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Abstract 

 

Carbohydrates are one of the most abundant biomolecules and are fundamental to 

the correct function of many biological processes. The monosaccharide ʟ-fucose is 

incorporated into biological polymers including oligo and polysaccharides, and 

glycoproteins. ʟ-fucose is often appended to the end of a glycan chain, and as such 

is recognised by lectins in a number of molecular recognition events. Due to this, 

the monosaccharide plays a critical role in the immune response, the colonisation of 

bacteria in mammals, and cancer. Two enzymes regulate homeostasis  of ʟ-

fucosylated biomolecules, GDP-ʟ-fucosyltransferases append the sugar to nascent 

biomolecules while α-ʟ-fucosidases catalyse its cleavage. Two α-ʟ-fucosidases exist 

in the human genome. Deficiency of one of these enzymes causes the lysosomal 

storage disorder fucosidosis, and the enzyme is upregulated in a number of cancers. 

Meanwhile, the other enzyme has been shown to play a critical role in enabling the 

adhesion of the pathogen Helicobacter pylori  to mammals. Thus, inhibition of α-ʟ-

fucosidase activity is clinically relevant. In this work, the 1.6 - 2.1 Å X-ray crystal 

structures of α-ʟ-fucosidase inhibitors complexed with a bacterial α -ʟ-fucosidase 

are presented and discussed. Of the inhibitors discussed, the majority comprise 5 -

membered iminocyclitols, a potent yet infrequently used framework for inhibition 

of glycoside hydrolases, and their mode of binding to the enzyme in an E3  

conformation is elaborated from crystal structures. Further, the crystallographic 

observation of the interaction between a 6-membered ring inhibitor comprising an 

aziridine moiety as an electrophilic trap and a glycoside hydrolase is reported for 

the first time. Finally, efforts towards the purification and crystallisation of α -ʟ-

fucosidases from Homo sapiens  are documented. The results reported herein may 

aid in the rational design of more potent inhibitors of α -ʟ-fucosidase in the future 

and may help direct future efforts towards the crystallisation and structure solution 

of the clinically important human enzymes.  
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Chapter 1: Introduction 

 

Abstract  

Carbohydrates are one of the most abundant biological polymers and are critical to 

many biological processes. Monosaccharides are catabolised as an energy source 

while polysaccharides have numerous important biological roles, both structural 

such as in the plant cell wall and functional e.g. in cell-cell interactions, signal 

transduction and protein folding and function. ʟ-fucose is one of the series of ʟ-

configured monosaccharides and is unusual in its lack of a hydroxyl group at the C6 

carbon; the sugar is incorporated into a number of biologically important polymers 

including those from plant and animal extracellular matrices, and many 

immunogens such as blood group ABO and Lewis antigens. GDP-ʟ-

fucosyltransferases and α-ʟ-fucosidases catalyse the transfer of ʟ-fucosyl moieties 

to nascent polysaccharides, and the cleavage in an exo-fashion of an α-ʟ-fucoside 

from such a polymer, respectively. Deficiency in either of these enzymes causes 

disease phenotypes in mammals, reflecting the importance of ʟ-fucosylated 

carbohydrates in nature. While deficiency in various GDP-ʟ-fucosyltransferase 

activities leads to a range of outcomes due to the diverse roles of ʟ-fucosyl moieties 

in biology, deficiency in α-ʟ-fucosidase activity causes the lysosomal storage 

disorder fucosidosis, which causes severe neuronal and psychomotor defects  and 

early death. Herein, the role of carbohydrates in nature, and particularly the role of 

the monosaccharide ʟ-fucose, will be discussed.  
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1.1 The role of carbohydrates in nature 

In the post-genomic revolution era, i t is perhaps often overlooked how important 

carbohydrates are in the biochemical context.  Carbohydrates are one of the most 

abundant species in nature, are found in every kingdom of life and are pivotal in 

many biological processes such as energy storage, the formation of durable 

biological structures such as the plant cell wall, and the immune response. It is been 

estimated that more than half of all mammalian proteins are glycoproteins
1
 and it is 

thus no surprise that the attachment of carbohydrates to these proteins often serves 

a critical role in affecting the way they perform their functions
2
.  A great number of 

disease states are also related to carbohydrate metabolism
2,3

, and many pathogens 

effect their adhesion by exploitation of carbohydrate-mediated interactions
4-6

.  

Historically, the etymology of the term carbohydrate (also sugars, saccharides) was 

a literal chemical definition, ‘hydrates of carbon’ i.e. describing compounds that 

have the general chemical structure  Cx(H2O)y. Many carbohydrates e.g. sialic acids, 

N-acetylhexosamines and deoxyribose, however, deviate from this general formula, 

and a more correct definition for a carbohydrate is a polyhydroxy aldehyde (aldose 

sugar) or ketone (ketose sugar). The simplest form of a carbohydrate is a 

monosaccharide, while polymerisation of monosaccharides with other carbohydrates 

leads to the formation of  di, tri, oligo and polysaccharides (also glycans) .  

Carbohydrates are typified by their large number of chiral centres, and many 

biological systems have evolved to specifically recognise and interact with a single 

stereoisomer from the large number present in nature. The large number of chiral 

centres in these compounds poses a significant challenge for their chemical 

syntheses, or synthesis of related compounds in vitro. Thus, chemical syntheses of 

carbohydrate-related compounds typically involve the use of carbohydrates already 

containing the complex chirality required as a feedstock .  

Carbohydrate monomers (monosaccharides) are named to represent their open-chain 

length, aldose or ketose nature, and stereochemistry. ʟ- and ᴅ- nomenclature for all 

other than the shortest carbohydrate, glyceraldehyde, is not, as one would expect, 

based on the direction in which a carbohydrate epimer rotates the orientation of 

plane-polarised light, but is based on the chirality of the highest -order chiral centre 

in the open-chain form of the carbohydrate, and whether it is on the same side of 

the Fischer projection (Figure 1.1) as that of ʟ- or ᴅ-glyceraldehyde.  
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Figure 1.1. Carbohydrate nomenclature and ring-closing reactivity. Panel A: Both 

isomers of glyceraldehyde, the shortest chain carbohydrate, shown in Fischer 

projection. Panel B: Mutarotation of ᴅ-glucose. ʟ- and ᴅ- nomenclature of 

carbohydrates other than glyceraldehyde is based on the highest number chiral 

centre (shown in red), and whether this is on the same side of the Fischer projection 

of ʟ- or ᴅ- glyceraldehyde. α and β nomenclature is dictated by whether the 

endocyclic bond formed is on the same (α) or opposite (β) side of the Fischer 

projection as the newly formed, anomeric hydroxyl.  

 

The carbonyl groups in carbohydrates are labile to nucleophilic attack from the ir 

internal hydroxyls and these compounds exist in equilibrium of their open-chain 

form with multiple closed ring forms (Figure 1.1 shows this for glucose).  The ring 

strain of smaller heterocycles typically favours the formation of larger ring 

structures, up to the most favourable 6-cycles, which have the lowest strain energy. 

Thus, the most prevalent ring structures of carbohydrates are furanose and pyranose  

rings (5- or 6- membered ring structures, respectively, comprising a single O atom).  

Ring-closing reactivity can occur towards either the Re- or Si- face of the 

electrophilic carbonyl group leading to α - or β-products, with nomenclature being 

based on the chirality of the newly-formed (anomeric) chiral centre (Figure 1.1). 

Reaction is typically favoured from the face of the carbonyl which places hydroxyls 

in an equatorial conformation, in order to minimise trans -diaxial steric clashing. 
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Nomenclature dictates that the β-anomer of a carbohydrate is that where the 

anomeric hydroxyl has the same absolute stereochemistry as  that of the highest-

order chiral centre of the carbohydrate, whilst the α-anomer has different absolute 

stereochemistry between these two chiral centres .  

 

1.1.1 Enzymes that act on carbohydrates  

Further reactivity of carbohydrates occurs in nature through enzymatic catalysis . 

Glycosyltransferase enzymes catalyse the formation of glycosidic bonds between 

activated donor sugars and nucleophilic acceptor moieties to form polysaccharides, 

glycolipids or glycoproteins (Figure 1.2, A).
7
 An important point of nomenclature is 

that of the reducing vs. the non-reducing end of a polysaccharide; reducing sugars 

contain free aldehyde groups or are able to form these moieties through 

mutarotation. While no free aldehyde group typically exists in biomolecules, the 

distinction of the reducing vs. non-reducing end of the polysaccharide chain is often 

made. Glycosyltransferases catalyse the appendage of saccharides to the non-

reducing end of a nascent polysaccharide.  

Hydroxyls of carbohydrates may further be sulfated or phosph orylated (Figure 1.2, 

B-C). The sulfation of oligosaccharides occurs by the action of sulfotransferases in 

the golgi compartment and drastically alters the physical and biological properties 

of the oligosaccharide.
8
 In sulfated glycosaminoglycans such as heparin, sulfation 

is critical to biological function in mediating molecular interactions through 

electrostatics; sulfation patterns of this biomolecule have been shown to be 

important e.g. for its sequestration of growth factors
9
, interaction with chemokines 

during leukocyte migration
10

 and uptake by various cell types
11

. Oligosaccharide 

phosphorylation on the other  hand is involved in enzyme trafficking. The 

incorporation of mannose-6-phosphate into N-glycans acts as a signalling sequence 

for transport of the nascent glycoprotein to the lysosome by its recognition with 

mannose-6-phosphate receptors and subsequent vesicular transport; whilst other 

mechanisms exist, this is the predominant means for lysosomal targetting
12

.  
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Figure 1.2. Schematic of some of the reactions catalysed by carbohydrate -

processing enzymes. Glucose is used as a representative monosaccharide.  Substrate 

specificities for these reactions may be slightly altered i.e. C2-C6 OH groups may 

already be modified. A: Glycosyltransferases catalyse the transfer of glycosyl 

moieties to acceptor moieties through activated donor sugars. B: Sulfotransferases 

(B) and kinases (C) may append sulfate or phosphate moieties to the free hydroxyls 

on glycosides. D: glycoside hydrolases catalyse the cleavage of the energetically 

stable glycoside bond.  

 

Glycosidic bonds are incredibly stable, indeed even more so than other biological 

polymers such as DNA and proteins
13-15

; cleavage of the glycosidic bond is thus 

catalysed by glycoside hydrolase enzymes which enhance the rate of hydrolys is by 

as much as a factor of 10
17 13

. Glycoside hydrolases catalyse the hydrolysis of 

glycosylated structures such as polysaccharides, glycoproteins and glycolipids, to 

yield mono-, di- or oligosaccharides, and may act in either an exo- or endo- manner 

i.e. hydrolyse a terminal or non-terminal glycosidic bond respectively (Figure 1.2 

D). 

Carbohydrates have many biological roles, inter alia, in energy transfer
16

, their 

incorporation in extracellular matrices such as the plant cell wall  and animal mucin 

proteins
17

, protein folding
18

, their mediation of cell-cell interaction events and 

signal transduction
19

.   
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1.2 Fucose 

Fucose (6-deoxy-ʟ-galactose, below) is a deoxyhexose sugar that is present in all 

domains of life, and belongs to the rare series of ʟ-sugars. The α-anomer of fucose 

is the most thermodynamically favourable due to the anomeric effect; the C1 

hydroxyl preferentially lies in an axial position (α-fucose) rather than an equatorial 

position (β-fucose).  

 

Fucose is incorporated into a number of polysaccharide structures throughout 

nature; often, the sugar is appended to the non-reducing end of glycans and forms 

part of a molecular recognition and signalling moiety, however a number of fucose-

rich structural polysaccharide structures also exist.
20

 As a structural polysaccharide, 

ʟ-fucose is a component of the extracellular matrices of brown seaweed and some 

marine invertebrates
21,22

, and is also incorporated as a side-chain component in the 

hemicellulosic portion of xyloglucan of some plants
23

. Fucose is also a component 

of both N-linked and O-linked glycans, and as such a number of fucosyltransferase 

enzymes are involved in appending ʟ-fucosyl moieties to nascent oligosaccharides 

during the biosynthesis of these structures.
20

 The homeostasis of fucosylated 

structures also requires the action of exo-acting α-ʟ-fucosidases which cleave ʟ-

fucose residues from the non-reducing end of a polysaccharide chain.  What follows 

is a description of some of the many places throughout nature that this 

monosaccharide may be found.  A number of the more esoteric biological structures 

containing ʟ-fucose will be discussed first, followed by a more in-depth discussion 

of the sugar’s incorporation in carbohydrate structures important  to human health. 

 

1.2.1 ʟ-Fucose as a component of plant and animal extracellular matrices 

Holothurians, or sea cucumbers,  incorporate fucosylated chondroitin sulfate 

(FucCS) into their body walls. These carbohydrates are glycosaminoglycans 

comprising branched ʟ-fucose moieties that were first described in 1988, when 

extracted from the holothurian Ludwigothurea grisea .
24

 The molecular architecture 

of FucCS has since been elucidated; the polysaccharide has a repeating main chain 

of β(1,4)-linked glucuronic acid and β(1,3)-linked N-acetyl galactosamine, with a 

large number of sulfated Fucα(1,3) branches appended to the main chain glucuronic 
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acid (Figure 1.3).
22,25

 The analysis of FucCS extracts after chondroitinase treatment 

by Vieira et al . showed that the polysaccharide is incorporated into proteoglycans 

with a wide molecular weight range, however all products reported displayed a 

similar protein to carbohydrate ratio.
26

 FucCS has been shown to have a number of 

beneficial effects to human physiology, including its activity as an anticoagulant 

and anti-thrombotic. The anticoagulant activity of FucCS is attributed to the 

sulfated fucose present in its structure, as de-sulfation or de-fucosylation of the 

carbohydrate abolishes its anticoagulant activity.
27

 Likewise, the anti-thrombotic 

effectiveness of the polysaccharide is dependent on its branched fucosyl moieties.
28

 

Other described therapeutic effects of FucCS include, inter alia , its attenuation of 

tumour metastasis and inflammation through blocking the binding between selectins 

and sialyl-Le
x
, vide infra

29
, and its ability to ameliorate hyperglycemia in skeletal 

muscle through effects likely arising from activation of gen es in the PKB/GLUT4 

signalling pathway
30

.  

Brown seaweed, and a number of marine invertebrates, produce polysaccharides 

comprising mostly highly sulfated branched chains of ʟ-fucose, termed 

fucoidans.
21,31

 Following the trend of sulfated fucose-containing polysaccharides, 

these compounds have also been shown to have a number of beneficial effects to 

human physiology. As with FucCS, this includes their activity as anti -inflammatory 

agents
32

, anti-coagulants
32,33

, and anti-proliferatives against cancer cells
32,34

, and 

due to this, the polysaccharide is marketed as a dietary supplement. Fucoidan has 

also been shown to have a marked inhibitory effect on human, hamster and guinea 

pig sperm binding to oocyte zona pellucida reflecting the roles of ʟ-fucose in 

fertility, vide infra .
35

 

Fucoidans from different organisms have diverse structures; linear ʟ-fucose chains 

may be α(1,3) linked or built from repeating α(1,3) and α(1,4) linkages, different 

sulfation patterns exist between different organisms , acetylation may be present at 

positions 2, 3 or 4 of fucose residues, and some fucoidans also incorpora te xylose, 

mannose, galactose, glucose, glucuronic acid and α(1,2)-linked fucose branches in 

their structures (Figure 1.3).
21,31

  

ʟ-Fucose is incorporated as a side-chain component in the pectic and hemicellulosic 

material of plant cell walls.  In pectins, fucose is incorporated in the side -chains of 

rhamnogalactouronans I and II, though the sugar makes up a very small proportion 

of the overall carbohydrate content of these polysaccharides.
36

 Xyloglucan 

comprises a large portion of the hemi-cellulosic biomass present in plant cell walls, 

and ʟ-fucose is incorporated into xyloglucan side -chains in a genetically diverse 

subset of plants, inter alia, pines, legumes and onions, in XXFG and XLFG 
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subunits (Figure 1.4, for nomenclature see Fry et al . 1993
37

).
23

 As the sugar is 

incorporated into xyloglucan in species which are evolutionarily unrelated, there 

was speculation about the importance of the sugar in plant development, leading to 

a number of studies to address  this question. 

 

Figure 1.3. Strucures of fucose-rich carbohydrates from seaweed and sea 

cucumbers. Panel A: Structure of fucosylated chondroitin sulfate from the body 

wall of sea cucumbers, adapted from Pomin et al . 2014
22

. Panel B: Molecular 

architectures of selected fucoidans from brown seaweed and marine invertebrates  to 

represent their marked structural heterogeneity , adapted from Ale et al . 2013
31

.  

 

Molecular dynamics simulations, supported by in vitro assays, of pea and 

nasturtium xyloglucans, differing in nasturtium xyloglucan’s lac k of α(1,2)-linked 

fucose residues, revealed that fucosylation of xyloglucan markedly increased its 

affinity for cellulose
38

; as the binding of xyloglucan to cellulose is thought to 

modulate cell growth, this result would seem to indicate a role of fucose in 

modulating plant growth.  
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Figure 1.4. Fucose as a side-chain component of hemicellulose in the plant cell 

wall.  

 

The characterisation of mur1, an Arabidopsis thaliana mutant strain completely 

deficient in ʟ-fucose, revealed that the lack of ʟ-fucose causes dwarfism and low 

cell wall strength in planta.
39

 Later, an A. thaliana mur2  mutant, lacking the α(1,2)-

fucosyltransferase that appends fucose to the Galβ(1,2)-Xylα(1,6)-Glc sidechain of 

xyloglucan (Figure 1.4) was characterised; this mutant strain has a 50 % reduction 

in fucose content of the plant’s cell wall, indicating that half of the extracellular 

matrix fucose content in A. thaliana  is from xyloglucan.
40

 Whilst mur1 mutant 

plants display low cell wall strength, mur2  mutants were shown to have similar 

growth and cell wall strength to wild type plants under a variety of growth 

conditions, leading to speculation that the loss of fucose from fucosylated pectin is 

to be attributed for the lower growth and cell wall strength of the mur1 mutant.
40

 

This may be explained by the fact that mur2 mutant plants incorporate galactose 

where fucose would be appended in about one half of their xylogluc an side-

chains
41

; the results of Levy and co-workers indicated that it is the presence of 

trisaccharide side-chains that influence the binding of xyloglucan to ce llulose
38

.  

In 2003, a third A. thaliana  mutant with influence on carbohydrate composition in 

the cell wall, mur3, was identified; this mutant is deficient in β(1,2)-galactosyl 

transferase activity, therefore the normally fucosylated side -chains of xyloglucan 

are lacking in both Fuc and Gal, and comprise only a single Xyl residue.
42

 Tensile 

strength measurements taken on wild-type, mur2, and mur3 mutants revealed that 

the galactosylation, rather than fucosylation, of xyloglucan is critical to cell wall 

strength.
43

 It is thus uncertain what the role of α(1,2)-fucosyl moieties in 

xyloglucan are.  
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In addition to its incorporation into structural components of the eukaryotic 

extracellular matrix, fucose is incorporated into both N-linked and O-linked glycan 

structures in animals, and N-linked glycans in plants. 

 

1.2.2 Fucose in N-linked and O-linked glycans  

In N-linked glycans and O-linked glycans, ʟ-fucose is incorporated via Fucα(1,2)-

Gal, Fucα(1,3)-GlcNAc, Fucα(1,4)-GlcNAc or Fucα(1,6)-GlcNAc linkages, or 

directly appended to protein serine or threonine r esidues.
20

 For N-linked glycans, 

the monosaccharide represents a non-reducing end of the final oligosaccharide 

product. Thus, fucose is exposed to the biological microenvironment, and many 

cellular signalling processes involve the recognition of fucosylated glycans such as 

the ABO and Lewis antigens (Figure 1.5).  

Lewis antigens are synthesised in various cell types by the action of numerous 

fucosyltransferase enzymes present in the human genome. These antigens have  

important roles in the immune response during leukocyte rolling and 

extravasation
44,45

, and in the colonisation of xenobiotics spanning a spectrum of 

interactions with the host from symbiogenesis to pathogenicity
46

. The blood group 

antigens Le
x
, H and Le

y
 are thought to be involved in carbohydrate -mediated 

cellular adhesion processes during signal transduction by type 1 g lycosynapses.
47-49

 

O-linked glycosylation involves the attachment of a  sugar moiety or oligosaccharide 

to a protein serine or threonine residue. O-linked fucosylation occurs solely in 

eukaryotes, in the endoplasmic reticulum, and involves the addition of ʟ-fucose or a 

fucosylated oligosaccharide to proteins containing a cysteine -rich motif.
50

 Two 

fucosyltransferases are known to be involved in O -fucosylation, POFUT1 and 

POFUT2.  
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Figure 1.5. Examples of ABO and Lewis oligosaccharide structures containing ʟ-

fucose. Monosaccharides are displayed by the standard proposed by Varki et al. in 

2009 (Yellow circle = galactose, yellow square = GalNAc, blue square = GlcNAc, 

purple diamond = sialic acid, red triangle = fucose).
51

  

 

Human POFUT1 was first isolated and its biological function characterised in 

2001.
52

 The enzyme catalyses the addition of fucose to EGF repeats of, inter alia, 

Notch receptors. These receptors are large type I transmembrane proteins that are 

involved in intercellular signalling in a variety of cellular contexts  during 

development and are conserved between metazoan species.
53

 Genetic abnormalities 

leading to deficiency in the Notch pathway are linked to a number of developmental  

diseases such as Alagille syndrome, which is caused by deficiency in either the 

Notch ligand Jagged1
54

 or the Notch2 receptor 
55

. The Notch signalling mechanism 

is an elegant example of the use of regulated proteolysis by nature and was recently 

reviewed by Kopan and Ilagan
53

. Signal transduction by the mature Notch receptor 

is initiated by its binding to Notch ligands, which are often other transmembrane 

proteins, expressed on the surface of the signal-sending cell
56

. This binding event 

induces a conformational change in Notch, opening it to sequential proteolytic 

attack by ADAM metalloproteases and γ-secretase yielding the Notch intracellular 
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domain fragment.
57

 This fragment is subsequently trafficked to the nucleus where it 

complexes with the DNA-binding protein CSL;  in the absence of Notch this protein 

is involved in the formation of a co-repressor complex blocking gene 

transcription.
58

 Finally, the CSL-Notch intracellular domain complex is recognised 

by Mastermind and the ternary complex formed causes transcriptional activation of 

target genes (Figure 1.6).
58

 

Notch is O-fucosylated by POFUT1 between the second and third cysteines of its 

epidermal growth factor repeats in the consensus sequence Cys
2
-X-X-X-X-

(Ser/Thr)-Cys
3
.

59,60
 Further glycosylation of this core fucose occurs in mammalian 

Notch; extension of Notch core fucose occurs through the addition of GlcNAc by 

Fringe, and subsequent addition of galactose and sialic acid leading to the mature 

mammalian tetrasaccharide Siaα(2,3)-Galβ(1-4)-GlcNAcβ(1-3)-Fuc.
59,61,62

 Studies 

have shown that Pofut1
- / -

 mice display embryonic lethality
63

, and that RNA 

interference of Ofut1 in Drosophila melanogaster  leads to loss of Notch function 

and drastic phenotypic defects
64

, thus these fucosyltransferases are critical in Notch 

function and organism viability.  
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Figure 1.6. Mechanism of the Notch signalling pathway. Adapted from Kopan et al. 

2009
53

.   

 

1.2.2.1  Fucose in the immune response 

Lewis antigens (Figure 1.5) act as ligands for selectins and are involved in a 

number of molecular recognition events throughout the body, such as those 

occurring during leukocyte rolling, a critical part of the leukocyte adhesion cascade 

and the innate immune system.
44, 45

 For the correct localisation of leukocytes at a 

site of injury of infection, the immune cells must first escape the high shear forces 

exerted in the intravascular compartment before their extravasation across the 

endothelial cell membrane. During this first, ‘slow rolling’ stage of the leukocyte 

adhesion cascade, leukocytes tether with low affinity to the endothelial cell surface 
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by the interaction between C-type lectins called selectins and a number of selectin 

ligands, both of which are expressed on leukocytes, platelets, and the endotheli al 

cell surface. A plethora of research undertaken in the early 1990s identified selectin 

ligands as glycoproteins that express the fucosylated sialyl -Le
x
 tetrasaccharide.

65
 

Fucosylation is indeed critical to leukocyte function; genetic disruption of the 

α(1,3)-fucosyltransferase FUTVII has been shown to markedly impair leukocyte 

function in vivo in mice
66

, and treatment of a chemokine-activated Monocytic cell 

line with α-ʟ-fucosidase was shown to reduce leukcoyte migration to a background 

level
67

.  

In 1992, a novel disease related to deficiency in leukocyte adhesion was 

characterised; tests run on samples from two unrelated boys displaying mental 

retardation, short stature, and recurrent contraction of bacterial infections showed 

that the patients did not correctly express Lewis antigens, along with having the 

non-Secretor and Bombay phenotypes.
68

 As all of these characteristics represent a 

lack of fucosylated glycan production  by distinct fucosyltransferase enzymes, the 

authors hypothesised deficiency in fucose metabolism is responsible for the disease, 

which is termed either leukocyte adhesion deficiency type II (LADII), or congenita l 

disorder of glycosylation-IIc.
68

  

More recently, genetic evidence has shown that LADII results from deficiency in 

the activity of a GDP-fucose specific transporter, which transports GDP -fucose 

across the cytosol and into the golgi compartment prior to glycosyltransferases 

incorporating the activated sugar into glycans.
69,70

 The genetic abnormalities 

causing LADII can be due to either deficiency in activity of a properly lo calised 

GDP-fucose transporter, or its improper localisation in the endoplasmic reticulum.
71

 

In either case, this results in deficiency of sialyl -Le
x
 and other antigens required for 

leukocyte rolling, disrupting the leukocyte adhesion cascade at an early stage.  

 

1.2.2.2  Fucose in cancer 

As it is approximated that more than half of all mammalian proteins are post-

translationally glycosylated
1
, it is perhaps not surprising that aberrant glycosylation 

is associated with cancer adhesion and metastasis.  Of course, as the disease remains 

one of the leading causes of death in both developing and developed countries
72

, a 

great deal of research has been aimed at the study of protein glycosylation in 

cancer. Changes in protein glycosylation, and in particular fucosylation, have been 

reported in various cancer types, predominantly with upregulation of cell surface 

glycan expression in neoplastic cell lines, however downregulation of some of these 
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species has also been reported in some cases , excellently reviewed by Christiansen 

et al.
73

.  

As many experiments studying the aberrant glycosylation of cancer cells utilise 

neoplastic cell lines in in vitro culture conditions, it is important to note that the 

glycosylation patterns displayed by cells may be influenced by the cell culture 

environment
74

 and changes in glycosylation patterns may therefore not necessarily 

represent changes of neoplastic cells over healthy ones. Thus, it is important to 

support data gained from culture -based experiments with that from clinical cancer 

tissue samples. While significant correlations exist between the differences 

observed in both cell lines and tissues in lung cancer
75

, this is not the case for all 

tumour types. For example,  significant differences have been reported  in the DNA 

methylation profile of ovarian cancer cell lines and tissues
76

,  and observations have 

shown that a panel of ovarian cancer cell lines from various origins more closely 

resemble themselves than the tissues they are supposed to model
77

.  

Nevertheless, upregulated core fucosylation i.e. α(1,6)-fucosylation of interior  

GlcNAc residues on N-glycans appears to be a common feature of cancers 

excluding melanoma.
73

 This is supported by the increased expression of the α(1,6) -

fucosyltransferase FUT8 in tissues from liver and breast cancers
78,79

 and the 

increased intracellular GDP-fucose levels observed in hepatocellular carcinoma
80

.  

The core fucosylation of serum alpha-fetoprotein proves a potent biomarker for 

early diagnosis of hepatocellular carcinoma.
81

 α-ʟ-fucosidase also has potential as a 

biomarker for this cancer, both in diagnosis and prognosis,  and when used in 

combination with alpha-fetoprotein the two biomarkers provide greater specificity 

for tracking the disease
82,83

. Serum α-ʟ-fucosidase activity has also been shown to 

correlate with progression-free survival for breast cancer patients treated with 

trastuzumab, with a greater FUCA2 activity correlating with higher sensitivity to 

trastuzumab treatment.
84

 

Fucosylation in ABO and Lewis type linkages may also be either up or 

downregulated in neoplastic cells.
73

 Le
x
 and sialyl-Le

x
 expression has been 

observed to correlate with poor survival  in patients with colon
85

 and breast 

cancers
86

. Evidence suggests that FUT6 expression correlates with sialyl-Le
x
 

expression and adhesion potential of neoplastic cells in a number of breast cancers
87

 

while a similar correlation has been shown on overexpression of FUT7 in colon 

cancer cell line HT-29
88

. The metastatic potential of human pancreatic tumour cell 

line BxPC-3 was inhibited after expression of FUT3 antisense mRNA
89

, indicating 

that this α(1,3/4)-fucosyltransferase may be important in pancreatic cancer 

viability.  
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The Le
y
 antigen appears to be upregulated in serous forms of ovarian cancer.

90
 

Transfection of the FUT1 α(1,2)-fucosytransferase gene into ovarian cancers was 

further observed to lead to increased Le
y
 expression and to promote neoplastic cell 

proliferation.
91,92

 It has been postulated that the increased biosynthesis of selectin -

associated Lewis antigens such as sialyl-Le
x
 is important for cancer metastasis as 

the metastatic cascade may mirror the leukocyte adhesion cascade, requiring 

binding of cell -surface associated selectin ligands with selectins on a target cell 

surface for cancer metastasis .
93

 Aberrant regulation of fucosyltransferases does not 

appear to be limited to their overexpression; extracts from hepatocellular carcinoma 

tissues have been observed to have downregulated α(1,2) and α(1,3)-fucosylation
94

 

and FUT1 and FUT4 mRNA were observed to be absent in almost 25% of over 100 

tested melanoma cell lines
95

.  

As neoplastic cells typically require more ʟ-fucose for proliferation than healthy 

cells, they uptake the monosaccharide with a greater efficiency. This may be 

exploited for the selective uptake of drugs to the site of neoplasia. For example , 

Yoshida et al. have reported the success of ʟ-fucose bound liposomes containing the 

anti-cancer drug Cisplatin in inhibiting proliferation of pancreatic cancer in vivo in 

mice.
96

 More recently, Babiuch and co-workers designed glycopolymers capable of 

self-assembling into nanoscale micelles.
97

 These micelles were decorated with β-ʟ-

fucose and/or β-ᴅ-glucose moieties in varying ratios from 100% β-ʟ-fucose to 100% 

β-ᴅ-glucose. The micelles richer in β-ʟ-fucose were shown to have a greater uptake 

into pancreatic, lung and ovarian carcinoma cell lines , hence ʟ-fucose may provide 

a valuable means for active targeting of these drug carriers.  Although these 

compounds were not tested for drug transport into neoplastic cells , if this is 

possible they should provide a delivery mechanism with tuneable pharmacokinetic 

and pharmacodynamic properties along with low toxicity
98

.  

Interestingly, in 2001 a fucose-binding lectin was isolated from serum of the sea 

bass Dicentrarchus labrax
99

; this lectin was subsequently transfected into a variety 

of cancer cells through an adenovirus vector, and shown to have an anti-

proliferative effect  due to suppression of anti-apoptotic factors in the neoplastic 

cells
100

. This lectin may prove a novel means for cancer therapy.   
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1.2.2.3  Fucose in fertility 

ʟ-fucose and α-ʟ-fucosidase have been shown to play critical roles in fertility across 

diverse species. The importance of ʟ-fucose in this event was first described in 

1982, when Huang et al. observed potent inhibition of human, hamster and guinea 

pig sperm-oocyte binding by the ʟ-fucose rich polysaccharide fucoidan.
35

 Human 

semen contains two α-ʟ-fucosidase isoforms.
101

 The majority of seminal α-ʟ-

fucosidase activity is found in the seminal fluid, less than ca. 3% of total activity is 

associated to the membranes of spermatozoa.  Both seminal fluid and sperma tozoa 

α-ʟ-fucosidases from different donors have been observed to have a number of 

further isoforms (3-6 and 2, respectively) and these enzymes have different activity 

profiles; whilst seminal plasma samples have a broad activity profile with a number 

of maxima between pH 4.8 and 7.0, the spermatozoan isoform has a more acidic pH 

optimum between pH 3.4 and 4.0
101

.  

Seminal α-ʟ-fucosidases have also been discovered in many mammals such as 

mice
102

, hamsters
103

 and also in diverse species such as Unio elongatulus
104

,  

Ascidiacea
105

and Drosophilidae
106

, suggesting a key role for the enzyme during 

fertilisation.  

Analysis of the effects of α-ʟ-fucosidase activity on spermatozoa fertility has been 

reported for hamsters
103

 and mice
102

. In hamsters, pre-incubation of spermatozoa 

with the competitive α-ʟ-fucosidase inhibitor deoxyfuconojirimycin  (DFJ
107

) was 

observed not to inhibit sperm binding to oocyte zona p ellucida, the glycoprotein 

layer surrounding the egg cell.
103

 Pretreatment of spermatozoa with DFJ was, 

however, shown to reduce fertilisation success, preventing development of the 

embryo past the 2-cell stage. In mice, treatment of sperm with DFJ was shown not 

to inhibit binding to the zona pellucida or the oocyte membrane, and had no effect 

on fusion or binding. Pre-incubation of sperm with anti -fucosidase antibody, or pre-

treatment of oocytes with purified human liver α -ʟ-fucosidase, however, 

significantly impaired these events.  

Thus, in mice, sperm α-ʟ-fucosidase activity has little or no effect on fertility, 

however its glycan structures are critical. This is supported by the observation of 

Oh et al. that introduction of the neoglycoprotein BSA-fucose to mouse oocytes 

inhibits the interaction between their zona pellucida and sperm
108

, thus it is likely 

that this binding event requires the interaction between fucosylated glycans present 

on mouse sperm α-ʟ-fucosidase and zona pellucida lectins. The fucosylated 

immunodeterminant sialyl-Le
x
 has been shown to be the highest abundance glycan  

expressed on human oocyte zona pellucida; present in both N-linked and O-linked 
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glycans, the epitope appears to be critical for spermatozoa-oocyte binding, as 

glycoconjugates bearing this motif or antibodies raised against it inhibit 

spermatozoa-oocyte binding.
109

  

 

1.2.2.4  Fucose in bacterial colonisation 

Many bacteria mediate their colonisation by decoration of their cell surfaces with 

lectins, allowing binding to glycan epitopes such as the fucosylated A, B, H, Le
a
, 

Le
b
, sialyl-Le

a
, Le

x
, Le

y
 and sialyl-Le

x 
antigens (Figure 1.5) expressed on cell 

surfaces in the gastrointestinal tract.
110

  

Mucin proteins are thought to have a role in forming a protective barrier to 

invading bacteria; these proteins are the main macromolecular component of the 

mucus that creates a barrier between the eye, trachea, stomach and intestines and 

pathogens.
17

 Mucins are repeat proteins comprising a large number of serine and 

threonine residues for O-glycan attachment, and are heavily glycosylated, typically 

comprising more than 70% O-glycans by mass. The O-glycans in mucins include 

fucosylated structures such as the ABO and Lewis
 
antigens.

17
 The role of mucins in 

defence against pathogens is supported by studies of Mucin knockout in mice, 

Muc1
- / -

 and Muc2
- / -

 have been shown to have susceptibility to infection by 

pathogens.
111, 112

 

An example of fucosylated antigens playing a role in bacterial adhesion is in the 

colonisation of the pathogen Campylobacter jejuni into the gastrointestinal tract. C. 

jejuni  is a commensal in poultry, but  is also the most common cause of 

gastroenteritis in the developed world,  causing mild to severe diarrhea which may 

be concomitant with a fever
113

. The pathogen effects its colonisation with the host 

by interacting with cell surface glycans, including fucosylated Le
a
 and Le

x
 epitopes, 

and when grown under mammalian-like growth conditions, is a poor binder of non -

fucosylated glycans
5
.  Further evidence corroborates the importance of ʟ-fucose to 

the viability of C. jejuni  as a pathogen; ʟ-fucose acts as a chemoattractant towards 

the organism
114

, and the presence of ʟ-fucose in its environment confers it a 

competitive advantage 
115

.  A gene encoding a fucose permease has been identified 

in C. jejuni
115

, making it likely that the organism is able to ut ilise ʟ-fucose as an 

energy source. The introduction of human milk oligosaccharides comprising 

fucosylated O-glycans abolishes C. jejuni  adhesion to the mucosa, presumably 

through competitive inhibition of C. jejuni lectins, allowing clearance of the 

bacterium through the gastrointestinal tract .
116

 Finally, mice deficient in Muc1 

show susceptibility to Campylobacter jejuni infection.
112
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Fucosylated glycans also play an important role in the pathogenicity of 

Pseudomonas aeruginosa . This bacterium is an opportunistic pathogen that 

typically infects immunocompromised patients  with chronic lung diseases, such as 

sufferers of cystic fibrosis , for whom infection with P. aeruginosa  may be fatal. P. 

aeruginosa colonisation of the airway is partially dependent on its interaction with 

mucin glycans, particularly the sialyl -Lewis
x
 antigen.

6
 This interaction is effected 

by the P. aeruginosa fucose-binding lectin PAII-L, which has a micromolar affinity 

for free ʟ-fucose.
117

 The X-ray crystal structure of PAII-L complexed with ʟ-

fucose
118

 explains the basis for this unusually high affinity of a lectin for its ligand; 

a pair of calcium ions in the fucose binding site aid in complexation of ʟ-fucose 

through electrostatic interaction.  

Some pathogens have adapted systems in order to take advantage of the host 

immune defence; an example of this is Helicobacter pylori , a stomach pathogen 

infecting approximately one half of the global human population . Colonisation 

density of this pathogen in chronic gastritis patients is related to  the expression of 

Le
x/y

 antigens on its cell surface, with strains expressing more Le
x/y

 antigens having 

higher colonisation density.
119

 An insightful study by Liu et al. found that H. pylori 

infection stimulates the host immune response, causing production of secreted 

human α-ʟ-fucosidase (FUCA2).
4
 The response of H. pylori is to utilise the ʟ-fucose 

moieties thus released from gastric epithelial cells , both as an energy source and in 

order to further decorate their cell surface with Le
x/y

 antigens for continued 

adhesion to epithelial cells;  FUCA2 appears to be essential for H. pylori  adhesion 

to human gastric cancer cells.
4
  

Due to the importance of fucosylated glycan -mediated interactions to successful 

adhesion and colonisation of a number of pathogenic bacteria  alluded to above, the 

use of fucosylated carbohydrates has been suggested as a n alternative treatment for 

bacterial infection.
120

 In this approach, fucosylated glycans would compete for host 

lectins, weakening the adhesion between pathogens and the host  and allowing 

clearance of the pathogens through the gastrointestinal tract . This approach is 

already used by nature; human breast milk contains free ʟ-fucose as well as a large 

number of fucosylated oligosaccharides which appear to supplement the nursing 

infant’s resistance to pathogens.
121-123

 For example, human milk oligosaccharides 

have been shown to provide resistance to the diarrheagenic symptoms after 

Escherichia coli  heat-stable enterotoxin infection in suckling mice
124

, and 

resistance to Campylobacter jejuni as discussed above
116

. The oligosaccharide 

profile of bovine milk is different to that of human milk, having higher levels of 

sialylation but lower levels of fucosylation.
121

 Due to the lack of ʟ-fucose, bovine 
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milk formulae may be less beneficial to the development of neonatal infants than 

human milk, and ʟ-fucose has been proposed as a supplement to infant formulae.  

The mucin MUC1 is expressed on normal and malignant T -cells, and has a 

modulatory role in function of these immune cells
125

, further, high levels of serum 

MUC1 suppress the T cell response
126

. MUC1 co-localises with other mucin-type 

glycoproteins and signal transducer molecules on the cell surface of T-cell 

lymphomas
127

;  these mucin-rich microdomains form type 2 glycosynapses where 

signal transduction by e.g. Src family kinases is effected after carbohydrate-protein 

mediated interaction likely between O-glycan linked structures such as sialyl -Le
x
 

and sialyl-Le
a
, and selectins

49
. 

It would be unfair to paint such a one-sided picture of host-microbe interactions; 

microbe interactions with their host in fact span a spectrum between pathogenicity 

and symbiosis, and while it is estimated that 90% of the cells in the human body are 

microbial in nature, the vast majority of these  organisms have a commensal or 

symbiotic relationship with their host
46,128

.  Of all of the mammalian organs, the gut 

has by far the highest microbial density
128

, and many microbes that reside in the gut 

act as symbiotes, serving an important role in supplementing the host’s enzymatic 

machinery for degradation of dietary plant polysaccharides
129

.  Our own enzymatic 

machinery is indeed limited to utilisation of monosaccharides, s ome disaccharides, 

and starch. Residents of the gut microbiota thus allow us to digest plant 

polysaccharides such as xylan, pectin and alginate
130

, with bacterial metabolism of 

otherwise indigestible dietary biomass generating short chain fatty -acids that 

account for 5-10% of the human daily caloric intake 
131

.  

One of the most widely studied gut symbiotes is Bacteroides thetaiotaomicron , an 

obligate anaerobe and one of the most abundant microbial members of the healthy 

human intestinal tract .
132

 Bacteroides thetaiotaomicron  has numerous documented 

beneficial effects on its host. Angiogenesis of the intestinal tract is stimulated by 

the organism; germ-free adult mice, which display arrested capillary formation, 

were shown to have their capillary network restored within 10 days of colonisation 

with Bacteroides thetaiotaomicron .
133

 Bacteroides thetaiotaomicron  also promotes 

the development of a strong mucosal barrier , as colonisation of the organism in 

mice induces upregulation of ang4,  which produces a ribonuclease that is 

bactericidal to some Gram-positive enteropathogens.
134

  

In return for providing beneficial effects to its host, Bacteroides thetaiotaomicron  

ensures its own fitness by helping to shape the glycan profile of mucins in the gut  

to provide nutrition for its growth. Bacteroides thetaiotaomicron  is able to digest a 
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number of glycans for growth
130

, including fucosylated glycans , which are 

particularly important to the organism; of the 24 oligosaccharide transporters 

present in its genome, eight are fucose permeases
135

. Germ-free mice actually lack 

α1,2 and α1,6-fucosyltransferase activity, which can be reintroduced by the ir 

inoculation with Bacteroides thetaiotaomicron  or extracts from conventionally 

grown mouse gut microflora.
136

 The fucosyltransferase activity thus restored is due 

to microbiota affecting expression of host enzymes which are downregulated as a 

function of mammalian development after the weaning stage .
136

 Hence, gut 

microbiota such as Bacteroides thetaiotaomicron  alter expression levels of their 

host’s enzymatic machinery in order to survive in the competitive environment of 

the gastrointestinal tract , both by stimulating the host to produce more nutrients 

required for their growth and by reducing the viability of pathogens that may 

compete for these nutrients.  

Bacterial utilisation of glycans is effected by their expression of genes encoding 

glycoside hydrolases and glycan processing enzymes, in some bacteria, such as 

Bacteroides thetaiotaomicron , these are organised into polysaccharide utilisation 

loci (PULs). These PULs allow bacteria to efficiently forage for available nutrients 

and eliminate the need for constitutive expression of many of their enzymes. The 

archetypal PUL of Bacteroides thetaiotaomicron  is the starch utilisation system 

(sus, reviewed by Martens et al. (Figure 1.7).
137

 The sus gene locus contains eight 

genes, five of which transcribe outer membrane-associated proteins. SusDEF are 

carbohydrate binding proteins that interact with starch while SusG is an endo-acting 

α-amylase that breaks the polysaccharide down into smaller carbohydrates. These 

smaller glycans are transported across the outer membrane by the TonB-dependent 

receptor SusC and further degraded by glycoside hydrolases SusA and SusB, which 

have neopullulanase and α-glucosidase activities, respectively.
138

 Finally, SusR is a 

hybrid two-component sensor/regulator that, in the presence of starch degradation 

products in the periplasm, transduces a signal for up-regulation of expression of 

susABCDEFG.
138

 The presence of consecutive susC and susD-like genes are the 

minimum features needed to identify a sus -like PUL, and using these features, 88 

sus-like PULs have been identified in Bacteroides thetaiotaomicron
139

. PULs likely 

provide an evolutionary advantage to Bacteroides thetaiotaomicron  by allowing its 

adaptation to the rapidly changing environment of the distal intestine by 

coordination of the energy-intensive process of protein production with the 

available nutrient pool.  

A sus-like system of Bacteroides thetaiotaomicron  that is induced in response to 

free fucose was identified by Hooper et al.
140

 This operon comprises 5 genes, 
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fucRPIAK. The fucPIAK genes encode, respectively, an ʟ-fucose permease, ʟ-fucose 

isomerase, ʟ-fuculose-1-phosphate aldolase and ʟ-fuculose kinase. In parallel to 

susR, fucR acts as a repressor of the fucRIAK  genes until displaced by the presence 

of ʟ-fucose, but does not regulate its own expression. Evidence also suggested that 

fucR acts as an ʟ-fucose inducible co-repressor at another gene locus, which 

stimulates α(1,2)-fucosyltransferase activity by the host, corroborating the findings 

of Bry et al. discussed above
136

. Reflecting the evolution of Bacteroides 

thetaiotaomicron  as a symbiote, the bacterium appears to ensure that there remains 

a source of dietary fucose in its environment, while also limiting the pressure it 

exerts on its host. 

 

 

Figure 1.7. Schematic of the Bacteroides thetaiotaomicron  starch utilisation system.   

 

Interestingly, stress induced in mice through application of lipopolysaccharides  has 

been correlated with a rapid increase in α(1,2)-fucosylaton of intestine epithelial 

cells by Fut2
141

; Fut2
- / -

 mice were shown to require significantly more time for 

recovery of body weight after induced stress.  Gnotobiotic mice under induced 

stress, or antibiotic-treated normal mice also showed slow recovery, indicating the 

importance of the microbiota in supplementing the host’s immune system during 

systemic stress. This is supported by the observation that Fut2
- / -

 mice subjected to a 
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non-lethal pathogenic bacterium before induction of stress showed significantly 

slower weight recovery than Fut2-sufficient mice. Taken together , these results 

would seem to indicate that up-regulation of α(1,2)-fucosylation is a measure taken 

by the host to maintain the viability of its gut commensals  as a response to systemic 

stress.
141

 

Due to the myriad roles of carbohydrates in nature, vide supra , it is clear that 

carbohydrate metabolism and homeostasis are critical biological processes. Correct 

homeostasis of glycan structures requires the concerted action of two key classes of 

enzymes; glycosyltransferases, which form glycosidic bonds, and glycoside 

hydrolases, which cleave those bonds.  Both fucosyltransferases and fucosidases are 

of clinical importance due to various disease phenotypes which occur due to their 

malfunctioning or absence.  
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1.3  Glycosyltransferases 

Glycosyltransferases catalyse the transfer of sugar donors, activated in a nucleoside 

phosphate, lipid phosphate, or un-substituted phosphate form, to acceptor moieties. 

Saccharides may in this way be appended to , inter alia , other sugars, proteins, and 

lipids.
7
 The glycosyltransferase genes expressed by an organism, and their 

expression levels, are subject to change as a result of transition through 

developmental stages and environmental effects such as the onset of disease , and 

changes in the expression levels of glycosyltransferases contribute to the 

diversification of glycans.
142

 Owing to their biologically critical nature , 1 % to 2 % 

of the genomes of an organism, regard less of domain, encode glycosyl transferase 

enzymes.
7
  

Catalysis by glycosyltransferases leads to either inversion or retention of the 

chirality at the anomeric carbon of the donor sugar. While the mechanism of 

inverting glycosyltransferases is well understood and proceeds via an SN2-like 

mechanism, that of retaining glycosyltransferases is less clear, but may proceed 

through an oxocarbenium ion-like intermediate with basic assistance of the donor 

phosphate group.
7
  

 

1.3.1 Fucosyltransferases 

Fucosyltransferases (EC numbers 2.4.1.65, 2.4.1.68, 2.4.1.69, 2.4.1.152, 2.4.1.214) 

catalyse the transfer of an activated GDP-fucose donor to an acceptor moiety, which 

can be a protein Ser or Thr residue through an α1-(S/T)-linkage, Galactose through 

an α(1,2)-linkage or N-Acetylglucosamine through an α(1,3), α(1,4) or α(1,6)-

linkage.
143

 A large repertoire of fucosyltransferases exists in the human genome due 

to the requirement to produce a diverse array of fucose -containing glycans. Each 

enzyme is thus adapted for the synthesis of a specific glycosidic bond from GDP -

fucose to a specific or small subset of  potential acceptor moieties, and expression in 

different cell types.
144

  

Activation of fucose to a GDP-fucose form, which is required for fucosyltransferase 

reactivity, takes place through two pathways in mammals.
20,145

 The major, de novo  

pathway accounts for more than 90 % of GDP-fucose biosynthesis; this pathway 

involves conversion of GDP-mannose to GDP-fucose through the action of two key 

enzymes and a GDP-4-keto-6-deoxymannose intermediate.  The alternative pathway 

for GDP-fucose biosynthesis is termed the Salvage pathway and involves 
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phosphorylation of free fucose and subsequent condensation with GTP  to yield 

GDP-fucose.  

Currently, thirteen ORFs from the human genome have been annotated as coding for 

translation of proteins with fucosyltransferase activity. Th e majority of these 

proteins are grouped into glycosyltransferase family 10  according to the 

Carbohydrate Active Enzymes database, CAZy, available at http://www.cazy.org 

(GT10, FUT3-7, FUT9-11).
146, 147

  

FUT1 and 2 are α(1,2)-fucosyltransferases involved in biosynthesis of the blood 

group H antigen as described above.
148,149

 The α(1,3)-fucosyltransferases FUT3-7 

and FUT9 are differentially expressed in various cell types, leading  to different 

patterns of fucosylated ligand biosynthesis in these cells; three distinct fucosylation 

patterns exist, myeloid-type patterns in leukocytes and brain, plasma -type patterns 

in plasma and liver, and Lewis-type patterns in bladder, kidney and milk.
144

    

Fucosyltransferases 3, 5 and 6 only exist in higher-order mammals and evolved 

relatively recently; these proteins have a high sequence similarity with each  other 

and are clustered together on chromosome 19 in humans.
150

 These enzymes, along 

with fucosyltransferases 4, 7 and 9 all transfer ʟ-fucose to GlcNAc in α(1,3) or 

α(1,4) linkages in various cell types.
151

 FUT3 is also called the Lewis gene and has 

both α(1,3) and α(1,4)-fucosyltransferase activity; this enzyme is involved in the 

biosynthesis of Lewis antigens in epithelial cells.
152

 FUT5 is also expressed in 

epithelial cells, but only has α(1,4)-fucosyltransferase activity. In gastric cancer 

cells, FUT3 has been shown to be involved in the synthesis of the Le wis b, a and y 

antigens, while FUT5 synthesises the Lewis x antigen; the combined action of these 

two enzymes appears to be necessary for biosynthesis of the sialylated antigens 

sialyl-Le
x
 and sialyl-Le

a  153
.  

FUT4 and FUT7 are α(1,3)-fucosyltransferases involved in the biosynthesis of 

selectin ligands in leukocytes and endothelial cells
154,155

; FUT7 deficiency has been 

shown to cause leukocytosis in mouse
66

, and the enzyme only appears to catalyse 

the transfer of ʟ-fucose to oligosaccharide acceptors already containing sialic 

acid
156

. FUT6 is a plasma-type α(1,3)-fucosyltransferase.
157

  

FUT8 is unique in that it catalyses the transfer of ʟ-fucose in an α(1,6)-linkage to 

the internal GlcNAc in biantennary glycans terminating with  the same 

monosaccharide.
158,159

 This fucosylation is also known as core fucosylation, and t he 

expression of FUT8 appears to have an effect on tumour viability in liver
160

 and 

prostate cancer
161

 and indeed is upregulated in most cancers
73

. The substrate 
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specificity of FUT9 is different from the α(1,3)-fucosyltransferases FUT3-7, as the 

enzyme preferentially fucosylates the distal GlcNAc moiety of a polylactosamine 

acceptor, while FUT3-7 preferentially glycosylate an internal GlcNAc.
156

 FUT10 

may have a role in maintaining stem cell populations; overexpression of the α(1,3)-

fucosyltransferase was shown to enhance the self -renewal of neural stem cells, 

whilst knockdown of the enzyme induced their differentiation.
162

 To the author’s 

knowledge, nothing is known about the substrate specificity or tissue distribution of 

FUT11.  

Finally, POFUT1 and POFUT2 catalyse the transfer of ʟ-fucosyl moieties to serine 

or threonine residues on the polypeptide repeat of proteins. POFUT1 is involved in 

the addition of fucose to epidermal growth factor type repeats of proteins such as 

Notch, vide supra, while POFUT2 transfers the unit to thrombospondin 1 type 

repeats.
163
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1.4  Glycoside hydrolases 

Glycoside hydrolases effect the enzymatic cleavage of glycosidic bonds. The 

glycosidic bond is incredibly stable without catalytic aid, and is indeed more stable 

to degradation than the bonds present in such biological polymers such as DNA and 

proteins.
13-15

 The rate enhancement provided by glycoside hydrolase involvement in 

cleavage of the glycosidic bond is huge , e.g. comparison of the rate of catalysis of 

starch by sweet potato β-amylase and the un-catalysed rate yields a rate 

enhancement of 10
17

.
13

 

Glycoside hydrolases, as with glycosyltransferases, may proceed with either 

inversion or retention of chirality at the sugar substrate’s anomeric centre. Whilst 

other mechanisms exist , the majority of glycoside hydrolases utilise two catalytic 

carboxylates and proceed through either a single SN2-like displacement (inverting) 

or two consecutive SN2-like displacements (retaining) as originally proposed by 

Koshland.
164

 In the canonical inverting mechanism,  a basic carboxylate 

deprotonates water on the bottom of the glycoside ring (Figure 1.8 A). The 

activated hydroxyl then performs in -line nucleophilic attack on the anomeric 

carbon, whilst the leaving group is stabilised by protonation by the catalytic acid 

(Figure 1.8 A). The protonation states of the catalytic base and acid may then be 

regenerated through solvent.  The product released thus has inverted stereochemistry 

compared to that of the substrate glycoside. A distance of ca. 10 Å typically exists 

between the catalytic base and acid residues , reflecting the steric requirements of 

allowing enough space to accommodate a water molecule on the bottom face of the 

glycoside ring.
165

 

The canonical retaining glycoside hydrolase mechanism involves two SN2-like 

displacements, and formation of a covalent enzyme intermediate. Here, the catalytic 

nucleophile itself performs in-line nucleophilic attack to a bound glycoside , with 

leaving group departure aided by the catalytic acid/base, leading to the formation of 

a covalent glycosyl-enzyme intermediate (Figure 1.8 B). Subsequently, the catalytic 

acid/base acts as a base, activating a water molecule as a hydroxyl nucleophile to 

act on the trapped glycoside and release the catalytic nucleophile (Figure 1.8 B). In 

retaining glycoside hydrolases with this mechanism, a distance of ca. 5.5 Å is 

observed between the catalytic residues, and the reaction product has the same 

stereochemistry as the substrate glycoside.  
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Figure 1.8. Canonical inverting (A) and retaining (B) mechanisms of glycoside 

hydrolases. Figures are drawn with the configuration of and conformatio n adopted 

by ʟ-fucose. 

 

Carbohydrates adopt a variety of conformations in vitro. For pyranose ring 

structures, a single chair form of the pyranose is  typically the most energetically 

favourable and represents the conformational majority of the sugar in solution. The 

enzymatic transition states in glycoside hydrolases (there are two in retaining 

enzymes and one in inverting enzymes)  contain susbstantial oxocarbenium ion-like 

character, with a degree of positive charge at the anomeric carbon due to cleavage 

of the glycosidic bond. The glycosyl carbocation is incredibly unstable  in solution, 

it is believed that this species only exists through stabilisation of the oxocarbenium 

ion intermediate through electron donation by the endocyclic oxygen.
166

 For this to 

occur, the glycosidic bond must be situated anti-periplanar to an sp
3
 lone pair on 
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the endocyclic oxygen; this geometry requires co -planarity of the endocyclic 

oxygen, the anomeric carbon, and the atoms adjacent to these i.e. the C2 and C5 

atoms. Thus, only four possible conformations whereby nucleophilic substitution 

may occur exist for pyranose sugars, namely the two boat and four half -chair 

conformations 
3
H4,  

4
H3,  

2,5
B and B2,5  (Figure 1.9).

166
  

 

Figure 1.9. The transition state in glycoside hydrolases. The glycoside hydrolase 

transition state contains substantial oxocarbenium ion -like character and is 

stabilised by electron donation from the endocyclic oxygen sp
3
 lone pair to the 

anomeric carbon. While only the glycosylation step of retaining glycoside 

hydrolysis is displayed, the electronic character of the deglycosylation step of this 

reaction and that of the inverting reaction are identical.  

 

Glycoside hydrolases have evolved the capacity to stabilise conformations close to 

the enzymatic transition state  by electronic and steric means, and the evolution of 

each glycoside hydrolase family appears to be directed towards the stabilisation of 

a particular reaction pathway involving a discrete 
3
H4, 

4
H3, 

2,5
B or B2,5 transition 

state.
167

 As early as the 1940’s, it was postulated by Pauling that the most potent 

inhibitors of an enzyme would be those that mimicked the ‘strained activated 

complex’ formed during catalysis.
168

 Indeed, the distortion of the glycoside to be 

cleaved in glycoside hydrolase catalysis has been exploited both by nature and man 

through the generation of enzyme inhibitors that are able to mimic the geometrical 

and electronic properties of the enzymatic transition state .
169

  

 

1.4.1 α-ʟ-fucosidases 

α-ʟ-fucosidases (EC numbers 3.2.1.51, 3.2.1.63 and 3.2.1.111) catalyse the 

hydrolysis of the glycosidic bond of an α -ʟ-fucoside from the non-reducing end of a 

glycoconjugate. These enzymes primarily exist in the GH29 and GH95 families of 

the CAZy system for classification of carbohydrate active enzymes , which groups 
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carbohydrate-active enzymes into families based on their primary sequence .
170

 

Some α-ʟ-fucosidases have been reported which do not belong to GH29 or GH95 

families, in 2002 an α-ʟ-fucosidase was identified from A. thaliana with activity 

against 2’-fucosyl-lactitol and xyloglucan XXFG polysaccharide but no homology 

to GH29 or GH95 enzymes, this enzyme is indeed currently ‘non-classified’ 

according to CAZy
171

.  More recently a novel α-ʟ-fucosidase from Paenibacillus 

thiaminolyticus  was characterised and reported to have no homology with GH29 or 

GH95, this enzyme does not currently have an entry in the CAZy database .
172

  

Two α-ʟ-fucosidases exist in the human genome, FUCA1 and FUCA2. While 

FUCA1 is localised in the lysosome, FUCA2 is a secreted protein localised in 

plasma; both enzymes are classified in the GH29 family. Lack of α-ʟ-fucosidase 

(FUCA1) activity in the human lysosome can lead to the rare (ca.  100 cases known 

worldwide) storage disorder fucosidosis  in man.
173

 This disorder leads to 

accumulation of fucosylated N-glycan structures which cannot be broken down by 

the host’s impaired catabolic pathway, the disease causes severe neurodegenerative 

symptoms, cachexia and low life expectancy
174

. Fucosidosis has also been reported 

in canines
175

 and felines
176

, and a wide spectrum of genetic FUCA1 mutations 

leading to fucosidosis in humans has been reported
177

. Gene therapy by retroviral 

insertion of FUCA1 into both canine and human fucosidotic fibroblasts was able to 

not only restore normal levels of α-ʟ-fucosidase function, but indeed such 

fibroblasts were able to hydrolyse radionuclide -labelled ʟ-[5,6-
3
H]-fucosylated 

glycans with greater efficiency than non-fucosidotic fibroblasts.
178

  

 

1.4.1.1  GH95 α-ʟ-fucosidases 

The catalytic mechanism for GH95 enzymes is thought to be less canonical than 

that typical of inverting glycoside hydrolases. During the study of Bifidobacterium 

bifidum 1,2-α-ʟ-fucosidase, Nagae et al. found that while residue Glu
566

 was 

identified by X-ray crystal structure to lie in an appropriate position to act as the 

catalytic acid, and further confirmed by mutagenesis experiments, no carboxylate 

was observed in an appropriate position in X-ray crystal structure to act as the 

enzymatic base.
179

 Rather, the authors concluded that a conserved structural motif 

creates an electrostatic relay in the enzyme to modulate the p Ka  of Asn
423

 for its 

deprotonation of water (Figure 1.10). Further, this water molecule was shown to be 

held in the correct position and orientation for in -line attack on the anomeric 

carbon by hydrogen bonding interactions by the catalytic base Asn
423

 and another 

asparagine residue Asn
421

.
179
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Figure 1.10. Schematic of the proposed electrostatic relay and catalytic mechanism 

postulated for GH95 enzymatic catalysis.
179

 ʟ-fucose ring substituents other than 

that at the anomeric carbon are omitted for clarity.  

 

1.4.1.2  GH29 α-ʟ-fucosidases 

GH29 α-ʟ-fucosidases act with net retention of the anomeric configuration  after 

hydrolysis of a fucosylated substrate . In 2003, two research groups 

contemporaneously identified the catalytic nucleophile of α-ʟ-fucosidases from 

Thermotoga maritima  and the archaea Sulfolobus solfataricus .
180,181

 This was 

achieved for the archaeal enzyme by chemical rescue of α-ʟ-fucosidase activity of 

an inactive Asp
242

 mutant using sodium azide
181

. For the bacterial enzyme, 

identification of the catalytic nucleophile was achieved through covalent 

inactivation of the enzyme using an irreversible α-ʟ-fucosidase inhibitor 2-deoxy-2-

fluoro-α-ʟ-fucosyl fluoride, enabling identification of the catalytic nucleophile 

Asp
224

 by peptic digest and mass spectrometry.
180

 The fact that a covalent  enzyme 

intermediate could be trapped is evidence that GH29 enzymes act through a 

classical Koshland double-displacement mechanism
164

 involving, first, the attack of 

a nucleophilic carboxylate residue to form a covalent enzyme-substrate intermediate 

in the ‘fucosylation’ step (Figure 1.8 B). Aglycon departure is aided by a catalytic 

acid/base Glu residue. The catalytic acid/base Glu then activates water to 

regenerate fucose and the catalytic nucleophile  in the ‘defucosylation’ step. 

Notably, the first X-ray crystal structure of an α-ʟ-fucosidase was determined using 

the Thermotoga maritima  enzyme (TmGH29) in 2004; the catalytic, N-terminal 

domain of TmGH29 adopts a (βα)8 TIM barrel fold and forms a hexamer in both 

crystal structure and solution (as determined by size exclusion chromatography , 

Figure 1.11).
182
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Figure 1.11. 3 dimensional fold of the GH29 α-ʟ-fucosidase from Thermotoga 

maritima as solved by X-ray crystal structure (PDB code 1HL8). The figure was 

drawn in wall-eye stereo with model colour blended through the protomer chain, 

from the blue N-terminus to the red C-terminus. The figure was drawn using 

CCP4MG
183

.  

 

Subsequently, a number of crystal structures from other members of the GH29 

family have been reported, i.e. those from Bacteroides thetaiotaomicron  (two have 

been reported, gene products from genes 2970
184

 and 2192
185

), Bifidobacterium 

longum subsp. infantis
186,187

,  and the eukaryotic plant pathogen Fusarium 

graminearum
188

. Further, two GH29 crystal structures have been deposited  in the 

protein databank but have not been supported by literature as of yet, i.e. those with 

PDB codes 4ZRX and 3GZA.  

From the availability of GH29 crystal structures and related kinetic data, a number 

of observations can be made. First, the enzymes typically form dimers or higher 

order oligomers both in solution and in crystal structure (however the eukaryotic 

enzyme was observed not to form oligomers
188

). Second, while the catalytic 

nucleophile in GH29 enzymes is an Asp residue that is conserved by sequence, the 

catalytic acid/base Glu residue is not.
189

 Third, the conserved catalytic (βα)8 α-ʟ-

fucosidase domain appears at the N-terminus of the gene transcript, while other 

domains may or may not be present; e.g. TmGH29 has a C-terminal β-sandwich 

domain
182

 whilst FgGH29 has a C-terminal βγ-crystallin domain
188

 and BiGH29 

contains a number of C-terminal domains including a carbohydrate binding domain . 

Finally, the substrate specificity of this class of enzymes varies across its members, 
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while some enzymes are able to hydrolyse fucose in linkages to  the 2,3,4 and 6-

hydroxyls of reducing end sugars and work efficiently on the synthetic substrate p-

nitrophenyl-α-ʟ-fucopyranoside, others seem to act specifically on α(1,3/4) -linkages 

and have poor to no activity on p-nitrophenyl-α-ʟ-fucopyranoside. This led to the 

designation of two subfamilies of GH29 α-ʟ-fucosidases by Yamamoto and co-

workers, where GH29-A enzymes have relaxed substrate specificity those from the 

GH29-B sub-family are α(1,3/4)-linkage specific.
190,191

 The existence of two sub-

families of GH29 is further evidenced by phylogenetic analysis , with two clades 

being comprised GH29 enzymes from animals, archaea and bacteria (GH29-A) and 

those from plants and bacteria (GH29-B).
190

  

The structural basis for the different substrate specificity between the two GH29 

sub-families has been probed by analysis of the crystal structures of two 

representative enzymes from Bacteroides thetaiotaomicron
191

. Sakurama et al. 

noted the absence of two residues involved in hydrogen bonding with the fucoside 

substrate in BtFuc2192 from GH29-B, while BtFuc2970 had a (conserved among the 

GH29-A subfamily) Arg residue that may provide favourable  leaving group 

stabilisation for p-nitrophenyl-α-ʟ-fucopyranoside hydrolysis. BtFuc2192 was 

observed to contain a carbohydrate binding pocket comprised five residues, four of 

which appear conserved in the GH29-B sub-family. The substrate specificity of 

BtFuc2192 further appeared to be limited to saccharides of length greater than 2, 

indicating a requirement for branched Gal moieties in the substrate  for hydrolysis. 

Overall, the results would seem to indicate that GH29-A enzymes tightly bind a 

docking fucose moiety in their -1 sub-site, while enzymes from the GH29-B 

subfamily form weaker interactions with the -1 fucose residue but have enough 

space to accommodate a branched Gal residue
191

. The importance of the branched 

Gal residue in GH29-B enzymes is further evidenced by observation of clear 

electron density for the Fuc and Gal monosaccharides in a complex of  a 

catalytically inactive mutant of BiGH29 with lacto-N-fucopentaose II; electron 

density was poor for the GlcNAc moiety and absent for the redu cing-end lactose 

disaccharide
187

.  

The BiGH29 enzyme was observed crystallographically to undergo a large induced-

fit conformational change of two loop regions on substrate binding.
187

 The catalytic 

acid/base residue Glu
217

, which is separated from the catalytic nucleophile by 

almost 21 Å in the substrate-free complex, displaces during a loop rearrangement 

on substrate binding to an active conformation, closing the active sit e pocket. The 

flexibility of loops around the enzymatic active site, including that containing the 

catalytic acid/base residue may be a conserved feature in GH29 fucosidases; in the 
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crystal structure of TmGH29, no electron density is observed for a loop re gion 

which starts only 3 residues downstream of the catalytic acid/base
182

.  Also, in the 

X-ray crystal structure of BtFuc2970 D229N mutant complexed with synthetic 

substrate p-nitrophenyl-α-ʟ-fucopyranoside (PDB code 2WVU) a conformational 

displacement of the catalytic acid/base E288 is observed compared to the apo 

structure.
184

 It should be noted, however, that this residue lies in an inactive 

conformation as there is a ca. 6.5 Å distance between the glycosidic bond and the 

oxygen atoms of this carboxylate, and the rearrangement may be fortuitous and due 

to the hydrogen bonding interactions formed by the nitro -group of the substrate and 

Arg
262

. Finally, two discrete conformational states have been observed 

crystallographically for the GH29 enzyme from Fusarium graminearum .
188

 The 

conformational dynamics in loop regions may be important for GH29 catalysis, and 

may further provide a structural basis for the difficulty in predicting the catalytic 

acid/base residues of this enzyme class a priori .
189

 

The inhibition of human GH29 enzymes may have clinical potential . H. pylori 

adhesion has been shown to be correlated with expression of FUCA2 in the gut, and 

inhibition of this enzyme has been shown to abolish H. pylori  virulence
4
, thus 

inhibitors of this enzyme class may be useful in clearance of the pathogen . 

Compounds that inhibit α-ʟ-fucosidase may also have utility for chaperone therapy 

of fucosidosis, which, as discussed above,  occurs due to deficiency in α-ʟ-

fucosidase activity. In this approach, compounds that inhibit an enzyme are 

introduced into the cell and at low concentrations seem to activa te these enzymes, 

presumably by promoting their correct folding.  After transport of the chaperoned 

enzyme to their target compartment,  the inhibitor is outcompeted by the enzymatic 

substrate and function is thus restored  (Figure 1.12). This approach has been used 

for a number of different enzymes including both α- and β-galactosidases.
192,193

 The 

approach has had some success in the treatment of Fabry disease
194

 and is currently 

in phase 3 clinical trials
195

. A multitude of GH29 α-ʟ-fucosidase inhibitors have 

been described in the literature , which will be discussed later in this work .  
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Figure 1.12. The mechanism postulated whereby chemical chaperone therapy may 

restore the function of misfolded lysosomal enzymes.  

 

Unfortunately, despite the wealth of structural information that has been reported 

for α-ʟ-fucosidases from various sources, vide supra, no such information is 

available for the enzymes from man, FUCA1 and FUCA2.   
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1.5 Summary and thesis aims 

Carbohydrates serve myriad critical roles in nature, encompassing  e.g. fertility, 

development, diet, and the immune response. As such, genetic defect in 

carbohydrate processing leads to many diseases, and non -hereditary diseases often 

display altered profiles in constitutively expressed carbohydrate-containing 

structures.  

Fucose, from the rare series of ʟ-sugars, is incorporated into structural extracellular 

matrix carbohydrates, has roles in development due to its involvement in the Notch 

signalling pathway, and is an important monosaccharide in formation of the blood 

group antigens. As the sugar is incorporated into the branch termini  of N- and O-

linked glycans, it is a critical immuno-determinant. Regulation of the critical 

enzymes involved in formation and cleavage of ʟ-fucosylated glycans (GDP ʟ-

fucosyltransferases and α-ʟ-fucosidases) is differentiated as a result of a number of 

disease phenotypes notably including cancer .  

The subject of the following work is the GH29 (CAZy) family α-ʟ-fucosidases, with 

particular aim to characterise the structural  and mechanistic features necessary for 

potent inhibition of the enzyme and, ultimately, gain insight which may helpful for 

treatment of disease phenotypes associated with aberrant regulation of the enzyme  

e.g. H. pylori infection, fucosidosis and cancer. Whilst a number of bacteria have 

many homologous copies of this enzyme class , only two enzymes exist in humans, 

the lysosomal FUCA1 and plasma FUCA2; unfortunately no crystallographic 

structural information is available for these critical enzymes . Due to this lack of 

structural information on human α-ʟ-fucosidases, the GH29 enzyme from 

Bacteroides thetaiotaomicron  (BtFuc2970) will feature heavily in this work as a 

surrogate for the human enzyme. 

In the next chapter, the mechanism whereby five-membered iminocyclitols may 

inhibit GH29 enzymes will be studied by a combination of X -ray crystallography 

and kinetic studies. Subsequently, ferrocene-containing α-ʟ-fucosidase inhibitors 

will be studied; due to the cytotoxic effects of the ferrocenium ion, the se 

compounds may have utility as anti -cancer therapeutics. This third chapter will also 

study the potential for enhancements  in binding affinity towards α-ʟ-fucosidase by 

small molecule α-ʟ-inhibitors possessing multiple fuco-configured moieties. In 

chapter 4, the mechanism of irreversible α-ʟ-fucosidase inhibition by compounds 

containing aziridine moieties as an electrophilic trap will be studied; these 

compounds provide a template for inhibitors with utility as activity -based probes. 

Finally, efforts towards the generation of crystallisation-competent constructs of 
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human fucosidases FUCA1 and FUCA2 will be described before the final chapter 

wherein conclusions will be drawn from the work reported in this study. 
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Chapter 2: Inhibition of bacterial fucosidase 

BtFuc2970 by 5-membered iminocyclitols* 

 

Abstract 

GH29 α-ʟ-fucosidases are of importance due to their roles in maintaining 

homeostasis of N- and O-linked glycan structures and in fertility. Inhibitors of this 

enzyme class may prove clinically useful, for example for treatment of the 

lysosomal storage disorder fucosidosis and clearance of the stomach pathogen 

Helicobacter pylori  from the gastrointestinal tract. Whilst a number of structural 

studies have been reported highlighting the interaction of GH29 enzymes with 6 -

membered inhibitors, this is not so for  5-membered inhibitors, that prove to be 

potent inhibitors of this enzyme class with inhibition constants in the µM -nM 

range. Herein, kinetic and structural parameters for the binding of seven 5 -

membered iminocyclitol inhibitors to a GH29 fucosidase from Bacteroides 

thetaiotaomicron  (BtFuc2970) are reported. The compounds are shown to possess 

K is for BtFuc2970 in the µM range. Crystal structures of the compounds at 

resolutions of 1.59 - 2.10 Å serve to highlight the mode of binding of this class of 

compounds to fucosidase through an E3  conformation, mimicking the 
3
H4  

conformation for the transition state of catalysis. Ring contraction of these 

compounds compared to 6-membered inhibitors is shown to eliminate hydrogen 

bonding interactions. These crystal structures further serve to highlight where the 

aglycon moieties of natural substrates are likely to bind to GH29 -A family 

enzymes. The insights gained in this work may aid in the design of a new series of 

more potent fucosidase inhibitors.  

 

 

 

 

*This work is published in Wright, D. W., Moreno-Vargas, A. J., Carmona, A. T., 

Robina, I. & Davies, G. J. Bioorgan Med Chem  21, 4751-4754 (2013) and Hottin, 

A., Wright, D. W., Davies, G. J. & Behr, J. B. Chembiochem, 277-283 (2014). 
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2.1 Introduction 

GH29 α-ʟ-fucosidases are of critical biological importance, owing in part to their 

maintenance of a number of ʟ-fucosylated glycan structures such as the core fucose 

of Notch protein
196

 and histo-blood group antigens
20

, and also to their roles in 

fertility
109

 (Figure 2.1). Deficiency in α-ʟ-fucosidase activity in mammals leads to 

the lysosomal storage disorder fucosidosis
3
, while the enzyme is differentially 

regulated in a number of cancers
93,197

. Improved understanding of the biological 

activity of human GH29 enzymes would thus be clearly advantageous in the  

diagnostic and therapeutic contexts. Inhibitors of GH29 α -ʟ-fucosidases have 

already been shown to have the ability to modulate adhesion of the stomach 

pathogen Helicobacter pylori
4
, and may have utility in treatment of fucosidosis 

through chaperone therapy
193

. Unfortunately, in spite of the potential benefit it may 

have on human health and disease, no crystal structure is currently available for 

human GH29 enzymes.  

In this light, BtFuc2970 α-ʟ-fucosidase provides a model system for the study of α-

ʟ-fucosidase inhibition. Whilst Thermotoga maritima α-ʟ-fucosidase (TmGH29) has 

a greater primary sequence identity to human α-ʟ-fucosidases (Appendix 1), this 

enzyme contains an extended active sit e loop that is absent in FUCA1 and FUCA2 

and is likely to affect substrate binding and aglycon specificity
182

. BtFuc2970 

shares 27% and 28% sequence identity with human α -ʟ-fucosidases FUCA1 and 

FUCA2, respectively
198

.  

BtFuc2970 is on polysaccharide utilisation locus 44 of the Bacteroides 

thetaiotaomicron  genome (Figure 2.2). The substrate that regulates the expression 

of genes on this locus is currently unknown. The locus contains open reading 

frames for 11 gene products. Five of these genes remain unannotated  whilst the 

others transcribe proteins annotated as a family PL8 chondroitin AC  lyase 

(Bt2964), a GH2 family enzyme (Bt2969), a GH29 α-ʟ-fucosidase (Bt2970), a 

SusC/D pair (Bt2958 and Bt2957 respectively) and a HTCS sensor/regulator 

(Bt2971)
199

.   
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Figure 2.1 Some fucosylated structures that are important in biology. 

Monosaccharides are displayed by the standard proposed by Varki et al. in 2009 

(Yellow circle = galactose, yellow square = GalNAc, blue square = GlcNAc, purple 

diamond = sialic acid, red triangle = fucose).
51

 

 

 

Figure 2.2. Polysaccharide utilisation locus 44 of the genome of Bacteroides 

thetaiotaomicron  VPI-5482. 
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The genome of Bacteroides thetaiotaomicron  contains a total of 9 genes currently 

annotated as encoding GH29 fucosidases; these enzymes are thought to be involved 

in the catabolism of exogenous fucosylated glycans. The organism indeed has a 

complex system for ʟ-fucose metabolism thought to involve two discrete genetic 

loci
136,140

. The large number of GH29 enzymes possessed by Bacteroides 

thetaiotaomicron  likely represents the need for the organism to digest the large 

number of glycosidic linkages and polysaccharides ʟ-fucose is present in.   

Up to the time of writing, two distinct α-ʟ-fucosidases of Bacteroides 

thetaiotaomicron  have been biochemically characterised. These enzymes have 

different substrate specificities
191

. BtFuc2192 belongs to the GH29-B subfamily and 

specifically acts to cleave α-(1→3/4)-fucosidic linkages (EC 3.2.1.111) while 

BtFuc2970 belongs to the GH29-A subfamily, has relaxed substrate specificity, and 

is able to cleave any fucosidic linkage (EC 3.2.1.51)
191

.  

 

2.1.1 Previous structural and mechanistic studies on BtFuc2970 

The crystal structure of BtFuc2970 was solved previously
184

, confirming assignment 

of the catalytic nucleophile (Asp229) and acid/base residues (Glu288)  based on 

sequence predictions from the TmGH29 enzyme.  

Being a member of the GH29 family, BtFuc2970 adopts a (βα)8  TIM barrel fold
182

 

(Figure 2.3). The covalent intermediate for BtFuc2970 hydrolysis was trapped using 

2-deoxy-2-fluoro-β-ʟ-fucopyranose, revealing a 
3
S1  conformation for the catalytic 

intermediate
184

. This, in addition to observation of the Michaelis complex with 

fucose (in a 
1
C4 conformation) gave evidence to support the 

1
C4↔

3
H4↔

3
S1  

conformational itinerary postulated for GH29 enzyme catalysis based o n previous 

work on TmGH29
182

. Quantum mechanics and molecular dynamics simulations on 

ring distortion in fucose further highlighted that the 
1
C4↔

3
H4↔

3
S1 conformational 

trajectory is energetically viable and indeed favourable
184

.  

The kinetics of BtFuc2970 hydrolysis of p-nitrophenyl-α-ʟ-fucopyranoside and α-ʟ-

fucopyranosyl fluoride were subsequently determined
189

. The kcat value of mutant 

BtFuc2970 E288A was approximately 2000-fold lower than that of the native 

enzyme, whilst no hydrolysis could be measured for the D229A mutant, confirming 

these residues as the catalytic acid/base and nucleophile, respectively
189

.  
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Figure 2.3. 3D fold of α-ʟ-fucosidase 2970 from Bacteroides thetaiotaomicron  

(BtFuc2970), PDB code 2WVV
184

. The main chain of a single protomer is displayed 

in wall-eye stereo as ribbons with colour scheme blended through the model from 

the blue N terminus to the red C terminus.  Figure was drawn using CCP4MG
183

.  

 

The inhibition of BtFuc2970 by fuco-configured 6-membered inhibitors, displaying 

either a pyranose or piperidine ring system
184, 200

 has been probed. The 6-membered 

inhibitors studied displayed dissociation constants in the nM range and displayed 

tightest binding at pH 6.0. The pH optimum for BtFuc2970 catalysis has been 

determined at pH 7.4
200

. 

 

2.1.2 α-ʟ-fucosidase inhibition by 5-membered iminocyclitols  

Interestingly, 5-membered iminosugars have been shown to prove potent inhibitors 

of a number of glycoside hydrolase families.  These compounds appear to be 

exploited in nature, as many compounds with this functionality have been isolated 

as natural products from a variety of sources, including, for example, 2,5 -

dihydroxymethyl-3,4-dihydroxypyrrolidine from Derris elliptica
201

, 1,4-dideoxy-

1,4-imino-ᴅ-arabinitol from Angylocalyx boutiqueanus
202

, 2-hydroxymethyl-3-

hydroxypyrrolidine from Castanospermum australe
202

 and mannostatins from 

Streptoverticillium verticillus
203

. These compounds have been shown to have 
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inhibitory activities towards a range of glycosidases including α-mannosidase, α-

glucosidase and α-fucosidase
203-205

.  

Azasugars with appropriate configurations are thought to be potent inhibitors of 

those retaining glycoside hydrolases whose mechanism involves double -

displacement and proceed through a covalent enzyme intermediate, as they mimic 

the positive charge build-up at the enzymatic transition state
169,206

. Further, 5-

membered rings are more conformationally flexible than 6 -membered rings, and the 

low-energy envelope conformation of 5 -membered ring inhibitors mimics the high-

energy boat or half -chair transition state conformations of 6 -membered rings, as in 

both cases four adjacent atoms (the C5, O5, C1 and C2 atoms of natural sub strates) 

have coplanarity. Hence, a great deal of research effort has been directed towards 

the synthesis and screening of 5-membered iminocyclitols as glycosidase inhibitors 

over the past few decades, the key findings of some studies  pertaining to α-ʟ-

fucosidase will be summarised below.  

Pyrrolidine-based α-ʟ-fucosidase inhibitors were first assessed as early as 1993, 

when Wang et al . utilised aldolase enzymes for the chemoenzymatic synthesis of 

compounds I-IV (Table 2.1)
207

. These compounds had K i values of 1.4 – 22 µM for 

bovine kidney α-ʟ-fucosidase; it should be noted that this enzyme, which has 

significant sequence identity with α-ʟ-fucosidases from Homo sapiens  (Appendix 

1), is the enzyme used for most kinetic studies against α -ʟ-fucosidases described in 

the literature.  
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Table 2.1a. Some α-ʟ-fucosidase inhibitors described in the literature.  

Compound number Structural formula K i for bovine kidney 

α-ʟ-fucosidase (µM) 

I 

 

1.4 

II 

 

8 

III 

 

22 

IV 

 

4 

V 

 

3.2 

VI 

 

3.0 

VII 

 

0.008 

VIII 

 

0.010 

IX 

 

0.08 

X 

 

1.6 

XI 

 

0.2 

XII 

 

0.0049 

XIII 

 

0.010 
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Table 2.1b. Some α-ʟ-fucosidase inhibitors described in the literature.  

Compound number Structural formula K i for bovine kidney 

α-ʟ-fucosidase (µM) 

XIV 

 

0.024 

XV 

 

0.0048* 

XVI 

 

0.005 

XVII 

 

0.00105 

* inhibition against bovine epididymis α-ʟ-fucosidase 

 

Research on the fully chemical syntheses of pyrrolidine α-ʟ-fucosidase inhibitors 

started around the turn of the century. In 2001, Robina et al. noted that the 

currently available piperidine-based inhibitors of the enzyme class did not appear to 

be able to tolerate hydrophobic modifications which would be required for 

realisation of the compounds as therapeutic agents in a living system
208

. The 

authors proceeded to synthesise compounds V-VI (Table 2.1) using ᴅ-glucose as a 

starting material. Unfortunately, these compounds had limited utility as inhibitors, 

with mid-range K i values of ca. 3 µM towards bovine kidney α-ʟ-fucosidase. 

Further work on use of this scaffold did not improve inhibitory potency
209

, and it 

was observed that for the realisation of more potent inhibitors such as the 

piperidine deoxyfuconojirimycin (DFJ)
210

, an (S)-configured methyl group must  be 

attached to the C4 carbon of these pyrrolidine inhibitors
209

.  

The chemical synthesis of compounds with an (S)-configured methyl group at the 

C4 carbon of pyrrolidine α-ʟ-fucosidase inhibitors was first reported in 2004 by 

Chevrier et al ., who realised the synthesis of potent (K i = 8-10 nM for bovine 

kidney) pyrrolidine inhibitors VII-VIII using ᴅ-ribose as a starting 

material
211

(Table 2.1). A year later, Moreno-Vargas et al. reported the synthesis of 
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the benzimidazole compound IX, which displays 80 nM inhibition of bovine kidney 

α-ʟ-fucosidase
212

.   

Attempts towards more potent inhibition  by using transition-state mimicry were 

exploited in α-ʟ-fucosidase inhibition in 2006 by Laroche et al. 
213

. Here, the 

authors introduced spirocyclopropyl groups to the C4 carbon of a pyrrolidine 

scaffold e.g. compound X, Table 2.1; this functional group was postulated by the 

authors subsequently to flatten the heterocyclic ring causing the inhibitor to more 

closely resemble the half-chair conformation of the enzymatic transition state
214

. 

This approach was, however, a step back in terms of inhibitory potency  compared to 

compounds VII-IX which were produced chronologically earlier , yielding 

compounds with K i values only as high as 1.6 µM
213

. Further, the parent compound 

XI lacking a spirocyclopropyl moiety proved to be a more potent inhibitor ( K i = 0.2 

µM, Table 2.1)
214

.  

Compounds isolated as natural products have also helped to identify and drive the  

synthesis of potent pyrrolidine α-ʟ-fucosidase inhibitors.  Angylocalyx pynaertii , for 

example, has been shown to produce a number of alkaloids including α-ʟ-fucosidase 

inhibitor XII
215

. Subsequent chemoenzymatic synthesis and kinetic evaluation of 

this compound showed it to be a very potent inhibitor of the enzyme, with a K i 

against bovine kidney α-ʟ-fucosidase of 4.9 nM
216,217

, however the compound was 

also shown to inhibit α- and β-galactosidases. Further, the compound 4-epi-(+)-

codonopsinine XIII (Table 2.1), which was rationally designed based on a natural 

product from Codonopsis clematidae , has potent α-ʟ-fucosidase inhibitory activity 

with K i = 10 nM against bovine kidney α-ʟ-fucosidase 
218

.  

More recently, Elias-Rodruguez et al. used a combinatorial approach to synthesis of 

pyrrolidine α-ʟ-fucosidase inhibitors with triazole-containing aglycon through use 

of the Cu(I) catalysed alkyne-azide cycloaddition reaction
219

. The most potent 

inhibitor synthesised in this way, XIV,  has a K i of 24 nM, showing that this 

technique has utility for the rapid generation of compounds containing diverse 

aglycon moieties. 

A short mention should be given to 6-membered ring piperidine-based inhibitors of 

α-ʟ-fucosidase. DFJ XV is a potent inhibitor of α-ʟ-fucosidases, with a K i of 4.8 nM 

for the bovine epididymis enzyme
210

. In 2003, Wu et al. developed a combinatorial 

library of GH29 α-ʟ-fucosidase inhibitors using 6-membered ring azasugar (1R)-

aminomethyl-1-deoxy-ʟ-fuconojirimycin as a scaffold
220

. Interestingly, though the 

compounds thus created have a β -linkage at the anomeric carbon, the approach 

proved to be of great success, the most potent inhibitor XVI had an inhibition 
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potency of K i = 5 nM. Further development of this inhibitor led to XVII, the most 

potent α-ʟ-fucosidase inhibitor known (K i = 1.05 nM) to the author’s 

knowledge
221

(Table 2.1). These studies highlight the importance of extended 

aromatic “aglycon” moieties in improving the activity of α -ʟ-fuosidase inhibitors, 

which has been commented on many times throughout the lit erature. 

Thus, while it is clear that correct chirality of the stereocentres in pyrrolidine 

inhibitors can help to improve inhibition potency, and that the introduction of 

aromatic aglycons can further improve inhibition potency, the structural features 

and minutiae of these interactions are still unclear. While a number of studies 

address the structural features of α-ʟ-fucosidase by piperidines
184,200, 221

, structural 

information on inhibition of the enzyme by pyrro lidines is limited to docking 

studies on α-ʟ-fucosidase from Thermotoga maritima
216

.  

To the author’s knowledge, the first crystal structure of a 5 -membered iminocyclitol 

complexed with a glycosidase enzyme was reported in 2005 against Drosophila 

melanogaster  Golgi α-mannosidase II, whereby the substituents on a pyrrolidine 

inhibitor along with 5-membered rings containing other atoms were observed to 

have conformation dictated by the steric requirements for binding of the ring 

susbstituents in the enzyme rather than the energetic requirements of the 5 -

membered ring.
222

 Subsequently, in 2007, the crystal structure of another 5-

membered iminocyclitol bound to a glycoside hydrol ase enzyme (GH5 

endoglycoceramidase II) was reported
223

. In this structure, the iminocyclitol ring 

was observed to be ‘flipped’ relative to the orientation of 6 -membered ring 

inhibitors, thereby allowing stabilisat ion of its binding through hydrogen bonding 

interactions (Figure 2.4). Additionally, the endocyclic nitrogen superimposed not 

on the endocyclic oxygen of 6-membered ring inhibitors, but on the anomeric 

carbon, presumably allowing its stabilisation by elect rostatic interactions with the 

catalytic nucleophile and acid/base residues.   
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Figure 2.4. Binding mode of a 5-membered iminocyclitol to endoglycoceramidase II 

(PDB entry 2OYM), as contrasts with that of 6 -membered ring azasugars. Adapted 

from Caines et al.
223

.  

 

Reported herein are a number of crystal structures of 5-membered iminosugars 

complexed with bacterial α-ʟ-fucosidase BtFuc2970, which allow the dissection of 

their binding mode. Comparison with other GH29-A family enzymes enables insight 

into some conserved structural features in this subfamily. Further, the inhibition of 

BtFuc2970 by these compounds will be probed . The compounds described in this 

chapter were synthesised and evaluated as inhibitors of bov ine kidney α-ʟ-

fucosidase by collaborators at the Universities of Reims and Seville, and their 

collaboration is acknowledged.  
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2.2 Materials and methods 

2.2.1 Gene expression and protein purification 

A plasmid (pET-YSBLIC3C) containing a gene encoding a truncated BtFuc2970 was 

available from previous work in the Davies group (Figure 2.5, the sequence of the 

truncated BtFuc2970 transcript is available in Appendix 2). An aliquot of this 

plasmid was transformed into chemical ly competent BL21 (DE3) cells, which were 

grown in LB media containing 30 mg L
-1

 kanamycin as a small scale (10 mL) 

culture (cells were incubated at 37 ºC overnight with aeration by shaking at 180 

rpm). This culture was used to inoculate a larger (800 mL) volume of autoclaved 

LB media containing 30 mg L
-1

 kanamycin. Expression of the gene encoding 

BtFuc2970 was initiated by the addition of 1 mg L
-1  

isopropyl-β-D-1-

thiogalactopyranoside (IPTG) when the culture had reached an A 600 in the range 0.6 

- 1.0. Cells were incubated at 30 ºC overnight; subsequently cells were harvested by 

centrifugation and resuspended in 20 mM HEPES buffer, 0.5 M NaCl, 20 mM 

imidazole (pH 7.4). Overexpression of BtFuc2970 was tentatively confirmed by the 

presence of a strong band at ca. 54 kDa molecular weight (the expected molecular 

weight of the BtFuc2970 gene product) on an SDS-PAGE gel. 

BtFuc2970 was purified from cell lysate using a two -step procedure, comprising a 

Ni
2+

 affinity capture of the His 6-tagged protein and subsequent s ize-exclusion 

chromatographic separation. Cells were lysed by sonication, the resulting solution 

was centrifuged at 4416 RCF for 30 m and the supernatant decanted. This 

supernatant was applied to a 5 mL HiTrap column (GE Healthcare) preloaded with 

Ni
2+

 connected to an Äkta FPLC (GE Healthcare). 20 mM HEPES buffer, 0.5 M 

NaCl, 20 mM imidazole (pH 7.4) was passed through the column until the A 280  

response returned to the baseline. After this, an increasing concentration of 

imidazole was applied to the column as a gradient (to 500 mM imidazole over 50 

mL). Fractions with a strong A 280 response were run on a SDS-PAGE gel to 

determine the molecular weight of the protein species , and were concentrated by 

centrifugation at 5000 RCF using an Amicon Ultra -15 10K centrifugal filter. This 

protein was then applied to a Hi -Load 16/60 Superdex 200 prep grade size 

exclusion column (GE Healthcare) connected to an Äkta FPLC. A solution 

comprising 20 mM HEPES buffer, 0.1 M NaCl (pH 7.0) was run through the column 

and two major non-aggregated protein species were observed; both species were 

tentatively confirmed as being due to BtFuc2970 by SDS-PAGE. These species were 

attributed to be BtFuc2970 in monomeric (prevalent form) and dimeric 

oligomerisation states. Protein from the monomeric state was concentrated by 
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centrifugation at 5000 RCF using an Amicon Ultra -15 10K centrifugal filter and 

stored at -80ºC for subsequent experimentation.  

 

 

Figure 2.5. Plasmid map of pET-YSBLIC3C with BtFuc2970 cloned into the YSBL-

LIC3C site. The ORF containing a gene encoding truncated BtFuc2970 is under 

control of the T7 promoter and begins transcription with an N -terminal 3C-

cleavable His6 affinity tag. The plasmid map was generated using SnapGene® 

Viewer. 

 

2.2.2 Inhibitors 

5-membered iminosugar compounds displaying inhibition of fucosidase enzymes 

were received from collaborators (research groups of Profs. Jean-Bernard Behr at 

the University of Reims and Inmaculada Robina at the University of Seville). These 

inhibitors display a 5-membered iminocyclitol core with stereochemical 

configurations matching those of fucose (excepting the lack of a C3 atom), and have 

‘aglycon’ moieties attached to the C1 carbon (numbering scheme shown in Figure 

2.6, as derived from that commonly used for pyranose sugar s). 
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Figure 2.6. General form of 5-membered iminocyclitols described in Chapter 2. 

 

Compounds 1-7 , which will be discussed in this chapter, along with references for 

their syntheses, are displayed in Table 2.2. All of the compounds display inhibitory 

activity towards bovine kidney fucosidase
212,218, 224

. Compound 1 was tested for 

inhibitory activity towards other glycosidases and shown only to inhibit 

fucosidase
212

.  
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Table 2.2. 5-membered iminocyclitols described in Chapter 2.  

Compound 

number 

IUPAC Name Structural formula 

1
212

 (2S,3S,4R,5S)-2-(1H-

benzo[d]imidazol-2-yl)-5-

methylpyrrolidine-3,4-

diol 
 

2
218

 (2S,3S,4R,5S)-2-(4-

methoxyphenyl)-1,5-

dimethylpyrrolidine-3,4-

diol 
 

3
218

 (2S,3S,4R,5S)-2-(4-

methoxyphenyl)-5-

methylpyrrolidine-3,4-

diol 
 

4
218

 (2S,3R,4S,5S)-2-methyl-

5-(4-

methylphenyl)pyrrolidine-

3,4-diol 
 

 

5
224

 (2S,3S,4R,5S)-3,4-

dihydroxy-2-ethynyl-5-

methylpyrrolidine 
 

 

6
224

 (2S,3S,4R,5S)-3,4-

dihydroxy-2-[2'-

phenyl]ethynyl-5-

methylpyrrolidine 

 
7

224
 1-phenyl-4-

[(2S,3S,4R,5S)-3,4-

dihydroxy-5-

methylpyrrolidin-2-

yl]triazole 
 

 

2.2.3 Enzyme kinetics 

The α-ʟ-fucosidase activity of BtFuc2970 and its inhibition by compounds 1-3 and 

5-7 were probed. Enzymatic assays were conducted using synthetic substrate 2 -

chloro,4-nitrophenyl-α-ʟ-fucopyranoside (CNP-fucoside, CarboSynth Ltd.). The 

product of hydrolysis  of this substrate (2-chloro,4-nitrophenol, CNP) absorbs 

visible radiation with a λ max = 405 nm at pH above its pKa  (ca. 5.4). All experiments 

were carried out over a time-course of 5 m during which absorbance was measured 

at 405 nm using a Cintra 10 spect rophotometer (GBC Scientific Equipment Pty 

Ltd.). All solutions used to determine kinetic data were thermally equilibrated (37 

ºC).   



53 

 

2.2.3.1  Michaelis-Menten kinetics 

The α-ʟ-fucosidase activity of purified BtFuc2970 was confirmed, and the 

Michaelis-Menten parameters of BtFuc2970 action upon CNP-fucoside determined. 

The rate of enzymatic hydrolysis was determined upon solutions of varying 

concentration of CNP-fucoside. Each solution (1 mL total volume) contained 50 

mM HEPES buffer, 100 mM NaCl (pH 7.4) and a known concentration of substrate; 

50 nM BtFuc2970 was added to this after thermal equilibration to initiate 

hydrolysis. The molar extinction coefficient of CNP (ε 405 = 1.24 × 10
3
 M

-1
) was 

determined by measuring the absorption at 405 nm of a number of solutions of 

CNP-fucoside at known concentration that had been hydrolysed by excess 

BtFuc2970. The Michaelis-Menten parameters for CNP-fucoside hydrolysis (KM = 

0.49 ± 0.04 mM , Vmax = 117 ± 2.6 min
-1

,  Figure 2.7) were calculated through direct 

fit to the Michaelis-Menten equation using the Origin graphing software 

(OriginLab, Northampton, MA). 

 

Figure 2.7. Michaelis-Menten kinetics of CNP-α-ʟ-fucopyranoside hydrolysis by 

BtFuc2970. 
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2.2.3.2  Enzyme inhibition 

The inhibition of BtFuc2970 by compounds 1-3 and 5-7 was studied (Figure 2.8). 

Unfortunately an inadequate amount of compound 4 was available to determine its 

inhibition of BtFuc2970. The inhibition of BtFuc2970 by compounds 1-3 and 5-7 

was studied by in each case determining non-inhibited rate and inhibited rate at 

various concentrations of inhibitor. Each solution contained (1 mL total volume) 50 

mM HEPES buffer, 100 mM NaCl (pH 7.4), 250 nM BtFuc2970 and a known 

concentration of inhibitor; 50 µM CNP-fucoside was added to this to initiate 

hydrolysis.  

Inhibition constants were calculated by determining enzymatic rates in the absence 

and presence of ligand and plotting their ratio against inhibitor concentration over a 

series of inhibitor concentrations. This plot should yield a straight line with 

gradient = 1 / K i and y-intercept of 1 according to Equation 2.1. K is were thus 

determined by linear fit using the Origin (OriginLab, Northampton, MA). Inhibition 

plots used for the determination of K i values are displayed in Figure 2.8.  

Equation 2.1.  

𝑣0

𝑣𝑖
=  

1

𝐾𝑖

[𝐼] + 1 
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Figure 2.8. Plots showing inhibition of BtFuc2970 activity by compounds 1-3 and 5-

7. 

 

2.2.4 Crystallisation and structure determination 

2.2.4.1  Crystallisation 

Crystals of BtFuc2970 were grown in either Greiner Bio One CELLSTAR 24-well 

culture plates (set up manually) using the hanging drop vapour diffusion method or 

MRC MAXI 48-well crystallisation plates (set up by use of a Mosquito liquid 

handling robot, TTP Labtech) using the sitting drop vapour diffusion metho d. 

Crystallisation trials were initiated based on previously successful conditions
184

 and 

further optimised. BtFuc2970 was centrifuged for ca. 5 m before setting up 

crystallisation experiments.  

For the determination of an apo  crystal structure, a crystal of BtFuc2970 was 

transferred to a cryo-protectant solution containing mother liquor supplemented 

with 20% glycerol. Subsequently this crystal was cryo -cooled in liquid N2.  
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Crystals of BtFuc2970 liganded with compounds 1-7 were obtained by either adding 

solid powder of each compound directly to a drop containing one or multiple 

crystals of BtFuc2970 using an acupuncture needle (compounds 1-4), or by adding 1 

µL compound dissolved at 4 mM in 50 mM HEPES 100 mM NaCl (p H 7.4) to the 

crystallisation drop and re-sealing it (compounds 5-7). After incubation for at least 

ca. 30 m, these crystals were transferred to cryo -protectant solutions containing 

mother liquor supplemented with 20% glycerol and cryo -cooled using liquid N2.  

The crystal of apo-BtFuc2970 was sent to the European Synchrotron Research 

Facility for data collection, whilst those of BtFuc2970 complexed with each of 

inhibitors 1-7 were sent to Diamond Light Source.  

 

2.2.4.2  Crystallisation conditions 

Unless otherwise noted, crystallisation drops were set up in a 1:1 ratio of protein to 

mother liquor and BtFuc2970 was added as a 12 mg mL
-1

 solution (final 

concentration after dilution 6 mg mL
-1

). All crystallisation experiments were 

performed at ca. 18 ºC. 

apo-BtFuc2970 

Mother liquor: 17% w/v PEG 6K, 0.124 M ammonium sulfate, 0.1 M imidazole (pH 

8) 2 parts protein: 3 parts mother liquor  

BtFuc2970-1 

Mother liquor: 10.45% w/v PEG 6K, 0.12 M ammonium sulfate, 0.095 M imidazole 

(pH 7)  

BtFuc2970-2 , BtFuc2970-3 

Mother liquor: 12% w/v PEG 6K, 0.13 M ammonium sulfate, 0.1 M imidazole (pH 

7) 

BtFuc2970-4 

Mother liquor: 20% w/vPEG 6K, 0.16 M ammonium sulfate, 0.1 M imidazole (pH 7)  

BtFuc2970-5 

Mother liquor: 16% w/v PEG 6K, 0.16 M ammonium sulfate, 0.1 M imidazole (pH 

7)  
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BtFuc2970-6 

Mother liquor: 14% w/v PEG 6K, 0.16 M ammonium sulfate, 0.1 M imidazole (pH 

7) 

BtFuc2970-7 

Mother liquor: 20% w/v PEG 3350, 0.2 M ammonium sulfate, 0.1 M imidazole (pH 

7) 

 

2.2.4.3  Structure determination 

Diffraction images for crystals of apo-BtFuc2970 and for each inhibitor complex 

were indexed and integrated using either XDS
225

 or iMOSFLM
226

. POINTLESS
227

 

was used to determine the crystallographic space group in each case, and structure 

factor amplitudes were scaled and merged using SCALA
227

 or AIMLESS
228

.  

The crystals of BtFuc2970 in an apo  form and complexed with each of compounds 

1-4  grew in a novel P21  space group, and these crystals were almost isomorphous to 

each other. The apo-crystal structure was solved by molecular replacement 

(MOLREP
229

) using a truncated version (A-chain of protein only, ligands and 

solvent removed) of the previously determined structure of apo-BtFuc2970 (PDB 

entry 2WVV
184

) as a search model. MOLREP was run using default parameters with 

model data to a maximum resolution of 3.0 Å. The molecular replacement solution 

was used to build a model of apo-BtFuc2970 using iterative cycles of model -

building using COOT
230

 and maximum-likelihood refinement using REFMAC5
231

.  

As the space groups of each inhibitor complex of BtFuc2970 liganded with 

compounds 1-4 were almost isomorphous to the apo-crystal, coordinates from the 

apo-crystal structure were used directly for determination of the inhibitor complex 

structures; R free sets were assigned as they had been for the apo-crystal structure to 

maintain the uniqueness and integrity of the cross-validation Free R set throughout. 

The crystals of BtFuc2970 complexed with each of compounds 5-7 grew in a space 

group almost isomorphous to PDB entry 2WVV
184

), and the same process as 

described above was used for determination of these structures, with 2WVV and its 

identical cross-validation set. 

Coordinate sets and maximum likelihood refinement target values for each of 

compounds 1-7  were generated using CHEMDRAW3D and the PRODRG online 

server
232

. Inhibitor coordinates were initially added at 0.01 occupancies to prevent 

automatic addition of solvent into ligand density when using the COOT ‘find 
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waters’ function whilst minimising model bias. At late stages of refinement th e 

ligand occupancy was increased to 1.0.  

Final models for each of the compounds in this chapter were validated using 

MOLPROBITY
233

 and deposited with the RCSB Protein Data Bank 

(www.rcsb.org
234

, Table 2.3).  
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Table 2.3a. X-ray data collection and refinement statistics for the crystal structures 

discussed in Chapter 2.  

 

 

apo BtFuc2970-1  BtFuc2970-2  BtFuc2970-3  

Data collection     

Beamline/Date  ESRF ID23-2 

21.11.2011 

DLS I03 

12.12.2011 

DLS I04-1 

8.3.2012 

DLS I04-1 

8.3.2012 

Wavelength (Å)  0.8726 0.9763 0.9173 0.9173 

Cell dimensions     

  a ,  b ,  c (Å) 68.2, 96.6, 97.3 68.7, 95.6, 97.0 68.4, 95.8, 97.1 67.5,94.6,96.9 

  α,β,γ (°)  90, 91.3, 90 90, 91.2, 90 90, 90.8, 90 90, 90.9, 90 

Resolution (Å)  30.7-1.59 29.0-1.73 97.1-1.58 29.3-2.10 

Rmer ge  0.11(0.71)* 0.045(0.45) 0.10(0.45) 0.08(0.48) 

I / σI  8.7(2.0) 12.8(1.8) 9.2(2.8) 13.3(2.6) 

Completeness (%)  99.9(99.9) 98.3(94.5) 99.2(99.6) 98.9(99.7) 

Redundancy 3.8 3.2 3.9 4.4 

Wilson B value 15.1 26.4 20.5 32.2 

Refinement     

Resolution (Å)  30.7-1.59 29.0-1.73 97.1-2.00 96.9-2.10 

No. reflections 159881 128119 83899 70362 

Rwor k / R f ree  0.16/0.18 0.17/0.19 0.16/0.19 0.18/0.21 

No. atoms     

  Protein 7172 7083 7102 7045 

  Ligand/ion 69 96 100 112 

  Water 1059 729 852 405 

B-factors (Å
2
)      

  Protein 14.2 33.5 24.9 39.4 

  Ligand/ion 37.3 52.1 40.0 63.5 

  Water 25.1 39.7 32.5 42.4 

R.m.s. deviations      

  Bond lengths (Å)  0.014 0.015 0.016 0.016 

  Bond angles (°)  1.5 1.5 1.6 1.6 

Ramachandran 

Statistics (%) 

    

  Preferred 96.0 95.6 95.8 95.0 

  Allowed 3.3 3.3 3.1 3.9 

  Outliers 0.7 1.1 1.1 1.1 

PDB codes 4J27 4J28 4JFS 4JFT 

*Values in parentheses are for highest -resolution shell.  

 

 

  



60 

 

Table 2.3b. X-ray data collection and refinement statistics for the crystal structures 

discussed in Chapter 2.  

 BtFuc2970-4  BtFuc2970-5  BtFuc2970-6  BtFuc2970-7  

Data collection     

Beamline/Date  DLS I03 

12.12.2011 

DLS I04-1 

16.12.2012 

DLS I04-1 

16.12.2012 

DLS I03 

02.02.2014 

Wavelength (Å)  0.9763 0.9200 0.9200 0.9763 

Cell dimensions        

  a ,  b ,  c (Å) 68.0,95.4,96.9 56.6,188.8,97.7 56.4,188.3,97.9 56.0,187.6,97.7 

  α,β,γ (°)  90, 90.8, 90 90,94.3,90 90,94.1,90 90,94.3,90 

Resolution (Å)  55.4-1.66 38.5-2.10 39.3-1.77҂ 55.9-1.95 

Rmer ge  0.05(0.16)* 0.12(0.68) 0.11(1.72) 0.07(0.71) 

I / I  10.7(3.5) 7.2(1.8) 6.0(0.7) 8.8(1.7) 

Completeness 

(%) 

99.3(99.1) 93.5(88.8) 95.9(96.7) 98.2(97.4) 

Redundancy 2.9 3.6 4.0 3.9 

Wilson B value  20.5 19.6 22.4 31.9 

 

Refinement 

    

Resolution (Å)  55.4-1.66 38.5-2.10 39.3-1.77 55.9-1.95 

No. reflections 144771 104691 178165 135815 

Rwor k  / R f ree  0.15/0.18 0.21/0.25 0.22/0.26 0.19/0.23 

No. atoms     

  Protein 7183 14052 14183 14304 

  Ligand/ion 100 90 124 136 

  Water  1098 579 588 892 

B-factors     

  Protein 24.3 32.9 35.8 38.3 

  Ligand/ion 41.8 55.5 50.6 55.6 

  Water  37.3 28.7 32.2 39.9 

R.m.s. deviations      

  Bond lengths(Å)  0.015 0.013 0.015 0.016 

  Bond angles()  1.5 1.4 1.5 1.5 

Ramachandran 

Statistics (%) 

    

  Preferred 96.0 95.6 95.6 95.7 

  Allowed 3.3 3.6 3.4 3.4 

  Outliers 0.7 0.8 1.0 0.9 

PDB codes 4JFU 4PCT 4PCS 4PEE 

*Values in parentheses are for highest -resolution shell.  

҂Diffraction data were scaled inappropriately for the 4PCS dataset submitted to the RCSB. 

When scaled with a high resolution cut -off of 2 Å, statistics are as follows: Rmer ge  = 0.705, 

I/I  = 1.6, Completeness = 96.3(87.0), Redundancy = 4.1(3.6), Wilson B value = 26.8, 

half-set correlation = 0.997(0.711).  
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2.3  Results and Discussion 

2.3.1 Inhibition of BtFuc2970 by 5-membered iminocyclitols 

K is determined for inhibition of BtFuc2970 by compounds 1-7 are displayed in 

Table 2.4, along with those previously determined for inhibition of mammalian 

(bovine kidney) α-ʟ-fucosidase
218,224,235

 by collaborators. 

Table 2.4. Inhibition of BtFuc2970 and mammalian fucosidase by compounds 1-7.  

Compound  K i vs. BtFuc2970 / µM  

(values in parens: fitting error 

from linear fit in Origin) 

K i vs. bovine kidney fucosidase  

/ µM 

1 2.0 (0.1) 0.08 

2 5.4 (0.3) 0.81 

3 3.5 (0.2) 0.01 

4 N/D 0.01 

5 1.0 (0.04) 0.07 

6 0.24 (0.01) 0.014 

7 0.22 (0.003) 0.005 

 

All of the compounds studied display poorer binding affinities towards BtFuc2970 

than towards mammalian enzymes.  In general, the trends observed for inhibition of 

bovine kidney α-ʟ-fucosidase are mirrored in inhibition of BtFuc2970, however the 

magnitude of inhibition is far lower; the potent, nanomolar affinities displayed by 

e.g. compound 7  against bovine kidney fucosidases are not apparent against 

BtFuc2970.  

Kinetic determinations for inhibition of BtFuc2970 were carried out by continuous 

assay of hydrolysis of CNP-α-ʟ-fucopyranoside at pH 7.4 – the previously 

determined pH optimum for enzymatic activity
200

; the tightest binding of 6-

membered iminocyclitol inhibitors to BtFuc2970 was however previously observed 

to be at pH 6.0
200

. Inhibition constants against the bovine kidney α-ʟ-fucosidase 

were determined by stopped assay of hydrolysis of p-nitrophenyl-α-ʟ-

fucopyranoside at pH 5.0 (1) 
235

 or 5.6 (2-8)
218,224

. The discrepancy observed 

between K is against each enzyme may therefore either reflect electrostatic 

differences in the enzymes or inhibitors due to the differing experimental pH, or 

physical differences in the inhibitor binding site s of the two enzymes.  
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2.3.2 Structural analysis of the binding of 5-membered iminocyclitol inhibitors 

to BtFuc2970 

2.3.2.1  X-ray data quality 

Diffraction images for  apo-BtFuc2970 were collected at 1.59 Å resolution, while 

those for BtFuc2970 complexed with compounds 1-7 were collected at 1.66-2.10 Å 

resolution (Table 2.3). X-ray data were scaled at resolution cut-offs based on 

criteria for Rmerge and I/σ(I) considerations. The dataset submitted to the RCSB for 

BtFuc2970-6  (4PCS) was perhaps scaled to an inappropriate resolution, see Table 

2.3. The resolution limit to which these X-ray data were useful would be better 

decided on the basis of half -dataset correlation co-efficients
228

, however this 

technology was not available  at the time of data scaling and merging.  

Compounds 1-7 were unambiguously present in the crystal structures as evidenced 

by clear peaks in Fo-Fc  maps after refinement of protein, solvent and other ions, but 

before the inclusion of compounds 1-7 in refinement (Figure 2.9).  
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Figure 2.9. Figures of compounds 1-7 , respectively, lying in the active site of 

BtFuc2970.  Atoms of compounds 1-7 are coloured by atom type (carbon in grey).  

The catalytic nucleophile Asp
229

 and acid/base Glu
288

 of BtFuc2970 are displayed 

coloured by atom type (carbon in green, residues are annotated for BtFuc2970:1).  

Carbon atoms displaying an alkyne bond in compounds 5 and 6 displayed as grey 

spheres. The maps displayed are Fo-Fc  maps from before the incorporation of 

phases from compounds 1-7 in refinement, contoured at 5 σ (compounds 1-4), 3 σ 

(5) or 2 σ (6, 7). Figures were drawn using CCP4MG
183

.  

 

2.3.2.2  Mode of binding of 5-membered iminocyclitols to BtFuc2970 

In the complex structures determined, the iminocyclitol cores of com pounds 1-7 are 

observed to adopt an E3 conformation (Figure 2.10). In this conformation, the ring 

nitrogen, C1, C2 and C4 atoms lie in a plane, and the C3 atom lies below this plane 

when viewed from the face where atom numbering increases in a clockwise fa shion. 

This conformation mimics and gives evidence to support the postulated 
3
H4 

catalytic transition state for enzyme catalysis by GH29 fucosidases
182,184

 on a 

geometrical basis.  

The iminocyclitol cores of each of the inhibitors studied lie in the BtFuc2970 active 

site such that their C2 and C3 hydroxyls make hydrogen bonding interactions with 

active site residues (Figure 2.11). These hydrogen bonding interactions are the same 

as those made between the C3 and C4 hydroxyls of 6-membered inhibitors with 

BtFuc2970, and also with the TmGH29 enzyme (Figure 2.12). 5-membered 

inhibitors lack the (S)-hydroxyl group that is attached at the C2 position of 6 -

membered inhibitors. This leads to loss of two hydrogen bonding inte ractions 

(between this hydroxyl and both Nε1 of Trp
88

 and Nε2 of His
136

).  

The conformation adopted by five -membered iminocyclitols in the enzymatic active 

site of BtFuc2970 contrasts greatly with that observed previously for this class of 

inhibitor against the GH5 family endoglycoceramidase
223

. Inhibition of this GH5 

enzyme was shown to involve ‘flipping’ of the inhibitor i.e. a 180 ° rotation of the 

inhibitor ring such that the ring substituents pointing towards o ne direction of the 

active site now pointed the other direction (this can be seen graphically in Figure 

2.3). The endocyclic amine of this inhibitor was observed to be positioned where 

the anomeric carbon of a natural substrate would be bound. Here, bindin g of the 

iminocyclitol inhibitor in a flipped conformation appears to be favoured due to 

electrostatic interactions between the endocyclic amine of the inhibitor and the 
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catalytic nucleophile and acid/base residues; further, a suitable hydrogen bonding 

network can still be formed even after ‘flipping’ of the inhibitor ( Figure 2.3). 

 

 

Figure 2.10. Conformation of the iminocyclitol core of five -membered 

iminocyclitol inhibitor 1 as observed in crystal structure bound to BtFuc2970. The 

figure was drawn in wall-eye stereo with aglycon atoms not displayed, using 

CCP4MG
183

.  

 

 

Figure 2.11. Schematic of the interactions between the iminocyclitol core of 

compounds 1-7 and BtFuc2970. Protonation states displayed are arbitrary. 

Hydrogen bonds < 3 Å shown as dashed lines.  
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Figure 2.12. Superposition of the coordinates of 4J28 (BtFuc2970-1), 2XIB
200

 and 

1ODU
182

 displayed in wall-eye stereo. The iminocyclitol or fucopyranose cores of 

inhibitors and residues that hydrogen bond to 1 are displayed in each case.  Atoms 

are coloured by type; carbon atoms from 4J28 in grey, from 2XIB in coral and from 

1ODU in yellow. Hydrogen bonds (2.6 – 2.8 Å) from 1 displayed as dashed bonds.  

Residues with numbering according to BtFuc2970 are annotated. The figure was 

drawn using CCP4MG
183

.  

 

For the case of fucose-mimetics such as 1-7 however, binding of the inhibitor in a 

flipped conformation would lead to loss of a number of hydrogen bonding 

interactions. The importance of the hydrogen bonds made by the hydroxyls of the 

C2, C3 and C4 carbon atoms of fucose -mimetics has previously been observed by 

Winchester et al. after analysis of structure activity relationships of α -ʟ-fucosidase 

inhibitors
107

. 1-7 have already lost the hydrogen bonding interactions made by their 

missing hydroxyl unit, and ring flipping would lead to loss of the other interactions 

thus leading to a significant energy barrier to inhibitor binding in this 

conformation.  

The crystal structure of compound 3 has been determined
218

. The crystal structures 

of compound 3 in its enzyme free and enzyme bound forms were superposed ( Figure 

2.13). This superposition gives an RMSD of 0.18Å and shows that the conformation 

adopted by the compound as a ligand of BtFuc2970 is almost identical to the one it 

displays in solution. As it is expected that the conformation seen in small molecule 

crystal structure is the ground state conformation, it can be concluded that 5 -

membered iminocyclitols require negligible conformational ch ange in binding to α-

ʟ-fucosidases. This is likely reflected to some degree in the favourable binding of 

5-membered iminocyclitols to BtFuc2970 despite the reduced number of hydrogen 

bonding interactions they make to the enzyme, compared to 6 -membered inhibitors. 
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Figure 2.13. Superposition of the enzyme free and enzyme bound crystal structures 

of compound 3 displayed in wall-eye stereo. Atoms are coloured by type; carbon 

atoms from BtFuc2970-3 in grey, from the small molecule crystal structure
218

 in 

green.  

 

2.3.2.3  Positioning of the aglycon moieties of iminocyclitol inhibitors  

5-membered iminocyclitols lie in the BtFuc2970 active site in a way that satisfies 

the maximum number of hydrogen bonding interactions possible ( Figure 2.12). The 

aglycon moieties of 5-membered inhibitors bound to BtFuc2970 are observed to 

occupy a different section of the hydrophobic landscape when compared to that 

occupied by the aglycons of 6-membered inhibitors bound to both BtFuc2970 and 

TmGH29 (Figure 2.14). In this binding mode, the aglycon moieties of inhibitors 1-7 

lay atop a hydrophobic ridge formed by residues Trp
88

 and Trp
232

. Upon 

superposition of the available crystal structures of GH29 -A family enzymes, this 

hydrophobic ridge appears to be conserved through 3D fold (Figure 2.1 5). Residue 

Trp
88

 in BtFuc2970 is structurally conserved throughout GH29 -A family enzymes 

whilst the residue corresponding to Trp
232

 of BtFuc2970 invariantly presents a 

similarly sized van der Waal’s radius (Figure 2.15). A hydrophobic region of GH29 

family enzymes has previously been alluded to based on structure activity 

relationships e.g.
220

, but has not to the author’s knowledge been described 

structurally.  

Initially, it was thought that ring contraction of 5 -membered ring inhibitors 

compared to 6-membered ring inhibitors caused ring rotation to maintai n the 

hydrogen bonding network of these compounds and thus oriented the aglycon 

moiety in a non-physiological direction e.g. 
236

. However, after close inspection of 

the available crystal structures of GH29 enzymes it appears unlikely that this is the 

case.  
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Figure 2.14. Superposition of the coordinates of 4J28 (BtFuc2970-1), 2WVU
184

 and 

2ZXA
221

, shown in wall-eye stereo. Inhibitors are coloured by atom type; carbon 

atoms from 1 in grey, from para-nitrophenyl-α-ʟ-fucopyranoside (2WVU) in coral 

and from acetyl-fuconojirimycin (2ZXA) in yellow. Protein atoms of BtFuc2970 

(4J28) displayed as a white surface. The figure was drawn using CCP4MG
183

.  

 

 

Figure 2.15. The hydrophobic ridge formed in GH29-A family fucosidase crystal 

structures. GH29-A fucosidase crystal structures from BtFuc2970 (liganded with 7,  

side-chains of residues Trp
88

 and Trp
232

, and 7 displayed in cyan with cyan 

surfaces), Thermotoga maritima  (PDB code 1HL8
182

, side-chains of Trp
67

 and 

Met
225

 in pink with pink surfaces) and Fusarium graminearum  (PDB code 4PSR
188

, 

side-chains of Trp
47

 and Phe
227

 in coral with coral surfaces) were superposed. 

Orthogonal figures of the hydrophobic ridge were prepared using CCP4MG
183

.  

 

In the available crystal structures of α-ʟ-fucosidases (BtFuc2970 and TmGH29) 

complexed with 6-membered ring compounds, the ligands display ‘non -natural’ 

features. Inhibitors complexed with TmGH29 all display a β-linkage at C1, while in 

the crystal structure of a D229N mutant of BtFuc2970 complexed with 2,4-

dinitophenylfucopyranoside the catalytic acid/base E288 is flipped out of an active 

conformation. Comparison of the aglycon trace between 5 -membered inhibitors of 
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BtFuc2970 and lacto-N-fucopentaose II complexed with Bifidobacterium longuum  

GH29-B fucosidase (PDB entry 3UET)
187

, however, shows that the aglycons of 

compounds 1-7 lay in a similar position to that of lacto-N-fucopentaose II (Figure 

2.16). As such, it is likely that the orientation observed  for the aglycons of 

compounds 1-7 liganded with BtFuc2970 is physiologically relevant.  

 

Figure 2.16. Superposition of the coordinates of 4J28 (BtFuc2970-1) and 3UET
187

.  

Inhibitors are coloured by atom type; carbon atoms from 1 in grey, from lacto-N-

fucopentaose II in coral. Positions of residues Trp88 and Trp232 are indicated in 

the figure. Protein atoms of BtFuc2970 (4J28) displayed as a white surface. The 

figure was drawn using CCP4MG
183

.  

 

In all of the structures obtained throughout this chapter, sulfate ions were observed 

proximal to the enzymatic active site, in what appears to be an electrostatically 

positive binding site, binding of the sulfate is stabilised by a nu mber of hydrogen 

bonds from residues Arg
262

, Arg
271

 and His
272

 (Figure 2.17). Whilst sulfate ions 

were always present in crystallisation solutions, this is due to the preferential 

crystallisation of this enzyme in conditions containing sulfate.  
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Figure 2.17. Position of sulfate ions proximal to the active site of BtFuc2970. The 

protein main chain of BtFuc2970-1 (PDB entry 4J28) displayed as ribbons coloured 

in cyan. Atoms of 1 , the sidechains of residues Arg
262

, Arg
271

 and His
272

 and sulfate 

moiety are displayed coloured by atom type (carbon atoms of 1 displayed in grey). 

Hydrogen bonds made between the sulfate moiety and the protein side -chains of 

BtFuc2970 are displayed as dashed lines. The figure was drawn using CCP4MG
183

.  

 

BtFuc2970 belongs to polysaccharide utilisation locus 44 of the genome of 

Bacteroides thetaiotaomicron  VPI-5482; this locus also contains genes encoding a 

chondroitin AC lyase and a β-galactosidase. It is thus tempting to speculate that the 

substrate for this PUL is some form of fucosylated chondroitin sulfate. The 

glycosaminoglycan with this name, however, comprises main chain β1→4 -linked 

glucuronic acid and β1→3-linked N-acetyl galactosamine, with sulfated Fucα1→3 

branches appended to the main chain glucuronic acid
22,25

. The other currently 

annotated transcripts of this locus do not appear to have the necessary functionality 

to degrade this substrate, however they have not been biochemically characte rised. 
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2.4  Conclusions 

Kinetic and X-ray crystallographic studies were used to probe the interactions of a 

series of fuco-configured 5-membered iminocyclitols with GH29 α-ʟ-fucosidase 

BtFuc2970 from Bacteroides thetaiotaomicron . X-ray crystal structures of these 

compounds complexed with BtFuc2970 elucidated their mode of binding; through 

an E3  conformation that mimics the postulated 
3
H4  transition state for catalysis

184
. 

This binding conformation was also observed to be the conformational ground state 

of these inhibitors based on analysis with the previously published small molecule 

crystal structure of a representative inhibitor. The loss of a single hydroxyl 

compared to 6-membered ring inhibitors was shown to cause disruption of the 

hydrogen bonding network which has previously been shown to be important for 

GH29 inhibition
220

. The crystal structures further served to highlight the likely 

orientation adopted by the aglycons of natural substrates in the GH29-A family and 

allowed the observation of a conserved hydrophobic ridge that is present in all 

GH29-A family members for which crystal structures are known. Kinetic studies of 

the inhibitory activity of these inhibitors on BtFuc2970, when compared with 

previous values against bovine kidney α-ʟ-fucosidase, showed a discrepancy 

whereby inhibition was more potent against the mammalian enzyme than 

BtFuc2970; this may be due to differences in either the pH that inhibition 

experiments were carried out or the inhibitor binding sites in each enzyme.  

BtFuc2970 belongs to polysaccharide utilisation locus 44 of the genome of 

Bacteroides thetaiotaomicron  VPI-5482, which also contains a gene encoding a 

chondroitin AC lyase. It was observed that crystals of this enzyme preferentially 

form in sulfate-containing crystallisation solutions, and that sulfate is invariably 

located proximal to the enzymatic active site, in an area of the enzyme with a 

positive electrostatic potential. It is thus tempting to speculate that the natural 

substrate for this locus may be a form of fucosylated chondroitin sulfate.  More 

detailed biochemical characterisation of the remaining gene products on this locus 

could prove helpful for determination of its biologi cal substrate and function.  

The results presented herein may aid in the design of more potent inhibitors to 

target GH29 α-ʟ-fucosidases, which may have therapeutic relevance due to the 

myriad biological functions the enzyme is involved in . As no X-ray crystal structure 

is yet available for a human GH29 enzyme, i t is uncertain to what extent structural 

insight made on this surrogate system is applicable to the aforementioned, however.   
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Chapter 3: Multivalency in fucosidase inhibition and 

targeting of neoplastic cells by ferrocenyl-

iminocylitols* 

 

Abstract 

As GH29 α-ʟ-fucosidase is implicated, or differentially regul ated in a number of 

disease phenotypes, there is a need for the generation of more potent inhibitors of 

this enzyme class which may be able to probe the biology of these diseases or treat 

them. In nature, multivalency effects often dramatically increase th e affinity of 

interactions between carbohydrates and lectins, and it may be possible to harness 

this multivalency effect in the inhibition of carbohydrate processing enzymes. Since 

upregulation of human GH29 α-ʟ-fucosidase is a known determinant of oral, b reast 

and liver neoplasias, the use of pharmacophore -containing α-ʟ-fucosidase inhibitors 

may provide a route for chemotherapy of these cancers. We report herein 

crystallographic structure determination of complexes of GH29 enzyme BtFuc2970 

liganded with a monovalent α-ʟ-fucosidase inhibitor and its trivalent counterpart at 

1.7 and 1.68 Å respectively, coupled with kinetic data for their inhibition of 

BtFuc2970. These data are used to conclude that multivalency affinity 

enhancements by chelation are geometr ically impossible and those by stastistical 

rebinding are unlikely to be seen in this case due to the low valency of the 

compounds. Further, the 1.88 - 2.30 Å crystal structures of α-ʟ-fucosidase 

configured iminosugars coupled to ferrocene pharmacophores a re reported. While 

these compounds are shown to bind in the GH29 active site and others have shown 

they have anti-proliferative action on the MDA-MB-231 breast cancer cell line, 

further experiments would be needed to assess their clinical usefulness.  

 

 

 

 

*This work is published in Moreno-Clavijo, E.  et al. Eur J Org Chem 2013, 7328-

7336 (2013) and Hottin, A. et al. Chem-Eur J 19, 9526-9533 (2013).  
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3.1 Introduction  

As GH29 α-ʟ-fucosidase is implicated or differentially regulated in a number of 

disease phenotypes, there is a need for the generation of more potent inhibitors of 

this enzyme class. In nature, multivalency effects are often found in the interactions 

of carbohydrates with their lectin receptors. These effects can dramatically ( ca. 6 

orders of magnitude) increase the affinity of a carbohydrate -lectin interaction,
237

 

and it may be possible to harness this multivalency in the inhibition of carbohydrat e 

processing enzymes.
238

 

  

3.1.1 Multivalency effects in carbohydrate recognition  

Carbohydrates typically bind only weakly with their receptors, rarely with 

dissociation constants lower than 10
-6

 M
239

;  this property can be of biological 

importance e.g.  in the binding of selectins to their ligands in the inflamm atory 

cascade
45

. Nevertheless, carbohydrate-receptor interactions are widespread and 

critical throughout biology, and some of the roles of carbohydrate interactions 

require tight binding between carbohydrates and their receptors.  

It has been known for many years  that mutlivalency or avidity effects are often 

exploited by nature in the interaction of carbohydrates with their receptors, ranging 

from species with low valency values to the high -order multivalency achieved by 

species such as viruses
239

. The availability of multivalent binding mechanisms for 

carbohydrates may lead to enhancement of the affinity of a particular interaction 

over what would be expected were the affinity to be corrected on a per subunit 

basis, hence providing access to the large affinities required for many biological 

processes. This effect is termed the ‘cluster glycoside effect’.
240

 Enhancements in 

binding affinity gained through this mechanism require a receptor lectin with 

multiple carbohydrate binding sites, and ligands containing multiple carbohydrates, 

such as the glycans expressed in the glycocalyx; expansion of oligosaccharides 

resembling N-acetyllactosamine glycans from monoantennary to triantennary has 

been shown to increase their affinity for mammalian hepatic lectins by 6 orders of 

magnitude
241

.  

During multivalent binding, rotational and translational entropic costs only need to 

be paid during the first binding event, thereby enhancing the affinity of the second 

sub-ligand binding event
239,242

; multivalency affinity enhancements achieved in this 

way can be as high as 10
3
-10

6
 fold

237
. A number of mechanisms exist whereby 

multivalency can effect the tighter overall binding of a ligand to its receptor 
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(Figure 3.1).
237

 Chelation effects may occur when a multivalent ligand is able to 

bind simultaneously to multiple receptor sites on a single receptor, in this case a 

long enough linker region is required to allow individual subunits to span the 

distance between adjacent receptor binding sites. When linkers separating ligand 

subunits are too short for this, affinity enhancements may occur due to “statistical 

rebinding” or “proximity effects”. These are caused by the slower dissociation of a 

ligand when multiple (sub)ligands are available for interaction with a receptor due 

to the higher local concentration of sub -ligands.
237

 Clustering of receptors on cell 

surfaces is also common in nature, providing a high concentration of receptor 

moieties in a limited volume, to which multivalent inhibitors may bind. This 

clustering is a particularly prominent feature of lectins involved in cellular 

adhesion and signal transduction roles. 

 

 

Figure 3.1. Mechanisms by which a ligand may interact through multivalency.  

 

While multivalent ligands capable of chelating lead to very high multivalency 

affinity enhancements, which are optimal with relatively low valencies of under ca. 

10, this is not the case for those ligands that may only garner “statistical rebinding” 

affinity enhancements; these ligands are able to achieve only weaker affinity 

enhancements of up to 2000-fold, and achieve these only with very high valency of 

the carbohydrate moiety.
237

 

As mentioned previously, the adhesion and colonisation of a number of bacteria to 

their host is mediated by interactions between carbohydrates and their receptors. In 

some cases, multivalency effects are taken advantage of during t he colonisation or 

pathogenicity of a prospective resident of the host.  For example, the pathogenic 
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bacterium Pseudomonas aueruginosa , which was discussed briefly in Chapter 1, 

harbours tetrameric lectins, LecA and LecB, which bind to galactose and fucose,  

respectively
243,244

. The synthesis and evaluation of multivalent ligands for both of 

these lectins has been reported in the literature. For multivalent inhibition of LecB, 

Johansson et al  produced two 15,625 member combinatorial libraries of amino-acid 

based dendrimer scaffolds appended with four fucose units by solid -phase peptide 

synthesis.
245

 The compounds thus generated displayed a range of affinities towards 

LecB, with the best compounds showing a 100-fold affinity enhancement over 

fucose alone. Further, these compounds were able to inhibit P. aeuruginosa  biofilm 

formation, with the most potent inhibitor showing complete inhibition at 50 µM, 

and disperse existing colonies of P. aeuruginosa .
245

     

Interestingly, Brissonnet et al. recently reported the synthesis of iminosugar coated 

dextran polymers and their evaluation as multivalent ligands of carbohydrate 

processing enzymes, rather than lectins.
238

 The authors generated dextran polymers 

of varying size functionalised with the iminosugar glycosidase hydrolase inhibitors 

deoxynojirimycin (DNJ) and deoxymannonojirimycin (DMJ). These compounds 

were then tested as inhibitors of a panel of glycoside hydrolases including the α-ʟ-

fucosidase from Thermotoga maritima  and a mannoside phosphorylase from an 

uncultured Bacteroides strain. Surprisingly, while multivalency effects of up to 70 -

fold were reported, some of the enzymes tested even had their catalytic activities 

increased in the presence of DNJ or DMJ -coated dextrans, where it would be 

expected that the iminosugar inhibitors DNJ and DMJ bind in the active site and 

inhibit the enzymes. It is unclear what the basis is for the activation of these 

enzymes, but it may be due to non-specific allosteric factors or the compounds 

promoting alternative reaction pathways such as transglycosylation which compete 

for availability of active substrate.  

 

3.1.2 Searching for determinants of neoplasia  

Cancer remains one of the leading causes of death throughout the world,
72

 and thus 

it is not at all surprising that the research field is both voluminous and rapidly 

growing (a search of PubMed for articles published in 2014 with title including 

‘cancer’ had more than 55,000 hits, while the same search of previous years have 

successively fewer hits in a linear trend).  
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One of the most difficult hurdles to overcome in treatment of cancer is overcoming 

the remarkable phenotypic and functional heterogeneity possessed by neoplastic 

cells. It is believed that this heterogeneity is due to the differentiation of ‘cancer 

stem cells’ into mature cells with diverse phenotypes.
246, 247

 In the ‘cancer stem cell’ 

model, not all tumour cells are thought to be equal, with tumour growth being 

driven by relatively few tumourigenic stem cells that are capable of self -renewal 

and are incredibly resistant to stress, i.e. have features typical of normal stem cells. 

This model is popular as it helps to explain a number of the features associated with 

cancer in the clinical setting, e.g. that while therapy may be effective in the short -

term, rarely does recurrence of the tumour not occur in the long term.  

Due to the phenotypic diversity exhibited by neoplastic cells, common determinants 

(biomarkers) shared by many tumour cells from cancers of the same organ, or even 

multiple organs, are pivotal to the diagnosis, prognosis, and the decision of an 

appropriate therapeutic course for cancer.
248

 One effective methodology for cancer 

chemotherapy is to find means to target cell disruption preferentially to neoplastic 

cells over healthy cells by utilising differences that  exist between these two cell 

types.
249

 

GH29 α-ʟ-fucosidase is known to be systematically upregulated in some cancers, 

including oral
197

, breast
84

 and liver
83

 neoplasias. It may thus be envisaged that the 

use of compounds containing selectivity elements towards α-ʟ-fucosidase along 

with a pharmacophore warhead may allow the targeted disruption of tumour cells in 

patients with these cancers (Figure 3.2). This hypothesis does, however, hinge on 

the existence of a partitioning effect whereby the concentrati on of compounds of 

general form displayed in Figure 3.2 is higher around cells expressing higher levels 

of α-ʟ-fucosidase. 

Ferrocenium salts are potent cytotoxic agents that are thought to act as such by 

their generation of reactive oxygen species (ROS) in  cells
250

. Administration of 

ferrocenyl compounds into the body may lead to deleterious effects as ROS would 

have cytotoxic activities on all cells in a dose -dependent fashion, however 

neoplastic cells have an increased basal level of ROS and are particularly 

vulnerable to ROS-induced DNA damage mechanisms
251, 252

, making compounds 

containing this functionality particularly good pharmacophores for cancer cell 

disruption. Further, if directed by means of a selectivity moiety towards the 

biomarker α-ʟ-fucosidase (Figure 3.2), these species may provide a particularly 

efficient means for the disruption of oral, liver and breast cancers.  
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Figure 3.2. Schema of a targeted chemotherapeutic. The selectivity element allows 

targeting towards a particular neoplasia determinant while the pharmacophore 

effects cell disruption and the linker element joins these two functional elements 

together. 

 

Herein, we aim to address the potential for a multivalent ligand configured for α-ʟ-

fucosidase inhibitory activity to provide  an affinity enhancement over its 

monovalent counterpart, by structural and kinetic means. Further, the crystal 

structures of three compounds designed as potential chemotherapeutics comprising 

an α-ʟ-fucosidase inhibitory scaffold and ferrocenyl aglycons are reported and the 

potential for the use of these compounds in chemotherapy is discussed. The 

syntheses of compounds described in this chapter, and their K i values against 

bovine kidney α-ʟ-fucosidase were realised by collaborators at the Universities of 

Reims and Seville, and their collaboration is acknowledged.  
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3.2 Materials and methods 

3.2.1 Gene expression and protein purification 

Expression and purification of BtFuc2970 was effected as described previously in 

2.2.1. 

 

3.2.2 Inhibitors 

Further 5-membered iminosugar compounds configured as inhibitors of α-ʟ-

fucosidase enzymes (see Chapter 2) were received from collaborators (research 

groups of Profs. Jean-Bernard Behr at the University of Reims and Inmaculada 

Robina at the University of Seville). The compounds discussed in this chapter are 

displayed in Table 3.1. The syntheses of compounds 8-9, 11-12, along with their 

inhibition data towards bovine kidney α-ʟ-fucosidase are documented (publications 

given in Table 3.1). Compounds 10 and 13 currently lie outside the scope of the 

scientific literature and thus do not have published syntheses. Compounds 8-9, 11-

12 have been reported to display inhibition of bovine kidney fucosidases. 

Compounds 8 and 9 were further tested for inhibitory activity towards other 

glycosidases and shown only to inhibit α-ʟ-fucosidase
212

.  
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Table 3.1. 5-membered iminocyclitols described in chapter  3. 

Compound 

number 

IUPAC name Structural formula 

8
253

 (2S,3S,4R,5S)-2-Benzylcarbamoyl-5-

methylpyrrolidine-3,4-diol 

 
9

253
 N,N',N’’-(1,3,5-

phenylenetris(methylene))tris-

[(2S,3S,4R,5S)-3,4-dihydroxy-5-

methylpyrrolidine-2-carboxamide] 

 
10 1,4-

bis[(2S,2’S,3S,3’S,4R,4’R,5S,5’S)-5-

methyl-3,4-dihydroxypyrrolidin-2,2’-

yl]-butane 

 
11

254
 (2S,3S,4R,5S)-2-[N-

(methylferrocene)]aminoethyl-5-

methylpyrrolidine-3,4-diol 

 
12

254
 (2S,3S,4R,5S)-2-[N-

(propylferrocene)]aminoethyl-5-

methylpyrrolidine-3,4-diol  

 
13 1-(3-ferrocenylprop-2-enyl)-4-

[(2S,3S,4R,5S)-5-methyl-3,4-

dihydroxypyrrolidin-2-yl]-triazole 
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3.2.3 Enzyme kinetics 

The α-ʟ-fucosidase activity of BtFuc2970 and its inhibition by compounds 8-13  

were probed; enzymatic assays were conducted as described in 2.2.3.  

3.2.3.1  Enzyme inhibition 

The inhibition of BtFuc2970 by compounds 8-13 was studied by in each case 

determining non-inhibited rate and inhibited rate at various concentrations of 

inhibitor. Each solution contained (1 mL total volume) 50 mM HEPES buffer, 100 

mM NaCl (pH 7.4), 250 nM BtFuc2970 and a known concentration of inhibitor; 50 

µM CNP-fucoside was added to this to initiate hydrolysis. Data analysis was carried 

out as described in 2.2.3.2. Inhibition plots used for the determination of K i values 

of 8-13 are displayed in Figure 3.3. 

 

Figure 3.3. Plots showing inhibition of BtFuc2970 activity by compounds 8-13.    
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3.2.4 Crystallisation and structure determination 

3.2.4.1  Crystallisation 

Crystallisation experiments were conducted as described previously in 2.2.4.1.  

Crystals of BtFuc2970 liganded with compounds 8-9 were obtained by adding solid 

powder of each compound directly to a drop containing one or multiple crystals of 

BtFuc2970 using an acupuncture needle.  

Soaking crystals of BtFuc2970 with compounds 11 or 12 led to visible crystal 

cracking and poor diffraction quality. As such, co -crystallisation of BtFuc2970 with 

these compounds was effected. To this end, BtFuc2970 (24 mg mL
-1

) was incubated 

with 11 or 12 (solutions of 11 and 12 dissolved at 4 mM in 20 mM HEPES, 100 mM 

NaCl, pH 7.0) in 1:1 stoichiometry for ca. 1 hour prior to setting up crystallisation 

experiments. Crystals obtained in this way were cryo -protected by transfer into 

solutions containing mother liquor supplemented with 20% glycerol and 

subsequently cryo-cooled in liquid N2.  

For compounds 10  and 13, crystals were transferred to a new crystallisation drop (1 

µL, 30% w/v PEG 3350, 0.2 M ammonium sulphate, 0.1 M HEPES, pH 7.0). To this 

solution, 1 µL of 10 or 13 (dissolved at 10 mM in 10 mM HEPES, 100 mM NaCl, 

pH 7.0) was added. After incubation for at least ca. 30 m, these crystals were 

transferred to cryo-protectant solutions containing mother liquor supplemented with 

20% glycerol and cryo-cooled using liquid N2.  

Diffracting crystals of BtFuc2970 complexed with each of inhibitors 8-13 were sent 

to Diamond Light Source (9-13) or the European Synchrotron Research Facility (8) 

for data collection.  

 

3.2.4.2  Crystallisation conditions 

Unless otherwise noted, crystallisation drops were set up in a 1:1 ratio of protein to 

mother liquor and BtFuc2970 was added as a 12 mg mL
-1

 solution (final 

concentration after dilution 6 mg mL
-1

). All crystallisation experiments were 

performed at ca. 18 ºC. 

BtFuc2970-8 

Mother liquor: 13.5% w/v PEG 6K, 0.099 M ammonium sulfate, 0.09 M imidazole 

pH 7   
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BtFuc2970-9 

Mother Liquor: 12.75% w/v PEG 6K, 0.1105 M ammonium sulfate, 0.085 M 

imidazole pH 7 

BtFuc2970-10 

Mother liquor: 20% w/v PEG 3350, 0.1 M ammonium sulphate, 0.1 M imidazole pH 

7.0 

BtFuc2970-11  

Mother liquor: 14% w/v PEG 6K, 0.12 M ammonium sulfate, 0.1 M imidazole (pH 

7) 

Equal volumes of BtFuc2970 at 24 mg mL
-1

 and 10 (4 mM in 50 mM HEPES 100 

mM NaCl (pH 7)) were incubated at room temperature for ca. 1 h prior to setting up 

the crystallisation experiment.  

BtFuc2970-12 

Mother liquor: 16% w/v PEG 6K, 0.13 M ammonium sulfate, 0.1 M imidazole (pH 

7)  

Equal volumes of BtFuc2970 at 24 mg mL
-1

 and 11 (4 mM in 50 mM HEPES 100 

mM NaCl (pH 7)) were incubated at room temperature for ca. 1 h prior to setting up 

the crystallisation experiment.  

BtFuc2970-13 

Mother liquor: 20% w/v PEG 3350, 0.1 M ammonium sulphate, 0.1 M imidazole pH 

7.0 

 

3.2.4.3  Structure determination 

Diffraction images for crystals of each inhibitor complex were indexed and 

integrated using either XDS
225

 or iMOSFLM
226

. POINTLESS
227

 was used to 

determine the crystallographic space group in each case, and structure factor 

amplitudes were scaled and merged using SCALA
227

 or AIMLESS
228

.  

The crystals of BtFuc2970 complexed with compounds 8-9 grew in space groups 

similar to those described herein in 2.2.4.3 for apo-BtFuc2970 and BtFuc2970 

complexed with compounds 1-4. As the space group of each inhibitor complex of 

BtFuc2970 liganded with complexes 8-9 was almost isomorphous to the apo-crystal, 
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coordinates from the apo-crystal structure were used directly for determination of 

the inhibitor complex structures; R free sets were assigned as they had been for the 

apo-crystal structure to maintain the uniqueness and integrity of the cross -

validation Free R set . Coordinate sets and maximum likelihood refinement target 

values for each of compounds 8-9 were generated using CHEMDRAW3D and the 

PRODRG online server
232

. Inhibitor coordinates were initially added at 0.01 

occupancy to prevent automatic addition of solvent into ligand density when using 

the COOT ‘find waters’ function whilst minimising model bias. At late stages of 

refinement the ligand occupancy was increased to 1.0.   

The crystals for compounds 10-13 grew in a crystal form almost isomorphous with 

that previously reported on apo-BtFuc2970 (PDB code 2WVV
184

). In this case 

coordinates from the apo-crystal structure of PDB code 2WVV (non-protein atoms 

removed) were used directly for determination of the inhibitor complex structures; 

R free sets were assigned as they had been for the apo-crystal structure to maintain 

the uniqueness and integrity of the cross -validation Free R set. Compounds 10-13 

contain ferrocenylamine aglycon moieties that preclude dictionary creation and use 

in refinement using current versions of PRODRG and REFMAC. Maximum 

likelihood refinement target values and a coordinate set for each of these ligands 

were thus kindly generated manually by Garib Murshudov (Medical Research 

Council Laboratory of Molecular Biology, Cambridge).  

Final models for compounds 8-13 were validated using MOLPROBITY.
233

 X-ray 

data for compounds 8-9, 11-13 were deposited with the RCSB Protein Data Bank 

(www.rcsb.org
234

, Table 3.2).  
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Table 3.2a. X-ray data collection and refinement statistics for the crystal structures 

discussed in Chapter 3.  

 BtFuc2970-8  BtFuc2970-9  BtFuc2970-10  

Data collection    

Beamline/Date  ESRF ID23-2 

21.11.2011 

DLS I03 

12.12.2011 

DLS I03 

02.02.2014 

Wavelength (Å) 0.8726 0.9763 0.97625 

Cell dimensions       

  a ,  b ,  c (Å) 67.5, 95.4, 97.2 68.4, 96.0, 97.2 56.1,187.7,97.6 

   ()  90, 90.1, 90 90, 91.3, 90 90,94.2,90 

Resolution (Å)  97.1-1.57 48.7-1.68 67.6-1.83 

Rmer ge  0.095(0.50) 0.096(0.54) 0.09(0.79) 

I / I  6.6(1.7) 9.7(2.5) 6.8(1.5) 

Completeness (%) 99.0(99.6) 100(100) 99.8(99.8) 

Redundancy 3.8 3.2 3.8(3.9) 

Wilson B value  15.1 21.4 34.7 

 

Refinement 

   

Resolution (Å)  97.1-1.7 48.7-1.68 67.6-2.10 

No. reflections 135052 141053 110778 

Rwor k  / R f ree  0.125/0.167 0.166/0.192 0.19/0.23 

No. atoms    

  Protein 7225 7187 14332 

  Ligand/ion 96 136 140 

  Water  1130 1055 773 

B-factors (Å
2
)     

  Protein 16.0 23.7 44.0 

  Ligand/ion 31.7 44.3 60.7 

  Water  30.4 34.6 42.9 

R.m.s. deviations     

  Bond lengths (Å)  0.018 0.011 0.014 

  Bond angles ()  1.7 1.3 1.5 

Ramachandran 

Statistics (%) 

   

  Preferred 96.3 96.5 96.1 

  Allowed 2.9 2.8 2.9 

  Outliers 0.8 0.7 1 

PDB codes 4JL2 4JL1 Not yet deposited  

*Values in parentheses are for highest -resolution shell.  
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Table 3.2b. X-ray data collection and refinement statistics for the crystal structures 

discussed in Chapter 3.  

 BtFuc2970-11  BtFuc2970-12  BtFuc2970-13  

Data collection    

Beamline/Date  DLS I04-1 

8.3.2012 

DLS I03 

16.9.2012 

DLS I03 

02.02.2014 

Wavelength (Å)  0.9173 1.200 0.97625 

Cell dimensions      

  a ,  b ,  c (Å) 55.5,187.0,97.7 56.5,189.0,97.5 56.5,188.8,98.1 

   ()  90, 94.2, 90 90, 94.1, 90 90,93.9,90 

Resolution (Å)  97.4-1.71 97.3-1.72 68.0-2.01 

Rmer ge  0.07(0.43) 0.07(0.98)* 0.11(0.90) 

I / I  10.9(2.8) 14.4(1.8) 5.9(1.2) 

Completeness (%) 96.7(95.0) 99.9(99.9) 99.7(99.7) 

Redundancy 4.0 6.3 3.7(3.7) 

Wilson B value 23.2 42.1 36.8 

 

Refinement 

   

Resolution (Å)  97.4-1.88 97.3-2.10 68.0-2.30 

No. reflections 155246 112918 85655 

Rwor k / R f ree  0.192/0.222 0.21/0.24 0.20/0.24 

No. atoms    

  Protein 14138 13859 14259 

  Ligand/ion 172 155 153 

  Water 732 215 445 

B-factors    

  Protein 30.7 54.0 52.2 

  Ligand/ion 68.7 90.8 102.7 

  Water 30.2 45.5 44.1 

R.m.s. deviations     

  Bond lengths (Å)  0.017 0.013 0.013 

  Bond angles ()  1.7 1.4 2.4 

Ramachandran 

Statistics (%) 

   

  Preferred 96.7 95.7 94.6 

  Allowed 2.4 3.4 4.0 

  Outliers 0.9 0.9 1.4 

PDB codes 4JFV 4JFW Not yet deposited  

*Values in parentheses are for highest -resolution shell.  
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3.3 Results and Discussion 

3.3.1 Multivalency effects in fucosidase inhibition 

Inhibitory constant K i values determined for inhibition of BtFuc2970 by compounds 

8-10 in this work are displayed in Table 3.3, along with those reported for 

inhibition of bovine kidney fucosidase
253,255

.   

Table 3.3. Inhibition of BtFuc2970 and bovine kidney α-ʟ-fucosidases by 

compounds 8-10.  

Compound  Ki vs. BtFuc2970 / µM (values in 

parens: fitting error from linear fit in 

Origin) 

Ki vs. bovine kidney fucosidase / µM 

8 4.7 (0.3) 2.1 

9 0.75 (0.02) 0.3 

10 1.1 (0.03) 0.023
255

 

 

The inhibitory potencies of iminocyclitols 8  and 9  as calculated against both 

BtFuc2970 and bovine kidney α-ʟ-fucosidases are in good agreement, with K is being 

slightly weaker against BtFuc2970 by a factor of ca. 2.5. 10, however, appears to be 

a far more potent inhibitor of bovine kidney α-ʟ-fucosidase (23 nM) than BtFuc2970 

(1.1 µM); it is uncertain what the cause of this discrepancy is.  

 

3.3.1.1  X-ray crystallography and structural analysis  

In the datasets where compounds 8-10 were soaked into crystals of BtFuc2970, the 

compounds were unambiguously present in the crystal structures as evidenced by 

clear peaks in their likelihood-weighted Fo-Fc maps after refinement of protein, 

solvent and other ions but before the inclusion of compounds 8-10  in refinement 

(Figure 3.4) 
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Figure 3.4. Figures of compounds 8-10, respectively, lying in the active site of 

BtFuc2970. Atoms of compounds 8-10 are coloured by atom type (carbon in grey). 

The catalytic nucleophile Asp
229

 and acid/base Glu
288

 of BtFuc2970 are displayed 

coloured by atom type (carbon in green, residues are annotated for BtFuc2970:8). 

Electron density from likelihood-weighted Fo-Fc maps calculated before the 

incorporation of phases from compounds 8-10 in refinement is displayed, contoured 

at 5 σ (8), 3 σ (9), or 2 σ (10). Figures were drawn using CCP4MG
183

.  

 

The interactions made between the iminocyclitol cores of compounds 8-10 and the 

enzyme are identical to those observed for compounds 1-7, and these inhibitors bind 

in an E3 conformation as seen previously (see section 2.4.2.2). The aglycons of 8  

and 9 observed crystallographically are however poorly ordered. 9 displays two 

separate binding modes, in one of which the exocyclic amide carbonyl group forms 

hydrogen bonding interactions with Nε2 of His
166

 and Nε1 of Trp
88

. The binding 

modes of 8 and 9 are displayed in Figure 3.5, highlighting the conformational 

flexibility displayed by the inhibitor aglycons.  Each crystal structure comprises two 

independent observations of the ligand occupancy, and in each crystal structure, one 

of the independent observations is better resolved than the other. The aryl groups of 

8 and 9 occupy different positions as observed in crystal structure ( Figure 3.5). 
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This is thought to be a crystallographic artefact, however, as the ‘better’ 

observation of 8  is in close crystal contact with another protomer. The aryl moiety 

of 9 is observed to stack atop the hydrophobic ridge formed by BtFuc2970 residues 

Trp
88

 and Trp
232

 (this ridge is discussed in more detail in 2.4.2.3). This strong 

hydrophobic interaction also helps to explain the more potent α-ʟ-fucosidase 

inhibition of 10 over 8 and 9 (K i = 0.023 vs.  2.1 and 0.3 µM respectively, Table 

3.3). 

 

 

Figure 3.5. Monovalent 8 and trivalent 9 show disorder and alternate binding 

modes. The independent crystallographic observations of 8 and 9  were superposed, 

and are displayed as cylinders coloured by atom type (carbon atoms from 8 in grey, 

from 9  in green). The figure was drawn in wall -eye stereo using CCP4MG.
183

 

 

Structural and kinetic data were analysed to determine the existence of a 

multivalency effect in the binding potency of α-ʟ-fucosidase inhibitors. The closest 

distance between adjacent BtFuc2970 active sites in the crystal packing 

arrangement is ca. 45 Å. This is similar to the closest distance observed in the 

crystal structure of the GH29 enzyme from Thermotoga Maritima , which is slightly 

lower at ca. 40 Å. This large distance would preclude the binding of multiple fuco-

configured moieties decorated around a single scaffold (as in 9) through a chelation 

mechanism due to the short linker not allowing chelate binding .  

Compound 9 is a ca . 7 times more potent fucosidase inhibitor than its monovalent 

counterpart 8, against both bovine kidney fucosidase and BtFuc2970 (0.3 vs. 2.1 µM 

and 0.7 vs. 4.7 µM respectively, Table 2.). From these data it could be concluded 

that affininity enhancement due to a statistical rebinding effects was possible, 

however, a divalent analogue of 8 and 9 is a weaker inhibitor of bovine kidney α-ʟ-

fucosidase than its monovalent and trivalent counterparts ( K i = 4 µM vs. 0.3 µM 

and 2.1 µM, respectively
253

). Other sets of mono/multivalent compounds tested also 

seemed to show no significant improvement in binding affinity for multivalent 
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inhibitors over monovalent ones, or even poorer activity for the multivalent 

species.
253

 It is thus perhaps more likely that the affinity enhancement seen in the 

case of compounds 8  and 9  is due to entropic effects rather than statistical 

rebinding effects. This is in agreement with the observation that affinity 

enhancements for multivalent ligands interacting through a statistical rebinding 

mechanism require there to be a large number of subunits to attain a multivalency 

affinity enhancement.
237

 The expansion of this framework from a small molecule 

synthesis with low valency of α-ʟ-fucosidase inhibitory moieties  to that of larger 

compounds with much higher valency may however prove to be effective; this 

approach has been applied before with ligands not configured specifically towards 

α-ʟ-fucosidase, which were intriguingly shown to activate Thermotoga maritima  α-

ʟ-fucosidase rather than inhibit it
238

. 

Compound 10 is a divalent α-ʟ-fucosidase inhibitor comprising two 5-membered 

iminocyclitols configured for α-ʟ-fucosidase inhibitory activity and a short C 4 

alkane linker. Interestingly, the entirety of the second iminocyclitol moiety i.e. that 

which is not binding to the enzymatic active site, is observed crystallographically, 

cf. the disorder seen for the aglycon of compound 9. The crystallographic space 

groups for BtFuc2970 complexes with 8 and 9 are different to that for the complex 

with 10 (Table 3.3a), although as ample solvent channels are observed close to the 

active site in both structures, this should have no bearing on aglycon 

conformational flexibility. The second iminocyclitol moiety of 10 is however 

observed to lie atop Trp
232

, one of the two tryptophan residues that form the 

conserved GH29 hydrophobic ridge (Figure 3.6). Non-specific interactions between 

carbohydrate moieties and aromatic amino acid side -chains are a common feature of 

carbohydrate binding, e.g. in the binding of sugars other than those flanking the 

scissile bond in endo-acting glycoside hydrolases with broad substrate 

specificity.
256

 Further, the iminocyclitol ring, which should have partial positive 

charge at the pH of crystallogenesis and data collection, may make electrostatic 

interactions with the electron-rich Trp π-system. The binding of the second subunit 

of 9 to Trp
232

 of BtFuc2970 thus potentially explains the observation of clear 

electron density for this moiety cf. that of the additional subunits of 9, which may 

not bind in this position due to sterics.  
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Figure 3.6. The second subunit of 10 binds above residue Trp
232

. Compound 10 and 

the side-chains of BtFuc2970 active site residues Asp
229

 and Glu
288

, and that of 

residue Trp
232

 are displayed as cylinders coloured by atom type (carbon atoms from 

10 in grey). Surfaces of Trp
232

 and the atoms forming the second subunit of 10 are 

drawn, coloured in coral (Trp
232

) and cyan (10). Orthogonal images were drawn 

using CCP4MG.
183

  

 

3.3.2 Pharmacophore targeting towards α-ʟ-fucosidase 

K is determined for inhibition of BtFuc2970 by compounds 11-13 are displayed in 

Table 3.4, along with those determined for inhibition of bovine kidney 

fucosidase
255,257

.   

 

Table 3.4. Inhibition of BtFuc2970 and bovine kidney α-ʟ-fucosidases by 

compounds 11-13.   

Compound  Ki vs. BtFuc2970 / µM (values in 

parens: fitting error from linear fit in 

Origin) 

Ki vs. mammalian fucosidase / µM 

11 0.52 (0.01) 0.29 

12 0.46 (0.02) 0.29 

13 0.15 (0.005) 0.023
255

 

 

The K i values determined for inhibition of BtFuc2970 and bovine kidney α-ʟ-

fucosidase by compounds 11-13 are in agreement; it has previously been noted that 

this class of compound are more potent inhibitors of bovine kidney fucosidases than 

BtFuc2970 (2.3.1, 3.3.1).  
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3.3.2.1  X-ray crystallography and structural analysis  

In the datasets where compounds 11-13 were either co-crystallised with BtFuc2970 

(11-12) or soaked into crystals of BtFuc2970 (13), the compounds were 

unambiguously present in the crystal structures as evidenced by clear peaks in their 

likelihood-weighted Fo-Fc maps after refinement of protein, solvent and other ions 

but before the inclusion of compounds  10-12 in refinement (Figure 3.7).

 

 

Figure 3.7. Compounds 11-13, respectively, lying in the active site of BtFuc2970. 

Atoms of compounds 11-13 are coloured by atom type (carbon in grey). Fe atoms of 

compounds 11-13 are displayed as grey spheres. The catalytic nucleophile Asp
229

 

and acid/base Glu
288

 of BtFuc2970 are displayed coloured by atom type (carbon in 

green, residues are shown for BtFuc2970:11). Electron density from likelihood-

weighted Fo-Fc maps calculated before the incorporation of phases  from compounds 

11-13 in refinement is displayed, contoured at 3 σ (11), 4 σ (12) or 2 σ (compound 

13). Figures were drawn using CCP4MG
183

.  

 

The aglycons of compounds 11-13 are highly disordered. X-ray data for BtFuc2970 

complexed with 12 were collected at 1.2 Å. At this wavelength, a significant 

anomalous scattering component is observed that is attributed to the ferrocenyl iron 
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atom, confirming its presence in the crystal structure ( Figure 3.8). The high 

temperature factors observed for the aglycons of 11-13  represent their disorder, 

which is likely due to exposure to solvent. Only a small number of protein 

complexes containing ferrocenyl moieties are available in the PDB, in these 

structures the ferrocenyl moieties are all bound in buried hydrophobic regions of 

the protein
258,259

 and it is thus no surprise that the ferrocenyl moieties are observed 

to be conformationally rigid. For the case of 11-13 however, it is reasonable to 

assume that the ligand aglycons are disordered as they are located far from the 

enzyme surface and thus solvent -exposed. 

The only additional electrostatic interaction observed between compounds 11-13  

and BtFuc2970 compared to compounds 1-10 is a hydrogen bond between the 

secondary amine moieties of 11-13 and a sulfate group likely abstracted from the 

crystallisation mother liquor  (this can be seen in Figure 3.8). 

 

 

Figure 3.8. The position of the aglycon of compound 11 in the BtFuc2970 active 

site is supported using anomalous scattering. BtFuc2970 atoms are displayed as a 

white surface. 11 is displayed as cylinders coloured by atom type, with carbon 

atoms in grey. The electron density map shown is an anomalous difference map 

contoured at 5 σ (0.019 e Å
-3

) and is averaged over the four molecules in the 

asymmetric unit. The figure was drawn in wall -eye stereo using CCP4MG
183

.  

 

Compounds 11-13 each display a ferrocenyl pharmacophore appended to the 

iminocyclitol core by an amine linkage. Ferrocenium salts are potent cytotoxic 

agents that are thought to act as such by their generation of reactive oxygen species 

(ROS) in cells, which are thought to induce apoptosis in the affected cell.
250,260

 

Compounds such as 11-13 were designed to test the hypothesis that the α-ʟ-

fucosidase inhibitory moieties they possess may impart selective targeting of the 

ferrocenyl pharmacophores in these compounds towards cells upregulating α -ʟ-

fucosidase (such as neoplastic cells from liver
83

, breast
84

 and oral cancers
197

). 

Neoplastic cells are more vulnerable to ROS-induced cell disruption than healthy 
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cells
251,252

, however the selective targeting of a pharmacophore warhead towards 

cells overexpressing a biomarker such as  α-ʟ-fucosidase may further reduce the 

systemic toxicity imparted by chemotherapeutic agents . 

Compounds 11 and 12 have been reported to show anti -proliferative activity 

towards the MDA-MB-231 breast cancer cell line
254,257

, so clearly the ferrocenyl 

moieties in these compounds have their expected cytotoxic effect. This activity 

does not appear to be correlated to α-ʟ-fucosidase inhibition, as an isomer of 12,  

differing only in its stereochemistry at the anomeric carbon, displays more potent 

inhibition of MDA-MB-231 cells than 12, though it exhibits a 25-fold decrease  in 

inhibition of bovine kidney α-ʟ-fucosidase  (100% vs. 77% inhibition of MDA-MB-

231 cell growth at 50 µM).
254,257

 

It is, however, currently unknown whether compounds 11-13, or any homologous 

ferrocene-containing α-ʟ-fucosidase inhibitors show selectivity in their cytotoxic 

activity towards neoplastic cells over healthy cells. Needless to say, the potential 

for therapeutic use of compounds such as 11-13 would require there to be a 

significantly greater uptake of these compounds by neoplastic cells over healthy 

cells, as otherwise the application of many other ferrocene-containing compounds 

may provide a similar clinical outcome.  
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3.4 Conclusions 

The crystal structures of a mono, di and trivalent compound complexed with the 

bacterial α-ʟ-fucosidase BtFuc2970 are reported. These compounds each contain a 

number of 5-membered iminocyclitol moieties configured towards inhibition of α-ʟ-

fucosidase. Further, their inhibition of BtFuc2970 was evaluated by kinetic studies.  

Analyses utilising the crystal structures and kinetic data of these enzymes further 

indicate that a multivalency affinity enhancement is not possible with a chelation 

effect due to the distance between adjacent GH29 active sites, and that a ‘statistical 

rebinding’ multivalency affinity enhancement does not exist with low subunit (≤ 3) 

valencies, in agreement with the established literature. It may be possible that the 

multivalency effects often seen in carbohydrate binding interactions e.g. in lectins 

are also applicable to glycoside hydrolases however as, recently, a multivalent 

iminocyclitol functionalised dextran was shown to possess multivalent affinity 

enhancements to a number of carbohydrate processing enzymes including the α -ʟ-

fucosidase from Thermotoga maritima .
238

 It is unsure how these multivalent 

compounds interact, as surprisingly they proved to be activators rather tha n 

inhibitors of some of the enzymes tested.  

α-ʟ-fucosidase inhibitors linked to ferrocene pharmacophores were complexed with 

BtFuc2970 and the structure of the resulting complexes were solved using X -ray 

crystallography. As α-ʟ-fucosidase is systematically upregulated in a number of 

cancers including liver, breast and oral cancer, α-ʟ-fucose configured 

iminocyclitols may provide a delivery method for cytotoxic pharmacophores. 

Compounds containing ferrocenyl groups are known cytotoxic agents, potentially 

through their induction of reactive oxygen spec ies-mediated apoptosis. The 

ferrocene groups of the di -functional compounds were observed to point towards 

solvent and make no interactions with the protein itself, as such the aglycon 

moieties were observed to possess significant conformational flexibilit y; 

nonetheless, the position of the ferrocenyl Fe atom was in one case experimentally 

observed by its anomalous scattering component, providing evidence for the correct 

assignment of ligand position. These compounds have been shown to display anti-

proliferative activity against a MDA-MB-231 breast cancer cell line. It is currently 

unknown, however, whether the iminocyclitol component effectively causes 

partitioning of these reagents in vivo towards neoplastic cells rather than healthy 

cells. Without the undertaking of this crucial experiment, it will not be known 

whether this approach has any utility for chemotherapy.  
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Chapter 4: Covalent trapping of α-ʟ-fucosidase by 

activity-based probes* 

 

Abstract 

Activity-based probes (ABPs) are a class of irreversible enzyme inhibitors which 

allow the specific trapping of active enzyme from a milieu of species both in vitro 

and in vivo. Incorporating, or being der ivatised with reporter moieties, they allow 

the quantification, visualisation and tracking of enzyme activity in a variety of 

contexts. We report herein the 1.64-1.92 Å X-ray crystal structures of the bacterial 

α-ʟ-fucosidase BtFuc2970 covalently trapped with two ABP scaffolds at the 

enzymatic nucleophile, unequivocally showing that these ABPs react with only 

active α-ʟ-fucosidase at the enzymatic active site. This is the first time that a  fuco-

configured small molecule containing an electrophilic trap has been 

crystallographically observed bound to an α-ʟ-fucosidase enzyme and provides 

evidence for the postulated mechanism of these ABPs. Fuco-configured ABPs may 

have potential uses in tracking fertility events in vivo and for discovering novel 

enzymes with α-ʟ-fucosidase activity.  

 

 

 

 

 

 

 

 

 

 

*This work is published in Jiang, J. et al. Chem Sci  6, 2782-2789 (2015). 
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4.1  Introduction 

4.1.1  Activity-based probing  

The genomic revolution opened up a wealth of opportunities towards a more 

detailed understanding of human physiology and disease. In the past, classical 

techniques such as proteomics and transcriptomics have been useful in elucidating 

the biological roles of proteins and nucleic acids. To further our understanding of 

the roles of these species in physiology and disease, however, requires more 

information than is available by using these techniques, which are often applied to 

the understanding of global transcription or translation levels. This is due to the 

fact that the biological function of a given species of interest is correlated more 

firmly with activity than mere quantity. Many proteins, for example, require post-

translational events to occur in order for them to carry out their intended function, 

such as their complexation with other proteins or  nucleic acids, glycosylation
109

 or 

phosphorylation
261

, correct localisation in a target compartment, or the proteolytic 

cleavage of a pro-peptide into a mature form
262

. These events rely not entirely on 

the genome-level transcription of a protein, but rather on a complex array of factors 

which may be difficult to disentangle and prove intractable to mimic in vitro. Thus, 

there is a need for tools which can specifically track active enzyme activity in vivo 

and on a biological timescale, and with minimal perturbation of the system under 

study.  

Molecular imaging has proven a powerful tool towards this aim, as the non -invasive 

technique allows the detailed spatiotemporal characterisation of specific targets in 

vivo, or of living cells ex vivo
263,264

. This technique often involves the use of 

molecular probes as reporter groups which have an output visible to microsc opy 

techniques, and can be used to view biological processes in real time in intact cells. 

Molecular probes are used to effect detection of the biological target, and thus 

should have high specificity towards this target.  

A number of strategies exist for the design of probes with specificity towards their 

biological target such as the inclusion of, inter alia, radiolabelled small molecules 

and monoclonal antibodies
264

. For the case of enzymes, known catalytic activ ity can 

be exploited in order to achieve this specificity; compounds that are designed in 

such a way are termed activity-based probes (ABPs) and act by covalently trapping 

an enzyme on the basis of its catalytic mechanism
265-267

.  

Activity-based probes contain a number of features allowing their effective use  

(Figure 4.1)
265

. Chemically reactive warheads allow the covalent and irreversible 
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trapping of an enzyme target. Speci ficity towards a particular enzyme class, and 

potentially to a particular subset of enzymes within a given class, is governed by 

specificity elements; the design of a specificity element allows tuning of reactivity 

to be either very specific, or broad, depending on intended function. Finally, the 

incorporation of a probe or reporter moiety in an ABP allows an output dependent 

on covalent binding of the ABP to its target, and may include the use of fluorogenic 

substrates for quantification or visualisation o f active enzyme in the molecular 

imaging context and/or affinity tags for the isolation of active enzymes of a given 

class from a milieu of species.  

 

 

Figure 4.1. Structural features of activity-based probes (A). Warheads are designed 

to covalently and irreversibly trap an enzyme based on its mechanism. The 

specificity element of an ABP targets its reactivity towards active enzymes on the 

basis of reaction mechanism. ABP probes may be quantitative reporter elements or 

affinity tags, and may be introduced by derivatisation in vivo. Activity-based 

protein profiling shema (B). ABPs are introduced to a milieu of enzymes in vitro or 

in vivo but specifically label a target enzyme class based on activity.  

 

The emergence of bio-orthogonal chemistry as a powerful tool available to the 

enterprising chemical biologist has had many implications on the field of activity -

based protein profiling (ABPP)
267

. This technique can be used for the generation of 

two-step ABPs, that is ABPs that do not contain an intact probe, but contain a 

linker for functionalisation in situ after covalent binding towards their biological 

target (Figure 4.2). This strategy offers a number of advantages over the direct 
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inclusion of probe moieties in an ABP
267

. Perturbation to the biological system is 

likely to be weaker using a two-step approach, and binding of the ABP to its target 

may be more favourable as it more closely resembles a natural substrate. Binding of  

the ABP to off-targets may also be minimised by use of a two-step labelling regime, 

as the lipophilicity of a compound is thought to be linked to its non -specific 

binding
264

. Further, transport of an ABP across the cell membrane for in vivo 

experiments will likely be more favourable without the addition of hydrophobic 

reporter moieties. Examples of bio -orthogonal reactions that have been used in the 

ABPP field include the Staudinger ligation between azide and phosp hine 

moieties
268,269

, and both Cu(I) catalysed and Cu(I) -free azide-alkyne cycloaddition 

reactions
270,271

.  

 

Figure 4.2. The mechanism of activity-based probing by a two-step process. Bio-

orthogonal ligation using the azide -alkyne cycloaddition reaction is a representative 

example of methods which may be used.  

 

The potential scope of ABPP was highlighted by a seminal paper shortly before the 

completion of the human genome project. Liu and co-workers reported the synthesis 

of XVIII (Table 4.1), a compound designed from the fusion of the known serine 

protease inhibitor moiety fluorophosphonate with biotin, allowing the capture of 

trapped proteins through the use of streptavidin affinity chromatography. The 

authors further showed that this compound was able to label a number of serine 

proteases from rat testis. This selective labelling of a protein family in a complex 

medium containing many other species was concluded to be a po werful tool, 

allowing the interrogation of activity (rather than transcription) levels and 

dynamics thereof, of this enzyme class, which has a number of roles in physiology 

and disease. 

Shortly after this, Greenbaum et al. reported the synthesis of two cys teine protease 

ABPs XIX-XX (Table 4.1), containing epoxide moieties as an electrophilic trap. 

These compounds, based on a natural product known to irreversibly inhibit the 
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enzyme class, contained both biotin moieties and an iodinatable phenol moiety. 

While XIX was shown to have activity against a broad panel of cysteine proteases, 

compound XX proved to be specific against the cathepsin family of proteases. 

Further, by using compound XIX, they were able to visualise the changes in 

cysteine protease activity as a function of disease progression in multiple tumour 

cell lines, illuminating the role of these enzymes in cancer development.  

A two-step approach to ABPP was first exploited by Cravatt and co -workers in 

2003, allowing, for the first time, application o f the ABPP platform to the study of 

intact proteomes in vivo
270

. The authors demonstrated that azide -containing 

sulfonate XXI (Table 4.1) could be functionalised in vivo by Cu(I) catalysed 

Huisgen cycloaddition
272

 with rhodamine alkyne. This two-step approach allowed 

the visualisation by fluorescence SDS-PAGE of glutathione S-transferases in vitro, 

in cultured COS cells and in heart tissue homogenates of mice treated with XXI and 

subsequently reacted with rhodamine alkyne. This coupling of  the powerful tool of 

bio-orthogonal reactions with ABPP heralded its application across a variety of 

enzymatic and cellular contexts.  
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Table 4.1. Some activity-based probes described in the literature.  

Compound number Structural formula 

XVIII 

 
XIX 

 
XX 

 
XXI 

 
 

Activity-based protein profiling was first brought into the glycoside hydrolase field 

a year later in 2004, when Vocadlo & Bertozzi demonstrated labelling of a number 

of β-galactosidases by a di -fluorosugar
269

. Their ABP, 6-azido-2,6-dideoxy-2-

fluoro-β-ᴅ-galactosyl fluoride XXII (Table 4.2), was capable of irreversibly 

trapping  β-galactosidase by stabilisation of the covalent enzyme intermediate via 

the 2-fluoro substituent (vide supra), and derivatisation of its pendant azide moiety 

in situ by the bio-orthogonal Staudinger ligation
268

 resulted in a FLAG-tagged 

biochemical probe capable of labelling a number of β -galactosidase enzymes tested. 

The attachment of the sterically undemanding azide tag to the C6 po sition and 

subsequent derivatisation ( i.e. use of a two-step approach) was posited by the 

authors to be critical for efficient labelling of the enzyme, due to the limited 
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hydrophobic cavities present in exo-acting glycoside hydrolases.  Since this first-in-

class, a number of studies reporting ABPP of glycosidases have been reported.  

ABPP may be used to detect novel enzymes with a given activity, as was shown 

elegantly by Vocadlo and co-workers in 2008
273

. After the deposition of an 

inhibitor-bound crystal structure of a Vibrio cholerae GH3 family exo-

glucosaminidase, the authors noted the presence of a large cavity around the 

inhibitor 2-acetamido group. Postulating that this cavity may allow attachment of a 

bio-orthogonal tag for two-step ABPP, the group synthesised compound XXIII 

(Table 4.2), which was indeed able to irreversibly inhibit the Vibrio cholerae  GH3 

enzyme. Functionalisation of this ABP was effected with both FLAG -peptide and 

biotin moieties. Further, application of XXIII to cultures of the opportunistic 

pathogen Pseudomonas aeruginosa  and subsequent bio-orthogonal ligation with a 

biotin-alkyne allowed identification of a potentially clinically important novel GH3 

family enzyme from this organism.  

The use of epoxide containing, sugar configured probes by a number of research 

groups in the Netherlands
274

 exemplifies the potential to use ABPP to track active 

enzyme dynamics in vivo. ABPs XXIV-XXVI  (Table 4.2) reported by these groups 

are selective and incredibly potent irreversible inhibitors of glucocerebrosidase  I, 

the major lysosomal enzyme that catalyses the hydrolysis of glucosylceramide ; 

deficiency in activity of this enzyme causes the lysosomal storage disorder  Gaucher 

disease
275

. Interestingly, use of a two-step ABPP experiment was shown to not be 

needed against this enzyme as, serendipitously, ABPs XXV and XXVI  display more 

potent binding to the enzyme than their azido -counterpart XXIV (K i = 44 nM for 

XXIV v. 7 and 8 nM for XXV and XXVI  respectively), and the BODIPY ABPs were 

still able to enter the cellular compartment in vivo. By utilising the two BODIPY 

ABPs XXV-XXVI, which have different fluorescence emission spectr a, the authors 

were able to conduct pulse-chase experiments on cultured fibroblasts. Incubation 

overnight with red-fluorescent XXVI, followed by the addition of green-fluorescent 

XXV at set time points allowed the authors to approximate the half -life of 

glucocerebrosidase I residency in the lysosome at 30 h, agreeing with literature 

values determined using conventional pulse -chase labelling
276

. Further, the authors 

were able to visualise the differences in glucocerebrosidase I activity in the 

fibroblasts of Gaucher patients with various mutant genes. This result in particular 

showed promise for XXV-XXVI as tools for the diagnosis of Gaucher disease.  

One potential shortcoming of compounds XXV-XXVII as ABPs is that they are 

specific to glucocerebrosidase I, and have no activity against other retaining exo-β-

glucosidases, glucocerebrosidases II and III and lactase/phlorizin hydrolase; these 
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enzymes may also have clinical relevance as glucocerebrosidase III is thought to be 

involved in the detoxification of plant glycosides
277

 and lactase/phlorizin hydrolase 

deficiency is the cause of lactose intolerance
278

. Noting that all exo-β-glucosidases 

are able to hydrolyse 4-methylumbelliferyl-β-ᴅ-glucopyranoside, Overkleeft and co-

workers developed aziridine ABPs such as XXVII (Table 4.2), which contain an 

electrophilic trap between the positions that would equate to the endocyclic oxygen 

and the anomeric carbon of a natural substrate
279

. Upon formation of the covalent 

enzyme intermediate, they expected that the pendant amide moiety would occupy 

approximately the position of the aglycon in natural substrates. Thus, the authors 

posited that this approach should have the ability to label not just 

glucocerebrosidase I, but also the other exo-β-glucosidases, which indeed proved to 

be the case. Further, as this approach exploits the presence of an enzymic cavity at 

the non-reducing end of the -1 sugar, which is a feature in common to all exo-

glycosidases, this approach should have broad utility against this enzyme class
279

.  
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Table 4.2. Some activity-based probes active against glycoside hydrolases described 

in the literature.  

Compound number Structural formula 

XXII 

 
XXIII 

 
XXIV 

 
XXV 

 
XXVI 

 
XXVII 
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4.1.2 Glycosidase inhibition by ring-strained compounds 

Ring-strained heterocycles are potent electrophiles and have use for the study of 

retaining glycoside hydrolases. Epoxyalkyl glycosides such as XXVIII (Table 4.3) 

have been used historically to elucidate the catalytic mechanism of glycoside 

hydrolases including, inter alia , lysozyme
280

 and cellulase
281

. Enzymatic catalysis 

occurs preferentially to the epoxyalkane moiety, labe lling either catalytic 

carboxylate. The covalently trapped glycosidase can further be observed 

crystallographically
282, 283

. Unfortunately, labelling may be on either of the catalytic 

carboxylates so their assignment requires further experimental validation
282

.   

 

Table 4.3. Some ring-strained heterocycles displaying inhibition of  glycoside 

hydrolases described in the literature .  

Compound number Structural formula 

XXVIII 

 
XXIX 

 
XXX 

 
XXXI 

 
XXXII 

 
 

Prior to the availability of bioinformatics approaches to identify the catalytic 

nucleophile of glycoside hydrolases
170

, conduritol B-epoxide XXIX (Table 4.3) was 

used for this purpose against a number of glucosidases such as the human enzymes 

sucrose-isomaltase
284

 and α-glucosidase
285

. As a stable covalent intermediate is 

formed by nucleophilic attack of a glycoside hydrolase upon XXIX, peptic 

digestion and mass spectrometry allowed the identification of candidate enzymatic 

nucleophile residues. 
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Aziridines such as XXX (Table 4.3) offer advantages over epoxides in the study of 

glycoside hydrolases, as aziridine moieties are protonated at physiological pH and 

may form favourable electrostatic interactions with the negatively charged ca talytic 

active site. The first use of an aziridine -based glycoside hydrolase inhibitor was 

reported in 1988 by Tong et al. 
286

, where the authors showed irreversible inhibition 

of coffee bean α-galactosidase by compound XXX. A year later, Caron and Withers 

rationalised that glycosidase inhibition potency should be increased by merging the 

reactivity of epoxy-glycosides with the benefits of a protonated nitrogen atom 

discussed above and reported the synthesis and evaluation of conduritol aziridine 

XXXI (Table 4.3)
287

. This compound did indeed prove to be a potent irreversible 

inhibitor of both α- and β-glucosidases. 

A number of glycosidases complexed with ring-strained heterocyclic inhibitors have 

been observed by X-ray crystallography. In 2005, Sussman and co-workers 

determined the crystal structure of conduritol B -epoxide XXIX (Table 4.3) 

complexed with human glucocerebrosidase I
288

. The observation of a covalent 

adduct between residue Glu
340

 and the anomeric carbon of XXIX in the 2.4 Å 

crystal structure confirmed assignment of the catalytic nucleophile and informed 

identification of two conformationally flexible loop regions. These regions, which 

were conformationally locked in the complex structure but showed flexibility in the 

apo structure of glucocerebrosidase I
289

, were postulated to act as a lid controlling 

active site access; this finding is supported by Gaucher mutations in one of these 

loops. 

The 1.9 Å X-ray crystal structure of cyclophellitol  XXXII (Table 4.3) complexed 

with a GH1 family β-glucosidase from Thermotoga maritima was reported in 

2007
290

. Cyclophellitol, a natural product first derived from the mushroom 

Phellinus  sp.,
291

 was observed covalently bound to the enzyme in a 
4
C1  

conformation.  

ABP glycosides configured with ring substituents mimicking those of ʟ-fucose may 

have utility e.g. as biomarkers for cancer
93,197

 or for cell biology research, 

particularly in fertility, due to the known importance of α-ʟ-fucosidase in this 

field
109

. Herein, the X-ray crystal structures of the bacterial α-ʟ-fucosidase 

BtFuc2970 complexed with two such glycosides  that have specificity towards GH29 

retaining α-ʟ-fucosidases are reported. In the enzyme-ligand complex structures 

(1.64 – 1.92 Å), covalent bonding is observed between the ligands and the 

enzymatic nucleophile, unequivocally showing that these ABPs react with only 

active α-ʟ-fucosidase at the enzymatic active site. Surprisingly, one of the 

compounds appears to bind not in a low energy 
3
S1 conformation, but in the 

3
H4  
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conformation expected for the catalytic transition state. We would like to thank 

collaborators in the research group of Prof. Hermen Overkleeft, without whom this 

work would not have been possible.  
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4.2 Materials and methods 

4.2.1 Gene expression and protein purification 

Expression and purification of BtFuc2970 was effected as described previously in 

2.2.1.  

 

4.2.2 Activity-based probes and scaffolds 

Compounds 14-19 (Table 4.4) were received from collaborators, namely the 

research group of Prof. Herman Overkleeft at the Leiden Institute of Chemistry, 

Leiden University. These compounds either display the characteristics of ABPs ( 17-

19), or have a structure which represents the same reactivity of ABPs against an α-

ʟ-fucosidase target whilst not possessing a reporter moiety (14-16, 16  may however 

be derivatised by bio-orthogonal chemistry to yield 17-19 or other compounds 

bearing a reporter moiety). Syntheses of these compounds are detailed in 
292

.  

Compounds 14-19 have aziridine moieties, located between the positions of a sugar 

substrate that would correspond to the endocyclic oxygen and C1. The 

stereochemistry of the positions which would equate to C2-C5 of a sugar substrate 

are the same as ʟ-fucose. Thus, these compounds were designed to be specifically 

active towards α-ʟ-fucosidase as a target.  
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Table 4.4 Activity-based probes and similar compounds described in chapter 4.  

Compound 

number 

IUPAC name Structural formula 

14 Phenyl((1R,2R,3R,4R,5R,6R)-2,3,4-

trihydroxy-5-methyl-7-

azabicyclo[4.1.0]heptan-7-

yl)methanone 

 
15 1-((1R,2R,3R,4R,5R,6R)-2,3,4-

trihydroxy-5-methyl-7-

azabicyclo[4.1.0]heptan-7-yl)ethan-1-

one 

 
16 8-Azido-1-((1R,2R,3R,4R,5R,6R)-

2,3,4-trihydroxy-5-methyl-7-

azabicyclo[4.1.0]heptan-7-yl)-octan-

1-one 

 
17 8-(4-(4-(5,5-Difluoro-1,3,7,9-

tetramethyl-5H-4l4,5l4-dipyrrolo[1,2-

c:2',1'-f][1,3,2]diazaborinin-10-

yl)butyl)-1H-1,2,3-triazol-1-yl)-1-

((1R,2R,3R,4R,5R,6R)-2,3,4-

trihydroxy-5-methyl-7-

azabicyclo[4.1.0]heptan-7-yl)octan-1-

one 

 
18 8-(4-(4-(5,5-Difluoro-3,7-bis(4-

methoxyphenyl)-5H-4l4,5l4-

dipyrrolo[1,2-c:2',1'-f]-

[1,3,2]diazaborinin-10-yl)butyl)-1H-

1,2,3-triazol-1-yl)-1-

((1R,2R,3R,4R,5R,6R)- 

2,3,4-trihydroxy-5-methyl-7-

azabicyclo[4.1.0]heptan-7-yl)octan-1-

one 
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19 N-((1-(8-oxo-8-

((1R,2R,3R,4R,5R,6R)-2,3,4-

trihydroxy-5-methyl-7- 

azabicyclo[4.1.0]heptan-7-yl)octyl)-

1H-1,2,3-triazol-4-yl)methyl)-6-(5- 

((3aS,4S,6aR)-2-oxohexahydro-1H-

thieno[3,4-d]imidazol-4-

yl)pentanamido)hexanamide 

 
 

4.2.3 Crystallisation and structure determination 

4.2.3.1  Crystallisation 

General practice for crystallisation experiments was as described previously in 

2.2.4.1.  

Crystals of BtFuc2970 liganded with compounds 14 and 15 were obtained by adding 

1 µL compound dissolved at 5 mM in 10 mM HEPES, 100 mM NaCl, pH 7.0 ( 14) or 

20 mM in 0.1 M HEPES, 0.2 M ammonium sulfate, 25% w/v PEG 3350, pH 7.5 (15) 

to drops containing crystals of BtFuc2970. After incubation for at least ca. 30 m, 

these crystals were transferred to cryo-protectant solutions containing mother liquor 

supplemented with 20% glycerol and cryo -cooled using liquid N 2.  

Diffracting crystals of BtFuc2970 complexed with compounds 14 and 15 were sent 

to Diamond Light Source for data collection.  

 

4.2.3.2  Crystallisation conditions 

Unless otherwise noted, crystallisation drops were set up in a 1:1 ratio of protein to 

mother liquor and BtFuc2970 was added as a 12 mg mL
-1

 solution (final 

concentration after dilution 6 mg mL
-1

). All crystallisation experiments were 

performed at ca. 18 ºC. 

BtFuc2970-14 

Mother liquor: 25% w/v PEG 3350, 0.2 M ammonium sulfate, 0.1 M HEPES (pH 

7.5) 
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BtFuc2970-15 

Crystals were obtained through using the micro -seeding technique
293

. A seed stock 

was created by transferring micro-crystals of BtFuc2970 grown in 15% w/v PEG 

3350, 0. M ammonium sulfate, 0.1 M HEPES (pH 7.5) to a microcentrifuge tube 

containing a seed bead (Hampton Research) and supplementing with 50 µL mother 

liquor. Microcrystals were then crushed by the use of a vortex mixer and diluted to 

concentrations of 10
-1

 – 10
-3

 in mother liquor.  

Final crystals were obtained through seeding at a dilution of 10
-3

 into a solution 

containing mother liquor: 21% w/v PEG 3350, 0.2 M ammonium sulfate, 0.1 M 

HEPES (pH 7.5). The final solution in the crystallisation drop comprised a ratio of 

0.5 protein: 0.4 mother liquor: 0.1 seed stock.    

 

4.2.3.3  Structure determination 

Diffraction images for crystals of each inhibitor complex were indexed a nd 

integrated using either IMOSFLM
226

 (BtFuc2970-14) or XIA2
294

 (BtFuc2970-15). 

AIMLESS
228

 was used for data reduction in each case; for BtFuc2970-15, unmerged 

XIA2 data were merged and an R free flag set using AIMLESS.  

The crystals of BtFuc2970 complexed with compounds 14 and 15 grew in an almost 

isomorphous space group to PDB entry 4JFV; and protein atom co-ordinates from 

this entry were used directly to obtain starting phases for refinement. R free sets were 

assigned as they had been for 4JFV to maintain the uniqueness and integrity of the 

cross-validation R free set.  

Coordinate sets and maximum likelihood refinement target values for compounds 14 

and 15 were generated using CHEMDRAW3D and the PRODRG online server
232

. 

Inhibitor coordinates were initially added at 0.01 occupancy to prevent automatic 

addition of solvent into ligand density when using the COOT ‘find waters’ function 

whilst minimising model bias. At late stages of refinement the ligand occupancy 

was increased to 1.0. Dictionaries defining the link between the catalytic 

nucleophile of BtFuc2970 (Asp229) and compounds 14 and 15 were generated using 

JLIGAND
295

.  

Final models for BtFuc2970-14 and BtFuc2970-15 were validated using 

MOLPROBITY
233

 and deposited with the RCSB Protein Data Bank 

(www.rcsb.org
234

).   
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4.2.3.4  Conformations adopted by ABPs in crystal structures 

The conformations adopted by 14 and 15  in their crystal structures bound to 

BtFuc2970 were kindly determined and plotted by Dr. Carme Rovira at the 

University of Barcelona. Cremer-Pople parameters
296

 were determined from PDB 

entries 4WSK and 4WSJ, averaged over the 3 or 4 ligands present in the PDB entry 

(for 14 and 15, respectively). These parameters were then plotted on the 

conformational free energy landscape of BtFuc2970, which was previously 

calculated
184

; further methodological detail is available in the supporting 

information of this reference.   

  



112 

 

4.3  Results and Discussion 

4.3.1 Crystal structure of BtFuc2970 covalently trapped by ABPs 

Initially, a number of attempts were made to determine crystal structures of 

BtFuc2970 complexed with compounds 14, 16-19, by adding both solid powder of 

these compounds, and solubilised compounds to crystallisation drops cont aining 

crystals of BtFuc2970. Ligand binding was, however, only evident in one case, for 

compound 14 .  

Diffraction images for this complex were collected at 1.73 Å resolution, however 

the data quality was anisotropic according to AIMLESS, and data were ref ined to 

1.92 Å, as this was the recommended limit of data usefulness on the basis of half -

dataset correlation
228

(Table 4.5). 14 was observed to be bound to BtFuc2970 clearly 

in 3 of the 4 monomers in the asymmetric unit, before the introduction of phases 

from the ligand in refinement (Figure 4.3). The phenyl moiety of the aglycon of 14  

was however poorly ordered and could only be modelled in 1 monomer of the 4 

present in the asymmetric unit. The final refined Rwork and R free values for this 

complex structure are 0.18 and 0.23 respectively.  

 

Figure 4.3. Compound 14 lying in the active site of BtFuc2970, displayed in wall -

eye stereo. Atoms of compound 14 are coloured by atom type (carbon in grey). The 

catalytic nucleophile Asp
229

 and acid/base Glu
288

 of BtFuc2970 are displayed 

coloured by atom type (carbon in green). The map displayed is a likelihood -

weighted Fo-Fc map from before the incorporation of phases from compound 14 in 

refinement, contoured at 2 σ (14). The figure was created using CCP4MG
183

.  
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Table 4.5. X-ray data collection and refinement statistics for the crystal structures 

discussed in chapter 4.  

 BtFuc2970-14  BtFuc2970-15  

Data collection   

Beamline/Date  DLS i03 02/02/14  DLS i03 18/10/14 

Wavelength (Å)  0.97625 0.97625 

Cell dimensions      

  a ,  b ,  c (Å) 55.6, 186.5, 98.2 55.5, 187.0, 98.2  

   ()  90, 94.2, 90 90, 94.2, 90 

Resolution (Å)  62.17-1.73 93.5-1.64 

Rmer ge  0.095(0.86)* 0.058(0.62) 

I / I  7.0(1.8) 11.2(2.0) 

Completeness (%)  96.9(96.7) 98.1(98.5) 

Redundancy 4.0(3.7) 4.1(4.3) 

Wilson B value 26.1 20.4 

 

Refinement 

  

Resolution (Å)  97.9-1.92 97.9-1.64 

No. reflections 292076 328440 

Rwor k / R f ree  0.18/0.23 0.16/0.19 

No. atoms   

  Protein 14267 14073 

  Ligand/ion 107 81 

  Water 1204 1618 

B-factors (Å
2
)    

  Protein 31.8 25.1 

  Ligand/ion 41.9 24.3 

  Water 36.8 35.3 

R.m.s. deviations    

    Bond lengths (Å)  0.019 0.019 

    Bond angles ()  1.81 1.78 

Ramachandran 

Statistics (%) 

  

  Preferred 95.8 96.7 

  Allowed 3.1 2.4 

  Outliers 1.1 0.9 

PDB codes 4WSK 4WSJ 

*Values in parentheses are for highest -resolution shell.  
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The postulated mechanism by which sugar -configured aziridine-containing 

compounds act to inhibit glycoside hydrolases is by trapping of the enzyme as a 

covalent intermediate, as has been shown previously for the epoxide -containing 

natural product cyclophellitol complexed with β-glucosidase
297

.  SN2-like 

nucleophilic attack of the catalytic nucleophile towards the anomeric position of a 

compound such as 14 would be expected to lead to trans-diaxial ring-opening of the 

aziridine and the formation of a stable covalent intermediate (Figure 4.4). The 

crystal structure of BtFuc2970-14  clearly supports this mechanism, as clear electron 

density is observed for a covalent in teraction between the catalytic nucleophile of 

BtFuc2970 and 14 (Figure 4.5), and since the covalent bond distances refine well to 

between 1.43 and 1.47 Å, as would be expected of an ester C-O bond.  

 

 

Figure 4.4. Proposed reaction schematic for ABP compo unds towards α-ʟ-

fucosidase enzymes. 

 

The interactions made between BtFuc2970 and 14 are displayed in Figure 4.6. The 

cyclohexane core of 14 is held tightly in place by hydrogen bonding interactions, 

and further stabilised by a hydrophobic interaction between Trp
316

 and the C4, O4, 

C5, C6 atoms of 14 (numbering scheme as for ʟ-fucose).   
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Figure 4.5. The covalent interaction between BtFuc2970 and 14, displayed in wall-

eye stereo. Atoms of compound 14 are coloured by atom type (carbon in grey). The 

catalytic nucleophile Asp
229

 of BtFuc2970 is displayed coloured by atom type 

(carbon in green). Electron density displayed is calculated from likelihood -

weighted 2Fo-Fc from final models, contoured at 1 σ. The figure was created using 

CCP4MG
183

.  

 

The crystal structure of a covalent intermediate bound to BtFuc2970 was previously 

determined
184

. This result, PDB entry 2WVS, represents the irreversible binding of 

the difluoro fuco-configured inhibitor 2-fluoro-fucosylfluoride to the enzyme, and 

as such a direct comparison of the interactions formed by these two inhibitors is 

informative. In general, the active sites of these two structures have high homology, 

however there are a few differences which will be discussed.   
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Figure 4.6. Interactions made between 14 and BtFuc2970. A: 3D representation 

drawn using CCP4MG
183

. Hydrogen bonds < 3.2 Å shown as dashed lines. Residue 

Trp
316

 forms a ca. 3.7 Å hydrophobic interaction with 14. B: Schematic 

representation drawn using CHEMDRAW. Protonation states displayed are 

arbitrary. Hydrogen bonds < 3.2 Å shown as dashed lines. Residue Trp
316

 forms a 

ca. 3.7 Å hydrophobic interaction with 14. 

 

A minor shift in atomic coordinates of residue Trp
88 

is observed between the two 

structures, likely causing weakening or loss of a hydrogen bonding interaction 

formed between this residue and the hydroxyl at the C2 position of the inhibitors 

(3.32 Å in 4WSK vs. 3.08 Å in 2WVS). A larger (1.3 Å) displacement is seen for 

residue Trp
232

. Residue Arg
262

, which hydrogen bonds with both the catalytic 
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nucleophile and acid/base residue in 2WVS, is displaced in 4WSK, appearing in a 

conformation whereby hydrogen bonding occurs between this residue and the 

catalytic acid/base Glu
288

 rather than the nucleophile residue Asp
229  

(Figure 4.7). 

Residue 288 has the most striking conformational difference; in 4WSK, the 

enzymatic acid/base residue Glu
288 

is positioned in an inactive conformation, 

located 6.8 Å away from the anomeric carbon of 14, which is too far for Glu
288

 to 

act as a proton donor to a pendant O at this position, Figure 4.7. In 2WVS, 

however, Gln
288

 resides in what would be an active conformation were the residue 

not mutated (the shortest C1-Gln
288

 distance is 5.5 Å). 

As both BtFuc2970-14 (4WSK) and 2WVS are covalent enzyme intermediates of the 

same enzyme, the inactive conformation for the catalytic acid/base observed in 

BtFuc2970-14 is likely to be caused by the extra moieties present in 14 compared to 

2-fluoro-fucosylfluoride. Upon ring-opening of the aziridine of 14, its ‘aglycon’ 

moiety is attached to the position which would equate to that of the endocyclic 

oxygen of a natural substrate.  It is thus postulated that BtFuc2970 does not tolerate 

appendages to this position well due to sterics. Indeed, the aglycon amide oxygen 

forms a close contact (ca. 3.4 Å) with the carbonyl in the enzymatic nucleophile 

A
229

.  

Based on the observations that the aglycon of 14 appears poorly ordered in its 

crystal structure (Figure 4.5) and the inactive conformation observed for the 

catalytic acid/base of BtFuc2970 when complexed with 14, discussion was initiated 

with Prof. Overkleeft about the possibility of synthesising an ABP scaffold with a 

less sterically-demanding aglycon, which may have a higher on -rate and thus 

provide a clearer structure solution. Subsequent to this discussion, compound 15,  

lacking the aryl group of 14, was synthesised and soaked into crystals of 

BtFuc2970, yielding a crystal s tructure of the covalent adduct formed.  
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Figure 4.7. The active site of BtFuc2970 in PDB entries 4WSK (this work, 

BtFuc2970-14) and 2WVS (BtFuc2970 E288Q mutant covalently bound to 2 -fluoro-

fucosylfluoride
184

). Sidechain atoms of residues Asp
229

, Arg
262

, 288 (Glu for 4WSK, 

Gln for 2WVS) and ligand atoms are coloured by atom type (carbon atoms from 

4WSK in green and from 2WVS in coral, fluorine from 2WVS in grey). Hydrogen 

bonds between Arg
262

 and the nucleophile and residues 229 and 288 displayed as 

dashed bonds. The figure was drawn using CCP4MG
183

.  

    

Diffraction images for this dataset were collected and refined to 1.64 Å resolution, 

which was the extent of the data usefulness according to a half-dataset 

correlation
228

. This structure, with a less sterically-demanding aglycon, indeed more 

clearly showed interaction of the ligand aglycon with BtFuc2970, and all 4 copies 

of 15 in the asymmetric unit were observed to have clear electron density  for the 

entirety of the ligand (Figure 4.8), including the covalent bond formed between the 

enzymatic nucleophile and 15. The final refined Rwork and R free values for this 

complex structure are 0.16 and 0.19 respectively, again an improvement over 

BtFuc2970-14. As with BtFuc2970-14, the enzymatic acid/base residue Glu
288

 is 

observed in an inactive conformation;  this supports the hypothesis that this 

displacement is due to the presence of a pendant group to the carbon atom at which 

a natural substrate would have an endocyclic oxygen.  
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Figure 4.8. Compound 15 lying in the active site of BtFuc2970, displayed in wall -

eye stereo. Atoms of compound 15 are coloured by atom type (carbon in grey). The 

catalytic nucleophile Asp
229

 and acid/base Glu
288

 of BtFuc2970 are displayed 

coloured by atom type (carbon in green). The map displayed is a likelihood -

weighted Fo-Fc map from before the incorporation of phases from compound 15 in 

refinement, contoured at 3 σ (15). The figure was created using CCP4MG
183

.  

 

The conformations adopted by 14 and 15 in their crystal structures (4WSK and 

4WSJ) were kindly determined by Dr. Carme Rovira at the University of Barcelona 

and plotted on the conformational free energy landscape of BtFuc2970 (Figure 4.9). 

14 adopts a 
3
S1 conformation, while 15  adopts a 

3
H4  conformation; this is, 

interestingly, the conformation postulated for the catalytic transition state based 

upon the conformational trajectory previously shown for this enzyme
184

. The X-ray 

data quality used to generate 4WSJ (BtFuc2970-15) are better than that for 4WSK 

(BtFuc2970-14). In particular, the atomic coordinates of the C1 atom of 14 are 

uncertain due to poor electron density in this region; the conformation adopted by 

14 is 4WSK is thus more influenced by mathematical refinement and geometric 

restraints than experimental observations. The electron density for 15, however, is 

much clearer and thus it is concluded that both of these ABPs bind to this enzyme 

in a conformation more resembling that of the enzymatic transition state, however it 

is uncertain what the reason for this is.  
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Figure 4.9. Conformations adopted by ligands in 4WSK and 4WSJ. Conformations 

are plotted as filled stars (Yellow: 15 from 4WSJ, White:  14 from 4WSK) on the 

calculated free energy landscape of BtFuc2970. Figure prepared by Carme Rovira at 

the University of Barcelona.  

 

Catalytic nucleophile (D229N) and acid/base mutants (E288A) of BtFuc2970 were 

prepared in order to determine the crystal structures of these mutants complexed 

with ABPs. Catalytic nucleophile mutants are often used to observe a ligand 

complex after docking with the enzyme but before reactivity o ccurs i.e. the 

Michaelis complex. Acid/base mutants, on the other hand, reduce the rates of both 

the glycosylation and deglycosylation steps of the prototypical retaining glycoside 

hydrolase mechanism, hence allowing observation of a covalent intermediate when 

used in conjunction with reactive compounds with a good leaving group (these 

approaches were previously applied to BtFuc2970
184

).  

Unfortunately, after soaking of both BtFuc2970 nucleophile and acid/base mutants 

with 15, diffraction data representing complex formation could not be obtained; a  

high-resolution apo structure of D229N BtFuc2970 was however obtained after 

soaking of the enzyme with 15 for ca. 24 h. 
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4.4  Conclusions 

We have crystallographically observed a covalent adduct between the catalytic 

nucleophile of a GH29 α-ʟ-fucosidase and ʟ-fucose-configured aziridine containing 

compounds, which were designed to have utility as activity -based probes. This 

crystallographic observation is the first documented between a glycoside hydrolase 

and sugar-configured aziridine containing compound, and serves to prove the 

postulated mechanism by which these compounds act to selectively target active 

enzyme.  

ABPs able to covalently inhibit and label α-ʟ-fucosidase such as 17-19 have great 

potential in a variety of therapeutic, diagnostic and proteomics technologies. 

Compounds 17-18, incorporating fluorescent probes for visualisation and 

quanitification of α-ʟ-fucosidase activity, may be useful as, inter alia , biomarkers 

of cancer progression, and for elucidating the field of cell biol ogy, e.g. in the field 

of fertility. These compounds have already been demonstrated to have the ability to 

label GH29 enzymes both in vitro and in vivo
292

. Application of 19 to spleen lysates 

from a healthy individual and a sufferer of Gaucher disease allowed labelling of 

FUCA1/2 present in the sample (Figure 4.10), with a greater GH29 activity being 

evident for the Gaucher spleen; the upregulation of degradative enzymes i s a known 

feature of Gaucher spleens
298

. Further, 19 was shown to bind to GH29 from mouse 

spleen, liver and kidney in vivo (Figure 4.10).  

 

Figure 4.10. Labelling of GH29 α-ʟ-fucosidases by 19. Adapted from 
292

.  

 

If fertility events in humans are similar to those in mice, i.e. they require the 

presence of semen membrane-bound GH29 for its sialyl-Lewis
x
 moieties to interact 

with oocyte zona pellucida and membranes, but not activity of the enzyme
102,108

,  

compounds 17-18 may have use as biological probes for the in vivo tracking of 

fertility events.  
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As a number of cancer strains have upregulated α-ʟ-fucosidase activity, there exists 

potential for chemotherapy using pharmacophores appended to covalent inactivators 

such as the ABPs discussed in this chapter; this approach may be more effective 

than that using covalent enzyme inhibitors such as 10-12 in the previous chapter. 

The biotinylated ABP 19 may be used for the screening of GH29 activity from 

culture supernatant allowing discovery of new enzymes in this family; irreversible 

binding of the ABP warhead to GH29 enzymes may be achieved through the 

application of supernatant over a streptavidin affinity column pre -incubated with 

19, for example. Elution with free biotin would allow the characterisation of novel 

GH29 enzymes e.g. as in the example of Vocadlo and co-workers
273

.  

As many of the potential purposes of fuco-configured ABPs are therapeutic in 

nature, understanding of the active site features of human GH29 enzymes is perhaps 

more pertinent than that of bacterial ones. Since, in the absence of a GH29 crystal 

structure, it is uncertain to what extent the active site of human GH29 enzymes is 

similar to that of BtFuc2970, elucidation of the crystal structure of human GH29 

enzymes would be beneficial in allowing further, directed synthetic efforts to 

improve upon the existing ABP scaffold.  
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Chapter 5: Expression and purification of human 

fucosidases FUCA1 and FUCA2  

 

Abstract 

Human GH29 family α-ʟ-fucosidases I and II (FUCA1 and FUCA2) are critical to 

many biological events such as bacterial colonisation of the gastrointestinal tract, 

the immune response, and fertility. A multitude of inhibitors against this enzyme 

class has been reported in the literature; the inhibition of these proteins has clinical 

relevance e.g. for treatment of the lysosomal storage disorder fucosidosis and 

clearance of the stomach pathogen Helicobacter pylori  from its host. The 3D crystal 

structures of these enzymes may aid in inhibitor design and potentially further 

illuminate their biological roles, however no such crystal structures are yet 

available. Described herein are attempts made towards the expression, purification 

and crystallisation of FUCA1 and FUCA2. The expression of these proteins in 

heterologous systems had only limited success as FUCA1 could be expressed and 

purified to a yield of 3.5 mg enzyme per litre culture volume while FUCA2 

purification was unsuccessful. Pure FUCA1 and FUCA2 could however be obtained 

by expression of genes encoding the enzymes in both cultured HEK-293T and CHO-

K1 cells; expression levels of FUCA1 were higher than that of FUCA2, and 

transient transfection of HEK-293T cells yielded more expressed protein than from 

CHO-K1 cells. Preliminary crystallisation experiments using a purified FUCA1 

construct described herein are reported, along with Michaelis Menten kinetics for 

the enzyme (KM = 0.099 ± 0.01 mM, Vmax = 1305 ± 47 min
-1

). This work may be 

built upon for the realisation of the crystal structures of FUCA1 and FUCA2.  
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5.1 Introduction 

The physiological roles of mammalian α-ʟ-fucosidase have been discussed 

elsewhere (see Chapter 1 and section 1.4.1.2 in particular) and will not be repeated. 

Briefly, the enzyme has important roles in maintaining homeostasis of a number of 

biologically critical fucosylated glycans
20, 196

 which are often differentially 

regulated in neoplasia
93,197

, and its deficiency causes the neurovisceral storage 

disorder fucosidosis
3
. Further, the enzyme plays an important role in fertility

109
.  

What follows is a review of the literature  which stemmed particularly from the 

potential to learn more about and treat fucosidosis, namely the discovery, 

characterisation, and purification of α-ʟ-fucosidase in humans. Both the lysosomal 

enzyme FUCA1 and the less well -studied secreted α-ʟ-fucosidase FUCA2 will be 

discussed. 

The existence of the α-ʟ-fucosidase enzyme was first documented in 1961 by Levvy 

and McAllan
299

. Due to the known presence of ʟ-fucose in mucins, blood group 

antigens
300

 and milk oligosaccharides
301

 at the time, the authors postulated the 

existence of ʟ-fucosidase enzyme/s with unknown anomeric specificity. To assess 

this, the authors first synthesised both  p-nitrophenyl-α-ʟ-fucopyranoside and p-

nitrophenyl-β-ʟ-fucopyranoside
302

. Tissue homogenates were collected from a range 

of mammalian species, gender and tissue types, and their action upon each substra te 

was probed.
299

 While no tissue type released p-nitrophenolate from the β-linked 

substrate, a wide range of tissues released the product from p-nitrophenyl-α-ʟ-

fucopyranoside thus proving the existence of an α -ʟ-fucosidase enzyme. Further, 

the authors examined the kinetic profile of the enzymes from ra t epididymis and ox 

liver, and determined their pH optima at pH 6.1 and 5.6, respectively and Michaelis 

constants of 2.1 mM and 2.2 mM, respectively. A further observation made was the 

apparent abundance of α-ʟ-fucosidase in epididymal homogenates, hinting at a role 

for the enzyme in insemination which would be elucidated many years later.  

The existence of two ‘forms’ of α-ʟ-fucosidase (α-ʟ-fucosidases I and II) in 

mammals was first demonstrated in pig kidney.
303

 These forms could be 

distinguished by their elution profiles on size -exclusion chromatography, 

thermostability, pH dependence for catalytic activity and their abilit y to hydrolyse a 

variety of different fucosylated substrates. Subsequently, two groups 

contemporaneously showed the existence of these two distinct forms in human 

liver
304

 and a variety of tissue types including the same
305

. Here, both groups 

demonstrated that the two forms isolated from a single organ could be separated by 

size-exclusion chromatography, while one group also achieved their separation 
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using ion-exchange chromatography
304

. The two forms were further characterised by 

their differing pH stability, thermostability, and substrate specificities. In each 

case, one form was observed not to bind to Sephadex G-200 and appeared in the 

void volume of the elution profile. While  Robinson and Thorpe concluded that this 

enzyme was a higher molecular weight species than the other, and may be an 

aggregated form of it
304

, the other authors postulated that the two forms are of 

similar molecular weights, and are only separated on Sephadex G-200 due to non-

specific adsorption of one form onto Sephadex
305

. Numerous isoforms of human α-

ʟ-fucosidase have since been observed by isoelectric focusing of the enzyme from a 

variety of human tissue types e.g.
306-308

.  

Alhadeff et al . investigated the comparative α-ʟ-fucosidase activities between 

normal and fucosidotic livers .
306

 Activity assays were carried out using novel 

substrate 4-methylumbelliferyl-fuco-ʟ-pyranoside. While the pH optima determined 

for healthy and fucosidotic liver were essentially identical (5.4 and 5.3 

respectively), Michaelis constants were marginally different (85 µM and 58 µM 

respectively) and the fucosidotic liver was observed to have only 4% α-ʟ-fucosidase 

activity compared to the enzyme from healthy liver. The authors further observed 6 

isoforms of the enzyme from healthy liver using isoelectric focusing, with 

isoelectric points between 5.5 and 6.9. Sialic acid residues in the enzym e were 

cleaved by neuraminidase treatment and the α-ʟ-fucosidase activity of the two most 

acidic isoforms of the enzyme was observed to be reduced, suggesting sialic acid 

residues are present in at least some isoforms of the enzyme and are important for 

its activity. The loss of activity at acidic pH after neuraminidase treatment of the 

enzyme was also observed by other, independent researchers.
309,310

  A subsequent 

study showed that treatment of the more neutral isoforms of human liver α-ʟ-

fucosidase with sialyltransferase could regenerate the acidic isoforms of the 

enzyme, confirming the role of sialic acid residues in its activity at acidic pH.
311

  

The effect of deglycosylation of the enzyme has been further studied. By treating 

human liver α-ʟ-fucosidase with N-glycanase, Piesecki and Alhadeff showed that 

deglycosylation of the enzyme caused negligible difference in its recognition or 

activity against p-nitrophenyl-α-ʟ-fucopyranoside, 2’-fucosyllactose, Lacto-N-

fucopentaose II or the blood group A trisaccharide.
312

 The activity profile of the 

enzyme with respect to pH was altered upon deglycosylation, however , with a shift 

towards a more neutral pH optimum and loss of enzymatic activity in the acidic 

regions. Further, deglycosylation of the enzyme did not appear to affect the gross 

conformation of the enzyme as observed by circular dichroism. Thus, glycosylation 
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of the enzyme may be critical in allowing its function in the acidic environment of 

the lysosome but appears to have limited, if any, other effects.  

 

5.1.1 Purification of α-ʟ-fucosidase 

α-ʟ-fucosidase was first purified to apparent homogeneity in 1975
313

;  previous 

attempts to purify α-ʟ-fucosidase from various sources had not removed the activity 

of other glycosidases
305,314

. α-ʟ-fucosidase was purified from homogenates of five 

human livers using a two-step chromatography procedure utilising agarose-ε-

aminocaproyl-fucosamine. By capturing the enzyme by affinity with a moiety 

resembling its substrate, purification was effected with high yield (66% by activity) 

and the purified protein was free from contaminating glycoside hydrolase activity. 

Electrophoresis of the purified enzyme using SDS -PAGE revealed a single protein 

band with molecular weight ca. 50 kDa. Analytical size exclusion chromatography 

and sedimentation equilibrium ultracentrifugation were also carried out on t he 

enzyme and yielded molecular weights of ca. 175 kDa and ca. 230 kDa, 

respectively. Kinetic parameters of the purified enzyme’s hydrolysis of 4 -

methylumbelliferyl-α-ʟ-fucopyranoside  and p-nitrophenyl-α-ʟ-fucopyranoside 

substrates yielded KM and Vmax values of 0.22 mM, 14.1 µmol mg
-1

 and 0.43 mM, 

19.6 µmol mg
-1

 respectively. 

In 1978, the same author reported the purification of the enzyme from human serum 

using a similar method.
315

 Isoelectric focusing of the enzyme revealed seven 

isoforms for the enzyme, but the predominant band was the most acidic with an 

isoelectric point around 5. Interestingly, treatment of the enzyme with 

neuraminidase (a glycoside hydrolase acting in an exo-fashion on sialic acid) 

drastically altered this pattern, resulting in isoforms with isoelectric points around 

pH 6-7. The oligomeric state of the enzyme was also greatly influenced by 

neuraminidase treatment; size exclusion chromatography revealed what was likely  

an oligomer of molecular weight 296 kDa, which reduced significantly to ca . 37 

kDa on treatment of the enzyme with neuraminidase. Thus, sialic acid was 

concluded to be incorporated into the enzyme and to alter its oligomeric state. In 

this study, the authors ran SDS-PAGE gels of both serum and liver enzymes; two 

bands were observed for each enzyme, however these were of different molecular 

weights (56 and 54 kDa for the serum enzyme and 53 and 49 kDa for the liver 

enzyme). The authors concluded that post-translational modifications of serum α-ʟ-

fucosidase, such as sialylation, may be responsible for its properties, which are 
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different to those of fucosidases from liver and brain characterised by the same 

group.
316

 

The complete FUCA1 open reading frame was sequenced from chromosomal DNA 

from human liver, placenta and colon in 1989
317

. The mature protein comprises 439 

residues after cleavage of a 22 residue long hydrophobic signal peptide. The gene 

transcript contains three potential glycosylation sites based on the presence of three 

Asn-X-(Ser/Thr) consensus sequences.  

Sequencing of the FUCA1 gene and isolation of cDNA clones was first carried out 

in 2003, allowing recombinant expression of the enzyme.
318

 The enzyme was 

inserted from cDNA
317

 into the BamH1 restriction endonuclease site of expression 

vector pGEX-2T to yield a gene encoding FUCA1 as a glutathione S-transferase 

fusion protein
318

. The resulting gene was expressed in Escherichia coli  BL21 cells. 

Most of the protein produced was located in the pellet fraction of the cells after 

lysis by sonication, indicating that it was sequestered in cellular inclusion bodies. 

The insoluble protein was, however, purified with high yield (65 mg purified 

protein from 1 L culture media), and showed a broad activity profile against 

substrate 4-methylumbelliferyl-α-ʟ-fucopyranoside. The pH profile of the enzyme 

was however dissimilar to FUCA1 in the neutral region, lacking an activity 

maximum between pH 6.0 and 7.0 that is seen for human fucosidases from many 

sources
313,315,316

.  The authors explained this observation by the inability of 

Escherichia coli  to glycosylate the protein.  

In 2009, Liu and co-workers successfully expressed soluble FUCA1 using the 

Escherichia coli  BL21(DE3) cell strain.
319

 The authors inserted the fuca1 sequence, 

less the first 22 amino acids which form a signal peptide, into the pET22b(+) 

vector. Cells bearing the plasmid were incubated in LB media and gene expression 

was effected by the addition of 1 mM IPTG; expression was carried out for 8 hours 

at 37 °C before harvesting and resuspension in 20 mM sodium acetate buffer pH 

5.5. Purification of the enzyme was carr ied out by ammonium sulfate precipitation, 

followed by cation exchange chromatography, anion exchange chromatography, and 

finally size exclusion chromatography. It was observed that growth in LB media 

with pH 6.0-6.5 was essential for activity, as when pH was above 7.0 the protein 

expressed showed no activity but maintained solubility.  

This study further investigated the catalytic nucleophile and acid/base residues of 

FUCA1. At this time, the only α-ʟ-fucosidase with a reported X-ray crystal 

structure was that from Thermotoga maritima (TmGH29)
182

. The authors used 

multiple sequence alignment with FUCA1, TmGH29 and a number of GH29 
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enzymes from other organisms to identify a conserved carboxylate corresponding to 

the catalytic nucleophile of TmGH29. No such conservation was observed for the 

catalytic acid/base of TmGH29, however. Liu et al . created mutant enzymes for 

each Asp or Glu residue of FUCA1 that appears to be conserved between GH29 

enzymes and performed activity assays on the mutant enzymes using a range of 

synthetic substrates with varying pKa  values in order to generate Brønsted plots
319

. 

Only mutations to residues D225 and E289 of FUCA1 had any noticeable effect on 

kcat or Km values. The relative reaction rates of hydrolysis for the E289G mutant on 

substrates with a range of pKa values revealed a change in mechanistic rate 

determining step when the pKa of the substrate approached the solvent pH, from 

defucosylation to fucosylation, consistent with the absence of acid/base assistance.    

Chemical rescue with sodium azide was further used in order to investigate the 

roles of D225 and E289 in catalysis. When enough space is available in a mutant 

glycoside hydrolase active site, e.g. after mutation of enzymatic nucleophile or 

acid/base residue to glycine, azide is able to ‘rescue’ the activity of these enzymes 

as it can act as a nucleophile or general base (Figure 5.1).
180,320

 The addition of 

sodium azide to E289G and D225G was observed to increase the rate of p-

nitrophenyl-α-ʟ-fucopyranoside hydrolysis by these enzymes 30 and 6 -fold, 

respectively. Further, the authors observed α -fucosyl azide and β-fucosyl azide as 

reaction products on rescue of E289G and D225G respectively by nuclear magnetic 

resonance spectroscopy, providing more evidence for the assignment of D225 as the 

catalytic nucleophile and E289 as the catalytic acid/base residue.    
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Figure 5.1. Chemical rescue of retaining α-ʟ-fucosidase activity by azide. Rescue of 

deficient acid/base activity leads to formation of an α-fucosyl product (A) while 

rescue of deficient nucleophile activity leads to formation of a β -fucosyl product 

(B). 

 

While the assignment of D225 as the catalytic nucleophile of this enzyme is agreed 

within the field, there is contention over the assignment of E289 as the catalytic 

acid/base. In 2010, Bueren et al. noted that “on the basis of sequence alone, neither 

the catalytic acid observed structurally nor the human residue proposed through 

kinetic analysis of variants is conserved within  the family”.
184

 From the structural 

point of view, residue D275 of FUCA1 appears more likely to be the catalytic 

acid/base as it lays more close to the active site observed in the crystal structure of 

every other GH29 enzyme currently available (Figure 5.2), although when this 

residue was mutated to glycine by Liu et al. , no difference in enzyme activity was 

observed
319

. Further, the position corresponding to that of residue E289 in a 

homology model of FUCA1 lies buried in the protein, not at all proximal to the 

enzymatic active site observed in other GH29 structures. While conformational 

flexibility has now been observed for many enzymes in the GH29 family including 

those from Thermotoga maritima
221

 and the eukaryote Fusarium graminearum
188

,  

such a large conformational change as that which would be envisioned to be 
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required for displacement of residue E289 into a catalytically active position is 

unprecedented in protein science.     

 

 

Figure 5.2. The assignment of the catalytic acid/base residue of human α-ʟ-

fucosidase is still under contention. The protein chains of crystallographically 

observed α-ʟ-fucosidases from Bacteroides thetaiotaomicron  (BtFuc2970, from 

PDB entry 4JL2), Thermotoga maritima  (TmGH29, from PDB entry 1OUD) and 

Fusarium graminearum  (FgGH29, from PDB entry 4NI3) along with that from a 

homology model of FUCA1 prepared using the Phyre2 server
321

 are displayed as 

transparent ribbons coloured through the chain in ice blue ( BtFuc2970), gold 

(FgGH29), coral (TmGH29) and light green (FUCA1). Further, the side -chains of 

the catalytic residues of BtFuc2970 (Asp
229

 and Glu
288

), TmGH29 (Asp
224

 and 

Glu
266

) and FgGH29 (Asp
226

 and Glu
288

) are displayed as cylinders in the same 

colours at their respective protein chains, and the sidechains of the residues Asp
225

 

and Asp
275

 from a homology model of FUCA1 are displayed in light green; these 

residues are further annotated on the figure in the order described above. The f igure 

was drawn in wall-eye stereo using CCP4MG
183

.  

 

Contrary to FUCA1, there is a dearth of research dedicated to the secreted α -ʟ-

fucosidase FUCA2.
322

 The enzyme was first discovered in 1984
323

, and its gene was 

subsequently assigned to chromosome 6
324

.  In 2009, a role for the enzyme in 

cleavage of fucosylated glycan structures as a response to the invasion of stomach 

pathogen Helicobacter pylori  was reported.
4
 Expression of the enzyme in the 

neoplastic Capan 1 cell line was shown to be effected by the presence of 
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Helicobacter pylori . Further, knockdown studies showed that FUCA2 expression 

allowed the pathogen to incorporate exogenous fucose into its cell surface glycans, 

forming host-type Le
x
 antigens. During this study, the authors successfully 

expressed and purified FUCA2 inserted into expression vector pCMV -Tag2B 

(containing a C-terminal FLAG tag) in 293T cells; purification of the enzyme was 

achieved through application of lysed cell supernatant over anti -FLAG antibody 

affinity beads. The colonisation of many pathogenic bacteria involves the 

interaction between fucosylated host endothelial glycans such as Le
x
 and lectins 

expressed on the cell surface of the colonist.
5,6

 This enzyme may thus be evolved to 

provide an innate defence mechanism against the invasion of pathogens which 

produce these host-like glycans, as host release of ʟ-fucose may allow clearance of 

pathogens by out-competing their interaction with endothelial fucosylated glycans.  

 

5.1.2 Managing the glycosylation status of glycoproteins  

The decoration of proteins with N-linked glycans poses a significant hurdle in 

structural biological studies.
325

 This is because, while the glycosylation of native 

glycoproteins is often crucial to their correct folding, the heterogenous 

glycosylation trees present in mammals make crystallisation difficult; a s such, 

simplification of glycan trees in a protein sample is often necessary for the 

successful crystallogenesis of glycoproteins. This may be effected in three ways; 

through protein expression in cell lines that do not express critical carbohydrate 

processing enzymes involved in the N-glycosylation pathway, by inhibiting the 

activity of these enzymes during transient expression, or by enzymatic 

deglycosylation of the enzyme post -expression.
325

  

Glycosylation deficient strains of both CHO
326,327

 and HEK
328, 329

 cell lines have 

been discovered.
327

 Many of these cell lines seem to have evolved by mutation 

offering an evolutionary advantage against plant lectin induced stress. While the 

currently available glycosylation deficient CHO cell lines are known to have 

mutations in a wide range of carbohydrate processing enzymes
327

, the two 

glycosylation deficient HEK cell lines known to the author have deficiency in the 

N-acetylglucosaminyl transferase I
328

 and α-mannosidase II
329

 genes. The 

carbohydrate processing enzyme inhibitors kifunensine
330

  and swainsonine
331

 may 

also be used for simplification of N-linked glycosylation in proteins grown in tissue 

culture, when added to culture media these inhibitors inhibit cellular α-

mannosidases I and II respectively and thereby prematurely halt N -glycosylation 

before the generation of complex glycans.
325
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Complex glycans pose a particular problem in the expression of glycoproteins 

destined for downstream crystallographic studies.
325

 Complex glycans do not act as 

substrates for the endoglycosidase EndoH, and glycosylation trees cleaved by the 

enzyme retain their most interior GlcNAc moiety. This resid ue is known to be more 

important in mediating interactions with the hydrophobic region of the protein to 

which it is bound than the more exterior monosaccharides
332

, and while proteins 

cleaved by EndoH to yield glycan trees containing just this sugar tend to have 

similar polydispersities to those containing the full length tree, loss of this residue 

has been shown to promote protein aggregation
325, 333

. The premature termination of 

the N-glycosylation pathway before formation of complex glycans is thus extremely 

useful for the production of glycoproteins for crystallisation studies; these 

glycoproteins can be deglycosylated with EndoH rather than PNGase, increasing 

their propensity to crystallise.      

A plethora of studies, including ones presented in this thesis, investigate the 

inhibition of GH29 fucosidases in order to harness the potential medical benefits 

that potent inhibitors of fucosidase may have, particularly for tre atment of 

fucosidosis
3
 and Helicobacter  pylori infection

4
. Structural insights may play a large 

role in the design of potent fucosidase inhibitors however the crystal structures of 

both human fucosidases are currently unresolved.   

Herein, efforts made towards the gene expression and purification of FUCA1 and 

FUCA2 are described, to finally shed light on the structural features of these 

important enzymes. Initially, expression tests using the heterologous Escherichia 

coli and Pichia pastoris  expression systems will be described, followed by those 

using cultured mammalian cells as an expression system.  
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5.2 Materials and methods 

5.2.1 Heterologous expression of FUCA1 and FUCA2 

The genes encoding fucosidases FUCA1 and FUCA2 were codon optimised for 

expression in Escherichia coli , and were synthesised and inserted into pET-30a
+
 

vectors between NcoI and XhoI restriction endonuclease sites by GenScript 

(Appendix 3); these samples were available in the lab from previous work 

conducted by Dr. Alicia Lammerts van Bueren. These plasmids encode FUCA1 and 

FUCA2 with an N-terminal His6 affinity tag and S-tag. Aliquots of these plasmids 

were transformed into chemically competent BL21(DE3), pLEMO and C41 cells, 

which were grown in LB media containing 30 mg L
-1

 kanamycin as small scale (10 

mL) cultures (cells were incubated at 37 ºC overnight with aeration by shaking at 

180 rpm).  

FUCA1 and FUCA2 constructs were also sub-cloned into both the pETite® NHis 

SUMO (EXPRESSO T7 SUMO cloning and Expression System, Lucigen) and pET -

22b
+
 vectors. Oligonucleotide primers were designed, and were  synthesised by 

Eurofins MWG Operon.  

For sub-cloning into the pETite® NHis SUMO vector, Phusion® polymerase (New 

England Biolabs) was used to amplify gene products from FUCA1 and FUCA2 

templates in the pET-30a
+
 vector by polymerase chain reaction. After t reatment 

with DpnI to remove template DNA (ca. 1 hour at room temperature), the amplified 

reaction product was used to transform Hi -Control 10G chemically competent cells 

(EXPRESSO T7 SUMO cloning and Expression System, Lucigen) according to 

manufacturer’s instructions. Diluted transformed cells were plated on LB Agar 

plates containing 30 mg L
-1

 Kanamycin. A number of colonies that grew were 

sequenced (GATC Biotech) and a colony containing the non -mutated insert was 

used to grow a 10 mL LB overnight culture  containing 30 mg L
-1

 Kanamycin. 

Plasmid DNA was extracted and purified using a QIAprep Spin Miniprep Kit 

(Qiagen) and used to transform chemically competent BL21 (DE3) cells. These cells 

were plated on LB Agar plates containing 30 mg L
-1

 Kanamycin and a single colony 

was used for all subsequent experiments.    

For sub-cloning into the pET-22b
+
 vector, Phusion® polymerase (New England 

Biolabs) was used to amplify gene products from FUCA1 and FUCA2 templates in 

the pET-30a
+
 vector by polymerase chain reaction. The amplified DNA obtained 

and pET-22b
+
 vector were treated with the NcoI and XhoI restriction endonucleases 

separately to yield DNA segments with complementary sticky ends. Cleaved pET -
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22b
+
 vector was then treated with Antarctic phosphatase (37 °C, 2 hours) in order to 

prevent re-ligation of the vector with itself . The enzyme mix in the solution 

containing the treated vector was then heat inactivated at 80 °C for 20 minutes. 

Reaction products for both the insert and vector were purified using a PCR 

Purification kit (Qiagen) and were ligated using T4 ligase; a  ratio of 1 part vector 

to 3 parts insert (by molarity) was used for the ligation reactions  which were 

incubated at 16 ºC overnight. The product of this reaction was then used to 

transform electrocompetent XL1 Blue cells (Agilent) and diluted transformed cells 

were plated on LB Agar plates containing 50 mg L
-1

 Ampicillin. A number of 

colonies that grew were sequenced (GATC Biotech) and a colony containing the 

non-mutated insert was used to grow a 10 mL LB overnight culture containing 50 

mg L
-1

 Ampicillin. Plasmid DNA was extracted and purified using a QIAprep Spin 

Miniprep Kit (Qiagen) and used to transform chemically competent BL21 (DE3) 

cells. These cells were plated on LB Agar plates containing 50 m g L
-1

 Ampicillin 

and a single colony was used for all subsequent experiments.     

 

5.2.1.1  Gene expression and protein purification  

For small scale expression tests, 1 mL samples of 10 mL overnight cultures in LB 

media taken before induction with isopropyl-β-D-1-thiogalactopyranoside (IPTG) 

and after expression (at 37 ºC for ca. 4 hours or at 16 ºC overnight) were lysed to 

determine expression profiles. Samples were centrifuged and the media supernatant 

was removed. Subsequently lysis was performed chemica lly by the addition of 200 

µL BugBuster® Protein Extraction Reagent (Novagen) over 10 minutes. Soluble 

fractions were obtained by centrifuging and removing the supernatant from thus 

treated samples, whilst insoluble fractions were obtained by the treatment  of the 

resulting cell pellet with 50 µL 4% SDS over 10 minutes. Expression test samples 

were run on SDS-PAGE gels to determine recombinant gene expression and 

solubility profiles. 

For large scale expression runs, 10 mL overnight cultures in autoclaved LB media 

containing either 30 mg L
-1

 Kanamycin or 50 mg L
-1

 Ampicillin, depending on the 

resistance gene present in the plasmid, were used to innoculate a larger (1 L) 

volume of autoclaved LB media containing the same concentration of antibiotic. 

Expression was initiated by the addition of 1 mg L
-1  

IPTG when the culture had 

reached an A600 in the range 0.6 - 1.0. Cells were incubated at 16 ºC overnight  

before harvesting by centrifugation. The buffers these samples were re -suspended in 

were comprised HEPES buffer (10-50 mM), 150-500 mM NaCl and 20 mM 
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imidazole (pH 7-8). Resuspended cell pellets were stored at -20 °C until 

purification was attempted.  

For protein purification, cell pellets were thawed at room temperature and lysed by 

sonication. The resulting solutions were centrifuged at 4416 RCF for 30 m and the 

supernatant decanted. This supernatant was applied to a 5 mL HiTrap column (GE 

Healthcare) preloaded with Ni
2+

 connected to an Äkta FPLC (GE Healthcare). Low 

imidazole buffers (as above) were passed through the column until the A280 

response returned to the baseline. After this, an increasing concentration of 

imidazole was applied to the column as a gradient (to 500 mM imidazole over 50 

mL). Fractions with a strong A 280 response were run on a SDS-PAGE gel to 

determine the molecular weight  and purity of the protein species present in the 

eluate. For expression of FUCA1 in the pET -30a+ vector, the fractions deemed to 

have the highest purity were concentrated by centrifugation at 5000 RCF using an 

Amicon Ultra-15 10K centrifugal filter. This protein was then applied to a Hi -Load 

16/60 Superdex 200 prep grade size exclusion column (GE Healthcare) connected to 

an Äkta FPLC. A solution comprising 50 mM HEPES buffer,  150 mM NaCl (pH 

8.0) was run through the column and samples were collected from the eluate.  

FUCA1 expression was also attempted using Pichia pastoris  as an expression 

vector, by Dr. Jared Cartwright (Bioscience Technology Facility, University of 

York). FUCA1 template in pET-30a
+
 vector was handed over to Dr. Jared 

Cartwright, who designed constructs containing a Saccharomyces cerevisiae  prepro-

alpha-factor signal peptide for secretion into the media and N -terminal His6 tag for 

easy screening of expression by Western blotting, cloned the constructs and t ested 

their expression levels on a small and large scale.   

 

5.2.2  Expression of FUCA1 and FUCA2 in mammalian tissue culture  

5.2.2.1  General Considerations 

Tissue culture consumables were purchased as sterile packaged goods; Serological 

pipettes from Sarstedt, flasks from Corning, roller bottles from Greiner and culture 

media from Gibco.  

All tissue culture experiments were conducted in a laminar flow hood with an 

airflow of ca. 0.75 m s
-1

. At least 10 minutes UV irradiation was applied both prior 

to and after tissue culture experiments. The flow hood was wiped with 70% ethanol 

both prior to and after tissue culture experiments, and additionally with anti -

bacterial spray after experiments. All items entering the hood were sprayed and 
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wiped with 70% ethanol before entering the hood. Tissue culture flasks were 

incubated at 37 ºC in a 5% CO2 atmosphere. Roller bottles were rolled at ca. 0.5 

RPM.  

Adherent HEK-293T and CHO-K1 cell lines originally purchased from Sigma 

Aldrich and subsequently maintained in-house were used for all mammalian cell 

culture experiments. Stock T75 flasks containing HEK -293T and CHO-K1 cells 

were maintained throughout the course of tissue culture experiments and were 

passaged regularly every 3 or 4 days. HEK-293T cells were cultured in DMEM 

media supplemented with 10% FBS while CHO-K1 cells were cultured in 1:1 

DMEM/Ham’s F10 media supplemented with 10% foetal bovine serum (FBS). 

Passaging was conducted in the following manner. Media was aspirated and the 

flask washed with 10 mL phosphate-buffered saline (PBS) which was then 

aspirated. Cells were released from the flask surface by the addition of 2 mL 

Trypsin/EDTA solution (Gibco)  and administration of slight percussive force. Cells 

were diluted with 8 mL media containing 10% FBS and cent rifuged at 200 RCF for 

5 minutes. Subsequently, supernatant was decanted and cells were re -suspended in 

10 mL media containing 10% FBS. Typically a 1 in 10 dilution of cells was effected 

into a fresh T75 flask into which 9 mL media supplemented with 10% FB S and 1 

mL re-suspended cells was added. The remaining 9 mL of re -suspended cells were 

discarded. 

 

5.2.2.2   Cell expansion into larger culture volume 

Expansion of cells into larger culture volume was performed at the same time points 

as cell passage. The remaining 9 mL of re-suspended cells were transferred to T175 

flasks containing 30 mL of media supplemented with 10% FBS, typically at a 1 in 

10 or 20 dilution. 

 

5.2.2.3  FUCA1 and FUCA2 genes and plasmid amplification  

Constructs for the expression of FUCA1 and FUCA2 in mammalian cell culture 

were obtained through the Glyco-Enzyme Repository 

(http://glycoenzymes.ccrc.uga.edu/ ).  Five constructs for FUCA1 and four 

constructs for FUCA2 were received (Figure 5.3). Constructs were received as 

glycerol stocks of live cultures of Escherichia coli DH5 Alpha cell lines containing 

the constructs in Figure 5.3 cloned into a modified mammalian Gateway DEST 

vector (for vector maps and sequences see the web -server at 
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http://glycoenzymes.ccrc.uga.edu/). While all constructs were available for FUCA1, 

the pGEC2 construct was not available for FUCA2.  

 

Figure 5.3. FUCA1 and FUCA2 constructs obtained from the Glyco -Enzyme 

Repository. 

 

Glycerol stocks of FUCA1 and FUCA2  constructs in the E. coli DH5 Alpha cell 

strain were used to inoculate 10 mL LB media containing 50 mg µL
-1

 Ampicillin 

and incubated at 37 ºC with aeration at 180 rpm overnight. These cultures were 

subsequently used to inoculate 200 mL LB media containing 50 mg µL
-1

 Ampicillin 

which was incubated at 37 ºC with aeration at 180 rpm overnight. Plasmid DNA was 

purified using a Macherey-Nagel NucleoBond® Xtra Midi EF Midiprep kit as per 

manufacturer’s instructions.  

FUCA1 and FUCA2 constructs containing minimal His 8 tags upstream of the gene 

encoding the α-ʟ-fucosidase were designed. Three constructs were prepared , 

containing minimal, non-cleavable His-Tags either directly upstream of the FUCA1 

coding sequence (8His_FUCA1), or containing one (8HisSG_FUCA1) or two 

(8HisSGSG_FUCA1) SG dipeptides before start  of the FUCA1 coding sequence . 

Oligonucleotide primers were used to remove the existing N -terminal sequence, 

introduce the new sequence and amplify the FUCA1 gene from FUCA1 pGEN1 by 

polymerase chain reaction to yield linear plasmid (Appendix 4); polymerase chain 
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reaction was effected by using Q5 polymerase (New England Biolabs) as per the 

manufacturer’s instructions, using the thermocycling conditions below ( Table 5.1). 

Table 5.1. Thermocycling conditions for generation of linear plasmid for FUCA1 

constructs with minimal octahidstidine affinity tags.  

Temperature / °C Duration Number of cycles 

98 °C 30 s 1 

98 °C 10 s 

25 67 °C 30 s 

72 °C 3 m 

72 °C  2 m 1 

4 °C HOLD 1 

 

Amplified products were treated with the KLD enzyme mix from a Q5 site directed 

mutagenesis kit (New England Biolabs) as per the manufacturer’s instructions. The 

product of this reaction was used to transform NEB 5 -Alpha cells (New England 

Biolabs). Transformed cells were applied neat and at 1 in 10 dilution with LB to LB 

Agar Ampicillin plates which were grown overnight at 37 °C. Colonies were picked 

from the plates after incubation overnight and grown in LB media containing 50  mg 

L
-1

 ampicillin as a small scale (10 mL) culture  (cells were incubated at 37 ºC 

overnight with aeration by shaking at 180 rpm).  

DNA sequences of the products were checked using the CMV forward promoter 

primer (CGCAAATGGGCGGTAGGCGTG) and a reverse promoter specific to the 

C-terminus of the pGEN and pGEC vectors (TGACAACGGGCCACAACTCCTC). 

Glycerol stocks derived from media inoculated by a single colony of each of the 

three constructs were used for all subsequent experiments; DNA used for 

transfection testing was isolated using an identical method to FUCA1 pGEN1, vide 

supra. 

 

5.2.2.4  Transfection of adherent mammalian cell lines 

Transfections were performed using either linear polyethylenimine or 

polyethylenimine “Max” as transfection reagents. The quantity of plasmid DNA 

used for transfection was standardised to flask surface area with 0.28 µg DNA used 

per cm
2
 flask surface area. Ratios of transfection reagent to plasmid DNA quoted , 

vide infra , are described by the relationship x mL of a 1 mg mL
-1

 stock of 

transfection reagent per µg plasmid DNA required for transfection where the ratio 

is x:1.  
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For transfections, the relevant volume of transfection reagent was added to a 

quantity of serum free DMEM and incubated for ca. 10-15 minutes. Plasmid DNA 

was then added and incubated for another ca. 10-15 minutes before administering to 

cells. Transfections were typically carr ied out between 50-70% confluency of 

cultured cells as is commonly quoted in transfection protocols.  

 

5.2.3 Purification of cell culture derived FUCA1 and FUCA2 and assays  

Conditioned media harvested from mammalian cell culture flasks was centrifuged 

for ca. 30 mins at 4416 RCF and the supernatant containing secreted proteins was 

retained. Supernatant was subsequently filtered through glass wool to remove 

further cell debris.  

When tangential flow filtration was used for purification, a hollow fibre mPES 

MiniKros® Sampler Filter Module (Spectrum Labs) with a 10  kDa molecular weight 

cut-off was connected to a KrosFlo® Research Tangential Flow Filtration System 

(Spectrum Labs). A protease inhibitor tablet (cOmplete, EDTA free (Roche)) was 

added to clarified conditioned media and media was concentrated by tangential 

flow. Concentrated media was further clarified by centrifugation for ca. 10 mins at 

4416 RCF and decanting the supernatant.  

 

5.2.3.1  Immobilised metal affinity chromatography  

Clarified media concentrated using tangential flow filtration was applied to a 1 mL 

HisTrap excel column (GE Healthcare) using a peristaltic pump. Conditioned media 

was applied once through the column fully, and subsequently recirculated through 

the column with both inlet and outlet tubing running to the same solution of 

conditioned media. In some experiments, tangential flow filtration was not used and 

instead clarified conditioned media was directly loaded onto the column using the 

procedure outlined above.  

The lines on an ÄKTA HPLC (GE Healthcare) were equilibrated with buffer 

containing a low concentration of imidazole (50 mM Tris, 500 mM NaCl, 20 mM 

imidazole, pH 8.0. Subsequently, the pre-loaded 1 mL HisTrap excel column was 

introduced to the system. Low imidazole buffer was run through the system for 5-10 

mL before application of a linear gradient (over 20 mL) to buffer containing 500 

mM imidazole but otherwise identical to the low imidazole buffer. Eluate fractions 

were collected using a 96-well plate.   
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Fractions with an A280 response were tested on SDS-PAGE gels and those 

containing bands at ca. 55 kDa which appeared to be suitably pure were 

concentrated using a 3 kDa molecular weight cut -off Microcon concentrator 

(Millipore).   

 

5.2.3.2  Size exclusion chromatography 

Concentrated protein fractions were applied to an S200 16 -60 or 16-600 Superdex 

size exclusion column (GE Healthcare) pre -equilibrated with 10 mM Tris 150 mM 

NaCl (pH 8.0), connected to an ÄKTA HPLC (GE Healthcare). The same buffer 

used for column equilibration was passed through the column and fractions were 

collected using a 96-well plate. Fractions with an A280  response were tested on 

SDS-PAGE gels and those containing bands at ca. 55 kDa which appeared to be 

suitably pure were concentrated using a 3 kDa molecular weight cut-off Microcon 

concentrator (Millipore).   

 

5.2.3.3  Enzymatic assays on purified FUCA1 

A number of enzymatic assays were conducted on purified samples of the FUCA1 

pGEN1 construct. Deglycosylation of the enzyme was tested using both the E ndoH 

and PNGase enzymes. Further, TEV protease -mediated cleavage of the FUCA1 

pGEN1 construct was tested.  

Deglycosylation of FUCA1 pGEN1 was tested by use of EndoH f (New England 

Biolabs) using the manufacturer’s recommended protocol; both native and 

denaturing conditions were tested.  Deglycosylation assays using PNGase F (New 

England Biolabs) was also conducted according to the manufacturer’s recommended 

protocol in both native and denaturing conditions. Proteolysis assays of FUCA1 

pGEN1 were also conducted using AcTEV protease (Life Technologies), as per the 

manufacturer’s recommended protocol.  

 

 

 

 

 

 



141 

 

5.2.3.4  Enzyme Kinetics 

The α-ʟ-fucosidase activity of a FUCA1 construct (8His_FUCA1, vide infra) was 

determined. Enzymatic assays were conducted using synthetic substrate 2-chloro,4-

nitrophenyl-α-ʟ-fucopyranoside (CNP-fucoside, CarboSynth Ltd.). The product of 

hydrolysis of this substrate  (2-chloro,4-nitrophenol, CNP) absorbs visible radiation 

with a λmax = 405 nm at pH above its pKa (ca. 5.4). Experiments to determine the 

Michaelis-Menten parameters for catalysis by this construct were carried out over a 

time-course of 2 m during which absorbance was measured at 405 nm using a  Cary 

100 UV-Vis Spectrophotometer (Agilent Technologies) . All solutions used to 

determine kinetic data were thermally equilibrated (37  ºC).  

The rate of hydrolysis of CNP-fucoside by purified 8His_FUCA1 was determined 

upon solutions of varying concentration of CNP -fucoside. Each solution (1 mL total 

volume) contained 50 mM HEPES buffer, 100 mM NaCl (pH 7.4) and a known 

concentration of substrate; 250 nM FUCA1 was added to this after thermal 

equilibration to initiate hydrolysis.  The molar extinction coefficient of CNP (ε 405 = 

1.24 × 10
3
 M

-1
) was determined by measuring the absorption at 405 nm of a number 

of solutions of CNP-fucoside at known concentration that had been hydrolysed by 

excess BtFuc2970 (See section 2.2.3.1). The Michaelis-Menten parameters for CNP-

fucoside hydrolysis were calculated through direct fit to the Michaelis -Menten 

equation using the Origin graphing software (OriginLab, Northampton, MA) . 

 

5.2.3.5  Crystallisation of 8His_FUCA1 

Purified 8His_FUCA1 (7.7 mg mL
-1

) was incubated with 10 mM compound 2 (see 

2.2 and Table 2.2) in a 1:1 ratio on ice for ca. 1 hour and centrifuged for ca. 5 min 

before setting up crystallisation experiments. All crystallisation experiments were 

performed at ca . 18 ºC. INDEX (Hampton Research) and PACT (Molecular 

Dimensions) crystallisation screens were set up; 120 nL aliquots of 8His_FUCA1: 2 

were dispensed along with 120 nL aliquots of mother liquor from these screens in 

MRC 96-well crystallisation plates. Liquid handling was carried out using a 

Mosquito liquid handling robot, TTP Labtech. An optimisation tray (MRC MAXI 

48-well crystallisation plate) was designed and dispensed by Wendy Offen from the 

most successful crystal ‘hit’.  

Crystals were transferred to cryo-protectant solutions containing mother liquor 

supplemented with 20% glycerol and cryo -cooled using liquid N 2. Diffraction was  
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tested in-house using a Rigaku micromax-007HF X-ray generator, used in 

conjunction with an Actor robotic sample changer .  
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5.3  Results and Discussion 

A number of means towards the expression of active human fucosidases were 

carried out. Initially, heterologous  expression of FUCA1 and FUCA2 was attempted 

in Escherichia coli, following the reported expression and purification of these 

enzymes by Liu & Li in 2009
334

. These will be discussed briefly. 

 

5.3.1  Expression of FUCA1 and FUCA2 in heterologous organisms  

Initially, FUCA1 and FUCA2 genes in pET-30a
+
 vectors which were codon 

optimised for expression in E. coli , lacked their native signal sequences and 

contained an N-terminal hexa-histidine affinity tag were tested for expression in 

BL21 (DE3), pLEMO and C41 cells on a small scale; expression in C41 cells 

seemed to yield a larger protein band in the soluble phase on SDS gel 

electrophoresis at the ca. 55 kDa range (not shown) so this cell line was used for 

200 mL expression and purification tests. Most of the protein obtained was present 

in inclusion bodies in the insoluble fraction of the cells (Figures 5.4 and 5.5, A). 

Cells were lysed by sonication and soluble protein was purified by Ni
2+

-affinity 

chromatography (Figures 5.4 and 5.5). For FUCA1, the protein band observed at ca .  

55 kDa (Figure 5.4, C) was observed to be active against p-nitrophenyl-α-ʟ-

fucopyranoside on bench tests, causing a colour change in the reaction solution due 

to formation of a yellow p-nitrophenolate product , while this was not the case for 

FUCA2 (Figure 5.5, C). FUCA1 was further purified by size exclusion 

chromatography (Figure 5.4, D-E) with a total yield of ca. 3.5 mg L
-1

 culture 

volume. A second, higher (ca. 60 kDa) molecular weight species was observed to 

co-purify with the ca. 55 kDa band assigned as the FUCA1/2 gene transcript in 

eluates from the Ni
2+

 affinity chromatography steps (Figures 5.4 and 5.5, B-C). The 

size exclusion chromatography purification procedure  for FUCA1 however allowed 

removal of this contaminant (Figure 5.4, E). While 3.5 mg L
-1

 is potentially a 

tractable yield of protein for subsequent X-ray crystallographic studies, further 

methods were explored to improve protein yield  before starting crystallisation 

trials. 
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Figure 5.4. Expression and purification of FUCA1 in pET -30a
+
 vector from 

transformed C41 cells. The sample run on the first lane of each gel figure ( A,  C, E) 

is a Biorad broad range molecular weight marker  (M), with molecular weights of 

protein standards displayed. The black arrow on expression gels indicates the 

position of the band attributed to FUCA1.  A:  expression of FUCA1 in C41 cells; 

lanes 1-2 post-induction samples from  expression at 16 °C (1: soluble fraction, 2: 

insoluble fraction) lanes 3-4 post-induction samples from expression at 37 °C (3: 

soluble fraction, 4: insoluble fraction). B: Immobilised metal affinity purification 

of recombinant FUCA1 in C41 cells; A 280 response is shown in blue while the 

percentage of high imidazole in the mixed buffer sample is shown in orange. C: 

Immobilised metal affinity purification of FUCA1 expressed in C41 cells; lane 1 

shows a sample of the protein loaded onto the affinity column, the samples run on 

lanes 2-9 are from successively higher run volumes (samples 2-4 are from peak 1, 

while samples 5-9 are from peak 2, see B). D: Size exclusion chromatography of 

FUCA1 expressed in C41 cells; A280 response is shown in blue. E: Size exclusion 

chromatography of FUCA1 expressed in C41 cells; lane 1 is a sample taken from 

the protein loaded onto the column, lanes 3-8 are eluate fractions from successively 

higher run volumes (samples 3-4 are from peak 3, while samples 5-8 are from peak 

4, see D) while lane 2  is concentrated protein pooled from eluate fr actions from 

peak 4.   
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Figure 5.5. Expression and purification of FUCA2 in pET-30a
+
 vector from 

transformed C41 cells. The sample run on the first lane of each gel figure ( A,  C) is 

a Biorad broad range molecular weight marker  (M), with molecular weights of 

protein standards displayed. The black arrow on expression gels indicates the 

position of the band attributed to FUCA1.  A:  expression of FUCA2 in C41 cells; 

lanes 1-2  pre-induction samples (1: soluble fraction, 2: insoluble fraction) lanes 3-

4 post-induction samples from expression at 16 °C (3: soluble fraction, 4: insoluble 

fraction). B: Immobilised metal affinity purification of recombinant FUCA2 in C41 

cells; A280 response is shown in blue while the percentage of high imidazole in the 

mixed buffer sample is shown in orange. C:  Immobilised metal affinity purification 

of FUCA2 expressed in C41 cells; the samples run on lanes 1-7 are from 

successively higher run volumes (between fractions 1 to 7 as shown on the trace, 

see B). 

 

It was assumed that the co-purified protein which runs on SDS-PAGE at ca. 60 kDa 

may be the chaperonin GroEL, however no experimentation either confirmed or 

denied this. Chaperonins such as GroEL act to aid in the correct folding of unfolded 

proteins, so it was expected that improving the folding capacity of the proteins may 

improve protein purity and yield. Attachment of the yeast small ubiquitin -like 

modifier (SUMO) peptide gene to proteins has been shown to improve protein 

solubility and folding, even for protein targets which are difficult to express in a 

soluble form.
335-337

 This method was attempted for expression of FUCA1 and 

FUCA2; the genes encoding these proteins were sub -cloned into the pETite® N-His 
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SUMO Kan vector and used to transform BL21 (DE3) cells. Unfortunately, no 

significant difference in the yield of soluble protein was observed from SDS -PAGE 

(Figure 5.6) compared to expression in the pET-30a
+
 vector (Figures 5.4 and 5.5, A) 

so other methods were explored for the expression  of these enzymes.  

 

 

Figure 5.6. Expression of FUCA1/2 genes cloned in pETite® N-His SUMO Kan 

vector from transformed Hi-Control BL21 (DE3) cells. The sample run on the first 

lane of each figure is  a Biorad low range molecular weight marker  (M), with 

molecular weights of protein standards displayed . The black arrow on expression 

gels indicates the position of the band attributed to FUCA1/2.  A: expression of 

FUCA1 in Hi-Control BL21 (DE3) cells. B: expression of FUCA2 in Hi-Control 

BL21 (DE3) cells. Lanes in each gel (A,  B): lane 1 pre-induction sample from the 

soluble phase,  lanes 2-3 post-induction samples from expression at 18 °C (2:  

soluble fraction, 3: insoluble fraction), lanes 4-5 post-induction samples from 

expression at 37 °C (4: soluble fraction, 5: insoluble fraction).  

 

The FUCA1 and FUCA2 protein transcripts were analysed more closely. Use of the 

DIANNA disulfide bond prediction web-server
338

 predicted two (FUCA1) or three 

(FUCA2) disulfide bonding pairs for the enzymes, and in homology models of the 

human α-ʟ-fucosidases prepared using iTASSER
339

 the cysteine residues predicted 

by DIANNA appear to be close enough in space for disulfide bonding to occur. The 

formation of disulfide bonds in eukaryotes is achieved through the protein disulfide 

isomerase enzyme, which is localised in the endoplasmic reticulum and thus 

encountered during protein folding
340,341

; in bacterial cells however it is achieved 

by a number of enzymes in the perisplasmic space, which are not encountered 

during protein folding or encountered at all by proteins which do not enter this 
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compartment
342

. The pelB leader sequence of Erwinia carotovora
343

 can be 

introduced into bacterial cells to stimulate compartmental isation of a nascent 

protein towards the periplasmic space, thereby allowing for the formation of 

disulfide bonds
344

.  

FUCA1 and FUCA2 were thus sub-cloned into the pET-22b
+
 plasmid, which 

contains a pelB leader sequence for protein trafficking to the periplasmic 

compartment. BL21 (DE3) cells were then transformed by these plasmids and 

expression levels determined (Figure 5.7), however again the solubility of 

expressed FUCA1 did not appear to be greater than that from the pET -30a
+
 vector 

(Figure 5.4 and 5.5, A).    

 

Figure 5.7. Expression of FUCA1/2 genes cloned in pET22b
+
 from transformed 

BL21 (DE3) cells. The sample run on the first lane of each figure is  a Biorad broad 

range molecular weight marker  (M), with molecular weights of protein standards 

displayed. The black arrow on expression gels indicates the position of the band 

attributed to FUCA1/2. A: expression of FUCA1 in BL21 (DE3) cells. B: expression 

of FUCA2 in BL21 (DE3) cells. Lanes in each gel (A, B): lane 1 pre-induction 

sample from the soluble phase, lanes 2-3 post-induction samples from the soluble 

phase (2: expression at 16 °C, 3: expression at 37 °C), lane 4 pre-induction sample 

from the insoluble phase, lanes 5-6 post-induction samples from the insoluble phase 

(2: expression at 16 °C, 3: expression at 37 °C). 

 

Pichia pastoris  was further used as an alternative vector for expression of FUCA1. 

These experiments were conducted by Dr. Jared Cartwright of the Bi osciences 

Technology Facility, University of York. While expression of FUCA1 in Pichia 
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pastoris  did lead to production of some soluble prote in, it was deemed that the low 

yield obtained was not worth following up.  

At around this time, facilities for protein expression in both baculovirus -infected 

insect cells and mammalian cells were being developed at the York Structural 

Biology Laboratory. Since limited progress had been made with the recombinant 

expression of FUCA1 and even less with FUCA2, and in order to learn further 

skills, it was decided to pursue the expression of these enzymes in a more native 

environment through mammalian tissue cul ture (see 5.3.2). FUCA1 and FUCA2 are 

known glycoproteins
306 ,309,310,312

 and have predicted disulfide bonds (vide supra). 

As such, expression of the enzymes in a tissue culture environment should improve 

the solubility of the protein produced as the cellular environment and enzymatic 

machinery of cultured mammalian cells more closely resembles that in heterologous 

expression. This expression system is particularly suited to the expression of 

glycoproteins, proteins comprising disulfide bonds and secreted proteins, and 

typical yields of purified proteins produced from the HEK -293T cell line, for 

example, range between 1-80 mg L
-1

.
345

   

 

5.3.2  Expression of FUCA1 and FUCA2 in mammalian tissue culture 

5.3.2.1  Constructs from the CCRC 

9 constructs obtained from the complex carbohydrate research centre , five 

harbouring the gene for human α-ʟ-fucosidase FUCA1 and four harbouring that for 

FUCA2, were tested for expression levels in  cultured HEK-293T and CHO-K1 

adherent cells. Small scale expression tests were run of both secreted protein and 

protein harvested from cells (Figure 5.8). 

Cells transfected with constructs containing green fluorescent protein were visibly 

green and the conditioned media from these samples also appeared green. While 

caution should be taken in interpreting differences in expression level between 

different membranes using Western blots, expression in CHO-K1 cells seemed to be 

uniformly lower than that in HEK-293T cells. The secretion of all of the constructs 

also seemed to be efficient, as most of the protein observed was from the soluble 

phase. The FUCA1 pGEN1 construct was chosen for further study as it provided a 

large quantity of protein and only a single band was observed on western blot; it 

was expected that the multiple bands observed for other constructs were due to 

degradation of the protein.   
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Figure 5.8. Expression levels of FUCA1 and FUCA2 constructs in HEK-293T and 

CHO-K1 cells. Expression levels were determined by Western blotting using an 

anti-His:HRP monoclonal antibody. Protein from both the soluble and insoluble 

phases was visualised; the samples run were of secreted protein from HEK -293T 

(A) and CHO-K1 (C) and protein isolated from cells of HEK-293T (B) and CHO-K1 

(D). M is a low range molecular weight marker (Biorad). Samples 1-9 are, 

respectively, pGEN1, pGEN2, pGEN3, pGEC1 and pGEC2 constructs of FUCA1 

and pGEN1, pGEN2, pGEN3 and pGEC1 constructs of FUCA2.  

 

Subsequently, expression of the FUCA1 pGEN1 construct was carried out using 

different transfection reagents (linear polyethylenimine, polyethylenimine “Max”) 

at a range of transfection reagent:DNA ratios, in both HEK-293T and CHO-K1 cells 

in order to determine the optimal transfection reagent (data not shown). Linear 

polyethylenimine was chosen for subsequent experiments as this transfection 

reagent and ratio seemed to give the highest yield of FUCA1 as observed by 

western blot.  

Expression of the FUCA1 pGEN1 construct in HEK -293T cells was scaled up to ca.  

450 mL in 15 T175 flasks. Two harvests were conducted, at 3 and 5 days after cell 

transfection. Conditioned media was concentrated by tangential -flow filtration and 

protein was purified using Ni
2+

 affinity chromatography followed by size exclusion 
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chromatography to yield 1 mg of protein from a total volume of 900 mL  

conditioned media (Figure 5.9). This purified protein was observed to be active 

against 2-chloro,4-nitrophenyl-α-ʟ-fucopyranoside on bench tests, causing a colour 

change in the reaction solution due to formation of a yellow 2-chloro,4-

nitrophenolate product . The purified protein produced by cultured mammalian cells   

was observed to run higher on SDS-PAGE gels than that produced recombinantly by 

Eshcerichia coli , indicating the presence of N-linked glycans (Figure 5.9, D vs. e.g. 

Figure 5.4, E). Curiously, when expression of this construct in otherwise similar 

conditions (the same HEK-293T cell line albeit with a higher passage number, 

similar cell confluency at the time of transfection etc.) but using roller bottles for 

cell culturing, a ca. 10-fold lower yield of 100 µg L
-1

 purified protein was obtained.   
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Figure 5.9. Expression and purification of  FUCA1 pGEN1 construct  in cultured 

HEK-293T cells. A: Western blots of FUCA1 expression, His-tagged proteins were 

visualised using an anti-His:HRP monoclonal antibody (M: biorad broad range 

molecular weight marker 1: first 450 mL harvest, 3 days after transfection 2: second 

450 mL harvest, 5 days after transfection). B: Immobilised metal affinity 

purification of FUCA1 pGEN1; A280 response is shown in blue while the percentage 

of high imidazole in the mixed buffer sample is shown in orange. C: Size exclusion 

chromatography of FUCA1 pGEN1; A 280 response is shown in blue. D: Samples 

from purification were visualised on an SDS-PAGE gel (M: biorad broad range 

molecular weight marker, 1: Protein concentrated by tangential -flow filtration. 2: 

sample from protein that had been run through the 1 mL Hi -Trap Excel column a 

single time, 3-4: samples from Ni
2+

-affinity chromatography purification of FUCA1 

pGEN1, 5: Concentrated FUCA1 pGEN1 sample loaded on the size exclusion 

column). Unfortunately, while samples from the size exclusion purification of 

FUCA1 pGEN1 were loaded on the gel, the intensity of the protein bands was too 

low to visualise.  

 

5.3.2.2  Assays on purified FUCA1 pGEN1 

Enzymatic assays were run on FUCA1 pGEN1 after Ni
2+

-affinity and size exclusion 

purification. As the pGEN1 construct contains an N-terminal His8 affinity tag that 

is cleavable by TEV protease, cleavage of the affinity tag was tested using TEV 
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protease (Figure 5.10); further, assays using the deglycosylating enzymes EndoH 

and PNGase were conducted (Figure 5.10).  

Treatment of FUCA1 pGEN1 with TEV protease yielded no visible gel shift (Figure 

5.10, 1, 5-7), making it unlikely that proteolytic cleavage was catalysed by this 

enzyme. The protein bands on treatment with EndoH using both standard an d 

denaturing reaction conditions appear similar (Figure 5.10, 2-4, 8), and show the 

presence of heterogeneous species. This stands to reason as EndoH is not capable of 

accepting complex glycans as substrate; these species comprise a proportion of the 

glycans produced by mammalian cells. Treatment with PNGase however (Figure 

5.10, 1, 9-10) yielded a visible gel shift towards an apparently homogenous species 

which is perhaps the fully deglycosylated enzyme (less its innermost GlcNAc 

residues). 

 

 

Figure 5.10. Enzymatic assays on purified FUCA1 pGEN1.  Gels displayed are 12 % 

SDS-PAGE gels. Molecular weight ladders (Biorad broad range, M) are shown 

along with the molecular weight of the protein standards in kDa. Lane 1: native 

FUCA1. Lanes 2-4: FUCA1 treated with native EndoH f assays for 1, 2 and 4 hours, 

respectively. Lanes 5-7: FUCA1 treated with AcTEV protease for 1, 2 and 4 hours 

respectively. Lane 8: FUCA1 treated with EndoH f in a denaturing assay. Lane 9: 

FUCA1 treated with PNGase F in a native assay. Lane 10: FUCA1 treated with 

PNGase F in a denaturing assay.  

 

Expression of the FUCA1 pGEN1 construct in HEK-293T cells allowed the 

purification towards seemingly pure protein (Figure 5.9, B-D). The pGEN1 

construct however contains a long (32 residues) region co mprising a His8 affinity 
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tag, Strep tag, attB1 sequence and TEV proteolysis site prior to the start of the 

FUCA1 gene product (Figure 5.3); long linker regions tend to hinder 

crystallogenesis and must typically be cleaved prior to crystal formation. As 

proteolysis of FUCA1 pGEN1 could not be achieved using TEV protease (Figure  

5.10, 1, 5-7), and in order to reduce the number of steps taken for purification of a 

crystallisable construct,  constructs were designed with minimal octahistidine tags at 

the N-terminus of the FUCA1 gene product.   

 

5.3.2.3  FUCA1 constructs containing minimal octahistidine affinity tags  

Three FUCA1 constructs were designed containing minimal, non -cleavable His-

Tags either directly upstream of the FUCA1 coding sequence (8His_FUCA1), o r 

containing one (8HisSG_FUCA1) or two (8HisSGSG_FUCA1) SG dipeptides before 

start of the FUCA1 coding sequence (for methodological details, see 5.2.2.3). 

Small scale expression tests were conducted on each of the constructs ( Figure 5.11) 

in both HEK-293T and CHO-K1 cells, using both linear polyethylenimine and 

polyethylenimine “Max” as transfection reagents. As only a single protein band was 

observed on anti -His western blot for the 8His_FUCA1 construct, while multiple 

bands were seen for the 8HisSG_FUCA1 and 8HisSGSG_FUCA1 constructs (Figure 

5.11), subsequent scale-up was carried out using 8His_FUCA1.  
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Figure 5.11. Small scale expression testing of FUCA1 constructs with minimal His -

Tags. Molecular weight ladders (M) are shown along with the molecular weight of 

the protein standards in kDa. Constructs and cell lines are as displayed in braces. 

Odd lane numbers correspond to expression after transfection with a ratio of 1.7:1 

linear polyethylenimine while even lane numbers correspond to expression after 

transfection with a ratio of 3.5:1 polyethylenimine “Max”. Pairs of samples ( 1 and 

2, 3 and 4 etc.) represent duplicate expression tests with plasmid DNA isolated 

from unique colonies formed after transformation of bacterial cells; two colonies 

were tested for each octahistidine-tagged construct.   

 

Expression was thus scaled up to 90 mL (three T175 flasks). Unlike previously with 

FUCA1 pGEN1, transfection was effected when cells had reached ca. 90 % 

confluency (for previous tissue culture experiments, trans fection was carried out at 

ca. 50-70 % confluency). Two cell harvests were conducted, each of 90 mL 

conditioned media. Harvested protein was clarified and purified using immobilised 

metal affinity chromatography, yielding 1.2 mg of 8His_FUCA1 in total; 

conditioned media from the first and second harvests were purified separately and 

less protein was purified from the second harvest (Figure 5.12).  
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Figure 5.12. Expression and purification of 8His_FUCA1 expressed in cultured 

HEK-293T cells. The sample run on the first lane of each gel figure (C, E) is a 

Biorad broad range molecular weight marker  (M), with molecular weights of 

protein standards displayed. A and B: Immobilised metal affinity purification of 

8His_FUCA1; A280 response is shown in blue while the  percentage of high 

imidazole in the mixed buffer sample is shown in orange ( A is from the first 90 mL 

harvest while B is from the second). C: SDS-PAGE gel of samples from Ni
2+

 

purification of the first harvest of 8His_FUCA1 (A, also representative of the 

second harvest, B). M: Biorad broad range molecular weight marker (molecular 

weights of protein standards are displayed), 1-7: samples from increasing run 

volume, encompassing each fraction across the peak in A.  

Expression was scaled up to 450 mL (fifteen  T175 flasks), with transfection at ca. 

50-70 % confluency. Purification of the 450 mL clarified conditioned media by 

immobilised metal affinity chromatography only yielded a further 1.4 mg 

8His_FUCA1, however. This dramatic difference in expression yield may be due to 

the confluency of cultured cells at the time of transfection. While a number of 

transfection protocols cite confluencies for optimal transfection efficiency in the 

approximate range 40-80%, Aricescu et al . noted that “optimal transfection 

efficiency is achieved when adherent cells reach about 90% confluency”.
346

 

Nevertheless, the two samples of 8His_FUCA1 were pooled, concentrated and 

further purified by gel filtration chromatography to yield the enzyme at high purity 

(Figure 5.13).  
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Figure 5.13. Purification of 8His_FUCA1 by size exclusion chromatography. A: 

Size exclusion chromatography of 8His_FUCA1; A 280 response is shown in blue. B: 

SDS-PAGE gel of sample from size-exclusion chromatography of 8His_FUCA1. M:  

Biorad broad range molecular weight marker (molecular weights of protein 

standards are displayed), 1-6: samples from increasing run volume across the large 

peak in A.  

 

5.3.2.4  Assays and crystallisation of minimal octahistidine FUCA1 construc t 

The Michaelis-Menten parameters for CNP-fucoside hydrolysis by purified 

8His_FUCA1 were determined;  KM = 0.099 ± 0.01 mM ,  Vmax = 1305 ± 47 min
-1

,  

Figure 5.14. These values correlate well with those determined previously by Liu et 

al. using purified FUCA1 expressed recombinantly in Escherichia coli  (KM = 0.23 

mM, Vmax = 17.1 s
-1

).
334

 The KM value observed for 8His_FUCA1 is slightly lower; 

this could be due to the difference in substrate (2 -chloro,4-nitrophenyl-α-ʟ-

fucopyranoside rather than 4-nitrophenyl-α-ʟ-fucopyranoside), or due to differences 

in the experimental pH and buffer system.  It is unlikely that the presence of glycans 

in the tissue-culture derived sample has any effect on substrate binding as treatment 

of human liver derived FUCA1 with N-glycanase has previously been shown not to 

affect its KM value.
312
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Figure 5.14. Michaelis-Menten kinetics of CNP-α-ʟ-fucopyranoside hydrolysis by 

8His_FUCA1. 

 

Crystallisation screens were also set up with purified 8His_FUCA1, using the 

sitting drop vapour diffusion method. In order to improve the pro pensity for the 

enzyme to crystallise, it was incubated with α-ʟ-fucosidase inhibitor 2 (see 2.2 and 

Table 2.2) for ca. 1 hour before crystallisation experiments.  Initial crystallisation 

screens were kindly optimised by Wendy Offen to yield crystals which appeared 

visually promising (Figure 5.15); these crystals were tested for diffraction in -house. 

Unfortunately, diffraction of these crystals resulted in only a few, highly intense 

diffraction spots, interpreted as being due to the diffraction of small mole cule 

crystals. As the crystallisation mother liquor contained only buffer and 

polyethylene glycol (optimised from PACT condition D1, Molecular Dimensions; 

this condition contains 0.1 M ᴅʟ-malic acid, MES monohydrate, Tris buffer system 

pH 4.0, 25 % w/v PEG 1500), it seems unlikely that the spots are due to mother 

liquor, but may be due to crystals of 2 that formed in the crystallisation drop.  
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Figure 5.15. Crystals formed in optimisation trays from the incubation mixture of 

8His_FUCA1 and inhibitor 2. On diffraction studies, these crystals appeared to be 

salt crystals.   

 

The α-ʟ-fucosidase sample was not deglycosylated prior to crystallogenesis 

experiments. The presence of N-glycans in a protein sample is known to interfere 

with crystallisation due to the structural and conformational heterogeneity N -

glycans introduce to a protein, and few crystal structures have been determined of 

proteins containing extensive N-glycosylation.
325

 Therefore, these proteins are 

typically deglycosylated enzymatically prior to crystallisation experiments.  
325

 The 

deglycosylating enzyme PNGase, which accepts as substrate pr oteins with all types 

of N-glycan structure, converts the Asn residue forming an N -glycosidic bond to an 

Asp residue, thereby altering the surface charge of the enzyme, and this is also 

known to interfere with crystallogenesis and the polydispersity of the  enzyme 

sample, causing its aggregation
325

. Unfortunately, the EndoH enzyme, which leaves 

a single GlcNAc monosaccharide at each glycosylation site, does not alter the 

surface charge of the protein, interfere with crystallogenesis or cause aggregation, 

does not act to cleave the complex-type N-glycans which comprise a portion of the 

N-glycans produced during the mammalian N-glycan biosynthetic pathway. It was 

shown previously that EndoH-catalysed deglycosylation of FUCA1 pGEN1 led to a 

heterogenous reaction product (5.3.2.2, Figure 5.10).  

EndoH is thus the structural biologists’ preferred deglycosylating enzyme, however 

means must be taken to avoid the biosynthesis of complex -type N-glycans during 

protein expression. Knowledge of the N-glycan biosynthetic pathway can be 

exploited to yield N-glycosylated proteins lacking complex-type modifications. For 

example, the α-mannosidase inhibitors kifunensine or swainsonine can be 

introduced to media in order to inhibit glycan N-glycan biosynthesis, limiting N-
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glycan biosynthesis at the stage of oligomannose -type or hybrid-type N-glycans 

respectively.
325

 Alternatively, a glycosylation deficient cell line  such as HEK-293S 

GnTI
- / -328

 could be used for the expression of human α-ʟ-fucosidases with a higher 

propensity to crystallise.  
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5.4 Conclusions 

The α-ʟ-fucosidases FUCA1 and FUCA2 were expressed recombinantly in 

Escherichia coli ; FUCA1 was further purified by immobilised metal affinity 

chromatography and size-exclusion chromatography with a yield of 3.5 mg L
-1

 

active protein, however this was not the case for FUCA2, which could not be 

purified. For both enzymes, most of the expressed protein was present in inclusion 

bodies. Attempts to further solubilise the proteins by using constructs both with an 

N-terminal SUMO module and pelB leader peptide to facilitate solubility and 

disulfide bond formation did not appear to improve protein solubility. While 3.5 mg 

L
-1

 purified enzyme is not a high yield for recombinant expression of a soluble 

protein in Escherichia coli , it may be possible to use this method to yield enough 

protein for crystallisation studies .  

FUCA1 and FUCA2 were also expressed in cultured CHO-K1 and HEK-293T cells. 

A number of constructs containing the gene transcripts for FUCA1 and FUCA2 

received from the Moremen Lab (Complex Carbohydrate Research Centre, 

University of Athens, Georgia) were expressed. Transfection of the shortest N -

terminal construct, comprising both octahistidine and Strep -II affinity tags, into 

cultured CHO-K1 and HEK-293T was observed to allow expression of the most 

stable α-ʟ-fucosidase transcripts for both proteins from those tested, while the level 

of FUCA2 expression was lower than that of FUCA1. FUCA1 was further purified 

from conditioned media using a combination of immobilised metal affinity 

chromatography and size-exclusion chromatography to yield high purity protein 

which was active against the synthetic substrate 2 -chloro,4-nitrophenyl-α-ʟ-

fucopyranoside, however at low yield (ca. 1.1 mg L
-1

).  

For FUCA1 an additional construct comprising just an octahisti dine affinity tag at 

the N-terminus of the FUCA1 gene transcript was cloned and used to transfect both 

CHO-K1 and HEK-293T cells. Transfection of highly confluent (ca. 90 %) HEK-

293T cells using this construct allowed purification of active α-ʟ-fucosidase at 

greater than 6 mg L
-1

 yield. The Michaelis-Menten parameters of this purified 

enzyme were determined (KM = 0.099 mM, Vmax = 1305) and are in agreement with 

literature values. Crystallisation screens were set up with this purified enzyme 

complexed with a competitive α-ʟ-fucosidase inhibitor, however the only crystals 

that formed from these experiments were likely formed by the inhibitor itself. It is 

unsurprising that crystals of the enzyme did not form as at the time of 

crystallogenesis, the sample still  contained a heterogenous pattern of N-glycans, 

which is known to interfere with crystallogenesis. Further attempts towards the 
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realisation of the crystal structure of human GH29 enzymes from a tissue culture 

source would benefit from either expression in glycosylation deficient cell lines  or 

the introduction of inhibitors of the N-glycan biosynthetic pathway to the culture 

media during transfection. The yield of purified FUCA1 from transfected cultured 

HEK-293T cells was observed to be maximised when trans fection was conducted at 

high (ca. 90%) confluency, and when expression was carried out in T175 flasks 

rather than by using the less labour-intensive roller bottle system.  

FUCA2, which could not be purified in an active form by expression in a 

heterologous system, could be expressed and purified in cultured mammalian cells, 

however at lower yield than FUCA1. While FUCA1 perhaps has more significance 

in the clinical setting, the structural characteristics of FUCA2 may be advantageous 

in the study and treatment of host-pathogen interactions due to its documented role 

in Helicobacter pylori  virulence.
4
 

While the transient transfection system employed herein can be employed rapidly 

for the testing of new plasmid DNA clones, it is not the most ideal for large scale 

protein expression, as is likely to be required for structural studies. The generation 

of stable clones expressing GH29 fucosidases with relevant affinity tags for 

purification may provide a better long-term alternative for protein production; as it 

is likely that many studies downstream of an initial structure determination would 

be carried out, the realisation of a robust protein expression system for these 

enzymes would be ideal.
347

 

Hopefully, the work documented herein will pave the way for the successful 

structural characterisation of these important enzymes in the near future.  
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Chapter 6: Conclusions and future perspectives 

 

ʟ-fucose has vital importance to the correct functioning of a number of biological 

species in a wide range of contexts, inter alia, in the formation of durable 

extracellular matrices, molecular adhesion and signalling events, fertility and 

development. α-ʟ-fucosidases act to cleave ʟ-fucose residues from these biological 

species and these enzymes have a relationship with disease phenotypes in mammals. 

Genetic factors leading to lack of lysosomal α-ʟ-fucosidase activity cause the 

neurodegenerative lysosomal storage disorder fucosidosis. Further, the enzymes 

have a relationship with cancer, as many neoplastic cells differentially express 

fucosylated glycans such as the sialyl -Lewis
x
 antigen on their cell surface and may 

also upregulate expression of α-ʟ-fucosidase. Finally, molecular adhesion and 

infectivity by the stomach pathogen Helicobacter pylori  has been shown to 

correlate with plasma α-ʟ-fucosidase activity. α-ʟ-fucosidases are thus critically 

important enzymes, and it may be envisioned that the inhibiti on of these enzymes 

may provide clinical routes to treatment of the illnesses discussed above. As such, 

there has been generous research interest in developing inhibitors of α -ʟ-fucosidase. 

As enzyme function is largely related to the 3 -dimensional structure adopted in 

solution, the design of potent enzyme inhibitors may be aided by prior knowledge 

of the 3-dimensional structure of the enzyme in question along with understanding 

of its reaction mechanism and transition-state(s). Unfortunately, while the 3 -

dimensional structures of a number of bacterial α -ʟ-fucosidases were known at the 

onset of this work, no structure for either mammalian α -ʟ-fucosidase (lysosomal or 

plasma) was known.  

Throughout this work, the 3-dimensional basis for the inhibition of GH29 family α-

ʟ-fucosidase enzymes by 5-membered iminosugars was probed by a combination of 

X-ray crystallography and kinetic methods. The conformation adopted by these 

inhibitors when complexed with a bacterial α -ʟ-fucosidase from Bacteroides 

thetaiotaomicron  (BtFuc2970) was observed crystallographically to be E3 (equating 

to E4 for a pyranoside), supporting the catalytic mechanism of this class of enzyme, 

which proceeds through a 
3
H4 transition state; this conformation was concluded to 

occur due to hydrogen bonds made to key residues in the enzymatic active site.  

Through these studies, a hydrophobic ridge was also observed in GH29 -A subfamily 

α-ʟ-fucosidases which appears to provide a hydrophobic interaction motif for 

glycosidic aglycon moieties.   
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5-membered iminocyclitols have proven a versatile system for the inhibition of 

glycoside hydrolases, particularly of GH38 golgi α-mannosidase-II
222, 348, 349

, and α-

ʟ-fucosidase as presented in this work. These heterocycles have the advantage that 

their conformation is dictated not by ring energe tics but by the ring substituents, 

allowing greater design of substituents in order to fill pockets in the enzymatic 

active site to yield inhibitors which may be less promiscuous than 6 -membered ring 

inhibitors. While these compounds have much potential fo r glycoside hydrolase 

inhibition in the clinical setting, they have only been applied to a small number of 

glycoside hydrolase families, and their more widespread use may provide access to 

powerful, selective inhibitors for treatment of a range of conditio ns including 

lysosomal storage disorders and cancer.  

Irreversible enzyme inhibitors can be powerful tools for molecular imaging. Such 

compounds which comprise fluorophores or other moieties may be utilised in a 

process known as activity-based protein profiling, whereby the catalytic mechanism 

of an enzyme is exploited to yield highly specific and bio -orthogonal molecular 

imaging reagents. The 3-dimensional crystal structures of compounds upon which 

α-ʟ-fucosidase activity-based probes can be appended were determined when 

complexed with BtFuc2970. These structures serve to show unequivocally the 

covalent bond formed between the enzymatic nucleophile residue and the fucose -

mimic ring, after trans-diaxial ring-opening of the aziridine moiety present in these 

compounds, and represent the first crystal structures reported of a glycoside 

hydrolase ligated with such an aziridine compound. Compounds such as these may 

have utility in discovering novel enzymes with α -ʟ-fucosidase activity, and as 

reporters of this activity, most prominently in studies related to fertility.  

Activity-based probes like those discussed in the current work provide a powerful 

system for the study of enzyme activity and the dynamics of enzyme biosynthesis, 

trafficking and degradation. This technique has been applied in the past to a range 

of glycoside hydrolases such as glucocerebrosidase and other β-glucosidases, 
274,350

,  

β-galactosidases
269

 and hexosaminidases
273

, and will likely be expanded to other 

retaining glycoside hydrolases in the coming years, likely including clinically 

important enzymes. One shortcoming is that the covalent trapping of glycoside 

hydrolases to report on their activity has thus far only been applied against 

retaining glycoside hydrolases. Given a suit able synthetic chemistry framework, it 

should be possible to apply the techniques developed for retaining glycoside 

hydrolases to their inverting counterparts. For example, recent research reported the 

synthesis of N-bromoacetylglycosylamines and bromoketone-C-glycosides to target 
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inverting endo-xyloglucanases
351

, and it may be envisaged that these compounds 

could be synthesised to include reporter moieties for use as activity -based probes.   

Another potential use for activity-based probes such as those described herein is in 

the labelling of glycosyltransferases. While the glycosylation occurring during N-

glycan biosynthesis has previously been tracked using labelled nucleoside 

sugars,
268,352

 individual glycosyltransferases involved in this pathway or other 

glycosyl transfers have not yet been visualised by activity -based protein profiling. 

Many glycosyltransferases have clinical relevance, such as 

oligosaccharyltransferase which transfers a dolichol-linked precursor N-glycan to 

nascent glycoproteins on the luminal side of the endoplasmic reticulum and is thus 

critical for the correct maturation and folding of many proteins
353

 and O-GlcNAc 

transferase, which transfers GlcNAc in a β-linkage to many proteins in the nuclear 

compartment; dysregulation of this enzyme is linked to diabetes
354

, cancer
355

 and 

neurodegenerative disorders
356

. Fucosyltransferases, meanwhile, are important due 

to their generation of fucosylated glycans which have been linked to cancer
73

, the 

immune response
44,45

 and host-pathogen interactions
5,6

. The development of 

activity-based probing techniques for trapping of glycosyltransferases thus has 

exciting prospects for improving our understanding of glycosylation in d isease.  

The results discussed above further our understanding of the enzymatic mechanism 

of α-ʟ-fucosidases and may further aid in the design of more potent inhibitors of the 

enzyme class, however they do nothing to address a critical lack of understandin g 

by the field, namely that the 3-dimensional structures of human α-ʟ-fucosidases are 

still unknown. As these are the enzymes that are important to human health, this 

represents a bottleneck to growth of the field and the potential development of 

therapeutics for fucosidosis, cancer and infection by Helicobacter pylori . As such, a 

number of methods were carried out to attempt the expression of human fucosidases 

FUCA1 and FUCA2. While these enzymes have previously been expressed and 

purified to apparent homogeneity, the yield of purified enzyme obtained using these 

methods was not suitable for crystallographic experiments.  

Expression of both human α-ʟ-fucosidases was attempted using Escherichia coli , 

Pichia pastoris , and cultured mammalian cells as expression vectors. The most 

success was observed when the GH29 enzymes were obtained by transient 

transfection of highly confluent human embryonic kidne y cells. For FUCA1 at least, 

the expression yield and purity after a two -step purification procedure leaves the 

author optimistic that a structural solution to this clinically important enzyme is on 

the horizon.  
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The human α-ʟ-fucosidases are each clinical ly important, however it is currently 

unknown to what extent the GH29 inhibitors described in the literature inhibit each 

enzyme, or what the structural features which may allow more selective inhibition 

of each enzyme may be. This may be clinically import ant however as, e.g., whilst 

inhibition of FUCA2 may allow clearance of Helicobacter pylori  from the stomach, 

the inhibition of FUCA1 in vivo is likely to cause a number of side -effects due to 

the importance of the enzyme in glycan catabolism. The availabi lity of crystal 

structures for these enzymes could potentially inform the design of selective 

inhibitors for each human α-ʟ-fucosidase. 
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Appendix 1: Alignment of α-ʟ-fucosidase sequences 

from various organisms 

 

 

Appendix 1.1. Alignment of α-ʟ-fucosidase protein sequences. Protein sequences of 

Bacteroides thetaiotaomicron  2970 (Bt2970), Thermotoga maritima  GH29 

(TmGH29), Homo sapiens  FUCA1 (HsFUCA1) and FUCA2 (HsFUCA2) and Bos 

Taurus GH29 (BtaGH29) are aligned. Amino acids are coloured according to 

sequence similarity; 100% similarity in green, 80-10% in light green, 60-80% in 

yellow. Alignment was performed using Geneious R8 (http://www.geneious.com, 

Kearse et al., 2012).
357

  

 

 

 

  

http://www.geneious.com/
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Appendix 2: BtFuc2970 gene sequence and transcript 

in pET-YSBLIC3C vector 

 

A2.1 BtFuc2970 gene sequence in pET-YSBLIC3C 

ATGGGCAGCAGCCATCATCATCATCATCACAGCAGCGGCCTGGAAGTTCTGT

TCCAGGGACCAGAAGCAAAGAAGGAAATTCCTTTGAAATATGGAGCTACGA

ATGAAGGTAAACGGCAAGACCCTGCCATGCAGAAGTTCCGTGACAATCGTTT

GGGTGCCTTCATCCACTGGGGACTGTATGCTATCCCCGGGGGAGAGTGGAAT

GGAAAAGTATATGGCGGAGCTGCCGAATGGCTGAAAAGCTGGGCAAAAGTA

CCTGCTGATGAATGGCTGAAACTGATGGATCAATGGAACCCTACGAAATTTG

ATGCGAAGAAATGGGCAAAGATGGCCAAAGAAATGGGTACTAAGTATGTCA

AGATTACAACGAAACATCATGAAGGCTTCTGTCTGTGGCCTAGTAAGTAT AC

TAAATATACCGTAGCAAATACCCCATATAAGCGTGATATATTGGGCGAGTTG

GTGAAAGCCTATAATGACGAAGGAATTGATGTACACTTCTATTTCTCAGTGA

TGGACTGGAGTAATCCGGATTATCGTTATGATATAAAATCCAAAGAAGATAG

CATCGCCTTCAGCCGTTTCCTTGAATTTACCGACAATCAACTGAAAGAACTG

GCAACACGTTACCCGACCGTTAAGGACTTCTGGTTTGATGGTACGTGGGATG

CCAGCGTTAAAAAGAATGGTTGGTGGACAGCTCATGCAGAACAAATGTTGA

AGGAACTCGTTCCGGGTGTTGCCATCAATAGCCGCTTACGTGCTGATGACAA

AGGAAAGCGACATTTTGATAGCAATGGTCGTCTGATGGGTGACTACGAATCC

GGCTACGAACGCCGCTTGCCCGATCCGGTGAAAGATCTCAAAGTTACACAGT

GGGACTGGGAAGCCTGCATGACTATACCCGAAAATCAATGGGGATATCACA

AAGACTGGTCATTGAGCTATGTGAAAACTCCGATTGAAGTCATTGACCGCAT

TGTACACGCTGTTTCCATGGGTGGAAACATGGTTGTCAACTTCGGGCCTCAG

GCAGATGGTGATTTCCGTCCCGAAGAGAAAGCAATGGCTACAGCGATTGGTA

AGTGGATGAATCGTTACGGAAAAGCTGTTTATGCTTGCGATTATGCCGGATT

TGAAAAACAAGACTGGGGATATTATACACGTGGTAAAAACGATGAAGTTTAT

ATGGTAGTATTCAATCAGCCTTATAGTGAACGGTTGATTGTAAAGACTCCGA

AAGGCATTACAGTAGAAAAAGCCACTTTGCTGACTACCGGTGAAGATATCAC

TGTTGTTGAGACAACCCGCAATGAATATAACGTATCTGTTCCTAAAAAGAAT

CCGGGTGAACCTTATGTAATTCAGCTTAAAGTTCGTGCAGCTAAAGGAACAA

AAAGTATTTATCGAGATGCTTTAACATAA 
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A2.2 BtFuc2970 transcript in pET-YSBLIC3C 

MGSHHHHHHSSGLEVLFQGPAEAKKEIPLKYGATNEGKRQDPAMQKFRDNRLG

AFIHWGLYAIPGGEWNGKVYGGAAEWLKSWAKVPADEWLKLMDQWNPTKFD

AKKWAKMAKEMGTKYVKITTKHHEGFCLWPSKYTKYTVANTPYKRDILGELV

KAYNDEGIDVHFYFSVMDWSNPDYRYDIKSKEDSIAFSRFLEFTDNQLKELATR

YPTVKDFWFDGTWDASVKKNGWWTAHAEQMLKELVPGVAINSRLRADDKGK

RHFDSNGRLMGDYESGYERRLPDPVKDLKVTQWDWEACMTIPENQWGYHKD

WSLSYVKTPIEVIDRIVHAVSMGGNMVVNFGPQADGDFRPEEKAMATAIGKWM

NRYGKAVYACDYAGFEKQDWGYYTRGKNDEVYMVVFNQPYSERLIVKTPKGI

TVEKATLLTTGEDITVVETTRNEYNVSVPKKNPGEPYVIQLKVRAAKGTKSIYR

DALT 
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Appendix 3: FUCA1 and FUCA2 gene sequences and 

transcripts in pET30a
+
 vector 

 

A3.1 FUCA1 gene sequence in pET30a
+
 

ATGCACCATCATCATCATCATTCTTCTGGTCTGGTGCCACGCGGTTCTGGTAT

GAAAGAAACCGCTGCTGCTAAATTCGAACGCCAGCACATGGACAGCCCAGA

TCTGGGTACCGACGACGACGACAAGGCCATGGGCGGTGCCGCCGAATCAGT

GCGTCGTGCCCAACCGCCGCGTCGCTACACCCCGGATTGGCCGTCGCTGGAT

AGTCGCCCGCTGCCGGCTTGGTTTGATGAAGCAAAATTTGGCGTGTTCATTC

ATTGGGGTGTCTTTAGCGTGCCGGCTTGGGGCTCTGAATGGTTCTGGTGGCA

CTGGCAGGGTGAAGGTCGTCCGCAGTATCAACGTTTTATGCGCGATAACTAT

CCGCCGGGCTTCAGCTACGCAGACTTTGGTCCGCAGTTCACCGCTCGCTTTTT

CCATCCGGAAGAATGGGCCGACCTGTTTCAAGCCGCGGGTGCAAAATACGTG

GTTCTGACCACGAAACATCACGAAGGTTTCACCAACTGGCCGAGCCCGGTTT

CTTGGAACTGGAATTCCAAAGATGTGGGTCCGCATCGTGACCTGGTTGGCGA

ACTGGGTACGGCGCTGCGTAAACGCAATATTCGCTATGGCCTGTACCATTCT

CTGCTGGAATGGTTTCACCCGCTGTATCTGCTGGATAAGAAAAACGGTTTTA

AAACCCAGCACTTCGTTAGTGCCAAAACGATGCCGGAACTGTATGATCTGGT

CAATAGTTACAAACCGGATCTGATCTGGTCCGACGGCGAATGGGAATGCCCG

GACACCTATTGGAACAGCACGAATTTCCTGTCTTGGCTGTACAACGATAGTC

CGGTGAAAGACGAAGTCGTGGTTAACGATCGTTGGGGTCAGAATTGCTCCTG

TCATCACGGCGGTTACTACAACTGCGAAGATAAATTCAAACCGCAATCACTG

CCGGACCATAAATGGGAAATGTGTACCAGTATTGACAAATTCTCCTGGGGCT

ATCGTCGCGATATGGCACTGTCGGACGTTACCGAAGAATCAGAAATTATCTC

GGAACTGGTTCAGACGGTCAGCCTGGGCGGTAACTACCTGCTGAATATCGGC

CCGACCAAAGATGGTCTGATTGTCCCGATCTTTCAAGAACGTCTGCTGGCCG

TGGGCAAATGGCTGTCAATTAACGGTGAAGCAATCTATGCTTCGAAACCGTG

GCGCGTCCAGTGGGAGAAAAACACCACGTCTGTGTGGTATACCAGTAAAGG

CTCCGCGGTTTACGCCATTTTTCTGCACTGGCCGGAAAACGGTGTGCTGAATC

TGGAATCACCGATCACCACGTCGACCACGAAAATTACCATGCTGGGCATCCA

GGGTGATCTGAAATGGAGCACGGATCCGGACAAAGGTCTGTTCATCTCTCTG

CCGCAACTGCCGCCGAGTGCTGTTCCGGCAGAATTTGCTTGGACGATTAAAC

TGACGGGTGTGAAATGA  
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A3.2 FUCA1 transcript in pET30a
+
 

MHHHHHHSSGLVPRGSGMKETAAAKFERQHMDSPDLGTDDDDKAMGGAAES

VRRAQPPRRYTPDWPSLDSRPLPAWFDEAKFGVFIHWGVFSVPAWGSEWFWW

HWQGEGRPQYQRFMRDNYPPGFSYADFGPQFTARFFHPEEWADLFQAAGAKY

VVLTTKHHEGFTNWPSPVSWNWNSKDVGPHRDLVGELGTALRKRNIRYGLYHS

LLEWFHPLYLLDKKNGFKTQHFVSAKTMPELYDLVNSYKPDLIWSDGEWECPD

TYWNSTNFLSWLYNDSPVKDEVVVNDRWGQNCSCHHGGYYNCEDKFKPQSLP

DHKWEMCTSIDKFSWGYRRDMALSDVTEESEIISELVQTVSLGGNYLLNIGPTK

DGLIVPIFQERLLAVGKWLSINGEAIYASKPWRVQWEKNTTSVWYTSKGSAVY

AIFLHWPENGVLNLESPITTSTTKITMLGIQGDLKWSTDPDKGLFISLPQLPPSAV

PAEFAWTIKLTGVK 
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A3.3 FUCA2 gene sequence in pET30a
+
 

ATGCACCATCATCATCATCATTCTTCTGGTCTGGTGCCACGCGGTTCTGGTAT

GAAAGAAACCGCTGCTGCTAAATTCGAACGCCAGCACATGGACAGCCCAGA

TCTGGGTACCGACGACGACGACAAGGCCATGGGCGCTCACTCAGCGACCCGT

TTCGACCCGACCTGGGAATCACTGGATGCGCGTCAACTGCCGGCGTGGTTCG

ATCAAGCAAAATTTGGCATTTTTATCCATTGGGGCGTGTTTAGCGTCCCGTCA

TTCGGTTCGGAATGGTTTTGGTGGTATTGGCAGAAAGAAAAAATCCCGAAAT

ACGTGGAATTCATGAAAGATAACTATCCGCCGAGCTTTAAATACGAAGACTT

TGGTCCGCTGTTCACCGCGAAATTTTTCAACGCAAATCAGTGGGCTGATATCT

TCCAAGCGAGTGGCGCCAAATATATTGTTCTGACCTCCAAACATCACGAAGG

CTTTACGCTGTGGGGTAGCGAATATTCTTGGAACTGGAATGCGATTGATGAA

GGTCCGAAACGTGACATCGTTAAAGAACTGGAAGTCGCCATTCGTAATCGCA

CCGATCTGCGCTTCGGCCTGTATTACTCTCTGTTTGAATGGTTCCATCCGCTG

TTTCTGGAAGACGAAAGCTCTAGTTTCCACAAACGTCAGTTTCCTGTGAGTA

AAACCCTGCCGGAACTGTATGAACTGGTGAACAATTACCAACCGGAAGTTCT

GTGGAGCGATGGTGATGGCGGTGCACCGGATCAGTATTGGAACAGCACGGG

TTTCCTGGCTTGGCTGTACAATGAATCTCCGGTTCGTGGCACCGTGGTTACGA

ACGATCGCTGGGGCGCGGGTAGTATCTGCAAACATGGCGGTTTTTATACCTG

TTCCGACCGCTACAACCCGGGTCATCTGCTGCCGCACAAATGGGAAAATTGC

ATGACGATTGATAAACTGTCATGGGGCTATCGTCGCGAAGCCGGTATTTCGG

ACTACCTGACCATCGAAGAACTGGTGAAACAACTGGTGGAAACGGTTAGCTG

TGGCGGTAACCTGCTGATGAATATCGGCCCGACCCTGGATGGTACGATTTCA

GTCGTGTTTGAAGAACGTCTGCGCCAAATGGGCTCGTGGCTGAAAGTTAACG

GTGAAGCAATTTATGAAACCCACACGTGGCGTAGCCAGAATGATACCGTCAC

GCCGGACGTGTGGTATACCTCTAAACCGAAAGAAAAACTGGTCTACGCTATC

TTCCTGAAATGGCCGACCAGTGGCCAGCTGTTTCTGGGTCATCCGAAAGCGA

TTCTGGGTGCCACGGAAGTCAAACTGCTGGGCCACGGTCAGCCGCTGAACTG

GATTAGCCTGGAACAAAATGGCATCATGGTGGAACTGCCGCAGCTGACGATT

CATCAAATGCCGTGTAAATGGGGCTGGGCTCTGGCTCTGACCAATGTCATCT

AA 
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A3.4 FUCA2 transcript in pET30a
+
 

MHHHHHHSSGLVPRGSGMKETAAAKFERQHMDSPDLGTDDDDKAMGAHSAT

RFDPTWESLDARQLPAWFDQAKFGIFIHWGVFSVPSFGSEWFWWYWQKEKIPK

YVEFMKDNYPPSFKYEDFGPLFTAKFFNANQWADIFQASGAKYIVLTSKHHEGF

TLWGSEYSWNWNAIDEGPKRDIVKELEVAIRNRTDLRFGLYYSLFEWFHPLFLE

DESSSFHKRQFPVSKTLPELYELVNNYQPEVLWSDGDGGAPDQYWNSTGFLAW

LYNESPVRGTVVTNDRWGAGSICKHGGFYTCSDRYNPGHLLPHKWENCMTIDK

LSWGYRREAGISDYLTIEELVKQLVETVSCGGNLLMNIGPTLDGTISVVFEERLR

QMGSWLKVNGEAIYETHTWRSQNDTVTPDVWYTSKPKEKLVYAIFLKWPTSG

QLFLGHPKAILGATEVKLLGHGQPLNWISLEQNGIMVELPQLTIHQMPCKWGW

ALALTNVI 
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Appendix 4: Generation of FUCA1 constructs with 

minimal N-terminal octahistidine affinity tags 

A4.1 Oligonucleotide primers for generation of plasmids with only N-

terminal octahistidine affinity tags  

 

8His_FUCA1 

Forward primer  CAGCCTCCGCGCCGCTAC 

Reverse primer  GTGATGATGGTGATGGTGGTG 

8HisSG_FUCA1 

Forward primer  CAGCCTCCGCGCCGCTAC 

Reverse primer  GCCGCTGTGATGATGGTGATGGTGGTG 

8HisSGSG_FUCA1 

Forward primer  CAGCCTCCGCGCCGCTAC 

Reverse primer  GCCGCTGCCGCTGTGATGATGGTGATGGTGGTG 
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Abbreviations 

 

µg   Microgram 

µL   Microlitre 

µM   Micromolar 

µmol   Micromole 

A. thaliana  Arabidopsis thaliana   

ABP   Activity-based probe 

ABPP   Activity-based protein profiling 

ADAM  A disintegrin and metalloproteinase 

Arg   Arginine 

Asn   Asparigine 

Asp   Aspartic acid 

Bi   Bifidobacterium longum subsp. Infantis  

BODIPY  Boron-dipyrromethene 

BSA   Bovine serum albumin 

Bt   Bacteroides thetaiotaomicron 

C. jejuni  Campylobacter jejuni 

C   Celsius 

CAZy   Carbohydrate Active Enzymes database  

cDNA   Chromosomal deoxyribonucleic acid 

CHO   Chinese Hamster Ovary (cell strain)  

CMV   Cytomegalovirus 

CNP   2-chloro,4-nitrophenol 

CNP-fucoside  2-chloro,4-nitrophenyl-α-ʟ-fucopyranoside 
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Da   Dalton  

DFJ   Deoxyfuconojirimycin 

DLS   Diamond Light Source 

DMEM  Dulbecco’s Modified Eagle’s Medium 

DMJ   Deoxymannonojirimycin 

DNA   Deoxyribonucleic acid 

EDTA   Ethylenediaminetetraacetic acid 

EndoH   Endoglycosidase H 

ESRF   European Synchrotron Research Facility 

FBS   Foetal Bovine Serum 

Fg   Fuasrium graminearum 

FPLC   Fast protein liquid chromatography 

Fuc   Fucose 

FUCA1  α-ʟ-fucosidase 1 (Homo sapiens) 

FUCA2  α-ʟ-fucosidase 2 (Homo sapiens) 

FucCS   Fucosylated chondroitin sulfate 

fucR   ʟ-Fucose operon activator 

FUT1-11  GDP-α-ʟ-fucosyltransferases 1-11 

Gal   Galactose 

GalNAc  N-acetyl-galactosamine 

GDP   Guanine disphosphate 

GH   Glycoside hydrolase family 

GH29-A  Subfamily A from glycoside hydrolase family 29  

GH29-B  Subfamily B from glycoside hydrolase family 29  

GlcNAc  N-acetyl-glucosamine 
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Gln   Glutamine 

Glu   Glutamic acid 

GTP   Guanine triphosphate 

h   Hours 

HEK   Human embryonic kidney (cell strain)  

H. pylori  Helicobacter pylori 

HEPES  4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

His   Histidine 

HTCS   Hybrid two-component sensor/regulator  

IPTG   Isopropyl β-ᴅ-1-thiogalactopyranoside 

Ka    Acid dissociation constant  

kDa   Kilodalton 

K i   Inhibition constant 

KM    Michaelis constant 

L   Litre 

LADII   Leukocyte adhesion deficiency type II  

LB   Lysogeny Broth 

m    Minutes 

M   Molar 

MES   2-(N-morpholino)ethanesulfonic acid 

mg    Milligram 

mL   Millilitre 

mM   Millimolar 

mPES   Modified polyethersulfone 

mRNA   Messenger ribonucleic acid 
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MUC1   Cell surface-associated mucin 1 

nL   Nanolitre 

nm   Nanometre 

nM   Nanomolar 

P. aeruginosa  Pseudomonas aeruginosa 

PAGE   Polyacrylamide gel electrophoresis 

PBS    Phosphate-buffered saline 

PDB   Protein databank 

PEG   Polyethylene glycol 

PEI   Polethylenimine 

pelB   Pectate lyase B 

PL   Polysaccharide lyase family 

PNGase  Peptide-N-glycosidase  

POFUT1-2  Protein-O-fucosyltransferases 1-2 

PUL   Polysaccharide utilisation locus 

RCF   Relative centrifugal force 

RCSB   Research Collaboratory for Structural Bioinformatics  

RMSD   Root-mean-square deviation 

ROS   Reactive oxygen species 

RPM   Revolutions per minute   

s   Seconds 

SDS   Sodium dodecyl sulfate 

Ser   Serine 

Sia   Sialic acid 

SUMO   Small ubiquitin-like modifier 
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Sus   Starch utilisation system 

TE   Trypsin-EDTA 1x working stock, Life Technologies  

TEV   Tobacco etch virus 

Thr   Threonine 

TIM   Triosephosphate isomerase 

Tm   Thermotoga maritima 

Tris   Tris(hydroxymethyl)aminomethane  

Trp   Tryptophan 

Vmax   Maxmial enzyme velocity 

w/v   Weight / volume 

Xyl   Xylose 
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