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iii Abstract

In this thesis, we investigate questions about the properties of delay systems

and diffusive systems as well as Hankel and weighted Hankel operators. After

detailing the necessary background in Chapter 1, in Chapter 2 the focus is

on the development of methods to study the stability of delay and fractional

systems. This analysis is carried forward using some BIBO and H∞ stabil-

ity tests. Generalisation of the Walton-Marshall method [38] enable us to

move from the single and multi-delay cases to fractional delay systems. This

method gives procedures for finding stability windows as the delay varies.

Chapter 3 is concerned with diffusive systems. Via convenient adaptations

of some tests due to Howland [19], it becomes possible to give necessary and

sufficient conditions for the Hankel operator and the weighted Hankel opera-

tor to be nuclear. Also, in this Chapter we introduce more general weighted

Hankel operators and discuss their boundedness. Here the reproducing ker-

nel test plays an essential role in testing boundedness. Some fundamental

examples are given to support our work.

In Chapter 4 here we investigate questions regarding approximating infinite-

dimensional linear system by finite-dimensional ones. Moreover, we develop

more research on the rate of decay of singular values of the associated Hankel

operator.

In Chapter 5 we mainly focus on diffusive systems defined by holomorphic

distributions and measures on a half plane. In particular we look at the nucle-

arity (trace class) and Hilbert-Schmidt properties of such systems. Moreover,

we begin further study of explicit examples of weighted Hankel operators for

which we did not know whether they were bounded, those examples already

introduced in Chapter 3.

In Chapter 6 the boundedness of weighted Hankel corresponding to diffusive



systems is analysed using the theory of Carleson measures.

Chapter 7 gives some suggestions for further work.
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Chapter 1

Background

1.1 Introduction

We begin by recalling some necessary background. There are two main

themes with which familiarity will be assumed in later chapters: operator

theory and systems theory. This chapter will by no means provide an ex-

haustive summary of any of these but rather it will serve to equip the reader

with basic concepts and results used later. It will rather serve to provide

the reader with much of the terminology and conventions that are adopted

throughout. There will be no new results in this chapter and so all theorems

are stated without proof. Suitable references are [4], [6], [18], [28], [30], [31],

[34] and [35].

1.1.1 Notation

R+ denotes the set of all the real numbers that are greater than zero, C+

denotes the set of complex numbers with real part strictly greater than

zero, and L∞ denotes the complex-valued measurable functions on the non-

negative real axis such that ess supt∈R+
|f(t)| < ∞. Also Lp(R+) denotes

the complex-valued measurable functions on the non-negative real axis with
∫∞
0
|f(t)|p dt <∞.
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1.2 Results from Functional Analysis

1.2 Results from Functional Analysis

1.2.1 Banach Spaces

A normed space is a vector space B (assumed to be over the complex number

field C) provided with a norm ‖.‖ satisfying

• ‖f‖ ≥ 0,

• ‖f‖ = 0 implies f = 0,

• ‖αf‖ = |α| ‖f‖,

• ‖f + g‖ ≤ ‖f‖ + ‖g‖ , for all α ∈ C and f, g ∈ B

‖.‖ is a seminorm if it satisfies all the axioms except the second.

A Banach space is defined to be a normed space B which is complete in

sense that every Cauchy sequence in B converges to a limit in B. Every

normed space B has a completion B, which is a Banach space in which B

is embedded isometrically and densely. (An isometric embedding is a linear,

norm-preserving (and hence one-one) map of one normed space into another

in which every element of the first space is identified with its image in the

second).

We now move on to the Hardy spaces, which are in the unit disc D or the

right half-plane C+ and extended, respectively, to the unit circle T or the

imaginary axis iR.

Definition 1.2.1. (Inner product). An inner product space is a vector space

V over the field F together with an inner product, i.e., with a map

〈., .〉 : V × V → F

that satisfies the following axioms for all vectors x, y, z ∈ V and all scalars

a ∈ F :

• 〈x, y〉 = 〈x, y〉.

• 〈ax, y〉 = a〈x, y〉 and 〈x+ y, z〉 = 〈x, z〉 + 〈y, z〉.

• 〈x, y〉 ≥ 0 and 〈x, y〉 = 0 ⇒ x = 0.
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1.2 Results from Functional Analysis

An inner product 〈., .〉 on a vector space induces a norm by means of

the formula ‖x‖ = 〈x, x〉 1
2 , and a complete inner-product space is called a

Hilbert space.

A linear operator T from a normed space X to a normed space Y is just a

linear mapping, that is, it satisfies

T (a1x1 + a2x2) = a1Tx1 + a2Tx2 for all x1, x2 ∈ X and a1, a2 ∈ C.

The operator T is said to be bounded, if there is a constant k > 0 such that

‖Tx‖ ≤ k ‖x‖ for all vectors x ∈ X.

The least k that holds for all x is the norm of T , written

‖T‖ = sup
x 6=0

‖Tx‖
‖x‖ = sup

‖x‖=1

‖Tx‖ .

1.2.2 Hardy space on the half-plane

For 1 ≤ p < ∞ the Hardy space Hp(C+) of the right half-plane C+ may be

defined as the set of all analytic functions f : C+ → C such that

‖f‖p = (sup
x>0

∫ ∞

−∞
|f(x+ iy)|p dy)1/p <∞.

Likewise, the space H∞(C+) consists of all analytic and bounded functions

in C+, and the norm is given by

‖f‖∞ = sup
z∈C+

|f(z)| .

Those functions have boundary values f̃(iy) = limx→0+ f(x + iy) almost

everywhere, and the boundary function f̃ lies in Lp(iR) and satisfies

∥

∥

∥
f̃
∥

∥

∥

Lp
= ‖f‖Hp .

We may identify f and f̃ , and thus Hp(C+) can naturally be regarded as a

closed subspace of LP (iR) and hence a Banach space.

The Laplace transform L : L2(0,∞) → H2(C+) plays an important role. Let

f(t) be a function of t specified for t > 0. Then the Laplace transform of

f(t), denoted by (Lf)(s), is defined by

F (s) = (Lf)(s) =

∫ ∞

0

e−stf(t)dt.
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1.2 Results from Functional Analysis

The parameter s is a complex number: s = σ+ iω, with real numbers σ and

ω, and up to a constant factor gives an isometric isomorphism between the

two spaces, since it is bijective and satisfies ‖Lg‖H2 =
√

2π ‖g‖L2 , see [13,

p, 1-2] and [31, p 1-7]. Also, one can define the Laplace transform of a finite

Borel measure µ by the integral

(Lµ)(s) =

∫

[0,∞)

e−stdµ(t),

see [35].

Theorem 1.2.2. (Cauchy integral formula). Let f(z) be analytic on and in

the interior of a simple closed contour C . Let a be a point in the interior of

C. Then

f(a) =
1

2πi

∮

C

f(z)dz

(z − a)
.

Moreover,

f (n)(a) =
n!

2πi

∮

C

f(z)dz

(z − a)n+1
,

(see [12], p. 182,184).

1.2.3 Elementary properties of measures

Definition 1.2.3. (a) A collection ℜ of subsets of a set X is said to be a

σ − algebra in X if ℜ has the following properties:

(i) X ∈ ℜ.

(ii) If A ∈ ℜ, then Ac ∈ ℜ, where Ac is the complement of A relative

to X.

(ii) If A =
⋃∞

n=1An and if An ∈ ℜ for n = 1, 2, 3, ..., then A ∈ ℜ.

(b) If ℜ is a σ − algebra in X, then X is called a measurable space, and

the members of ℜ are called the measurable sets in X.

(c) If X is a measurable space, Y is a toplogical space, and f is a mapping

of X into Y , then f is said to be measurable provided that f−1(V ) is

a measurable set in X for every open set V in Y .
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1.2 Results from Functional Analysis

Definition 1.2.4. (a) A positive measure is a function µ, defined on a

σ − algebra, whose range is in [0,∞] and which is countably additive.

This means that if Ai is a disjoint countable collection of members of

ℜ, then

µ

(∞
⋃

i=1

Ai

)

=

∞
∑

i=1

µ(Ai).

(b) A measure space is a measurable space which has a positive measure

defined on a σ − algebra of its measurable sets.

(c) A complex measure is a complex-valued countably additive function

defined on a σ − algebra .

See [34, p. 8-30].

Theorem 1.2.5. Theorem (Fatou’s lemma). Let (fn) be a sequence of mea-

surable functions X → [0,∞), and define

f(x) =











lim infn fn(x) if lim infn fn(x) <∞

0 otherwise

(1.2.1)

Then f is measurable, and
∫

X

fdµ ≤ lim inf
n

∫

X

fndµ.

1.2.4 Linear Operators

Definition 1.2.6. (Spectral radius). Let X be a complex Banach space. For

an operator T : X → X, the spectrum of T is the set

σ(T ) = {λ ∈ C : T − λI is not invertible}.

and σ(T ) is a non-empty compact subset of C, and thus we can define the

spectral radius

ρ(T ) = sup{|λ| : λ ∈ σ(T )},

and then

ρ(T ) = lim
n→∞

‖T n‖1/n = inf{‖T n‖1/n : n ≥ 1}.

In particular ρ(T ) ≤ ‖T‖, (see [31, p. 2]).
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1.2 Results from Functional Analysis

Lemma 1.2.7. Let the convolution operator on L1(0,∞) be defined by

(f ⋆ g)(x) =

∫ x

0

f(x− t)g(t)dt.

Then, for f, g ∈ L1(0,∞), one has f ⋆ g ∈ L1(0,∞) and

‖f ⋆ g‖1 ≤ ‖f‖1 ‖g‖1 .

Moreover, the Laplace transforms are related by

(L(f ⋆ g))(s) = (Lf)(s)(Lg)(s).

Definition 1.2.8. Let φ ∈ L∞(T). Then the Laurent (or multiplication

operator) Mφ : L2(T) 7→ L2(T) is given by

(Mφf)(eit) = φ(eit)f(eit).

Theorem 1.2.9. Let φ ∈ L∞(T). Then Mφ is bounded operator and its

norm is given by ‖Mφ‖ = ‖φ‖∞. Moreover

sup
{

‖Mφf‖ : f ∈ L2, ‖f‖2 = 1
}

= ‖φ‖∞ .

If φ is a measurable function on T which is not in L∞(T), then Mφ is not a

bounded operator on L2.

Definition 1.2.10. (Definition of Hankel operator). If h(x) ∈ L1(0,∞)
⋂

L2(0,∞),

then the Hankel operator

Γh : L2(0,∞) → L2(0,∞) given by

(Γhu)(x) =

∫ ∞

0

h(x+ y)u(y)dy

is well-defined and bounded, with ‖Γh‖ ≤ ‖h‖1, (see [28, p. 42]).

Theorem 1.2.11. (Schmidt expansion of a compact operator) An operator

T is compact if and only if there exist orthonormal sequences (νi), (ωi), i > 1,

and scalars (σi) decreasing to 0, such that

Tx = Σ∞
1 σi(x, νi)ωi.

The numbers are called singular values, (see [28, p. 6]).
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1.3 Systems

Definition 1.2.12. We say that a compact operator T is in class Cp, (1 6

p 6 ∞) if and only if Σ∞
1 σi(T )p <∞.

Important values of p are:

C1: The nuclear or trace-class operators, and C2: The Hilbert-Schmidt op-

erators, (see [28, p. 9]).

Corollary 1.2.13. If h ∈ L1, then Γh is a compact operator, (see [28, p.

67]).

Theorem 1.2.14. If h ∈ L1 determines the bounded Hankel operator Γ, then

Γ is Hilbert-Schmidt if and only if t1/2h(t) ∈ L2(0,∞), and if so ‖Γ‖HS =
∥

∥t1/2h
∥

∥

L2 (see [28, p. 67]).

Definition 1.2.15. If Γ is compact, then

σn(Γ) = inf{‖Γ − S‖ : rank(S) < n},

(see [28]).

Remark 1.2.16. If the Hankel operator is nuclear then, h ∈ L1 and

‖h‖1 6 2 ‖Γ‖N

where ‖Γ‖N = Σ∞
i=1σi(Γ), (see [18, p. 68]).

Remark 1.2.17. (Relationship between classes). We give the inclusions

between different classes of operators on H where H = L2(X, dµ) with X a

locally compact Hausdorff space and dµ is Borel measure, and sometimes H

is a general Hilbert space.

Finite rank ⇒ trace class ⇒ Hilbert-Schmidt ⇒ compact ⇒ bounded, (see

[13], p. 151).

1.3 Systems

Definition 1.3.1. Transfer function is a compact description of the input-

output relation for a linear system, it is a function of complex variables. In

10



1.3 Systems

other word the transfer function of a linear dynamic system is the ratio of

the Laplace transform of its output to the Laplace transform of its input.

We consider two types of systems:-

• Discrete time linear system. These can be regarded as linear operators

T on ℓp(Z+), 1 ≤ p ≤ ∞ with the variable indexed by 0, 1, 2, ....

• Continuous time linear system. These can be regarded as linear oper-

ators T on Lp(0,∞), 1 ≤ p ≤ ∞.

Conventionally we write y = Tu , where u, y ∈ Lp(0,∞) and u is called

the input and y the output of the system.

Convolution operators in discrete time on ℓp are defined by

y(t) = (Thu)(t) = (h ∗ u)(t) =
t
∑

s=0

h(t− s)u(s)

and in continuous time on Lp by

y(t) = (Thu)(t) = (h ∗ u)(t) =

∫ t

0

h(t− τ)u(τ)dτ.

See the book of Partington [30] .

1.3.1 BIBO Stability

BIBO stands for Bounded-Input Bounded-Output, and if a system is BIBO

stable, then the output will be bounded for every input to the system that

is bounded.

The condition for BIBO stability for continuous time linear systems is

∫ ∞

0

|h(t)| dt = ‖h‖1 <∞.

For discrete time linear systems the condition is

∞
∑

n=0

|h(n)| = ‖h‖1 <∞.

More generally, we have convolution operators defined in continuous time by

measures,

y(t) =

∫ t

0

u(t− τ)dµ(τ),

11



1.3 Systems

and these are BIBO stable if and only if

‖µ‖ :=

∫ ∞

0

d |µ| (t) <∞.

1.3.2 H∞ Stability

H∞ stability is, the property that Lh or Lµ (the transfer function) is bounded

and analytic in C+.

The notion of BIBO stability is stronger thanH∞ Stability, and the following

diagram shows the relationship between them,

BIBO stability ⇒ H∞ stability ⇒ no poles in the right half plane.

Theorem 1.3.2. For p = 1 and ∞, the (continuous-time) operator

Th : Lp(0,∞) → Lp(0,∞)

or

u 7→ h ∗ u

is bounded if and only if h ∈ L1(0,∞): if so, then ‖Th‖ = ‖h‖1. For p = 2,

the operator Th is bounded if and only if H(s) ∈ H∞(C+): if so, then ‖Th‖ =

‖H‖∞ .

1.3.3 The poles of the systems

We look at a time-delay systems with transfer functions of form

G(s) =

∑M
k=1 pk(s)e

−Tks

∑N
l=1 ql(s)e

−uls

where Tk > 0 and ul > 0, and pk(s), ql(s) are real polynomials. As in Bellman

and Cooke [4] and Partington [32] we can divide the poles of the systems into

three types of chains:

• Chains of retarded type, where the poles (sn) satisfy Re sn → −∞, and

thus there are only finitely many poles in any right half-plane.

• Chains of neutral type, where the poles lie in a band centred on the

imaginary axis.

• Chains of advanced type, where the poles (sn) satisfy Re sn → ∞.

12



1.3 Systems

1.3.4 Generalizing the Walton-Marshall method

Bonnet and Partington in [6] extended the Walton-Marshall technique with

very few modifications to the case of fractional delay systems and we also

use it as well. This method is shown in the following proposition.

Proposition 1.3.3. Let A(s) and B(s) be real polynomials. If Ph(s) =

A(s) + B(s)e−sh has a zero at a point s ∈ iR, and A(s) and B(s) are not

zero there, then such an s satisfies the equation

A(s)A(−s) = B(s)B(−s).

Moreover, at such a point s we have

sgnRe
ds

dh
= sgnRe

1

s
[
B′(s)

B(s)
− A′(s)

A(s)
].

13



Chapter 2

Delay and Fractional Systems

2.1 Introduction

In this chapter we deal with various stability notions of linear time invari-

ant systems, specified in the frequency domain by their transfer functions.

The class of systems that we shall consider contains delay systems of neutral

type, as well as fractional delay systems of neutral and retarded type: that is,

systems whose transfer function may contain polynomials in fractional pow-

ers of s combined with delay terms. The three versions of stability that we

shall consider (decreasing strength) are BIBO (i.e., bounded-input bounded-

output) stability, H∞ stability (i. e., finite L2 − L2 gain), and asymptotic

stability (no poles in the closed right-hand half-plane C+).

In Section 2, we give a new test for BIBO stability of delay systems of neutral

type, and use it to give answers to some delicate questions raised in [5] and

[32].

In Section 3 we shall consider fractional systems, those whose transfer func-

tions involve fractional powers of s.

Moreover, we develop a generalization of the Walton-Marshall test (see [38]),

which finds stability intervals for delay systems with variable delay. The

theory is motivated by an example before being stated in detail.
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2.2 Delay systems

2.2 Delay systems

In this section we shall analyse linear systems with transfer functions of the

form

G(s) =
f(s)

p(s) + q(s)e−hs
, s ∈ C+,

where h > 0 and p, q and f are polynomials. (In fact we need to consider

just the case h = 1, since the general case reduces to this by a trivial change

of variable.)

More generally, p, q and f may be quasi-polynomials, that is, of the form

a0s
α0 + ... + ans

αn , where 0 ≤ α0 < ... < αn. Throughout this chapter, we

regard sα as being a single-valued holomorphic function defined on the cut

plane {s = reiθ : r ≥ 0 : −π < θ < π} as sα = rαeiαθ , with the obvious

convention that 0α = 0.

If deg p > deg q, the system said to be of retarded type: if deg p = deg q it is

said to be neutral type, and if deg p < deg q it is of advanced type. (See for

instance [4], [31].)

Stability questions are well understood for delay systems of retarded and

advanced type: in this section we shall concentrate on systems of neutral

type, which are more difficult to analyse. Also we necessarily assume that

the system is proper, i. e., deg f ≤ deg p; see [31].

We begin with a motivating example, which has been considered in several

papers such as [5] and [32]; we consider

Gl =
1

(s+ 1)l(s+ 1 + se−s)
, l = 0, 1, 2, ....

This transfer function is asymptotically stable (i. e., no poles in the closed

right-hand half-plane); it is known that it does not lie in H∞ for l = 0, but it

is H∞ stable for l ≥ 1, (see [32]). The question of BIBO stability is far more

difficult: Gl is clearly not BIBO stable for l = 0, but following the results of

[5] and [32] it is known to be BIBO stable for l = 4. The remaining cases

were open, but new methods enable us to resolve the cases l = 2 and l = 3.

Now before stating a more general result, we shall analyse Gl for l ≥ 2, as

the method is easiest to explain with this example.

Lemma 2.2.1. For k ≥ 0 let hk ∈ L1(0,∞) satisfy Lhk(s) = sk

(1+s)k+3 . Then

‖hk‖L1
= O(k

−5
4 ) as k → ∞.
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2.2 Delay systems

Proof. Take gk = et/4hk(t). Note that Lgk(s) =
(s− 1

4
)k

(s+ 3
4
)k+3 . Then, by the

Cauchy-Schwarz inequality we have

‖hk‖ ≤
∥

∥e−1/4
∥

∥

L2 ‖gk‖L2 .

Now ‖gk‖L2 = 1√
2π

‖Lgk‖H2 , and

‖Lgk‖2
H2 = 2

∫ ∞

0

∣

∣iy − 1
4

∣

∣

2k

∣

∣iy + 3
4

∣

∣

2k+6
dy

= 2

(

∫

√
k

0

+

∫ ∞

√
k

)

(y2 + 1
16

)k

(y2 + 9
16

)k+3
dy.

We may estimate the first integral as at most
√
k times the maximum value

of the integrand on [0,
√
k], or O(k1/2k−3), since the integrand is an increas-

ing function of y. The second integral is at most

∫ ∞

√
k

y−6dy, which is also

O(k−5/2). This gives the result.

Theorem 2.2.2. Let Gl(s) = 1
(s+1)l(s+1+se−s)

be the transfer function of a

delay system; then it is BIBO stable for l ≥ 2.

Proof. It is sufficient to consider the case l = 2, as higher-order Gl are simply

cascades of G2 with BIBO-stable finite-dimensional systems. Now, we have

G2 =
∞
∑

k=0

(−1)ke−sk sk

(s+ 1)k+3
,

converging point-wise in C+, and it is easy to notice that the inverse Laplace

transforms converge point-wise on (0,∞), since the kth term vanishes on

[0, k). Then if Lh = G2, we have

‖h‖1 ≤
∞
∑

k=0

∥

∥

∥

∥

(−1)ke−sk sk

(s+ 1)k+3

∥

∥

∥

∥

BIBO

=

∞
∑

k=0

∥

∥

∥

∥

sk

(s+ 1)k+3

∥

∥

∥

∥

BIBO

,

by Fatou’s lemma 1.2.5 (in the form that asserts that if fn → f point-wise

then ‖f‖1 ≤ lim inf ‖fn‖1). Using Lemma 2.2.1, we can conclude that h ∈ L1,

and the system G2 is BIBO stable.
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2.2 Delay systems

A more general result can be proved by the same method. Also, note

that one necessary condition on p and q for the neutral system 1
p(s)+q(s)e−s to

be asymptotically stable is that

lim
|s|→∞

∣

∣

∣

∣

q(s)

p(s)

∣

∣

∣

∣

≤ 1, (2.2.1)

(see [32], Proposition 2.1), as otherwise the poles are asymptotic to a vertical

line strictly in C+.

The following theorem gives conditions for stability of neutral systems

(see [32]).

Theorem 2.2.3. See [32]. Let G(s) = f(s)
p(s)+q(s)e−sh be a neutral delay system

satisfying

• h > 0 and p, q and f are real polynomials.

• deg p = deg g (neutral type) and deg f ≤ deg p,

and suppose that

p(s)

q(s)
= α +

β

s
+
γ

s2
+O(

1

s3
) as |s| → ∞,

where α, β and γ are constants, with α = ±1. For sufficiently large integers

n let λn = 2niπ if α = −1 and let λn = (2n + 1)iπ if α = 1. Then the poles

sn of G satisfy

sn =
λn

h
− β

αλn

+
h

λ2
n

(
β2

2
− γ

α
) + o(

1

n2
).

The system has infinitely many unstable poles if γ/α > β2/2, and infinitely

many stable poles if γ/α < β2/2. In the latter case there can be at most

finitely many unstable poles, and if there are none, then the transfer function

G lies in H∞ if and only if deg p ≥ deg f + 2. If γ/α = β2/2, then the

condition deg p ≥ deg f + 2 is still necessary for stability.

Theorem 2.2.4. Let G(s) = 1
p(s)+q(s)e−s be the transfer function of a neutral

delay system. Suppose that

• deg p = deg q = N ≥ 3;
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2.2 Delay systems

• all roots of p in C−;

• |Re(zeros of q̃(s− c))| < |Re(zeros of p̃(s− c))|, where c > 0, and

G(s) = 1
r(s)[p̃+q̃e−s]

, with r(s) is the greatest common divisor of p and q;

• |(q̃(iy−c))k|
|r(iy−c)||(p̃(iy−c))k+1| is an increasing function on [0, δk], where δk ≍ kα

and α > 2
5
.

Then G(s) is BIBO stable, and hence H∞ stable.

Proof. We have

G(s) =
1

r(s)(p̃(s) + q̃(s)e−s)

=
∞
∑

k=0

(−1)k

r(s)p̃(s)
(
q̃(s)e−s

p̃(s)
)k.

Take Lhk(s) = q̃k(s)
r(s)p̃k+1(s)

.

Let hk(t) = e−ctgk(t), where c > 0. Then by the Cauchy-Schwarz inequality

‖hk‖L1
≤
∥

∥e−ct
∥

∥

L2
‖gk‖L2

.

Since gk(t) = ecthk(t), then Lgk(s) = Lhk(s− c) = q̃k(s−c)
r(s−c)p̃k+1(s−c)

.

We have ‖Lgk‖H2 =
√

2π ‖gk‖L2
.

Now let s = iy, then

‖gk‖2
L2

= (
1√
2π

)2

∫ ∞

−∞

∣

∣

∣

∣

q̃k(s− c)

r(s− c)p̃k+1(s− c)

∣

∣

∣

∣

2

ds

=
1

π

∫ ∞

0

q̃2k(iy − c)

r2(iy − c)p̃2k+2(iy − c)
dy

=
1

π

∫ δk

0

q̃2k(iy − c)

r2(iy − c)p̃2k+2(iy − c)
dy +

1

π

∫ ∞

δk

q̃2k(iy − c)

r2(iy − c)p̃2k+2(iy − c)
dy

≤ δk
π

(max value on [0, δk]) +
1

π

∫ ∞

δk

q̃2k(iy − c)

r2(iy − c)p̃2k+2(iy − c)
dy

= O(δ−2N+1
k ) +O(δ−2N+1

k )

= O(k
−2N+1

2 ).
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2.2 Delay systems

Then ‖gk‖L2
= O(k

−2N+1
4 ).

Since

G(s) =

∞
∑

k=0

(−1)kLhk(s),

by Fatou’s lemma,

‖G‖BIBO ≤
∞
∑

k=0

∥

∥

∥

∥

q̃k(s)

r(s)p̃k+1(s)

∥

∥

∥

∥

<∞.

Then G(s) is BIBO stable and so it is H∞ stable.

The following is a more general result.

Theorem 2.2.5. Let G(s) = f(s)
p(s)+q(s)e−s be the transfer function of a neutral

delay system. Suppose that

• deg p = deg q = N ≥ 3 + deg f , where deg f = N ′;

• all roots of p in C−;

• |Re( zeros of q̃(s− c))| < |Re( zeros of p̃(s− c))|, where c > 0, and

G(s) = f(s)
r(s)[p̃+q̃e−s]

, with r(s) is the greatest common divisor of p and q;

• |f(iy−c)||(q̃(iy−c))k|
|r(iy−c)||(p̃(iy−c))k+1| is an increasing function on [0, δk], where δk ≍ kα

and α > 2
5
.

Then G(s) is BIBO stable, and hence H∞ stable.

Proof. Take Lhk(s) = f(s)q̃k(s)
r(s)p̃k+1(s)

.

Let hk(t) = e−ctgk(t). Then by the Cauchy-Schwarz inequality

‖hk‖L1
≤
∥

∥e−ct
∥

∥

L2
‖gk‖L2

.

Since gk(t) = ecthk(t),then Lgk(s) = Lhk(s− c) = f(s−c)q̃k(s−c)
r(s−c)p̃k+1(s−c)

.

We have ‖Lgk‖H2 =
√

2π ‖gk‖L2
.
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2.2 Delay systems

Now let s = iy, then

‖gk‖2
L2

= (
1√
2π

)2

∫ ∞

−∞

∣

∣

∣

∣

f(s− c)q̃k(s− c)

r(s− c)p̃k+1(s− c)

∣

∣

∣

∣

2

ds

=
1

π

∫ ∞

0

(f(iy − c))2q̃2k(iy − c)

r2(iy − c)p̃2k+2(iy − c)
dy

=
1

π

∫ δk

0

(f(iy − c))2q̃2k(iy − c)

r2(iy − c)p̃2k+2(iy − c)
dy +

1

π

∫ ∞

δk

(f(iy − c))2q̃2k(iy − c)

r2(iy − c)p̃2k+2(iy − c)
dy

≤ δk
π

(max value on [0, δk]) +
1

π

∫ ∞

δk

(f(iy − c))2q̃2k(iy − c)

r2(iy − c)p̃2k+2(iy − c)
dy

= O(δ
(2N ′−2N+1)
k ) +O(δ

(2N ′−2N+1)
k )

= O(k(2N ′−2N+1)α).

Therefore

‖gk‖L2
= O(k

(2N′−2N+1)α
2 ).

By Fatou’s lemma,

‖G‖BIBO ≤
∞
∑

k=0

∥

∥

∥

∥

f(s)q̃k(s)

r(s)p̃k+1(s)

∥

∥

∥

∥

<∞.

Then G(s) is BIBO stable and hence H∞ stable.

Example 2.2.6. Let G(s) = 1
(s+3)(s+2)2+(s− 1

2
)s2e−s be the transfer function of

a neutral delay system. Then G(s) is BIBO stable and hence H∞ stable.

Proof. From 2.2.5 we can deduce that

‖gk‖L2
= O(k

−5
4 )

and

‖G‖BIBO ≤
∞
∑

k=0

∥

∥

∥

∥

(s− 1
2
)ks2k

(s+ 3)k+3(s+ 2)2k+2

∥

∥

∥

∥

<∞.

Then G(s) is BIBO stable and so it is H∞ stable.

Remark 2.2.7. In Example 2.2.6, the transfer function does not have poles

in the right half plane (see [32]). Take,

p(s)

q(s)
=

(s + 3)(s+ 2)2

(s− 1
2
)s2

=
1

s2
[s2 +

15

2
s+

79

4
+

(79
16

+ 12)

s− 1
2

],
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2.2 Delay systems

then
p(s)

q(s)
= 1 +

15

2s
+

79

4s2
+O(

1

s3
) as |s| → ∞.

So

α = 1, β = 15
2
, γ = 79

4
, h = 1, and then, λn = (2n+ 1)iπ.

Thus, the poles sn of G satisfy

sn =
λn

h
− β

αλn

+
h

λ2
n

(
β2

2
− γ

α
) + o(

1

n2
).

Also,

sn = (2n+ 1)iπ − 15

2(2n+ 1)iπ
− 1

(2n+ 1)2π2
(
225

16
− 79

4
).

Because γ
α
< β2

2
the system has infinitely many stable poles (in Re s < 0).

Moreover, there are no small poles in the right-half plane, since for

(s+ 3)(s+ 2)2 + (s− 1

2
)s2e−s,

if Re s ≥ 0, then

∣

∣(s+ 3)(s+ 2)2
∣

∣ >

∣

∣

∣

∣

(s− 1

2
)s2e−s

∣

∣

∣

∣

,

and then

(s+ 3)(s+ 2)2 + (s− 1

2
)s2e−s 6= 0.

Another more elementary result is also useful.

Theorem 2.2.8. Let G(s) = 1
g(s)+h(s)

be transfer function. Suppose that 1
g

is BIBO stable and ρ(h
g
) < 1 (ρ denotes the spectral radius) . Then G(s) is

BIBO stable.

Proof. We have

G(s) =
1

g + h

=
1

g(1 + h
g
)

=
1

g

∞
∑

k=0

(

h

g

)k

(−1)k.
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2.3 Fractional Systems

So

‖G‖BIBO ≤
∥

∥

∥

∥

1

g

∥

∥

∥

∥

BIBO

∞
∑

k=0

∥

∥

∥

∥

(

h

g

)
∥

∥

∥

∥

k

BIBO

<∞.

Then G(s) is BIBO stable, since ρ(h
g
) < 1.

Example 2.2.9. Let

G(s) =
1

(s+ 1)4 + s(s+ 1)3e−s + h(s)e−Ts
,

be a transfer function. We know that 1
g

= 1
(s+1)4+s(s+1)3e−s is BIBO stable.

Also we have
∥

∥

∥

∥

1

(s + 1)4 + s(s+ 1)3e−s

∥

∥

∥

∥

∞
≤
∥

∥

∥

∥

1

(s+ 1)

∥

∥

∥

∥

2

∞

∥

∥

∥

∥

1

(s+ 1)2 + s(s+ 1)e−s

∥

∥

∥

∥

∞
≤ 2,

then
∥

∥

∥

h(s)e−Ts

(s+1)4+s(s+1)3e−s

∥

∥

∥

∞
< 1 if ‖h‖∞ < 1

2
. Then G is BIBO stable as in

Theorem 2.2.8.

2.3 Fractional Systems

Definition 2.3.1. Fractional systems are those which in the frequency do-

main have transfer functions involving fractional powers of s, such as
√
s and

s
1
3 . For α > 0 we choose a single-valued analytic branch of sα on C \ (−∞, 0]

with 1α = 1, i. e; sα = (reiθ)α = rαeiαθ where −π < θ < π and r > 0.

Example 2.3.2. There are many examples of fractional systems. Several

examples are linked to the heat equation.

(i) Heat equation with Neumann boundary control: G(s) = cosh
√
sx0/

√
s sinh

√
s;

(ii) Heat equation with Dirichlet boundary control: G(s) = sinh
√
sx0/ sinh

√
s;

(iii) Arising in the theory of transmission lines: G(s) = e−a
√

s/s, with a > 0;

in each case with 0 < x0 < 1 a fixed number. These examples are given in

[5] and [9].

Some more examples can be found in [10]:
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2.3 Fractional Systems

(iv) G(s) = (tanh(
√
s/2))/(s

√
s);

(v) G(s) = (cosh(sx0)/(s sinh s), 0 < x0 < 1;

(vi) G(s) = (cosh(
√
sx0)/(

√
s sinh

√
s), 0 6 x0 6 1, linked to the heat

equation;

(vii) G(s) = (2e−a
√

s)/(b(1 − e−2a
√

s)), linked to the heat equation, see [11].

We begin with an example.

Proposition 2.3.3. Let G(s) = 1
sα+e−sh be a transfer function. We fix 0 <

h < π
2

and vary α. Then the system is asymptotically stable for 0 < α <

2(1 − h
π
).

Proof. G(s) = 1
sα+e−sh ; it is known to be stable at α = 1 see [31].

As α varies, the poles move continuously, and cross the axis when sα+e−sh =

0 on iR. It is enough to consider y > 0 so

ei π
2
αyα + e−iyh = 0,

and the conjugate equation is

e−i π
2
αyα + eiyh = 0.

Then, y = 1 (since
∣

∣e−i π
2
α
∣

∣ =
∣

∣eiyh
∣

∣ = 1), so we have e−i π
2
α + eih = 0, so

e−i π
2
α = −eih, thus, e−i π

2
α = e−iπ+ih and then

−iπ
2
α = −iπ + ih + 2ikπ.

Hence, the first crossing is at α = 2(1 − h
π
).

Remark 2.3.4. For G(s) = 1
sα+e−sh , with α = 2(1− h

π
) and 0 < h < π

2
, then

Re ∂s
∂α
> 0, so the system become unstable as α increases.

Here is a more general result.
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2.3 Fractional Systems

Proposition 2.3.5. Let A and B be real polynomials. If Ph(s
α) = A(sα) +

B(sα)e−sh has a zero at a point s ∈ iR, and A(sα) and B(sα) are not zero

there, then such an s satisfies the equation

A(sα)A((−s)α) = B(sα)B((−s)α).

and,

ds

dα
=

−s log s(A′(sα)
A(sα)

− B′(sα)
B(sα)

)

α(A′(sα)
A(sα)

− B′(sα)
B(sα)

) + h
sα+1

.

Proof. From the equation A(sα) + B(sα)e−sh = 0 with s ∈ iR, we obtain

A((−s)α) + B((−s)α)esh = 0 by conjugation, and by eliminating the expo-

nential term from two equations we get A(sα)A((−s)α) = B(sα)B((−s)α).

We have

A(sα) +B(sα)e−sh = 0. (2.3.1)

By differentiating with respect to α,

A′(sα)sα log s + A′(sα)αsα−1 ds
dα

+ e−shsαB′(sα) log s + αsα−1e−shB′(sα) ds
dα

+

B(sα)e−sh(−h) ds
dα

= 0,

and, after simplification

ds

dα
=

−s log s(A′(sα)
A(sα)

− B′(sα)
B(sα)

)

α(A′(sα)
A(sα)

− B′(sα)
B(sα)

) + h
sα+1

.

If ds
dα
> 0, then zeroes of Ph cross from left to right; however if ds

dα
< 0, then

zeroes cross from right to left.

Remark 2.3.6. This condition is not sufficient for Ph(s
α) to have roots on

iR (e.g if Ph(s
α) = sα − 1

2
+ e

−πs
4 ).

In the following work we will find necessary and sufficient conditions. We use

a different method where α is fixed and h varies. This is used for different

values of α until we find the α for which the critical value of h is π
4
.

Example 2.3.7. Let G(s) = 1

sα− 1
2
+e

−πs
4

be the transfer function.

Take α = 1, and use the Walton-Marshall-Bonnet-Partington method to find
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2.3 Fractional Systems

h > 0, making 1
s− 1

2
+e−sh unstable (where G(s) is stable when h = 0).

So, now, s− 1
2

+ e−sh = 0, A(s) = s− 1
2
, B(s) = 1, then

A(s)A(−s) = B(s)B(−s),

thus s2 = −3
4

and then, s = ±
√

3i
2

.

e−sh = −A(s)
B(s)

then e−
√

3
2

ih = 1
2
−

√
3i
2

= e
−πi
3 so, h = 2π

3
√

3
+ 4nπ√

3
with n ≥ 0 .

The system is stable for 0 < h < 2π
3
√

3
because

sgn Re
ds

dh
= sgn Re

1

s
[
B′(s)

B(s)
− A′(s)

A(s)
],

and then

sgn Re
ds

dh
= sgn Re

1
√

3i
2

[
−1

√
3i
2

− 1
2

] =
12 − 4

√
3i

12
> 0.

So, the poles cross from left to right.

In general we have the equation sα − 1
2

+ e−sh = 0 on iR, so let s = iy; then

(iy)α − 1
2

+ e−sh = 0, so we obtain (−iy)α − 1
2

+ esh = 0 by conjugation, and

it follows easily on eliminating the exponential term from the equations,

y2α − 1

2
(e

−παi
2 + e

παi
2 )yα +

1

4
= 1

and then

y2α − yα cos(
πα

2
) − 3

4
= 0.

Then

yα =
cos(πα

2
) ±

√

cos2(πα
2

) + 3

2
,

or

y = (
cos(πα

2
) ±

√

cos2(πα
2

) + 3

2
)

1
α .

By substituting the value of y in e
παi
2 yα − 1

2
+ e−iyh = 0, we have

h =
log[1

2
− e

παi
2 (

cos(πα
2

)±
√

cos2(πα
2

)+3

2
)]

−i[ cos(
πα
2

)±
√

cos2(πα
2

)+3

2
]

1
α

.

When α = 1, then

h =
2π

3
√

3
+

4πn√
3
.
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We now use a different method where α is fixed and h varies. This is used

for different values of α until we find the α for which the critical value of h

is π
4
.

When h = π
4

then we have two values of α such that the poles of G(s) lie

on the axis, α1 ≃ 1.3650 and α2 ≃ 0.3082. We vary h and use the Walton-

Marshall-Bonnet-Partington method. For each α we plot the minimum h we

find for which 1
Ph(sα)

is unstable (see Figure 2.1). Then sgn Re ds
dα
|α1≃1.3650 ≃

0.7441931 > 0. which means that the poles move from left to right, and

sgn Re ds
dα
|α2≃0.3082 ≃ −2.3611552 < 0, which means that the poles move

from right to left.

So, 1

sα−0.5+e
−πs

4
is stable for α2 < α < α1.

The transfer functions G(iy) in Figures 2.2 and 2.3 have singularities and are

unbounded.

We use Matlab to create these figures.
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Figure 2.1: Relationship between α and h. Example (2.3.7)

Now we consider |G(iy)| for α near to the critical values to show where

the pole crosses the axis (for y > 0).

Example 2.3.8. Consider Ph(s
α) = sα − sαe−sh + (sα − 2)e−2sh = 0, (see

Fioravanti [16]) which for h = 0 has zeroes in the right half plane. Suppose

now that h > 0 and that s is a point on the imaginary axis such that

sα − sαe−sh + (sα − 2)e−2sh = 0, (2.3.2)

and hence

(−s)α − (−s)αesh + ((−s)α − 2)e2sh = 0, (2.3.3)

by complex conjugation. We wish to eliminate the exponential terms from

these equations. A simple way to do this is to multiply (2.3.2) by esh and
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Figure 2.2: |G(iy)| against y for α = 1.3650. Example (2.3.7)

multiply (2.3.3) by e−sh to produce

sαesh − sα + (sα − 2)e−sh = 0, (2.3.4)

(−s)αe−sh − (−s)α + ((−s)α − 2)esh = 0. (2.3.5)

From the equation (2.3.4)

esh =
sα − (sα − 2)e−sh

sα
, (2.3.6)

and substituting in (2.3.5) we produce

sα + (2 − (−s)α − sα)e−sh = 0, (2.3.7)

and hence

(−s)α + (2 − sα − (−s)α)esh = 0, (2.3.8)
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Figure 2.3: |G(iy)| against y for α = 0.3082. Example (2.3.7)

and by conjugation, finally the polynomial equation

4 − 4sα − 4(−s)α + sα(−s)α + (−s)2α + s2α = 0. (2.3.9)

Taking s = iy and (−s)α = sαe−πiα, we have

s2αe−iαπ − 4sα − 4sαe−iαπ + s2αe−2iαπ + s2α + 4 = 0, (2.3.10)

so

y2α(1 + e−iαπ + eiπα) + yα(−4eiα π
2 − 4e−iα π

2 ) + 4 = 0, (2.3.11)

and

y =

[

4 cos(πα
2

) ∓ 2
√

4 cos2(π
2
α) − 2 cos(πα) − 1

1 + 2 cos(πα)

]1/α

. (2.3.12)
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By substituting in (2.3.7), we get,

h =
1

−iy log(
−(iy)α

2 − (−iy)α − (iy)α
). (2.3.13)

When α = 1, then y = ±2 and h = π
4

+ nπ.

Also, s = 2i is a solution to s− se−sh +(s− 2)e−2sh = 0; then the poles cross

from left to right at this point and for 0 ≤ h ≤ π
4

and α = 1 the system is

unstable. If α = 0.5, then h > 1, so this G is asymptotically stable. We still

do not know if it is H∞ stable.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
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andro’example 

alpha

h

Figure 2.4: Relationship between α and h. Example (2.3.8)
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2.3 Fractional Systems

2.3.1 Systematic method (1 step) for fractional sys-

tems

We now consider the general case of fractional systems with n delays, n ≥ 2,

the characteristic equation of which will be.

F (sα, h) ≡
n
∑

k=0

Ak(s
α)e−ksh =

n
∑

k=0

Ak(s
α)zk = 0.

Firstly there is the usual preliminary step of examining the stability at h = 0.

The next step is the determination of any potential crossing point, i.e. we

seek solutions with s = iω. We therefore seek solutions of

F (sα, h) ≡
n
∑

k=0

Ak(s
α)zk = 0,

and, replacing s by −s,

F ((−s)α, h) ≡
n
∑

k=0

Ak((−s)α)z−k = 0.

This method gives a procedure for the systematic reduction in degree by

elimination of the highest power of z. This iterative scheme eventually yields

an equation independent of z.

Define

F (1)(sα, h) = A0(−sα)F (sα, h) −An(sα)znF ((−s)α, h)

= A0((−s)α)
n
∑

k=0

Ak(s
α)zk − An(sα)zn

n
∑

k=0

Ak((−s)α)z−k

= A0((−s)α)An(sα)zn + A0((−s)α)
n−1
∑

k=0

Ak(s
α)zk − An(sα)znA0((−s)α)z0

−
n
∑

k=1

An(sα)Ak((−s)α)z−kzn

=
n−1
∑

k=0

A0((−s)α)Ak(s
α)zk −

n−1
∑

k=0

An(sα)An−k((−s)α)zk

=
n−1
∑

k=0

[A0((−s)α)Ak(s
α) −An(sα)An−k((−s)α)]zk,

and

F (1)((−s)α, h) =
∑n−1

k=0 A0(s
α)Ak((−s)α) − An((−s)α)An−k(s

α)z−k. We now

define F (2) similarly as in the next example.
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2.3 Fractional Systems

Example 2.3.9. Consider F (sα, h) = sα − sαe−sh + (sα − 2)e−2sh = 0, by

using the systematic method. We have

F (1)(sα, h) = (−s)α(s)α − (sα − 2)((−s)α − 2) + [(−s)α(−(s)α) − (sα − 2)(−(−s)α)]z

= (2sα(1 + e−πiα) − 4) + (−2e−πiαsα)z

= −2 + sα(1 + e−πiα) − e−πiαsαz

= 0,

then

F (1)((−s)α, h) = ((s)α(1 + e−πiα) − 2) − sαz−1,

Let

F (2)(sα, h) = A
(1)
0 (−s)F (1)(sα, h) − A

(1)
1 (s)z1F (1)((−s)α, h).

Then

F (2)(sα, h) = (sα(1 + e−πiα) − 2)(sα(1 + e−πiα) − 2) − (−(s)α)(−(−s)α)

= s2α(1 + e−πiα)2 − 4sα(1 + e−πiα) + 4 − s2αe−πiα

= s2α(1 + 2e−πiα + e−2πiα) − 4sα(1 + e−πiα) + 4 − s2αe−πiα

= s2α(1 + e−πiα + e−2πiα) − 4sα(1 + e−πiα) + 4

= 0.

And we get

sα =
2(1 + e−πiα) ± 2

√

(1 + e−πiα)2 − (1 + e−πiα + e−2πiα)

(1 + e−πiα + e−2πiα)

s = [
2(1 + e−πiα) ± 2

√

(1 + e−πiα)2 − (1 + e−πiα + e−2πiα)

(1 + e−πiα + e−2πiα)
]

1
α .

so

z = −2+sα(1+e−iπα)
sαe−iπα , where z = e−sh, and

h = −1

s
log z.

When α = 1, s = ±2i and h = π
4
,

and when α = 0.5, s = ±0.686i and h = 3.433.
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Example 2.3.10. Let G(s) = 1
s−(s−1)e−s+(s−0.5)e−2s be a transfer function.

By using the systematic method, we have

F (1)(s, h) =
n−1
∑

k=0

[A0(−s)Ak(s) − An(s)An−k(−s)]zk

= A0(−s)A0(s) − A2(s)A2(−s) + [A0(−s)A1(s) −A2(s)A1(−s)]z

= (−s)(s) − (s− 0.5)(−s− 0.5) + [(−s)(−(s− 1)) − (s− 0.5)

(−(−s− 1))]z

= −s2 − (s− 0.5)(−s− 0.5) + [s(s− 1) + (s− 0.5)(−s− 1)]z

= −s2 − [−s2 − 0.5s+ 0.5s+ 0.25] + [s2 − s− s2 − s+ 0.5s+ 0.5]z

= −0.25 + [−1.5s+ 0.5]z.

Then

z = 0.25
0.5−1.5s

.

F (1)(−s, h) =

n−1
∑

k=0

[A0(s)Ak(−s) −An(−s)An−k(s)]z
−k

= A0(s)A0(−s) −A2(−s)A2(s) + [A0(s)A1(−s) − A2(−s)A1(s)]z
−1

= s(−s) − (−s− 0.5)(s− 0.5) + [s(−(−s− 1)) − (−s− 0.5)(−(s− 1))]z−1

= −s2 − [−s2 + 0.5s− 0.5s+ 0.25] + [s2 + s− s2 + s− 0.5s+ 0.5]z−1

= −0.25 + [1.5s+ 0.5]z−1,

thus

F (2)(s, h) =

n−r−1
∑

k=0

A
(r+1)
k (s)zk

= A
(1)
0 (−s)A(1)

0 (s) − A
(1)
1 (s)A

(1)
1 (−s)

= (−0.25)(−0.25) − (−1.5s+ 0.5)(1.5s+ 0.5)

= 0.0625 + (−(1.5)2s2 − 0.5(1.5)s+ 0.5(1.5)s+ 0.25)

= 0.0625 + (1.5)2s2 − 0.25.

Then

s2 = 0.25(1−0.25)
(1.5)2

≃ 0.83333 then s = ±0.289.

Since s is not purely imaginary the poles do not cross the axis.
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Example 2.3.11. Let G(s) = 1
sα−(sα−1)e−sh+(sα−0.5)e−2sh be a transfer func-

tion. This example was considered by Nguyen for h = 1. Using Theorem 2

[17], Nguyen [27] found asymptotic expressions for the poles of G.

For α = 0.2 there are neutral chains of poles of G(s) located in the left-hand

half-plane. However, for α = 0.5 there are neutral chains of poles of G(s)

located on both sides.

Now by using the systematic method we have,

F (1)(s, h) =

n−1
∑

k=0

[A0((−s)α)Ak(s
α) − An(sα)An−k((−s)α)]zk

= A0((−s)a)A0(s
α) −A2(s

α)A2((−s)α) + [A0((−s)α)A1(s
α)

−A2(s
α)A1((−s)α)]z

= (−s)α(sα) − (sα − 0.5)((−s)α − 0.5) + [(−s)α(−(sα − 1))

−(sα − 0.5)(−((−s)α − 1))]z

= s2αeπiα − (s2αeπiα − 0.5sα − 0.5sαeπiα + 0.25) +

[−s2αeπiα + sαeπiα + s2αeπiα − sα − 0.5sαeπiα + 0.5]z

= 0.5sα + 0.5sαeπiα − 0.25 + [0.5sαeπiα − 0.5sα + 0.5]z

= 0.

Then

z =
0.25 − 0.5sα(1 + eπiα)

0.5sαeπiα − sα + 0.5
.

Hence

F (1)(−s, h) = 0.5sαeπiα + 0.5sα − 0.25 + (0.5sα − sαeπiα + 0.5)z−1 = 0,
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and,

F (2)(s, h) =
n−r−1
∑

k=0

A
(r+1)
k (sα)zk

= A
(1)
0 ((−s)α)A

(1)
0 (sα) −A

(1)
1 (sα)A

(1)
1 ((−s)α)

= (0.5sαeπiα + 0.5sα − 0.25)(0.5sα + 0.5sαeπiα − 0.25) −

[(0.5sαeπiα − sα − 0.5)(0.5sα − sαeπiα − 0.5)]

= −s2αeπiα + s2αe2πiα + s2α − 0.25

= 0.

Then

s2α =
0.25

e2πiα − eπiα + 1
,

so

s = [
0.25

e2πiα − eπiα + 1
]

1
2α .

In the particular case when α = 1, then s = [ 0.25
−(−1)+1+1

]0.5 ≃ 0.289 and

h = −1
s

log(z).

In this system we notice that:

1. The asymptotes show a change at α = 1
3
.

2. Analysis of the small poles shows a change at α = 0.297.

So we have three cases:

• For 0 < α < 0.297 the system has no unstable poles.

• For 0.297 < α < 0.333 the system has finitely many unstable

poles.

• For 0.333 < α the system has infinitely many unstable poles.
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2.4 Fractional systems with particular values of α

2.4 Fractional systems with particular values

of α

2.4.1 Fractional systems with α = 0.5

Example 2.4.1. Let

Gh(s) =
1√

s+ e−h
√

s

where h ≥ 0. Then Gh is stable for 0 ≤ h < 3π
2
√

2
e3π/4. As h increases, the

poles cross the axis from left to right.

Proof. We consider the variation of the zeros of
√
s + e−h

√
s as h increases:

in particular the values of h at which they cross the y-axis. Equivalently,

we consider the values of h > 0 for which Gh(u) = 1
u+e−hu has a zero on the

line {u ∈ C : arg u = π/4}. Accordingly, suppose that e−hu = −u, and let

u = xeiπ/4, where x > 0.

We have

xeiπ/4 + e−hxeiπ/4

= 0,

and so

xe−iπ/4 + e−hxe−iπ/4

= 0.

Then

e2hx cos(π/4) = x2,

and

e−2ihx sin(π/4) = e−iπ/2.

We now eliminate h and solve for x, so that

i log x2 =
iπ

2
+ 2inπ (n ∈ Z),

whence x = eπ/4+nπ, and

h =
π
2

+ 2nπ√
2eπ/4+nπ

.

The smallest positive value of h occurs at n = −1, giving h = 3π
2
√

2
e3π/4.

Now, it is straightforward to check that for very small positive values of h
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the transfer function Gh is asymptotically stable, and so it remains stable

until the first pole-crossing, which is at h = 3π
2
√

2
e3π/4.

It is possible to show that the poles cross from left to right as h increases

by calculating ∂s
∂h

at a point where
√
s + e−h

√
s = 0. Similar calculations are

done for delay systems in [31] and [39].

We have
1

2
√
s

∂s

∂h
− [

√
se−h

√
s +

h

2
√
s

∂s

∂h
]e−h

√
s = 0,

now it is easy to deduce a formula for ∂s
∂h

.

Also, we have another argument to solve this example.

Take
√
s = u,

then

G(u) =
1

u+ e−uh
.

By Lemma 6.1.2 ([31]), we have,

u+ e−uh = 0 so, ueuh = −1, let z = hu then u = z
h

and thus, zez = −h.
Suppose that zn = xn + iyn, then

xn = − log(2nπ) + log | − h| + o(1) = − log(2nπ) + log(h) + o(1),

and

yn = ±2nπ ∓ π

2
+ arg(−h) + o(1).

Here un = zn

h
, then un = xn

h
+ iyn

h
, and sn = u2

n, so

u2
n = (

xn

h
+ i

yn

h
)2 = ((

xn

h
)2 − (

yn

h
)2) +

2xn

h

yn

h
i,

so

u2 ∼ −n2.

Then |Re sn| ∼ n2, and |Im sn| ∼ n logn, with Re sn < 0.

Theorem 2.4.2. Let G(s) = 1
p(
√

s)+q(
√

s)e−h
√

s be the transfer function of a

neutral fractional exponential system. Then the poles (sn) of G satisfy

sn =
λ2

n

h2
− 2β

αh
+

β2

α2λ2
n

+
β2

λn
− 2γ

αλn
− hβ3

αλ3
n

+
2hβγ

α2λ3
n

+
h2

λ4
n

[
β4

4
− β2γ

α
+
γ2

α2
]+o(

1

n2
).

and hence |Re sn| ∼ n2, and |Im sn| ∼ n−1, with Re sn < 0, for large n and

α = ±1.
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Proof. Let
√
s = u so, s = u2, then

G(u) =
1

p(u) + q(u)e−hu
.

By Theorem 2.1 [32], we have

p(u)

q(u)
= α +

β

u
+

γ

u2
+ O(

1

u3
) as |u| → ∞,

for constants α, β and γ with α = ±1.

For sufficiently large integers n let λn = 2niπ if α = −1 and let λn =

(2n+ 1)iπ if α = −1.

Then the poles un of G satisfy

un =
λn

h
− β

αλn
+

h

λ2
n

(
β2

2
− γ

α
) + o(

1

n2
),

so,

sn = u2
n = [

λn

h
− β

αλn

+
h

λ2
n

(
β2

2
− γ

α
) + o(

1

n2
)]2

=
λ2

n

h2
− 2β

αh
+

β2

α2λ2
n

+
β2

λn
− 2γ

αλn
− hβ3

αλ3
n

+
2hβγ

α2λ3
n

+
h2

λ4
n

[
β4

4
− β2γ

α
+

γ2

α2
] + o(

1

n2
).

Then |Re sn| ∼ n2, and |Im sn| ∼ n−1, with Re sn < 0.

Proposition 2.4.3. Let G(s) = 1
p(
√

s)+q(
√

s)e−h
√

s be the transfer function of

a neutral fractional exponential system. Then

sn =
1

h2
log2(−α) − i4nπ

h2
log(−α) − 4n2π2

h2
.

and

|Re sn| ∼ n2, and |Im sn| ∼ n, with Re sn < 0 and |α| > 1.

Proof. Let
√
s = u so, s = u2, then

G(u) =
1

p(u) + q(u)e−hu
.

By Proposition 2.1 [32], then α 6= ±1.

At poles of G(u), we have p(u)
q(u)

= −e−uh, and thus e−uh = −α + O( 1
u
).
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A standard argument involving Rouche’s Theorem ([4], chapter 12) shows

that the poles of G are asymptotic to the roots of e−uh = −α or −uh =

log(−α) + i2nπ, n ∈ N, sufficiently large. Taking real parts, we have, for a

pole of G, un = −1
h

log(−α) − i2nπ
h
, n ∈ Z, sufficiently large.

Then

sn = u2
n = (

−1

h
log(−α))2 +

2

h
log(−α)(

i2nπ

h
) − 4n2π2

h2
,

therefore,

sn =
1

h2
log2(−α) +

i4nπ

h2
log(−α) − 4n2π2

h2
.

As a result, |Re sn| ∼ n2, and |Im sn| ∼ n, with Re sn < 0.

Example 2.4.4. Let G(s) = 1√
s(
√

s+1)+se−
√

s be the transfer function of a

neutral fractional exponential system.

From Theorem 2.4.2, then p(s) =
√
s(
√
s+ 1), q(s) = s and h = 1.

Let u =
√
s, Thus,

G(u) =
1

u(u+ 1) + u2e−u
,

and then, p(u) = u(u+ 1), and q(u) = u2

thus

p(u)
q(u)

= u(u+1)
u2 = 1 + 1

u
, so α = 1, β = 1 and γ = 0, then λn = (2n+ 1)iπ.

therefore

un =
λn

h
− β

αλ
+

h

λ2
n

(
β2

2
− γ

α
) + o(

1

n2
),

and then

un =
(2n+ 1)iπ

1
− 1

(2n+ 1)iπ
+

1

(2(2n+ 1)2π2
+ o(

1

n2
).

But we have

sn = u2
n = [

(2n+ 1)iπ

1
− 1

(2n+ 1)iπ
+

1

(2(2n+ 1)2π2
+ o(

1

n2
)]2,

thus

sn = −(2n+1)2π2+2− 1

(2n+ 1)2π2
+

2i

2(2n+ 1)π
− 1

(2n + 1)3π3i
+

1

4(2n+ 1)4π4
,
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therefore

Re sn = −(2n + 1)2π2 + 2 − 1

(2n+ 1)2π2
+

1

4(2n+ 1)4π4
as n→ ∞.

As result Re sn = O(n2), with Re sn < 0.

Theorem 2.4.5. Let G(s) = 1
p(
√

s)+q(
√

s)e−h
√

s be the transfer function of an

advanced fractional exponential system. Then

Re sn ≍ n2 and Im sn ≍ logn with Re sn < 0.

Proof. As G is of a advanced type deg p = d0 < deg q = d1.

Let
√
s = u, so s = u2, and then

G(u) =
1

p(u) + q(u)e−hu
.

By the Theorem 6.1.4 [31] the roots of p(u) + q(u)e−hu = 0 are asymptotic

to the roots of ud0 + ud1e−uh = 0.

Then, ud0−d1 = −e−uh, or ud0−d1euh = −1.

Let z = hu
d0−d1

, then zez = h(−1)1/(d0−d1)

d0−d1
.

So, by Lemma 6.1.2 [31] with z = x+ iy the solutions are

xn = − log(2nπ) + log(

∣

∣

∣

∣

h(−1)1/(d0−d1)

d0 − d1

∣

∣

∣

∣

) + o(1),

and

yn = ±2nπ ∓ π

2
+ arg(

h(−1)1/(d0−d1)

d0 − d1

) + o(1).

Hence z = hu
d0−d1

, so u = d0−d1

h
(x+ iy), and then Reun ≍ log n, with Reun <

0.

However, we have sn = u2
n, then

sn = (
d0 − d1

h
)2(xn + iyn)2 = (

d0 − d1

h
)2(x2

n + 2xnyni− y2
n),

and therefore Re s = (d0−d1

h
)2(x2 − y2).

Then

Re sn = (
d0 − d1

h
)2(x2 − y2),
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2.4 Fractional systems with particular values of α

and then

Re sn ≍ n2 and Im sn ≍ logn with Re sn < 0.

Theorem 2.4.6. Let G(s) = 1
p(
√

s)+q(
√

s)e−h
√

s be the transfer function of a

retarded fractional exponential system.

Then

Re sn ≍ n2 and Im sn ≍ n log n with Re sn < 0.

Proof. As G is of a retarded type deg p = d0 > deg q = d1.

Let
√
s = u so, s = u2, then

G(u) =
1

p(u) + q(u)e−hu
.

By the Theorem 6.1.4 [31] the roots of p(u) + q(u)e−hu = 0 are asymptotic

to the roots of ud0 + ud1e−uh = 0.

Then ud0−d1 = −e−uh, or ud0−d1euh = −1.

Let z = hu
d0−d1

then, zez = h(−1)1/(d0−d1)

d0−d1
. So, by Lemma 6.1.2 [31] with z =

x+ iy the solutions are

xn = − log(2nπ) + log(

∣

∣

∣

∣

h(−1)1/(d0−d1)

d0 − d1

∣

∣

∣

∣

) + o(1),

and

yn = ±2nπ ∓ π

2
+ arg(

h(−1)1/(d0−d1)

d0 − d1

) + o(1).

Hence z = hu
d0−d1

, so u = d0−d1

h
(x+ iy), and then Reun ≍ log n, with Reun <

0.

But s = u2, so

sn = (
d0 − d1

h
)2(xn + iyn)2 = (

d0 − d1

h
)2(x2

n + 2xnyni− y2
n),

then

Re s = (
d0 − d1

h
)2(x2 − y2).
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2.4 Fractional systems with particular values of α

Therefore,

Re sn ≍ n2 and Im sn ≍ n log n with Re sn < 0.

Here we illustrate one method for finding the h where the poles cross the

axis.

Example 2.4.7. Let G(s) = 1√
s+e−h

√
s .

Let
√
s = x+ ix,

then,

x+ ix+ e−h(x+ix) = 0,

and the conjugate form is

(x− ix) + e−h(x−ix) = 0.

The real part is

x+ e−hx cos(hx) = 0,

and the imaginary part is

x− e−hx sin(hx) = 0.

Thus we have tan(hx) = −1, so hx = 3π
4

+ nπ, thus x =
( 3π

4
+nπ)

h
.

By substituting the value of x in x + e−hx cos(hx) = 0, we get an infinite

number of solutions for h but the smallest h is h = −3πe
3π
4

4 cos( 3π
4

)
≃ 34.817.

2.4.2 Procedure for finding zero-crossings

Let G(s) = 1
p(
√

s)+q(
√

s)e−h
√

s be the transfer function of a fractional delay

system.

Let
√
s = x+ ix. Thus we have

p(x+ ix) + q(x+ ix)e−h(x+ix) = 0,

and the conjugate form is

p(x− ix) + q(x− ix)e−h(x−ix) = 0.
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2.4 Fractional systems with particular values of α

Now we have to eliminate h, then find x > 0,

so

e−hx−ihx = −p(x+ ix)

q(x+ ix)
,

and

e−hx+ihx = −p(x− ix)

q(x− ix)
,

then

e−2hx = A(x), where A(x) =
p(x+ ix)p(x− ix)

q(x+ ix)q(x− ix)
,

and

e−i2hx = B(x), where B(x) =
p(x+ ix)q(x− ix)

p(x− ix)q(x+ ix)
,

thus log(B) = i log(A). From this equality we can find the value of x then

substituting in e−2hx = A(x) to find the value of h.

Example 2.4.8. Let G(s) = 1√
s+e−h

√
s .

Let
√
s = x+ ix,

Thus we have

e−hx−ihx = −(
x+ ix

1
),

and

e−hx+ihx = −(
x− ix

1
),

then

e−2hx = (
x+ ix

1
)(
x− ix

1
) = 2x2,

and

e−i2hx =
x+ ix

x− ix
=

1 + i

1 − i
= i.

Then

−2hx = log(2x2) + 2inπ,

and

−2hix = i
π

2
+ 2imπ.

Then, i =
i(π

2
+2mπ)

log(2x2)+2inπ
, so log(2x2) + 2inπ = π

2
+ 2mπ and then, n = 0,

Therefore 2x2 = e
π
2
+2mπ so

x =
1√
2
e

π
4
+mπ.
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2.4 Fractional systems with particular values of α

Thus

−2hx = π
2

+ 2mπ ⇒ h =
π
2
+2mπ

−2( 1√
2
e

π
4 +mπ)

, for the value m = −1, then

h =
3π

2
√

2
e

3π
4 .

2.4.3 More general procedure for finding zero-crossings

In this section we are going to give a more general procedure to find zero-

crossing. Let

G(s) =
1

p(sα) + q(sα)e−hsα .

Let s = ye
πi
2 , then

sα = yαe
πiα
2 .

Thus we have,

p(yαe
πiα
2 ) + q(yαe

πiα
2 )e−hyαe

πiα
2 = 0,

and the conjugate form is

p(yαe
−πiα

2 ) + q(yαe−
πiα
2 )e−hyαe

−πiα
2 = 0.

We have to eliminate h, then find y > 0, then

e−2hyα cos(πα
2

) =
p(yαe

πiα
2 )p(yαe

−πiα
2 )

q(yαe
πiα
2 )q(yαe−

πiα
2 )

.

Let

I = −2hyα =
1

cos(πα
2

)
log[

p(yαe
πiα
2 )p(yαe

−πiα
2 )

q(yαe
πiα
2 )q(yαe

−πiα
2 )

],

and

e−2ihyα sin(πα
2

) =
p(yαe

πiα
2 )q(yαe

−πiα
2 )

p(yαe
−πiα

2 )q(yαe
πiα
2 )

.

Let

II = −2hyα =
1

i sin(1πα
2

)
log[

p(yαe
πiα
2 )q(yαe

−πiα
2 )

p(yαe
−πiα

2 )q(yαe
πiα
2 )

].

Thus, I = II.

This equality gives us the value of y, then we can find the value of h from

the previous equations after substituting the value of y.
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2.4 Fractional systems with particular values of α

Comment

For α = 0.5 the previous procedure gives the same answer.

Example 2.4.9. Let G(s) = 1

s1/3+e−hs1/3 .

Let s = ye
πi
2 , then s1/3 = y1/3e

πi
6 , thus we have

y1/3e
πi
6 + e−hy1/3(cos(π

6
)+i sin(π

6
) = 0,

and the conjugate form is

y1/3e
−πi
6 + e−hy1/3(cos(π

6
)−i sin(π

6
) = 0.

We have to eliminate h, then find y > 0,

y2/3 = e−hy1/3 cos(π
6
)+2nπi,

then log(y2/3) = −hy1/3 cos(π
6
) + 2nπi ⇒ n = 0, thus I = −2hy1/3 =

2/3 log(y)
cos(π

6
)
. Also,

e
πi
3 = e−hy1/3i sin(π

6
)+2mπi.

Let

II = −2hy1/3 =
π

3 sin(π
6
)
− 2mπ

sin(π
6
)
.

Thus, I = II.

Then

y = e
3
√

3π
2

(1/3−2m).

Now, we can calculate the value of h,

h = [

2π
3
− 4mπ√

3

−2e
√

3π
2

(1/3−2m)
],

we choose m = 1 for the smallest h > 0, so

h =
π(2

√
3 − 1)

3e
−5

√
3π

6

.
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Chapter 3

Diffusive Systems

3.1 Introduction

In this chapter we mainly focus on diffusive systems, the Hankel operator and

the Θ operator. We are looking at diffusive systems which are continuous-

time linear systems with impulse response h(t) which can be represented as

h(t) =

∫ ∞

0

e−tξdµ(ξ),

and the transfer function G(s), defined as the Laplace transform of the im-

pulse response h(t), is

G(s) =

∫ ∞

0

dµ(ξ)

s + ξ
,

where µ is a signed measure defined on R. If µ is absolutely continuous we

write dµ(ξ) = f(ξ)dξ. We give a theorem that gives us the necessary and

sufficient conditions for diffusive systems to be BIBO and H∞ stable. More-

over, we consider a system with discrete measure µ where h is given by a

series and µ is a sum of point masses, and we give necessary conditions for

system to be BIBO and H∞ stable.

In the theory of approximation of unstable systems, the coprime factor tech-

nique is based on coprime factorization of the system as G(s) = N
M

where N

and M are functions defined on the right half of the complex plane. This

technique plays an essential role in some interesting examples.

A number of techniques and tools are available for finding conditions that

test properties of the Hankel operator and Θ operator of a diffusive system
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3.2 Diffusive Systems

and in general for other weighted Hankel operators. Two tests in Howland’s

paper [19] have been adapted to test nuclearity of the Θ operator. The re-

producing kernel test has been used see [8] to say that Γ (Hankel operator)

is bounded if and only if supz
‖Γuz‖2

‖uz‖ <∞, where uz(t) = e−zt for t > 0.

3.2 Diffusive Systems

Following Montseny [25] we make the following definition.

Definition 3.2.1. A diffusive system is a continuous-time linear system with

impulse response h(t) which can be represented as

h(t) =

∫ ∞

0

e−tξdµ(ξ).

Note that h is real if µ is real. Also, the transfer function G(s), defined as

the Laplace transform of the impulse response h(t), is

G(s) =

∫ ∞

0

dµ(ξ)

s + ξ
,

where µ is a signed measure defined on R.

If µ is absolutely continuous we write dµ(ξ) = f(ξ)dξ, where f is absolutely

continuous function.

Theorem 3.2.2. (See Montseny [25]). A convolution system y = h ∗ u with

diffusive representation µ can be realized as a diffusive equation

ψt(ξ, t) = −ξψ(ξ, t) + u(t) (3.2.1)

y(t) =

∫ ∞

0

f(ξ)ψ(ξ, t)dξ, (3.2.2)

with ψ(ξ, t) a state variable such that ψ(ξ, 0) = 0. Equivalently, as a heat

equation

Φt(x, t) = Φxx(x, t) + δ(x)u(t) (3.2.3)
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3.2 Diffusive Systems

y(t) =

∫ ∞

−∞
m.Φdx, (3.2.4)

with m(x) = 4π2xf(4π2x2) and Φ(x, 0) = 0, and equivalently

Ψt = −4π2ζ2Ψ + u, ζ ∈ R, Ψ(ζ, 0) = 0 (3.2.5)

y(t) =

∫ ∞

−∞
m̂.Ψdζ. (3.2.6)

Proof. For a diffusive system we have

h(t) =

∫ ∞

0

e−tξdµ(ξ)

and

y(t) = (h ∗ u)(t) =

∫ t

0

∫ ∞

0

e−xξdµ(ξ)u(t− x)dx.

By Fubini

y(t) =

∫ t

0

∫ ∞

0

e−xξu(t− x)dxf(ξ)dξ

=

∫ ∞

0

(e−tξ ∗ u)f(ξ)dξ,

and

G(s) = (Lh)(s) =

∫ ∞

0

e−sth(t)dt

=

∫ ∞

0

∫ ∞

0

e−ste−tξdµ(ξ)dt.

By Fubini

G(s) =

∫ ∞

0

∫ ∞

0

e−t(s+ξ)dtdµ(ξ)

=

∫ ∞

0

1

s+ ξ
dµ(ξ).

To prove those three formulas are equivalent we make the change of variables

ξ = 4π2ζ2 and dξ = 8π2ζdζ and from (3.2.1) and (3.2.2) we would get (3.2.5)

and (3.2.6) respectively and from Fourier transform with respect to the ξ−
variable: Ψ = FΦ, it is easly shown that we would change (3.2.3) and (3.2.4)

to (3.2.5) and (3.2.6) respectively.
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3.3 Hankel Operator

Theorem 3.2.3. Let G be a transfer function of a diffusive system, where

h(t) =
∫∞
0
e−tξdµ(ξ), and

∫∞
0

d|µ|(ξ)
ξ

< ∞; then the system is BIBO stable

and hence H∞ stable. Moreover if µ > 0, the system is BIBO stable and H∞

stable if and only if
∫∞
0

dµ(ξ)
ξ

<∞.

Proof. Part I holds, since,

∫ ∞

0

|h(t)| dt =

∫ ∞

t=0

∫ ∞

ξ=0

e−tξd |µ| (ξ)dt

=

∫ ∞

0

d |µ| (ξ)
ξ

< ∞.

Then G is BIBO stable, hence G is H∞ stable.

Now if µ > 0 then, it is BIBO stable from Part I. Moreover, G is H∞ stable.

Conversely, if µ ≥ 0, then for s > 0

G(s) =

∫ ∞

0

dµ(ξ)

s+ ξ

6 ‖G‖∞ .

Let s→ 0, then

∫ ∞

0

dµ(ξ)

ξ
6 ‖G‖∞
< ∞.

Hence, if G is BIBO and H∞ stable and µ > 0, then
∫∞
0

dµ(ξ)
ξ

<∞.

Remark 3.2.4. In fact the above condition also implies that the system is

also nuclear (see Howland [19]).

3.3 Hankel Operator

We shall consider the Hankel operator Γh on L2(0,∞) defined by

Γhf(x) =

∫ ∞

0

h(x+ y)f(y)dy. (3.3.1)
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3.3 Hankel Operator

Theorem 3.3.1. (Howland Test 1[19, Theorem 2.3]). If h(t) =
∫∞
0
e−ξtdµ(ξ)

where µ is a positive Borel measure, then Γh is a nuclear operator if and only

if
∫ ∞

0

1

ξ
dµ(ξ) <∞.

Theorem 3.3.2. (Howland test 2[19, Theorem 2.1]). If h(x) =
∫∞

x
k(t)dt,

where

∫ ∞

0

t1/2(

∫ ∞

t

|k(s)|2 ds)1/2dt <∞,

then h(x) is finite for x > 0, and the operator Γh of (3.3.1) is of nuclear

type.

We require the following notation.

Definition 3.3.3. E1(z) =
∫∞

z
e−t

t
dt (|arg z| < π).

En(z) =
∫∞
1

e−zt

tn
dt (n = 0, 1, 2, 3, ...; Re z > 0).

Also we can define the step function u(x),

u(x) =



























0 x < 0

1/2 x = 0

1 x > 0.

(3.3.2)

see [1, p. 227, 1020].

Example 3.3.4. We will study some examples of diffusive systems which

are BIBO stable or just H∞ or neither.

1. Let µ = δa and h(t) = e−at ∈ L1, then G(s) = 1
s+a

, a > 0, so it is BIBO

stable and nuclear.

2. Let f(ξ) = e−aξ and h(t) = 1
t+a

/∈ L1, then G(s) =
∫∞
0

e−st

t+a
dt →

∞ as s → ∞ /∈ H∞, so it is not H∞ stable hence it is not BIBO

stable.
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3.3 Hankel Operator

3. Let f(ξ) = ξn−1e−aξ

(n−1)!
and h(t) = 1

(t+a)n ∈ L1, thenG(s) = a1−neasEn(as), (a >

0, n = 2, 3, ...),

By using the Howland test Theorem 3.3.1,

1

(n− 1)!

∫ ∞

0

ξn−2e−aξdξ =
1

(n− 1)an−1
Γ(n− 1) <∞,

where Γ is the gamma function. So it is BIBO stable and nuclear.

4. Let f(ξ) = sin(πξ)
πξα , where, 0 < Reα < 1 and h(t) = tα−1

Γ(α)
/∈ L1. By

using the Howland test Theorem 3.3.2, we can not tell whether the Γh

operator is nuclear.

5. Let f(ξ) = 1√
πξ

and h(t) = 1√
t
/∈ L1, then G(s) =

√
π√
s

(fractional

system), so it is not BIBO nor H∞ stable.

6. Let f(ξ) = u(ξ−1)√
π(ξ−1)

, where u is the step function (3.3.2), and h(t) =

e−t
√

t
∈ L1, then G(s) =

√
π√

s+1
(fractional system).

By using the Howland test Theorem 3.3.1,

I =

∫ ∞

1

u(ξ − 1)

ξ
√

π(ξ − 1)
dξ.

Put ξ = x+ 1, then

I ≤
∫ 1

0

1√
πx

dx+

∫ ∞

1

1√
πx3/2

dx <∞.

So it is BIBO stable and nuclear.

7. Let f(ξ) = 1√
πξ
e−k2/4ξ and h(t) = 1√

t
e−k

√
t ∈ L1, then

G(s) =

∫ ∞

0

1√
t
e−k

√
te−stdt.

By using the Howland test Theorem 3.3.1, to calculate
∫∞
0

1
ξ
√

ξ
e−k2/4ξ put z = 1√

ξ
then

∫ ∞

0

ze−k2z2/4dz <∞.

Thus it is BIBO stable and nuclear.
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3.3 Hankel Operator

8. Let f(ξ) = cos(a
√
ξ)/(π

√
ξ), a heat kernel with h(t) = e−a2/4t/

√
πt /∈

L1 and G(s) = e−a
√

s/
√
s. This is not Hilbert-Schmidt, so it not nu-

clear, since
∫ ∞

0

t
e−a2/2t

πt
dt = ∞.

Indeed it is not even H∞ stable.

Comment 3.3.5. If µ is not a positive measure we can have
∫∞
0

d|µ(ξ)|
ξ

= ∞,

but h ∈ L1 (i. e. it is BIBO stable and H∞ stable).

Example 3.3.6. Let f(ξ) = sin(ξ) and if sin(ξ)dξ = dµ(ξ), we have
∫ ∞

0

sin(ξ)

ξ
dξ =

π

2
<∞

and
∫ ∞

0

|sin(ξ)|
ξ

dξ = ∞,

so h(t) = 1
t2+1

∈ L1 and G(s) = [π/2 + Si(s)] cos(s) + Ci(s) sin(s), so it is

BIBO stable and H∞ stable, where

Si(z) =

∫ z

0

sin(t)dt

t
,

and

Ci(z) = γ + ln(z) +

∫ z

0

cos(t)dt

t
.

Also it is nuclear, since, using the Howland test Theorem 3.3.2

we have, k(t) = −h′(t), then, h(t) =
∫∞

t
k(x)dx and in this example we have,

k(t) = 2t
(t2+1)2

.

Then,
∫ ∞

0

t1/2(

∫ ∞

t

4s2

(s2 + 1)4
ds)1/2dt ≈

∫ ∞

0

t1/2 1

t5/2
dt <∞,

so it is nuclear.

Proposition 3.3.7. If µ > 0 and h = Lµ, then h ∈ L2 (i. e. G ∈ H2) if

and only if
∫ ∞

0

|h(t)|2 dt =

∫ ∞

0

[

∫ ∞

0

e−tξdµ(ξ)

∫ ∞

0

e−txdµ(x)]dt

=

∫ ∞

0

∫ ∞

0

1

ξ + x
dµ(ξ)dµ(x) <∞.
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3.4 Θ Operator

Proposition 3.3.8. If µ > 0 and h = Lµ, then the Hankel operator is

Hilbert-Schmidt if and only if
∫∞
0

∫∞
0

dµ(ξ)dµ(x)
(ξ+x)2

<∞.

Proof. According to Theorem (1.2.14) and using Fubini’s theorem, we have,

∫ ∞

0

t

∣

∣

∣

∣

∫ ∞

0

e−tξdµ(ξ)

∫ ∞

0

e−txdµ(x)

∣

∣

∣

∣

dt

=

∫ ∞

0

t(

∣

∣

∣

∣

∫ ∞

0

e−tξdµ(ξ)

∣

∣

∣

∣

∣

∣

∣

∣

∫ ∞

0

e−txdµ(x)

∣

∣

∣

∣

)dt

=

∫ ∞

0

t(

∫ ∞

0

∣

∣e−tξ
∣

∣ dµ(ξ)

∫ ∞

0

∣

∣e−tx
∣

∣ dµ(x))dt

=

∫ ∞

0

t(

∫ ∞

0

∫ ∞

0

e−tξ−txdµ(ξ)dµ(x))dt

=

∫ ∞

0

te−t(ξ+x)dt

∫ ∞

0

∫ ∞

0

dµ(ξ)dµ(x)

=

∫ ∞

0

∫ ∞

0

dµ(ξ)dµ(x)

(ξ + x)2
.

This yields the result.

3.4 Θ Operator

In this section we shall consider the scaled Hankel operator Θ on L2(0,∞)

given by

(Θu)(t) =
1√
π

∫ ∞

0

t−1/4h(t+ τ)τ−1/4u(τ)dτ. (3.4.1)

Proposition 3.4.1. (See for instance [28]). Θ is a Hilbert-Schmidt operator

if and only if h ∈ L2(0,∞) moreover, ‖Θ‖HS = ‖h‖2.

Theorem 3.4.2. If Θ has the form (3.4.1) and µ > 0, then Θ is of trace

class (nuclear) if and only if

∫ ∞

0

1√
p
dµ(p) <∞.

Proof. We modify the proof of Theorem 2.3 in [19].

Let ψp(t) = t−1/4e−pt and define,

T0 =

∫ ∞

0

〈., ψp〉ψpdµ(p).
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3.4 Θ Operator

This integral clearly converges in trace norm to a non-negative operator, with

I = trT0

=

∫ ∞

0

‖ψp‖2 dµ(p)

=

∫ ∞

0

∫ ∞

0

∣

∣t−1/4e−pt
∣

∣

2
dtdµ(p)

=

∫ ∞

0

(

∫ ∞

0

t−1/2e−2ptdt)dµ(p),

letting (2pt)1/2 = z, so 1
2

√
2pt−1/2dt = dz,

and then

I =

∫ ∞

0

(

∫ ∞

0

√

2

p
e−z2

dz)dµ(p)

=

∫ ∞

0

∫ ∞

0

√

2

p
e−z2

dzdµ(p)

=

∫ ∞

0

√

2

p

√
π

2
dµ(p)

=

√

π

2

∫ ∞

0

1√
p
dµ(p) <∞.

After a simple computation with Fubini’s theorem, we conclude that T = T0,

where T is that given in 3.4.1.

Moreover,

Tn =

∫ n

1/n

〈., ψp〉ψpdµ(p) (n > 0).

In fact this is increasing sequence of nuclear operator with Tn 6 T , and thus,

0 6

∫ n

1/n

dµ(p)√
p

=

√

2

π
trTn 6

√

2

π
trT <∞.

This yields the result by letting n→ ∞.

Theorem 3.4.3. Define the operator (Tu)(t) =
∫∞
0
ω(t)h(t+ τ)ω(τ)u(τ)dτ ,

where ω ≥ 0 and h corresponds to a measure µ ≥ 0, and ψp ∈ L2 ∀p >
0 , where ψp = e−ptω(t), then T is of trace class (nuclear) if and only if
∫∞
0

‖ψp‖2 dµ(p) <∞.
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3.4 Θ Operator

Proof. Let ψp = e−ptω(t) ∈ L2 and define,

T0 =

∫ ∞

0

〈., ψp〉ψpdµ(p).

This integral clearly converges in trace norm to a non-negative operator with

trT0 =

∫ ∞

0

‖ψp‖2
2 <∞.

The proof continues by the same argument as in the proof of Theorem 3.4.3.

Theorem 3.4.4. If h(x) =
∫∞

x
k(t)dt and k ∈ L1(0,∞) where

∫ ∞

0

t1/4(

∫ ∞

t

(k(x+ t))2x−1/2dx)1/2dt <∞. (3.4.2)

Then h(x) is finite for x > 0, and the operator Θ of (3.4.1) is of trace class

(nuclear).

Proof. Since k ∈ L1(0,∞), h(x) is finite for x > 0. If f, g ∈ L2(0,∞), then

we have

〈Θf, g〉 =

∫ ∞

0

g(x)(Θf)(x)dx

=

∫ ∞

0

g(x)

∫ ∞

0

x−1/4

∫ ∞

x+y

k(s)f(y)y−1/4dsdydx

=

∫ ∞

x=0

g(x)

∫ ∞

y=0

x−1/4

∫ ∞

t=y

k(x+ t)dtf(y)y−1/4dydx

=

∫ ∞

x=0

g(x)

∫ ∞

t=0

∫ t

y=0

x−1/4k(x+ t)f(y)y−1/4dydtdx

so

|〈Θf, g〉| =

∣

∣

∣

∣

∫ ∞

0

(

〈kt(x)x
−1/4, g〉〈f, χ[0,t]y

−1/4〉
)

dt

∣

∣

∣

∣

≤ ‖g‖2 ‖f‖2

∫ ∞

0

∥

∥kt(x)x
−1/4

∥

∥

2

∥

∥χ[0,t](y)y
−1/4

∥

∥

2
dt

≤ ‖g‖2 ‖f‖2

∫ ∞

0

√
2t1/4

∥

∥kt(x)x
−1/4

∥

∥

2
dt <∞.

Moreover

Θ =

∫ ∞

0

〈., χ[0,t]y
−1/4〉x−1/4kt(x)dt
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3.4 Θ Operator

where this integral converges weakly. However, if we estimate this integral

in trace norm, we obtain

‖Θ‖1 ≤
∫ ∞

0

∥

∥χ[0,t]y
−1/4

∥

∥

2

∥

∥ktx
−1/4

∥

∥

2
dt

=
√

2

∫ ∞

0

t1/4
∥

∥ktx
−1/4

∥

∥

2
dt

where the integral converges. Thus, the operator Θ of (3.4.1) is of trace class

(nuclear).

This proof is similar to Howland’s Theorem 2.1 [19].

We have a more general result, as follows:

Theorem 3.4.5. If h(x) =
∫∞

x
k(t)dt and k ∈ L1(0,∞) define the operator

(Tu)(t) =

∫ ∞

0

ω(t)h(t+ τ)ω(τ)u(τ)dτ,

where ω, µ ≥ 0 and

∫ ∞

0

‖ω‖ ‖kt(x)ω(x)‖dt <∞.

Then h(x) is finite for x > 0, and the operator T is of trace class (nuclear).

Proof. Since k ∈ L1(0,∞), h(x) is finite for x > 0. If f, g ∈ L2(0,∞), then

we have

〈Tf, g〉 =

∫ ∞

0

g(x)(Tf)(x)dx

=

∫ ∞

0

g(x)

∫ ∞

0

ω(x)h(x+ y)ω(y)f(y)dydx

=

∫ ∞

0

g(x)

∫ ∞

0

ω(x)

∫ ∞

x+y

k(s)f(y)ω(y)dsdydx

=

∫ ∞

x=0

g(x)

∫ ∞

y=0

ω(x)

∫ ∞

t=y

k(x+ t)dtf(y)ω(y)dydx

=

∫ ∞

x=0

g(x)

∫ ∞

t=0

∫ t

y=0

ω(x)k(x+ t)f(y)ω(y)dydtdx
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3.4 Θ Operator

so

|〈Tf, g〉| =

∣

∣

∣

∣

∫ ∞

0

(

〈kt(x)ω(x), g〉〈f, χ[0,t]ω(y)〉
)

dt

∣

∣

∣

∣

≤ ‖g‖2 ‖f‖2

∫ ∞

0

‖kt(x)ω(x)‖2

∥

∥χ[0,t](y)ω(y)
∥

∥

2
dt

≤ ‖g‖2 ‖f‖2

∫ ∞

0

‖ω‖2 ‖kt(x)ω(x)‖2 dt <∞.

Moreover

T =

∫ ∞

0

〈., χ[0,t]ω(y)〉ω(x)kt(x)dt

where this integral converges weakly. However, if we estimate this integral

in trace norm, we obtain

‖T‖1 ≤
∫ ∞

0

∥

∥χ[0,t]ω(y)
∥

∥

2
‖ktω(x)‖2 dt

where the integral converges. Thus, the operator T is of trace class (nuclear).

This proof is similar to Howland’s Theorem 2.1 [19].

Theorem 3.4.6. (Mercer’s Theorem), (see [13], Proposition 5.6.9). If the

non-negative, bounded, self-adjoint operator T has the continuous integral

kernel a(., .) then,

tr[T ] =

∫

X

a(x, x)dx (3.4.3)

where the finiteness of either side implies the finiteness of the other.

We now show that Θ is a positive operator.

Theorem 3.4.7. Let h(t) =
∫∞
0
e−xtdµ(x) with µ ≥ 0 then, Θ is a positive

operator i.e. Θ ≥ 0.

Proof. We have to prove that 〈Θu, u〉 ≥ 0, thus

〈Θu, u〉 =

∫ ∞

0

∫ ∞

0

t−1/4h(t+ τ)τ−1/4u(τ)u(t)dtdτ

=

∫ ∞

0

∫ ∞

0

∫ ∞

0

t−1/4e−x(t+τ)dµ(x)τ−1/4u(τ)u(t)dtdτ

=

∫ ∞

0

[

∫ ∞

0

t−1/4e−xtu(t)dt

∫ ∞

0

τ−1/4e−xτu(τ)dτ ]dµ(x)

=

∫ ∞

0

∣

∣

∣

∣

∫ ∞

0

t−1/4e−xtu(t)dt

∣

∣

∣

∣

2

dµ(x) > 0.
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3.4 Θ Operator

According to Mercer’s Theorem we can find the trace of the Θ operator,

where the kernel of Θ is t−1/4h(t, τ)τ−1/4.

Theorem 3.4.8. trΘ =
∫∞
0

√

π
2x

dµ(x).

Proof. We have

Σ∞
n=1σn(Θ) =

∫ ∞

0

t−1/4h(t, t)t−1/4dt

=

∫ ∞

0

t−1/2h(2t)dt

=

∫ ∞

0

t−1/2

∫ ∞

0

e−2txdµ(x)dt

=

∫ ∞

0

∫ ∞

0

t−1/2e−2xtdtdµ(x)

=

∫ ∞

0

√

π

2x
dµ(x).

Example 3.4.9. In Examples 3.3.4 and Example 3.3.6 we shall look at the

cases where h ∈ L2 and use Theorems 3.4.2 and 3.4.4 to examine the Θ

operators to decide whether they are nuclear or not.

1. Let µ = δa and h(t) = e−at, then G(s) = 1
s+a

, a > 0 and h ∈ L2 (i.e.

G ∈ H2), where
∫ ∞

0

|h(t)|2 dt =

∫ ∞

0

e−atdt =
1

2a
<∞.

By using Theorem 3.4.2
∫ ∞

0

dµ(ξ)√
ξ

=

∫ ∞

0

dδa(ξ)√
ξ

=
1√
a
<∞.

So, the operator Θ is nuclear.

2. Let f(ξ) = e−aξ and h(t) = 1
t+a

∈ L2, where
∫ ∞

0

|h(t)|2 dt =

∫ ∞

0

1

t+ a)2
dt =

1

a
<∞.

By using Theorem 3.4.2
∫ ∞

0

e−aξ

√
ξ

dt = 2

∫ ∞

0

e−az2

dz <∞.

So the operator Θ is nuclear.
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3.4 Θ Operator

3. Let f(ξ) = ξn−1e−aξ

(n−1)!
and h(t) = 1

(t+a)n ∈ L2, where

∫ ∞

0

|h(t)|2 dt =

∫ ∞

0

dt

(t+ a)2n
<∞.

In addition by using Theorem 3.4.2

∫ ∞

0

dµ(ξ)√
ξ

=

∫ ∞

0

ξn−1e−aξdξ

ξ1/2(n− 1)!

=

∫ ∞

0

ξ(n−1/2−1)e−aξ

(n− 1)!
dξ

=
Γ(n− 1/2)

an−1/2
<∞.

So, Θ is nuclear.

In Example 3.3.4, Examples 5-7 the operator Θ is not Hilbert-Schmidt (h /∈
L2(0,∞)), so not nuclear.

In addition, in Example 3.3.6, with h(t) = 1
t2+1

and k ∈ L1, the Θ operator

is Hilbert-Schmidt but, using Theorem 3.4.4 fails since (using Maple)

∫ ∞

0

t1/4(

∫ ∞

t

(k(x+ t))2x−1/2dx)1/2dt =

∫ ∞

0

t1/4(

∫ ∞

t

(x+ t)2

((x+ t)2 + 1)2x1/2
)1/2dt

=

∫ ∞

0

t1/4(
π[8t8 + 23t6 + 23t4 + 8t3(t2 + 1)5/2 + 9t2 + 3(t2 + 1)5/2t+ 1]

(4(
√
t2 + 1 + 2t)3/2[t8 + 4t6 + 6t4 + 4t2 + 1 + (t2 + 1)7/2t]

)1/2dt

= ∞.

So we can not tell whether Θ is nuclear.

Boundedness of Θ

Theorem 3.4.10. Write Θωu(t) =
∫∞
0
ω(t)h(t+ τ)ω(τ)u(τ)dτ and suppose

that h(t) =
∫∞
0
e−txdµ(x), with µ, ω > 0. Then Θ is bounded if

∫ ∞

0

∫ ∞

0

(V (
x+ y

2
))2V (x)V (y)dµ(x)dµ(y) <∞,

where V (x) = ‖e−xτω(τ)‖2.

59



3.4 Θ Operator

Proof. We first show that,

|Θu(t)| 6

∫ ∞

0

∫ ∞

0

ω(t)e−xte−xτω(τ) |u(τ)| dµ(x)dτ,

by Cauchy-Schwarz,

6

∫ ∞

0

ω(t)e−xt
∥

∥e−xτω(τ)
∥

∥

2
‖u‖2 dµ(x).

Let V (x) = ‖e−xτω(τ)‖2, so V (x) can be worked out (depending on ω) in

standard examples like ω = 1, ω = t−1/4.

Moreover, we have

‖Θu‖2
2 = 〈Θu,Θu〉

6

∫ ∞

0

∫ ∞

0

ω(t)e−xtV (x) ‖u‖2 dµ(x) ×
∫ ∞

0

ω(t)e−ytV (y) ‖u‖2 dµ(y)dt

6 ‖u‖2
2

∫ ∞

0

∫ ∞

0

∫ ∞

0

e−(x+y)t(ω(t))2dtV (x)V (y)dµ(x)dµ(y)

6 ‖u‖2
2

∫ ∞

0

∫ ∞

0

∥

∥

∥
ω(t)e−

x+y
2

t
∥

∥

∥

2

2
V (x)V (y)dµ(x)dµ(y)

= ‖u‖2
2

∫ ∞

0

∫ ∞

0

(V (
x+ y

2
))2V (x)V (y)dµ(x)dµ(y).

This finishes the proof.

Corollary 3.4.11. (i) For the Γ operator, we have ω(t) = 1 and

V (x) = (

∫ ∞

0

e−2xτdτ)1/2 =

√

1

2x
,

thus Γ is bounded if

∫ ∞

0

∫ ∞

0

dµ(x)dµ(y)√
xy(x+ y)

<∞.

(ii) For the Θ operator, we have ω = t−1/4 and

V (x) = (

∫ ∞

0

(e−xττ−1/4)2dτ)1/2 = (
π

2x
)1/4,

thus Θ is bounded if

∫ ∞

0

∫ ∞

0

dµ(x)dµ(y)
4
√
x 4
√
y
√
x+ y

<∞.
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3.5 Reproducing Kernel Test

3.5 Reproducing Kernel Test

Theorem 3.5.1. (i) See([8]). If Γ is a Hankel operator and (Γu)(t) =
∫∞
0
h(t + τ)u(τ)dτ , then Γ is bounded if and only if supu

‖Γu‖2

‖u‖2
< ∞,

where u 6= 0 and u ∈ L2. Moreover, by using the reproducing kernel test

for the case h ≥ 0, Γ is bounded if and only if supRe x>0
‖Γux‖2

‖ux‖2
< ∞,

where ux(t) = e−xt, for t > 0.

(ii) If the operator Θ is bounded, then supu
‖Θu‖
‖u‖ <∞, and so supRe x>0

‖Θux(t)‖
‖ux‖ <

∞.

We apply this idea on our Examples 3.3.4.

(i) In example 5, h(t) = 1√
t
.

Now let ux(t) = e−xt ∈ L2, with x = 1 thus

〈Θu,Θu〉 =

∫ ∞

0

(Θu)(t)(Θu)(t)dt

=

∫ ∞

0

∫ ∞

0

t−1/4h(t+ τ)τ−1/4u(τ)t−1/4h(t+ τ)τ−1/4u(τ)dτdt

=

∫ ∞

0

∫ ∞

0

t−1/4τ−1/4e−τ t−1/4τ−1/4e−τ

√
t+ τ

√
t+ τ

dtdτ

=

∫ ∞

0

∫ ∞

0

t−1/2τ−1/2e−2τ

(t+ τ)
dtdτ

=

∫ ∞

0

t−1/2dt

t+ τ

∫ ∞

0

τ−1/2e−2xdτ,

let
√
t = z, then

= 2

∫ ∞

0

[

∫ ∞

0

dz

τ((z/
√
τ )2 + 1)

]τ−1/2e−2τdτ

= 2

∫ ∞

0

arctan(z/
√
τ)|∞0 τ−3/2e−2τdτ

= 2

∫ ∞

0

π

2
τ−3/2e−2τdτ,

let
√

2τ = ω thus

=
π√
2

∫ ∞

0

e−ω2

ω2
dω

= ∞,

and ‖ux‖2 = (
∫∞
0
e−2xtdt)1/2 = 1√

2x
and for x = 1, then ‖ux‖2 = 1√

2
.

Hence, Θu /∈ L2 and so the Θ operator is unbounded.
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3.6 Special case of a discrete measure

(ii) Example 6, h(t) = e−t
√

t
.

Now, let u(t) = e−xt, with x = 1, thus

〈Θu,Θu〉 =

∫ ∞

0

(Θu)(t)(Θu)(t)dt

=

∫ ∞

0

∫ ∞

0

t−1/2e−2(t+τ)τ−1/2e−2τ

t+ τ
dtdτ

=

∫ ∞

0

∫ ∞

0

t−1/2e−2tdt

t+ τ
τ−1/2e−4τdτ,

let z =
√
t, then

= 2

∫ ∞

0

[

∫ ∞

0

e−2z2
dz

z2 + τ
]τ−1/2e−4τdτ

= ∞,

and ‖ux‖2 = (
∫∞
0
e−2xtdt)1/2 = 1√

2x
, thus for x = 1, ‖ux‖2 = 1√

2
.

Then Θu /∈ L2 so, Θ is unbounded (so not H-S). For the examples 7

and 8 we can not tell whether Θ is bounded using these methods. We

develop further techniques in Chapter 5.

3.6 Special case of a discrete measure

We shall consider a system where h is given by a series and µ is a sum of

point masses.

Example 3.6.1. Consider the following heat equation:

Zt = Zxx + b(x)u(t),

Zx(0, t) = 0 = Zx(1, t), Z(x, 0) = z0(x),

y(t) =

∫ 1

0

c(x)Z(x, t)dx,

where b(x) and c(x) are L1 functions for x ∈ (0, 1), see [10, p. 142].

Using analytic solution of partial differential equations, it is readily verified

that the transfer function of this heat equation is given by the following

infinite series for s 6= −n2π2,

G(s) =
α0β0

s
+ 2

∞
∑

n=1

αnβn

s+ n2π2
,
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3.6 Special case of a discrete measure

where,

αn =

∫ 1

0

b(x) cos(nπx)dx for n = 0, 1, 2...

βn =

∫ 1

0

c(x) cos(nπx)dx for n = 0, 1, 2...

and its impulse response is given by

h(t) = (L−1G)(t) = α0β0 + 2

∞
∑

n=1

αnβne
−n2π2t,

so,

f(ξ) = (L−1h)(ξ) = δ(ξ)α0β0 + 2
∞
∑

n=1

αnβnδ(ξ − n2π2).

This example has a pole s = 0 in the closed right half plane, so it is unstable

unless α0 = 0 or β0 = 0.

Example 3.6.2. (General Example). Consider this example with xn > 0,

µ =
∞
∑

n=0

cnδ(x− xn),

h(t) = Lµ =

∞
∑

n=0

cne
−xnt,

G(s) = Lh =
∞
∑

n=0

cn
s+ xn

.

This system has no poles in the closed right half plane. In addition,

‖G(s)‖H∞ = sup
Res>0

|G(s)|

≤ sup
Res>0

∞
∑

n=0

∣

∣

∣

∣

cn
s+ xn

∣

∣

∣

∣

,

so, the system is H∞ if
∑∞

n=0

∣

∣

∣

cn

xn

∣

∣

∣
converges.

Now, we test whether the system is BIBO stable,

∫ ∞

0

|h(t)| dt =

∫ ∞

0

∣

∣

∣

∣

∣

∞
∑

n=0

cne
−xnt

∣

∣

∣

∣

∣

dt

≤
∞
∑

n=0

|cn|
xn

,
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3.6 Special case of a discrete measure

thus, the system will be BIBO stable if
∑∞

n=0
|cn|
xn

converges.

The operator Γ is nuclear if,

∫ ∞

0

d |µ| (x)
x

=

∫ ∞

0

∑∞
n=0 |cn| dδ(x− xn)

x

≤
∞
∑

n=0

|cn|
xn

< ∞.

The operator Γ is a Hilbert-Schmidt operator if,

∫ ∞

0

∣

∣t1/2h(t)
∣

∣

2
dt =

∫ ∞

0

(t

∣

∣

∣

∣

∣

(

∞
∑

n=0

cne
−xnt

∞
∑

m=0

cme
−xmt)

∣

∣

∣

∣

∣

)dt

≤
∑

n

∑

m

|cn| |cm|
1

(xn + xm)2

< ∞.

Similarly, the Θ operator is nuclear if
∑∞

n=0
|cn|√
xn

< ∞, moreover, it is a

Hilbert-Schmidt operator if
∑

n

∑

m
|cn||cm|
xn+xm

< ∞. However, if cn ≥ 0 for all

n, the conditions are also necessary (we get equality).

Example 3.6.3. Consider the following equation:

Zt = Zxx,

Z(0, t) = u(t), Z(1, t) = 0, Z(x, 0) = z0(x),

y(t) =

∫ ∞

0

Z(x, t)dx.

Using analytic solution of partial differential equations, it is readily verified

that the transfer function of this heat equation is given by the following in-

finite series for s 6= −(2n + 1)2π2,

G(s) =
1

2
− 4

∞
∑

n=0

s

(2n+ 1)π(s+ (2n + 1)2π2)
,

and its impulse response is given by

h(t) =
δ(t)

2
− 4

∞
∑

n=0

[
δ(t)

(2n+ 1)π
− (2n+ 1)πe−(2n+1)2π2t].
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3.7 Coprime Factorization

The system is not diffusive, however it could be considered as a diffusive

system + feed-through.

3.7 Coprime Factorization

In this section we extend the approximation techniques to unstable system

using a coprime factorization G(s) = N
M

where N,M are H∞ functions de-

fined on the right half of the complex plane, as in [37].

3.7.1 The gap metric

Let H and K be Hilbert spaces and let A : D(A) → K and B : D(B) → K
be linear operators with domains D(A),D(B) ⊂ H respectively, (see [31], p.

30).

Definition 3.7.1. Let A : X → Y be mapping between sets. Then its graph

is the set of all pairs (x,A(x)) with x ∈ D(A), namely,

G(A) = {(x,A(x)) : x ∈ X}

(see [31], p. 31).

Definition 3.7.2. As A is linear G(A) is a subspace of the product Hilbert

spaces H × K. A is said to be closed if its graph G(A) is a closed subspace

of H×K (see [14]).

Definition 3.7.3. The gap between closed subspaces V and W of a Hilbert

space H is given by,

δ(V,W) = ‖Pv − Pw‖ ,

where Pv and Pw denote the orthogonal projections from H onto V and W
respectively.

For a closed operator G, with D(G) (Domain of G) dense and G(G) =
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3.7 Coprime Factorization

{(Mu,Nu) : u ∈ H}, where M and N are bounded operators that are

strongly right coprime in the sense that X̃M + Ỹ N = I for some operators

X̃ and Ỹ , we can write G = NM−1 (see [31], p. 30).

Definition 3.7.4. The gap metric between two Hilbert operators A and B

which are as above is defined as the gap between their graphs, namely,

δ(A,B) = δ(G(A),G(B))

(see [31], p. 31).

Proposition 3.7.5. (See [31], p. 72). Let G = NM−1 be a right coprime

factorization of an operator; then there exists ǫ > 0 such that, if ‖Nk −N‖ <
ǫ and ‖Mk −M‖ < ǫ, then Gk = NkMk is still a right coprime factorization.

Proposition 3.7.6. (See [31], p. 72). Assume that G = NM−1 and

Gk = NkM
−1
k are as in Proposition 3.7.5. Then δ(Gk, G) → 0 as ǫ →

0. Conversely, for any ǫ > 0 there exist η > 0 such that any Gk with

δ(Gk, G) < η has a coprime factorization Gk = NkM
−1
k with ‖Nk −N‖ < ǫ

and ‖Mk −M‖ < ǫ.

3.7.2 The chordal metric

Definition 3.7.7. The chordal distance between two points w1 and w2 in

the complex plane is defined by

κ(w1, w2) =
|w1 − w2|

√

(1 + |w1|2)(1 + |w2|2)

with κ(w,∞) = 1/
√

1 + |w|2. In other words, the chordal distance between

two points in C
⋃

{∞} is given by measuring the length of the chord between

the corresponding points on the Riemann sphere (see [31], p. 82).

Definition 3.7.8. For any meromorphic functions G and H in the open right
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3.7 Coprime Factorization

half plane; the chordal distance between them is given by,

κ(G,H) = sup
s
{κ(G(s), H(s)) : Res ≥ 0}

= sup
Re(s)≥0

|G(s) −H(s)|
(1 + |G(s)|2)1/2(1 + |H(s)|2)1/2

(see [15]).

Example 3.7.9. Consider this example with xn > 0

µ(ξ) = c0δ(ξ) +
∞
∑

n=1

cnδ(ξ − xn),

h(t) = Lµ = c0 +

∞
∑

n=1

cne
−xnt,

G(s) = Lh =
c0
s

+

∞
∑

n=1

cn
s + xn

.

This system has a pole s = 0 in the closed right half plane, so it is not stable.

We here use an approximation technique based on coprime factorization of

the system as G(s) = N
M

where N,M are H∞ functions defined on the right

half of the complex plane.

We have here,

G(s) =
c0
s

+

∞
∑

n=1

cn
s + xn

.

Let

Gk(s) =
c0
s

+

k
∑

n=1

cn
s+ xn

.

We now look at the chordal metric between G and Gk,

κ(G,Gk) = sup
s

|G(s) −Gk(s)|
√

1 + |G(s)|2
√

1 + |Gk(s)|2

If G(s) = ∞ and Gk(s) = ∞ then κ(G,Gk) = 0,

otherwise,

κ(G,Gk) = sup
s∈C+

∣

∣

∣

∑∞
n=k+1

cn

s+xn

∣

∣

∣

√

1 + |G(s)|2
√

1 + |Gk(s)|2
.
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3.7 Coprime Factorization

Now write

G(s) =
c0
s

+H(s), H(s) ∈ H∞,

Gk(s) =
c0
s

+Hk(s), Hk(s) ∈ H∞,

and

‖H −Hk‖∞ → 0.

According to Proposition 4.2.2 in [31] we write G = N
M

and Gk = Nk

Mk
, where

Mk =
s

s+ 1
, M =

s

s + 1
,

Nk =
sGk(s)

s + 1
, N =

sG(s)

s+ 1
,

thus

G(s) =
(s/(s+ 1))G(s)

s/(s+ 1)

and

Gk(s) =
(s/(s+ 1))Gk(s)

s/(s+ 1)
.

From 3.7.6, since ‖Mk −M‖ → 0 and ‖Nk −N‖ → 0 if
∑∞

k+1
|cn|
xn

< ∞ it

follows that if c0 6= 0 then, [M,N ] with N,M ∈ H∞ is a coprime factorization

and satisfying the Bézout identity, XM + Y N = I for X, Y ∈ H∞, so

X(
s

s+ 1
) + Y (

c0
s+ 1

+
∑ cns

(s+ xn)(s+ 1)
) = 1

let Y = 1
c0

then, X = 1 −
∑

cn

(s+xn)c0
,

That κ(G,Gk) → 0 as k → ∞ follows from Proposition 4.2.2 in [31].
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Chapter 4

Rational Approximation

4.1 Introduction

The problem of approximating infinite dimensional linear systems is consid-

ered in this chapter. We work on rational approximation of diffusive sys-

tems with transfer function G(s) =
∫∞
0

f(x)
x+s

dx by the Gaussian Quadrature

method, which consider the problem of numerical evaluation of the integral
∫ b

a
g(t)dt. This integral requires changing variables,

x =
2

b− a
(t− (b+ a)

2
)

converting the integral
∫ b

a
g(t)dt to the one of the form

∫ 1

−1
ϕ(x)dx.

In this chapter we state general theorem for smooth f (including at 0) de-

caying fast, for which we can find good rational approximants. However,

the approximation provides more information; if we have a convergence rate

of approximation ‖G−Gn‖∞ then these provide a convergence rate of the

Hankel singular values σn of the transfer function, since σn ≤ ‖G−Gn‖∞.

4.2 Approximation by polynomials

Theorem 4.2.1. ([23, Theorem 41.2, Gauss]). If x1, x2, ..., xn are the roots

of nth Legendre polynomial Pn, there exist unique A1, A2, ..., An such that

∫ 1

−1

P (x)dx =

n
∑

j=1

AjP (xj),
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4.2 Approximation by polynomials

whenever P is a polynomial of degree 2n− 1 or less.

Definition 4.2.2. Let f be a continuous function, then let

Fn(f) =

n
∑

j=1

Ajf(xj)

where x1, x2, ..., xn and A1, A2, ..., An are as in Theorem 4.2.1.

Definition 4.2.3. Hn is the set of all polynomials of degree n or less, i.e,

polynomials of the form

P (x) = c0 + c1x+ c2x
2 + ...+ cnx

n

where the coefficients c0, c1, ..., cn are arbitrary real numbers (see [26], p. 20).

Definition 4.2.4. Suppose that g ∈ C([a, b]) and P (x) is an arbitrary poly-

nomial, then

∆(P ) = max
a≤x≤b

|P (x) − g(x)|

and

En = En(g) = inf
P∈Hn

{∆(P )}.

En is considered as the best approximation to g(x) by polynomials from Hn

(see [26], p. 20).

Theorem 4.2.5. ([23, Theorem 4.3, Weierstrass]). If g : [a, b] → C is

continuous and ε > 0 we can find a polynomial P with

sup
t∈[a,b]

|P (t) − g(t)| < ε.

Theorem 4.2.6. ([23, Theorem 41.6, Stieltjes]).

(i) Let P2n−1 be the set of polynomials of degree 2n− 1 or less and g(x) :

[−1, 1] → C is continuous, then

∣

∣

∣

∣

Fn(g) −
∫ 1

−1

g(x)dx

∣

∣

∣

∣

≤ 4 inf{ sup
−1≤t≤1

|g(t) − P (t)| : P ∈ P2n−1}.

(ii) Fn(g) →
∫ 1

−1
g(x)dx as n→ ∞.
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4.3 Approximation and diffusive systems

Corollary 4.2.7. ([26, Corollary VI. 2. 2]). Suppose that g(x) possesses a

bounded derivative g(p+1)(x) such that
∥

∥g(p+1)(x)
∥

∥

∞ ≤ Kp+1 on [a, b] then En

(the best L∞ error of approximation by polynomials of degree n or less) is

given by

En ≤ Cp(b− a)p+1Kp+1

np+1
,

where Cp is a constant depending on p ≥ 0.

Definition 4.2.8. When T is a bounded operator, we define

σn = inf{‖T − S‖ : rank(S) < n},

(singular values) and σn → 0 if and only if T is compact, see ([28, 2.34]).

Definition 4.2.9. Let τn = inf{‖G−Gn‖∞ : degree(Gn) < n}, then

σn+1 ≤ τn ≤ σn+1 + σn+2 + σn+3 + ...,

where σn are the approximation numbers of the associated Hankel operator,

see([28] and [18]).

4.3 Approximation and diffusive systems

We shall consider the transfer function of a diffusive system given by G(s) =
∫∞
0

f(x)
x+s

dx and then we will use numerical evaluation of
∫M

0
g(x)dx, where

g(x) ∈ C([0,M ]) and the Gaussian quadrature method.

Lemma 4.3.1. Suppose that f is a measurable function and f(x) = O(x−r),

for some r > 0, as x→ ∞, then
∣

∣

∣

∣

∫ ∞

M

f(x)

x+ s
dx

∣

∣

∣

∣

≤ C

∫ ∞

M

x−r−1dx = O(M−r) as M → ∞.

Proof. The proof is clear.

Theorem 4.3.2. If g(p+1) bounded on [0,M ] by Kp+1 then
∣

∣

∣

∣

∣

∫ M

0

g(x)dx−
n
∑

j=1

Ajg((xj + 1)M/2)

∣

∣

∣

∣

∣

≤ M

2

Cp2
p+1Kp+1

(2n− 1)p+1
.
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4.3 Approximation and diffusive systems

Proof. From 4.2.7.

Lemma 4.3.3. Suppose that f(x)
x+s

∈ C([0,M ]) and gs(t) = f(Mt/2+M/2)
Mt/2+M/2+s

∈
C([−1, 1]) and gs(t) possesses a bounded derivative g

(p+1)
s (t) such that

∥

∥

∥
g

(p+1)
s (t)

∥

∥

∥

∞
≤ Kp+1 then

En(gs) ≤
CpKp+12

p+1

(2n− 1)p+1
≈ O(n−(p+1)).

Proof. We have

gs(t) =
f(Mt/2 +M/2)

Mt/2 +M/2 + s
,

so
∫ M

0

f(x)

x+ s
dx =

M

2

∫ 1

−1

gs(t)dt,

according to Corollary 4.2.7
∥

∥

∥

∥

∥

∫ M

0

f(x)

x+ s
dx− M

2

n
∑

j=1

Ajgs(tj)

∥

∥

∥

∥

∥

∞

≤ M

2
Cp

2p+1Kp+1

(2n− 1)p+1
≈ O(n−(p+1)).

This finishes the proof.

Lemma 4.3.4. (i) Suppose that f(x)
x+s

∈ C([0,M ]) and

gs(t) =
f(Mt/2 +M/2)

Mt/2 +M/2 + s
∈ C([−1, 1]),

then
∣

∣

∣

∣

M

2
Fn(gs) −

∫ M

0

f(x)

x+ s
dx

∣

∣

∣

∣

≤ 4M

2
inf{

∥

∥

∥
gs(t) − P̃ (t)

∥

∥

∥

∞
}.

(ii) Fn(gs) →
∫ 1

−1
gs(x)dx as n→ ∞,

where P̃ is a polynomial of degree 2n− 1 or less.

Proof. (i) To estimate
∫M

0
f(x)
x+s

dx, we have to change the variable

x = Mt/2 +M/2

converts the integral
∫M

0
f(x)
x+s

dx to one of the form

∫ M

0

f(x)

x+ s
dx =

M

2

∫ 1

−1

f(Mt/2 +M/2)

Mt/2 +M/2 + s
dt ≈ M

2

n
∑

j=1

Ajgs(tj)
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4.3 Approximation and diffusive systems

thus, according to Theorem 4.2.6,
∣

∣

∣

∫M

0
f(x)
x+s

dx− M
2

∑n
j=1Ajgs(tj)

∣

∣

∣
≤ 4M

2
inf{sup−1≤t≤1

∣

∣

∣
gs(t) − P̃ (t)

∣

∣

∣
: P̃ ∈

P2n−1}.

(ii) The theorem of Weierstrass (Theorem 4.3, Weierstrass ) shows

inf{ sup
−1≤t≤1

∣

∣

∣
gs(t) − P̃ (t)

∣

∣

∣
: P̃ ∈ P2n−1} → 0 as n→ ∞.

Lemma 4.3.5. If f(x)
x+s

is a continuous function on [0,M ] and

gs(t) =
f(Mt/2 +M/2)

Mt/2 +M/2 + s
∈ C([−1, 1]),

possesses a bounded derivative g
(p+1)
s (t) such that

∥

∥

∥
g

(p+1)
s (t)

∥

∥

∥

∞
≤ Kp+1 then

∥

∥

∥

∥

∥

∫ M

0

f(x)

x+ s
dx− M

2

n
∑

j=1

Ajgs(tj)

∥

∥

∥

∥

∥

∞

≤ 4MCp2
p+1Kp+1

2(2n− 1)p+1
=

2p+2MCpKp+1

(2n− 1)p+1
.

Proof. By using Lemma 4.3.3 and Lemma 4.3.4, then

∣

∣

∣

∣

∣

∫ M

0

f(x)

x+ s
dx− M

2

n
∑

j=1

Ajgs(tj)

∣

∣

∣

∣

∣

≤ 4M

2
inf{ sup

−1≤t≤1
|gs(t) − P (t)| : P ∈ P2n−1}

≤ 4MCp2
p+1Kp+1

2(2n− 1)p+1

=
2p+2MCpKp+1

(2n− 1)p+1
.

Theorem 4.3.6. Let G(s) =
∫∞
0

f(x)
x+s

dx the transfer function of a diffusive

system, and
∥

∥

∥
(f(x)

x+s
)(p+1)

∥

∥

∥

∞
≤ Lp+1 and in addition f(x) = O(x−r) for r > 0

then

inf
deg(Gn)<n

‖G(s) −Gn(s)‖∞ = O(n
−r(p+1)
p+r+2 ).

Furthermore,

σn = O(n
−r(p+1)
p+r+2 ).
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4.3 Approximation and diffusive systems

Proof. If we take

G(s) =

∫ ∞

0

f(x)

x+ s
dx =

∫ M

0

f(x)

x+ s
dx+

∫ ∞

M

f(x)

x+ s
dx,

according to Lemma 4.3.1

∣

∣

∣

∣

∫ ∞

M

f(x)

x+ s
dx

∣

∣

∣

∣

≤ C

∫ ∞

M

x−r−1dx = O(M−r).

Set

gs(t) =
f(Mt/2 +M/2)

Mt/2 +M/2 + s
∈ C([−1, 1]),

then
∥

∥g(p+1)
s

∥

∥

∞ ≤Mp+1Lp+1,

and, on account of Lemma 4.3.5
∥

∥

∥

∥

∥

∫ M

0

f(x)

x+ s
dx− M

2

n
∑

j=1

Ajg(tj)

∥

∥

∥

∥

∥

∞

≤ 4MCpM
p+1Lp+12

p+1

2(2n− 1)p+1
=
CpM

p+2Lp+12
p+2

(2n− 1)p+1
.

Combining the previous results then,

inf
deg(Gn)<n

‖G(s) −Gn(s)‖∞ ≈ k1
Mp+2

np+1
+ k2M

−r

for some constants k1 and k2.

Now we have to choose M to make the error as small as possible thus

min
M

(k1
Mp+2

np+1
+ k2M

−r)

so,
k1(p+ 2)Mp+1

np+1
= rk2M

−(r+1)

then

Mp+r+2 ≈ np+1.

It follows that

inf
deg(Gn)<n

‖G(s) −Gn(s)‖∞ = O(n
−r(p+1)
p+r+2 ).

Furthermore, since

σn ≤ ‖G−Gn‖∞
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4.3 Approximation and diffusive systems

so

σn = O(n
−r(p+1)
p+r+2 ).

Theorem 4.3.7. Suppose that for p ≥ 0 and r ≥ 0 there is a constant Np+1

such that

(i)
∥

∥

∥

f(k)(x)
xp+2−k

∥

∥

∥

∞
≤ Np+1 for all 0 ≤ k ≤ p+ 1.

(ii) f(x) = O(x−r) at ∞.

Then

inf
deg(Gn)<n

‖G−Gn‖∞ = O(n− r(p+1)
p+r+2 ).

In addition

σn = O(n
−r(p+1)
p+r+2 ).

ey

Proof. We have, on account of the Leibniz rule,

(

f(x)

x+ s

)(p+1)

=

p+1
∑

k=0

(

p+ 1

k

)

f (k)(x)(
1

x+ s
)(p+1−k)

=

p+1
∑

k=0

(

p+ 1

k

)

f (k)(x)
(−1)p+1−k(p+ 1 − k)!

(x+ s)p+2−k

then
∣

∣

∣

∣

∣

(

f(x)

x+ s

)(p+1)
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

p+1
∑

k=0

(

p+ 1

k

)

f (k)(x)
(−1)p+1−k(p+ 1 − k)!

(x+ s)p+2−k

∣

∣

∣

∣

∣

≤
p+1
∑

k=0

∣

∣

∣

∣

(

p+ 1

k

)

f (k)(x)
(−1)p+1−k(p+ 1 − k)!

(x+ s)p+2−k

∣

∣

∣

∣

≤
p+1
∑

k=0

∣

∣f (k)(x)
∣

∣

(p+ 1)!(p+ 1 − k)!

(p+ 1 − k)! k! xp+2−k

≤ Rp sup
0≤k≤p+1

∣

∣f (k)(x)
∣

∣

xp+2−k
.
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4.3 Approximation and diffusive systems

where Rp is a constant depending on p. Since f(k)(x)
xp+2−k is bounded for all

0 ≤ k ≤ p+ 1, thus (f(x)
x+s

)(p+1) is bounded. Moreover the assumptions of the

Theorem 4.3.6 are available. It follows immediately that

inf
deg(Gn)<n

‖G−Gn‖∞ = O(n− r(p+1)
p+r+2 ).

In addition

σn = O(n
−r(p+1)
p+r+2 ).

Corollary 4.3.8. If rp > p+2 with p ≥ 1 in Theorem 4.3.7, then the system

is nuclear.

Example 4.3.9. We shall apply the previous theorems to the Examples

3.3.4.

1. When µ = δa we have a one dimensional system i. e. finite dimensional.

2. When f(x) = e−ax. This is not a good example, because f(k)(x)
xp+2−k =

(−1)kake−ax

xp+2−k is not bounded on the real line for each p with 0 ≤ k ≤ p+1.

3. When f(x) = xme−ax

m!
where m = 1, 2, .., in this example r can be any

number greater than zero, because f(x) → 0 quickly at ∞.

Then, on account of Theorem 4.3.7, we may conclude the following:

For f(x) = xe−ax when p = 0 for k = 0 we have f(x)/x2 = xe−ax/x2,

which is not bounded on R; and for k = 1 then f ′(x)/x = (−axe−ax +

e−ax)/x, which is not bounded on R.

For f(x) = x2e−ax when p = 0 we have f(x)/x2 and f ′(x)/x are

bounded on R, then τn = O(n
−r
r+2 ) so if r is large but is less than

∞ then τn = O(n−1+ǫ) for any ǫ > 0. In addition if p = 1, f(x)/x3 is

not bounded on R.

In general if f(x) = xme−ax

m!
where m = 1, 2, ... then r can be any num-

ber greater than zero, and p = m − 2 and τn = O(n
−r(m−1)

m+r ) then as

r → ∞, τn = O(n−(m−1)+ǫ). For example for m = 2, τn = O(n−1+ǫ)
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4.3 Approximation and diffusive systems

so, we can not conclude that it is nuclear. For m > 2 the system would

be nuclear.

4. When f(x) = sin(πα)
πxα ,and h(t) = tα−1

Γ(α)
and G(s) = 1

sα /∈ H∞, where

0 < Reα < 1. Then the system is not stable. This example is in [25]

5. When f(x) = 1√
πx

and h(t) = 1√
t
/∈ L1 then G(s) =

√
π√
s
, which is not

BIBO or H∞ stable.

6. When f(x) = u(x−1)√
π(x−1)

, where u is step function,

we have

G(s) =

∫ ∞

0

f(x)

x+ s
dx =

∫ ∞

1

1√
x− 1(x+ s)

dx =

∫ ∞

0

1√
x(x+ s+ 1)

dx.

Let x = t4, then dx = 4t3dt,

thus

∫ ∞

0

f(x)

x+ s
dx = 4

∫ ∞

0

t

t4 + s+ 1
dt = 4

∫ M

0

t

t4 + s+ 1
dt+4

∫ ∞

M

t

t4 + s+ 1
dt.

Then
∣

∣

∣

∣

∫ ∞

M

t

t4 + s+ 1
dt

∣

∣

∣

∣

≤
∫ ∞

M

t

|t4 + s+ 1|dt

≤
∫ ∞

M

t

t4 + 1
dt

≤
∫ ∞

M

t−3dt = O(M−2).

On the other hand,
∥

∥( t
t4+s+1

)(p+1)
∥

∥ ≤ Kp+1, where Kp+1 does not de-

pend on M , and

∫ M

0

t

t4 + s+ 1
dt = M/2

∫ 1

−1

Mz/2 +M/2

(Mz/2 +M/2)4 + s+ 1
dz,

so
∣

∣

∣

∣

∣

∫ M

0

t

t4 + s+ 1
dt−M/2

n
∑

j=1

Ajg(tj)

∣

∣

∣

∣

∣

≤ 4MCp+12
p+1Kp+1(M/2)p+1

2(2n− 1)p+1
.

Combining the previous results then,

inf
deg(Gn)<n

‖G(s) −Gn(s)‖∞ ≈ k1
Mp+2

np+1
+ k2M

−2.
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4.3 Approximation and diffusive systems

Now we have to choose M to make the error as small as possible thus

min
M

(k1
Mp+2

np+1
+ k2M

−2),

so
k1(p+ 2)Mp+1

np+1
= −2k2M

−3,

then

Mp+4 ≈ np+1.

It follows that

inf
deg(Gn)<n

‖G(s) −Gn(s)‖∞ = O(n
−2(p+1)

p+4 ).

Furthermore,

τn = O(n
−2(p+1)

p+4 ).

For p = 0, we have τn = O(n−1/2).

For p = 1, we have τn = O(n−4/5).

For p = 2, we have τn = O(n−1).

For p = 3, we have τn = O(n−8/7).

Letting p→ ∞, we have τn = O(n−2+ǫ) for any ǫ > 0.

7. Let f(x) = 1√
πx
e−k2/4x then f(x) = O(x−1/2) as x→ ∞, and

∫ ∞

0

f(x)

x+ s
dx =

∫ ∞

0

e−k2/4x

√
πx(x+ s)

dx.

Now, 1/
√
x goes to zero very slowly, so we suppose that, x = zl for

l > 1, then dx = lzl−1dz

∫ ∞

0

f(x)

x+ s
dx =

∫ ∞

0

lzl−1e−k2/4zl

zl/2(zl + s)
dz.

We can rewrite our integral in the following expression

∫ ∞

0

zl−1e−k2/4zl

zl/2(zl + s)
dz =

∫ M

0

zl−1e−k2/4zl

zl/2(zl + s)
dz +

∫ ∞

M

zl−1e−k2/4zl

zl/2(zl + s)
dz.
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4.3 Approximation and diffusive systems

Now
∣

∣

∣

∣

∣

∫ ∞

M

zl−1e−k2/4zl

zl/2(zl + s)
dz

∣

∣

∣

∣

∣

≤
∫ ∞

M

z−l/2−1dz

= O(M−l/2).

For
∫M

0
lzl−1e−k2/4zl

zl/2(zl+s)
dz and

∥

∥

∥
( lz

l
2−1e−k2/4zl

(zl+s)
)(p+1)

∥

∥

∥
≤ Kp+1 we have to change

the variable,

z = Mt/2+M/2 t ∈ [−1, 1], let, g(tj) =
(Mtj/2+M/2)l−1e−k2/4(Mtj/2+M/2)l

(Mtj/2+M/2)l/2((Mtj/2+M/2)l+s)
,

then according to Theorem 4.3.2
∣

∣

∣

∣

∣

∫ ∞

M

zl/2−1e−k2/4zl

(zl + s)
dz −M/2

n
∑

j=1

Ajg(tj)

∣

∣

∣

∣

∣

≤ 4MCp+12
p+1Kp+1(M/2)p+1

2(2n− 1)p+1
.

Combining the previous results then

inf
deg(Gn)<n

‖G(s) −Gn(s)‖ ≤ 4
MCp+1(M/2)p+1Kp+12

p+1

2(2n− 1)p+1
+

2M−l/2

l
,

then

inf
deg(Gn)<n

‖G(s) −Gn(s)‖∞ ≈ k1
Mp+2

np+1
+ k2M

−l/2.

Now we have to choose M to make the error as small as possible thus

min
M

(k1
Mp+2

np+1
+ k2M

−l/2),

so
k1(p+ 2)Mp+1

np+1
= − l

2
(k2M

−l/2−1),

then

Mp+l/2+2 ≈ np+1.

It follows that

‖G(s) −Gn(s)‖∞ = O(n
−l/2(p+1)
p+l/2+2 ).

Furthermore,

τn = O(n
−l/2(p+1)
p+l/2+2 ).

Letting l → ∞ then we have, τn = O(n−p−1+ǫ) for each p ≥ 1.

8. When f(x) = cos(a
√
x)/(π

√
x), a heat kernel, it is not stable.
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Chapter 5

Diffusive systems defined by

holomorphic distributions

5.1 Introduction

In this chapter, we introduce diffusive systems defined by holomorphic dis-

tributions (and measures on a half plane). We basically start by the easier

examples where the distribution can be written as a measure on a compact

rectangle. Then we investigate more complicated distributions, where the

system is not necessarily stable, although its impulse response and transfer

function can be defined.

Diffusive systems have links with the heat equation. For instance, Montseny

[25], considered diffusive system as a convolution system y = h ∗ u, where

h(t) =
∫∞
0
e−tξdµ, and he gave three equivalent formulas. Here we general-

ize this idea where h(t) = 〈et,Φ〉 with a diffusive representation Φ (with a

measure µ) and these systems can be realized as a diffusive equation (heat

equation).

Moreover, we develop more research on rate of decay of singular values of

the associated Hankel operator and Θ operator, including nuclearity and the

Hilbert-Schmidt property.
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5.2 Diffusive systems defined by holomorphic distributions

5.2 Diffusive systems defined by holomorphic

distributions

For n > 0 let Kn denotes the compact rectangle

Kn := {z ∈ C+ : z ∈ [
1

n
, n] × [−n, n]}.

Let C+ =
⋃

Kn and H(C+) denotes the Fréchet space of holomorphic func-

tion on Kn equipped with the topology that can be derived from the semi-

norms

‖f‖n := sup{|f(z)| : z ∈ Kn}.
Now let φ : H(C+) → C be a bounded (continuous) linear functional, then

there exists a constant M > 0 such that

|〈f, φ〉| = |φ(f)| ≤M ‖f‖n ,

for all f ∈ H(C+).

The Fourier-Borel transform of φ, which is the impulse response of a system,

can be given by

h(t) = FB(φ)(t) = 〈e−t, φ〉,

for t > 0, where e−t(z) = e−tz for z ∈ Kn.

The transfer function of a diffusive system is given by Stieltjes’s transform,

G(s) = S(φ)(s) = 〈ks, φ〉, s ∈ C+

where ks(z) = 1
s+z

, see ([24]).

Theorem 5.2.1. Let G(s) = S(φ)(s) = 〈ks, φ〉, s ∈ C+ and h(t) =

FB(φ)(t) = 〈e−t, φ〉, then h ∈ L1 and G(s) ∈ H∞.

Proof. We have for some n

|〈e−t, φ〉| ≤ M sup
z∈Kn

∣

∣e−tz
∣

∣

≤ Me−t/n,

so, h ∈ L1.

Similarly

|G(s)| ≤ M sup
z∈Kn,s∈C+

∣

∣

∣

∣

1

z + s

∣

∣

∣

∣

≤ M.n,
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5.2 Diffusive systems defined by holomorphic distributions

since, |z + s| > Re(z + s) > 1
n

thus
∣

∣

1
z+s

∣

∣ < n, hence G(s) ∈ H∞.

5.2.1 Distribution as a measure

In general for a given distribution φ, by the Hahn-Banach theorem one can

extend φ to C(Kn)∗ i.e. there is a measure µ of compact support Kn in C+

such that

|〈f, φ〉| =

∣

∣

∣

∣

∫

Kn

fdµ

∣

∣

∣

∣

≤ ‖f‖n |µ| (Kn) ∀f ∈ Hol(C+)

and it is possible to define the impulse response function and the transfer

function as follows:

h(t) = 〈e−t, φ〉 =

∫

Kn

e−tzdµ(z),

and

G(s) = 〈ks, φ〉 =

∫

Kn

1

z + s
dµ(z),

i. e. the distribution can be written as a measure on the set Kn.

Example 5.2.2. (i) If 〈f, φ〉 = f ′(1) then h(t) = −te−tz|z=1= −te−t and

G(s) = −1
(s+z)2

|z=1=
−1

(s+1)2
but by the Cauchy integral formula f ′(1) =

1
2πi

∫

C
f(z)dz
(z−1)2

(where C is a circle centred at (1, 0)), corresponding to µ

that is not unique.

〈F,Φ〉 =
∫

Kn
F (s)dµ(s), and Φ acts on functions defined on Kn, given by

µ where µ is a measure on Kn ⊂ C+.

The next result generalizes [25].

Theorem 5.2.3. A convolution system y = h∗u, where h(t) = 〈e−t,Φ〉, with

diffusive representation Φ (with a measure µ) can be realized as a diffusive

equation (heat equation)

ψt(z, t) = −zψ(z, t) + u(t). (5.2.1)

y(t) = 〈(e−z ∗ u)(t),Φ〉z =

∫

Kn

(e−z ∗ u)(z, t)dµ(z)

with ψ(z, t) a state variable such as that ψ(z, 0) = 0 and then,

Ψ(z, s) =
U(s)

z + s
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5.2 Diffusive systems defined by holomorphic distributions

and

Y (s) = 〈Ψ,Φ〉z =

∫

Kn

U(s)

z + s
dµ(z)

Proof. We have ψ is a solution for the heat equation, from

ψt(z, t) = −zψ(z, t) + u(t)

y(t) = 〈ψ,Φ〉 = 〈e−tz ∗ u,Φ〉.

Take the Laplace transform for the heat equation then we obtain,

sΨ(z, s) = −zΨ(z, s) + U(s)

and hence

Ψ(z, s) =
U(s)

z + s

thus

Y (s) =

∫

Kn

U(s)

x+ s
dµ(x) = 〈Ψ,Φ〉z = 〈L(e−τz ∗ u)(z, s),Φ〉z

then ψ is a solution for the heat equation.

Moreover h(t) = 〈e−t,Φ〉z =
∫

Kn
e−tzdµ(z), and

y(t) = (h ∗ u)(t) =

∫ t

0

h(τ)u(t− τ)dτ,

=

∫ t

0

〈e−τz,Φ〉u(t− τ)dτ

=

∫ t

0

∫

Kn

e−τzu(t− τ)dµ(z)dτ,

by Fubini’s theorem

=

∫

Kn

∫ t

0

e−τzu(t− τ)dτdµ(z)

= 〈(e−z ∗ u)(t),Φ〉.

Also, we could express y(t) as the following,

y(t) =

∫

Kn

L−1
s→t

(

U(s)

z + s

)

dµ(z)

=

∫

Kn

[

∫ t

τ=0

e−τzu(t− τ)dτ ]dµ(z)

=

∫

Kn

(e−z ∗ u)(z, t)dµ(z)

= 〈(e−z ∗ u)(t),Φ〉.
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5.2 Diffusive systems defined by holomorphic distributions

Corollary 5.2.4. The following diffusive systems are equivalent to (5.2.1).

Ψt(ζ, t) = −4π2ζ2Ψ (ζ, t) + u(t) (5.2.2)

y(t) = 〈Ψ,Φ〉.

with Ψ (ζ, 0) = 0.

This is also equivalent to

Θt(x, t) = Θxx(x, t) + δ(x)u(t) (5.2.3)

y(t) = 〈Θ,Φ〉

with Θ(x, 0) = 0.

Proof. We are now in a position to show that (5.2.1) ⇔ (5.2.2); it is sufficient

to make the following substitution z = 4π2ζ2, then Ψ (ζ) = ψ(4π2ζ2), Ψt(ζ) =

ψt(4π
2ζ2). It remains to prove that (5.2.2) ⇔ (5.2.3), thus we only need to

observe that Ψ = FΘ transforming with respect to the ζ variable.

Theorem 5.2.5. If µ is a measure supported on Kn then the Hankel operator

is nuclear.

Proof. Let

Tu(ξ) =

∫ ∞

0

u(t)h(t+ ξ)dt (0 ≤ ξ <∞)

where h(t) = 〈e−t,Φ〉 =
∫

Kn
e−ztdµ(z).

Assume that ϕz(x) = e−zx and define

T0 =

∫

Kn

〈., ϕz〉ϕzdµ(z),

this integral converges.

T0u(ξ) = 〈〈u, ϕz〉ϕz(ξ),Φ〉

=

∫ ∞

0

u(t)〈e−zte−zξ,Φ〉dt

=

∫ ∞

0

u(t)h(t+ ξ)dt.
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5.3 More general distributions

Then, T = T0 by using Fubini’s theorem.

T0u(x) = 〈〈u, ϕz〉ϕz(x),Φ〉

then,

tr(〈u, ϕz〉ϕz) ≤ ‖ϕz‖2
L2 .

T0 is not a positive operator, but according to Lemma 1.11 [28, p. 11], the

nuclear norm of T is

tr |T0| ≤
∫

Kn

‖ϕz‖2
L2 d |µ| (z) <∞

since ‖ϕz‖2
L2 is bounded uniformly on Kn.

5.3 More general distributions

Definition 5.3.1. Let X be the set of f : C+ → C analytic such that

sup
z∈C+

∣

∣(Re z)kf (j)(z)
∣

∣ <∞

whenever 0 ≤ k ≤ j + 1.

So X is a Fréchet space with these seminorms

‖f‖(n) = max
0≤j≤n

0≤k≤j+1

sup
z∈C+

{
∣

∣(Re z)kf (j)(z)
∣

∣}.

The sequence of these seminorms is increasing.

Note: e−t ∈ X for all t > 0 and ks ∈ X for all s ∈ C+.

Definition 5.3.2. We have φ ∈ X∗ (the dual space of X) if and only if there

are n ∈ N and a constant M such that

|〈f, φ〉| ≤ M ‖f‖(n) , ∀f ∈ X.

Proposition 5.3.3. Let h(t) = 〈e−t, φ〉 with t > 0 and G(s) = 〈ks, φ〉 with

s ∈ C+ then ‖e−tz‖(n) <∞ ∀n and sups∈C+
‖ks‖(n) is infinite
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5.3 More general distributions

Proof. Let us first notice that

(e−tz)(n) = (−t)ne−tz is bounded on C+,

so
∥

∥e−tz
∥

∥

(n)
= max

0≤j≤n
0≤k≤j+1

sup
z∈C+

{
∣

∣(Re z)k(−t)je−tz
∣

∣} <∞

then e−t ∈ X, and |h(t)| ≤ M ‖e−tz‖(n) <∞ ∀n.
Now

‖ks‖(n) = max
0≤j≤n

0≤k≤j+1

sup
z∈C+

{
∣

∣

∣

∣

(Re z)k (−1)jj!

(z + s)j+1

∣

∣

∣

∣

}.

Here we have two cases.

When k = j + 1 then ‖ks‖(n) ≃ j!, however when k < j + 1 then ‖ks‖(n) ≃
(Re s)k−(j+1)

then ‖ks‖(n) <∞ ∀s but sups ‖ks‖(n) = ∞.

Moreover since

G(s) = 〈ks, φ〉

so

|G(s)| = |〈ks, φ〉| ≤M ‖ks‖(n)

where M is a constant, since ‖ks‖(n) depends on Re s so as we shall see later

G is not always in H∞ see for instance, 5.3.11.

5.3.1 General case

A convolution system y = h∗u, where h(t) = 〈e−t, φ〉, with diffusive represen-

tation φ (distribution) that acts on analytic functions f ∈ X as in Definition

5.3.1 can be realized as a diffusive equation (heat equation)

ψt(z, t) = −zψ(z, t) + u(t). (5.3.1)

y(t) = 〈ψ, φ〉z = 〈e−t ∗ u, φ〉z

with ψ(z, t) a state variable such as that ψ(z, 0) = 0 and then,

Ψ(z, s) =
U(s)

z + s

and

Y (s) = 〈Ψ, φ〉z = 〈U(s)

z + s
, φ〉z
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5.3 More general distributions

Proof. We have φ (distribution) acts on analytic function f ∈ X is defined

in Definition 5.3.1.

ψ is a solution for the heat equation, from

ψt(z, t) = −zψ(z, t) + u(t)

y(t) = 〈ψ, φ〉 = 〈e−tz ∗ u, φ〉.

Take the Laplace transform for the heat equation then we obtain,

sΨ(z, s) = −zΨ(z, s) + U(s),

and hence

Ψ(z, s) =
U(s)

z + s
.

Thus

Y (s) = 〈Ψ, φ〉z = 〈L(e−τz ∗ u)(z, s), φ〉z = 〈U(s)

z + s
, φ〉

and ψ is a solution for the heat equation.

Therefore

y(t) = (h ∗ u)(t) =

∫ t

0

h(τ)u(t− τ)dτ,

=

∫ t

0

〈e−τz, φ〉u(t− τ)dτ

= 〈
∫ t

0

e−τzu(t− τ)dτ, φ〉

= 〈e−t ∗ u, φ〉z.

See ([36], p. 52-53).

It is elementary to show the following.

Lemma 5.3.4. For r ≥ 0 then ‖tre−tx‖L2 = cr

xr+1/2 for some cr > 0.

Proposition 5.3.5. (i) If the function x 7→ g(x)
x+1

lies in L1 and we define

〈f, φ〉 =
∫∞
0
g(x)f(x)dx for f ∈ X, then this gives a bounded φ and if

g(x)
x

∈ L1 then h ∈ L1 and G ∈ H∞.
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5.3 More general distributions

(ii) If the function x 7→ g(x)
x2+x+1

lies in L1 and we define 〈f, φ〉 =
∫∞
0
g(x)f ′(x)dx

for f ∈ X, then this gives a bounded φ and if g(x)
x2 ∈ L1 then h ∈ L1

and G ∈ H∞.

(iii) If the function x 7→ g(x)
Pk+1

n=0 xn
lies in L1 and we define φ(f) =

∫∞
0
g(x)f (k)(x)dx

for f ∈ X, then this gives a bounded φ and if g(x)
xn+1 ∈ L1 then h ∈ L1

and G ∈ H∞.

Proof. For the case (i) φ is a bounded functional since

|〈f, φ〉| =

∣

∣

∣

∣

∫ ∞

0

g(x)f(x)dx

∣

∣

∣

∣

≤
∫ ∞

0

∣

∣

∣

∣

g(x)

x+ 1

∣

∣

∣

∣

max |(x+ 1)f(x)| dx

≤
∥

∥

∥

∥

g

x+ 1

∥

∥

∥

∥

L1

[max |xf(x)| + max |f(x)|]

≤ C ‖f‖(0) .

where C is a constant.

We next claim that h ∈ L1 and G ∈ H∞,

h(t) =

∫ ∞

0

g(x)e−txdx

then

∫ ∞

0

|h(t)| dt ≤
∫ ∞

0

∫ ∞

0

|g(x)| e−txdxdt

=

∫ ∞

0

|g(x)| 1

x
dx <∞.

Now

G(s) =

∫ ∞

0

g(x)
1

s+ x
dx

so

|G(s)| ≤
∫ ∞

0

∣

∣

∣

∣

g(x)
1

s+ x

∣

∣

∣

∣

dx

≤
∫ ∞

0

|g(x)| 1

x
dx <∞.
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5.3 More general distributions

So, G ∈ H∞. Similar arguments apply to prove the case (ii); as in the proof

of the first case we have to show that φ is a bounded functional

|〈f, φ〉| =

∣

∣

∣

∣

∫ ∞

0

g(x)f ′(x)dx

∣

∣

∣

∣

≤
∫ ∞

0

∣

∣

∣

∣

g(x)

x2 + x+ 1

∣

∣

∣

∣

∣

∣(x2 + x+ 1)f ′(x)
∣

∣ dx

≤
∥

∥

∥

∥

g(x)

x2 + x+ 1

∥

∥

∥

∥

L1

[max
∣

∣x2f ′(x)
∣

∣+ max |xf ′(x)| + max |f ′(x)|]

≤
∥

∥

∥

∥

g(x)

x2 + x+ 1

∥

∥

∥

∥

L1

‖f‖(1) .

We now prove that h ∈ L1 and G ∈ H∞,

h(t) =

∫ ∞

0

g(x)(−t)e−txdx,

thus

∫ ∞

0

|h(t)| dt ≤
∫ ∞

0

∫ ∞

0

|g(x)| te−txdxdt

=

∫ ∞

0

|g(x)| 1

x2
dx <∞.

Now

G(s) =

∫ ∞

0

g(x)
−1

(s+ x)2
dx,

thus

|G(s)| ≤
∫ ∞

0

∣

∣

∣

∣

g(x)
−1

(s+ x)2

∣

∣

∣

∣

dx

≤
∫ ∞

0

|g(x)| 1

x2
dx <∞.

Similar arguments apply to prove the case (iii).

5.3.2 The Hankel operator

We shall consider the Hankel operator Γh

Γhu(x) =

∫ ∞

0

h(x+ y)u(y)dy,

where h(t) = 〈e−t, φ〉.
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5.3 More general distributions

Proposition 5.3.6. (i) If 〈f, φ〉 = φ(f) =
∫∞
0
g(x)f(x)dx and h(t) =

〈e−t, φ〉 then, the Hankel operator is nuclear if

∫ ∞

0

|g(x)| dx

x
<∞.

Moreover, if g ≥ 0 the Hankel operator is nuclear if and only if

∫ ∞

0

g(x)
dx

x
<∞.

(ii) If 〈f, φ〉 = φ(f) =
∫∞
0
g(x)f ′(x)dx and h(t) = 〈e−t, φ〉 then, the Hankel

operator is nuclear if

∫ ∞

0

|g(x)| 1

x2
dx <∞.

(iii) If 〈f, φ〉 =
∑N

k=0

∫∞
0
gk(x)f

(k)(x)dx then, the Hankel operator is nuclear

if
∫ ∞

0

|gk(x)|
dx

xk+1
<∞.

for each k.

Proof. We shall use the fact ‖tne−tx‖L2 = Cn

xn+1/2 , ∀n ≥ 0, with n not nec-

essarily an integer and C a constant see Lemma 5.3.4 .

(i) If φ(f) =
∫∞
0
g(x)f(x)dx and h(t) = 〈e−t, φ〉 then the Hankel operator

is given by

Tu(ξ) =

∫ ∞

0

u(t)h(ξ + t)dt

=

∫ ∞

0

u(t)〈e−(t+ξ), φ〉dt

=

∫ ∞

0

∫ ∞

0

u(t)e−xtdte−xξg(x)dx.

For a fixed x let

Txu(ξ) = 〈u, e−xt〉e−xξ

= 〈u, e−x〉e−x.
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5.3 More general distributions

This operator has rank 1 and

tr |Tx| ≤ ‖e−x‖ ‖e−x‖ =
1

2x
.

So, if
∫∞
0
|g(x)| dx

x
<∞ we can write

T =

∫ ∞

0

g(x)Txdx

and T is a trace class operator. Moreover, if g ≥ 0 then T is nuclear if

and only if
∫∞
0

g(x)
x

dx <∞, since for x > 0, Tx ≥ 0.

(ii) If φ(f) =
∫∞
0
g(x)f ′(x)dx and h(t) = 〈e−t, φ〉 then 5.3.2

Tu(ξ) =

∫ ∞

0

u(t)〈e−(t+ξ), φ〉dt = −
∫ ∞

0

u(t)

∫ ∞

0

(t+ξ)g(x)e−(t+ξ)xdxdt.

Let

T0u(ξ) =

∫ ∞

0

g(x)[

∫ ∞

0

u(t)te−xt + u(t)ξe−ξx]dtdx

and

Tu(ξ) =

∫ ∞

0

∂

∂x
(

∫ ∞

0

u(t)e−xtdte−xξ)g(x)dx

= −
∫ ∞

0

∫ ∞

0

u(t)(t+ ξ)e−xte−xξg(x)dxdt.

Then, T0 = T.

For a fixed x

Tx = −
∫ ∞

0

u(t)(t+ ξ)e−xte−xξdt

= 〈u, te−xt〉te−xξ + 〈u, e−xt〉tξe−xξ.

This operator has rank 2 and

tr |Tx| ≤
∥

∥te−xt
∥

∥

L2

∥

∥e−ξx
∥

∥

L2 +
∥

∥e−ξx
∥

∥

L2

∥

∥ξe−ξx
∥

∥

L2 .

So, if
∫∞
0

|g(x)| tr |Tx| dx <∞ we can write

T =

∫ ∞

0

g(x)Txdx
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and T is a trace class operator. where

tr |Tx| ≤
∥

∥te−xt
∥

∥

L2

∥

∥e−ξx
∥

∥

L2 +
∥

∥e−ξx
∥

∥

L2

∥

∥ξe−ξz
∥

∥

L2

≤ 1

2(x)3/2

1

(2x)1/2
+

1

2(x)3/2

1

(2x)1/2

=
1√

2(x)2
.

Thus, if
∫∞
0

|g(x)| 1√
2(x)2

dx <∞ then T is a trace class operator.

(iii) If 〈f, φ〉 =
∑N

k=0

∫∞
0
gk(x)f

(k)(x)dx. Then 5.3.2

Tu(t) =
∫∞
0
u(τ)〈e−(t+τ), φ〉dτ =

∫∞
0

∑N
k=0

∫∞
0
u(τ)gk(x)(−1)k (t+τ)k

k!
e−(t+τ)xdxdτ.

Then

Tu(t) =

N
∑

k=0

∫ ∞

0

∫ ∞

0

gk(x)
(−1)k

k!

k
∑

j=0

(

k

j

)

tjτk−je−(t+τ)xu(τ)dτdx.

Write

(Txu)(t) =

∫ ∞

0

k
∑

j=0

(

k

j

)

tjτk−je−(t+τ)xu(τ)dτ

=
k
∑

j=0

(

k

j

)

〈u, tje−tx〉τk−je−τx,

then

tr |Tx| ≤
k
∑

j=0

(

k

j

)

∥

∥tje−tx
∥

∥

L2(t)

∥

∥τk−je−τx
∥

∥

L2(t)

≤ C

xj+1/2xk−j+1/2
.

This operator has rank k + 1.

Then, if
∫ ∞

0

|gk(x)|
dx

xk+1
<∞,

we can write

Tu(t) =

N
∑

k=0

∫ ∞

0

gk(x)Txdx,

then

tr |Tu(t)| =

N
∑

k=0

∫ ∞

0

gk(x)tr |Tx| dx.
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5.3 More general distributions

Thus the Hankel operator is nuclear.

Here we used the fact ‖tne−tx‖L2 = Cn

xn+1/2 , ∀n ≥ 0, with n not neces-

sarily an integer and C is a constant.

5.3.3 The Θ operator

In this section we shall consider the scaled Hankel operator Θ on L2 given

by

(Θu)(t) =
1√
π

∫ ∞

0

t−1/4h(t+ τ)τ−1/4u(τ)dτ,

where, h(t) = 〈e−t, φ〉.

Proposition 5.3.7. In the examples 5.3.11 we consider three cases

(i) If 〈f, φ〉 = φ(f) =
∫∞
0
g(x)f(x)dx and h(t) = 〈e−t, φ〉 then the Θ oper-

ator is nuclear if
∫ ∞

0

|g(x)| dx
x1/2

<∞.

(ii) If 〈f, φ〉 = φ(f) =
∫∞
0
g(x)f ′(x)dx and h(t) = 〈e−t, φ〉 then the Θ

operator is nuclear if

∫ ∞

0

|g(x)| dx
x3/2

<∞.

(iii) If 〈f, φ〉 = φ(f) =
∑n

k=0

∫∞
0
gk(x)f

(k)(x) and h(t) = 〈e−t, φ〉 then the

Θ operator is nuclear if

∫ ∞

0

|gk(x)| dx
xk+ 1

2

<∞.

for each k = 0, 1, ..., n.

Proof. (i) In the first case let

(Tu)(t) =
1√
π

∫ ∞

0

t−1/4h(t+ ξ)ξ−1/4u(ξ)dξ

so

(Tu)(t) =
1√
π

∫ ∞

0

∫ ∞

0

t−1/4g(x)e−(t+ξ)xξ−1/4u(ξ)dxdξ.
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5.3 More general distributions

Let

(Txu)(t) =

∫ ∞

0

t−1/4e−(t+ξ)xξ−1/4u(ξ)dξ

= 〈u, t−1/4e−tx〉ξ−1/4e−ξx.

This operator has rank 1, and

tr |Tx| ≤
∥

∥t−1/4e−tx
∥

∥

L2

∥

∥ξ−1/4e−ξx
∥

∥

L2 .

where
∥

∥t−1/4e−tx
∥

∥

L2 = c1
x1/4 .

Since (Tu)(t) =
∫∞
0
g(x)Txdx then

tr |T | ≤ C

∫ ∞

0

|g(x)| dx
x1/2

.

The proof follows as in proof Proposition 5.3.6.

(ii) If 〈f, φ〉 = φ(f) =
∫∞
0
g(x)f ′(x)dx, let

(Tu)(t) =
1√
π

∫ ∞

0

t−1/4h(t+ ξ)ξ−1/4u(ξ)dξ,

so

(Tu)(t) = − 1√
π

∫ ∞

0

∫ ∞

0

t−1/4g(x)(t+ ξ)e−(t+ξ)xξ−1/4u(ξ)dxdξ.

Let

(Txu)(t) = −
∫ ∞

0

t−1/4(t+ ξ)e−(t+ξ)xξ−1/4u(ξ)dξ

= −〈u, t3/4e−tx〉ξ−1/4e−ξx + 〈u, t−1/4e−tx〉ξ3/4e−ξx.

This operator has rank 2, and

tr |Tx| ≤
∥

∥t3/4e−tx
∥

∥

L2

∥

∥ξ−1/4e−ξx
∥

∥

L2 +
∥

∥t−1/4e−tx
∥

∥

L2

∥

∥ξ3/4e−ξx
∥

∥

L2

where
∥

∥t3/4e−tx
∥

∥

L2 = c2
x5/4 .

Since (Tu)(t) =
∫∞
0
g(x)Txdx it follows that

tr |T | ≤ C

∫ ∞

0

|g(x)| dx
x3/2

.
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5.3 More general distributions

(iii) If 〈f, φ〉 = φ(f) =
∑n

k=0

∫∞
0
gk(x)f

(k)(x) let

(Tu)(t) =
1√
π

∫ ∞

0

t−1/4h(t+ ξ)ξ−1/4u(ξ)dξ.

So

(Tu)(t) =
1√
π

∫ ∞

0

∫ ∞

0

t−1/4
n
∑

k=0

gk(x)(−1)k(t+ξ)ke−(t+ξ)xξ−1/4u(ξ)dxdξ.

Then

(Tu)(t) =
1√
π

n
∑

k=0

∫ ∞

0

gk(x)(−1)k
k
∑

j=0

∫ ∞

0

(

k

j

)

tj−1/4ξk−j−1/4e−(t+ξ)xu(ξ)dξdx.

Let

(Txu)(t) =
k
∑

j=0

∫ ∞

0

(

k

j

)

tj−1/4ξk−j−1/4e−(t+ξ)xu(ξ)dξ

=
k
∑

j=0

(

k

j

)

〈u, tj−1/4e−tx〉ξk−j−1/4e−ξx.

This operator has rank k + 1, and

tr |Tx| ≤
k
∑

j=0

(

k

j

)

∥

∥tj−1/4e−tx
∥

∥

L2(t)

∥

∥ξk−j−1/4eξ
∥

∥

L2(ξ)

≤ C
1

xk+1/2
.

Then, if
∫ ∞

0

|gk(x)|
dx

xk+1/2
<∞,

we can write

Tu(t) =
n
∑

k=0

∫ ∞

0

gk(x)Txdx.

Thus the Θ operator is nuclear.

We can consider more general Θ, sometimes written Θω.
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5.3 More general distributions

Boundedness of Θ

Theorem 5.3.8. Write Θωu(t) =
∫∞
0
ω(t)h(t + τ)ω(τ)u(τ)dτ and suppose

that h(t) = 〈e−t, φ〉, with ω > 0 and u ∈ L2.

(i) If 〈f, φ〉 =
∫∞
0
g(x)f(x)dx. Then Θ is bounded if

∫ ∞

0

V 2
1 (x) |g(x)| dx <∞,

where V1(x) = ‖ω(τ)e−τx‖L2(τ) .

(ii) If 〈f, φ〉 =
∫∞
0
g(x)f ′(x)dx. Then Θ is bounded if

∫ ∞

0

V1(x)V2(x) |g(x)| dx <∞,

where V1(x) = ‖ω(τ)e−τx‖L2(τ) and V2(x) = ‖τω(τ)e−τx‖L2(τ) .

(iii) If 〈f, φ〉 =
∫∞
0
g(x)f ′′(x)dx. Then Θ is bounded if

∫ ∞

0

V1(x)V3(x) |g(x)| dx <∞,

where V1(x) = ‖ω(τ)e−τx‖L2(τ), and V3(x) = ‖τ 2ω(τ)e−τx‖L2(τ) .

Proof. (i) If 〈f, φ〉 =
∫∞
0
g(x)f(x)dx, we have

|(Θu)(t)| ≤
∫ ∞

0

ω(t)e−tx |g(x)|V1(x) ‖u‖2 dx,

where V1(x) = ‖ω(τ)e−τx‖L2(τ).

Thus

〈Θ(u),Θ(u)〉 =

∫ ∞

0

(Θu)(t)(Θu)(t)dt

≤
∫ ∞

0

[

∫ ∞

0

ω(t)e−tx |g(x)|V1(x) ‖u‖2 dx

∫ ∞

0

ω(t)e−ty |g(y)|V1(y) ‖u‖2 dy]dt

= ‖u‖2
2

∫ ∞

0

∫ ∞

0

∫ ∞

0

ω(t)2e−txe−ty |g(x)|V1(x) |g(y)|V1(y)

dtdxdy

≤ c ‖u‖2
2

∫ ∞

0

∫ ∞

0

V1(x)V1(y) |g(x)| |g(y)|V1(x)V1(y)dxdy.

where c is a constant.

The result now follows.
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(ii) If 〈f, φ〉 =
∫∞
0
g(x)f ′(x)dx, we have

(Θu)(t) = −
∫ ∞

0

∫ ∞

0

ω(t)(t+ τ)e−x(t+τ)g(x)ω(τ)u(τ)dτdx.

Then

|(Θu)(t)| ≤
∫ ∞

0

ω(t)(t+ τ) |g(x)| e−txe−τxω(τ) |u(τ)| dτdx

=

∫ ∞

0

[

∫ ∞

0

tω(t) |g(x)| e−txe−τxω(τ) |u(τ)| dτ

+

∫ ∞

0

τω(t) |g(x)| e−txe−τxω(τ) |u(τ)| dτ ]dx

≤ ‖u‖2

∫ ∞

0

∥

∥ω(τ)e−τx
∥

∥

L2(τ)
tω(t) |g(x)| e−txdx

+ ‖u‖2

∫ ∞

0

∥

∥τω(τ)e−τx
∥

∥

L2(τ)
ω(t) |g(x)| e−txdx

= ‖u‖2

∫ ∞

0

ω(t) |g(x)| e−tx[tV1(x) + V2(x)]dx.

Thus

〈Θ(u),Θ(u)〉

=

∫ ∞

0

(Θu)(t)(Θu)(t)dt

≤
∫ ∞

0

‖u‖2
2

∫ ∞

0

ω(t) |g(x)| e−tx[tV1(x)

+V2(x)]dx

∫ ∞

0

ω(t) |g(y)| e−ty[tV1(y) + V2(y)]dydt

= ‖u‖2
2

∫ ∞

0

∫ ∞

0

∫ ∞

0

[|g(x)| tω(t)e−txV1(x) + |g(x)|ω(t)e−txV2(x)]

[|g(y)| tω(t)e−tyV1(y) + |g(y)|ω(t)e−tyV2(y)]dtdxdy

≤ c ‖u‖2
2

∫ ∞

0

∫ ∞

0

|g(x)| |g(y)| [V1(x)V2(x)V1(y)V2(y)dxdy

where c is a constant.

The result now follows.

(iii) If 〈f, φ〉 =
∫∞
0
g(x)f ′′(x)dx, we have

(Θu)(t) =

∫ ∞

0

∫ ∞

0

ω(t)(t+ τ)2e−x(t+τ)g(x)ω(τ)u(τ)dτdx.
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Then

|(Θu)(t)| ≤
∫ ∞

0

∫ ∞

0

ω(t)(t+ τ)2 |g(x)| e−txe−τxω(τ) |u(τ)| dτdx

=

∫ ∞

0

∫ ∞

0

ω(t)(t2 + 2tτ + τ 2) |g(x)| e−txe−τxω(τ) |u(τ)| dτdx.

Hence

|(Θu)(t)| ≤ ‖u‖2

∫ ∞

0

[t2ω(t) |g(x)| e−txV1(x) + 2tω(t) |g(x)| e−txV2(x)

+ω(t) |g(x)| e−txV3(x)]dx.

Now we shall calculate ‖Θ‖

〈Θ(u),Θ(u)〉

=

∫ ∞

0

(Θu)(t)(Θu)(t)dt

≤ ‖u‖2
2

∫ ∞

0

∫ ∞

0

ω(t)e−tx |g(x)| [t2V1(x) + 2tV2(x) + V3(x)]

∫ ∞

0

ω(t)e−ty

|g(y)| [t2V1(y) + 2tV2(y) + V3(y)]dxdydt

≤ ‖u‖2
2

∫ ∞

0

∫ ∞

0

∫ ∞

0

|g(x)| |g(y)| [t4V1(x)V1(y) + t3V1(x)V2(y) + t2V1(x)V3(y)

+2t3V2(x)V1(y) + 4t2V2(x)V2(y) + 2tV2(x)V3(y) + t2V3(x)V1(y)

+2tV3(x)V2(y) + V3(x)V3(y)]dxdydt.

By using Cauchy-Schwarz

≤ ‖u‖2
2

∫ ∞

0

∫ ∞

0

|g(x)| |g(y)| [V1(x)V3(x)V1(y)V3(y) + V1(x)V3(x)V
2
2 (y)

+V1(x)V3(x)V1(y)V3(y) + 2V 2
2 (x)V1(y)V3(y) + 4V 2

2 (x)V 2
2 (y)

+2V 2
2 (x)V1(y)V3(y) + V1(x)V3(x)V1(y)V3(y)

+2V1(x)V3(x)V2(y)
2 + V1(x)V3(x)V1(y)V3(y)]dxdy.

Since

V 2
2 (x) ≤ V1(x)V3(x),

then

〈Θ(u),Θ(u)〉 ≤ c ‖u‖2
2

∫ ∞

0

∫ ∞

0

|g(x)| |g(y)|V1(x)V3(x)V1(y)V3(y)dxdy,

where c is a constant.
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The following results are given in Proposition 5.3.6 and Proposition 5.3.7

but they are special cases of Theorem 5.3.8.

Corollary 5.3.9. (a) For ω(τ) = 1, then V1(x) = c1
x1/2 , V2(x) = c2

x3/2 and

V3(x) = c3
x5/2 . Thus,

(•) If 〈f, φ〉 =
∫∞
0
g(x)f(x)dx, then Γ is bounded if

∫ ∞

0

|g(x)| dx
x

<∞.

(•) If 〈f, φ〉 =
∫∞
0
g(x)f ′(x)dx, then Γ is bounded if

∫ ∞

0

|g(x)| dx
x2

<∞.

(•) If 〈f, φ〉 =
∫∞
0
g(x)f ′′(x)dx, then Γ is bounded if

∫ ∞

0

∫ ∞

0

|g(x)|
x3

dx <∞.

(b) For ω(τ) = τ−1/4, then V1(x) = c1
x1/4 , V2(x) = c2

x5/4 and V3(x) = c3
x9/4 .

Thus,

(•) If 〈f, φ〉 =
∫∞
0
g(x)f(x)dx, then Θ is bounded if

∫ ∞

0

|g(x)| dx
x1/2

<∞.

(•) If 〈f, φ〉 =
∫∞
0
g(x)f ′(x)dx, then Θ is bounded if

∫ ∞

0

∫ ∞

0

|g(x)| |g(y)|dxdy
x3/2y3/2

<∞

or
∫ ∞

0

|g(x)| dx
x3/2

<∞.

(•) If 〈f, φ〉 =
∫∞
0
g(x)f ′′(x)dx, then Θ is bounded if

∫ ∞

0

|g(x)|
x5/2

dx <∞.
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5.3.4 Reproducing Kernel test

If the Θ operator is bounded then [8]

sup
ω>0

∥

∥

∫∞
0
t−1/4h(t+ τ)τ−1/4e−ωτdτ

∥

∥

L2(0,∞)

‖e−ωt‖L2(0,∞)

<∞.

If we do not know whether Θ is bounded we can use this test and if it does

not hold then Θ is not bounded. However, for the Γ operator this test for

ω ∈ C+ is necessary and sufficient, i. e. the Γ operator is bounded if and

only if

sup
ω>0

∥

∥

∫∞
0
h(t+ τ)e−ωτdτ

∥

∥

L2(t)

‖e−ωt‖L2(t)

<∞,

for more details see [8].

Theorem 5.3.10. If h(t) = 1
t

then the integral operator (Hankel operator)

Γ is a bounded operator which is unitarily equivalent to multiplication by

π(cosh(xπ/2))−1 on L2(R). In particular there are no eigenvalues and the

spectrum and essential spectrum are equal to the interval [0, π], see [33, p.

18].

Example 5.3.11. In Proposition 5.3.5

(i) If we take g(x) = 1 and φ(f) =
∫∞
0
g(x)f(x)dx but φ /∈ X∗, ‖f‖(0) =

sup |f(z)| , |Re zf(z)|, for 1
z+1

∈ X but φ( 1
z+1

) = ∞ where, (X∗ is the

dual space of X i. e. the space of all bounded functionals)

|φ(f)| =

∣

∣

∣

∣

∫ ∞

0

g(x)f(x)dx

∣

∣

∣

∣

≤ ‖f‖(0)

∫ ∞

0

dx = ∞.

Next,

h(t) =

∫ ∞

0

1.e−txdx =
1

t
/∈ L1.

then the system is not BIBO stable, hence it is not nuclear. Moreover,

G(s) =

∫ ∞

0

1.
1

s+ x
dx = log(s+ x)|∞0 ,

is not defined.

Now we will study the Hankel operator and the Θ operator.
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5.3 More general distributions

Firstly, the Hankel operator is Hilbert-Schmidt if and only if t1/2h ∈ L2

[28, p. 67] so, it is not a Hilbert-Schmidt operator since,

(

∫ ∞

0

∣

∣

∣

∣

t1/2 1

t

∣

∣

∣

∣

2

dt)1/2 = ∞.

Hence Γ is not nuclear either.

Secondly, the Θ operator is Hilbert-Schmidt if and only if h ∈ L2(0,∞)

because ‖Θ‖HS = ‖h‖2 [28, p. 94], so here in this example h /∈ L2 so it

is not a Hilbert-Schmidt operator. Hence it is not nuclear either.

According to Corollary 5.3.9 we do not know whether the Γ operator

is bounded since,

∫ ∞

0

|g(x)|
x

dx =

∫ ∞

0

1

x
dx = ∞.

However, according to Power [33, Theorem 2.6 p. 18] the Γ operator

is bounded. We will see later that the Γ operator is bounded but Θ is

not.

(ii) If we take g(x) = 1 and φ(f) =
∫∞
0
g(x)f ′(x)dx (φ is a bounded func-

tional) since

∣

∣

∣

∣

∫ ∞

0

f ′(x)dx

∣

∣

∣

∣

=
∣

∣

∣
lim
t→∞

f(t) − f(0)
∣

∣

∣
≤ 2 ‖f‖0 ,

thus, φ ∈ X∗.

h(t) =

∫ ∞

0

1.(−t)e−txdx = 1 /∈ L1

then the system is not BIBO stable, hence it is not nuclear. Moreover,

G(s) =

∫ ∞

0

1.
−1

(s+ x)2
dx =

1

s
/∈ H∞.

The integrator example is y(t) = (h ∗ u)(t) =
∫ t

0
u(τ)dτ .

Now we will study the Hankel operator and the Θ operator.

Similarly, firstly h(t) = 1 and the Hankel operator is not Hilbert-

Schmidt operator since, t1/2h /∈ L2. Hence Γ is not nuclear either.

Secondly, the Θ operator is not Hilbert-Schmidt operator since, h /∈ L2.
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Hence Θ is not nuclear either.

According to Corollary 5.3.9 we do not know whether the Γ operator

is bounded since,

∫ ∞

0

|g(x)|
x2

dx =

∫ ∞

0

1

x2
dx = ∞.

However
∥

∥e−tω
∥

∥

L2(t)
=

1√
2ω

and
∥

∥

∥

∥

∫ ∞

0

h(t+ τ)e−τωdτ

∥

∥

∥

∥

L2(t)

= ∞

then the Γ operator is unbounded.

According to Corollary 5.3.9 we do not know whether the Θ operator

is bounded since,

∫ ∞

0

|g(x)|
x3/2

dx =

∫ ∞

0

1

x3/2
dx = ∞.

However
∥

∥e−tω
∥

∥

L2(t)
=

1√
2ω

and
∥

∥

∥

∥

∫ ∞

0

t−1/4h(t+ τ)τ−1/4e−τωdτ

∥

∥

∥

∥

L2(t)

= ∞

and so the Θ operator is unbounded. We see this later by another

argument.

(iii) If we take g(x) = e−x and φ(f) =
∫∞
0
g(x)f(x)dx then,

|φ(f)| ≤
∫ ∞

0

e−x ‖f‖(0) dx = ‖f‖(0) ,

thus, φ ∈ X∗. Next,

h(t) =

∫ ∞

0

e−xe−txdx =
1

t+ 1
/∈ L1.

However the transfer function,

G(s) =

∫ ∞

0

e−x

x+ s
dx
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converges, but G /∈ H∞.

Similarly, firstly h(t) = 1
t+1

and the Hankel operator is not a Hilbert-

Schmidt operator since,

∫ ∞

0

t

∣

∣

∣

∣

1

t+ 1

∣

∣

∣

∣

2

dt =

∫ ∞

1

(u− 1)u−2du =

∫ ∞

1

1

u
− 1

u2
du = ∞.

From 5.3.2 the Hankel operator is nuclear if
∫∞
0

|g(x)| dx
x
< ∞, but in

this case it is not nuclear since

∫ ∞

0

e−x

x
dx = ∞.

According to Proposition 5.3.7, the Θ operator is nuclear, since

∫ ∞

0

e−xdx√
2x

<∞.

Hence it is a Hilbert-Schmidt operator and we can notice that

h ∈ L2(0,∞) and hence Θ is bounded.

(iv) If we take g(x) = xe−x and φ(f) =
∫∞
0
g(x)f(x)dx then

|φ(f)| =

∣

∣

∣

∣

∫ ∞

0

g(x)f(x)dx

∣

∣

∣

∣

≤ ‖f‖(0)

∫ ∞

0

xe−xdx = ‖f‖(0) <∞,

thus, φ ∈ X∗.

Next,

h(t) =

∫ ∞

0

xe−xe−txdx =
1

(t+ 1)2
,

thus h ∈ L1 and

L(
1

(t+ 1)2
) = 1 − sesE1(s) = G(s) =

∫ ∞

0

xe−x 1

x+ s
dx.

In addition,

|G(s)| =

∣

∣

∣

∣

∫ ∞

0

xe−x 1

x+ s
dx

∣

∣

∣

∣

≤
∫ ∞

0

xe−x 1

x
dx = 1 <∞,

then, G ∈ H∞.

The Hankel operator is a Hilbert-Schmidt operator since,

∫ ∞

0

tdt

(t+ 1)4
=

∫ ∞

1

(u− 1)u−4du <∞.
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From Proposition 5.3.6 the Hankel operator is nuclear since,
∫ ∞

0

|g(x)|
x

dx =

∫ ∞

0

xe−x

x
dx <∞.

Also, because h ∈ L2 then the Θ operator is a Hilbert-Schmidt opera-

tor.

According to Proposition 5.3.7, the Θ operator is nuclear, since
∫ ∞

0

xe−xdx√
2x

<∞.

(v) If we take g(x) = xe−x and φ(f) =
∫∞
0
g(x)f ′(x)dx then,

|φ(f)| =

∣

∣

∣

∣

∫ ∞

0

g(x)f(x)dx

∣

∣

∣

∣

≤ ‖f‖(0)

∫ ∞

0

xe−xdx = ‖f‖(0) ,

thus, φ ∈ X∗.

Next,

h(t) =

∫ ∞

0

xe−x(−t)e−txdx =
−t

(t+ 1)2
,

thus h /∈ L1.

Moreover,

G(s) =

∫ ∞

0

xe−x −1

(s+ x)2
dx,

since, when s→ 0+ then G(s) → −∞ and so G /∈ H∞.

The Hankel operator is not a Hilbert-Schmidt operator since
∫ ∞

0

t3dt

(t+ 1)4
= ∞.

Hence it is not nuclear.

According to Proposition 5.3.7, the Θ operator is nuclear, since,
∫ ∞

0

xe−xdx

x3/2
=

√
π <∞.

Hence the Θ operator is a Hilbert-Schmidt operator and bounded op-

erator.

According to Corollary 5.3.9 we do not know whether the Γ operator

is bounded since,
∫ ∞

0

|g(x)|
x2

dx =

∫ ∞

0

xe−x

x2
dx = ∞.
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However,

‖e−tω‖L2(t) = 1√
2ω

and
∥

∥

∫∞
0
h(t+ τ)e−τωdτ

∥

∥

L2(t)
= ∞

and so the Γ operator is unbounded.

(vi) If we take g(x) = x2e−x and φ(f) =
∫∞
0
g(x)f ′(x)dx then,

|φ(f)| =

∣

∣

∣

∣

∫ ∞

0

x2e−xf ′(x)dx

∣

∣

∣

∣

≤ ‖f‖(0)

∫ ∞

0

x2e−xdx = 2 ‖f‖(0)

thus, φ ∈ X∗.

Next

h(t) =

∫ ∞

0

x2e−x(−t)e−txdx =
−2t

(t+ 1)3
,

thus h ∈ L1.

The Hankel operator is nuclear since,
∫ ∞

0

|g(x)|
x2

dx =

∫ ∞

0

e−xdx = 1 <∞.

Hence, the Hankel operator is a Hilbert-Schmidt operator.

According to Proposition 5.3.7, the Θ operator is nuclear, since
∫ ∞

0

|g(x)|
x3/2

dx =

∫ ∞

0

x2e−x

x3/2
dx <∞.

Hence the Θ operator is a Hilbert-Schmidt operator.

(vii) If we take g(x) = x3e−x and φ(f) =
∫∞
0
g(x)f ′′(x)dx then,

|φ(f)| =

∣

∣

∣

∣

∫ ∞

0

g(x)f(x)dx

∣

∣

∣

∣

≤ ‖f‖(0)

∫ ∞

0

x3e−xdx = 6 ‖f‖(1) ,

thus, φ ∈ X∗.

h(t) =

∫ ∞

0

x3e−x(t2)e−txdx =
6t2

(t+ 1)4
,

thus h ∈ L1.

The Hankel operator is nuclear since,
∫ ∞

0

|g(x)|
x3

dx =

∫ ∞

0

e−xdx = 1 <∞.

Hence, the Hankel operator is a Hilbert-Schmidt operator.
∫ ∞

0

|g(x)|
x5/2

dx =

∫ ∞

0

x1/2e−xdx =

√
π

2
.

Hence the Θ operator is nuclear and Hilbert-Schmidt as well.
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5.3.5 Discrete distributions

(i) If 〈f, φ〉 =
∑∞

j=1 λjf(zj) with zj ∈ C+ and λj ∈ C.

Since |〈f, φ〉| ≤
∑∞

j=1 |λj | |f(zj)| ≤
∑∞

j=1 |λj | ‖f‖(0), and |〈f, φ〉| ≤
∑∞

j=1
|λj |
Re zj

‖f‖(0), then, φ is a bounded functional if

∞
∑

j=1

|λj| <∞,

or ∞
∑

j=1

|λj|
Re zj

<∞.

We have

h(t) = 〈e−t, φ〉 =
∞
∑

j=1

λje
−zjt

and

G(s) = 〈ks, φ〉 =
∞
∑

j=1

λj

zj + s
.

Then h ∈ L1 if

∞
∑

j=1

∥

∥λje
−zjt
∥

∥

L1 =
∞
∑

j=1

|λj|
Re zj

<∞,

and this implies also G ∈ H∞.

In other words, G(s) converges in H∞ if

‖G(s)‖H∞ = sup
s

∣

∣

∣

∣

∣

∞
∑

j=1

λj

zj + s

∣

∣

∣

∣

∣

≤
∞
∑

j=1

|λj |
Re zj

<∞.

The Hankel operator with symbol
λj

zj+s
has rank 1, and the Hankel

operator Γ =
∑∞

j=1 Γj is nuclear if,

‖Γ‖N ≤
∞
∑

j=1

‖Γj‖

≤
∞
∑

j=1

‖Gj‖

≤
∞
∑

j=1

|λj |
Re zj

< ∞.
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We know that Γ is a Hilbert-Schmidt operator if t1/2h ∈ L2 then,

∫ ∞

0

∣

∣t1/2h(t)
∣

∣

2
dt =

∫ ∞

0

t

( ∞
∑

n=1

λne
−znt

)( ∞
∑

m=1

λme
−zmt

)

dt

=
∞
∑

n=1

∞
∑

m=1

λnλm

zn + zm

.

In order to use this, we observe that

|zn + zm| ≥ Re zn + Re zm

≥ (Re zn)1/2(Re zm)1/2,

thus
∑

n

∑

m

λnλm

(zn + zm)2
≤ (
∑

n

|λn|
22 Re zn

)2.

We deduce that the Hankel operator is Hilbert-Schmidt if

∑

n

|λn|
Re zn

<∞.

Similarly for the Θ operator,

Θu(t) =
1√
π

∫ ∞

0

t−1/4h(t+ τ)τ−1/4u(τ)dτ

=
1√
π

∫ ∞

0

t−1/4
∞
∑

j=1

λje
−(t+τ)zjτ−1/4u(τ)dτ

=

∞
∑

j=1

1√
π

∫ ∞

0

t−1/4λje
−(t+τ)zjτ−1/4u(τ)dτ

=

∞
∑

j=1

1√
π
λj〈u, e−zjtt−1/4〉e−zjττ−1/4.

Then, Θu =
∑∞

j=1 Θju, where every Θj operator has rank 1.

Since if Θj : u→ 〈u, v〉w has rank 1 so, tr |Θj| = ‖Θj‖N = ‖v‖L2 ‖w‖L2 ,

it follows that

tr |Θj| =
∥

∥e−zjtt−1/4
∥

∥

L2

∥

∥e−zjττ−1/4
∥

∥

L2

≤ c

(Re zj)−1/4+1/2(Re zj)−1/4+1/2

=
c

(Re zj)1/2
.
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where c is a constant.

The Θ operator is nuclear if
∑∞

j=1
c

(Re zj)1/2 <∞.

Now the Θ operator is Hilbert-Schmidt if h ∈ L2, so

∫ ∞

0

|h(t)|2 dt =

∫ ∞

0

( ∞
∑

n=1

λne
−znt

)( ∞
∑

m=1

λme
−zmt

)

dt

=
∞
∑

n=1

∞
∑

m=1

∫ ∞

0

λnλme
−(zn+zm)tdt

=
∞
∑

n=1

∞
∑

m=1

λnλm

(zn + zm)
.

Thus the Θ operator is Hilbert-Schmidt if
∑

n
|λn|√
Re zn

<∞, since

∞
∑

n=1

∞
∑

m=1

λnλm

(zn + zm)
≤ (
∑

n

|λn|
2
√

Re zn

)2.

(ii) Suppose 〈f, φ〉 =
∑∞

j=1 λjf
′(zj) with zj ∈ C+ and λj ∈ C.

Since

‖f‖(1) ≥ sup |f ′(zj)| ,

‖f‖(1) ≥ sup |(Re zj)f
′(zj)| ,

‖f‖(1) ≥ sup
∣

∣(Re zj)
2f ′(zj)

∣

∣ ,

it follows that if

|〈f, φ〉| ≤ c

∞
∑

j=1

|λj | <∞,

or

|〈f, φ〉| ≤ c
∞
∑

j=1

|λj |
Re zj

<∞,

or

|〈f, φ〉| ≤ c

∞
∑

j=1

|λj |
(Re zj)2

<∞,

then φ is a bounded functional.

We have

h(t) = 〈e−t, φ〉 =
∞
∑

j=1

λj(−t)e−zjt

and

G(s) = 〈ks, φ〉 =

∞
∑

j=1

−λj

(zj + s)2
.
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Then h ∈ L1 if

∞
∑

j=1

∥

∥λj(−t)e−zjt
∥

∥

L1 =

∞
∑

j=1

|λj|
(Re zj)2

<∞,

and this implies also G ∈ H∞.

In other words, G(s) converges in H∞ if

‖G(s)‖H∞ ≤
∞
∑

j=1

|λj|
(Re zj)2

<∞.

The Hankel operator with symbol
λj

zj+s
has rank 2.

Since, Γ =
∑∞

j=1 Γj, so

‖Γ‖N ≤
∞
∑

j=1

‖Γj‖N

≤ 2
∞
∑

j=1

‖Gj‖∞

= 2

∞
∑

j=1

|λj|
(Re zj)2

.

Thus the Hankel operator is nuclear if
∑∞

j=1
|λj |

(Re zj)2
<∞.

Now the Hankel operator is Hilbert-Schmidt if t1/2h ∈ L2,

hence

∫ ∞

0

∣

∣t1/2h(t)
∣

∣

2
dt =

∫ ∞

0

t(
∞
∑

n=1

λn(−t)e−znt)(
∞
∑

m=1

λm(−t)e−zmt)dt

=

∫ ∞

0

t3(
∞
∑

n=1

λne
−znt)(

∞
∑

m=1

λme
−zmt)dt

≤
∞
∑

n=1

∞
∑

m=1

λnλm

(zn + zm)4

≤ (

∞
∑

n=1

|λn|
(22 Re zn)2

)2.

The Hankel operator is Hilbert-Schmidt if
∑∞

n=1
|λn|

(Re zn)2
<∞.
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Similarly for the Θ operator,

Θu(t) =
1√
π

∫ ∞

0

t−1/4h(t+ τ)τ−1/4u(τ)dτ

=
−1√
π

∫ ∞

0

t−1/4

∞
∑

j=1

λj(t+ τ)e−(t+τ)zjτ−1/4u(τ)dτ

=
∞
∑

j=1

−1√
π

∫ ∞

0

t−1/4λj(t+ τ)e−(t+τ)zjτ−1/4u(τ)dτ

=

∞
∑

j=1

−1√
π

[

∫ ∞

0

t3/4λje
−(t+τ)zjτ−1/4u(τ)dτ +

∫ ∞

0

t−1/4λje
−(t+τ)zjτ 3/4u(τ)dτ ]

=
∞
∑

j=1

−1√
π

[λj〈u, t3/4e−tzj〉τ−1/4e−zj +

λj〈u, t−1/4e−tzj〉τ 3/4e−zj .

Thus Θu =
∑∞

j=1 Θju, where every Θj has rank 2, then

tr |Θj | ≤
∥

∥e−zjtt3/4
∥

∥

L2

∥

∥e−zjττ−1/4
∥

∥

L2 +
∥

∥e−zjtt−1/4
∥

∥

L2

∥

∥e−zjττ 3/4
∥

∥

L2

≤ cj
(Re zj)−1/4+1/2(Re zj)−1/4+1/2

=
cj

(Re zj)3/2
.

We deduce that tr |Θ| ≤
∑∞

j=1
cj

(Re zj)3/2 <∞.

Now the Θ operator is Hilbert-Schmidt if h ∈ L2.

Now
∫ ∞

0

|h(t)|2 dt =

∫ ∞

0

t2(

∞
∑

n=1

λne
−znt)(

∞
∑

m=1

λme
−zmt)dt

=

∞
∑

n=1

∞
∑

m=1

∫ ∞

0

t2λnλme
−(zn+zm)tdt

= 2
∞
∑

n=1

∞
∑

m=1

λnλm

(zn + zm)3

≤ 1

23

( ∞
∑

n=1

|λn|
(Re zn)3/2

)2

< ∞.

So Θ is Hilbert-Schmidt if
( ∞
∑

n=1

|λn|
(Re zn)3/2

)2

<∞.
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(iii) If 〈f, φ〉 =
∑N

k=0(
∑∞

j=1 λk,jf
(k)(zk,j)) with zk,j ∈ C+ and λk,j ∈ C.

In order to get a bounded functional φ it is sufficient to have a bounded

φk for each k, where

〈f, φk〉 =
∞
∑

j=1

λk,jf
(k)(zk,j).

Then

|〈f, φk〉| ≤ Ck ‖f‖(k) , k = 0, 1, ..., N.

We have

h(t) = 〈e−t, φ〉 =
N
∑

k=0

(
∞
∑

j=1

λk,j(−t)ke−tzk,j )

and

G(s) = 〈ks, φ〉 =
N
∑

k=0

(
∞
∑

j=1

(−1)kλk,j

(zk,j + s)k+1
).

Then the system is BIBO stable if h ∈ L1

∫ ∞

0

|h(t)| dt =

∫ ∞

0

∣

∣

∣

∣

∣

N
∑

k=0

(
∞
∑

j=1

λk,j(−t)ke−tzk,j

∣

∣

∣

∣

∣

dt

≤
N
∑

k=0

∞
∑

j=1

∫ ∞

0

|λk,j| tk
∣

∣e−tzk,j
∣

∣ dt

=

N
∑

k=0

(

∞
∑

j=1

|λk,j|
(Re zk,j)k+1

)

< ∞.

This implies also G ∈ H∞ also, ‖G(s)‖H∞ ≤
∑N

k=0(
∑∞

j=1

|λk,j|
(Re zk,j)k+1 ),

since,

‖G(s)‖H∞ ≤
N
∑

k=0

∞
∑

j=1

∥

∥

∥

∥

λk,j

(s+ zk,j)k+1

∥

∥

∥

∥

H∞

=

N
∑

k=0

∞
∑

j=1

|λk,j|
(Re zk,j)k+1

.
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5.3 More general distributions

Now the Hankel operator Γ satisfies

Γu(t) =

∫ ∞

0

h(t+ τ)u(τ)dτ

=

∫ ∞

0

N
∑

k=0

∞
∑

j=1

λk,j(t+ τ)k(−1)ke−(t+τ)zk,ju(τ)dτ

=
N
∑

k=0

∞
∑

j=1

∫ ∞

0

λk,j(t+ τ)k(−1)ke−(t+τ)zk,ju(τ)dτ

=
N
∑

k=0

∞
∑

j=1

∫ ∞

0

λk,j(−1)k
k
∑

i=0

(

k

i

)

tiτk−ie−(t+τ)zk,ju(τ)dτ.

Then let

Γ
(k)
j u(t) =

∫ ∞

0

λk,j(−1)k
k
∑

i=0

(

k

i

)

tiτk−ie−(t+τ)zk,ju(τ)dτ

=
k
∑

i=0

λk,j(−1)k

(

k

i

)

〈u, tie−tzk,j〉τk−ie−τzk,j .

Then Γu =
∑N

k=1 Γ(k)u =
∑N

k=1

∑∞
j=1 Γ

(k)
j u and

∞
∑

j=1

∥

∥Γ(k)
∥

∥

N
≤ c

∥

∥

∥
Γ

(k)
j

∥

∥

∥

≤ Ck

(Re zk,j)i+1/2(Re zk,j)k−i+1/2

=
Ck

(Re zk,j)k+1
.

Therefore, the Hankel operator Γ is nuclear if

∞
∑

j=1

|λk,j|
(Re zk,j)k+1

<∞,

and then Γ will be a Hilbert-Schmidt operator as well.
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5.3 More general distributions

Now we will consider the Θ operator:

Θu(t) =
1√
π

∫ ∞

0

t−1/4h(t+ τ)τ−1/4u(τ)dτ

=
1√
π

∫ ∞

0

t−1/4

N
∑

k=0

∞
∑

j=1

λk,j(t+ τ)k(−1)ke−(t+τ)zk,jτ−1/4u(τ)dτ

=
N
∑

k=0

∞
∑

j=1

1√
π

∫ ∞

0

t−1/4λk,j(t+ τ)k(−1)ke−(t+τ)zk,jτ−1/4u(τ)dτ

=
N
∑

k=0

∞
∑

j=1

1√
π

∫ ∞

0

t−1/4λk,j(−1)k
k
∑

i=0

(

k

i

)

tiτk−ie−(t+τ)zk,jτ−1/4u(τ)dτ

=
N
∑

k=0

∞
∑

j=1

k
∑

i=0

1√
π
λk,j(−1)k

(

k

i

)

〈u, ti−1/4e−tzk,j〉τk−i−1/4e−τzk,j .

Thus

Θ =

N
∑

k=0

Θ(k)

where Θ(k) uses kth derivatives.

Then Θ is nuclear if each Θ(k) is.

Θ(k)u(t) =
1√
π

∞
∑

j=1

1√
π

∫ ∞

0

t−1/4λk,j(−1)k
k
∑

i=0

(

k

i

)

tiτk−ie−(t+τ)zk,ju(τ)dτ

=

∞
∑

j=1

Θ
(k)
j .

where

Θ
(k)
j u =

k
∑

i=0

1√
π
λk,j(−1)k

(

k

i

)

〈u, ti−1/4e−tzk,j〉τk−i−1/4e−τzk,j

and Θ
(k)
j has rank at most k+1, since its range is spanned by t−1/4e−tti for i =

0, 1, ..., k.

Therefore
∥

∥Θ(k)
∥

∥

N
≤ (k + 1)

∥

∥

∥
Θ

(k)
j

∥

∥

∥

So, if
∞
∑

j=1

∥

∥

∥
Θ

(k)
j

∥

∥

∥
<∞,
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5.3 More general distributions

thus, Θ(k) is nuclear.

∥

∥

∥
Θ

(k)
j

∥

∥

∥

N
≤ 1√

π

k
∑

i=0

|λk,j|
(

k

i

)

∥

∥ti−1/4e−tzk,j
∥

∥

L2

∥

∥τk−i−1/4e−τzk,j
∥

∥

L2

≤ Ck |λk,j|
(Re zk,j)k+1/2

.

Moreover, Θ is Hilbert-Schmidt as well.

Example 5.3.12. (i) If 〈f, φ〉 = f(λ) then h(t) = 〈e−t, φ〉 = e−λt and φ

is a bounded functional since, ‖f‖ = maxz(|f | , z |f |) then

|φ(f)| ≤ ‖f‖(0) .

(ii) If 〈f, φ〉 = f ′(λ) with λ ∈ C+ then h(t) = 〈e−t, φ〉 = (e−tx)′(λ) =

−te−tλ and φ is a bounded functional since

|〈f, φ〉| ≤ sup |f ′(z)|

≤ ‖f‖(1) .

Lemma 5.3.13. If an operator A satisfies that ‖A−An‖N = εn, where

εn → 0 for rank(An) = n, then δN =
∑∞

N+1 σn ≤ εN and σN = O( εN

N
).

Proof. We have
∞
∑

k=n+1

σk ≤ ‖A− An‖N

then

σn+1 + σn+2 + ... + σ2n+1 ≤ δn,

so

(n+ 1)σ2n+1 ≤ δn.

Similarly,

σn+1 + σn+2 + ... + σ2n ≤ δn,

so

nσ2n ≤ δn.
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5.3 More general distributions

As a result

σN = O(
εN

N
).

Example 5.3.14. (i) Suppose 〈f, φ〉 =
∑∞

j=1 f(j) for f analytic in C+

with ‖f‖(n) <∞ ∀n. Then if f(z) = 1
z+1

,

∞
∑

j=1

f(j) =
1

0 + 1
+

1

1 + 1
+

1

2 + 1
+ ... = ∞

hence φ is not bounded.

We have

h(t) =
∞
∑

j=1

e−jt =
e−t

1 − e−t
=

1

et − 1
.

Then h /∈ L1.

The system is not BIBO stable, hence is not H∞ because also 〈 1
z+s

, φ〉
does not converge for Re s > 0.

(ii) Suppose 〈f, φ〉 =
∑∞

j=1 f
′(j). Since

‖f‖(1) = sup
z

max{|f(z)| , |Re z| |f(z)| , |f ′(z)| , |Re z| |f ′(z)| ,
∣

∣(Re z)2
∣

∣ |f ′(z)|},

so

|f ′(j)| ≤ 1

j2
sup

∣

∣(Re z)2
∣

∣ |f ′(z)|

(and equal if z = j).

Thus
∑

|f ′(j)| ≤
∑ 1

j2
‖f‖(1) .

As a result φ is a bounded functional.

We have

h(t) =

∞
∑

j=1

−te−jt =
−te−t

1 − e−t

and also, limt→0
te−t−e−t

1−e−t = −1 ( by L’Hôpital’s rule). Then h ∈ L1,

and

G(s) =

∞
∑

j=1

−1

(s+ j)2
∈ H∞.
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5.3 More general distributions

In fact G(s) = Ψ (1)(s + 1) where Ψ (1) is a polygamma function [1, p

260].

Now we consider the Γ operator:

Γu(t) =

∫ ∞

0

h(t+ τ)u(τ)dτ

=

∫ ∞

0

∞
∑

j=1

(−(t+ τ))e−(t+τ)ju(τ)dτ

=

∞
∑

j=1

∫ ∞

0

(−(t+ τ))e−(t+τ)ju(τ)dτ

=
∞
∑

j=1

[

∫ ∞

0

−te−(t+τ)ju(τ)dτ −
∫ ∞

0

τe−(t+τ)ju(τ)dτ ]

= −
∞
∑

j=1

[〈u, te−tj〉e−τj + 〈u, e−tj〉τe−τj ],

thus, Γu =
∑∞

j=1 Γju where every Γj has rank 2, and then

‖Γj‖N ≤
∥

∥te−tj
∥

∥

∥

∥eτj
∥

∥+
∥

∥e−tj
∥

∥

∥

∥τe−τj
∥

∥

=
c1

j3/2j1/2
+

c2
j1/2j3/2

=
c

j2
.

In addition,

‖Γ‖N ≤
∞
∑

j=1

‖Γj‖N ≤
∞
∑

j=1

c

j2

and

σn+1(Γ) ≤
∞
∑

j=n+1

1

j2
≤ 1

n
,

where
∥

∥

∥

∥

∥

Γ −
n
∑

j=1

Γj

∥

∥

∥

∥

∥

N

≤
∞
∑

j=n+1

c

j2
≤ c′

n
for some c′ > 0.

According to Lemma 5.3.13,

σN = O(
1

N2
).
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5.3 More general distributions

Now the Θ operator satisfies

Θu(t) =
1√
π

∫ ∞

0

t−1/4h(t+ τ)τ−1/4u(τ)dτ

=
1√
π

∫ ∞

0

t−1/4
∞
∑

j=1

(−(t+ τ))e−(t+τ)jτ−1/4u(τ)dτ

=
−1√
π

∞
∑

j=1

[

∫ ∞

0

t3/4et+τ)jτ−1/4u(τ)dτ +

∫ ∞

0

t−1/4et+τ)jτ 3/4u(τ)dτ

=
−1√
π

∞
∑

j=1

[〈u, t3/4e−tj〉τ−1/4e−τj + 〈u, t−1/4e−tj〉τ 3/4e−τj.

Thus, Θu(t) =
∑∞

j=1 Θju(t) where every Θj has rank 2.

Then

‖Θ‖N ≤
∞
∑

j=1

‖Θj‖N .

Thus,

‖Θj‖N ≤
∥

∥t3/4e−tj
∥

∥

L2

∥

∥τ−1/4eτj
∥

∥

L2 +
∥

∥t−1/4e−tj
∥

∥

L2

∥

∥τ 3/4e−τj
∥

∥

L2

≤ c

j3/2
.

Hence

‖Θ‖ ≤
∞
∑

j=1

c

j3/2

and
∥

∥

∥

∥

∥

Θ −
n
∑

j=1

Θj

∥

∥

∥

∥

∥

N

≤
∞
∑

j=n+1

∥

∥

∥

∥

c

j3/2

∥

∥

∥

∥

≤ 1√
n
.

According to Lemma 5.3.13,

σN = O(
1

N3/2
),

so, Θ is a nuclear operator.

Note that h ∈ L2 since Θ is a Hilbert-Schmidt operator.

(iii) (General case). Suppose 〈f, φ〉 =
∑∞

j=1 f
(k)(j) for some k ≥ 1.

In order to get a bounded functional φ it is convenient to have a

bounded functional for each k,

∣

∣f (k)(j)
∣

∣ ≤ 1

jk+1
sup

∣

∣(Re z)k+1
∣

∣

∣

∣f (k)(z)
∣

∣
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(with equality if z = j).

Thus
∑

∣

∣f (k)(j)
∣

∣ ≤
∑ 1

jk+1
‖f‖(k)

As a result φ is a bounded functional, and

h(t) = 〈e−t, φ〉 =

∞
∑

j=1

f (k)(j) =

∞
∑

j=1

(−t)ke−tj .

Also,

∫ ∞

0

|h(t)| dt =

∫ ∞

0

∣

∣

∣

∣

∣

∞
∑

j=1

(−t)ke−tj

∣

∣

∣

∣

∣

dt

≤
∞
∑

j=1

∫ ∞

0

tke−tjdt

=

∞
∑

j=1

1

jk+1
.

So, since
∑∞

j=1
1

jk+1 <∞, the system is BIBO stable and hence is H∞.

We can define the Γ operator for each k by

Γu(t) =

∫ ∞

0

h(t+ τ)u(τ)dτ

=

∫ ∞

0

∞
∑

j=1

(−(t+ τ))ke−(t+τ)ju(τ)dτ

=
∞
∑

j=1

∫ ∞

0

(−(t+ τ))ke−(t+τ)ju(τ)dτ

=
∞
∑

j=1

∫ ∞

0

k
∑

i=0

(−1)k

(

k

i

)

tiτk−ie−(t+τ)ju(τ)dτ

=

∞
∑

j=1

k
∑

i=0

(−1)k

(

k

i

)

〈u, tie−tj〉τk−ie−τj .

Then Γ =
∑∞

j=1 Γj, where each Γj has rank at most k + 1 and so

‖Γj‖N ≤ (k + 1) ‖Γj‖ ,
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where

‖Γj‖ ≤
k
∑

i=0

∥

∥tie−tj
∥

∥

∥

∥τk−ie−τj
∥

∥

≤ c

ji+1/2jk−i+1/2

=
c

jk+1
.

Thus if
∑∞

j=1
1

jk+1 <∞, the Γ operator is nuclear.

We have
∥

∥

∥

∥

∥

Γ −
n
∑

j=1

Γj

∥

∥

∥

∥

∥

N

≤
∞
∑

j=n+1

‖Γj‖

≤
∞
∑

j=n+1

c

jk+1

= O(n−k).

Then by Lemma 5.3.13 we have σN = O( 1
Nk+1 ).

Now the Θ operator satisfies

Θu(t) =
1√
π

∫ ∞

0

t−1/4h(t+ τ)τ−1/4u(τ)dτ

=
1√
π

∫ ∞

0

t−1/4
∞
∑

j=1

(−(t+ τ))ke−(t+τ)jτ−1/4u(τ)dτ

=
1√
π

∞
∑

j=1

∫ ∞

0

t−1/4
k
∑

i=0

(−1)k

(

k

i

)

tiτk−ie−(t+τ)jτ−1/4u(τ)dτ

=
1√
π

∞
∑

j=1

k
∑

i=0

(−1)k

(

k

i

)

〈u, ti−1/4e−tj〉τk−i−1/4e−τj,

so Θ =
∑∞

j=1 Θj where each Θj has rank at most k + 1 and

‖Θj‖N ≤ (k + 1) ‖Θj‖

‖Θj‖ ≤
k
∑

i=0

∥

∥ti−1/4e−tj
∥

∥

∥

∥τk−i−1/4e−τj
∥

∥

≤ ck
ji−1/4+1/2jk−i−1/4+1/2

=
ck

jk+1/2
.
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Thus if
∑∞

j=1
ck

jk+1/2 <∞ then Θ is nuclear.

However
∥

∥

∥

∥

∥

Θ −
n
∑

j=1

Θj

∥

∥

∥

∥

∥

N

≤
∞
∑

j=n+1

‖Θj‖

≤
∞
∑

j=n+1

ck
jk+1/2

= O(n−k+ 1
2 ).

Hence, by Lemma 5.3.13

σN = O(
ck

Nk+1/2
),

and so, Θ is a nuclear operator.

Note that h ∈ L2 since Θ is a Hilbert-Schmidt operator.
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Chapter 6

Carleson Measures

6.1 Introduction

The boundedness of weighted Hankel operators and Θ operators is the main

outstanding problem in this chapter. Therefore, we use the proof in Power’s

book [33] to get results about boundedness of Hankel operators, via Carleson

measures. Also, we prove a new theorem for Θ operators using Carleson

embeddings; and this requires Theorem 3.11 in [21]. We look at those explicit

examples of Θ operators for which we have not yet determined whether they

are bounded.

6.2 Boundedness theorems

Lemma 6.2.1. Let f, g be continuous functions supported on a closed subin-

terval of (0,∞). Then

〈Γhf, g〉 = 〈Zµf, Zµg〉

where, µ is a measure on R+, Zµ : L2(0,∞) → L2(µ) and Zµf(x) =
∫∞
0
e−xyf(y)dy (the Laplace transform) and Γh is the Hankel operator, (see

[33, p 13]).

The classical Carleson theorem is to do with finding simple condition for

the boundedness of the canonical injection H2(C+) → L2(µ) where µ is a

Borel measure on C+ and h(x) =
∫

C+
e−xydµ(y), see ([20]).
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6.2 Boundedness theorems

Theorem 6.2.2. (Carleson embedding theorem). Let µ be a positive regular

Borel measure on the right half-plane C+. Then the following are equivalent:

(i) The natural embedding

Jµ : Hp(C+) → Lp(C+, µ)

is bounded for some (or equivalently, for all) 1 ≤ p <∞.

(ii) There exists a constant C > 0 such that

∫

C+

|kλ(z)|2 dµ(z) ≤ C ‖kλ‖2
H2 for all λ ∈ C+,

where kλ(z) = 1
2π

1
z+λ

for λ, z ∈ C+.

(iii)

µ(QI) ≤ c |I| for all intervals I ∈ iR,

where QI denotes the Carleson square

QI = {z = x+ iy ∈ C+ : iy ∈ I, 0 < x < |I|}.

In this case, µ is called a Carleson measure, see ([20, theorem 1.1]).

We just use part (i) and (iii) in this theorem.

We now extend Lemma 6.2.1 to measures on C+.

Lemma 6.2.3. (Extension of Lemma 6.2.1). Let f, g be continuous functions

supported on a closed subinterval of (0,∞), and µ a positive Borel measure

on C+. Define

h(x) =

∫

C+

e−xydµ(y)

and

Zµ : L2(0,∞) → L2(µ),

by

Zµf(x) =

∫ ∞

0

e−xyf(y)dy,
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for

Γh : L2(0,∞) → L2(0,∞) is the Hankel operator.

Then

〈Γhf, g〉 = 〈Zµf, Zµg〉.

Proof. We have

〈Γhf, g〉 =

∫ ∞

0

∫ ∞

0

h(x+ y)f(y)g(x)dydx

=

∫ ∞

0

∫ ∞

0

∫

C+

e−(x+y)zf(y)g(x)dydxdµ(z)

=

∫

C+

[

∫ ∞

0

e−yzf(y)dy][

∫ ∞

0

e−xzg(x)dx]dµ(z)

= 〈Zµf, Zµg〉.

Since Zµ = JµL : L2(0,∞) → L2(C+, µ), it is bounded if and only if Jµ

is a bounded operator.

Theorem 6.2.4. (Carleson Theorem). µ (a positive Borel measure) is a

Carleson measure for H2(C+) if and only if µ(QI) = O(|I|) as |I| → 0 or

|I| → ∞ , where QI is a Carleson square, see( [22]).

We now consider the Θω operator.

Lemma 6.2.5. Let f, g be continuous functions supported on a closed subin-

terval of (0,∞), ω ∈ L2 and µ ≥ 0 on C+. Define,

h(x) =

∫

C+

e−xydµ(y)

and

Zµ : L2(0,∞) → L2(C+, µ),

by

Zµf(x) =

∫ ∞

0

ω(y)e−xyf(y)dy,

and

Θωf(x) =

∫ ∞

0

ω(x)h(x+ y)ω(y)f(y)dy.
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6.2 Boundedness theorems

Then

〈Θωf, g〉 = 〈Zµf, Zµg〉.

Proof. We have

〈Θωf, g〉 =

∫ ∞

0

Θωf(x)g(x)dx

=

∫ ∞

0

∫ ∞

0

ω(x)h(x+ y)f(y)ω(y)g(x)dydx

=

∫ ∞

0

∫ ∞

0

∫

C+

ω(x)e−(x+y)zf(y)ω(y)dydxdµ(z)

=

∫

C+

[

∫ ∞

0

ω(y)e−yzf(y)dy][

∫ ∞

0

ω(x)e−xzg(x)dx]dµ(z)

= 〈Zµf, Zµg〉.

Theorem 6.2.6. Let Θωf(x) =
∫∞
0
ω(x)h(x+ y)ω(y)f(y)dy and define,

Zµ : L2(0,∞) → L2(C+, µ),

by

Zµf(x) =

∫ ∞

0

ω(y)e−xyf(y)dy,

where x ∈ C+.

Then Θω is bounded if and only if Zµ bounded and Zµ is bounded if and only

if

L : L2

(

0,∞,
dy

ω(y)2

)

→ L2(C+, µ)

is bounded.

Proof. We have

〈Θωf, g〉 = 〈Zµf, Zµg〉.

Take ‖g‖ = 1 so

‖Θωf‖ ≤ ‖Zµ‖2 ‖f‖

and also putting f = g
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6.2 Boundedness theorems

‖Zµf‖2 ≤ ‖Θω‖ ‖f‖2

So Θω is bounded if and only if Zµ is bounded. Take g = fω, then Lg = Zµf ,

and

‖g‖L2( dy

ω(y)2
) = ‖f‖L2(0,∞) .

So,

‖Lg‖ ≤ C ‖g‖L2( dy

ω(y)2
)

if and only if

‖Zµf‖ ≤ C ‖f‖L2 .

Special cases

• [i] If ω(y) = 1 then the operator is the Hankel operator Γ and, the

operator is bounded if and only if L : L2(0,∞) → L2(C+, µ) is a

Carleson operator.

• [ii] If ω(y) = y−1/4 then the operator is the Θ operator and it is bounded

if and only if

L : L2(0,∞; y1/2dy) → L2(C+, µ),

is bounded.

6.2.1 Zen space

Let ν̃ be a positive regular Borel measure on [0,∞) and satisfying the fol-

lowing (∆2)-condition:

R := sup
t>0

ν̃[0, 2t)

ν̃[0, t)
<∞. (∆2)

Let ν be the positive regular Borel measure on C+ = [0,∞) × iR given by

dν = dν̃⊗dλ, where λ denotes Lebesgue measure. In the case of 1 ≤ p <∞,

we call

Ap
ν = {f : C+ → C analytic : sup

ε>0

∫

C+

|f(z + ε)|p dν(z) <∞}
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6.2 Boundedness theorems

a Zen space on C+. If ν̃(0) > 0, then by standard Hardy space theory, f

has a well-defined boundary function f̃ , and we can give meaning to the

expression. Therefore, we can write

‖f‖Ap
ν

= (

∫

C+

|f(z)|p dν(z))1/p.

Note that this expression makes sense in the case that ν̃(0) = 0 (e.g. the

Bergman space, since f is still defined ν-a.e. on C+ Clearly the space A2
ν is

a Hilbert space. In addition, it is known that examples of Zen spaces are the

Hardy spaces Hp(C+), where ν is the Dirac measure in 0, or the standard

Bergman spaces Ap
ν , where dν̃(t) = tα, α > −1, see ([20]).

6.2.2 Carleson measure on Zen spaces

Proposition 6.2.7. Let A2
ν be a Zen space, and let ω : (0,∞) → R+ be given

by

ω(t) = 2π

∫ ∞

0

e−2rtdν̃(r) (r > 0).

Then the Laplace transform defines an isometric map L : L2
ω(0,∞) → A2

ν ,

see ([20, Proposition 2.3]).

Theorem 6.2.8. Let A2
ν be a Zen space, ν = ν̃⊗λ, and let ω : (0,∞) → R+

be defined as following

ω(t) = 2π

∫ ∞

0

e−2rtdν̃(r) (r > 0).

Then the following are equivalent:

1. The Laplace transform L given by Lf(z) =
∫∞
0
e−tzf(t)dt defines a

bounded linear map

L : L2
ω(0,∞) → L2(C+, µ),

where

L2
ω(0,∞) = L2(0,∞;ω(t)dt).

2. There exists a constant C > 0 such that

µ(QI) ≤ Cν(QI) for each Carleson square QI ,

126



6.2 Boundedness theorems

see ([20, Theorem 2.4]).

We now have a new result about boundedness of weighted Hankel oper-

ators.

Theorem 6.2.9. Let µ be a positive Borel measure on C+, h(x) =
∫

C+
e−xydµ(y)

and ν = ν̃ ⊗ λ.

Also let α : (0,∞) → R+ be given by

α(t) = 2π

∫ ∞

0

e−2rtdν̃(r) (r > 0).

Then the weighted Hankel operator

Θωf(x) =

∫ ∞

0

α(x)−1/2h(x+ y)α(y)−1/2f(y)dy,

is bounded if and only if

L : L2(0,∞;α(y)dy) → L2(C+, µ)

is bounded. This happens if and only if

µ(QI) ≤ C.ν(QI).

Proof. From Proposition 6.2.7 and Theorems 6.2.8 and 6.2.6 the result comes

immediately.

Example 6.2.10. (i) Let α(y) = 1
y
, and ν̃ be Lebesgue measure then the

space A2
ν would be the Bergman space, and

α(t) = 2π

∫ ∞

0

e−2rtd |r| =
π

t
(t > 0).

and

R := sup
I>0

ν̃[0, I)

ν̃[0, I/2)
=

I

I/2
= 2 <∞.

Then the (∆2)-condition is satisfied.

The operator Θω defined by

Θωu(x) =
1

π

∫ ∞

0

x1/2h(x+ y)y1/2u(y)dy
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6.2 Boundedness theorems

is equivalent to

L : L2(0,∞;
dy

y
) → L2(C+, µ),

and is bounded if and only if

µ(QI) ≤ C.ν(QI) ≤ C |I|2 <∞,

where

h(x) =

∫

C+

e−xydµ(y).

(ii) Let α(t) = 2π
∫∞
0
e−2rtdδ0(r) = 2π, and ν̃ = δ0 be the Dirac measure

in 0, then the space A2
ν would be the Hardy space.

Then

ν(QI) = ν̃[0, I] × I = 1 × I = I,

and

R := sup
I>0

ν̃[0, I)

ν̃[0, I/2)
= 1 <∞,

then the (∆2)-condition is satisfied.

Then

Θωu(x) =
1

π

∫ ∞

0

1√
2π
h(x+ y)

1√
2π
u(y)dy,

is bounded if and only if

L : L2(0,∞; 2πdy) → L2(C+, µ)

is bounded and this happens if and only if

µ(QI) ≤ C.ν(QI) = C.I <∞.

(iii) The case α(t) = t1/2 is not covered by the above methods however,

from [21] we can deduce the solution in the case of sectorial measures.

Theorem 6.2.11. Let µ be a positive Borel measure supported in a sector

S(θ) ⊂ C+, where S(θ) = {z ∈ C : |arg z| < θ}, and let 0 < α < 1. The

following are equivalent.
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6.2 Boundedness theorems

1. The Laplace-Carleson embedding

L : L2(0,∞; tαdt) → L2(C+, µ), f 7→ Lf

is well-defined and bounded.

2. There exists a constant γ such that

µ(TI) ≤ γ |I|1−α

for all intervals in I ⊂ iR which are symmetric about 0, where TI is

the right half of the Carleson square QI .

3. There exists a constant k > 0 such that

∥

∥Ltαe−rt
∥

∥

L2(C+,µ)
≤ k

∥

∥tαe−rt
∥

∥

L2(0,∞;tαdt)

for all r ∈ R+,

see ([21, Theorem 3.11])

The case α = 1
2

is important here.

Corollary 6.2.12. If h(t) = 1
t

and µ is Lebesgue measure, then the Γ oper-

ator is bounded, however the Θ operator is not.

Proof. Firstly, according to Theorem 2.6 [33, page 18] the Γ operator is

bounded.

Secondly, we show that the Θ operator is not bounded.

Let

L : L2(0,∞; y1/2dy) → L2(C+, µ),

and

kr(t) = e−rt r > 0.

then

L(kr) =
1

x+ r
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6.2 Boundedness theorems

‖kr‖L2(0,∞;t1/2dt) =

(
∫ ∞

0

e−2rtt1/2dt

)1/2

=
1

4r
√

2rπ

and

‖L(kr)‖2
L2(C+,µ) =

∫ ∞

0

1

(x+ r)2
dx =

1

r
.

Then

sup
r

‖L(kr)‖L2(C+,µ)

‖kr‖L2(0,∞;y1/2dy)

= sup
r

r−1/2

r−3/2
= ∞.

Therefore

L2(0,∞; y1/2dy) → L2(C+, µ),

is unbounded. Also, by using Theorem 6.2.11, then the Θ operator is not

bounded since

µ(TI) =
1

2
|I| ≮ γ |I|1/2

where γ is a constant.

Example 6.2.13. (i) If h(t) = 1 and µ = δ0 to use the previous test take

kr(t) = e−rt.

Let

L : L2
ω(0,∞) → L2(C+, µ).

Firstly, for the Γ operator

‖kr‖L2(0,∞) =

(
∫ ∞

0

e−2rtdt

)1/2

=
1√
2r
,

and

‖L(kr)‖L2(C+,µ) =

∥

∥

∥

∥

1

x+ r

∥

∥

∥

∥

δ0

=
1

r
.

Then

sup
r>0

‖L(kr)‖L2(C+,µ)

‖kr‖L2(0,∞)

= sup
r>0

1
r
1√
2r

= ∞.

Then, the Γ operator is unbounded.

Secondly, for the Θ operator

Let

L : L2(0,∞; y1/2dy) → L2(C+, µ),
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6.2 Boundedness theorems

then

‖kr‖L2(0,∞;t1/2dt) =

(
∫ ∞

0

e−2rtt1/2dt

)1/2

=
1

4r
√

2rπ
,

and
∥

∥

∥

∥

1

x+ r

∥

∥

∥

∥

δ0

=
1

r
.

Then

sup
r>0

∥

∥

1
x+r

∥

∥

δ0

‖kr‖L2(0,∞;y1/2dy)

= sup
r>0

1
r
1

4r
√

2rπ

= ∞.

Then, the Θ operator is unbounded. Here we can not use Theorem

6.2.11, because µ = δ0 is not sectorial measure.

(ii) If h(t) = 1
1+t

and dµ = e−xdx then by using Theorem 6.2.11, the Θ

operator is bounded since

µ(TI) =

∫ |I|

1
2
|I|
e−xdx

= e
1
2
|I| − e|I|

. |I|1/2 .

(iii) If h(t) = e−λt and µ = δλ then the Γ operator is bounded as well as the

Θ operator (we knew that from Example 3.3.4 the Hankel operator is

nuclear so it is bounded, and because h ∈ L2 then the Θ operator is

Hilbert-Schmidt hence it is bounded).

Firstly, we have for the Γ operator

L : L2
ω(0,∞) → L2(C+, µ).

Then

|Lf(λ)| ≤ C

(
∫ ∞

0

|f(y)|2 dy

)1/2

since, by Cauchy-Schwarz

∣

∣

∣

∣

∫ ∞

0

e−λyf(y)dy

∣

∣

∣

∣

≤
(
∫ ∞

0

|f(y)|2 dy

)1/2(∫ ∞

0

e−2λydy

)1/2

= C

(
∫ ∞

0

|f(y)|2 dy

)1/2

131



6.2 Boundedness theorems

Secondly, we have for the Θ operator

L : L2(0,∞; y1/2dy) → L2(C+, µ),

then

|Lf(λ)| ≤ C

(
∫ ∞

0

|f(y)|2 y1/2dy

)1/2

,

since, by Cauchy-Schwarz

∣

∣

∣

∣

∫ ∞

0

e−λyf(y)dy

∣

∣

∣

∣

≤
(
∫ ∞

0

|f(y)|2 y1/2dy

)1/2(∫ ∞

0

e−2λyy−1/2dy

)1/2

= C

(
∫ ∞

0

|f(y)|2 y1/2dy

)1/2

.
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Chapter 7

Possibilities for further research

First of all, in Chapter 2 we investigated the question of stability. As we

know there are three type of stability: BIBO, H∞ and asymptotic stability.

In general the question of BIBO stability of a linear system given in terms of

a transfer function is difficult in general; however, our methods now enable

us to resolve the question for many systems. For instance, let

Gk(s) =
1

(s+ 1)k(s+ 1 + se−s)
, k = 0, 1, 2, ...,

this transfer function is asymptotically stable, also it is known that it does

not lie in H∞ for k = 0, but it is H∞ stable for k ≥ 1 see [32].

We have developed new methods that enable us to resolve the cases k = 2

and k = 3. The case of G1 as defined in [10] remains open.

Moreover, BIBO stability is a necessary condition for the Hankel operator of

a linear system to be nuclear (trace class), a property that has certain im-

plications for model reduction [18], and some related questions remain open.

For example, it would be useful to have more precise estimates of Hankel

singular values.

In Chapter 2 also, we deal with some specific examples such as 2.3.7. How-

ever, we would like to prove results applicable to a wider class of examples

and use the Walton-Marshall-Bonnet-Partington method to study these ex-

amples and determine the intervals of stability.

A systematic method for fractional systems is considered as an essential

method to identify the crossing points and the intervals of stability (asymp-

totic stability) but on other hand BIBO and H∞ stability are still open

questions when we use this method.
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In Chapter 3, we introduce diffusive systems, the Hankel operator and the

Θ operator. We look at a wide class of problems involving BIBO and H∞

stability. In addition, we study the properties of operators such as nuclearity

and Hilbert-Schmidt properties. In general, we consider diffusive systems

defined with impulse response

h(t) =

∫ ∞

0

e−tξdµ(ξ)

and transfer function

G(s) =

∫ ∞

0

dµ(ξ)

(s+ ξ)
.

The majority of results and theorems are with the measure µ ≥ 0 thus in

further study we can think about all cases, examples and theorems when µ

is not necessarily positive.

Moreover, in some examples we could not tell if Γh (Hankel operator) is nu-

clear for instance Example 3.3.4, where h(t) = tα−1

Γ(α)
so, it is still an open

question. Also, in Example 3.3.6 with h(t) = 1
t2+1

the Θ operator is Hilbert-

Schmidt but using Theorem 3.4.4 fails to say Θ is nuclear.

The reproducing kernel test gives necessary and sufficient conditions for the

Hankel operator to be bounded, however, for Θ this test just gives a nec-

essary condition to be bounded. We do not know whether it is a sufficient

condition.

In the Curtain-Zwart book [9] and many other references there are several

partial differential equations and systems where h is given by a series and µ

is a sum of point masses (discrete systems), therefore more research can be

done for these examples.

Chapter 4 focuses mainly on using the Gaussian Quadrature method to ap-

proximate irrational transfer function of diffusive system by rational ones.

Therefore we can improve the technique of approximation by using other

numerical methods. Also, we can develop more research in approximation of

unstable systems by coprime factor techniques.

Diffusive systems defined by holomorphic distributions and measures on a

half plane is the main subject in Chapter 5. Again the case of non-real and

non-positive measures could be investigated further.
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In Chapter 6 we mainly concentrate on the boundedness of weighted Han-

kel operators and Θ operators. Some cases that we solve give boundedness

results for the solution to the case of sectorial measures but some difficult

questions about non-sectorial measures are still open.
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