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ABSTRACT 

A Tribological Study of the Design and Performance of Automotive Cams 

Andrew D. Ball B.Sc. 

Thesis Submitted for the Degree of Doctor of Philosophy 

November, 1988 

Analytical methods to enable the evaluation ·of important 
lubrication operational parameters at the contact between any cam and 
follower mechanism (excluding valve trains incorporating rolling 
element followers or hydraulic lash adjusters) have been collated, 
critically assessed and developed. A robust and user friendly 
computer program, which incorporated these methods, was wri tten in 
order that the tribological conditions existing at the cam/follower 
interface of any type of valve train in common use in today's 
internal combustion engines could be studied. The output from the 
program included graphical displays of frictional torque, miI?-imum 
lubricant film thickness and Hertzian stress around the cam cycle. 
Such studies were performed on a cam and flat faced follower system, 
a cam and centrally pivoted follower system, a cam and end pivoted 
follower system and a desmodromic system (comprising a conventional 
cam and centrally pi voted . system and a desmodromic cam and end 
pivoted follower system). 

The co'mputer program also allowed parametric studies to be 
carried out on valve train mechanisms. Parametric studies of three 
different valve trains, including the valve trains from the Rover 
2300 and the Ford 2.0 litre Pinto engines, have been presented, the 
results being presented in graphical and tabular form. 

The loadings, orbi ts, and power losses associated wi th the 
camshaft bearings of the Ford 2.0 litre Pinto engine were evaluated 
using existing dynamically loaded bearing analysis techniques. The 
total frictional power loss predicted for the three camshaft bearings 
was found to be equal to approximately one fifth of that calculated 
for all of the cam/follower interfaces throughout the operat ional 
speed range of the engine. 

An experimental single valve desmodromic valve train apparatus 
was designed and commissioned to test the accuracy of the valve train 
lubrication analysis computer program. The apparatus allowed studies 
to be made of the running-in of valve trains operating at lubricant 
temperatures of 40C, BOC and. aoc, by applying the electriacl 
resistivity technique. Analytical models used ·to predict which 
cam/follower pair was in control of the valve at any point around the 
cam cycle were tested using an electrical continuity technique and 
were found to show good agreement with practice. Good agreement was 
also found between the theoretically predicted and measured torque 
and power required to drive the valve train. 
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CHAPTER 1 

INTRODUCTION 

1. 1 The Need to Consider Tribology in the Design of Valve 

Trains 

1.2 A Summary of the Aims and Contributions of This Work 
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1.1 The Need to Consider Tribology in the Design of Valve Trains. 

In the 1970's the western world became increasingly aware of the 

fact that the earth's reserves of fossil fuels were not limitless. 

Political pressures from environmental groups and, much more 

significant ly, the pressures brought about by the Middle Eastern 

countries upon the economies of their consumers during the ·Oil 

Crisis', caused many governments to campaign for the merits of saving 

energy. In Bri tain the motorist was subjected to spiralling petrol 

prices and even the threat of rationing. The motor manufacturers were 

put under increasing pressure from the consumer to design vehicles 

that not only cost less than their competitors for a similar 

specification, but also returned better fuel consumption figures. 

COincidently, around this time the use of an overhead camshaft 

(OHC) using pivoting followers to drive two banks of valves had Just 

become very popular within the motor industry. The design was 

favoured as it allowed the cylinder head to be assembled separately 

from the block (good from a production point of view), it operated 

better at high speeds than other single camshaft designs driving two 

banks of valves (as it was more rigid) and it utilised fewer 

components and was therefore cheaper. Unfortunately the design was 

found to be inherently poor from a tribological view-point - many 

manufacturers suffering from early failures of their (OHC) valve 

train sytems due to excessive wear of the cams and followers. 

The problem was therefore defined; the designer was required to 

design valve trains that had very small frictional losses and that 

would not wear out wi thin the life of the rest of the vehicle. 

Regret tably the tools that the designer needed to fulfi I the task 

were not available and similar types of design kept emerging. As the 

cost of warranty claims and lost sales rose into the millions, calls 

were made from within the industry for theoretical studies to fill 

these gaps within the knowledge. 

Much work has been carried out upon ways in which the efficiency 

of the internal combust ion engine could be increased. Many workers 

investigated the sources of losses wi thin the internal combustion 

engine and ways in which they could be reduced (for example Parker 

and Adams (1982), Hoshi (1984) and Mart in (1985». Al though the 

2 



majori ty of the losses were found to be due to thermal 

inefficiencies, there are still large benefi ts to be gained from 

reducing the mechanical losses which account for approximately 15% of 

the total fuel energy input. Figure (1.1) shows the breakdown of the 

total engine friction losses according to Hoshi (1985). It can be 

seen that the valve train frictional losses account for between 7.5% 

- 21% of the total engine frictional loss, and so there is still a 

large scope for improvement. 

Whi 1st there have been major developments in the tribological 

understanding of the behaviour of many of the engine components, such 

as the dynamically loaded bearings (main bearings, little-end 

bearings and big end bearings) and the piston assemblies (piston pads 

and rings) the amount of work upon the valve train has been 

relatively small. This may be due to the complexity of the problem as 

the cam and follower operate in the most arduous tribological 

conditions within the internal combustion engine. They are subjected 

to dynamically changing loads, high contact stresses, high sliding 

speeds and poor lubrication. If a plentiful supply of lubricant can 

be offered to the region of the cam/follower contact, it is often 

very hot (temperatures exceeding 120 C are not uncommon) and 

entrainment into the contact is usually poor due to unfavourable 

surface velocities of the components. 

There is still the need for theoretical studies of the cam and 

follower contact to be undertaken, for the tribology of such contacts 

is still far from being fully understood. There is also an increasing 

need for existing knowledge to be put into a form that can be used by 

designers within industry. 

1.2 A Summary of the Aims and Contributions of This York. 

The aims and contributions of the present study were: 

(i) To build upon existing models to study the kinematics 

of cams acting against flat faced followers and cams 

acting against pivoted followers and to extend them to 

cover any type of sliding contact valve train in 

commmon use today. 

3 
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Figure (1.1) contributions to the Total Engine Friction Loss. 
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(ii) 

(iii) 

(iv) 

To create simple models to study the loading at the 

cam/follower interface for these valve train systems. 

To wri te a robust, user friendly computer program 

capable of analysing the tri bological condi t ions at 

the cam/follower interface for any of these val ve 

train systems. 

To carry out parametric studies to investigate the 

influence of design variables upon the tribological 

conditions prevailing at the cam/follower contact. 

(v) To investigate the losses associated with the camshaft 

bearings. 

(vi) To carry out an experimental programme upon a 

desmodromic valve train in order that the theoretical 

models and computer program could be tested. 

An over-riding aim of the whole project was that of 'technology 

transfer'. It was sincerely hoped that the work would be of benefit 

to the professional engineer within industry who had need to design 

valve trains. Much of the analysis therefore involved the collation 

and adaptation of known science to solve design problems associated 

with valve trains. 

5 
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2.1 Introduction. 

Valve train design philosophy has been changing rapidly over the 

past decade. This has been due mainly to research carried out after 

many manufacturers experienced serious valve train wear problems with 

new engines in service. The cost of research therefore paled into 

insignificance compared with the cost of warranty claims and the loss 

of sales. 

This chapter addresses many of the problems that the designer 

faces when creating a new valve train. It starts, however, with a 

descript ion of many of the terms commonly used to describe valve 

train systems and a brief history of developments in valve train 

design. 

2.2 Valve Train Nomenclature. 

There follows a description of many of the commonly used terms 

in valve train design. 

2.2.1 Cam Follower. 

The cam follower is the part of the valve train mechanism that 

is in contact with the cam and follows its profile. The follower may 

take many forms. Some of the most commonly used followers are shown 

in Figure (2.1). It can be seen that the follower bears ei ther 

directly upon the valve or via a pivoting mechanism. A comparison of 

the merits of these different designs is given in section (2.4). 

2.2.2 Cam Profile. 

The cam profile obviously determines the mot ion of the val ve. 

Figure (2.2) shows a typical cam profile and the various portions of 

the lift cycle. The cam nose is the portion of the cam across which 

the valve acceleration is approximately constant, and corresponds to 

the area around the maximum 1 ift posi t ion. The cam flanks are 

responsible for the rapid acceleration and deceleration of the valve. 



a ) centre-pivoted follower (OHC) b) finger follower (OHC) 

( ) 
d) direct acting (OHC) 

co 

Figure (2.1) Valve Train Systems In Common Use. 
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The cam base circle radius is the portion of the cam across which 

there is no valve lift, i.e. the valve is closed. The cam ramps serve 

the purpose of taking up the clearance between the cam and follower 

at each end of the lift cycle. These ramps are usually of a constant 

veloci ty type, where for a constant camshaft rotational speed the 

velocity of the valve is constant. The cam ramps are usually fairly 

'long in order to seat and lift the valve gently. 

2.2.3 Lift Curve Definition. 

It is important that the motion of the valve is always 

controlled by the cam. For this reason dynamic effects are kept to a 

minimum by careful consideration of the cam profile and the lift it 

will provide to the valve. Great care is taken that the valve lift 

and its first, second and third derivatives with respect to cam angle 

(valve velocity, acceleration and jerk respectively) are smooth. This 

ensures that the valve motion is largely unaffected by dynamic 

effects. 

Modern cam profi les are usually defJned by polynomials which 

ensure smooth profiles. The most common form is the four power 

polynomial. An example of such a polynomial is given below: 

where 

Ie = YR + Iemax + Cp(:JP+ cq(:J\ cr(:J
r

+ Cs(:J 

Y = the height of the ramp, 
R 

1 = the maximum lift, cmax ' 
~ = the cam half period. 

T 

Cpt cq , Crt and Cs can be derived from the values of p, q, r,and s, 

which are selected by exponent manipulation to give the desired cam 

characteristics. 

A relatively new method of defining a cam profile is by the use 

of a multipol. A multipol defines the lift characteristics of a cam 

by a series of polynomials, each defining a different portion of the 

cam. The lift, velocity, acceleration and jerk at the intersection of 

two adjoining polynomials are the same. The advantage of using a 

multipol to define the lift of a cam is that the area under the lift 

curve can be maximised to give optimum engine breathing. 
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2.2.4 Cam Duration. 

The duration of a cam is equal to the angle through which the 

crankshaft turns between the valve opening and closing. (This is 

equal to twice the angle through which the camshaft turns). 

2.2.5 Cam Timing. 

The timing of a cam is quoted in crankshaft degrees. Two angles 

are quoted; the angle at which the valve opens and the angle at which 

the valve closes. It is usual that the overall timing of the engine 

is quoted i.e. the timing of the inlet valve and the exhaust valve. A 
o 0 0 0 

typical production engine timing is 20 -50 /50 -20 . This means that 
o 0 

the inlet valve opens 20 before crank top dead centre and closes 50 
• 0 

after crank bottom dead centre and the exhaust valve opens 20 before 

bottom dead centre and closes 50
0 

after top dead centre (Bell 

( 1981 ) ). 

2.2.6 Overlap. 

The overlap is the angle in degrees of crankshaft rotat ion 

during which both the inlet and exhaust valves of a cylinder are 

open. 

2.2.7 Spring Cover. 

The spring cover is the amount by which the spring force at a 

given valve lift exceeds the inertia force of the reciprocating mass. 

2.2.8 Symmetry. 

If a pivoted cam follower is used then a symmetrical cam form 

wi 11 not give a symmetrical valve 1 ift. It is desirable that the 

valve lift be as near symmetrical as possible as this allows the 

optimum spring choice to be made (the spring cover is optimal on both 

11 



the rising and falling flanks of the cam). It is also desirable that 

the cam profile be as near symmetrical as possible for ease of 

manufacture. In designing a cam profile it is usual to adopt a 

symmetrical valve I ift curve and allow the cam profi Ie to become 

slightly asymmetric. 

2.2.9 Cam Concavity. 

In order that high valve accelerations and decelerations are 

attained when overhead cams are used with pivoted followers it is 

often necessary that the profi Ie of the cam flanks needs to be 

concave. The maximum allowable cam concavity' (and hence valve 

acceleration) is limited by the minimum size of grinding wheel used 

to machine the cam profi Ie. To a large extent the performance of 

pivoted follower systems is limited by the available grinding 

technology. 

2.3 History of Valve Train Design. 

Although throughout this century various different types of 

engine val ving have been tried, the poppet valve has been almost 

uni versally adopted by the major automobile manufacturers. Other 

types of valving such as sleeve or rotary valves have been deemed to 

have lubrication difficulties, allow excessive engine oil 

consumption, provide poor sealing and have excessive frictional 

losses (Buuck (1982». 

Over the years there has been a demand for ever increasing 

engine speeds in the search for more energy efficient engines. This 

has caused the rise in popular! ty of overhead camshaft mechanisms 

(OHC) at the expense of push-rod systems. The push-rod system had 

been favoured in the past due to its many virtues; ease of 

adjustment, the availability of the camshaft to drive accessories 

such as the oil pump and distributor, and good lubrication and wear 

characteristics. As the camshaft is located close to the sump it 

receives a plentiful supply of oil in the form of oil mist and splash 

from the crankshaft. Also the tappets are free to rotate, thus 

improving lubricant entrainment and decreasing wear by ensuring that 

12 
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any two points on the cam and tappet surfaces do not continually meet 

cycle after cycle. 

The main disadvantage of push-rod systems is their flexibility 

brought about by the use of long thin push-rods. This makes them 

unsui table for use in very high speed engines. OHC mechanisms are 

inherently much stiffer. Modern production techniques have also added 

to the decline in popularity of the push-rod system. OHC mechanisms 

utilise fewer parts and allow the cylinder head assembly to be built 

up as a separate uni t. Product ion engineers see these as great 

advantages (Polak and Letts (1987»). OHC mechanisms appear in two 

basic forms; either direct acting or via a pivoted follower. One of 

the major manufacturing and assembly problems with these systems is 

in the alignment of the camshaft and followers. If the cam lobes and 

followers are not properly aligned then severe edge loading can occur 

resul t ing in damage to the contact ing parts. Mercedes patented a 

novel solution to this problem in 1959. Their design utilised end 

pi voted followers which pi voted upon spherical ended posts rather 

than the more conventional rocker shaft. This allowed the followers 

to self align. 

Whi 1st direct act ing OHC mechanisms have proved to be very 

successful both from a performance and wear point of view, the same 

cannot be said of pivoted OHC mechanisms. Many manufacturers have 

experienced major wear problems wi th these types of valve trains. 

This has been attributed to many causes. One suggested cause is the 

higher temperatures seen in the cylinder heads of modern engines due 

to the adoption of thermostatically controlled electric fans and the 

use of more selective coolant channels through the whole of the 

engine. These higher temperatures not only increase the bulk 

temperature of the contacting parts, thus increasing the probability 

of scuffing (Dyson and Naylor (1960», but also serve to lower the 

viscosity of the lubricant. As the followers do not run in bores they 

have limited means of conducting away heat generated in the contact 

region - this again leads to high bulk temperatures in the followers. 

As the camshaft is at the very top of the engine in an OHC 

arrangement it is also at the end of the lubricant feed path. In many 

early OHC designs the cam and follower contact had to rely upon oil 

splashed from the camshaft bearings to provide adequate amounts of 

lubricant. Other reasons suggested for the untimely demise of such 



systems have been fuel dilution of the lubricant and oil starvation 

at engine start up. 

Most manufacturers have solved the problem of excessive wear in 

pivoted OHC systems by the adoption of high specification materials 

and the use of spray bars and even holes in the cam lobes to supply 

sufficient lubricant to the contact region. The additional lubricant 

supply not only serves to lubricate the contact but also acts as a 

coolant. One manufacturer has reverted to the use of manual chokes 

which perhaps suggests that they blamed fuel dilution for their 

problems. It is the belief of the author that if attention were to be 

directed towards the geometry and kinematics of such systems 

significant gains in lubricant entrainment could be achieved. This 

point is illustrated in Chapter (5) by the use of parametric studies. 

In the quest for higher engine speeds and better valve control, 

some manufacturers have shown an interest in desmodromic valve 

trains. In a desmodromic system the valve is opened in the 

conventional manner by a cam and a follower but closed by using a 

second cam and follower rather than a spring. Ducati motor cycles 

utilised desmodromic valve gear in their s.uccessful race engines and 

later in their production machines. By using desmodromic valve gear 

they were able to increase the power band of the engine by over 600 

rpm by eliminating the effects of valve bounce. 

Probably the most famous use of desmodromic valve trains was by 

Mercedes in their 300 SLR sports and Grand Prix racing cars. In 1954 

Mercedes Grand Prix cars were producing in excess of 100 b.h.p. per 

litre - a figure few manufacturers were achieving even five years 

later. Mercedes did not see any benefi ts in using the desmodromic 

valve train to increase the engine speed as the maximum engine speed 

was dictated by maximum piston acceleration. Mercedes used 

desmodromics to control the valve in such a way as to fill the 

combustion chamber in a much more efficient manner than was possible 

with a sprung valve train system. Mercedes engineers calculated that 

they were able to utilise valve accelerations 128% higher than 

considered feasible when using valve springs. This produced a smooth 

engine power curve with excellent torque characteristics (Mundy 

(1961)). 
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It is generally fel t that desmodrom~c valve trains wi 11 never 

see use in mass produced engines due to the complexi ty of the 

mechanism plus their noisy operation due to the. large clearances 

needed between the cams and followers. It appears then that the 

engines of the future, if they are internal combustion engines, will 

utilise ORC mechanisms due to their ease of assembly and manufacture. 

ORC mechanisms do, however, have several drawbacks apart from 

their frequently poor wear characteristics. The camshaft is often 

used to drive auxiliaries such as the fuel and oil pump and the 

distributor. This means that these components must be mounted very 

high on the engine if they are to be driven from the camshaft. It is 

therefore often necessary when using an ORC valve train to drive the 

oil pump from the crankshaft so as to keep the distance from the pump 

to the sump as small as possible. This unfortunately aggravates 

overall engine length and may also lead to lubricant aeration 

problems. The majority of the flexing of the valve train system takes 

place in the camshaft in an ORC system, which can cause serious 

ignition timing problems if the distributor is driven from the 

camshaft. 

It can be seen that the choice of a valve train is very complex 

and that many other engine components and characteristics must be 

taken into account when making a choice. It is apparent that the 

valve train designer cannot be isolated from the overall design of 

the engine. This is becoming more and more apparent as engine 

specifications improve and engine speeds increase. 

2.4 Valve Train Design Philosophy. 

Several design parameters have usually been decided upon before 

the valve train of an engine is designed: the engine's displacement, 

bore and stroke, the overall engine height, the maximum allowable 

manufacturing and assembly cost, the desired engine performance, etc. 

These parameters set restraints upon the final choice and deSign of 

valve train. 

The performance of the engine is closely related to how 

efficiently the charge of air and fuel can be drawn into the 
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combustion chamber and how efficiently the exhaust gases can be 

expelled after combustion. In order to admi t and expel the various 

gases effectively, great care is taken over the design of the 

combustion chamber and the valve lift curve, and the choice of the 

number of valves per cyl inder and their angle of entry into the 

combustion chamber. The choice of valve train can often be virtually 

dictated by these conditions. 

If, for example, the performance requirement for an engine 

dictates that the valve must be opened and closed very rapidly this 

implies that very high accelerations are required along the cam 

flanks. It is certain that push-rod systems would be eliminated from 

the choice of available mechanisms at this point due to their 

flexibility. OHC pivoted followers may also be eliminated from the 

choice as the maximum allowable flank acceleration is limited by the 

allowable concavity of the cam flanks. This may leave a direct acting 

OHC mechanism as the only choice. The designer must then decide 

whether the large diameter followers required for this type of system 

can be fitted into the space available, and whether the luxury of two 

camshafts can be afforded if the valves are not in line. 

The different types of valve train mechanisms obviously have 

differing advantages and disadvantages and the designer must weight 

the requirements of his design in order of preference in order to get 

the right compromise. Figures (2.3), (2.4), and (2.5) summarise many 

of the good and bad points of the various valve train mechanisms. 

Once the type of mechanism has been decided upon the geometry of 

the system must be calculated. If a direct acting OHC system is used 

then the geometry can be readily decided. The diameter of the 

follower is dictated by the maximum eccentricity of the cam during 

the operating cycle. The maximum eccentricity is given directly by 

the maximum valve velocity (see Dyson and Naylor (1960». The 

designer can then calculate whether there is enough space between the 

valves to accommodate the followers. Once the followers have been 

sized, an approximate value for the equivalent reciprocating mass of 

the valve train components can be calculated. This, along with the 

maximum required engine speed and valve acceleration, gives the 

minimum allowable spring st iffness to prevent valve bounce at the 

maximum rated engine speed. The spring stiffness is then chosen by 
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• 

• 

Good engine breathing as valve train is very rigid and 

therefore high valve accelerations and operating 

speeds are possible. 

Symmetrical cam profiles give symmetrical lift curves. 

Good lubrication conditions - low wear. 

• If the valves are not in line then two camshafts are 

required unless a direct acting cam and follower are 

used in conjunction with a cam and pivoted follower. 

• The cam lobes for a direct acting system are much 

larger than any other OHC system. This necessitates the 

use of large camshaft bearings. 

Figure (2.3) Advantages and Disadvantages of Direct 

Acting OHC Valve Train Systems. 
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• Not as stiff as direct acting OHC mechanisms. This 

along with cam profile limitations due to cam concavity 

necessitates the use of modest valve accelerations. 

These restraints obviously limit the engine breathing. 

Maximum operating speed is less than that for direct 

acting OHC. 

• Poor wear characteristics. 

• Allows the use of only one camshaft even when there are 

two banks of valves. 

• The cam lobes are smaller than those of a direct acting 

system as a mechanical advantage can be used by having 

rocker ratios greater than unity. This allows smaller 

camshaft bearings to be used. 

• Adjustment is usually very easy. 

Figure (2.4) Advantages and Disadvantages of Pivoted Follower 

OHC Valve Train Systems. 
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• Very flexible. This allows only very low valve 

accelerations to be used thus limiting engine 

breathing. The low rigidity also limits the maximum 

allowable operating speeds. 

• Low wear. The cam and followers receive a plentiful 

supply of lubricant mist and splash from the main 

engine bearings due to their close pro:-..'imity to the 

sump. 

• A mechanical advantage may be used by employing a 

rocker ratio of greater than unity. This leads to small 

cam lobes. 

• Easy adjustment. 

• Engine auxiliaries driven by the camshaft suffer less 

detrimental effects than with any other system. 

Figure (2.5) Advantages and Disadvantages of Push-rod 

Valve Train Systems. 

19 



allowing a given amount of spring cover across the nose region of the 

cam. The actual valve spring dimensions and number of coils are 

decided by available standard wire diameters, space limitations, an 

acceptable number of working coils, satisfactory fatigue life, and 

dynamic considerat ions. Valve spring design is discussed in greater 

detail by Beard and Hempson (1962). 

The cam size is chosen by satisfying the requirements of maximum 

allowable Hertzian stress, engine height, sliding speed at the 

contact, cam bearing diameter, and also, hopefully, by studying the 

lubrication conditions around the cam cycle for the range of 

operating speeds. It will be shown in Chapter (5) how parametric 

studies can be used to help the designer to arrive at a satisfactory 

solution to his design problems by considering the prevailing 

tribological conditions at the cam/follower contact. 

If a pivoted follower system is chosen the decision processes 

are similar but with additional variables, such as rocker ratios and 

symmetry to be considered. Again parametric studies may be used to 

great advantage. 

Having chosen a particular valve train the designer must then 

choose the correct materials for the contacting parts. This must be 

done wi th a knowledge of the stressing of the components and the 

sl iding speeds and 1 ubricat ion condi t ions expected at the contact. 

The choice of materials for cam and follower pairs is a complex 

subject worthy of study in its own right, and indeed many learned 

papers have been written on the subject. The materials aspects of cam 

and follower design are considered to be beyond the scope of the 

present study. 

2.5 Conclusions. 

It is apparent that the demand for automotive engines which 

produce more power with greater economy is presenting engineers with 

immense challenges. The problems faced are not insurmountable, but 

will require the use of sophisticated analytical models and computer 

aided design techniques. In the following chapters, analyses will be 

presented which allow the tri bological behaviour of valve train 
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designs to be studied. The models and parametric studies presented in 

these chapters provide a basis for a general design philosophy which 

includes tribological considerations - considerations, which in the 

past, have been overlooked, with costly consequences! 
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CHAPTER 3 

THE KINEMATICS AND LOADING OF THE . 

CAM AND FOLLOYER INTERFACE 

3.1 Introduction 

3.2 Kinematic Analysis of Cam/Follower Pairs 

3.3 The Contact Loading and Hertzian Stress at the 

Cam/Follower Interface 

3.4 Discussion 

3.5 Conclusions 
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3.1 Introduction. 

Over the past decade modern production techniques and the ever 

increasing engine speeds of passenger cars have led to an almost 

uni versal adoption of overhead camshaft (OHC) systems rather than 

conventional push-rod/rocker arm arrangements. It has been found in 

service that certain of these designs, namely the pivoted OHC 

mechanisms, are more prone to wear than others (Polak and Letts 

(1987) ). 

In the past lubrication difficulties in cam and follower systems 

have often been seen purely as boundary lubrication problems and cam 

profiles were designed by a process of limiting the Hertzian stress 

at the cam nose. Difficulties of valve train wear with an engine in 

service would often be diagnosed entirely as a materials 

specification problem, or as a rheology problem to be resolved by 

using a superior material or a suitable antiwear additive. In an 

excellent paper Beard and Hempson (1962) summed up the design 

philosophy of that period, 

" it has been found that cams wear in a number of different 

ways, the most frequent being pitting, scuffing, and 'polish' wear. 

Each of these forms of wear is affected not only by the load and 

the radii of curvature but also by the hardness, surface finish, and 

metallurgy, including the method of hardening of the cam and tappetj 

and by the temperature, viscosity, and type of oil, including 

additives, used. In spite of its shortcomings, the figure for 

Hertzian stress is the only practical means by which the designer can 

assess the likely behavior of a new design while it is still on the 

drawing board." 

It was not until Muller (1966) showed that hydrodynamic 

lubrication was important that another means of assessing the likely 

behaviour of a new design became available. Muller reported that of 

two different cam designs, the one giving the higher Hertzian 

stresses but the higher values of hydrodynamic entrainment velOCity 

(the algebraic sum of the cam and follower surface velocities 

relative to their common point of contact) gave the lower wear. In 

more recent years Dyson (( 1977) and (1980», Harrison (1985) and 



Dowson et al (1985) have given consideration to the choice of design 

parameters and their effects upon elastohydrodynamic film thickness 

and Hertzian stress around the cam cycle, and have drawn conclusions 

in agreement wi th Muller. It has therefore become apparent that a 

compromise between maximum Hertzian stress and the lubricant fi 1m 

thickness around the cam cycle is required if a successful design is 

to be achieved. 

This chapter wi 11 show that by considering the kinemat ics and 

geometry of a valve train it is possible to predict the lubricant 

entrainment velocity and Hertzian stress at any point around the cam 

throughout its range of operating conditions. 

3.2 Kinematic Analysis of CamIFollower Pairs. 

The kinematic veloci ties of the various components in a val ve 

train can be found by adaptation of the analysis presented in ESDU 

item number ME2 (1981). This document whilst being very rigorous in 

its treatment of the relative motions between cams and followers can 

be very cumbersome to use. It is far better to break automot i ve 

cam/follower systems into two basic categories and examine each 

separately. The two categories are: 

(i) Cams acting against translating followers, comprising domed 

followers/tappets (from push-rod systems) and flat faced 

followers. 

(ii) Cams acting against pivoted followers, comprising centrally 

pivoted followers and end pivoted followers. 

3.2.1 The Kinematics of a Cam Acting Against a Translating 

Follower. 

It is not intended to present the analysis of these systems 

here. A very thorough treatment of the analysis of the kinematics of 

cams acting against domed and flat faced follower systems can be 

found in Dyson and Naylor (1960). The authors show that by expanding 

the results for a cam and domed follower of radius (r
f

) as a series 

in terms of (1/rf ) the equivalent results for a cam acting against a 

flat faced follower may be obtained by letting (r
f

) tend to infinity. 
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The important surface velocities and equivalent radii of curvature of 

domed and flat faced follower systems are given below. It should be 

noted that the resul ts shown below are for a cam acting against a 

non-rotating follower. 

3.2.1.1 Surface Velocities and Equivalent Radius of Curvature For a 

Cam and Domed Follower System. 

The velocity of the point of contact relative to the cam, (V), 
c 

is given by: 

V = w 
c 

(3.1) 

the velocity of the point of contact relative to the follower, (Vr ), 
is given by: 

V
f 

= W r f 

{ 
Z d

2

Z _ [dZ]2} 
d4>2 d4> 

2 [dZ] 2 Z + -
d4> 

(3.2) 

and the equivalent radius of curvature at the contact, (R), is given 

by: 

R = (3.3) 

where 
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3.2.1.2 Surface Velocities and Equivalent Radius of Curvature of a 

Cam and Flat Faced Follower System. 

The velocity of the point of contact relative to the cam, (V), 
c 

is given by: 

V 
c 

= w ___ v_ + 1 + r 
[ 

d21 ] 

d</>2 v B 
(3.4) 

the velocity of the point of contact relative to the follower, (V
f

), 

is given by: 

(3.5) 

and the equivalent radius of curvature at the contact is given by: 

d
2

1 
R = __ v + 1 + r (3.6) 

d</>2 v B 

3.2.2 The Kinematics of a Cam Acting Against a Pivoted Follower. 

Two different methods of obtaining the kinematic velocities of a 

cam/pivoted follower pair have been proposed by Dyson (1980) and Bell 

et al (1985). The method proposed by Dyson is an extension of the 

analysis used to describe the kinematics of a cam acting against a 

translating follower (Dyson (1977». The method proposed by Bell et 

al differs from that of Dyson and claims to offer certain advantages 

over the latter's method. 

Dyson's analysis requires that both the first and second 

deri vat i ves of lift wi th respect to cam angle be known. This is 

acceptable if the 1 ift curve is defined by a polynomial and exact 

values for these derivatives can be found. It is also acceptable if a 

series of lift against cam angle figures are available and are known 

to be exact as numerical differentiation can be used with little loss 

of accuracy. If however the lift figures are found by measurement, 

say, then serious errors can occur in the second order numerical 

differential required to obtain the valve acceleration. 
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The method proposed by Bell et al claims to require only the 

first order differential of lift with respect to cam angle and a 

further first order differential, the slope of the cam surface, which 

is obtained numerically. Closer examination of the method reveals 

that a cubic (or other) spline fit to the lift data is required, 

which necessitates a numerical differentiation. This spline function 

is then differentiated again to find the slope of the cam surface, 

hence a second order numerical differentiation is used. The method 

requires that numerical differentiation be used regardless of whether 

the lift data is given as a polynomial or data points. It can be seen 

that the results presented by Bell et al suffer from numerical errors 

introduced by the numerical different iat ion and spl ining of data 

points. 

It is for the above reasons that the analysis adopted in this 

work follows that proposed by Dyson. The analysis of a cam acting 

against a pivoted follower system is presented in Appendix (A). 

3.2.3 The Kinematics of a Desmodromic Cam and Follower System. 

A desmodromic valve train uses a camlfollower pair to close the 

valve rather than a spring. The valve is opened utilising a cam and 

follower in the same way as a conventional system incorporating a 

return spring. This type of valve train system has advantages over 

conventional valve train systems in that cam/follower contact 

stresses are reduced and the motion of the valve is more controlled 

at higher speeds. Figure (3.1) shows an example of a typical 

desmodromically operated valve train. 

In analysing the kinematics of a desmodromic valve train the 

opening camlfollower pair are treated Just as a conventional 

camlfollower pair. The closing camlfollower pair can be treated 

similarly but with two minor changes; as the lift of the closing cam 

is negative, the valve lift and its first derivative with respect to 

cam angle must be negated in the analysis. 
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3.3 The Contact Loading and Hertzian stress at the Cam/Follower 

Interface. 

The maximum Hertzian stress at the camlfollower interface is an 

important design parameter. If modes of failure such as pitting are 

to be avoided then the maximum Hertzian stress at the contact must be 

I imi ted. To evaluate the Hertzian stress the load and equivalent 

radius of curvature at the contact must be known. It has been shown 

in the previous sections how the equivalent radius of curvature at 

the contact can be evaluated. The proceeding sections will show how 

the contact loading and consequently the maximum Hertzian stress at 

the contact can be calculated. 

It is assumed throughout this analysis that the valve train is 

rigid. This assumption is obviously more valid for certain types of 

valve trains than others; push-rod systems, for example, are much 

more flexible than direct acting flat faced follower valve trains. 

Modern OHC valve trains are designed to be as rigid as possible and 

utilise cam profiles evolved especially to maintain smooth valve 

acceleration. It is therefore assumed in the analysis that the 

dynamic effects of loading and valve train stiffness and damping are 

negligible. The effects of the elastic deflections and damping 

characteristics associated with the camshaft and follower are 

discussed in great detail by Chen (1982) and in many other learned 

papers (see, for example, Barken (1953), Beard and Hempson (1962), 

Sakai and Tsuda (1910), Kenesa et al (1911) and Akiba et al (1981». 

3.3.1 The Loading at the CamIFollower Interface. 

Again this is best treated in two parts; the loading of a cam 

acting against a translating follower and a cam acting against a 

pi voted follower. The analyses of these two categorie~ of valve 

trains are given in Appendices (B) and (C) respectively. The loading 

at the camlfo llower interface for the two categories,. accept ing the 

assumptions given in the text, are given in Table (3.1). The special 

case of the loading of an example desmodromic valve train is 

investigated in Appendix (D). 
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Table (3.1) Sunvnary of Cam/Follower Interface Load for Various Valve 

Train Systems. 
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3.3.2 The Hertzian Stress at the Cam/Follower Interface. 

The interaction between a cam and domed follower results in an 

elliptical contact area between the two components, whilst that 

between a cam and a flat faced follower or a cam and a pivoted 

follower results in a line contact area. Great care is taken during 

the design and manufacture of systems that are in line contact that 

the cam and follower contact faces are aligned to within very tight 

tolerances to avoid edge loading situations. 

The theory used to determine the contact stresses was 

establ ished by Hertz (1881). He considered the contact and elastic 

deformation between two elastic, smooth solids. Once the dimensions 

of the contact zone and the pressure distri but ion normal to the 

appl ied load are known, the stresses between the two bodies can be 

found. 

3.3.2.1 The Hertzian Stress at an Elliptical Contact. 

The contact between a cam and a domed follower can be shown to 

be geometrically equivalent to an ellipsoid, with principal radii of 

curvature (R ) and (R ), in contact with a plane. Figure (3.2) shows 
x y 

the contact between an ellipsoid and a plane with a Hertzian contact 

patch. 

On the assumption that; 

(i) the bodies are elastic in accordance wi th Hooke's 

Law, 

(i i) the contact area is small wi th respect to the 

radius of curvature of the undeformed cylinder, and, 

(iii) only normal pressures are considered, 

Hertz showed the following results; 

(a) The pressure distribution between the bodies, for an 

elliptical contact, is semi-elliptical on the contact 

patch, 

(b) The maximum Hertzian stress (Pmax) is given by the 

expression; 



----------- ----------- ---------------------

y 

z 

y 
( b) 

Figure.,c 3 .2)', Geometry of Point Contacts 
(a) Contact Between Two Ellipsoidal Solids 
(b) Equivalent Geometry 
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E/[ 3W r 
Pmax = 21£ E/ R2 3 

(3.7) 

where 
1 1 1 
- - - + 
R R R x y 

and 
1 1 
- -
R r f x 

and 
1 1 1 
- - - + 
R r f 

r 
x c 

3.3.2.2 The Hertzian Stress at a Line Contact. 

It can be shown that the contact between a cam and a flat faced 

follower or a cam and a pivoted follower is geometrically equivalent 

to the contact of a cylinder, of length (L) and radius (R), against a 

plane. Figure (3.3) shows the contact between a cylinder and a plane 

with a Hertzian contact patch. 

Adopt ing the same assumpt ions as the previous sect ion Hertz 

showed that; 

where 

(i) The pressure distribution between the bodies, for a line 

contact, is semi-elliptical. 

(ii) The pressure distribution is given by; 

p = p [1 _ X2]~ 
max b2 

where (b) the contact half width is given by; 

1 

R 

1 
- + 
r 

c 

1 

(3.8) 

(3.9) 

The follower radius of curvature, (rf ), takes)the value of infinity 

for a flat faced follower, hence the term (l/rf ) disappears. 
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Figure (3.3) The Contact Between a Cylinder and a 

Plane With a Hertzian Contact Patch. 
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The maximum Hertzian stress is given by; 

2W 
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Pmax = (3. 10) 
llLb 

3.4 Discussion. 

Figure (3.4) shows how the velocities (Vc )' (Vf ), (Vc + V
f

), and 

(Vc- Vf ), equivalent radius of curvature, load, and Hertzian stress 

vary around the cam cycle for a typical cam act ing against a flat 

faced follower at a camshaft speed of 25Hz (1500rpm). It can be seen 

that the Hertzian stress is at its largest around the cam nose 

corresponding to the largest values of load and smallest values of 

equivalent radius of curvature. 

It can also be seen how the veloci ty of the point of contact 

with respect to the cam (V ) is always in the same direction, whereas 
c 

this is not true for the veloci ty of the point of contact wi th 

respect to the follower (Vf ). This is illustrated in Figure (3.5). It 

can be seen how the point of contact moves to the extreme of its 

travel in one direction and then back to its base circle position at 

maximum lift, and then to its extreme of travel in the opposi te 

direction and once again back to its base circle position. 

It can be seen (Figure (3.4)) that because (Vc ) and (V
f

) vary by 

similar magnitudes throughout the cam cycle the sliding velocity (V -
c 

V
f

) remains approximately constant. The sliding velocity is of 

interest to designers as it influences the amount of heat generated 

at the contact and hence the bulk temperature of the interacting 

solids. The entrainment velocity (Vc + Vf ) is also of interest to 

designers as it is very important to the lubrication of the contact. 

It should be noted that the entrainment of lubricant into the contact 

region falls to zero at two points around the cam cycle; this is 

typical of many cam and follower pairs and is of obvious concern to 

designers. These parameters and their sensitivity to changes in 

design variables will be discussed in much more 

Chapter (5). 

detail in 
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(Vc- V
f

), equivalent radius of curvature, load, and Hertzian stress 

vary around the cam cycle for a typical cam act ing against an end 

pi voted follower at a camshaft speed of 25Hz (1500rpm). It can be 

seen that the conditions at the contact for this type of valve train 

system are much more arduous than for the flat faced follower system, 

(shown in Figure (3.4» even though the valve lifts produced by the 

two systems are similar. As the follower, in the end pivoted follower 

system, is pivoting the rocker ratio (the ratio of the perpendicular 

distance from the follower pivot point to the cam load vector to the 

perpendicular distance from the follower pivot point to the valve 

velocity vector) changes throughout the cam cycle. This introduces 

considerable asymmetry into the traces of the load, surface 

velocities and radius of curvature for the cycle. 

It can also be seen that the entrainment veloci ty of the end 

pivoted follower system is much smaller in magnitude around most of 

the cam cycle than that of the flat faced follower system. This is 

because the cam needed for an end pivoted follower system is much 

smaller than that needed for a direct acting flat faced follower as 

the rocker ratio is greater than unity, thus magnifying the lift at 

the valve. This smaller cam size means that the cam surface velocity 

is also smaller, thus the entrainment velocity is smaller. 

The small cam size and the radiused follower cause the magnitude 

of the equivalent radius of curvature of the cam and end pi voted 

follower to be smaller around the majority of the cam cycle than 

would be expected for a direct acting flat faced follower. This, and 

the increased loads (again due to the rocker ratio), cause the 

Hertzian stress around the cam cycle to be much higher for an end 

pivoted follower system than for a direct acting flat faced follower 

system. 

3.5 Conclusions. 

It has been shown that the kinematics of a cam and follower 

system can be evaluated utilising standard differential geometry. It 

has also been demonstrated how the loading and Hertzian stress at the 

cam/follower interface can be calculated. All valve train systems in 

common use in passenger car engines have been considered namely cams 
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acting against flat faced followers, against domed followers, against 

centrally pivoted followers, and against end pivoted followers. 

Calculations have indicated that the condi tions at the 

cam/follower interface are much more arduous for an end pi voted 

follower than they are for a direct acting flat faced follower. 

The following chapter shows how the relationships developed in 

this chapter can be introduced into a computer program to produce a 

powerful aid to the design of valve trains. 



CHAPTER 4 

A COMPUTER PROGRAM FOR 

VALVE TRAIN LUBRICATION ANALYSIS 

4.1 Introduction 

4.2 A Description of the Program 

4.3 An Example Program Run 

4.4 Conclusion 

41 



-------------------------------------------------_'!-' 

42 

4.1 Introduction. 

Many parameters are at the disposal of the designer when 

creating a valve train system. There is, unfortunately, never a clear 

cut optimal solution to the design problem and experience of 

acceptable levels of Hertzian stress and minimum lubricant film 

thickness still plays a vital role in the design process. The 

interactions of design parameters upon each other and upon the 

tribological performance of the valve train are very complex, and are 

often not fully appreciated by engineers. It was therefore apparent 

that a design aid was needed which would reveal how the various 

parameters affect the performance of the camshaft and its followers. 

Digital computers are now extremely fast in their operation and 

solutions to complex problems can be achieved both quickly and (often 

more importantly in a commercial environment) cheaply. As time passes 

they will become even faster and cheaper. It was therefore decided 

that a computer program should be written that would act as a design 

aid. Such a program would need to be very easy to use, and would have 

to be capable of presenting the data to the user in an efficient and 

easily understood manner. 

Such a program has been developed and coded, in a structured 

manner, on an Amdahl 580 series mainframe computer. The program is 

capable of analysing the kinematics and tribological performance of 

all types of cam and follower combinations in common use in 

automobile engines. The program is described in the following text. 

4.2 A Description of the Program. 

A flow diagram of the computer program is shown in Figures 

(4.1), (4.2), (4.3) and (4.4). Each of the Figures relates to a 

particular part of the program: 

(i) Figure (4.1) relates to the section of the program that 

handles the input data, processing it into a form that 

can be used by subsequent parts of the program. 

(ii) Figure (4.2) relates to the kinematic analysis. 

(iii) Figure (4.3) relates to the section of the program that 

calculates the load, the I ubricat ion condi t ions at the 
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Figure (4.1) Flow Diagram for the Valve Train 

Lubrication Analysis Computer Program. 
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Figure (4.4) Flow Diagram for the Valve Train 

Lubrication Analysis Computer Program. 
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cam/follower contact, the frictional torque and the 

frictional power loss. 

(iv) Figure (4.4) shows the flow diagram for the part of the 

program that carries out a parametric study of a given 

design of valve train. 

Each of these parts of the program wi 11 be discussed in the 

following sections. 

4.2.1 Input of Data to the Program and Handling of this Data. 

The valve train data is introduced to the program via an input 

file. This file is created by editing a standard data file, or 

template, using the computer's screen editing facility. Such a file 

is shown in Figure (4.5). The input file was designed to be read 

easily and to be as helpful as possible to the new user. It can be 

seen that the user is led through the file being asked to respond to 

prompts for data. Many of the data 1 ines are already complete and 

hold default responses which may be over-written by the user if so 

wished. All of the data is introduced' to the program in SI uni ts 

unless the template requests otherwise (for example ini t ial spring 

compression is asked for in uni ts of mm). The section of the data 

file requesting data for pivoted follower systems uses the notation 

of Dyson (1980). 

The kinematic analysis subroutines require the valve lift and 

its first and second derivatives with respect to cam angle. The lift 

data may be input in various forms; as discrete data points, as a 

four-power' polynomial or as a multipol, the program user being led to 

the appropriate section of the input file by prompts in the template. 

If the valve train is a pivoted follower type, the lift may be given 

as lift at the valve or as lift at the cam (acting upon an inspection 

follower of a given diameter). This is discussed in the next section. 

Lift data described by either a multipol or ~ four-power 

polynomial is evaluated at a requested number of points. The first 

and second derivatives of lift with respect to cam angle are given by 

polynomials obtained by differentiation of the original 

polynomial (s). 



THIS IS A DATA FILE FOR THE VALVE TRAIN ANALYSIS PROGRAM 

"""""""""""""""""""""""""""" 

EXPRESS FORTRAN 

""""""", 

ALL DATA TO BE IN S.I. UNITS UNLESS OTHERWISE STATED 

"""""""""""""""""""""""""" 
INPlJf VALVE TRAIN NAME ON NEXT LINE (UPTO 20 CHARACTERS):-

""""""""""""""""""""""""""""" 

CAM & FLAT FACED FOLLOWER 

DATE (DD MM YY) 
""""""", 

02 08 88 

VALVE TRAIN TYPE 
, , , , , , , , , , , , , , , , 

FLAT FACED FOLLOWER 

DOMED TAPPET 
= 1 

= 2 

FINGER FOLLOWER = 3 

CENTRALLY PIVOTED FOLLOWER = 4 

INPUT TYPE ON NEXT LINE:-

1 

FOR A DOMED TAPPET INPUT RAD I US OF TAPPET FACE ( mm) : -

CAM TYPE 

"""" 

CONVENTIONAL = 0 

DESMODROMIC = 1 

INPlJf CAM TYPE ON NEXT LINE:­

o 

IS CAM PART OF A DESMO PAIR l=YES, O=NO:­

o 

48 

Figure (4.5a) An Example Input Data File for the Valve Train Analysis 

Program. (continued ... ) 



LUBRICANT PROPERTIES 

"""""""""" 
INPUT PRESSURE VISCOSITY COEFFICIENT ON NEXT LINE:-

0.22E-7 

INPUT VISCOSITY AT AMBIENT PRESSURE AND TEMPERATURE ON NEXT LINE:-

0.050 

LOAD DATA 
"""", 

I F THESE ARE NOT KNOWN PUT VALUE AS 0 

EQUIVALENT MASS OF VALVE,SPRING AND RETAINERS (Mv + Mr + 1/3Ms):­

o 
INITIAL SPRING COMPRESSION (mm):­

o 
SPRING RATE:­

o 
PIVOTED FOLLOWER MOMENT OF INERTIA:­

o 
FOLLOWER EQUIVALENT MASS:­

o 
CAM WIDTH (mm):­

o 
YOUNG'S MODULUS OF CAM (GN/m·*2) 

207 

YOUNG'S MODULUS OF FOLLOWER (GN/m**2) 

207 

POISSON'S RATIO OF CAM 

0.29 

POISSON'S RATIO OF FOLLOWER 

0.29 

VALVE CLEARANCE AT BASE CIRCLE POSITION 

0.4 
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Figure (4.5b) An Example Input Data File for the Valve Train Analysis 

Program. (continued ... ) 
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VALVE TRAIN GEOMETRY DETAILS (FOR A PIVOTED FOLLOWER - OTHERWISE GOTO $$$$ 

""""""""""""""""""""""""""""""""""""" 
A (mm):-

B (mm):-

D (mm):-

R1 (mm):-

RB (mm):-

CHI (degrees):-

LAMBDA (degrees):-

MINIMUM CAM CONCAVITY (MAXIMUM GRINDING WHEEL RADIUS) (mm):-

DIRECTION OF CAM ROTATION 1=CLOCKWISE (AS DYSON OR LIM) -1=ANTICLOCKWISE 

$$$$ 

GEOMETRY DETAILS FOR A DOMED OR FLAT FACED FOLLOWER 

""""""""""""""""""""""""'" 
BASE CIRCLE RADIUS OF CAM (mm):-

18 

CAMSHAFT ROTATIONAL SPEED (r.p.m. ):-

"""""""""""""""""" 

1500 

Figure (4.5c) An Example Input Data File for the Valve Train Analysis 

Program. (continued ... ) 



VALVE OR CAM LIFT? 

""""""""" 
CAM LIFT = 0 

VALVE LIFT = 1 

INPUT ON NEXT LINE:-

1 

IF CAM LIFT IS USED INPUT THE RADIUS OF THE INSPECTION 

51 

FOLLOWER THAT WAS USED (NOT APPLICABLE TO FLAT FACED FOLLOWER) (mm):-

LIFT DATA 
"""", 

DATA POINTS = 0 

FOUR POWER POLYNOMIAL = 1 

MULTIPOL = 2 

INPUT TYPE ON NEXT LINE:-

1 

IS THE LIFT CURVE SYMMETRICAL (EXCLUDING RAMPS):­

YES = 1 

NO = 0 

ENTER 0 OR 1 ON NEXT LINE:-

1 

INPUT "NUMBER OF DATA POINTS TO BE USED FOR ANALYSIS:-

180 

Figure (4.5d) An Example Input Data File for the Valve Train Analysis 

Program. (continued 000) 
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IF A MULTIPOL IS TO BE USED FILL THE TABLE BELOW:-OTHERWISE GOTO #### 

" " , " , , , " , , , , , , , , , , , , , , , , , " " " , " , , , " , , , , , " 

---------------------------------------------------------------------------

SEGMENT 1 2 3 4 5 

LENGTH(deg) 00.00000000 00.00000000 00.00000000 00.00000000 00.0000000 

COEFFICIENTl 00.00000000 00.00000000 00.00000000 00.00000000 00.0000000 

COEFFICIENT2 00.00000000 00.00000000 00.00000000 00.00000000 00.0000000 

COEFFICIENT3 00.00000000 00.00000000 00.00000000 00.00000000 00.0000000 

COEFFICIENT4 00.00000000 00.00000000 00.00000000 00.00000000 00.0000000 

COEFFICIENT5 00.00000000 00.00000000 00.00000000 00.00000000 00.0000000 

INPUT OPENING RAMP HEIGHT(mm):-

INPUT OPENING RAMP LENGTH(deg):-

INPUT CLOSING RAMP HEIGHT(mm);-

INPUT CLOSING RAMP LENGTH(deg):-

INPUT NUMBER OF SEGMENTS USED;-

INPUT MAXIMUM ORDER OF POLYNOMIALS:-

#### END OF DATA FILE IF LIFT IS GIVEN BY MULTIPOL! ! ! ! 

Figure (4.5e) An Example Input Data File for the Valve Train Analysis 

Program. (continued ... ) 



IF A FOUR POWER POLYNOMIAL IS TO BE USED:- OTHERWISE COTO •••• 

""""""""""""""""""""" 

CAM HALF PERIOD (deg):-

60.0 

MAXIMUM LIFT (mm):-

8.9000 

p:-

2 

q:-

9 

r:-

78 

s:-

80 

Cp:­

-11. 692 

Cq:-

2.8499 

Cr:-

-0.58946 

Cs:-

0.53140 

INPUT OPENING RAMP HEIGHT (mm):-

0.50 

INPUT OPENING RAMP LENGTH (deg):-

25 

INPUT CLOSING RAMP HEIGHT (mm):-

0.50 

INPUT CLOSING RAMP LENGTH (deg):-

25 

•••• END OF DATA FILE IF LIFT IS GIVEN BY FOUR POWER POLYNOMIAL!!!! 

53 

Figure (4.5£) An Example Input Data File for the Valve Train Analysis 

Program. (continued ... ) 



IF DATA POINTS ARE TO BE USED:-

""""""""""""""", 

CAM ANGLES I N DEGREES = a 
CAM ANGLES IN RADIANS = 1 

INPUT ON NEXT LINE:-

CAM ANGLE LIFT(mm) 

""""""""""""""" 

54 

Figure (4.5g) An Example Input Data File for the Valve Train Analysis 

Program. 



Lift data given by discrete data points is numerically 

different iated wi th respect to cam angle to obtain the first and 

second derivatives. This is done using the central difference 

formula. This is reasonable only as long as the lift data is accurate 

as the second derivative is very sensitive to errors. Lim et al 

(1983) suggested a method whereby a function of the form 

23m 1 = exp (a + a l/> + a l/> + a l/> + .•. + a l/> ) 
v 0 1 23m 

was fitted to the lift data. This function could then be 

differentiated to give the required derivatives. A test was performed 

on this method using data for which the first and second derivatives 

were known (from a four power polynomial lift definition). Whilst the 

method appeared to give stable results for the case studied by Lim 

and his co-workers, it was found that in practice that curve fitting 

introduced significant errors. 

If the cam is a desmodromic closing cam the lift data is checked 

to ensure that the lift is negative throughout the cycle. If it is 

not, the 1 ift is negated and the sign of the veloci ty data is 

changed to suit. In this way the desmodromic cam and follower can be 

treated Just as a conve~tional cam and follower within the kinematic 

analysis subroutines. 

The kinematic analysis for a cam acting against a pivoted 

follower (which is described in the previous chapter) assumes· that 

the cam rotates clockwise when viewed wi th the pivot centre to the 

right of the cam centre of rotation. If the cam rotates anticlockwise 

then the data is adjusted. This is done by reordering the arrays 

containing lift, velocity and acceleration in reverse order. The 

array containing the valve lift velocities has all its elements 

changed in sign. After all the lubrication analysis has been carried 

out, these arrays (along with the arrays containing Hertzian stress, 

frictional torque, and film thickness results) are rearranged. 

At this stage in the program all the data .has been processed 

into a form that is acceptable for the next group of . subrout ines 

dealing with the kinematic analysis of the valve train. 
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4.2.2 Kinematic Analysis. 

In order to assess the tribological performance of the cam and 

follower several parameters are required. These will be discussed in 

more depth in section 4.2.3 of this chapter. Amongst these parameters 

are the equivalent radius of curvature of the contact and the surface 

velocities of the cam and follower relative to their point of 

contact. 

The analysis relating to the evaluation of these parameters was 

presented in the previous chapter. To enable the calculation of the 

parameters the program requires the lift data, evaluated in the 

previous part of the program, and the valve train geometry which is 

given in the input data file. The lift data may have been given as 

cam or valve lift for a pivoted follower system. The analysis 

requires that the data be in the form of valve lift. Any data given 

as cam lift is therefore translated to lift at the valve. 

The kinematic velocities and radii of curvature are calculated 

and stored in arrays in readiness for the next section of the program 

which calculates the 1 ubricat ion condi t.1ons at the cam/fo llower 

interface. During the calculations checks are made to ensure that the 

cam profile does not become too concave. The maximum allowable cam 

concavity is dictated by the type of valve train (the cam obviously 

cannot be concave in a flat faced follower system) and the minimum 

grinding wheel diameter allowable during the cam machining process. 

If the cam does become too concave a warning is printed to the 

terminal screen and the program ends. 

4.2.3 Evaluation of Tribological Performance. 

At this stage of the program the analysis can take one of two 

direct ions dependent upon whether or not sufficient data has been 

suppl ied to allow the load at the cam/follower interface to be 

calculated. If the load can be evaluated the lubricant film thickness 

at the cam/follower interface is predicted using the' Dowson and 

Higginson (1977) formula (see below), otherwise the Blok limitation 

(Dowson et al (1983» is used (again, see below). If the load at the 

interface is available, then the Hertzian ~tress and the frictional 
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torque arising from the contact can be evaluated. This then allows a 

prediction of the power loss due to friction to be made. 

4.2.3.1 Evaluation of the Lubricant Film Thickness Between the Cam 

and Follower. 

The conditions at the cam and follower contact are very severe. 

Assuming an adequate supply of lubricant reaches the contact, full 

separation of the cam and follower around all of the lift cycle is 

not guaranteed. If the camshaft rotational veloci ty is high enough 

then the contact around the cam flanks (where the lubricant 

entrainment velocity is at its highest) may enjoy elastohydrodynamic 

I ubricat ion (EHL), otherwise the contact wi 11 operate in the mixed 

lubrication regime. Around the nose of the cam, where the lubricant 

entrainment is small, some elememt of boundary lubrication can almost 

always be anticipated. 

EHL occurs between lubricated non-conformal contacts. The 

geometry of the contact is such that very high pressures are 

generated, leading to elastic deformation .of the interacting solids. 

The pressure generated within the lubricant film may be of the order 

of hundreds of mega-pascals, which leads to dramatic changes in the 

lubricant properties. The viscosity of the lubricant increases 

rapidly wi th pressure (indeed exponentially according to the. Barus 

relationship, (~=~ eap», and at high pressures exhibits almost solid 

° like characteristics. Dowson and Higginson (1977) presented a formula 

for the minimum lubricant film thickness between two cylinders in 

11rie contact: 

h 
min 

R 
U

O.70 GO.54 Wi ':'0.13 
2.65 (4.1) 

Dowson and Toyoda (1978) presented a similar formula for the fi 1m 

thickness at the centre of the contact: 

h 
cen 3.06 Uo. 69 GO• 56 Wi -0.10 (4.2) 
R 

For fully developed EHL an acceptable approximation to the 

lubricant film thickness may be obtained frDm the condition that the 
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maximum hydrodynamic pressure tends to infini ty for the fi 1m shape 

determined by the undeformed surfaces - i. e a rigid-peizoviscous 

solution (Dowson et al (1983)). For this condition the film thickness 

is given by: 

2 1 

h = 1.666 (TIV «)3 R3 
min e 

(4.3) 

It can be seen that this relationship is independent of the load 

at the contact. It can therefore be used to predict the lubricant 

film thickness at the cam/follower interface in cases where the load 

is unknown. 

These formulae are obviously not strictly accurate for the 

sit uat ions found in camlfo I lower contacts, in which the act ion of 

squeeze will be very important around the areas where the entrainment 

of the lubricant into tli'e contact is very small. They are, however, 

felt to be adequate to allow qualitative Judgements of the merits of 

valve train designs to be made. 

Boundary lubrication occurs between t.wo interacting solids when 

some asperi ty contact or interact ion bet ween surface fi Ims takes 

place as the lubricant film thickness falls to a value less than the 

composite surface roughness of their surfaces. In such conditions the 

contact must rely upon the ability of the lubricant and solids to 

form surface reaction layers in order to prevent severe wear taking 

place. In boundary lubrication the laws of dry friction apply since 

the coefficient of friction is independent of load, speed, and 

apparent ares of contact. This regime of lubrication can almost 

certainly be expected around the nose of the cam. The transition from 

boundary lubrication to full ·EHL does not take place instantaneously. 

As the load and entrainment veloci ty at the cam/follower interface 

become more favourable larger proportions of the load are carried by 

the pressure of the lubricant within the contact, with less and less 

of the load being borne by surface asperities. 
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4.2.3.2 Evaluation of the Load at the CamlFollower Interface. 

An analysis for the determination of the loading at the 

camlfollower interface for the various types of valve train has been 

given in Chapter (3). The program identifies the valve train type and 

then, if sufficient data has been supplied, calculates the load using 

the appropriate analysis. 

The analysis for the loading at the camlfollower interface for a 

centrally or end pivoted follower requires that the coefficient of 

friction at the contact be known. This obviously cannot be calculated 

wi thout the load at the contact being known. A coefficient of 

frict ion of 0.08 is therefore assumed to allow the load to be 

calculated. This allows the frictional traction at the contact to be 

determined (see below). The coefficient of friction can then be 

recalculated and a new load assessed. This procedure is repeated 

until the loading around the cycle converges. Convergence is very 

rapid, usually taking only three iterations. 

Throughout the load calculation procedures checks are performed 

to ensure that the load on the cam and fol.lower never falls to zero. 

If it does, then the cam is no longer controlling the motions of the 

follower or valve, and valve bounce is occurring. In such cases a 

warning is written to the terminal screen and the program stops. 

4.2.3.3 Evaluation of the Hertzian stress at the Contact. 

Once the load at the camlfollower interface has been evaluated 

then the maximum Hertzian stress at the contact can be found. This 

also allows the dimensions· of the contact zone to be calculated 

according to the theory of Hertz (1882) (see 3.3.2). 

4.2.3.4 Frictional Traction. 

In fully lubricated contacts the frictional forces acting upon 

the interacting components are a function of the velocity gradients 

across the contact zone. The frictional force consists of 

contributions due to rolling and sliding of the components. In the 
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contact between cams and followers much shearing of the lubricant 

film takes place due to the sliding action of the cam and follower. 

This would, in reality, lead to a lowering of the lubricant viscosity 

due to the associated temperature rise. The model used in the present 

study, however, assumes that isothermal conditions exists within the 

contact region. 

As the elastic deformation of the cam and follower is large in 

comparison to the lubricant film thickness, the contact can be 

approximated by a lubricated Hertzian contact as shown in Figure 

(4.6). At the inlet to the contact the frictional force arises almost 

entirely due to the rolling of the components. In the long parallel 

zone the contribution of rolling is negligible, especially when the 

sl iding speeds encountered wi th cams and followers are taken into 

account. Thus, the frictional traction calculations are restricted to 

the sliding contribution from the CHertzian' region taking the Hertz 

pressure distribution. 

The shear stress acting upon the solid boundaries is given by: 

du 
T = 1) -dy 

(4.4) 

where (du/dy) is the velocity gradient across the lubricant film 

thickness. Substituting the Barus relationship for the viscosity term 

and V /h for the velocity gradient, we obtain 
Seen 

J 
1) V e

ap 

F= os dx 
h 

cen 

(4.5) 

upon integrating the shear stress along the length of the contact. 

From (3.3.2) the Hertzian pressure distribution across the 

contact is given by: 

Therefore, 

p = p [1 max 

1 
ap 

1) V e max J (1- 2/b 
2

) 2 F = 0 sex . dx 
h 

cen 

(4.6) 

(4.7) 

Equation (4.7) is solved numerically using Simpson's rule to 

give the instantaneous frictional force at ft given instant during the 
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cam cycle. 

As the Barus viscosity relationship is exponential, the 

viscosi ty term in Equation (4.7) can become very large at high 

pressures. This leads to very high frictional forces being predicted. 

The model, therefore, calculates a boundary friction value taking a 

limiting friction coefficient: 

F = JlW 

The value of the coefficient of friction (Jl) was taken to be 0.08. 

Experimental evidence (Zhu (1988» and work on piston rings at the 

University of Leeds show this value to be reasonable. If the 

frict ional force predicted by the boundary 1 ubricat ion mode 1 was 

less than that predicted by the lubricant shearing model then the 

former was taken as the frictional force arising at the interface. 

Another approach used to assess which friction model should be 

employed is to use the 'rat io of the lubricant fi 1m thickness to the 

composite surface roughness of the contacting surfaces. Once this 

ratio falls to a value below unity, boundary lubrication can be said 

to be occurring. A reasonable surface roughness value for a run-in 

cam and follower pair is 0.2 Jlm (Harrison (1985». The results 

obtained using this model are very similar to those from the limiting 

oil shear friction model. The reason for the similarity can be seen 

by referring to the parametric studies presented in Chapter (5). 

Figure (5.7) shows how the coefficient of friction varies throughout 

the cam cycle using the limiting coefficient of friction model. From 

Figure (5.1f) it can be seen that with a surface roughness of 0.2 Jlm, 

the ratio of oil film thickness to average asperity height would 

cause the limiting coefficient of friction, (0.08), to be invoked 

around the very same portions of the cam cycle. 

4.2.3.5 Power Loss. 

The instantaneous power loss due to friction 

H = Frw 

is given by 

(4.8) 

where (r) is the perpendicular distance from the cam centre of 

rotation to the frictional load vector. This can be integrated around 

the cam lift cycle (using Simpson's rule) to give an average power 
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loss: 
211 . 

H = !.-- I Frw d</> 211 (4.9) 

o 

4.2.4 Parametric Study Routines. 

In order to enable the effects of changes in various of the 

design parameters be investigated, a series of parametric study 

subrout ines was bui 1 t into the program. These enabled the value of 

the cam base circle radius, the cam width, the spring stiffness, the 

camshaft speed, the follower radius of curvature, the lubricant 

viscosi ty and the equivalent mass at the valve to be changed. The 

effect of changes in these values upon Hertzian stress at the 

contact, minimum lubricant film thickness, and.power loss could then 

be studied. Examples of parametric studies are given in Chapter (5). 

4.2.5 Output. 

It was felt important that the output from the program should be 

easily understood by a competent professional engineer. The output 

was therefore both graphical and numerical. The graphical output is 

arranged in a concise manner· such that the trends in important 

tribological parameters, and their interaction upon each other, can 

be easily assimilated. Examples of the graphical output are presented 

in the next chapter and in the next sect ion. The numerical data 

output shows the same information as the graphical output in a 

tabular form. 

4.3 An Example Program Run. 

In this section the reader will be led through a typical session 

using the valve train lubrication analysis program. 

Firstly the input data file is created using the ~creen editing 

facility on the mainframe computer. A cam acting against a flat faced 

follower will be used for this an example, the lift data being given 

as a four power polynomial, and loading .data being neglected. The 

data file, called FLAT is shown in Figure (4.5). The program is run, 
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for convenience, using an execution (exec) file named cFR'. The 

format for the exec being: 

FR file_l file_2 file_3 file_4 file_5 

where 

file_l is the fortran file to be run, 

file_2 is the input data file (assigned to channell), 

file_3 is an output data file (assigned to channel 2), 

file_4 is a file (assigned to channel 10), 

file_5 is a file (assigned to channel 11), etc, etc. 

If any file in the string prior to the last defined input or output 

channel is not used then it is replaced in the string by a full-stop 

(.). The valve train analysis program is called EXPRESS and is a 

fortran file. The program reads the input data from channel 1 and 

writes an output data file for a hard-copy to channel 2. If a pivoted 

follower is used data concerning the geometrical variables is written 

to channel 10. All of the program variables are written to a data 

file assigned to channel 12 in a format which can be read by a 

graphs·program. Hence to run the program the user in this example 

types: 

where 

FR EXPRESS FLAT A . PICTURE 

FLAT is the input data file (shown in Figure (4.5), 

A is the hard-copy output data file, 

a c.' is used as the follower is not pivoted, 

and PICTURE is the data file for the graphics program. 

Figure (4.7a) shows the computer terminal response when the 

program is executed (note that the exec, fr, is not case sensitive). 

The user is shown an introductory page and is given the opt ion to 

view a summary of the data that has been introduced to the program by 

FLAT. In this example the option to view the data is accepted and the 

data summary is printed to the terminal (Figure (4.7b). Having viewed 

the data the operator is given the choice of continuing the run, or, 

if the input data is not correct, of aborting the run. If the run is 

continued then a further option is given which ~llows the user to opt 

for a parametric study to be carried out upon the valve train (Figure 

4.7c). In this example this option is not taken and the program ends 

by reminding the user of the names of the output data files and gives 

instructions upon how hard-copies and graphical output may be 

obtained. 
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.fr express flat a . picture 

Execution begins ... 

Cam and follower analysis 

========================= 

Andrew Ball 

Dept of Mech. Eng. 

University of Leeds. 

April 1987 

This program analyses the kinematics and the 

lubrication of the point of·contact of various 

cam/follower pairs. The analysis is based upon the 

technique developed by Dyson that is outlined in the 

following:-

Dyson, A. Kinematics and wear patterns of cam 

and finger follower automotive valve gear, 

Tribology International, June 1980 pp 121-132. 

Dyson, A., Naylor, H., Application of the flash 

temperature concept to cam and tappet wear 

problems. Proc. I. Mech. E. 1961. 

DO YOU WISH TO SEE THE INPUT DATA? YIN <N> 
.y 

Figure (4.7a) Computer Terminal Responses During a Typical Run of 

the Valve Train Analysis Program. (continued ... ) 
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CAM & FLAT FACED FOLLOWER 

Created on 2:08:88 

INPUT DATA 

Cam acting against a flat faced follower 

Lubricant viscosity ............... 0.050 Ns/m(sqd) 

Pressure viscosity coefficient .... 0.220E-07 m(sqd)/N 

Cam rotational speed .............. 1500.0 rpm 

Cam Base Circle Radius ............ 18.00 mm 

HIT RETURN KEY TO CONTINUE ••• 

Lift input as valve lift 

Lift has been input as a four power polynomial ... 

Data For Four Power Polynomial 

Action Period = 60.00 deg 

Ramp Height = 
Max Lift = 

Powers are:-

p = 2 

r =78 

q = 9 

s =80 

Coefficients are: ,-

0.50 mm 

8.90 mm 

Cp = -11.69200 Cq = 
Cr = -0.58946 Cs = 

Lift curve is symmetrical 

Contact Loading Data 

No Load Data Supplied 

2.84990 

0.53140 

Film thicknesses calculated using the Blok Limitation 

Figure (4.7b) Computer Terminal Responses During a Typical Run of 

the Valve Train Analysis Pr;gram. (continued ... ) 
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DO YOU WISH TO CONTINUE? YIN <Y> 

.y 

********** OK PROGRAM IS RUNNING 

DO YOU WANT A PARAMETRIC STUDY TO BE CARRIED OUT? YIN <N> 

.n 

Hard copy of output data may be obtained by typing PR A DATA (CC 

Graphical output can be obtained by typing FR GRAFIT PICTURE 

Ready; T=O.79/0.99 11:39:21 

Figure (4.7c) Computer Terminal Responses During a Typical Run of 

the Valve Train Analysis Program. 
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The graphical output, which may be directed to a graphics 

terminal or to a plotter, is obtained by running another program 

called GRAFIT. Figure (4.8) shows the graphical output obtained from 

the example above. In this case the output is contained on two sheets 

of A4 plotter output (if loading data had been supplied then a third 

would have been obtained). The output offers information to the user 

in a concise and easily assimilated format, showing the variation of 

the important lubrication parameters around the cam cycle (V , V , R, 
e s 

etc) and the lubricant film thickness plotted against cam rotational 

angle and against eccentricity. The final sheet shows the cam profile 

with the predicted lubricant film thickness superimposed upon it. 

4.4 Conclusion. 

A user friendly computer program which, it is felt, could be 

used by any competent professional engineer has been developed to 

analyse the tribological operation of all types of cam and follower 

arrangements in common use in today's automobile engines. The program 

has expanded previous design programs avai.1able at the Uni versi ty of 

Leeds, the previous program being non-user-friendly and being capable 

only of analysing cam and flat faced follower systems with the lift 

data being presented in the form of a four power polynomial. It is 

felt that the program is well structured and robust, and gives clear, 

easily assimilated output data. 
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CHAPTER 5 

PARAMETRIC STUDIES OF THREE V AI. VE THAI N SYSTEMS 

5.1 Introduction 

5.2 A Parametric Study of a Cam and Flat Faced Follower System 

5.3 A Parametric Study of a Cam and Centrally Pivoted Follower 

System 

5.4 A Parametric Study of a Cam and End Pivoted Follower System 

5.5 Enhancement of an End Pivoted Follower Design 

5.6 Conclusions 
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5.1 Introduction. 

The successful design of a valve train.system requires a 

skilful compromise between various parameters. Very little work has 

been done to determine which factors most affect the performance of 

the cam mechanism, and so the designer often has to resort to 'rule 

of thumb'. The design philosophy involved in the creation of a valve 

train is discussed at length in Chapter (2). 

Muller (1966) was the first to show that, theoretically, 

the shape of the cam profi Ie could affect not only the Hertzian 

Stress but also the lubricant fi 1m thickness at the cam/follower 

interface. It therefore became apparent that if a cam mechanism was 

to work satisfactorily attention should be paid to limiting the 

Hertzian stress whilst sustaining an adequate lubricant film. Dyson 

(1977) showed how both the equivalent radius of curvature and the 

lubricant film thickness at the contact varied as several important 

design parameters were changed for a cam acting against a domed 

follower. He then showed (1980) how this theoretical work could be 

extended to a cam and end pivoted follower system. Harrison (1985) 

carried out a comprehensive parametric study of a cam and flat faced 

follower system and showed how the frictional power loss, lubricant 

film thickness at the cam nose and Hertzian stress at the Cam nose 

varied as several design parameters were al teredo Dowson, Harrison 

and Taylor (1985) produced a table explaining and summarising the 

important findings of this study - a most useful aid for anyone 

wishing to design a cam and flat faced follower mechanism. 

In this chapter parametric studies of three valve train 

systems will be presented and the results summarised in tabular form. 

The valve train systems are: a cam and flat faced follower mechanism 

(ident ical to that used by Harrison (1985», a cam and centrally 

pi voted follower mechanism, and finally a cam and an end pi voted 

follower mechanism. The parametric studies were carried out using the 

computer program described in the previous chapter. It will be shown, 

using the cam and end pivoted follower mechanism, how a parametric 

study can reveal that small changes in a design may produce 

significant benefits in the performance of a cam and follower system. 
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5.2 A Parametric Study of a Cam and Flat Faced Follower System. 

The cam and follower pair used in this study is ident ical to 

that investigated by Harrison (1985). Data relating to the system is 

listed below and is taken as the datum condition: 

Cam base circle radius = 18.00 mm 

Cam" width = 12.00 mm 

Spring stiffness = 38254 N/m 

Initial spring displacement = 6.40 mm 

Equivalent mass at valve = 0.172 kg 
2 

Young's modulus of cam and follower = 207 GN/m 

Poisson's ratio of cam and follower = 0.29 
2 

Lubricant viscosity = 0.050 Ns/m 

Lubricant pressure-viscosity coefficient = 22.0xl0-
9 

m
2
/N 

The valve lift is described by a four-power polynomial: 

where 

p = 2, q = 9, r = 78, s = 80, 

and 

C = -11.6918407 mm, C = 2.8498942 mm, 
p q 

C = -0.5894568 mm, C = 0.5314033 mm, 
r s 

o 
Y = O. 50 mm, 1 = 9. 40 mm, </> = 60 . 

r c~x T 

Each design parameter was changed from its datum, whi 1st the 

others remained constant, and the effect upon the pridicted 

frictional power loss, lubricant film thickness at the cam nose and 

Hertzian stress at the cam nose was studied. The parameters changed 

were: 

(a) Cam base circle radius, 

(b) Cam width, 

(c) Equivalent mass at the valve, . 

(d) Camshaft speed, 

(e) Valve spring rate, and 

(f) Lubricant viscosity. 

Figure (5.1) shows the cam operating characteristics at the 



CAM OPERATING CHARACTERISTICS 
PAUL HARRISON'S DATA - 2500 rpm 

Cam Base Radius (mm) 

Maximum Valve Lift (mm) 

Cam Width (mm) 

Rotational Speed (rpm) 

Spring Stiffness (kN/m) 

- 1B.OO 
9.40 

- 12.00 

- 2500.0 

- 3B.254 
Initial Spring Diep. (mm) - B.4 

Equiv. Mass At Valve (kg) - .172 
Lubricant Viscosity (Ns/m 2) - .050 

Press. Viac. Coaff. VPa) - 22.0E-9 

Youngs Mod. (Cam) (GPa) - 207.0 

Youngs Mod. Fall.) ~Pa) - 207.0 

Poissons Ratio (Cam) - .29 

Poisaons Ratio (Fall.) - .29 

Frictional Power Loss (W) - 4B.50 
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Figure (5.1) Cam and Flat Faced Follower Operating 

Characteristics at the Datum Condition 

(Camshaft Rotational S = 46Hz • 
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CAM OPERATING CHARACTERISTICS 
PAUL HARRISON'S DATA - 2500 rpm 
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datum condition for a camshaft speed of 41.67 Hz (2500 rpm). 

Parametric studies were carried out at camshaft speeds of 25 Hz (1500 

rpm) and 41. 67 Hz (2500 rpm). Figures (5.2), (5.3), (5.4) and (5.5) 

show the results of the parametric stUdies. Figure (5.2) shows a 

parametric study at 25 Hz (1500 rpm) where each design parameter was 

changed from its datum value by -70% through to +300% (0% change 

being the datum value, -50% change being half the datum value, +50% 

being one and a half times the datum value, etc). Figure (5.3) shows 

the same study with more realistic changes in the parameters of -25% 

through to +25%. Figures (5.4) and (5.5) show a parametric study at 

41.67 Hz (2500 rpm) with changes in the parameters of -70% through to 

+300% and -25% through to +25% respectively. 

The effect of changing each of the parameters is discussed in 

turn below and is summarised in Table (5.1). 

5.2.1 Changes in Cam Base Circle Radius. 

As the" base circle radius is changed the cam profile must be 

changed to preserve the lift characteristics of the cam. The change 

in cam profile naturally changes the radius of curvature around the 

cam surface and hence surface velocities, film thicknesses, surface 

stresses, etc. 

The film thickness around the cam nose is small, largely due to 

the very small values of entraining velocity (V) and equivalent 
e 

radius of curvature (R) encountered. As the lubricant film thickness 

(h ) around the cam nose is so small, and the Hertzian pressure 
cen 

(p ) is large, due to the small radii of curvature, the limiting 
max " 

coefficient of friction is applied around the whole of this area for 

small (r ) and the only areas of the cam where changes in parameters 
B 

will affect the frictional power loss will be the cam flanks where 

the film thicknesses are generous (see Figure (5.6». 

As (r ) increases the velocity of the cam relative to the point 
B 

of contact (V ) increases. It follows, therefore, that the entraining 
c 

velocity (V ) is changed. An increase in (r ) causes the entraining 
e B 

velocity to fall before rising as it passes through a zero value. As 

(r) increases (R), the equivalent radius of curvature, increases. 
B 
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PARAMETRIC STUDY 
PAUL HARRISON'S DATA - 1500 rpm 

Changes In Base Circle Radius 90 Changes In Cam Width 
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PARAMETRIC STUDY 
PAUL HARRISON'S DATA - 2500 rpm 
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PARAMETRIC STUDY 
PAUL HARRISON'S DATA - 2500 rpm 
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BASE 

CIRCLE 

RADIUS 

CAM 

WIDTH 

RECIPRO­

CATING 

MASS 

VALVE 

SPRING 

STIFFNESS 

MINIMUM FILM THICKNESS 

AT MAXIMUM LIFT POSITION 

A decrease from the 
design value causes a 
fall in film thickness as 
the equivalent radius of 
curvature falls. An 
increase causes the film 
thickness to fall 
dramatically, before 
rising, due to the mean 
entraining velocity 
across the nose passing 
through a zero value. 

As the cam width 
increases the load per 
unit width at the contact 
decreases. This leads to 
a small increase in the 
elastohydrodynamic film 
thickness. 

An increase in 
reciprocating mass 
causes an increase in the 
film thickness due to the 
inertia force reducing 
the cam load at the nose. 

Increasing valve spring 
stiffness reduces the 
film thickness as the cam 
load is increased. 

I MAXIMUM HERTZIAN STRESS 

I AT MAXIMUM LIFT POSmON " 

I 
I The Hertzian stress is 
I inversely proportional to 
I the square root of the 
I equivalent radius of 
I curvature. Increasing the 
I base circle radius 

therefore reduces the 
Hertzian stress at the 
cam nose. 

As the cam width 
increases the load per 
unit width at the contact 
decreases, and so, 
therefore, does the 
Hertzian stress. 

Increasing the 
reciprocating mass 
reduces the cam load and 
hence lowers the Hertzian 
stress at the cam nose. 

A reduction in spring 
stiffness reduces the cam 
load and hence reduces 
the Hertzian stress. 

LUBRICANT Increasing the lubricant No influence. 
VISCOSITY viscosity of the 

lubricant increases the 
film thickness. 

CAM 

ROTATIONAL 

SPEED 

Increasing speed 
increases entraining 
velocity and reduces cam 
load at nose. Film 
thickness therefore 

As the cam rotational 
speed increases the load 
decreases at the cam 
nose and therefore the 
Hertzian stress 

increases with increasing decreases. 
speed. At high speeds thel 
cam load falls rapidly I 
and therefore the I 
increase in film thick­
ness is rapid. 

I 
I 
I 

~2 

POWER LOSS 

The limiting coefficient 
of friction is applied 
over most of the cycle, 
hence the friction is a 
function of load rather 
than film thickness. The 
increase in power loss 
with base circle radius 
for a given speed is due 
to the increase in 
instantaneous radius of 
curvature (the distance 
at which the frictional 
force acts). If the base 
circle radius is 
increased sufficiently 
the entrainment velocity 
is enhanced adequately 
such that the limiting 
coefficient of friction 

OTHER COMMENTS 

Increasing the base 
circle radius will 
increase the overall 
engine height. If on 
assembly, the camshaft 
needs to be fed through 
the camshaft bearings, 
then larger diameter 
bearings must also be 
used. A larger cam base 

I circle radius allows a 
I larger diameter camshaft 

to be used which will 
increase the rigidity of 
the valve train system; 
however at the expense 
of extra weight. Minimum 
value of base circle 
radius is dominated by 
the lift curve 
characteristics and the 

I 
I 
I 
I 
I 
I is no longer applied over 

any of the cycle. necessity for the cam to I 
become concave along the 
flanks. 0 

At low rotational The cam lobe width is 
frequency the limiting limited by the number of 
coefficient of friction cam lobes to be fitted 
is applied over most of into a given space. I.e. 
the cam cycle. Hence, an the cam lobe width is 
increase in cam width governed by the valve 
only marginally reduces spacing. A larger cam 
power loss. At higher width necessitates a 
rotational frequencies larger diameter follower 
the proportion of the which leads to a larger 
cycle governed by reciprocating mass. 
boundary lubrication 
falls with increasing cam 
width and there is 
a corresponding fall in 
power loss. 

Increasing the Increasing reciprocating 
reciprocating mass mass increases the load 
generally causes a fall on the cam flanks. 
in the power loss as the decreasing mass may 
loading at the cam nose cause strength problems, 
is reduced. increasing mass inertia 

problems. 

An increase in spring The valve spring must 
stiffness causes the provide sufficient load 
power loss to increase as I to restrain valve bounce 
the cam load increases. and to control the valve 

Insignificant influence. 

Power loss increases with 
cam speed. At high 
speeds the rate of 
increase falls as valve 
bounce is approached. 

along the cam flanks. 

Lubricant viscosity may 
be dictated by other 
engine component 
lubrication requirements. 

Camshaft speed is limited 
by the point at which 

I valve bounce occurs and 
I the cam no longer 0" 

I controls the valve. This 
I is due to the inertia of 
I the reciprocating parts 
I being greater than the 
I valve spring load. 

I 
I 
I 

Table (5.1) Parametric Study Results Summary. 
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Thus the minimum and central fi 1m thicknesses, (h ) and (h ) 
min cen 

respectively, fall dramatically before rising as (r ) increases. This 
B 

is due to their dependence' upon (V). The sliding velocity (V ) 
e ' s 

increases (as (V ) is increased). The maximum Hertzian stress at the . c 
contact, (p ), decreases as there is a decrease in (R). 

max 

The frictional traction (F) is proportional to (V), inversely 
s 

proportional to (h ), 
cen 

and proportional to the viscosi ty of the 

lubricant (which is proportional to the exponential of (p ». The 
max 

maximum Hertzian stress, however~ is proportional to the inverse of 

the square root of (r ). The frictional torque is proportional to the 
B 

frictional traction and to the perpendicular distance from the cam 

centre to the frictional force vector. This distance is equal to the 

cam lift plus the base circle radius and therefore increases as (r
B

) 

increases. 

Increasing (r ) causes an increase in the frictional power loss 
B 

up to a point where the ,lubricant film thickness at the cam nose 

becomes significant due to the increasing entraining velocities and a 

downward trend then occurs due to the limiting coefficient of 

friction no longer being applied (again see Figure (5.6». 

The lubricant film thickness at the cam nose can be forced to a 

zero value, due to the entraining velocity being zero. Figure (5.th) 

showing the contact point surface velocities can be used to 

illustrate this point. The entraining velocity at the cam nose is 

usually negat i ve (if a system is adopted whereby the entraining 

velocity is positive at the flanks), but as (r) is increased the 
B 

entraining velocity around the whole cycle is increased and can reach 

a point where it is positive around the whole cycle. The entraining 

velocity at the cam nose is given by the expres~ion 

. d
2

1 
V = w(2-- + 1 + r ). 

e d~2 B 

It can be seen that when 

then 

d2 1 
r = -(2-- + 1) 

B d~2 

V = 0 
e 
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and hence the lubricant film thickness at the nose is zero if squeeze 

film effects are neglected. 

The film thickness at the cam nose decreases as (r
B

) is 

increased up to the point at which the entraining velocity is 

positive for the whole cycle. It is worthwhile to note that if a 

large enough base circle is used then the points of theoretical zero 

film thickness do not occur. The physical size of the camshaft would 

however be prohibitive if this design was adopted. 

It should be noted that the computer program used for the 

parametric studies searches for the minimum allowable value of (r
B

) 

which occurs at a decrease of just over 20% from the datum value. The 

minimum value of (r) is limited by the cam radius of curvature 
B 

required to attain the lift and acceleration characteristics of the 

cam. As (r ) is decreased a point is reached at which the cam must be 
B 

concave to attain the lift characteristics. This is clearly 

impossible for a flat faced follower. 

5.2.2 Changes in Cam Lobe Width. 

\ 

As would be expected the Hertzian stress at the cam nose will 

decrease as the cam lobe width is increased as the load per uni t 

width of cam lobe decreases. The film thickness increases and the 

frictional power loss decreases as the cam lobe width is increased 

also as a direct result of this. The designer is limited in choice of 

cam width by the, spacing between valves. 

5.2.3 Changes in Reciprocating Mass. 

As the reciprocating mass increases, the inertia of the system 

increases and hence the loading at the cam nose decreases. (It should 

be noted though that the loading on the flanks is increased). This 

decreased loading leads to a larger fi 1m thickness and obviously 

reduced Hertzian stress at the cam nose. On the· flanks the film 

thickness is decreased due to the increased loading. As the fi 1m 

thickness is less sensitive to load than the power loss, the overall 

power loss is reduced. 
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5.2.4 Changes in Camshaft Speed. 

As the camshaft speed is increased the loading on the cam nose 

becomes less due to the negative lift acceleration. It can be seen 

(Figure (5.4» that valve bounce occurs at approximately 60 Hz (3600 

rpm (7200 rpm crank». (Again it should be noted that the loading on 

the flanks increases). This reduced loading leads to a larger film 

thickness and reduced Hertzian stress at the cam nose. The power loss 

increases as the cam speed increases as would be expected. At speeds 

approaching those at which valve 'bounce occurs the power loss starts 

to fall as the loading becomes so small on the cam nose. This then 

levels off as the coefficient of friction around the cam flanks 

approaches and then assumes the limiting value due to the increasing 

loads (see Figure (5.7». 

5.2.5 Changes in Spring Rate. 

As the spring rate increases the Hertzian stress at the cam nose 

increases- due to the load increasing. This increase in load also 

causes the film thickness to decrease but ,the changes are not large 

((h ) only being proportional to load raised to the power -0.13 in 
mln 

the Dowson and Higginson (1977) relationship). The frictional power 

loss increases as both (h ) and (p ) increase. If the limiting 
cen max 

coefficient of frict ion is applied throughout the majori ty of the 

cycle, then the change in frictional power loss would be expected to 

be almost linear with change in spring stiffness. 

5.2.6 Changes in Lubricant Viscosity. 

As would be expected the lubricant film thickness will be 

enhanced by a higher lubricant" viscosity. The increase in viscosity 

will have no effect upon the Hertzian stress and little effect upon 

the power loss. The small changes in power loss are due to (h ) 
cen 

increasing proportionally to the viscosity to the. power 0.72 (using 

the Dowson and Higginson equation). If we then note that the 

frictional power loss is proportional to the viscosity and inversely 

proportional to (h ) we can see that overall the power loss is 
cen 

proportional to the viscosity to the power 0.28. 
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5.3 A Parametric Study of a Cam and Centrally Pivoted Follower 

System. 

The cam and follower adopted for this study are in use in a 

current engine (Rover 2600) and are the same as those studied by Lim 

et al (1983), the valve lift data being given as a fitted exponential 

function: 

where 

a = 2.317111 

c = -1. 526837 

e = -1. 789897 

g = -0.2422081 

b = -0.8104 X 10-3 

d = -0.1552985 

f = 0.1171634 

The geometry of the system is shown in Figure (5.8). This is taken to 

be the datum condition. Each design parameter was changed from its 

datum, whilst the others remained constant, and the effect upon the 

frictional power loss, lubricant film thickness and Hertzian stress 

at the cam nose was stUdied. The parameters changed were: 

(a) Cam base circle radius, 

(b) Cam width, 

(c) Equivalent mass at the valve, 

(d) Camshaft speed, 

(e) Spring rate, and 

(f) Follower radius of curvature. 

As the cam base circle radius is changed, the valve train 

geometry must be changed to take up the clearance between the cam and 

follower. This is done by moving, the follower contact radius along 

the line bet ween its centre of curvature and the cam centre of 

rotation. 1. e. 

and, 

~ + K = constant, 
B 

t/J + </> + K. = constant. 
B B 

Similarly, as the follower radius of curvature is changed the 

pos i t ion of its centre of curvature moves in the. direct ion of the 

line from the cam centre of rotation to the follower contact face's 

centre of curvature. i.e. B,D,r ,K., and (t/J + </> ) are constant. 
B B B 



89 

( 

A = 50.06 mm v = 0.3 
follower 

B = 54.00 mm V = 0.3 
cam 
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f cam 

14.30 2 -1 
r= mm ex = 15.0 nm N 
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107.5
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Figure (5.8) Geometry of Rover 2300 Valve Train 
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Figure (5.9) shows the cam operating characteristics at the 

datum condi tion for a camshaft speed of 41. 67 Hz (2500 rpm). A 

parametric study was carried out at 25 Hz (1500 rpm) and 41. 67 Hz 

(2500 rpm). Figures (5.10), (5.11), (5.12) and (5.13) show the 

results of the parametric studies. Figure (5.10) shows a parametric 

study at 25 Hz (1500 rpm) where each design parameter was changed 

from its datum value by -70% through to +300% (0% change being the 

datum value, -50% change being half the datum value, +50% being one 

and a half times the datum value, etc). Figure (5.11) shows the same 

study with more realistic changes in the parameters of -25% through 

to +25%. Figures (5.12) and (5.13) show a parametric study at 41.67 

Hz (2500 rpm) with changes in the parameters of -70% through to +300% 

and -25% through to +25% respectively. 

The effect of changing each of the parameters is discussed in 

turn below and is summarised in Table (5.2). 

5.3.1 Changes in Cam Base Circle Radius. 

Figure (5.9h) shows how the surface velocities at the point of 

contact vary throughout the cam cycle. The curve describing the 

lubricant entrainment velocity (Vc + Vf ) is of a typical shape for a 

centrally pivoted follower. It can be seen that the pivoting follower 

introduces a degree of asymmetry to the curve (compared to the 

symmetrical curve for a the flat faced follower system). This makes 

the interpretation of the results from the parametric study a little 

more difficul t to interpret than those for the cam and flat faced 

follower where, for example the lubricant film thickness across the 

whole of the cam nose was almost constant. In the parametric stUdies 

the .value of the film thickness at the position of maximum lift is 

taken to be indicative of the film thickness across the whole of the 

cam nose. Due to the asymmetry the film thickness is not constant 

across the nose, however, it can be seen from Figure (5.9f) that the 

lubricant film thickness at the maximum lift position gives a 

reasonable approximation to the mean value of the film thickness 

across the whole of the cam nose. It should be noted that the value 

for the Hertzian stress at the cam nose is not the maximum value 

across the nose (see Figure (5.9J). 
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CAM OPERATING CHARACTERISTICS 
ROVER 2300 - 2500rpm 
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I 
I 
I 
I 
I SASE 

I CIRCLE 

I RADIUS 

I 

CAM 

WIDTH 

RECIPRO-

CATING 

MASS 

VALVE 

SPRING 

STIFFNESS 

FOLLOWER 

RADIUS OF 

CURVATURE 

CAM 

ROTATIONAL 

SPEED 

MINIMUM FILM THICKNESS 

AT MAXIMUM UFT POSITION 

A decrease from the 
design value causes a 
fall in film thickness as 
the equivalent radius of 
curvature falls. An 
increase causes the film 
thickness to fall 
dramatically, before 
rising, due to the mean 
entraining velocity 
across the nose passing 
through a zero value. 

As the cam width 
Increases the load per 
unit width at the contact 
decreases. This leads to 
a small increase in the 
elastohydrodynamic film 
thickness. 

An increase in 
reciprocating mass 
causes an increase in the 
film thickness due to the 
inertia force reducing 
the cam load at the nose. 

Increasing valve spring 
stiffness reduces the 
film thickness as the cam 
load is increased. 

An increase from the 
design value causes an 

I increase in film thick-
ness as the entraining 
velocity increases. 

Increasing speed 
increases entraining 
velocity and reduces cam 
load at nose. Film 
thickness therefore 

MAXIMUM HERTZIAN STRESS 

AT MAXIMUM UFT POSITION 

The Hertzian stress is 
inversely proportional to 
the square root of the 
equivalent radius of 
curvature. Increasing the 
base circle radius 
therefore reduces the 
Hertzian stress at the 
cam nose. 

As the cam width 
increases the load per 
unit width at the contact 
decreases, and so, 
therefore, does the 
Hertzian stress. 

Increasing the 
reciprocating mass 
reduces the cam load and 
hence lowers the Hertzian 
stress at the cam nose. 

A reduction in spring 
stiffness reduces the cam 
load and hence reduces 
the Hertzian stress. 

An increase from the 
design value causes an 
increase in Hertzian 
stress as the equivalent 
radius of curvature falls 
as the cam nose narrows. 

As the cam rotational 
speed increases the load 
at the cam nose 
decreases and therefore 
the Hertzian stress 

increases with increasing decreases. 
speed. At high speeds thel 
cam load falls rapidly I 
and therefore the I 
increase in film thick- I 
ness is rapid. I 

I 
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POWER LOSS I OTHER COMMENTS 

I 
I 

The limiting coefficient I Increasing the base 
of friction is applied 
over most of the cycle, 
hence the friction is a 
function of load rather 
than film thickness. The 
increase in power loss 
with base circle radius 
for a given speed is due 
to the increase in 
instantaneous radius of 
curvature (the distance 
at which the frictional 
force acts). If the base 
circle radius is 
increased sufficiently 
the entrainment velocity 
is enhanced adequately 
such that the limiting 
coefficient of friction 
is no longer applied over 
any of the cycle. 

At low rotational 
frequency the limiting 
coefficient of friction 
Is applied over most of 
the cam cycle. Hence, an 
increase in cam width 
only marginally reduces 
power loss. At higher 
rotational frequencies 
the proportion of the 
cycle governed by 
boundary lubrication 
falls with increasing cam 
width and there is 
a corresponding fall in 
power loss. 

Increasing the 
reciprocating mass 
generally causes a fall 
in the power loss as the 
loading at the cam nose 
is reduced. 

An increase in spring 
stiffness causes the 
power loss to increase as 
the cam load increases. 

Very little influence. 

Power loss increases with 
cam speed. At high 
speeds the rate of 
increase falls as vahle 
bounce is approached. 

circle radius will 
increase the overall 
engine height. If on 
assembly, the camshaft 
needs to be fed through 
the camshaft bearings, 
then larger diameter 
bearings must also be 
used. A larger cam base 
circle radius allows a I 
larger diameter camshaft I 
to be used which will I 
increase the rigidity of I 
the valve train system; I 
however at the expense I 
of extra weight. Minimum I 
value of base circle I 
radius is dominated by I 
the lift curve I 
characteristics and the I 
necessity for the cam to I 
become concave along thel 
flanks. 

The cam lobe width is 
limited by the number of 
cam lobes to be fitted 
into a given space. I.e. 
the cam lobe width is 
governed by the valve 
spacing. A larger cam 
width necessitates a 
larger diameter follower 
which leads to a larger 
reciprocating mass. 

Increasing reciprocating 
mass increases the load 
on the cam flanks. 
Decreasing mass may 
cause strength problems, 
increasing mass inertia 
problems. 

The valve spring must 
provide sufficient load 
to restrain valve bounce 
and to control the valve 
along the cam flanks. 

The size of the contact 
patch on the follower 
increases with increasing 
follower radius of curv-
ature, therefore, larger 
followers may be needed. 

Camshaft speed is limited 
by the point at which 
valve bounce occurs and 
the cam no longer 
controls the valve. This 
is due to the inertia of 
the reciprocating parts 
being greater than the 
valve spring load. 

I 
I 

Table (5.2) Rover'2300 Parametric Study Results Summary. 
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As the base circle radius of the cam is increased from its datum 

value the cam radius of curvature increases and so the velocity of 

the point of contact relative to the cam surface (V ) increases which c 
leads to an increase in the entrainment velocity, in that the curve 

in Figure (5.9h) rises. This means that the magnitude of the 

entrainment velocity around the cam nose falls at first until the 

entrainment velocity is positive (i.e. in the same direction as the 

cam surface veloci ty (V » for the whole of the cam cycle. As the 
c 

entrainment veloci ty changes we see a corresponding change in the 

lubricant film thickness at the' cam nose. As the base circle radius 

is increased from its datum value the film thickness at the cam nose 

falls at first down to zero (neglecting squeeze effects), 

corresponding to the 

veloci ty at the nose, 

increases. 

value of (r) that gives zero entrainment 
B 

and then rises as the entrainment veloci ty 

The increases in the radius of curvature of the cam at the cam 

nose also contributes to the enhancement of the lubricant film at 

this point. This also causes the decrease in the Hertzian stress at 

the nose~ 

The frictional power loss increases almost linearly with 

increasing (r). The limi ting coefficient of friction is appl ied 
B 

around the maJori ty of the cam cycle at both 25 Hz and 41. 67 Hz 

camshaft rotational speed with the datum value of (r). The loading 
B 

at the contact does not change as (r) changes but the radius at 
B 

which the frict ional tract ion force is appl ied increases as (r ) 
B 

increases, thus the frictional power loss increases. At very high 

values of (r ) the lubricant entrainment velocity is enhanced to such 
B 

an ,extent that the 1 imi t ing coefficient of frict ion is no longer 

applied and so the rate at which the frictional power loss increases 

as (r
B

) increases levels off. 

5.3.2 Changes in Cam Width. 

As would be expected the Hertzian stress at the cam nose will 

decrease as the cam lobe width is increased because the load per unit 

width decreases. The film thickness at the cam nose and the 

frictional power loss decrease as a direct result of this. 
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5.3.3 Changes in Reciprocating Mass. 

Increasing the reciprocating mass at the valve causes higher 

loads on the cam flanks but smaller loads at the cam nose. As the 

load at the cam nose decreases with increasing reciprocating mass the 

lubricant film thickness will increase and the Hertzian stress will 

decrease. The frictional power loss decreases due to the limiting 

coefficient of friction being applied around the cam nose and so the 

power loss is proportional to the normal load around this portion of 

the cam which represents the majority of the cam cycle (time wise). 

5. 3. 4 Changes in Camshaft Speed. 

The acceleration of the valve around the cam nose is negative. 

Therefore as the camshaft speed increases the valve acceleration 

becomes more negative ~d the contact load at the cam decreases. A 

point is reached as the speed is increased at-which the inertia of 

the valve becomes so great that the cam and follower part and valve 

bounce occurs. (It should be noted that th~ loading on the cam flanks 

increases as the camshaft speed increases). This decrease in load at 

the cam nose leads to an increase in lubricant film thickness and a 

decrease in Hertzian stress. At lower camshaft speeds the frictional 

power loss increases wi th speed as would be expected. As the speed 

increases the loading on the cam nose becomes less and less until a 

point is reached at which the limiting coefficient of friction is no 

longer applied around the nose and so the power loss starts to fall 

wi th increasing speed. It should be noted that this relat ionship 

between the camshaft speed and frictional power loss is highly 

dependent upon the valve lift curve. A lift curve producing very high 

negative accelerations around the cam nose, as seen here, causes this 

portion of the lift curve to dominate the overall power loss around 

the cam cycle. If however a cam lift curve which produces relatively 

low negative accelerations around the cam nose is used then the 

contribution of the- power loss at the cam flanks becomes more 

important as wi 11 be seen in the parametric studies in the next 

section. 
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5.3.5 Changes in Spring Rate. 

As the spring rate is increased the loading at the cam/follower 

interface increases and so the Hertzian stress at the cam nose 

increases. This increase in load also causes the lubricant film 

thickness to decrease. The changes in lubricant film thickness are 

not large «h ) only being proportional to load to the power -0.13 
min 

(Dowson and Higginson (1977». The frictional power loss increases as 

both (h ) and (p ) increase. As the limiting coefficient of 
cen max 

friction is applied throughout' the majority of the cam cycle the 

change in frictional power loss wi th changing spring stiffness is 

almost linear. 

5.3.6 Changes in Follower Radius of Curvature. 

Changing the follower radius of curvature necessitates a change 

in the valve train geom~~ry as explained earlier. This causes the cam 

profile to be changed, and so the radius of curvature of the cam also 

changes.' As the follower radius of curvature is de creased the cam 

nose becomes broader and the cam flanks l;>ecome flatter and flatter 

unt il they eventually become concave and finally the maximum cam 

concavity is reached (this is equal to the minimum allowable radius 

of the grinding wheel used to machine the cam). As the follower 

radius of curvature is increased the nose of the cam becomes narrower 

until it becomes a sharp edge with zero radius of curvature. 

The Hertzian stress at the cam nose increases as the follower 

radius of curvature increases because the radius of curvature at the 

cam nose becomes smaller. The film thickness at the cam nose 

increases with increasing follower radius of curvature as the 

entrainment velocity is enhanced. The entrainment velocity increases 

as the velocity of the point of contact relative to the follower 

surface (V
f

) is directly proportional to the follower radius of 

curvature. The frictional power loss changes very little with 

changing follower radius of curvature. 

It should be noted that the extent of the cam's travel across 

the follower face increases proportionally to the follower radius of 
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curvature. This will require a larger area of the follower surface to 

be ground and may necessitate a larger follower. 

5.4 A Parametric Study of a Cam and End Pivoted Follower System. 

The cam and follower mechanism used in this study is in use in a 

current production car engine (the Ford 2.01 Pinto engine as fitted 

to certain of the Sierra and Granada range of cars). The engine is a 

four cylinder in-line engine us'ing two valves per cylinder operated 

by a single overhead camshaft via finger followers. During its early 

years on the market it suffered badly from camshaft failures 

characterised by severe scuffing of the cam and followers. This 

situation was overcome to a satisfactory level by using better cam 

and follower materials and by increasing oil flow to the cam/follower 

contact by fitting a spray-bar. A redesign of the lubricant galleys 

also helped by feeding oil to the contact immediately at engine start 

up, the previous design "having suffered from starvation at start up. 

The geometry of the system is shown in Figure (5.14). The cam lift 

data is"gi ven in Appendix (El. 

The above data is taken as the datum condition. Again the effect 

of changing cam base circle radius, cam width, equivalent 

reciprocating mass, camshaft speed, spring rate and follower radius 

of curvature has been investigated. Each of the parameters was 

changed in turn whilst keeping the rest constant. The valve lift 

curve remained the same throughout; the cam profile being altered to 

effect this. Each parameter was changed from its datum value by 

decreasing its magnitude by 70% and observing the effects upon 

lubricant film thickness and Hertzian stress at the cam nose, and 

frictional power loss at intervals of 10% through to a 300% increase 

in the parameter magnitude from its datum value. Parametric studies 

were also undertaken using the more realistic changes of -25% and 

+25% at 1% intervals. Figure (5.15) shows the cam operating 

characteristics at the datum condition for a camshaft speed of 41.67 

Hz (2500 rpm), whilst Figures (5.16) and (5.17) show the results of 

parametric studies carried out with a camshaft speed of 25 Hz (1500 

rpm), and Figures (5.18) and (5.19) show the results of parametric 

stUdies carried out with a camshaft speed of 41.67 Hz (2500 rpm). As 

the value of base circle radius is changed the geometry must be 
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CAM OPERATING CHARACTERISTICS 
SIERRA 2.0L - INLET: 2500 rpm 

Cam Base Radius (mm) 

Maximum Valve Lift (mm) 

Cam Width (mm) 

Rotational Speed (rpm) 

Spring Stiffness (kN/m) 

Initial Spring D1sp. (mm) 
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Figure (5.15) Ford 2.01 Pinto Cam Operating Characteristics 

at the Datum Conditions (41.67 Hz). 
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CAM OPERATING CHARACTERISTICS 
SIERRA 2.0L - INLET: 2500 rpm 
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cam periphery 
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PARAMETRIC STUDY 
SIERRA 2 . 0L - INLET: 1500 rpm 

Changes In Base Circle Radius 90 Changes In Cam Width 
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PARAMETRIC STUDY 
SIERRA 2.0L - INLET: 1500 rpm 
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PARAMETRIC STUDY 
SIERRA 2.0L - INLET: 2500 rpm 

Changes In Base Circle Radius 90 Changes In Cam Width 

78 

CD 82 at 
c 
II» .. 8 
s:::. 
u 
~ 

CD 
at 

20 II» 
~ 
c 8 CD 
u 
t. -8 CD 
Q. 

-22 

-38 

00 -150 
In Rb Percentage Change In Cam Width 

Changes In EQuiv. Mass Changes In Camshaft Speed 

CD 
at 
C 
II» 
s:::. 
U 

CD 
at 
II» 

100 1150 200 2150 ~ 
C 
CD 
U 
t. 
CD 
Q. 

Percentage Change In Mass Percentage Change In Speed 

Changes In Spring Rate Changes In Follower Radius 

CD 
at 
C 
II» 
s:::. 
U 

CD 

300 

at 
II 
~ 

100 1150 200 2BO 300 
C 
CD 
U 
t. 
CD -
Q. 

0 -31 

-.010 

Percentage Change In Spring Rate Percentage Change In Radius 

________ Frictional Power Loss 
________ Hertzian stress At Cam Nose 
________ Lubricant Film Thickness At Cam Noae 

Figure (5.18) Parametric Study for Ford 2.01 Pinto 

(41.67 Hz). 



II 
tI 
c ., 
s::. 
u 
II 
tI ., 
.... c .. 
u 28 
'-
l. -3 

-32 

-8t 

-80 

8 

.. 
3 

II 
CII 
C ., 
s::. 
U 

CD 
at ., .... 
C 
II 
U 
'-II 
Q. -.. 

-8 

30 

2 .. 

S 
II 
CII 
C ., 
s::. 
u .. 
CII ., 
.... -c .. 

-t u 
'-
l. 

30 

110 

PARAMETRIC STUDY 
SIERRA 2.0L - INLET: 2500 rpm 

Changes In Base Circle Radius Changes In Cam Width 
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changed to take up the clearance between the cam and follower. This 

is done by moving the follower contact radius along the line between 

its centre of curvature and the cam centre of rotation i.e. 

7 + K = constant. 
B 

~ + ~ + K = constant. 
B B 

Similarly. as the follower radius of curvature is changed the 

posi tion of its centre of curvature moves in the direction of the 

line from the cam centre of rotation to the follower contact face's 

centre of curvature. 1. e. B. D. r • K. and (~ + ~ ) are constant. 
B B B 

Examining the effects of changes to parameters upon lubricant 

fi 1m thickness and Hertzian stress at the cam nose for a finger 

follower system again is not as easy as it is for a flat faced 

follower. This is due to the asymmetry introduced by the pi voted 

follower (compare. for example. the shape of the entraining velocity 

versus cam angle plots for a finger follower and a flat faced 

follower). The trends seen in a finger follower system as parameters 

are changed are much the same as a flat faced follower but with the 

finger follower suffering much worse conditions at its datum. 

The effect of changing each of the parameters is discussed in 

turn below and is summarised in Table (5.3). 

5.4.1 Changes in Cam Base Circle Radius. 

The change in lubricant film thickness at the maximum lift 

position as the cam base circle radius (r) changes can give a 
B 

misleading view of the lubrication conditions across the whole of the 

cam nose. This is due to the shape of the entrainment velocity curve 

(Figure (5. 15h». As (r) becomes larger the cam radius and the 
B 

larger value of equivalent radius of curvature at the contact (R) 

cause the whole of the entrainment velocity curve to be raised around 

the cam nose. causing the average entrainment veloci ty around the 

nose to fall. Figure -(5.20) shows how the entrainment velocity around 

the cam cycle changes' as the value of (r ) is changed. It should be 
B 

noted that as the value of (r) increases the positions of the two 
B 

zeros of entrainment veloci ty get closer together which will not 

enhance the lubrication and life expectancy of the camlfollower pair 
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POWER LOSS OTHER COMMENTS 

I ______ ~--------------~--------------~--------------~--------------I This should be chosen The Hertzian stress is The limiting coefficient 
I BASE carefully using plots of inversely proportional to of friction is applied 
I CIRCLE entraining velocity as a the square root of the over most of the cycle, 

RADIUS guide. The value of film equivalent radius of hence the friction is a 
thickness at the maximum curvature. Increasing the function of load rather 

CAM 

WIDTH 

RECIPRO­

CATING 

MASS 

VALVE 

SPRING 

STIFFNESS 

lift position does not base circle radius than film thickness. The 
give a true therefore reduces the increase in power loss 
representation of the Hertzian stress at the with base circle radius 
conditions across the cam nose. for a given speed is due 
whole nose due to the to the increase in 
asymmetry of the valve instantaneous radius of 
train system. curvature (the distance 

at which the frictional 
force acts). If the base 

As the cam width 
increases the load per 
unit width at the contact 
decreases. This leads to 
a small increase in the 
elastohydrodynamic film 
thickness. 

An increase in 
reciprocating mass 
causes an increase in the 
film thickness due to the 
inertia force reducing 
the cam load at the nose. 

Increasing valve spring 
stiffness reduces the 
film thickness as the cam 
load is increased. 

As the cam width 
increases the load per 
unit width at the contact 
decreases, and so, 
therefore, does the 
Hertzian stress. 

circle radius is 
increased sufficiently 
the entrainment velocity 
is enhanced adequately 
such that the limiting 
coefficient of friction 
is no longer applied over 
any of the cycle. 

At low rotational 
frequency the limiting 
coefficient of friction 
is applied over most of 
the cam cycle. Hence, an 
increase in cam width 
only marginally reduces 
power loss. At higher 
rotational frequencies 
the proportion of the 
cycle governed by 
boundary lubrication 
falls with increasing cam 
width and there is 
a corresponding fall in 
power loss. 

Increasing the Increasing the 
reciprocating mass reciprocating mass 
reduces the cam load and I generally causes a fall 
hence lowers the Hertzian I in the power loss as the 
stress at the cam nose. I loading at the cam nose 

I is reduced. 

I 
I 

A reduction in spring I An increase in spring 
stiffness reduces the cam I stiffness causes the 
load and hence reduces I power loss to increase as 
the Hertzian stress. I the cam load increases. 

I 
I 

FOLLOWER An increase from the An increase from the Very little influence. 
RADIUS OF design value causes a 
CURVATURE decrease in film thick-

CAM 

ROTATIONAL 

SPEED 

ness as the entraining 
velocity decreases. 

Increasing speed 
increases entraining 
velocity and reduces cam 
load at nose. Film 
thickness therefore 

design value causes a 
decrease in Hertzian 
stress as the equivalent 
radius of curvature 
increases. 

As the cam rotational 
speed increases the load 
at the cam nose 
decreases and therefore 
the Hertzian stress 

increases with increasing decreases. 
speed. At high speeds thel 
cam load falls rapidly I 
and therefore the I 
increase in film thick­
ness is rapid. 

I 
I 
I 

Power loss increases with 
cam speed. At high 
speeds the rate of 
increase falls as valve 
bounce is approacned. 

Increasing the base 
circle radius will 
increase the overall 
engine height. If on 
assembly, the camshaft 
needs to be fed through 
the camshaft bearings, 
then larger diameter 
bearings must also be 
used. A larger cam base 
circle radius allows a 
larger diameter camshaft 
to be used which will 
increase the rigidity of 
the valve train system; 
however at the expense 
of extra weight. Minimum 
value of base circle 
radius is dominated by 
the lift curve 
characteristics and the 
necessity for the cam to 
become concave along the 
flanks. 

The cam lobe width is 
limited by the number of 
cam lobes to be fitted 
into a given space. i.e. 
the cam lobe width is 
governed by the valve 
spacing. A larger cam 
width necessitates a 
larger diameter follower 
which leads to a larger 
reciprocating mass. 

Increasing reciprocating 
mass increases the load 
on the cam flanks. 
Decreasing mass may 
cause strength problems, 
increasing mass inertia 
problems. 

The valve spring must 
provide sufficient load 
to restrain valve bounce 
and to control the valve 
along the cam flanks. 

The size of the contact 
patch on the follower 
increases with increasing 
follower radius of curv­
ature, therefore, larger 
followers may be needed. 

Camshaft speed is limited 
by the point at which 
valve bounce occurs and 
the cam no longer 
controls the valve. This 
is due to the inertia of 
the reciprocating parts 
being greater than the 
valve spring load. 

Table (5.3) Ford Pinto Parametric Study Results Summary. 
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(again see Figure (5.21». The maximum allowable decrease in the cam 

base circle radius is limited by the permissible concavity of the cam 

flanks. The frictional power loss increases almost linearly wi th 

increase in (r). The limi t ing coefficient of frict ion is applied 
B . 

around the majority of the cam cycle at 25 Hz (1500 rpm) and at 41.67 

Hz (2500 rpm) (this is similar to the centrally pivoted follower). 

The loading at the contact does not change as (r ) changes but the 
B 

radius at which the frictional traction force is applied increases as 

(r ) increases, thus the frictional power loss increases. 
B 

5.4.2 Changes in Cam Vidth. 

As would be expected the Hertzian stress at the cam nose will 

decrease as the cam lobe width is increased as the load per uni t 

width decreases. The film thickness increases and the frict ional 

power loss decreases as a direct result of this. 

5.4.3 Changes in Reciprocating Mass. 

Increasing the reciprocating mass at the valve causes higher 

loads on the flanks but smaller loads at the cam nose. As the load at 

the cam nose decreases with increasing reciprocating mass the 

lubricant film thickness will increase and the Hertzian stress will 

decrease. The frictional power loss decreases due to the load around 

the majority of the cycle decreasing. It can be seen in Figure (5.18) 

that when the reciprocating mass is increased, a point is reached 

where due to the increasing inertia of the system, the frictional 

po~er loss. decreases more rapidly as the coefficient of friction at 

the cam nose becomes less than the limiting value. Figure (5.16) 

shows that at the lower camshaft speed the effect of increasing the 

equivalent mass at the valve is not significant. This is due to the 

limiting coefficient of friction being applied around the majority of 

the cam cycle even with the greatly reduced valve masses, therefore 

the effect of decreasing the load at the cam nose is offset by the 

effect of increasing the load at the flanks. 
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5.4.4 Changes in Camshaft Speed. 

As the camshaft speed is increased the loading on the cam nose 

becomes less due to the negative lift acceleration. It can be seen 

that valve bounce occurs at approximately 67.5 Hz (3750 rpm (7500 rpm 

crank». (Again it should be noted that the loading on the flanks 

increases). This reduced loading leads to a larger film thickness and 

reduced Hertzian stress at the cam nose. The power loss increases as 

the cam speed increases as would be expected. At speeds approaching 

val ve bounce the rate at which' the power loss increases starts to 

fall as the loading becomes so small on the cam nose. 

5.4.5 Changes in Spring Rate. 

As the spring rate increases the Hertzian stress (p ) at the 
max 

cam nose increases due to the load increasing. This increase in load 

also causes the film thickness to decrease but the changes are not 

large «h ) only being proportional to load raised to the power 
min ' 

-0.13). The frictional power loss increases as both (h ) and (p ) 
cen max 

increase. As the limiting coefficient of friction is applied 

throughout the majority of the cycle then the change in frictional 

power loss is, as would be expected, almost linear. 

5.4.6 Changes in Follower Radius. 

As the radius of curvature of the follower is increased the cam 

nose becomes broader hence the radius of curvature of the cam becomes 

larger in this area. This leads to a fall in the maximum Hertzian 

stress at the cam nose. It can be seen from Figure (5.15i) that there 

is a point on the cam, at the transition from" the rising flank to the 

nose, where the radius of' curvature is small. This radius of 

curvature decreases as the follower radius of curvature increases and 

limi ts the amount by which the fo llower radius can be increased. 

Decreasing the radius of curvature of the follower causes the cam 

flanks to eventually become concave, therefore the maximum allowable 

decrease in follower radius of curvature is limited by the acceptable 

concavity of the cam flanks. 
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The change in the lubricant film thickness at the maximum lift 

position is very misleading. Although the lubricant film thickness is 

enhanced at the maximum lift position as the f~llower radius of 

curvature (r ) is decreased the lubrication of the cam nose taken as 
f 

a whole is much poorer. This is due to the shape of the entrainment 

velocity curve. Figure (5.21) illustrates the problems involved in 

choosing the correct follower radius of curvature. As (rr) is 

decreased the entrainment velocity at the maximum lift position is 

greater but over the whole of the cam nose the entrainment velocity 

is very close to zero for the entire nose period. Also the points 

where the entrainment veloci ty passes through zero become closer, 

which is not advisable as it brings together two points of distress 

on the cam (and follower). It is therefore better to increase the 

follower radius of curvature to gain better lubrication conditions 

across the whole of the nose region. 

The frictional power loss decreases as (r) increases due the 
f 

better lubrication conditions at the cam flanks brought about through 

increased entrainment velocities (again see . Figure (5.21». The 

increase' in radius of curvature at the cam nose causes the frictional 

power loss across this region to increase .as the frict ional tract ion 

force acts at a greater radius and so the frictional torque is 

increased. This effect is not as great as the decrease in power loss 

on the cam flanks as the changes in cam radius of curvature are 

small. 

5.5 Enhancement of an End Pivoted Follower Design. 

By using the information gathered by parametric stUdies it is 

possible to comment on valve train designs and to suggest possible 

improvements. By way of an example the end pivoted follower design 

used in the parametric study'presented above was taken and the effect 

of changing several parameters at once was investigated. 

It was found that because of the necessary geometry changes 

invol ved wi th changing the cam base circle radi.us and the follower 

radi us of curvature the resul ts of changing these parameters could 

not be investigated separately and then presumed to be additive. It 

was therefore necessary to chose these parameters together. Changes 
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to other parameters such as the spring stiffness could obviously be 

investigated separately. It was also necessary to use a good deal of 

compromise between the Hertzian stress at the cam nose and the 

lubricant film thickness across the nose. 

It was decided to increase the follower radius of curvature in 

order to enhance the film thickness across the cam nose. This also 

had the added advantage of decreasing the Hertzian stress across the 

cam nose. Unfortunately it caused a dramatic increase in the Hertzian 

stress at the transition between the cam rising flank and nose where 

the radius of curvature was already very small. To counter this 

change it was necessary to increase the base circle radius of the 

cam. This change decreased the lubricant film thickness across the 

cam nose and brought the two zeros of entrainment veloci ty closer 

together requiring a further increase follower radius of curvature. 

This process was repeated until a satisfactory compromise was found. 

An obvious change that brings improvements to both the Hertzian 

stress at the cam nose and the lubricant film thickness is a decrease 

in the valve spring stiffness. 

The improved design shown was arrived at by decreasing the valve 

spring stiffness by 10%, increasing the follower radius of curvature 

by 20%, and increasing the cam base circle radius by 12%. The results 

of these changes can be seen in Figure (5.22). The resulting geometry 

is given below: 

A = 57.98 mm 

B = 61.80 mm 

D = 47.19 mm 

r = 52.80 mm 
r 

r = 16.80 mm 
B 

Ie = 37.86° 

A = 38.45° 

It can be seen that these changes significantly improve the 

distribution of Hertzian stress around the cam whilst also improving 

the lubrication of the cam. Also the two points. where the lubricant 

f11m thickness falls to zero (if we neglect squeeze effects) are 

spread further apart. There is also a small decrease in the 

frictional power loss. 
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CAM OPERATING CHARACTERISTICS 
SIERRA 2.0L - Improved Design 

Cam Base Radlus (mm) 

Maxlmum Valve Llft (mm) 

Cam Wldth (mm) 

Rotatlonal Speed (rpm) 

Sprlng Stlffness (kN/m) 

Inltial Spring Cisp. (mm) 

- i6.80 

- 10.35 

- 21.00 

- 2500.0 

- 38.000 
- 11.0 

Equiv. Mass At Valve (kg) .148 

lubricant Viscosity (Ns/m 2) - .013 
Press. Visc. CoeU. (lPa) - 22.0E-9 

Youngs Mod. (Ca~ (GPa) - 207.0 

Youngs Mod. (Fall.) (GPa) - 207.0 

Polssons Ratl0 (Cam) .29 

Poissons Ratio (Fall.) .29 

Frictional Power LOBS (W) - 160.89 
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Figure (5.22) Cam Operating Characteristics for Improved 

Ford 2.01 Pinto (41.67.Hz). 
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The disadvantages of the new design are that the overall size of 

the valve train is increased as the cam base circle radius is 

increased and the maximum camshaft speed is reduced, al though the 

maximum engine speed is still above 110Hz (6600 rpm). The increase in 

cam base circle radius will necessitate the use of larger camshaft 

bearings to enable the assembly of the system, although this may be 

an advantage as the valve train relies upon only three bearings. 

Although the operating conditions of the cam are significantly 

improved by the above changes it must be realised that they are still 

extremely severe. If the designer of the original valve train 

mechanism had the above information at his disposal it is qui te 

possible that the whole cylinder head would have been redesigned to 

accommodate a different valve train geometry. 

5.6 Conclusions. 

In this chapter parametric studies have been presented for three 

valve train types; a cam acting against a flat follower, a cam acting 

against a centrally pivoted follower, and a cam acting against an end 

pivoted follower. The results of these parametric stUdies have been 

summarised in tables. 

It has been shown how the use of these parametric stUdies can 

bring about improvements to valve train design by the use of an 

example in which an end pivoted follower mechanism was enhanced. 

It is felt that great benefits could be reaped if designers of 

valve trains were given access to design tools, such as the one 

presented, that allow variat ions in the design parameters to be 

stUdied. Although there are obviously other considerations to be made 

in the design process, for example combustion requirements, it would 

allow the designer to design for the best possible tribological 

conditions at the· cam/follower contact within the constraints 

imposed, thus increasing the life of the components and decreasing 

the risk of failure. This design procedure would probably have saved 

the Ford Motor Co. Ltd. many millions of dollars in warranty claims, 

lost sales and redesign costs, during its early years of production 
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of the 1. 6 Ii tre and 2.0 Ii tre Pinto engines. Ford have learnt 

through their costly mistake of not making proper considerations of 

the tribological conditions at the camlfollower interface during the 

design of the valve-train - other manufacturers are still making the 

same mistake! 
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6.1 Introduction. 

The energy losses associated wi th internal combustion engines 

have been the subject of many studies. Authors, such as Hoshi (1984) 

and Lang (1981), have split the losses into various categories and 

expressed them as a percentage of the total fuel chemical energy 

input to the engine. Figure (6.1) shows a typical energy distribution 

in an internal combustion engine. 

The energy losses associated with the valve train have also been 

at tri buted values as proport ions of total energy input by many 

authors. The energy dissipation within the valve train has not, 

however, received attention regarding the relative magnitudes of the 

losses associated wi th the frict ion at the cam/follower interface 

compared wi th the losses associated wi th the camshaft bearings. It 

was therefore decided that a study should be made of the frictional 

losses of the bearings of a typical automobile camshaft. These losses 

could then be compared ~ith the energy required to overcome friction 

at the cam/follower interface. 

A complete and rigorous study of this.kind would be worthy of an 

extensive programme of work in itself. This study aims to give an 

indication of the order of magni tude of the power loss associated 

with the camshaft bearings. To this end the study comprises of: 

(i) A model to estimate the loading on each of the bearings on 

a camshaft for a complete cycle, 

(ii) The introduction of these loadings into available software 

for the prediction of Journal orbits, 

( ii i) The input of these orbi ts into a mode 1 to predict the 

power losses within the bearings. 

The study contains many simplifications, which will be 

introduced during the chapter. These simplifications will no doubt 

introduce errors into the power loss predictions. It is nevertheless 

felt that the results, even when these simplifications are taken into 

account, will give an idea of the relative importance of the losses 

associated with the bearings. 

The camshaft chosen for the purpose of this study was that from 

the Ford 2.01 Pinto Sierra engine. This is shown schematically in 



Typical Energy Distribution in a Petrol 
Automotive Engine (part open throttle) 

Exhaust 30.0% 

Mechanical Output 25.0% 

Mech. Losses 8.0% 
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Accessories 2,0% 

Figure (6.1) Typical Distribution of Fuel Energy 

Input in a Petrol Automotive Engine. 
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Figure (6.2). The camshaft has eight lobes, controlling eight valves 

via finger followers. There are three bearings, each neighbouring 

pair being separated by four cam lobes. The camshaft is driven by a 

toothed belt via a pulley located at one end of the camshaft. 

6.2 A Brief Discussion Of Dynamically Loaded Journal Bearings. 

Camshaft bearings have to support and locate the camshaft during 

its operation. The bearings are subJected to rapidly changing loads, 

both in magnitude and direction, and must therefore be treated as 

dynamically loaded bearings. 

6.2.1 The Analysis of Dynamically Loaded Bearings. 

The ratio of breadth to diameter of the bearings under 

consideration is of the order of 0.3 and the bearings can therefore 

be described as "short". The short Journal bearing approximation 

assumes the circumferential pressure gradient. is negligible as the 

pressure gradient along the bearing axis is of a much larger 

magni tude. Using the short bearing approximation and assuming that 

the lubricant viscosity is constant, it is possible to solve the 

Reynolds' equation to obtain the pressure distribution, 

p = :: [:2 _ l ] [:~ cos~ + e sln~ [ w _ nB : ns ]] (6.1) 

It can be seen that this relationship is made up of two parts: 

( i ) The part dependent upon ae 
at .cosq, - the "squeeze term" , 

and, 

e. Sln~[ 0 

: n
s
] (ii) The part dependent B the upon w -

"hydrodynamic wedge" term. 

Referring to Figure (6.3) it can be seen that for a camshaft 

bearing the bush itself is stationary (0 = 0). It is apparent that 
B 

if the journal centre rotates about the bearing centre at half the 
o s shaft rotational speed, i.e. w = --, then the hydrodynamic wedge term 
2 

is equal to zero. For this situation the load capacity of the bearing 
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Figure (6.3) Journal Bearing Geometry. 
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in thus relies entirely upon the squeeze action. This phenomena is 

known as half speed whirl. 

Film rupture, or cavitation, prevents the formation of 

significant negative gauge pressures. As a result the region of 

positive pressure is usually limited in extent to roughly half the 

bearing. The positive portion of the complete-film distribution lies 

between angles (9 ) and (9 ) where, 
1 2 

9
1
,9

2 
= fn[e, ~~, w, ~] (6.1) 

For the short bearing approximation, 

9 = 9 + n 
2 1 

i.e. the fluid film extends around half the bearing this is known as 

an-film. 

6.2.2 Calculation of Attitude Angle and Eccentricity Ratio. 

The eval uat ion of" the path of the Journal centre during a 

loading cycle requires that the applied load is balanced by the load 

capacity of the bearing obtained by integrating the pressure 

distribution, (Equation (6.1», around the extent of the positive 

portions of the pressure distribution. Shaft inertial effects are 

normally neglected. 

Stone and Underwood (1947) introduced an equivalent speed 

concept. This assumed that the squeeze term was negligible (1. e. 

8e/8t = 0) in equation (6.1) over some parts of the cycle. It was 

then possible to evaluate the instantaneous eccentrici ty of the 

bearing and the attitude angle based upon a quasi-static constant 

load approach. This method, however, predicted zero film thickness at 

half speed whirl conditions. Around the position of half speed whirl 

it was possible to neglect the wedge term and thereby estimate the 

eccentricity change and attitude angle from squeeze film 

considerations alone. 

Booker (1965) and Blok (1965) working independently developed 

graphical techniques to determine shaft orbi ts. Booker's method is 

described below. 



Booker considered two velocity components: 

(i) a velocity component for a stationary bearing with a 

non-rotating Journal and load, and, 
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(ii) a velocity component taking into account the angular 

velocity of the load, bearing and Journal. The graphical 

technique adopted a fixed load direction with the 

resultant shaft orbit being relative to this. 

The equations of motion for the shaft Journal are given by, 

de 
B , B] 

1 2 
= 

dt 

(6.3) 

e(~ - w) = 

where H~ and H~ are the mobilities (dimensionless ratios of velocity 

to force) parallel and perpendicular to the line of centres. 

These mobilities can be determined directly for a non-cavitating 

case or by iterating between Equations (6.2) and (6.3) for a ruptured 

film. The analysis is simplified further if He and H~ are considered 

as components of a mobility vector (M), where, 
1 

H = [M! + M~]2 

H~ 
tan a = M 

e 

M = M(e,b/D) 

(6.4) 

(6.5) 

(6.6) 

Therefore a mobility chart can constructed for the bearing (with 

a simple dependence upon length to diameter ratio (biD». Such a 

chart consists of lines of constant mobility number, (H), and squeeze 

paths relative to a fixed load line. Blok's method is similar to the 

above, only lines of constant impulse are considered. 

To evaluate the orbit of the Journal centre, an initial "guess" 
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is made as to the position of the Journal centre upon the mobility 

diagram. The velocity of the journal along the squeeze line (de/dt) 

may be readily found from the determination of the mobility number. 

The angular veloci ty of the Journal, the bearing and the load is 

taken into account by considering an additional component, a whirl 

(ew) in a direction normal to the line of centres. The vectorial 

addition of these two vectors gives the resultant velocity vector. 

Knowing this it is possible to step to the next position for a time 

increment, (dt). By stepping the posi tion of the Journal centre in 

such a way, convergence of the Journal orbi t is readily attain in 

less than two cycles. 

The mobility method is simply programmed on a digital computer 

and this approach still finds wide use in the analysis of engine 

bearings some twenty years after its development. 

In general, analyses of dynamically loaded bearings make no 

allowance for elastic or thermal distortion of the Journal or 

bearing. In addi t ion, in choosing a lubricant viscosi ty for any 

analysis, an estimate of the effective lubricant temperature must 

therefore be made. This is normally mad.e wi thout reference to a 

thermal analysis. 

6.2.3 Power Loss in Dynamically Loaded Bearings. 

Mart in (1985) showed that the power loss associated wi th the 

(Couet te) shearing of the full width or complete fi 1m wi thin the 

bearing gave a fair approximation to the total power loss. 

This power loss for the 2n film is given by 

3 
11 r b 2n 

2 
• w (6.7) H= ---

c 

By integrating around the complete orbit it Is possible to calculate 

the average power loss per cycle. 
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6.3 Evaluation of the Camshaft Bearing Loads. 

6.3.1 Evaluation of the Load Applied by the Cam Lobes. 

The computer program described in Chapter (4) evaluates the load 

and frictional force at a cam/follower interface. It is possible to 

resolve the loads into components acting along, and perpendicular to, 

the axis of the cylinder bores. These components are F and F 
y x 

respectively. The forces F and F can be calculated at points around 
y x 

the lift cycle for each cam. Knowing the timing of the camshaft (the 

angular displacement between the maximum lift position of the opening 

cam lobe and that of the closing cam lobe), the distance between each 

of the lobes, and the firing order of the engine, it is possible to 

construct a loading diagram, such as is shown in Figure (6.4), for 

each of these points around the cam cycle. 

6.3.2 Determination of the Bearing Loads. 

The· calculat ion of the loads upon each of the three camshaft 

bearings supporting the camshaft is a. statically indeterminate 

problem. It is therefore necessary to apply a simplifying assumption 

to enable the loads to be calculated. In crankshaft bearing analysis, 

it is invariably assumed that each pair of adjacent bearings can be 

treated as a completely separate system. In the system shown in 

Figure (6.4) the rear and centre bearing loads are calculated 

assuming that the only forces acting upon them are those applied at 

the cam lobes between the two bearings. A similar exercise is 

undertaken for the front and centre bearing loads, treating the front 

and centre bearings as a separate system. The load on the central 

bearing is then assumed to be equal to the sum of the two loads 

obtained from the two separate systems. The pulley load is also added 

to the front bearing loading: Figure (6.5) shows the load evaluation 

process. 
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Figure (6.5) Load Equaluation Process For Camshaft Bearings. 

134 



135 

6.4 Power Loss Predictions. 

6.4.1 Description of the Input Data. 

As mentioned previously, the camshaft used for this analysis was 

the 2.01 Pinto. The valve lift data and general valve train geometry 

has been described in Chapter (5). In order to carry out an analysis 

of the camshaft bearings other additional information was required. 

This is detailed below. 

The timing of the camshaft was such that the inlet valve was at 

it's fully open posi tion 123°30' of camshaft revolution before the 

inlet valve reached its maximum lift posi t ion. The engine firing 

order was 1-3-4-2 (i.e. the firing stroke of cylinder one was 

followed by cylinder three, etc), the engine and camshaft both 

rotating clockwise when viewed from the front. An approximate value 

for the load appl ied to the camshaft drive pulley was calculated 

using the pulley diameter and the power loss predictions for the 

Cam/follower interface friction. This of course gave an underestimate 

of the pulley load as the bearing losses were neglected. The above 

information allowed the components represented in Figure (6.4) to be 

constructed. 

The geometry of the three bearings is given in Table (6.1). A 

lubricant viscosity of 0.02 Pa s was used throughout the analysis. 

Figures (6.6), (6.7) and (6.8) show polar load diagrams for the 

front, centre and rear bearings respectively at a camshaft 

rotational speed of 25 Hz (1500 rpm). 

6.4.2 Results of Analysis. 

The bearing loads were introduced to a computer program written 

by Dunning (1980). The program is based upon the mobility method of 

orbit prediction, and uses the short bearing approximation for a 

n-film. The eccentricity ratios predicted by this program were then 

introduced to a second program which calculated the power loss due to 

fluid film shearing in the bearings. 

Figure (6.9) shows the predictions of the analysis for the power 
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Front Centre Rear 

Bearing Diameter (rom) 42.19 44.81 45.19 

Journal Diameter (rom) 42.00 44.62 45.00 

Radial Clearance (rom) 0.0965 0.0965 0.0965 

Bearing llidth (rom) 20.00 17.00 16.00 

Table (6.1) Camshaft Bearing Geometry Data. 
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loss of the three bearings for camshaft speeds ranging from 8.3 Hz to 

50 Hz (500 rpm to 3000 rpm). Figure (6.10) shows the total power loss 

of the three bearings compared with the frictional power loss at the 

camlfollower interface. 

Figure (6.11) shows the minimum lubricant film thicknesses 

experienced by the three bearings, whilst Figures (6.12), (6.13) and 

(6.14) show the Journal orbits of the front, centre, and rear 

bearings respectively at a camshaft speed of 25 Hz (1500 rpm). 

6.5 Discussion. 

It can be seen from Figure (6.10) that the power loss predicted 

for the three bearings is approximately one fifth of that predicted 

for the camlfollower interfaces. 

The Ford 2.01 Pinto " produces 77 kW of power at the fly wheel at 

an engine speed of 86.7 Hz (5200 rpm). If we estimate that the 

engine Cbnverts one quarter of the fuel energy input into brake 

energy, then the fuel energy input to the, engine at 86.7 Hz is 308 

kW. It can be seen from Figure (6.10) that the valve .train requires 

about 1.6 kW to overcome the friction of the bearings and 

camlfollower interaction at a camshaft speed of 43.3 Hz (2600 rpm), 

which is equivalent to an engine speed of 86.7 Hz (5200 rpm). The 

valve train operation, therefore, from the above predictions, 

requires about 0.52% of the fuel energy input. Bearing in mind that 

this percentage relates to the engine with a fully open throttle, and 

equation (6.8) gives an overestimate of the power loss, it is in good 

agreement with values given elsewhere in the literature (e.g. Martin 

(1985) who quotes 0.48 - 0.6%). 

6.6 Conclusions. 

An analysis of the Ford 2.01 Pinto valve train friction losses 

has been made. Bearing loads were evaluated for' each of the three 

camshaft bearings and a dynamically loaded journal bearing analysis 

was performed. Power loss predictions were made for the three 

bearings. These losses were then compared wi th the power losses 
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predicted for the camlfollower interfaces. 

The predictions of power loss arising from the interaction of 

the cams and followers was found to be approximately five times 

greater than the predicted overall camshaft bearing losses. It was 

also found that the camshaft power losses increase wi th speed, 

accounting for approximately 0.5% of the total energy input to the 

engine. 

It is believed that this is the first time that such results for 

camshaft bearings have been published. The results, although 

approximate, show a good agreement with experimental findings 

reported by other researchers. 
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7.1 Introduction. 

Today's internal combustion engine designer relies heavily upon 

computer aided design (CAD) techniques and other computer based 

analytical tools. The sophistication and complexity of these tools is 

growing rapidly. It is therefore important that the models, upon 

which these techniques are based, are validated and continually 

improved by experimental investigation. 

This chapter will describe the development of an experimental 

apparatus used to investigate the interaction of cam and follower 

pairs. It will outline the steps involved, and the decisions taken, 

in its design. The chapter will also report upon the commissioning of 

the apparatus. 

Firstly, there will be a brief discussion of the history of 

experimental investigations into cam and follower lubrication. 

7.2 Past Experimental Investigations into Cam and Follower 

Lubrication. 

There has been much experimental work carried out upon the 

effects of lubricant properties and additives with regard to the 

failure of cams and followers. Similarly, much has been reported upon 

investigations into the compatibility of the materials used in valve 

trains. Until relatively recently, however, very little literature 

had appeared that accounted for the frictional losses at the 

Cam/follower interface. This is also true of stUdies relating to the 

correlation between theoretically predicted lubricant film 

thicknesses and experimental findings of ei ther the fi 1m state or 

wear patterns upon the cam and follower. 

7.2.1 Measurements of CamIFollower Interface Friction. 

Measuring the friction force at the Cam/follower interface is 

very difficult. Firstly, it is not easy to separate the losses 

associated wi th components such as the cam journals and the valve 

guides. Secondly, the torque required to drive the camshaft can be 
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separated into two components; that due to the normal load on the cam 

(often known as the geometic torque), and that required to overcome 

the frict ion at the cam/follower contact. Isolat ing the frict ional 

component has been the subject of several experimental projects which 

are described below. 

Dyson and Naylor (1960-1961) were possibly the first to report 

upon attempts to measure the friction at the cam/follower interface. 

They utilised an apparatus incorporating a single cam acting against 

a nominally flat faced follower. The follower guide was suspended in 

a pair of flat springs; their deflect ion giving a measure of the 

Cam/follower friction. They reported that this arrangement was 

unsatisfactory due to oscillatory problems associated with the flat 

springs. 

Vichard and Godet (1966-1967) developed an apparatus in which an 

eccentric was driven against a follower. An indication of the 

frictional force at the interface was given by a strain gauged ring. 

This ring restrained the follower holder (in a similar manner to the 

flat springs used by Dyson and Naylor), the strain in the ring being 

related to the friction at the interface. . 

Armstrong and Buuck (1981) used a motored cylinder head with an 

in-l ine torque transducer to measure the driving torque and power 

requirements of several types of valve trains. The power loss 

associated with the oil seals and cam Journals was evaluated by 

running the camshaft without the followers. This power loss was then 

subtracted from the overall power loss to give the power required to 

overcome the friction at the Cam/follower interfaces, and to open the 

val ves.' No at tempt was made to separate the frict ional component from 

the geometric component. 

staron and Willermet (1983) carried out tests similar to the 

above. To reduce parasitic losses (losses in the Journal bearings, 

seals, valve guides, etc) they replaced many of the bearings, for 

example, the rocker fulcrums, wi th roll ing elements. The apparatus 

was eventually equipped with rolling element valve guides (Willermet 

(1987) ). 
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Bair et a1 (1985) devised an ingenious arrangement to simulate 

the cam/follower contact. The follower remained stationary. except 

for rotation. whilst the cam was free to move through the lift cycle. 

The follower was located in a load frame with piezo-e1ectric force 

transducers measuring the load in three mutually perpendicular 

directions. This allowed the friction force at the cam/follower 

contact to be evaluated. 

Harrison (1985) and van HeIden et a1 (1985) independently 

developed simi lar test apparatus in which the torque required to 

drive a single cam operating a flat faced follower was measured using 

an in-line torque transducer. Van HeIden and his coworkers calculated 

the theoretical geometric torque to give the frictional torque at the 

cam/follower interface. Zhu (1988). utilised a similar technique in 

an extensive study that employed. and much improved. the apparatus 

used by Harrison. 

7.2.2 Assessment or the Lubricant Film state at' the Cam/Follower 

Interrace. 

The assessment of the lubricant film state in cam/follower 

contacts is not easy. 

The correlation between theoretically predicted kinematic 

velocities (hence film thicknesses) and wear rates in valve train 

systems was reported by Coy and Dyson (1981), after experiments 

carried out on an Amsler machine adapted to simulate the kinematics 

of the cam/follower contact. This was followed by work carried out by 

Purmer 'and van 'den Berg (1981) on cams whose profiles were measured 

very accurately both before and after being run in a test apparatus. 

The measurement of the lubricant film state during the operation 

of the cam within a test apparatus has been attempted by relatively 

few people. One reason is undoubtedly the difficul ty in obtaining, 

results in a harsh environment, where the load, radius of curvature, 

and surface velocities all change abruptly. Workers in this area have 

tended to concentrate on two methods, the global capacitance 

technique and the electrical resistivity technique. In the past two 

years other interesting methods have arisen. The following few 
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paragraphs briefly describe the major contributions to this field of 

study. 

Vichard and Godet (1967-1968) used the global capacitance 

technique in an attempt to measure the minimum film thickness. The 

follower was electrically isolated from the cam so that the 

capacitance of the film formed between the two could be measured. 

Although the flux losses in the lubricant and the air surrounding the 

contact could be taken into account, difficul ties arose in 

interpreting the results due to excessive electrical breakdown of the 

lubricant film. 

Hami I ton (1980) used a purpose bui 1 t apparatus to measure the 

film thickness between a cam and flat faced follower. To overcome the 

problems of film breakdown he embedded a small electrically isolated 

capacitance gauge in the centre of a large flat faced follower. The 

apparatus allowed the follower to be moved so that the capacitance 

gauge could be subjected to different parts of the cam cycle. It was 

therefore po.ssible to investigate the film thickness around many 

parts of the cam cycle. Hamilton's results appear to be very good 

over the cam base circle and the flanks. He reported that fi 1m 

breakdown was still a major problem across the nose of the cam. 

Local film thickness measurements in an eccentric cam and flat 

faced follower system by means of miniature vapour deposi ted thin 

layer capaci tance transducers were reported by van Leeuwen et al 

(1986). The results presented by the authors seem very encouraging. 

It is felt, however, that difficulties would arise with the 

durability of the transducers if they were to be used with actual cam 

forms, 'where the lubrication condi tions would be much more severe, 

and film thicknesses much smaller, than those enjoyed by the 

eccentric used in the experimental apparatus. 

The resistivity technique gives a measure of the amount of 

asperity contact during the operation of cams and followers (Watkins, 

(1985)). It therefore gives a good indication of the degree of 

boundary versus elastohydrodynamic lubrication. The resistivity 

technique was employed by Ninomiya et al (1978) to investigate how 

engine oi I viscosi ty affected the fi 1m state between a cam and 

follower in a motored engine. Harrison (1985) used the technique to 
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study the running in of cam and follower pairs. Harrison expressed 

concern over the effect that the potent ial difference across the 

contact might have upon the attraction of polar lubricant additives 

to the interacting surfaces. The formation of reaction layers would 

change the resistivity of the contact and cause problems in the 

interpretation of results. 

Monteil et al (1987) 

technique to measure the 

used 

film 

a variation of 

thickness at 

the 

the 

resistivity 

Cam/follower 

interface. No potential difference was applied across the contact, 

instead the electromotive force (emf) induced by the interaction of 

the cam and follower surfaces, was moni tored. Smaller film 

thicknesses allowed more asperity contact causing a larger emf to be 

induced. Monteil and his co-workers used a base oil (without any 

additives) in their experiments, to prevent the formation of reaction 

layers which, they reported, would change the resistivity across the 

contact. 

The tec~nique developed by Monteil et al (1987) appears to be 

very promising (a more detailed explanation of the method can be 

obtained in Monteil's thesis (Monteil (1987». The authors reported 

that the base circle clearance had to be set to zero as this affected 

the fi 1m thickness measurement system. This necessi ty, al though a 

seemingly unimportant requirement, renders the technique impossible 

to use with some valve train systems. It also increases the amount of 

power required to drive the valve train. 

7.3 Aims of the Present Study. 

The present work is intended to validate (or otherwise) results 

obtained from a computer based model of a desmodromic valve train. 

The valve train is described in Appendix (D). In the desmodromic 

arrangement a cam is used to close the valve instead of a spring, as 

is usually the case in conventional systems. The valve train was 

designed by Ricardo Consultant Engineers Ltd. for the Ford Motor Co. 

Ltd. as part of a large valve train evaluation programIne. The 

original concept of the programme was to compare the operation of 

different valve trains under similar conditions. To this end, several 
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valve trains were designed using nominally the same lift 

characteristics. These designs are currently being tested at the 

Industrial Unit of Tribo10gy (IUT) at the University of Leeds in a 

specially designed test apparatus. The desmodromic valve train was 

chosen for this study as the Ford Motor Co. Ltd. had shown a specific 

interest in this mechanism and also because very little was known 

about the tribo10gy of such systems. 

The apparatus is designed to take a single valve, and its 

operating mechanism,~of any type of valve train design. This allows 

the power loss of various different designs of valve train to be 

compared, under similar conditions, with common cam drive train and 

valve guide losses. The tests consist of a series of measurements of 

the torque requirements of the valve train at different operating 

speeds. 

The computer program (described in Chapter (4» gives 

predictions of torque and power requirements, and Hertzian stress and 

lubricant film thickness at the cam/follower interface around the 

operating cycle. In order to validate the predictions, the 

experimental apparatus would have to be capable of: 

( i ) 

(ii) 

(iii) 

measuring the torque and power requirements to operate 

the valve train, 

giving an indication of the film state at the contact, 

and 

giving an indication of which cam and follower pair in 

the desmodromic arrangement was in control of the 

valve at anyone time in the cycle. 

In' addition to these measurements, values of the cam and 

follower surface roughness and profile traces would be taken before 

and after the running of the valve train. 

7.4 The Design of the Apparatus. 

The major problem in designing an apparatus to study the 

tribo10gica1 behaviour of cams and followers was seen as the 

difficulty in isolating the frictional torque, caused by the 

interaction of the cams and followers, from the parasitic torques 
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inherent in the system. 

It was fel t that apparatus that simulated the contacts at the 

cam/follower interfaces were too complex to work satisfactorily in 

practice, the complexity being further exaggerated, to almost 

unthinkable proportions, when desmodromic arrangements are 

considered. The decision was therefore made to build an apparatus 

that would, as far as possible, use standard valve train components. 

As the apparatus designed by the IUT appeared to be working very 

satis~actorily, with few problems, it was decided that an apparatus 

should be built based upon the IUT design. Several changes were made 

to arrive at a solution that would satisfy the requirements of the 

project: 

(i) The lubricant film state was to be measured using the 

resistivity technique as this was felt to be the most 

reliable technique, and there was experience of this 

technique within the Institute of Tribology at Leeds. 

(i i) The temperature of the oil supply was to be 

thermostatically controlled to allow investigations to 

be carried out at oil te.mperatures experienced in 

engines. The temperature of the oil at inlet and 

outlet to the apparatus was also to be monitored using 

thermocouples. 

(iii) 

(iv) 

Thermocouples were to be attached to the cams and 

followers to allow their temperatures to be monitored. 

The torque transducer was to be linked to the analogue 

to digital converters (ADC's) on a VAX 8600 mainframe 

computer. Triggering of the ADC's and angular 

reference was to be gained using an optical shaft 

encoder. 

The general layout of the apparatus is shown in Figure (1.1). A 

detailed drawing is given in Figure (1.2). 
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7.5 Measurement Systems. 

7.5.1 Torque Measurement. 

The torque required to drive the valve mechanism was measured 

using an in-line torque transducer (Vibrometer TG2/BP). It was 

necessary to use a torque transducer with a high rating (20 Nm) as a 

high torsional natural frequency was required in order to minimise 

the torsional oscillations along the-cam drive train. 

The signal from the torque transducer was fed to a conditioning 

unit (Vibrometer TG PIN M) where it was amplified and passed to the 

ADC's attached to the mainframe computer. The signal to the ADC's was 

amplified such that the maximum possible torque requirement of the 

apparatus would pass an B.OV signal. This gave an acceptable signal 

to noise ratio, and a workable maximum limit compared to the ADC 

saturation voltage of 10.OV. 

The ADC~ s were programmed to capture the torque signal upon 

command from the operator. Two thousand data points were collected at 

equal angular increments over two camshaft revolutions. A one 

thousand pulse per revolution shaft encoder (Gaebridge 1000Ml23/5/10) 

was used to clock the ADC's. The shaft encoder also gave a single 

datum pulse each revolution which was set to be synchrono~s with the 

valve maximum lift position. 

The power required to drive the apparatus was obtained from the 

torque signal and the camshaft rotational speed. The rotational speed 

was obtained by measuring the elapsed time between the datum pulses 

emi t ted' by the shaft encoder. 

7.5.2 Resistivity Measurements. 

The camshaft and the followers were electrically isolated from 

the rest of the apparatus by means of insulating be~ing housings. 

The two followers were electrically isolated by means of a polymer 

separating shim and insulating bushes upon the rocker shaft. The shim 

between the valve tip and the opening follower was made of a ceramic 

material (partially stabilised zirconia). A potential difference was 

, I 
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applied between the camshaft and the followers via a slip-ring 

assembly on the end of the camshaft and insulated wires to each of 

the followers. This enabled the interaction of the cams and their 

respective followers to be studied separately. 

The apparatus used for the resistivity measurements was the same 

as that employed by Harrison (1985), except that the contact pulses 

were captured by the VAX mainframe's ADCs. Figure (7.3) shows the 

circuit diagram of the resistivity curcuit. The variable resistors 

(R
3

) and (R4) represent the resistance of the oil films between the 

opening and closing cam and follower pairs respectively. A potential 

difference of 50mV across resistors (R
1

) and (R3 ), and (R2 ) and (R4) 

was maintained by a precision vol tage source. It has been shown 

(Nimoniya et al (1978)) that this potential difference was 

sufficient ly small to prevent arcing across the very thin films, 

which would obviously cause damage to the cam and follower. It was 

also fel t to be high enough to give an adequate signal to noise 

ratio. Harrison (1985) showed that this potential difference was 

unlikely to cause electrical breakdown of the lubricant film for film 

thicknesses greater than O.l~m. 

The operation of the resistivity curcuit can be illustrated by 

considering Just one cam and follower pair, for example the opening 

cam and follower. When the cam and follower are separated by an oil 

film the resistance (R3 ) of the contact is large. When metal to metal 

contact of the cam and follower occurs the resistance (R
3

) falls, 

allowing a current to flow across the contact, thus the potent ial 

difference across (R3 ) falls. This drop in potential is registered by 

the VAX ADCs, ~gular reference being attained from the shaft 

encoder; 

7.5.3 CamIFollower Contact Measurements. 

In order to validat~ the analyt ical mode 1 of the desmodromic 

valve train it was necessary to evaluate which cam and follower was 

controlling the valve at anyone time during the lift cycle. To do 

this it was decided that a continuity test should be performed. 

As the components were electrically isolated from the main part 
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of the apparatus, this was easily accomplished. Figure (7.4) shows a 

circuit diagram of the apparatus. used. A potential difference of 15V 

was applied between the camshaft and the followers. This potential 

was deemed large enough to cause electrical break down of any 

lubricant between the cams and followers. As this eventually causes 

damage to the cams and followers due to arcing, old pairs of cams and 

followers were used for this test. 

Resistors (R
3

) and (R
4

) represent the resistances between the 

two respective cam and follower pairs. When a cam and follower pair 

was in contact the resistance (R
3

), say, would fall to zero and the 

potential difference across that contact would become zero. The 

potent ial difference across each contact was moni tored by separate 

channels on the ADC's on the VAX mainframe computer. When a cam was 

not in control of it's follower, i.e. a clearance was present between 

the cam and follower, the ADC's would receive a signal of 15V which 

would cause them to saturate at 10V. 

7.5.4 Temperature Measurements. 

The temperatures of the nose of each cam, the centre of the 

contact patch of each follower, and the lubricant at entry to and 

exit from the main housing were measured. This was carried out using , 
nickel-chromium thermocouples connected to a Comark electrical 

thermometer (type 1604-2). The thermocouples in the cams and 

followerp were fixed within holes spark eroded parallel to the 

contacting faces. The thermocouples were thus located approximately 

1.0mm from the contacting surfaces. 

7.5.5 Torque Signal Filtration. 

Upon ini tial testing of the apparatus it became apparent that 

there was considerable noise wi thin the torque signal. This noise 

arose from three sources: 

(i) From unwanted vibrations of the apparatus (mainly the 

camshaft and the torque transducer), 

(ii) From noise generated by the torque transducer's 

conditioning unit, and, 
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From background noise such as mains frequency pick-up 

and other noise introduced along the lengthy cable 

joining the apparatus to the VAX mainframe. 

Initially it was felt necessary to filter the signal in order to 

gain information regarding the variation of the torque requirement of 

the camshaft around the cycle. Tests were performed to investigate 

the effects of filtering the torque signal. 

Firstly, the torque signal was filtered using an electrical Kemo 

Variable Filter (type VBF/24). This filter was an eighth order 

elliptic filter giving a slope attenuation of 135dB/octave (i.e. an 

80dB attenuation would be gained at one and a half times the selected 

cut-off frequency in low pass filter mode). The filter was used in 

low-pass mode in order to' reject frequencies around and above the 

resonant frequency of 400Hz. The cut-off frequency was selected using 

a spectrum analyser to ensure that the main part of the signal was 

not lost. It was found, however, that this fil ter caused severe 

attenuation and large phase shifts of the torque signal. 

The torque signal was then fil tered using an eighth order 

Butterworth lowpass digital filter designed by Zhu (Zhu (1988)). The 

filter uses an ingenious concept of filtering the data twice in order 

that any phase shifts of the data are eliminated. The raw data is 

passed through the filter and then the processed signal is filtered a 

second time, but in reverse order, thus negating any phase shifts 

that occurred on the first pass. It was found, however, that although 

this method of filtering the signal gave results with little or no 

phase shift of the original signal, it still considerably attenuated 

the signal around the positions of peak torque. Figure (7.5) shows 

the filtered and unfiltered torque signals at a camshaft speed of 

16.7 Hz (1002 rpm) (the theoretical torque is also shown as it is 

part of the graphical output of the data processing program - its 

evaluation will be explained in the next chapter). The attenuation of 

the signal caused by the .fi I ter can be clearly seen, as can the 

resonant frequency of 400 Hz in the unfiltered signal. . 

It was therefore decided that the signal should be left 

unfil tered as this at least appeared to give an insight into the 
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magnitude and position of the maximum torques around the valve lift 

cycle. 

7.6 Commissioning and Calibration. 

7.6.1 Commissioning. 

The apparatus was built with. great care to ensure that 

components were properly aligned. The valve gear was shimmed so that 

the valve stem and spring cup sat at the correct height to give the 

working clearances required along the base circle and at the maximum 

lift position. 

Initial testing of the apparatus was used to identify the source 

of troublesome torsional vibrations. These vibrations were traced, 

using a spectrum analyser, and were found to be caused mainly by a 

flexible coupling placed between the camshaft and the torque 

transducer. The replacement of the flexible coupling, wi th a solid 

one, reduced the level of the noise substantially. By tracing such 

problems by spectrum analysis it was possi.ble to raise the torsional 

natural frequency of the apparatus to 400 Hz, and to obtain a much 

'cleaner' torque signal. 

It was found that the spring cup was not strong enough and would 

break after only a few revolutions of the camshaft. A new spring cup 

of slightly larger dimensions was manufactured from EN30B 

nickel-chromium steel and hardened to 400 Brinell. This proved to be 

satisfactory. 

Severe problems were encountered when the camshaft rotat ional 

speed was increased to values above 33.33 Hz (2000 r.p.m.). At this 

speed the operation of the valve train became very noisy, so much so 

that it was impossible, and very fool-hardy, to work near the 

apparatus without using ea~-defenders. When operating at these higher 

speeds it was found that within a very short space of time the collet 

retainer would fracture, thus neccessitating the shutting down of the 

apparatus. The source of the problem, it is believed, was due to the 

offset between the closing cam/follower contact and the cloSing 

follower/collet retainer contact in the direction parallel to the 
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rocker shaft (see Figure (7.6)). This offset induced a moment causing 

the closing follower to twist on i~s bush. Evidence of this twisting 

was found when the closing rocker bushes and the closing cam/follower 

contact patches were inspected, wear was found not to be uniform 

across the contact patches. This twisting would caused only one side 

of the closing follower forks to contact with the collet retainer and 

spring cup. This would then give rise to significant bending moments 

in the collet retainer leading eventually to failure. The twisting 

would also reduced the operating clearance between the two pairs of 

cams and followers thus increasing the contact loads. It was 

therefore decided that the camshaft rotational speed should be 

restricted to 33.33 Hz (2000 r.p.m.). 

It was also found during the commissioning tests that the life 

of the thermocouples attached to the followers· was very limited due 

to failure by fatigue caused by their continual oscillation. As a 

partial solution to this problem, two thermocouple wires were 

embedded into each follower, to' increase the probability of attaining 

a successful ~eading. As thermocouple fai lure was a very regular 

occurrence, it was deemed not to be grounds to stop a test, and 

experiments would be continued without the.temperature measurement. 

7.6.2 Calibration of the Torque Measurement System. 

The torque transducer was cal i brated by applying a series of 

loads at a known radius from the shaft's centre of rotation. During 

the calibration the torque transducer was disconnected from the 

camshaft. The part of the torque transducer attached to the driving 

pulley was locked whilst the loads were applied to the other end. 

The series of known applied· torques then gave a series of 

voltages at the ADC's which could be read from a computer terminal. A 

straight line fit to these points gave an rms residual of less than 

0.1% of the maximum reading. A check was made to ensure that there 

were no hysterisis effects. The torque data acquisition program was 

then amended to convert the voltage applied to the ADC's to applied 

torque (Nml. 
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Figure (7.6) Desrnodrornic·Closing Cam Follower. 
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7.6.3 Oil Characteristics. 

The oil used was Texaco ETL 0671 E. This is the base oil of the 

lOW/3D lubricant normally specified by the Ford Motor Co. Ltd. A base 

oil was used as it contains no polar additives. These would create 

reaction layers upon the cam and follower surfaces. The presence of 

such reaction layers would significantly raise the resistivity of the 

contact area (see Monteil (1987)) and this, in turn would make the 

interpretation of the resistivity results very difficult. Even though 

the lubricant selected contained no polar additives it was felt 

unlikely 'that the formation of surface reaction layers would have 

been completely prohibited as the base oil would still contained some 

reactive species or polar species. By using a base oil the formation 

of reaction layers was kept to a minimum. 

It was necessary to know the temperature/viscosity 

characteristics of the oil as this was an important parameter in the 

theoretical analysis. This was achieved by using a suspended level 

viscometer. The. variation of dynamic viscosity of the lubricant with 

temperature is shown in Figure (7.7). 
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8.1 Introduction. 

This chapter describes the experimental project carried out 

using the apparatus detailed in the previous section. It will define 

the experimental procedures adopted and will then report the findings 

and their comparisons with theoretical predictions. 

8.2 Experimental Procedures. 

It was felt important that a concise method be established prior 

to the commencement of any experiments. This ensured that clear aims 

could be attributed to the project. The aims of the work have been 

discussed in greater detail in the previous chapter, but to 

summarise, they were: 

( i ) 

(ii) 

(Iii) 

(iv) 

to measure the torque and power requirements to drive 

the valve train, 

to give an indication of the film state at the 

contact, 

to discover which cam and follower pair in the 

desmodromic arrangement was in control of the valve at 

anyone time in the valve lift cycle, and 

to detect any changes in the cam and follower surface 

roughness. 

These aims were drawn up so that the theoretical models detailed in 

previous chapters could be tested. 

The experimental procedures adopted to realise these aims were: 

(i) The surface roughnesses of the followers (in 

directions parallel and perpendicular to the direction 

of sliding) were measured before and after the tests. 

This was done using a using a Taylor Hobson Talysurf 

5-120 - an .instrument that accurately charts the 

movement of a stylus across the test pi~ce, and can 

evaluate surface roughness parameters. 

(ii) The valve train was run-in for a period of eight hours 
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(iii) 
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continuous operation at a camshaft rotational speed of 

16.67 Hz (1000 rpm). This speed was chosen 

arbitrarily, although it was felt to represent a 

reasonable average speed for an engine being run-in 

during normal operating conditions. The data 

aquisi tion program was run after fifteen minutes of 

operation, then after one hour of operation, and then 

subsequently at one hourly intervals. It was 

programmed to read data from the torque transducer and 

from the resistivity curcuits. The thermocouple 

readings were noted manually. 

The apparatus was then run at camshaft rotational 

speeds ranging from B.33 Hz (500 rpm) through to 33.33 

Hz (2000 rpm) in steps of 4.17 Hz (250 rpm). At each 

speed setting the apparatus was allowed to reach a 

steady state (this was Judged to have occurred when 

the readings from the thermocouples embedded wi thin 

the cams and followers had stabilised). The data 

aquisition program was then used to capture data from 

the torque transducer. Again the thermocouple readings 

were noted manually. 

The procedure was carried out using three different sets of cams 

and followers, each being used at a different operating temperature. 

The oil temperature at inlet to the apparatus was regulated and tests 

were performed with the lubricant inlet temperature at 40C, 60C, and 

BOC. For all of the tests the oil flow rate was fixed at O. 1 

litres/minute. 

A series of continuity tests, to establish which cam and 

follower pair was in control of the valve at anyone point around the 

cam cycle, were performed using a separate set of cams and followers 

(those used to commission the apparatus). The lubricant inlet 

temperature was fixed at 40C for these tests. The tests were 

performed at camshaft rotational speeds of B.33 Hz, 16.67 Hz, 25.00 

Hz and 33.33 Hz (500 rpm, 1000 rpm, 1500 rpm, ~d 2000 rpm 

respectively) . 
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8.3 Experimental Results. 

8.3.1 Running-In of the Valve Train. 

8.3.1.1 Variation of Mean Torque. 

The variation in mean torque -requirement during the running-in 

of the valve-trains operating at the three different temperatures is 

shown in Figure (8.1). It can be seen that in general the torque 

level declined to a fixed value. It can also be seen that the torque 

level reached a steady level quickest for the valve-train that 

operated with an oil inlet temperature of 80C, followed by that at 

60C, and finally, that at 40C (which still showed signs of decreasing 

at the end of the eight hours running-in). This suggests that the 

cams and followers operating at the higher lubricant temperatures 

ran-in more quickly than those at lower temperatures. This could 

perhaps be explained by any of three phenomena (or perhaps a 

combination of the three): 

(i) The lubricant viscosity was lower at the elevated 

temperatures (hence the lubricant film thicknesses 

separating the cams and followers would be smaller) 

and so the surfaces became more conforming at a higher 

rate due to the larger number of asperi ty contacts, 

or, 

( ii ) Surface react ion layers buil t up more quickly at the 

higher temperatures because the chemical species 

responsible for these reactions became more active 

when the temperature and amount of surface contact 

were increased, or, 

(iii) The material properties of the cams and followers were 

changed as the temperature increased - the asperities 

becoming more plastic and hence more susceptible to 

permanent deformation. 
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8.3.1.2 Resistivity Measurements. 

Figures (8.2), (8.3), (8.4), r (8.5), (8.6) and (8.7) show the 

results of the resistivity measurements for the opening and closing 

cams at the different operating temperatures after fifteen minutes of 

running and after eight hours of running. It can be seen that the 

cams and followers operating at the higher temperatures were 

apparently suffering less surface interaction after eight hours of 

running-in than those at the lower temperatures. This again could be 

explained by either the surfaces becoming more conformal at a faster 

rate, or, by the more rapid growth of high resistivity surface layers 

at the higher temperatures. 

It can be seen that the closing cams and followers operating at 

oil inlet temperatures of SOC and 80C (Figures (8.5) and (8.7) 

respectively) were initially suffering contact throughout almost all 

of the cam cycle. The closing cam/follower pair operating at SOC had 

a brief moment of separation at the end of the cam lift.cycle, on the 

closing ramp, the separation probably being caused by the dynamic 

effects of the valve hitting the valve seat. After running for eight 

hours the amount of surface interaction had fallen dramatically, with 

evidence of full fluid films existing during parts of the cycle. The 

majority of the interactions can be seen to have occurred around the 

base circle radius portion of the cam. This is consistent with the 

predictions for lubricant film thickness around the cam cycle, which 

predict smaller lubricant film thicknesses (at a camshaft speed of 

16.67 Hz) around the base circle radius than around the cam nose for 

the closing cam (see Figure (8.8) and also Appendix (F), where the 

output from the valve train lubrication analysis program for the 

opening and closing cam/follower pairs is presented). This is due to 

the lower lubricant entrainment velocities around the-cam base circle 

radius than the cam nose caused by the larger radius of curvature of 

the nose. This is opposite to the findings in conventional cam and 

followers where the entrainment is very small around the nose and a 

clearance usually exists between the cam and follower around the base 

circle radius. (Also interesting are the four points ~f predicted 

zero lubricant film thickness, due to four points where the 

entrainment velocity falls to zero. These points occur in pairs at 
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the beginning of the opening flank and the end of the closing flank. ) 

The findings are further substantiated by the surface profile traces 

(see section 8.3.1. 3) where exaggerated wear was found to occur on 

the followers at the point of contact on the base circle radius. 

Interestingly the closing cam and follower operating with an oil 

inlet temperature of 40C (Figure 8.3) suffered more surface contact 

around the lift portion of the cam than around the base circle 

region, wereas the opposite was found at'the higher temperatures. It 

is not understood why this should occur (it may be due to an error in 

the labelling of the computer data files - Figure (8.3) may relate to 

an opening cam/follower pair). 

The opening cam and follower pairs (Figures (8.2), (8.4) and 

(8.6» enjoyed full separation over the cam base circle region. At 

the beginning of the tests there was evidence of much asperi ty 

contact during the lift portion o~ the cam cycle. The amount of this 

contact fell over the duration of the tests. The cam and follower 

pair operating at'80C (Figure (8.6» showed signs of asperity contact 

only at the point where the opening follower relinquished control of 

the valve (just before maximum lift position at a camshaft angle of 

approximately 345°) and at the point where the valve seated 

(approximately 400 0). For the other opening cam and follower pairs 

there was st ill evidence of surface interact ion, al though the mean 

drop in voltage fell considerably across the cam opening flanks, 

indicating an increase in conformity between the cam and follower 

surfaces. Again these findings are consistent wi th the predictions 

for lubricant film thickness around the cam cycle (Figure (8.9», the 

contact, on the whole, enjoying larger film thicknesses than the 

closing cam and follower contact, but suffering two points on the cam 

nose where theoret ically (ignoring squeeze effects), the lubricant 

film thickness falls to zero. 

8.3.1.3 Surface Roughness and Surface Profile Measurements. 

The surface roughness of a component may be described by many 

different parameters. One of the most widely adopted (certainly by 
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the '51 ' engineer in Bri tain) is the roughness average (R ). 
a 

The 

roughness average is defined as the arithmetic mean of the departures 

of the roughness profile from the mean line. Table (8.1) shows the 

(R) values of the cam and follower surfaces before and after 
a 

running. It also shows a pictorial definition of (R ). 
a 

A Jig was manufactured to ensure that the profi Ie traces and 

roughness measurements were made in (as closely as possible) the same 

place on the components before and after their use in the test 

apparatus. The measurements across the components (perpendicular to 

the direction of sliding) were made at the points that the cams and 

followers would make contact at the maximum valve lift position. 

Caution should be urged in comparing profile traces as the 

repeatability of results is not high, indeed, two consecutive profile 

traces would undoubtedly give different results. Comparisons are 

therefore only qualitative, and restricted to comments regarding the 

overall appearance of the profi Ie traces. Roughness average 

measurements were taken five times at each location and a mean taken 

of these. 

It can be seen that in general the (R) of the surfaces 
a 

decreased after the components had been run in the apparatus. In the 

two cases where the values increased, the changes were very small. 

Figures (8.10), (8.11) and (8.12) show the surface profile 

traces along the surfaces of the followers in the direct ion of 

sliding and across the cams perpendicular to the direction of sliding 

for the three different sets of cams and followers. The labels A1 and 

A2 refer to, the extremities of the cam travel on the follower 

surfaces, B refers to the base circle radius period po~ition, and 21 

and Z2 refer to the points on the surfaces where the entrainment of 

lubricant into the contact falls to zero. It can be seen that the 

general appearance of all the profi les were changed. All of the 

surface profiles showed that the peaks had become more rounded after 

running. Wear scars on the 'closing followers are also clearly 

visible. These scars coincide with the point of contact on the 

follower during the whole of the cam (zero lift) base circle radius 

period. Figures (8.13) and (8.14) show the predicted lubricant film 



Oil Inlet Temp (C) 40C soc 

Roughness (R ) Across Along Across Along 
a 

Before 0.969 0.770 0.991 0.740 

Opening Follower 

After 0.955 0.446 0.765 0.547 

Before 0.248 - 0.287 -

Opening Cam 

After 0.232 - 0.156 -

Before 0.637 0.548 0.497 0.497 

Closing Follower 

After 0.514 0.437 0.465 0.477 

Before 0.244 - 0.297 -

Closing Cam 

After 0.212 - 0.310 -

Across 

Along 

= Perpendicular to sliding direction 

= Parallel to sliding direction 

y 

80C 

Across Along 

1.548 1.093 

1.267 0.796 

0.396 -

0.363 -

0.538 0.432 

0.447 0.434 

0.517 -

0.293 -

x 

L 
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Table (8.1) Table Showing Surface Roughness (R) of' the Cam and 
a 

Follower Surfaces Before and After Running. 
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thicknesses 'along the follower surfaces at a camshaft rotational 

speed of 16.67 Hz (1000 rpm) with a lubricant temperature of 60 C. 

The Figures are labelled in a similar manner to t~e profile traces. 

It can be seen that the predicted lubricant film thickness for the 

closing cam and follower contact is not generous during the cam base 

circle radius period. This, combined with the 50 N spring force, used 

to ensure that the valve remains seated, and the large sl iding 

distances seen by this one point, leads to the higher amounts of wear 

at this position on the follower surface. The opening cam and 

follower pair operate more like a conventional cam and centrally 

pivoted follower system. At a camshaft rotational speed of 16.67 Hz, 

the valve inertia is still small enough to cause the cam to be in 

contact during the whole of the period of cam lift. At higher speeds 

the cam and follower are in contact for a smaller portion of the lift 

period (this is discussed in more detail in section 8.3.2.3), and are 

less like conventional systems. A clearance always exists between the 

opening cam and follower during the base circle radius period. 

Al though not deep, wear scars which were visible to the naked eye 

were starting to appear on all of the opening followers at points 

coinciding wi th the zero lubricant entrainment posi tions and the 

extremities of cam travel. 

8.3.2 Variation of Torque and Power With Camshaft Rotational Speed. 

After the cam and follower sets had been operating for eight 

hours they were considered to be run-in. They were then subjected to 

speed tests. These tests consisted of measuring the torque variation 

around two camshaft cycles at speeds of 8.33 Hz through to 33.33 Hz 

at 4.17 Hz intervals (500 rpm to 2000 rpm at 250 rpm intervals). The 

readings at each speed were taken when. the temperatures indicated by 

the thermocouples in the cams and followers had stabi I ised. The 

signal from the torque transducer was sent directly to a VAX 

mainframe computer where the signal could be processed to give the 

instantaneous torque signal as a,function of camshaft angle, the mean 

torque value, and the mean power loss associated with the running of 

the valve. 
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8.3.2.1 Power Loss. 

Figures (8. 15), (8.16) and (8.17) show comparisons of the 

the speed range at the 

show the theoretically 

experimentally measured power loss across 

three operating temperatures. They also 

predicted power loss across the speed range. 

The theoretical power loss was calculated using the computer 

program described in Chapter (4). The program computed the power loss 

at the cam/follower interfaces and the loads at the contacts. The 

loads at the contacts were then resolved to give the loads applied to 

the support bearings. The power loss associated wi th the support 

bearings was then calculated using formulae and data supplied in the 

SKF bearing catalogue. The power loss associated wi th each of the 

follower (rocker) pivot bushes was calculated by evaluating the 

applied normal load at a number of intervals around the cam cycle (by 

considering the follower as a simply supported beam and resolving the 

forces) and then multiplying this by an assumed coefficient of 

friction and the velocity of the frictional force component. These 

instantaneous power losses were then averaged to give the mean power 

loss. The coefficient of friction adopted was 0.2 - that of PTFE 

sliding on EN38 steel. This "was fel t to reasonable as the bearing 

surfaces of the bushes were PTFE coated and the rocker shaft was 

steel. 

Tests were performed upon the support bearings to validate the 

SKF formulae. This was done by applying a series of known loads at 

the test speeds to a cradle containing two bearings, identical to, 

and positioned midway betweeen, the camshaft support bearings. Thus 

the loads on each of the four bearings. could be assumed to be equal. 

The torque and power loss were then measured and compared with the 

calculated values. Across the whole of the speed range the 

differences between the measured and theoretical values were less 

than 7% at an oi 1 inlet temperature of 40C, and less than" 5% at oil 

inlet temperatures of 60C and 80C. It should be noted, how~ver, that 

these tests were carried out in conditions where the loads were not 

varying, unlike the conditions found in the operating apparatus. 
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It can be seen from Figures (8. ·15), (8.1S) and (8.17) that the 

agreement between the experimentally measured and the predicted 

frictional power losses is remarkably good. However, it can be seen 

that the frictional power loss arising from the cam/follower 

interfaces makes up only a very small proportion of the overall power 

loss figure. This really serves to amp 1 ify the problems associated 

with attempting to measure the friction at the camlfollower interface 

when the losses involved are low (such as in desmodromic and roller 

follower arrangements). Indeed a cynical view might be to state that 

such experiments are merely a good test of the SKF formula for 

bearing loss under dynamic conditions! 

8.3.2.2 Instantaneous Torque. 

Figures (8.18) to (8.21) inclusive, show the experimentally 

measured and theoret ically predicted torque variat ions· around the 

valve lift cycle for the apparatus operating at camshaft rotational 

speeds of 8.4 Hz, lS.7 Hz, 24.9 Hz and 33.4 Hz (504 rpm, 1002 rpm, 

1498 rpm and 2004 rpm respectively) with ap oil inlet temperature of 

SOC. The theoretical torque was calculated using the same method as 

adopted for the theoretical power loss. 

The damped oscillations across the ~ams' base circle radii are 

clearly obvious in the experimental data. It is believed that the 

difference in the angular position of the maximum torque values for 

the theoretical and experimental cases was due to error in the 

positioning ~f the datum pulse at the maximum lift position. Again 

agreement between the theoretical predictions and experimental data 

is good if the oscillatory portions are ignored. The higher than 

predicted torque levels around the maximum lift positions (camshaft 
o 0 0 

angles of 0 , 3S0 , and 720 ) are believed to be caused by friction 

between the 'tophat' and spring cup and also due to twisting of the 

closing follower due a moment ,enduced by the offset between the 

posi t ion of the appl ied load and the valve inert ia load in the 

direction parallel to the rocker shaft axis. It is believed that this 

twisting was also responsible for the problems incurred when attempts 
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were made to run the apparatus at speeds greater than 33.33 Hz (2000 

rpm), causing the eventual failure of the 'tophat'. 

8.3.3 Continuity Tests. 

By applying a potent ial difference of 15V across the 

cam/follower contact (see the previous ~hapter for details of the 

curcuit diagram), it was possible to evaluate which cam/follower pair 

was in control of the valve at anyone point around the valve lift 

cycle, and to compare this with the theoretical case predicted by the 

model descibed in Appendix (D). Figures (8.22) to (8.25) inclusive 

show the comparison between the experimentally obtained contact data 

and the calculated contact conditions at 8.33 Hz (500 rpm) and 25 Hz 

(1500 rpm). It can be seen that the correlation between the 

experiment and theory is excellent at the lower speed. At the higher 

speed the model is not qui te as good due to the 'bouncing' of the 

followers between the cams and their connection with the' valve. This 

bouncing occurs at the points where the operation of the valve should 

be passed from one Cam/follower pair to the other, and is due to 

dynamics of the small closing spring, and to imperfections in the cam 

lift profiles causing transient discontinuities in the valve 

acceleration. It is also believed, in this case, to be due to the 

twisting of the closing follower causing the clearances at the valve 

to be smaller than designed for. This effect is undesirable as it is 

responsible for noisy operation of the valve train and it also 

provides points around the lift cycle where neither Cam/follower pair 

is in control of the valve (this can be seen in Figure (8.24)). It 

can be seen that the opening cam is in contact for a smaller portion 

of the lift' cycle at the higher speed. This is due" to the valve 

inert ia become greater than the spring load at the higher speed, 

causing a clearance to appear between the opening follower and the 

valve shim (or the opening follower and its cam). 
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8.4 Conclusions. 

Whilst it is recognised that the contribution of the frictional 

power loss arising from the camlfollower interface in the desmodromic 

valve train studied is small compared to the overall power required 

to drive the valve (theoretically approximately 15%), the theoretical 

predict ions of overall torque and power loss across the measured 

speed range showed good agreement wi th, the experimentally obtained 

values. 

Theoretical models used to predict which camlfollower pair was 

in control of the valve at anyone point during the cam cycle also 

showed good agreement with experimentally obtained data. The 

continui ty tests proved to be valuable in detecting points in the 

valve lift cycle where the cams were not in full control of the 

valve. 

The measurement of surface roughness and surface profile traces 

showed how the surfaces of the cams and followers changed once they 

had been used in the apparatus. It was found that the (R) value of 
a 

the surfaces generally decreased from· the manufactured value. 

Correlations were found between surface profi Ie traces and 

lubrication film thickness predictions. 

It was found, by moni toring the mean torque levels and by 

employing the resistivity technique during the running-in of the 

valve trains, that the valve-trains operating at the higher 

temperatures appeared to run-in faster than those running at the 

lower temper,atures. It is postulated that this was due to a 

combination of the faster growth of surface reaction layers, the 

increase in plast ici ty of the cams and followers, and the larger 

amount of asperity interaction, at the higher temperatures. 
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CHAPTER 9 

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 

9.1 Main Contributions of This Study 

9.2 Suggestions for Future Work 
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9.1 Main Contributions of This Study. 

In this study techniques have been collated into a concise form 

applicable to the tribological design of cam and follower systems is 

a valuable contribution in itself. The models used to describe the 

kinematics, loading and tribological conditions at the camlfollower 

interface for any valve train system in common use today have been 

presented. Many of the models developed during this study have been 

written into computer code to form a robust, user friendly program 

which would in its present structure be a valuable tool to anyone 

wishing to design a valve train. To this end, the program is 

currently being introduced to the valve train design suite at the 

Ford Motor Co. Ltd .. 

Using the valve train tribological analysis computer program, 

parametric studies have been carried out on three different types of 

valve train, namely, a cam acting against a flat faced follower 

system, a cam acting against a centrally pivoted follower system and 

a cam acting against an end pivoted follower system. The results of 

these parametric studies have been clearly presented using graphics 

and tables, which it is hoped, could be referred to during design 

procedures. 

A study of the orbi ts and power losses associated wi th the 

camshaft bearings of the Ford 2.0 1 i tre Pinto engine have been 

presented. It is believed that this is the first time that 

dynamically loaded bearing analysis has been applied to camshaft 

bearings. Again, the valve train tribological computer program was an 

invaluable tool, helping to provide the loads applied to the 

bearings. The resul ts of the study showed good agreement wi th the 

experimental findings_of other workers. 

An experimental programme was carried out to verify the models 

developed during the project. Th~ experimental programme was carried 

out upon a desmodromic valve train apparatus at the speciffc request 

of the Ford Motor Co. Ltd.. It was found that the losses at the 

cam/follower interface for this part icular valve train arrangement 

attributed for approximately 15% of the overall mechanism friction. 

Theoretical predictions of the overall frictional pow~r loss showed 
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good agreement with experimental findings. It is felt that the 

experimental project gives grounds for confidence to be attached to 

the analytical models. 

9.2 Suggestions £or Future York. 

Whenever anything is put under close scrutiny, one always tends 

to find that the number of questions arising from the study by far 

outweigh the number of answers. Many questions still remain to be 

answered regarding the tribological operation of valve trains, but it 

is hoped that the present study has extended considerably our 

understanding of the operation of such mechanisms. 

During this study the effects of the make-up of the lubricant 

have been totally ignored, as have most of the metallurgical 

properties of the cam and follower. Many workers have observed the 

effects of differing lubricants and metallurgies during experimental 

projects, but very' few have offered predictive analytical techniques. 

Another area that has been neglected.during this study is that 

of the dynamics of the valve train. The components of the valve train 

are not rigid, flexures and torsions are bound to occur. These will 

undoubtedly affect the kinemat ics and loading of the contact and 

hence its lubrication. Many models have been put forward to predict 

the dynamics of valve trains, none interact with the kinematics - for 

example, if a camshaft is subject to a torsional deflection this will 

cause its rotat ional speed to change, thus al tering the surface 

velocities of importance to lubrication. 

As a continuation of the present study, the valve train 

tribological analysis program needs to be extended in several ways. 

The use of hydraulic elements has become very popular with automobile 

manufacturers as they automatically compensate for wear in the valve 

train system and thus cut down ·the amount of servicing required .. The 

program can cope, to some extent, wi th this type of valve' train by 

setting the valve clearance to zero, it cannot however model the 

effects that hydraulic elements have upon the loading of the contact. 

An obvious method of cutting down frictional losses within the valve 

train, which many designers are now exploring, . is .to incorporate 
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rolling element followers into the design. Whilst these are costly, 

if they can prove to be reliable and·to offer significant reductions 

in frictional losses, they may well become a commo~ component within 

the automobile engine. The addi t ion of such a mode 1 would have to 

include analytical techniques to study the traction between the cam 

and the rolling element, as pure rolling cannot be assumed at high 

camshaft speeds around the cam flanks where acce lerat ions are very 

high. The addition of a model to incorporate the effects of lubricant 

squeeze at the points of zero lubricant entrainment velocity would be 

desirable, although at present the techniques available are very 

cost ly in comput ing time and would render the computer program 

useless as an interactive tool. 

A great deal of long term experimental work still remains to be 

carried out. Analytical expressions are available to the designer of 

machine elements to allow predictions (by adopting certain 

assumptions) of the oil film thickness existing between interacting 

lubricated parts, if the kinematics and loading of the . contact are 

known along with ·the lubricant properties. Similarly, the designer 

can predict Hertzian stress levels in the components, and sl iding 

speeds and distances during the design life. What is still unknown to 

a great extent is the correlation between these predictions and the 

guaranteed survival of the components in service. By a series of 

comprehensi ve experimental tests wi th accompanying analytical 

predictions the analytical tools could be tested and some degree of 

certainty attached to them. 

Some reservations are still held regarding the experimental 

project. Dur.ing the. project much thought was put into ways of 

trying to eliminate frictional forces arising from sources other than 

the cam/follower interface. Many ideas were thought of, but very 

few were practical as the apparatus conceived bore very little 

similarity to real systems. One possible solution would perhaps be to 

carry out'the equivalent of a morse test on a driven cylinder head by 

removing a single follower an~ studying the change in friction 

levels. The main problem with this method is that by removfng one of 

the contacts, the whole loading of the system is changed and hence 

the frictional losses of the system are also changed. Maybe a very 

long, very stiff camshaft with many cam lobes and followers is the 

solution, minimising the disturbance to the system by removing one 
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contact. 

It can be seen that there are still many avenues left unexplored 

and there remains a great deal of work to be done before the 

tribological operation of valve trains can be fully understood. 
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APPENDIX A 

THE KINEMATICS OF PIVOTED FOLLOVER SYSTEMS 

Ca) The Kinematics of a Cam and End Pivoted Follower System. 

The geometry of the system is shown in Figure (A. 1). An axis 

system, (Oxy), rotates at cam speed, its y-axis passes through the 

nose of the cam and the origin, a, is coincident with the cam centre 

of rotation. The follower is pivoted at the point U and touches the 

cam at the point P. The angle between the common tangent to the 

camlfollower and the x-axis is (~). The centre of curvature of the 

face of the follower in contact wi th the cam is is at Q and has 

radius of curvature (r
f

). The centre of curvature of the face of the 

follower in contact with the valve is at V. The angle between the 

x-axis and the line au is (~/). The fixed distances are (A) = UQ, (B) 

= UV, and (D) = ua. The fixed angles are (K), the angle between au 

and the direction of valve motion and (A) = ""VUQ. The important 

variable angles are (~) and (~) (= ""aUV). 

It is assumed that the angular velocity of the camshaft, (w), 

(which is half that of the crankshaft) is constant, and so the angle 

(~/) varies linearly with time, such that 

~' = ~' + ~ o 

= ~' + wt o 

where (~/) is the value of (~/) at maximum lift, and (~) is measured o 
from the top of lift. It is also assumed that the cam and follower 

.:) are always in contact, 1. e. the clearance on the cam base circle 

radius is neglected. 

It can be seen from Figure (A. 1) that the point of contact 

between the cam and follower, P(x, y ), has coordinates in the 
1 1 

rotating coordinate system, (axy), of 

x = - D COs~' - A cos(n-~/-A-r) + r sin~ 
1 f 

y = - D sin~' + A sin(n-~/-A-~) 
1 

r f cos~ 

(A.1) 

(A.2) 

Referring to Figure (A.2) (after Lim et al (1983», (r ) is the 
. • c 

local radius of curvature of the cam (= PG) and G the centre of 
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Figure (A.2) Successive Points of Contact on the 

Cam Surface. 
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curvature of the cam at the instant when the point of contact of the 

cam and follower is at P. When the cam is rotated through a small 

angle (0</>'), wi th corresponding change in (1/1), (01/1), the point of 

contact is displaced by a distance (or) along the cam surface to 

point P'. If we consider (01/1) to be small then the centre of 

curvature, G, can be assumed to remain in the same position. PM and 

P'M' are the tangents to the cam surface at P and P' respectively. As 

( 01/1 ) is small 

or = r 01/1 c 
It can be seen that the displacement of P in the Y1 direction is 

oY1 = - or sinl/1 

and in the x direction is 
1 

oX = - or cosl/1 
1 

Differentiating (x ) with respect to (1/1) 
1 

Thus 

and simi larly, 

lim [OX1] = I im [or cosl/1] 
01/1-70 01/1 01/1-70 01/1 

= lim [r c 01/1 cosl/1 1 
01/1-70 01/1 

dx 
1 

dl/1 

dy 
1 

dl/1 

- r cosl/1 c 

- r sinl/1 c 

(A.3) 

(A.4) 

Differentiating Equations (A.1) and (A.2) with respect to (1/1) and 

substituting,Equations (A.3) and (A.4) gives 

Hence 

and 

where 

(r f+r c)cost/l = [A [1 + ~~, ]sin(</>'+~+'1)-Dsin</>' ]~r· 

tanl/1 = 
-A [l+~7.JCOS(</>' +~+'1)+Dcos</> 

A [1 + ~~,] sine </>' +~+'1 )-Dsin</>' 

(A.5) 

(A.6) 

(A.7) 

(A.8) 



If = A2[1+~~,f- 2AD[1+~~,)COS(A+7) + D2 

Differentiating Equation (A.7) with respect to (~/) gives 

sec2~ ~~, = L2[A[1+~~')Sin(~'+A+7)-DSin~,]-2 
where 

L2 = _A2[1+d7 f+ 
d

2
r 

_ D2 + AD - sinC\+r) 
d~' d~/2 

AD [1+ ~~,) [2+ ~~,)COS(A+7) 

It should be noted 2 that (L ) may take negative values (it is 

as a square as it has dimensions of the square of a length). 

Using the relationship 
2 2 sec ~ = 1 + tan ~ 

Equation (A.7), (A.9) and (A.11) yield 
2 

d~ _ L 
d~' - ~ 

Equations (A.B) and (A.12) then give 

~ 
r = - - r 

c L2 f 

The equivalent radius of curvature at the contact (R) is 

given by 

Hence using (A.13) 
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(A.9) 

(A.10) 

(A.ll) 

defined 

(A.l2) 

(A.13) 

(A. 14) 

The veloci ty of the point of contact along the cam surface, 

(V), is defined as being positive and may be only in that direction c 
- that opposite to the rotation of the cam. It can be shown that (see 

Dyson (1977» 

d~ V .= w r -
c _ C d~' 

which on substituting (A.12) and (A.13) gives 

V = w [M - L2] 
c M2 

(A.15) 
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The velocity of the point of contact along the follower surface may 

take positive (i.e. in the same direction as (V)) or negative 
c 

values. From Figure (A.1): 

and 

therefore 

1l 
V = - - ~' - ~ - A + ~ 2 

[ 
d~ d~ ] Vf = W r f 1 + d~' - d~' 

Substituting (A.12) gives 

V f = W r f [1 + ~~, + ~] 

(A.16) 

(A.17) 

The displacement of the point of contact from its position at maximum 

lift, (s), is given by 

s = r (v - v ) 
f 0 

so from (A.16) 

(A.1a) 

The angle (~) and its derivatives with respect ·to (~/) may be 

found by considering the lift of the valve (1 ). From Figure (A.1): 
v 

1 = B cos(~ + K) - B cos(~ + K) (A.19) v B 

which on differentiating with respect to (~/) gives 

so 

and 

dl d~ 
~ - B sin(~ + K) 
d~' d~' 

-= 
dl 

[B sin(~ + K)]-1 v 
d~' d~' 

[B2sin3
( ~ + K)] -1. [dl v ]2 cost r + K) 

. d~' 

(A.20) 

(A.21) 

(~) may be found by considering the system in the base circle 
B 

position (OQ = r f + r
B

) and applying the cosine rule: 

cos(~ + A) = 
B 

A2 + D2 - (r
f 

+ r
B

)2 

2AD 
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(b) The Kinematics of a Cam and Centrally Pivoted Follower System. 

Lim et al (1983) showed that the analysis presented above was 

also val id for a cam acting against a centrally pi voted follower. 

Such a system is shown in Figure (A.3). The only difference to the 

analysis is in the expressions for the posi tion of the point of 

contact between the cam and follower: 

Xl = - D cos~' + A cos(~' + A + ~) + rfsin~ 

Yl = - D sin~' + A sin(~' + A + ~) - rfcos~ 



Figure (A.3) Geometry of a Cam Acting Against a 

Centrally Pivoted Follower. 
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APPENDIX B 

THE LOADING AT THE CAM/FOLLOWER INTERFACE FOR CAMS 

ACTING AGAINST TRANSLATING FOLLOWERS 

Ca) The Load at the Cam/Follower Interface for a Cam Acting Against a 

Flat Faced Follower. 

The forces associated with the operation of a cam mechanism are: 

the inertia force, the spring force, the forces created by the 

dynamic deflections and damping effects of the parts and the friction 

between the moving parts. It is assumed that the valve train is rigid 

and therefore the dynamic deflections and damping characteristics of 

the system are neglected. Figure (B.1) shows a free-body diagram of 

the cam/follower system, where (~) is the spring force, (If) is the 

inertia force, (Fv ) and (F
f

) are the friction at the valve and 

follower guides r"espectively and (Mg) is the gravitational force. 

Applying D' Alembert' s principle and resolving forces in the 

direction of valve motion we obtain: 

W = If + 5 + Fv + Ff - Mg 

The forces (Mg), (Fv ) and (Ff ) are small when compared to (If) and 

(5) and can be safely neglected. 

The inertia force (If) is equal to the product of the equivalent 

mass of the reciprocating parts and the acceleration of these parts 

and is given by: 

d2 1 
I = M __ v_ w2 

f d</>,2 

The equivalent reciprocating mass of the system (M) can be shown to 

be equal to the sum of the masses of the follower, valve and spring 

retainers plus one third of the spring mass (Harrison (1985». 

The spring force (5) is equal to the product of the spring 

constant and the deflection of the spring from its free length: 

5 = k(l + 0) 
v 



o ~_-'-_c.J 
o 

Figure (B.1) Free Body Diagram of a Cam and Flat 

Faced Follower System. 
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Therefore the load (W) at the cam/follower interface for a cam 

acting against a flat faced follower is given by: 

. (B. 1) 

(b) The Loading at the CamIFollower Interface for a Cam Against a 

Domed Follower. 

Figure (B.2) shows the general arrangement of a cam acting on a 

domed follower operating a rocker to open the valve. The rocker ratio 

(RR) is equal to (b/a) and the masses (M)' and (M) are the 
1 2 

equivalent masses at the follower end of the rocker and the valve end 

of the rocker respectively. The lift at the valve (1 ) is equal to 
v 

the lift at the follower (1 ) multiplied by the rocker ratio (RR). c . 
Neglect ing the effects of gravi ty, frict ion and the rocker inert ia 

and assuming the valve train to be rigid we are left wi th the 

free-body diagram as shown in Figure (B.3). Applying D' Alembert's 

principle and resolving in the direction perpendicular to the 

cam/follower common tangent we obtain: 

W = 
cosf3 

where 

thus 

W = 

d
2

1 d
2

1 
-' _c + M RR2w2 __ c + RR. k( 1 
d</>,.2 2 d</>,2 C 

(B.2) 

If we take the case of a domed follower acting directly against 
. ~ 

the valve then the rocker ratio (RR) is equal to unity and Equation 



b a 

rocker 

valve 

p~shrod 

domed follower 

\ 

Figure (B.2) Cam Acting Against a Domed Follower 

In a PushrodOperated System. 
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Figure (B.3) Free Body Diagram for a Cam Acting 
. ~ 

Against a Domed Follower in a 

Pushrod Operated System. 

225 



226 

(B.2) reduces to 

w = ------------ (B.3) 

If we now consider a direct act ing flat faced follower system 

where the radius of the follower, (r
f

), is infinity then Equation 

(B.3) reduces to 

(B.4) 

which is the same as that given in Equation (B. I). 
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APPENDIX C 

THE LOADING AT THE CAH/FOLLOlolER INTERFACE FOR 

A CAM ACTING AGAINST A PIVOTED FOLLOlolER 

(a) Cam and Centrally Pivoted Follower. -

Figure (C.l) shows a cam acting against a centrally pivoted 

follower. The forces shown are the spring force, (5), the valve 

assembly inertia force, (F), the frictional force at the 
v 

cam/follower interface, (Ffrict)' the follower inertia force, (Ff ), 

and the load exerted on the follower by the cam, (W). The frictional 

forces at the val ve/fo 1 lower interface and at the follower pivot 

point have been neglected as have gravitational and dynamic forces. 

The moments caused by each of the above forces about the follower 

pivot point, (U),_ defining a clockwise moment as positive, are: 

Spring force moment = - S B cos [- 32n + K + ~) (C.l) 

Valve inertia moment = - Fv B cos [- 32n + K + ~) (C.2) 

Cam load moment = W A cos [32 n - v) (C.3) 

Frict ional force moment = - F frict [r f - A cos (32 n - v )) (C.4) 

= - It W h A cos e 2 n - v)) (C.5) 

d
2 

2 2 r 
Follower inertial moment = - M

f 
B w ---- (C.6) 

d<l>,2 
where (Mf ) is the equivalent mass of the follower at a distance (B) 

from the follower pivot point (U). Summing the moments and 

subst i tut ing: 

and 

5 = k (1 + 0) 
v 

(C.7) 



( 

Figure (C.l) The Loads in a Cam and Centrally Pivoted 

Follower System. 
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gives: 

F = v 

W= 

A CDS e~/( - v) - J! [rr + A sin e;1t - v)) 

229 

(C.B) 

(C.g) 

where (M) is equal to one third of the valve spring mass plus the 

mass of the valve and any retainers. 

(b) Cam and End Pivoted Follower. 

Figure (C. 2) shows a cam act ing against an' end pi voted 

follower. The forces shown are the spring force, (5), the valve 

assembly inertia force, (F), the frictional force at the 
v 

cam/follower interface, (Ffrict)' the follower inertia force, (FfL 

and the load exerted on the follower by the cam, (W). The frictional 

forces at the val ve/follower interface and at the follower pivot 

point have been neglected as have gravitational and dynamic forces. 

The moments caused by each of the above forces about the. follower 

pivot point, (U), defining a clockwise moment as positive, are: 

Spring force moment = - 5 B cos [; - K. - .) (C.10) 

Valve inertia moment = - F B cos 
v [~ - K. - .) (C.ll) 

Cam load moment = W A sin v (C.12) 

Frictional force moment = F frict 
(r -

f A cos v) (C.13) 

= 11 W (r
f 

- A cos v) (C.14) 

2 2 
d

2
cr 

Follower inertia moment = - M B w f d,p,2 
(C.15) 

where (M
f

) is the equivalent mass of the follower at a distance (B) 

from the follower pivot point U. Summing the moments and 

subst i tut ing: 

5 = k(l + 0) 
v 

(C. 16) 
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Figure (C.2) The Loads in a Cam and End Pivoted 

Follower System: 
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and 

(C.l7) 

gives: 

w = 

[ 
d21 ] [ ] d

2
3' 2 2 M __ v fJ? + k(o + 1) B cos 2~ - Ie - 3' + M

f 
-- w B 

d</>' 2 v d</>,2 
(C.l8) 

A sin v + JL [r f - A cos v] 

where (M) is equal to one third of the valve spring mass plus the 

mass of the valve and any retainers. 
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APPENDIX D 

THE LOADING AT THE CAHIFOLLOVER INTERFACE FOR A DESMODROMIC 

VALVE TRAI N SYSTEM 

The system to be analysed is shown in Figure (0.1). The opening 

cam operates a centrally pivoted follower operating the valve 

directly via a shim. The closing cam operates an end pivoted follower 

via a spring cup. The position of the valve is defined by (x ). The 
vt 

light spring ensures that the closing follower is always in contact 

with the cam and provides the valve seating force when both of the 

cams are contacting their respective followers on their base circles. 

When the acceleration of the closing rocker is large enough the 

clearance between the spring cup and the 'top-hat' (see Figure (0.1)) 

disappears and the closing follower acts directly upon the valve via 

the 'top-hat'. 

This analysis ignores the effects of the rocker inertia and 

neglects gravitational and frictional forces. The valve spring has a 

high fitted load but very low spring constant, and the travel of the 

spring is very small, therefore it is reasonable to ignore the extra 

small load introduced by the spring deflection from its fitted 

length, 1. e. 

S = fitted spring load = constant. 

Each portion of the valve lift curve will now be examined in 

turn and the loads at each of the cam/follower interfaces 

investigated. The portions of the valve lift curve discussed below 

are shown in Figure (0.2). The results are summarised in Table (0.1). 

(a) Base Circle (Zero Valve Lift). 

At the zero lift position their is a clearance between the 

opening follower and its cam. The clearance (C
oc

) is at its maximum. 

The load on the opening follower is, therefore, zero, and the load on 

the closing follower is given by: 

W = RR S c c 

where (RRc) is the rocker ratio of the closing cam. 

(0.1) 
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Figure (D.2) Valve Lift Curve. 
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shim 

opening cam 

c losing cam 

Figure (0.1) Desmodromic VI· a ve Train. 
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Load 

Opening CamIFollower Closing Cam/Follower 

Base Circle Radius 0 RR .S 
c 

Action Period: . . .. 
Mx + S > 0 (Mx + S).RR RRc· S 

V1 V1 0 

Action Period: . . .. 
Mx + S < 0 a Mx .RR 

V1 Vl C 

Table (D.1) Summary or CamIFollower Loads For Desmodromic System. 
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(b) Flank (Valve Acceleration Period). 

Figure (D.3) shows the free body diagram for the system "during 

the flank period, where the opening cam is accelerating the valve and 

the closing cam is following the motion of the opening cam, with the 

clearance (C ) still existing. cc 

The force at the top of the valve (F ) is given by vo 

F = H.x + S vo VI 

Taking moments about the opening follower pivot gives: 

(D.2) 

W = (H.x + S).RR (D.3) 
o VI 0 

where (RR) is the rocker ratio of the opening follower. Taking 
o 

moments about the closing follower pivot gives: 

W = S.RR (D.4) 
c c 

(c) Flank to Nose Transition. 

At the point where the opening cam stops accelerating the valve, 

the valve has no inertia. From Equations (D.3) and (D.4) this gives: 

W = S.RR (D.5) 
0 0 

and 

W = S.RR (D.6) 
c c 

As the valve acceleration becomes negative across the cam nose 

the valve inert ia force becomes negat i ve and eventually greater in 

magni tude than the spring force. At this point the load at the 

opening camlfollower interface becomes zero. Also, the spring begins 

to compress in order to provide the inert ia force necessary to 

decelerate the valve. The clearance (C ) is eventually taken up and cc 
the closing rocker operates the valve directly via the 'top-hat'. The 

free body diagram of the system in this state is shown in Figure 

(D.4). 

The force at the valve (F ) is given by: 
vc 

F = H. x - S 
VC VI 

(D.7) 

such that the force required to decelerate the valve mass is provided 



r-­
(V') 

N 

Fvo Fvo t 

l XVI XVI XVI 

s 

I rnxVI 

Figure (D.3) Free Body Diagram F~r System During 

Flank (Valve Acceleration) Period. 

Wo 



z 
o 
CJ) 
(I) 

""'d 
(I) 
~ 
~. 

o 
p.. . 

. 
+=" 

3 
x: 

<" n 

238 



239 

by the spring plus the direct action of the closing follower on the 

valve. Taking moments about the closing follower pivot point we 

obtain: 

W = (F + S).RR 
c vc c 

. (0.8) 

therefore 

W = M. x . RR . (D. 9) 
C V1 C 

(d) Nose to Flank Transition. 

The valve acceleration starts to become positive in this region 

and a point is reached at which the valve inertia is equal to the 

spring force. The valve motion being given by: 

M.x = 5 
V1 

(0.10) 

The valve then moves across the clearance between the opening and 

closing followers until it hits the opening follower.' The motion of 

the valve then follows that prescribed by the opening cam and 

follower pair (as in section (b». 

(e) Closing Flank. 

The loads at the two cam/follower interfaces are as given in 

section (b) above. 
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APPENDIX E 

LIFT CURVE DEFINITION FOR 2.01 PINTO (SIERRA) INLET VALVE 

Lift At Cam As Seen By A Roller Follower Of Radius 44.0mm 

CAM ANGLE(degrees) LIFT(mm) CAM ANGLE(degrees) LIFT(mm) 

-87.0 0.0000 15.0 5.9109 

-86.0 0.0008 16.0 5.8542 

-85.0 0.0038 17.0 5.7940 

-84.0 0.0094 18.0 5.7305 

-83.0 0.0174 19.0 5.6635 

-82.0 0.0275 20.0 5.5932 

-81.0 0.0386 21.0 5.5196 

-80.0 0.0495 22.0 5.4426 

-79.0 0.0604 23.0 5.3623 

-78.0 0.0713 24.0 5.2787 

-77.0 0.0822 25.0 5.1919 

-76.0 0.0931 26.0 5.1018 

-75.0 0.1040 27.0 5.0084 

-74.0 0.1149 28.0 4.9119 

-73.0 0.1258 29.0 4.8121 

-72.0 0.1367 30.0 4.7091 
-71.0 0.1476 31. 0 4.6029 

-70.0 0.1585 32.0 4.4935 
. -69.0 0.1694 33.0 4.3810 

-68.0 0.1803 34.0 4.2654 

-67.0 0.1912 35.0 4.1468 . 
<"> -66.0 0.2021 36.0 4.0251 

-65.0 0.2129 37.0 3.9005 

-64.0 0.2238 38.0 3.7731 

-63.0 0.2347 39.0 3.6430 

-62.0 0.2457 40.0 3.5102 

-61.0 0.2569 41. 0 3.3750 

-60.0 0.2688 42.0 3.2375 
-59.0 0.2825 43.0 3.0979 
-58.0 0.2990 44.0 2.9565 

-57.0 0.3208 45.0 2.8134 

-56.0 0.3509 46.0 2.6690 

-55.0 0.3922 47.0 2.5236 
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CAM ANGLE(degrees) LIFT(mm) CAM ANGLE(degrees) LIFT(mm) 

-54.0 0.4472 48.0 2.3777 

-53.0 0.5176 49.0 2.2316 

-52.0 0.6046 50.0 2.0857 

-51.0 0.7085 51. 0 1.9408 

-50.0 0.8290 52.0 1. 7974 

-49.0 0.9653 53.0 1.6562 

-48.0 1. 1158 54.0 1. 5181 

-47.0 1.2788 55.0 1.3837 

-46.0 1. 4521 56.0 1.2540 

-45.0 1.6332 57.0 1.1296 

-44.0 1.8203 58.0 1. 0115 

-43.0 2.0116 59.0 0.9007 

-42.0 2.2055 60.0 0.7982 

-41.0 2.4005 61.0 0.7050 

-40.0 2.5950 62.0 0.6220 

-39.0 2.7877 63.0 0.5499 

-38.0 2.9776 64.0 0.4893 

-37.0 3.1637 65.0 0.4402 

-36.0 3.3454 66.0 0.4022 

-35.0 3.5221 67.0 0.3742 
-34.0 3.6934 68.0 0.3547, 

-33.0 3.8590 69.0' 0.3414 
-32.0 4.0188 70.0 0.3319 
-31.0 4.1727 71.0 0.3238 
-30.0 4.3205 72.0 0.3158 

-29.0 4.4624 73.0 0.3079 
-28.0 4.5983 74.0 0.2999 . 

,> -27.0 ' 4.7282 75.0 0.2920 
-26.0 4.8524 76.0 0.2840 

-25.0 4.9709 77.0 0.2761 

-24.0 5.0838 78.0 0.2681 

-23.0 5.1913 79.0 0.2601 

-22.0 5.2933 80.0 0.2522 
-21.0 5.3901 81. 0 0.2442 
-20.0 5.4816 82.0 0.2363 
-19.0 5.5681 83.0 0.2283 
-18.0 5.6495 84.0 0.2203 
-17.0 5.7259 85.0 0.2124 
-16.0 5.7975 86.0 0.2044 
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CAM ANGLE(degrees) LIFT(mm) CAM ANGLE(degrees) LIFT(mm) 

-15.0 5.8643 87.0 . 0.1964 

-14.0 5.9264 88.0 0.1885 

-13.0 5.9838 89.0 0.1805 

-12.0 6.0365 90.0 0.1725 

-11.0 6.0848 91.0 0.1645 

-10.0 6.1286 92.0 0.1566 

-9.0 6.1679 93.0 0.1486 

-8.0 6.2029 94.0 0.1406 

-7.0 6.2336 95.0 O. 1326 

-6.0 6.2601 96.0 0.1247 

-5.0 6.2823 97.0 0.1167 

-4.0 6.3004 98.0 0.1086 

-3.0 6.3144 99.0 0.1015 

-2.0 6.3244 100.0 0.0948 

-1. 0 6.3303 101. 0 0.0882 

0.0 6.3323 102.0 0.0815 

1.0 6.3303 103.0 0.0748 

2.0 6.3245 104.0 0.0681 

3.0 6.3148 105.0 0.0614 
4.0 6.3013 106.0 0.0547 
5.0 6.2840 107.0 0.0480 
6.0 6.2630 108.0 0.0414 
7.0 6.2383 109.0 0.0347 
8.0 6.2099 110.0 0.0280 
9.0 6.1779 111. 0 0.0213 

10.0 6.1422 112.0 0.0146 
11. 0 6.1030 113.0 0.0081 . 

..:> 12.0 6.0603 114.0 0.0030 
13.0 6.0140 115.0 0.0004 

14.0 5.9642 116.0 0.0000 
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APPENDIX F 

LUBRICATION ANALYSIS OF A DESMODROMIC VALVE TRAIN SYSTEM. 

This appendix presents the output from the valve train analysis 

program which was discussed in Chapter ~. The desmodromic valve train 

described was also used in the experimental project described in 

Chapter 8. 

F.1 Input Data. 

F.1.1 Valve Lift. 

The valve lift may be described by a multipol of the form: 

where 

1 is the valve lift in mm, 
v 

1 is the valve lift at the start of the segment (= 0.3333 mm vs 
for the first segment, i.e. the ramp height), 

a is the cam angle from the start of the segment, 

aT is the period of the segment, 

and the coefficients C1 to C5 are: 

Segment 1 2 3 4 5 
~ 

aT 3.0 8.0 5.0 5.0 34.0 

C
1 

.03700 .35969 .87736 1. 10212 7.06324 

C2 
.00000 .52204 .20392 .00000 -2.07447 

C3 
.04894 .0'0000 .00000 -.04167 -1. 44115 

C4 
-.01224 .00000 .08113 .02153 .34428 

Cs .00000 .00000 .02828 -.00490 .00640 
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F.l.2 Geometry, Lubricant, Material and Loading Data. 

Cam width (mm) 

A (mm) 

B (mm) 

D (mm) 

r
f 

(mm) 

r (mm) 
B 

K. (degrees) 

A (degrees) 

o (mm) 

E (GN/m2) 
follower 

E (GN/m2) 
cam 

V 
follower 

V 
cam 

k (kN/m) 

M (kg) 

a. (x 10-9 m2 IN) 

1) (Ns/m2
) 

o 
w (Hz) 

Opening CamiFollower Closing CamlFo~lower 

12.00 

26.23 

33.29 

39.32 

35.00 

17.50 

172.69 

125.28 

5.00 

207.0 

207.0 

0.29 

0.29 

10.00 

.0745 

15.00 

.0147 

33.33 

12.00 

17.32 

32.39 

39.32 

20.00 

25.00 

-7.31 

9.41 

5.00 

207.0 

207.0 

0.29 

0.29 

10.00 

0.0745 

15.00 

.0147 

33.33 

The graphical output from the valve train lubrication analysis 

program is shown in Figures (F.l) . and (F.2). 



CAM OPERATING CHARACTERISTICS 
1995 DESMO OPENING CAM 

Cam Base Radius (mm) 

Maximum Valve Lift (mm) 

Cam Width (mm) 

Rotational Speed (rpm) 

Spring Stiffness (kN/m) 

- 17.50 

- 10.50 

- 12.00 

- 2000.0 

- 10.000 
Initial Spring Disp. (mm) 8.0 

Equiv. Mass At Valve (kg) - .074 

Lubricant Viscosity (Ns/m 2j - .018 

Press. Viec. Coeff. (/Pa) 

Youngs Mod. (Cam) (GPa) 

Youngs Mod. (Fo 11 .) (GPa) 

Poissons Ratio (Cam) 

Poissons Ratio (Foll.) 

Frictionsl Power Loss (W) 

- 18.0E-9 

- 207.0 
- 207.0 

- .30 

- .30 

1.B2 
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Figure (F.la) Graphical Output from the Valve Train 

Lubrication Analysis Program for the 

Desmodromic Opening Cam and Follower. 
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Figure (F.lb) Graphical Output from the Valve Train 

Lubrication Analysis Program. 



CAM OPERATING CHARACTERISTICS 
1995 DESMO OPENING CAM 

(1) Film thickness around 
cam periphery 
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Figure (F.lc) Graphical Output from the Valve Train 

Lubrication Analysis Program. 
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Figure (F . 2a) Graphical Output from the Valve Train 

Lubrication Analysis Program for the 

Desmodromic Closing Cam and Follower . 
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Figure (F.2b) Graphical Output from the Valve Train 

Lubrication.Analysis Program. 



CAM OPERATING CHARACTERISTICS 
1995 DESMO CLOSING CAM 
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Figure (F.2c) Graphical Output from the Valve Train Lubrication 

An~lysis Program. 
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