
Mixed Criticality Systems with
Weakly-Hard Constraints

Oliver Gettings

MSc by Research

University of York

Computer Science

September 2015

2

Abstract

Mixed criticality systems contain components of at least two criticality levels which
execute on a common hardware platform in order to more efficiently utilise re-
sources. Due to multiple worst-case execution time estimates, current adaptive
mixed criticality scheduling policies assume the notion of a low criticality mode
where by a taskset executes under a set of more realistic temporal assumptions and a
high criticality mode, in which all low criticality tasks in the taskset are descheduled,
to ensure that high criticality tasks can meet more conservative timing constraints
derived from certification approved methods. This issue is known as the service
abrupt problem and comprises the topic of this work.

The principles of real-time schedulability analysis are first reviewed, providing
relevant background and theory on which mixed criticality systems analysis is
based. The current state-of-the-art of mixed criticality systems scheduling policies
on uni-processor systems are then discussed along with the major challenges facing
the adoption of such approaches in practice. To address the service abrupt issue
this work presents a new policy, Adaptive Mixed Criticality - Weakly Hard which
provides a guaranteed minimum quality of service for low criticality tasks in the
event of a criticality mode change. Two offline response time based schedulability
tests are derived for this model and dominance relationship proved. Empirical
evaluations are then used to assess the relative performance against previously
published policies and their schedulability tests, where the new policy is shown to
offer a scalable performance trade-off between existing fixed priority preemptive
and adaptive mixed criticality policies. The work concludes with possible directions
for future research.

3

Contents

Abstract 3

List of Tables 6

List of Figures 7

1 Introduction 11

2 Real-Time Systems 13
2.1 System Model and Terminology . 13
2.2 Fixed Priority Scheduling . 15
2.3 Earliest Deadline First Scheduling . 24
2.4 Sub-optimality of Fixed Priority Scheduling 28
2.5 Summary . 31

3 Mixed Criticality Systems 33
3.1 System Model and Terminology . 33
3.2 Fixed Priority Scheduling . 34
3.3 Earliest Deadline First Scheduling . 42
3.4 Criticality Modes . 45
3.5 Implementation . 47
3.6 Summary . 48

4 Mixed Criticality Systems with Weakly-Hard Constraints 49
4.1 Existing Analysis . 50
4.2 Adaptive Mixed Criticality - Weakly Hard 55
4.3 Worked Example . 62
4.4 Summary . 64

5 Experimental Evaluation 65
5.1 Taskset Generation . 65
5.2 Schedulability Tests . 66
5.3 Experiments . 67
5.4 Discussion of Results . 72
5.5 Additional Investigation . 72
5.6 Summary . 79

6 Conclusions 81

Appendix A 83

4

Contents

Definitions 97

References 101

5

List of Tables

2.1 Execution Sequence for Taskset that exhibits Priority Inversion 20
2.2 Summary of Upper and Lower Bounds on Speedup Factors 30

3.1 Example MC Taskset . 34
3.2 Example Zero-slack Scheduling Taskset 39

4.1 Example WH Taskset . 62
4.2 Summary of Response Times for Example WH Taskset 64

.1 Summary of Theoretical Upper Bounds on Speedup Factors 83

.2 Genetic Algorithm Parameters . 91

.3 FP-P vs EDF-P for D ∼ T . 91

.4 FP-NP vs EDF-NP for D ∼ T . 93

.5 Summary of Upper and Lower Bounds on Speedup Factors for FP-P
vs FP-NP . 93

.6 FP-P vs FP-NP for D = T . 94

.7 FP-P vs FP-NP for D ≤ T . 95

.8 FP-P vs FP-NP for D ∼ T . 95

6

List of Figures

2.1 Optimal Schedule for τ1 and τ2 . 16
2.2 Sub-optimal Schedule for τ1 and τ2 17
2.3 Level-i busy period over five invocations of τi 19
2.4 Example of Priority Inversion . 21
2.5 Summary of dominance relationships [38] 29

3.1 τ1 and τ2 executing with Criticality Level LO 35
3.2 τ1 and τ2 executing with Criticality Level HI 35
3.3 τ1 and τ2 executing with Criticality Level HI with SMC 37
3.4 τ1 and τ2 under Zero-slack Scheduling Policy 40

4.1 Criticality mode change under AMC-max 54
4.2 Example AMC-WH Execution . 55
4.3 Criticality Change of τk . 56
4.4 Cycle of τk . 56
4.5 Criticality Change of τk . 59

5.1 Expt.1 - Percentage of Schedulable Tasksets 68
5.2 Expt.2 - Varying the Criticality Factor 68
5.3 Expt.3 - Varying the Criticality Mix . 69
5.4 Expt.4 - Varying the Number of Tasks 69
5.5 Expt.5 - Percentage of Schedulable Tasksets with D ≤ T 70
5.6 Expt.6 - Varying the Number of Skips where m = 10 70
5.7 Expt.7 - Varying the Cycle Length where s = 1 71
5.8 Expt.8 - Varying the Cycle Length where s = m− 1 71
5.9 Expt.1b - Percentage of Schedulable Tasksets (1-HC) 75
5.10 Expt.2b - Varying the Criticality Factor (1-HC) 75
5.11 Expt.3b - Varying the Criticality Mix (1-HC) 76
5.12 Expt.4b - Varying the Number of Tasks (1-HC) 76
5.13 Expt.5b - Percentage of Schedulable Tasksets with D ≤ T (1-HC) . . . 77
5.14 Expt.6b - Varying the Number of Skips where m = 10 (1-HC) 77
5.15 Expt.7b - Varying the Cycle Length where s = 1 (1-HC) 78
5.16 Expt.8b - Varying the Cycle Length where s = m− 1 (1-HC) 78

.1 Flow Diagram of Genetic Algorithm 89

.2 Speedup Factors for FP-P vs EDF-P, D ∼ T 92

.3 Speedup Factors for FP-NP vs EDF-NP, D ∼ T 92

.4 Speedup Factors for FP-P vs FP-NP . 94

7

Acknowledgements

I would like to thank my supervisor, Dr Robert I. Davis for his unrelenting support
and patience during my time at the University of York.
This research was supported by EPSRC(UK) LSCITS Grant EP/F501374/1 and
Rapita Systems Ltd. EPSRC(UK) Research Data Management: No new primary data
created during this study.

8

http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/F501374/1
http://www.rapitasystems.com

Declaration

I declare that the work presented in this document is my own, unless explicitly
indicated. This research was undertaken by myself, under the supervision of Dr
Robert I. Davis at the Real-Time Systems Research Group, Department of Computer
Science, University of York. This work has not been submitted for any other award
at any institute.
Results in chapter 4 and chapter 5 are presented in [53]. Results in Appendix A are
presented in [34, 36, 38]. The first paragraph in section 5.5 is written by Dr Robert I.
Davis. All external sources are cited via the use of references.

9

10

1 Introduction

Mixed Criticality Systems (MCS) contain components of at least two criticality levels
which execute on a common hardware platform. While the sharing of hardware
resources may result in a more efficient implementation over traditional isolated sys-
tems, there is a significant conflict between the required certification of components
and the exploitation of temporal properties to more effectively utilise the underlying
platform.

High criticality components may be required by a Certification Authority (CA) to
meet a particular standard (e.g DO-178B/C or ISO26262) which dictates the methods
used to determine the timing behaviour of tasks. The Worst-Case Execution Time
(WCET) estimate of a task determined by the methods required for certification may
be overly conservative compared to the values determined by a system designer
using less rigorous methods. It is this pessimism that can be exploited to more
efficiently utilise hardware, provided that safeguards are in place to ensure that each
component in the system is guaranteed to meet its designated level of assurance.

One way in which this issue has been approached is the concept of criticality
modes. Criticality modes are ordered from the lowest to the highest level of assur-
ance. A system starts in the lowest criticality mode with timing behaviour assumed
to be that determined by the system designer. Provided that each component
does not exceed its allocated execution time budget, the system will remain in
this mode. However, should an over-run be detected, the system will increase the
criticality mode and all components assigned a criticality below this level will either
be descheduled or permitted to miss their deadlines. This form of mode change
is an extreme response and despite ensuring the timing constraints determined by
the certification process, could lead to a loss of functionality so severe that it is not
acceptable in the design of the system.

For example, consider a unmanned aerial vehicle (UAV) which contains three
components, one of High (HI) criticality (e.g the flight control system) and two of
Low (LO) criticality (e.g surveillance systems). The process required for certification
determines that the system utilisation of the HI criticality component is 0.6. The
system designer has determined this value is 0.5 in practice. The two LO criticality

11

components which do not require certification are determined by the system designer
to have utilisation of 0.25 each. Under the system designer’s WCET assumptions,
the system is schedulable with a utilisation of 1.0. Should an over-run of the HI
criticality component be detected, the system will increase its criticality mode, the
HI criticality component will be permitted to execute with a utilisation of up to 0.6
and the two LO criticality components will be descheduled. While this ensures that
the HI criticality component meets the timing requirements needed for certification,
the LO criticality components are still critical, as opposed to non-critical, and it may
not be acceptable to lose their functionality completely. Furthermore, the utilisation
in this HI criticality mode is now only 0.6, leaving unused system capacity in which
LO criticality components could execute with a reduced Quality of Service (QoS),
for example meeting m− s out of m deadlines, by running surveillance jobs less
frequently or by skipping s out of m jobs.

This work introduces a new approach called Adaptive Mixed Criticality Weakly-Hard
(AMC-WH) to provide graceful degradation of low criticality tasks in the event of a
criticality mode change, avoiding a complete loss of low criticality functionality.
Chapter 2 provides an introductory background to real-time systems and schedulab-
ility analysis developed for uni-processor systems. The purpose of which is to
provide a solid understanding of the various scheduling techniques on which mixed
criticality systems analysis is based. Chapter 3 reviews the current state of research in
the field of MCS scheduling for uni-processor systems and identifies the major open
issues. Chapter 4 reviews existing schedulability analysis for MCS based on fixed
priority scheduling and introduces a new algorithm based on an existing policy
called Adaptive Mixed Criticality (AMC) [14]. In Chapter 5 evaluates the relative
performance of the new policy with an empirical investigation. Chapter 6 concludes
with a summary and directions for future research.

12

2 Real-Time Systems

A real-time system is required to react to stimuli from the environment (including
the passage of physical time) within time intervals dictated by the environment [79].
A classic example of a real-time system is the airbag system in a car. In the event
of the collision of the vehicle, should the airbag deploy too late, the driver risks
injury by colliding with the steering wheel. Alternatively, should the airbag deploy
too early, the system’s designed behaviour of deflating rapidly to avoid suffocation
could result in it being ineffective at absorbing the impact. This is a system in which
deadlines are imperative, defined as a hard real-time system.

Real-time systems can generally be categorised into three groups [29]:

• Hard : A system where a correct response must occur within a specific
deadline, otherwise the system is considered to have failed.

• Soft : A system where response times are important but where the system will
still function correctly if a deadline is missed.

• Firm : A system which is soft real-time but where there is no benefit from late
delivery.

Due to the strict temporal nature of real-time systems, implementation and
analytical techniques are needed to ensure predictability. Real-time scheduling
theory is one such strategy.

Real-time scheduling theory reasons about worst-case scenarios using offline
analysis to prove deadlines are met under certain conditions, modelling task inter-
action and temporal properties, to ensure predictable behaviour of systems.

2.1 System Model and Terminology

A system consists of a single processor executing a sporadic taskset, τ, comprising
N tasks. Under a fixed priority scheduling policy, each task is assigned a unique
priority, Pi, according to some policy, where 0 < Pi ≤ N.

In traditional real-time systems, each task has a number of attributes associated

13

with it such that τi = (Ti, Di, Ci). Where Ti represents the period or minimum
inter-arrival time of the task. Di represents the relative deadline, the maximum
time allowed from the task being released to completing its execution and Ci is the
task’s Worst-Case Execution Time (WCET). An invocation of a task is called a job. An
unbounded number of consecutive jobs of task τi may be released at a maximum
rate of Ti, the minimum inter-arrival time.

The worst-case response time of a task τi is denoted by Ri. This represents the
maximum time from the release of the task until the completion of its execution. The
notation hp(i) and lp(i) represent the sets of tasks in a taskset that are of higher or
lower priority than τi respectively. Bi denotes the blocking time and is the maximum
time task, τi, can be blocked by lower priority tasks due to contention for some
resource k. Release jitter, Ji is the maximum time a job of task τi may be delayed
after it arrives before becoming ready to execute.

The utilisation of a task τi is defined as Ui =
Ci
Ti

, while the total utilisation of a

taskset, τ, is defined as U = ∑N
i=1(

Ci
Ti
). It is assumed there is a discrete time model

where the time granularity ∆ = 1; this can be considered equivalent to one processor
clock cycle.

A taskset is said to be schedulable with respect to a scheduling algorithm if all
possible valid sequences of jobs which may be generated by the taskset can be
scheduled by the algorithm without missing any deadlines.
A taskset is said to be feasible with respect to a system such that there exists a
scheduling algorithm that can schedule the taskset without missed deadlines.

Scheduling algorithm A is said to dominate scheduling algorithm B if all tasksets
that are schedulable under B are also schedulable under A and there exists some
taskset that is schedulable under A, but not under B.

It is also important to define the terms Sufficient and Necessary in the context of
schedulability tests.

• A schedulability test is Sufficient if it guarantees that all deadlines for all valid
sequence of jobs released by a taskset are met using a certain scheduling
algorithm. However, failure of the test does not necessarily mean that the
system is unschedulable.

• A schedulability test is Necessary if failure of the test will result in one or more
deadlines of a task being missed under a certain scheduling algorithm.

• A test that is both Sufficient and Necessary is said to be Exact.

14

2.2 Fixed Priority Scheduling

Although processor scheduling originates in job-shop scheduling [5, 31], the advent
of modern real-time scheduling theory is widely considered to have started with
Liu and Layland’s 1973 seminal paper on the subject [73].

2.2.1 Liu and Layland’s Task Model

The initial task model introduced by Liu and Layland was restricted with the
following assumptions [73];

(i) The requests for all tasks for which hard deadlines exist are periodic, with
constant interval between requests.

(ii) Deadlines consist of run-ability constraints only, that is each task must be
completed before the next request for it occurs.

(iii) Tasks are independent in that requests for a certain task do not depend on the
initiation or the completion of requests for other tasks.

(iv) Run-time for each task is constant for that task and does not vary with time.

These assumptions imply that all tasks are periodic (i), that Di = Ti (ii) and all
tasks are independent i.e. no resource sharing (iii). (ii) and (iv) imply that Ci ≤ Di

since Di = Ti. It can also be derived from the paper that tasks are fully preemptible
and it is assumed there are no overheads.

Although the Liu and Layland model provided a foundation on which to reason
about real-time scheduling theory, the simplistic nature of the system due to the
above assumptions makes it difficult to relate to real-world systems. These initial
restrictions have since been relaxed as discussed in the following sections.

2.2.2 Critical Instant Theorem

The critical instant theorem presented by Liu and Layland [73], introduced the
concept of a Critical Instant. This is a point in time when interference due to higher
priority tasks is maximised. In the case of Ci ≤ Di, Di = Ti and no overheads, the
critical instant is when a task is released simultaneously with all other higher priority
tasks and those tasks are subsequently re-released as soon as possible (i.e after their
period). For our model it shall be assumed the critical instant is at t = 0, although a
critical instant may be at any point in time when all processes are simultaneously
released. As this is the most difficult situation for a task to meet its deadline, only

15

the first absolute deadline of each task needs to be checked.

Example 1. Consider a taskset, τ, containing two tasks, τ1 and τ2 where T1 = D1 = 2,
C1 = 1 and T2 = D2 = 5, C2 = 2. If τ1 is assigned the highest priority and τ2 is
assigned the lowest priority, the scheduled execution is as shown in Figure 2.1. As τ1 is the
highest priority task it will always meet its deadline under Liu and Layland’s assumption of
independent tasks. τ2, however, needs to be checked as τ1 may potentially cause interference,
increasing its response time.

The Critical Time Zone is the time from the critical instant (t = 0) to the first deadline of
τ2 (t = 5). As illustrated in Figure 2.1, the first release of τ2 meets its deadline of t = 5 and
as this greatest interference from τ1, subsequent deadlines are guaranteed to be met (under
the assumptions in subsection 2.2.1).

10 2 3 4 5 6 7 8 9 10

Preempted τ2 Executingτ1 Executing

Job released

t

t

Deadline Met Deadline Miss

Critical Time Zone

τ1

τ2

Figure 2.1: Optimal Schedule for τ1 and τ2

Example 2. Consider again taskset τ, this time with the priorities of the tasks reversed
where τ2 now has the highest priority. The critical time zone is between the critical instant of
t = 0 and the first deadline of τ1 at t = 2. As τ2 is the highest priority task, it immediately
takes control of the processor preventing τ1 from executing. At t = 2, τ2 releases the
processor, however this period of interference causes τ1 to miss its deadline of t = 2, as
shown in Figure 2.2.
As ∀τi | Ri ≤ Di must hold for a taskset to be schedulable, this taskset is not schedulable
with this new priority ordering.

16

10 2 3 4 5 6 7 8 9 10

Preempted τ2 Executingτ1 Executing

Job released

t

t

Deadline Met Deadline Miss

Critical Time Zone

τ1

τ2

Figure 2.2: Sub-optimal Schedule for τ1 and τ2

2.2.3 Priority Assignment

The examples in the previous section highlight the significance that priority assign-
ment may have on the schedulability of a taskset. Although Fineberg and Serlin (for
two tasks) [48] and Wyle and Burnett (for many tasks) [94] identified that ordering
tasks by their periods (shortest period→ highest priority) made tasksets more likely
to be feasible, it was Liu and Layland [73] who showed that Rate-Monotonic Priority
Ordering (RMPO) was optimal for tasksets where Di = Ti.

In 1982, Lung and Whitehead [70] showed that for Di ≤ Ti, a different type
of priority assignment was optimal, named Deadline Monotonic Priority Ordering
(DMPO) where priorities for tasks are assigned in order of relative deadlines (shortest
deadline→ highest priority). In 1990 Lehoczky [69] proved that neither DMPO or
RMPO are optimal for arbitrary deadline tasks, where D may be greater than T,
however Audsley et al. [2, 3] derived the Optimal Priority Assignment (OPA) algorithm
which produces a priority ordering that results in a taskset being schedulable, if
such an order exists.

Listing 2.1: Optimal Priority Assignment Algorithm

for each priority level k, lowest first {

for each unassigned task τi {

if(τi schedulable at priority k, with all other unassigned tasks

assumed to have higher priorities) {

assign τi to priority k
break (continue outer loop)

}

}

return unschedulable

}

return schedulable

17

2.2.4 Schedulability Tests

While determining if a taskset is schedulable under a given algorithm is trivial for
a small taskset such as that in Example 1, it can soon become intractable for large
tasksets containing many tasks.

Both Liu and Layland [73] and Serlin [82] derived and proved a sufficient utilisa-
tion based test when using RMPO;

N

∑
i=1

(
Ci
Ti

)
≤ N(21/N − 1) (2.1)

However, Lehoczky et al. [68] later demonstrated that this test is not necessary (i.e
pessimistic) therefore tasksets with utilisation values greater than the implied ln(2)
upper bound may be feasible. It was in this paper that Lehoczky et al. [68] developed
an exact feasibility test for tasksets with priorities assigned using RMPO:

Wi(t) =
i

∑
j=1

Cj

⌈
t
Tj

⌉
≤ 1 (2.2)

Wi(t) denotes the workload on the processor due to higher priority tasks, at time
t which must be checked between 0 and Di. If a value of t in this range cause the
above condition to hold, then taskset is deemed schedulable.

An alternate field of schedulability analysis is Response Time Analysis (RTA) which
was first investigated by Harter [56, 57] who developed the Time Dilation Algorithm.
Equivalent schedulability tests were also developed by Joseph and Pandya and [62]
Audsley et al. [4]. Audsley et al. [2, 3] later expanded this test to account for release
jitter and blocking.

Ri = Ci + Bi + ∑
j∈hp(i)

⌈Ri + Jj

Tj

⌉
Cj (2.3)

The summation term calculates the interference due to higher priority tasks
competing for the processor and preempting τi. As the function is non-decreasing,
the equation can be solved iteratively using a recurrence relation:

Rn+1
i = Ci + Bi + ∑

j∈hp(i)

⌈Rn
i + Jj

Tj

⌉
Cj R0

i = Ci (2.4)

18

The condition ∀τi | Ri ≤ Di must hold for the taskset to be schedulable. This
schedulability test also applies to tasksets where deadlines can be less than the
period of a task (Di ≤ Ti), therefore does not suffer the same limitation associated
with Liu and Layland’s utilisation based test. Davis et al. [33] have suggested a
number of techniques to speed up convergence including new initial values.

Tindell [89] further extended this response time equation in order to support
arbitrary deadlines, that is Di ≥ Ti or Di ≤ Ti, referred to hereafter as Di ∼ Ti.

Level-i busy period

1st 2nd 3rd 4th 5th

Ci

ri = w(2) - 2Ti

Ti

Ti

Ti

Ti

τhigh

τi

τlow

Invocations of τi

Thigh Thigh

Chigh

w(2)

Figure 2.3: Level-i busy period over five invocations of τi

Using Lehoczky’s notion of a level-i busy period [69], the worst case response time
of a task τi, can be determined by assessing a number of windows. A level-i busy
period is the maximum time interval for which a processor executes tasks with
priority i or higher. Lehoczky proved that the longest response time for a task τi, is
in a level-i busy period that starts at the critical instant [69].

Figure 2.3 shows an example of such a level-i busy period. With constrained
deadlines (D ≤ T), this taskset would not be schedulable, however since τi has a
deadline that is greater than Ti, successive jobs of τi can be released before previous
jobs have completed. All releases of τi in the busy period need to be assessed to
determine the worst-case response time. For each overlapping release a window,
q, is defined. The value w(q) represents the time interval from the start of the busy

19

period to the completion of the current invocation, q, of τi (released at qTi). This can
be calculated using the recurrence relation:

wn+1
i (q) = Bi + (q + 1)Ci + ∑

j∈hp(i)

⌈wn
i (q) + Jj

Tj

⌉
Cj (2.5)

As the current invocation of τi is released at qTi, the response time of the job
is defined as the length of the window minus qTi. Including jitter, this becomes
ri(q) = wn

i (q) − qTi + Ji. The worst-case response time of τi is therefore Ri =

maxq=0,1,2...ri(q).
While each increasing value of q needs to be assessed, if a job of τi completes

its execution before the next invocation, the busy period has ended and hence the
worst-case response time must have been determined.

2.2.5 Shared Resources

The Liu and Layland [73] model (subsection 2.2.1) imposes a strict rule of task
independence. Although this assumption aided the development of the research
field in its infancy, in real systems, tasks are rarely independent and are often
required to communicate.

However allowing task interaction, particularly shared resources, can lead to
the blocking of higher priority tasks by lower priority tasks. This is called priority
inversion and was first described by Lampson and Redell in 1980 [67]. An example
from Burns and Wellings [29] illustrates this phenomenon well.

Example 3. Consider the taskset below whose tasks shares resources Q and V which are
accessed under mutual exclusion.

Task Priority Execution Sequence Release Time
a 4 EQQQE 0
b 3 EE 2
c 2 EVVE 2
d 1 EEQVE 4

Table 2.1: Execution Sequence for Taskset that exhibits Priority Inversion

20

20 4 6 8 10 12 14 16 18

Preempted

Job released

t

Deadline Met

τa

τb

τc

τd

Executing with
Q locked

Executing with
V locked

Executing

Blocked

Figure 2.4: Example of Priority Inversion

The lowest priority task τa, is the first to be released and takes control of critical section Q.
τb and τc are then release at which point τc preempts τa as it is now the highest priority
runnable task. At the point τa is preempted it still holds the lock on resource Q.

τc takes control of critical section V and is preempted by τd, also without releasing the
lock it holds. τd executes for two cycles until it requires access to Q.

The lock to Q is held by τa, therefore τd is blocked and waits on the lock for Q. With τd

not currently runnable it is preempted by the next highest priority task, τc which completes
its execution and releases the lock on V.

τb is the next highest priority task able to execute as τd is still blocked waiting for resource
Q. τb completes its execution allowing τa to finally complete its execution in Q to release
the lock. As soon as the lock is been released, τd is runnable and preempts τa. τd enters Q,
followed by V which was released by τc earlier, completing its execution. τa is allowed to
complete its execution after τd has signalled completion.

Had no shared resources been involved, it would be expected that τd would
have a worst-case response time of 4 (if shared resources were considered standard
execution), instead τd was blocked for 13 processor cycles by lower priority tasks
which were allowed to execute despite a higher priority task waiting to execute.
This is called priority inversion.

Probably the most widely known case of priority inversion in a real system is
the NASA Mars Path finder [61] which was exhibiting seemingly random resets
resulting in loss of data. It was discovered, after some time, that a long running
medium priority task was causing interference to a low priority task that held the
mutex needed by a high priority task. This resulted in the system watchdog timer

21

being triggered when a higher priority data bus task missed its deadlines, causing
a system reset. Fortunately the spacecraft’s Real-Time Operating System (RTOS)
supported the Priority Inheritance Protocol which was remotely activated to resolve
the issue.

Priority Inheritance Protocol

Sha et al. [84] introduced the Priority Inheritance Protocol (PIP) to address the issue of
priority inversion. Each task has a base priority assigned by a priority assignment
protocol (e.g DMPO). If a task, τ1, with base priority, P0, becomes blocked by a
lower priority task, τ2, with base priority P1, τ2 will execute with priority P0. If τ2 is
blocking one or more higher priority task it will execute with the highest priority of
all blocked tasks. When τ2 releases the lock on the resource its priority will return to
its base value. Blocking of a task τi in a system were PIP is used, can be bounded
[29, 84] by:

Bi =
k

∑
k=1

usage(k, i)Ck (2.6)

Where usage is a binary function, k is a critical section and Ck is the worse case
execution time of the k-critical section.

Priority Ceiling Protocol

The Priority Inheritance Protocol is not without its disadvantages however. A task
may be blocked multiple times and in certain situations deadlock may occur. Sha et
al. [84] built upon the PIP to create the Priority Ceiling Protocol (PCP) which assigns a
priority to a critical section or resource. The priority assigned to a resource, called
the priority ceiling is equal to the highest priority of all tasks that could potentially
access it.

A task, τi, is not able to access a resource unless its priority is greater than the
ceiling priority of all resources currently locked. If the priority of the task is lower
than this, it is blocked. When the task is allocated access to the critical section,
it executes with its base priority unless it blocks a higher priority task, in which
case it inherits the ceiling priority of the resource until it releases the lock. This
new protocol not only avoids the deadlock problem of PIP, but also ensures that a
invocation of a task can be blocked at most once [77].

22

Stack Resource Policy

Baker’s [6] Stack Resource Policy (SRP) builds upon the Priority Ceiling Protocol
with the view to avoid unnecessary context switches and can be used by both Fixed
Priority and Earliest Deadline First (see section 2.3) scheduling algorithms.

The SRP assigns a preemption level pl , to each task. In the case of fixed priority, a
preemption level is equal to the static priority assigned to a task. Each resource, K,
has a Current Resource Ceiling value dKe, which is equal to the maximum preemption
level of any task that may access it. Another ceiling value called the System Ceiling is
defined as being the maximum Current Resource Ceiling and is expressed as:

sc = max{dKie|i = 1, ..., m} (2.7)

When a task τi arrives it is not allowed to preempt another task until:

1. Its priority is the highest among the jobs ready to execute.

2. Its preemption level pl is higher than System Ceiling.

The advantages of the the SRP is that the system may execute on a single stack
and the maximum number of context switches per job is limited to two. This is due
to a job having access to all the locks it requires before it starts execution.

2.2.6 Non-Preemptive Fixed Priority

It has been assumed up to this point that the system allows the preemption of jobs
which have not yet completed their execution. An alternative approach is to allow a
job to retain control of the processor until it signals completion. This method may
result in less context switches at the expense of increased blocking times.

George et al. [52] and later Bril et al. [21] proved that similar to the preemptive case,
the worst-case response time of a task, τi, is found in the level-i busy period. The
subtle difference in the non-preemptive approach is that the start of the busy period
is at the ∆-critical instant. A ∆-critical instant is when task, τi, is simultaneously
released with all higher priority tasks at time t. In addition, at t− ∆, a lower priority
task, tk, which has the longest execution time of all lower priority tasks, is released
(should such a task exist).
Building on Tindell’s [89] approach to arbitrary deadline analysis, George et al.
developed an exact schedulability test:

wn+1
i (q) = qCi + ∑

j∈hp(i)

(
1 +

⌊wn
i (q) + Jj

Tj

⌋)
Cj + BNP

i (2.8)

23

Where
BNP

i = max
∀k∈lp(i)

(Ck − ∆) (2.9)

Like the preemptive version of this test, all releases of τi in the level-i busy period
need to be assessed to find the worst-case response time.

Ri = maxq=0,...,Q−1(Wi(q)− qTi + Ji + Ci) (2.10)

The last value of q that needs to be assessed is given by:

Q =

⌈
Ai + Ji

Tj

⌉
(2.11)

Where

A0
i =

N

∑
i=1

Ci Aj+1
i =

N

∑
i=1

⌈Aj
i + Jj

Ti

⌉
Ci when Aj

i = Aj+1
i , Ai = Aj+1

i (2.12)

If ∀τi | Ri ≤ Di holds, then taskset, τ, is schedulable under FP-NP. George et al. also
demonstrated that DMPO is not optimal for constrained deadlines under FP-NP,
however the Optimal Priority Assignment algorithm [2, 3] can be used to find a
schedulable priority ordering, if such an order exists.

2.3 Earliest Deadline First Scheduling

Earliest Deadline First (EDF) is one of the most widely used dynamic scheduling
algorithms. It assigns priority values based on a task’s absolute deadline, where
tasks with shorter absolute deadlines are assigned higher priorities.

2.3.1 Utilisation Test

As with fixed priority preemptive scheduling, Liu and Layland were first to intro-
duce a feasibility test for EDF [73]. This test is exact, however it only holds for the
simplified model of Di = Ti.

N

∑
i=1

Ui ≤ 1 (2.13)

24

2.3.2 Processor Demand Criterion

The worst-case response time for a task under the EDF scheduling policy does not
necessarily occur at the critical instant. This presents challenges for developing
response time analysis similar for EDF.

In 1990 Baruah et al. proposed [13, 15] the Processor Demand Criterion (PDC), a
function to calculate the load on the system due to all jobs released in time interval, t,
which have absolute deadlines at or before t. This was further extended by Spuri [85]
in 1996 to accommodate for jitter and blocking. The rationale is that the processor
demand at any value of t must not exceed capacity; that is ∀t | h(t) + b(t) ≤ t must
hold in order for a taskset to be schedulable.

The equations below can be used to calculate the processor demand and maximum
blocking time respectively:

h(t) =
N

∑
i=1

max
(

0,
⌊

t + Ji + Ti − Di
Ti

⌋)
Ci (2.14)

b(t) = max(Ca,k|Da − Ja > t, Dk − Jk ≤ t) (2.15)

where Ca,k is the maximum length of time for which task τa, needs to hold some
resource that may also be required by task τk.

An upper bound for the values of t that need to be assessed is given by:

La = max

{
(D1 − T1 − J1), . . . , (Dn − Tn − Jn),

∑n
i=1(Ti + Ji − Di)Ui

1−U

}
(2.16)

This bound is not well defined for taskset where U ≈ 1 however. To address this
limitation Spuri [85] derived a second upper bound for L called the synchronous busy
period. This is the time interval from when all tasks are released simultaneously and
at their maximum rate, ending when the processor becomes idle. This value can be
calculated by the recurrence equation:

w0 =
N

∑
i=1

Ci wj+1 =
N

∑
i=1

⌈
wj + Ji

Ti

⌉
Ci when wj = wj+1, Lb = wj+1 (2.17)

25

The upper bound L is therefore expressed as:

L =

min(La, Lb) U < 1

Lb U = 1
(2.18)

Baruah et al. [15] observed that only a subset of values of t that correspond to
absolute deadlines of jobs need to be considered, significantly reducing amount of
computation required. This can be expressed logically by:

∀t | t ∈ (0, L] ∧ t ∈ [∀i | kTi + Di − Ji | k : N] (2.19)

2.3.3 Quick Processor-demand Analysis

In real systems, L can be large and so the number of deadlines that need to be
assessed can become intractable. Zhang and Burns [97, 98] developed a method to
reduce the number of values of t that need to be checked, called Quick Processor-
demand Analysis (QPA). In contrast to other methods, QPA starts at L and works
backwards, checking only absolute deadlines for tasks.

Listing 2.2: QPA Algorithm

t := max{di | di < L}
while (h(t) + b(t) ≤ t and h(t) + b(t) > Dmin) {

if(h(t) + b(t) < t)
{t := h(t) + b(t)}

else

{t = max{ di | di < t}}
}

if (h(t) + b(t) ≤ Dmin) { schedulable }

else { not schedulable }

The algorithm for the schedulability test is listed above, where di denotes the absolute
deadline of a job of task τi. If U ≤ 1 and h(t) + b(t) converges to ≤ Dmin, the taskset
is deemed schedulable under EDF.

26

2.3.4 Shared Resources

Baker’s Stack Resource Policy (SRP) [6], introduced in section 2.2.5, is highlighted
as being suitable for both static and dynamic scheduling algorithms to account for
shared resources. Under EDF, preemption levels are assigned as the inverse of a
task’s relative deadline:

pl(τi) < pl(τj) ⇐⇒ Di > Dj (2.20)

A task τi can only preempt if:

1. The absolute deadline of τi is the earliest deadline of all active requests in the
taskset.

2. Its preemption level is higher than System Ceiling, defined as the highest ceiling
of any resource that is currently held.

Baker also extended the EDF utilisation test to include blocking as a result of SRP
[6, 97] under the condition that Di ≤ Ti:

∀k=1,...,n

(N

∑
i=1

Ci
Di

+
Bk
Dk

)
≤ 1 (2.21)

where Bk is the maximum blocking time of τk.

In 2015 Burns et al. [25] proposed an alternative approach to the SRP for EDF
named Deadline-Floor Inheritance Protocol (DFP). Each shared resource is assigned
a relative deadline, named the deadline-floor, which corresponds to the minimum
relative deadline of all tasks that may request access to the resource.

When a task executes in a shared resource its absolute deadline, di, becomes
the minimum of the task’s current absolute deadline and the deadline-floor of
the resource such that di = min{di, t + DFk} where t is the time the task locks
the resource and DFk is the deadline floor of resource k. This essentially gives
the executing task the highest priority of all tasks that may request control of the
resource, as with Baker’s SRP [6]. Furthermore, Burns et al. [25] show that the DFP
blocking factor is indeed equivalent to SRP. The advantage of this new approach
is a more simple implementation due being based on only deadlines rather than a
notion of preemption levels which would require run-time monitoring.

27

2.3.5 Non-Preemptive EDF

In the case of non-preemptive EDF, George et al [52] modified Spuri’s [85] processor
demand function to account for the new blocking factor.

∀t ≤ L,
N

∑
i=1

max
(

0,
⌊

t + Ji + Ti − Di
Ti

⌋)
Ci + bnp(t) ≤ t (2.22)

Where

bnp(t) =

0 @i : Di − Ji > t

max
Di−Ji>t

{Ci − 1} otherwise
(2.23)

If Equation 2.22 holds true and U ≤ 1, then the taskset is schedulable under EDF-NP.
In addition, as blocking and jitter have already been addressed in the QPA test,
substituting this revised blocking factor will result in an efficient schedulability test
for EDF-NP.

2.4 Sub-optimality of Fixed Priority Scheduling

Liu and Layland proved that Earliest Deadline First Preemptive (EDF-P) is an
optimal dynamic scheduling policy for implicit deadline tasksets if U ≤ 1 [73].
Furthermore, for a single processor, Dertouzos [42] proved that EDF-P was optimal,
such that if a valid schedule exists, then it can be found under EDF-P.

Using speedup factors [63] as measure of relative effectiveness, the combined
results of Liu and Layland and Dertouzos where EDF-P is considering an optimal
scheduling algorithm and Fixed Priority Preemptive scheduling (FP-P) a suboptimal
algorithm, the upper bound on the speedup factor is shown to be 1/ln(Ω) ≈ 1.44269.
This is the maximum value the speed of the processor must increase for a taskset
that is just schedulable under EDF-P to become just schedulable under FP-P where
D = T.

Sub-optimality of fixed priority scheduling was investigated by Davis et al. [40]
who in 2009 proved that the upper bound on the speedup factor for FP-P vs EDF-P
for constrained deadlines is 1/Ω ≈ 1.76322. In the same year, Davis et al. [37]
showed that for FP-P vs EDF-P, the speedup factor for arbitrary deadlines was
bounded between 1/Ω and 2 under optimal priority ordering [3]. Davis et al. [35]
later found the upper bound of FP-NP vs EDF-NP to be between 1/Ω and 2 for

28

implicit, constrained and arbitrary deadlines. In 2015 the implicit and constrained
bounds were proven to be exactly 1/Ω by Bruggen et al. [92].

FP-P

FP-NP EDF-NP

EDF-P

Figure 2.5: Summary of dominance relationships [38]

Figure 2.5 illustrates the relationship between EDF and FP policies where arrows
denote dominance. Note that there is no dominance between FP-P and FP-NP hence
both FP-P vs FP-NP and FP-NP vs FP-P can be investigated.

Using a genetic algorithm, my investigation (see Appendix A) into the sub-
optimality of FP vs EDF for arbitrary deadlines discovered tasksets that were greater
than the bound of 1/Ω for both the preemptive and non-preemptive cases. These
taskset were verified by 3 disparate implementations of the relevant schedulability
tests discussed in this chapter. As a result of these findings Davis et al. [36] were
able to derive and prove the exact bound for FP-P vs EDF-P and FP-NP vs EDF-NP
for arbitrary deadlines as 2. My investigation also probed the speedup factors for
FP-P vs FP-NP for implicit, constrained and arbitrary deadlines. Davis et al. [38]
have since derived the bounds for these cases (see Table 2.2). Although Davis et
al. [34] defined upper and lower bounds for arbitrary and constrained deadlines,
results from the investigation suggest that

√
2 may be an exact bound. This has yet

to be formally proved and remains and open problem .
For the converse case, that is FP-NP vs FP-P, Davis et al. [38] have proven that

the exact bound for implicit and constrained deadlines is 1 + Cmax
Dmin

, where Cmax is
the maximum worst case execution time of any task in the taskset and Dmin is the
shortest relative deadline of any task in the taskset. For arbitrary deadlines this
bound is 2 + Cmax

Dmin
.

Thekkilakattil et al. [87, 88] first investigated EDF-NP vs EDF-P, providing bounds
on the speedup factor. These bounds were later tightened by Abugchem et al. [1].

29

The exact bounds were identified by Davis et al. [38]. Completing the model, Davis
et al. [38] also defined the upper and lower bounds for FP-NP vs EDF-P.
The known values of upper and lower bounds on speedup factors for FP and EDF
as of September 2015 are listed below.

Lower Bound Upper Bound

FP-P vs EDF-P
Implicit-deadline [73] 1/ln(2) ≈ 1.44269

Constrained-deadline [40] 1/Ω ≈ 1.76322

Arbitrary-deadline [36] 2

FP-NP vs EDF-NP
Implicit-deadline [35, 92] 1/Ω ≈ 1.76322

Constrained-deadline [35, 92] 1/Ω ≈ 1.76322

Arbitrary-deadline [36] 2

FP-P vs FP-NP
Implicit-deadline [34] unknown 1/ln(2) ≈ 1.44269

Constrained-deadline [34]
√

2 ≈ 1.41421 1/Ω ≈ 1.76322

Arbitrary-deadline [38]
√

2 ≈ 1.41421 2

FP-NP vs FP-P
Implicit-deadline [38] 1 + (Cmax/Dmin)

Constrained-deadline [38] 1 + (Cmax/Dmin)

Arbitrary-deadline [38] 2 + (Cmax/Dmin)

FP-NP vs EDF-P
Implicit-deadline [38] 1 + (Cmax/Dmin) 2 + (Cmax/Dmin)

Constrained-deadline [38] 1 + (Cmax/Dmin) 2 + (Cmax/Dmin)

Arbitrary-deadline [38] 2 + (Cmax/Dmin)

EDF-NP vs EDF-P
Implicit-deadline [1, 38] 1 + (Cmax/Dmin)

Constrained-deadline [1, 38] 1 + (Cmax/Dmin)

Arbitrary-deadline [1, 38] 1 + (Cmax/Dmin)

Table 2.2: Summary of Upper and Lower Bounds on Speedup Factors

It is noted that the lower bound for the case of FP-P vs FP-NP with implicit
deadlines is not known. The investigation in Appendix A has derived an empirical
value of 1.34059 for this case. Further work is needed to derive a theoretical lower
bound and close the gap between the empirical value and theoretical upper bound.

30

2.5 Summary

This chapter has reviewed techniques used for real-time systems scheduling analysis
on a uni-processor system. While this is not an exhaustive review it provides the
reader with enough background knowledge to grasp the concepts on which mixed
criticality systems analysis is based.

Dynamic and static scheduling polices have been discussed, covering both
preemptive and non-preemptive cases. Methods to handling shared resources have
also been examined with particular emphasis on approaches that deal with the
priority inversion problem. The chapter concludes with results that were derived
from a short investigation I conducted into the sub-optimality of fixed priority
scheduling listed in Appendix A. These results were then placed in the wider context
of work on the sub-optimality of scheduling policies on uniprocessors systems.

31

32

3 Mixed Criticality Systems

Mixed criticality systems (MCS) consists of components of at least two levels of
criticality on a common hardware platform, where criticality is the required level
of assurance against failure [28]. Such systems are becoming increasingly common
in the avionic and automotive electronics industry where size weight and power
(SWaP) requirements are driving more efficient use of the underlaying hardware.

Due to the possible requirement for certification of HI criticality components (e.g
ISO26262, DO-178B/C), there may be multiple worst case execution time estimates
for the same components. This presents new scheduling challenges that can not
easily be addressed by traditional real-time scheduling theory. This chapter reviews
the current state of the art in terms of mixed criticality systems on uni-processor
systems and discusses some of the open issues facing researchers.

3.1 System Model and Terminology

Building upon the system model outlined in section 2.1 let L denote an ordered,
finite set of criticality levels, {L1, L2, ..., Ln}where L1 > L2 > · · · > Ln, and let Li be
the designed criticality level for task τi. For simplicity, this work will only consider
dual criticality systems where L = {HI, LO}.

The WCET value assumed for task τi at a specific criticality level is expressed as
Cl

i where l ∈ L. Vestal [91] highlighted that the WCET value is dependent on the
criticality of the task; the higher the criticality the more conservative and pessimistic
the estimate, that is CHI

i ≥ CLO
i for task τi. A task in a mixed criticality system can

therefore be defined by τi = (Ti, Di, ~Ci, Li) where ~Ci is the ordered set of Cl
i values.

The utilisation of a task τi is defined as Ul
i =

Cl
i

Ti
, while the total utilisation of a

taskset, τ, is defined as Ul = ∑N
i=1(

Cl
i

Ti
).

RLO
i denotes the worst-case response time of task τi in LO criticality mode whereas

RHI
i is the worst-case response time of task τi in HI criticality mode. R∗i represents

the worst-case response time of task τi during a criticality mode change LO→ HI.
Recall the set hp(i) represents the set of tasks with a higher priority than τi.

hpHI(i) represents a subset of hp(i) which contains tasks that are of higher priority

33

and higher criticality than τi. Similarly, hpLO(i) is the subset of hp(i) that contains
tasks that are of higher priority and lower criticality than τi.

3.2 Fixed Priority Scheduling

3.2.1 The Vestal Model

Research into MCS verification was stimulated by Vestal’s seminal paper [91] in
2007. Vestal outlined a task model based on the assumption that a task’s WCET is
dependent on the criticality level. That is, a task of higher criticality will have a larger,
more conservative WCET estimate using methods appropriate for certification than
if the task were of a lower criticality. This results in multiple WCET estimates for the
same task, one for each criticality level.

Vestals model is a single processor system based on Fixed Priority Preemptive
scheduling (FP-P) and does not account for shared resources or jitter. It is also
assumed that all tasks are periodic with constrained deadlines. The notion of
multiple execution time estimates for the same task, presents new scheduling
challenges. A particularly crucial observation made by Vestal is that deadline
monotonic (and by implication, rate monotonic) priority ordering is not optimal for
the mixed criticality system model.

Example 4. Consider a taskset from [91] shown in Table 3.1. Using traditional real-time
scheduling principles, priorities would be assigned deadline monotonically1, giving task τ1

the highest priority. Assuming that that the tasks do not execute for longer than their CLO

estimates the taskset is deemed schedulable.
However if the tasks were to execute for their more pessimistic, CHI values, this priority

ordering is no longer optimal and τ2 would miss its deadlines due to τ1 fully utilising the
processor. In this case a LO criticality task has caused a HI criticality task to miss its assured
deadline, a phenomenon named criticality inversion.

Task T D CHI CLO L P
τ1 2 2 2 1 LO 0
τ2 4 4 1 1 HI 1

Table 3.1: Example MC Taskset

1Proven to be optimal for FP-P D = T [70, 73]

34

10 2 3 4 5 6 7 8 9 10

Preempted τ2 Executingτ1 Executing

Job released

t

t

Deadline Met Deadline Miss

τ1

τ2

Figure 3.1: τ1 and τ2 executing with Criticality Level LO

10 2 3 4 5 6 7 8 9 10

Preempted τ2 Executingτ1 Executing

Job released

t

t

Deadline Met Deadline Miss

τ1

τ2

Figure 3.2: τ1 and τ2 executing with Criticality Level HI

Vestal suggested that Audsley’s Optimal Priority Assignment algorithm [2, 3]
may be modified to derive a priority assignment for a MCS taskset. The optimality
of this approach was later proved by Dorin et al. [43].

One of the major limitation of the Vestal model is that the computation time
of all tasks must be known for all criticality levels. This is not always possible in
practice. For example, the process to obtain a WCET value for a task at the highest
criticality level may involve expensive static code analysis and on-target timing
measurements. It was recognised in the paper that a mechanism is required to deal
with LO criticality jobs that attempt to exceed their designated WCET budgets to
ensure that HI criticality tasks meet their deadlines.

Baruah and Vestal [8] later lifted the restriction of supporting only periodic task by
using a sporadic task model. They compare fixed task-priority, fixed job-priority and
dynamic priority schemes and present a new hybrid scheduling algorithm based on
Audsley’s OPA [2, 3]. The policy is shown to dominate EDF (see section 3.3) and
Vestal’s algorithm [91] in the sense that any taskset that is schedulable under EDF or
Vestal’s approach is also schedulable under this policy. It is shown to be not optimal
for fixed job-priority scheduling, however, with a counter example given by the
authors.

35

3.2.2 Period Transformation

An alternative methods to schedule mixed criticality systems is to use Period Trans-
formation [83]. Using time-slicing, a HI criticality task can be scheduled as if it has
a shorter period, T and execution time, C. The motivation for this is to be able to
schedule a HI criticality task, which has a longer period than any LO criticality task,
with a higher priority [91]. For example, should a HI criticality task have a greater
period than a LO criticality task, for each HI criticality task, τj transform T

′
j = Tj/n

and C
′
= Cj/n for an n that results in the transformed period being less or equal to

the shortest untransformed period of any LO criticality task.
Using this method in conjunction with rate monotonic priority ordering all HI

criticality tasks will have higher priorities than any LO criticality tasks, avoiding
criticality inversion. Tasks are in effect partitioned by criticality level, an ordering
called criticality monotonic priority ordering (CrMPO).

Fleming and Burns [49] demonstrated that period transformation can be extended
to many criticality levels. The increase in criticality levels complicates the analysis
however. For example in a system with LO, MID and HI criticality tasks where
only a MID criticality task requires transformation, it is possible for the transformed
MID criticality task period to be shorter than an untransformed HI criticality
task, resulting in a taskset that is not ordered criticality monotonically when rate
monotonic priority ordering is applied. Instead, the process of transformation
needs to be applied iteratively starting at the lowest criticality level, time-slicing the
criticality level immediately above if required.

Period transformation, at least in the context of mixed criticality, is not very effi-
cient for actual systems, however. There is an increase in context switch overheads
and tasks must either be explicitly programmed to be able to be time sliced or
runtime monitoring must be implemented to enforce allocated execution slots. With
increasing criticality levels, the number of transformations required can also become
intractable [49].

3.2.3 Job Scheduling

In 2010 Baruah et al. [10, 71] introduced Own Criticality Based Priority (OCBP), a
policy based on job scheduling. A modified form of Audsley’s OPA algorithm [2, 3]
is used to assign priorities to jobs based the criticality of the job (rather than the
criticality of the generating task). This algorithm not only gives a priority ordering
but a sufficient schedulability test. The advantage of this approach is increased
performance over time-partitioning, however it is not an optimal scheduling policy

36

as demonstrated by a given counter example. Baruah et al. [11] later extended
this policy to many criticality levels and using speed-up factors [63] as measure of
relative performance they showed that it outperformed Vestal’s original analysis
[91].

The reason this avenue of research was largely abandoned is that it can not be
applied to recurrent tasks and there is a large amount of computation required at
runtime to recalculate priorities. Guan et al. [55] relieved this second limitation by
presenting an OCBP-based policy that limited the run-time computation of priorities
to polynomial complexity. Despite this improvement, active research has favoured
analysis based on recurrent tasks.

3.2.4 Static Mixed Criticality

Static Mixed Criticality (SMC) incorporates run-time monitoring to add the capability
to abort overrunning LO criticality jobs. Presented by Baruah et al. [14, 26] SMC
directly solves the issue of having to verify all tasks up to the highest criticality
level. That is CHI values for LO criticality tasks need not be known due to the strict
enforcement of execution times.

Consider again the taskset in Table 3.1, with the SMC scheduling policy that aborts
lower criticality jobs that attempt overrun. In LO criticality mode the schedule is
the same as shown in Figure 3.1, however in HI criticality mode, τ2 now meets its
deadlines as any jobs of τ1 that attempt to execute for longer than its assumed CLO

values will be aborted. This is illustrated in Figure 3.3 below.

10 2 3 4 5 6 7 8 9 10

Preempted τ2 Executingτ1 Executing

Job released

t

t

Deadline Met Job Aborted

τ1

τ2

Figure 3.3: τ1 and τ2 executing with Criticality Level HI with SMC

Note that a job of τ1 may not execute for longer than its estimated CLO value. SMC
enforces the execution budget by means of run-time monitoring, aborting the job
should it not signal completion in time.

37

3.2.5 Adaptive Mixed Criticality

Baruah et al. [14] further utilised the notion of run-time monitoring to develop a
new scheduling approach called Adaptive Mixed Criticality (AMC). This algorithm
dominates SMC and Criticality Monotonic Priority Ordering (CrMPO) in the sense
that if there is a taskset that can be scheduled by SMC or CrMPO, then it can be also
scheduled by AMC.

An AMC system starts in the lowest criticality mode, LO, and jobs are assumed
to execute with their up to their assumed CLO

i values in order of priority. If a HI
criticality job exceeds its CLO

i execution time without signalling completion to the
run-time monitor, then a system criticality mode change, LO→ HI, will occur.
HI criticality tasks will be assumed to execute up to their CHI values in order of
priority, while all LO criticality tasks are descheduled. This is in contrast to SMC
where only the overrunning LO criticality task is descheduled. While this approach
allows increased schedulability of HI criticality tasks (due to slack gained from
dropped LO criticality tasks), there is a complete loss of LO criticality function.
Baruah et al. [14] presented two methods of sufficient schedulability analysis for
AMC; AMC-response time bound (AMC-rtb) which is based on the SMC response time
analysis and AMC-max which considers the points which a criticality mode change
may occur and determines the maximum value to calculate the worst-case response
time. Like SMC, priority ordering for AMC can be applied using the OPA algorithm
[2, 3, 14].

Fleming and Burns [49] generalised AMC-max to n-criticality levels, however the
analysis becomes computationally expensive with each additional criticality level.
Carrying out analysis on the performance of n-criticality AMC, they determined
that both AMC-max and AMC-rtb continue to dominate SMC and that AMC-rtb
remains a good approximation to AMC-max. It can be speculated that due to this
obsergation, AMC-rtb is more likely to be adopted over AMC-max, especially if the
number of criticality levels increase.

Zhao et al. [99, 100] built upon AMC-rtb to use preemption thresholds called
PT-AMC motivated by reduced stack usage. Preemption threshold scheduling (PTS)
[93] allows a task to avoid preemption from higher priority task up to a bounded
priority. While integrating PTS with AMC-rtb results in reduced stack usage, it is
based on Baruah et al.’s [14] dual criticality system model and it is unclear if the
sufficient schedulability tests presented will scaled to multi-criticality due to the
additional complexity.

Baruah and Chattopadhyay [7] modified SMC and AMC to permit periods to vary
with criticality as opposed to computation times. The advantage of this approach is

38

to schedule MC systems where certification pessimism is expressed in terms of task
periods (in the case of event handlers), rather than WCET. This is particularly useful
for communication streaming where criticality modes may correspond to levels of
service.

In 2012, Davis and Bertogna [32] presented a scheme that allows tasks to have
final non-preemptive regions that was shown to dominate both FP-P and FP-NP
(section 2.2). Burns and Davis [24] extended AMC to use this scheme initially
focusing on a dual criticality model but discussing how it can scale to multiple
criticality levels. Empirical evaluations show that this scheme offers significant
improvements over standard AMC in terms of schedulability. It is worth noting that
this method requires RTOS support to control deferred preemption behaviour in
addition to the basic run-time monitoring of AMC.

3.2.6 Zero-Slack Scheduling

An alternative approach to increasing resource utilisation of mixed criticality systems
is zero-slack scheduling (ZSS). First proposed by Niz et al. [41], LO criticality tasks
can be run on the slack generated by HI criticality tasks, when running with their
CLO execution budget.

The policy has two modes of operation, normal (n) and critical (c). When running
in normal mode, tasks execute based on priority assignment. In critical mode, all LO
criticality tasks are suspended to prevent interference to HI criticality tasks. The HI
criticality tasks will execute in the slack created by suspended LO criticality jobs.
The most important mechanism in zero-slack scheduling is the zero-slack instant
(Zi), this is the last possible time at which a task could switch from normal mode to
critical mode to meet its deadline when they system is overloaded.

Task T D CLO CHI L P
τ1 4 4 2 2 2 0
τ2 10 8 2.5 5 1 1

Table 3.2: Example Zero-slack Scheduling Taskset

39

10 2 3 4 5 6 7 8 9 10

Preempted τ2 Executingτ1 Executing

Job released

t

t

Deadline Met

τ1

τ2

τ2 Slack

τ2 Triggers c mode Return to n mode

Figure 3.4: τ1 and τ2 under Zero-slack Scheduling Policy

Example 5. Consider the a two task taskset with the attributes in Table 3.2 [41] whose
execution is illustrated in Figure 3.4.

At t = 0, τ1 has the highest priority so gains control of the processor and completes its job
at t = 2. τ2 then begins to execute its job until t = 4 when it is preempted by a second job
of τ1. At t = 5, τ2 has not completed its execution and is at its zero-slack instant (that is
under overload conditions, there is just enough time for it to complete its execution and meet
its absolute deadline).

The system switches to critical mode and τ1 is suspended to allow τ2 to complete its job.
The system returns to normal mode after τ2 has completed the remaining 0.5 units of its LO
criticality budget.

The major drawback of zero-slack scheduling is that it is not designed for certific-
ation and although will execute HI criticality tasks at the expense of LO criticality
tasks under overload conditions, not all HI criticality task deadlines can be guar-
anteed. Huang et al. [58] demonstrated an example where a LO criticality task
overrun could cause a HI criticality task to miss its deadline. They also identified
new analysis to incorporate this previously unaccounted interference.

While zero-slack scheduling has been shown to have low overheads [41, 58], it
does not cater for sporadic tasks (which provide challenges in terms of slack) and
only supports two levels of criticality (critical and normal).

40

3.2.7 Resource Sharing

Resource sharing is one of the most challenging issues in mixed criticality systems.
While sharing of data between tasks of the same criticality is necessary, data and
communication between different levels of criticality present new scheduling prob-
lems. For example a LO criticality task may hold the lock on a resource required by
a HI criticality task, resulting in the HI criticality task missing a deadline should
the LO execute for longer than its assumed CLO value.

Burns [22] applied the original priority ceiling protocol (see section 2.2.5) to
mixed criticality systems (MC-OPCP), initially focusing on dual criticality models.
Resources are partitioned into groups (one per criticality level) each with their own
ceiling priority. Resources can then only be locked if the resource is of the same
criticality of the task trying to access it. With this protocol a task can only be directly
blocked by a lower priority task of the same criticality level. As this approach
is essentially an independent PCP scheme per criticality level, it does not allow
shared resources between criticality levels. Burns made the observation that if a LO
criticality task should be suspended (due to run-time budget enforcement) while
holding the lock to a resource, it could have an impact on a future LO criticality job
requiring the lock. To solve this problem, budget inheritance is used among LO
criticality tasks to reduce blocking times. Although MC-OPCP was developed for
dual criticality systems, due to its isolation approach, it scales well to a system with
multiple criticality levels.

In 2013 Zhao et al. [101] developed the Highest-Locker Criticality Priority Ceiling
Protocol (HLC-PCP) as an extension to AMC. Unlike MC-OPCP it is designed to
allow sharing of resources between criticality levels, introducing the concept of
dynamic criticality and protection for active LO criticality tasks that hold the lock
on a resource required by a HI criticality task during criticality mode change. As
HLC-PCP is based on the dual criticality version of AMC, it is as yet unknown the
performance impact that this scheme will have on multi-criticality systems.

For the zero-slack scheduling, Lakshmanan et al. [66] derived two new protocols.
The first, Priority-and-Criticality Inheritance Protocol (PCIP), is an extension of
the Priority Inheritance Protocol (section 2.2.5) to include criticality inheritance.
The inheritance of criticality prevents a task from being suspended during a crit-
icality mode change if it is holding the lock needed by a task with a higher base
criticality. The second protocol, named Priority-and-Criticality Ceiling Protocol
(PCCP), is based on the Priority Ceiling Protocol (section 2.2.5) and provides the
same advantages in the context of dual criticality zero-slack scheduling.

41

3.3 Earliest Deadline First Scheduling

Baruah and Vestal [8] were first to consider Earliest Deadline First (section 2.3)
scheduling applied to mixed criticality systems. They noted however, that EDF was
not optimal when applied to systems with tasks that have multiple execution times
and so like Vestal’s SMC-NO algorithm, all tasks must be verified up to the highest
criticality level. This behaviour is in contrast to non-mixed criticality systems where
EDF has been shown to dominate fixed priority scheduling algorithms. The authors
presented a new hybrid scheduling algorithm, however it is not optimal in the sense
that there are tasksets that are FJP-schedulable which are unschedulable with their
policy.

Park and Kim [76] developed a dynamic scheduling algorithm for certifiable dual
criticality systems called Criticality Based EDF (CBEDF). The algorithm is based on
slack reclamation where remaining slack (time between CLO and CHI when a HI
criticality task runs in LO mode) and empty slack (remaining time if all HI criticality
tasks executes for their CHI values) are given to LO criticality tasks to execute on,
allowing increased utilisation. CBEDF was shown to outperform EDF and OCBP
(subsection 3.2.3) in terms of schedulability, but it can not easily be extended to
multiple levels of criticality, limiting its applicability to actual systems. CDEDF
does have the advantage of not abandoning all LO criticality tasks in the event of a
HI criticality task executing for its full CHI value. However, as LO criticality jobs
only execute on free slack (which is not fully computed until runtime) there is no
control over which LO criticality jobs are abandoned in the event of a HI criticality
job running for longer than its CLO value.

EDF with Virtual Deadlines (EDF-VD) was introduced by Baruah et al. [12]. The
scheme uses artificial deadlines to schedule tasks, reducing the deadline of HI
criticality tasks during the LO criticality mode if the utilisation is too high (≥ 1)
to schedule all tasks with their own criticality level execution times. The authors
showed how this scheme may be extended to multiple criticality levels, however it
suffers the limitation of other mixed criticality scheduling algorithms by dropping
LO criticality tasks when a criticality change occurs. Deadlines for HI criticality
tasks are also reduced by the same factor rather than on a per-task-basis.

Ekberg and Yi [45] also proposed a scheme using artificial deadlines to prioritise
HI criticality tasks. HI criticality tasks are given early virtual deadlines to encourage
that they execute before LO criticality tasks under EDF. In contrast to EDF-VD,
deadlines are reduced on a per-task basis rather than using a global reduction factor.
The motivation of this approach is that when a criticality mode change occurs, there

42

is less execution demand on the processor from carry over HI criticality jobs (active
but not complete jobs) allowing them to meet their actual deadlines. The side effect
of reducing the execution demand on the processor during a criticality mode change
is that the demand in LO criticality mode is increased. Ekberg and Yi presented
a pseudo-polynomial algorithm that tunes the artificial deadlines to satisfy both
demand-bound functions. Their algorithm shows a large improvement over OCBP,
AMC-max and EDF-VD in terms of schedulability of tasksets, however from an
implementation standpoint, no evaluation of context switch overheads has been
undertaken. It is unclear how much impact this would have on the schedulability
on actual hardware using this algorithm. The method also suffers from the issue
of abandoning all low criticality tasks after a mode change, behaviour that is not
desirable on actual systems. Ekberg and Yi later generalised their approach to allow
all task parameters to vary with criticality levels and indeed more than two criticality
levels [46]. Their experiments showed a similar improvement to the restricted model,
however as the number of criticality levels increase, the performance of this approach
decreases compared to other MCS scheduling algorithms.

Easwaran [44] made the observation that Ekberg and Yi’s approach was pessim-
istic with regards to the calculated processor demand of carry over jobs. Easwaran
presents a new analysis that calculates the demand based function of HI and LO
criticality jobs as a whole, providing tighter analysis and improved performance
under simulation. While this algorithm offers many improvements, it is restricted to
a less general task system, with only two criticality levels and constrained deadlines.

Yao et al. [95] also built upon Ekberg and Yi’s virtual deadline scheduling
algorithm. It is again restricted to constrained deadlines, however it is more easily
extendable to many criticality levels than Easwaran’s proposal (which becomes com-
putationally expensive with increased levels of criticality). Yao et al.’s improvements
come from utilising the QPA algorithm (subsection 2.3.3) for schedulability analysis
named QPA-MC. This also results in less computation required for the calculations.
Using a simulated annealing algorithm to assign artificial deadlines, Yao et al.’s
approach outperforms Ekberg and Yi’s algorithm in terms of schedulability of
randomly generated tasksets.

A reservation-based approach was attempted by Lipari and Buttazzo [72]. In some
ways it is similar to Park and Kim’s CBEDF in the respect that LO criticality tasks
run on the reclaimed processor capacity. However, Lipari and Buttazzo’s approach
requires a reservation server for each task that monitors execution at runtime and
allocates reclaimed budget to LO criticality tasks when HI criticality tasks execute
for less than their pessimistic computation values. They use a similar method to

43

EDF-VD to schedule HI criticality tasks as early as possible to maximise the amount
of capacity reclaimed. In addition to the overheads imposed by the necessary
servers, the approach does not guarantee the schedulability of low criticality tasks in
low criticality mode and Lipari and Buttazzo’s approach is only for dual criticality
systems, limiting its application.
An interesting use of this approach is that HI criticality tasks execute independently
of LO criticality task behaviours, therefore in HI criticality mode, LO criticality
tasks can continue to execute in a soft-real time manner akin to a reduced (and
unquantified) quality of service. This is a departure from most MCS scheduling
algorithms which abandon LO criticality tasks after a criticality mode change.

Su et al. [86] addressed the issue of the abandonment of LO criticality tasks
by using an elastic-based task model [30]. Their model allows variable periods
for LO criticality tasks, with clearly defined maximum period which represents a
minimum level of service. Under their Early-Release EDF (ER-EDF) scheme, if a
HI criticality task executes for less than its allocated CHI value, LO criticality tasks
may be released earlier, executing more frequently than their maximum period
without affecting the timing of the HI criticality tasks. While the advantages of this
approach are clear in terms of guaranteeing a minimum frequency of service for LO
criticality tasks in the HI criticality mode, it is not very general. While a minimum
frequency can be guaranteed if all HI criticality tasks execute for their CLO values, a
desired frequency in LO criticality mode is not guaranteed, although the frequency is
bounded to prevent a task from executing more frequently than required. It is also
unclear if this scheme will scale to more than two criticality levels.

3.3.1 Resource Sharing

Zhao et al. [99] presented an extension to the Stack Resource Protocol (section 2.2.5)
to be used with Ekberg and Yi’s scheduling algorithm [45], called MC-SRP. This
protocol avoids unbounded blocking by allowing a task to be blocked at most once
per critical section per criticality mode. The authors go on to integrate preemption
threshold scheduling [93] in their policy which they rename MC-SRPT (MC-SRP with
Thresholds). This gives the additional properties of a job only being blocked before
it starts execution and reduced stack usage. Although perhaps not a limitation from
a safety perspective, MC-SRP(T) does not allow shared resources between criticality
levels. It also only supports Ekberg and Yi’s dual criticality model with constrained
deadlines, rather than their more general model [46].

44

3.4 Criticality Modes

A common theme among most mixed criticality scheduling policies is the concept of
criticality modes. A system will usually start in its lowest (least assured) criticality
mode and will change modes to a higher criticality mode should tasks not behave
as expected, ensuring the timing requirements of higher criticality tasks [23].

In the fixed priority scheduling policies discussed above, during a criticality
change, LO criticality jobs are either dropped on a per task basis (SMC) or on a
per criticality basis (AMC). While this ensures HI criticality tasks meet their timing
constraints, the abandonment of LO critically tasks in the event of a criticality mode
change is not acceptable in real systems. There needs to be a way to provide graceful
degradation of LO criticality tasks under overload conditions to offer a reduced
quality of service (QoS).

Burns and Baruah [27] proposed a revised system model that would reduce a
LO criticality task’s priority (to background level), reduce the task’s execution time
budget or increases the period to guarantee some level of service. The first approach
allows LO criticality tasks to use the slack generated in the HI criticality mode
(should any exist). The second two approaches do no take advantage of spare
capacity and so require capacity reclamation methods.

Santy et al. [80] propose a different approach for letting some LO criticality tasks
execute even after the system has switched to HI criticality mode, as long as their
execution does not compromise the schedulability of HI criticality tasks. In effect
Santy et al.’s algorithm delays the suspension of LO criticality tasks until the latest
possible time rather than at the mode change, reducing the number of dropped jobs.

Jan et al. [60] used an elastic task model in the context of MCS by stretching a LO
criticality task’s period in order to decrease the load on the system in HI criticality
mode. This permits LO criticality functionality with a reduced frequency at the
expense of using online-decision algorithms to compute the required stretch factor.

In 2014, Fleming and Burns [50] introduced the notion of importance in mixed
criticality systems, allowing the system designer to specify which LO criticality tasks
are suspended first in the event of a criticality mode change. This provides more
control over how the system should degrade. Fleming and Burns also highlighted
that this approach could be used to group a number of LO criticality tasks together
(as applications), providing a more realistic system model. The investigation
was limited to a dual criticality model however and does not allow dropped low
criticality tasks to be reintroduced, although this would be the next logical extension
to their scheme.

45

Gu et al. [54] presented a policy where the system is isolated into components
with each assigned a tolerance value. If the number of HI criticality tasks executing
with their HI criticality behaviour within a component does not exceed this toler-
ance, than the criticality mode change within the component has no effect on the
schedulability of LO criticality tasks executing in other components.

For EDF, Su et al. [86] have tried to address the issue of abandoning tasks by
also using an elastic mixed-criticality task model, introducing a policy called Early-
Release EDF (ER-EDF) which allows LO criticality tasks to be released early on the
slack generated by HI criticality tasks. This variable period allows LO criticality
tasks to be more easily schedulable although, as discussed in section 3.3, while a
minimum service for LO criticality tasks can be guaranteed, a maximum service can
not, limiting its usefulness.

The ability to return to a system’s initial, LO criticality mode is desirable, not
only to return to more realistic execution budgets for HI criticality tasks, but to
reinstate LO criticality tasks that may have been descheduled during a criticality
mode change. The most obvious choice would be to return to LO criticality mode
when the system becomes idle [90]. This is in fact what most mode changing systems
do. Burns and Baruah’s [27] execution budget approach for example allows all tasks
to have their execution budgets returned to their CLO values if an idle tick is detected,
as does Santy et al. [80].

Santy et al. [81] later proposed the Safe Criticality Reduction (SCR) scheme that
allows a mixed criticality system to return to LO criticality mode without an idle tick
(such as with multiprocessor systems). This scheme iteratively checks which jobs
become inactive, starting with the highest priority HI criticality job. Once the lowest
priority, HI criticality job is inactive, the system can safely switch to LO criticality
mode and reintroduce LO criticality tasks.

Erickson et al. [47] approached the the problem from the perspective of their
mixed criticality multicore framework (MC2). Using a virtual-time mechanism to
alter the period of lower criticality tasks, they demonstrated the ability to provide a
scalable recovery time from overload conditions without the complete loss of all LO
criticality functionality.

In 2015 Bate et al. [17] developed a Bailout Protocol for mixed criticality systems
which provides a facility to return to LO criticality mode. The protocol enters a
bailout mode if a HI criticality task executes for its assumed CLO value without
signalling completion. The overrunning HI criticality task is granted a computation
loan to allow execution up to its CHI value. Slack generated by the abandonment of
LO criticality jobs and HI criticality tasks executing for less than their assumed CHI

46

value is used to replenish the notional computation debt. When the bailout fund is
zero and the lowest priority HI criticality job has completed its execution, it is safe
to return to LO criticality mode. Furthermore, Bate et al. [17] demonstrated that by
using offline sensitively analysis to tune assumed CLO values of tasks, it is possible
to reduce the number of times a system will enter the bailout mode.

3.5 Implementation

Implementation research for mixed criticality system is vast and worthy of its
own literature review, therefore only some of the issues directly related to the
implementation of previous discussed scheduling theory shall be touched upon.

Run-time monitoring support is assumed for many of the scheduling polices to
enforce execution budget such as with SMC and AMC but such behaviour may not
be natively supported by the host real time operating system. Baruah and Burns [9]
illustrated how a dual criticality system could be implemented in Ada 20052. The
system is based on SMC and supports run-time monitoring, resource sharing (via
protected objects), criticality mode change, and the ability to return to LO criticality
mode when the system becomes idle. The implementation assumes only a single
processor system but does illustrates a mixed criticality model that may not require
modification to the host real-time OS.

Kim and Jin [64] implemented a dual criticality framework on the eCos [74] RTOS
and were able to measure the performance on actual hardware. Interestingly, Kim
and Jin’s model allows tasks to change criticality mode independently of each other
and only change modes when a certain threshold of overrun has been detected. The
motivation for this is higher utilisation of hardware, although it could be argued that
allowing HI criticality tasks to miss a number of deadlines is inherently dangerous
and would go against certification standards. Regardless, the implementation does
provide a good proof-of-concept and Kim and Jin’s inclusion of (m,k)-firm deadlines
[78] gives the opportunity to tune (offline) a minimum quality of service for tasks
under overload conditions before a mode change is required.

Niz et al. [41] have implemented their zero slack scheduling approach on Linux/RK
[75], a kernel that allows partitioning of resources. The overheads introduced by
reservation servers are not evaluated however and the implementation only supports
two criticality levels, a limitation of the underlying theory.

Zimmer et al. [102] have developed a processor with native hardware support
for mixed criticality systems. This removes the issue of having to certify the RTOS,

2http://www.adacore.com

47

http://www.adacore.com

but sacrifices are made in terms of the guarantees of schedulability of LO criticality
tasks. The processor runs hard real-time tasks where deadlines are guaranteed to
be met and soft tasks which run on the spare processor capacity which may not be
known until run-time.

Huang et al. [58, 59] investigated and compared the overheads of user-space
implemented zero-slack scheduling, SMC-NO, period transformation and AMC.
They concluded that AMC performs the best among fixed priority scheduling polices
for mixed criticality systems.

3.6 Summary

Mixed criticality systems present a number of new research issues and challenges.
This chapter provides a high level overview of the state-of-the-art of research into
mixed criticality systems on uni-processor systems, covering both fixed priority and
dynamic scheduling policies along with proposed shared resource techniques.

The open issues facing the adoption of the discussed mixed criticality system
scheduling policies in real-world applications are numerous, however particular
attention is drawn the abandonment issue of LO criticality tasks in the event of a
criticality mode change. It is this issue that is the focus of the next chapter.

48

4 Mixed Criticality Systems with Weakly-Hard

Constraints

One of the major issues hindering the real-world application of AMC is aban-
donment of all LO criticality jobs in the event of a criticality mode change. The
abandonment problem of MCS scheduling has been addressed in various ways as
discussed in chapter 3, however previous methods aimed at allowing LO criticality
tasks to execute after a criticality mode change have mostly been best effort with
limited or no guarantees over the level of service provided.

For traditional (single criticality level) real-time systems there is a concept called
weakly-hard that could help provide stronger guarantees. The motivation behind
weakly hard real-time systems scheduling is to address the disparity between hard
real-time tasks and soft real-time tasks, in that hard real-time tasks are required to
meet all their deadlines where as soft real-time tasks are permitted to miss deadlines
but where the number of missed deadlines are not quantified. Weakly hard real-time
tasks are in fact permitted to miss some deadlines however the number of missed
deadlines must be strictly bounded.

In 1995 Hamdaoui and Ramanathan [78] introduced (m, k)-firm deadlines for
streams where at least m deadlines in k consecutive invocations must be met.
Priorities are dynamically assigned to streams based on the number of recently
missed deadlines relative to their (m, k)-firm values. However, their (m, k)-firm
scheduling algorithm does not guarantee a minimum level of service and all streams
are assigned a global (m, k) value. Also in 1995, Koren and Shasha [65] worked on
a different approach called skip factor where, when a system is overloaded, one in
s invocations of a task are dropped (skipped). Bernat et al. [18, 19] later presented
a model which in some ways is similar to the mixed criticality model of mode
changes. Here, a system runs under one set of scheduling assumptions, but reverts
to a panic mode, which guarantees that deadlines are met according to some prior
offline analysis, should deadlines be at risk of being missed.
The result of the weakly-hard approach is that higher utilisation of resources is
possible due to pessimism in scheduling assumptions (such as WCET) while tasks

49

are guaranteed to meet a minimum level of service under overload conditions.
Bernat et al. [18] made the important observation that the order of missed deadlines
may be as important as the number of missed deadlines. For example consecutive
deadlines misses in an audio-visual system may have a more significant effect
on functionality than if missed deadlines were distributed more evenly. While
the advantages of weakly-hard are clear, the offline analysis for Bernat’s model is
complex as the entire hyper-period1 of a taskset needs to be assessed.

A guaranteed reduced Quality of Service (QoS) for LO criticality tasks in a
HI criticality mode would be highly desirable in addressing the abandonment
issue. While weakly-hard analysis can become complex, imposing the restriction of
allowing only consecutive skips in a fixed cycle prevents the problem from becoming
intractable. In this work weakly-hard constraints are incorporated into the existing
AMC [14] scheduling policy to provide graceful degradation of LO criticality tasks
in HI criticality mode by ensuring that they meet m− s out of s deadlines, skipping
m to relieve the load on HI criticality tasks.

4.1 Existing Analysis

This section reviews existing analysis for MCS policies based on fixed priority
scheduling, in particular recapitulation of the analysis for AMC-rtb and AMC-max
since this work later builds on these to provide analysis for the AMC-WH policy.

4.1.1 Fixed Priority Preemptive Scheduling

Fixed Priority Preemptive Scheduling (FPPS), reviewed in chapter 2, is an established
scheduling policy for real-time systems. Formal analysis was first developed by
Liu and Layland [73]. Response time analysis was later developed by Joseph and
Pandya [62] and Audsley et al. [4] under the assumption of a sporadic task model.

Ri = CLi
i + ∑

j∈hp(i)

⌈
Ri
Tj

⌉
C

Lj
j (4.1)

Equation 4.1 can be used to calculate the worst-case response time for each task
in a mixed criticality environment. This form of analysis assumes that the host
Real-Time Operating System (RTOS) supports run-time monitoring to prevent LO
criticality jobs from executing for longer than their CLO values. For the taskset to be
schedulable the following condition must hold, ∀τi : Ri ≤ Di.

1The hyper-period is the least common multiple of all task periods.

50

While Deadline Monotonic Priority Ordering (DMPO) has been proven optimal
for uniprocessor fixed priority preemptive systems [73], Vestal showed that it is not
optimal for MCS [91] in the case where run-time monitoring is not supported. This
is due to an issue where a higher priority, LO criticality job executing for more than
its assumed CLO value may prevent a HI criticality task from executing, causing it to
miss its deadline. This is referred to as criticality inversion and highlights the conflict
between criticality (functional importance) and priority (scheduling importance).

4.1.2 Criticality Monotonic Priority Ordering

To address the challenges of scheduling tasks with multiple WCET estimates and
the issue of criticality inversion, Criticality Monotonic Priority Ordering (CrMPO)
was devised. Tasks are first partitioned by criticality and then ordered by DMPO
within criticality levels. This results in higher criticality tasks being prioritised over
lower criticality tasks. Equation 4.1 can be used to perform response time analysis,
where each task assumes the execution time for its designated criticality level.

4.1.3 Static Mixed Criticality - NO

Static Mixed Criticality - No Run-time Support (SMC-NO) is the name given by
Baruah et al. [14] to Vestal’s original analysis for MCS [91]. As the analysis assumes
no run-time support, all higher priority, LO criticality tasks need to be verified up to
the highest criticality level of any task to which they may cause interference.

Ri = CLi
i + ∑

j∈hp(i)

⌈
Ri
Tj

⌉
CLi

j (4.2)

Equation 4.2 is used to perform response time analysis. Note that the WCET value
for an interfering task τj is the same level as the task being assessed, Li, rather than Lj

as in (4.1). Priority assignment for SMC-NO is performed using Audsley’s Optimal
Priority Assignment (OPA) algorithm [2, 3], which was proved to be optimal for
SMC-NO by Dorin et al. [43].

4.1.4 Static Mixed Criticality

Static Mixed Criticality (SMC) is an extension of Vestal’s analysis [91] by means of
run-time monitoring of task execution times [14, 26]. If a LO criticality job attempts
to execute for longer than its CLO budget, it is either aborted or suspended. The
response time equation of Vestal’s SMC-NO is modified to become:

51

Ri = Ci + ∑
j∈hp(i)

⌈
Ri
Tj

⌉
min(CjLi , CjLj) (4.3)

For two tasks, τi, τj where Pi < Pj, the value of Cj used in the response time analysis
equation depends on the three cases below:

1. If Li = Lj, use Cj.

2. If Li < Lj, the lower value CLi
j should be used as this is the level of criticality

that the task needs to be verified to.

3. If Li > Lj, there is criticality inversion and so Cj should be used but with
run-time system monitoring to abort if an overrun is detected.

The use of these rules ensures that only the criticality levels up to the assurance
level, Li, of a task need to be assessed. The result is that, unlike Vestal’s original
approach, LO criticality tasks do not need to be verified to the highest criticality
level of the system nor do HI criticality WCET values for LO criticality tasks need to
be known. As with Vestal’s version of SMC, priorities are assigned using Audsley’s
OPA algorithm [2, 3].

4.1.5 Adaptive Mixed Criticality - rtb

Adaptive Mixed Criticality (AMC) builds upon the SMC [14] notion of run-time
monitoring. That is if a job of a HI criticality task does not signal completion by
its allocated CLO budget, then a criticality mode change will occur. Further LO
criticality jobs are descheduled and HI criticality jobs are assumed to execute for at
most their CHI values. Baruah et al. [14] developed two sufficient schedulability tests
for this policy, the first being AMC - response time bound (AMC-rtb). Equation 4.4 is
used to assess all tasks, using their CLO values in LO criticality mode. The condition
∀τi | RLO

i ≤ DLO
i must hold for the system to be schedulable in LO criticality mode.

RLO
i = CLO

i + ∑
j∈hp(i)

⌈
RLO

i
Tj

⌉
CLO

j (4.4)

Equation 4.5 considers only HI criticality tasks using their CHI values. Recall that
hpHI(i) is the set of HI criticality tasks with higher priority than τi. The condition
∀τi : Li = HI | RHI

i ≤ Di must hold true for the system to be schedulable in HI

52

criticality mode.

RHI
i = CHI

i + ∑
j∈hpHI(i)

⌈
RHI

i
Tj

⌉
CHI

j (4.5)

The analysis to assess the schedulability of the criticality change is a little more
complex. Since a change in criticality for a HI criticality task τi must occur before
RLO

i , the interference from higher priority, LO criticality tasks (hpLO(i)) is bounded,
as after this time LO criticality jobs would be descheduled. R∗ is the response time
of a HI task during a criticality change (LO → HI). The first summation term
represents the interference from higher priority, HI criticality tasks. The second
summation term is interference from higher priority, LO criticality tasks that arrive
before the criticality change (i.e before RLO

i).

R∗i = CHI
i + ∑

j∈hpHI(i)

⌈
R∗i
Tj

⌉
CHI

j + ∑
k∈hpLO(i)

⌈
RLO

i
Tk

⌉
CLO

k (4.6)

Audsley’s OPA algorithm [2, 3] can be used to find a priority ordering that allows
a taskset τ to be schedulable according AMC-rtb analysis, if such a priority ordering
exits.

4.1.6 Adaptive Mixed Criticality - max

AMC-rtb suffers from pessimism when considering the mode change, since it
assumes that all jobs of HI criticality tasks up to time R∗ may execute with their CHI

values.
Initially, a HI criticality job may execute in LO criticality mode. During its

execution, a criticality mode change may occur and so the job must be assumed
to execute up to its CHI value. As it is not known exactly when the mode change
will occur, AMC-rtb pessimistically assumes the worst-case, is that all jobs of all HI
criticality tasks execute with their CHI values before and after the criticality change.
The AMC-max analysis removes this pessimism [14] by observing that there is a
bounded interval in which a criticality change may affect the response time of a HI
criticality job of task τi. That is between 0 and RLO

i . If a criticality change occurs after
RLO

i then the job has already completed its execution and so will not be affected
by the mode change. Further invocations of the task in HI criticality mode can be
verified the same as AMC-rtb using (4.5).

Let y represent the time of the criticality mode change. Figure 4.1 illustrates a
criticality mode change at time y, affecting a HI criticality task τi under AMC-max

53

scheduling analysis assumptions. Note that if a criticality change is signalled while
a job of τi is executing, it will be assumed to execute with its CHI

i value.

Ry
i = CHI

i + ∑
k∈hpLO(i)

(⌊
y
Tk

⌋
+ 1
)

CLO
k +

∑
j∈hpHI(i)

(
M(j, y, Ry

i)C
HI
j +

(⌈
Ry

i
Tj

⌉
−M(j, y, Ry

i)

)
CLO

j

) (4.7)

M(j, y, t) = min
{⌈ t− y + Dj

Tj

⌉
,
⌈

t
Tj

⌉}
(4.8)

Job released Deadline Met

τi

0 t

y

τi Executing
Ci

LO Ci
HI

HI ModeLO Mode

Figure 4.1: Criticality mode change under AMC-max

The worst-case response time of HI criticality task τi is calculated assuming
interference from higher priority, LO criticality tasks released before the criticality
change, y, plus interference from higher priority, HI criticality jobs active at or after the
criticality change executing with up to their CHI values and those completing before
the criticality change with their CLO values. Equation 4.8 calculates the maximum
number of releases of a task, τj, after the criticality change occurs at y, up to time t
[14].

The values of y that need to be assessed are bounded by 0 and RLO
i , however

the number of values can be large. Baruah et al. [14] observed that the points at
which y may affect the response time of a task, correspond to the releases of higher
priority, LO criticality tasks. The worst case response time of a HI criticality task
during a criticality mode change is therefore given by: R∗i = max(Ry

i)∀y where
y ∈ kTj | ∀j ∈ hpLO(i) ∧ y ≤ RLO

i | ∀k : N.

54

4.2 Adaptive Mixed Criticality - Weakly Hard

This section introduces Adaptive Mixed Criticality - Weakly Hard (AMC-WH). This
new scheduling policy allows a number of consecutive jobs of LO critically tasks to
be skipped when in HI criticality mode. This reduces the load on the system, freeing
up capacity for HI criticality tasks while also providing a degraded service for LO
criticality tasks, which are guaranteed to meet m− s out of m deadlines, where s is
the number of skips and m is the length of the cycle.
The number of skips permitted and the number of subsequent deadlines that must
be met (m− s) may be a requirement from the design of a control algorithm [51]
or it may derive from physical properties of the system, for example with a radar
altimeter it may be acceptable to drop some readings, but not to lose them altogether.

As an illustrative example consider Figure 4.2 which describes a LO criticality task
initially executing in LO criticality mode. Task τk has been assigned the weakly-hard
constraints that state that it must skip every 2 consecutive jobs over every 4 releases.
Upon entering the HI criticality mode, the task observes these constraints, starting
skipping at the first release in HI criticality mode. This cycle of skipping will repeat
indefinitely providing the system remains in HI criticality mode.

20 4 6 8 10 12 14 16 18

τk Job Skipped

Job released

t

Deadline Met

τk

τk Executing

Criticality Mode Change
LO Mode HI Mode

Figure 4.2: Example AMC-WH Execution

Building on the model in section 3.1, let sk equal the number of skips assigned for
the task τk and mk equal the assigned cycle length in task periods. Let n equal the
position of a skipped job of task τk from the end of the cycle such that the release of
a skipped job is at mkTk − nTk.
In the transition from LO→ HI criticality, the jobs of LO criticality task τk released
before the mode change will continue to completion as assumed with AMC, however
the next release of τk will be the start of the consecutive skips sk in the cycle mk (as
shown in Figure 4.3).

55

20 4 6 8 10 12 14 16 18

τk Job Skipped

Job released

t

Deadline Met

τk

τk Executing

Ri
LO

mkTk

LO Mode HI Mode

xk
mkTk

Figure 4.3: Criticality Change of τk

The maximum amount of execution of the task τk in an interval of length t (see
Figure 4.4) can be expressed as the the number of jobs of τk assuming no skips,
minus the number of skipped jobs in each cycle. Equation 4.9 computes this value
for any value of n such that 1 ≤ n ≤ mk.

10 2 3 4 5 6 7 8 9

τk Job Skipped

Job released

t

Deadline Met

τk

τk Executing

mkTk

n=1

Figure 4.4: Cycle of τk

(⌈
t

Tk

⌉
−
⌈

t− (mk − n)Tk
mkTk

⌉)
Ck (4.9)

As n represents the position of a skipped job in a cycle, (4.9) can be generalised to
account for a number of consecutive skips sk, where 1 ≤ sk ≤ mk.(⌈

t
Tk

⌉
−

sk

∑
n=1

⌈
t− (mk − n)Tk

mkTk

⌉)
Ck (4.10)

Note that the worst-case execution in an interval of length t occurs when the
phasing of consecutive skips is at the end of a cycle i.e n = 1, 2.., sk.

56

4.2.1 AMCrtb-WH

The susequent subsections extend the AMC schedulability analysis (subsection 4.1.5)
to account for these weakly hard constraints as follows.

1) Schedulability of the LO Criticality Mode

In LO criticality mode, the AMC-WH model behaves the same as AMC. HI criticality
and LO criticality tasks are assumed to execute with their CLO values and so the
worst-case response time of each task can be calculated using (4.4).

2) Schedulability of the HI Criticality Mode

The worst-case response time occurs when skips sk, are at the end of the cycle mk

for each higher priority, LO criticality task τk. Therefore in the HI criticality mode,
the worst-case response time of a task τi can be expressed as its computation time,
plus the interference from higher priority, HI criticality tasks executing with their
CHI values, plus the interference from higher priority, LO criticality tasks, minus
the interference from skipped jobs hence;

RHI
i = CLi

i + ∑
j∈hpHI(i)

⌈
RHI

i
Tj

⌉
CHI

j +

∑
k∈hpLO(i)

(⌈
RHI

i
Tk

⌉
−

sk
∑

n=1

⌈
RHI

i −(mk−n)Tk
mkTk

⌉)
CLO

k

(4.11)

where sk < mk.
Unlike AMC, both HI and LO criticality tasks need to be assessed using the above

analysis. In the event that 100% skipping for a LO criticality task is used (i.e sk = mk),
the LO criticality task in question does not need to be assessed. In addition the task
will produce zero interference to lower priority tasks in HI criticality mode.

3) Schedulability of the Criticality Mode Change

Consider Figure 4.3 which shows the execution of a LO criticality task τk. If a HI
criticality task τi reaches its RLO

i without signalling completion then a criticality
mode change will be triggered. If there is a job of τk executing at this time then it will
be allowed to complete; however the next sk releases of τk, starting at time xk, will
be skipped. This is in contrast to standard weakly-hard [18] systems and is aimed at
increasing schedulability during the criticality mode change.

57

Equation 4.6 is modified to become (4.12) to assess the schedulability of the
mode change for HI criticality tasks. The worst-case response time includes the
interference from higher priority, HI criticality tasks, assuming CHI values for all
releases from t = 0 to R∗, plus interference from higher priority, LO criticality tasks,
minus the interference from skipped jobs between xk and R∗.

R∗i = CHI
i + ∑

j∈hpHI(i)

⌈
R∗i
Tj

⌉
CHI

j +

∑
k∈hpLO(i)

(⌈
R∗i
Tk

⌉
−

mk
∑

n=sk

⌈
R∗i −(mk−n)Tk−xk

mkTk

⌉
0

)
CLO

k

(4.12)

where xk =

⌈
RLO

i
Tk

⌉
Tk and sk < mk.

Note that following the criticality mode change, the phasing of skips of LO
criticality jobs occurs at the beginning of the cycle, hence n ∈ [sk, mk] is used in the
summation term, rather than n ∈ [1, sk]. During the fixed point iteration, when R∗

< xk, the use of dae0 denoting max(dae, 0) lower bounds dae by 0 is used to avoid
including a negative number of skips.

Now consider the schedulability analysis for LO criticality tasks across the critic-
ality mode change. As it is unknown when the criticality mode change may occur,
the worst-case response time for LO criticality tasks may be upper bounded using
(4.13) which assumes that there are no skips of LO criticality jobs up to R∗.

R∗i = CLO
i + ∑

j∈hpHI(i)

⌈
R∗i
Tj

⌉
CHI

j + ∑
k∈hpLO(i)

⌈
R∗i
Tk

⌉
CLO

k (4.13)

4.2.2 AMCmax-WH

For a HI criticality task τi, AMCrtb-WH is pessimistic with regards to the mode
change due to not only assuming that all higher priority, HI criticality tasks execute
with their CHI values up to R∗i (4.12), but also that there is no skipping of LO
criticality jobs up to RLO

i (4.4).
Using the same principles as AMC-max, AMCmax-WH addresses this pessimism

by taking into account the points at which a criticality change may occur. Figure 4.5
illustrates how a criticality mode change at time y may affect a LO criticality task
(Figure 4.1 shows how a HI criticality task may be affected). LO criticality mode
and HI criticality mode schedulability for all tasks can be assessed using the same
approach as AMCrtb-WH (see (4.4) and (4.11)).

58

τk Job Skipped

Job released

t

Deadline Met

τk

τk Executing

y

mkTk

LO Mode HI Mode

zk
mkTk

Figure 4.5: Criticality Change of τk

1) Schedulability of the Criticality Mode Change

The AMC-max analysis embodied in (4.7), can be modified to incorporate weakly-
hard LO criticality tasks. The function M(j, y, t) is the same as that used in AMC-
max (4.8). This approach removes the pessimism in AMCrtb-WH by assuming HI
criticality jobs execute with their CLO values up to the criticality change at time y, at
which point active and subsequent HI criticality jobs will execute up to their CHI

values. In addition, jobs of each LO criticality task τk are assumed to exhibit their
weakly-hard behaviour, starting consecutive skips at zk, the first release after the
criticality change at y.

For HI criticality tasks, the points at which the triggering of a criticality change y,
may affect the response time of a job are bounded by y = [0, RLO). If the criticality
change were to occur after RLO

i then the job would have already completed its
execution. For LO criticality tasks being assessed, y should be increased until R∗

converges below the current value of y. Once R∗ < y, increasing the time of the
criticality mode change will have no effect on the job and therefore the worst-case
response time must have already been obtained.

Ry
i = CLi

i + ∑
k∈hpLO(i)

(⌈
Ry

i
Tk

⌉
−

mk
∑

n=sk

⌈
Ry

i −(mk−n)Tk−zk
mkTk

⌉
0

)
CLO

k

+ ∑
j∈hpHI(i)

(
M(j, y, Ry

i)C
HI
j +

(⌈
Ry

i
Tj

⌉
−M(j, y, Ry

i)

)
CLO

j

) (4.14)

where zk =

⌈
y
Tk

⌉
Tk and sk < mk.

59

The worst-case for the response time for the criticality mode change can be calculated
by: R∗i = max(Ry

i)∀y where y ∈ kTj | ∀j ∈ hpLO(i) ∧ y ≤ RLO
i | ∀k : N.

Note that AMC dominates AMC-WH since the former effectively skips all jobs of
LO criticality tasks in HI criticality mode. However this means that AMC provides
no service for LO criticality tasks.

4.2.3 Comparing AMCmax-WH and AMCrtb-WH

This section proves that AMCmax-WH analysis dominates AMCrtb-WH. That is
all tasksets that are schedulable under AMCrtb-WH are also schedulable under
AMCmax-WH and there exists some taskset that is schedulable under AMCmax-
WH, but not under AMCrtb-WH.

Theorem 1. Any sporadic task system that is schedulable under AMCrtb-WH is also
schedulable under AMCmax-WH, hence AMCmax-WH dominates AMCrtb-WH.

Proof. The analysis for the LO and HI criticality modes are identical for AMCmax-
WH and AMCrtb-WH, therefore only the schedulability tests for the criticality
change need be considered.

For HI criticality tasks, consider equations (4.12) and (4.14). The equations have
three components; (a) The WCET of the task, (b) the sum of interference from higher
priority, LO criticality tasks and (c) the sum of interference from higher priority, HI
criticality tasks.

• Component (a) of (4.12) and (4.14) are equal.

• Component (b) of (4.14) is strictly no larger than component (b) of (4.12) as y is
upper-bounded by RLO where RLO ≤ R∗.

• Component (c) of (4.14) assumes that higher priority, HI criticality tasks
execute with their CHI values only after the criticality change. This summation
term is therefore maximised when y = 0. Substituting this value into (4.14)
reduces component (c) to that of (4.12). Component (c) in (4.14) is therefore
upper-bounded by (c) in (4.12).

For LO criticality tasks, consider equations (4.13) and (4.14), separated into three
components; (a), (b) and (c).

• Component (a) of (4.13) and (4.14) are equal.

• Component (b) of (4.14) is upper-bounded by component (b) of (4.13) as y ≤ R∗

(see subsection 4.2.2).

60

• Component (c) of (4.13) is identical to that in the HI criticality task analysis
discussed above, therefore (c) in (4.14) is upper-bounded by (c) in (4.13).

It has been shown that the result of the schedulability analysis of the criticality
mode change in (4.14) can be no greater than (4.12) or (4.13) for ∀y.

As the schedulability tests for HI and LO criticality modes are equivalent for
AMCmax-WH and AMCrtb-WH it can be deduced that worst-case response times
calculated using AMCmax-WH analysis will be no greater than those calculated
using AMCrtb-WH for the same taskset, τ. Given Example 6 in section 4.3 which
is schedulable under AMCmax-WH but not AMCrtb-WH, it is concluded that
AMCmax-WH strictly dominates AMCrtb-WH.

4.2.4 Priority Assignment for AMC-WH

Davis and Burns [39] formalised three Conditions for a schedulability test to be
compatible with Audsley’s Optimal Priority Assignment (OPA) algorithm [2, 3]:

1. The schedulability of a task τk may, according to test S , depend on any
independent properties of tasks with priorities higher than τk, but not on
any properties of those tasks that depend on their relative priority ordering.

2. The schedulability of a task τk may, according to test S , depend on any
independent properties of tasks with priorities lower than τk, but not on
any properties of those tasks that depend on their relative priority ordering.

3. When the priorities of any two tasks of adjacent priority are swapped, the task
being assigned the higher priority cannot become unschedulable according to
test S , if it was previously schedulable at the lower priority.

Theorem 2. AMCrtb-WH and AMCmax-WH schedulability tests comply with the above
Conditions [39] and hence Audsley’s OPA algorithm can be used to obtain optimal priority
ordering.

Proof. Inspection of equations (4.11) to (4.14) in section 4.2 shows that the schedulab-
ility of τk under AMC-WH depends only on independent properties of higher
priority tasks. As interference is not caused by lower priority tasks, both Conditions
(1) and (2) are satisfied. Consider two tasks, τj and τk with priorities, P(v) and P(w)

respectively, where P(v) > P(w). If τk is schedulable with priority P(w) under
AMC-WH and is swapped with τj to acquire priority P(v), interference from higher
priority tasks, as calculated by the summation terms, would decrease and so the
worst-case response time of τk would become less than at P(w), hence τk will remain

61

schedulable. If τj is not schedulable at P(v) and is swapped with τk to acquire
priority P(w), interference from higher priority tasks would increase and so τj will
remain unschedulable.
This satisfies the two scenarios of Condition (3) and therefore, as with SMC and
AMC [14], Audsley’s OPA algorithm can be used to find an optimal priority ordering
with respect to both AMCrtb-WH and AMCmax-WH schedulability tests.

4.3 Worked Example

This sections provides a worked example taskset scheduled under the AMC-WH
policy to demonstrate the response time analysis developed in section 4.2.

Example 6. Consider the taskset presented in Table 4.1 for which the OPA algorithm [3]
has determined an optimal priority ordering of τ1 > τ2 > τ3.

Task Li CLO
i CHI

i Di Ti si mi
τ1 HI 1 2 2 4 - -
τ2 LO 1 - 4 4 1 2
τ3 HI 3 3 10 20 - -

Table 4.1: Example WH Taskset

Schedulability of LO Criticality Mode

The schedulability analysis for the LO criticality mode is equivilent for both AMCrtb-WH
and AMCmax-WH. Using (4.4), the response time values are trivially derived for the taskset.
Note the ellipses represent the shortening of the working, i.e these are the converged values
found using recurrence relations.

• RLO
1 = 1

• RLO
2 = 1 +

⌈
RLO

2
4

⌉
∗ 1 ... = 2

• RLO
3 = 3 +

⌈
RLO

2
4

⌉
∗ 1 +

⌈
RLO

2
4

⌉
∗ 1 ... = 7

Schedulability HI Criticality Mode

The schedulability analysis for the HI criticality mode is also the same for AMCrtb-WH and
AMCmax-WH. Using (4.11) produces the response time values:

62

• RHI
1 = 2

• RHI
2 = 1 +

⌈
RHI

2
4

⌉
∗ 2 ... = 3

• RHI
3 = 3 +

⌈
RHI

3
4

⌉
∗ 2 +

(⌈
RHI

3
4

⌉
∗ 1−

1
∑

n=1

⌈
RHI

3 −(2−n)∗4
2∗4

⌉
0

)
∗ 1 ... = 8

Schedulability of Criticality Mode Change for AMCrtb-WH

The criticality mode change analysis is more complex. AMCrtb-WH uses different response
time equations depending on if a LO or HI criticality task is being assessed. (4.12) is used to
derive the response times for HI criticality tasks, τ1 and τ3.(4.13) is used for LO criticality
task, τ2.

• R∗1 = 2

• R∗2 = 1 +
⌈

R∗2
4

⌉
∗ 2 ... = 3

• R∗3 = 3 +
⌈

R∗3
4

⌉
∗ 2 +

(⌈
R∗3
4

⌉
∗ 1−

2
∑

n=1

⌈
R∗3−(2−n)∗4−xk

2∗4

⌉
0

)
∗ 1 ... = 11

where xk =

⌈
7
4

⌉
∗ 4 = 8

Schedulability of Criticality Mode Change for AMCmax-WH

AMCmax-WH provides tighter analysis for the criticality mode change at the expense of
increased complexity. Equation, (4.14), is used for all tasks regardless of their assigned
criticality level. Note that all relevant values of y have been checked (see subsection 4.2.2),
however the working is not listed here for conciseness.

• R∗1 = 2

• R∗2 = max(Ry
2) | ∀y ≤ RLO

2 = 3

Ry
2 = 1 + M(1, y, Ry

2) ∗ 2 +
(⌈

Ry
2

4

⌉
−M(1, y, Ry

2)

)
∗ 1

where zk =

⌈
y
4

⌉
∗ 4

• R∗3 = max(Ry
3) | ∀y ≤ RLO

3 = 8

63

Ry
3 = 3 +

(⌈
R∗3
4

⌉
∗ 1−

2
∑

n=1

⌈
R∗3−(2−n)∗4−zk

2∗4

⌉
0

)
∗ 1 + M(1, y, Ry

3) ∗ 2

+

(⌈
Ry

3
4

⌉
−M(1, y, Ry

3)

)
∗ 1 where zk =

⌈
y
4

⌉
∗ 4

Comparing AMCrtb-WH and AMCmax-WH

Attention is drawn to Table 4.2 which summarises the response times found using the
above analysis. Of particular interest is the response time determined by AMCrtb-WH
for τ3 during the criticality mode change (highlighted in bold) which is greater than the
assigned deadline for that task. Recalling from section 2.2 that for a taskset to be schedulable
under fixed priority the condition ∀τi | Ri ≤ Di must hold. It is therefore clear that the
example taskset is not schedulable under AMCrtb-WH. Using the less pessimistic analysis
of AMCmax-WH however yields response time values for the tasks that are less or equal to
their deadlines and the taskset is therefore deemed schedulable.

In subsection 4.2.3 it was shown that AMCmax-WH is upper bounded by AMCrtb-WH;
that is response times calculated using AMCmax-WH can be no greater than response times
calculated using AMCrtb-WH for the same taskset. Combining this result with this example
taskset demonstrates that AMCmax-WH strictly dominates AMCrtb-WH.

Task Li RLO
i RHI

i R∗i (rtb) R∗i (max) Di
τ1 HI 1 2 2 2 2
τ2 LO 2 3 3 3 4
τ3 HI 7 8 11 8 10

Table 4.2: Summary of Response Times for Example WH Taskset

4.4 Summary

This chapter reviewed existing analysis for mixed criticality systems scheduling
based on fixed priority as discussed in chapter 3. A new scheduling policy, AMC-
WH, was introduced based on AMC [14] to provide a guaranteed quality of service
for LO criticality tasks in HI criticality mode. Response time analysis has been
derived for this policy based on AMC-rtb and AMC-max [14] and optimal priority
assignment has been proved. The chapter concludes with a worked example.

64

5 Experimental Evaluation

This chapter reports on an empirical evaluation used to examine the relative per-
formance of the new scheduling policy, AMC-WH, and the associated schedulability
tests introduced in section 4.2. A number of experiments were devised in which the
new policy is compared to the previous policies reviewed in section 4.1.

5.1 Taskset Generation

A set of uniformly distributed utilisation values were generated using the UUnifast
algorithm [20] listed below. The algorithm ensures that n tasks each have a random
utilisation value whose sum is no greater than that of the utilisation requested.

Listing 5.1: UUnifast Algorithm

SumU := requested utilisation
for i in 0..NumTasks-1 loop

NextSumU := SumU * Random1.0/(NumTasks−i);

TaskSet(i).Utilisation := SumU - NextSumU;

SumU := NextSumU;

end loop;

TaskSet(NumTasks).Utilisation := SumU;

Periods were then assigned to each task with a log-uniform distribution between
10 and 1000. Log values of T are uniformly distributed to provide a wide range
of values of equal probability. Task deadlines were assigned the same values as
their periods (D = T). CLO

i values were calculated using the utilisation equation
CLO

i = Ui/Ti and CHI
i values were assigned by multiplying the CLO

i value by a
criticality factor (CF). CP denotes a criticality probability, that is the probability that
a particular task will be designated as HI criticality rather than LO criticality.

For the success ratio experiments, 2500 tasksets were generated per utilisation
level. For the weighted schedulability [16] tests, a total of 1000 tasksets were
generated per utilisation level and value of the varied parameter. By default, each
taskset contained 20 tasks with CP = 0.5 and CF = 2.0.

65

5.2 Schedulability Tests

UB-H&L - is a composite upper-bound (necessary) schedulability test. Schedulabil-
ity is assessed for all tasks assuming they execute with their CLO values with DMPO.
Separately, all HI criticality tasks are assessed, assuming their CHI values, also using
DMPO.
AMC-max - reviewed in subsection 4.1.6, is a tighter analysis than AMC-rtb, taking
into account a finite set of points when the criticality change may occur [14].
AMC-rtb - reviewed in subsection 4.1.5, is the response time bound analysis for
AMC [14].
SMC - described in subsection 4.1.4. This is SMC with run-time monitoring that
deschedules overrunning LO criticality jobs.
SMC-NO - Vestal’s original analysis [91] which does not have support for run-time
monitoring.
AMCmax-WH - Adaptive Mixed Criticality max - Weakly Hard as described in
subsection 4.2.2.
AMCrtb-WH - Adaptive Mixed Criticality response time bound - Weakly Hard as
described in subsection 4.2.1.
FPPS - Fixed Priority Preemptive Scheduling. Tasks are in DMPO, ignoring critic-
ality levels. It is noted that this may lead to criticality inversion however for the
purpose of these experiments, run-time monitoring is assumed which prevents LO
criticality tasks from exceeding their CLO values. Each task assumes its CLi

i value.
Schedulability analysis for FPPS is reviewed in subsection 4.1.1.
CrMPO - Criticality Monotonic Priority Ordering (see subsection 4.1.2) is where
tasks are partitioned by criticality level and then DMPO is used within these
partitions. This ensures HI criticality tasks are assigned higher priority than any LO
criticality task. Response time analysis is then carried out on the tasks using FPPS
analysis, where each takes assumes its CLi

i value. As HI criticality tasks have higher
priorities, no run-time monitoring is needed.

66

5.3 Experiments

Expt.1 (Figure 5.1) - illustrates the schedulability of the different tests at taskset
utilisations ranging from 0.05 to 0.95 in steps of 0.05.
Expt.2 (Figure 5.2) - shows the result of altering the Criticality Factor (CF) on
schedulability. That is the multiplier between a task’s CLO value and its CHI value.
This was varied between 1.0 (CHI = CLO) and 5.0 in steps of 0.5.
Expt.3 (Figure 5.3) - varies the Criticality Probability (CP) of tasks in a taskset,
ranging from 0.05 to 0.95 in steps of 0.05.
Expt.4 (Figure 5.4) - investigates the effect that larger tasksets have on the schedulab-
ility tests, ranging from 4 tasks per taskset to 48, in increments of 4.
Expt.5 (Figure 5.5) - is similar to the first experiment, except that the constraint
of D = T has been lifted allowing tasks to have deadlines less than their periods.
Deadlines were assigned according to uniform random distribution between CLO

i
and Ti for LO criticality tasks and CHI

j and Tj for HI criticality tasks.
Expt.6 (Figure 5.6) - varies the number of skips from 0 to 10 in a cycle of fixed length,
m = 10.
Expt.7 (Figure 5.7) - varies the cycle length, m, from 1 to 10 while keeping the number
of skips constant at 1.
Expt.8 (Figure 5.8) - varies the cycle length and skips such that (s, m) = (m− 1, m)

for 1 ≤ m ≤ 10.
For experiments 1 to 5, the weakly-hard constraints are set at (s, m) = (1, 2) for

all LO criticality tasks. This is equivalent to doubling the period while keeping the
deadline the same for LO criticality tasks executing in the HI criticality mode. For
experiments 2 to 4 and 6 to 8, weighted schedulability [16] is used to flatten the data
from 3 vectors to 2. Weighted schedulability is calculated via (5.1) where Sφ(τ, p)
is a binary test of schedulability of taskset τ with test φ and parameter p. Higher
utilisation tasksets that are schedulable with test φ are more heavily weighted than
lower utilisation tasksets.

Wφ(p) =
(
∑
∀τ

U(τ) ∗ Sφ(τ, p)
)
/ ∑
∀τ

U(τ) (5.1)

67

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
Utilisation

0%

20%

40%

60%

80%

100%

S
ch

e
d
u
la

b
le

 T
a
sk

se
ts

UB-H&L

AMCmax

AMCrtb

SMC

AMCmax-WH

AMCrtb-WH

SMC-NO

FPPS

CrMPO

Figure 5.1: Expt.1 - Percentage of Schedulable Tasksets

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Criticality Factor (CF)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

W
e
ig

h
te

d
 S

ch
e
d
u
la

b
ili

ty

UB-H&L

AMCmax

AMCrtb

SMC

AMCmax-WH

SMC-NO

AMCrtb-WH

FPPS

CrMPO

Figure 5.2: Expt.2 - Varying the Criticality Factor

68

5% 15% 25% 35% 45% 55% 65% 75% 85% 95%
Percentage of Tasks with High Criticality

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

W
e
ig

h
te

d
 S

ch
e
d
u
la

b
ili

ty
UB-H&L

AMCmax

AMCrtb

SMC

AMCmax-WH

SMC-NO

AMCrtb-WH

FPPS

CrMPO

Figure 5.3: Expt.3 - Varying the Criticality Mix

0 4 8 12 16 20 24 28 32 36 40 44 48
Taskset Size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

W
e
ig

h
te

d
 S

ch
e
d
u
la

b
ili

ty

UB-H&L

AMCmax

AMCrtb

SMC

AMCmax-WH

SMC-NO

AMCrtb-WH

FPPS

CrMPO

Figure 5.4: Expt.4 - Varying the Number of Tasks

69

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
Utilisation

0%

20%

40%

60%

80%

100%

S
ch

e
d
u
la

b
le

 T
a
sk

se
ts

UB-H&L

AMCmax

AMCrtb

SMC

AMCmax-WH

AMCrtb-WH

SMC-NO

FPPS

CrMPO

Figure 5.5: Expt.5 - Percentage of Schedulable Tasksets with D ≤ T

0 1 2 3 4 5 6 7 8 9 10
Number of Skips (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

W
e
ig

h
te

d
 S

ch
e
d
u
la

b
ili

ty

UB-H&L

AMCmax

AMCrtb

SMC

AMCmax-WH

AMCrtb-WH

SMC-NO

FPPS

CrMPO

Figure 5.6: Expt.6 - Varying the Number of Skips where m = 10

70

0 1 2 3 4 5 6 7 8 9 10
Length of Cycle (m)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

W
e
ig

h
te

d
 S

ch
e
d
u
la

b
ili

ty

UB-H&L

AMCmax

AMCrtb

SMC

SMC-NO

AMCmax-WH

AMCrtb-WH

FPPS

CrMPO

Figure 5.7: Expt.7 - Varying the Cycle Length where s = 1

0 1 2 3 4 5 6 7 8 9 10
Length of Cycle (m)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

W
e
ig

h
te

d
 S

ch
e
d
u
la

b
ili

ty

UB-H&L

AMCmax

AMCrtb

SMC

AMCmax-WH

AMCrtb-WH

SMC-NO

FPPS

CrMPO

Figure 5.8: Expt.8 - Varying the Cycle Length where s = m− 1

71

5.4 Discussion of Results

The schedulability tests are grouped into three categories. Solid lines represent tests
that guarantee that at least some jobs of LO criticality tasks, assumed to execute up
to their CLO estimates, will meet all their deadlines in HI criticality mode. Tests
that permit LO criticality tasks to miss their deadlines or deschedule LO criticality
tasks in HI criticality mode are represented by dashed lines. The dotted lines on the
graphs represent the upper-bounds on schedulability.

A number of points can observed by inspection of the results (Figure 5.1 to
Figure 5.8). AMC dominates AMC-WH due to AMC dropping all LO criticality
jobs when in HI criticality mode, therefore being schedulable at higher utilisations.
The dominance of AMCmax-WH over AMCrtb-WH schedulability tests can be seen
across all of the experiments.

Comparing the AMC-WH schedulability tests directly with tests which guarantees
LO criticality task deadlines in HI criticality mode, namely CrMPO and FPPS (with
run-time monitoring), there is a clear dominance. When AMC-WH is assigned a
global value of 100% skips for all LO criticality tasks in HI criticality mode, that is
s = m, the scheduling behaviour becomes that of AMC. Examining the equations in
section 4.2 shows that the schedulability tests for AMCmax-WH and AMCrtb-WH
reduce to the equations of AMC-max and AMC-rtb under this condition. This is
illustrated in Expt.6 (Figure 5.6) and Expt.7 (Figure 5.7). At the opposite extreme,
where there are 0% skips for all LO criticality tasks in HI criticality mode, both
AMC-WH schedulability tests reduce to the behaviour of FPPS which can be seen
in Expt.6 (Figure 5.6) and Expt.8 (Figure 5.8). AMC-WH is therefore a compromise
between AMC and FPPS, providing scalable performance trade-offs between the
quality of service of LO criticality tasks in HI criticality mode and the schedulability
of the HI criticality mode.

Expt.8 (Figure 5.8) illustrates a behaviour similar to the work of Yip et al. [96] in
terms of AMC-WH, where a task’s period is extended while its relative deadline
remains constant, resulting in lower utilisation.

5.5 Additional Investigation

Declaration: The following paragraph was written by Dr R. I. Davis:
The LO criticality budget CLO set by the system designer for each HI criticality task is
typically obtained via a process which involves rigorous testing and measurement on
the target hardware. This process produces a high watermark execution time, which

72

may be further inflated by some engineering margin to obtain the LO criticality
budget, CLO. Hence CLO is in practice highly unlikely to be exceeded at runtime.
Nevertheless, this is not enough to guarantee to a sufficiently high level of assurance
that each HI criticality task will not exceed its deadline. Hence we also have the HI
criticality budget CHI determined via an even more stringent and conservative
process, and thus the mixed criticality scheduling model. In this section, we
investigate the impact on schedulability of the following assumption (A1): Only
a single HI criticality task can exhibit HI criticality behaviour in any given busy
period. We note that to be justified such an assumption needs a careful argument to
be made about the independence or limited dependencies between task execution
times, and about the probabilities that each job of a task can exceed its CLO budget.
This argument would then be used to show that the probability of jobs of two or
more different tasks exhibiting HI criticality behaviour within a short time window
(equating to a busy period) is so vanishingly small that it can be safely ignored. Here
we do not attempt to make this argument, which could potentially fill a whole paper
with interesting discussion. Rather we simply seek to characterise the improvements
in schedulability that can be obtained if the assumption (A1) can be relied upon to
hold.

Under the assumptions described above, Expt.1-8 were repeated with the same
parameters outlined in section 5.3. To assess the worst-case response time, multiple
schedulability tests were required, with each HI criticality task assumed to be the
one task that exhibits HI criticality behaviour.

Enforcing this constraint has a huge effect on the schedulability of tasksets, as can
be seen in Expt.1b (Figure 5.9). Here UB-L&H-1 is used to illustrate the upper-bound
on schedulability for these policies. Here, SMC-NO-1 performs considerably worse
when compared to the relative performance spread of the previous experiments.
This is due to the static nature of SMC-NO-1 which requires higher priority, LO
criticality tasks to be verified using their CHI values reducing the advantages of
assuming constrained HI criticality task behaviour.

Expt.2b (Figure 5.10) illustrates the advantage of assuming only one HI criticality
task executes with its CHI value in HI criticality mode. In Expt.2 (Figure 5.2),
increasing the CF significantly reduces the schedulability whereas Expt.2b has an
almost linear degradation in schedulability. This is due to the freed up utilisation
in HI criticality mode which accommodates the increased CHI value of the one HI
criticality task which exhibits HI criticality behaviour. Expt.3b (Figure 5.11), varying
the criticality mix, shows similar gains in schedulability. Increasing the mix has a

73

limited effect on the schedulability of the tasksets since it is assumed that there will
be at most one HI criticality task exhibiting HI criticality behaviour at any given
time.

Expt.4b (Figure 5.12) in contrast to Expt.4 (Figure 5.4) shows that schedulability
increases with the size of the taskset. This is due to the ratio of tasks executing in
HI criticality mode (1) and LO criticality mode (N − 1) becoming smaller resulting
in tasksets being more easily schedulable in HI criticality mode. As the number
of tasks in a taskset increases, the system tends to the schedulability of a single
criticality system. The exception to this observation is CrMPO-1 and SMC-NO-1.
SMC-NO-1 as discussed previously requires higher priority, LO criticality tasks to
verified up to the criticality level of the highest criticality task to which they may
cause interference. Despite only one HI criticality task being permitted to execute
with its CHI value at any given time, all HI criticality tasks are ordered in the same
way as standard CrMPO therefore CrMPO-1 has a suboptimal priority ordering.

Expt.5b (Figure 5.13) showed only modest gains in schedulability compared
to Expt.5 (Figure 5.5). With constrained deadlines, the LO criticality mode and
criticality mode change are more difficult for the polices to schedule. Therefore
increasing the schedulability of the HI criticality mode under our assumptions
has a limited effect on the schedulability of the entire taskset. Expt.6b, 7b and 8b
(Figure 5.14 to Figure 5.16) all demonstrated large gains in schedulability, consistent
with reduced utilisation of the system in HI criticality mode.

The main observation from these results is that the schedulability of a mixed
criticality taskset can be significantly increased under the assumption of restricted
HI criticality task behaviour discussed above. The potentially large increase in
schedulability warrants further research into the arguments required to ensure that
the assumption (A1) holds.

74

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
Utilisation

0%

20%

40%

60%

80%

100%

S
ch

e
d
u
la

b
le

 T
a
sk

se
ts

UB-H&L-1

AMCmax-1

AMCrtb-1

AMCmax-WH1

SMC-1

AMCrtb-WH1

SMC-NO-1

FPPS-1

CrMPO-1

Figure 5.9: Expt.1b - Percentage of Schedulable Tasksets (1-HC)

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Criticality Factor (CF)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

W
e
ig

h
te

d
 S

ch
e
d
u
la

b
ili

ty

UB-H&L-1

AMCmax-1

AMCrtb-1

SMC-1

AMCmax-WH1

AMCrtb-WH1

SMC-NO-1

FPPS-1

CrMPO-1

Figure 5.10: Expt.2b - Varying the Criticality Factor (1-HC)

75

5% 15% 25% 35% 45% 55% 65% 75% 85% 95%
Percentage of tasks with High Criticality

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

W
e
ig

h
te

d
 S

ch
e
d
u
la

b
ili

ty

UB-H&L-1

AMCmax-1

AMCrtb-1

AMCmax-WH1

SMC-1

AMCrtb-WH1

SMC-NO-1

FPPS-1

CrMPO-1

Figure 5.11: Expt.3b - Varying the Criticality Mix (1-HC)

0 4 8 12 16 20 24 28 32 36 40 44 48
Taskset Size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

W
e
ig

h
te

d
 S

ch
e
d
u
la

b
ili

ty

UB-H&L-1

AMCmax-1

AMCrtb-1

AMCmax-WH1

SMC-1

AMCrtb-WH1

SMC-NO-1

FPPS-1

CrMPO-1

Figure 5.12: Expt.4b - Varying the Number of Tasks (1-HC)

76

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
Utilisation

0%

20%

40%

60%

80%

100%

S
ch

e
d
u
la

b
le

 T
a
sk

se
ts

UB-H&L-1

AMCmax-1

AMCrtb-1

SMC-1

AMCmax-WH1

AMCrtb-WH1

SMC-NO-1

FPPS-1

CrMPO-1

Figure 5.13: Expt.5b - Percentage of Schedulable Tasksets with D ≤ T (1-HC)

0 1 2 3 4 5 6 7 8 9 10
Number of Skips (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

W
e
ig

h
te

d
 S

ch
e
d
u
la

b
ili

ty

UB-H&L-1

AMCmax-1

AMCmax-WH1

AMCrtb-1

SMC-1

AMCrtb-WH1

FPPS-1

SMC-NO-1

CrMPO-1

Figure 5.14: Expt.6b - Varying the Number of Skips where m = 10 (1-HC)

77

0 1 2 3 4 5 6 7 8 9 10
Length of Cycle (m)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

W
e
ig

h
te

d
 S

ch
e
d
u
la

b
ili

ty

UB-H&L-1

AMCmax-1

AMCrtb-1

SMC-1

AMCmax-WH1

AMCrtb-WH1

FPPS-1

SMC-NO-1

CrMPO-1

Figure 5.15: Expt.7b - Varying the Cycle Length where s = 1 (1-HC)

0 1 2 3 4 5 6 7 8 9 10
Length of Cycle (m)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

W
e
ig

h
te

d
 S

ch
e
d
u
la

b
ili

ty

UB-H&L-1

AMCmax-1

AMCmax-WH1

AMCrtb-1

SMC-1

AMCrtb-WH1

FPPS-1

SMC-NO-1

CrMPO-1

Figure 5.16: Expt.8b - Varying the Cycle Length where s = m− 1 (1-HC)

78

5.6 Summary

This chapter reviews an extensive empirical investigation into the effectiveness
of AMC-WH (introduced in section 4.2) against existing scheduling policies for
MCS. By utilising weighted schedulability [16] it has been possible to vary multiple
parameters such as the size of a taskset or the criticality mix to assess the effect
on schedulability. AMC-WH was shown to perform well when compared to other
policies that guarantee LO criticality behaviour in the HI criticality mode. While
this is partly due to the reduced quality of service offered, AMC-WH was shown to
offer scalable performance between FPPS and AMC.

An additional investigation was carried out under the strict assumption that only
one HI criticality task may execute with its full CHI value at any one time. This was
shown to significantly increase the schedulability of tasksets.

79

80

6 Conclusions

This work has reviewed the principles of schedulability analysis for real-time sys-
tems, examining the various approaches to ensure the predictability of such systems.
It then continued with a survey of the active research areas of mixed criticality
systems on uni-processor platforms. A number of technical issues impeding the
adoption of mixed criticality systems have been discussed with particular focus on
the issue of providing a level of LO criticality behaviour in the event of a criticality
mode change.

The main contribution of our research is the scheduling policy, AMC-WH, in-
troduced in section 4.2. This policy can be used to ensure a minimum Quality of
Service (QoS) for LO criticality tasks in the event of a criticality mode change, an
imperative issue if such a policy is to be deployed on real systems. Empirical
evaluations demonstrated that AMC-WH performs favourably with respect to
existing policies, exhibiting a reasonable reduction in schedulability to accommodate
the continued execution of LO criticality tasks without compromising the assurance
of HI criticality tasks. The approach provided by AMC-WH offers the flexibility
for per-task constraints, allowing a system designer to dictate the level of QoS for a
particular component in the event of entering the HI criticality mode. This opens
up the possibility of combining AMC-WH with the notion of importance developed
by Fleming and Burns [50].

Areas of possible future work include generalising AMC-WH to n-criticality levels,
as has been done with AMC-rtb and AMC-max [49]. Generalise the model to allow
all tasks to exhibit weakly-hard behaviour in any criticality mode, where each task
is assigned a set of constraints (one per criticality level). This will offer additional
flexibility to the system designer when deciding how the system should degrade
after a criticality mode change. Another interesting avenue of research is to explore
the use of sensitivity analysis to derive the weakly-hard parameters needed for
schedulability under AMC-WH. This approach would allow the highest possible
quality of service for LO criticality tasks. It is also advantageous to investigate the
integration of methods for the rapid recovery to LO criticality mode [17] with the
AMC-WH policy.

81

82

A Investigation: Sub-optimality of Fixed

Priority Scheduling

In 1995 Kalyanasundaram and Pruhs [63] investigated the effect of speeding up a
processor on the schedulability of tasksets using different scheduling algorithms.
The ratio of this processor speedup, that is the ratio of the processor speeds at which
a taskset becomes just schedulable under each scheduling algorithm is referred to
as the speedup factor. This can be consider a measure of relative effectiveness of a
scheduling algorithm.

To define a speedup factor in more concrete terms, consider f Opt(τ) as the lowest
processor speed such that taskset, τ, is just schedulable under an optimal scheduling
algorithm, Opt. Consider f A(τ) as the lowest processor speed such that taskset, τ,
is just schedulable under a suboptimal scheduling algorithm A. The speedup factor
f A is expressed [35, 63] as:

f A = max
∀τ

(
f A(τ)

f Opt(τ)

)
(.1)

A summary of the upper bounds and lower bounds derived for the sub-optimality
of FP vs EDF as of 2014 are shown in Table .1 [40, 42, 73].

FP-P vs EDF-P
Task Constraint Lower Bound Upper Bound

Implicit-deadline 1/ln(2) ≈ 1.44269
Constrained-deadline 1/Ω ≈ 1.76322

Arbitrary-deadline 1/Ω ≈ 1.76322 2

FP-NP vs EDF-NP
Task Constraint Lower Bound Upper Bound

Implicit-deadline 1/Ω ≈ 1.76322 2
Constrained-deadline 1/Ω ≈ 1.76322 2

Arbitrary-deadline 1/Ω ≈ 1.76322 2

Table .1: Summary of Theoretical Upper Bounds on Speedup Factors

83

Exact bounds are known for implicit and constrained deadlines for the preemptive
case. Exact bounds for implicit and constrained deadlines for the non-preemptive
case were later given by Bruggen et al. [92] as 1/Ω.

The exact bounds for arbitrary deadlines for both the preemptive and non-
preemptive cases are not known [35, 37]. This investigation aimed to discover,
if possible, improved bounds for these cases by the use of a genetic algorithm.

Taskset Generation

A suitable number of tasksets need to be generated to provide an adequate search-
space for discovering individuals with large speedup factors. For this requirement,
Enrico Bini’s UUnifast algorithm [20] is used to create a random uniform set of task
utilisation values totalling that of a requested utilisation.

Only tasksets with utilisation greater than 1.0 were created. The reason for this
requirement is that should a utilisation of a taskset be less than one, then the
processor speed required to just schedule the taskset under EDF-P would be also
less than 1.0 (since EDF is always schedulable when U ≤ 1 [73]). This may lead to
granularity problems should task attributes have to be reduced beyond their base
values. With a utilisation greater than 1.0, the binary search will move in a positive
direction for both FP and EDF.

A period value, Ti, for each task, τi, is selected from a log uniform distribution in
the range [1,1000]. Since Ui has already been assigned by the UUnifast algorithm
and Ui = Ci/Ti, the computation time can be calculated by Ci = Ui ∗ Ti. Deadlines
for tasks are assigned a random log uniform value between Ci and 10Ti.

To reduce issues with granularity, 64-bit integer are used rather than long floats
for task attributes. This means that to have reasonable level of accuracy during
division operations used in the schedulability analysis, at least 5 decimal places
should be simulated by factoring up the integer values of Ci, Ti and Di by 105.

Speedup Calculation

The speedup factor for Fixed Priority Preemptive (FP-P) scheduling vs Earliest
Deadline First Preemptive (EDF-P) scheduling can be expressed as

f FP−P = max
∀τ

(
f FP−P(τ)

f EDF−P(τ)

)
(.2)

84

The speedup factor for Fixed Priority Non-Preemptive (FP-NP) scheduling vs
Earliest Deadline First Non-Preemptive (EDF-NP) scheduling can be expressed
as

f FP−NP = max
∀τ

(
f FP−NP(τ)

f EDF−NP(τ)

)
(.3)

To further reduce granularity problems, rather than scaling Ci in tasksets (which
is the smallest task attribute), Di and Ti were instead scaled to simulate the change
in processor speed.

The process of the binary search for the speedup factor of a taskset, τ, is as follows:

1. Populate a taskset, τ, consisting of n tasks using a requested utilisation > 1.0.

2. Use binary search to adjust the speed of the processor by applying a multiplier
(MedMulti) to Di and Ti for each task τi in τ.

3. Once the multiplier has been applied, τ is tested for schedulability under f A.

4. Should τ be unschedulable, a higher multiplier is applied, such that:

LowMulti := MedMulti
MedMulti := LowMulti + (HiMulti− LowMulti)/2

5. Else, if τ is schedulable, a lower multiplier is applied such that:

HiMulti := MedMulti
MedMulti := LowMulti + (HiMulti− LowMulti)/2

6. When MedMulti is a distance of 0.01% from HiMulti and LowMulti, the
search is stopped and LowMulti is taken as the f A speedup.

7. The process is repeated for the optimal scheduling algorithm f Opt taking
HiMulti as the speedup value.

8. The speedup factor is calculated using the equations above.

Taking a lower value from the suboptimal scheduling algorithm and a higher
value from the optimal algorithm when calculating the speedup factor avoids the
result being optimistic.

An initial value of 1.0 is used for LowMulti as this would be the minimum
multiplier required. The reasoning behind this is that the initial utilisation of a
taskset will be greater than 1.0, requiring the processor to be speeded up for a taskset
to be feasible, even under an optimal scheduling algorithm. If mutation causes a
taskset to require a processor multiplier less than 1.0, the resultant speedup factor
would be so low that it would be of no interest and would be discarded by the

85

evolutionary algorithm selection process (see section 6). After 3 weeks of tuning
parameters to increase the performance of the genetic algorithm, the initial value of
HiMulti was selected to be 500000.0. This was determined to be the maximum value
that would not cause floating-point errors in the implementation. While it can be
argued that this artificially restricted the search space, during the entire investigation
no randomly generated taskset required a speedup multiplier approaching this limit.
The initial value of MedMulti is simply (HiMulti)/2.

Schedulability Analysis

For simplicity, the analysis implemented does not accommodate release jitter and
for the preemptive cases, does not account for blocking.

FP-P

A version of Equation 2.5 omitting jitter and blocking has been implemented to test
schedulability under FP-P for tasksets with arbitrary deadlines. As a preliminary
test, the utilisation of a taskset is calculated. It is known that a taskset with U > 1.0
will not be feasible and so can be immediately returned as unschedulable. However,
the actual condition checked is that U ≤ 0.99999. This is due to the limitations in
calculation of La in the EDF analysis. It should be noted that this imposed limitation
in the implementation can result in a speedup factor value error of 0.001%. This
small error will only affect tasksets with speedup factors close to 1.0 which, in most
cases, will be discarded by the evolutionary algorithm.

wn+1
i (q) = (q + 1)Ci + ∑

j∈hp(i)

⌈
wn

i (q)
Tj

⌉
Cj (.4)

ri(q) = wn
i (q)− qTi Ri = maxq=0,1,2...Ri(q) (.5)

As with the jitter equation, increasing of q can stop once ri(q) ≤ Ti. Each Ri needs to
be checked for the condition Ri ≤ Di to ensure that a taskset is schedulable.

86

FP-NP

Similar to equations Equation 2.8-Equation 2.11, albeit with jitter removed, the
analysis for FP-NP is calculated using the equations below.

wn+1
i (q) = qCi + ∑

j∈hp(i)

(
1 +

⌊
wn

i (q)
Tj

⌋)
Cj + BNP

i (.6)

Where
BNP

i = max
∀k∈lp(i)

(Ck − ∆) (.7)

All releases of τi in the level-i busy period need to be assessed to find the worst case
response time.

Ri = maxq=0,...,Q−1(Wi(q)− qTi + Ci) (.8)

The last q that needs to be assessed is given by:

Q =

⌈
Li
Tj

⌉
(.9)

If ∀i | Ri ≤ Di, the taskset is schedulable under FP-NP.

EDF-P

The processor demand function used is that of Equation 2.14 while Equation 2.16-
Equation 2.18 have been modified to remove jitter and blocking. The maximum
feasible utilisation has been reduced from 1.0 to 0.99999. This is to limit the
maximum length of the level-i busy period and ensure that schedulability tests can
be completed in reasonable time. It is noted that this will result in the schedulability
test being slightly pessimistic.

The result of this pessimism is that discovery of the exact highest possible speedup
factor will not be possible, however it does ensure that optimistic speed up factors
that exceed actual upper bounds are not erroneously returned.

La = max

{
(D1 − T1), . . . , (Dn − Tn),

∑n
i=1(Ti − Di)(Ci/Ti)

1−U

}
(.10)

w0 =
N

∑
i=1

Ci wj+1 =
N

∑
i=1

⌈
wj

Ti

⌉
Ci when wj = wj+1, Lb = wj+1 (.11)

87

L =

min(La, Lb) U < 0.99999

Lb U = 0.99999
(.12)

The QPA algorithm that has been implemented is simplified and does not support
analysis with jitter or blocking.

Listing 1: QPA Algorithm without Jitter or Blocking

t := max{di | di < L}
while (h(t) ≤ t and hj(t) > Dmin) {

if(h(t) < t)
{t := h(t)}

else

{t = max{ di | di < t}}
}

if (h(t) ≤ Dmin) { schedulable }

else { not schedulable }

EDF-NP

EDF-NP analysis is similar to Equation 2.22 and Equation 2.23 in subsection 2.3.5,
the only difference being the removal of jitter.

∀t ≤ L,
N

∑
i=1

max
(

0,
⌊

t + Ti − Di
Ti

⌋)
Ci + bnp(t) ≤ t (.13)

Where

bnp(t) =

0 @i : Di > t

max
Di>t
{Ci − 1} others

(.14)

Listing 2: QPA Algorithm without Jitter

t := max{di | di < L}
while (h(t) + b(t) ≤ t and h(t) + b(t) > Dmin) {

if(h(t) + b(t) < t)
{t := h(t) + b(t)}

else

{t = max{ di | di < t}} }

if (h(t) + b(t) ≤ Dmin) { schedulable }

else { not schedulable }

88

Evolutionary Algorithm

Although searching a random population of tasksets may eventually yield a partic-
ular taskset with a high speedup factor, it is more effective to use an evolutionary
algorithm to evolve tasksets that characteristically have high speedup factors.

A genetic algorithm (GA) was implemented to perform this task. A population of
N tasksets each with n tasks and an initial taskset utilisation of U, are created using
the process outlined above. These tasksets are subjected to the speedup calculation
process. Speedup factors are assigned to each taskset to be used as the fitness values
in the genetic algorithm.

The population then goes under a tournament selection process1 and are crossed
over by splicing tasksets to produce two offspring. These crossed over individuals
are subjected to mutation. The process is repeated until there are 2 ∗ N individual
tasksets. A final tournament selection takes place to decide which tasksets will
survive. This is performed on the newly created child population and the parent
population until there are N tasksets to construct the next generation. The entire
process is repeated, tasksets with higher speedup factors being allowed to survive
more often than tasksets with lower speedup factors. An outline of the GA is
illustrated in Figure .1.

Tournament
Selection

Find SpeedUp
Factor

Taskset

Taskset

TasksetTasksetTasksetTaskset

Population

N

Crossover

MutationTournament
Selection

Initialise Population
Using Uunifast

TasksetTasksetTasksetTaskset

Population

N

TasksetTasksetTasksetTaskset

Child Population

2*N

TasksetTasksetTasksetTaskset

Child + Parent
Population

3*N

Taskset

Taskset

Figure .1: Flow Diagram of Genetic Algorithm

1Probability selection based on fitness values.

89

Crossover

The crossover used in this genetic algorithm is a simple one-point crossover, that is
two tasksets of equal size are taken and a random point is chosen along their length.
The tasksets are then split and recombined in a head and tail fashion. There is a
probability that crossover may not occur at all. If crossover does not occur, the two
tasksets are returned in their original state and passed to the mutation function.

Mutation

The mutation function is designed to explore the whole search-space. The three
attributes of a task, τi, have an equal chance of being mutated, although only one
is permitted to be altered per mutation. There is a global mutation probability that
dictates if mutation should occur. If this should evaluate to be true, Ci, Di or Ti are
randomly selected for mutation. A value in the random range of (0,20]% is added or
subtracted from the selected attribute.

Tournament

Tournament selection is a probabilistic selection of individuals from a population
where individuals with higher fitness values are more likely to be selected than
those with lower fitness values. A number of tasksets are randomly selected from
the existing population to form a tournament population. Tasksets are then selected
for survival based on their fitness values (speedup factors).

The size of a tournament population is given by the tournament size attribute. The
larger the size, the greater the selection pressure. If the tournament size equals the
initial population size then it is the equivalent to elitism, where only the individuals
with the highest fitness values are selected.

Parameters

The parameters used in the genetic algorithm are summarised in Table .2. These
parameters were tuned over a period of 3 weeks to produce the highest speedup
factors. Tournament size in particular had a significant effect on the maximum
speedup factors yielded. A lower tournament size has a lower selection pressure
allowing a variety of tasksets, including those with lower speedup factors to survive.
Having a genetic variety in a population can reduce the chance of the GA becoming
stuck in a local optima.

90

Representation Array of Tasksets
Crossover Type 1-Point Crossover
Crossover Probability 0.5
Mutation ± (0-20]% Deadline, CompTime or Period
Mutation Probability 0.6
Parent Selection Tournament
Survival Selection Tournament on Old and New Population
Population Size 100,000
Tournament Size 50
Generations 200

Table .2: Genetic Algorithm Parameters

Results

FP-P vs EDF-P, D ∼ T

The genetic algorithm was able to find a taskset that has a higher speedup factor than
the lower bound of ≈ 1.76322 given in [37] (see Table .1). This taskset has a speedup
factor of 1.80454 which makes it a potentially new best case and improved lower
bound for the the preemptive scheduling case with arbitrary deadlines. Table .3
gives the taskset attributes.

ID TimePeriod Deadline CompTime

1 134359 720446 31653

2 365919 739991 84855

3 162077 758564 30229

4 88421 755213 15537

5 11342945 822606 852448

6 336043 668423 123684

7 146577 89018 283

8 586012 633882 215465

SpeedUp 1.80454
U.Bound [≈ 1.76322, 2]

Table .3: FP-P vs EDF-P for D ∼ T

91

1 2 3 4 5 6 7 8 9 10
Number of Tasks in Taskset

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

M
a
x
 S

p
e
e
d
U

p
 F

a
ct

o
r

Figure .2: Speedup Factors for FP-P vs EDF-P, D ∼ T

1 2 3 4 5 6 7 8 9 10
Number of Tasks in Taskset

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

M
a
x
 S

p
e
e
d
U

p
 F

a
ct

o
r

Figure .3: Speedup Factors for FP-NP vs EDF-NP, D ∼ T

92

FP-NP vs EDF-NP, D ∼ T

Similar to the preemptive case for arbitrary deadlines, the genetic algorithm pro-
duced a taskset that exceeds the lower bound (≈ 1.76322) given in [35], providing a
potentially new best case of 1.80352. The taskset attributes are listed in Table .4.

ID TimePeriod Deadline CompTime

1 1889920 95475 17502

2 70560 86069 18553

3 27012 88689 8714

4 36818 89393 11851

5 3058493 643262 137633

6 16976 87339 6749

7 25997 81015 12331

8 13758 84752 6234

SpeedUp 1.80352
U.Bound [≈ 1.76322, 2]

Table .4: FP-NP vs EDF-NP for D ∼ T

FP-P vs FP-NP

An investigation into FP-P vs FP-NP was also conducted, for which the speedup
factor is expressed as:

f FP−PNP = max
∀τ

(
f FP−NP(τ)

f FP−P(τ)

)
(.15)

Taskset generation and binary search were performed according to the process
described above, using the same parameters. The results of these experiments are
illustrated in Figure .4. At the time of the investigation tight bounds were not known,
however Davis et al. [34, 38] have since formalised the upper and lower bounds for
these cases:

FP-P vs FP-NP
Task Constraint Lower Bound Upper Bound

Implicit-deadline [73] unkown 1/ln(2) ≈ 1.44269
Constrained-deadline [34]

√
2 ≈ 1.41421 1/Ω ≈ 1.76322

Arbitrary-deadline [38]
√

2 ≈ 1.41421 2

Table .5: Summary of Upper and Lower Bounds on Speedup Factors for FP-P vs FP-NP

93

1 2 3 4 5 6 7 8 9 10
Number of Tasks in Taskset

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45
M

a
x
 S

p
e
e
d
U

p
 F

a
ct

o
r

Arbitrary Deadlines

Constrained Deadlines

Implicit Deadlines

Figure .4: Speedup Factors for FP-P vs FP-NP

ID TimePeriod Deadline CompTime

1 78325 78325 24387

2 98342 98342 124385

3 65706 65706 44839

4 73120 73120 32060

5 61901 61901 21304

6 59423 59423 13690

7 82547 82547 95227

8 61699 61699 1989

9 378820 378820 228

SpeedUp 1.34059
U.Bound [≈ 1.44269]

Table .6: FP-P vs FP-NP for D = T

94

ID TimePeriod Deadline CompTime

1 14095 10306 9580

2 101656 21134 17532

3 16117 16117 15240

4 19936 19936 17535

SpeedUp 1.41391
U.Bound [≈ 1.41412, 2]

Table .7: FP-P vs FP-NP for D ≤ T

ID TimePeriod Deadline CompTime

1 2174765 2176279 3056662

2 10335794 3273652 2174428

3 2949686 3077167 2172544

SpeedUp 1.41284
U.Bound [≈ 1.41412, 2]

Table .8: FP-P vs FP-NP for D ∼ T

Conclusion

Two new lower bounds for the speedup factors were found for the arbitrary deadline
cases for both preemptive and non-preemptive scheduling (see Table .3 and Table .4).
These tasksets have since been verified to be correct by 3 disparate implementations
of the relevant schedulability tests. Further investigation, based on the characteristics
of these tasksets showed that the lower bounds are 2 and thus exact [36]. Attention
is also drawn to Table .7 and Table .8 which present the tasksets that yielded the
highest speedup factors for cases of FP-P vs FP-NP with constrained and arbitrary
deadline respectively. The speedup values are remarkably close to the lower bounds
by Davis et al. [38] strongly suggesting that the lower bound may be exact. This
would need to be formally proved however and is therefore considered an open
problem [34]. This investigation has also produced the taskset, listed in Table .6, that
gives an empirical value of 1.34 for the unknown lower bound for the case of FP-P
vs FP-NP with implicit deadlines. Further work is required to close the gap between
this empirically derived speedup factor and the theoretical upper bound of 1/ln(2).

95

96

Definitions

AMC - Adaptive Mixed Criticlaity

AMC-max - Adaptive Mixed Criticality - maximum

AMC-rtb - Adaptive Mixed Criticality - response time bound

AMC-WH - Adaptive Mixed Criticality - Weakly-Hard

AMCmax-WH - AMC-maximum with Weakly-Hard constraints

AMCrtb-WH - AMC-response time bound with Weakly-Hard constraints

Bi - Blocking Factor

CA - Certification Authority

CBEDF - Criticality Based Earliest Deadline First

CF - Criticality Factor

Ci - Worst-case execution time of a job of τi

CHI
i - Worse-case execution time estimate in HI criticality mode

CLO
i - Worse-case execution time estimate in LO criticality mode

CP - Criticality Probability

CrMPO - Criticality Monotonic Priority Ordering

DFP - Deadline Floor Inheritance Protocol

Di - Relative deadline of task τi

DMPO - Deadline Monotonic Priority Ordering

EDF - Earliest Deadline First

EDF- NP - Earliest Deadline First - Non-Preemptive

EDF-P - Earliest Deadline First - Preemptive

EDF-VD - Earliest Deadline First with Virtual Deadlines

ER-EDF - Early Release - Earliest Deadline First

FP - Fixed Priority

97

FP-NP - Fixed Priority Non-Preemptive

FP-P - Fixed Priority Preemptive

HI - High Criticality

HLC-PCP - Highest-Locker Criticality Priority Ceiling Protocol

hp(i) - Set of higher priority tasks than τi

hpHI(i) - Set of tasks with higher priority than τi which are HI criticality

hpLO(i) - Set of tasks with higher priority than τi which are LO criticality

Ji - Release Jitter of task τi

Li - Criticality Level of task τi

LO - Low Criticality

lp(i) - Set of tasks with lower priority than τi

MC-SRP - Mixed Criticality - Stack Resource Protocol

MC-SRP(T) - Mixed Criticality - Stack Resource Protocol with Thresholds

MCS - Mixed Criticality System

MID - Medium Criticality

OCBP - Own Criticality Based Priority

OPA - Optimal Priority Assignment

PCCP - Priority-and-Criticality Ceiling Protocol

PCIP - Priority-and-Criticality Inheritance Protocol

PCP - Priority Ceiling Protocol

PDC - Processor Demand Criterion

Pi - Priority of task τi

PIP - Priority Inheritance Protocol

PTS - Preemption Theshold Scheduling

QoS - Quality of Service

QPA - Quick Processor-Demand Analysis

QPA-MC - Quick Processor-Demand Analysis - Mixed Criticality

Ri - Worst-case Response time of τi

RMPO - Rate Monotonic Priority Ordering

RTA - Response Time Analysis

98

RTOS - Real-Time Operating System

RTS - Real-Time System

SMC - Static Mixed Criticality

SMC-NO - Static Mixed Criticality with No Runtime Monitoring

SRP - Stack Resource Protocol

t - Time

τi - Task i of taskset τ

Ti - Minimum inter-arrival time or period of task τi

TWCA - Typical Worst-Case Analysis

U - Utilisation value of taskset

UAV - Unmanned Aerial Vehicle

UB-H&L - Composite upper-bound on schedulability of MCS taskset

Ui - Utilisation value of task τi

WCET - Worst-Case Execution Time

ZSS - Zero Slack Scheduling

99

100

References

[1] F. Abugchem, M. Short, and D. Xu, “A note on the suboptimality of nonpreemptive
real-time scheduling,” IEEE Embedded Systems Letters, vol. 7, no. 3, pp. 69–72, Sept 2015.

[2] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings, “Applying
new scheduling theory to static priority pre-emptive scheduling,” Software
Engineering Journal, vol. 8, no. 5, pp. 284–292, 1993. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=238595&tag=1

[3] N. Audsley, “On priority assignment in fixed priority scheduling,” Information
Processing Letters, vol. 79, no. 1, pp. 39 – 44, 2001. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0020019000001654

[4] N. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings, “Hard real-time
scheduling: The deadline-monotonic approach,” in Proceedings of IEEE Workshop
on Real-Time Operating Systems and Software, 1991, pp. 133–137. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.4438

[5] N. Audsley, A. Burns, R. Davis, K. Tindell, and A. Wellings, “Fixed priority pre-emptive
scheduling: An historical perspective,” Real-Time Systems, vol. 8, no. 2-3, pp. 173–198,
1995. [Online]. Available: http://dx.doi.org/10.1007/BF01094342

[6] T. Baker, “Stack-based scheduling of realtime processes,” Real-Time Systems, vol. 3,
no. 1, pp. 67–99, 1991. [Online]. Available: http://dx.doi.org/10.1007/BF00365393

[7] S. Baruah and B. Chattopadhyay, “Response-time analysis of mixed criticality systems
with pessimistic frequency specification,” in Proceedings of IEEE 19th International
Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA),
Aug 2013, pp. 237–246.

[8] S. Baruah and S. Vestal, “Schedulability analysis of sporadic tasks with multiple
criticality specifications,” in Proceedings of Euromicro Conference on Real-Time Systems
(ECRTS), July 2008, pp. 147–155.

[9] S. Baruah and A. Burns, “Implementing mixed criticality systems in ada,” in
Reliable Software Technologies - Ada-Europe 2011, A. Romanovsky and T. Vardanega,
Eds. Springer Berlin Heidelberg, 2011, vol. 6652, pp. 174–188. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-21338-0_13

[10] S. Baruah, H. Li, and L. Stougie, “Towards the design of certifiable mixed-criticality
systems,” in Proceedings of the 2010 16th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS). Washington, DC, USA: IEEE Computer Society, 2010,
pp. 13–22. [Online]. Available: http://dx.doi.org/10.1109/RTAS.2010.10

[11] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela, N. Megow,
and L. Stougie, “Scheduling real-time mixed-criticality jobs,” in Mathematical
Foundations of Computer Science 2010, P. Hlineny and A. Kucera, Eds. Springer
Berlin Heidelberg, 2010, vol. 6281, pp. 90–101. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-642-15155-2_10

101

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=238595&tag=1
http://www.sciencedirect.com/science/article/pii/S0020019000001654
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.4438
http://dx.doi.org/10.1007/BF01094342
http://dx.doi.org/10.1007/BF00365393
http://dx.doi.org/10.1007/978-3-642-21338-0_13
http://dx.doi.org/10.1109/RTAS.2010.10
http://dx.doi.org/10.1007/978-3-642-15155-2_10
http://dx.doi.org/10.1007/978-3-642-15155-2_10

[12] S. Baruah, V. Bonifaci, G. D’Angelo, A. Marchetti-Spaccamela, S. van der Ster,
and L. Stougie, “Mixed-criticality scheduling of sporadic task systems,” in
Algorithms - ESA 2011, C. Demetrescu and M. Halldorsson, Eds. Springer
Berlin Heidelberg, 2011, vol. 6942, pp. 555–566. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-642-23719-5_47

[13] S. Baruah, L. Rosier, and R. Howell, “Algorithms and complexity concerning
the preemptive scheduling of periodic, real-time tasks on one processor,” Real-
Time Systems, vol. 2, no. 4, pp. 301–324, 1990. [Online]. Available: http:
//dx.doi.org/10.1007/BF01995675

[14] S. Baruah, A. Burns, and R. Davis, “Response-time analysis for mixed criticality
systems,” in Proceedings of IEEE Real-Time Systems Symposium (RTSS), 2011, pp. 34–
43.

[15] S. Baruah, A. Mok, and L. Rosier, “Preemptively scheduling hard-real-time sporadic
tasks on one processor,” in Proceedings of 11th Real-Time Systems Symposium (RTSS), Dec
1990, pp. 182–190.

[16] A. Bastoni, B. Brandenburg, and J. Anderson, “Cache-related preemption and
migration delays: Empirical approximation and impact on schedulability,” Proceedings
of OSPERT, pp. 33–44, 2010. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.182.7764

[17] I. Bate, A. Burns, and R. I. Davis, “A bailout protocol for mixed criticality systems,” in
Proceedings of 27th Euromicro Conference on Real-Time Systems (ECRTS), 2015, pp. 259–268.

[18] G. Bernat, A. Burns, and A. Liamosi, “Weakly hard real-time systems,” IEEE Transactions
on Computers, vol. 50, no. 4, pp. 308–321, Apr 2001.

[19] G. Bernat and R. Cayssials, “Guaranteed on-line weakly-hard real-time systems,” in
Proceedings of IEEE Real-Time Systems Symposium (RTSS), Dec 2001, pp. 25–35.

[20] E. Bini and G. C. Buttazzo, “Measuring the performance of schedulability tests,”
Real-Time Systems, vol. 30, no. 1-2, pp. 129–154, May 2005. [Online]. Available:
http://dx.doi.org/10.1007/s11241-005-0507-9

[21] R. Bril, J. Lukkien, and W. Verhaegh, “Worst-case response time analysis
of real-time tasks under fixed-priority scheduling with deferred preemption,”
Real-Time Systems, vol. 42, no. 1-3, pp. 63–119, 2009. [Online]. Available:
http://dx.doi.org/10.1007/s11241-009-9071-z

[22] A. Burns, “The application of the original priority ceiling protocol to mixed criticality
systems,” ReTiMiCS, 2013. [Online]. Available: http://www.cs.york.ac.uk/media/
computerscience/documents/researchprojects/PCPMCSRTCSA2013.pdf

[23] ——, “System mode changes - general and criticality-based,” in Proc. 2nd
Workshop on Mixed Criticality Systems (WMC), IEEE Real-Time Systems Symposium
(RTSS), L. Cucu-Grosjean and R. Davis, Eds., 2014, pp. 3–8. [Online]. Available:
http://www-users.cs.york.ac.uk/~robdavis/wmc2014/1.pdf

[24] A. Burns and R. Davis, “Adaptive mixed criticality scheduling with deferred
preemption,” in Proceedings of IEEE Real-Time Systems Symposium (RTSS), 2014, pp. 21–
30. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7010371

102

http://dx.doi.org/10.1007/978-3-642-23719-5_47
http://dx.doi.org/10.1007/978-3-642-23719-5_47
http://dx.doi.org/10.1007/BF01995675
http://dx.doi.org/10.1007/BF01995675
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.182.7764
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.182.7764
http://dx.doi.org/10.1007/s11241-005-0507-9
http://dx.doi.org/10.1007/s11241-009-9071-z
http://www.cs.york.ac.uk/media/computerscience/documents/researchprojects/PCPMCSRTCSA2013.pdf
http://www.cs.york.ac.uk/media/computerscience/documents/researchprojects/PCPMCSRTCSA2013.pdf
http://www-users.cs.york.ac.uk/~robdavis/wmc2014/1.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7010371

[25] A. Burns, M. Gutierrez, M. Aldea Rivas, and M. Gonzalez Harbour, “A deadline-floor
inheritance protocol for edf scheduled embedded real-time systems with resource
sharing,” IEEE Transactions on Computers, vol. 64, no. 5, pp. 1241–1253, May 2015.

[26] A. Burns and S. Baruah, “Timing faults and mixed criticality systems,” in
Dependable and Historic Computing, C. Jones and J. Lloyd, Eds. Springer
Berlin Heidelberg, 2011, vol. 6875, pp. 147–166. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-642-24541-1_12

[27] ——, “Towards a more practical model for mixed criticality systems,” in
Workshop on Mixed-Criticality Systems (colocated with RTSS), 2013. [Online]. Available:
ftp://ftp.cs.york.ac.uk/papers/rtspapers/R:Burns:2013h.pdf

[28] A. Burns and R. Davis, “Mixed criticality systems: A review,” Department
of Computer Science, University of York, Tech. Rep, 2013. [Online]. Available:
http://www-users.cs.york.ac.uk/~burns/review.pdf

[29] A. Burns and A. Wellings, Real-Time Systems and Programming Languages, 4th ed.
Addison Wesley, 2009.

[30] G. Buttazzo, G. Lipari, and L. Abeni, “Elastic task model for adaptive rate control,” in
Proceedings of 19th IEEE Real-Time Systems Symposium (RTSS), Dec 1998, pp. 286–295.

[31] R. W. Conway, W. L. Maxwell, and L. W. Miller, Theory of Scheduling, ebook ed. Dover
Publications, 2012.

[32] R. Davis and M. Bertogna, “Optimal fixed priority scheduling with deferred pre-
emption,” in Proceedings of IEEE Real-Time Systems Symposium (RTSS), 2012, pp. 39–50.

[33] R. Davis, A. Zabos, and A. Burns, “Efficient exact schedulability tests for fixed priority
real-time systems,” IEEE Transactions on Computers, vol. 57, no. 9, pp. 1261–1276, Sept
2008.

[34] R. Davis, O. Gettings, A. Thekkilakattil, R. Dobrin, and S. Punnekkat, “What is the exact
speedup factor for fixed priority pre-emptive versus fixed priority non-pre-emptive
scheduling?” in The 6th International Real-Time Scheduling Open Problems Seminar
(RTSOPS), July 2015. [Online]. Available: http://www.es.mdh.se/publications/3930-

[35] R. Davis, L. George, and P. Courbin, “Quantifying the sub-optimality of uniprocessor
fixed priority non-pre-emptive scheduling,” in 18th International Conference on Real-Time
and Network Systems (RTNS), Toulouse, France, Nov. 2010, pp. 1–10. [Online]. Available:
http://hal.inria.fr/inria-00536363

[36] R. I. Davis, A. Burns, S. Baruah, T. Rothvoss, L. George, and O. Gettings, “Exact
comparison of fixed priority and edf scheduling based on speedup factors for both
pre-emptive and non-pre-emptive paradigms,” Real-Time Systems, pp. 1–36, 2015.
[Online]. Available: http://dx.doi.org/10.1007/s11241-015-9233-0

[37] R. I. Davis, T. Rothvoss, S. K. Baruah, and A. Burns, “Quantifying the sub-optimality
of uniprocessor fixed priority pre-emptive scheduling for sporadic tasksets with
arbitrary deadlines,” 17th International Conference on Real-Time and Network Systems
(RTNS), 2009. [Online]. Available: http://www-users.cs.york.ac.uk/~robdavis/
papers/ArbitrarySpeedup2.0.pdf

103

http://dx.doi.org/10.1007/978-3-642-24541-1_12
http://dx.doi.org/10.1007/978-3-642-24541-1_12
ftp://ftp.cs.york.ac.uk/papers/rtspapers/R:Burns:2013h.pdf
http://www-users.cs.york.ac.uk/~burns/review.pdf
http://www.es.mdh.se/publications/3930-
http://hal.inria.fr/inria-00536363
http://dx.doi.org/10.1007/s11241-015-9233-0
http://www-users.cs.york.ac.uk/~robdavis/papers/ArbitrarySpeedup2.0.pdf
http://www-users.cs.york.ac.uk/~robdavis/papers/ArbitrarySpeedup2.0.pdf

[38] R. I. Davis, A. Thekkilakattil, O. Gettings, R. Dobrin, and S. Punnekkat, “Quantifying
the exact sub-optimality of non-preemptive scheduling,” in Proceedings of IEEE Real-Time
Systems Symposium (RTSS), 2015.

[39] R. Davis and A. Burns, “Improved priority assignment for global fixed priority
pre-emptive scheduling in multiprocessor real-time systems,” Real-Time Systems, vol. 47,
no. 1, pp. 1–40, 2011. [Online]. Available: http://dx.doi.org/10.1007/s11241-010-9106-5

[40] R. Davis, T. Rothvoss, T., S. Baruah, and A. Burns, “Exact quantification
of the sub-optimality of a uniprocessor fixed priority pre-emptive scheduling,”
Real-Time Systems, vol. 43, no. 3, pp. 211–258, 2009. [Online]. Available:
http://dx.doi.org/10.1007/s11241-009-9079-4

[41] D. De Niz, K. Lakshmanan, and R. Rajkumar, “On the scheduling of mixed-criticality
real-time task sets,” in 30th IEEE Real-Time Systems Symposium (RTSS), Dec 2009, pp.
291–300.

[42] M. L. Dertouzos, “Control robotics: The procedural control of physical
processes.” in IFIP Congress, 1974, pp. 807–813. [Online]. Available: http:
//dblp.uni-trier.de/db/conf/ifip/ifip74.html#Dertouzos74

[43] F. Dorin, P. Richard, M. Richard, and J. Goossens, “Schedulability and
sensitivity analysis of multiple criticality tasks with fixed-priorities,” Real-
Time Systems, vol. 46, no. 3, pp. 305–331, 2010. [Online]. Available: http:
//dx.doi.org/10.1007/s11241-010-9107-4

[44] A. Easwaran, “Demand-based scheduling of mixed-criticality sporadic tasks on one
processor,” in IEEE 34th Real-Time Systems Symposium (RTSS), Dec 2013, pp. 78–87.

[45] P. Ekberg and W. Yi, “Bounding and shaping the demand of mixed-criticality sporadic
tasks,” in 24th Euromicro Conference on Real-Time Systems (ECRTS), July 2012, pp. 135–144.

[46] ——, “Bounding and shaping the demand of generalized mixed-criticality sporadic
task systems,” Real-Time Systems, vol. 50, no. 1, pp. 48–86, 2014. [Online]. Available:
http://dx.doi.org/10.1007/s11241-013-9187-z

[47] J. Erickson, N. Kim, and J. Anderson, “Recovering from overload in multicore mixed-
criticality systems,” in IEEE International Parallel and Distributed Processing Symposium
(IPDPS), May 2015, pp. 775–785.

[48] M. S. Fineberg and O. Serlin, “Multiprogramming for hybrid computation,”
in Proceedings of the Fall Joint Computer Conference, ser. AFIPS ’67 (Fall).
New York, NY, USA: ACM, Nov 1967, pp. 1–13. [Online]. Available: http:
//doi.acm.org/10.1145/1465611.1465613

[49] T. Fleming and A. Burns, “Extending mixed criticality scheduling,” in Proceedings of
Workshop on Mixed Criticality, IEEE Real-Time Systems Symposium (RTSS), 2013, pp. 7–12.
[Online]. Available: http://www-users.cs.york.ac.uk/~robdavis/wmc/paper16.pdf

[50] ——, “Incorporating the notion of importance into mixed criticality systems,” in
Proceedings of Workshop on Mixed Criticality, IEEE Real-Time Systems Symposium
(RTSS), L. Cucu-Grosjean and R. Davis, Eds., 2014, pp. 33–38. [Online]. Available:
http://www-users.cs.york.ac.uk/~robdavis/wmc2014/6.pdf

104

http://dx.doi.org/10.1007/s11241-010-9106-5
http://dx.doi.org/10.1007/s11241-009-9079-4
http://dblp.uni-trier.de/db/conf/ifip/ifip74.html#Dertouzos74
http://dblp.uni-trier.de/db/conf/ifip/ifip74.html#Dertouzos74
http://dx.doi.org/10.1007/s11241-010-9107-4
http://dx.doi.org/10.1007/s11241-010-9107-4
http://dx.doi.org/10.1007/s11241-013-9187-z
http://doi.acm.org/10.1145/1465611.1465613
http://doi.acm.org/10.1145/1465611.1465613
http://www-users.cs.york.ac.uk/~robdavis/wmc/paper16.pdf
http://www-users.cs.york.ac.uk/~robdavis/wmc2014/6.pdf

[51] G. Frehse, A. Hamann, S. Quinton, and M. Woehrle, “Formal analysis of timing effects
on closed-loop properties of control software,” in IEEE Real-Time Systems Symposium
(RTSS), Dec 2014, pp. 53–62.

[52] L. George, N. Rivierre, and M. Spuri, “Preemptive and non-preemptive real-time
uniprocessor scheduling,” INRIA, Research Report RR-2966, 1996, projet REFLECS.
[Online]. Available: http://hal.inria.fr/inria-00073732

[53] O. Gettings, S. Quinton, and R. I. Davis, “Mixed criticality systems with weakly-hard
constraints,” in Proceedings of 23rd International Conference on Real-Time Networks and
Systems (RTNS), 2015.

[54] X. Gu, A. Easwaran, K.-M. Phan, and I. Shin, “Resource efficient isolation mechanisms
in mixed-criticality scheduling,” in 27th Euromicro Conference on Real-Time Systems
(ECRTS), July 2015, pp. 13–24.

[55] N. Guan, P. Ekberg, M. Stigge, and W. Yi, “Effective and efficient scheduling of certifiable
mixed-criticality sporadic task systems,” in IEEE 32nd Real-Time Systems Symposium
(RTSS), Nov 2011, pp. 13–23.

[56] P. K. Harter, Jr., “Response times in level-structured systems,” ACM Trans.
Comput. Syst., vol. 5, no. 3, pp. 232–248, Aug. 1987. [Online]. Available:
http://doi.acm.org/10.1145/24068.24069

[57] P. Harter, Response Times in Level Structured Systems, ser. University of Colorado
at Boulder, Department of Computer Science. Department of Computer Science,
University of Colorado, 1984. [Online]. Available: http://books.google.co.uk/books?
id=fq3XtgAACAAJ

[58] H.-M. Huang, C. Gill, and C. Lu, “Implementation and evaluation of mixed-criticality
scheduling approaches for periodic tasks,” in Proceedings of IEEE 18th Real-Time and
Embedded Technology and Applications Symposium (RTAS), April 2012, pp. 23–32.

[59] ——, “Implementation and evaluation of mixed-criticality scheduling approaches for
sporadic tasks,” ACM Transactions on Embedded Compututer Systems, vol. 13, no. 4s, pp.
126:1–126:25, Apr. 2014. [Online]. Available: http://doi.acm.org/10.1145/2584612

[60] M. Jan, L. Zaourar, and M. Pitel, “Maximizing the execution rate of low-criticality
tasks in mixed criticality system,” in Proceedings of Workshop on Mixed Criticality, IEEE
Real-Time Systems Symposium (RTSS), 2013, pp. 43–48.

[61] M. Jones. (1997) What really happened on mars? Microsoft. http://research.microsoft.
com/en-us/um/people/mbj/Mars_Pathfinder/Mars_Pathfinder.html. [Online]. Avail-
able: http://research.microsoft.com/en-us/um/people/mbj/Mars_Pathfinder/Mars_
Pathfinder.html

[62] M. Joseph and P. Pandya, “Finding response times in a real-time system,”
The Computer Journal, vol. 29, no. 5, pp. 390–395, 1986. [Online]. Available:
http://comjnl.oxfordjournals.org/content/29/5/390.abstract

[63] B. Kalyanasundaram and K. Pruhs, “Speed is as powerful as clairvoyance [scheduling
problems],” in Proceedings of 36th Annual Symposium on Foundations of Computer Science,
Oct 1995, pp. 214–221.

105

http://hal.inria.fr/inria-00073732
http://doi.acm.org/10.1145/24068.24069
http://books.google.co.uk/books?id=fq3XtgAACAAJ
http://books.google.co.uk/books?id=fq3XtgAACAAJ
http://doi.acm.org/10.1145/2584612
http://research.microsoft.com/en-us/um/people/mbj/Mars_Pathfinder/Mars_Pathfinder.html
http://research.microsoft.com/en-us/um/people/mbj/Mars_Pathfinder/Mars_Pathfinder.html
http://research.microsoft.com/en-us/um/people/mbj/Mars_Pathfinder/Mars_Pathfinder.html
http://research.microsoft.com/en-us/um/people/mbj/Mars_Pathfinder/Mars_Pathfinder.html
http://comjnl.oxfordjournals.org/content/29/5/390.abstract

[64] Y.-S. Kim and H.-W. Jin, “Towards a practical implementation of criticality mode
change in rtos,” Konkuk University, Korea, Tech. Rep., 2014. [Online]. Available:
http://home.konkuk.ac.kr/~jinh/papers/jin_etfa14.pdf

[65] G. Koren and D. Shasha, “Skip-over: algorithms and complexity for overloaded systems
that allow skips,” in Proceedings of IEEE Real-Time Systems Symposium (RTSS), Dec 1995,
pp. 110–117.

[66] K. Lakshmanan, D. De Niz, and R. Rajkumar, “Mixed-criticality task synchronization in
zero-slack scheduling,” in 17th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), April 2011, pp. 47–56.

[67] B. W. Lampson and D. D. Redell, “Experience with processes and monitors in mesa,”
ACM Communications, vol. 23, no. 2, pp. 105–117, Feb. 1980. [Online]. Available:
http://doi.acm.org/10.1145/358818.358824

[68] J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic scheduling algorithm: exact
characterization and average case behavior,” in Proceedings of IEEE Real Time Systems
Symposium (RTSS), Dec 1989, pp. 166–171.

[69] J. Lehoczky, “Fixed priority scheduling of periodic task sets with arbitrary deadlines,”
in Proceedings of 11th IEEE Real-Time Systems Symposium (RTSS), 1990, pp. 201–209.

[70] J. Y.-T. Leung and J. Whitehead, “On the complexity of fixed-priority scheduling
of periodic, real-time tasks,” Performance Evaluation, vol. 2, no. 4, pp. 237 –
250, 1982. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
0166531682900244

[71] H. Li and S. Baruah, “An algorithm for scheduling certifiable mixed-criticality sporadic
task systems,” in 31st IEEE Real-Time Systems Symposium (RTSS), Nov 2010, pp. 183–192.

[72] G. Lipari and G. C. Buttazzo, “Resource reservation for mixed criticality systems,” in
Proceeding of Workshop on Real-Time Systems: the past, the present, and the future, 2013, pp.
60–74. [Online]. Available: http://retis.sssup.it/~giorgio/paps/2013/wrts13.pdf

[73] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a
hard-real-time environment,” ACM, vol. 20, no. 1, pp. 46–61, Jan. 1973. [Online].
Available: http://doi.acm.org/10.1145/321738.321743

[74] A. Massa, Embedded Software Development with eCos. Prentice Hall Professional Technical
Reference, 2002.

[75] S. Oikawa and R. Rajkumar, “Linux/rk: A portable resource kernel in linux,”
in In 19th IEEE Real-Time Systems Sumposium (RTSS), 1998. [Online]. Available:
http://www.cs.cmu.edu/~shui/Paper/rtss98.ps.gz

[76] T. Park and S. Kim, “Dynamic scheduling algorithm and its schedulability analysis
for certifiable dual-criticality systems,” in Proceedings of the Ninth ACM International
Conference on Embedded Software (EMSOFT). New York, NY, USA: ACM, 2011, pp.
253–262. [Online]. Available: http://doi.acm.org/10.1145/2038642.2038681

[77] M. Pilling, A. Burns, and K. Raymond, “Formal specifications and proofs of inheritance
protocols for real-time scheduling,” Software Engineering Journal, vol. 5, no. 5, pp.
263–279, Sep 1990. [Online]. Available: http://ieeexplore.ieee.org/xpl/articleDetails.
jsp?arnumber=62657

106

http://home.konkuk.ac.kr/~jinh/papers/jin_etfa14.pdf
http://doi.acm.org/10.1145/358818.358824
http://www.sciencedirect.com/science/article/pii/0166531682900244
http://www.sciencedirect.com/science/article/pii/0166531682900244
http://retis.sssup.it/~giorgio/paps/2013/wrts13.pdf
http://doi.acm.org/10.1145/321738.321743
http://www.cs.cmu.edu/~shui/Paper/rtss98.ps.gz
http://doi.acm.org/10.1145/2038642.2038681
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=62657
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=62657

[78] P. Ramanathan and M. Hamdaoui, “A dynamic priority assignment technique for
streams with (m, k)-firm deadlines,” IEEE Transactions on Computers, vol. 44, no. 12, pp.
1443–1451, Dec. 1995. [Online]. Available: http://dx.doi.org/10.1109/12.477249

[79] B. Randell, J.-C. Laprie, H. Kopetz, and B. Littlewood, Eds., Predictably Dependable
Computing Systems (ESPRIT Basic Research Series), softcover reprint of the original 1st ed.
1995 ed. Springer, 2011, "ISBN-13: 978-3642797910".

[80] F. Santy, L. George, P. Thierry, and J. Goossens, “Relaxing mixed-criticality scheduling
strictness for task sets scheduled with fp,” in Proceedings of Euromicro Conference on
Real-Time Systems (ECRTS), July 2012, pp. 155–165.

[81] F. Santy, G. Raravi, G. Nelissen, V. Nelis, P. Kumar, J. Goossens, and E. Tovar,
“Two protocols to reduce the criticality level of multiprocessor mixed-criticality
systems,” in Proceedings of the 21st International Conference on Real-Time Networks and
Systems (RTNS). New York, NY, USA: ACM, 2013, pp. 183–192. [Online]. Available:
http://doi.acm.org/10.1145/2516821.2516834

[82] O. Serlin, “Scheduling of time critical processes,” in Proceedings of the Spring Joint
Computer Conference, ser. AFIPS ’72 (Spring). New York, NY, USA: ACM, 1972, pp.
925–932. [Online]. Available: http://doi.acm.org/10.1145/1478873.1478995

[83] L. Sha, J. P. Lehoczky, and R. Rajkumar, “Solutions for some practical problems in
prioritized preemptive scheduling,” in IEEE Real-Time Systems Symposium (RTSS), 1986,
pp. 181–191.

[84] L. Sha, R. Rajkumar, and J. Lehoczky, “Priority inheritance protocols: an approach to
real-time synchronization,” IEEE Transactions on Computers, vol. 39, no. 9, pp. 1175–1185,
1990.

[85] M. Spuri, “Analysis of deadline scheduled real-time systems,” Tech. Rep., 1996.
[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.769

[86] H. Su and D. Zhu, “An elastic mixed-criticality task model and its scheduling algorithm,”
in Design, Automation Test in Europe Conference Exhibition (DATE), 2013, March 2013, pp.
147–152.

[87] A. Thekkilakattil, R. Dobrin, and S. Punnekkat, “Quantifying the sub-optimality of
non-preemptive real-time scheduling,” in 25th Euromicro Conference on Real-Time Systems
(ECRTS), July 2013, pp. 113–122.

[88] ——, “The limited-preemptive feasibility of real-time tasks on uniprocessors,”
Real-Time Systems, vol. 51, no. 3, pp. 247–273, 2015. [Online]. Available:
http://dx.doi.org/10.1007/s11241-015-9222-3

[89] K. W. Tindell, “Extendible approach for analysing fixed priority hard real-
time tasks,” Journal of Real-Time Systems, vol. 6, 1992. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.5233

[90] K. Tindell, A. Burns, and A. Wellings, “Mode changes in priority preemptively
scheduled systems,” in Proceedings of IEEE Real-Time Systems Symposium (RTSS), Dec
1992, pp. 100–109.

107

http://dx.doi.org/10.1109/12.477249
http://doi.acm.org/10.1145/2516821.2516834
http://doi.acm.org/10.1145/1478873.1478995
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.769
http://dx.doi.org/10.1007/s11241-015-9222-3
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.5233

[91] S. Vestal, “Preemptive scheduling of multi-criticality systems with varying degrees of
execution time assurance,” in Proceedings of IEEE Real-Time Systems Symposium (RTSS),
2007, pp. 239–243.

[92] G. Von der Bruggen, J.-J. Chen, and W.-H. Huang, “Schedulability and optimization
analysis for non-preemptive static priority scheduling based on task utilization and
blocking factors,” in Proceedings of 27th Euromicro Conference on Real-Time Systems
(ECRTS), July 2015, pp. 90–101.

[93] Y. Wang and M. Saksena, “Scheduling fixed-priority tasks with preemption threshold,”
in Sixth International Conference on Real-Time Computing Systems and Applications (RTCSA),
1999, pp. 328–335.

[94] H. Wyle and G. J. Burnett, “Management of periodic operations in a real-time
computation system,” in Proceedings of the Joint Computer Conference, ser. AFIPS ’67
(Fall). New York, NY, USA: ACM, Nov 1967, pp. 201–208. [Online]. Available:
http://doi.acm.org/10.1145/1465611.1465638

[95] C. Yao, L. Qiao, L. Zheng, and X. Huagang, “Efficient schedulability analysis
for mixed-criticality systems under deadline-based scheduling,” Chinese Journal
of Aeronautics, vol. 27, no. 4, pp. 856 – 866, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1000936114001022

[96] E. Yip, M. Kuo, P. Roop, and D. Broman, “Relaxing the synchronous approach for
mixed-criticality systems,” in Proceedings of Real-Time and Embedded Technology and
Applications Symposium (RTAS), April 2014, pp. 89–100.

[97] F. Zhang and A. Burns, “Schedulability analysis of edf-scheduled embedded real-time
systems with resource sharing,” ACM Transactions on Embedded Compututer Systems,
vol. 12, no. 3, 2013.

[98] ——, “Schedulability analysis for real-time systems with edf scheduling,” IEEE
Transactions on Computers, vol. 58, no. 9, pp. 1250–1258, 2009.

[99] Q. Zhao, Z. Gu, and H. Zeng, “Integration of resource synchronization and preemption-
thresholds into edf-based mixed-criticality scheduling algorithm,” in IEEE 19th
International Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA), Aug 2013, pp. 227–236.

[100] ——, “Pt-amc: Integrating preemption thresholds into mixed-criticality scheduling,” in
Design, Automation Test in Europe Conference Exhibition (DATE), 2013, March 2013, pp.
141–146.

[101] ——, “Hlc-pcp: A resource synchronization protocol for certifiable mixed criticality
scheduling,” In Proceedings of IEEE Embedded Systems Letters, vol. 6, no. 1, pp. 8–11,
March 2014.

[102] M. Zimmer, D. Broman, C. Shaver, and E. A. Lee, “Flexpret: A processor
platform for mixed-criticality systems,” EECS Department, University of California,
Berkeley, Tech. Rep., 2013. [Online]. Available: http://www.bromans.com/publ/
zimmer-et-al-2014-flexpret.pdf

108

http://doi.acm.org/10.1145/1465611.1465638
http://www.sciencedirect.com/science/article/pii/S1000936114001022
http://www.bromans.com/publ/zimmer-et-al-2014-flexpret.pdf
http://www.bromans.com/publ/zimmer-et-al-2014-flexpret.pdf

	Abstract
	List of Tables
	List of Figures
	Introduction
	Real-Time Systems
	System Model and Terminology
	Fixed Priority Scheduling
	Liu and Layland's Task Model
	Critical Instant Theorem
	Priority Assignment
	Schedulability Tests
	Shared Resources
	Non-Preemptive Fixed Priority

	Earliest Deadline First Scheduling
	Utilisation Test
	Processor Demand Criterion
	Quick Processor-demand Analysis
	Shared Resources
	Non-Preemptive EDF

	Sub-optimality of Fixed Priority Scheduling
	Summary

	Mixed Criticality Systems
	System Model and Terminology
	Fixed Priority Scheduling
	The Vestal Model
	Period Transformation
	Job Scheduling
	Static Mixed Criticality
	Adaptive Mixed Criticality
	Zero-Slack Scheduling
	Resource Sharing

	Earliest Deadline First Scheduling
	Resource Sharing

	Criticality Modes
	Implementation
	Summary

	Mixed Criticality Systems with Weakly-Hard Constraints
	Existing Analysis
	Fixed Priority Preemptive Scheduling
	Criticality Monotonic Priority Ordering
	Static Mixed Criticality - NO
	Static Mixed Criticality
	Adaptive Mixed Criticality - rtb
	Adaptive Mixed Criticality - max

	Adaptive Mixed Criticality - Weakly Hard
	AMCrtb-WH
	AMCmax-WH
	Comparing AMCmax-WH and AMCrtb-WH
	Priority Assignment for AMC-WH

	Worked Example
	Summary

	Experimental Evaluation
	Taskset Generation
	Schedulability Tests
	Experiments
	Discussion of Results
	Additional Investigation
	Summary

	Conclusions
	Appendix A
	Definitions
	References

