, 200C                 

for 24 hr 

Step 3, 200C                         

for 24 hr 

- P25 TiO2,            

10 M KOH, 

0.1M NH4NO3, 

DI water 

 

 [69] 

2010 

B Nanopores 

structure 

1 step hydrothermal synthesis 

 
180C for 8 hr  - TTIP, Ethylene 

glycol (EG),  

DI water 

 [68] 

2010 

B Nanosheets 1 step hydrothermal synthesis 

 
140-180C for 4 hr - TiCl3, Ethylene 

glycol (EG), 

DI water 

[62] 

2010 

B, A+B, A Nanofibers 3 steps synthesis: 

Hydrothermal                        

Ion Exchange 0.1 M HCl 

Calcination 

180C for 48 hr Calcination @ 300-

700C for 4 hr 

(phase of products 

directly depends on 

calcination Temp.) 

Anatase TiO2,   

10 M NaOH 

 

 [51] 

2011 

B  

(via K-titanate 

intermediate) 

Nanowires 3 steps synthesis:  

Hydrothermal                     

Ion Exchange                                          

0.1 M HNO3  

Hydrothermal 

Step 1, 200C                            

for 24 hr 

Step 3, 120, 150 and 

180C for 24 hr  

- P25 TiO2,        

10M KOH, 

0.1M HNO3 

B 

(via Na-titanate 

intermediate) 

Nanowires 3 steps synthesis:  

Hydrothermal                          

Ion Exchange                                 

0.01 M HNO3 

Calcination 

200C for 24 hr Calcination @ 

450C        

for 3 hr 

P25 TiO2,  

10 M NaOH, 

0.01 M HNO3 
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Ref 

/year 

Phases of Product Morphology 

of Product 

Synthesis Route Hydrothermal 

Conditions 

Post Treatment Precursor 

 [82] 

2011 

B, A+B, A Nanotubes  3 steps synthesis: 

Hydrothermal  

Ion Exchange 

0.1 M HCl 

Calcination  

150C for 72 hr 

(nanotube) 

Calcination  

@200-800C for 2 

hr (phase of 

products directly 

depends on 

calcination Temp.) 

 

P25 TiO2,  

10 M NaOH,  

0.1 M HCl 

  
Nano-ribbons 200C for 24 hr 

(nanoribbon) 

Hydrothermal method 

 [71] 

2011 

B/A core-shell Nanowires 4 steps synthesis: 

Hydrothermal                         

Ion Exchange 0.6 M HCl 

Hydrothermal in acid 

solutionCalcination  

 

220C for 48 hr Calcination  

@500C  

for 2 hr 

Ti foil,  

1 M NaOH, 

0.6 M HCl   

 [67] 

2012 

Bicrystal B+A Nanotubes 3 steps synthesis:  

Hydrothermal                         

Ion Exchange 0.1 M HCl 

Calcination 

 

150C for 60 hr Calcination  

@ 300C 

for 1 hr 

Anatase TiO2, 10 

M NaOH,  

0.1M HCl 

 [34] 

2012 

B+A Polyhedral 

and 

wormhole-

like meso-

porous 

nanoparticles 

 

2 steps synthesis:  

Hydrothermal            

Calcination 

100C for 48 hr 

(the mixture was 

adjusted pH to 0.7 by 

HNO3 before 

hydrothermal reaction) 

Calcination  

@ 350C 

for 4 hr 

TTIP, 

PELE/PVA/PAA,

DI water, 

EtOH 

 [50] 

2012 

B Porous 

nanosheets   

2 steps synthesis: 

Hydrothermal            

Calcination 

 

150C for 24 hr Calcination  

@ 350C 

for 2 hr 

TiCl4, Ethylene 

glycol, NH4OH 
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Ref 

/year 

Phases of Product Morphology 

of Product 

Synthesis Route Hydrothermal 

Conditions 

Post Treatment Precursor 

 [83] 

2013 

B Nanotubes  3 steps synthesis:  

Hydrothermal                         

Ion Exchange 0.1 M HCl 

Calcination 

150C for 48 hr Calcination  

@ 300C 

for 2 hr 

Anatase TiO2,  

10 M NaOH, 

0.1 M HCl 

. 

 [84] 

2013 
Na2Ti6O13


 Nano-ribbons 

 

2 steps synthesis: 

Hydrothermal  Calcination  

200C for 40 hr Calcination  

@800C                    

for 2 hr 

P25 TiO2,  

10 M NaOH,  

0.1M HCl 

 H2Ti3O7

A 

both of them have 

been reported as 

template structure of 

TiO2(B) 

Nano-ribbons/ 

Nanorods 

 

3 steps synthesis: 

Hydrothermal                        

Ion Exchange 0.1 M HCl 

Calcination 

200C for 24 hr Calcination  

@800C                     

for 2 hr 

 [85] 

2014 

Biphase B and A Nanofibers 4 steps synthesis: 

Hydrothermal                         

Ion Exchange 0.1 M HCl 

Solvothermal in 0.05M HNO3 

Calcination 

Step 1,180C for 72 hr 

Step 3,110C for 20 hr  

Calcination  

@ 400C 

for 4 hr 

Anatase TiO2,  

15 M NaOH, 

0.1 M HCl, 

0.05M HNO3 

 

B Nanofibers 3 steps synthesis: 

Hydrothermal                        

Ion Exchange 0.1 M HCl 

Calcination 

180C for 72 hr Calcination  

@ 400C 

for 4 hr 

Anatase TiO2,  

15 M NaOH, 

0.1 M HCl 

 

 [72] 

2014 

B, A+B, A Nano-ribbons 2 steps synthesis: 

Hydrothermal            

Calcination 

180C for 12 hr Calcination for 2 hr 

@ 400C for B,  

@ 550C for A+B, 

@ 750C for A  

TTIP, Acetic acid 
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/year 

Phases of Product Morphology 

of Product 

Synthesis Route Hydrothermal 

Conditions 

Post Treatment Precursor 

 [86] 

2014 

B Nanosheets 1 step hydrothermal synthesis 

 
180C for 12 hr - TiCl3, Ethylene 

glycol (EG) 

 [59] 

2014 

B Nanowires 3 steps synthesis:  

Hydrothermal                            

Ion Exchange 0.1 M HCl  

Calcination 

180C for 48 hr Calcination  

@ 300C and 400C 

for 2 hr  

(@400C, as-

prepared TiO2(B) 

shows higher 

crystallinity) 

Anatase TiO2,    

10 M NaOH, 

0.1 M HCl 

 

Where: TTIP  is Titanium Isopropoxide 

 PVA  is Polyvinyl Alcohol 

 PAA is Polyacrylamide  

 PELE  is Polyethylene Terephthalate 

 EG  is Ethylene Glycol 

 A  is anatase TiO2 

 B  is TiO2(B) 
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The general concept in the second group of literature reports is totally dissimilar 

to the first one. These employed other solvents beside alkali hydroxide solutions such 

as ethylene glycol (EG), acetic acid and even polymer solutions (PVA, PELE & PAA) 

and normally have only one hydrothermal synthesis step or two steps with a 

calcination process to complete the TiO2(B) preparation. These preparation procedures 

mostly used a liquid Ti source e.g. TTIP, TiCl3 and TiCl4 as the precursor. The 

hydrothermal temperature was in the range of 150-180C for a reaction time less than 

24 hr, except when the hydrothermal solvent was a polymer solution, when they 

reported a reaction temperature of only 100C for a longer reaction time of 48 hr. 

However, all of the second group of research reports showed that the crystallinity of 

TiO2(B) was lower than the TiO2(B) products from the first group. The physical 

morphology of their TiO2 final product was mainly nanosheets with a porous structure 

Due to many synthetic steps for preparing nanocrystalline TiO2(B) by the solid-

state synthesis route and the hydrothermal method, a new synthetic strategy is to 

simplify the preparation techniques or to investigate a new technique to prepare 

nanocrystalline TiO2(B) materials which will be described in the next chapter. 
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Chapter 3 Sample Preparations and Characterization methods 

The first section of this chapter describes two useful fabrication techniques to prepare 

TiO2(B) materials in this research: Hydrothermal and CVD methods including the 

basic principles. The following section presents the characterization methods: Powder 

X-ray Diffraction (PXRD), Scanning Electron Microscopy (SEM), Focused Ion Beam 

Scanning Electron Microscopy (FIB-SEM), Transmission Electron Microscopy 

(TEM), Raman Spectroscopy (Raman), and Ultraviolet-Visible diffuse reflectance 

spectroscopy (UV-VIS). This section details the principles of each technique, details 

of sample preparation and data analysis.  

3.1 Fabrication Methods  

Two fabrication methods were used in this research. The first method is hydrothermal 

synthesis which has been used to synthesise TiO2(B) over the past decade. The second 

is Low Pressure Chemical Vapour Deposition (LPCVD) which is a novel technique to 

prepare TiO2(B) thin films. However this latter method aids study of the TiO2(B) 

phase formation. 

3.1.1 Hydrothermal Synthesis 

The general principles of hydrothermal synthesis including a hydrothermally 

experimental procedure to synthesis TiO2(B) in this research are described in this 

section. 

3.1.1.1 Background and theory of hydrothermal synthesis 

The general definitions of hydrothermal conditions are when the reaction temperature 

 100C and reaction pressure  1 bar. A Carbolite oven fitted with a Eurotherm 

temperature controller was used as the external heat generator with air circulation. The 

reaction vessel in this work was a 4748 large capacity acid digestion bomb of 125 cm
3
 

volume composed of a metal body and a removable PTFE (Teflon) liner as shown in 

the diagrammatical representation in Figure 3-1.  
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Figure 3-1 (a) Diagram showing the components of a large capacity acid digestion vessel (b) 

an image of the large capacity acid digestion vessel employed in the hydrothermal 

synthesis for TiO2(B). [Adapted from Parr Instrument Company, Illinois, US] 

The standard operating procedures and precautions are provided in the Parr 

Operating Instructions (manufacturer). In order to prevent excessive pressure 

generated within the container, at least 33% of the bomb capacity (~40 mL) should be 

left as free space for volume expansion in the case of inorganic sample preparation 

reaction without any liberated gases. The filled Teflon cup with its Teflon cover is 

located inside the metal body and the correct position between the body and cup can 

be checked by slightly raising the bottom plate to avoid the air gap. A corrosion disc 

with a Rupture disc on top, is placed on the Teflon cover to protect the bomb and the 

operator from any dangers caused by unexpected high internal pressures. The pressure 

plate topped by the wave spring and compression ring is added on top of the rupture 

disc. The screw cap is turned down by hand to cover the pressure plate unit, finally the 

six cap screws between the screw cup unit and the pressure plate unit are tightened. 
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3.1.1.2 Experimental Procedure for Hydrothermal synthesis of the TiO2(B) 

phase  

3.1.1.2.1 Chemicals and Materials in Hydrothermal method 

 Titanium(IV) isopropoxide, Ti[OCH(CH3)2]4 or TTIP, 97%. Sigma Aldrich. 

 Titanium(IV) dioxide, P25, nanopowder, ≥99.5% trace metals basis. Sigma 

Aldrich 

 Titanium(IV) dioxide, rutile, nanopowder, ≥98.5% trace metals basis, Alfa 

Aesar. 

 Titanium(IV) dioxide, Anatase, nanopowder,≥ 99% trace metals basis, Sigma 

Aldrich. 

 Sodium Hydroxide, NaOH, > 97.5% purity, Scientific Laboratory supplies  

 Ethanol, 99.0%, A.R.grade, Alfa Aesar 

 Nitric acid, 70%, A.R.grade, Sigma Aldrich 

 Deionized (DI) water  

3.1.1.2.2 Hydrothermal synthesis of the TiO2(B) nanoparticles 

A synthesis process via an alkali metal intermediate phase transformation was 

employed to prepare TiO2(B) nanoparticles. In order to study the TiO2(B) phase 

formation mechanism in the hydrothermal system via an effect of Na
+
 on the phase 

formation which can be compared with the effect of Na
+
 on the TiO2(B) phase 

formation prepared by LPCVD method. A range of Ti precursors (e.g. 1 g of P25, 

Anatase TiO2 or rutile TiO2 or, alternatively, 3 mL of TTIP) were used together with 

75 mL of 10M NaOH, this was stirred for 30 min in a beaker followed by sonication at 

room temperature for 15 min. The solution was transferred into a Teflon cup before 

inserting it into the metal vessel body of the hydrothermal reactor. The vessel was 

placed in the Carbolite furnace, and heated at 180C for 48 hr. The hydrothermal 

products were washed with deionised water several times to remove the excess NaOH 

until the pH of the washing water was below 8. The washed products were soaked in 

100 mL of 0.1M HNO3 for 1 day and dried at 70C for 12 hours to form an 

intermediate phase of H2TinO2n+1. The intermediate sample was calcined at 400C for 

5 hours to obtain the final product (TiO2(B)). 
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3.1.2 Chemical Vapour Deposition (CVD) 

Typically, TiO2 thin films have been prepared on substrates by a wide range of 

deposition methods such as sol-gel or wet chemical deposition [1]. However, those 

methods possess shortcomings concerned with the adhesion of TiO2 on the surface of 

substrate, indicating a low life time of the material denseness. In order to overcome 

this problem, many methods that provide a stronger interaction between the substrate 

and TiO2 thin film have been intensively studied and widely applied e.g. sputtering 

[2], pulsed laser deposition (PLD) [3], physical vapour deposition (PVD) and chemical 

vapour deposition. CVD is a low-cost method which is easy to set up and subsequently 

adjust. Furthermore, CVD permits a high degree of compatibility with a wide range of 

substrates and also has the potential for mass production. 

The chemical vapour deposition technique has been used to synthesise a range of 

thin film materials with the thinnest layers around a few nanometres. In this research, 

it was employed for the preparation of nanocrystalline titanium dioxide thin films on 

substrates under low pressure. Low pressure chemical vapour deposition showed 

successful preparation of general TiO2 polymorphs such as anatase and rutile as well 

as the rare phase TiO2(B).  

3.1.2.1 Background and Theory of CVD method 

Chemical vapour deposition (CVD) method has been used to prepare a large number 

of materials for almost 50 years. This is an efficient preparation method which can be 

scaled up from a laboratory tool to larger scale production with significant economic 

impact. CVD is one the most popular techniques to prepare thin film materials [4] 

including TiO2 thin films [5]–[7]. As well as thin film fabrication, the CVD technique 

is also used to synthesise discrete TiO2 ultrafine particles on the surface of several 

supports e.g. glass beads [8].  

The basic principles of the CVD method for general metal oxide deposition are 

detailed in 7 steps as shown in Figure 3-2. The main mechanisms/steps occurring in 

the reactor chamber during the CVD process are described in detail below [9]:  

1.) Liquid precursors are used to generate their active gaseous species by external 

thermal energy (e.g. heating mantles, hotplate with oil bath). 

2.) The active gaseous species are mixed with a carrier gas (normally N2 or Ar) and 

then transported into the reaction chamber.  
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Figure 3-2 The basic principles of the main steps occurring in the CVD process 

 

3.) Thermal decomposition of the gas phase precursors occurs in the gas entry area to 

form intermediate phases. The intermediate species can sequentially react in two 

possible routes: 

(3a) Homogeneous Reaction Route: occurring in a higher temperature region than 

the dissociation temperature of the intermediate species, the intermediate 

species thermally decompose and/or react with the carrier gas or itself to 

produce the desired powder product together with volatile byproducts. 

These byproducts flow away out of the reactor, and the desired powders are 

deposited on the substrate surface, some of them may act as nucleation 

centres (more details on this step is described in Figure 3-3);  

(3b) Heterogeneous Reaction Route: occurring in a lower temperature region than 

dissociation temperature of the intermediate species, the intermediate 

species is transferred across the interlayer (a thin layer near the surface of 

substrate) as described in the following steps (4-7). 

4.) The active species (from 3b) are absorbed onto the surface of the substrate which 

is heated by the surrounding furnace. The heterogeneous reaction between the gas 

species and solid-heated substrate occurs at the interface producing the deposit 

and byproducts in this region. 
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5.) The deposit diffuses along the surface of the substrate from a region of high 

vapour supersaturation to an area of low supersaturation, forming crystalline 

and/or amorphous materials by nucleation and sequential growth of the thin film. 

A low nucleation rate produces a single crystal thin film, whereas a higher 

nucleation rate results in a polycrystalline film or possibly discrete particles. 

6.) The volatile byproducts and unreacted gaseous precursor flow away out of the 

reactor with the carrier gas to the exhaust line. 

 

 

Figure 3-3 Particle formation in the furnace via Homogeneous Reaction Route (adapted from 

[32]) 

Figure 3-3, shows the general mechanism in the CVD reaction chamber using an 

example of an active gaseous species generated from metal-alkoxide precursors that is 

predicted to occur at a higher temperature region than the dissociation temperature of 

the active gaseous species: firstly, metal alkoxide vapour is thermally decomposed at 

some suitable temperature area in the reactor to provide a supersaturated metal oxide 

vapour; secondly, if the amount of this oxide vapour reaches a sufficient level to cause 

a homogeneous nucleation (i.e. in atmospheric pressure CVD), ultrafine primary 

clusters of metal oxide nucleate; thirdly, some of this ultrafine primary cluster 

agglomerate to form bigger secondary particles and clusters also grow by 

heterogeneous condensation from the metal oxide vapour. When the particles are 

heavy enough, they will drop on to the surface of the substrate by gravity. Finally, the 

unreacted metal alkoxide vapour flows away from the reactor by the carrier gas into 

the exhaust line [10]. Note if low pressure CVD is employed thin films are favoured 

via a heterogeneous nucleation route. 
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3.1.2.2 CVD for TiO2 synthesis 

During preparation of TiO2 nanoparticles by CVD, it has been found that control of 

the size of primary particles and their agglomeration are difficult. Many researchers 

have studied the size and crystallinity of TiO2 nanoparticles including their physical 

morphology, prepared by several different CVD methods. There are many factors 

which can control the size, crystallinity, phase and physical morphology of TiO2 

particles, e.g. choice of titanium precursors, precursor concentration, reaction 

temperature and residence time. Two main titanium precursors have been regularly 

used: titanium tetrachloride (TiCl4) and titanium tetraisoprpopoxide (TTIP). Literature 

articles are briefly summarized in in Table 3-1 in terms of synthesis parameters and 

the nature of the TiO2 final product.  

For the case of TiCl4 acting as the precursor, TiCl4 can be oxidized [11]–[14] 

and/or hydrolysed [11], [15], [16] under the CVD system to form the TiO2 fine 

particles. Using TTIP as titanium source, the thermal decomposition of TTIP is the 

main reaction to prepare TiO2 particles [10], [17]–[19]. 

From Table 3-1, literature articles can be divided into at least three groups. The 

first group focuses on TiO2 fine particles and/or thin films supported on appropriate 

substrates such as SiO2, Al2O3, activated carbon, porous glass, silica gel and glass 

beads [6], [8], [20]–[23]. The second group of literature has studied the powder 

preparation of TiO2 nano/micro particles [10], [24]–[30]. Both of these groups have 

utilized TTIP as the precursor. The last group of literature has synthesised TiO2 fine 

particles by using TiCl4 as the titanium source instead of the general TTIP precursor 

[12], [22], [27], [31]. An inert gas e.g. Ar or N2 is usually used as the carrier gas, 

however mixing O2 gas (from the pure commercial O2 or Air) with the carrier (inert) 

gas helps the active gas species complete their reaction sooner, especially the 

decomposition reaction. Most of the tube furnace reactors were set in either a vertical 

or horizontal direction. The observed reaction temperature normally ranged from 

300
o
C to 1000

o
C, but in the optimum reaction conditions it ranged from 300

o
C to 

600
o
C. The particle size of TiO2, varied significantly with preparation conditions 

especially the reaction temperature and reaction time.  
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Table 3-1 Literature articles which have used the CVD method to synthesise TiO2 materials. This table shows the synthesis parameters and physical 

appearance of TiO2 final product. 

Ref. Final Products Reactor Shape and 

Furnace 

Reaction 

Pressure 

Carrier Gas/               

Flow rate 

Deposition Conditions Precursors 

Temperature Time  Ti sources 

and Temp of 

bubbling 

chamber 

Gas precursor/ 

flow rate 

[10] Ultrafine spherical TiO2 

particles,10-60 nm 

Tube furnace, 

Quartz tube L=30 

cm,=1.3 cm  

(horizontal)  

A few mTorr N2 /  

(300-4,000 

mL/min) 

400-900

C 

 

- TTIP  - 

[20] TiO2 particles 

supporting on 

transparent porous  

glass 

Furnace with porous 

glass tube inside 

Reduced 

pressure 

N2                570, 600

C 

 

32 and         

70 hr 

TTIP  
O2 was add to the 

mixer of TTIP 

and N2  

[21] Anatase TiO2 

nanoparticles on 

supporter (SiO2, Al2O3 

and Activated Carbon), 

50 nm 

Tube furnace,      

Quartz tube 

(vertical) with 

porous quartz disk 

annealed at the end 

of tube 

Under vacuum N2 /  

(30,60 

mL/min) 

300

C 

 

 

3-5 hr. TTIP/ 80
o
C - 

[8] Anatase TiO2 

nanoparticles (10-20 

nm), Thin TiO2 layer 

and Thick TiO2 layer  

on a supporter (silica 

gel) 

Tube furnace,      

Quartz tube 

(vertical, horizontal) 

with porous quartz 

disk annealed at the 

end of tube 

 

 

Under vacuum N2  300

C 

 

- TTIP/ 80
o
C - 
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Ref. Final Products Reactor Shape and 

Furnace 

Reaction 

Pressure 

Carrier Gas/               

Flow rate 

Deposition Conditions Precursors 

Temperature Time  Ti sources 

and Temp of 

bubbling 

chamber 

Gas precursor/ 

flow rate 

[6] TiO2 nanoparticles, 20-

30 nm coated on glass 

beads 

Tube furnace, 

Alumina tube                                 

L=80 cm =1.0 cm 

(horizontal)               

Atmosphere Ar       900
o
C 

 

10,30,60, 

120 min 

(Effective 

time is 60 

min) 

TTIP/ 90
o
C - 

Adding N2 gas in the mixer of Ar 

gas and TTIP before feeding into 

the reactor 

[22] Anatase TiO2 

nanoparticles on 

supporter (Activated 

Carbon), 10-50 nm  

Furnace, Quartz tube 

(vertical) with 

porous quartz disk 

annealed at the end 

of tube 

Atmosphere N2 / 

(400 

mL/min) 

500
o
C 

 

< 120 min TBOT/ 100, 

200
o
C 

- 

[24]

–

[26] 

TiO2 nanoparticles, 

nano- to submicro-

meter,  

mean= 10 nm    

at optimal condition  

 

Tube furnace, 

Alumina tube                                 

L=80 cm =1.0 cm 

(horizontal)               

Atmosphere Ar  700,900,      

1100, 

1300
o
C 

Collected 

sample after 

pass from 

the reactor 

TTIP/ 80, 95 

and 110
o
C 

Air  

[27] Polycrystalline anatase 

TiO2 nanoparticles, 

diameter of 1
o
 particles 

is between 6-16 nm 

varied with reaction 

Temp  

 

 

 Quartz tube,              

L=60 cm                

=1.3 cm  (vertical)    

(Effective zone from 

20 cm-33 cm)  

Atmosphere N2 /              

(2 L/min) 

250-1000
o
C, 

Effective 

temp= 

600,800
o
C 

- [TTIP]= 

7.68x10
-7

 

mol/L 

- 
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Ref. Final Products Reactor Shape and 

Furnace 

Reaction 

Pressure 

Carrier Gas/               

Flow rate 

Deposition Conditions Precursors 

Temperature Time  Ti sources 

and Temp of 

bubbling 

chamber 

Gas precursor/ 

flow rate 

[27] Polycrystalline anatase 

TiO2 nanoparticles,  

8-15 nm varied with 

Reaction Temp. 

Quartz tube,               

L=60 cm                                                 

=1.3 cm (vertical)  

(Effective zone from 

20-33 cm)               

Atmosphere N2 /              

(2 L/min) 

550-1200
o
C 

effective 

temp= 

800,1000
o
C  

- [TiCl4]= 

7.64x10
-7

 

mol/L 

O2 (0.5 L/min) 

was added to the 

mixture of TiCl4 

and N2 before 

feeding into the 

reactor 

[23] 

 

TiO2 thin films with 

thickness about 420 nm 

on the inner surface of 

porous glass tubes 

Tube furnace,      

Quartz tube 

(horizontal)  

Atmosphere N2 / 

(200 mL/min 

200-400
o
C 

 

- TTIP/ 70
o
C Mixed O2 and N2 

(700 L/min) was 

added into the 

TTIP/N2 stream 

before feeding 

into the reactor 

[28] TiO2 nanoparticles,  

5-50 nm,  

mean= 10 nm 

Stainless tube  

L=49 cm, 

=3.5 cm 

(horizontal)  

- N2 /              

(10-30 

mL/min) 

300-400
o
C 

 

14 sec TTIP/ 40
o
C High temperature 

N2 gas was mixed 

with a mixture of 

N2 gas and TTIP 

before being 

transferred into 

the reactor (to 

prevent a 

condensation of 

TTIP) 

[29] TiO2 nanoparticles,      

< 30 nm 

Tube furnace,           

=2.7 cm 

(horizontal)               

- N2 100-500
o
C 

 

Minimum is 

20 s 

TTIP 

[8.8x10
-8

 to 

7.1x10
-7

 

mol/L] 

N2, Air & TTIP 

was mixed  before 

feeding into the 

reactor 
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Ref. Final Products Reactor Shape and 

Furnace 

Reaction 

Pressure 

Carrier Gas/               

Flow rate 

Deposition Conditions Precursors 

Temperature Time  Ti sources 

and Temp of 

bubbling 

chamber 

Gas precursor/ 

flow rate 

[30] Polycrystalline anatase 

TiO2 nanoparticles,  

20-25 nm 

Quartz tube                                 

L=12.5 cm =1.3 cm 

(horizontal)               

A few mTorr Ar / 

(30 mL/min)  

600
o
C 

 

- TTIP/ 220
o
C O2 (3 mL/min) 

was add into the 

mixture of TTIP 

and Ar  

[12] 

 

Anatase and Rutile 

TiO2 particles, 0.13-

0.35 m  

Tube furnace, 

Alumina tube                                 

L=152.4 cm =3.175 

cm (horizontal)            

Atmosphere Ar  927,1127, 

1327 and 

1450
o
C 

1.6 S TiCl4 [9.34-

15.6x10
-5

 

mol/L], RT. 

O2 was added into 

the mixture of 

TiCl4+Ar before 

feeding into the 

reaction 

[31] Anatase and Rutile 

TiO2 particles,  

 0.5 m 

Tube furnace,     

Quartz tube 

(horizontal)                                               

L=143 cm  

=2.7 cm  

( having a quartz 

rods inside with               

L=100 cm =0.6 

cm)  

- Ar / 

(1.5-3.5 

L/min)  

1100
o
C 

 

50 min TiCl4(l) 

[99.5% 

pure], at 

901

C 

O2 was added into 

the mixture of 

TiCl4+Ar before 

feeding into the 

reaction (O2 was 

preheated at 

300
o
C before 

feeding) 

To prevent condensation of TiCl4 

all of the transport lines of TiCl4 

were maintained at 150
o
C 

TTIP    = Titanium Tetraisoprpopoxide, TBOT  = Tetrabutyl Titanate  



- 51 - 
 

 

Moreover, the second group of literature shows that TiO2 nanoparticles can be 

prepared without a support by using reaction temperatures over a similar range to the 

first group (involving deposition of TiO2 on substrates). Using a TiCl4 precursor, these 

CVD methods need an additional gas e.g. O2 to help the precursor complete the 

reaction. In addition, the phase/s of TiO2 products depend on the reaction temperature 

inside the chamber. A temperature higher than 700C usually promotes the rutile 

phase of TiO2 whereas a temperature lower than 600C leads to the formation of the 

anatase phase. To access the best parameters for depositing TiO2 nanocrystalline thin 

films onto substrates by the CVD method, I can conclude the following: 

 The carrier gases are normally N2 or Ar. Additionally, O2 gas can be 

introduced into the reactor to complete the reaction. The gas flow rate is range 

in 30 mL/min to 3.5 L/min depending on the other parameters and desired final 

products.  

 An alumina/silica tube furnace is mostly used. Moreover, this reactor can be 

set in either a vertical or horizontal direction. 

 The reaction time can be varied from a few minutes to hours.  

 A good position for setting a substrate is centred in the alumina/silica tube in 

the case of horizontal reactor or on a porous quartz disk at the end of the tube 

in the case of a vertical reactor. 

 A low pressure system has been used with chemical vapour deposition to 

encourage a uniform film thickness. The main reason for using Low Pressure 

Chemical Vapour Deposition (LPCVD) instead of atmospheric pressure CVD 

is to control the ratio of the mass transport velocity of active gaseous 

precursors and their reaction kinetics on the substrate surface [32]–[35]. This 

process results in better uniformity and homogeneity including smaller 

particles sizes of deposited thin films. However, the major disadvantages of 

LPCVD are: (1) the walls of reactor chamber can easily get heavily coated, 

meaning it requires frequent cleaning; (2) the system involves higher energy 

usage for the vacuum pumping system; (3) A chemical trapping unit and  

cooling system are required in the exhaust line before the vacuum pump.  

 TTIP is the best titanium precursor due to its low temperature use for the TiO2 

deposition process (300-900C), as compared to TiCl4 (more than 1000C). 

TTIP is safer and produces no hazardous by-products. The thermal 

decomposition of TTIP is the main reaction occurring in the deposition 

chamber.  

 The thermal decomposition reaction of TTIP, summarised in Equation 3-1, 

produces water vapour, gaseous propylene and gaseous TiO2 [10]. The gaseous 
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TiO2 sequentially deposits onto the substrate due to gravity. In the meantime, 

propylene and water are evacuated with the carrier gas via an exhaust line. 

                                       Equation 3-1 

The details of the thermal-decomposition reaction of the TTIP precursor for 

TiO2 coating process in the CVD system can be described by the following 

equations [21]. 

                        
                                

                                
Equation 3-2 

I(g) is the active intermediate species; 

I(a) is the intermediate species coating on the substrate; 

S*  is the vacant surface on the substrate; 

P  is the gas phase by-product; 

M  is a collision partner (TTIP and/or carrier gas e.g. N2) 

 

The first step of this reaction is the collision between two gas phase molecules: 

these can be TTIP with TTIP or TTIP with the carrier gas, providing an 

intermediate species as the product. This active species will continuously 

interact with the active sites on the surface of substrate, followed by pyrolysis 

to generate deposited TiO2 and the gaseous by-products.  

 

3.1.2.3 Experimental Procedure on LPCVD method for TiO2(B) phase 

preparation 

In order to prepare TiO2 nanoparticulate thin films, the LPCVD method is one of the 

best techniques. In this research, the LPCVD system was set up at the School of 

Chemical and Process Engineering (SCAPE) at the University of Leeds. The 

components for LPCVD rig are presented in Figure 3-4 with labels for each 

component. This LPCVD rig can be separated into three main systems: (1) the vapour 

precursor system; (2) the reactor system; (3) the exhaust system.  

The vapour precursor system is composed of a nitrogen gas container,  a set of gas 

valves, a rotameter, a dreschel bottle centrally located into a silicon oil bath. A 

premeasured amount of titanium precursor e.g. TTIP, is loaded into the heated 

dreschel bottle of 90C through an opening using a syringe. Titanium vapour 

precursors are generated and mixed with the inert gas carrier before being transported 

into the reaction chamber.  
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In part of the reactor system, a quartz cylinder tube with a centrally loaded 

substrate is placed inside the tube furnace. The reactor is connected with the chemical 

vapour precursor supply system and the exhaust system. The reactor is pre-heated at 

desired temperature for 10 min before starting the reaction. The furnace temperature is 

normally varied between 400C to 700C. The generated vapour precursors (TTIP + 

Carrier gas) are carried into the reaction chamber on opening the valve V4. The 

decomposition/oxidation reactions and deposition processes occur inside the quartz 

tube for the set reaction time. The non-reacted precursors, by-products, un-deposited 

materials and heated inert gas is continuously transferred to the cooling system. 

The exhaust system is composed of a cooling trap, a chemical trap and a vacuum 

pump sequentially. All wastes except the N2 gas carrier, is trapped in the condenser 

and the cooling glass beads and should not enter to the downstream pipe-work. 

However, if there are still some remaining chemicals in the exhaust gas, the chemical 

trap will help to completely capture those chemicals before reaching the vacuum 

pump. 

Before starting the experiment, the LPCVD rig was completely checked in terms 

of the gas circulation system, the vacuum pressure system, the cooling system and the 

heating system to ensure all equipment was operating correctly. The LPCVD rig’s 

standard operating procedure was written with the assistance of Mr. Robert Simpson 

as shown in the Appendix(I). The TiO2 thin film preparation in this research is 

described below. 

3.1.2.3.1 Chemicals and Materials in LPCVD method for TiO2 thin film deposition  

 Soda-lime glass slide (with wt% composition of 72.00 SiO2, 14.50 Na2O, 7.05 

CaO, 3.95 MgO, 1.65 Al2O3, 0.30 K2O and 0.06 Fe2O3) 

 Fused-quartz (pure amorphous silica of the same dimensions) 

 Highly ordered pyrolytic graphite (HOPG)  

 Grafoil (pressed, pure natural graphite flake)  

 <100> oriented silicon wafer (Sigma Aldrich) 

 Lithium Hydroxide, LiOH, > 98% purity, Sigma Aldrich 

 Sodium Hydroxide, NaOH, > 97.5% purity, Sciencetific Laboratory supplies  

 Sodium Ethoxide, NaOEt, 99.0% purity, Sigma Aldrich  

 Potassium Hydroxide, KOH, > 90% purity, Sigma Aldrich 

 Titanium Tetraisopropoxide, TTIP, 97% purity, Sigma Aldrich 

 Ethanol, EtOH, 99.00%, Sigma Aldrich 

 Deionized (DI) water 



 
 

- 5
4

 - 

   

Figure 3-4 Low Pressure Chemical Vapour Deposition (LPCVD) rig at SCAPE, the University of Leeds



- 55 - 
 

 

3.1.2.3.2 TiO2 Thin film deposition 

Low pressure chemical vapour deposition (i.e. thermal decomposition and oxidation of 

a precursor) at 25 mbar was used to synthesize TiO2 thin films on substrates as shown 

schematically in Figure 3-5(a). Titanium tetra-isopropoxide (TTIP, 97%) was used as 

the titania precursor, 5 mL being placed in a bubbling chamber which was set in an oil 

bath at 90C. The reactor was a quartz cylinder tube placed in a tube furnace and was 

pre-heated from room temperature up to the desired reaction temperature. N2 gas with 

a flow rate of 1 L/min was used to carry the TTIP vapour into the reactor. Titania thin 

films were deposited onto different substrates of dimensions 11 mm  11 mm  1.0 

mm (width  length  thickness) including: soda-lime glass slides, fused quartz, Si-

wafers, HOPG and grafoil. The reaction temperature in the tube furnace was varied 

between 450 and 600C with a reaction time of typically 15 min. However, I note that 

this is only a nominal temperature as there will exist a temperature gradient inside the 

reaction tube. This temperature gradient was measured in air as a function of position 

inside the reaction tube using a moveable thermocouple and the results for a nominal 

furnace temperature of 600C are shown in Figure 3-5(b). 

 

 

Figure 3-5 (a) Schematic representation showing the LPCVD system for preparing TiO2 (b) 

temperature profile in the tube furnace for a nominal reaction temperature of 600C 

3.1.2.3.3 Pre-treatment of the substrate   

Pre-treatment of a substrate prior to TiO2 thin film deposition is a modification of the 

general LPCVD method. The pre-treatment process involved thin film deposition of an 

alkali metal solution onto the substrates as schematically illustrated in Figure 3-6.  

The substrates used were: fused quartz, silicon wafer, HOPG and grafoil. These 

were cut into dimensions of 11 mm  11 mm  1.0 mm (width  length  thickness). 
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The substrates were initially cleaned by sonication in ethanol and then pre-treated by 

spraying onto the surface 0.5 mL of an alkali ion-containing solution, i.e. sodium 

ethoxide (NaOEt) dissolved in Ethanol (99.00%) in varying concentrations between 

0.1-5.0 %
W

/V of Na. Following investigation, the distance between the substrate 

surface and the spray nozzle (Adjustable sprayer tube length 813 mm; Fisher Scientific 

Ltd) was fixed at 15 cm and after spraying, the Na-coated substrates were slowly dried 

in air at 50C for 12 hr.  

 

 

Figure 3-6 Schematic of pre-treatment process by spraying alkali metal solution onto a  Si-

wafer substrate 

 

3.2 Characterisation methods 

3.2.1 Powder X-Ray Diffraction (PXRD) [36] 

X-ray diffraction has been used to determine the phase composition of the crystalline 

TiO2 thin films deposited by LPCVD and the crystalline TiO2 nanoparticles 

synthesised by the hydrothermal method in this research. 

3.2.1.1 XRD methodology 

Crystals are formed of unit cells, which is the repeatable unit containing the smallest 

number of atoms able to form the 3-dimensional structure. The lattice parameter is 

employed to define the dimensions of the unit cell. Measurement of the inter-planar 

distances (dhkl) can be used to determine the lattice parameter by using Bragg’s law. 

The set of dhkl data can be used to characteristically identify an individual crystal 

structure.  
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Figure 3-7 X-ray diffraction from parallel planes of atoms in a crystalline material 

 

Bragg’s law is based on the path difference between (X-ray) waves scattered by 

two neighbouring lattice planes. For strong constructive interference and hence 

diffraction to occur, the following equation. 

Bragg’s law: n = 2 dhkl sin Equation 3-3 

Where:  n  is the diffraction index; 

   is the wavelength of the X-ray source (Å); 

dhkl is the inter-planar spacing corresponding to the hkl Miller indices; 

   is the scattering angle between the incident and diffracted beams 

Besides determination of the lattice parameter, X-ray diffraction also can provide 

an estimate of the crystallite size via Scherrer’s equation by using the line broadening 

at half-maximum intensity of a XRD peak.  

Scherrer’s equation: 

 

   
 

     
 

Equation 3-4 

Where:  τ is the estimated crystallite size;  

 K is the dimensionless shape factor; 

  is the wavelength of the X-ray source (Å); 

   is the full width at half maximum height of a Bragg XRD peak; 

   is the scattering angle in radians.  

 

The calculated crystallite size may be smaller or equal to the particle size 

depending on physical morphology of the sample. Scherrer’s equation is appropriate 

for a range of nanoparticles, however, it usually provides an big error in measurement 

when the crystallite size is larger than 200 nm.  

https://en.wikipedia.org/wiki/Nanotechnology
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In general, it is usual to set the scanning of the X-ray incident beam and/or 

detector parallel to the specimen stage/surface as shown in Figure 3-8(a).    X-ray 

diffraction of crystalline materials normally shows all of the crystal planes (XRD 

peaks), if the samples are randomly oriented polycrystals. The intensities of each 

crystal plane should occur in the same relative proportion as in the XRD powder 

diffraction database (ICDD PDF4+2014). However, if the crystals are not randomly 

oriented (i.e. there is a preferred orientation), the diffracted intensity from each crystal 

plane will not be uniform. In some cases, if a crystal plane is not properly aligned to 

generate a diffracted beam, it might be absent in a XRD pattern. This problem usually 

occurs for the case of thin film crystalline materials on substrates, i.e. TiO2 thin films 

on a glass substrate as shown in Figure 3-9 (a). The absence of peaks in the out of 

plane XRD pattern can be understood with reference to Figure 3-10. In-Plane scanning 

mode has been used to complete the XRD diffraction data as shown in Figure 3-9 (b); 

here the specimen surface is oriented perpendicular to the plane of the incident beam 

during scanning as shown in Figure 3-8 (b).  

 

Figure 3-8 The orientation of observed crystal plane depend on scanning mode: (a) Out-of-

Plane scanning; (b) In-Plane scanning. 

(a) (b) 
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Figure 3-9 The In-plane and Out-of-plane XRD patterns of mixed phase TiO2(B) and anatase 

thin films on soda-lime glass substrate with a preferred [001] orientation of TiO2(B) 

parallel to the substrate. 

 

 

Figure 3-10 Schematic showing the internal polygrains and/or polycrystals of TiO2 thinfilms 

deposited on a glass substrate with their X-ray diffraction of lattice planes in individual 

single crystals. It shows the absence of peaks when planes are not properly aligned to 

produce diffraction peaks such as (110), (200) as illustrated in Figure 3-9. 

 

(a) 

(b) 
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3.2.1.2 XRD experimental details 

3.2.1.2.1  XRD instrumentation 

XRD patterns of all thin films samples prepared by LPCVD were characterized by a 

P’Analytical X’pert MPD diffractometer working in the 2 scanning mode of Bragg 

geometry as shown in Figure 3-11(a). The spinner PW3064 was employed to rotate the 

sample whilst correcting XRD data. The diffraction patterns of fine powder samples 

synthesised by the hydrothermal method were recorded using a Bruker D8 X-ray 

diffractometer (XRD) as shown in Figure 3-11(b). Both diffractometers employ a Cu 

K tube with = 1.545 Å as the X-ray source, and are located in SCAPE at the 

University of Leeds. 

During the investigation of the TiO2 thin films on substrates, the effect of the 

crystalline substrate can overwhelm the thin film pattern, making it difficult to observe 

the TiO2 thin film sample. Therefore, the thin film sample was tilted to an angle of 2 

degrees with respect to a normal 2 scan during   X-ray scanning, so as to reduce the 

strength of the single hkl substrate reflection which would otherwise dominate the 

pattern.  

  

Figure 3-11 The XRD machines operated in this research: (a) Bruker D8 X-ray diffractometer 

and (b) Philips Analytical X’pert MPD diffractometer  
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3.2.1.2.2 Preparation of XRD samples 

There are two physical forms of the synthesised samples in this research: TiO2 thin 

films on substrates and fine solid powders. In case of TiO2 thin films on substrates, 3 

mm diameter plasticine was centrally placed on the back of a square centimetre 

sample slide and then stuck onto the sample holder. It is very important to make sure 

that the surface of sample slide and the edge of sample holder are in the same plane. 

The sample holder was mounted onto the spinner stage with insertion of a 10 mm slit 

to collimate the radiation. The measurement was undertaken using  X-pert Data 

Collection software. In contrast TiO2 fine powder samples were ground before loading 

a small amount of powder onto a silicon wafer sample holder. The sample was gently 

pressed to get a smooth and flat surface. The X-ray data was collected by the Bruker 

D8 machine with XRD commander software. All XRD-data was interpreted using X-

pert high score plus software with the updated 2014 powder diffraction data base 

(ICDD PDF4+2014). 

3.2.2 Electron Microscopy [37] 

One of the benefits of using high energy electrons to analyse materials is the 

production of a wide range of secondary signals from the interaction of the electron 

with the material. These secondary signals are summarized in Figure 3-12. The 

direction of each signal indicates where the signal should be strongest and where it 

should be detected. The quality of the signals is directly dependent on the quality of 

the incident beam so the electron source should be critical.  

3.2.2.1 Scanning Electron Microscopy (SEM) 

SEM is one of the best techniques to investigate the 3D morphology of a sample. The 

best resolution of a SEM image can be in the range of a few nanometers however, it 

depends on many physical and chemical factors such as the intensity of the incident 

beam, the electron accelerating voltage, the type of sample and also the SEM lenses. 
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Figure 3-12 Secondary signals generated by high-energy electrons interaction with the 

specimen materials 

 

3.2.2.1.1 SEM methodology 

The general SEM process starts by accelerating electrons produced under vacuum 

from a filament by applying a high voltage. The accelerated electrons are focused to a 

very small beam with a very high intensity by using electromagnetic lenses. The 

focused accelerated electrons are scanned across the specimen surface, generating 

different types of secondary signals. 

The main imaging signals in a SEM are backscattered and secondary electrons, 

these can provide the information on average atomic number and surface topology 

respectively. Moreover, during the interaction between the accelerated electron and the 

specimen, characteristic X-rays are also produced, providing information on elemental 

composition of the sample. A SEM system is diagrammatically shown in Figure 3-13.  
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Figure 3-13 Schematic representation of the basic operation of a scanning electron 

microscope  

 

For non-conductive materials, coating with a very thin conductive film e.g. 

carbon, gold and platinum is necessary to get the best SEM performance. In this work, 

nanoparticles of TiO2 are poorly conducting so require sputter coating by Carbon or 

Platinum (5 nm thickness) to prevent charging on the specimen when irradiated with 

an electron beam.  

3.2.2.1.2 The SEM machines 

In the present work, the morphologies of all the TiO2 thin films supported on soda-

lime glass substrate and TiO2 nanotubes were studied by using a LEO 1530 “Gemini” 

(Carl Zeiss, Cambridge) field emission gun scanning electron microscope (FEG-

SEM). Secondary electron images were produced at an operating voltage of 5 kV, 

these were collected by an in-lens detector. In the case of TiO2 thin film samples 

deposited on other substrates e.g. Si-wafer, Fused quartz, HOPG and Grafoil, these 

were examined using a Hitachi SU8230 Cold-FESEM with an operating voltage of 2 

kV. Both SEMs were fitted with energy dispersive X-ray (EDX) detectors (80mm X-

Max SDD detector), Oxford Instruments and AZtecEnergy EDX software and were 

located at SCAPE, Faculty of Engineering, University of Leeds  

3.2.2.1.3 Preparation of SEM samples 

Three type of sample were investigated by SEM: 1.) TiO2 thin films on substrates in 

plan view; 2.) cross-sectional samples of TiO2 thin films on substrates; and 3.) fine 

powders of TiO2 nanotubes/nanowires. Both thin film samples were stuck onto Al 
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stubs with an adhesive carbon paste. The nanoparticulate TiO2 was dispersed in 

isopropanol, stirred and sonicated for 10 minutes. Then, the suspension was drop caste 

onto the Al stubs. All of the samples were dried in a vacuum desiccator at least 1 day 

before SEM investigation. 

3.2.2.2 Transmission Electron Microscopy (TEM) [37] 

The concept of TEM is quite similar to a general transmission light microscope with 

electromagnetic lenses instead of optical lenses. Accelerated electrons generated from 

an electron gun travel within the microscope column with a specific energy which is 

dependent on the applied accelerating voltage. The resolution of the TEM is directly 

related to the accelerating voltage as described by the following equation: for example, 

an accelerating voltage of 200 keV can provide the electron wavelength of 0.0251 Å 

which is smaller than a diameter of the smallest atom.  

   
 

      
 Equation 3-5 

Where:          is the wavelength of accelerated electrons (Å); 

 V  is the accelerating voltage of electron microscope (V); 

 m  is the electron mass; 

 e is the electron change (- 1.602x10
-19

 C). 

TEM techniques commonly involve the forward scattered secondary signals from 

a thin sample. The TEM is usually operated in one of two fundamental modes: 

imaging mode or diffraction mode as illustrated in Figure 3-14. In each TEM mode, an 

intermediate lens selects either the intermediate image 1 of the objective lens or the 

diffraction pattern in the back focal plane. 

3.2.2.2.1 Electron Diffraction Mode 

When electron waves are transmitted across the periodic arrangement of crystal planes 

of the specimen, elastic scattering of the electron wave is generated at various different 

angles according to Bragg’s Law forming an electron diffraction pattern in the back 

focal plane. The diffracting area is defined by inserting a selected area (SA) aperture 

in the plane of the first intermediate image formed (Figure 3-14 (b)). Spot diffraction 

patterns are generated when the sample is a single crystal material, whereas rings 

diffraction patterns are produced from polycrystalline materials. The SA electron 

diffraction pattern can also provide crystallographic information such as the 

crystallographic lattice spacing, the crystal growth direction and the exact crystalline 

phase.  
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Figure 3-14 Two ray diagrams showing two main operating modes of the TEM: (a) The 

imaging mode and (b) the diffraction mode. 

3.2.2.2.2 Imaging mode 

There are two kinds of image contrast which contribute to TEM images: amplitude 

contrast and phase contrast. Amplitude contrast is a combination of mass-thickness 

contrast and diffraction contrast which affects the scattered electron amplitude and 

hence intensity. Phase contrast arises from the change in phase of the electron wave as 

it is transmitted through a sample. It is difficult to interpret this contrast mechanism 

due to its high sensitivity to many factors such as the focus and astigmatism of the 

objective lens, the orientation or scattering factor and even the small changes in 

thickness of the sample. All of these factors can be exploited to produce atomic 

resolution TEM images arising from the interference between different diffracted 

beams and the unscattered beam.  

Diffraction contrast is employed to form two types of images: Bright Field (BF) 

and Dark Field (DF) images. The objective aperture is inserted in the back focal plane 

(a) (b) 
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to allow only unscattered beams to pass through the TEM column constructing a BF 

image on the screen (Figure 3-14(a)). In case of a DF image, the inserted aperture 

permits only specific diffracted beams to pass and also blocks the unscattered beam at 

the same time. BF and DF images show a reversal of contrast and generally, DF 

images are of interest when studying defects or special structures within a specimen. 

High Resolution TEM (HRTEM) images are very useful for studying the lattice 

images at atomic resolution of crystalline samples. Generally no objective aperture is 

used and both the scattered and unscattered electron waves are used to form HRTEM 

images. Examples of BF, DF and phase contrast TEM images are shown in Figure 

3-15. 

3.2.2.2.3 TEM specimen preparation 

In this work, the fine powder samples prepared by the hydrothermal method were 

prepared as TEM specimens by adding a few milligrams of TiO2 powder into 2 mL of 

isopropanol, stirring and then sonicating for 3 minutes. The suspension was dropped 

caste onto a holey carbon film supported on a 400 mesh Cu TEM grid. The specimen 

was dried under a warm light and stored in a vacuum desiccator.  

TEM specimen preparation of initial TiO2 thin film samples on substrates was 

achieved by using a scalpel to scrape off deposited material from the substrate onto a 

holey carbon film supported on a Cu TEM grid. In addition, a Focused Ion Beam 

(FIB–FEI Nova 200) was used to prepare directly thin cross-sections of the materials 

on the substrates.  

3.2.2.2.4 TEM instrumentation 

TEM analysis using imaging, selected area electron diffraction (SAED), and high 

resolution TEM imaging was performed in SCAPE, University of Leeds using a FEI 

 

Figure 3-15 Example TEM images of: (a) BF image of  TiO2 nanoparticles ;(b) DF image of  

TiO2 nanoparticles at the same area as Figure 3-15(a) and ;(c) HRTEM of nanoparticles 

mixed phase anatase and Rutile TiO2 [59] 
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Tecnai G2 TEM/STEM operated at 200 kV. This machine has an EDX detector and 

Scanning system for EDX mapping and quantification (Oxford Instruments AZTEC). 

Images were recorded and processed using Digital Micrograph software.  

 

3.2.3 Energy Dispersive X-ray Spectroscopy (EDX) 

Inelastic electron interactions with the specimen involve an energy transfer between 

the incident electron and the target atom. This energy may cause ejection of an 

electron from the inner shell of a target atom, if this energy transfer is adequate. To 

maintain the equilibrium in the atomic structure after an inner shell electron has been 

ejected, an outer shell electron will transfer to the hole (created) with the release of 

energy in terms of X-ray emission as seen in Figure 3-16. The X-ray energy is 

characteristic of the elemental atom in the target sample. The released X-ray energy 

can be employed to investigate both qualitative (characteristic peak positions) and 

quantitative (relative peak area) analysis of the materials as illustrated in Figure 3-17. 

Practically, the EDX detector is connected with a SEM or TEM to identify the types 

and amount of the elements in a specific region of a sample.  

 

 
Figure 3-16 The possible electron 

transitions in the electron energy 

levels of Tungsten atom showing the 

characteristic X-ray energy after an 

electron releases its energy to replace 

a hole at lower energy level.  

 

Figure 3-17 TEM-EDX spectrum of a group 

of TiO2(B) needle particles on the holey 

carbon film supported on a Cu TEM grid 

showing the characteristic peak position 

of each of the elements in the sample and 

their peak areas which can be used to 

calculate the weight% and also atomic% 

of each element in the whole mixture.  

 

 

K 

K 
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3.2.4 Raman Spectroscopy  

The principle of Raman spectroscopy is to investigate different modes of excitation, 

including characteristic vibrational and rotational excitations of the chemical bonds in 

materials. The sample is illuminated by a monochromatic laser, providing scattering 

and absorption of photons which can absorb or release energy either in the near-IR, 

Visible or UV region of the electromagnetic spectrum. This produces inelastic 

sidebands on a very intense elastically scattered peak. The laser beam focuses on the 

sample via the lens system of an optical microscope. The scattering signals return to 

the microscope through the same ray path. At the end of the ray path, the filtered 

signals are measured by a highly sensitive detector and transformed to a Raman 

spectrum as illustrated in Figure 3-18 (a). In this work, all Raman results were 

collected at room temperature and conducted on a Renishaw inVia Raman microscope 

machine with a green Ar/Kr ion laser of wavelength 514 nm and laser power of 25 

mWatt. The machine is composed of a Raman spectrometer connected to a modified 

optical microscope of 1 m resolution and a CCD detector as shown in                        

Figure 3-18 (b).  

 
 

Figure 3-18 (a) Raman spectrum of mixed phase TiO2(B) and anatase thin films on soda-lime 

glass substrate showing characteristic patterns of anatase and TiO2(B) [38]; A and B 

refer to anatase and TiO2(B) and (b) The Renishaw’s inVia Raman microscope machine 

proceeding at SCAPE, Faculty of Engineering, University of Leeds.  

 

3.2.5 UV-Visible Diffuse Reflectance Spectroscopy 

One of the most useful measurements in relation to solar energy harvesting is UV-Vis 

spectroscopy. Here the material is a thin film coating of an opaque semiconductor 

materials and reflection mode geometry is appropriate because light cannot pass 

through the sample. There are two types of reflection modes: specular and diffuse 

which have been applied to investigate the band gap of semiconductor materials as 

shown in Figure 3-19 (a). Diffuse reflection is generally generated by a rough surface 

(b) (a) 
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as is the case for the materials in this research. In this case, an incident beam (from a 

light source) illuminates the thin film sample at one specific angle, generating a range 

of reflection angles. The diffuse reflection is measured by a 150 mm diameter 

integrating sphere with internal detectors.   

 

  

Figure 3-19 (a) two types of reflections, a smooth surface usually provides specular reflection 

whereas a rough surface prefers to generate diffuse reflection (b) basic optical layout for 

a double beam 150 mm integrating sphere of Perkin Elmer UV-Vis Lambda 900  

UV-Vis diffuse reflectance spectroscopy (Perkin Elmer UV-vis Lambda 900) was 

used to characterise the thin film materials in this work, and was undertaken at 

SCAPE, Faculty of Engineering, University of Leeds. The raw spectra were directly 

generated by the Perkin Elmer UV-Vis Win Lab software. However, the band gap 

energies of the samples can be investigated by Kubelka-Munk transformation of the 

raw spectra [39], [40] and the band gaps were calculated by extrapolating the linear 

portion of data. 
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Chapter 4  Hydrothermal Synthesis of TiO2(B) Nanorods via Alkali 

Metal Titanate Phase Transformation 

Prior to using CVD, in order to clearly understand the effect of alkali metal cation  on 

TiO2(B) phase formation, a general TiO2(B) preparation method involving Na
+ 

has 

been studied and is presented in this chapter. An alkali hydrothermal synthesis method 

combined with a post ion-exchange process and calcination has been used to 

synthesise the TiO2(B) phase. A mechanism for TiO2(B) phase formation is proposed 

in this chapter and the effect of different types of titanium precursors on the phase 

formation and physical morphology were investigated. Finally, the stability of TiO2(B) 

phase and the effect of calcination temperature was also analysed.  

4.1 Experimental Procedure 

4.1.1 Hydrothermal synthesis method 

The hydrothermal method was used to prepare an intermediate sodium titanate product 

using the preparation procedure described in chapter 3. The primary hydrothermal 

products after washing with DI water to remove the excess NaOH, were designated as 

P1, T1, R1 and A1 corresponding to the type of Ti precursor: P25, TTIP, rutile and 

anatase respectively. After washing the hydrothermal products with DI water until the 

pH of the suspension was approximately 7, a proton-exchange process was conducted 

with 0.1M HNO3 solution. The suspensions were dried at 80C and were named as P2, 

T2, R2 and A2 representing an intermediate phase of hydrogen titanate. The secondary 

intermediate products were calcined at 400C for 5 hr with a heating rate of 5C. The 

nomenclatures of final products were X@Y, where X and Y were type of Ti 

precursors and calcination temperature respectively. 

4.1.2 Materials Characterization 

X-ray diffraction (XRD), undertaken using the Bruker D8 diffractometer, was used to 

investigate the samples. In-situ hot-stage XRD was also employed to study the phase 

transformation of the sample; using a Philips X-pert MPD diffractometer. Raman 

spectra were collected in the range of 3200-100 cm
-1

 to investigate the phases present 

in the sample. The Hitachi Cold-FESEM with EDX was operated with platinum 

coated samples to study the morphology and elemental composition of the samples. 

Finally, TEM was used to investigate the phase formation, growth direction and 

particle morphology. All specimen preparation for all characterization techniques has 

been described in chapter 3.  
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4.2 Results 

4.2.1 X-ray Diffraction 

The primary intermediate products from all titanium precursors after hydrothermal 

treatment were fine white powders. A1 is used as a representative to characterise phase 

formation by XRD. The XRD pattern of Sodium Titanium Oxide Hydroxide Hydrate 

(NaTi3O6(OH)(H2O)2) with a monoclinic structure (JCPDS 04-018-2801) matches 

well with the XRD pattern from the A1 sample as shown in Figure 4-1. In this work, 

the NaTi3O6(OH)(H2O)2 phase occurs instead of NaTi6O13 which is a typical 

hydrothermal product in the literature [1]–[3], this might suggest that the removal 

process of excess NaOH by washing with Di water was not complete in that the 

sample was not dry enough, retaining hydroxide ions and water molecules inside the 

crystal structure. However, this compound is easily changed to NaTi6O13 when the 

water molecules are removed out of its structure by heating as shown in the following 

equation.  

                                        

 

 
Figure 4-1 XRD pattern of A1; the first intermediate product from the hydrothermal 

procedure.  
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The three other hydrothermal samples from rutile (R1), P25 (P1) and TTIP (T1) 

precursors also exhibited hydroxide contamination. However there was evidence for a 

complete ion exchange process between Na
+ 

and H
+
 during the acid soaking & 

washing as confirmed by the XRD pattern shown in Figure 4-2. 

All of the second intermediate samples, A2, R2, T2 and P2, exhibit the same trend 

in their diffraction patterns. The XRD patterns do not match well with only one 

reference pattern but seem to match with two candidates: H2Ti3O6 (JCPDS: 00-041-

4192) and H2Ti3O6 (JCPDS:00-036-0656), both of which show a similar layered 

structure of the monoclinic system. The absence of sodium titanate peaks suggests that 

all of the Na
+
 ions which act as counterions between the titania layers were substituted 

by H
+
 and the remaining OH

-
 were also removed during this process. 

 

 

Figure 4-2 XRD patterns of A2, R2, T2 and P2; the second intermediate products after the ion-

exchange process. 
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Figure 4-3 XRD patterns of A@400, R@400, T@400 and P@400; the final products after 

calcination of the second intermediate phase at 400C for 5 hr.  

 

Table 4-1 List of synthesised samples with results of SEM/EDX quantitative elemental 

analysis, XRD crystallite size and primary particle size derived from SEM 

 

Sample 

Composition in 

Atom% 

from SEM/EDX 

 Calculated crystallite size 

by Scherrer’s equation 

(nm) 

Measured primary 

particle size (nm) 

from SEM images 

(widths) Na O Ti  TiO2(B) 

P@400 0.00 74.52 25.48  6.40.6 128.41.2 

(S.D=46.7) 

T@400 0.00 79.99 20.01  4.30.3 130.81.2 

(S.D=78.9) 

R@400 0.00 86.40 13.60  5.605 112.91.2 

(S.D=52.6) 

A@400 0.00 75.38 24.62  4.30.3 112.81.2 

(S.D=45.1) 
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Figure 4-3 presents the XRD patterns of the final products after the second 

intermediate products of each of the Ti precursors were calcined at 400C for 5 hr. All 

can be indexed to the monoclinic structure of TiO2(B) (JCPDS: 04-007-6246). This 

shows the phase transformation from H2Ti3O7 to TiO2(B) using thermal energy. The 

broad peaks of the XRD pattern reflect the nano-crystalline nature of the samples and 

the crystallite sizes of the TiO2(B) phase were calculated by Scherrer’s equation and 

the FWHM of the (110) peak at around 2= 24.9. The crystallite sizes of P@400, 

T@400, R@400 and A@400 are in a similar range of 4-7 nm as presented in Table 

4-1. The XRD pattern of final products also suggest a preferred crystallographic 

orientation of the TiO2(B) morphology as the (020) XRD peak is a sharp peak at 

around 2=48 whereas the other peaks are all broad. Thus suggests [020] oriented 

nanorods.  

The influence of calcination temperature on phase formation was studied using in-

situ hot-stage XRD analysis in the temperature range 300C to 800C. The second 

intermediate sample (A2) was placed on the hot-stage sample holder and data first 

collected at 25C. Then the sample was heated with a heating rate, a heating step and a 

holding time of 5C.min
-1

, 25C/step and 30 min/step respectively. All of the XRD 

patterns at each holding temperature were characterized with the same parameters. The 

phase transformation of H2Ti3O7 is shown in Figure 4-4. The H2Ti3O7 structure 

transforms to TiO2(B) as the temperature reaches 300C with an increase in TiO2(B) 

crystallinity with increasing temperature. However at 400C, some small intense peaks 

of anatase are observed indicating that the TiO2(B) crystal structure transformations to 

anatase at temperatures higher than 400C. The relative proportion of anatase in the 

mixed phase sample gradually increases with increasing temperature in the range 400-

675C. The TiO2(B)-anatase phase transformation is complete at 700C, leaving only 

the anatase phase at temperatures 700C.  
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Figure 4-4 In-situ hot-stage XRD characterization of A2, heating rate: 5 °C min

−1 

 

4.2.2 Raman Spectroscopy 

Owing to the broad XRD peaks arising from the nanoscale crystallites, the main peaks 

of TiO2(B) phase and anatase can overlap especially at 2 around 25 and 48. 

Therefore, the final products were also characterized by Raman spectroscopy to 

complement the XRD results as shown in Figure 4-5. A@400 and P@400 are 

representative of the final product after calcination at 400C, and exhibit Raman active 

modes at 122, 145, 196, 236, 249, 293, 366, 406, 432, 469, 510, 551, 635 and 656               

cm
-1

. This implies the presence of pure phase TiO2(B) without any evidence of anatase 

peaks which normally occur at 143, 396, 517 and 637 cm
-1

 with 6 times higher 

intensity than for TiO2(B). This supports the results from XRD that all of the final 

products are pure TiO2(B) phase at this temperature. 
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Figure 4-5 Raman spectra of A@400 and P@400 

4.2.3 Scanning electron microscopy (SEM) 

SEM analysis was used to study the physical morphology of the final products. In the 

SEM specimen preparation process, the samples were deposited on an Al stub and 

coated with Pt thin layer. The SEM images of P@400, T@400, R@400 and A@400 

samples are shown in Figure 4-6. Generally, one-dimensional particle morphologies 

such as tube, rod and wire are the main physical forms of the TiO2 products after 

hydrothermal synthesis using a high concentration of alkali metal hydroxide solution 

as previously summarized in Table 3-1 in chapter 3.  

In this research, P@400, R@400 and A@400 mostly appear as discrete nanorods, 

whereas the particle morphology of T@400 shows an elongation of nanorods as 

illustrated in Figure 4-6. A average particle sizes were manually measured from the 

SEM images and displayed in Table 4-1. The average particle sizes (widths) in 

P@400, T@400, R@400 and A@400 are 128.447, 130.944, 112.941 and 

112.852 nm respectively. The average particle widths and lengths of the four samples 

are in the same range but T@400 shows an obvious difference in length from the 

others (in that it is longer than 1 m whereas the other lengths are in range of 

nanoscale). A possible reason for this is the different state of matter of the titanium 

precursor. T@400 used TTIP in the liquid state whereas the other three are solid 
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precursors (P25, anatase and rutile). The liquid phase may promote increased growth 

due to increased availability.   

The chemical composition of the TiO2(B) samples were investigated by 

SEM/EDX analysis and the results are also presented in Table 4-1. EDX results 

suggest the presence of Titanium and Oxygen and the absence of Na, indicating that 

all of the intermediate samples were completely transformed to a final product of 

TiO2. The lower atomic ratios than the theoretical ratio of TiO2 (Ti/O=0.5) may result 

from an interference of oxygen signals from the SEM stub (Al) which will be 

oxidised. 

 

 

Figure 4-6 SEM secondary electron images of TiO2(B) final products from the four different 

Ti precursors: (a) P25, P@400 (b) TTIP, T@400 (c) Rutile, R@400 and (d) Anatase, 

A@400. 

 

4.2.4 Transmission electron microscopy (TEM) 

The TiO2(B) 1D structure (nanorods) was indicated by the evidence of preferred 

orientation in XRD patterns and also SEM images. The particle morphology, the phase 

formation and the growth direction of TiO2(B) structures in samples P@400, T@400, 

R@400 and A@400 were also evident in HRTEM images and electron diffraction 

patterns shown in Figure 4-7, Figure 4-8, Figure 4-9 and Figure 4-10 respectively.  
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Figure 4-7 (a) A HRTEM image taken from P@400 (b) a ring diffraction pattern taken from a 

group of particles shown in the image inset, (c) a spot diffraction pattern of a single 

particle shown in the image inset. 

 

HRTEM images from all samples clearly revealed the lattice spacings in single 

crystal nanorods of 5.6 and 3.5Å corresponding to the (200) and (110) spacings of the 

TiO2(B) phase respectively. An interplanar angle between both lattice spacings is in 

the range of 107.5-109.5 being in agreement with the theoretical value of 107.8. 

Moreover, all TEM selected area diffraction patterns from groups of particles shown 

inset in the figures as (b), illustrated a set of rings spacings characteristic of TiO2(B) 

corresponding to the (001), (110), (002), (310), (003) and (020) lattice spacings. Spot 

diffraction patterns taken from nanorods indicated a growth direction along [020] in all 

samples in agreement with the preferred [020] orientation evident in XRD patterns. 
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Figure 4-8 (a) A HRTEM image taken from T@400 (b) a ring diffraction pattern taken from a 

group of particles shown in the image inset, (c) a spot diffraction pattern of a single 

particle shown in the image inset. 
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Figure 4-9 (a) A HRTEM image taken from R@400 (b) a ring diffraction pattern taken from a 

group of particles shown in the image inset, (c) a spot diffraction pattern of a single 

particle shown in the image inset. 
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Figure 4-10 (a) A HRTEM image taken from A@400 (b) a ring diffraction pattern taken from 

a group of particles shown in the image inset, (c) a spot diffraction pattern of a single 

particle shown in the image inset. 

4.3 Discussion 

All results from alkali hydrothermal synthesis route for the different precursors are in 

agreement with results in the literature [3]–[7] which suggested 1-D structures of 

TiO2(B) nanorods and the same phase transformation mechanism. 

The morphology of TiO2(B) particles synthesized using the alkali hydrothermal 

method are typically 1-D structures which depend on the synthesis parameters such as 

alkali metal type, concentration of alkali metal hydroxide and hydrothermal reaction 

temperature. In this research, an elongation of nanorods was promoted by using liquid 

titania precursor (TTIP) whereas short nanorods occurred when solid titania precusors 

were used such as anatase, rutile and P25. In section 4.2.3, a possible reason why TTIP 

supports an elongation of particle morphology was proposed. Moreover, It was found 

by C-W. Peng [8] that use of amorphous TiO2 instead of crystalline TiO2 as alkali 
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hydrothermal precursors provided thinner diameter alkaline titanate products resulting 

in an increase in the length/width ratio. This result supports an elongation of nanorods 

if amorphous TiO2 is generated from the hydrolysis of TTIP.  

Naturally, sodium titanates prefer to construct a layered intermediate structure 

(nanosheet). When treated with highly concentrated NaOH solution, the Ti-O-Ti bonds 

at the surface of nanosheet are broken and replaced by Ti-O-Na or Ti-OH [9]. Upon 

washing with water, Na
+
 and OH

-
 are removed from the sheet surfaces, leaving an 

imbalance of surface charge. This charge imbalance is the driving force for the 

rearrangement of nanosheet morphology by either rolling up to form a nanotube or 

stacking with other sheets to form a nanorod [3]. The concentration of NaOH (Na/Ti 

ratio) primarily affects the level of charge imbalance, controlling the morphology of 

the resulting sodium titanate [10]. Thus, it can be concluded that the concentration of 

alkali hydroxide and the washing of the alkali-hydrothermal samples with water 

followed by acid treatment (washing and soaking) are the crucial factors to promote 

different types of 1-D morphology [9],[11].  

 

 

Figure 4-11 Schematic view of a TiO2(B) nanorod (P@400) with an orientation corresponding 

to the evidence from XRD, HRTEM and SADP.  

 

TiO2(B) 



- 86 - 
 

 

However, many researchers have reported an influence of hydrothermal 

conditions on morphological form. It was found that a hydrothermal reaction 

temperature of 150C normally promotes the formation of nanotubes [3], [5], [7], [12], 

[13], whereas nanorods, nanowires and nanoribbons have been prepared at 

temperatures in the range of 170-220C. Furthermore, a higher % filling of the 

hydrothermal reactor also promotes the elongation of particles, forming nanowire 

structures instead of nanotubes [7]. These practical suggestions support the observed 

nanorod formation in this research which used a hydrothermal temperature of 180C 

and 75% filling of the reactor.  

The fabricated TiO2(B) nanorods, reveal a preferred growth direction along [020] 

which is evidenced by XRD patterns and SADP images and is depicted schematically 

in Figure 4-11. 

The investigation of TiO2(B) phase formation via the hydrothermal process 

indicates a mechanism involving phase transformation via an alkali metal titanate 

intermediate phase. This may correlate with the proposed mechanism for TiO2(B) 

phase formation by the LPCVD method in the next chapter.  

I propose a three-step hydrothermal mechanism for TiO2(B) formation as 

diagrammatically illustrated in Figure 4-12 [3], [5], [8], [13]–[16] with a brief 

description of each of the steps as follows:  

(1) The titanium precursor: P25, TTIP, Rutile or Anatse, hydrothermally reacts 

with NaOH, providing the dissociation of TiO2 starting materials into linked 

titanate building blocks. Na
+
 ions are incorporated into the titanate building 

units forming the first intermediate sample of a sodium titanate layered 

structure. The monoclinic crystal structure of Na2Ti6O13 generally comprises 

Na
+
 ions (in yellow) located in the interlayers between the TinO2n+1 planes; 

(2) The Na
+
 ions in the Na2Ti6O13 structure are ion-exchanged with H

+
 during the 

acid soaking & washing processes, and then the structure transforms into the 

H2Ti3O7 structure which is an analogous structure to Na2Ti3O7. The monoclinic 

H2Ti3O7 structure is constructed from a titanate layered structure with an 

interlayer countercation of H
+ 

(in black); 

(3) Under heat treatment at a suitable temperature (in this case at 400C), the 

H2Ti3O7 dehydrates via an evaporation of H2O molecules, and structurally 

rearranges to form TiO2(B). 
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Figure 4-12 Schematic diagram depicting the hydrothermal phase transformation mechanism 

for preparing the TiO2(B) phase.  

This proposed mechanism is similar to that proposed in the literature [3], [5], [8], 

[13]–[16], all of which suggest a phase transformation mechanism through the 

sequential steps TixOy Na2TinO2n+1  H2TinO2n+1  TiO2(B).  

Owing to the fact that TiO2(B) is a metastable phase, it is easy to transform to the 

anatase phase when the temperature is higher than 400
o
C (the stability of TiO2(B) 

phase is reported to be below 600
o
C [17]). Many research studies have proposed an 

interface structural transformation in the mixed-phase nanostructure. In which the 

interface between anatase and TiO2(B) phase should relate to a well-matched 

arrangement at the atomic level of their crystal structures which is a so-called lattice-

directed topotactic transformation. However, the interfacial lattice planes are still a 

matter of debate. For example, the practical study by Zheng [4] proposed that the 

interfacial lattice planes are between (202) of TiO2(B) and (202) of anatase with the 

lattice spacings of 1.76 and 1.78Å respectively, whereas, the theoretical study by Zhu 

[18] suggested a possible habit plane of the phase transition between (-201) TiO2(B) 

and (103) Anatase.   
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4.4 Conclusion 

Titanium dioxide 1-D structures were successfully fabricated via a hydrothermal 

method with a subsequent ion-exchange process and calcination. P25, TTIP, rutile and 

also anatase were used as Ti precursors in the alkali hydrothermal system. TTIP 

promoted an elongation of nanorod morphology whereas the other precursors 

produced short nanorod structures. The different types of titanium precursors did not 

have any influence on the phase transformation during the fabrication process. 

Na2Ti6O13 is the primary intermediate product after washing the hydrothermal sample. 

H2Ti3O7 is the secondary intermediate phase obtained following proton-exchange of 

Na2Ti6O13 in 0.1 M HNO3 solution. Finally, the TiO2(B) phase was the product of 

calcination of the secondary intermediate product at 400

C for 5 hr. A phase 

transformation mechanism is presented via an investigation of products at each of the 

steps which corresponds with the literature. The effects of the synthesis condition on 

tailoring of crystal morphology are discussed. The growth direction of the nanorods of 

TiO2(B) is investigated including a schematic representation of crystal plane directions 

in the nanorods structure. Finally, the metastable phase of TiO2(B) is shown to be 

transformed to anatase during thermal treatment at temperatures higher than 400C. 
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Chapter 5 Synthesis and characterization of mixed phase anatase 

TiO2 and sodium-doped TiO2(B) thin films by low pressure 

chemical vapour deposition (LPCVD) 

Thin films based on the crystalline anatase phase of TiO2 are used in self-cleaning 

glass/windows [1]
 
as this polymorph possesses a higher photocatalytic activity than 

rutile. Current improvement strategies focus on the production of phase mixtures in 

the thin films which may provide higher photocatalytic activities. Mixing two different 

phases of TiO2
 
such as anatase/rutile [2] or anatase/TiO2(B) [3], directly affects the 

charge transfer process between the different phases possibly reducing recombination 

of photo-generated electrons and so enhancing the photocatalytic activity [4]–[7].
 
This 

directly improves the efficiency of oxidative stripping of organic molecules from 

water or air.  

Commonly, alkali metal titanates have been used as precursors for TiO2(B) 

preparation in many synthetic methods such as sol-gel [8], hydrothermal [9] and solid-

state reaction [10]. In this chapter, the LPCVD method was employed to synthesize 

(for the first time) dual phase anatase and sodium-doped TiO2(B) thin films on glass 

substrates.  

5.1 Experimental Procedure  

5.1.1 Thin Film Preparation  

TiO2 thin films were deposited onto either a soda-lime glass slide or a fused quartz 

slide. The reaction temperature was varied between 450 and 600C with a reaction 

time of typically 15 min. The LPCVD process is detailed in chapter 3 section 3.1.2.3.  

5.1.2 Materials Characterization 

Before being characterized, the TiO2 film deposited onto the substrate (e.g. a soda-

lime glass slide) was divided into 12 plates each of dimensions 12 mm  12.6 mm  1 

mm. These samples represented different reactor positions relative to the gas entry 

point at plate1 (Fig 3-5). In-plane and out of plane X-ray diffraction (XRD) with a 

Philips X’Pert MPD diffractometer, were employed to characterise the crystalline 

phases in the samples. The surface morphology and thickness of TiO2 thin films were 

investigated by SEM (Carl Zeiss LEO 1530 Gemini FEGSEM) and EDX spectroscopy 

both in plan-view and in cross-section. Raman spectroscopy and UV-Vis diffuse 

reflectance spectroscopy were also used to characterise these materials. The materials 
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were analysed by TEM using imaging, SAED and EDX spectroscopy, mapping and 

quantification. 

5.2 Results 

5.2.1 X-ray Diffraction 

The optimum synthesis condition to achieve thin films composed of mixed phase 

TiO2(B) and anatase was found to be a nominal reaction temperature of 600C for 15 

min reaction time with 5 mL of TTIP. The mixed phase of TiO2 only occurred when 

the nominal reaction temperature reached 600C. At lower nominal temperatures such 

as 400C and 500C, thin films tended to be composed of pure anatase with an 

equiaxed particle morphology exhibiting extensive particle aggregation, whilst at high 

temperatures (700C) it was observed that the substrate began to deform and the 

deposit consisted of pure anatase with a non-aggregated spherical particle morphology 

(The XRD results of the higher and lower temperatures than 600C are shown in the 

appendix II). Here, I focus solely on the results obtained at a nominal temperature of 

600C as these conditions appear to promote the formation of the TiO2(B) phase. As 

shown in Figure 3-5(b) in chapter 3 the actual temperature in the reaction tube had a 

maximum of ca. 550C at the position of plates 2-5 and decreased towards each end of 

the tube. 

For these conditions, the out of plane XRD patterns of a selection of 12 plates on 

a soda-lime glass substrate are shown in Figure 5-1, and are compared to the 

corresponding thin film on a fused quartz substrate (referred to as TiO2-Quartz) 

prepared under identical conditions and reactor position for Plate 4. The XRD patterns 

show that almost all of 600C synthesized thin films on soda lime glass substrate 

consist of a combination of both TiO2(B) (JCPDS 04-007-6246) and anatase phases 

(JCPDS 00-021-1272) in different relative proportions depending on the distance from 

the gas entry point. As will become clear later, it is important to note that the XRD 

peaks assigned to the TiO2(B) phase do not match with any sodium titanate 

NaxTiO2+0.5X phase or any other related sodium-containing phase in the JCPDS 

database. In Plate 1 anatase is the majority component, nevertheless in other reactor 

positions (as shown in Plates 2, 4, 5 and 8) XRD indicates the main component is the 

TiO2(B) phase. In the case of Plate 10, the patterns show only one peak at 2 = 25.30 

indicating the anatase phase and two very broad features lying between 15-35 and 60-

70 characteristic of amorphous SiO2 from the glass substrates. The influence of the 

substrate was more evident at larger distances from the gas entry point possibly 

indicating the presence of a thinner crystalline deposit.  
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The influence of the substrate on the film was studied using a fused-quartz 

plate (at the same position as Plate 4) instead of the normal soda-lime glass 

substrate under the same synthesis conditions. The differences can be seen in 

Figure 5-1 by comparing the XRD patterns labeled Plate 4 and Quartz-plate 4 

respectively. These results indicate that a mixed phase of anatase and TiO2(B) 

can be indexed on Plate 4, whilst only the anatase phase is evident on a fused 

quartz substrate indicating that the soda-lime glass substrate promotes the 

formation of TiO2(B) by LPCVD.  

 

 
Figure 5-1 Out of plane XRD patterns of TiO2 thin film deposited onto soda-lime glass 

substrates and a quartz substrate at position Plate 4 prepared by LPCVD at 600C: A 

and B refer to the assignment of the anatase and TiO2(B) phases respectively 

 

The (101) and (200) peaks of the anatase phase (at 2 = 25.28 and 48.05 

respectively) are very close to the (110) and (020) peaks of the TiO2(B) phase at 

2=24.98 and 48.63. The crystallite size derived from XRD line broadening in 

Figure 5-1 was estimated to be in the range 40-60 nm for both phases. In order to 

clarify the results, both in-plane and out-of-plane XRD were recorded for Plate 4 to 

confirm the existence of both phases, as illustrated in Figure 5-2. The in-plane XRD 
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pattern shows additional peaks of the TiO2(B) phase when compared to the TiO2(B) 

peaks evident in the out-of-plane pattern. Not only does this confirm the existence of 

the TiO2(B) phase it also reveals a preferred [001] crystallographic orientation of 

TiO2(B) as illustrated by the strong (001), (002) and (003) hkl reflections at 2 = 

14.16, 28.62 and 43.5 in the out-of-plane pattern. 

 

Figure 5-2 In plane and out of plane XRD patterns of Plate 4: A and B refer to anatase and 

TiO2(B) phases respectively. 

5.2.2 Raman Spectroscopy 

Raman spectroscopy was employed to confirm the phases on Plate 4 and 

Quartz-plate 4. The Raman active modes for anatase are evident as an intense 

peak around 144 cm
-1

 as well as three other peaks at 395, 517 and 637 cm
-1 

present in both samples and indicating solely pure anatase on Quartz-plate 4 

(Figure 5-3). The remaining peaks, especially two strong peaks at 121.9 and 

144.96 cm
-1 

signify the Raman active modes of the TiO2(B) phase [11], [12]
 

indicating the presence of the mixed phase on Plate 4. 

5.2.3 UV-Visible Spectroscopy  

UV-Visible diffuse reflectance spectroscopy was used to study optical properties of 

the thin films and raw spectra are shown in Figure 5-4(a) and the same data after a 

transformation to transformed reflectance in Figure 5-4(b) [4]. Here, I have plotted 

transformed reflectance according to Kubelka-Munk function against photon energy as 

anatase and TiO2(B) are an indirect band gap semiconductor.  
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Figure 5-3 Raman spectra of Plate 4 and Quartz-plate 4: A and B indicate the anatase and 

TiO2(B) phases respectively. 

 

The band gaps of these materials were calculated by extrapolating the linear 

portion of the slopes in Figure 5-4(b) and determining the intercept with the 

background. The band gap energies of anatase and TiO2(B) are experimentally 

reported as being 3.2 eV and 3.0-3.2 eV respectively [12]–[15]. The present results 

curiously show a energy band gap of between 3.25 and 3.31 eV which increased with 

an increasing proportion of the TiO2(B) phase. It might be expected that the presence 

of any dopants in the thin film may cause changes including possible increases in the 

band gap energy. In contrast, the anatase thin film on Quartz-plate 4 showed a band 

gap of 3.275 eV. 

5.2.4 Scanning Electron Microscopy 

A SEM plan-view image of Plate 4 is shown in Figure 5-5(a) and illustrates the 

presence of two types of particle morphology: large polygonal plates 100-200 nm in 

diameter and smaller, more spherical particles with a diameter of around 20 nm. The 

average primary particle size of this bimodal distribution at the film surface is 7342 

nm. A composition derived from SEM/EDX, shown inset in Figure 5-5(a), confirms 

the existence of titanium and oxygen in the thin film. 
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Figure 5-4 (a) UV-Vis diffuse reflectance spectra of the samples prepared at optimum 

LPCVD condition (b) Estimation of the band gap energy by plotting the corresponding graph 

of photon energy (eV) versus transformed Kubelka-Munk function. 

As the TiO2 film thickness is only around 200 nm, as shown in the SEM cross-

section in Figure 5-6(a), the electron beam interaction volume also samples the glass 

substrate and hence the Ti:O ratio is less than 1:2 and this is also presumably why Na, 

Si, Ca and Mg are detected. Inspection of Figure 5-6(a), reveals that the film cross-

section also contains two kinds of particles: smaller columnar or needle-shaped 
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particles present predominantly at the glass substrate/film boundary and the larger 

plate-like particles predominantly deposited on the film surface. This may suggest that 

the small needle-shaped particles are acting as a seeding layer on the substrate or arise 

from some sort of interfacial reaction with the substrate. 

As shown in the graph in Figure 5-6(c) and in the images in Figure 5-6(d), the 

film thickness decreases from 400 to 50 nm dependent on the distance from the carrier 

gas entry point, most likely due to precursor depletion. Thus both the thickness and the 

relative proportion of the different crystalline phases are directly dependent on the 

position of the substrate in the reactor. Interestingly from the plan-view image of the 

Quartz-plate 4 sample shown in Figure 5-5(b), the pure anatase particles so produced 

exhibit a size of 30 nm and a different spherical morphology, similar to anatase 

samples synthesized at reaction temperatures  below 500C and above 700C on soda-

lime glass substrates. A SEM cross section image of Quartz-plate 4 (Figure 5-6(b)) 

shows a unique columnar morphology across the thin film with no apparent phase at 

the film-substrate interface. 

 
Figure 5-5 (a) SEM secondary electron image of TiO2 thin film from the top surface of Plate 4; 

(b) SEM secondary electron image of TiO2 thin film from the top surface of Quartz-plate 

4. 



 
 

 

- 9
7

 - 

 

Figure 5-6 SEM cross-sectional images of thin film fracture surfaces of Plate 4 on: (a) soda lime glass and (b) fused quartz substrates; (c) Plot 

of the film thickness relative to the gas entry point observed from SEM cross-sectional images of thin films on soda lime glass substrates 

shown in Figure 5-6(d); (d) The decreasing of TiO2 film thickness on Soda lime glass substrate relative to the gas entry point. 
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Figure 5-7 (a) A TEM image taken from Plate 4, showing both anatase polygonal plates and 

TiO2(B) needle-shaped particles; (b) HRTEM and diffraction pattern of a TiO2(B) 

needle; (c) HRTEM image of an anatase polygonal plate. 

 

5.2.5 Transmission Electron Microscopy 

The coexistence of TiO2(B) and anatase phases in the thin films confirmed by XRD 

and Raman results may explain the two types of particle morphology observed in SEM 

images. These two distinct types of particle morphology (small needle-shaped and 

larger polygonal plate-like) are also evident in TEM of thin film material scraped from 

the surface of Plate 4, a typical TEM image being shown in Figure 5-7(a). The particle 

size of the polygonal plates are in the range 40-220 nm with an average of around 150 

nm, significantly bigger than the needles which are in the range 5-10 nm in width and 

50-80 nm in length. These values are consistent with the XRD results on the 

assumption that the short axis of the polygonal plates lies parallel to the substrate. 

HRTEM and SAED were employed to investigate the relationship between physical 

appearance and the nanostructure of these morphologies as illustrated in Figure 5-7(b) 

and Figure 5-7(c). In Figure 5-7(b), the needle-like crystals clearly show a lattice 
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spacing of 3.55Å which can be tentatively assigned to the (110) lattice spacing of 

TiO2(B). Moreover, a TEM selected area diffraction pattern of a group of needles, 

shown inset in Figure 5-7(b), shows rings corresponding to the (110), (400), (-402), 

(112), (113) and (-314) spacings of TiO2(B). TEM/EDX spectra (Figure 5-8(a)) of the 

same area reveals the presence of Ti, O and also a very small amount of Na typically 

less than 1% atomic, however interference between the Cu L-(from the TEM support 

grid) and Na K-X-ray emission peaks makes this quantification unreliable. Figure 

5-7(c) demonstrates that the polygonal plate is anatase as it reveals lattice spacings of 

3.47Å, 2.38Å and 2.28Å which correspond to the (101), (103) and (112) interplanar 

spacings respectively. TEM/EDX on the anatase plates reveals the presence of solely 

Ti and O (Na, if present, is below the level of detectability following quantification), 

as shown in Figure 5-8(b).  

 

 

Figure 5-8 TEM-EDS spectrum of: (a) a group of needles particles investigated in the same 

area of Figure 5-7(b); (b) a polygonal plate particle correlated with Figure 5-7(b)  
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Figure 5-9 (a) A TEM image of FIB cross section of Plate 4;(b) A HRTEM image taken from 

FIB-section at a square area labelled as 5-9(b) on the Figure 5-9(a), showing lattice spaces of 

anatase polygonal plates; (c) A HRTEM image taken from different square area of the Figure 

5-9(a), labelled as 5-9(c) of TiO2(B) needle-shaped particles illustrates (110) and (001) 

spacings. 

 

The FIB lift out method was used to prepare a thin cross-sectional TEM sample of 

Plate 4 as shown in Figure 5-9(a). HRTEM images are presented from two different 

areas on this cross section: one in a region near the top surface of thin film (Figure 

5-9(b)) showing the lattice spacings of anatase TiO2; whilst the other is from an area 

close to the interface between the TiO2 film and the substrate shown in Figure 5-9(c). 

In Figure 5-9(a) (inset) and Figure 5-9(c), a number of needle particles are observed at 

the interface between the glass substrate and the TiO2 thin film deposit, these exhibit 

lattice spacings of 3.59Å and 6.21Å consistent with the (110) and (001) spacings of 

TiO2(B) respectively. The majority of needle particles exhibited a preferred growth 

direction along [001] (as suggested by XRD), however some showed orientations 

corresponding to [110] and close to [111]. 
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When combined with the XRD results, this suggests that predominantly the 

needles grow preferentially along their long axis ([001] direction) perpendicular to the 

substrate, i.e. oriented vertically as illustrated schematically in Figure 5-12. Note this 

is different to the findings of Li et al. (2011) on powders of TiO2(B) nanowires grown 

by hydrothermal synthesis who propose a preferred [110] orientation in the nanowires 

[16] and also different to chapter 4 where it was a [020] preferred orientation.  

 

Figure 5-10 STEM-EDS elemental maps of FIB cross section of Plate 4 

 

Phase-formation in the thin film was investigated by Scanning TEM (STEM) and 

EDX spectroscopy on the FIB cross-section. STEM/EDX elemental maps, shown in 

Figure 5-10, indicate the presence of relatively high concentrations of Na (typically a 

Na/Ti elemental ratio of ca. 0.2) at the interface between the glass substrate and the 

TiO2 film.  STEM/EDX line scans also confirm a concentration gradient of Na 

presumably arising as a result of diffusion from the glass substrate as shown in Figure 

5-11. Generally the level of Na gradually decreases with increasing distance from the 

substrate interface, however there also seems to be a build-up of Na at the top film 

surface evident in both the maps and the line scans. The present results all indicate that 

the presence of Na arising from diffusion from the soda lime glass substrate is 

associated with the formation of a reaction layer of the TiO2(B) phase at the 

film/substrate interface. This interfacial layer is absent when the thin film is grown on 

fused quartz, which does not contain sodium. From the pXRD data it is clear that 

anatase is present even when TiO2(B) is absent and thus the TiO2(B) layer does  not 

appear necessary to seed growth of anatase. 
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Figure 5-11 STEM-EDS line scanning of FIB cross section of Plate 4. 

5.3 Discussion 

The literature for the preparation of TiO2(B) has, until now, concentrated exclusively 

on the production of powders using synthesis routes such as hydrothermal and sol-gel 

methods and there is no mention of CVD. All these synthesis routes utilise the same 

key concept, involving the use of NaOH in addition to the main titanium precursor 

[17], [18].
 
All propose similar steps in the synthesis mechanism  involving: (1) 

incorporation of Na
+ 

into the TiO2 crystallite forming Sodium Titanate as a first 

intermediate material; (2) Na
+
 in the Sodium Titanate structure is exchanged with H

+
 

from an acidic solution during post-synthesis processing, producing a second 

intermediate phase of Hydrogen Titanate; (3) finally a thermal treatment is used to 

transform the unstable phase of HxTiOy to the more stable phases of TiO2 depending 

on the heat treatment temperature [19]. 
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However, NaOH was not used as a precursor during the present LPCVD 

deposition of the thin films. However Na is a major constituent of soda lime 

glass and may contain up to 5 atomic% Na [1]. The silicon-oxygen tetrahedron 

is the basic building block of the glass framework however cations such as Na
+
 

ions usually perform the function of cationic counterparts at non-bridging 

oxygen units. Thus, the Na
+
 ions are considered to be mobile. Diffusion of Na

+
 

from the glass substrate could occur at deposition temperatures of 600C which 

is higher than the range of glass transition temperatures of commercial soda-

lime glass slides – usually between 564 to 573C [20]. We calculate the 

diffusion coefficient of Na
+
 in soda-lime glass at 600C to be of the order of 

410
-7

 cm
2
/s [21],

 
furthermore the diffusivity of Na

+ 
increases as pressure is 

decreased [22],
 
which implies that during reaction sodium ions could diffuse 

hundreds of microns and hence throughout the film.  

From these results it can be concluded that LPCVD deposition method at 600°C 

with a TTIP precursor normally promotes the formation of the TiO2 anatase phase on a 

general substrate, however the existence of Na
+
 ions which have diffused from a 

substrate such as a soda lime glass slide encourages the formation of an oriented 

TiO2(B) reaction layer during TiO2 thin film deposition. This potential mechanism for 

TiO2(B) formation in the LPCVD process is shown in Figure 5-12. Here I propose 

three steps for the  TiO2(B) formation: (1) Na
+
 ions migrate to the surface of the 

substrate during the pre-heat treatment process [23]; (2) owing to higher negative 

charge of non-bridging oxygen units of TiO2 than SiO2, the Na
+
 ions prefer to diffuse 

from the surface of the substrate into the nascent TiO2 films leaving a Na-depleted 

zone in the region of glass neighboring the TiO2 film [24]; (3) a seeding intermediate 

phase is formed and this decomposes at temperature so forming TiO2(B) needles and 

leaving Na
+
 ions to continuously migrate to the upper surface of the thin film. Further 

into the film and in the absence of significant amounts of Na, the titania deposits and 

forms anatase instead of TiO2(B) depending on the reaction temperature. This 

assumption is partially supported by previously reported research where migration 

from soda glass slide to the initial stages of growth of TiO2 films produced only 

brookite TiO2 or an incomplete phase referred to as Na2O.xTiO2 [25], [26].
 
Finally it 

has been reported that TiO2(B) synthesized from sodium-containing starting materials 

promotes particle needle, tube- and rod-shaped morphologies with a preferred growth 

direction [4], [8], [9], [27] consistent with the needle-morphologies observed in this 

research. 

A number of research reports have indicated improved efficiencies of 

mixed-phase anatase and TiO2(B) over single phase material (either anatase or 

TiO2(B)) for the case of a number of  photocatalyst reactions including: methyl 
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orange degradation [5], sulforhodamine B degradation [4], methylene blue 

degradation [28], active yellow XRG dye degradation [29], nitrate reduction [3] 

and the water splitting reaction [30].
 
As far as I am aware, there have been no 

reports of the application of mixed-phase materials in self-cleaning glass, 

however such materials could in principle lead to improved photocatalytic 

efficiencies. Furthermore, TiO2(B) nanocrystalline thin films have been 

fabricated using spin-dip coating onto conductive glass substrates for use as a 

replacement for graphite anodes in lithium ion batteries.
 
Potentially the high 

surface area and mesoporosity of such nanostructured films could lead to 

improved storage capacities and the present CVD route may offer a potential 

alternative route for their fabrication provided a sodium source could be 

incorporated in the substrate. 

 

Figure 5-12 Proposed mechanism for synthesis of mixed phase TiO2 thin films by LPCVD 

method 

5.4 Conclusions 

Titania films have been prepared by low pressure chemical vapour deposition 

on soda-lime glass substrates. Using 5 mL of a TTIP precursor deposited for 15 

min at 550C (actual temperature) on the substrate, around 200 nm thick TiO2 

thin films consisting of dual phase monoclinic TiO2(B) needles and larger 

anatase polygonal plates were observed. The small nano-needles of the TiO2(B) 

phase were located at the interface with the substrate and exhibited a preferred 

orientation along [001]. These needles were absent when the substrate was fused 

quartz. A mechanism for the CVD synthesis of TiO2(B) is presented involving 

diffusion of Na from the glass substrates. To my knowledge, this is the first time 

the monoclinic TiO2(B) phase has been prepared by a CVD method. Potentially 

this fabrication route could be of benefit for production of photocatalytic 

devices and replacement anodes for lithium ion batteries. 
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Chapter 6 Universal synthesis method for mixed phase TiO2(B) and 

anatase TiO2 thin films on substrates via a modified low pressure 

chemical vapour deposition (LPCVD) route 

In the previous chapter I reported the formation of mixed phase TiO2(B) and anatase 

thin films containing a majority phase of TiO2(B) using low pressure chemical vapour 

deposition (LPCVD) at 600
o
C on soda-lime glass substrates. It was suggested that 

TiO2(B) formed as a result of diffusion of Na from the soda-lime glass substrate which 

encouraged phase formation during the deposition process. This finding is promising 

as it may lead to LPCVD being selected for the synthesis of TiO2(B) thin films 

providing they can be deposited on conducting substrates for application in Li ion 

battery anodes. 

To address this issue, I propose a new method involving pre-treatment of 

substrates with Na from external sources prior to LPCVD deposition in order to 

promote TiO2(B) formation as a result of Na diffusion from this pre-treated surface 

layer. I demonstrate the success of this method using Si wafer, fused quartz, HOPG 

and grafoil substrates. I speculate that this could be of use for not only lithium battery 

electrodes but also mixed TiO2 phase photocatalysts with higher efficiency than the 

pure anatase phase [1]–[4].  

6.1 Experimental Procedure 

6.1.1 Substrate Pre-treatment 

The substrates used were: fused quartz, silicon wafer, HOPG and grafoil. The cleaned 

substrates pre-treated by spraying onto the surface 0.5 mL of a NaOEt solution in 

varying concentrations between 0.1-5.0 %
W

/V of Na. The details of the substrate pre-

treatment were described in chapter 3, section 3.1.2.3.3. 

6.1.2 TiO2 Thin Film Deposition 

LPCVD was used to prepare TiO2 thin films on the desired pre-treated substrate; 

details of this equipment being described in chapter 3, section 3.1.2.3. From the 

previous studies, the optimum conditions for the synthesis of the TiO2(B) phase on 

soda-lime glass substrates was 600C at a pressure of 25 mbar and hence the same 

conditions as describe in chapter 5 were applied here. Sample nomenclature was 

x%_Substrate, where x and Substrate are the %
W

/V of the sprayed Na solution and type 

of substrate respectively. 
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6.1.3 Materials Characterization 

All thin film samples were characterized using the same methods as described in 

chapter 3 and chapter 5. 

6.2 Results and Discussion 

6.2.1 X-ray Diffraction  

The XRD patterns of the films on the 4 different substrates are shown in Figure 6-1. 

XRD of  the 0.5%_Si and 0.5%_Fused quartz samples clearly show peaks which can 

be assigned to TiO2(B) (JCPDS 04-007-6246) and anatase (JCPDS 00-021-1272) 

phases together with peaks from the Si wafer substrate (labelled S) and a broad peak 

lying between 20-23 2 from the amorphous quartz substrate respectively. Calculated 

crystallite (grain) sizes of the TiO2(B) and anatase phases derived using XRD line 

broadening and Scherrer’s equation are 425 and 305 nm respectively on 0.5%_Si, 

while for 0.5%_ Fused quartz the corresponding values are 405 nm and 355 nm. 

However, for both the 0.5%_HOPG and 0.5%_Grafoil samples only intense peaks at 

26.48 and 54.57 are observed corresponding to the (002) and (004) spacings of the 

highly oriented graphite substrates (JCPDS 00-041-1487), with no obvious diffraction 

peaks of TiO2(B) or anatase evident; this was the case even if the substrate was 

oriented slightly off axis. 

6.2.2 Raman Spectroscopy 

Owing to the sensitivity issue with XRD when in the presence of a highly oriented 

substrate, the thin films on all four substrates were also characterized by Raman 

spectroscopy and the results are displayed in Figure 6-2.  It may be seen that Raman 

active modes of both TiO2(B) and anatase phases are present in all samples, in 

addition to the characteristic peaks from the substrates which are 520.80 cm
-1

 for the 

Si wafer and 1584.71cm
-1

 for graphitic substrates (both HOPG and Grafoil) [5]. The 

Raman active modes for anatase appear as an intense peak at 141.53 cm
-1

 with three 

other weaker peaks at 399.60, 512.31 and 631.98 cm
-1 

[6], whereas the remaining 

peaks are all Raman active modes of the TiO2(B) phase, particularly three strong peaks 

at 122.05, 196.21 and 361.76 cm
-1 

[7]. However, the relative intensities of the anatase 

and TiO2(B) Raman peaks phase cannot be compared directly in order to determine 

phase fractions, as the relative sensitivity of the anatase-active modes is six times 

higher than those of the TiO2(B) phase [8][9]. Nonetheless, the Raman results do 

confirm that all thin film samples consist of a mixed phase of TiO2(B) plus anatase. 
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Figure 6-1 XRD patterns of TiO2 thin films deposited onto four different substrates: Si 

wafer, fused quartz, HOPG and Grafoil; A, B, S and G refer to peak assignments to 

TiO2 anatase phase, TiO2(B) phase, Si substrate and graphite substrate respectively. 

The substrates were first prepared with a very thin layer of Na-containing compound 

via spraying a 0.5%
W

/V sodium solution onto the substrate surfaces. 

6.2.3  Scanning Electron Microscopy 

SEM plan view images of 0.5%_Si, 0.5%_Fused quartz, 0.5%_HOPG and 

0.5%_Grafoil samples are shown in Figure 6-3. These all show similar particle 

morphologies consisting of a majority of equi-axed/spherical primary particles 

(possibly single crystallites) of around 20-50 nm which appear aggregated, together 

with a minor component of bigger particles with an irregular polygonal-like 

appearance. From this bimodal distribution, the average primary particle sizes in 

0.5%_Si, 0.5%_Fused quartz, 0.5%_HOPG and 0.5%_Grafoil are 56.31.2 

(S.D=19.8), 49.71.2 (S.D=18.6), 44.11.2 (S.D=15.7) and 91.71.2 (S.D=64.4) nm 

respectively. All samples show similar particle sizes except 0.5%_Grafoil which is 

almost two times as large, as seen in Figure 6-3(d). SEM/EDX was also used to 

investigate the thin film compositions and the results are given in Table 6-1. As the 

electron beam interaction volume penetrates below the thin films, the exact 

compositions are dependent not only on the type of substrate but also the thickness of 

the TiO2 films. However, the results confirm the presence of a titanium oxide thin film 

with retention of sodium in the deposited structure. 
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Figure 6-2 Raman spectra of TiO2 thin films deposited onto four different substrates: Si 

wafer, fused quartz, HOPG and Grafoil; A and B indicate peaks due to the anatase and 

TiO2(B) phases respectively 

  
Figure 6-3 SEM secondary electron images of TiO2 particles from the top surface of thin films 

deposited on: (a) Si wafer (b) fused quartz (c) HOPG and (d) Grafoil substrates 

respectively.  
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In Figure 6-4, cross-sectional samples have been investigated by SEM and reveal 

the thickness and physical morphology of the TiO2 films. The average thicknesses of 

the TiO2 layers in 0.5%_Si, 0.5%_ Fused quartz and 0.5%_HOPG are all 

approximately 0.5 m as shown in Table 6-1. Interestingly, in 0.5%_Grafoil the film is 

found to be significantly thicker at around 2.1 m, which is strange as all deposition 

parameters (such as substrate position in furnace tube relative to the gas entry point, 

the quantity of TTIP precursor, the carrier gas flow rate, the reaction temperature and 

reaction time) were carefully controlled and remained constant. It may be that the 

increased surface roughness of the Grafoil may have caused the as-deposited films to 

become thicker [10]. The cross-sectional SEM images of 0.5%_Si, 0.5%_Fused quartz 

and 0.5%_HOPG, all show columnar growth of TiO2 nanoparticles with a minority of 

smaller, rounder nanoparticles predominantly present at the substrate interface. In 

contrast 0.5%_Grafoil (Figure 6-4(d)) exhibits irregularly-shaped larger particles. 

Table 6-1 List of synthesised samples with results of SEM/EDX quantitative elemental 

analysis, XRD crystallite size and primary particle size and film thickness derived from 

SEM. 

Sample 

Composition in Atom% 

from SEM/EDX 
 

Calculated 

crystallite size by 

Scherrer’s equation 

(nm) 

Measured 

primary 

particle size 

(nm) 

Measured 

film  

thickness 

(m) 
Na Si Ti O C  TiO2(B) Anatase 

0.5%_ 

Si 

0.68 11.19 22.39 60.41 5.33  425 305 56.31.2 

(S.D=19.8) 

0.4630.003 

(S.D=0.024) 

0.5%_ 

Fused 

quartz 

1.67 31.85 9.73 48.98 7.77  405 355 49.71.2 

(S.D=18.6) 

0.6500.003 

(S.D=0.023) 

0.5%_ 

HOPG 

0.95 0 16 46.86 36.19 N/A N/A 44.11.2 

(S.D=15.8) 

0.4850.003 

(S.D=0.018) 

0.5%_ 

Grafoil 

0.29 0 14.31 45.76 39.64 N/A N/A 91.71.2 

(S.D=64.4) 

2.0680.003 

(S.D=0.209) 

 

Figure 6-4 SEM cross-sectional images of TiO2 thin films deposited on: (a) Si wafer (b) fused- 

quartz (c) HOPG and (d) Grafoil substrates 
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6.2.4 Transmission Electron Microscopy 

Figure 6-5 shows the TEM results from sample 0.5%_Si (thin film simply scraped off 

onto a TEM support film) and reveals an equi-axed grain morphology with a grain-

size range of 20-80 nm and an average of ca. 35 nm. The inset magnified image in 

Figure 6-5(a), exhibits a lattice fringe spacing of 5.860.02 Å consistent with the (200) 

spacing of TiO2(B). Further, the HRTEM image in figure 6(b) shows lattice fringes of 

spacing 3.570.02 Å which can be indexed as the (110) lattice spacing of TiO2(B) 

whilst a Fast Fourier Transform (FFT) of the area defined by the red square in Figure 

6-5(b) indexes to the TiO2(B) phase. Conversely, Figure 6-5(c) provides evidence for 

lattice spacings of anatase TiO2: 3.470.02 Å, 2.410.02 Å and 2.320.02 Å 

corresponding to the (101), (103) and (004) interplanar spacings respectively. An FFT 

of the area defined by the red square in Figure 6-5(c) indexes to TiO2 anatase.  

 

 

Figure 6-5 (a) A bright field TEM image taken from 0.5%_Si, showing an equi-axed particle 

morphology; (b) a HRTEM image of a TiO2(B) particle and (c) a HRTEM image of 

anatase particles, both with the corresponding fast Fourier transforms of the image 

inset. 
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A bright-field TEM image of sample 0.5%_Fused Quartz is shown in Figure 

6-6(a) and again shows an equi-axed grain morphology with a grain size of between 

20 and 80 nm. The lattice spacing of 3.470.02 Å assigned as (101) of anatase is 

illustrated in the inset image in Figure 6-6(a). As displayed in Figure 6-6(b), TiO2(B) 

lattice spacings were also found to be present in other grains. Furthermore, TEM 

selected area diffraction from a group of grains is shown in Figure 6-6(c) and reveals 

ring spacings characteristic of both TiO2(B) (the (200), (110), (400), (401), (113), 

(020), (113) and (022) spacings) and also anatase (the (101), (112), (004), (200), (105) 

and (211) spacings). I observed that anatase and TiO2(B) phases possessed a similar 

grain size and grain morphology. 

 

Figure 6-6 (a) A bright field TEM image taken from 0.5%_Fused quartz; (b)  a HRTEM 

image of TiO2(B) with  corresponding fast Fourier transform of the image inset;               

(c) a diffraction pattern of a group of particles shown in the image inset. 
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Figure 6-7 (a) A typical TEM image taken from 0.5%_HOPG; (b) a HRTEM image of a 

TiO2(B) particle with associated electron diffraction pattern; (c) diffraction pattern 

taken from a group of particles shown in the image inset. 

 

A typical low-magnification TEM image of sample 0.5%_HOPG is shown in 

Figure 6-7(a), suggesting a smaller grain size off between 20-60 nm than for samples 

0.5%_Si and 0.5%_Fused quartz. A TEM image of a grain together with a selected 

area diffraction pattern is displayed in Figure 6-7(b), the lattice spacings of 3.600.02 

Å and 5.870.02 Å with an interplanar angle of 73 are consistent with the (110) and 

(200) spacings of TiO2(B) whilst the diffraction pattern also indexes to TiO2(B). In 

Figure 6-7(c), selected area electron diffraction from a group of grains exhibits rings 

corresponding to the (200), (110), (002), (111), (400), (401) and (003) lattice spacings 

of TiO2(B), as well as the (101), (103) and (004) lattice spacings of the anatase phase 

and also reveals the coexistence of both phases in this sample 
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Figure 6-8 (a) A bright field TEM image taken from 0.5%_Grafoil; (b)  a HRTEM image of 

a group of TiO2(B) with corresponding fast Fourier transform of the image inset;              

(c) a diffraction pattern of a group of particles shown in the image inset. 

 

A range of titanium dioxide grains in the 0.5%_Grafoil sample is presented in a 

typical TEM image with an inset image in Figure 6-8(a); the grains range in size 

between 20-100 nm which is bigger than for the other LPCVD samples and correlates 

with the SEM image shown in Figure 6-4(d). A high resolution TEM image of a group 

of titania grains with a corresponding fast Fourier transform from the area defined by 

the red square in Figure 6-8(b), strongly indicates the TiO2(B) phase. Finally, a 

selected area electron diffraction pattern from a number of grains is shown in Figure 

6-8(C) and exhibits polycrystalline TiO2(B) and anatase ring spacings.  
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Figure 6-9 (a) A TEM image of a FIB cross-section of 0.5%_Si; (b) corresponding HRTEM 

image at the TiO2/Si wafer interface labeled as 10B in (a); (c) HRTEM image taken 

from the TiO2/protective Pt layer interface labeled as 10C in (a). 

 

TEM results confirm the presence of both anatase and TiO2(B) phases in all 

samples, in agreement with the findings of Raman and XRD. However in order to 

investigate the microstructure of the film in more detail, a TEM cross-section was 

prepared by the Focused Ion Beam (FIB) lift out method. Bright field TEM images of 

a cross-sectional sample of 0.5%_Si sample are shown in Figure 6-9(a) and reveal a 

columnar morphology with crystal growth perpendicular to the Si wafer substrate. 

Closer inspection at the interface between the substrate and the titania film reveals 

smaller more equi-axed grains as observed by SEM (Figure 6-4(a)). Two high 

resolution TEM images are presented in Figure 6-9(b) and Figure 6-9(c) which are 

taken from two different regions within the titania thin film: Figure 6-9(b) is an 

interfacial region between the Si wafer substrate and the TiO2 film, whilst Figure 

6-9(c) is an area of thin film near the top surface which is close to the protective Pt 

layer deposited in the FIB. The small grains at the interface in Figure 6-9(b), exhibit 
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lattice spacings of 6.110.06Å and 5.780.06Å which are assigned to the (001) and 

(200) planes of TiO2(B) respectively. A larger particle at the top surface (Figure 

6-9(c)) shows a lattice spacing of 6.200.06Å corresponding to (001) in TiO2(B).  

 

Figure 6-10 STEM-EDX elemental maps from the FIB cross-sectional sample of 0.5%_Si, 

showing the elemental distribution in the thin film and the TiO2/Si wafer and 

TiO2/protective Pt layer interfacial areas. 

Thus it would appear that TiO2(B) is formed throughout the film, in contrast to the 

previous studies of mixed phase anatase and TiO2(B) thin films produced by LPCVD 

on low sodium content materials such as soda-lime glass where I observed the TiO2(B) 

phase only at interface with the substrate. Scanning Transmission Electron 

Microscopy (STEM) and EDX spectroscopy on the FIB cross-sectional 0.5%_Si 

sample, was used to study the elemental distributions in the thin film. Figure 6-10 

shows the element-specific maps obtained and reveal a relatively uniform distribution 

of Na throughout the whole TiO2 thin film. Note, due to the overlap between the Na 

K- and Ga L- X-ray emission lines, elemental quantification in the upper portion of 
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the TiO2 film near the protective Pt layer (strap) are unreliable due to significant Ga 

implantation into the Pt strap  during ion beam milling.  

6.2.5 Effect of Na content in the Substrate Pre-treatment 

The %
 w

/v of Na in the sodium ethoxide/ethanol solution used in the substrate pre-

treatment was varied in order to monitor its effect on titania phase formation in the 

thin film. XRD patterns from thin films deposited following a range of sodium pre-

treatments are shown in Figure 6-11 and reveal that for low sodium concentrations 

(samples: 0.05%_Si and 0.10%_Si) solely anatase is present. Whilst for concentrations 

of  0.16%
w
/v of Na, the pre-treatment process promoted the formation of TiO2(B) as 

well as the anatase phase, with an increase in the relative proportion of TiO2(B) phase 

with increasing sodium content up to an optimum level of 0.75%
w
/v Na; further 

increases in Na levels result in the anatase phase becoming the main component in the 

thin films.  

 

Figure 6-11 XRD patterns of TiO2 thin films deposited onto Si wafer substrates pre-coated 

with a very thin sodium-containing layer by spraying different concentrations of 

sodium ethoxide/ethanol solution; A, B and S refer to the TiO2 Anatase phase, TiO2(B) 

phase and Si wafer substrate respectively. 
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This is more clearly seen in Figure 6-12 which shows XRD patterns with the 

sample tilted off-axis by 2 degrees with respect to a normal 2 scan. This is to reduce 

the strength of the single (hkl) reflection from Si wafer substrate which would 

otherwise dominate the pattern, making it difficult to observe the TiO2 diffraction 

peaks. 

 

Figure 6-12 Off axis XRD patterns of TiO2 thin film samples showing the peaks due to the 

TiO2 phases without interference from the silicon wafer substrate.  

6.3 Discussion 

In chapter 5, we investigated TiO2(B) phase formation in thin films deposited by 

LPCVD onto soda-lime glass substrates [11], where the findings suggested a 

mechanism involving diffusion of Na
+ 

ions out of the substrate to form an intermediate 

layer at the interface which subsequently decomposed into the TiO2(B) phase. Here I 

have extended this work to investigate whether substrates that are sodium-free could 

be pre-treated with sodium so as to promote TiO2(B) formation during LPCVD. The 

present results demonstrate that mixed TiO2(B) and anatase phase thin films can be 

prepared on any general substrate using a modified LPCVD method involving pre-

treatment of the substrate by a sodium spraying method using NaOEt in Ethanol. 
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Figure 6-13 Proposed mechanism for the synthesis of mixed phase TiO2(B) and anatase thin 

films by LPCVD method onto substrate pre-treated with a very thin layer of Na-

containing compound 

We propose a potential three-step mechanism for TiO2(B) formation as illustrated 

schematically in Figure 6-13:  

(1) The substrate was first prepared by spraying sodium ethoxide solution onto the 

substrate surface. Sodium ethoxide thermally decomposes during the pre-heat 

treatment process at 600C according to the following reaction [12]–[14]:
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                                                          Equation 6-1 

 
                             Equation 6-2 

 

                              Equation 6-3 

As in Equation 6-1, the initial decomposition step of sodium ethoxide at 1 atm in air 

typically occurs above 300C and produces hydrocarbon gases, amorphous carbon and 

two main residues: sodium carbonate and sodium hydroxide in the mole ratio 1:2 [12]. 

Above 320C NaOH melts and decomposes to form a thin layer of Na2O and steam 

(Equation 6-2) [14]. Above a temperature of 850C Na2CO3 can also generate Na2O 

[15], [16], as shown in Equation 6-3; however at low pressure this decomposition 

temperature may be reduced. Furthermore, decomposition reactions of metal 

carbonates are partially reversible reactions and the removal of gas phase of products 

by the vacuum system may encourage an increase in the forward reaction rate; 

(2) During the LPCVD process itself, Na
+
 ions could migrate from the Na2O layer 

into the nascent TiO2 films formed from the decomposition of TTIP, possibly causing 

formation of intermediate phases of monoclinic sodium titanates with tunnel structures 

such as Na2TiO3, Na2Ti3O7 and Na2Ti6O13 and/or amorphous Na doped TiO2. 

According to a binary phase diagram for the Na2O-TiO2 system [17], each of these 

intermediate sodium titanates could be formed at 600C depending on the exact 

Na2O/TiO2 phase ratio present, as shown in the following reactions: 

                   

                     

                      

Based on the current levels of Na employed in the current study I believe Na2Ti6O13 is 

the most likely phase to be formed. This could act as a seeding material for TiO2(B) 

formation [18]–[20]. In sodium titanates, typically Na
+
 ions are located in the 

interlayers between negatively charged sheets composed of TiO6
 
octahedral building 

blocks as shown in Figure 6-14. If these Na
+
 ions are mobile, then their migration out 

of the structure may effectively template a TiO2 tunnel structure which may 

subsequently rearrange or shrink to form TiO2(B). 

(3) Sodium ions in the seeding structure continuously migrate into the newly 

deposited layers of TiO2 and promote TiO2(B) formation. In some ways this is 

analogous to the tip growth mechanism for carbon nanotube using (metal) catalytic 

chemical vapor deposition[21]. However in the absence of a significant quantity of Na, 

the deposited titania will form the anatase phase instead of TiO2(B).  
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This general hypothesis is supported by the previous findings regarding TiO2(B) 

formation promoted by Na
+
 diffusion from soda-lime glass substrates under the same 

synthesis conditions [11]. However, using the pre-treatment process it would appear 

that sodium diffuses rapidly through the film and TiO2(B) is not just confined to the 

interfacial region adjacent to the substrate, nor does it grow in an oriented fashion as is 

the case for soda lime glass substrates.   

As mentioned in the introduction, mixed phase TiO2(B) and anatase thin films on 

anodes may offer improved Li ion battery performance. Lithium can diffuse into both 

the anatase and TiO2(B) frameworks in three dimensions through open channels or 

voids within the structures [22], [23] however TiO2(B) provides the highest %voids 

amongst the TiO2 polymorphs and nano-TiO2(B) is able to accommodate 1 Li
+ 

per Ti 

which is higher than that for anatase [24]. However, for the TiO2(B) phase a 

significant irreversible capacity loss occurs at the initial charge-discharge cycle, 

whereas in anatase this effect is smaller [23], [25]. Thus, the ability to produce a thin, 

high surface area film with some mesoporosity and containing a combination of both 

polymorphs may ultimately improve overall anode performance.  

 

Figure 6-14 Schematic drawing of the monoclinic sodium titanates showing the tunnel 

structure of Na2Ti3O7 and Na2Ti6O13. 

 

In the case of photocatalyst materials, a number of studies have reported the 

improved photocatalytic efficiency of mixed phase TiO2(B) and anatase over either 

commercial P25 (mixed phase anatase and rutile) or single phase TiO2 (anatase, rutile, 

brookite and TiO2-B). This has been investigated for several photocatalyst reactions 

including: methyl orange-[26], [27], sulforhodamine B-[2], [3], methylene blue-[28]–

[30] and yellow XRG dry-[31] degradations; nitrate reduction [32]; acetaldehyde 

decomposition [33] and the water splitting reaction [34].
 
For the practical application 

of TiO2 photocatalysts, the ability to produce thin films of mixed phase TiO2(B) and 
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anatase on rigid substrates may be beneficial owing to their ability to be reused whilst 

retaining high catalyst performance.  

6.4 Conclusions 

Titania thin films consisting of a mixed phase TiO2(B) and anatase were successfully 

synthesized by a modified LPCVD route involving pre-treatment of the substrates by a 

sodium spraying method using NaOEt in Ethanol. A number of different substrates 

including fused quartz, Si wafer, HOPG and grafoil were deposited with around 400 

nm thick mixed phase titania films using 5 mL of a TTIP precursor for 15 min at 

nominal temperature of 600

C. The optimum Na concentration of the sodium 

ethoxide/ethanol solution in the pre-treatment process so as to promote the highest 

amount of TiO2(B) phase composition in the thin films, was found to be 0.75%
w
/v.       

A mechanism for modified LPCVD preparation of TiO2(B) is proposed involving the 

decomposition of the thin Na-containing layer and migration of Na
+
 ions into the TiO2 

layer to form an intermediate sodium titanate phase. Potentially this thin film 

fabrication process could be utilised with any desired substrate to produce anode 

materials and photocatalytic devices. 
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Chapter 7 The modified LPCVD method using an alkali metal ion 

pretreatment of substrate surfaces 

In the previous chapter I reported a new method involving pre-treatment of substrates 

with Na
+
 ions from external sources prior to LPCVD deposition in order to promote 

TiO2(B) formation. The successful synthesis of TiO2(B) phase onto Si wafer, fused 

quartz, HOPG and grafoil substrates was proposed as a result of Na
+
 ion diffusion 

from the pre-treated surface substrate. In this chapter, the main objective is to study 

the effect of different type of alkali metal ions (Li
+
, Na

+
 and K

+
) in the pre-treatment 

process on synthesised TiO2 thin films by modified LPCVD method. 

7.1 Experiment procedure 

7.1.1 Pre-treatment of the Si wafer substrate 

The pre-treatment process involved thin film deposition of an alkali metal hydroxide 

solution onto a Si wafer substrates. Three different alkali metal hydroxides (LiOH, 

NaOH and KOH) were used. These were dissolved in 20 mL of Di water, followed by 

stirring and sonication of 15 min each. The concentrations of each alkali metal 

hydroxide solution were varied in the range of 0.1-5.0 %weight of alkali metal per 

volume of Di water. The individual details of the alkaline hydroxide solutions 

prepared are listed in the Table 7-1.  

7.1.2 Deposition of TiO2 thin films on pre-treatment substrates by 

LPCVD method 

The pretreated substrate was placed at the middle of the tube furnace inside the quartz 

tube. The LPCVD method was carried out using the same preparation procedure as 

described in chapter 3. The LPCVD synthesis conditions were the same as chapter 6, 

in which TTIP was used as a Ti precursor with N2 carrier gas, 600C reaction 

temperature, 15 minutes reaction time and 25 mbar pressure.  

7.1.3 Materials characterization 

All of the synthesised samples were characterized by the off-set XRD method. SEM 

and EDX were employed to study the physical morphology and chemistry of the 

samples. Specimen preparation for all techniques was the same as described in chapter 

3. 
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Table 7-1 List of synthesized samples with the details of alkaline hydroxide concentration 

used in pre-treatment of substrates by spraying  

 

Alkaline 

hydroxide 

%
W

/V of weight of 

alkali metal ions per 

volume of solution 

moles of alkali metal 

ions 

Sample name 

LiOH  0.10  1.44x10
-2

  0.1%_Li 

 0.30  4.32x10
-2

  0.3%_Li 

 1.00  1.44x10
-1

  1.0%_Li 

 2.50  3.60x10
-1

  2.0%_Li 

NaOH  1.00  4.32x10
-2

  1.0%_Na 

 2.00  8.64x10
-2

  2.0%_Na 

 5.00  2.16x10
-1

  5.0%_Na 

 10.0  4.32x10
-1

  10%_Na 

KOH  0.50  1.28 x10
-2

  0.5%_K 

 1.00  2.56 x10
-2

  1.0%_K 

 1.69  4.32x10
-2

  1.69%_K 

 2.50  6.39 x10
-2

  2.5%_K 

 

7.2 Results 

7.2.1 Effect of type of alkali metal ion on titania or titanate thin films 

composition prepared by LPCVD method  

Samples with the same mole fraction of alkali metal ions (0.3%_Li, 1.0%_Na, 

1.69%_K), were examined by XRD as shown in Figure 7-1. The XRD results show 

that different types of alkali-metal ions (Li+, Na+, and K+) promote differences in 

phase composition in the thin film samples. Without a pre-treatment process with 

alkali metal hydroxide, only the anatase phase was indicated in the XRD pattern 

(anatase TiO2 is the typical product synthesised by CVD preparation at 600C), 

whereas other phases of titania or titanate compounds occurred in addition to anatase 

when the alkaline pre-treatment processes were applied. The existence of alkali metals 

in the LPCVD system, promoted the formation of the following extra phases in 

addtition to anatase TiO2: Brookite, Rutile and Li2TiO3 in case of Li
+
; TiO2(B) in case 

of Na
+
; K2Ti6O13 and TiO2(B) in case of K

+
. The phases of LPCVD products in every 

synthesis condition are summarised in Table 7.2. 
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Focusing only on TiO2(B) phase formation through the LPCVD process, it was 

found that Na
+
 is the most useful alkali metal for participating in TiO2(B) phase 

formation. The TiO2(B) peak pattern was obviously seen in the XRD pattern of 

1.0%_Na. This result was supported by similar previous results in chapter 6. A 

mechanism for TiO2(B) phase formation should correspond with the previously 

proposed mechanism in chapter 6, owing to the same synthesis conditions and 

preparation process of both experiments except that NaOH was used instead of 

NaOEt. Not only Na
+ 

ions promoted TiO2(B) phase formation, K
+
 ions also produced a 

minority peak pattern of TiO2(B) at 2=14.14, 28.63, 43.54 as shown in 1.69%_K.  

To confirm the XRD interpretation for the 1.69%_K sample, especially the 

presence of TiO2(B), Raman spectroscopy was employed to investigate phase 

composition as shown in Figure 7-2. The Raman spectra show the characteristic peaks 

of TiO2(B) which were indexed at 118.4, 238.2, 250.4, 360.7, 432.1 and 552.8 cm
-1

, 

including four strong overlapping peaks of both TiO2(B) and anatase at Raman shifts 

of 143.15, 197.81, 396.01, 638.54 cm
-1

. This Raman result guarantees the coexistence 

of TiO2(B) phase and anatase in the thin film samples. However, it seems that K
+
 ions 

have a limitation in promoting the TiO2(B) phase and prefer to form K2Ti6O13 instead 

as seen from the relative intensity of the peaks. Conversely, the XRD pattern of thin 

film samples prepared using Li
+
 ion pre-treatment (0.3%_Li) does not show the 

TiO2(B) phase and provides three more titania/titanate phases of brookite, rutile and 

Li2TiO3 plus anatase TiO2. Some of the XRD patterns show a group of small peaks of 

Si/SiO2 due to interfering signals from the Si wafer substrate. 
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Figure 7-1 XRD patterns of thin film samples deposited by LPCVD on the Si wafer substrates 

which were pre-treated by spraying LiOH, NaOH and KOH solution in the same mole 

amount of alkali metal ions (4.32x10
-2

 mole).  

To confirm the XRD interpretation for the 1.69%_K sample, especially the 

presence of TiO2(B), Raman spectroscopy was employed to investigate phase 

composition as shown in Figure 7-2. The Raman spectra show the characteristic peaks 

of TiO2(B) which were indexed at 118.4, 238.2, 250.4, 360.7, 432.1 and 552.8 cm
-1

, 

including four strong overlapping peaks of both TiO2(B) and anatase at Raman shifts 

of 143.15, 197.81, 396.01, 638.54 cm
-1

. This Raman result guarantees the coexistence 

of TiO2(B) phase and anatase in the thin film samples. However, it seems that K
+
 ions 

have a limitation in promoting the TiO2(B) phase and prefer to form K2Ti6O13 instead 

as seen from the relative intensity of the peaks. Conversely, the XRD pattern of  thin 

film samples prepared using Li
+
 ion pre-treatment (0.3%_Li) does not show the 

TiO2(B) phase and provides three more titania/titanate phases of brookite, rutile and 

Li2TiO3 plus anatase TiO2. Some of the XRD patterns show a group of small peaks of 

Si/SiO2 due to interfering signals from the Si wafer substrate. 
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Table 7-2 The conclusions of titania/titanate phases of thin film products synthesized by 

modified LPCVD with pre-treatment of Si wafer substrates by spraying three different 

alkaline hydroxide solution in varied concentration.  

Alkali metal ion 

source 

%
W

/V of alkali ion in Di 

water 

 

 

Phases composition of thin film 

sample 

LiOH  0.1   Anatase*, Rutile, Brookite, Li2TiO3 

  0.3   Anatase*, Rutile, Brookite, Li2TiO3 

  1.0   Anatase*, Rutile, Brookite, Li2TiO3 

  2.5   Anatase*, Rutile, Brookite, Li2TiO3 

NaOH 
 1.0   Anatase*, TiO2(B) 

  2.0   Anatase*, TiO2(B) 

  5.0   Anatase*, TiO2(B) 

KOH 
 0.5   Anatase*, TiO2(B) 

  1.0   Anatase*, TiO2(B), K2Ti6O13 

  1.69   Anatase*, TiO2(B), K2Ti6O13 

  2.5   K2Ti6O13*, Anatase, TiO2(B) 

 the majority phase 

 

Figure 7-2 Raman spectrum of thin film sample deposited on a pre-treatment Si wafer 

substrate by spraying 1.69%W/V of KOH solution. Inset is a light microscope image of 

thin film in plan view. 
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7.2.2 Influence of alkali metal hydroxide concentration used in pre-

treatment process on phase formation  

The titania/titanate phases of thin film samples synthesized by the modified LPCVD 

with pre-treatment by spraying alkali metal hydroxide solution onto the Si wafer 

substrate are briefly summarized in Table 7.2. The details of phase formation in the 

different systems are described below.  

7.2.2.1 Pre-treatment with LiOH solution  

Figure 7-3 illustrates the XRD patterns of the thin films samples fabricated by LPCVD 

method with different concentrations of LiOH in the pre-treatment process. The 

concentration of LiOH was varied in the range of 0.1-2.5%
w
/V as explained in Table 

7-1.  

 

Figure 7-3 XRD patterns of titania/titanate thin film samples deposited onto a Si wafer 

substrate which was pre-treated by spraying LiOH solution in four different 

concentrations of 0.1, 0.3, 1.0, and 2.5%
w
/v. 

 



- 133 - 
 

 

The results showed that whilst the anatase phase is a typical product from this 

LPCVD condition at 600C, all of the patterns indicated mixed titania and titanate 

phases, consisting of anatase TiO2, rutile TiO2, brookite TiO2 and lithium titanate 

(Li2TiO3) in varying proportions. The anatase phase showed a preferred orientation in 

the [001] direction as seen by a very strong peak at 2=37.8 the (004) lattice spacing. 

Unexpectedly, no evidence for TiO2(B) can be seen in any of the XRD patterns even at 

high or low concentrations of Li
+
, indicating that TiO2(B) cannot be prepared by the 

LPCVD method with Li
+
 pre-treatment. Interestingly, the extra titania phases of 

brookite and rutile can be produced in this system which is untypical at 600C for 

CVD preparation system. The relative proportion of the brookite phase remains almost 

the same in every level of Li
+
 concentration. A higher concentration of Li

+
 encourages 

an  increase in the relative proportion of rutile and Li2TiO3 in the thin films. The 

majority phase is changed from anatase at low Li
+ 

concentration to rutile at 

concentrations higher than 0.3%
w
/v. Calculated crystallite sizes of anatase, rutile and 

Li2TiO3 derived using Scherrer’s equation are all about 50 nm (the individual details of 

each samples are summarised in Table 7-3). 

7.2.2.2 Pre-treatment with NaOH solution  

For the case of Si wafer substrate pre-treatment by NaOH solution at three different 

Na
+
 concentrations of 1.0, 2.0 and 5.0%

w
/v, the XRD diffractograms are shown in 

Figure 7-4. Both TiO2(B) and a majority phase of anatase are present in all samples. 

An extra monoclinic phase of Na2Ti6O13 (JCPDS: 04-008-9451) occurs only at the 

high concentration of Na
+
 of 5.0%

 w
/v. The majority phase in every sample was anatase 

with a preferred orientation in the [100] direction as shown by a very strong peak at 

2=48.0. The relative proportion of TiO2(B) compared to the anatase phase increased 

with increasing Na
+
 concentration; suggesting that TiO2(B) will become a majority 

phase when the Na
+
 concentration is higher than 5.0%

w
/v. TiO2(B) phase formation 

arising from the effect of Na
+
 ions in or on the LPCVD substrate is similar to the 

previous results in chapter 5 and chapter 6. The crystallite sizes derived from XRD 

line broadening in Figure 7-4 were estimated to be in the range 49-60 nm for both 

anatase and TiO2(B) as presented in Table 7-4. 
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Figure 7-4 XRD patterns of TiO2 thin film samples deposited onto a Si wafer substrate which 

was pre-treated by spraying NaOH solution in three different concentrations of 1.0, 2.0, 

and 5.0%
w
/v. 

7.2.2.3 Pre-treatment with KOH solution  

Pre-treatment of Si wafer substrates by spraying with four different concentrations of 

KOH solutions (of 0.5, 1.0, 1.69, and 2.5%
w
/v) was studied. The XRD patterns of the 

films are shown in Figure 7-5. XRD of the 1.0%_K, 1.69%_K and 2.5%_K samples 

do not show obvious peaks due to TiO2(B) however, an optimum condition to promote 

TiO2(B) phase formation appears to lie in the range between1.0%
W

/V and 2.5%
W

/V. 

This trend is totally different from the results of NaOH in which the relative 

proportion of the TiO2(B) phase in the thin films increased with increasing alkali metal 

ion concentration. Unsurprisingly anatase appears for every synthesis condition and is 

the main component of the films. In addition, an unusual monoclinic phase of 

K2Ti6O13 appears in every sample; it becomes the majority phase in the thin films 

when the concentration of KOH is 2.5%
W

/V. It can be noticed that the formation of a 
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monoclinic alkaline titanate is observed for all types of alkali metal ion (Li, Na and K) 

used in pre-treatment processes, nevertheless, there are significant differences in the 

relative proportion in each alkali-metal ion systems even though the number of moles 

of alkali metal ion are controlled. The crystallite sizes for anatase, K2Ti6O13 and 

TiO2(B) phases, derived from XRD line broadening and Scherrer’s Equation were all 

estimated to be in the range of 12-80 nm (Table 7-5) 

 

 
Figure 7-5 XRD patterns of titania/titanate thin film samples deposited on a Si wafer substrate 

which was pre-treated by spraying KOH solution in four different concentrations of 0.5, 

1.0, 1.69, and 2.5%
w
/v. 

 

 

TiO2(B) 

Anatase 
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7.2.3 Influence of the different type of alkali metal ion on the physical 

appearance of the films 

SEM secondary electron images were used to study the physical morphology of the 

thin film samples. SEM plan-view and SEM cross-sectional images of the thin film 

samples are shown in Figure 7-6. Thin film samples with the same molar 

concentration of alkali metals ions were investigated.  

 

Figure 7-6 SEM plan-view images of titania/titanate thin film samples deposited by LPCVD 

onto a pre-treated Si wafer substrate by spraying: (a) 0.3%
w
/v of LiOH; (b) 0.1%

w
/v of 

NaOH; (c) 1.69%
w
/v of KOH and SEM cross-sectional images of the thin films 

deposited on pre-treated Si wafer substrates: (d) 0.3%
w
/v of LiOH; (e) 0.1%

w
/v of 

NaOH; (f) 1.69%
w
/v of KOH 
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SEM plan view images of 0.3%_Li, 1.0%_Na and 1.69%_K
 
are shown in Figure 

7-6 (a), (b) and (c) respectively. All show dense films consisting of polygonal-shaped 

grains except for 1.69%_K which shows a few areas (see inset) composed of discrete 

needle particles with a needle width and length of around 50 and 200 nm. The average 

aggregated particle sizes derived from SEM images of the particles from the top 

surface of the films in 0.3%_Li, 1.0%_Na and 1.69%_K
 
are 521±10.0 (S.D.=148), 

3682.0 (S.D.=98) and 2302.0 (S.D.=68) respectively.  

The film thicknesses and physical morphologies have been investigated in SEM 

cross-sectional images illustrated in Figure 7-6(d), (e) and (f) of 0.3%_Li, 1.0%_Na 

and 1.69%_K samples respectively. Basically, the film thickness remains constant 

when the LPCVD conditions are the same. However, these film thicknesses are quite 

variable and thicker than previous results in chapters 5 and 6 with approximate 

thicknesses of 1500, 2000 and 800 nm in 0.3%_Li, 1.0%_Na and 1.69%_K samples 

respectively. All SEM cross-sectional images show a uniformed columnar structure, 

most obvious in 0.3%_Li and 1.0%_Na. The average aggregated particle sizes and 

film thicknesses for the other concentrations of Li
+
, Na

+
 and K

+
 samples are 

summarized in Table 7-3, Table 7-4 and Table 7-5. 

The elemental analysis of all thin film samples were determined by SEM/EDX 

and the individual results relevant to the different types of alkali metal ions in pre-

treatment process are given in Table 7-3, Table 7-4 and Table 7-5. It can be clearly 

seen that the EDX results confirm the existence of titanium oxide with a retention of 

Na and K in the individual samples corresponding to the alkali metal hydroxide 

solution used in the pre-treatment process. The atomic percentages of Na and K 

increase with an increase in nominal alkali metal hydroxide concentration. This means 

that the alkali metal ions in the titania/titanate thin films depend directly on the 

concentration of the alkali metal solution applied. However, the relative atomic 

composition of Ti, O and alkali metals may be affected by the electron beam 

interaction with the Si wafer substrate or by an inhomogeneous region of spraying by 

the alkali metal hydroxide. In the case of Li
+
 pre-treatment, EDX cannot detect a 

signal of Li element due to the limitation of the characterization technique for such 

light elements (if produced, Li K X-rays are absorbed in detector window).  
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Table 7-3 List of synthesised samples following LiOH pre-treatment with results of 

SEM/EDX quantitative elemental analysis, XRD crystallite size and measured aggregate 

particle size and film thickness derived from SEM images. Note Li not detectable by 

EDX. 

Sample 

name 

 

Calculated crystallized size by 

Scherrer’s equation (nm) 

*From X’Pert High Score Plus 

Measured 

aggregated 

particle size  

(nm) 

Measured film 

thickness 

(nm) 

 

Atomic percent composition from 

SEM/EDX 

 

Anatase Rutile Li2TiO3 Li Ti O Si C 

0.1%_Li 43 

±5.0 

50 

±5.0 

12 

±5.0 

136±2.0 

(S.D.= 5.4) 

371±5.0 

(S.D.=14.8) 

N/A 13.5 46.2 27.5 12.8 

0.3%_Li 51 

±5.0 

81 

±5.0 

- 521±10.0 

(S.D.=148.1)*

primary 

59±2.0 

(S.D.= 19.6) 

1623±5.0 

(S.D.=41.9) 

N/A 32.2 62.5 0.1 5.2 

1.0%_Li 43 

±5.0 

50 

±5.0 

49 

±5.0 

176±2.0 

(S.D.=80.1) 

9965.0 

(S.D.=55.4) 

N/A 19.2 64.5 8.9 7.3 

2.5%_Li 51 

±5.0 

50 

±5.0 

49 

±5.0 

132±2.0 

(S.D.=43.2) 

680±5.0 

(S.D.=47.2) 

N/A 17.2 56.3 17.1 9.4 

Table 7-4 List of synthesised samples following NaOH pre-treatment with results of 

SEM/EDX quantitative elemental analysis, XRD crystallite size and measured aggregate 

particle size and film thickness derived from SEM images. 

Table 7-5 List of synthesised samples following KOH pre-treatment with results of 

SEM/EDX quantitative elemental analysis, XRD crystallite size and measured aggregate 

particle size and film thickness derived from SEM images. 

Sample 

name 

 

Calculated crystallized size 

from Scherrer’s equation 

(nm) *From X’Pert High 

Score Plus 

Measured 

primary particle 

size (nm) 

 

Measured  

film thickness 

(nm) 

 

Atomic percent composition from 

SEM/EDX 

 

TiO2(B) Anatase Na Ti O Si C 

1%_Na 62±5.0 50±5.0 3682.0 

(S.D.=97.6) 

2436±5.0 

(S.D.=119.8) 

0.6 31.6 64.4 0.1 3.4 

2%_Na 50±5.0 62±5.0 

(Peak48, 

38.9±5.0) 

191±2.0 

(S.D.=61.7) 

1175±5.0 

(S.D.=44.4) 

1.5 30.7 65.2 0.5 2.2 

5%_Na 50±5.0 

(Peak30, 

62.1) 

50±5.0 132±2.0 

(S.D.=53.8) 

959±5.0 

(S.D.=50.6) 

2.5 33.4 53.7 10.3 - 

Sample 

name 

 

Calculated crystallized size from 

Scherrer’s equation (nm) 

*From X’Pert High Score Plus 

Measured 

primary 

particle size 

(nm) 

Measured film 

thickness 

(nm) 

 

Atomic percent composition from 

SEM/EDX 

 

TiO2(B) Anatase K2Ti6O13 K Ti O Si C 

0.5%_K - 37 

±5.0 

12 

±5.0 

79±2.0 

(S.D.= 27.3) 

6375.0 

(S.D.=28.6) 

0.2 15.2 48.7 26.9 9.1 

1.0%_K 81 

±5.0 

50 

±5.0 

36 

±5.0 

67±2.0 

(S.D.=30.7) 

7525.0 

(S.D.=132.7) 

0.4 20.7 54.3 24.7 - 

1.69%_K 36 

±5.0 

42 

±5.0 

26 

±5.0 

2292.0 

(S.D.=67.8) 

8465.0 

(S.D.=24.5) 

1.4 17.6 69.6 5.3 6.2 

2.5%_K 38 

±5.0 

42 

±5.0 

32 

±5.0 

150±2.0 

(S.D.=109.8) 

7645.0 

(S.D.=76.9) 

1.7 17.8 62.0 9.0 9.5 
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7.3 Discussion  

In chapter 6, mixed phase TiO2(B) and anatase thin films on different substrates were 

successfully prepared via the modified LPCVD route. A mechanism of TiO2(B) 

formation was proposed involving the decomposition of a pre-deposited sodium-

containing solution (NaOEt) and the diffusion of Na
+
 ions into the deposited TiO2 

layer. The diffusion of Na
+
 ions through the titania/titanate structure is the key concept 

to form TiO2(B). In this section of the research, the work has been extended by 

investigating the effect of different alkali metal ions on titania/titanate phase formation 

using a modified LPCVD method. Li
+
, Na

+
 and K

+
 ions from LiOH, NaOH and KOH 

solution were used as pre-treatments prior to formation of thin film products. The 

summary of results of phase formation can be hierarchically illustrated as 

schematically shown in Figure 7-7. 

From the evidence provided by XRD and SEM/EDX and the previously proposed 

mechanism in chapters 5 and 6, I can separate the phase formation mechanism during 

the LPCVD process into 2 main pathways: (1) the general LPCVD process without the 

presence of alkali metal ions and (2) a pathway involving the presence of alkali metal 

ions (Li
+
, Na

+
 and K

+
). Both are briefly described in Figure 7-7. For pathway (1), the 

phase of titania films prepared by LPCVD on any substrate in the absence of alkali 

metal ions is typically anatase. This result is supported by the literature [1]–[4] and my 

research in chapters 5 and 6 [5] that suggests only the anatase phase can be prepared 

when the substrates were fused quartz and Si-wafer whereas the alkali-metal ions 

(Na
+
)-containing substrates produced the TiO2(B) phase instead. This also can be 

applied to describe the formation of anatase phase in my samples when the thin films 

exhibit an absence or depletion of alkali metal ions. On the other hand, the presence of 

alkali metal ions can promote additional phase formation via the phase transformation 

from an alkali metal titanate intermediate phase formed during the migration of alkali 

metal ions (pathway (2)). Pathway (2) is specific to each alkali metal ion system. 
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7.3.1 The influence of Na
+
 ions on titania/titanate phase formation during 

LPCVD method  

The pre-treated substrate produced by the NaOH spraying method, was first pre-heated 

at 600C under vacuum. During this process, NaOH thermally decomposes, according 

to the following reaction. 

                        Equation 7-1 

Above 320C, which is lower than the temperature for pre-heating the substrate, 

NaOH can easily decompose to form a thin layer Na2O covering the substrate and also 

gas phase water as presented in Equation 7-1 [6]–[8]. Gaseous water is quickly 

removed from the system by the vacuum environment, encouraging the rate of NaOH 

decomposition.  

During TiO2 deposition onto the surface substrate (TiO2 formed from TTIP 

decomposition in LPCVD system), Na
+
 ions could migrate from the layer of Na2O into 

the nascent TiO2 structure and form an intermediate phase of a layered monoclinic 

alkali metal titanate (NaxTiyOz) [5]. The Na
+
 ions possibly work as a templating agent 

for the construction and growth of the monoclinic alkali metal titanate layered 

structure. The NaxTiyOz phase is supposedly a meta-stable phase which can easily 

reconstruct itself or completely eliminate Na
+
 to form a more stable phase of 

Na2TinO2n+1 and TiO2(B) respectively which have a homologous structure. Na2TinO2n+1 

has been normally reported as a final product of many synthesis methods when titania 

and alkali metal ion are used as the precursors [9]–[12]. There are many stable forms 

of the Na2TinO2n+1 such as Na2Ti3O7, Na2Ti4O9, Na2Ti6O13 and Na2Ti8O17, however the 

most commonly found structure is Na2Ti6O13 which corresponds with evidence from 

XRD of the 5.0%_Na sample and from the hydrothermal synthesis sample in chapter 

4.  

 



 
 

 

- 1
4

1
 - 

 
Figure 7-7 Schematic diagram summarizing the hierarchical phase formation of titania/titanate thin films fabricated by modified LPCVD process using alkali 

metal ions (Li
+
, Na

+
, K

+
) pre-treatment of the substrate surface.  
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As well as the experimental evidence, theoretical data from the Na2O-Ti2O binary 

phase diagram (Figure 7-8) also suggests a preferred formation of Na2Ti6O13 and TiO2 

at high temperatures and when the mole fraction of Ti2O/Na2O is higher than 0.75. 

According to the EDX results of 5.0%_Na sample, this suggests that the atomic ratio 

of Ti/Na is around 0.93 (33.4/(33.4+2.5)); at Ti2O/Na2O=0.9 the phase separates into 

TiO2 and Na2Ti6O13. However, as found in chapter 5 and 6, the thin film sample 

prepared by LPCVD is not a homogeneous phase composition and therefore, the 

atomic ratio from EDX cannot directly refer to an initial atomic ratio during the phase 

formation reaction. 

 

Figure 7-8 The phase diagram of the Na2O-TiO2 system [13] 

Thus in a homogeneous system of the Na2O and Ti2O, the formation reaction of 

Na2Ti6O13 formation is given by Equation 7-2. 

                        Equation 7-2 

According to thermodynamic databases [13], [14], the calculated Gibbs free energy of 

the above reaction (G) is 2416.13 kJ/mol, indicating the formation reaction of 

Na2Ti6O13 is a spontaneous reaction.  

Small cations such as Li
+
, Na

+
 and K

+
 ions play an important role in a function of 

cationic counterpart in order to balance an anionic surface of TixOy layered structure, 

for this reason the cations are considered to be mobile species in the alkali metal 

titanate layered structure. The Na
+
 ions in the sodium titanate layered structures (both 
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of NaxTiyOz and Na2Ti6O13) can migrate out of the interlayer spacing via ion diffusion 

during heat treatment at 600C.  

The structure of TiO2(B) exhibits channels or voids sizes of around 2.5-3.2 Å 

which is very close to the interlayer spacing of the intermediate sodium titanate 

structure (~3.2 Å). This might support an assumption that after the Na
+
 is removed out 

of the interlayers, the layered structures may subsequently rearrange to form the more 

stable structure of TiO2(B) as shown in Figure 7-9. 

 

Figure 7-9 Schematic diagram representation of a phase transformation from an intermediate 

phase (Na2Ti6O13 and/or NaxTiyOz) with the step-like layered structure to a porous 

structure of TiO2(B) phase. 

Na
+
 ions from the lower thin film layers can continuously migrate into freshly 

deposited TiO2 (upper layer), forming a new layered sodium titanate phase [5]. This 

seems to be a cycle of TiO2(B) phase formation layer by layer via transformation of 

the sodium titanate layered structure. However, in the absence of Na
+
 ions or in a 

region where Na
+ 

ions are depleted, the anatase phase will be formed instead of 

TiO2(B).  

Generally, TiO2(B) is considered to be a meta-stable phase which easily 

structurally transforms to the anatase phase at temperatures higher than 600C [15], 

[16]. 

 

7.3.2 The influence of K
+
 ions on titania/titanate phase formation during 

LPCVD  

During the pre-treatment process at 600C, KOH can thermally decompose, providing 

a thin layer of K2O as shown in the following reaction [17]. 

                      Equation 7-3 

 

Na
+  

ion  
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The mechanism of the titania/titanate phase formation under the influence of K
+
 

ions is presumed to be analogous to the effect of Na
+ 

ions due to the similar chemical 

and physical properties of both cations including the evidence from XRD and 

SEM/EDX results. This potential mechanism is schematically illustrated in Figure 7-7.  

 

Figure 7-10 Schematic diagram of the phase transformation from an intermediate phase 

(K2Ti6O13 and/or KxTiyOz) with the step-like layered structure to a porous structure of 

TiO2(B) phase. 

In a region absent of K
+
 ions, the LPCVD deposition method with a TTIP 

precursor at 600C generally promotes only the formation of anatase TiO2 whereas in 

the region containing K
+ 

ions, the diffusion of K
+
 from the K2O layer into a nascent 

deposited TiO2 encourages the formation of a step-like layered structure of the 

potassium titanate intermediate phase (KxTiyOz) during TiO2 thin film deposition. The 

meta-stable phase of KxTiyOz can rapidly reconstruct to form a more stable phase with 

a similar step-like layered structure to K2Ti6O13. In some case, the K
+
 ions inside the 

layered structure (both of KxTiyOz and K2Ti6O13) can be removed, leaving vacancies 

between the interlayered spacing. This structure is unstable which rearranges itself to 

form TiO2(B) structure as schematically shown in Figure 7-10.  

However, the results from XRD obviously show the presence of two main phases 

in the thin films: anatase and K2Ti6O13. Surprisingly, the TiO2(B) phase is a minority 

component and the most intense peaks are from K2Ti6O13. Interestingly, this is an 

inversion of the results from the thin films synthesized by pre-treatment with Na
+ 

ions 

in which TiO2(B) is the majority component and Na2Ti6O13 is in the minority. This 

implies that the structural stability of K2Ti6O13 is higher than that of Na2Ti6O13 and 

TiO2(B) even though G formation for K2Ti6O13 is less negative than for Na2Ti6O13. 

The relative ratio of the K
+
 ionic radius to the layer spacing of K2Ti6O13 structure is 

around 0.37 which is significantly bigger than for the Na
+
/Na2Ti6O13 system (0.31), 

making it harder and slower for the migration of K
+
 out of the layered structure to 

form TiO2(B). These may cause a preferred formation of K2Ti6O13 rather than 

TiO2(B). Increased amounts of K
+
 ions should promote the phase component of 
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K2Ti6O13 in the thin film and indeed it was found that the relative proportion of the 

K2Ti6O13 phase in the thin-film products increased with increasing alkali metal ion 

(K
+
) concentration as seen in XRD patterns of Figure 7-5.  

Considering the binary phase diagram of a K2O-Ti2O system as shown in Figure 

7-11 when the TiO2/K2O mole ratio is close to 1.0 (0.75-1.0) at 600°C (the Ti/K 

atomic ratios from EDX results is in range of 0.91-0.99), the phase separates into 

K2Ti6O13 and TiO2 in agreement with the XRD results.  

The thermodynamic data of a K2Ti6O13 phase formation reaction has been 

considered through an equation below.  

                       Equation 7-4 

The calculated Gibbs free energy (G) of the above reaction is around 2256.41 

kJ.mol
-1

. This suggests that a spontaneous reaction of K2Ti6O13 can occur during the 

LPCVD process [13], [14].  

 

Figure 7-11 The phase diagram of the K2O-TiO2 system [13] 

 

 

 



- 146 - 
 

 

7.3.3 The influence of Li
+
 on titania/titanate phase formation during 

LPCVD method  

In case of Li
+
 ions applied during pre-treatment of the substrate before the LPCVD 

synthesis process, the XRD results are significantly different from the results with Na
+
 

and K
+ 

ions. The final phases in the thin films are anatase, rutile, brookite and Li2TiO3. 

The XRD pattern shows an obvious increase in the amount of the rutile phase together 

with a decrease in the anatase phase in the thin film as the concentration of Li
+ 

ions 

was increased; whereas the percentage phase composition of brookite and Li2TiO3 are 

relatively constant in every condition. The influence of Li
+
 will be described using a 

similar concept to that used for Na
+
 and K

+
.  

During the pre-heat treatment process, the deposited LiOH on the Si wafer 

substrate surface can decompose as shown in Equation 7-5 [18], generating a thin 

layer of Li2O coated on the surface substrate before the start of the LPCVD reaction. 

                        Equation 7-5 

In an area of insufficient Li
+
, the LPCVD deposition method at 600C promotes 

the phase formation of anatase as seen in results for typical CVD methods at 600

C in 

the literature. Whereas in the area containing Li
+
,  Li

+ 
ion migration

 
from the Li2O 

layer, into the structure of the nascent TiO2 thin film, forms an intermediate phase of a 

layered sheet LixTiyOz structure with a monoclinic crystal structure (note this is not the 

same as the step-like layered structure of NaxTiyOz and KxTiyOz). 

From the previous proposed assumptions in the LPCVD system in the presence of 

K
+
 and Na

+
, it was suggested that the ionic radius and the ionic diffusion of alkali 

metal ions in the layered titanate structure directly controls the phase formation at 

600C during the LPCVD process. These assumptions can be applied to the Li
+
 system 

as well. The small size of Li
+
 ions suggests a difference in crystal structure formation 

via cation templating leading to the construction of a plane layered structure such as 

LixTiyOz and Li2TiO3, instead of the layered step-like structure seen for Na and K 

derivatives. This is supported by literature [19], [20] in that the formation of 

monoclinic Li2TiO3 usually occurs in the hydrothermal synthesis method with TiO2 

precursors in a LiOH solution. 

Focusing on the crystal structure of the plane layered framework such as Li2TiO3, 

If the Li
+
 ions located in the interlayers are removed out of the structure, each of the 

titania planes (TinO2n+1) may rearrange together to form a high-density structural form 

of TiO2 such as brookite and rutile as shown in Figure 7-12. Owing to a meta-stable 
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nature of brookite at 600C. It may subsequently structurally transform to the more 

stable phase of rutile [21].  

 
Figure 7-12 Proposed steps of structural transformation during the process of an elimination 

of Li
+
 at 600C  

It appears to be difficult to form the TiO2(B) phase through Li
+
 ion templating, Li

+
 

elimination and structural transformation as there is an absence of TiO2(B) peaks in 

XRD. The possible reasons for this may be: 

(1) the lithium titanate intermediate structure is not a step-like layered framework like 

the sodium and potassium titanate phases which allow themselves to rearrange to form 

the porous structure of TiO2(B). Instead the lithium titanate intermediate phase forms a 

sheet-like structure which is easily rearranged after elimination of Li
+ 

ions to form the 

more close packed structures such as rutile and brookite;  

(2) The relative ratio of the Li
+
 ionic radius to the layer spacing of Li2TiO3 structure is 

0.29 which is the smallest in the group of layered structures (Na2Ti6O13 & K2Ti6O13), 

causing easy migration of Li
+
 out of the plane layered structure to form a dense 

structure of rutile and brookite. The Li
+
 diffuse rapidly as compared to the other alkali 

metal ions (Na
+
 and K

+
) for example, the diffusion coefficients of the respective ions 

are DLi+= 2.29 x10
5
 cm

2
/s, DNa+=2.08 x10

5
 cm

2
/s and DK+=1.69 x10

5
 cm

2
/s at 327C in 

LiNO3 as a matrix [22]. The faster migration of Li
+
 ions could cause a more rapid 

shrinkage producing more close-packed structures of TiO2. 

Figure 7-14 shows the binary phase diagram of the Li2O-Ti2O system [23]. 

According to LPCVD synthesis conditions when the TiO2/Li2O mole fraction is close 

to 1.0 at 600°C, the phase diagram suggests the phase formation of Li4Ti5O12. 

However, Li4Ti5O12 exhibits a cubic spinel structure [24] which is dissimilar to the 

results from the Na2O/TiO2 and K2O/TiO2 phase diagrams which generally promote 

the formation of monoclinic sodium and potassium titanate intermediate phases. An 
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infinite-net structure of Li4Ti5O12 is constructed by self-assembly of TiO6 octahedral-

building blocks with the isolated Li
+
 ions located as shown in Figure 7-13. However, 

as has been found in case of K
+
 and Na

+
 ions that the effect of cation templating on 

titanate phase formation in LPCVD systems typically promotes the monoclinic layered 

structure. Here XRD results suggest the formation of monoclinic layered structure of 

Li2TiO3 over the cubic spinel structure of Li4Ti5O12. This implies that the effect of 

cation template is more influential on the structural formation than the composition in 

the LPCVD system. 

 
Figure 7-13 Schematic diagram of a cubic crystal structure of Li4Ti5O12 and a monoclinic 

crystal structure of Li2TiO3 showing a net-like framework and a plane layered structure 

respectively.  

The Gibbs free energy (G) of the Li2TiO3 phase formation reaction calculated 

from the equation below is 261.62 kJ.mol
-1

[14]. This suggests the spontaneous 

formation of Li2TiO3 during the LPCVD process at 600C.  

                      Equation 7-6 

As mentioned before, the aim of this chapter is to study the effects of the 

migration of different types of alkali metal ions on the phase formation during the 

LPCVD process with TTIP as a precursor. It was found that the phase formation in the 

thin films directly depended on the types of alkali metal ions used in the pre-treatment 

process of the Si wafer substrate. The different types of alkali metal ions produced 

different phase components. Only the substrate pre-treated with Na
+
 ions promoted the 

formation of TiO2(B) in the thin film in significant amounts. However, K
+
 and Li

+
 also 

produced interesting results, for example, forming extra phases in the thin film such as 

K2Ti6O13, Li2TiO3, brookite and rutile in different relative proportions depending on 

the concentration of alkali metal ions used in pre-treatment process. This may suggest 

the ability to control phase formation in thin films at the nanoscale. Moreover, the 
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modified LPCVD method with pre-treatment of alkali metal ions may offer a potential 

alternative route for a desired thin film preparation in a one-step synthesis. 

Last but not least, the modified LPCVD method would be interesting for further 

study of the effect of other metal ions on titania/titanate phase formation in LPCVD 

such as the alkaline earth group.  

 

 

Figure 7-14 The binary phase diagram of the Li2O-TiO2 system. 

7.4 Conclusions 

Titania/titanate thin films were successfully prepared by a modified LPCVD method 

involving an alkali metal hydroxide solution sprayed onto a Si wafer substrate. A 

number of different types of alkali metal ions including Li
+
, Na

+
 and K

+
 from LiOH, 

NaOH and KOH solutions in various concentrations have been investigated in terms of 

titania/titanate phase formation. TTIP and N2 gas were used as a titanium precursor 

and a carrier gas respectively in the LPCVD synthesis method operating at 600ºC for 

15 minutes.  

Without the alkali metal hydroxide pre-treatment process, only the anatase phase 

was produced. Whereas other phases of titania/titanate in thin film samples such as 

TiO2(B), K2Ti6O13, Na2Ti6O13, Li2TiO3, brookite and rutile, occurred when alkali metal 

ions were applied prior to the LPCVD process. All synthesised thin film samples were 
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investigated and a possible phase transformation mechanism proposed for the LPCVD 

process. All the proposed mechanisms involved formation of an intermediate phase of 

an alkali metal titanate, a structural transformation of the this intermediate phase, 

elimination of alkali metal ions out of the intermediate structure and finally a 

structural rearrangement process. The influence of Na
+
 and K

+
 can promote the 

formation of the TiO2(B) phase via the phase transformation of Na
+
/K

+
-free step-like 

layered structures. Only Li
+
 ions suggested a possible mechanism via transformation 

of a sheet-like Li2TiO3 structure instead of the step-like frameworks owing to the 

small ionic radius and the fast diffusion coefficient. This leads to the presence of Li
+
 

ions promoting formation of the dense phases of brookite and rutile instead of TiO2(B) 

during the structural transformation. 
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Chapter 8 Conclusions and Future work 

This thesis has successfully synthesised TiO2(B) by both a hydrothermal route and a 

LPCVD process. Characterisation using powder-XRD, Raman spectroscopy, TEM, 

SEM, and UV-Vis spectroscopy were employed to investigate the samples. Finally, 

mechanisms for the phase formation through both the LPCVD process and the 

hydrothermal route were proposed. The research content may be briefly described as 

follows:  

Firstly, in order to investigate TiO2(B) phase formation mechanism through the 

structural transformation of an alkali titanate intermediate phase, the hydrothermal 

synthesis method was employed to synthesise TiO2(B) nanoparticles including a study 

of the phase formation mechanism; 

Secondly, this research has achieved, for the first time, the synthesis of mixed 

phase TiO2(B) and anatase thin films on a soda lime glass substrate by an LPCVD 

synthesis method. A possible thin-film formation mechanism during the LPCVD 

process has been proposed;  

Thirdly, a pre-treatment method involving spraying an Na
+
-containing solution 

such as NaOEt or NaOH onto a number of different substrates was applied in 

conjunction with the LPCVD method in order to promote the formation of TiO2(B) 

phase in the thin film products formed on any substrate; 

Finally, the effects of different alkali metal ions (Li
+
, Na

+
 and K

+
) during the pre-

treatment step were investigated in relation to the phase formation in the 

titania/titanate thin films  produced during the LPCVD process. Phase formation 

mechanisms based on the effects of alkali metal migration into the deposited titania 

thin films were proposed.  

8.1 Research Summary 

Chapter 4 TiO2(B) 1-D structures were successfully synthesized by a hydrothermal 

method using concentrated NaOH solution at 180C for 2 days with subsequent ion-

exchange and calcination. P25, rutile, anatase and also TTIP were used as Ti 

precursors in the alkali hydrothermal system. Na2Ti6O13 is the primary intermediate 

product after the hydrothermal treatment. It was ion-exchanged by immersing in 0.1M 

HNO3 solution for 1 day to form the intermediate phase of H2Ti3O7. The dry samples 

of H2Ti3O7 were subsequently calcined at 400C for 5 hr to produce the final products. 

Tracking of the phase transformations via an investigation of the products at each of 
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the steps was undertaken using powder-XRD and used to propose an integrated phase 

formation mechanism which is consistent with the literature. The phase transformation 

mechanism via a sodium titanate phase transformation is of interest in relation to 

TiO2(B) fabricated by the other methods when Na
+
 ions are present in the system.  

Chapter 5 TiO2 thin films were synthesized using a Low Pressure Chemical Vapour 

Deposition (LPCVD) process onto glass substrates. Titanium isopropoxide (TTIP) and 

N2 gas were used as the precursor and carrier gas respectively. The effects of reaction 

temperature, carrier gas flow rate and substrate position in the furnace were studied. 

SEM, TEM, powder XRD and UV-Vis and Raman spectroscopy were employed to 

characterize the phase and morphology of the synthesized materials. The results 

showed that a dual phase (sodium-doped TiO2(B) and anatase) nanocrystalline thin 

film was successfully prepared by LPCVD with needle- and polygonal plate-shape 

crystallites respectively. At the interface with the substrate, the thin film deposit 

exhibited a preferred orientation of TiO2(B) needles in the [001] direction of average 

crystallite size 50-80 nm in length and 5-10 nm in width, whilst the crystallite size of 

anatase polygonal-plates was around 200 nm. The optimal LPCVD condition for 

preparing this mixed phase of TiO2 was 550
o
C (actual temperature) with a 1 mL/s N2 

flow rate. A possible mechanism for the mixed-phase formation by LPCVD on the 

glass substrates was described as well as the implications for the production of self-

cleaning structures. The finding in this chapter suggested a possible general fabrication 

route via provision of a suitable sodium source.  

Chapter 6 Titania thin films consisting of a mixed phase of TiO2(B) and anatase were 

synthesized by Low Pressure Chemical Vapour Deposition (LPCVD) onto a number 

of different substrates including silicon wafer, fused quartz, highly ordered pyrolytic 

graphite (HOPG) and pressed graphite flake (grafoil). General LPCVD conditions 

were titanium isopropoxide (TTIP) and N2 gas as the precursor and carrier gas 

respectively, 600C nominal reaction temperature, and 15 min reaction time. XRD, 

Raman spectroscopy, scanning and transmission electron microscopy were used to 

characterise the thin films which exhibited a columnar morphology together with 

smaller equi-axed particles. Pre-treatment of substrates by spraying with a NaOEt 

solution was found to encourage the crystallization of TiO2(B) during  the LPCVD 

process. Increasing the concentration of Na in the pre-treatment process resulted in a 

higher proportion of TiO2(B) in the thin films up to an optimum condition of 0.75% 
W

/V of Na. Na diffusion from the substrate surface into the adjacent TiO2 is the 

proposed mechanism for promoting TiO2(B) formation as opposed to the anatase 

phase. 
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Chapter 7 Nano-particulate titania/titanate thin films were deposited onto a Si-wafer 

substrate via modified LPCVD method at 600ºC. Substrates were pre-treated by 

spraying with a hydroxide solution containing alkali metal ions such as Li
+
, Na

+
 and 

K
+
 and used with the general LPCVD method. The same LPCVD synthesis conditions 

as chapter 6 were operated during the titania deposition. In a region containing an 

absence of alkali metal ions, this promotes solely the anatase phase in all thin film 

samples similar to the results in chapter 5 and 6, whereas, the presence of different 

types of alkali metal ions on the substrate surface promotes a different titania/titanate 

phase composition in the thin films. The effect of different alkali metal ions was found 

to complicate the phase formation: It was found that only Na
+ 

ions can encourage the 

phase formation of TiO2(B) and K
+
 ions provide only a very small minority of the 

TiO2(B) phase in the thin films, whereas Li
+
 ions cannot produce the TiO2(B) phase. 

Interestingly, layered alkali metal titanates with a monoclinic crystal structure of 

Na2Ti6O13, Li2TiO3, and K2Ti6O13 were all detected in the thin film samples which 

were substrate pre-treated with NaOH, LiOH, and KOH solution, respectively. The 

presence of Li
+
 ions also encouraged an unusual phase formation of rutile and 

brookite. Phase formation mechanisms based on the migration effect of alkali metal 

ions from the pre-treatment layer into the deposited nascent titania and formation of 

intermediate titanate phases, have been proposed.  

8.2 Main Findings from the Research 

 This research demonstrates for the first time the synthesis of mixed phase 

TiO2(B) and anatase on soda-lime glass substrates by LPCVD and suggests a 

potential mechanism for TiO2(B) formation during the LPCVD process.  

 A new synthetic strategy based on a modified LPCVD method has been used 

to synthesise mixed phase TiO2(B) and anatase thin films on any general 

substrate. This novel synthesis method involves a substrate pre-treatment 

process using a sodium-containing solution followed by LPCVD. This is the 

first time that the highly interesting TiO2(B) phase (mixed with anatase) has 

been prepared by CVD on substrates other than soda-lime glass. Accordingly, 

this modified LPCVD method is considered to be a universal synthesis method 

for mixed phase TiO2(B) and anatase thin films on any desired substrate.  

 This thesis demonstrates, for the first time, the effect of different alkali metal 

ions (Li
+
, Na

+
 and K

+
) on the phase formation in the titania/titanate thin films 

during the LPCVD process. A phase formation mechanism based on the effects 

of alkali metal migration into the deposited titania thin films and formation of 

an alkali metal titanate intermediate phase is proposed. 
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 This research demonstrates a full characterization of the thin film morphology, 

structure and chemistry leading to propose a potential mechanism for TiO2(B) 

formation during the modified LPCVD process. This may suggest other 

possible fabrication processes using a similar strategy via provision of the 

other metal cations. 

 This work is topical as there are many proposed benefits of mixed phase 

nanoparticulate TiO2(B)/anatase thin films on rigid substrates, including their 

use as anode materials in Lithium ion battery anodes and also as photocatalytic 

materials.  

8.3 Future Work 

 Thin film Preparation 

o Study the use of the other monovalent cations (the chemical and physical 

properties of which are supposedly close to alkali metal cations) such as 

Cs
+
, NH4

+
 and Ag

+ 
on titania/titanate phase formation under the LPCVD 

synthesis process; 

o Investigate the use of the divalent and trivalent cations such as alkaline 

earth metal cations (Mg
2+

, Ca
2+

), Al
3+

 and transition metal cations (Cu
2+

, 

Fe
2+

, Zr
2+

) on the phase formation of titania/titanate thin film samples 

during the LPCVD synthesis process; 

o The LPCVD synthesis conditions could be changed, for example: 1.) by 

changing the Ti source from TTIP to TiCl4, using a dilution of TTIP in 

isopropanol solution instead of the commercial TTIP and using a mixed 

carrier gas e.g. O2 and N2 instead of pure N2 gas to study the effect on 

phase formation in the thin films; 2.) by using a reaction temperature lower 

or higher than 600C in order to study the effect of temperature on ion 

migration; 3.) by using a longer reaction time than 15 min to study the 

influence of a diffusion time and diffusion distance of alkali metal ions on 

the phase formation and the phase distribution in the thin films;    

o Study hydrothermal synthesis using other metal hydroxide solutions and 

investigate the phase formation mechanism and compare with the results 

from the LPCVD synthesis process when the substrate is pre-treated with 

those metal ions;  

o Other oxide matrices such as ZrxOy, ZnxOy, NbxOy, TaxOy, WxOy could be 

studied instead of TixOy using the modified LPCVD process with a pre-

treated substrate. 
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 Characterisation 

o To identify more clearly phase formation in the thin films and the phase 

transformation mechanism during the LPCVD process, all thin film 

samples in chapter 7 should be prepared as a FIB cross-sectional sample 

for TEM investigation both for STEM/EDX elemental mapping and 

HRTEM imaging, to see the relative distribution of elemental composition 

and to examine the phase location in the thin films relative to the position 

from the pre-treated substrate. Chemical analysis using depth profiling 

XPS (determination of elemental composition of the thin films as a 

function of depth by ion beam etching) should be carried out to confirm 

the chemical analysis results from EDX. Moreover, typical TEM samples 

prepared by simply scraping the thin film samples from the substrate 

should also be investigated to obtain more supporting data. 

 

 Applications 

o As such this research could be of interest to a broad group focused on 

materials for energy storage and sustainability including those interested in 

the application of such materials in photocatalysts, including self-cleaning 

glass, and also as modified anodes in lithium ion batteries. Therefore, 

some functional characterization such as photocatalytic dye degradation or 

photocatalytic water-splitting reactions should be undertaken and 

compared to the results obtained using same mass of a standard titania 

powder (such as P25). In addition, if the thin films were deposited onto a 

conductive electrode, the electrochemical properties should be tested to 

provide the charge/discharge capacity and also the number of 

charge/discharge cycles; in addition simple photocurrents could be 

measured.  
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Appendix  

STANDARD OPERATING PROCEDURE 

MAIN 

SOP REFERENCE 

NUMBER: 
LUESP00001-2 

EQUIPMENT Low Pressure Chemical Deposition Rig (LPCVD) 

LOCATION: SPEME B.40 

 

ORIGINATOR DETAILS 

NAME: 
Yothin Chimupala / 

Rob Simpson 

SCHOOL / 

INSTITUTE: 
SPEME / IMR 

E-MAIL: pmyc@leeds.ac.uk TEL: 3432366 

SUPERVISOR: Prof. R. Brydson 
SCHOOL / 

INSTITUTE: 
SPEME / IMR 

E-MAIL: 
r.m.drummond-

brydson@leeds.ac.uk 
TEL: 3432369 

 

COPIES 

ORIGINAL: Retained by the Originator/supervisor/PI/Manager electronically. 

COPY AND ANY 

APPENDICES OR CROSS-

REFERENCED 

DOCUMENTS: 

Retained by the Originator/supervisor/PI/Manager electronically/ and with 

equipment. 

 

DOCUMENT AND ENVIRONMENT PREREQUISITES 

LOCATION: SPEME B.40 
(LIST DOCUMENT AND ENVIRONMENT PRE-REQUISITES ETC...ATTACH REFERENCES AS REQUIRED) 

 

1. Pre experiment document and environment prerequisites: 

 

1.1. Signed and laboratory induction. 

1.2. Access to laboratory. 

1.3. Signed risk assessment completed on RIVO Safeguard. 

1.4. Signed COSHH documentation attached to risk assessment in RIVO Safeguard. 

1.5. Ensure mains cold water supply is running cold. 

1.6. Ensure crushed ice supply is available. 

 

 

HEALTH AND SAFETY PREREQUISITES 
(LIST HEALTH AND SAFETY PRE-REQUISITES ETC...ATTACH REFERENCES AS REQUIRED) 

 

1. Pre experiment Health and Safety prerequisites: 

 

1.1. Ensure laboratory Local Exhaust Ventilation (LEV) is operating correctly. 

1.2. Ensure equipment fume cupboard is operating correctly. 

1.3. Ensure all electrical equipment is within PAT test. 

1.4. Ensure all PPE is available and in serviceable condition. 

1.5. Ensure correct use of PPE including Lab coat, Disposable nitrile gloves, Safety glasses / 

goggles. 
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EQUIPMENT: Low Pressure Chemical Deposition Rig (LPCVD) 

SOP REFERENCE 

NUMBER: 
LUESP00001-2 

 

STANDARD OPERATING PROCEDURE 
(LIST STANDARD, SAFE START-UP, USE AND SHUTDOWN PROCEDURE, ATTACH REFERENCES AS REQUIRED) 

 

1. Pre experiment equipment checks: (Reference Fig.1) 

 

1.1. Ensure all pipe work is clean and correctly fitted. 

1.2. Pre-test system for overpressure pressure relief at <= 0.5 bar: 

1.2.1. Ensure dreschel bottle side opening is pointing away from the normal 

operator position. This way in the unlikely scenario that the clamped plug 

is ejected from the bottle by pressure in the system, the plug’s trajectory 

should not incur any undue safety implications. 

1.2.2. Close valves V1, V3, and V4. 

1.2.3. Open Rotameter slightly. 

1.2.4. Close fume cupboard. 

1.2.5. Ensure regulator and in-line gas valves are closed. 

1.2.6. Open Nitrogen gas cylinder valve slowly. 

1.2.7. Set Nitrogen regulator to 0.5 bar. 

1.2.8. Open Nitrogen gas in-line valve. Nitrogen should enter the system and not 

exceed 0.5 bar pressure. 

1.2.9. Close Nitrogen gas cylinder valve. 

1.2.10. Slightly increase the Nitrogen pressure by slowly opening the Nitrogen 

regulator towards but not exceeding 0.75 bar. Valve V2 should open to 

relieve any excess system pressure over 0.5 bar. The system should then 

stabilise at approximately 0.5 bar with no leakage. (If this is not the case, 

Valve V2 must be checked and set for correct operation). 

1.2.11. Open valve V3 to vent system pressure. 

1.2.12. Wait for Nitrogen gas regulator outlet pressure gauge to reach 0. 

1.2.13. Close Nitrogen gas in-line valve. 

1.2.14. Close valve V3. 

1.1. Ensure vacuum pump oil is clear. (If oil is cloudy, it is most likely contaminated or 

has water in it, run pump with system isolated and pump gas ballast valve open until 

oil is clear, once satisfied oil is clear shut gas ballast valve and stop pump). 

1.2. Ensure chemical inlet trap is not over contaminated. (See manufacturer’s 

documentation). 

1.3. Ensure level of silicon oil in the heated oil bath is at the correct level. 

1.4. Ensure the dreschel bottle is correctly located, centrally into the silicon oil ensuring a 

gap of approximately 10mm from the bottom of the bottle to the floor of the oil bath 

and that side opening is pointing away from the normal operator position and 

securely plugged using stopper clamp. 

1.5. Ensure there is sufficient compressed gas supply for the experiment. 

1.6. Ensure Experiment in Progress document is correctly completed and displayed in a 

prominent position near the experiment. 

 

2. Experimental procedure: (Reference Fig.1) 

 

2.1. Load substrate into glass furnace tube ensuring the substrate is horizontally level and 

located in the centre of the furnace hot zone. 

2.2. Connect glassware ensuring correct connection. 

2.3. Turn on mains cold water supply to the condenser and run water at suitable rate. 

2.4. Pack the flask around the cold trap with ice. 

2.5. Check system for vacuum: 

2.5.1. Switch on pirani gauge (ensure atmospheric pressure is displayed). 

2.5.2. Close Rotameter, valves V1, V3. 

2.5.3. Open valve V4. 

2.5.4. Close fume cupboard. 
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2.5.5. Switch on vacuum pump. 

2.5.6. Open valve V5 slowly whilst observing pirani and capsule gauges. 

2.5.7. Ensure the system can sustain vacuum at <= 50 mbar. 

2.5.8. Close valve V5. 

2.5.9. Release vacuum from system by opening valves V1 and V3. 

2.5.10. Close valve V4. 

2.5.11. Leave vacuum pump running. 

2.6. Switch on Hot plate and set to approximately 80°C.(adjust to suit) Insert 

thermometer into silicon oil if needed. 

2.7. Pre-set gas flow: 

2.7.1. Close valve V1 (leave V3 open). 

2.7.2. Ensure regulator and in-line gas valves are closed. 

2.7.3. Open Nitrogen gas cylinder valve slowly. 

2.7.4. Set Nitrogen regulator to 0.5 bar. 

2.7.5. Open Nitrogen gas in-line valve. 

2.7.6. Open rotameter and set nitrogen flow to 1L/min. (or adjust to suit). 

2.7.7. Close Nitrogen gas cylinder valve. 

2.7.8. Wait for Nitrogen gas regulator outlet pressure gauge to reach 0. 

2.7.9. Close Nitrogen gas in-line valve. 

2.7.10. Close valve V3. 

2.8. Open valve V5. 

2.9. Switch on tube furnace and set to desired temperature. 

2.10. Ensure correct vacuum pressure, furnace temperature and oil bath temperature have 

been attained. 

2.11. Remove clamped plug from side opening of dreschel bottle. 

2.12. Carefully load premeasured amount of precursor into dreschel bottle through the 

newly opened opening using a suitable pipette. Be sure not to expose ground glass 

sealing area to precursor. 

2.13. Re-plug dreschel bottle opening with plug and ensure it is securely plugged using 

stopper clamp. 

2.14. Slowly open valve V4. 

2.15. Close fume cupboard. 

2.16. Open Nitrogen gas bottle valve and set the regulator to 0.5 bar. 

2.17. Slowly open Nitrogen gas in-line valve. 

2.18. Precursor should start to boil inside dreschel bottle and vapours should be seen 

entering to glass furnace tube.(the deposition inside the tube furnace should now be 

starting). 

2.19. Monitor whole system until all precursor is used. Any un-deposited precursor should 

be trapped in the condenser and the cold trap and should not enter the downstream 

pipe-work. 

2.20. When satisfied that all the precursor has been used, shut down the system. 

 

3. System shut down (normal): (Reference Fig.1) 

 

3.1. Close Nitrogen gas cylinder valve. 

3.2. Open the fume cupboard. 

3.3. Close valve V4 and immediately open valves V1 and V3. 

3.4. Set furnace to 0°C. (do not switch off furnace as temperature indication is required to 

enable safe removal of sample). 

3.5. Switch off hot plate. 

3.6. Wait for inert gas regulator outlet pressure gauge to reach 0. 

3.7. Close inert gas regulator. 

3.8. Close inert gas in-line valve. 

3.9. Close rotameter. 

3.10. Close valve V5. 

3.11. Switch off vacuum pump. 

3.12. Switch off pirani gauge. 

3.13. Wait until furnace has reached safe temperature (<50°C). This may take several 

hours. 

3.14. Turn off mains cold water supply. 
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3.15. Switch off furnace. 

3.16. Disconnect furnace tube and remove sample. 

 

4. System shutdown (emergency): (Reference Fig.1) 

 

4.1. Do not open fume cupboard. 

4.2. Close inert gas cylinder valve. 

4.3. Switch off furnace. 

4.4. Switch off hot plate. 

4.5. Do not leave system if not in safe condition. 

4.6. Wait for system to cool to a safe temperature. 

4.7. If internal system pressure exceeds 0.5 bar, valve V2 will open to relieve excess 

pressure to protect rest of system. 

5. System cleaning: 

 

5.1. Obtain receptacles for waste collection. 

5.2. Disassemble all contaminated glassware. 

5.3. Clean contaminated glassware using either mechanical or chemical methods. 

5.4. If chemical methods are used, separate risk and COSHH assessments will need to be 

completed and signed in RIVO Safeguard. 

5.5. Inspect all pipe work and mechanically clean if necessary. 

5.6. Inspect Inlet chemical trap sorbent for contamination levels. If necessary clean trap 

and replace sorbent charge following chemical inlet trap manufacturer’s 

documentation. 

5.7. Ensuring all components are fully dry, re-assemble the system. 

5.8. Dispose of any waste according to the faculty’s chemical waste disposal procedures. 
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Appendix  

SUPPORTING IMFORMATION 

 

Figure  Out of plane XRD patterns of TiO2 Thin film deposited onto soda-line glass 

substrates prepared by LPCVD at 400C, 500C, 550C, 600C and 700C: A and 

B refer to the assignment of the anatase TiO2 and TiO2(B) respectively.  

 


