
Statistical issues in ecological
simulation models

Michael Spence
October 2015

Thesis submitted to the
University of Sheffield for
the degree of Doctor of

Philosophy
School of Mathematics and

Statistics

Acknowledgements

I would like to thank NERC and NCSE for funding my PhD. Thank you very
much to my supervisor Professor Paul Blackwell for his continued guidance,
knowledge and life advice. Thanks to Dr. Julia Blanchard for helping me
with the North Sea model.

Thanks to other staff and students for their advice and help during my
studies.

Thanks to all of my friends and family for continued support throughout
my studies.

We are the Boro!!!

i

Abstract

Complex simulation models are being increasingly used in ecological mod-
elling as a way of trying to understand a system by examining the processes
that make up that system. Complex simulation models generally model
behaviour of a system through a series of rules or algorithms, rather than
describing it in a formal mathematical way and this can be a good way of
capturing an ecologist’s expertise and intuition. When interpreting outputs
from such a model, it is important to allow for uncertainty due to parameter
values which may not be known precisely and structural or implementation
aspects. This thesis develops and applies a number of new statistical meth-
ods for handling uncertainty in such models.

For stochastic simulation models with intractable likelihoods, parame-
ter estimation can be done using Approximate Bayesian Computation with
Markov Chain Monte Carlo (ABC-MCMC). This method does not mix well
in the tails of the distribution. In this thesis we develop a version of ABC-
MCMC that treats the random inputs as unknown as well as the unknown
model parameters and we show empirically that this improves the efficiency
of the ABC-MCMC algorithm on a queuing model and an individual-based
model (IBM) of the group-living bird, the woodhoopoe.

For models that are expensive to run, inference may be challenging even
if the likelihood can be evaluated. We consider a deterministic multi-species
size-based marine ecosystem model, with unknown initial states and param-
eters, and carry out Bayesian inference using a combination of MCMC and
optimisation algorithms.

Stochastic simulation models, especially IBMs, often have model uncer-
tainty that is down to some seemingly arbitrary choices, for example spatial
or temporal scales, the timing of different events or the spatial configuration.
Ideally the outputs of the model should be insensitive to these choices. We
develop methods for variance-based sensitivity analysis for stochastic mod-
els, allowing us to assess the sensitivity of the model outputs to stochasticity
of the inputs and to partition out the variance between submodels. This en-
ables us to test the arbitrary choices made by the modeller and thus test
the robustness of the model. We demonstrate these methods on two IBMs:
the woodhoopoe model and a bird breeding synchrony model.

ii

Contents

1 Introduction 1

2 Models 5
2.1 Bird synchrony model . 5

2.1.1 Original model . 5
2.1.2 Variate submodels . 7

2.2 Woodhoopoe model . 7
2.2.1 Absorbing state . 11

3 Methods of parameter estimation 12
3.1 Introduction . 12
3.2 Markov Chain Monte Carlo 13

3.2.1 Metropolis Hastings 14
3.2.2 Parallel tempering . 16
3.2.3 Doubly parallel tempering 17

3.3 Approximate Bayesian Computation 20
3.3.1 Tolerance level . 22
3.3.2 Summary statistics . 24
3.3.3 Other methods . 26
3.3.4 Discussion . 30

3.4 Other methods . 31
3.4.1 Inverse Modelling Technique 31
3.4.2 Kernel Density Estimate of the likelihood 32
3.4.3 Emulation . 36
3.4.4 Synthetic likelihood 36
3.4.5 Particle MCMC . 37

4 Coupling random inputs in order to perform parameter es-
timation 40
4.1 Introduction . 40
4.2 Coupling the random inputs 41

4.2.1 Random inputs . 43
4.2.2 Infinite random fields 46

iii

4.3 Inference . 47
4.3.1 Gibbs move . 48
4.3.2 CG-ABC . 50

4.4 Examples . 51
4.4.1 Ricker Model . 51
4.4.2 Queuing model . 56
4.4.3 Woodhoopoe model 61

4.5 Discussion . 66

5 Parameter uncertainty of a dynamic North Sea size spec-
trum model 71
5.1 Size-spectrum models . 71
5.2 Model . 74

5.2.1 Model applied to the North Sea 78
5.2.2 Errors . 79
5.2.3 Numerical solution of the PDE 79
5.2.4 Burn-in . 80
5.2.5 Fishing mortality . 80

5.3 Methods . 82
5.3.1 Priors . 82
5.3.2 Exploration . 83
5.3.3 Implementation of MCMC 84

5.4 Results . 86
5.4.1 Violin plots . 86
5.4.2 Recruitment parameters 87
5.4.3 Burn in parameters 87
5.4.4 Variance parameters 87
5.4.5 Norway pout fishing in 2005 and Phase parameter . . 87
5.4.6 Residuals . 87

5.5 Analysis with landings only 94
5.5.1 Recruitment parameters 94
5.5.2 Burn-in parameters 94
5.5.3 Variance parameters 94
5.5.4 Norway pout fishing in 2005 and Phase parameter . . 97
5.5.5 Model output . 97
5.5.6 Residuals . 97

5.6 Discussion . 97

6 Global Sensitivity Analysis 103
6.1 Introduction . 103
6.2 Screening methods . 105

6.2.1 Morris Method . 105
6.2.2 Derivative based global sensitivity 105

6.3 Variance-based sensitivity . 106

iv

6.3.1 Sobol’ Indices . 107
6.3.2 Variable importance 108
6.3.3 Estimation . 110
6.3.4 Stochastic Models . 113

7 Variance based sensitivity analysis of stochastic complex
models 115
7.1 Introduction . 115
7.2 Stochastic Models . 116

7.2.1 Queueing Model . 121
7.2.2 Ricker Model . 125

7.3 Submodels and Arbitrary decisions 128
7.4 Demonstration on Individual based models 138

7.4.1 Bird synchrony model 139
7.4.2 Woodhoopoe model 148

7.5 Discussion . 153

8 Conclusions and Future work 156
8.1 Thesis summary . 156
8.2 Discussion and further work 158

8.2.1 CG-ABC . 158
8.2.2 Size-based models . 158
8.2.3 Sensitivity and Robustness analysis 159

v

List of Figures

4.1 A general model. We have inputs, parameters θ and u that
generate latent variables z, which is often tractable, and in-
puts w which along with the model and latent variables z
generate a deterministic output Y 49

4.2 The summaries for various values of log r with the same ran-
dom inputs. 53

4.3 The summaries for various values of σ2
e with the same random

inputs. 54
4.4 The summaries for various values of φ with the same random

inputs. 55
4.5 The movement along the different parameter and random in-

put axes in the queuing model. a-c are movements along
the parameters, d-f are movements in the u direction and
g-i in the w. It is black where the point would be accepted
(p(R|θ) = 1). Note that in f all of the plot is accepted which
is not the usual case for all of the space but just the region
shown in the plot. 57

4.6 The trace plot of the ABC-MCMC version of queuing model. 58
4.7 The trace plot of the coupled version of queuing model. . . . 60
4.8 The accepted regions for each of the parameters in the wood-

hoopoe model. Regions where the points would be accepted
are shown in black. 64

4.9 The trace plot of the CG-ABC version of the Woodhoopoe
model. 66

4.10 The trace plot of the ABC-MCMC version of the Wood-
hoopoe model. 67

5.1 The size spectrum . 72

vi

5.2 Images a, b and c show the total biomass for sprat whilst
running the model. The time varying inputs start in 1967.
In a, the parameters create a steady state that is constant
whereas the parameters used to in b generate a steady state
that has some cyclic behaviour. In c, the model is run with
the same parameters as in b, but is started at two different
values of ω. In a, all of the species have a constant steady
state whereas in b all of the species have cycles of the same
length. d shows how the log likelihood varies with ω. 81

5.3 The posterior distribution of ψ1:12 and b0. 88
5.4 The variance parameters for the SSB output. 89
5.5 The variance parameters for the landings output. 90
5.6 The marginal posterior distribution for ρ. 91
5.7 The ranges of residuals for the SSB. There does seem to be

some dynamic behaviour in the errors. 92
5.8 The ranges of residuals for the landings. It can be seen that

although the overall errors seem normally distributed and
therefore estimate the mean well, there does seem to be some
dynamic behaviour in the errors. 93

5.9 The marginal posterior distribution for ψ1:12 and b0. 95
5.10 The marginal posterior for the error parameters for all but

Gurnard. 96
5.11 Runs of the model with parameters sampled from the pos-

terior distribution. The grey line shows the median model
output, the dotted lines are the 5th and 95th percentiles for
the model output and the thick black line is the observed
landings. 98

5.12 Histogram of standardised residuals. 99
5.13 Runs of the model with the residuals shown. The mean resid-

ual is shown by the point and the 95th and 5th percentiles
are shown by the length of each line. 100

7.1 The first order indices for the θ1 θ3 and u with the original
prior θ3 ∼ U(·|0, 1/3) for each of the 20 outputs. The other
inputs are zero. 123

7.2 The observations of the 10/19 quantile for runs of the model
for the whole prior of θ3 in (a) and θ3 ∼ U(·|0.05, 1/3) in (b),
(c) and (d). In (b), (c) and d we show the results for θ3, θ1

and θ2 respectively. 124
7.3 The first order indices for the θ1, θ2, θ3, u and w when the

prior θ3 ∼ U(·|0.05, 1/3) for each of the 20 outputs. 126

vii

7.4 The sensitivity indices for the inputs of the Ricker model.
The first 5 inputs are the first order indices, the next 10 the
second order indices, the other sets being the third, fourth and
fifth order indices respectively with a lexicographical ordering
within each set of inputs with the inputs being in the order
r, σ, φ, e and u. 127

7.5 The directed acyclic graph of the submodel choice where all of
the submodels are parameterised from the same parameters θ. 129

7.6 The directed acyclic graph of the model described in equa-
tions 7.4 and 7.5. 130

7.7 The directed acyclic graph of a general model. 131
7.8 The directed acyclic graph of the toy model with the commu-

tative submodels. 132
7.9 The directed acyclic graph of the model described in equa-

tions 7.6 and 7.7. 135
7.10 Part of the directed acyclic graph of an iterative model. . . . 136
7.11 The directed acyclic graph of the iterative model described in

equations 7.7 and 7.6. 137
7.12 The original breeding synchrony model. 139
7.13 The breeding synchrony model with additional submodels. . . 143
7.14 The standardised iterative submodel sensitivity indices for

the stress level of the first bird to arrive. 147
7.15 The woodhoopoe model. 149

viii

List of Tables

3.1 The sample size required to ensure that the kernel density
estimate of a Gaussian distribution has relative mean squared
error is less than 0.1. 33

4.1 The standard deviations of selected percentiles of the empir-
ical cumulative distribution functions from 200 runs of the
ABC-MCMC and CG-ABC with 40,000 points ran for the
queuing model. The ratio of the standard deviation of the
ABC-MCMC method and the CG-ABC method is shown in
the final column. 62

4.2 The standard deviation of the empirical cumulative distribu-
tion function for 200 runs of the ABC-MCMC and CG-ABC
and the ratio of the two standard deviations. 68

5.1 Species data sets. 74
5.2 The log likelihood and time running, in seconds, for four dif-

ferent parameter sets close to the point found by (Blanchard
et al, 2014) and different values of δt. We found similar results
across the whole of the prior space. 79

7.1 The first order indices using the algorithm of Tarantola et al
(2006b) and q = 10, 000 and m = 1. 120

7.2 The first order indices using Tarantola et al’s (Tarantola et al,
2006b) and using common random numbers for 10,000 sam-
ples of the inputs. 121

7.3 The estimates of the variances for each of the inputs and the
total sensitivity of the random inputs. Every other combina-
tion is zero. 122

7.4 The first order (FO) and total sensitivity indices (TI) for the
outputs of the original model. Moran1 is the distance with
four neighbours and Moran2 is the distance with eight neigh-
bours. 141

ix

7.5 The submodel sensitivity indices for the breeding synchrony
model. Moran1 is the distance with four neighbours and
Moran2 is the distance with eight neighbours. 141

7.6 The submodel sensitivity indices if you were to learn NR
before m and i. Moran1 is the distance with four neighbours
and Moran2 is the distance with eight neighbours. 142

7.7 The first order (FO) and total sensitivity indices (TI) for the
outputs of the complete model. Moran1 is the distance with
four neighbours and Moran2 is the distance with eight neigh-
bours. 144

7.8 The ISSIs for each submodel. For the Initial submodel, this
can be calculated exactly; for the other two submodels we
can only get the bounds. Moran1 is the distance with four
neighbours and Moran2 is the distance with eight neighbours 145

7.9 The sensitivity indices of the arrival and all the other param-
eters. 148

7.10 The first order and total sensitivity indices for the outputs
of the woodhoopoe model. The letters a-i correspond to the
summary of the output described in 7.4.2. 151

7.11 Upper and lower bounds for the iterative submodel sensitivity
indices for the outputs of the woodhoopoe model. The letters
a-i correspond to the summary of the output described in 7.4.2.152

x

List of Algorithms

1 Metropolis-Hastings algorithm 14
2 Parallel Metropolis-Hastings algorithm 15
3 Pseudo-Marginal MCMC . 16
4 Parallel tempering algorithm 17
5 One iteration of the doubly parallel tempering with χ avail-

able cores. 19
6 Simple rejection ABC method 21
7 Rejection ABC method with summary statistics 21

8 The Kernel-ABC algorithm. c is set to sup
(
K
(
S(x)−S(y)

ε

))
. 24

9 ABC-MCMC . 27
10 ABC-PMC algorithm . 29
11 Likelihood free parallel tempering 31
12 Particle marginal Metropolis-Hastings 38
13 Generating random inputs on the fly 46
14 The Gibbs step given latent variables z generated using the

model z = p(θ, u) and random inputs u. 50
15 At each iteration of the CG-ABC algorithm for the queuing

model, θ1:3, u and w are updated as follows. 61
16 At each iteration of the CG-ABC algorithm for the wood-

hoopoe model, θ1:3 and u, where u is all of the random inputs,
are updated as follows. 65

17 One iteration of the doubly parallel tempering algorithm used
to sample from the posterior distribution. 85

xi

Chapter 1

Introduction

In ecology, as in many other areas, the need for answering the question
“what makes something happen?” as opposed to “what actually happens?”
is becoming increasingly recognised. This question often leads to building
simulation models, or complex models as they are sometimes known, where
the different aspects of the system are modelled separately and give rise to
the collective behaviour of the system. Simulation models generally model
behaviour through a series of rules or algorithms, rather than describing
it in a formal mathematical way. They describe the system processes in a
number of submodels: for example in a marine ecosystem model, consump-
tion, production, migration, predation, recruitment, habitat dependancy
and mortality may all be modelled individually (Pinnegar, 2014). By build-
ing a simulation model in this way, it enables the user to create a “virtual
laboratory” which would allow them to perform potentially expensive or
impossible real life experiments cheaply and with very little risk to the envi-
ronment. For example, in a marine ecosystem model, one could experiment
with different fishing strategies and see their consequences without the risk
of irreversible change in the real ecosystem.

One class of simulation models that are being increasingly used in ecology
are individual-based models (IBMs). Grimm (1999) describes IBMs as a
“bottom up” approach to modelling. By modelling the individuals, the
properties of the complex system can be traced to the behaviour or the
individuals in it (Kaiser, 1979). There is no strict definition to distinguish
IBMs from more classical models (Grimm and Uchmański, 1996) but in
IBMs the individuals of the system are explicitly modelled and all of the
modelling is done at the individual level as opposed to the population level
as in more conventional models. Interactions of these individuals result in
global consequences (Reynolds, 1997) that are often the aim of the IBM to
understand; for example plants and animals in ecosystems, vehicles in traffic
or people in crowds.

An example of an IBM is the marmot model by Grimm et al (2003).

1

In this model a marmot goes through its life, first being young living in a
group and then trying to become the dominant animal of that group before
eventually dying; subdominant marmots only know what is going on in their
own territory, so they will have to leave the territory to go to another one;
the number of marmots at anytime in the model is a discrete count and
marmots are born with different weaning weights and can have different
social ranks throughout their lives.

One common way of building IBM is to build an agent-based model
(ABM). ABMs are a relatively new approach to modelling complex systems
(Chen et al, 2011). They consist of interacting agents that behave automati-
cally, often described by simple rules. The rules are dependent on the agents
themselves, the environment or other agents and may have stochastic ele-
ments to them. For example, in a territory model, an agent might leave their
territory if there is a dominant animal in that territory, or else with a certain
probability. Agents are active and make independent decisions, often trying
to achieve their own goals. In ecology the goal is usually to seek fitness (an
attempt to pass on their genes to future generations) (Grimm and Rails-
back, 2005). Through these interactions, patterns and behaviours emerge
that were not explicitly programmed in the models (Macal and North, 2010).

One of the major advantages of ABMs is that it allows each agent to
be different. This is a major attraction to ecology as individuals differ from
each other and interact in different ways with the environment (Grimm
and Railsback, 2005). Not only this, but the environment may also be
heterogeneous. This is also an attraction to IBMs, as again the environment
is not the same everywhere in nature (for example, there are parts of land
that are extremely fertile and other parts that are barren). ABMs allow
these differences to be explicitly programmed into the model.

ABMs allow the experts to use their expertise and intuition in building
the model. The aim of ABMs is not only to recreate the system outputs, but
trying to recreate aspects of the real system. This is because the majority
of ABMS are built to try to understand the system as opposed to predict
it (Heath et al, 2009). Agent-based models are very popular as they seem
a natural way of modelling a system and because of this ABMs are being
used increasingly in ecology (Grimm et al, 2003; Franz et al, 2010; Hovel and
Regan, 2008) so much so that standardised ways of building and describing
these models have been developed (Grimm et al, 2006, 2010, 2014, 1996).

Simulation models are more “problem orientated” than more conven-
tional models at a cost of tractability (Silverman, 1984). They are often
developed with algorithms that are not well tuned from the beginning and
require parameters that are either not precisely known in the literature, or
simply not concretely measurable (Piou et al, 2009). As the probabilistic
behaviour of the model is implicit in the rules of the model, the likelihood
is generally intractable which means that traditional statistical methods of
parameter estimation are not possible.

2

Sometimes it is possible to perform likelihood-free inference (Wilkinson,
2010a) by running the model for a parameter set in order to estimate the
likelihood for these inputs. This is often used when the model is determin-
istic and some kind of tractable model error is assigned to the output of the
model to relate the model to the observed data. One such class of models
that this could be applied to are size-based models of the marine ecosystem.

However when the model is stochastic, the output of the model for a
particular set of parameters is still uncertain, even after the model has been
run, and thus another approach is required. One possible approach in this
case is Approximate Bayesian Computation (Beaumont, 2010; Tavaré et al,
1997), which is described in Section 3.3. This method has been developed
and different hybrid algorithms have been created in order to better estimate
the posterior distribution. One of these, ABC-MCMC (Marjoram et al,
2003) which is based on the well-established Metropolis-Hastings algorithm
(Section 3.2), has been suggested but has poor mixing qualities especially
in the tails of the distribution. In this thesis we will develop a method of
coupling the random inputs in order to improve the mixing of this algorithm.

In order to create a simulation model often assumptions need to be
made to simplify the model enough to make it useful. These could include
the scale of the model (Holland et al, 2009; Chen and Mynett, 2003) or the
order in which submodels are run with in the model. For the model to be
useful, the output should not be sensitive to the assumptions or details of the
model (Grimm and Railsback, 2005; Railsback and Grimm, 2012). Although
some efforts have been made to test these assumptions (Chen and Mynett,
2003; Kloprogge et al, 2011; Maclean, 2010) there is no formal quantitive
mathematical framework to investigate the sensitivity of the structure of the
model. However there is a framework to investigate the sensitivity of the
parameters.

Sensitivity analysis is often performed on simulation models with quite
an extensive literature on global sensitivity analysis (Sobol’, 1993; Saltelli
et al, 2000; Oakley and O’Hagan, 2004) for deterministic simulation models
however there has been little work for stochastic models (Iooss and Lemâıtre,
2015). The lack of work on stochastic models means that global sensitivity
analysis in not performed on quite a number of IBMs (Railsback and Grimm,
2012). Instead local sensitivity is often performed as an alternative but this
does not give the sensitivity of the model as a whole but just part of it.
In this thesis we develop a method of performing global sensitivity analysis
on stochastic simulation models that we apply to test whether the model is
sensitive to its assumptions and details.

In Chapter 2 we describe two IBMs that we are going to use in the
rest of the thesis. In Chapter 3 we review potential methods of estimating
the parameters both when the likelihood is tractable and when it is not.
We will also introduce some algorithms that are used in later chapters. In
Chapter 4 we develop a method of coupling the random inputs of a stochastic

3

model and show empirically that it enables us to improve the performance of
ABC-MCMC. In Chapter 5 we introduce size spectrum models and perform
parameter estimation on a multi-species size-based model of the North Sea
(Blanchard et al, 2014). The work in this chapter has been motivated by a
specific problem brought to us by Julia Blanchard in the Animal and Plant
Sciences department of the University of Sheffield. In Chapter 6 we briefly
review global sensitivity analysis before developing a method of performing
global sensitivity analysis on stochastic simulation models and using this to
perform robustness analysis on two IBMs in Chapter 7. A brief overview to
the findings of the thesis and the future work is described in Chapter 8.

4

Chapter 2

Models

In this chapter we describe the main models that are used later in the thesis.
We describe the bird synchrony chapter in Section 2.1 and the woodhoopoe
model in Section 2.2. The multi-species size-based model is described in
Chapter 5 as it only appears in there.

The models in this chapter are described using the standard way used
to describe IBMs, namely the ODD protocol (Overview, Design, Details)
(Grimm et al, 2006). Using this protocol, the author first gives an overview
of their model under the subheadings: Purpose; Entities, State variables
and scales and Process overview and scheduling. Then they describe the
Design concepts and finally they describe the details of the model under the
subheadings: Initialisation; Input data and Submodels.

2.1 Bird synchrony model

Jovani and Grimm (2008) built an individual based model that modelled the
laying times of birds. They say that in order for the birds to lay their eggs it
is important that there is calm and that each bird assesses her neighbours’
stress levels, and when they are calm enough, she lays her eggs.

First we will describe the original model, based on the descriptions of
Jovani and Grimm (2008) and Railsback and Grimm (2012), which we have
re-parameterised and then describe some possible extensions which we will
test in Chapter 7.

2.1.1 Original model

Purpose

The purpose of the model is to see how local interactions affect the breeding
synchrony of colonial birds.

5

State variables and scales

The entities are female birds that each occupy a stationary nest and are
characterised by their own stress level (OSL) and the coordinates of their
nest site. The nest sites are on a homogeneous square 15 × 15 grid that is
arranged on a torus. One time step in the model represents 1 day with each
model run until all of the birds have laid their eggs. Simulations are run
with all of the nests fully occupied.

Process overview and scheduling

At each time step, the stress level of each bird is updated according to its
own OSL and that of its eight neighbours. If an individual’s stress level
falls below a threshold (re-parameterised to 0 for this work) she will lay her
eggs and her stress level will be to set to 0 for the rest of the simulation.
The updating of the stress levels is done simultaneously for all of the birds.

Design Concepts

Breeding synchrony at global level is caused by synchrony at local levels.
Birds adapt their stress level to those around them. If an individual’s neigh-
bours are stressed then the individual’s stress level will increase and her
laying day will therefore be delayed. It is assumed that an individual can
sense the stress level of their eight neighbours but no further. Stochasticity
is assumed in the initial distribution of a stress level. The laying date of
each bird is observed.

Initialisation

Initially each of the birds have stress levels generated stochastically from a
uniform distribution between 10 and m+ 10. m is thus the range of initial
stress levels.

Input

The model does not have any external inputs.

Submodels

The model has only one submodel that is how the new stress levels are
calculated. The new stress level, OSLt+1 for bird i is

OSLit+1 = NR×meanNSLit + (1−NR)×OLSit − 1

where meanNSLit is the mean OSLt of the eight neighbours of of bird i.
NR is the neighbourhood relevance which is the amount that an individual’s

6

stress level is affected by its neighbours. If NR = 1, then the stress level of
the individuals becomes the mean of the stress levels of the neighbours less
1. If NR = 0 then there is no interaction between the birds and the stress
level reduces by 1 per time step.

2.1.2 Variate submodels

Neighbours

Instead of meanNSLit being the mean OSLt of an individual’s 8 neighbours
(Moore neighbourhood) each bird could examine the mean OSLt of her 4
neighbours (Von Neumann neighbourhood).

Stochastic Arrival

Rather than the model being initialised with all of the grid full of birds, the
grid begins empty and each bird’s arrival time is sampled from a geometric
distribution with parameter λ. Once a bird arrives her initial stress level is
sampled uniformly between 10 and 10 +m.

Stochastic Reduction

The stress level for bird i at time t+ 1 is

OSLit+1 = NR×meanNSLit + (1−NR)×OLSit − 1 + σεit

where εit ∼ N(·|0, 1).

2.2 Woodhoopoe model

Woodhoopoes are birds that can be found in the sub-Saharan (du Plessis,
1992). They live in groups just like wolves with one dominant pair which
are the only ones that breed. Quite often two of these groups will meet and
engage in a conflict. The conflict, which is performed by all the adults but
with the sub-dominants taking a larger part, involve both groups taking it
in turn to sing choruses at each other. As the conflict continues some of the
sub-dominants start waving bits of bark around like flags which is rewarded
by petting from the dominants after the conflict.

Neuert et al (1995) used an individual-based approach in order to model
the population and group dynamics of the woodhoopoes. Railsback and
Grimm (2012) simplified this model for use as examples in their textbook,
and it is this simpler version which we will describe here. We are going
to fit this model to data using the method developed in Chapter 4. We
also perform robustness analysis on this model in Chapter 7. The model is
described below using the ODD protocol.

7

Purpose

“The purpose of the model is to see illustrate the dynamics of a population
of group-living woodhoopoe, and the dynamics of its social groups, depend
on the trait individuals use to decide when to leave their group. The model
provides a laboratory for developing theory for the woodhoopoes’ scouting
foray traits.” (Railsback and Grimm, 2012).

Entities, State variables, and Scales

The model’s entities are territories and the birds. A territory is a collection
of birds and the space that the group occupy. Territories can be empty
(no birds in the territory). There are 25 territories that are positioned in
a one dimensional row that is wrapped so that the two ends of the row are
considered next to each thus creating a circle. The territories have state
variables that determine their position in the row and whether or not they
have a dominant male and a dominant female. Birds have state variables
that determine whether or not they are a dominant, which territory they
are in, their sex and their age (in months).

The time step for the model is one month and it is run for 25 years with
the first 5 years being burn-in.

Process, Overview and Scheduling

During a time step, the following processes will occur:

1. Dates and ages are updated.

2. Territories fill vacant dominant positions.

3. Birds undertake forays and experience predation.

4. Dominant females reproduce.

5. Birds experience natural mortality.

6. Output is then produced.

The woodhoopoe execute these processes in a random order and the
state variables are updated after each action.

Design Concepts

Basic principles

“The model explores the “stay-or-leave” question: when should a subordi-
nate individual leave a group that provides safety and group success but re-
stricts opportunities for individual success?” (Railsback and Grimm, 2012).

8

Emergence

We are interested in reproducing the characteristic group size pattern as
described by Railsback and Grimm (2012) and the fact that more subordi-
nate woodhoopoe leave their groups earlier in the year than later. Also the
subordinates that leave their groups in order to become a dominant with
another group are generally younger than those that stay in their groups.

Adaptation

“The only adaptive decision that the woodhoopoe make is whether or not
to undertake a scouting foray.” (Railsback and Grimm, 2012).

Objectives

Each woodhoopoe’s goal is to become a dominant.

Sensing

Woodhoopoe know nothing about other territories until they foray and try
to become a dominant in another group. At this stage the woodhoopoe
knows whether or not the group in question has a vacant dominant position
that the woodhoopoe could fill.

Stochasticity

There is a number of different stochastic parts for the model to run. Firstly
the initial age of the woodhoopoe that are alive when the model is initialised.
The order in which subordinates leave their group to foray with a certain
probability (θ2) is determined randomly. If the subordinate leaves their
group they die with a certain probability (θ3) and assuming they survive
scout to the left or right of their own territory with equal probability. When
a woodhoopoe is born the sex of the woodhoopoe is determined randomly.
Each woodhoopoe also dies with a probability (θ1).

Collectives

“The social groups are the collectives: their state affects the individual birds,
and the behaviour of individuals determines the state of the collectives.
Because the model’s “territory” entities represent the social groups as well
as their space, the model treats behaviours of the social groups (promoting
dominants) as territory traits.” (Railsback and Grimm, 2012).

9

Observation

The total population of woodhoopoe, the number of adult woodhoopoe in
each group, the number of vacant dominant positions in the whole model,
the mean age of subordinates that foray, the mean age of subordinates that
don’t foray and the total number of forays each month will all be observed.

Initialisation

Simulations start in January (month 1). Every territory starts with two
males and two females all aged uniformly between 1 and 24 months. The
oldest of each sex becomes the dominant in that territory.

Input

“The model does not use any external input.” (Railsback and Grimm, 2012).

Submodels

Dates and ages are updated

The current year and month are advanced by one month and the ages of the
birds are advanced by one month.

Territories fill vacant alpha positions

If a territory lacks a dominant position and has a subordinate of the right
sex then the oldest subordinate of that sex becomes the new dominant.

Birds undertake forays

A subordinate adult (aged a year or over) will scout and look to become
a dominant in another territory if they are not the oldest subordinate of
their sex in their territory and with a probability θ2 (leave submodel). If a
bird decides to scout it will be subject to a predication mortality. The bird
will die with a probability θ3 (predation submodel). If a bird survives this
additional mortality they either move left or right with an equal chance and
inspect the territory next to their current territory (left/right submodel).
If there is an vacant dominant position that the bird can occupy in that
territory it will occupy it (take-over submodel). If not it will move to the
territory next to that one and continue until either it has become a dominant
in a territory or has searched in 5 territories. If the bird is unsuccessful it
will return to its home territory and continue to be a subordinate.

10

Dominant females reproduce

In the twelfth month every year, dominant females that have a dominant
male in their territory will produce two offspring. The offspring have their
age set to zero and their sex is chosen randomly with equal probability of
being a male and female.

Birds experience mortality

All birds will die with a probability θ1 (natural mortality submodel).

2.2.1 Absorbing state

There is an absorbing state in this model where all of the woodhoopoe
die. This happens for high values of θ1. In Chapter 4 we use Approximate
Bayesian Computation (described in Section 3.3) to fit this model to simu-
lated data. If during a model run, the absorbing state is reached then the
proposed parameter set would be rejected.

In Chapter 7 we perform variance based sensitivity on outputs of the
model. The outputs that we examine are still defined if the model reaches
the absorbing state. Having said this, we did not find that we reached the
absorbing state in any runs of the model either in Chapter 4 or Chapter 7.

11

Chapter 3

Methods of parameter
estimation

3.1 Introduction

Once you have a model parameterisation and structure it is often necessary
to fit the model to data. This means finding values of the parameters, θ,
that could generate the data x from the model. This is often done when
the model is used to forecast events and to validate the model. In statistics
there are two different approaches of performing parameter estimation.

In classical frequentist statistics, the number of times an event occurs
in n independent and identical trials tends towards the probability of the
event taking place as n → ∞. This means that in frequentist statistics the
trial under which the event occurs must be repeatable. Furthermore a i%
confidence interval for a parameter θ means that if we were to repeat the
trials, as the number of trials n → ∞, i% of the intervals would contain
the true value of the parameter. This does not mean that the probability of
the parameter being in a particular interval, for example the one calculated
from the data, is i/100, as in the classical approach, the parameter is fixed
even if unknown, so given the data, the event {θ ∈ the confidence interval}
is either true or false, deterministically.

In subjective probability it is possible to state probabilities of any event
including non-repeatable ones. In subjective probability, the probability of
an event is an individual’s belief in the likelihood of the event occurring
on a scale from 0 to 1. Bayesian inference is conducted using subjective
probability and therefore can be used to make probability statements about
parameters.

In order to make these statements we use Bayes theorem,

p(θ|x) =
p(θ)p(x|θ)
p(x)

.

12

This equation can be separated into the prior p(θ), the likelihood p(x|θ),
sometimes written l(θ|x), and the evidence p(x). The evidence, sometimes
known as the normalising constant or just the marginal distribution for x,
can be written as

p(x) =

∫
Θ
p(θ)p(x|θ)dθ.

The prior, p(θ), is the decision-maker’s prior beliefs about the parameters
before we look at the data. This can be determined from literature or past
experiments, elicited from an expert or set to be non-informative. For a
description of elicitation see O’Hagan et al (2006). The likelihood, l(θ|x),
is the same as in the frequentist case which is the probability (or density)
of observing the data x conditional on the parameter value. If the prior
is non-informative, the posterior, p(θ|x), is equivalent to the normalised
likelihood.

Sometimes it is possible to evaluate the normalising constant analytically
meaning that the posterior can be solved analytically which is the case when
we have conjugate priors (Lee, 2004). This was done by Johnson and Briggs
(2011) when they performed parameter estimates on their IBM, examining
chytridiomycosis in frogs. However it is often the case that we only know the
posterior up to a normalising constant and therefore we have to estimate it
numerically. There are a number of Monte Carlo methods (Metropolis and
Ulam, 1949) including rejection-samplers (Rubin, 1984), population Monte
Carlo (Cappé et al, 2004) and Markov Chain Monte Carlo (Metropolis et al,
1953; Hastings, 1970) that are used to estimate or sample from the posterior
distribution. A brief overview of the latter is described in Section 3.2. It is
mostly just review but we describe a novel hybrid algorithm in Section 3.2.3
that we use in Chapter 5.

For models that are built using mechanistic rules it is often the case
that the likelihood is intractable as it either cannot be written down or is
expensive to calculate. If this is the case then other methods of parameter
estimation are required (Sottoriva and Tavaré, 2010). One natural method
is Approximate Bayesian Computation (ABC) and a brief overview is de-
scribed in Section 3.3. There are many other methods that could be used for
this problem and we have given a brief overview of some of them in Section
3.4 with some comments on our experience of using them. This section is
not essential reading for the rest of the thesis.

3.2 Markov Chain Monte Carlo

If we are trying to sample from a the distribution π(θ) but are unable to
write it down analytically, we can create a Markov chain whose stationary
distribution is π(θ). This means that once the Markov chain has reached its
stationary distribution, we can use it to take samples of π(θ). This is known

13

as the Markov Chain Monte Carlo method (MCMC).

3.2.1 Metropolis Hastings

One method of creating a Markov chain with the required stationary distri-
bution is the Metropolis-Hasting algorithm (Algorithm 1) (Metropolis et al,
1953; Hastings, 1970). Given the current point θt a new point is proposed,
θ′, according to a proposal distribution q(·|θt) and is then accepted with
probability

min

(
1,
π(θ′)q(θt|θ′)
π(θt)q(θ′|θt)

)
.

When trying to estimate more than one parameter it is possible to change
a number of parameters at a time. Sometimes the normalising constant can
be calculated analytically by marginalising the target distribution. If this
is the case the point can be sampled from this distribution and accepted
with probability 1. This is known as a Gibbs sampler (Geman and Geman,
1984). Sampling from this algorithm involves simulating the chain until it

Algorithm 1 Metropolis-Hastings algorithm

1: Generate a candidate point θ′ ∼ q(·|θt)
2: α← min

(
1, π(θ′)q(θt|θ′)

π(θt)q(θ′|θt)

)
3: Sample u ∼ U(0, 1)
4: if u < α then
5: θt+1 ← θ′

6: else
7: θt+1 ← θt
8: end if

has reached its stationary distribution and the desired sample size has been
taken. However the Markov chain may take a while to find the stationary
distribution. The period of time it takes to get into the stationary distribu-
tion is known as the “burn in” period and is discarded as it is not sampled
from the target distribution. A common application of MCMC is where
the target distribution π(θ) is the posterior distribution for θ. This simply
requires

π(θ) ∝ p(θ)l(θ|x)

and the normalising constant is not needed.
It is important to choose a good proposal distribuition q(·|θ). It has

been shown that for a multivariate normal posterior and proposal distribu-
tion that the optimal acceptance rate is 0.234, and this result seems (by
simulation) robust (Roberts and Rosenthal, 2001; Neal and Roberts, 2006).

There are a number of adaptive algorithms that help choose the pro-
posal distribution (Andrieu and Thoms, 2008) as well as other methods that

14

change how the proposal is chosen including Multiple-try MCMC, (J. Liu
and Wong, 2000) Differential Evolution Adaptive Metropolis (DREAM) (ter
Braak and Vrugt, 2008; Vihola, 2012; Vrugt et al, 2009; ter Braak, 2006),
Hamiltonian Monte Carlo (HMC) (Duane et al, 1987), Langevin adjusted
Monte Carlo (Roberts and Tweedie, 1996) and Riemann manifold Metropo-
lis adjusted Langevin algorithm (Girolami and Calderhead, 2011).

When the likelihood, l(θ|x), is slow to calculate, the Metropolis-Hastings
algorithm could be sped up by a method suggested by Cui et al (2011). At
each time step the MCMC chain proposes n points to move to. At each of
these points the likelihood is calculated and then the first of the point is
considered. If it is rejected the second is considered, then the third and so
on until either one of the points has been accepted or all of the points have
been rejected. It is essentially saying that conditional on the current point, a
proposed point being rejected and the next proposed point are independent
of one another and therefore can be run in parallel. This algorithm speeds
up the the Metropolis-Hastings algorithm up as a number of likelihoods are
estimated in parallel. This is summed up in Algorithm 2. If n = 1, the
algorithm is the same as the Metropolis-Hastings algorithm (Algorithm 1).

Algorithm 2 Parallel Metropolis-Hastings algorithm

1: Generate n candidate points θ′i ∼ q(·|θt)
2: j ← 0
3: while j < n or there is an accepted point do
4: j ← j + 1

5: α← min
(

1,
π(θ′)q(θt|θ′j)
π(θt)q(θ′j |θt)

)
6: Sample u ∼ U(0, 1)
7: if u < α then
8: θt+1 ← θ′

9: else
10: θt+1 ← θt
11: t← t+ 1
12: end if
13: end while

Suppose we were unable to estimate the likelihood l(θ|x) exactly but we
were able to sample

Z|θ,x ∼ f(θ,x)

where f(θ,x) is a noisy estimate of the likelihood, with the properties that
Pr(z < 0) = 0 and E(Z) = l(θ|x), then an MCMC algorithm (for example
see Algorithm 3 (Beaumont, 2003)) can be set up with stationary distribu-
tion

πPM (θ, z) ∝ p(θ)zf(z|θ,x)

15

which when marginalised becomes∫
p(θ)zf(z|θ,x)dz = p(θ)p(x|θ).

This means that the sample of θs found using Algorithm 3 will follow the
posterior distribution. This is known as Pseudo-Marginal MCMC (Andrieu
and Roberts, 2009).

Algorithm 3 Pseudo-Marginal MCMC

1: Generate a candidate point θ′ ∼ q(·|θt)
2: Generate a candidate likelihood estimate Z ′ ∼ f(·|θ′,x)

3: α← min
(

1, π(θ′)Z′q(θt|θ′)
π(θt)Zq(θ′|θt)

)
4: Sample u ∼ U(0, 1)
5: if u < α then
6: θt+1 ← θ′

7: Z ← Z ′

8: else
9: θt+1 ← θt

10: end if

3.2.2 Parallel tempering

If π(θ) is multi-modal, the Metropolis-Hastings algorithm would not move
between the modes in a reasonable amount of time. One way of getting
round this is by parallel tempering (Swendsen and Wang, 1986). Parallel
tempering uses the idea that if the target distribution, π(θ), is smoothed,
that allows a Metropolis-Hastings algorithm to move between modes easily.
We define

πi(θ) =
π(θ)τi∫
π(θ)τidθ

∝ π(θ)τi

where 0 ≤ τi ≤ 1. The scaling parameter, τi, is often referred to as the
temperature of the distribution. The distribution, πi(θ), will become more
peaked the larger τi is. If τi = 0 the distribution will be completely flat. For
smaller values of τi a Metropolis-Hastings algorithm will be able to make big-
ger moves whilst keeping good mixing properties. In parallel tempering we
run several chains at different temperatures, moving around by Metropolis-
Hastings algorithm, that are able to exchange points which allows us to
move around and between the modes of π(θ) much more easily.

After a Metropolis-Hastings update at each temperature two chains i
and j with current points θ(i) and θ(j) respectively are proposed and are

16

exchanged with probability

α(i, j) = min

(
1,
π(θ(i))τjπ(θ(j))τih(j, i)

π(θ(i))τiπ(θ(j))τjh(i, j)

)
,

where h(i, j) is the probability of selecting chains i and j to be exchanged.
This is summed up in Algorithm 4.

Algorithm 4 Parallel tempering algorithm

1: Set a starting value
[
θk0
]M
k=1

and temperatures [τk]
M
k=1

2: for t = 1 : N do
3: for k = 1 : M do
4: θkt ← One update of the Metropolis-Hastings algorithm with distri-

bution πk(θ) and proposal q(·|θkt−1, σk)
5: end for
6: i, j ∼ h(·, ·) {Sample i and j from the distribution h(i, j).}
7:

g ← min

(
1,
π(θ(i))τjπ(θ(j))τih(j, i)

π(θ(i))τiπ(θ(j))τjh(i, j)

)
8: Sample u ∼ U(·|0, 1)
9: if u < g then

10: φ← θit
11: θit ← θjt
12: θjt ← φ
13: end if
14: end for

Parallel tempering defines an ergodic Markov chain which therefore has
a stationary distribution and if we marginalise the stationary distribution
at temperature i we have a sample from πi(θ). Thus if we run a parallel
tempering algorithm with M temperatures, with τi = 1 for some i, then we
can use the values of just the ith chain as a sample from π(θ), the original
target distribution.

3.2.3 Doubly parallel tempering

We are going to combine the parallel tempering algorithm and the paral-
lel MCMC algorithm of Cui et al (2011) in order to try and maximise the
efficiency of the parallel tempering algorithm when the likelihood is expen-
sive to calculate. The parallel tempering algorithm remains mathematically
sound if the chains move at different speeds. If we assume that at a given
time step t each chain is in its stationary distribution π(θ)τi , then, if we only
allow Metropolis-Hastings updates, at time t + s the chain will also be in
its stationary distribution. However if we naively use the method suggested

17

by Cui et al and run each chain for a maximum of χ times steps if all of
the proposals are rejected or until the first of the χ proposals is accepted
and then proposed an exchange move the method would no longer satisfy
the Markov property and stationary distribution of chain i will no longer
be π(θ)τi . This is because there would be more chance of an exchange after
a Metropolis-Hastings move has been accepted than after a rejection. So
to be able to use this method we need to move each chain si steps before
an exchange occurs in chain i where si does not depend on anything in the
history of the chain.

In order to perform an exchange move, all of the chains involved in the
swap need to be in their respective stationary distributions. Having said
this, when the exchange occurs and between which chains, doesn’t have to
be simulated just before the proposed exchange occurs but can be done
in advance as the proposed exchanges are completely independent of chain
locations and other exchanges. In fact, as with standard parallel tempering,
it is possible to completely simulate the proposed exchanges for the whole
algorithm before the algorithm is even run. This means that if a chain is
going to be proposed in an exchange in s time steps, then we can use Cui
et al’s method to move this chain forward s steps.

Suppose we have M chains each with the time to exchange being si
for i = 1 . . .M and we only have the computational power to calculate χ
likelihoods in parallel, then we need to find a way of dividing the power
up so that we run the algorithm efficiently. We suggest that the amount
of power assigned be inversely proportional to the acceptance rate of the
recent history of the chain. In this step α is varied so that

∑M
i=1 Pi = χ.

The reason for dividing the computational effort in this way is so that for
a given chain, once a point has been accepted, any subsequent simulation
is wasted. If we assume that the local acceptances for that chain hold the
information of whether or not a point will be accepted we want to simulate
more from the points that may be rejected. This can be updated as the
algorithm continues as it doesn’t affect the Markovian assumption of the
algorithm.

18

Algorithm 5 One iteration of the doubly parallel tempering with χ avail-
able cores.

1: Given current values
[
θk
]M
k=1

, temperatures [τk]
M
k=1, exchange rates

[sk]
M
k=1 and the acceptance rates, ak, over the last n Metropolis Hastings

updates.
2: if

∑M
k=1 sk ≤ χ then

3: Pk ← sk∀k
4: else
5: for k = 1 . . .M do
6: χ1 ←

∑M
k=1 I(sk ≥ 1)

7: Pk ←

I(sk ≥ 1) +

⌊(
χ1 ×

1
ak∑M
i=1

1
ak

+ α

)⌋

{α is adjusted so that
∑M

k=1 Pk = χ.}
8: end for
9: end if

10: for k = 1 . . .M do
11: Generate Pk candidate points θ′1:Pk

∼ qk(·|θk)
12: j ← 0
13: t← 1
14: while j < Pk do
15: j ← j + 1

16: α′ ← min

(
1,

π(θ′j)
τkq(θk|θ′j)

π(θk)τkq(θ′j |θk)

)
17: Sample u ∼ U(0, 1)
18: if u < α′ then
19: θk ← θ′j
20: j ← Pk
21: else
22: t← t+ 1
23: end if
24: end while
25: Update ak so that it is the proportion of the last n proposed Metropolis

Hastings moves accepted moves for chain k.
26: sk ← sk − t
27: end for

19

28: while
∑M

k=1 Isk=0 > 1 do
29: i, j ∼ h(·, ·) {Sample i and j from the distribution h(i, j) where si =
sj = 0.}

30:

g ← min

(
1,
π(θ(i))τjπ(θ(j))τih(j, i)

π(θ(i))τiπ(θ(j))τjh(i, j)

)
31: Sample u ∼ U(·|0, 1)
32: if u < g then
33: φ← θi

34: θi ← θj

35: θj ← φ
36: end if
37: end while

Combining these ideas with Algorithm 4 gives Algorithm 5. In addition
to this, the times between exchanges will also be different. Chains that move
faster will require more clock time spent on evaluating the likelihoods so we
suggest making these chains slower. i.e. fewer moves between exchanges.
Although it may be appealing to update these exchange rates whilst the
algorithm is running, it cannot be done in practise as this would violate the
Markovian assumption of the algorithm.

3.3 Approximate Bayesian Computation

Sometimes we are unable to sample from the posterior distribution because
the likelihood is intractable but we are able to run the model at any pa-
rameter set with relatively small computational expense. Rubin (1984) says
that one way of sampling from the posterior distribution p(θ|x) is to sample
values θ1, . . . , θs from the prior, p(θ), and then define pseudo-observations

yj ∼M(·|θj)

where M(·|θj) is the model run at parameter values θj . For the values
of [yj]

s
j=1 that equal x, the θ values that correspond to these values will

be a sample from the posterior distribution. This method later became
known as Approximate Bayesian Computation although in principle, this
version involves no approximation (Tavaré et al, 1997; Beaumont, 2010) and
is described in Algorithm 6.

This is valid in theory but unfortunately Algorithm 6 rarely works in
practice. Often the model output and the data are both continuous (or
measured to many decimal places) meaning that Pr(y = x) = 0. This
means that the algorithm would be very inefficient, if useful at all, so an
approximation is taken. If ρ(y,x) < ε then θ is accepted where ρ(·) is a

20

Algorithm 6 Simple rejection ABC method

1: while i < N do
2: θ′ ∼ p(·)
3: y ∼M(·|θ′)
4: if y = x then
5: θi ← θ′

6: i← i+ 1
7: end if
8: end while

measure of the distance between x and y. This means that if the actual
data and the simulated data are within some tolerance threshold ε then the
point will be accepted.

x may also be high dimensional which again means that recreating the
data is difficult and sometimes impossible. So the dimension of x can be
reduced by using summary statistics S(x). This method was first used in
population genetics (Pritchard et al, 1999) and is described in Algorithm 7.

Algorithm 7 Rejection ABC method with summary statistics

1: while i < N do
2: θ′ ∼ p(·)
3: y ∼M(·|θ′)
4: if ρ(S(y), S(x)) < ε then
5: θi ← θ′

6: i← i+ 1
7: end if
8: end while

Using some ε means that the inference is an approximation rather than
exact. Instead of sampling from the target distribution

π(θ|x) ∝ p(θ)p(x|θ),

we are sampling from

πABC(θ|x) ∝ p(θ)p(R|θ)
∝ p(θ|R) (3.1)

where R = {z : ρ(S(z), S(x)) < ε}. If ε = 0 the target distribution becomes

πABC(θ|x) ∝ p(θ)p(S(x)|θ)
∝ p(θ|S(x))

21

and if the summary statistics are sufficient then

πABC(θ|x) ∝ p(θ)p(x|θ)
∝ p(θ|x)

and therefore we would be sampling from the target distribution. The basic
idea behind ABC is that using a representative summary statistic coupled
with a small enough tolerance should produce a good approximation to the
posterior distribution (Marin et al, 2012).

3.3.1 Tolerance level

The tolerance should be set as small as possible in order to give reasonable
results but not so small that nothing is accepted. Fearnhead and Prangle
(2012) and Blum (2010) showed that optimal values of ε that depend on
the true likelihood. As these are not computable other methods of setting
the tolerance need to be used. There are a number of ways to remove the
approximation and make the simulation exact, some of which are described
below.

Adjustment

Beaumont et al (2002) proposed a method of improving the approximation
by using a regression method that shifts the accepted points so that their
pseudo-observations S(y) in R are mapped to S(x)

Each proposed θ is given a weight (rejected values are given a weight of
0) depending how far away S(y) is from S(x). The authors suggest using
an Epanechnikov kernel

K(t) =

{
cε−1(1− t/ε2)) t ≤ ε,
0 t > ε,

where c is a normalizing constant and ε is chosen so that approximately 1% of
the proposed θ values are accepted. The weight is K(||S(x))−S(y))||) where
||S(x)) − S(y))|| is the distance between S(x) and S(y). The regression
parameters β̂ are calculated from

β̂ = (X ′WX)−1X ′Wθ

where

X =

1 S1(x)− S1(y1) · · · Sn(x)− Sn(y1)
1 S1(x)− S1(y2) · · · Sn(x)− Sn(y2)
...

...
. . .

...
1 S1(x)− S1(ym) · · · Sn(x)− Sn(ym)

 and θ =

θ1

θ2
...
θm

22

for n summary statistics and m proposed θ values and where W is a diagonal
matrix

W =

K(||S(x)− S(y1)||) 0 · · · 0

0 K(||S(x)− S(y2)||) · · · 0
...

...
. . .

...
0 0 · · · K(||S(x)− S(ym)||)

 ,

β is a m+ 1 column vector and the regression model

θ = Xβ̂.

The first element of β̂ is a constant, however every ith subsequent element
relates to the ith summary statistic. Each of the N accepted θjs are then
adjusted for each summary statistic

θ∗j = θj + β̂i+1(Si(x)− Si(y)) for i = 1...n, j = 1...m

and therefore θ∗ are sampled from a better approximation than rejection-
ABC.

Beaumont et al (2002) assume that, around the region in the parameter
space where the model is accepted, the relationship between θ and Si(x)−
Si(y), for i = 1 . . . n, can be represented using a linear model and therefore
are able, with a small enough tolerance, to move the points as described
above. Blum and François (2010) extended this by using non-linear models
to adjust the accepted points.

Kernel ABC

A more general way of looking at the accept/reject part of the algorithm is
to accept or weight points according to a kernel K(·). If K(·) is a probability
density then the target distribution is

πKernel−ABC(θ|S(x)) ∝ p(θ)
∫
D
K

(
S(x)− S(z)

ε

)
p(z|θ)dz. (3.2)

This is the posterior distribution of p(θ|Q) where Q is the perturbation of
S(x) with distribution K(·) scaled by ε or more formally

Q = S(x) + εz,

where z ∼ K(·). A rejection algorithm using Kernel ABC is presented in
Algorithm 8.

If we can say that
x = M(·) + ζ,

where M can be learned exactly by simulation, and ζ is an error term with
known distribution, Kζ(·), that does not depend on θ and is independent of

23

Algorithm 8 The Kernel-ABC algorithm. c is set to sup
(
K
(
S(x)−S(y)

ε

))
.

1: while i < N do
2: θ′ ∼ p(·)
3: y ∼M(·|θ′)
4: u ∼ U(0, 1)

5: if u <
K
(
S(x)−S(y)

ε

)
c then

6: θi ← θ′

7: i← i+ 1
8: end if
9: end while

M and if we sample the ABC posterior using Algorithm 8, with line 5 being
replaced by

if u <
Kζ (x− y)

c
then,

then we would be sampling from the exact posterior distribution (Wilkinson,
2013).

A similar idea is that of Noisy ABC (Fearnhead and Prangle, 2012). If
we define

Snoisy = S(x) + εz,

where z ∼ K(·), and used Algorithm 8, with line 5 being replaced by

if u <
K
(
Snoisy−S(y)

ε

)
c

then,

to sample the ABC posterior, then we would be sampling from the true pos-
terior distribution, p(θ|S(x)) (Fearnhead and Prangle, 2012). Furthermore,
as the amount of data increases, the target of the noisy ABC will converge
to a point mass on the true parameter value. This is not the case with stan-
dard ABC. For more information on this topic see Fearnhead and Prangle
(2012, Section 2.2). An advantage of Noisy ABC is that we can specify any
K(·) and we are still sampling from the true posterior distribution.

3.3.2 Summary statistics

Carrying out inference based on summary statistics instead of data sets im-
plies discarding potential useful information (Csilléry et al, 2010). S(·) may
be a vector value; however if you increase the number of summary statistics,
you can increase the amount of information available to the ABC algorithm
(Sousa et al, 2009). This can reduce the efficiency of the inference as when
the number of dimensions increases, the probability of accepting a simula-
tion decreases exponentially and the Monte Carlo error of the estimation

24

increases as the number of summary statistics increases (Fearnhead and
Prangle, 2012; Beaumont et al, 2002).

In response to this Joyce and Marjoram (2008) developed a method that
scores summary statistics according to whether their inclusion in the anal-
ysis improves the quality of inference. Suppose we have a list of summary
statistics S1, S2, · · ·, Sk−1 and a candidate statistic Sk. The candidate sum-
mary statistic is scored by

P (θ|S1, S2, · · ·, Sk)
P (θ|S1, S2, · · ·, Sk−1)

, (3.3)

with a summary statistic that greatly improves the quality of the inference
giving a lower score. If the summary statistics S1, S2, ···, Sk−1 were sufficient,
no other summary statistic could be calculated from the data that would
provide any additional information about the data, then the likelihood of
the summary statistics given the parameter would be

P (Sk|S1, S2, · · ·, Sk−1, θ) = P (Sk|S1, S2, · · ·, Sk−1)

which would mean that expression 3.3 would be approximately one (Joyce
and Marjoram, 2008).

Fearnhead and Prangle (2012) showed that the optimal choice of sum-
mary statistics, that minimises the quadratic loss of an estimate of the pa-
rameter, is E(θ|x). That is summary statistics that are equal to the posterior
mean. However we are unable to calculate the posterior means but we can
use simulation to estimate these. Fearnhead and Prangle suggest

1. simulating sets of parameter values and data from the prior.

2. using the simulated sets of parameter values and data to estimate the
summary statistics.

3. running ABC with this choice of summary statistics.

There could be an additional step, before step 1, that determines in which
regions of the parameter space the posterior distribution has negligible mass
using arbitrary summary statistics similar to History Matching (Vernon
et al, 2010). This means that these regions do not need to be simulated
from in steps 1 and 3.

In the first step T parameter values [θi]
T
i=1 are sampled from the prior

(or from the region where there is not negligible posterior mass) and the
model is run at these values to generate pseudo data [yi]

T
i=1.

There are a number of methods of using the simulated values to estimate
the parameter values, but Fearnhead and Prangle suggest building a regres-
sion model. They suggest using a function f(·) so that f(yi) is a vector of,
possibly non-linear, transformations of the data so that [f(yi)]

T
i=1 are the

25

explanatory variables and the parameter values [θi]
T
i=1 are the responses.

This means that we fit a model

θ = E(θ|y) + ξ

= β0 + f(y)β + ξ (3.4)

where ξ is some zero-mean noise. The fitted function in equation 3.4 is
then an estimate of E(θ|y). If more than one parameter is required to
be estimated this is done independently for each of them. This step then
becomes a familiar statistical problem with standard model checks being
used to decide between different models. Equation 3.4 is then used as the
summary statistic for step 3, with the summaries of the data being

β0 + f(x)β.

Fearnhead and Prangle suggest that twice as much processing time is spent
on step 3 as on step 1 with step 2 having negligible processing time.

3.3.3 Other methods

In higher dimensions, or when the prior is not very informative, rejection-
ABC can be very inefficient. This lead to the development of a number of
different methods that are described in this subsection.

ABC-MCMC

Marjoram et al (2003) developed a method of using ABC to approximate
the likelihood with an MCMC approach (Algorithm 9). In this algorithm
a new candidate point, θ′, is sampled from the current point, θ using q(·|θ)
and then the model is run with parameter θ′ to generate pseudo data, y.
If this sampled output is close enough to the observed data, x, or more
formally if ρ(S(y), S(x) < ε), then the new candidate point is accepted with
probability

α(θ′, θ) = min

(
1,
p(θ′)q(θ|θ′)
p(θ)q(θ′|θ)

)
.

Although the ABC-MCMC algorithm does sample from πABC(θ|x), it doesn’t
mix very well (Sisson et al, 2007). If the chain reaches a part with a low
posterior distribution then, with a poor proposal mechanism, the chain will
not move and will stick in regions of the state space for long periods. To
counter this the algorithm should be run for a long time.

Wegmann et al (2009) suggest treating the tolerance as a random variable
with an informative exponential prior and then updating it, along with the
uncertain parameters, using ABC-MCMC for N iterations. Then after the
chain has finished running the n (for n < N) accepted points that were

26

Algorithm 9 ABC-MCMC

1: Set a starting value θ0

2: for i = 1 : N do
3: Generate a candidate point θ′ ∼ q(·|θi−1)
4: y ∼M(·|θ′)
5: if ρ(S(y), S(x)) < ε then

6: α← min
(

1, p(θ
′)q(θ|θ′)

p(θ)q(θ′|θ)

)
7: Sample u ∼ U(·|0, 1)
8: if u < α then
9: θi ← θ′

10: else
11: θi ← θi−1

12: end if
13: else
14: θi ← θi−1

15: end if
16: end for

closest to the data or summaries of the data then become the sample. The
other points are then discarded.

Lee et al (2012) described two variations of ABC-MCMC. The first also
takes advantage of the pseudo-marginal MCMC features. Instead of the
likelihood being either 1 or 0, for a given set of parameters the likelihood is
estimated by calculating

l(θ|x) =
1

m

m∑
i=1

Iρ(yi,x)<ε

where yi is the pseudo data of the ith simulation of m model runs conditional
on the parameters θ. This means that the estimation of the likelihood is
more accurate and would improve the mixing of the MCMC but will mean
that the likelihood evaluation would slow down as the model would need to
be run n times. Having said this, the estimate of the likelihood could easily
be parallelised.

The second variation of the ABC-MCMC algorithm is known as the one-
hit MCMC-ABC. In this algorithm, both the proposed parameter value θ′

and the current parameter value θ are used to run simulations. The first
parameter value, θ′ or θ, to produce an ABC acceptance is accepted as the
next point in the MCMC. This would also improve the mixing of the MCMC
but would also slow down the likelihood evaluation. Unlike in the previous
algorithm the computational effort required to evaluate the likelihood is not
capped and one move could take a long time even if parallelised.

27

ABC-PMC

Sisson et al (2007) proposed a method of sequentially improving the ABC
approximation. Sisson et al suggested that rejection-ABC could be run in
rounds with the samples for round t being sampled from a weighted average
from the points accepted in round t− 1 (for t > 2) with each round getting
a smaller tolerance value ε (in the first round points are simulated from the
prior). So that points are not repeated, once a new θ value is sampled it
is perturbed according to some kernel Kt(·). However Sisson et al (2007)
method of weighting the points gave a bias.

Beaumont et al (2009) proposed a method that corrected for the bias
in Sisson et al (2007). They based their method on the Population Monte
Carlo algorithm (Cappé et al, 2004). They built a kernel density estimate
(Silverman, 1986) of πt−1(θ) with the points accepted in round t − 1 with
kernel Kt(·) (Beaumont et al (2009) proposed that the smoothing parameter,
τ2, be twice the empirical variance) and sampled the potential points for
round t from this kernel density estimate. This means the weight of an
accepted point in round t became

π(θ)

πt−1(θ)
.

This method is summed up in Algorithm 10. Del Moral et al (2012) also
developed a method of adaptively choosing the tolerance εt by taking a
particle filtering (section 3.4.5) approach to updating the parameters rather
than a Population Monte Carlo approach (SMC-ABC).

Coupled ABC

Neal (2012) developed a method known as Coupled-ABC that treats ABC as
an inverse problem. If we suppose that we can split up the inference problem
into a random vector U such that U is independent of the model parameters
θ, then we can say that given a specific parameter set and a realisation of
the random vector u, the simulated model output is a deterministic function
of both of these h(u, θ). We then solve the inverse problem and say that
the set Θ = {θ : x = h(u, θ)} which p(θ|x,u), which is exactly the correct
inference.

Neal and Huang (2014) state that the level of approximation of an ABC
algorithm is often difficult to quantify and extend the idea of coupled ABC
to an MCMC framework by treating the random vector u as the random
variables used when simulating from the model and proposing new sets of
u depending on the current state, essentially treating u as an additional
parameter. Neal and Huang, in their forward simulation MCMC algorithm,
alternate between updating the random variables, u, and the parameters, θ
and perform ABC in such a way that ε = 0.

28

Algorithm 10 ABC-PMC algorithm

1: while i < N do
2: Sample θ′′ ∼ p(θ)
3: y ∼M(·|θ′′)
4: if ρ(S(y), S(x)) < ε1 then
5: θi1 ← θ′′

6: wi1 ← 1
7: i← i+ 1
8: end if
9: end while

10: τ2
1 ←twice the empirical variance of θ1

i s
11: for t = 2 : T do
12: while i < N do
13: Sample θ′ ∼ θt−1 with weights wit−1

14: Sample θ′′ ∼ Kt(·|θ′, τ2
t)

15: y ∼M(·|θ′′)
16: if ρ(S(y), S(x)) < εt then
17: θit ← θ′′

18: wit ←
p(θ′′)∑N

j=1 w
j
t−1Kt(θ

′′|θjt−1)

19: i← i+ 1
20: end if
21: end while
22: τ2

t ←twice the empirical variance of θtis
23: end for

The authors cause a simulation to become exact in two ways. For some
models they create a bias that means that the model output, y, equals
the observed data, x, exactly. By taking into account of this bias, and
the probability of it occurring exactly, it is possible to generate a likelihood
l(θ,u|x) which takes pseudo marginal approach (Andrieu and Roberts, 2009)
(see Section 3.2.1) to MCMC.

The second way is similar to the way described by Wilkinson (2013)
(Section 3.3.1), where the model is ran and then, conditional on the model
being run, the likelihood of the data being generated is calculated. This
could be measurement error (Wilkinson, 2013) or sampling error when con-
ducting a survey (Neal and Huang, 2014). Another way would be to stop a
model early, for example in the woodhoopoe model described in Section 2.2
we could stop the model before the last submodel is run, the mortality, and
check the likelihood of getting the observed data from that. This method
also takes advantage of the pseudo marginal approach and leads to what is
known as exact ABC. It is similar to Likelihood free MCMC (see Section
3.4.5).

29

Likelihood free parallel tempering

Baragatti et al (2013) proposed a parallel tempering (see Section 3.2.2) ver-
sion of ABC. In the ABC version the different chains t have different toler-
ance values εt and move according to the ABC-MCMC algorithm described
above. Because the likelihood for the higher εs will cover a larger area than
those of a lower ε the proposal distribution could cover a higher area. So for
tolerances

ε1 < ε2 < · · · < εT

the parameter in the proposal (eg. the variance if the proposal was a Gaus-
sian distribution) will be

σ1 < σ2 < · · · < σT .

The MCMC part of algorithm is just the same as the method described in
Section 3.3.3 and then at each step in the algorithm T exchanges are pro-
posed. Any chain can exchange current values with any other and to improve
the acceptance probabilities chains are put into K “rings”. “Rings” are fixed
disjoint subsets of tolerance levels space E1, . . . , EK . At each iteration, the
ith chain (with sampled values y) is associated with Ej if

ρ(S(yi), S(x)) ∈ Ej .

For each exchange move, a ring which has at least two chains associated with
it is chosen at random and then two chains associated with it are chosen at
random (i, j with εi < εj). The chosen chains are exchanged if

ρ(S(yj), S(x)) < εi.

This is algorithm is summed up in Algorithm 11.

3.3.4 Discussion

ABC is rarely used to estimate parameters in higher dimensions. One of the
main reasons for this is that as the number of dimensions goes up, the size
of the prior also increases and therefore the size of the evidence, or P (R)
as in equation 3.1, gets smaller. For this reason rejection methods such as
ABC-PMC and SMC-ABC may find it difficult to even locate this space let
alone find a number of points in it (Lee et al, 2011).

We believe that an MCMC version of ABC is the way forward to perform
ABC in higher dimensions. One of the good things about MCMC in higher
dimensions, both when the likelihood is known and it is intractable, is that
when we are in the region of the posterior distribution then we stay in this
region. This means that it doesn’t matter how many parameters there are
we will always stay in the right region. Having said this there still needs to
be work done on ABC-MCMC as it is poor in the tails of the distribution

30

Algorithm 11 Likelihood free parallel tempering

1: Set a starting value
[
θk0
]T
k=1

and rings [Ek]
K
k=1

2: for i = 1 : N do
3: for k=1:T do
4: θki ← One run of Algorithm 9 with tolerance εk and proposal
q(·|θki−1, σk)

5: end for
6: for k = 1 : T do
7: Associate chain k with the correct ring [Ej]

K
j=1 such that

ρ(S(yk), S(x)) ∈ Ej .

8: end for
9: for k = 1 : T do

10: Sample a subset Ej (if it exists), with at least two chains associated
with it. Then sample two chains, l,m with εl < εm, associated with Ej .

11: if ρ(S(ym), S(x)) < εl then
12: φ← θil
13: θim ← θil
14: θil ← φ
15: φ← yil
16: yim ← yil
17: yil ← φ
18: end if
19: end for
20: end for

(Sisson et al, 2007) which we also found from early experiments. In Chapter
4 we develop a version of ABC-MCMC that is similar to coupled-ABC as
well as some Gibbs steps that are used in order to improve the mixing of
the ABC-MCMC algorithm.

3.4 Other methods

There are many other methods that could be used to estimate the parame-
ters. Below we describe a few of them.

3.4.1 Inverse Modelling Technique

Using the pattern orientated modelling method (Grimm et al, 1996) param-
eter values can be found indirectly by changing a number of parameters
at once by calibration and seeing if the model output matches some ob-
served data (Wiegand et al, 2003, 2004). The inverse modelling technique

31

(Grimm and Railsback, 2005) involves simulating the model over a wide
range of parameter values in order to find suitable values for the parame-
ters that reproduce the patterns observed in the ecological system. Grimm
and Railsback (2012) describe the idea of calibration by first identifying the
parameters that need to be estimated and identifying the the patterns that
they want the model to replicate and deciding on an acceptance criteria
before running the model for many parameter sets and seeing which ones
pass the acceptance criteria. This seems to resemble a less formal version of
ABC (Section 3.3).

3.4.2 Kernel Density Estimate of the likelihood

A popular method of estimating the likelihood when the likelihood is in-
tractable is to build a kernel density estimate (Silverman, 1986) of the model
output. That is if y ∼ M(·|θ), then a kernel density estimate g̃(y|θ) is
built by sampling from M(·|θ) and then the log-likelihood is estimated by∑T

i=1 log (g̃(xi|θ)). This approach was first suggested by Diggle and Gratton
(1984).

Another attempt at doing this was by Piou et al (2009). Piou et al
developed an information citation based on the AIC (Akaike, 1974) and DIC
(Spiegelhalter et al, 1998, 2002) where the log likelihood is estimated using a
kernel density estimation. The authors then say that this method could then
be used to perform parameter estimates and describe two algorithms, one
resembling ABC-MCMC that has a value of their likelihood as the tolerance
and another that is similar to MCMC. The idea of using kernel density
estimates to estimate likelihoods was also suggested by Tian et al (2007).

This method can only really be used when the data are iid and when
the data types are only in a few dimensions. This is because the number of
simulations in order to accurately estimate the likelihood quickly becomes
large as the number of dimensions increases. Silverman (1986) gives a table
that shows the sample size required to ensure that the relative mean squared
error of a kernel density estimate of a Gaussian distribution is less than 0.1
(Table 3.1).

In addition to this, kernel density estimates are biased by their nature
(Silverman, 1986) and the bias is not necessarily proportional to the true
likelihood hence performing MCMC with this as an estimate to the likelihood
will not lead to the sample coming from the correct distribution (Andrieu
and Roberts, 2009).

Mart́ınez et al (2011) used an approximate likelihood based on an esti-
mate of the distribution of the data. They fit a kernel density estimate, g̃(x),
constructed from empirical data x. Given a parameter value θ, their like-
lihood function depends on pseudo observations simulated from the model

32

Dimensionality Required sample size

1 4
2 19
3 67
4 223
5 768
6 2,790
7 10,700
8 43,700
9 187,000
10 842,000

Table 3.1: The sample size required to ensure that the kernel density esti-
mate of a Gaussian distribution has relative mean squared error is less than
0.1.

f(·|θ) = y(θ) = (y1, y2, . . . , ym) and is given by

lM (θ|x,y(θ)) =
m∏
i=1

g̃(yi|x).

We are now going to show that this is not always valid and the the reader
can skip the rest of this subsection if required. If we write Martinez et al.’s
likelihood as lM (θ|x,y(θ)) and the traditional likelihood as l(θ|x,y(θ)) we
know that

lM (θ|x,y(θ)) =

m∏
i=1

g̃(yi|x)

l(θ|x,y(θ)) =

n∏
i=1

f̃(xi|y(θ)),

where f̃(xi|y(θ)) is a kernel density estimate build from y(θ), and by taking
logs

LM (θ|x,y) =
m∑
i=1

log g̃(yi|x)

L(θ|x,y) =

n∑
i=1

log f̃(xi|y).

Each value z is expected to occur mf(z|θ) times in the simulation or ng(z)
times in the data as the number of samples approaches infinity where f(·|θ)
is the true distribution of the model output and g(·) is the true distribution

33

of the data. So taking the limit as m,n→∞.

LM (θ) =

∫
R1

f(z|θ) log g(z)dz (3.5)

L(θ) =

∫
R2

g(z) log f(z|θ)dz (3.6)

where R1 is the region covered by log g(z|x) and R2 is the region covered
by log f(z|θ). If equation 3.5 equals equation 3.6 then

lM (θ) = l(θ). (3.7)

Example 1. If the simulated data and the true data are both normally
distributed with the same variance but different means (θ and θ∗ respectively)
then equation 3.7 is satisfied.

Proof. Let θ∗ be the true value of the parameter then

L(θ) =

∫
R2

g(z) log f(z|θ)dz

=

∫ ∞
−∞

N(z|θ∗, σ2) logN(z|θ, σ2)dz

=

∫ ∞
−∞

1√
2πσ2

exp

(
− 1

2σ2
(z − θ∗)2

)
× log

(
1√

2πσ2
exp

(
− 1

2σ2
(z − θ)2

))
dz

which simplifies to be

L(θ) =

∫ ∞
−∞

1√
2πσ2

exp

(
− 1

2σ2
(z − θ∗)2

)
log

1√
2πσ2

dz

+

∫ ∞
−∞

1√
2πσ2

exp

(
− 1

2σ2
(z − θ∗)2

)(
− 1

2σ2
(z − θ)2

)
dz

= log
1√

2πσ2
− 1

2σ2∫ ∞
−∞

(z − θ)2 1√
2πσ2

exp

(
− 1

2σ2
(z − θ∗)2

)
dz. (3.8)

Looking at the integral and expanding the brackets∫ ∞
−∞

(z2 − 2θz + θ2)
1√

2πσ2
exp

(
− 1

2σ2
(z − θ∗)2

)
dz

which becomes
E(z2)− 2θE(z) + θ2. (3.9)

34

It is known using a simple identity that

E(z2) = σ2 + θ∗2

so equation 3.9 becomes
σ2 + (θ∗ − θ)2

and plugging this into equation 3.8

L(θ) = log
1√

2σ2π
− σ2 + (θ∗ − θ)2

2σ2
.

Similarly using the same method it can be shown that

LM (θ) = log
1√

2σ2π
− σ2 + (θ − θ∗)2

2σ2
.

As (θ − θ∗)2 = (θ∗ − θ)2, we can say that

L(θ) = LM (θ).

Using a similar method two normal distributions with a simulated vari-
ance σsim and empirical variance σobs then the likelihoods are

L(θ) = log
1√

2σ2
simπ

−
σ2
obs + (θ∗ − θ)2

2σ2
sim

LM (θ) = log
1√

2σ2
obsπ

− σ2
sim + (θ − θ∗)2

2σ2
obs

and hence L(θ) 6= L(θ).

Example 2. If both the simulated and real distributions are distributed ex-
ponentially with parameter λ and λ∗ respectively then LM (λ) 6= L(λ).

Proof. From equation 3.5

LM (λ) =

∫
R1

f(z|λ) log g(z)dz

=

∫ ∞
0

λ exp(−λz) log (λ∗ exp(−λ∗z))dz

=

∫ ∞
0

λ exp(−λz) log λ∗dz −
∫ ∞

0
λ∗zλ exp(−λz)dz

= log λ∗ − λ∗E(z)

= log λ∗ − λ∗

λ
. (3.10)

35

Using a similar method

L(λ) = log λ− λ

λ∗
(3.11)

and therefore LM (λ) 6= L(λ)

Another way of looking at example 2 is by working out the MLEs of both
equation 3.10 and 3.11. The MLE of the true likelihood is λ∗. Differentiating
equation 3.10 and 3.11

d(LM (λ))

dλ
=

λ∗

λ2

d(L(λ))

dλ
=

1

λ
− 1

λ∗
; λ̂ = λ∗

respectively we can see that equation 3.10 does not have an MLE. This
means that this method does not always give the correct likelihood.

3.4.3 Emulation

If the simulation model, M(·), is relatively smooth, meaning that M(θ0) is
similar to M(θ0+δ) for small δ, then it is possible to build a Gaussian process
emulator (Kennedy and O’Hagan, 2001) in order to model the simulation
model. The Gaussian process emulator is a stochastic representation of M(·)
(Vernon et al, 2010; Oakley and O’Hagan, 2002; O’Hagan, 2006) and is often
used when the model is computationally expensive to run.

A Gaussian process is fitted to some model evaluations y at some training
parameters φ and then for any point in parameter space the model output
is

M(·)|β,y,φ ∼ GP (·|β,y,φ).

Effectively a regression, with parameters β, is fitted to the training pa-
rameters and then the Gaussian process just smoothes out the residuals
(O’Hagan, 2006). The idea is that the Gaussian process is quick to evaluate
and therefore can evaluate M(·) at any input and give an output with a mea-
surable degree of uncertainty. Gaussian process emulators have been used
on many different models from many different disciplines including climate
science (Holden et al, 2010), cosmology (Vernon et al, 2010) and medical sci-
ence (Strong, 2011). For a more thorough description of Gaussian Process
emulation see Wilkinson (2010b).

3.4.4 Synthetic likelihood

Wood (2010) described a method of taking summary statistics, s(y), of
M(·) that are asymptotically normally distributed such that

s(y) ∼ N (·|µθ,Σθ).

36

This means that if we know µθ and Σθ then

l(θ|s(x)) = N (s(x)|µθ,Σθ)

which is the multivariate normal distribution evaluated at s(x). Having said
this, we generally do not know µθ and Σθ and therefore have to estimate
them. Wood suggests repeatedly sampling from M(θ) in order to estimate
these values.

The summary statistics are not usually sufficient but this is not always
the aim of the inference. Often the aim of the inference is to find parameter
values that recreate features of the data. This could be very useful for
noisy models and individual based models where we are often only interested
in patterns. Hartig et al (2011) used this approach to perform parameter
estimation of an individual based tree model. Wilkinson (2014) built a
Gaussian Process emulator for the synthetic likelihood where, rather than
run the model every time to estimate parameters, all of the computational
effort is used to build the emulator and this saves many of the runs.

3.4.5 Particle MCMC

Suppose we have a dynamic state space model with, at time t, a hidden
state yt defined by

Yt ∼ g(·|yt−1, θ)

and an observed state Xt defined by

Xt ∼ f(·|yt, θ)

for t = 1 . . . T . Suppose also that we have observations x1:T and we are
interested in the distribution of the latent states p(y1:T |x1:T). If the model
is linear and the errors are Gaussian it is possible to use the Kalman filter
(Kalman, 1960) in order to find this exactly. However for nonlinear and
non-Gaussian models another approach needs to be made. One possible
approach is Sequential Monte Carlo or Particle Filters (Gordon et al, 1993).

Bootstrap particle filtering is performed by first sampling n particles
from the initial distribution p(y0) and setting each particle weight wi1 =
1/n. If at time t − 1 we have {yit−1, w

i
t−1}ni=1, which is an estimate of

p(y1:t−1|x1:t−1), then we can sample n particles y
′i
t−1 from yit−1 with probabil-

ity proportional to wit−1 and simulate them forward so that yit ∼ g(·|y′it−1, θ).
We then adjust the weight

wit = f(xt|yit, θ)

which means that {yit, wit}ni=1 is an estimate of p(y1:t|x1:t). Furthermore
p̃(xt|x1:t−1) =

∑n
i=1wi is an estimate of p(xt|x1:t−1, θ). This is just the

37

description of one type of particle filter; for a more complete description of
particle filters see Doucet and Johansen (2011).

Del Moral (2004) found that

p̃(x1:T |θ) =
T∏
t=1

p̃(xt|x1:t−1),

estimated from the particle filter, to be an unbiassed estimate of l(θ|x1:T)
and this, coupled with the pseudo marginal MCMC algorithm described in
Section 3.2, allows us to create a Markov Chain that samples from p(θ|x1:T)
known as the Particle Independent Metropolis-Hastings (PIMH) algorithm
(Andrieu et al, 2010). This is just Algorithm 3 with Z being equal to
p̃(x1:T |θ). Andrieu et al also developed the Particle Marginal Metropolis-
Hastings (PMMH) algorithm and the particle Gibbs algorithms that also
enabled us to sample from p(θ, y1:T |x1:T). The PMMH algorithm is described
in Algorithm 12.

Algorithm 12 Particle marginal Metropolis-Hastings

1: Propose a move to θ′

2: Z ← p̃(x1:T |θ′){The estimate of the likelihood from the particle filter.}
3: y′1:T ∼ p̃(·|θ′,x){Sample one of the particle paths.}
4: Accept θ′, Z and y′1:T with probability

min

{
1,
q(θ|θ′)p(θ′)Z ′

q(θ′|θ)p(θ)Z

}

A similar algorithm is the likelihood-free MCMC (LF-MCMC) (Wilkin-
son, 2010a). In this algorithm g(·|yt−1, θ) is intractable but we are able to
simulate from it and f(xt|yt, θ) is quite simple to calculate, then if the whole
model is simulated forward so that y = y1:T then it is possible to write the
likelihood as

l(θ,y|x) =
T∏
i=1

f(xi|yi).

This algorithm simulates the joint distribution p(θ,y|x1:T) which when marginalised
is p(θ|x1:T). LF-MCMC is the same as the PMMH algorithm with just one
particle in the particle filter.

We used PMCMC with the woodhoopoe model and tried to estimate the
parameters from that; details are omitted. In order to do this we ran the
model up until the last submodel which is the death of the woodhoopoes
and used this as an estimate of the likelihood. We found that this didn’t
really work because the stochastic parts are too small in the woodhoopoe
submodel which meant that in order for a particle to get a non-zero weight it

38

has to almost recreate the data. Having said this we believe that PMCMC is
still a good way to estimate parameters in some complex ecological models,
where the final submodel doesn’t have this property.

39

Chapter 4

Coupling random inputs in
order to perform parameter
estimation

4.1 Introduction

Approximate Bayesian Computation (ABC, Beaumont, 2010; Tavaré et al,
1997, Section 3.3) has become a common method of performing inference on
complex models when the likelihood is intractable and when simulating from
the model is not computationally expensive. In higher dimensions, or when
the prior is not very informative, this ABC-rejection algorithm (Algorithm
7 of Section 3.3) can be very inefficient. This has led to the development
more efficient algorithms: ABC-MCMC (Marjoram et al, 2003), ABC-PMC
(Beaumont et al, 2009) and likelihood free parallel tempering (Baragatti
et al, 2013) just to name a few, which are described in Section 3.3.3. ABC-
MCMC (Marjoram et al, 2003) is an ABC version of the Metropolis-Hastings
algorithm. Sisson et al (2007) criticised the ABC-MCMC algorithm as the
chain often gets stuck in the tails of the posterior distribution causing the
Markov chain to mix poorly.

Neal (2012) developed a method of performing ABC by non-centered
parameterisation where the observed data can be given by some function of
this non-centered parameterisation and then it is possible to find an inverse
of this function conditional on the random inputs. Andrieu et al (2012) also
suggested using the random inputs with importance sampling in an ABC
framework.

If we look at the ABC-MCMC, when the chain is in the tails of the dis-
tribution, for a point to be accepted the correct parameters and the correct
random inputs, the stochastic elements of the complex model, need to be
proposed so that the move will be accepted which has a small probability
by the very nature of being in the tails of the distribution. By controlling

40

these random inputs and moving around more strategically in the augmented
space we could increase the chances of a move and get the Markov Chain to
mix better.

In this chapter we will present a method of exploring the ABC posterior
by exploring the joint parameter and random input space. We use infor-
mation about the joint space in order to propose better moves as well as
introducing a Gibbs step that conditions on the currently accepted model
in order to move around. Neal and Huang (2014) took a similar approach
to perform parameter on stochastic epidemic models by iteratively updating
subsets of random inputs and then parameters. Our method improves the
mixing of the ABC-MCMC algorithm and reduces the Monte Carlo variance
of the estimate of the ABC posterior distribution especially in the tails of
the distribution.

We will introduce what we mean by coupling the random inputs in Sec-
tion 4.2, describe the inference problem in Section 4.3 before extending
ABC-MCMC (Section 3.3.3) by coupling the random inputs and introduc-
ing Gibbs. We call this algorithm Coupled Gibbs ABC (CG-ABC). We will
give a few of examples of CG-ABC in Section 4.4 and then conclude with a
discussion.

4.2 Coupling the random inputs

Let (Ω,F , P) be a probability triple and X : Ω → R be a random variable
that we want to simulate. Write F (·) as the usual cumulative distribution
function that is F : R→ [0, 1] defined by

F (x) = Pr(X ≤ x) = P (X−1((−∞, x])).

If X is continuous then F (·) has a well defined inverse F−1(·), and if U ∼
U [0, 1] then F−1(U) has the same distribution as X. If X is discrete, taking
ordered values xj with probabilities pj , that is

wj = {w : X(w) = xj}
P (Wj) = pj ,

then F (·) is not injective, and so not invertible but we can define F−1(·) by

F−1(u) = inf
k

xk :
∑
j≤k

pj ≥ u

and still have the property that F−1(U) has the same distribution as X.
More generally, the property holds if we define

F−1(u) = inf
x
{x : F (x) ≥ u} .

41

Proposition 1. Any set of random variables can be sampled from a set of
independent random variables.

Proof. Suppose we are trying to simulate

X1, . . . , Xn ∼ p(X1, . . . , Xn).

Now if X1, . . . , Xn are independent this is satisfied trivially however if they
are dependent then we can expand the distribution such that

p(X1, . . . , Xn) = p1(X1)p2(X2|X1) . . . pn(Xn|Xn−1, . . . , X1)

each of which is a univariate distribution. We can sample from each of the n
univariate distributions, pi, using Inverse Transform Sampling from Ui, for
i = 1, . . . , n. The Uis will then be independent and identically distributed
such that

Ui ∼ U(·|0, 1).

For example if we take a bivariate normal such that(
x1

x2

)
∼ N

(
·
∣∣∣∣(µ1

µ2

)
,

(
σ2

1 ρ
ρ σ2

2

))
then

x1 ∼ N(·|µ1, σ
2
1)

or in terms of the random uniform u1:

x1 = µ1 + φ−1(u1)σ2
1.

Now we can condition on this and say that

x2|x1 ∼ N
(
·
∣∣∣∣µ2 +

σ2

σ1
ρ(x1 − µ1), (1− ρ2)σ2

2

)
or in terms of a random uniform u2:

x2 = µ2 +
σ2

σ1
ρ(x1 − µ1) + φ−1(u2)(1− ρ2)σ2

2

hence the dependent random variables, x1 and x2 have been sampled from
two independent random uniform distributions u1 and u2.

So therefore every random variable Xi used in the model M(·|θ) can be
mapped to a point in [0, 1]d space and recreated using Inverse Transform
Sampling. Let the point in [0, 1]d space be defined by u, then we can write
as

Y = M(θ,u)

as the model is now deterministic.

42

4.2.1 Random inputs

By coupling, we mean linking together realisations of stochastic models by
controlling their random inputs. For example, we can ensure that small
changes in the parameters result in small changes in the model output by
using identical values of the random inputs. Using this idea, we are going to
couple successive realisations of a stochastic model within an ABC-MCMC
algorithm in order to improve its performance. However, depending on how
the inputs are used, a change in a parameter may cause a submodel to
require a different number of random inputs from what it required before
which could result in a large change in the output.

For example let parameter θ control the number of births at a given
time, Nt, ψ control the weights of these births, and Xtk and u1, u2, . . . be
the random inputs. The two simple stochastic submodels

Nt ∼ B(·|θ)
Xtk ∼ W (·|ψ)

can be written as deterministic functions

Nt = B(θ, ui)

Xtk = W (ψ, uj)

where the values of the indices i and j will depend on the order of calcula-
tions. Suppose that the process is simulated in the obvious order and that
for a particular parameter value, θ = θ0 say, we obtain a single birth at time
1,

N1 = B(θ0, U1) = 1.

The weight of the individual born will be given by

X11 = W (ψ,U2),

and the number of births the next year will be

N2 = B(θ0, U3).

Now suppose that we use the same sequence of random numbers, but change
the parameter slightly to θ = θ0 + ε, giving

N1 = B(θ0 + ε, U1) = 2

say. The weights of these two births will be given by

X11 = W (ψ,U2)

X12 = W (ψ,U3),

43

and the number of births given in the second year will be given by

N1 = B(θ0 + ε, U4).

Thus the value of N2 may change completely, since it is based on a different
random input, U4 instead of U3. The same is likely to apply to later numbers
of births and weights, with widespread ‘relabelling’ of the random inputs.

One way to get round this is to control all of the inputs individually
so that each process will have its own inputs and then the inputs for each
submodel will remain the same regardless of what happened in earlier sub-
models. In the example above this could be solved by having two sets of
random inputs and the deterministic functions being

Nt = B(θ, ut)

Xtk = W (ψ,wtk).

In the next few sections we will give some examples of how a few different
models can be coupled.

Mixed normals

Sisson et al. (Sisson et al, 2007) describe the toy model

X|θ ∼
{
N(·|θ, 1) with probability 1

2
N
(
·|θ, 1

100

)
with probability 1

2 .

This model has two random inputs u and w with

u,w ∼ U(·|0, 1).

Let
Z = Φ−1(w)

where Φ−1 is the inverse cumulative distribution of a standard normal, then
the model output will be

X|θ, u, Z ∼
{
θ + Z if u < 1

2

θ + Z
10 otherwise.

Hence, given u and w, the model is deterministic.

Ricker Model

The Ricker Model (Ricker, 1954) is used to describe the expected number
of individuals in a generation t conditional on the previous generation t− 1.
Wood (2010) then used a stochastic version of this model to create a hidden
Markov model with observations

Yt ∼ Pois(λNt)

44

and a continuous hidden state

Nt = rNt−1 exp (−Nt−1 + et)

where
et ∼ N(·|0, σ2

e).

The model has random inputs u and w where

ut, wt ∼ U(·|0, 1)

for t = 1, . . . , T . If we let
Zt = Φ−1(wt)

where Φ−1 is the inverse cumulative distribution of a standard normal, then

Yt = min

{
n : e−λNt

n∑
i=0

(λNt)
i

i!
≥ ut, n ∈ N0

}

where
Nt = rNt−1 exp (−Nt−1 + et)

and
et = Ztσe.

Hence, given u and w, the model is deterministic.

Queuing model

Fearnhead and Prangle (2012), Blum and François (2010) and Heggland and
Frigessi (2002) looked at performing inference on a M/G/1 queuing model.
In this model the customers from a Poisson (θ3) process i.e. they arrive
at intervals given by an exponential distribution with parameter θ3 and are
served one at a time with the time taken following a uniform distribution on
the interval [θ1, θ1 + θ2]. The output of the model is the inter-service times
for the first 50 customers.

The stochastic inputs are for the arrival time and the service time de-
noted u and w respectively with

ui, wj ∼ U(·|0, 1)

for i = 1, 2, . . . and j = 1, . . . , 50. The ith arrival takes place at an interval

− log(1− ui)
θ3

after the (i− 1)th arrival and the jth service time is

θ1 + θ2wj .

45

Given u and w, the model is then deterministic. In practice this could be
difficult as before running the model it is unknown how many uis need to
be generated so in practice a method of generating random variable needs
to be included in the model. Having said this, in this case only ui and wi
for i = 1, . . . , 50 affect the output of the model because it is defined to be
based on a fixed number of customers, rather than a fixed duration.

4.2.2 Infinite random fields

In the queuing model (Section 4.2.1), there is no limit to the number of
customers that arrive before 50 of them have been served. However, only
the first 50 customers affect the model output so we only have to worry
about the first 50 inputs. The inputs after these could be generated in any
way and will have no effect on the model output. However for some models
it is not known how many random inputs are needed for one model run. For
example, if the model was run for a finite interval of time rather than for a
specific number of customers, then we would be unsure how many random
inputs were required to run the model.

One way of generating an unknown number of random numbers would
be to generate too many random inputs before running the model. However
this could be wasteful as we will be generating random inputs that are not
used and may be computationally impossible due to memory. There is also
no guarantee that the number of random inputs will be sufficient to run the
model.

Another way of doing this is to generate the pseudo-random inputs whilst
running the model. It is possible to generate a deterministic sequence of
numbers between 0 and 1 that appear to be random by an auto-regressive
process of order 1 (Devroye, 1986). This means that a whole sequence of
pseudo random numbers can be generated from one number between 0 and 1.
For example, in the queueing model, the model is deterministic conditional
on the parameters, u1, w1 and pseudo random number generator. Algorithm
13 shows how this would work. In line 1 you can input more than just the
first random inputs for each process if you wish and these random inputs
will be used before generating new ones.

Algorithm 13 Generating random inputs on the fly

1: Input the parameters θ and the first random inputs uj1 for j = 1, . . . , q
where q is the number of processes that require random numbers.

2: repeat
3: Run the model until a random number needs to be generated
4: uji = f(uji−1) {for the jth process and the ith random input in that

process where f is a pseudo random number generator}
5: until Model has finished running

46

Woodhoopoe model

Woodhoopoes are birds that can be found in sub-Saharan Africa (du Plessis,
1992). They live in groups with one dominant pair which are the only ones
that breed. Neuert et al (1995) used an individual-based approach in order to
model the population and group dynamics of the woodhoopoes. Railsback
and Grimm (2012) simplified this model for use as an example in their
textbook.

The simplified woodhoopoe model is an agent-based model where the
agents are the woodhoopoes themselves and they live in groups with one
dominant male and one dominant female which breed once a year. There
are 25 groups in the model with the groups laid out in a circle and each
group having two neighbours. Each step of the model represents one month
and every month each woodhoopoe dies with a probability θ1. The aim of
a woodhoopoe is to become a dominant in a group so each subordinate will
leave its group with probability θ2 in order to try and become a dominant
in another group. However leaving the group will leave the subordinate
vulnerable to predators and it will be killed with probability θ3. A full
description of the model can be found in Section 2.2 and in Railsback and
Grimm (2012).

There are a number of stochastic parts. Initially there are two adult
males and females placed in each territory with the initial ages determined
from the random inputs v.

In the original model the order in which the subordinates leave their
group in order to become a dominant elsewhere is random. In the coupled
model each subordinate i will have a random input wit at time t and then
these will be ordered and this is the order the subordinates will attempt to
leave their respective group.

Each woodhoopoe will have random inputs that determine whether or
not they will leave the safety of the group as a subordinate, one that de-
termines whether or not they die leaving the group and one that decides
whether, if they have successfully left their group, they go left or right in
order to search for a vacant suitable dominant position. Each woodhoopoe
will also have a random input every month that determines whether or not
they die naturally.

Each group will have its own random inputs that decide whether a new-
born woodhoopoe will be male or female.

Conditional on these random inputs the model will become deterministic.
We also describe coupling the woodhoopoe model in Section 7.4.2.

4.3 Inference

If we look at the joint posterior distribution of the parameters θ and the
random inputs u conditional on the observed data x, then if we can generate

47

samples from

π(θ, u|x) =
π(θ)p(u)p(x|θ, u)

p(x)
(4.1)

and we marginalize over u we will find that∫
U
π(θ, u|x)du =

∫
U

π(θ)p(u)p(x|θ, u)

p(x)
du

=
π(θ)p(θ|x)

p(x)

= π(θ|x) (4.2)

where U is the space [0, 1]d and where d is the number of dimensions of u.
Equation 4.2 is just the posterior for θ alone. In equation 4.1 the likelihood,
p(x|θ, u) is either 1 if

M(θ, u) = x

or 0 otherwise. It is often very difficult to find values of θ and u that will
make the likelihood 1 and often has probability zero. However if we look
at this and change the likelihood so instead of it being the likelihood of the
data it is

p(ρ(s(M(θ, u)), s(x)) < ε),

or in other words the ABC likelihood, then equation 4.2 will become the
ABC posterior.

We could use ABC-MCMC (Marjoram et al, 2003) as a method of sam-
pling from π(θ, u|x) by treating the random inputs u as additional parame-
ters. In addition to this we are going to introduce Gibbs steps that should
also improve the mixing of the Markov Chain. We will describe these meth-
ods in the next two subsections. We call this algorithm Coupled Gibbs ABC
(CG-ABC).

4.3.1 Gibbs move

If we look at a typical model with parameters θ and random inputs u and
w shown in Figure 4.1, we can see that conditional on the latent variables,
z, the model output, Y , and the parameters, θ, are independent. If we
condition on the latent variables z we can often move the parameters θ
using Gibbs steps and then change the random inputs u so that z remains
the same. The Gibbs step is shown in Algorithm 14.

Proposition 2. The Gibbs move suggested above keeps the Markov Chain
in its stationary distribution.

Proof. The target distribution of the CG-ABC algorithm ABC posterior
distribution of θ, u and w is

π(θ, u, w)p(z|θ, u)I(ρ(s(M(z,w)),s(x))<ε)

48

θ u

z

Model w

Y

Figure 4.1: A general model. We have inputs, parameters θ and u that
generate latent variables z, which is often tractable, and inputs w which
along with the model and latent variables z generate a deterministic output
Y .

where M(z, w) is the model run a with the latent variable z and random
inputs w, p(z|θ, u) is a Dirac mass at z and I(ρ(s(M(z,w)),s(x))<ε) = 1 if the
model is accepted and 0 otherwise. If we assume that the MCMC algorithm
is in its stationary distribution, i.e. the ABC posterior, then we just have to
satisfy detailed balance. We are going to propose a new point θ′ and u′ by
first sampling θ′ ∼ p(·|z) and then setting u′ so that p(z|θ′, u′) = 1. Hence

q(θ′, u′|z) = p(θ′|z)p(u′|θ′, z) = p(θ′, u′|z).

The Metropolis-Hastings ratio then becomes

min

(
1,
π(θ′, u′, w)p(z|θ′, u′)I(ρ(s(M(z,w)),s(x))<ε)p(θ, u|z)
π(θ, u, w)p(z|θ, u)I(ρ(s(M(z,w)),s(x))<ε)p(θ′, u′|z)

)
= min

(
1,
π(θ′, u′, w)p(z|θ′, u′)I(ρ(s(M(z,w)),s(x))<ε)π(θ, u)p(z|θ, u)p(z)

π(θ, u, w)p(z|θ, u)I(ρ(s(M(z,w)),s(x))<ε)π(θ′, u′)p(z|θ′, u′)p(z)

)
= min

(
1,

I(ρ(s(M(z,w)),s(x))<ε)

I(ρ(s(M(z,w)),s(x))<ε)

)
which is 1 as M(z, w) remains unchanged.

Although the Gibbs step could be used with usual ABC-MCMC in the
same way as described above, the addition of the coupling means that we can

49

Algorithm 14 The Gibbs step given latent variables z generated using the
model z = p(θ, u) and random inputs u.

θ′ ∼ p(·|z)
u′ ← u such that z = p(θ′, u′)

be more flexible and mix both Gibbs steps and Metropolis-Hastings (MH)
moves. In the ABC-MCMC algorithm, if one wanted to move just one
parameter then that would take one run of the model and will, if accepted,
only move the parameter in one direction. With the addition of the Gibbs
step, it would allow us to make a large movement in one direction by holding
the other parameters without being wasteful in terms of model runs. For
example suppose

Y = M(u4, z1, z2, z3)

with

z1 = f(θ1, u1)

z2 = g(θ2, u2)

z3 = h(θ3, u3)

then once we find a region of the parameter space where we get an accepted
model

Y ′ = M(u′4, z
′
1, z
′
2, z
′
3)

then we could perform Gibbs steps

θ′′1 ∼ p(·|z′1)

θ′′2 ∼ p(·|z′2)

and update u′1 and u′2 to u′′1 and u′′2 such that

z′1 = f(θ′′1 , u
′′
1)

z′2 = g(θ′′2 , u
′′
2).

The model output Y ′ will not change as it is conditionally independent
of the parameters given z1, z2 and z3 and therefore will still be accepted.
We can then propose θ′′3 using a Metropolis-Hastings step and conditioning
on the inputs will allow us to make better moves in this direction with a
reasonable acceptance rate. We are essentially just changing a handful of
latent variables at a time here.

4.3.2 CG-ABC

In order to make sure that we have sampled from p(u)p(x|θ, u) we need to
be sure that we have explored the whole of the random input space [0, 1]d.

50

This means that as well as making small moves in the random input space
we have to also make large moves in this space. There are a number of
possible moves.

a) We could keep the random inputs the same and only new parameters
could be proposed. This would mean that latent variables (z in Figure
4.1) will change and then the accepted model output, Y , will change.
However we want to ensure that, if the random inputs are the same a
small change in the parameters results in a small change in the model
output. This move is essentially exploring an island in parameter space
where the ABC likelihood is one rather than zero.

b) All of the random inputs could be re-sampled with either the parameters
being changed or not. This will attempt to change the random inputs
(u and w in Figure 4.1), the latent variables (z in Figure 4.1) and the
accepted model. When the parameters move as well, it is the same
as a step of the ABC-MCMC algorithm described by Algorithm 9.
If the parameters don’t move it is just a step to try and change the
model and the latent variables in order to make other moves easier, for
example finding another ABC-likelihood island to explore. This could
be used with Gibbs steps described in Section 4.3.1.

c) A block of the random inputs could be changed. Again this could be
done by the changing the parameters or not. This changes the model
and subset of the latent variables (z in Figure 4.1). These moves in the
random input space can either be coupled with moves in the parameter
space which then increases the chances of the move being accepted or
they could be re-sampled completely.

We are going to mix all of these moves in order to try and explore the
joint space of the parameters and the random inputs.

4.4 Examples

We are going to demonstrate this method on some the models described in
Section 4.2.1.

4.4.1 Ricker Model

We tried to perform inference on the Ricker model (described in Section
4.2.1). We simulated some data using log r = 3.8, λ = 10 and σ2

e = 0.3 and
used the summary statistics suggested by Wood (2010).

We found that the the model was very sensitive to small changes in log r
and σ2

e when the inputs are fixed and that given these inputs there is no
smooth acceptance region. This is shown in Figures 4.2 and 4.3 where we

51

kept the random inputs constant but varied the parameters. The summary
statistics are the summary statistics suggested by Wood (2010):

• the ordered differences of the simulated and observed values.

• the coefficients, β1 and β2, of autoregression, y0.3
t+1 = β1y

0.3
t + β2y

0.6
t .

• the mean of the outputs and the number of outputs that are equal
zero.

• the autocovariances up to lag 5.

In this case we do not believe that it is useful to perform CG-ABC on this
model because it is difficult to anticipate what a move in either the parameter
space or the random input space would cause to the model output.

However it is possible to create Gibbs steps for each of the parameters
conditional on an accepted model. We can re-write the latent state, Nt, as

logNt − logNt−1 +Nt−1 = log r + et

∼ N(·| log r, σ2
e)

so therefore
log r, σ2

e |N1:t ∼ NIG(d, a,m, v)

which is the Normal-inverse-gamma distribution with parameters

v =
1

T − 1
,

d =
T − 1

2
− 3

2
,

m = X̄,

a =
S

2

where

Xt = logNt − logNt−1 +Nt−1,

X̄ =

T∑
t=2

Xt

and

S =

T∑
t=2

(X − X̄)2.

We can condition on the hidden states, N1:t, in order to find a closed state
for φ. The likelihood

l(φ|Y1:T , N1:T) ∝ (φN1)Y1 exp(−φN1) · · · (φNT)YT exp(−φNT)

∝ φ
∑T
t=1 Yt exp

(
−φ

(
T∑
t=1

Nt

))

52

3.4 4.0

0
20

00
50

00

log r

su
m

m
ar

y
1

3.4 4.0

0
40

0
80

0

log r

su
m

m
ar

y
2

3.4 4.0

0
50

0
10

00

log r

su
m

m
ar

y
3

3.4 4.0

0
50

0
10

00

log r

su
m

m
ar

y
4

3.4 4.0

0
10

00
20

00

log r

su
m

m
ar

y
5

3.4 4.0

0
50

0
15

00

log r

su
m

m
ar

y
6

3.4 4.0

0.
0

0.
4

0.
8

log r

su
m

m
ar

y
7

3.4 4.0

0.
00

0.
04

0.
08

log r

su
m

m
ar

y
8

3.4 4.0

0.
0

0.
4

0.
8

log r

su
m

m
ar

y
9

3.4 4.0
0e

+
00

3e
−

04

log r

su
m

m
ar

y
10

3.4 4.0

0e
+

00
2e

−
05

4e
−

05

log r

su
m

m
ar

y
11

3.4 4.0

0
2

4
6

8
12

log r

su
m

m
ar

y
12

3.4 4.0

0
5

10
15

20

log r

su
m

m
ar

y
13

Figure 4.2: The summaries for various values of log r with the same random
inputs.

53

0.20 0.35

0
10

00
20

00

σ2
e

su
m

m
ar

y
1

0.20 0.35

0
10

0
30

0

σ2
e

su
m

m
ar

y
2

0.20 0.35

0
50

0
10

00

σ2
e

su
m

m
ar

y
3

0.20 0.35

0
50

0
10

00

σ2
e

su
m

m
ar

y
4

0.20 0.35

0
50

0
15

00

σ2
e

su
m

m
ar

y
5

0.20 0.35

0
50

0
15

00

σ2
e

su
m

m
ar

y
6

0.20 0.35

0.
0

0.
2

0.
4

0.
6

0.
8

σ2
e

su
m

m
ar

y
7

0.20 0.35

0.
00

0.
02

0.
04

0.
06

σ2
e

su
m

m
ar

y
8

0.20 0.35

0.
0

0.
2

0.
4

0.
6

σ2
e

su
m

m
ar

y
9

0.20 0.35
0.

00
00

0
0.

00
01

5

σ2
e

su
m

m
ar

y
10

0.20 0.35

0.
0e

+
00

1.
5e

−
05

σ2
e

su
m

m
ar

y
11

0.20 0.35

0
1

2
3

4
5

σ2
e

su
m

m
ar

y
12

0.20 0.35

0
5

10
15

σ2
e

su
m

m
ar

y
13

Figure 4.3: The summaries for various values of σ2
e with the same random

inputs.

54

9.0 10.5

0
20

0
60

0

φ

su
m

m
ar

y
1

9.0 10.5

0
50

10
0

20
0

φ

su
m

m
ar

y
2

9.0 10.5

0
50

15
0

25
0

φ

su
m

m
ar

y
3

9.0 10.5

0
40

80
12

0

φ

su
m

m
ar

y
4

9.0 10.5

0
20

40
60

80

φ

su
m

m
ar

y
5

9.0 10.5

0
40

80
12

0

φ

su
m

m
ar

y
6

9.0 10.5

0.
00

00
0.

00
10

φ

su
m

m
ar

y
7

9.0 10.5

0.
00

0
0.

00
4

φ

su
m

m
ar

y
8

9.0 10.5

0.
00

0.
04

0.
08

φ

su
m

m
ar

y
9

9.0 10.5
0e

+
00

3e
−

06
6e

−
06

φ

su
m

m
ar

y
10

9.0 10.5

0.
0e

+
00

1.
0e

−
07

φ

su
m

m
ar

y
11

9.0 10.5

0
1

2
3

φ

su
m

m
ar

y
12

9.0 10.5

−
1.

0
0.

0
0.

5
1.

0

φ

su
m

m
ar

y
13

Figure 4.4: The summaries for various values of φ with the same random
inputs.

55

and therefore

φ|Y1:T , N1:T ∼ Gamma

(
·|1 +

T∑
t=1

Yt,
T∑
t=1

Nt

)
.

These Gibbs steps could be used to improve the mixing of ABC-MCMC but
we do not demonstrate it here.

4.4.2 Queuing model

We simulated some data with θ1 = 1, θ2 = 5 and θ3 = 0.2 and used summary
statistics suggested by Blum and François (2010) to perform parameter es-
timation on θ1, θ2 and θ3. The priors were uniformly distributed on [0, 10]
for θ1 and θ2 and on

[
0, 1

3

]
for θ3.

Before describing the algorithms used for inference, it is useful to explore
the structure of the region with likelihood 1 in the input space, in the vicinity
of an arbitrary acceptable point. More precisely, we look at the effect of
moving away from that initial point in various pairs of directions chosen
from the θ1, θ2 and θ3 axes, a random direction in u space and a random
direction in w space. The results are shown in Figure 4.5. We found that the
region of parameter space that will be accepted is smooth in all directions
which allowed us to use CG-ABC in order to explore the ABC posterior
distribution. We can also see that, when the random inputs change, the
likelihood changes smoothly. This suggests that we can move around in the
random input space in a similar way.

ε, the tolerance, was selected so that approximately a proportion of
0.00018 of the parameter sets sampled from the prior would be accepted.
This is equivalent of setting the normalising constant, p(ρ(s(M(θ, u)), s(x)) <
ε) = 0.00018. Each algorithm will be set up so that the model, which usu-
ally is the most computationally expensive part of the algorithm, is run the
same number of times.

Gibbs Steps

It is possible to perform a Gibbs step by conditioning on the current accepted
model. Let s be the service times of the customers with max(s) = š and
min(s) = ŝ. It is dependent on θ1, θ2 and u. The full conditional distribution
is

f(θ1, θ2|s) ∝
1

θn2
× π(θ1, θ2) (4.3)

provided θ1 ≤ ŝ and θ2 ≥ š− ŝ and 0 otherwise. The prior in this case is a
uniform distribution so we can sample θ1 and θ2 from the above distributed
truncated at 0 and 10 in both directions.

56

0.7 0.8 0.9 1.0

6
7

8
9

a

θ1

θ
2

0.7 0.8 0.9 1.0

0
.2

2
0
.2

8

b

θ1

θ
3

6 7 8 9

0
.2

2
0
.2

8

c

θ2

θ
3

0.7 0.8 0.9 1.0

−
0
.4

0
.0

0
.4

d

θ1

u

6 7 8 9

−
0
.4

0
.0

0
.4

e

θ2

u

0.22 0.26 0.30

−
0
.4

0
.0

0
.4

f

θ3

u

0.7 0.8 0.9 1.0

−
0
.2

0
.0

0
.2

g

θ1

w

6 7 8 9

−
0
.2

0
.0

0
.2

h

θ2

w

0.22 0.26 0.30

−
0
.2

0
.0

0
.2

i

θ3

w

Figure 4.5: The movement along the different parameter and random input
axes in the queuing model. a-c are movements along the parameters, d-f are
movements in the u direction and g-i in the w. It is black where the point
would be accepted (p(R|θ) = 1). Note that in f all of the plot is accepted
which is not the usual case for all of the space but just the region shown in
the plot.

57

If we let a be the arrival intervals then the full conditional distribution
is

f(θ3|a) ∝ Gamma(θ3|n+ 1,
∑

a)× π(θ3). (4.4)

The prior for this parameter is a uniform distribution with parameters 0
and 1

3 so we can sample θ3 from the gamma distribution shown truncated
at 1

3 .

Inference

We ran ABC-MCMC with optimal proposal distributions and found that the
Markov Chain did not mix well (Figure 4.6). In order to improve the mixing

θ
1

0
.5

0
.7

0
.9

θ
2

3
4

5
6

7
8

9

θ
3

0
.1

5
0
.2

0
0
.2

5
0
.3

0

0 10000 20000 30000 40000

Iteration

Figure 4.6: The trace plot of the ABC-MCMC version of queuing model.

we performed CG-ABC. At each iteration in the algorithm we performed one
of several moves:

58

a) We only moved the parameters keeping the random inputs the same.
This move aimed to explore the islands where the likelihood is 1; in
other words, exploring the region in the top three graphs in Figure
4.5 (a,b,c). More formally, θ′1:3 ∼ qθ(·|θ1:3,Σa), where Σa is a tuning
parameter, u′ = u and w′ = w.

b) We moved the random inputs u a large amount in u space as well as all
of the parameters. Looking at Figure 4.5, we can see that u is not very
sensitive to the ABC likelihood and so this method was very similar
to exploring the top three graphs in Figure 4.5 (a,b,c) but changed
the arrival times in the model, thus exploring the latent variable space
better. More formally, θ′1:3 ∼ qθ(·|θ1:3,Σb), where Σb is a tuning pa-
rameter, u′ = U(·|0, 1) and w′ = w.

c) We moved the parameters and the random inputs w by a small amount.
More formally, θ′1:3 ∼ qθ(·|θ1:3,Σc), where Σa is a tuning parameter,
u′ = u and w′ = qu(·|w, σw) with σw being a tuning parameter.

d) We moved the random inputs w by a small amount and then moved
θ1. The two moves were correlated. This method changed the la-
tent service times of the accepted model. More formally, θ′1,w

′ ∼
qθu(·|θ1,w, σw, bθ1w, σθ1w) with bθ1w and σθ1w being tuning parame-
ters, θ′2 = θ2, θ′3 = θ3 and u′ = u.

e) We had a move the same as the previous one where θ2 moves instead of
θ1. More formally, θ′2,w

′ ∼ qθu(·|θ2,w, σw, bθ2w, σθ2w) with bθ2w and
σθ2w being tuning parameters, θ′1 = θ1, θ′3 = θ3 and u′ = u.

f) We had two additional moves that completely re-sampled the random
inputs u and w as well as moving all three parameters, one by a
small amount and the other by a larger amount. These moves are
essentially the moves used in ABC-MCMC. The proposal distributions
for these moves were the same as those for the ABC-MCMC algorithm
we are comparing the results to. More formally, θ′1:3 ∼ q(·|θ1:3,Σf1)
with probability 1/2 or θ′1:3 ∼ q(·|θ1:3,Σf2) with probability 1/2 with
Σf1 and Σf2 being tuning parameters. On both occasions u′,w′ ∼
U(·|0, 1).

After one of these moves has taken place, all three of the parameters were
updated by Gibbs steps.

We used truncated normals, truncated at 0 and 1, to move the random
inputs (qu) and multivariate normals to move the parameters (qθ). For the
joint moves involving the random inputs and parameters we first proposed
the random inputs and then conditional on the proposed inputs proposed

59

new parameters. For example, conditional on w and θ1 we first proposed
w′ from a truncated normal then proposed θ′1 such that

θ′1|w,w′θ1 =

{
bθ1w||w −w′||+ θ1 + σθ1wζ wp 1

2
−bθ1w||w −w′||+ θ1 + σθ1wζ wp 1

2

where ||w−w′|| is the Euclidean distance betweenw andw′ and ζ is sampled
from a standard normal. Algorithm 15 sums up the CG-ABC algorithm used

θ
1

0
.0

0
.4

0
.8

θ
2

2
4

6
8

1
0

θ
3

0
.1

5
0
.2

5

0 10000 20000 30000 40000

Iteration

Figure 4.7: The trace plot of the coupled version of queuing model.

to sample from the ABC posterior distribution. The initial value for θ1:3, u
and w used in the CG-ABC algorithm was found by running the Rejection-
ABC (Algorithm 7) to find one accepted parameter set.

This method shows improved mixing and has high Effective Sample Sizes
for the parameters, especially θ1 and θ3, as shown in Figure 4.7.

60

Algorithm 15 At each iteration of the CG-ABC algorithm for the queuing
model, θ1:3, u and w are updated as follows.

q ∼ {a), b), c), d), e), f)} {The proposal function is sampled from the meth-
ods a) – f) described in Section 4.4.2 with equal probability.}
θ′1:3,u

′,w′ ∼ q(·|θ1:3,u,w) {Note that, dependent on q sampled above,
some of the elements, θ′1:3,u

′,w′ may be equal to θ1:3,u,w)}
y ←M(θ′1:3,u

′,w′)
if ρ(S(y), S(x)) < ε then

α← min
(

1,
π(θ′1:3,u

′,w′)q(θ1:3,u,w|θ′1:3,u′,w′)
π(θ1:3,u,w)q(θ′1:3,u

′,w′|θ1:3,u,w)

)
Sample u ∼ U(·|0, 1)
if u < α then
θ1:3,u,w ← θ′1:3,u

′,w′

end if
end if
θ1, θ2 ∼ f(·|s) {θ1 and θ2 are sampled from the density described in
equation 4.3.}
w ← s−θ1

θ2
θ3 ∼ f(·|a) {θ3 is sampled from the density described in equation 4.4.}
u← 1− exp (−θ3a)

Results

We optimised the proposal distributions for both ABC-MCMC and CG-ABC
and ran each algorithm 200 times and compared the empirical cumulative
distribution functions of the parameters. We inspected the 5%, 25%, 50%,
75% and 95% percentiles of the samples and looked at the standard deviation
of these estimates across the 200 runs. Table 4.1 shows that the CG-ABC
gives a much smaller Monte Carlo error on the estimate of the distribution
than ABC-MCMC. Moreover, it significantly improves the estimates of θ1

and θ3. As mentioned earlier, CG-ABC mixes better for θ1 and θ3 and this
is demonstrated in the results. CG-ABC also improves the mixing of the
chain as the ABC-MCMC algorithm has an acceptance rate of around 0.004
whereas the coupled version moves, with the exception of Gibbs steps, at a
rate of around 0.08.

4.4.3 Woodhoopoe model

We simulated data from the Woodhoopoe model with θ1 = 0.01, θ2 = 0.5
and θ3 = 0.2 as suggested by Railsback and Grimm (2012). We simulated
for 25 years, and treated the first 5 years as initialisation; the output con-
sisted of the number of vacant dominant positions and the number of adult
(subordinate or dominant) woodhoopoe in each group, at the end of each
year for the remaining 20 years.

61

Percentile ABC-MCMC CG-ABC Ratio

θ1 0.05 0.145 0.060 2.420
0.25 0.112 0.020 5.757
0.5 0.010 0.007 8.881
0.75 0.036 0.003 13.851
0.95 0.005 0.001 8.117

θ2 0.05 0.373 0.379 0.984
0.25 0.243 0.174 1.401
0.5 0.228 0.156 1.596
0.75 0.273 0.168 1.621
0.95 0.411 0.228 1.799

θ3 0.05 0.012 0.002 5.667
0.25 0.010 0.003 3.941
0.5 0.006 0.003 3.553
0.75 0.011 0.003 4.382
0.95 0.007 0.001 8.670

Table 4.1: The standard deviations of selected percentiles of the empirical
cumulative distribution functions from 200 runs of the ABC-MCMC and
CG-ABC with 40,000 points ran for the queuing model. The ratio of the
standard deviation of the ABC-MCMC method and the CG-ABC method
is shown in the final column.

The summary statistics for the ABC were the 0.25, 0.5 and 0.75 quantiles
of the population; the minimum, mean and maximum of the number of
groups with free alpha positions and the 0.25 and 0.75 quantiles as well as
the mode of the group sizes. We also check that younger subordinates leave
their groups more often than older subordinates by looking at the mean
age of subordinates that leave and comparing it with the mean age of those
that do not, as well the qualitative fact that more woodhoopoe leave their
groups earlier in the year than later and rejected if the qualitative facts
did not happen in the simulation. If the model reached its absorbing state
all of the summaries are still defined and, for all values of ε used here, the
parameter set would be rejected. When implementing this example we did
not find a single model run where the model reached its absorbing state.

Gibbs steps

As with the queuing model, it is possible to perform Gibbs steps on the cur-
rent accepted Woodhoopoe model. Instead of viewing θ1 as the probability
of dying each month, we can simulate when an individual will die due to
natural causes at the beginning of its life. We can simulate the time (in

62

months) until the death of woodhoopoe i, di, as

di ∼ Geom(·|θ1).

If we have n woodhoopoe born in the model, then the full conditional dis-
tribution is

f(θ1|{di}) = Beta
(
θ1|n,

∑
(di − 1)

)
× π(θ1)

where π(θ1) is the prior distribution of θ1, U(·|0, 0.05). Hence θ1 is sam-
pled from a truncated Beta distribution. Once θ1 is sampled, the random
inputs that are used to create these parameters are then moved so that the
observations, dis, remain the same.

Whether or not a subordinate leaves the group in order to attempt to
become a dominant somewhere else is a Bernoulli process with parameter θ2.
If we look at the number of subordinates that left their group, l, compared
to the number that didn’t, s, then the full conditional distribution is

f(θ2|l, s) ∼ Beta(θ2|l, s)× π(θ2)

where π(θ2) is the prior on θ2 which is Beta(·|1, 1). We are just treating the
stay/leave indicators as augmenting the data. We are going to move θ2 as
above and the random inputs so that the stay/leave indicators remain the
same.

We can also say that when woodhoopoe i leaves their group, they will
be killed by predation in its pith outing. We sample

pi ∼ Geom(·|θ3).

If we have n woodhoopoe born in the model, then the full conditional dis-
tribution is

f(θ3|{pi}) ∼ Beta
(
θ3|n,

∑
(pi − 1)

)
× π(θ3)

where π(θ3) is the prior on θ3, U(·|0, 0.5). Hence θ3 is sampled from a
truncated Beta distribution. Once θ3 is sampled, the random inputs that
are used to create these parameters are then moved so that the observations,
pis, remain the same.

Some of di and pi may become irrelevant if either woodhoopoe i is still
alive at the end of the model run or has died from the other cause. For
example, suppose woodhoopoe j died because pj = 2 and it took 25 months
for this woodhoopoe to leave their group twice, then in order to keep the
same model run the true value of dj is not that important, just that dj > 25.
In this example we ignore this and keep all dis and pis the same for all
woodhoopoe that were alive when the model was run.

63

0.
2

0.
3

0.
4

θ3

0.7 0.8 0.9

θ2

0.
7

0.
8

0.
9

0.00 0.01 0.02

θ2

θ1

Figure 4.8: The accepted regions for each of the parameters in the wood-
hoopoe model. Regions where the points would be accepted are shown in
black.

Inference moves

We are going to run the Markov Chain with mixed rules regarding both
the proposal of parameters and the random inputs. At each stage of the
algorithm we will perform one of several moves:

a) We move the parameters and none of the random inputs. Figure 4.8
shows that the regions that are to be accepted form a mass in the
parameter space so this means that we can explore these regions and
that is what this move does.

b) We move θ1 and θ3 according to Gibbs steps. The random inputs change
so that the model doesn’t change and then θ2 is moved according to a
Metropolis step fixing all of the other parameters and random inputs.
This searches the accepted region in θ2 conditional on θ1 and θ3. If the
Metropolis step is accepted all three parameters and the model have
moved but if it isn’t only θ1 and θ3 will have moved. We do not move
θ2 according to a Gibbs step as p(θ2|l) is very narrow and θ2 doesn’t
move very much.

c) We had a move that completely re-sampled the random inputs, as well
as moving the parameters. This move is essentially the move used in

64

ABC-MCMC.

We move a) twice as often as b) and c). We sum one iteration of the CG-
ABC up in Algorithm ??. The initial value for θ1:3 and u (all of random
inputs) for the CG-ABC algorithm was found by running the Rejection-ABC
(Algorithm 7) to find one accepted parameter set.

Algorithm 16 At each iteration of the CG-ABC algorithm for the wood-
hoopoe model, θ1:3 and u, where u is all of the random inputs, are updated
as follows.
γ ∼ Mult(3, (1/2, 1/4, 1/4)′) {α = 1 with probability 1/2, α = 2,with
probability 1/4 and α = 3 with probability 1/4.}
if γ = 1 then
θ′1:3 ∼ N(·|θ1:3,Σa)
u′ = u

else
if γ = 2 then
θ1 ∼ f(θ1|{di})
θ3 ∼ f(θ1|{pi})
u = f(θ1, θ3, {di}, {pi}) {Update u so that {di}, and {pi} remain the

same.}
θ′2 ∼ N(·|θ2, σ

2
c)

θ′1 = θ1

θ′3 = θ3

u′ = u
else
θ′1:3 ∼ N(·|θ1:3,Σc)
u′ ∼ U(·|0, 1)

end if
end if
y ←M(θ′1:3,u

′,w′)
if ρ(S(y), S(x)) < ε then

α← min
(

1,
π(θ′1:3,u

′)
π(θ1:3,u)

)
Sample u ∼ U(·|0, 1)
if u < α then
θ1:3,u← θ′1:3,u

′

end if
end if

Results

We found that the CG-ABC (Figure 4.9) improved the mixing of the Markov
chain compared to ABC-MCMC (Figure 4.10).

65

θ
1

0
.0

0
0

0
.0

1
0

0
.0

2
0

θ
2

0
.2

0
.4

0
.6

0
.8

1
.0

θ
3

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0 10000 20000 30000 40000

Iteration

Figure 4.9: The trace plot of the CG-ABC version of the Woodhoopoe
model.

Although these facts show that there is an improvement in the mixing
and results are much smoother, they do not show that the method reduces
the Monte Carlo error. In order to compare Monte Carlo error, we examined
the standard deviations of the quantiles of the estimations of θ1, θ2 and θ3.
Table 4.2 shows that in most cases CG-ABC shows an improvement over
ABC-MCMC for estimates of the three parameters.

4.5 Discussion

In this chapter we have proposed a method of exploring the random in-
puts and the parameters in order to improve the mixing of Monte Carlo
algorithms for complex stochastic models. We have shown empirically that

66

θ
1

0
.0

0
0

0
.0

1
0

0
.0

2
0

θ
2

0
.2

0
.4

0
.6

0
.8

1
.0

θ
3

0
.0

0
.2

0
.4

0 10000 20000 30000 40000

Iteration

Figure 4.10: The trace plot of the ABC-MCMC version of the Woodhoopoe
model.

by controlling the random inputs, we can improve the mixing of the ABC-
MCMC algorithm with the greatest improvements being in the tails of the
distribution, which is one of the major criticisms of that algorithm (Sisson
et al, 2007; Lee et al, 2011). Like ABC-MCMC, CG-ABC takes advantage of
the pseudo-marginal MCMC (Andrieu and Roberts, 2009) but the proposal
method is changed in a much more strategic way. This does not effect the
validity of the likelihood estimate though.

One criticism of CG-ABC could be that the dimension of the state space
for the MCMC is increased, and that we may fail to explore the random input
space completely, unlike the conventional case where new random inputs are
generated for every run. Note that this cannot simply be checked by looking
at the marginal posterior distributions of the random inputs, since it is not

67

Percentile ABC-MCMC CG-ABC Ratio

θ1 0.05 1.18× 10−4 6.13× 10−5 1.931
0.25 2.70× 10−4 1.66× 10−4 1.630
0.5 4.90× 10−4 3.63× 10−4 1.351
0.75 6.21× 10−4 5.76× 10−4 1.078
0.95 9.21× 10−4 9.13× 10−4 1.008

θ2 0.05 2.19× 10−2 1.76× 10−2 1.246
0.25 2.19× 10−2 1.80× 10−2 1.218
0.5 2.34× 10−2 1.79× 10−2 1.304
0.75 2.00× 10−2 1.49× 10−2 1.341
0.95 09.51× 10−2 5.23× 10−3 1.816

θ3 0.05 1.35× 10−2 1.55× 10−2 0.873
0.25 1.11× 10−2 1.14× 10−2 0.968
0.5 1.08× 10−2 9.43× 10−3 1.142
0.75 9.89× 10−3 7.43× 10−3 1.329
0.95 5.19× 10−3 2.70× 10−3 1.918

Table 4.2: The standard deviation of the empirical cumulative distribution
function for 200 runs of the ABC-MCMC and CG-ABC and the ratio of the
two standard deviations.

generally the case that these are uniform on [0, 1]d. For example, in the
woodhoopoe model, in order for a model run to be accepted, some of the
random inputs have to be larger than others so the posterior of the random
inputs is certainly not uniformly distributed. In order to try to explore
this, we looked at the effective sample size. We found that the effective
sample size of the random inputs was considerably higher for CG-ABC than
ABC-MCMC so this suggests that we are exploring the random input space.
Furthermore if we were not exploring the random inputs space, the Monte
Carlo error of the estimates in the two examples would be higher. Given
this information we are convinced that we are exploring the random input
space as well as the ABC-MCMC algorithm does.

An important part of this algorithm is the Gibbs steps. When performing
Gibbs steps, the accepted version of the model remains the same and only
the parameters change. This means that these moves can be done with
standard ABC-MCMC. If the chain is stuck in a region, the Gibbs steps
make the chain move and could cause a chance of getting out of that region
and the model moving. We found that the addition of Gibbs steps improved
the ABC-MCMC but not as much as CG-ABC did.

If we use Gibbs steps with the coupling we can update the latent variables
in blocks whilst still updating all of the parameters, like in move b) in the
woodhoopoe example. One of the advantages of coupling is that we can make
Gibbs moves in some directions and Metropolis moves in other directions.

68

This would be the same as moving a subset of latent variables z like in the
example in Section 4.3.1. In order to do this the parameters are moved
according to Gibbs steps and the random inputs are changed so that if the
model was run, the latent variable generated by the parameter remains the
same even though the parameters are different.

Moving in one direction in parameter space allows a more controlled
move and therefore allows a larger move. This can be wasteful in ABC-
MCMC as every move requires one run of the model. However with the
coupled Gibbs steps all of the parameters can be moved in one step at the
expense of one model run and with the same chance of being accepted as
moving in one direction. This is allowed only because of the coupling keeping
the accepted model the same. Therefore it would be interesting to see how
well CG-ABC works in higher dimensions.

CG-ABC allows us to control the latent variables much more easily by
only changing a handful of them at a time and often we can change the
parameter and the random inputs together in order to increase the chances
of moving to an accepted set of latent variables as shown in the queuing
example in Section 4.4.2. This allows us to use CG-ABC in order to move
around when the tolerance ε is lower.

One problem when ε is lower or when the prior space is large is finding
the posterior region in the first place. Using standard MCMC, when the
likelihood is known, the chain will move towards the region where there is
non-negligible posterior density, however in ABC-MCMC the likelihood is
either one or zero and it is the region where the likelihood is one that we
are looking for so either the Markov Chain starts in the target region or it
will move around as a random walk looking until it finds the region. The
problems with these is that they are both very inefficient. The random walk
may never find the target region (Lee and Latuszyński, 2014) and finding
the region using other methods, eg. SMC-ABC or rejection-ABC could be
very inefficient. One feature that could be exploited is that the model is de-
terministic conditional on the random inputs. This means that optimisation
methods could be used in order to find a point to start the chain. Instead of
finding the minimal difference between the simulated output and the data
we just need to run the optimisation algorithm until we find a set of inputs
that generate output that is within ε of the data. This point could then be
used as a starting point for CG-ABC.

CG-ABC is not just limited to use with ABC-MCMC. Regression-Based
Conditional Density Estimation (Beaumont, 2010) (Section 3.3.1) could be
performed after ABC-MCMC. This can only be done by marginalising over
the random inputs and then performing weighted regression on the param-
eters.

There are a number of variations of the ABC-MCMC algorithm that
have been described in Section 3.3.3 and not mentioned in this chapter. The
coupling and the ABC-Gibbs steps can be applied to the method devised by

69

Wegmann et al (2009) and it would be interesting how much this improves
the mixing of this algorithm. Both the Gibbs sampler and the coupled
version will transfer directly to the GIMH-ABC algorithm of Lee et al (2012).
However we believe that coupling this algorithm will not have a great effect
on its efficiency because there are a lot of random inputs and controlling
them may take a lot of computational effort and due to the large number
of accepted models, the Gibbs step will make smaller moves. However it
is difficult to see how a coupled version of the one-hit MCMC-ABC would
work.

70

Chapter 5

Parameter uncertainty of a
dynamic North Sea size
spectrum model

5.1 Size-spectrum models

There are a number of ways of modelling a marine ecosystem and how species
react to one another through predator-prey relationships (Polovina, 1984;
Walters et al, 1997; Pauly et al, 2000). These models set a fixed trophic level
(position in a food chain) throughout an individual’s life. Although it would
seem natural to build a model in this way, marine ecosystems often violate
this assumption (Werner and Gilliam, 1984; Hartvig et al, 2011) because an
individual moves up trophic levels as it grows and thus eats different things
throughout its life (Pimm and Rice, 1987).

An alternative is to model the ecosystem by examining the size of indi-
viduals which is a much more appealing method as size is a very important
driver of food web interactions and the abundance of organisms scale with
body size (Andersen and Beyer, 2006; White et al, 2007). Empirical evi-
dence has shown that the distribution of abundance for all species N(w)
follow a power law,

N(w) = awb

where w is the body size (White et al, 2007; Reuman et al, 2008) and is
known as the size spectra (Sheldon and Parsons, 1966; Andersen and Beyer,
2006). In marine ecosystems there is a negative relation between the size of
individuals and their abundance at that size which is linear on the log-log
scale as shown in Figure 5.1. Damuth (1981) says that b = −0.75 which
has become known as Damuth’s rule (White et al, 2007) for the community
size structure. Andersen and Beyer (2006) found that this is more like -0.5
for individual species. This approach has been used to show that the size
spectrum becomes steeper following exploitation from fishing (Petchey and

71

Multi species model Uncertainty Methods Results Conclusion

Community based model

-10 -5 0 5

-2
0

-1
5

-1
0

-5
0

5
10

log Body mass [g]

lo
g

A
bu

nd
an

ce
 d

en
si

ty
 [1

/m
3]

M. Spence North Sea sized-based modelFigure 5.1: The size spectrum

Belgrano, 2010; Rice and Gislason, 1996; Jennings and Blanchard, 2004) as
well as to calculate the number of monsters in Loch Ness (Sheldon and Kerr,
1972).

Benôıt and Rochet (2004) developed a size-based model that examined
the community as a whole based on the idea that “big things eat little
things”. This meant that the whole ecosystem was modelled as one species
and a background resource and an individual could be identified by its weight
w. This model was further developed to include different species by hav-
ing a number of traits with different asymptotic sizes, Wi (Andersen and
Beyer, 2006; Andersen and Pedersen, 2009; Hall et al, 2006; Rossberg et al,
2013; Pope et al, 2006) and to model different species with species-specific
parameters (Hartvig et al, 2011; Blanchard et al, 2014).

Blanchard et al (2014) applied a trait-based model to the North Sea and
set all of the other species-specific parameters as well as the asymptotic size
according to values found in the literature from other studies to determine
whether meeting management targets for exploited North Sea populations
would be sufficient to meet proposed Marine Strategy Framework Directive

72

targets for biodiversity and food web functioning (including the “Large fish
indicator”). The model explicitly modelled 12 species as well as a general
background resource with parameter values determined from other litera-
ture. The maximum recruitment parameters, R0, and the background re-
source, κ, were unknown and so the model was then ‘calibrated’ to spawning
stock biomass (SSB) and landings data by minimising the sum of squares,
obtaining a point estimate for R0 to time averaged data. However Blan-
chard et al (2014) said that the results are sensitive to the R0 values. This
suggests that rather than a point estimate, formal parameter uncertainty
would be required as there could be some parameter uncertainty that has
been overlooked in the solution.

There are three main types of uncertainty: parameter uncertainty, struc-
tural or model uncertainty and data uncertainty. Parameter uncertainty is
uncertainty that is caused by uncertainty in parameters. This can be re-
duced by increasing the amount of data we fit the parameters to: Structural
uncertainty is uncertainty in the model itself. This could be because of
simplifications, stochastic elements, uncertain processes or even numerical
approximations and data uncertainty is the uncertainty in the data. This
can be transferred to the parameters but can also be shown in the model
output. This could have been caused by sampling biases or errors in data
collection (Harwood and Stokes, 2003).

Although parameter uncertainty is important it has hardly been con-
sidered on size structured models. Thorpe et al (2015) estimated the pa-
rameters of a length-based multi species model by performing an algorithm
similar to Approximate Bayesian Computation (Beaumont, 2010; Tavaré
et al, 1997) (Section 3.3) which resulted in the parameter values having a
distribution rather than a point estimate. This shows all plausible parameter
values and their probabilities that could have generated the data.

In order to use these methods to predict future events, such as how
management strategies affect the population (Blanchard et al, 2014), the
parameter, model and data uncertainty need to be quantified as when ad-
vising policy makers and environmental managers it is important to report
uncertainty (Harwood and Stokes, 2003).

There are many challenges with fitting a size spectrum model in a Bayesian
way. As the models are written as a series of algorithms and ecological rules,
the model output at a particular parameter set is uncertain unless the model
is run at these parameters meaning that getting posterior distributions in
closed form is not possible. The model is actually quite slow to run, taking
up to a minute at times, and this means exploring the parameter space is
difficult which is often the reason why uncertainty has been overlooked. Ad-
ditionally some parameter combinations result in a cyclic steady state (Law
et al, 2009) which means that when in the cycle you take outputs has an
effect on the reported output of the model.

We have parameterised the multi species size spectrum model and per-

73

formed a Bayesian parameter estimate in this Chapter by first exploring
the parameter space to find regions that fit the model reasonably well and
then from these regions explored the posterior distribution using a common
algorithm from the Bayesian literature, MCMC (Section 3.2).

In Section 5.2, we describe what we are trying to estimate and description
the model. In Section 5.3 we describe how we performed the inference. We
will show the results of the inference in Sections 5.4 and 5.5 and discuss the
findings in Section 5.6.

5.2 Model

i Species SSB Landings

1 Sprat N/A 1967-2010
2 Sandeel 1983-2011 1983-2010
3 N. Pout 1983-2011 1983-2010
4 Herring 1960-2011 1967-2010
5 Dab N/A 1967-2010
6 Whiting 1990-2011 1990-2010
7 Sole 1957-2011 1967-2010
8 Gurnard N/A 1967-2010
9 Plaice 1957-2011 1967-2010
10 Haddock 1963-2011 1967-2010
11 Cod 1963-2011 1967-2010
12 Saithe 1967-2011 1967-2010

Table 5.1: Species data sets.

Blanchard et al (2014) developed a multi species size spectrum model.
The model is based on the equations of Hartvig et al (2011) and Andersen
and Pedersen (2009) but with explicit representation of species specific traits
for the species shown in Table 5.1 and not just its asymptotic size as in trait
based models (Scott et al, 2014).

The sized-based model is used to calculate the size- and trait-spectrum
Ni(w) which is the density of individuals such that Ni(w)dw is the number
of individuals of species i in the size interval [w,w + dw].

The model works on the assumptions that an individual can be char-
acterised by its weight and species number only which implies that the
preference of food is determined by its weight combined with its species
preference.

The model is a system of partial differential equations (PDE) and so is
solved simultaneously for all of the species. The model is based on a prey
selection principle where “big individuals eat smaller individuals” (Hartvig

74

et al, 2011). In order to run the model a number of processes occur and are
described here.

The process of growth and mortality to the size spectrum of each trait
group is achieved by the McKendrik-von Foerster conservation equation

∂Ni(w)

∂t
+
∂ (gi(w)Ni(w))

∂w
= −µi(w)Ni(w), (5.1)

where gi(w) is the individual growth and µ is the mortality. Both growth
and mortality are determined by the availability of food from other species
plus the background resource, NR(w), and predation by the other species,
as explained below.

Equation 5.1 is supplemented by a boundary condition at w0, the weight
of an egg, so that the increase of the number of individuals, gi(w0)Ni(w0) is
determined by

gi(w0)Ni(w0) = Ri

where Ri is the reproduction of the offspring by mature individuals in pop-
ulation i (Andersen and Zhang, 2011). Each species has its own preference
in terms of the weights of prey that it will consume, expressed in terms of
the ratio of weights between predator and prey, w and wp respectively. This
is calculated by an unnormalised log-normal distribution

φi(wp/w) = exp

[
−(log(w/βiwp))

2

2σ2

]
.

Predator-prey encounter

The predator prey encounter is based on the Anderson-Ursin encounter
model (Andersen and Ursin, 1977; Andersen and Beyer, 2006). The amount
of food potentially encountered is calculated and actual food encountered is
calculated from this.

The food available for a predator of species i of weight w is

Ea.i(w) =

∫ NR(wp) +
s∑
j=1

θijNj(wp)

φi(wp/w)wdwp (5.2)

where θij is the preference of species i for species j and s is the number
of species in the model. However the food encountered is dependent on the
search rate γiw

q, where q is positive so that larger individuals search a larger
region (Ware, 1978; Hartvig et al, 2011), and is determined by

Ee.i = γiw
qEa.i.

75

Consumption

An individual doesn’t consume all of the food it encounters. The consump-
tion process determines the feeding level with a number between 0 (no food)
and 1 (fully fed)(Scott et al, 2014).

The feeding level,

fi(w) =
Ee.i

Ee.i + hiwn
,

is a number between 0, where the individual gets no food, and 1, where the
individual is fully satiated. h is the maximum food intake and n is the ex-
ponent for the maximum food intake (Kitchell and Stewart, 1977; Andersen
and Ursin, 1977) which corresponds to a type II functional response (Scott
et al, 2014; Hartvig et al, 2011).

Somatic Growth

Some of the energy gained from consumption is used for standard metabolism
and activity and the rest is divided between growth and reproduction. When
an individual is below the weight of maturity it will use all of its energy on
growth whereas when an individual is close to its asymptotic weight, most
of the energy will be used for reproduction.

If the intake of food is less than that required for the standard metabolism
and activity, then the body size does not shrink. The individual would ex-
perience starvation mortality (Hartvig et al, 2011). This is described in the
submodel “Mortality”.

The energy available for growth and reproduction gained from consump-
tion is

Ei(w) = αfi(w)hiw
n − ks.iwp.

α is the efficiency parameter, ks.i is the energy required for standard metabolism
and activity and p is the exponent of standard metabolism. The energy used
for reproduction is

ψi(w) =

[
1 +

(
w

wm.i

)−u]−1(
w

Wi

)1−n
,

where wm.i is the weight at maturation and Wi is the asymptotic size of
species i. This means that when an individual is small it spends more
energy growing and less when it is larger with u being the transition width
(Hartvig et al, 2011). The somatic growth is

gi(w) = Ei(w)(1− ψi(w)).

76

Reproduction

Females produce eggs dependent on their efficiency of reproduction and en-
ergy allocated to reproduction in the Growth submodel.

The total production of eggs is

Rp.i =
ε

2w0

∫
Ni(w)Ei(w)ψi(w)dw,

where w0 is the egg weight, ε is the efficiency of reproduction and the 1/2
takes into account that only females reproduce (Hartvig et al, 2011; Scott
et al, 2014).

Recruitment

The recruitment is density dependent and also depends on the maximum re-
cruitment for each species, R0.i. This determines how many new individuals
are put into the system.

The recruitment is defined by

Ri = R0.i
Rp.i

Rp.i +R0.i
.

Mortality

There are four types of mortality. There is predation mortality, where indi-
viduals are predated by other species, starvation mortality, the mortality of
individuals that didn’t consume enough energy for standard metabolism and
activity, background mortality and fishing mortality, mortality is caused by
human beings removing fish from the system. The background mortality is
needed so that the largest individuals in the community experience mortal-
ity as they are not predated upon by any individuals from the community
spectrum.

Mortality, µi(w), is the sum of the four types of mortality

µi(w) = µp.i(w) + µs.i(w) + µb.i(w) + µf.i(w).

The predation mortality is defined as

µp.i(wp) =

s∑
j=1

∫
φj(wp/w)(1− fj(w))γjw

qθjiNj(w)dw

which is the sum over all of the species that have preyed on species i. This
follows from the predation in equation 5.2. If Ei(w) < 0 then an individual
doesn’t receive enough energy to perform standard metabolism and activity
and therefore has a starvation mortality, µs.i(w), such that

µs.i(w) =

{
0 if Ei(w) > 0
−Ei(w)
χw otherwise

77

where χ is the fraction of energy reserves (Hartvig et al, 2011). The back-
ground mortality is

µb.i(w) = µ0W
n−1
i .

The fourth mortality is through fishing. The catch or yield for species i, Yi,
is dependent on the stock abundance or biomass by

Yi = fi

∫
qi(w)Ni(w)dw

where fi is the fishing effort or intensity and qi(w) is the catchability coef-
ficient for species i. This is used to estimate the fishing mortality

µf.i(w) = qi(w)fi.

Resource dynamics

The smallest of individuals eat a background resource, as seen in equation
5.2. This resource is described using semi-chemostatic growth, meaning that
it gets replenished semi automatically. This is

∂NR(w, t)

∂t
= r0w

p−1
[
κw−λ −NR(w, t)

]
− µp(w)NR(w, t),

where r0w
p−1 is the population regeneration rate (Fenchel, 1974; Savage

et al, 2004) and the carrying capacity is

κw−2−q+n.

5.2.1 Model applied to the North Sea

Blanchard et al (2014) fitted the model described above to the North Sea
by fixing the parameters from other studies and sources. They were un-
able to get values for R0.i, the maximum carrying capacity for each species,
and κ, the background food resource’s carrying capacity, so they ran an
optimisation algorithm that estimated these parameters.

The authors varied the fishing effort within the model from data from
single species stock assessments (www.isec.dk). However, the R0.i values
were fitted to time averaged fishing efforts from 1985-1995, Bi, and then
the dynamics of the system were added to forecast future effects of different
fishing scenarios. In addition to this, uncertainty was added by making the
recruitment stage stochastic.

In what follows we are going to fit R0.i and κ to the model with the dy-
namics on using a Bayesian framework in order to examine the uncertainty
from uncertainty in parameters and the data rather than adding stochastic-
ity to the model.

78

5.2.2 Errors

We are going to fit the model to SSB and landings data, Y , from stock
assessments (www.ises.dk) for the years shown in table 5.1. If the landings
were simulated from the model, M(µ), where the unknown parameters are
defined µ and the other inputs are implicit in M(·), then it is usual to say

Y = M(µ) + δ(µ) + Σ
1
2 ε,

where δ(µ) is the model discrepancy and ε are independent errors with
mean 0 and variance 1 (Kennedy and O’Hagan, 2001). For this model we
will assume that

logY = logM(µ) + Σ
1
2 ε

where Σ’s off diagonal elements are 0 and the diagonal elements are σ2
i

(i = 1 . . . 9 for SSB and i = 1 . . . 12 for landings) and ε is a vector of
standard normals like in Nielsen and Berg (2014).

5.2.3 Numerical solution of the PDE

The model is a solution of partial differential equations (PDEs) which is
intractable so we will have to estimate it by discretising the time points and
size (Hartvig et al, 2011). Essentially the year is divided into δt amounts
and the PDEs are estimated at these parts. Initially we experimented with
δt = 1, the same value used by Blanchard et al (2014), i.e. the PDEs
were estimated every year, and we found that the likelihood surface was
very unstable and that often made a large difference to the results. As δt
decreases the numerical estimation becomes more accurate. Changing δt we
found that the estimate stabilised at around δt = 1

4 . However as we decrease
δt, the model takes longer to run so we have the classic problem of efficiency
verses accuracy. Table 5.2 shows what happens as we vary δt. It shows how
as δt decreases the likelihood becomes more stable but the amount of time
in order to calculate the likelihood increases.

δt = 1 δt = 1
2 δt = 1

3 δt = 1
4 δt = 1

5 δt = 1
6

−2× 104 12 -760 22 -742 23 -742 33 -742 41 -742 49
−8× 103 11 -748 22 -734 23 -736 32 -738 40 -739 49
−2× 105 16 -1063 24 -753 34 -740 48 -741 59 -741 73
−3× 105 15 -738 24 -735 24 -735 32 -736 41 -736 48

Table 5.2: The log likelihood and time running, in seconds, for four different
parameter sets close to the point found by (Blanchard et al, 2014) and
different values of δt. We found similar results across the whole of the prior
space.

79

5.2.4 Burn-in

The model requires a burn-in period, where the fishing effort is fixed, so that
the model reaches a steady state before the fishing effort is varied and output
is collected. It is also not obvious what the fishing effort should be whilst
the model in burning in so we have added the burn-in fishing mortality as
an additional parameter to estimate for each of the 12 species, [ξi]

12
i=1.

Sometimes the steady state of the model results in the dynamics being
constant, as in Figure 5.2a, however sometimes the dynamics in the steady
state have some cyclic behaviour in the burn-in period of the model, as in
Figure 5.2b.

Looking at Figure 5.2c, where we have runs of the model with the same
parameters that generate a cyclic steady state but started the model dy-
namics at different points in the cycle, we can see that the biomass of sprat
changes. This means that where in the cycle the run is very important.
This is further shown in Figure 5.2d. It shows that as we start the model in
different phases the log-likelihood changes by as much as 4.

If we let Ni,t(w) be Ni(w) at time t when

∂Ni(w)

∂t
= 0 (5.3)

then the phase of the system is

inf{|t− t′| : Ni(w)t = Ni(w)t′∀i, t 6= t′}.

We will treat the phase that we begin the model in as an additional param-
eter ω. ω will take a value between 0 and 1 with 0 being at the beginning
of the of the phase, t such that equation 5.3 is satisfied for all i. Note that
if ω = 0 or ω = 1, the model will begin at the same point, the beginning of
the cycle. Furthermore, when we have more than one element in the set

{t : Ni(w)t = Ai∀i}

for any A, then the model run has reached its steady state.

5.2.5 Fishing mortality

The model enables the fishing effort to be varied over time. The fishing
effort is the amount of effort put into fishing and can be measured by the
number of boats, man hours fishing or nets put in the water and the catch
ability coefficient is the effectiveness of the gear used (Jul-Larsen et al, 2003).
Blanchard et al (2014) estimated the fishing effort using stock assessments
(www.ices.dk) for the 12 species from 1967 to 2010. According to these
inputs, the fishing effort for Norway Pout in 2005 is 0. This is inconsistent
with the landings data as we have landings data for Norway Pout in this
year. In order to try and estimate this we have added the fishing effort of
Norway Pout in 2005 as another parameter, ρ.

80

1700 1800 1900 2000

5e
+1
2

2e
+1
3

5e
+1
3

a

timestep

to
ta

l b
io

m
as

s
(t)

1700 1800 1900 2000
5e
+1
2

2e
+1
3

5e
+1
3

b

timestep

to
ta

l b
io

m
as

s
(t)

1970 1980 1990 2000 2010

5e
+1
2

2e
+1
3

5e
+1
3

c

timestep

to
ta

l b
io

m
as

s
(t)

0.0 0.2 0.4 0.6 0.8 1.0

-1
30
0

-1
29
6

d

ω

lo
g

lik
el

ih
oo

d

Figure 5.2: Images a, b and c show the total biomass for sprat whilst running
the model. The time varying inputs start in 1967. In a, the parameters
create a steady state that is constant whereas the parameters used to in b
generate a steady state that has some cyclic behaviour. In c, the model is
run with the same parameters as in b, but is started at two different values
of ω. In a, all of the species have a constant steady state whereas in b all of
the species have cycles of the same length. d shows how the log likelihood
varies with ω.

81

5.3 Methods

We are going to use an MCMC algorithm to explore the posterior distri-
bution (Section 3.2). The model is very sensitive to small changes in the
parameters and the output is high dimensional so we were unable to build
an emulator (Oakley and O’Hagan, 2004) (Section 3.4.3). We can however
run the model in order to find the value of the likelihood at a given point in
parameter space. This takes, with δt = 1

4 , about one minute per parameter
evaluation so we need a way of speeding this up by taking advantage of par-
allel computing. The posterior distribution is also multimodal which means
that we are going to use parallel tempering to explore the posterior distri-
bution. Furthermore, we are going to couple the version of Cui et al (2011)
with parallel tempering and use the doubly parallel tempering algorithm to
explore the posterior (Section 3.2.3).

5.3.1 Priors

For the inputs R0.i, we specify priors in terms of ψi = logR0.i taking ψi ∼
U(·|αi, βi), where αi < βi. So the prior density for R0.i is

fR0.i(r) =

{
exp(r)
βi−αi if exp(αi) ≤ r ≤ exp(βi)

0 otherwise

for i = 1 . . . 12. Similarly we specify the prior κ in terms of b0 = log κ taking
b0 ∼ U(·|γ, ζ), where γ < ζ. So the prior density for κ is

f(κ) =

{
exp(κ)
ζ−γ if exp(γ) ≤ κ ≤ exp(ζ)

0 otherwise.

For this inference
αi = γ = 0

and
βi = ζ = 50

for i = 1 . . . 12.
The additional latent parameters, [ξi]

12
i=1 are used to make sure that

the model is in the correct state when the model is run. The parameters
represent the fishing effort over the period before the model is run. Although
they are nuisance parameters, it does not make sense for them to be negative.
We decided on

ξiBi ∼ Half normal
(
· |0, (1.824)2

)
where Bi is the mean fishing effort between 1985 and 1995 for species i.
This ensures that this value is positive as if it was negative it would not
have an interpretation in the model. This value was agreed upon after
communications with Julia Blanchard.

82

We assumed that the yield for Norway Pout was just down to rounding
error so we put quite an informative prior on ρ such that

ρ ∼ Exp
(
·
∣∣∣∣ 1

0.23

)
,

the mean value 0.23 being agreed upon after personal communication with
Julia Blanchard. The phase parameter ω does not have a real life represen-
tation and is just a nuisance parameter so we gave it a flat prior

ω ∼ U(·|0, 1).

The variance parameters will all have inverse-gamma prior distributions with
parameters and will be defined

σ2
i ∼ Inv −Gamma(·|0.0001, 0.0001)

for i = 1, . . . , 21. This is a fairly uninformative prior as we do not have
much prior knowledge of the errors.

5.3.2 Exploration

The output from the 27 dimensional input space is not smooth and full of
peaks and troughs that an MCMC chain will get stuck in. So in order to find
a region with non-negligible posterior mass and to keep the computations as
efficient as possible we initially performed a Latin hypercube sample (McKay
et al, 1979) with δt = 1

2 . We also decided that the phase in which the model
started in was not that important for determining where in the parameter
space had non-negligible mass as it doesn’t effect the likelihood that much
(Figure 5.2d) so we fixed ω = 0 whilst exploring the space.

Latin hypercube sampling (LHS) (McKay et al, 1979; Rose, 1989) is a
method that assembles random values of the parameters that represent the
true variability of the system. It allows samples to be drawn from different
areas of the parameter space (Cunningham, 2007). Each parameter’s prior
probability density function is divided into M equally probable regions. In
each round R regions are selected with equal probability from the M regions
without replacement and then a point is sampled from each selected region
using the probability distribution within that region. The model is then run
using that point.

In the first round we used LHS to sample 50,000 parameter sets and
evaluated the model at each of the parameter sets, setting all of the σ2’s
to 1, which is effectively using the mean squared error as a measure of how
good a parameter set was.

We then performed a second round of LHS around each of the ten best
points found in round 1. For each of top-ten point (µ1, . . . , µ26) (the 27th

83

parameter being ω), we applied LHS on the Cartesian product, j = 1, . . . , 26,
of the parameter intervals(

F−1
j (max {Fj(µj)− ε, 0}) , F−1

j (min {Fj(µj) + ε, 1})
)

where Fj(·) is the prior cumulative distribution function of parameter j, and
we take ε = 0.025.

From the best 49 points from the second round, plus the point represent-
ing the parameters that Blanchard et al (2014) found, we optimised using
a Nelder-Mead algorithm (Nelder and Mead, 1965), capping the number of
model runs in order to keep the computational effort down.

5.3.3 Implementation of MCMC

We ran an MCMC algorithm starting from each of the 50 points found
from the optimisation step with δt = 1

4 and found that, although only 3
of them found regions that had non-negligible posterior mass, these chains
were exploring disjoint regions and a standard MCMC chain would find
it difficult to move between these regions. We used a parallel tempering
algorithm that allowed us to move between the regions and explore the
posterior distribution. We set it up so that we had 5 temperatures with
τ1 = 1 and τ5 = 0.01 so that we did not move too far away from the non-
negligible mass. Each temperature had a stationary distribution

1

Ci
π(µ, σ2)l(µ, σ2|x)τi

where Ci is the normalising constant for temperature i and µ is the set of
ψ, b0, ξ, ρ, ω.

We used doubly parallel tempering, described in Section 3.2.3, in order
to explore the posterior distribution. This enabled us to explore the space
quite well whilst taking advantage of parallel computing. In order to improve
the mixing of the algorithm, when proposing an exchange we performed a
Gibbs step assuming the swap would be accepted, so that σ2 would move
to σ2′ , and then accepted or rejected the swap and the Gibbs step in one.
This meant that the acceptance probability of a swap was

min

(
1,
π(x|µj , σ2′

j)τiπ(x|µi, σ2′
i)τjp(i, j)p(σ2

i |µi,x, τi)p(σ2
j |µj ,x, τj)

π(x|µi, σ2
i)
τiπ(x|µj , σ2

j)
τjp(j, i)p(σ2′

i |µi,x, τj)p(σ2′
j |µj ,x, τi)

)
.

The MCMC algorithm is summed up in Algorithm 17.

84

Algorithm 17 One iteration of the doubly parallel tempering algorithm
used to sample from the posterior distribution.

1: Given current values [µk]
5
k=1,

[
σ2
k

]5
k=1

, temperatures [τk]
5
k=1, exchange

rates [sk]
5
k=1 and the acceptance rates, ak, over the last n Metropolis

Hastings updates.
2: if

∑5
k=1 sk ≤ 20 then

3: Pk ← sk∀k
4: else
5: for k = 1 . . .M do
6: χ1 ←

∑5
k=1 I(sk ≥ 1)

7: Pk ←

I(sk ≥ 1) +

⌊(
χ1 ×

1
ak∑5
i=1

1
ak

+ α

)⌋
{α is adjusted so that

∑5
k=1 Pk = 20.}

8: end for
9: end if

10: for k = 1 . . . 5 do
11: Generate Pk candidate points µ′1:Pk

∼ qk(·|µk)
12: Generate Pk − 1 candidate points σ2′

1:Pk−1 ∼ p(·|µj ,x, τk)
13: σ2′

0 ← σ2
k

14: j ← 0
15: t← 1
16: while j < Pk do
17: j ← j + 1

18: α′ ← min

(
1,

π(x|µ′jσ2′
j−1)τkq(µk|µ′j)

π(x|µk,σ2′
j−1)τkq(µ′j |µk)

)
19: Sample u ∼ U(0, 1)
20: if u < α′ then
21: µk ← µ′j
22: j ← Pk
23: else
24: t← t+ 1
25: end if
26: end while
27: σ2

j ∼ p(·|µj ,x, τk)
28: Update ak so that it is the proportion of the last n proposed Metropolis

Hastings moves accepted moves for chain k.
29: sk ← sk − t
30: end for

85

31: while
∑M

k=1 Isk=0 > 1 do
32: i, j ∼ h(·, ·) {Sample i and j from the distribution h(i, j) where si =
sj = 0.}

33: σ2′
i ∼ p(·|µi,x, τj)

34: σ2′
j ∼ p(·|µj ,x, τi)

35:

g ← min

(
1,
π(x|µj , σ2′

j)τiπ(x|µi, σ2′
i)τjp(i, j)p(σ2

i |µi,x, τi)p(σ2
j |µj ,x, τj)

π(x|µi, σ2
i)
τiπ(x|µj , σ2

j)
τjp(j, i)p(σ2′

i |µi,x, τj)p(σ2′
j |µj ,x, τi)

)

36: Sample u ∼ U(·|0, 1)
37: if u < g then
38: φ← µit
39: µit ← µjt
40: µjt ← φ
41: σ2

i ← σ2′
i

42: σ2
j ← σ2′

j

43: end if
44: end while

5.4 Results

We found that the posterior was divided into three different modes with only
the best three points from the optimisation round leading to regions where
there was non-negligible posterior density. This suggests that the parallel
tempering algorithm worked quite well. We had an acceptance rate of 0.05
for the temperature with ti = 1 and we found that it mixed quite well.
We also had desired acceptances for other temperatures that also mixed
well. The algorithm took a week on 20 cores to run 42,000 iterations. We
discarded the first 10,000 iterations as burn-in.

5.4.1 Violin plots

The figures that follow show the sampled posterior distributions plotted
using violin plots (Hintze and Nelson, 1998). A violin plot a is a mix between
a density plot and a box plot. If we have a sample w1:n from the distribution
f(·), then

f̃(u) =
|Ω|
nh

where Ω = {w : |w − u| ≤ h/2} and h is known as the interval width is an
estimate of the density of f(·). f̃(·) is then used as the width of the violin
in the plot.

86

5.4.2 Recruitment parameters

The marginal posterior densities were multi-modal are shown in Figure 5.3.
There does not seem to be a relationship between R0 and size as suggested
by Andersen and Pedersen (2009) and Andersen and Beyer (2013).

5.4.3 Burn in parameters

Some of the posterior distributions of the burn in parameters are not too
dissimilar to their respective prior distributions, suggesting that the fishing
effort in the burn in period is not that important to the model output.
However some posterior distributions are very different, namely those of
Sandeel and of Norway Pout.

5.4.4 Variance parameters

We found that the SSB estimates from the model for Sandeel and Whiting
were poor as they had reasonably high σ2 values. Whereas the SSB for the
others was reasonably good which is shown in Figure 5.4. The landings σ2

values for Sprat, Norway pout, Gurnard and Haddock are also quite high.
The variance parameters and their uncertainties for the landings are shown
in Figure 5.5.

5.4.5 Norway pout fishing in 2005 and Phase parameter

We found that the fishing effort for Norway pout in 2005 is very much multi-
modal as shown in Figure 5.6. It shows that three distinct regions of poste-
rior density. The parameter, ω, does not feature in the posterior distribution
as the model runs with parameters sampled from the posterior distribution
do not have any cyclic behaviour in their stationary distributions hence the
posterior distribution of ω is its prior distribution.

5.4.6 Residuals

We re-ran the model for 2,500 parameter sets sampled from the posterior
distribution and examined their standardised residuals. We found that for
all of the outputs as a whole, the residuals are roughly Gaussian. Which
suggests that the model is able to recreate the average of the system.

Figure 5.7 shows the range of residuals of each of the 9 SSB outputs with
the point representing the mean. If the model was a good estimate of the
data there would be no visible patterns in the ranges. However there does
seem to be a trend in the results. This trend continues in Figure 5.8 for
the residuals of the landings. It is interesting to see that in both outputs
the dynamic trends in residuals are similar. This suggests that treating SSB
and landings as independent is not the right thing to do, as this means that

87

20
25

30
35

40
45

Sp
rat

Sa
nd
ee
l

N. p
ou

t
Da
b

He
rrin
g

Gu
rna
rd

So
le

W
hit
ing

Pla
ice

Ha
dd
oc
k
Sa
ith
e

Co
d

Bac
kg

rou
nd

 re
so

urc
e

Figure 5.3: The posterior distribution of ψ1:12 and b0.

88

0
2

4
6

8
10

Sa
nd
ee
l

N. p
ou

t

He
rrin
g

So
le

W
hit
ing

Pla
ice

Ha
dd
oc
k

Sa
ith
e

Co
d

Figure 5.4: The variance parameters for the SSB output.

89

0
2

4
6

8
10

12
14

Sp
rat

Sa
nd
ee
l

N. p
ou

t
Da
b

He
rrin
g

Gu
rna
rd

So
le

W
hit
ing

Pla
ice

Ha
dd
oc
k
Sa
ith
e

Co
d

Figure 5.5: The variance parameters for the landings output.

90

ρ

D
en
si
ty

0.0 0.5 1.0 1.5

0
1

2
3

4
5

6

Figure 5.6: The marginal posterior distribution for ρ.

91

0
5

10
15

20
25

0.01.0

SS
B

 S
an

de
el

t

Residuals

0
5

10
15

20
25

-2.0-0.51.0

SS
B

 N
. p

ou
t

t

Residuals

0
10

20
30

40

-1012

SS
B

 H
er

rin
g

t

Residuals

0
10

20
30

40

-2.0-0.5

SS
B

 S
ol

e

t

Residuals

5
10

15
20

-1.4-0.8

SS
B

 W
hi

tin
g

t
Residuals

0
10

20
30

40

-2.0-1.00.0

SS
B

 P
la

ic
e

t

Residuals

0
10

20
30

40

-3-112

SS
B

 H
ad

do
ck

t

Residuals

0
10

20
30

40

-2.0-1.00.0
SS

B
 S

ai
th

e

t

Residuals

0
10

20
30

40

-2.0-0.51.0

SS
B

 C
od

t

Residuals

F
ig

u
re

5.
7:

T
h

e
ra

n
g
es

of
re

si
d

u
al

s
fo

r
th

e
S

S
B

.
T

h
er

e
d

o
es

se
em

to
b

e
so

m
e

d
y
n

am
ic

b
eh

av
io

u
r

in
th

e
er

ro
rs

.

92

0
5

10
15

20
25

-1.00.01.0

La
nd

in
gs

 S
pr

at

t

Residuals

0
5

10
15

20
25

-1012

La
nd

in
gs

 S
an

de
el

t

Residuals

0
5

10
15

20
25

-0.50.51.5

La
nd

in
gs

 N
. p

ou
t

t

Residuals

0
10

20
30

40

-1.50.01.5

La
nd

in
gs

 D
ab

t

Residuals

0
10

20
30

40

-1123

La
nd

in
gs

 H
er

rin
g

t

Residuals

0
5

10
15

20
25

30
-2.0-0.51.0

La
nd

in
gs

 G
ur

na
rd

t

Residuals

0
10

20
30

40

-1.50.01.5

La
nd

in
gs

 S
ol

e

t

Residuals

5
10

15
20

-1.00.5

La
nd

in
gs

 W
hi

tin
g

t

Residuals

0
10

20
30

40

0.01.0

La
nd

in
gs

 P
la

ic
e

t

Residuals

0
10

20
30

40

0.01.0

La
nd

in
gs

 H
ad

do
ck

t

Residuals

0
10

20
30

40
-0.51.02.0

La
nd

in
gs

 S
ai

th
e

t

Residuals
0

10
20

30
40

-1.50.01.5

La
nd

in
gs

 C
od

t

Residuals

F
ig

u
re

5
.8

:
T

h
e

ra
n

ge
s

o
f

re
si

d
u

a
ls

fo
r

th
e

la
n

d
in

gs
.

It
ca

n
b

e
se

en
th

at
al

th
ou

gh
th

e
ov

er
al

l
er

ro
rs

se
em

n
or

m
al

ly
d

is
tr

ib
u

te
d

a
n

d
th

er
ef

o
re

es
ti

m
at

e
th

e
m

ea
n

w
el

l,
th

er
e

d
o
es

se
em

to
b

e
so

m
e

d
y
n

am
ic

b
eh

av
io

u
r

in
th

e
er

ro
rs

.

93

we are underestimating the uncertainty in the parameters. We decided not
to fit to the SSB data set and to just fit to the landings data set.

5.5 Analysis with landings only

We assumed that the best points at the end of the optimisation round were
the similar with and without SSB as one implied the other so we returned
to these points. We ran MCMC chains from these points and found that
only one point had non-negligible posterior density.

We also returned to the end of the second round and re-ran the optimi-
sation algorithm using only the sum of squared errors for the landings as a
measure of how good a parameter set was. This resulted in finding 50 new
points. We ran MCMC chains from these points and found that only three
points lead to regions where there was non-negligible posterior density.

We ran doubly parallel tempering as before with these 4 points plus the
5th best point from the previous round being starting points two of which
seemed to be in the same mode of the posterior. We had an acceptance
rate of 0.1 for the target temperature and we found that it mixed quite well.
We also had desired acceptances for other temperatures that also mixed
well. The algorithm took a week on 20 cores to run 60,000 iterations. We
discarded the first 10,000 as burn in.

5.5.1 Recruitment parameters

We found that the marginal posteriors for the recruitment parameters are
unimodal; summaries are shown in Figure 5.9. Once again, the ranked
maximum recruitment does not seem to have a relation with the asymptotic
size as suggested in Andersen and Pedersen (2009) and Andersen and Beyer
(2013).

5.5.2 Burn-in parameters

As in Section 5.4.3, some of the posterior distributions of the burn-in pa-
rameters are not too dissimilar to their respective prior distributions, sug-
gesting that the fishing effort in the burn-in period is not that important to
the model output. This is definitely the case with Gurnard.

5.5.3 Variance parameters

We found that the variance parameters are reasonably small, as shown in
Figure 5.10, which suggests that the model is doing a reasonable job of
recreating reality. We found that the model did a good job of estimating
the yield for Sole, Whiting, Plaice and Saithe. It is particularly bad at

94

24
26

28
30

32

Sp
rat

Sa
nd
ee
l

N. p
ou

t
Da
b

He
rrin
g

Gu
rna
rd

So
le

W
hit
ing

Pla
ice

Ha
dd
oc
k
Sa
ith
e

Co
d

Bac
kg

rou
nd

 re
so

urc
e

Figure 5.9: The marginal posterior distribution for ψ1:12 and b0.

95

0.
0

0.
5

1.
0

1.
5

2.
0

Sp
rat

Sa
nd
ee
l

N. p
ou

t
Da
b

He
rrin
g

So
le

W
hit
ing

Pla
ice

Ha
dd
oc
k
Sa
ith
e

Co
d

Figure 5.10: The marginal posterior for the error parameters for all but
Gurnard.

96

estimating Gurnard which is omitted from Figure 5.10 because it is too big
to plot on the same scale.

5.5.4 Norway pout fishing in 2005 and Phase parameter

We found that the posterior mean fishing effort for Norway pout in 2005 is
about 0.013. This confirms our suspicion that the fishing effort for Norway
Pout in 2005 is a rounding error. The posterior of the phase parameter, ω, is
very similar to the prior of this distribution. It turns out that we didn’t get
any cyclic behaviour for any of the parameter sets sampled in the posterior
distribution.

5.5.5 Model output

We have examined the data and how they compare to the output in Figure
5.11. For many of the species, the model does a good job of fitting the
dynamics of the data. This is definitely the case for Norway Pout, Herring
and Sandeel. However for others it only seems to get the average output
namely for Cod, Gurnard and Dab.

5.5.6 Residuals

Figure 5.12 shows a histogram of the standardised residuals of the model
output with the curve showing the standard normal density. The comparison
of the residuals and the curve itself would match if our assumption, about
the residuals being Gaussian on the log scale, were reasonable which does
seem to be the case. However if we look at the residuals over time, as
in Figure 5.13, we can see that there seems to be some structure to the
residuals. Looking at Cod, at the beginning of the simulation we seem to
under-estimate Cod and as time goes on we over-estimate it. The correlation
between residuals can be seen in almost all of the species.

5.6 Discussion

Uncertainty is very important for reporting to policy makers (Harwood and
Stokes, 2003) as we may need to assess the risk of an event should some policy
be made. Therefore it is important to be able to quantify this risk in a robust
and accurate way. We have demonstrated a way of performing parameter
estimation and uncertainty that would enable us to forward simulate and
make predictions of what might happen in the future. We have shown a
way of probabilistically relating the model to reality and have estimated
parameters that represent the uncertainty in the model.

The results presented here are an estimate of the posterior distribution
of the North Sea fishing model. We are unable to say that what we have

97

0
10

20
30

40

11.012.5

t

Landings Sprat

0
10

20
30

40

12.013.014.0

t

Landings Sandeel

0
10

20
30

40

81012

t

Landings N. pout

0
10

20
30

40

8.09.0

t

Landings Dab

0
10

20
30

40

1012

t

Landings Herring

0
10

20
30

40
2468

t

Landings Gurnard

0
10

20
30

40

9.610.0

t

Landings Sole

0
10

20
30

40

9.610.210.8

t

Landings Whiting

0
10

20
30

40

11.412.012.6

t

Landings Plaice

0
10

20
30

40

10.512.013.5

t

Landings Haddock

0
10

20
30

40

11.412.012.6
t

Landings Saithe
0

10
20

30
40

11.012.0

t

Landings Cod

F
ig

u
re

5.
11

:
R

u
n

s
of

th
e

m
o
d

el
w

it
h

p
ar

am
et

er
s

sa
m

p
le

d
fr

om
th

e
p

os
te

ri
or

d
is

tr
ib

u
ti

on
.

T
h

e
gr

ey
li

n
e

sh
ow

s
th

e
m

ed
ia

n
m

o
d

el
ou

tp
u

t,
th

e
d

o
tt

ed
li

n
es

a
re

th
e

5t
h

a
n

d
95

th
p

er
ce

n
ti

le
s

fo
r

th
e

m
o
d

el
ou

tp
u

t
an

d
th

e
th

ic
k

b
la

ck
li

n
e

is
th

e
ob

se
rv

ed
la

n
d

in
gs

.

98

Residuals

Residual

D
en
si
ty

-4 -2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Figure 5.12: Histogram of standardised residuals.

found is the true posterior distribution but only part of it. We suspect
that the true posterior is very multimodal and some of these modes were
not even explored because it is difficult to explore the whole of the space.
Initially we were exploring 26 inputs. If we took the maximum and the
minimum of each input and searched each combination of these, essentially
exploring the corners of the prior distribution1 there would be 67,108,864
points. This is just searching the extremes of the distribution which is
probably not the regions that we are interested in. One way of improving
the posterior distribution would be to uses more informative priors. This
could be done by eliciting the parameters (O’Hagan et al, 2006) or using
simpler, more tractable models in order to produce priors for example single
species models (Andersen and Beyer, 2013).

Having said all of this we have explored the parameter space in a strategic

1Something that is actually impossible due to the fact that in some directions, the
priors are unbounded.

99

0
5

10
15

20
25

-2.0-0.51.0

La
nd

in
gs

 S
pr

at

t

Residuals

0
5

10
15

20
25

-1012

La
nd

in
gs

 S
an

de
el

t

Residuals

0
5

10
15

20
25

-1012

La
nd

in
gs

 N
. p

ou
t

t

Residuals

0
10

20
30

40

-1.50.01.5

La
nd

in
gs

 D
ab

t

Residuals

0
10

20
30

40

-1123

La
nd

in
gs

 H
er

rin
g

t

Residuals

0
5

10
15

20
25

30
-2.0-0.51.0

La
nd

in
gs

 G
ur

na
rd

t

Residuals

0
10

20
30

40

-201

La
nd

in
gs

 S
ol

e

t

Residuals

5
10

15
20

-1.50.01.5

La
nd

in
gs

 W
hi

tin
g

t

Residuals

0
10

20
30

40

-201

La
nd

in
gs

 P
la

ic
e

t

Residuals

0
10

20
30

40

-2012

La
nd

in
gs

 H
ad

do
ck

t

Residuals

0
10

20
30

40
-2012

La
nd

in
gs

 S
ai

th
e

t

Residuals
0

10
20

30
40

-1.50.01.5

La
nd

in
gs

 C
od

t

Residuals

F
ig

u
re

5
.1

3
:

R
u

n
s

of
th

e
m

o
d

el
w

it
h

th
e

re
si

d
u

al
s

sh
ow

n
.

T
h

e
m

ea
n

re
si

d
u

al
is

sh
ow

n
b
y

th
e

p
oi

n
t

an
d

th
e

95
th

an
d

5t
h

p
er

ce
n
ti

le
s

ar
e

sh
ow

n
b
y

th
e

le
n

g
th

of
ea

ch
li

n
e.

100

way in order to try and explore as much of the space as possible. Our
method has greatly improved things. The best point found in the first
round, the initial latin hypercube search, had a log likelihood of −13790.19.
In the MCMC round, the best point from the sampled posterior had a log
likelihood of −322.08. We are quite happy that the method described here
gives a good estimate of the posterior distribution however we are not ruling
out the possibility that if we ran the method again there may turn out to
be a much better region.

The work presented here gives a way of relating the model output to
reality. We have taken into account parameter uncertainty and shown that
the model does well at estimating the long term average of the real world.
However it doesn’t estimate the dynamics of the system in the short term as
well. This was mentioned in Blanchard et al (2014) where they used stochas-
ticity in their model to try and estimate the model uncertainty whereas we
are using noise on the model output and parameter uncertainty to estimate
the error in the model.

This leads to asking the question, what can we do to try and make the
model a good estimate of reality? If we look at cod, we can see that at
first we underestimate the landings and then over time we over estimate the
landings. We believe either that the estimates of the fishing effort are poor
or that R0.i changes over time, possibly as a function of temperature (Bigg
et al, 2008). Both these could be estimated by taking a time varying latent
state approach.

Furthermore, the assumption that δ(θ) = 0, i.e. the model discrepancy
equals 0, could be incorrect. This is suggested by the fact that the residuals
do suggest normality but we are able to see a structure in them over time
which suggests some bias in the model. Additionally, the fact that all of the
modes found in Section 5.4 result in similar patterns of residuals suggests
that this could be corrected by a discrepancy term and is not just a feature
of this region in parameter space.

Although there were no oscillations found in the posterior distribution,
we did find them in earlier runs and they may be encountered at other regions
in the posterior distribution. We presented here a method of removing the
arbitrariness of the burn-in period. We demonstrated a way of identifying
the phase of the cycle and then treating where with in the cycle a model
run begins as an additional parameter.

The variance parameters, σ2, are describing the model error and the data
error. We could interpret it as how reliable the data are. Before beginning
this work we weren’t overly confident with the data for a number of species,
Landings for Sprat, Dab and Gurnard just to name a few. The results did
show large variance parameters for the landings of Sprat and Gurnard. This
does not necessarily mean that the data are wrong for these sets, but does
indicate that the model and the data together are more poor estimates of
reality for these species compared to the other species.

101

When examining complex models some of the uncertainty in the model
is down to uncertainty in the data (Wilkinson, 2013; Harwood and Stokes,
2003). In this article we have assumed that at each time step the true catch
is the data plus some Gaussian noise with zero mean. Although this as-
sumption does not seem to be fully met, evident by the correlated residuals,
it does lead to the question what is the correct error structure? From a pure
statistical point, it was not the right thing to do to assume that the errors
for one species were independent and identically distributed in this work.
This could be counteracted by modelling the residuals as an autoregressive
model of order 1 (AR(1)). In reality there are many reasons that there could
be errors in landings, miss reporting, measurement or collecting error, just
to name a few, and we do believe that for each year some of these effects
are independently distributed.

The model took a long time to run and it might therefore be better to
build an emulator (Kennedy and O’Hagan, 2001) for the model. However we
have a lot of outputs, at least 21, and the model is very sensitive to changes
in the parameters which means that a Gaussian process emulator would be
difficult, if not impossible to build. It would be interesting though if we
fitted the model to some summaries of the data, in a similar way to Wood’s
synthetic likelihood (Wood, 2010), rather than the data itself, whether or
not we would find that these summaries would be much smoother to small
changes in the parameters which may enable us to build an emulator and
speed up the inference.

The doubly parallel tempering algorithm, described in Section 3.2.3, al-
lows the model to be run with every parameter set. In the final inference, the
parallel tempering, we ran the model 88,000 times. If run on a single core,
this would mean that it would take roughly 20 weeks. However we could
have parallelised it by running one temperature on one core, ie. 5 cores in
total. This would take about 4 weeks but the doubly parallel tempering
allowed the inference to be done in one week and was key to this work.

102

Chapter 6

Global Sensitivity Analysis

6.1 Introduction

A simulation model will never be able to fully represent the true system
(Grimm and Railsback, 2005) as there will be a degree of uncertainty in the
structure and the inputs of the model. This can be caused by simplifications
of the model by the modeller, either because of a lack of knowledge or in order
to keep the complexity of the model at a manageable level, or uncertainties
in the inputs to the model (Beck, 1987; Berk et al, 2002; Clark et al, 2001;
Katz, 2002; Li and Wu, 2006; Reckhow, 1994; Stott and Kettleborough, 2002;
Grimm et al, 1996). Sensitivity analysis evaluates how the uncertainties
in the model and its inputs affect the uncertainty in the output (Saltelli
et al, 2004). Some of the uncertainties can be quantified and reduced (Katz,
2002) and some uncertainties are so small that they don’t need to be worried
about. If a modeller can find out which uncertainties have a large effect on
the output of the model then they can spend more time and effort learning
about these. On the other hand if a modeller can find out which inputs have
a very little effect on the output then they can fix the inputs (Oakley and
O’Hagan, 2004).

Suppose we have a model with uncertain inputs x1, x2, . . . , xn and output
y defined

y = f(x1:n).

Local sensitivity analysis is used to see how small changes in individual
inputs affect the output of the model (Railsback and Grimm, 2012). When
the model can be explicitly written out, local sensitivity analysis can be
performed by computing the partial derivatives (Saltelli et al, 2000)

∂f(x1:n)

∂xi
.

When this cannot be performed, which is often the case when it comes to
complex computer models, an input is changed by a small amount around

103

a nominal value, x0, whilst the other parameters keep the same values in
order to estimate the partial derivatives (Railsback and Grimm, 2012). This
can be seen as a particular case of a one-factor-at-a-time (OAT) approach
(Saltelli et al, 2000).

The idea of fixing x−i (all of the inputs except xi) based on x0 and
changing xi in order to estimate local sensitivity to inputs seems very de-
pendent on the value of x0 and doesn’t consider the whole of the uncertain
space. Instead it gives the sensitivity along the axis of the inputs, with x0

being the origin, which, except for linear models, is not generally typical of
the whole of the input space.

There are global methods that assume the function f(·) is differentiable
at all points in the input space, p(x), and look at partial derivatives (Section
6.2) which estimate the partial derivatives with the nominal point being
various points around the whole of the input space or∫ ∣∣∣∣∂f(x1:n)

∂xi

∣∣∣∣ dP (x)

where dP (x) is integrated over the whole input distribution of x1:n.
Another common global method, which has been used with IBMs, is that

of Standardised Regression Coefficients (van Nes et al, 2002; Drechsler, 1998;
Railsback et al, 2006; Maes et al, 2005). This is done by sampling from the
input distributions and then running the model at these values. A regression
model is fitted to the model outputs and inputs and then the standardised
coefficients are measures of the sensitivity of the inputs. This works well
when the model is approximately linear and monotonic but struggles if not
(Cariboni et al, 2007).

Global methods estimate the effect on the output of the model when
all of the inputs are varied across the whole of the uncertain input space
(Cariboni et al, 2007). Typically methods of global sensitivity analysis are
independent of their model and do not rely on the assumptions of linearity or
additivity but are computationally expensive. One such method is variance-
based sensitivity analysis where the variance is decomposed which enables
us to calculate how much each input contributes to the uncertainty of the
output.

The rest of the chapter is broken down by first describing screening
methods that are usually done before more quantitive methods are used, in
Section 6.2, and then variance-based methods are reviewed in Section 6.3.
This chapter is a review of current methods and can be skipped for an expert
in the area. The methods described here are used and extended in Chapter
7.

104

6.2 Screening methods

Often it is the case that there are a large number of inputs of which only
a small subset have a non-negligible effect. It is then important to screen
out these parameters that have negligible effect on the input. This is often
done before more accurate but more expensive sensitivity methods are used
(Cariboni et al, 2007; Morris et al, 2014).

6.2.1 Morris Method

The Morris method (Morris, 1991; Campolongo et al, 2007) is a OAT method
but is done over the whole space and therefore can be described as a method
of global sensitivity analysis. It enables classification of the inputs into
inputs with negligible effects, inputs with linear effects and inputs with non-
linear and/or interaction effects (Iooss and Lemâıtre, 2015). r points in the
input space are evaluated across the whole input distribution and then the
elementary effect of the ith input at the jth point are

E
(j)
i =

f(xj−i, x
j
i + ∆)− f(xj)

∆
,

The mean absolute value and standard deviation of the elementary effects
are estimated by

µ∗i =
1

r

r∑
j=1

|E(j)
i | and

σ∗i =

√√√√√1

r

r∑
j=1

E(j)
i −

1

r

r∑
j=1

E
(j)
i

2

.

µ∗i gives the effect of the input i and σ∗i is a measure of non-linearity and/or
interactions with other parameters.

6.2.2 Derivative based global sensitivity

A generalisation of this method is derivative based global sensitivity (Sobol’
and Kucherenko, 2009, 2010) defined by

νi =

∫ (
∂f

∂xi

)2

dP (x).

It can be seen that if c ≤ |∂f/∂xi| ≤ C then

σic
2

V ar(y)
≤ τ2

i ≤
σiC

2

V ar(y)

105

where τ2
i is the total sensitivity index and is defined in equation 6.8 below

and σi = V ar(xi) (Sobol’ and Kucherenko, 2009). If f(x) is non-monotonic
then c = 0 as somewhere ∂f/∂xi = 0 hence

τ2
i ≤

σiC
2

V ar(y)

and therefore if σiC
2

V ar(y) is small, the total sensitivity caused by input i is also

small. Sobol’ and Kucherenko (Sobol’ and Kucherenko, 2009) also showed
that if the input distributions of x1, . . . , xn were a n dimensional hypercube
(which can be all distributions as shown in Proposition 1 in Chapter 4), then

τ2
i ≤

νi
π2V ar(y)

.

These can be seen as indices in there own right and are justified by
their relation to variance-based sensitivity as described in the next section.
In practise people use the sample maximum as a value of C found when
evaluating |∂f/∂xi| numerically.

6.3 Variance-based sensitivity

Variance-based global sensitivity is based on the law of total variance

V ar(y) = V arxi
(
Ex−i(y|xi)

)
+ Exi

(
V arx−i(y|xi)

)
.

This can be rearranged so that

Vi ≡ V arxi
(
Ex−i(y|xi)

)
is the expected reduction in the variance of the output if you learned the
exact value of Xi. Often this is standardised by

Di ≡
V arxi

(
Ex−i(y|xi)

)
V ar(y)

. (6.1)

This is known as the first order sensitivity index (Saltelli et al, 2004), im-
portance measure (Horan and Iman, 2008; Homma and Saltelli, 1996), cor-
relation ratio (Krzykacz, 1990; McKay, 1996) or main effect index (Oakley
and O’Hagan, 2004). The second order sensitivity index is defined

Vij ≡ V arxi,xj
(
Ex−i,j (y|xi, xj)

)
− V arxi

(
Ex−i(y|xi)

)
− V arxj

(
Ex−j (y|xj)

)
or in standardised form by

Dij ≡
Vij

V ar(y)
. (6.2)

106

Vij is the expected reduction in variance by learning both the true value
of xi and xj and not the expected reduction of the first order effects i.e.
learning xi or xj on their own. If the inputs, x1:n are independent then

V ar(y) =
∑
i

Vi +
∑
i

∑
j>i

Vij + . . .+ V123...n. (6.3)

Homma and Saltelli (1996) introduced the total effect index, DT i, which is
the proportion of the variance that is left if we learnt everything except xi
(Oakley and O’Hagan, 2004)

DT i ≡ 1− V ar−xi (Exi(y|x−i))
V ar(y)

. (6.4)

6.3.1 Sobol’ Indices

Sobol’ (1993) decomposed the function rather than the variance as

f(x) = f0 +
∑
i

fi(xi)+
∑
i

∑
i<j

fij(xi, xj)+ . . .+f12...k(x1, x2, . . . , xn) (6.5)

where ∫
fi1,...is(xi1 , . . . xis)dP (xi1) . . . dP (xis) = 0.

In other words
E(fi1,...is(xi1 , . . . xis)) = 0

and

E(f(x)) =

∫
f(x)dP (x)

= f0.

This means every term, apart from the first one, in equation 6.5 will have
expectation 0.

The decomposition equations are unique (Efron and Stein, 1981), pro-
vided that the input parameters are orthogonal, and that the individual
terms fi1,i2,...,is are square integrable, which if f(x) is then all of the indi-
vidual terms are. Each individual term is orthogonal such that∫

fi1,i2,...,ik(xi1 , xi2 , . . . , xis)fj1,j2,...,jl(xj1 , xj2 , . . . , xjl)dP (x) = 0 (6.6)

which allows the decomposition to be found by

fi(xi) =

∫
f(x)dP (x)−i − f0

fij(xij) =

∫
f(x)dP (x)−ij − fi(xi)− fj(xj)− f0.

107

The variance of Y can be found by

V ar(Y) = E(Y 2)− (E(Y))2

=

∫
(f(x))2dP (x)−

(∫
f(x)dP (x)

)2

=

∫
(f(x))2dP (x)− f2

0 . (6.7)

Now from equation 6.5

(f(x))2 = f2
0 + f0

∑
i

fi(xi) +
∑
i

∑
i<j

fij(xi, xj) + . . .+ f12...k(x1, x2, . . . , xk)

+ . . .+ f12...k(x1, x2, . . . , xk)

2.

Plugging this into equation 6.7 the terms that are orthogonal will integrate
to 0 because of equation 6.6 and then

V ar(y) =
∑
i

∫
fi(xi)

2dP (x)+
∑
i

∑
i<j

∫
fij(xi, xj)

2dP (x)+. . .+

∫
f12...k(x1, x2, . . . , xk)

2dP (x).

This means that the variance is broken into the variance of the decomposi-
tion terms. Sobol’ (1993) defined the total variance

V ≡ V ar(y)

and the variance of the decomposition terms

Vi1,...,is =

∫
fi1,...,ıs(xi1 , . . . , xis)

2dP (x).

The ratios

Di1,...,is =
Vi1,...,is
V

are called global sensitivity indices or Sobol’ indices. These indices are non-
negative and sum to 1 and include as special cases the indices described in
equations 6.1 and 6.2.

6.3.2 Variable importance

Sobol’ (1993) defines two measures of the importance of subsets of variables.
If now we let i ⊆ {1, 2, . . . , k}, i.e. i (and also j) represents a subset of inputs,
the closed sensitivity index is defined as,

τ2
i =

∑
j⊆i

Vj ,

108

and the total sensitivity index

τ2
i =

∑
j∩i 6=∅

Vj . (6.8)

It can be shown that 0 ≤ τ2
i ≤ τ2

i ≤ V and that

τ2
i + τ2

−i = V

which can be useful for estimating these values. Sobol’ (1993) shows that

τ2
i =

∫
f(x)f(xi, x

′
−i)dP (x)dP (x′)− f2

0

which can be written as

τ2
i = E(f(x)f(xi, x

′
−i))− E(f(x))2

= Cov(f(x), f(xi, x
′
−i));

as well as

τ2
i =

1

2

∫
(f(x)− f(x−i, x

′
i))

2dP (x)dP (x′),

which can be written as

V ar(f(x))− Cov(f(x), f(x−i, x
′
i)).

Liu and Owen (2006) showed that we can calculate

Vi =
∑
j⊆i

(−1)|j−i|τ2
j

and
Vi =

∑
j⊆i

(−1)|j−i|(V − τ2
−j)

from these values. The closed sensitivity index, τ2
i , describes the total con-

tribution of i and all of the subsets of i to the variance; whereas the total
sensitivity index, τ2

i , describes the total contribution of the set of inputs
i and all of their interactions with themselves and the other inputs to the
variance (Fruth et al, 2014). Liu and Owen (2006) also define a superset
importance as

Υ2
i =

∑
j⊇i

Vj ,

which can be interpreted as the amount of variance that the higher order
interactions of the set i contribute to the variance. It is possible to get the
sensitivity index of the set i from the superset

Vi =
∑
j⊇i

(−1)|j−i|Υ2
j .

109

6.3.3 Estimation

The integrals above are often intractable so numerical methods are required
in order to estimate the Sobol’ indices. In this subsection we describe a
number of different methods.

Pick and Freeze methods

These problems all have in common that they are trying to estimate the
covariance of two random samples, f(x) and f(xi, x

′
−i). One way of doing

this would be

τ̃2
i =

1

n− 1

(
n∑

m=1

(f(xm)− f̃0)(f(xmi , x
′m
−i)− f̃ ′0)

)
where we draw two samples xm and x′m from the inputs with m = 1 . . . n.
This would lead to an unbiassed estimate of τ2

i . However the variance of this
estimate is much higher than it could be. Here we know that E(f(xi)) =
E(f(xi, x

′
−i)) and we could use this in order to better estimate the indices.

Sobol’ (2001) suggested estimating the closed sensitivity index by

τ̃2
i =

1

n

n∑
m=1

f(xm)f(xmi , x
′m
−i)− f̃0

2
(6.9)

where

f̃0 =
1

n

n∑
m=1

f(xm)

and total sensitivity index

τ̃2
i =

1

2n

n∑
m=1

(f(xm)− f(xm−i, x
′m
i))2.

The estimate of τ̃2
i is biased by −var(f̃0) (Owen, 2013c). Owen (2013c) gave

an alternative method of estimating τ2
i that doesn’t require any more runs

of the model than the method described by Sobol’ (2001). Owen proposed
estimating

f̃0 =
1

n

n∑
m=1

f(xm),

f̃0
′

=
1

n

n∑
m=1

f(xmi , x
′m
−i),

s2 =
1

n− 1

n∑
m=1

(f(xm)− f̃0)2 and

s2′ =
1

n− 1

n∑
m=1

(f(xmi , x
′m
−i)− f̃0

′
)2,

110

and then

τ̃2
i =

2n

2n− 1

 1

n

n∑
m=1

f(xm)f(xmi , x
′m
−i)−

(
f̃0 + f̃0

′

2

)2

+

(
s2 + s2′

4n

)
is an unbiased estimator of τ2

i .
Saltelli (2002) tried to maximise the number of estimates from a number

of runs in order to minimise the model evaluations. If we sampled two
input sets, x and x′ as before and ran f(x), f(x′), f(xi, x

′) and f(x′i, x) for
i = 1 . . . d. From this it is possible to estimate all of the first order indices,
all of the second order indices and the first order total sensitivities from the
n(2d + 2) model runs. Furthermore the estimates of the first order indices
were

τ̃2
i

1
=

1

n

n∑
m=1

f(xm)(f(xmi , x
′m
−i)− f(x′m)) (6.10)

which are an unbiased estimate (Kucherenko et al, 2011) of τ2
i (see also

Proposition 3 in Chapter 7). The estimate of the mean squared is f̃0f̃ ′0

rather than f̃0
2

as in equation 6.9. Saltelli (2002) noticed that if you ran
every possible combination there would be two estimates of τ2

i , the one
described in equation 6.10 and

τ̃2
i

2
=

1

n

n∑
m=1

f(x′m)(f(x′mi , xm−i)− f(xm)). (6.11)

The author suggested that the mean of these two estimates should be the
estimate of τ2

i . This is an unbiassed estimate of τ2
i and has a lower variance

than equations 6.10 and 6.11 by half the difference of the covariance of τ̃2
i

1

and τ̃2
i

2
and the variance of the estimates (which will be the same and is

shown in Proposition 3). Tarantola et al (2006b) took this one step further
and realised that, as well as equations 6.10 and 6.11, τ2

i could be estimated
by

τ̃2
i

3
=

1

n

n∑
m=1

f(xmi , x
′m
−i)(f(xm)− f(x′mi , xm−i)) (6.12)

τ̃2
i

4
=

1

n

n∑
m=1

f(x′mi , xm−i)(f(x′m)− f(xmi , x
′m
−i)). (6.13)

The mean of all of these estimates is then an unbiassed estimate for τ2
i

with a lower variance than when we have only two estimates. Glen and
Isaacs (2012) showed that this method was better, in terms of variance of
the estimate, than anything previously described in this chapter.

111

Owen (2013a) examined estimates of small sensitivity indices. The au-
thor found that if it were possible to sample the inputs a third time z1:m,
then

τ̃2
i =

1

n

n∑
m=1

(f(xm)− f(zmi , x
m
−i))(f(xmi , x

′m
−i)− f(x′m))

would give a much better estimate of the variance compared to the other
correlation methods (described above) especially when the true index, τ2

i , is
small.

Rather than estimating the correlation, Liu and Owen (2006) estimated
the superset importance and showed that

Υ2
i =

1

2|i|

∫ ∑
j⊆i

(−1)|j−i|f(xj , x
′
−j)

2

dP (x)idP (x′) (6.14)

which can be estimated by

Υ̃2
i =

1

n2|i|

n∑
k=1

∑
j⊆i

(−1)|j−i|f(xj ,
k x′k−j)

2

.

This is an unbiased estimator and has the added property that it is non-
negative. Furthermore, Fruth et al (2014) showed that if Υ2

i = 0 then using

the Liu and Owen estimator Υ̃2
i = 0. This method is useful at estimating

lower order indices if d is small however this method becomes very expensive
when d becomes larger as to estimate all of the first order indices you need
to run the model in all 2dn times.

Sampling schemes

The above methods can be implemented by using Monte Carlo sampling
(Metropolis and Ulam, 1949). However there are many sampling schemes
that are used rather than Monte Carlo sampling in order to estimate the
Sobol’ indices. Latin Hypercube sampling (McKay et al, 1979) and Quasi
Monte Carlo techniques, such as Sobol’ sequences (Sobol’, 1967), that gener-
ate points that fill the space better than independent pseudo random num-
bers can improve the estimation of the sensitivity indices by a factor of ten
(Saltelli et al, 2008).

Cukier et al (1978) developed a method of estimating the first order
sensitivity indices named Fourier amplitude sensitivity testing (FAST) which
was extended by Saltelli et al (1999) to be able to estimate total sensitivity
indices. However, in practice there are a lot of sources of error and FAST
could only be used in small dimensions (Tissot and Prieur, 2012). Tarantola
et al (2006a) developed a version of FAST based on random balanced designs
(Satterwaite, 1959), namely RBD-FAST, that over came some of the errors

112

and enables the estimation of any order sensitivities (Mara, 2010). Tissot
and Prieur (2012) then corrected for the bias of the RBD-FAST.

Meta Models methods

One method of estimating the Sobol’ indices is to smooth the function
and estimate E−xi(y|xi) and then use this to estimate V arxi(E−xi(y|xi))
(Wainwright et al, 2014). Strong et al (2011) used a method of estimating
E−xi(y|xi) using generalised additive models. The variance of the estimate
of E−xi(y|xi), from the generalised additive model, is then an estimate of
Vi. The advantage of this is that it just requires n evaluations in order to
work out all of Sobol’ indices. For a more detailed description of smoothing
methods see Storlie and Helton (2008).

Sometimes models can be expensive to run or only a limited number
of evaluations of the model may be available, then a less expensive meta
model could be created Saltelli et al (2004). Oakley and O’Hagan (2004)
built a Gaussian process emulator (see Section 3.4.3) and Kleijnen (2007)
used methods of kriging to estimate the model output quickly and from these
values they can estimate the sensitivity indices. In both these methods the
Sobol’ indices can be calculated analytically. Other methods of building
meta models exist such as linear, non-linear parametric or non-parametric
regression (Iooss and Lemâıtre, 2015) and simulation from the meta model
allows estimation of the Sobol’ indices (Santner et al, 2003; Iooss et al, 2006).

6.3.4 Stochastic Models

For stochastic models with inputs x and stochastic elements u it is not pos-
sible to fully decompose the variance as described in equation 6.3. Instead
it is decomposed as (Iooss and Ribatet, 2009; Marrel et al, 2012)

V ar(y) =
∑
i

Vi +
∑
i

∑
j>i

Vij + . . .+ V123...n + Ex(V aru(y|x))

where Ex(V aru(y|x)) is the total sensitivity of the randomness, u. Iooss and
Ribatet (2009) and Marrel et al (2012) defined the total sensitivity of u by

V ar(y)− τ̃2
i

which they estimate by meta models. This use of meta models does not
enable the authors to quantify the the different terms Viu. In Marrel et al
(2012), two estimators are built; one that models the expectation of the
model output and the other the noise in the output.

In Iooss and Ribatet (2009), the authors suggested treating all of the
stochastic elements, u, as inputs, which would enable us to decomposed the
variance caused by these stochastic elements. In the next chapter we further

113

develop this method of performing variance-based sensitivity analysis on
stochastic simulation models in order to enable us to quantify the different
terms Viu. We use this method to enable us to perform robustness analysis
on IBMs.

114

Chapter 7

Variance based sensitivity
analysis of stochastic
complex models

7.1 Introduction

Robustness analysis tests whether the results of a model depends on the
essentials of the model or the simplifying assumptions (Weisberg, 2006). If
a model’s ability to reproduce patterns is sensitive to the details of the model
then it probably doesn’t capture the real mechanics of the system (Grimm
and Railsback, 2005). This means that any features of the model that do
not represent something in reality, for example scale of the model or grid,
should not have much of an effect on the results of the model.

In other words any feature of the model that drives the output of the
model should be theoretically correct and justified. It is possible to test this
by seeing how sensitive the model is to these details. This is so important
that Railsback and Grimm (2012) suggest that robustness analysis should
be included in all publications of IBMs. Maclean (2010) tested a number of
arbitrary decisions on Hovel and Regan’s blue crab IBM (Hovel and Regan,
2008) model using local sensitivity analysis. Maclean (2010) found that a
number of arbitrary parameter values had a large effect on the model out-
put but found that the scale of the model had little effect on the results. In
addition, Kloprogge et al (2011) devised a method based on asking experts
how plausible the model assumptions are and Chen and Mynett (2003) ex-
amined the effects of cell size. Robustness analysis also examines what effect
different submodels have on the output of the model, something that was
tested by Tarantola et al (2002) and Cortés-Avizanda et al (2014).

In order to test the arbitrary features of models we need to see which
inputs or parameters cause the variation of the model output. Any uncertain
inputs should be given prior input distributions and then the sensitivity

115

across the whole input space should be tested rather than at some nominal
point which is often the case (Railsback and Grimm, 2012). A popular
method is to partition the variance as described in the previous chapter and
we hope to do this with these types of models.

One of the issues with doing variance-based sensitivity analysis is that
the Sobol’ decomposition cannot be made as some of the variance cannot be
assigned because it is down to the stochasticity within the model. Marrel
et al (2012) showed one way of decomposing the variance that treats the total
effect of the stochasticity to be part of this decomposition. We demonstrate
in Section 7.2 that it is possible to further decompose the variance into
different types of stochastic inputs as well as estimate interaction terms of
parameters and stochastic inputs. We use this partition of the variance
amongst the different submodels in Section 7.3 that should enable us to test
a model for arbitrary decisions and show how the model is sensitive to its
submodels. This is demonstrated on the woodhoopoe and bird synchrony
models in Section 7.4.

7.2 Stochastic Models

We are going to examine a general model f(·) with inputs x. For the time
being let us assume that it is deterministic. The closed sensitivity index of
xi can be estimated by a method described by Kucherenko et al (2011) (see
Section 6.3.3).

Proposition 3. The estimator

τ̃2
i =

1

n

n∑
m=1

f(xm)(f(xmi , x
′m
−i)− f(x′m)) (7.1)

is unbiased and has variance

1

n

(
C2 + 2

(
V ar(W) + f2

0

)2 − C2 − 2E
(
W 2Y Z

))
where C2 = Cov(f(x)2, f(x−i, x

′
i)

2), C = Cov(f(x), f(x−i, x
′
i)), W = f(x),

Y = f(x−i, x
′) and Z = f(x′).

Proof. Let W = f(x), Y = f(xi, x
′
−i) and Z = f(x′). We will also drop the

superscripts m. The expectation is

E

(
1

n

∑
W (Y − Z)

)
=

1

n

(
E
(∑

WY
)
− E

(∑
WZ

))
=

1

n
(nE (WY)− nE (WZ))

= Cov(W,Y) + E(W)E(Y)− E(W)E(Z)

= Cov(W,Y) + f2
0 − f2

0

= Cov(W,Y)

116

Hence the estimator is unbiased. The variance is

V ar

(
1

n

∑
W (Y − Z)

)
=

1

n
V ar (WY −WZ)

=
1

n
(V ar(WY) + V ar(WZ)

− 2Cov(WY,WZ)) (7.2)

Now W and Y are not independent but do have the same mean and variance
so we can say that

V ar(WY) = Cov(W 2, Y 2) +
(
V ar(W) + f2

0

)2 − (Cov(W,Y) + f2
0

)2
.

W and Z are independent so

V ar(WZ) =
(
V ar(W) + f2

0

)2 − f4
0

and
Cov(WY,WZ) = E

(
W 2Y Z

)
− f2

0

(
Cov(W,Y) + f2

0

)
.

Plugging these into equation 7.2 we get

V ar

(
1

n

∑
W (Y − Z)

)
=

1

n

(
Cov(W 2, Y 2) +

(
V ar(W) + f2

0

)2
−
(
Cov(W,Y) + f2

0

)2
+
(
V ar(W) + f2

0

)2 − f4
0

−2
(
E
(
W 2Y Z

)
− f2

0

(
Cov(W,Y) + f2

0

)))
=

1

n

(
Cov(W 2, Y 2) + 2

(
V ar(W) + f2

0

)2
− (Cov(W,Y))2 − 2E

(
W 2Y Z

))
.

Now let’s assume that f(·) is a stochastic model. We are now going to
analyse the sensitivity of E(f(x)|x) to the elements of x. For stochastic
models, f(x) is no longer known perfectly from a single run, there is an
additional amount of uncertainty, called aleatory uncertainty, that is caused
by the stochasticity in the model. A possible solution to this problem is
to better estimate f(x) by sampling from it m times each. If we want to
estimate the sensitivity index of xi then we can sample q points and sample
them m times. If we fix the computation effort at n model runs then we
have the constraint that

n = qm.

117

Proposition 4. The variance of the estimator described in equation 7.1
estimated using the method described above is

1

q

(
C2 + 2

(
V arx(W) +

Ex(V ar(f(·|x)))

m
+ f2

0

)2

−C2 − 2E
(
W 2Y Z

))
where C2 = Cov(f(x)2, f(x−i, x

′
i)

2), C = Cov(E(f(x)|x), E(f(x−i, x
′
i))|x, x′),

W = E(f(x)|x), Y = E(f(x−i, x
′
i)|x, x′), Z = E(f(x′)|x′) and Ex(V ar(f(·|x)))

is the variance of W caused by the stochastic elements.

Proof. Using the result from Proposition 3 and saying thatW ′ ∼ 1
m

∑m
j=1 f

j(·|x),

Y ′ ∼ 1
m

∑m
j=1 f

j(·|x−i, x′i) and Z ′ ∼ 1
m

∑m
j=1 f

j(·|x′) then we can say that
the variance of the estimator is

1

q

(
C ′2 + 2

(
V ar(W ′) + f2

0

)2 − C ′2 − 2E
(
W ′2Y ′Z ′

))
.

with C ′2 = Cov(W ′2, Y ′2), C ′ = Cov(W ′, Y ′). Furthermore

C ′2 =
1

m4
Cov

 m∑
j=1

f j(·|x)

2

,

 m∑
j=1

f j(·|x−i, x′i)

2
= Cov(W 2, Y 2)

and

C ′ =
1

m2
Cov

 m∑
j=1

f j(·|x),
m∑
j=1

f j(·|x−i, x′i)

= Cov(W,Y).

Also,

E
(
W ′2Y ′Z ′

)
=

1

m4
E

 m∑
j1=1

m∑
j2=1

m∑
j3=1

m∑
j4=1

f j1(x)f j2(x)f j3(x−i, x
′
i)f

j4(x′)

=

1

m4

m∑
j1=1

m∑
j2=1

m∑
j3=1

m∑
j4=1

E
(
f j1(x)f j2(x)f j3(x−i, x

′
i)f

j4(x′)
)

=
1

m4
m4E

(
W 2Y Z

)
= E

(
W 2Y Z

)
and if we consider the stochastic elements as inputs u then

V ar(W ′) = V arx(E(W ′)) + Ex(V ar(W ′))

= V arx(W) +
V ar(f(·|x))

m

and the result follows.

118

If we set

A = C2 − C2 − 2E(W 2Y Z),

Q = V arx(W) + f2
0

and
V = Ex(V ar(W))

then the variance is minimised, by differentiating the variance of the esti-
mator with respect to M , when

m2 =
2V 2

A+ 2Q2
.

If the model is deterministic, ie. Ex(V aru(f(x))) = 0, then we should
put all of our effort into searching around the input space whereas if the
variance is dominated by Ex(V aru(f(·|x))) then we should aim to estimate
the expectation E(W) well by increasing m.

Using the queuing model described in Section 4.2.1 we performed vari-
ance based sensitivity analysis by setting q = 10, 000 and m = 1 as we
believe this to be the ideal settings and using the method of Tarantola et al
(2006b) (Section 6.3.3) partitioned the variance for the minimum, maximum
and every 1/19th quantile of the inter-departure times. We found that the
numbers do not add up to 1 and can actually be a long way off. The esti-
mates of the closed sensitivity indices are quite noisy and it is difficult to
see what proportion of the variance is unaccounted for by the parameters.

It is possible to use the method of common random numbers (Owen,
2013b) in order to keep numerical stability as this will maximise Cov(XY,XZ)
and hence E(X2Y Z). This is done by, as well as sampling xj and x′j , sam-
pling the random inputs uj for j = 1, . . . , q. The estimate then becomes

τ̃2
i =

1

n

n∑
j=1

f(xj , uj)(f(xji , x
′j
−i, u

j)− f(x′j , uj)). (7.3)

Table 7.2 shows the estimates of the first order sensitivities when the
random inputs are controlled as described in equation 7.3 and does demon-
strate that the closed sensitivity indices are more stable. Having said this,
we may not actually be interested in this as using this method decomposes
the variance down to the inputs xi only.

It is possible to decompose the variance into the epistemic and aleatory
parts and estimate Ex(V aru(f(·|x))). We will treat the stochastic part of
the model as if it were an input u. This means that as well as sampling x and
x′, we sample u and u′. Then u acts just like another input enabling us to
use it each of the estimation algorithms in order to estimate the sensitivity
of each input (Iooss and Ribatet, 2009). The variance down to the aleatory
parts, Ex(V aru(f(·|x))), is then τ2

u (Marrel et al, 2012).

119

Quantile θ1 θ2 θ3

0 0.97 0 0.01
1/19 0.01 0 0.90
2/19 0.00 0 1.00
3/19 0.00 0 0.88
4/19 0.00 0 0.93
5/19 0.00 0 0.81
6/19 0.00 0 0.85
7/19 0.00 0 0.85
8/19 0.00 0 0.82
9/19 0.00 0 0.81

10/19 0.00 0 0.87
11/19 0.00 0 0.89
12/19 0.00 0 1.04
13/19 0.00 0 0.99
14/19 0.00 0 0.99
15/19 0.00 0 0.98
16/19 0.00 0 0.87
17/19 0.00 0 0.82
18/19 0.00 0 0.82

1 0.00 0 0.67

Table 7.1: The first order indices using the algorithm of Tarantola et al
(2006b) and q = 10, 000 and m = 1.

This was done by Iooss and Ribatet (2009) where they treated all the
stochastic realisation as an input and calculated the related sensitivity in-
dices. We can use the idea of treating the random inputs as conventional
inputs to further break down the aleatory uncertainty to different types of
random inputs by coupling the random inputs as described in Section 4.2.1.
This will help us in the next section where we are going to partition the vari-
ance into different submodels. We demonstrate this method on the queuing
model and the Ricker model but first we want to show that the variance and
total variance of the random inputs will remain the same regardless of how
the model is parameterised.

If we can write the model with inputs θ1:N or φ1:N such that

eθ(θ1,...,N)
D
= eφ(φ1,...,M).

Both models have the same variance but have different decompositions. Now
if we can partition the inputs to x in common and θ1...n and φ1...m not
(n < N,m < M) with

fθ(x, θ1,...,n)
D
= fφ(x, φ1,...,m)

120

Quantile θ1 θ2 θ3

0 0.97 0 0.01
1/19 0.00 0 1.00
2/19 0.00 0 1.00
3/19 0.00 0 1.00
4/19 0.00 0 1.00
5/19 0.00 0 1.00
6/19 0.00 0 1.00
7/19 0.00 0 1.00
8/19 0.00 0 1.00
9/19 0.00 0 1.00

10/19 0.00 0 1.00
11/19 0.00 0 1.00
12/19 0.00 0 1.00
13/19 0.00 0 1.00
14/19 0.00 0 1.00
15/19 0.00 0 1.00
16/19 0.00 0 1.00
17/19 0.00 0 1.00
18/19 0.00 0 1.00

1 0.00 0 1.00

Table 7.2: The first order indices using Tarantola et al’s (Tarantola et al,
2006b) and using common random numbers for 10,000 samples of the inputs.

and write as
f(x, g(θ1:n))

D
= f(x, h(φ1:m))

then
τ2
θ1,...,θn = τ2

φ1,...,φm

and
τ2
θ1,...,θn = τ2

φ1,...,φm .

This means that it does not matter how the model is parameterised,
the closed sensitivity index and total effects indices of the inputs x will
remain the same, as too will Ex(V aru(X)). This parameterisation could
include how the random inputs have been coupled which means that how
the model is coupled does not effect the closed sensitivity indices and total
effects indices.

7.2.1 Queueing Model

We are going to demonstrate the method of coupling the random inputs
and performing variance based sensitivity analysis for the queuing model

121

described in Section 4.2.1 with priors described in Section 4.4.2 with the
outputs being the summary statistics of the inter-departure times suggested
by Blum and François (2010). In order to do this, as it is quick to simulate
and we are interested in all indices and not just the first order ones we
will use the method of Liu and Owen (2006). We coupled the model in
the way described in Section 4.2.1. The results are shown in Table 7.3 and

Quantile θ1 θ3 u θ3u Ex(V aru(f(x)))

0 0.98 0.01 0.00 0.00 0.01
1/19 0.02 0.88 0.03 0.07 0.09
2/19 0.01 0.94 0.01 0.04 0.05
3/19 0.00 0.92 0.03 0.05 0.08
4/19 0.00 0.88 0.05 0.06 0.12
5/19 0.00 0.85 0.07 0.08 0.15
6/19 0.00 0.91 0.04 0.05 0.09
7/19 0.00 0.93 0.03 0.04 0.07
8/19 0.00 0.88 0.06 0.06 0.12
9/19 0.00 0.93 0.03 0.04 0.07

10/19 0.00 0.88 0.05 0.06 0.12
11/19 0.00 0.93 0.03 0.04 0.07
12/19 0.00 0.98 0.01 0.01 0.02
13/19 0.00 0.98 0.01 0.01 0.02
14/19 0.00 0.98 0.01 0.01 0.02
15/19 0.00 0.96 0.01 0.02 0.04
16/19 0.00 0.93 0.03 0.04 0.07
17/19 0.00 0.86 0.07 0.07 0.14
18/19 0.00 0.91 0.04 0.05 0.09

1 0.00 0.94 0.03 0.04 0.06

Table 7.3: The estimates of the variances for each of the inputs and the total
sensitivity of the random inputs. Every other combination is zero.

show that a lot of the variance of the minimum service time is down to
θ1 which makes sense as this is a sufficient statistic (Fearnhead, 2004) but
all other quantiles are controlled by θ3, the arrival rate, or u, the random
inputs that control the arrival times. Furthermore we found that θ2 was
very insensitive to all of the summary statistics. This may suggest a reason
why θ2 was difficult to estimate when performing parameter estimation in
the Section 4.4.2. Figure 7.1 shows how the standardised first order Sobol’
indices for each of the outputs. It shows that apart from the minimum,
which is almost entirely θ1, θ3 and u control the variance and the indices
don’t really change for later quantiles with the changes being mostly down
to noise. It is interesting to see that very quickly θ3 dominates the variance
of the output.

122

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θ1

D
θ 1

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θ3

D
θ 3

5 10 15 20

0.
00

0.
02

0.
04

0.
06

0.
08

u

D
u

Figure 7.1: The first order indices for the θ1 θ3 and u with the original prior
θ3 ∼ U(·|0, 1/3) for each of the 20 outputs. The other inputs are zero.

123

● ●●● ● ●●● ●● ● ●● ●●● ●●●●● ●●● ●●●● ●● ●● ●● ●● ●●●● ● ●● ● ●●● ● ●● ● ● ●●●

●

●● ●●● ●● ● ●●● ● ● ●●● ●● ● ● ●● ●● ●● ●●● ●● ●●● ● ● ● ●●●● ● ●● ● ●●●● ●● ● ●●● ●● ● ●●● ●●●● ● ● ● ●● ●● ● ●● ●●●● ●●●● ●●● ●●●● ●● ● ●●● ●●● ●● ●●● ●●
●

●● ●● ●● ●● ● ●●● ●●● ●● ● ●●●● ●● ● ●● ●● ●● ●● ● ●● ●●●● ●● ● ●● ● ●● ●● ● ●● ●●●● ●● ● ●● ●● ●●● ● ● ●●●● ●●● ●● ●● ●● ●●● ●●● ● ●●●● ●●● ●●● ●● ●● ●●● ● ●● ● ●● ●● ●● ●●● ●● ●● ●● ● ●●● ●●● ● ●●●● ●● ● ● ●● ● ●● ● ●● ●● ● ●●● ●● ●●● ●● ●● ●● ● ●●●●●● ● ● ●● ●●● ● ●● ● ●●●● ●● ●●●● ●● ● ● ●●● ●●● ● ●●●●● ● ●●● ● ●● ●●● ● ●●● ●● ● ●●●● ●●● ●●● ●●● ●● ● ●●● ●● ●● ●●●● ●● ● ● ●●● ●●● ●● ●● ●● ● ●● ●● ●● ●● ● ●● ●●● ●●●● ● ●●● ●● ●● ●● ●● ● ●●● ● ●● ●●● ●●●
●

●●● ●●● ● ●●● ●●● ● ●●● ●● ●●●● ● ●●●● ●● ●● ●●● ●● ● ● ●●● ● ● ●● ●●● ●● ●● ●● ●● ●● ●●●● ●
●

●●● ●● ●●●

●

●●● ●● ● ●●● ●● ● ●●●●●
●

●● ● ●●●● ●●●●● ● ●●● ● ●●● ● ●●●● ●●● ●●● ●● ●● ● ●● ● ●●● ●● ●
●

●●
●

● ●●● ●● ●● ●●● ●● ●● ●● ●● ●● ●●● ●●● ●● ●● ● ●●● ●● ●● ●●● ● ● ● ●● ● ●● ●● ●●●●● ●● ● ● ● ●●● ●● ●●● ●●● ●●● ● ●● ●●● ● ● ●●● ● ● ●●● ●●● ● ●● ●● ● ●● ●● ●● ● ●● ●● ●● ●●● ● ●● ●● ●●● ●● ●●●● ●●●● ●● ● ●●

●

●● ● ●●●● ● ●●●● ● ●● ●●● ● ● ● ●● ●●●
●

●●●● ● ●● ● ●● ● ● ●● ● ●●●● ● ● ● ●●●●●● ● ●●●● ● ●● ●●● ●●●● ●● ●● ●● ● ● ●● ●●● ● ●●● ● ●●● ● ●●● ●● ●● ●●● ● ●● ●● ●● ●●● ● ● ●●● ●● ●●● ●● ●

●

● ●● ●● ●● ●● ● ● ●●●● ●●● ● ●●●● ●●● ●●● ●●●● ●●●● ● ●● ●● ●● ●●● ● ●● ● ●●● ●

●

● ●● ●●

●

● ●● ● ●●● ●● ●●● ●●● ● ● ● ●● ●●●● ●● ● ●●● ●● ●●● ●●●● ●● ● ●●●● ●●● ●● ● ●● ● ●●● ●●● ●●● ●●● ● ●●● ● ● ●● ●● ●● ●● ●

●

● ●● ●● ●●● ● ● ●●● ●●●● ●● ●● ● ●● ●● ●● ●●●●● ● ●● ●● ●● ● ● ●● ●● ●● ●● ●● ● ●● ●●● ●● ●●●● ●● ●●● ●● ●● ● ●●

●

●● ●● ●●●● ●● ●● ●● ●●●●● ● ●● ●●●● ● ●●● ● ●● ●●● ●● ●● ●● ●●● ●● ● ●●● ●●●● ●●●● ● ●●●● ● ● ●●●● ●● ●● ● ●● ●●● ●●● ●●● ● ●●● ●● ● ● ●● ● ●● ● ● ●●● ●● ● ●● ●
●

● ● ●●●● ●●●● ●● ●
●

● ● ● ●● ●● ●● ●● ●● ● ●●● ●●● ●
●

● ●●● ●●●● ●● ●●● ●● ●● ●● ●●●●
●

● ● ●●● ● ●●● ●● ● ●●

●

●● ● ● ●●●
●

●● ●● ●● ● ●●● ●●●●● ● ●● ●● ●●●●●●● ● ●●● ●● ●● ●● ●●● ●● ●●●● ●● ●●● ● ●●● ● ●●● ● ● ●●● ●●● ●● ●● ●● ● ●● ●●● ●●● ●● ●● ●●●● ●● ●●● ●● ●●● ●● ● ● ● ●●● ●● ●●● ● ●●●● ●● ● ●● ●●● ● ● ●●● ●● ●● ●●●● ● ●●● ●●● ●● ●● ●●● ●● ● ●●● ●● ● ●● ●●● ●● ●● ● ●● ●●● ●● ● ● ●● ● ●● ●● ●●●
●

●●● ● ●● ●● ●●● ●● ●● ●●● ● ●● ●●
●

● ●● ● ●●● ● ●● ● ●●● ●●● ●● ●●● ● ●● ● ●●● ● ●● ●● ● ●●● ● ●●● ●● ●●●●● ● ●● ● ●● ●●● ● ● ● ●● ●●● ●● ●●● ●●

●

●●● ● ●●● ● ●●● ● ●● ●●● ● ● ●●●
●

●●● ● ●● ●● ●●● ● ●● ● ●● ● ● ●●● ●● ●●●● ●● ●● ●●●●● ●●●● ●● ●●● ●● ● ●● ●
●

●●●● ●●● ●● ● ● ●●● ● ●●● ●● ●● ● ●●● ●● ●● ●● ●● ●●● ●●● ●● ●● ●● ●●●● ●●● ●● ●●●●
●

●●● ● ● ●●●● ●● ●● ●● ● ●● ●● ● ●● ● ●●● ● ●● ●● ● ●● ●● ●●● ●●● ● ●●●●● ●● ●●● ● ●●●● ● ●● ● ●● ●● ● ●● ●●● ●●●● ● ●● ●● ● ●●●● ● ● ●● ●●● ● ●●● ●● ●●●● ●● ●●● ●● ●●● ●●● ● ●●● ●● ●●● ●●● ●
●

●● ● ●● ●● ●●● ● ●●● ●● ● ●● ● ●● ● ● ● ●● ●● ●● ●●●● ●● ●●● ●● ●● ●

●

●●● ● ●● ● ● ● ●● ●●●● ●● ●●● ●● ● ●●● ● ●●●● ●●●●● ● ● ● ●● ●●●● ● ●
●

● ●● ● ●● ●● ●●● ● ●● ● ●● ●●● ●●● ●● ●● ● ●●●●● ● ●● ●● ●● ●● ● ●● ●● ●● ●●● ● ●●● ●●●● ●● ●●●●

●

●

●

● ● ●●●● ●●● ●●● ●● ●● ●● ●● ●●● ●●●● ●●● ● ●● ●●●● ●●● ● ●● ●●● ●● ● ●● ●● ●● ● ●●●● ●● ●● ●●● ●● ● ●●● ● ●● ●● ●● ●●●● ●●●● ●● ●● ●●●● ●● ● ●●● ●●●● ●● ● ●●● ● ●●●●●● ●● ●● ●● ●● ●● ●● ●● ● ●●● ● ●● ●●●● ●●● ●● ● ●●●●● ●● ●● ●● ●● ●●● ● ●● ● ●● ● ● ●●● ●● ●● ●● ●●● ● ●● ●● ●● ●● ● ●● ●

●

● ●● ●● ●● ● ●●● ● ●● ●●●
●

●●● ●● ●● ●●●● ●● ●● ●●● ●●●● ●● ● ●●● ●● ●● ●● ●● ●●● ●●●● ●●● ● ●●● ●●●● ●● ●● ● ● ●●● ●● ● ●

●

●●
●

●● ●● ● ●●● ●● ●●●● ●●●● ● ●● ●●● ● ●●● ● ●● ●●● ● ● ●●●● ●●● ●●● ●●●● ●●
●

●●● ●● ● ● ●● ●● ●●● ● ●●● ●● ● ● ●● ●● ●● ●● ●●● ● ●● ●●● ● ● ●● ● ●●● ●● ●● ● ●● ●●● ●● ●● ●● ● ●●● ●●● ● ●● ●●●● ● ●●●● ●●● ●● ●● ●● ●●●● ●● ●●●● ● ●

●

● ●● ●●● ● ●●●● ●●● ● ●● ●●● ● ● ● ●● ●●● ●● ● ●● ● ●●●● ●● ●● ●● ● ●● ● ●●● ●●● ●●● ● ●●●● ●● ●● ●● ●●●

●

●● ●● ●●● ●● ●●● ●● ●●● ● ● ●● ●● ● ●●● ● ●●● ●●●●●● ● ●●● ● ● ●●●● ●● ●● ●● ● ● ●●●●● ●● ●●● ●● ● ●●●● ● ●● ● ●●● ●

●

●● ●● ● ●
●

● ● ● ●●● ●● ●● ●●●● ●● ●● ●● ● ●● ●● ●● ●●● ●● ●● ●● ●● ● ●● ●● ●●● ●●● ●●● ●● ● ●●● ●● ●● ●● ●●● ●●● ●●●●●● ●● ● ●●● ● ●● ●● ● ●●●● ● ●●●● ●●● ● ● ●● ●● ● ●● ●● ●●● ●● ●● ●● ●● ●● ●● ● ●●●●● ● ●●●● ● ●
●

●●●●
●

●● ●● ● ●●●●●●

●

● ●●● ●● ●● ● ●●●● ●● ● ● ●● ●● ●●● ● ●● ●●●● ● ●● ●● ●● ●● ●●● ● ● ●● ●
●● ●●●● ●●● ●● ● ● ●●●●● ●● ● ●● ●●● ● ●●●● ●● ●●● ●●●●● ● ●● ●●● ●● ●●● ●● ●● ●● ● ●● ●● ●● ● ● ●● ● ●● ●●● ●● ●● ● ●● ●●●●● ●● ● ●● ●●● ●● ● ●●●
●

● ● ●●● ●● ●●●● ●●● ●● ●
●

● ● ● ●● ●● ●● ● ● ●●● ●●● ● ●●● ●●●● ●● ●● ●● ●● ●● ●●●● ●●●●●● ●● ●●● ● ●● ●●● ●●●● ●● ●●

●

● ●● ● ●●● ● ●● ●● ●● ●● ●●● ● ●●● ●● ●●
●

●● ●● ● ●●● ●● ●● ●●●● ●● ●● ●●●● ●●● ●●●● ● ●●● ● ●●●● ● ●● ●● ● ●● ●● ● ●● ●●● ●● ●● ●●● ●● ● ●● ●● ●● ●● ●●

●

● ●● ● ●● ● ● ● ● ●● ●●●● ●●● ●● ●●● ● ●● ●●●● ●● ● ● ● ●● ●● ●●● ● ● ●● ●●●●

●

●● ●● ●●

●

● ●● ●●●● ●●● ●● ●●●● ●●● ● ●●● ●●

●

● ●● ●● ●● ● ●●● ● ●● ●● ●● ● ●● ●● ● ● ●● ●● ● ●●● ●●● ● ●●
●

●●● ●● ● ●●● ● ●●● ●● ● ●●● ●●● ●●● ● ●●●● ●● ●● ● ●●●● ● ●●●●● ●● ●●●●● ●●● ●● ●●●●●● ● ●●● ●●●●● ● ●●● ● ● ●
●

● ●●● ● ●●● ●●●●●● ● ●
●

●●● ●● ●● ●● ●● ●● ● ●●●● ● ●●● ●●● ●●●● ●● ● ● ●● ●●● ●●● ●●●●● ● ● ●● ● ●● ●● ●● ●● ● ●● ●●●●● ●●

●

● ● ●●● ● ●●● ●● ●● ●●● ●●● ●● ● ●● ●● ● ●● ●● ●● ●● ●● ● ●●● ● ●● ●● ●●●● ●● ●● ●●● ● ●●● ●●● ●● ● ● ●●● ● ● ●●●●
●

● ● ●●● ●●● ●● ● ●● ●● ●●●● ●● ● ●● ● ●●●● ●●● ● ●●● ●●● ●●●● ●●● ●●● ●●●● ● ●●●● ● ●●● ●●●● ●● ● ●●● ●● ●● ●●● ●● ● ●●● ● ●● ● ●●● ● ●●●● ●●● ●●● ● ●●●●● ●●●● ●● ●●●● ● ●● ●● ● ●●● ● ●● ● ●●● ● ●●● ●● ●●●● ●● ●● ● ●● ● ●●● ● ● ●●● ●●●● ● ● ●●

●

● ● ●● ●● ●● ●●●
●

● ● ●● ●●

●

● ● ●● ● ●● ●●●● ●●● ● ●● ●● ●● ● ● ●●●● ●● ●●●●● ●●● ● ●●● ● ●●● ● ●●●● ●● ●● ●● ● ●● ● ● ● ●●● ●●● ●● ●● ●● ●● ●●●● ●● ●● ● ●● ●● ● ●● ● ●●●● ●● ●● ●●● ●●●● ●●●●●●● ● ●● ● ●● ●●● ●●● ●● ●●● ●● ●● ● ●● ●●● ● ●●● ● ●● ●●● ● ●● ●●●● ●●●● ● ●● ●●●●●● ●
●

● ●● ●●● ● ●● ●●● ●●● ●●●● ●● ●● ● ●● ●● ●● ● ● ●●● ●●●● ●● ●● ●● ●●● ●● ●●●● ● ●● ●●●● ●● ● ●● ●● ● ● ●● ● ●●● ● ● ●● ● ● ●

●

●●●● ●● ●● ●●● ●●●● ● ●●● ● ●● ●● ●● ●● ●●●● ● ● ●●● ●● ●●●● ● ● ●●● ● ●●● ●●●● ● ●● ●● ●●● ● ●● ●● ●● ● ●● ●● ●● ●● ●● ● ●●●● ●● ● ●● ●● ●●

●

●● ●●● ●●●● ●● ●●● ● ●● ● ●● ● ● ●● ●● ●●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●● ●●● ●●● ●● ● ● ●● ●●● ●● ●● ● ● ●●● ●● ● ●● ●●●●●●● ●● ●●●● ●● ●●● ●●● ●● ● ● ●● ●●● ●● ●● ● ●● ●● ●● ●●● ●● ●● ●● ●● ●●● ● ● ● ●●● ●●
●

●● ● ●● ●● ● ●● ●● ●● ●●● ● ●● ●● ●●● ● ● ●●● ● ●● ●●● ● ●●●● ● ●●●● ●●● ●●● ●● ●●● ●● ● ● ●●● ●●

●

●● ●● ●●●● ●● ● ●● ●● ●●●● ●●●● ●● ● ● ●● ● ●●● ●● ● ●●●● ● ●● ●● ●●●●●● ●●●● ●● ● ●● ●● ●●●● ● ● ●● ● ●●● ● ●●● ● ● ●
●

●
●

● ●● ● ●● ●● ●●●● ●●● ● ●● ●● ●● ● ●● ● ●●●●● ● ● ●●● ● ● ●● ●●●● ●● ●● ●●● ●● ●●●●●● ●● ● ●● ●●●● ● ●●● ● ●●● ●● ●● ●● ●● ●●●● ● ●● ● ●● ●● ● ●●● ● ●●● ● ●● ●● ●● ●

●

●● ●●● ●● ●● ● ●●●● ● ● ●●● ●●● ●● ● ●● ●● ●● ● ●●●● ●● ●●
●

●● ● ●● ● ● ●●● ●● ●● ●●● ●● ●
●

● ● ●● ● ●● ●● ●●● ●● ●● ● ● ●● ●● ●● ●● ●● ● ●●● ●● ●● ●● ●● ●● ●● ● ●●● ●● ●● ●●●● ●● ●● ● ●● ●● ●●● ●● ●●● ●● ● ●●●● ●● ●●● ●● ● ●● ●●● ● ●●● ●●●●● ●●● ●● ●● ●● ●●● ● ●● ● ●●● ● ●● ● ●● ●● ●● ●●● ●● ●● ●● ●●●● ● ●●● ● ●●● ●●● ● ● ●● ● ●●● ●●● ●●●● ● ●●● ●●●

●

●● ●● ●● ● ●● ●● ● ●● ●● ● ●●● ● ●● ●● ● ●●●● ●● ● ●● ●● ●●● ●●●● ●●●● ●●●●● ●● ●● ●●● ● ●●●● ●● ● ●● ●● ●●● ●●●
●

● ●● ●● ●● ● ●
● ● ● ●●●
●

●●● ● ● ●● ● ●●● ●● ● ●● ●● ●●● ●●● ● ●● ● ●● ● ●● ● ●● ● ●● ●● ●●●

●

●●● ●●●

●

● ● ● ●●●●● ●●●● ●● ●● ●●●●● ●● ●● ●●●● ●● ●● ●● ●●● ●●● ● ● ●● ● ●● ●● ●●●● ●● ●● ●●● ●● ●●●● ●● ●● ●● ● ●● ●

●

● ●●●●● ●●● ●● ●● ●● ●●● ●● ● ●● ● ●●● ●● ●● ●●●● ●
●

● ●● ●● ●●● ●● ●● ●● ● ●●●● ●●●● ●● ● ●●● ●●● ● ●●●
●

● ●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ● ●●

●

● ●●●● ●● ● ● ● ●● ●●●● ● ●●●

●

●●● ● ●
●

● ●●● ●● ●● ●● ●● ●● ●● ●
●

● ●●● ●● ● ● ●●●● ●●● ●● ●● ●●● ● ●● ●● ●●● ●

●

● ●● ● ●●●●
● ●●● ●● ● ●●●● ● ●●● ● ●● ●●● ● ●●●● ●● ● ●●● ●●● ●● ●●● ●● ●● ●●●●●●● ● ●● ● ● ●● ●● ●●● ● ●● ● ●●●● ●● ● ● ● ● ●●●●● ●●● ●●● ● ●●● ●● ●● ●● ●● ● ●●● ●●● ●

●

●● ● ●● ●● ● ● ● ●● ● ●●●● ●● ●● ● ●● ● ●●●● ●●● ●● ● ●●● ●● ●●● ● ● ●●● ●●●● ●● ● ●● ●● ●●● ●● ●●●● ● ●● ● ●● ●●●●● ● ●●●● ● ● ●● ● ●●●●●● ●●● ●● ●●●● ● ●●
●

●● ● ●● ● ●●●● ●●● ●● ●● ●● ● ●●●● ●● ●●● ●● ● ●

●

●● ● ● ● ●●● ●●● ●● ●●●● ●● ● ●● ●● ●●● ● ●● ●● ● ●● ● ●●●●● ●● ●● ●● ● ●●●● ● ●●●

●

●● ● ●● ● ●●●● ● ● ● ●● ●● ● ●● ● ●●● ● ●●● ●● ● ● ●●● ●●

●

●●●● ● ●●● ●●●●● ●● ●●● ●● ●● ● ●● ●●● ● ●●● ● ●●● ●● ●● ● ● ●● ●● ●●●● ●
●

●● ●● ●●● ●● ●● ● ●●● ● ●●● ● ●● ● ●●● ●● ●●● ●● ●● ●● ●● ●●● ●●● ●● ●● ●● ●● ●● ●● ●● ● ●●● ●● ●● ●● ●●● ● ●● ● ● ●●●● ●●● ●● ●● ●● ●●● ●● ●●● ●●● ●●●● ●● ●● ●● ●●●● ●● ●● ● ●●● ●●● ●●● ●●● ●● ● ●● ●● ● ● ●●● ●●● ●● ●●●●●● ● ●●●● ●● ●● ● ●● ●●● ● ●● ●●● ●

●

● ●●● ●● ●●● ●● ●● ●● ●● ●● ● ●● ● ●● ●● ● ● ●● ● ●● ● ●●● ●● ●●● ● ●● ●●●●● ● ●● ● ●● ●● ● ●● ●● ●● ●●●● ●● ●● ●● ●●● ●●● ●● ●●● ●● ●● ●● ● ●● ● ●●●● ●●●● ●●● ●●● ● ●● ●● ●● ●● ● ● ● ●●●● ● ●●●●● ● ●●●● ● ●● ● ●●● ● ● ● ●● ●● ●●● ● ●●●●● ●● ●●● ●● ●●● ●● ●●●● ●● ●●●● ●● ●●
●

●● ●● ●● ● ●● ● ● ● ●●● ●● ●●
●

●● ● ● ●●● ●● ●●● ●● ●●● ●

●

●● ●●●●●●● ●● ●● ●● ● ●●● ● ● ●● ● ●● ●● ●

●

●●● ●● ● ●● ●●●● ●● ●● ●●● ●● ●●● ● ●●● ●● ●●● ● ●●●● ● ●● ● ●●● ● ● ●●● ●●● ●● ●● ●● ●●● ● ● ●● ● ●● ●●● ●●● ●● ●● ●●● ●● ●● ● ●●● ● ●● ●●●● ●● ●●●● ●●●● ● ●● ●● ●● ●●● ● ●● ●●● ●●● ●● ●●● ● ●● ●●●
●

● ●● ●● ●● ●●●●●●● ●● ●●● ●● ●● ●● ● ●● ●● ● ● ●● ● ●● ●●● ●●● ● ●●● ● ●● ● ● ●● ●●● ● ●● ●●● ●●● ●● ●●● ● ●●●● ●● ● ●● ●●●● ● ●●● ● ●● ●● ●●● ●●● ● ●● ●● ●●● ● ●● ●●●●● ●● ●● ●● ●● ●● ●●● ●●●● ● ● ●●●● ● ●● ●● ●●● ● ●● ● ●● ● ●●● ●●● ●● ● ●●● ●● ●●● ●●● ● ●● ●● ●● ●●● ●● ●● ●●●● ●● ●●● ● ●●●● ●●● ●● ●● ●●● ●●●●●

●

●●●● ● ●●●● ● ●●●● ●● ●● ●●● ●● ● ● ●●●● ● ●●● ●●● ●●● ●● ●●●● ● ●● ●● ●●● ●● ●● ●● ● ●●●● ● ●● ● ● ●
●

● ● ● ●● ●●● ●●● ●● ●●●● ●● ●
●

●●
● ● ●●● ●●● ●● ● ●● ● ●● ●● ● ●● ● ●●● ● ●● ●●● ● ●● ●●●●● ●●● ●●● ●● ● ●● ●● ●●● ● ●●●● ● ●●● ●● ●●
●

● ●● ●● ●●● ● ●● ●●●● ●● ●● ● ●●●● ●●●● ● ●●● ●● ● ● ●●● ●● ● ●●● ●● ●● ● ●●● ●●●●●●● ●● ●● ● ●●● ● ●●● ● ●●●●● ● ●●

●

● ●●● ●● ●● ●●●● ●●●● ● ●● ● ●●● ●●● ●● ●●● ● ●●● ●● ●● ●● ● ●● ●● ●● ● ● ●●● ●●● ●●● ● ● ●●●● ●● ●● ● ●● ●●

●

●● ●● ●● ●●● ●● ●● ● ●●● ●●● ●● ●●●● ● ●●●● ●● ●●
●

●●● ●● ● ●●●● ●●●● ●●● ●●●●● ●● ●● ● ●●● ● ● ●●●●● ●

●

● ●● ● ●● ●●● ●●●●● ●●● ● ●● ● ● ●● ●● ●● ●● ●●

●

● ●●● ● ●●● ● ●● ● ●●●● ● ●●●● ●●● ● ●●● ●●● ●●● ● ●● ●●● ●●●● ●●● ●●● ●●● ●● ● ●●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●●● ● ● ●●● ●● ●●● ●● ● ●● ● ●●● ● ●●●● ●●●● ●● ● ● ●●● ●● ●●●●
●

●● ●●● ● ●●● ●● ●● ● ●● ● ●● ●●● ●● ●●●●● ●● ●● ●● ●● ●●●● ●● ●●●● ●● ●● ● ●●●●● ●●● ● ●● ●● ●● ●●● ● ●● ● ● ●● ●●● ●●●●● ●● ●●● ●● ● ●●● ● ●●● ● ●
●

● ●● ●● ● ●● ●● ● ●● ●●● ●● ●● ●●●● ● ●●● ●● ● ●●● ● ●● ● ●● ●● ●● ● ● ●●● ●●● ●● ●● ●● ●● ●●●● ●● ● ●●●

●

●● ●●●●● ●●●● ● ●●● ●● ●●● ●●●● ●● ● ●● ●● ●●●● ● ●● ●● ●●●●● ●● ●●●● ● ●●● ●●● ●●● ● ●●● ● ●●●● ● ●●● ●●●● ● ●●● ●● ●●●● ●● ●●● ●● ●● ● ●● ●● ● ●●● ● ● ●● ● ● ●●● ● ●● ●● ● ● ●● ●●● ●●● ●● ●● ●●● ● ●● ● ● ●●● ● ●● ●●●●● ● ● ●●●● ● ●● ● ●● ●● ●● ●● ●●●●● ● ●● ●● ●● ● ● ● ●●●● ● ●● ●● ●

●

●●● ●● ●● ●● ●● ●● ●●● ●●●● ●● ●● ●● ●●●● ● ●● ●●

●

● ●●●●● ● ●●● ● ● ●●●● ●●●● ●● ●●●● ●●●● ● ●● ●●● ●●● ● ● ●● ●●● ● ●● ●●● ●● ●●● ●● ●●● ●●● ●●● ●●●● ● ●● ●● ●●●● ●●● ●●● ●●●● ● ● ●● ●● ●● ●● ●
●

● ● ●●● ●● ●●● ● ●● ●● ●● ●● ●● ●●● ● ●●● ● ●● ● ● ●● ● ● ●●● ●●● ●●● ● ●●● ●● ●●● ● ●

●

●● ●●●● ●●●● ●● ●●● ● ● ●● ●●●●● ●● ●●●● ●●● ●●●●● ●● ● ●●● ● ● ●●● ●●● ● ● ●●●●● ●● ● ●● ●
●

●
●

●● ●●● ● ● ●●● ●● ●●●● ●● ●●● ●●● ●● ● ●● ● ●● ●● ●● ● ●● ●● ●● ● ●● ●● ●●●● ●● ●● ●● ● ●●● ●●● ●●● ● ●● ●●● ●●●
●● ● ●●●● ●●● ● ●●● ●

●

● ● ● ●●● ●● ●●● ● ● ●● ● ●● ●● ●● ●● ●● ● ● ●● ●● ● ● ●●● ●●●● ● ● ●● ●●●● ● ● ●●
●

● ●●● ●● ●● ● ●●●● ● ●●● ●● ●● ●● ● ● ●● ●●● ●●● ●
●

●
●

●●● ●● ●● ●●● ● ●●● ●● ●●●● ●● ●

●

●● ●●●● ● ● ●● ● ●● ●

●

●● ● ● ●●●

●

● ● ●●● ●●● ●● ● ●● ● ●● ●● ●● ● ● ●
●

● ●● ● ●● ● ●● ●●● ●● ● ●●●●● ● ●● ●● ● ●● ● ●● ● ●● ●● ●● ●● ● ●● ●● ● ●●●● ●● ● ●●● ● ●●● ●● ● ●● ●●● ●● ●● ●● ● ● ●● ●●● ●● ●● ●● ●● ● ●● ● ●● ●●● ●● ●● ● ●● ●● ●● ● ●● ●●● ● ●●●● ●● ●●● ●● ● ●●●● ●● ●●● ●●●●● ●●● ●● ●●● ● ●● ● ● ●● ● ●● ●● ●●● ●● ●● ● ● ●●● ● ●●● ● ●● ●● ●● ●●● ●●●● ● ●●● ● ● ● ●● ●●●● ● ● ●● ●●● ●● ●●● ●● ●● ●●●●●● ●●● ●● ●● ● ●● ●●●●●●● ●● ● ●●●● ●● ●● ●●●● ●●● ●● ● ●● ●● ●
●

●● ● ● ●●●● ●●●● ●● ●●● ●● ●● ●●● ●● ●● ●●●● ●●● ● ● ●● ●● ●●● ●● ● ● ● ●●●●●● ●● ● ●● ● ●●● ●●● ●● ●● ● ●● ● ●● ● ●● ●●●●● ●●

●

●●● ●● ● ●● ● ●● ●●● ●● ●●● ●● ●●● ●●

●

● ● ●● ●● ●● ● ●● ● ● ●● ● ●● ●● ●●● ●●● ● ●● ●● ● ●● ●● ●● ●●
●

●● ●●● ●● ●● ●● ●● ● ●● ●●●● ●●● ●● ●●● ● ●●● ● ● ●● ●●● ●● ●●● ●● ●● ●●●●● ●● ●● ●● ●●● ●●
●

● ●● ●●● ●●●●●● ●● ●● ● ●●●● ●●● ● ● ●● ●●● ● ● ●●● ●● ●●● ●● ● ●● ●● ●●● ●● ● ● ●●●●● ●● ● ● ●●●● ● ●● ●

●

●● ● ●●●● ●● ● ●● ●● ●● ● ●● ●● ●● ● ●●● ● ●● ●● ●●● ●●● ●● ●● ●●● ●●● ● ●●● ●●● ●●● ●● ●●●● ●●● ● ●● ●● ●● ●●● ●●● ●● ●● ● ●● ●● ● ●●

●

●●●● ●● ● ●● ●●● ● ●● ●●● ●● ● ●●● ● ● ●●● ●●●● ●● ● ● ●● ●●●● ● ●● ●●●● ● ●● ● ● ● ● ●●● ●● ●●●●● ● ●●● ●●●● ●●●● ● ●● ● ●●●● ● ●●●● ●● ●●●● ●● ●● ●● ●●
●

● ● ●●● ●●●●● ●● ● ●●● ●●●●● ●● ●● ●●● ●●●

●

● ●● ●● ● ● ●●● ●● ●● ●● ●● ● ●●● ● ●● ●● ●● ● ●●● ●● ● ●●● ●● ●●● ●●● ● ●●●● ● ●●●● ●● ● ●●● ●●● ●● ●● ●● ● ●●●● ●●● ●● ● ●●●● ●● ● ●● ●● ● ●
●

● ●● ● ● ●●● ●●● ● ●● ●● ● ●● ●● ●● ● ●● ●● ● ● ● ●● ●● ● ● ●● ● ●● ● ●● ●●● ● ●● ●●● ●● ● ● ●● ●●●● ●●● ●●●● ●● ●● ●●● ●● ● ●● ●●● ●●● ●●● ● ● ●● ●●● ● ●● ●●●●● ●● ●● ●●● ●● ● ●● ●● ● ●● ● ●● ●●● ●● ● ●● ●●● ● ●●● ● ●●● ●●● ●●●● ●● ●●● ●● ● ●● ● ● ●● ● ●● ●●● ●● ● ●●● ●●● ● ● ●●● ● ●● ●● ●●● ● ●●● ●● ● ●● ● ●● ●●●● ●●● ●●● ●● ●●● ●●●● ●● ● ●● ●● ● ● ●● ●● ●● ●● ●● ● ●●● ● ● ● ●● ●● ●●● ●●●● ●●● ● ● ●●● ●● ●●●● ●●●● ●● ● ●● ●●●● ● ●● ● ●● ●●● ● ●●● ●●● ●● ● ●●●● ●● ●
●

● ●● ●●● ●●● ● ●● ●● ● ●●● ● ●● ●●● ● ●●● ●●● ●● ●● ●● ●●● ● ● ●● ●● ●●● ●●● ● ●●●● ●●● ●

●

● ●● ●● ● ●
●

● ●● ●● ●● ●●● ●● ● ●● ●●

●

●●●● ● ●● ● ●
●

●●
●

●
●

●●●●● ●●

●

●● ● ●● ●● ●● ●● ●● ●● ● ●● ●●●● ● ●● ● ●● ● ●●● ●
●

●● ●● ●● ●● ●● ●●●●● ●●● ●●● ● ●●●● ●● ●● ●● ●● ● ●● ●● ●
● ●●●● ●● ●● ●● ●● ●● ● ●● ●●● ● ●●●●● ●●●●● ● ●●●● ●●
●

●

●● ●● ●●● ●●● ●●●● ●●● ●● ●●● ● ●● ● ●● ●●● ● ● ●●● ●
●

● ●●●● ●● ● ●● ●● ●●●● ●●●●●
●

● ●●

●

●● ●● ●●● ●● ●●● ●

●

● ●●● ●● ● ●● ●●● ●● ●● ● ●●●● ●●● ● ● ●● ●●● ●●● ● ●● ●● ●●● ●
●

●●●● ● ●● ●● ●● ●●● ●●● ●●● ● ●● ● ●● ●●● ●●● ●● ●● ● ●● ● ●●● ●● ●● ● ● ●●● ● ●● ●● ●● ●●
●

●●● ●●● ● ●● ●●●● ● ●● ●●●●● ●● ● ●● ●● ●●●● ● ●● ●● ●● ●●● ● ●● ●●● ●● ● ●● ● ●● ● ●● ●● ●● ●● ●● ●● ●●● ● ● ●● ●● ●●● ●● ●●● ●● ●●● ● ●● ● ●●●● ●● ●● ●●● ●●● ● ●●●● ●● ●● ●●● ● ●● ●

●

●● ●● ●●● ●●● ●● ●● ●●● ●● ●● ●● ●● ● ●●● ●●●●●● ●●●●●●● ● ●●● ●●●● ●● ●● ● ●●●● ●●●● ●● ●●●●● ● ●● ●●● ● ●●● ●●● ●●● ●●●● ●●●●●● ●● ●●● ●●● ● ● ●●● ●● ●●● ●
●

●●● ●● ● ●● ●● ●● ●● ● ●● ●● ●●● ●●● ● ●● ●● ●● ● ● ●● ●●

●

●● ● ●● ●●● ●●● ● ●● ●● ● ●● ●●● ● ●●● ●● ●● ● ●● ●●● ●●● ● ● ●●● ●● ●●● ● ●
●

●● ● ●● ● ● ●●●● ● ●● ● ●●● ● ●●● ● ●●● ● ●●●● ●
●

●● ● ●● ● ●● ●

●

●●● ●●● ●● ●● ●
●

●● ●●

●

●● ●●● ● ●●● ● ●● ●● ●●● ●●● ● ●● ●● ● ●●●● ●● ● ●●● ● ●● ●● ●

●

●● ● ● ●● ●●

●

● ●●●● ● ●● ●●● ●● ●● ● ●● ●● ●● ●● ●● ●● ● ●●● ● ●● ●● ●● ● ●●● ●●● ●● ●● ● ●●● ● ●● ● ●● ●●● ●●●● ●● ●● ●● ● ●● ●● ● ●● ● ●● ● ● ● ●● ●● ●●● ●● ● ●●● ●● ●● ● ●● ●●● ●●● ●● ● ● ●● ● ●● ● ●●● ●● ●●●● ●● ● ●●● ●● ● ● ●●
●

●● ●● ● ●

●

● ●● ●● ●●● ●● ●●● ●● ●●● ● ● ●● ● ●● ●●
●

● ● ● ●● ●● ●●●● ●●●● ● ●● ●●●● ●● ●● ●● ● ●

0.00 0.10 0.20 0.30

0
10

00
30

00
50

00

a

θ3

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

● ●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
● ●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
● ●●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

● ●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

● ●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●
●

● ●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
● ●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
● ●

●

●

●●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●
● ●

● ●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●● ●

●

●
● ●

●
●

●

●

●

●

●
● ●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
● ●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
● ●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

● ●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

● ●

●

●

●

●

●
● ●●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●
●

●
●

●

● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●●

● ●●●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

● ●

●●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●
●

●

●
●

●

●
●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

● ●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●
●

●

●

● ●

●

●

●●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

● ●

●

●●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●
●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

● ●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●●
● ●

●

●

●
●

●

●

●
●

●

●

●

●

● ●
●

●

●
●

●
●

●●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

● ●
●

●

●
●● ●

●
●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

● ●

●

● ●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

● ●●
●

● ●

●

●●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●
●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●●

●

●

●●
● ●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●●

● ● ●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●
●

●

●

●

●

●
●

●

●
●

●

●

● ●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●
●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●
●●

●

●

●
● ●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

● ●
● ●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●●

●

● ●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●●

●

●●

●
●

●

● ●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●●

●●

●●
●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

● ●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●
●

● ●

●

●

●

● ● ●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●●

● ●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

● ●

●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●●

●●

●

●

●

● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

● ●
●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●●

●

●●

●

●
●●

● ●

●

●● ●

●

●

●

●

●
●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

● ●

●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

● ●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●
● ●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●
●

●

●

● ●
●

● ●

●

●

●
●

●

●

●
●

●

●

● ●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

● ●

●
●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●

● ●

●

●

●

●
●

●●

● ●

●

●

●●

●

●
●

●

● ●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●
●

● ●

●

●

● ●

●
●

●
●

●

●

●

● ●

●
●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●

●
●

●

● ●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●
●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●●

●

●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●● ●
●

● ● ●

●

●

●

●

●

●

● ●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
● ●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

● ●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●● ●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●
●

●●

●

●●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●
●

●●●
●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

● ●●

●
●

●

●●

●●
●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●
●

●
●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
● ●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

● ●

●

●

●

● ●
●

●

●

●

●

●

●
●

●
●

● ●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●
●● ●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●
●

●
●

●

●

●●

●

●
●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●● ● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

● ●● ●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

● ●

●

●

● ●
●

●

●

●
●

●

●
●

● ●

●
●

●

●

●

●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●
● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

● ●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

● ● ●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●
● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

● ●

●

●

●

●

●●

●

●●

●
●

●

●
●

●

● ●●

●

●

●
●

● ●●
●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●

● ●
●

●

●

●

●●
●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●●

● ●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

● ●

● ●

●

●●

●

●

●

●
●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●
●

●

0.05 0.10 0.15 0.20 0.25 0.30

5
10

15
20

b

θ3

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●
●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
● ● ●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

● ●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●● ●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

● ●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
● ●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●●

●

●

●●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●
●●

●●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●● ●

●

●
●●

●
●

●

●

●

●

●
● ●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
● ●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
● ● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

● ●

●

●

●

●

●
● ●●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●
●

●
●

●

● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●●

●● ●●●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

● ●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●
●

●●
●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

● ●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●●

●

●

● ●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

● ●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●
●●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

● ●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●●
●●

●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●
●

●
●

●●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●●
●

●

●
●● ●

●
●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

● ●

●

●●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●

●
●

●

●

● ● ●
●

●●

●

● ●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●
●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●●

●

●

● ●
● ●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

● ●

●●

● ●●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●
●

●

●

●

●

●
●

●

●
●

●

●

● ●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●
●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●
● ●

●

●

●
● ●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

● ●
●●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●●

●

●●

●
●

●

● ●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

● ●

●●

●●
● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

● ●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
● ●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●
●

● ●

●

●

●

● ●●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●●

● ●
●

●

●
●

●

●

●
●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

● ●

●

●

● ●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

● ●

●●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

● ●
●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●●

●

●
●●

●●

●

●● ●

●

●

●

●

●
●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●●

●

● ●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

● ●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

● ●
●

●●

●

●

●
●

●

●

●
●

●

●

● ●

●

●
●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●
●

●

● ●

●

●

●

●
●

●●

●●

●

●

● ●

●

●
●

●

● ●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●
●

● ●

●

●

●●

●
●

●
●

●

●

●

●●

●
●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ● ●

●

●
●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●
●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●●

●

●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
● ●

● ●●
●

●● ●

●

●

●

●

●

●

●●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
● ●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

● ●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●● ●●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●●

●

●

●

●

●
●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●
●

●●

●

●●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●
●

● ●●
●

●

●

●
●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

● ●●

●
●

●

●●

● ●
●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●
●

●
●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●
● ●●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●
●

●

●

●
●

●
●

●

●

●●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●● ● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

● ●● ●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

● ●

●

●

●●
●

●

●

●
●

●

●
●

● ●

●
●

●

●

●

●

● ●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●
●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

● ●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

● ●●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●
● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

● ●

●

●●

●
●

●

●
●

●

●● ●

●

●

●
●

●●●
●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●●
●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●●

● ●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

● ●

● ●

●

●●

●

●

●

●
●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●
●

●

0 2 4 6 8 10

5
10

15
20

c

θ1

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
● ●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
● ●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
● ●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

● ●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

● ●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
● ●

●

●

● ●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●
●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●
●●

● ●

●

● ●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●●

●

●
● ●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
● ●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

● ●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

● ●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●●

●

●

●

●

●
● ●●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●
●

●
●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

● ●

●●● ●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

● ●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●
●

●

●
●

●

●
●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

● ●
●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●
●

●

●

● ●

●

●

●●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

● ●

●

●●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●
● ●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

● ●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●● ●

●

●

●
●

●

●

●
●

●

●

●

●

● ●
●

●

●
●

●
●

●●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

● ●
●

●

●
● ●●

●
●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

● ●

●

● ●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

● ●●
●

●●

●

●●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

● ●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●
●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

● ●

●

●

●●
●●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●
●

●

●●

● ●

●● ●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●
●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●
●●

●

●

●
●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●●
● ●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●●

●

●●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

● ●

●

●●

●
●

●

●●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

● ●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●●

● ●

●●
●●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

● ●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●●

●

●

●

●● ●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●●

● ●

●●
●

●

●
●

●

●

●
●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

● ●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●●

● ●

●

●

●

●●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

● ●

●

●●

●

●
● ●

● ●

●

● ●●

●

●

●

●

●
●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●●

●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●
● ●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●●
●

● ●

●

●

●
●

●

●

●
●

●

●

● ●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

● ●

●
●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●

●●

●

●

●

●
●

● ●

● ●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●
●

●●

●

●

● ●

●
●

●
●

●

●

●

●●

●
●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●
●

●

●

●

● ●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●
●

●

● ●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●
●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

● ●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●●
●

●

● ●●

●

●

●

●

●

●

● ●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

● ●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

● ●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

● ●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●● ●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●

●

●

●

●

●
●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●
●

● ●

●

● ●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

● ●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●● ●
●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●● ●

●
●

●

● ●

●●
●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●
●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●
● ●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●●

●

●

●

● ●
●

●

●

●

●

●

●
●

●
●

● ●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●
●● ●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●
●

●
●

●

●

● ●

●

●
●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

● ●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●●●●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●
●

●

●

●●

●

●

●●
●

●

●

●
●

●

●
●

●●

●
●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●
●

● ●

●●

●
●

●

●

●

●

●
● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

● ●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●● ●

●

●

●

●
●

●●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●●

●

●

●

●

●●

●

● ●

●
●

●

●
●

●

● ●●

●

●

●
●

● ● ●
●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●

● ●
●

●

●

●

● ●
●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

● ●

●●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

● ●

●

● ●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●●

●

●

●

●

●

●
●

●

0 2 4 6 8 10

5
10

15
20

d

θ2

Figure 7.2: The observations of the 10/19 quantile for runs of the model for
the whole prior of θ3 in (a) and θ3 ∼ U(·|0.05, 1/3) in (b), (c) and (d). In
(b), (c) and d we show the results for θ3, θ1 and θ2 respectively.

124

Figure 7.2 shows samples of the 10/19 quantile for different values of the
parameters. It shows, in (a), that when θ3 < 0.05 it dominates the output.
However if we change the prior distribution such that θ3 ∼ U(·|0.05, 1/3)
then we can see that θ3 no longer dominates the output as seen in (b-d).

Figure 7.3 shows the standardised first order sensitivity indices for each
of the inputs for each of the outputs with the new prior distribution. It is
interesting that the beginning quantiles are most sensitive to θ1, the mini-
mum service time whereas the later quantiles are more sensitive to the arrival
rate, θ3, and random input that determines the arrival times, u. The other
inputs, θ2 and w, the random input that determines the service times effect
the middle quantiles. This is expected as these are the quantiles when the
queue length is roughly zero and the inter-departure times depend on the
service times only.

Additionally this shows that learning a little bit about the value of θ3 has
not only reduced the variance but has meant that the standardised indices
of the other parameters are much higher. This illustrates that the Sobol’
indices are very sensitive to their prior distributions. Examining this is
beyond the scope of this thesis but for a method of estimating the value of
learning some data, which will reduce the variance of the input distributions,
see (Strong and Oakley, 2013; Strong et al, 2014).

7.2.2 Ricker Model

We are going to examine the Ricker Model, as described in Wood (2010)
and Section 4.2.1. We examined most of the summaries described in Wood
(2010). These are:

• the coefficients, β1 and β2, of autoregression.

• the mean of the outputs and the number of outputs that are equal
zero.

• the autocovariances up to lag 5.

We sampled the parameters and the random inputs 10, 000 times with priors
suggested by Wilkinson (2014),

log(r) ∼ U(·|3, 5),

σ ∼ U(·|0, 0.8) and

φ ∼ U(·|4, 20).

Figure 7.4 shows the results of the global sensitivity analysis. The global
sensitivity of the Ricker model shows that for most of the summaries log r
often has an effect on the output as too does φ. For the mean (summary 3),
the Sobol’ index of φ is nearly 0.8. u, the random inputs associated with
the observation model has very little effect on all of the summary statistics.

125

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θ1

D
θ 1

5 10 15 20

0.
00

0.
05

0.
10

0.
15

θ2
D
θ 2

5 10 15 20
0.
0

0.
2

0.
4

0.
6

0.
8

θ3

D
θ 3

5 10 15 20

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

u

D
u

5 10 15 20

0.
00
0

0.
00
2

0.
00
4

0.
00
6

0.
00
8

0.
01
0

w

D
w

Figure 7.3: The first order indices for the θ1, θ2, θ3, u and w when the prior
θ3 ∼ U(·|0.05, 1/3) for each of the 20 outputs.

126

Summary 1

0.
0

0.
4

0.
8 Summary 2

0.
0

0.
4

0.
8

Summary 3

0.
0

0.
4

0.
8 Summary 4

0.
0

0.
4

0.
8

Summary 5

0.
0

0.
4

0.
8 Summary 6

0.
0

0.
4

0.
8

Summary 7

0.
0

0.
4

0.
8 Summary 8

0.
0

0.
4

0.
8

Summary 9

0.
0

0.
4

0.
8 Summary 10

0.
0

0.
4

0.
8

Figure 7.4: The sensitivity indices for the inputs of the Ricker model. The
first 5 inputs are the first order indices, the next 10 the second order indices,
the other sets being the third, fourth and fifth order indices respectively with
a lexicographical ordering within each set of inputs with the inputs being in
the order r, σ, φ, e and u.

127

The third order interaction between log r, σ and e has a large effect on all of
the summaries. The fourth order interaction between log r, σ, φ and e also
contributes quite a lot to the variance for the auto covariance summaries.

There is quite a lot of variance for all of the summary statistics caused by
interacting parameters. The total sensitivity indices for the random inputs
is roughly a quarter for the covariates of autoregression (summaries 1 and 2),
roughly 0.1 for the mean and number of outputs equal to 0 (summaries 3 and
4) and about 0.5 for the autocovariances of lag 0 (summary 5) and increasing
roughly linearly from 0.3 to 0.73 for lags 1 to 5 (summaries 6 to 10). With
the exception of the covariates of autoregression, the total variance for the
u was 0. This means that almost all of the stochastic variation is down to
the random inputs in the background model, e.

7.3 Submodels and Arbitrary decisions

We have seen how a stochastic model can be written as a deterministic
function of its parameters and its ‘random inputs’. In this section we look
at decomposing this function into a number of separate functions, linked
together in the form of a Directed Acyclic Graph (DAG). Such a decompo-
sition is not unique, of course, but often we can choose the decomposition
so that the individual functions correspond to parts of the model that have
meaning in the real process being modelled, linked together in an order that
reflects the real-world sequence of events (or sometimes, in a computer-based
model, the sequence of calculations within the model). We call the elements
of a decomposition of this sort ‘submodels’.

Definition 1. A submodel is part of a model expressed as a deterministic
function.

Usually the inputs to a submodel will be uncertain and they may include
parameters, random inputs, and the outputs from other submodels (its ‘par-
ents’ in the DAG). While the DAG usually induces only a partial ordering
on its nodes, in practice the ordering on the nodes representing submodels
(as opposed to inputs) is often strict. This ordering will be important later
in thinking about variance partitioning.

We also want to extend the type of flexibility we represent within a
model. Sometime there are a number of different ways in which a part of a
process can be modelled. For example, in the woodhoopoe model (Section
2.2), there is a part of the model where a subordinate leaves their group and
searches for a vacant dominant position in another group. The subordinate
either goes left or right and searches for up to 5 groups in that direction. If
another researcher comes along and says that rather than go left or right they
go the opposite way to where they went last time, this could be put into the
model as an alternative. In general, suppose that we have a submodel that is

128

uncertain, and we have different versions Si, i = 1, . . . , d with probabilities
wi, which define a prior distribution over these models. We can think of
s ∈ {S1, . . . , Sd} as an additional input to the submodel, representing the
uncertain modelling choice being made in part of the model. This method
is similar to the trigger parameter method of Tarantola et al (2002) where
the presence or absence of stochastic errors is added with probability 0.5.

The sensitivity indices for s can be estimated like the other parameters
but for small d it may be more efficient to estimate the closed sensitivity
index of inputs i by estimating

τ2
i =

d∑
l=1

p(s(l))

d∑
m=1

p(s(m))

∫
f(x, s(l))

(
f(xi, x

′
−i, s

(l)
i , s

(m)
−i)− f(x′, s(m))

)
dxdx′

than sampling s and s′ and estimating it using the method of Tarantola et al
(2006b).

S1

φ1

S2

φ2

. . . Sd

φd

θ

Figure 7.5: The directed acyclic graph of the submodel choice where all of
the submodels are parameterised from the same parameters θ.

If we have a number of functions, Si, that share the same parameters,
θ, but are parameterised differently, φi, as shown in Figure 7.5, then we can
distinguish between the uncertainty caused by s and θ. This is demonstrated
on the bird synchrony model in Section 7.4.1.

Previously the test of alternative submodels has been used to test the
importance of each submodel to the model as a whole (Tarantola et al, 2002;
Iooss and Ribatet, 2009). However this differs from what we are describing
here. Above we are assuming that the decision of which submodel to use in
the model is uncertain and sensitivity index of s is the expected reduction in
variance should we learn the true value of s. However in the other methods,
the choice of submodel has already been made and they see what difference
would have been made had we chosen another submodel. This is known as
robustness analysis rather than sensitivity analysis. In robustness analysis

129

the variance of the models is increased by adding alternative models and then
the additional variance is deemed to be the importance of the submodel to
the output (Grimm et al, 2014).

We are now going to propose a method of partitioning the variance
between the submodels, in a way that depends on the (partial) ordering
represented by the DAG linking them. More precisely, we will use Sobol
decomposition to partition the variance between the inputs to the model—
including parameters, random inputs and choices of submodel versions—and
then use the ordering of the submodels to associate the terms in the Sobol
decomposition with particular submodels. Note that this means that the
Sobol terms will be grouped differently if we decompose the model into
submodels in a different way. In order to describe this we will look at a toy
model

µ ∼ N(m, v) (7.4)

Y ∼ N(µ, σ2) (7.5)

By coupling the random inputs as described in Chapter 4 (i.e. u1 is used to
evaluate the first submodel and w the second), we are able draw a directed
acyclic graph (DAG) of this model as shown in Figure 7.6. In this model,

m +
√
vΦ−1(u1)

v

m

u1

µ

µ + σΦ−1(w)σ2 w

Y

Figure 7.6: The directed acyclic graph of the model described in equations
7.4 and 7.5.

the submodel, m+
√
vΦ−1(u1), is evaluated before µ+σΦ−1(w) and µ is the

state of the model after the first submodel. Note that this representation
of the model gives a strict ordering between the two submodels, but not
between the inputs. By treating the inputs to a submodel as coming before
the inputs to a later submodel, we can refine the ordering in a natural way;
in the example, we think of mu, v and u1 as coming before σ2 and w. This

130

refined ordering is the basis of the way we will define the sensitivity index
of a submodel.

In a general model, we can label the submodels Ai and their respective
inputs xi for i = 1 . . . r and Qi as the state of the model after submodel Ai
has been evaluated with Q0 is the initial state of the model and Qr is the
output of the model. The state, Qi, may include things that are unchanged
by Ai and may need to be used in further submodels. A DAG of a general
model is shown in Figure 7.7. In the toy example, A1 is m +

√
vΦ−1(u1),

A1

Q0

x1

Q1

A2x2

...

Qr−1

Arxr

Qr

Figure 7.7: The directed acyclic graph of a general model.

with inputs m, v and u1, A2 is µ+ σΦ−1(w), with inputs σ2 and w and Q1

is µ and Qr is Y .
Before we can define submodel sensitivity, we need to consider the case

where there is not a strict ordering between the submodels. Suppose that
in the toy example that we add a submodel

σ2 = IG(a, b, u2)

where IG(a, b, u2) is the inverse of the cumulative distribution of Inv −

131

Gamma(a, b) evaluated at u2. This submodel has to be evaluated before
the submodel µ + σΦ−1(w) but it does not matter whether it is evaluated
before or after the submodelm+

√
vΦ−1(u1). In this formulation, A1 is either

m +
√
vΦ−1(u1) with Q1 being µ and A2 being IG(a, b, u2) or IG(a, b, u2)

with Q1 being σ2 and A2 being m+
√
vΦ−1(u1). Either way Q2 is µ, σ2. As

the order that these two submodels are evaluated does not affect the state
Q2, we say that the submodels A1 and A2 are commutative submodels. More
formally

Definition 2. Two submodels, Ai and Ai+1, are commutative submodels
if, conditional on the state, Qi−1, being the same before either submodel is
evaluated, the state after both submodels have been evaluated, Qi+1 will be
the same regardless of the order in which the submodels are evaluated in.

The DAG for the toy model, with u2 being the random input for the
submodel IG(a, b, u2), is shown in Figure 7.8. Now lets we add a further

µ, σ2

m +
√
vΦ−1(u1)m

v

u1

IG(a, b, u2) b

a

u2

µ + σΦ−1(w) w

Y

Figure 7.8: The directed acyclic graph of the toy model with the commuta-
tive submodels.

level of complexity by saying that

m = f(x1)

a = g(x2).

In this model, the submodel f(x1) needs to be evaluated beforem+
√
vΦ−1(u1)

and g(x2) needs to be evaluated before IG(a, b, u2) however the order in
which these two sets of submodels are evaluated does not matter. We say

132

that these two sets of submodels are commutative submodel sets. More
formally

Definition 3. Sets of submodels A = {Ai, . . . , Aj} and B = {Aj+1, . . . , Ak}
are commutative submodel sets if conditional on the state, Qi−1, being the
same before either set has been is evaluated, the state after both sets have
been evaluated Qk+1 will be the same regardless of the order in which the
sets are evaluated.

If we look again at the final submodel, µ + σΦ−1(w), which has inputs
µ, σ2 and w we can partition the variance of Y as

V ar(Y) = Vw + τ2
µσ2 + Vwµ + Vwσ2 + Vwµσ2 .

If we were to learn µ and σ2 then we would expect the variance of Y to
reduce by τ2

µσ2 . This means that τ2
µσ2 has been caused in other submodels

and the rest is caused in this submodel. We now define a metric of how the
model outputs are sensitive to the submodels.

Definition 4. Let xi be the inputs to submodel Ai and φi be all of the inputs
to the previous submodels, A1:i−1, that are not commutative with Ai, then
the submodel sensitivity index of Ai is defined as

SAi = τ2
xiφi
− τ2

φi
.

This corresponds to the inputs in a particular order, induced by the
DAG and extended to the inputs as described above. This essentially gives
the expect reduction in variance by learning xi and φ as opposed to just
learning φ. It follows from the decomposition of the Sobol index above that
SAi ≥ τ2

xi .

Definition 5. If Ai and Aj are commutative with inputs xi and xj respec-
tively, then the submodel interaction index is

SAiAj = τ2
xixj − τ

2
xi − τ

2
xj .

For example in the toy model described by equations 7.4 and 7.5, the
submodel sensitivity index of the submodel m +

√
vΦ−1(u1) is the closed

sensitivity index of the inputs, τ2
vmu1 because x1 = {v,m, u1} and φ1 = {}.

The submodel sensitivity index of µ+σΦ−1(w) is the closed sensitivity index
of the inputs to the submodel, x2 = {σ2, w}, and inputs to the previous
submodel, φ2 = {m, v, u1}, less the closed sensitivity index of the inputs to
the previous submodel. This is

Vσ2 + Vw + Vσ2v + · · ·+ Vwv + · · ·+ Vσ2wv + · · ·+ Vσ2wvmu1 .

An extended, iterative version of the toy model is described by

µi = Yi−1 +
√
vΦ−1(ui) (7.6)

133

and then
Yi = µi + σΦ−1(wi) (7.7)

for i = 1 . . . n. The DAG of this model is shown in Figure 7.9. The sub-
models described in equation 7.6 and equation 7.7 are repeated. These
submodels form an iteration of an iterative model. The beginning of the
iteration the submodel described by equation 7.6 and the end of the itera-
tion is the submodel described in equation 7.7. The iteration is of length 2.
More formally

Definition 6. If there exist integers l > 0 and j such that

Ai = A(t−1)l+i

for i = j . . . l− 1 + j and t = 2 . . . T for some T > 1, in the sense that if the
inputs to Ai and A(t−1)l+i are the same then the outputs remain the same,
then the model is an iterative model. The part of the model between Aj and
Al−1+j is known as an iteration, and is effectively executed T times. The
submodel Aj is known as the start submodel and Al−1+j is the end submodel
and the iteration has length l.

If the general model described above is an iterative model, then we can
re-label the submodels in an iteration as Aj,t for j = 1 . . . l in iteration t.
t increases every time the start submodel of an iteration is evaluated (for
t = 1 . . . T). This means we can add a plate to the DAG as shown in Figure
7.10 for a section of the model. We now say that an edge creating a cycle in
the graph means that the model is an iterative model with the edge moving
from the end submodel to the start submodel implying a plate. The state,
Qi, is also implied.

The DAG of the iterative model described by equations 7.6 and 7.7 is
shown in Figure 7.11. Looking at Figure 7.9 every time Yi−1 +

√
vΦ−1(ui),

which we are going to call A1,i, is evaluated, v remains the same. Similarly
when µi+σΦ−1(wi), which we denote A2,i, is evaluated σ2 remains the same.
We can collect all of the A1,is (called A1) and A2,is (called A2) and then the
iterative submodel sensitivity indices of model of submodels A1 and A2 is
the sum of the submodel sensitivities indices A1,1:n and A2,1:n respectively.
More formally, if the model is an iterative model then we can re-label the
submodels in an iteration as Aj,t for j = 1 . . . l in iteration t. t increases
every time the start submodel of an iteration is evaluated (for t = 1 . . . T).

Definition 7. For an iterative model with iteration start Aj and end Aj+l
then the iterative submodel sensitivity index of Ai, for i = j . . . j + l − 1 is

VAi =
T∑
t=1

SAi,t .

134

Y0 +
√
vΦ−1(u1)v

Y0

u1

µ1

µ1 + σΦ−1(w1)σ2 w1

Y1

Y1 +
√
vΦ−1(u2)v u2

...

µn

µn + σΦ−1(wn)σ2 wn

Yn

Figure 7.9: The directed acyclic graph of the model described in equations
7.6 and 7.7.

135

Qi−1

Aixi

Qi

A1tx1t

Q1t

...

Ql−1t

Altxlt

QlT

Qlt

t = 1 . . . T

Figure 7.10: Part of the directed acyclic graph of an iterative model.

136

Yi−1 +
√
vΦ−1(ui)

v

Y0

u

µi + σΦ−1(wi)
σ2

w

Figure 7.11: The directed acyclic graph of the iterative model described in
equations 7.7 and 7.6.

For a submodel Ak which is not part of an iteration then

VAk = SAk .

If submodel Ai is in an iteration with length greater than one, it is not
possible to calculate the iterative submodel sensitivity index of Ai. We can
however calculate upper and lower bounds.

Proposition 5. If we have an iterative model with submodel, Ai with inputs
θ, φ are the inputs to other submodels in the iteration and η are the inputs
all the from submodels not involved in the iteration, Aj for j < i, then we
can say

τ2
θη − τ2

η ≤ VAi ≤ τ2
θφη − τ2

φη.

Proof. First separate θ into θ1:T where θt is the inputs to the submodel at
time t and let φt be all the parameters that have entered the model in other
submodels between Ait−1 and Ait. This means that the submodel sensitivity
index for Ait is

SAit = τ2
θ1:tφ1:tη − τ

2
θ1:t−1φ1:tη.

We can rewrite

τ2
θ1:tφ1:tη = τ2

θ1:t−1φ1:tη + τ2
θtφ1:tη − τ

2
θt − τ

2
φ1:tη

+τ2
θ1:tη − τ

2
θ1:t−1η

and therefore

SAit = τ2
θ1:tη − τ

2
θ1:t−1η + τ2

θtφ1:tη − τ
2
θtη − τ

2
φ1:tη.

137

The total first order variance, over time T is

VAi =
T∑
t=1

SAit

=
T∑
t=1

(
τ2
θ1:tη − τ

2
θ1:t−1η + τ2

θtφ1:tη − τ
2
θtη − τ

2
φ1:tη

)
= τ2

θ1:T η
− τ2

η +
T∑
t=1

(
τ2
θtφ1:tη − τ

2
θtη − τ

2
φ1:tη

)
≥ τ2

θ1:T
− τ2

η

as
τ2
θtφ1:tη − τ

2
θtη − τ

2
φ1:tη ≥ 0.

Also

τ2
θφη − τ2

φη ≥ τ2
θ1:T η

+
T∑
t=1

(
τ2
θtφ1:T η

− τ2
θtη − τ

2
φ1:T η

)
≥ τ2

θ1:T η
+

T∑
t=1

(
τ2
θtφ1:tη − τ

2
θtη − τ

2
φ1:tη

)
= VAi .

The iterative submodel indices for the toy example are then

τ2
Y0vu ≤ VA1 ≤ τ2

Y0vu

and
τ2
σ2w ≤ VA1 ≤ τ2

σ2w.

Up until now we have only described sensitivity analysis however these
methods could be used to perform robustness analysis on the models. We
have already seen that by changing some of the submodels and examining the
sensitivity of these changes on the model output we can perform robustness
analysis (Grimm et al, 2014; Railsback and Grimm, 2012). Additionally by
treating some of the assumptions as submodels, for example the choice of
a square grid rather than a hexagonal one (Birch et al, 2007), we can then
perform global sensitivity analysis on the model to see whether the model
output is sensitive to the assumptions.

7.4 Demonstration on Individual based models

We are going to demonstrate these methods on the two individual based
models described in Chapter 2.

138

7.4.1 Bird synchrony model

Jovani and Grimm (2008) built an individual based model that modelled
the laying times of birds in order to try and find out which individual traits
lead to the synchronicity of breeding amongst colonial birds. They say that
in order for the birds to lay their eggs it is important that there is calm and
that neighbouring birds assess each others’ stress level and when it is calm
enough they lay their eggs. The model is described in Section 2.1.

Coupling the model

Initial

m

i

StressNR

Figure 7.12: The original breeding synchrony model.

The original model has two submodels and three inputs. The Initial
submodel, that sets the initial stress levels of the birds, has the maximum
stress level, m+10, and the random inputs involved in generating these are
i. The Stress submodel works out the stress levels for the birds and has one
input, the neighbourhood relevance parameter NR. The original model is
iterative with an iteration of length 1 and the DAG is shown in Figure 7.12.

Uncertain Inputs

The input distributions for the three inputs are

NR ∼ U(·|0, 1),

m ∼ U(·|0, 50) and

i ∼ U(·|0, 1)

139

where i is 152 samples from a uniform distribution between 0 and 1. The
initial stress levels are then

10 +mi.

Outputs

We are going to examine six outputs. The first is the mean laying time; this
is not a measure of synchrony but we are going to see how the inputs effect
this. We will examine the standard deviation of the laying times; this is a
measure of the synchrony of the laying times with lower the value of the
standard deviation the more synchronised the laying times will be. Another
measure of synchrony which we will examine is the interquartile range. If the
interquartile range is small then the laying times will be more synchronised.

We will measure the skewness estimated by(
(n− 1)m3

nm2

) 3
2

where mi is the sample of the ith moment (Joanes and Gill, 1998; Meyer
et al, 2013). If we found that m2 = 0 (i.e. if all of the laying times are
the same) then we set the skewness to 0. The skewness is not a measure of
synchrony but has been used when describing the laying times of colonial
seabirds (Gochfeld, 1980).

In addition to these inputs we will examine the spatial autocorrelation.
In order to do this we will use Moran’s I function (Moran, 1950). Moran’s
I function is a measure of global spatial correlation and is defined as

n
∑

i

∑
j wij(xi − x̄)(xj − x̄)∑

i

∑
j wij

∑
i(xi − x̄)2

where xi is the ith bird’s laying time of which there are n, x̄ is the mean
laying time and wij is the reciprocal of the distance between bird i and j.
If i = j then wij = 0. A Moran’s I value close to 1 indicates clustering
whereas a value close to −1 indicates dispersion. If we found that all of the
laying times were the same we set Moran’s I function to be 1. We have two
measures of wij ; Moran1 is where the wij is the Manhattan distance (Black,
2006) between i and j and Moran2 is where wij is the Chebyshev distance,or
chessboard distance (Cantrell, 2000) between i and j.

Sensitivity analysis

Table 7.4 shows the standardised first order and the total effect indices.
As the model is quick to simulate from, we used the method described by
Liu and Owen (2006) Section 6.3.3 in order to calculate these indices with
the number of points simulated as 5000. The iterative submodel sensitivity

140

NR m i

FO Mean 0 0.99 0
SD 0.70 0.07 0.01

IQR 0.69 0.05 0.01
Skew 0.02 0.03 0.06

Moran1 0.12 0.32 0
Moran2 0.11 0.32 0.01

TI Mean 0 0.99 0
SD 0.91 0.28 0.02

IQR 0.92 0.28 0.06
Skew 0.72 0.88 0.89

Moran1 0.58 0.83 0.46
Moran2 0.56 0.82 0.46

Table 7.4: The first order (FO) and total sensitivity indices (TI) for the
outputs of the original model. Moran1 is the distance with four neighbours
and Moran2 is the distance with eight neighbours.

Initial Stress

Mean 0.99 0.00
SD 0.08 0.91

IQR 0.07 0.92
Skew 0.27 0.72

Moran1 0.42 0.58
Moran2 0.43 0.56

Table 7.5: The submodel sensitivity indices for the breeding synchrony
model. Moran1 is the distance with four neighbours and Moran2 is the
distance with eight neighbours.

sensitivity indices for the Initial and Stress submodels are shown in Table 7.5.
We found that the Stress submodel was driving the measures of synchrony
and mean was driven entirely by the Initial submodel. This suggest that the
stress hypothesis is a good reason why the birds synchronise their breeding
behaviour. The other outputs seem to be driven by a mix of inputs especially
as over half of the skewness and 0.4 of the Moran I variation is down to the
interaction of all three of the inputs.

As mentioned earlier, the submodel sensitivity indices are dependent
on the order that you learn the inputs. If we were to learn NR first the
corresponding version of the submodel sensitivity indices are shown in Table
7.6. We found that for the Mean, the results are the same for both orderings
and differ slightly for the standard deviation and the interquartile range;

141

however, we did find that the ordering did make a large difference for the
skewness and spatial outputs.

Initial Stress

Mean 0.99 0.00
SD 0.29 0.70

IQR 0.30 0.69
Skew 0.97 0.02

Moran1 0.88 0.12
Moran2 0.88 0.11

Table 7.6: The submodel sensitivity indices if you were to learn NR before
m and i. Moran1 is the distance with four neighbours and Moran2 is the
distance with eight neighbours.

Robustness analysis

We now perform robustness analysis on the model. In doing so we need to
test the model by changing the model details and submodels. In order to
do this we added all of the alternatives submodels described in Section 2.1.2
and tested their effect on the outputs. The model was coupled according to
Figure 7.13.

The bird layout in the model is a square grid of size Size× Size where
Size is an integer uniformly between and including 15 and 30. If Arr = 1,
with probability 0.5, the birds will arrive according to the Stochastic Arrival
submodel and will be present at the start of the model, i.e. as in the original
model, if Arr = 0 with probability 0. The ith bird arrives

min {n : 1− (1− λ)n ≥ pi, n ∈ N0}

where λ ∼ Gamma(·|2, 0.25) and pi is the random inputs sampled from a
uniform distribution between 0 and 1.

The stress level will be reduced stochastically if Red = 1, with probabil-
ity 0.5, and deterministically if Red = 0, with probability 0.5. If the stress
level is reduced stochastically, it will be reduced, after the neighbourhood
reduction, by

1 + σs

where σ ∼ U(·|0, 1) and each element of s is sampled from a standard
Gaussian distribution.

The shape of the grid cell seems rather arbitrary so we are going to look
at seeing if this has an effect on the model. The birds will have either four
or eight neighbours with equal probability and this is denoted in Figure 7.13

142

Arrivalλ

p

Arr

Initial Size

m

i

Stresss

σ

Red

8/4

NR

Figure 7.13: The breeding synchrony model with additional submodels.

by 8/4. The inputs relate to the submodels Initial, Arrival and Stress as de-
scribed in Figure 7.13. The submodels, Arrival and Initial are commutative
submodels. We ran the model using the method of Liu and Owen (2006)
(Section 6.3.3) with 2000 points as this analysis requires a lot more model
runs. The standardised first order and total indices for the model described
in Figure 7.13 are shown in Table 7.7.

The total sensitivity indices for the random inputs for the standard devi-
ation, the mean and the interquartile range are zero. This suggests that the
the stochasticity of the model has a very small effect on these outputs. For
the other outputs the initial random inputs have an effect when interacting
with other inputs as too do p and s for the skew of the model. That said,
whether the stochasticity is on or not does have an effect on the outputs of
the model particularly the stochastic arrival of the birds.

Whether the neighbourhood consists of the 4 neighbours or to 8 neigh-
bours doesn’t really make a difference to the outputs that measure the syn-
chronicity of the whole population and the mean, which suggests that the
choice of the neighbours does not make a difference for these outputs. How-
ever the total indices for the measures of spatial autocorrelation and skew-
ness of the laying times are not negligible and thus this detail of the model

143

N
R

m
λ

σ
i

p
s

R
ed

A
rr

8/
4

S
iz

e

F
O

M
ea

n
0
.1

0
0
.5

9
0.

06
0

0
0

0
0

0.
03

0
0

S
D

0
.2

7
0
.0

5
0.

09
0.

01
0

0
0

0.
03

0.
24

0.
01

0
IQ

R
0
.4

3
0
.0

3
0.

03
0.

01
0

0
0

0.
02

0.
10

0.
01

0
S

ke
w

0
.0

5
0
.0

8
-0

.0
1

0
0.

01
0

0
0.

01
0.

20
0

0.
02

M
or

an
1

0
.0

2
0
.0

1
0.

01
0

-0
.0

1
0

0
0.

09
0.

18
0

0.
02

M
or

an
2

0
.0

1
0

0.
01

0
-0

.0
1

0
0

0.
09

0.
18

0
0.

02

T
I

M
ea

n
0
.2

2
0
.6

5
0.

13
0

0
0

0
0

0.
23

0
0

S
D

0
.4

6
0
.1

6
0.

19
0.

02
0

0
0

0.
04

0.
40

0.
01

0
IQ

R
0
.6

4
0
.1

9
0.

10
0.

02
0

0
0

0.
03

0.
21

0.
01

0
S

ke
w

0
.5

0
0
.3

9
0.

25
0.

04
0.

25
0.

04
0.

08
0.

09
0.

42
0.

10
0.

17
M

or
an

1
0
.2

4
0
.5

8
0.

03
0

0.
05

0
0

0.
51

0.
62

0.
09

0.
11

M
or

an
2

0
.2

4
0
.6

3
0.

02
0

0.
06

0
0

0.
56

0.
65

0.
10

0.
12

T
ab

le
7
.7

:
T

h
e

fi
rs

t
or

d
er

(F
O

)
an

d
to

ta
l

se
n

si
ti

v
it

y
in

d
ic

es
(T

I)
fo

r
th

e
ou

tp
u

ts
of

th
e

co
m

p
le

te
m

o
d

el
.

M
or

an
1

is
th

e
d

is
ta

n
ce

w
it

h
fo

u
r

n
ei

gh
b

ou
rs

an
d

M
or

an
2

is
th

e
d

is
ta

n
ce

w
it

h
ei

gh
t

n
ei

gh
b

ou
rs

.

144

does have an effect on these outputs.
Similarly, the size only affects the results of the Moran I’s function and

the skewness with only its high orders none negligible. The size of the grid
has no effect on the outputs of synchronicity and the mean of the laying
times.

In the robustness analysis we have shown that when we added new sub-
models and changed the details of the model, the outputs relating to the
breeding synchrony were still mostly effected by NR. NR also contributes
to the mean in the alternative model which was not present in the original
model. Having said this the mean is still mostly affected by m. This leads
us to believe that this robustness analysis supports the conclusions of Jovani
and Grimm (2008). However the model’s structure and details are sensitive
to the spatial autocorrelation and the skew of breeding times which leads us
to believe that the model is not robust to other outputs and therefore fur-
ther work would be needed on the model in order to answer other questions
about breeding times of colonial birds.

Submodel sensitivity

Using the natural ordering, the model is iterative and therefore we can only
give bounds for the iterative submodel sensitivity indices (ISSIs) for the
Arrival and Stress submodels which are shown in Table 7.8. We can see

Output Initial Arrival Stress

Mean 0.59 0.65 0.15 0.30 0.10 0.22
SD 0.05 0.16 0.41 0.50 0.33 0.52

IQR 0.03 0.19 0.18 0.25 0.48 0.69
Skew 0.09 0.40 0.21 0.54 0.10 0.54

Moran1 -0.01 0.56 0.20 0.64 0.12 0.66
Moran2 -0.02 0.60 0.20 0.66 0.11 0.68

Table 7.8: The ISSIs for each submodel. For the Initial submodel, this
can be calculated exactly; for the other two submodels we can only get the
bounds. Moran1 is the distance with four neighbours and Moran2 is the
distance with eight neighbours

that for the standard deviation and the interquartile range, the two outputs
that most measure the synchronicity of the breeding, that the majority of the
variance is caused by the Stress submodel which suggests that the breeding
synchrony in the model is down to this submodel.

As in the original model, the mean was mostly caused by the Initial
submodel. Having said this, the Stress submodel does now cause some
uncertainty on the mean.

145

First bird’s stress level

We set all of the alternative submodels on, with the Size = 15 and the
neighbourhood being the eight neighbours, and examined the stress level of
the first bird to arrive after each iteration for the first 40 iterations. We
estimated the ISSIs for the three submodels using the method of Liu and
Owen (2006) with a sample size of 2000 and these results are shown in Figure
7.14.

The plot shows the minimum ISSIs for the Arrival, Stress and Initial sub-
models as well as the ISSIs interaction for the Initial and Arrival submodels
and the variance that cannot be assigned to any of the submodels. For the
stress level after the first iteration the unknown variance is zero because the
model, for this output, is not iterative. The variation in the early iterations
is mostly attributed to the Arrival submodel with the variation in the middle
iterations attributed to a combination of the Initial and Stress submodels.
In the final iterations we are unable to distinguish in which submodel the
variance is attributed to. Of the variance that we can distinguish, most was
attributed to the interaction of the Initial and Arrival submodels.

Test with re-parameterisation

In this section we demonstrate sensitivity analysis on a submodel when the
submodels have the same input distribution, like in Figure 7.5. We will test
what effect the birds’ arrival have on the model output. We will assume,
possibly ecologically incorrectly, that the birds have an initial stress level
that is determined at the beginning of the simulation and is reduced before
the birds arrive with NR = 0. When stochastic arrival is on then the model
runs as above with initial values i but when stochastic arrival is off the initial
values will be

ij +

aj∑
k=1

σεjk + aj

where aj is the arrival time of bird j. This is the initial value plus the
stochastic reductions before arrival plus the arrival time. If stochastic re-
ductions are off then εjk = 0 ∀j, k. The idea is that when the bird j arrives
at time aj , when stochastic arrival is on, it will have the same stress level if
the stochastic arrival was off and NR = 0 at time aj . We are unable to dis-
tinguish between the variance caused by the input and the variance caused
by the submodel decision. As when we examined the individual stress level,
we set Size = 15 and only examined the eight neighbours and using the
method of Liu and Owen (2006), with a sample size of 2000, we estimated
the standardised Sobol’ indices which are shown in Table 7.9. It shows that
whether birds arrive at different times in the model has an effect on the
model outputs.

146

Iteration

S
ta

nd
ar

di
se

d
ite

ra
tiv

e
su

bm
od

el
 s

en
si

tiv
ity

 in
di

ce
s

1 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Initial
Arrival
Stress
Initial/Stress
Unknown

Figure 7.14: The standardised iterative submodel sensitivity indices for the
stress level of the first bird to arrive.

147

Output Arrival Other inputs Interaction

Mean 0.32 0.57 0.11
SD 0.23 0.58 0.19

IQR 0.09 0.75 0.16
Skew 0.23 0.37 0.40

Moran1 0.09 0.55 0.36
Moran2 0.07 0.55 0.38

Table 7.9: The sensitivity indices of the arrival and all the other parameters.

7.4.2 Woodhoopoe model

We are going to perform sensitivity and robustness analysis on the simplified
woodhoopoe model described in Section 2.2.

Coupling the model

We coupled the model as demonstrated in the DAG in Figure 7.15. The
submodels Leave, Predation and Left/Right for a set that is a commutative
submodel set with the Subordinate Order submodel. The age of woodhoopoe
j at the beginning of the model is

min
{
n :

n

24
≥ uij , n ∈ N+

}
.

A subordinate j leaves its territory at time t if uj tm < θ2. If subordinate j
leave their territory, they are killed by a predator if uj tp < θ3. If subordinate
j leaves their territory at time t and survives the predation part then they
go to the left territory if uj ts < 0.5 and right otherwise. The subordinates
move in an order with the subordinate with the lowest u· to moving first and
the second lowest moving second and so on. When there are n newborns in
territory k then the jth newborn (for j = 1 . . . n) is a male if uj k tb . Finally

woodhoopoe j dies of natural mortality if uj td < θ1. All of the random
inputs are sampled uniformly between 0 and 1.

Uncertain Inputs

The input distributions for the three parameters are the same as described
in Section 4.4.3,

θ1 ∼ U(·|0, 0.05),

θ2 ∼ Beta(·|1, 1) and

θ3 ∼ U(·|0, 0.5).

148

Initialui

Leave

θ2

um

Predation

θ3

up

Left/Rightus
Subordinate

Order
uo

Birthub

Natural
Mortality

θ1

ud

Figure 7.15: The woodhoopoe model.

149

Outputs

We are going to examine the same summary statistics as described in Section
4.4.3. These are the 0.25 (a), 0.5 (b) and 0.75 (c) quantiles of the population
size; the minimum (d), mean (e) and maximum (f) of the number of groups
with vacant dominant positions and the 0.25 (g), 0.75 (h) quantiles and
mode (i) of the group sizes evaluated once a year (in the 11th month) for
the 20 years of the simulation. If the model reaches its absorbing state all of
the outputs are still defined. However, whilst performing this analysis, we
did not run an input set that resulted in the model reaching its absorbing
state.

Variance based sensitivity analysis

We estimated the sensitivity indices using the method described by Taran-
tola et al (2006b) (Section 6.3.3) with 2000 samples from each input. We
found that the majority of the variance is caused by the parameters; this is
shown in Table 7.10. It also shows that for all of the outputs except the ones
that count the number of vacant dominant spots that the total sensitivity
of the random inputs is nearly zero which means that the variance down to
the aleatory parts is quite small.

We estimated the submodel sensitivity indices and the results are shown
in Table 7.11. We found that most of the variance was attributed to the
submodels with the parameters in them, namely the Leave, Predation and
Natural Mortality submodels. The other submodels had very little impact
on the model output.

Robustness analysis

We now perform robustness analysis by experimenting with various submod-
els. There are a number of alternative decisions that could have been made
when formulating the model. We are going to experiment with different
versions of the left/right submodel. Each of the following submodels will
have an equal probability of being used in the model:

1. The subordinate will move as described above.

2. In this submodel a subordinate will attempt to move to any other
territory at random. More formally, subordinate j at time t and at
the ath attempt during this iteration will move to the kth territory
that it hasn’t visited in this iteration (with territory 1 being the first
and territory 24 being the 24th) such that

k = min

{
n :

n

25− a
≥ ba, n ∈ N+

}

150

a b c d e f g h i

FO θ1 0.42 0.36 0.32 0.48 0.66 0.62 0.40 0.28 0.21
θ2 0.19 0.21 0.23 0.02 0.02 0.02 0.17 0.21 0.29
θ3 0.24 0.25 0.25 0.06 0.06 0.07 0.21 0.23 0.28
ui 0 0 0 0 0 0 0 0 0
uo 0 0 0 0 0 0 0 0 0
um 0 0 0 0 0 0 0 0 0
up 0 0 0 0 0 0 0 0 0
us 0 0 0 0 0 0 0 0 0
ub 0 0 0 0 0 0 0 0 0
ud 0 0 0 0.01 0.01 0.01 0 0 0

TI θ1 0.56 0.53 0.51 0.92 0.91 0.91 0.60 0.53 0.42
θ2 0.30 0.34 0.37 0.19 0.11 0.11 0.33 0.41 0.44
θ3 0.31 0.34 0.35 0.36 0.24 0.25 0.32 0.37 0.41
ui 0 0 0 0 0 0 0 0 0
uo 0 0 0 0.04 0.03 0.02 0 0.01 0
um 0 0 0 0.09 0.06 0.04 0.01 0.03 0.01
up 0 0 0 0.10 0.07 0.05 0.01 0.03 0.01
us 0 0 0 0.08 0.06 0.04 0.01 0.02 0
ub 0 0 0 0.11 0.07 0.06 0.01 0.02 0
ud 0.01 0.01 0.01 0.23 0.14 0.14 0.02 0.04 0.01

Table 7.10: The first order and total sensitivity indices for the outputs of
the woodhoopoe model. The letters a-i correspond to the summary of the
output described in 7.4.2.

where

ba = (25− a)

(
ba−1 −

ka−1

25− a

)
and the subordinate visited the ka−1th territory searched at attempt
a− 1 for a ≥ 2 and b1 = uj ts .

3. Subordinate will move left or right at their first search, with equal
probability; every time they leave from this moment they will move
the opposite way to their previous move. Subordinate j will move left
on its αth time that they leave their home territory if α is odd and
uj1s < 0.5 or if α is even and uj1s > 0.5 otherwise it will move right.

In addition to this we will look at adjusting the number of territories a
subordinate searches in before they return back to their original territory
which is 5 in the original model. We will say that the number is discretely
uniform from 1 to 6 as du Plessis (1992) observed that the maximum distance
a woodhoopoe travelled to settle in a new territory was 6 territories away.

151

a b c d e f g h i

Leave 0.19 0.21 0.23 0.02 0.02 0.02 0.17 0.21 0.29
0.30 0.34 0.37 0.19 0.11 0.11 0.33 0.41 0.44

Predation 0.24 0.25 0.25 0.06 0.06 0.07 0.21 0.23 0.28
0.31 0.34 0.35 0.37 0.25 0.27 0.32 0.37 0.41

Left/Right 0 0 0 0 0 0 0 0 0
0 0 0 0.08 0.06 0.04 0.01 0.02 0

Subordinate Order 0 0 0 0 0 0 0 0 0
0 0 0 0.04 0.03 0.02 0 0.01 0

Birth 0 0 0 0 0 0 0 0 0
0 0 0 0.11 0.07 0.06 0.01 0.02 0

Natural 0.42 0.36 0.32 0.55 0.67 0.65 0.40 0.28 0.21
Mortality 0.56 0.53 0.51 0.92 0.91 0.91 0.60 0.53 0.42

Table 7.11: Upper and lower bounds for the iterative submodel sensitivity
indices for the outputs of the woodhoopoe model. The letters a-i correspond
to the summary of the output described in 7.4.2.

Additionally, the order in which the subordinates attempt to leave their
territory could be important. We examined three alternative submodels
with equal probability of being used:

1. The subordinates move in the same order as described above.

2. The subordinates move in the order they entered the model. This
essentially means that the older subordinates move first and therefore
have a greater chance of becoming dominants in other territories.

3. Another alternative, is to run the subordinates in a random order
but this order remains the same for the rest of the simulation. The
woodhoopoe alive in the model with the lowest u·1o will always attempt
to move first and the woodhoopoe with the second lowest will always
move second and so on.

We found that the choice of submodel and the order of which the birds
moved did not have an effect on the results. In fact the total and first order
indices were 0 to 4 decimal places for all of the outputs for the submodel
selection parameters.

We did find that the number of attempts that a woodhoopoe that left its
territory has to find a new territory with a vacant dominant slot did affect
the results. It had a small effect on the population and the group sizes
(about 0.05 for each of the outputs) and had a large effect on the number
of vacant dominant positions, the first order index being about 0.25 for the
three summaries of the vacant positions. The other parameters (described

152

in the original model) contributed roughly 0.5 meaning that quite a lot of
the variance was down to the interactions between the number of searches
made by a subordinate and the other inputs.

In the simplified model, Railsback and Grimm (2012) do not discuss
the implication of this seemingly arbitrary parameter. The decision to fix
this value at 5 causes quite a large difference in the model output and thus
making any conclusions from the model less reliable, especially about the
number of vacant dominant positions.

7.5 Discussion

In this chapter we developed a method of performing variance-based sensi-
tivity analysis on stochastic models by treating the random inputs as an ad-
ditional parameter, refining a method described in Iooss and Ribatet (2009).
Rather than in Iooss and Ribatet (2009), where the random inputs are one
“macroparameter”, we have coupled the random inputs into groups of in-
puts (Jacques et al, 2006). By coupling the random inputs, we were able to
partition the variance not only between aleatory and epistemic parts, but
between the different parts of the aleatory uncertainty, essentially allowing
us to identify which random inputs are important and which are not.

We demonstrated this method on two stochastic models, a queuing model
and the Ricker model. In the queuing model we were able to say that the
random inputs that determined the arrival times of customers are more
influential that the random inputs of the service time. In the Ricker model
we showed that a complex interaction of the random inputs and parameters
had the highest sensitivity index, something that would be impossible to
find using the “macroparameter method” or meta-model methods (Iooss
and Ribatet, 2009; Marrel et al, 2012).

If we were uncertain about a what form a submodel should take, we
demonstrated a method of treating this decision as an unknown input. If
multiple submodels have the same inputs or same prior predictive input
distributions but are parameterised differently, then it may be useful to
distinguish between variance accounted by the choice in submodel and the
variance accounted by the inputs to the submodel.

In the method described in this chapter, all potential submodels need to
be fully specified and written into the model which can be a time consuming
task (Grimm and Railsback, 2005; Railsback and Grimm, 2012). Further-
more, prior distributions need to be specified for the submodels which may
not be such an easy task and as we have shown empirically, the sensitivity
indices are sensitive to the input distributions.

The method of submodel choice described in this chapter was developed
in order to perform robustness analysis (Weisberg, 2006) by testing the
effects of the details of complex models on the output of the model and

153

seeing what happens if we change some of the submodels. We tested two
IBMs, adding uncertainty to the model by changing some of the submodels
and details of the model. We then performed sensitivity analysis on the
output of the new model. This sensitivity analysis partitions the variance
of the new model, rather than measuring the additional variance caused by
the changes between the old model and the new.

The robustness analysis is specific to an output of the model. If a model
is used to make a specific decision then this decision should be robust to the
model details and structure but other outputs need not. However, it is often
the ultimate goal of these types of models to build a virtual laboratory. If
a model is robust enough to be used as a virtual laboratory, adding new
plausible submodels should not have a large effect on any of the outputs
that the model could be used to test. What effect a new submodel requires
for a model to pass robustness analysis is subject to the user. For example,
in the bird synchrony model, we concluded that the measures of synchrony
were robust in this model despite the addition of the arrival having an effect
on the model output.

We defined the submodel sensitivity index and the iterative submodel
sensitivity index as measures of the sensitivity to the output a submodel
gives. This gives a way of identifying which components of the model are
“live”, where the variance is added to the model, and which parts are “dead”
and do not contribute to the variation (Tarantola et al, 2002). This can
enable the model developer to see which submodels are important during
the model development phase.

The submodel sensitivity indices are sensitive to the ordering of the in-
puts. In this chapter we used them with the order defined by the model
structure, however, it could be plausible that you could, from field exper-
iments, learn a number of the true values of the uncertain inputs or even
intermediate state of the model. The corresponding version of submodel
sensitivity indices could then be used to decide what would then be the
next best inputs to learn.

For commutative submodels and submodel sets we cannot assign the
higher-order Sobol’ indices to any submodel but only collectively. The com-
mutative submodels interact in the next submodel but as we treat the input
to that submodel, Q as an individual input and it is possible to learn this
without running the submodel it does not make sense to say that this vari-
ance is caused in the next submodel. Although all of the IBMs that we
examine here have commutative subomodels or commutative submodel sets
this is not always the case for example the Cortés-Avizanda et al (2014) and
Hovel and Regan (2008) models.

When the model is iterative it can mean that we are unable to estimate
the iterative submodel sensitivity indices exactly but it is possible to find
bounds on the value of them. The submodels can be seen as a collection of
repeated submodels. For example the mortality submodel sensitivity index

154

in the woodhoopoe model is the sum of the mortality submodel sensitivity
indices for every time.

Sometimes a parameter is involved in more than one submodel. If this
is the case you can either group the submodels or further bounds would be
needed to be calculated as it is not possible to define which submodel the
Sobol’ index of this parameter belongs to. Additional work could be done
to separate this by using methods of variance based sensitivity of correlated
inputs (Kucherenko et al, 2012).

155

Chapter 8

Conclusions and Future work

In this thesis we have looked at methods of quantifying uncertainty in ecolog-
ical simulation models. As the probabilistic behaviour in this class of models
is implicit, parameter estimation and sensitivity analysis are difficult to do.
We have developed novel methods of improving parameter estimation when
the likelihood is intractable and developed a method of performing sensi-
tivity and robustness analysis on stochastic simulation models. We demon-
strated these methods on a selection of “toy” and realistic models. We have
also investigated a size-structured ecosystem model consisting of numerically
solved differential equations, carrying out fully Bayesian inference using a
combination of optimisation and MCMC.

8.1 Thesis summary

In Chapter 1 we introduced the reasons behind building a simulation model
rather than a statistical model. It is often the case that modellers are won-
dering why something happens and building a simulation model better an-
swers that question. Additionally it is often the case that the aim is to build
a virtual laboratory so that experiments that would have in reality possibly
irreversible or expensive consequences can be performed. We also introduced
a specific type of simulation model, individual-based models (IBMs). IBMs
model the individuals in the system explicitly in order to see what individual
behaviours result in the emergent behaviour of the whole system.

Two IBMs that were used later in the thesis are described using the
ODD protocol (Grimm et al, 2006, 2010) in Chapter 2. The woodhoopoe
model was used to demonstrate the method parameter estimation that we
developed in Chapter 3. We perform sensitivity and robustness analysis on
these two models in Chapter 7.

We gave an overview of methods of parameter estimation in Chapter 3.
We began by introducing MCMC methods and describing ways of speeding
them up. We showed a novel doubly parallel tempering algorithm that is a

156

mix between the parallel MCMC algorithm, described by Cui et al (2011),
and the parallel tempering algorithm (Swendsen and Wang, 1986). This
algorithm can be used when the target distribution is multi-modal and the
likelihood is moderately expensive to calculate.

Most simulation models have an intractable likelihood meaning that the
likelihood either cannot be written down or is expensive to calculate which
means that standard MCMC methods, as described in Section 3.2, cannot
be used. We described an overview of a method to overcome this, namely
ABC, in Section 3.3. We described the idea of ABC and some algorithms
that improve the efficiency of ABC. One such algorithm is ABC-MCMC
which is a hybrid between ABC and MCMC (Marjoram et al, 2003). This
algorithm is not favoured among ABC users as it suffers from poor mixing
when the Markov chain is in the tails of its distribution (Sisson et al, 2007).

In Chapter 4 we developed a method of improving ABC-MCMC by con-
sidering the random inputs as additional parameters and coupled them so
that small movements in parameter space resulted in small movements in the
model output. We also introduced a Gibbs step that enables the parameters
to move without a further run of the model. We showed empirically that
this improved the mixing of the algorithm with the greatest improvements
being in the tails of the distribution.

We fitted a multi-species size-based model of the North Sea (Blanchard
et al, 2014) to landings data using a Bayesian framework in Chapter 5. This
involved using a mixture of space filling and optimisation algorithms before
using the doubly parallel tempering algorithm which we described in Sec-
tion 3.2.3. This work addresses an important issue in size-based modelling:
parameter estimation or calibration.

We give an overview of sensitivity analysis in Chapter 6, mainly focusing
on variance-based sensitivity indices and methods of estimating them.

The majority of models that we wanted to examine and perform sensi-
tivity analysis on are stochastic and few methods of dealing with stochastic
models exist (Iooss and Lemâıtre, 2015). We used the idea of coupling the
random inputs, as described in Chapter 4, to treat the random inputs, the
stochastic parts of the model, as additional inputs and hence to quantify
sensitivity of model outputs to stochasticity.

We also treated submodel uncertainty, uncertainty about which sub-
model to use in the model, as an additional parameter. This enabled us to
perform robustness analysis by testing alternative submodels whether the
different versions of submodels represent genuine scientific uncertainty or
essentially arbitrary modelling or coding choices. We also defined the iter-
ative submodel sensitivity analysis, which is the amount of variance that is
created in each submodel and shows which parts of the model are important
to model output which could be useful when developing these models, which
in practice are often iterative in form.

157

8.2 Discussion and further work

8.2.1 CG-ABC

We found that CG-ABC had a much greater improvement for the queuing
model than for the woodhoopoe model. Additionally we found that for

the queuing model the total sensitivity index of the random inputs, τ̃2
u,

was much larger than that in the woodhoopoe model. We postulate that

this is not a coincidence and the absolute value of τ̃2
u, as opposed to the

standardised value, compared to the tolerance level, ε, should give an idea
of how much CG-ABC improves over ABC-MCMC especially in the region
of non-negligible posterior mass.

By treating the random inputs as parameters we are creating an MCMC
algorithm that is analogous to other MCMC problems where the likelihood is
unknown but can be, at the cost of one run of the model, calculated exactly.
This means that we can use more sophisticated MCMC methods to opti-
mise the algorithm such as building an emulator (Kennedy and O’Hagan,
2001), Multiple-try MCMC (J. Liu and Wong, 2000) and Differential Evolu-
tion Adaptive Metropolis (DREAM) (ter Braak and Vrugt, 2008; ter Braak,
2006) just to name a few.

We showed empirically that the CG-ABC algorithm improves the per-
formance of the ABC-MCMC algorithm in 3 dimensions. We believe that it
would be be good in higher dimensional problems compared to other ABC
methods.

8.2.2 Size-based models

We fitted the multi-species size-based model to landings observations by
formulating a likelihood relating the model output to reality. Another com-
mon way of performing parameter estimation for this class of models is to
fit the model to indicators, such as the size of the slope in the spectrum, and
check that the indicators have plausible values similar to ABC (Pope et al,
2006; Thorpe et al, 2015; Hall et al, 2006). Some indicators, or summary
statistics as they are known in the ABC literature, are chosen and then the
uncertain parameters are fitted to replicate these indicators. This leads to
another question in this field: which indicators should we fit to the model
to in order to best learn the uncertain parameters? We will discuss this in
the Section 8.2.3.

It is also important to take account of the uncertainty of the parameters
fitted using these methods as this will lead to uncertainties in the model
output (Harwood and Stokes, 2003). Formal measures of uncertainty will
enable multi-species forecasts to be reported to decision makers in a manner
that is comparable to single-species decision tables. This would help further
develop the use of formal risk assessment in ecosystem approaches to fisheries

158

management, which has been fairly limited to date but is a burgeoning area
of research (Plagányi et al, 2014).

One of the additional problems with performing parameter estimation
is the computational expense of these models. A potential method that we
did not use in the work in this thesis but could be used on other size-based
models is the use of an emulator, a statistical stochastic model in order
to represent the more complex ecological model (Kennedy and O’Hagan,
2001). This statistical model increases the uncertainty of the model output
but this uncertainty is also taken account of when estimating the model
output. Building an emulator “gets the most of the model from a finite
number of runs”. Currently size-based models are quick to run compared to
some of the models that the emulation methods have been developed for (for
example Vernon et al, 2010) which should enable the emulator to become
more accurate and less uncertain.

Local sensitivity analysis is common for this class of models but it is
important to examine sensitivities caused by some interactions of parame-
ters (Saltelli et al, 2004). Although considered important in the field and
performed on other marine ecosystem models (Morris et al, 2014), global
sensitivity has not been done with size-based models. One of the reasons
that this has not been done is the computational cost of the model and the
high number of parameters as many methods of global sensitivity analysis
are very expensive.

Some ongoing work uses emulators to fit a sized-based model to catch
data as well as some indicators using a Bayesian framework (Spence, unpub-
lished). Additionally some work is being done that tests what effect adding a
temperature dependent growth submodel has on to the multi-species North
Sea model using methods developed in Chapter 7 (Spence, unpublished).

8.2.3 Sensitivity and Robustness analysis

It is possible to use variance-based sensitivity analysis to estimate the (par-
tial) Expected Value of Perfect Information (Strong and Oakley, 2013; Strong
et al, 2014). This means that by treating the size-based model as a decision
problem it is possible to determine which data sets or indicators need to be
collected in order to reduce the uncertainty of the decision to be made.

When we perform variance based sensitivity analysis on stochastic mod-
els we showed that it doesn’t matter how the random inputs are coupled,
so long as the prior predictive distribution is the same, the Sobol’ indices
still remain the same. However this does not seem to be the case for local
methods such as derivative based sensitivity (Sobol’ and Kucherenko, 2009)
and the Morris method (Morris, 1991). Having said this we believe that
coupling the random inputs could greatly improve the estimation of local
sensitivity as the estimates of the derivatives will be smoother, as with the
method of common random numbers (Owen, 2013b).

159

The methods we developed and demonstrated here give a way of testing
different versions of submodels and arbitrary decisions. The order in which
submodels are run within a ABM is sometimes not obvious and in reality the
submodels run simultaneously, possibly using information from the other
submodels as they are been run. For example in the Hovel and Regan
(2008) model, three entities move one at a time when in reality they move
simultaneously interacting with each other along the way. It is not possible
to do this using a computer so the submodels have to be run one at a time
for one time step and thus the order in which the submodels are run should
not have a large effect on the output.

If the order does have an effect on the results then the submodels could
be run with smaller time steps. This would mean that the submodels would
be able to interact with each other more often thus acting more and more
like they are running simultaniously. However as the time step decreases the
amount of computation required increases and although specialist software
does exist that enable ABMs to be run optimally (Coakley et al, 2012), there
does become a critical point when it becomes too computationally expensive
to run the model. Alternatives could be to change the order of the submodels
every time step or to use the Stromer-Verlet or leapfrog integrator, where
the order the submodels are run reverse every time step, to run the models
(Verlet, 1967).

It is possible to incorporate uncertainty by adding individual heterogene-
ity to the model. This was done in the full woodhoopoe model (Neuert et al,
1995). The number of groups searched by an individual subordinate, the pa-
rameter that we found had a large effect on the number of vacant dominant
positions in the simplified model, was stochastically simulated uniformly
between 1 and 6 for each search flight rather than being fixed as in the sim-
plified model. This takes advantage of the heterogeneity of individuals in
the model and the system which is one of the advantages of building IBMs.
It would be interesting to see what effect individual heterogeneity has on
some uncertainty of outputs in IBMs.

In this thesis we have explored a number of statistical themes of im-
portance for complex simulation models. We have extended the repertoire
of parameter estimation methods and assessed their properties for a num-
ber models. We defined a method of formally quantifying uncertainties for
stochastic models and a method of assigning this uncertainty to different
submodels within a larger simulation model. We developed a method of
quantifying the uncertainty caused by modeller decisions whether it is the
choice of submodels or the arbitrary modelling choices. Taken together,
these techniques serve to improve the understanding and handling of uncer-
tainty in practical simulation modelling.

160

Bibliography

Akaike H (1974) A new look at the statistical model identification. IEEE
Transactions on Automatic Control 19:716–723

Andersen KH, Beyer JE (2006) Asymptotic Size Determines Species
Abundance in Marine Size Spectrum. American Society of Naturalists
168(1):54–61

Andersen KH, Beyer JE (2013) Size structure, not metabolic scal-
ing rules, determines fisheries reference points. Fish and Fisheries
DOI:10.1111/faf.12042

Andersen KH, Pedersen M (2009) Damped trophic cascades driven by fishing
in model marine ecosystems. Proceedings of the Royal Society of London
B: Biological Sciences 227:795–802

Andersen KH, Ursin E (1977) A multispecies extension to the Beverton and
Holt theory of fishing, with accounts of phosphorus circulation and pri-
mary production. Meddelelser fra Danmarks Fiskeri- og Havundersøgelser
7(319-345)

Andersen KH, Zhang L (2011) The size spectrum approach to physiology
structured community modeling. Tech. rep., Technical University of Den-
mark

Andrieu C, Roberts GO (2009) The pseudo-marginal approach for efficient
Monte Carlo computations. Annals of Statistics 41:697–725

Andrieu C, Thoms J (2008) A tutorial on adaptive MCMC. Statistics and
Computing 18:343–373

Andrieu C, Doucet A, Holenstein R (2010) Particle Markov Chain Monte
Carlo methods. Journal of Royal Statistical Society B 72:269–342

Andrieu C, Doucet A, Lee A (2012) Discussion of Constructing summary
statistics for approximate Bayesian Computation: semi-automatic Ap-
proximate Bayesian computation. Journal of Royal Statistics Society
74:451–452

161

Baragatti M, Grimaud A, Pommeret D (2013) Likelihood-free parallel tem-
pering. Statistics and Computing 23(4):535–549

Beaumont MA (2003) Estimation of Population Growth of Decline in Ge-
netically Monitored Populations. Genetics 164:1139–1160

Beaumont MA (2010) Approximate Bayesian Computation in Evolution and
Ecology. Annual Review of Ecology, Evolution, and Systematics 41:379–
406

Beaumont MA, Zhang W, Balding DJ (2002) Approximate Bayesian Com-
putation in population genetics. Genetics 162:2025–2035

Beaumont MA, Cornuet JM, Marin JM, Robert CP (2009) Adaptive Ap-
proximate Bayesian Computation. Biometrika 96:983–990

Beck MB (1987) Water quality modeling: a review of the analysis of uncer-
tainty. Water Resources Research 23:1393–1442

Benôıt E, Rochet MJ (2004) A continuous model of biomass size spectra
governed by predation and the effect of fishing on them. Journal of The-
oretical Biology 226:9–21

Berk R, Bickel P, Campbell K, Keller-McNutly S, Kelly E, Sacks J (2002)
Workshop on statistical approaches for the evaluation of complex com-
puter models. Statistical Science 17:173–192

Bigg GR, Cunningham CW, Ottersen G, Pogson GH, Wadley MR,
Williamson P (2008) Ice-age survival of atlantic cod: agreement be-
tween palaeoecology models and genetics. Proceedings of the Royal
Society of London B: Biological Sciences 275(1631):163–173, URL
http://rspb.royalsocietypublishing.org/content/275/1631/163.abstract

Birch CPD, Oom SP, Beecham JA (2007) Rectangular and hexagonal grids
used for observation, experiment and simulation in ecology. Ecological
Modelling 206(3-4):347–359

Black PE (2006) Manhattan distance. In: Pieterse V, Black
PE (eds) Dictionary of Algorithms and Data Structures, URL
http://www.nist.gov/dads/HTML/manhattanDistance.html

Blanchard JL, Andersen KH, Scott F, Hintzen NT, Piet G, Jennings S (2014)
Evaluating targets and trade-offs among fisheries and conservation objec-
tives using multispecies size spectrum model. Journal of Applied Ecology
51(3):612–662

Blum MGB (2010) Approximate Bayesian Computation: a Nonpara-
metric Perspective. Journal of the American Statistical Association
105(491):1178–1187

162

Blum MGB, François O (2010) Non-linear regression models for Approxi-
mate Bayesian Computation. Statistics and Computing 20:63–73

ter Braak CJF (2006) A Markov Chain Monte Carlo version of the genetic
algorithm Differential Evolution: easy Bayesian computing for real pa-
rameter spaces. Statistics and Computing 16:239–249

ter Braak CJF, Vrugt JA (2008) Differential Evolution Markov Chain with
snooker updater and fewer chains. Statistics and Computing 18:435–446

Campolongo F, Cariboni J, Saltelli A (2007) An effective screening design for
sensitivity analysis of large models. Environmental Modelling & Software
22:1509–1518

Cantrell CD (2000) Modern Mathematical Methods for Physicists and En-
gineers. Cambridge University Press

Cappé O, Guillin A, Marin JM, Robert CP (2004) Population Monte Carlo.
Journal of Computational and Graphical Statistics 13:907–929

Cariboni J, Gatelli D, Liska R, Saltelli A (2007) The role of sensitivity
analysis in ecological modelling. Ecological Modelling 203:167–182

Chen Q, Mynett AE (2003) Effects of cell size and configuration in cellular
automata based prey-predator modelling. Simulation Modelling Practice
and Theory 11:609–625

Chen Q, Han R, Ye F, Weifeng L (2011) Spatio-temporal ecological models.
Ecological Informatics 6:37–43

Clark JS, Carpenter SR, Barber M, Collins SL, Dobson AP, Foley J, Lodge
DM, Pascual M, Pielke Jr RA, Pizer W, Pringle CM, Reid W, Rose K,
Sala O, Schlesinger WH, Wall D, Wear DN (2001) Ecological forecasts:
an emerging imperative. Science 293:657–660

Coakley S, Gheorghe M, Holcombe M, Chin S, Worth D, Greenough C (2012)
Exploitation of High Performance Computing in the FLAME Agent-Based
Simulation Framework. In: Proceedings of the 14th International Confer-
ence on High Performance Computing and Communications

Cortés-Avizanda A, Jovani R, Donázar JA, Grimm V (2014) Bird sky net-
works: How do avian scavengers use social information to find carrion?
Ecology 95(7):1799–1808

Csilléry K, Blum MGB, Gaggiotti OE, François O (2010) Approximate
Bayesian Computation (ABC) in practice. Trends in Ecology and Evo-
lution 25(7):410–418

163

Cui T, Fox C, Nicholls GK, O’Sullivan MJ (2011) Using Parallel MCMC
Sampling to Calibrate a Computer Model of a Geothermal Reservoir.
Tech. Rep. 686, University of Auckland Faculty of Engineering

Cukier RI, Levine H, Shuler KE (1978) Nonlinear sensitivity analysis of mul-
tiparameter model systems. Journal of Computational Physics 29(1):1–42

Cunningham PC (2007) A sensitivity analysis of an individual-based trout
model. Master’s thesis, Humbolt State University

Damuth J (1981) Population density and body size in mammals. Nature
290(23):699–700

Del Moral P (2004) Feynman-Kac Formulae Genealogical and Interacting
Particle Systems with Applications. Springer: Probability and its Appli-
cations, New York

Del Moral P, Doucet A, Jasra A (2012) An adaptive sequential monte carlo
method for approximate Bayesian computation. Statistics and Computing
22(5):1009–1020

Devroye L (1986) Non-Uniform Random Variate Generation. Springer-
Verlag

Diggle PJ, Gratton RJ (1984) Monte Carlo Methods of Inference for Implicit
Statistical Models. Journal of Royal Statistical Society B 46(2):193–227

Doucet A, Johansen AM (2011) A tutorial on particle filtering and smooth-
ing: fifteen years on

Drechsler M (1998) Sensitivity analysis of complex models. Biological Con-
versation 86:401–412

Duane S, Kennedy AD, Pendleton BJ, Roweth D (1987) Hybrid Monte
Carlo. Physics Letters B(195):216–222

Efron B, Stein C (1981) The Jackknife Estimate of Variance. The Annals of
Statistics 9:586–596

Fearnhead P (2004) Filtering recursions for calculating likelihoods for queues
based on inter-departure time data. Statistics and Computing 14(3):261–
266

Fearnhead P, Prangle D (2012) Constructing summary statistics for ap-
proximate Bayesian Computation: semi-automatic Approximate Bayesian
computation. Journal of Royal Statistical Society B 74:419–474

Fenchel T (1974) Intrinsic rate of natural increase: the relationship with
body size. Oecologia 14:317–326

164

Franz M, Kramer-Schadt S, Kilian W, Wissel C, Groeneveld J (2010) Under-
standing the effects of rainfall on elephant-vegetation interactions around
waterholes. Ecological Modelling 221:2909–2917

Fruth J, Roustant O, Kuhnt S (2014) Total Interaction Index: A variance-
based sensitivity index for second-order interaction screening. Journal of
Statistical Planning and Inference 147:212–223

Geman S, Geman D (1984) Stochastic Relaxation, Gibbs Distributions, and
the Bayesian Restoration of Images. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 6(6):721–741

Girolami M, Calderhead B (2011) Riemann manifold Langevin and Hamilto-
nian Monte Carlo methods. Journal of Royal Statistical Society B 73:1–37

Glen G, Isaacs K (2012) Estimating Sobol sensitivity indices using correla-
tions. Environmental Modelling & Software 37:157–166

Gochfeld M (1980) Reproductive Synchrony in Colonial Seabirds Current
Perspectives in Research. In: Burger J, Olla BL, Winn HE (eds) Behaviour
of Marine Animals, vol 4: Marine Birds, Plenium Press

Gordon NJ, Salmond D, Smith AFM (1993) Novel approach to
nonlinear/non-Gaussian Bayesian state estimation. IEEE Transactions on
Radar Signal Process 140:107–113

Grimm V (1999) Ten years of individual-based modelling in ecology: what
have we learned about the future? Ecological Modelling 115:129–148

Grimm V, Railsback SF (2005) Individual-based Modelling and Ecology.
Princeton Series in Theoretical and Computational Biology

Grimm V, Railsback SF (2012) Pattern-Oriented Modelling: a ‘muilti-scope’
for predictive systems ecology. Philosophical Transactions of the Royal
Society B 367:298–310

Grimm V, Uchmański J (1996) Individual-based modelling in ecology: What
makes the difference? Trends in Ecology and Evolution 11:437–441

Grimm V, Frank K, Jeltsch F, Brand R, Uchmański J, Wissel C (1996)
Pattern-Oriented Modeling in population ecology. Science of total enviro-
ment 183:151–166

Grimm V, Dorndorf N, Frey-Roos F, Wissel C, Wyszomirski T, Arnold W
(2003) Modelling the role of social behaviour in the persistance of the
alpine marmoto marmota marmota. Oikos 102:124–136

165

Grimm V, Berger U, Bastiansen F, Eliassen S, Ginot V, Giske J, Goss-
Custard J, Grand T, Heinz SK, Huse G, Huth A, Jepson JU, Jørgensen
C, Mooij WM, Müller B, Pe’er G, Piou C, Railsback SF, Robbins AM,
Robbins MM, Rossmanith E, Rüger N, Strand E, Souissi S, Stillman RA,
Vabø R, Visser U, DeAngelis DL (2006) A standard protocol for describing
individual-based and agent-based models. Ecological Modelling 198:115–
126

Grimm V, Berger U, DeAngelis DL, Polhil JG, Giske J, Railsback SF (2010)
The ODD protocol: A review and first update. Ecological Modelling
221:2760–2768

Grimm V, Augusiak J, Focks A, Frank BM, Gabsi F, Johnston ASA, Liu C,
Martin BT, Meli M, Radchuk V, Thorbek P, Railsback SF (2014) Towards
better modelling and decision support: Documenting model development,
testing and analysis using TRACE. Ecological Modelling 280:129–139

Hall SJ, Collie J, Duplisea DE, Jennings S, Bravington M, Link J (2006) A
length-based multispecies model for evaluating community responses to
fishing. Canadian Journal of Fisheries and Aquatic Sciences 63:1344–1359

Hartig F, Calabrese JM, Reineking B, Wiegand T, Huth A (2011) Statis-
tical inference for stochastic simulation models - theory and application.
Ecology Letters 14:816–827

Hartvig M, Andersen KH, Beyer JE (2011) Food web framework for size-
structure populations. Journal of Theoretical Biology 272:113–122

Harwood J, Stokes K (2003) Coping with uncertainty in ecological advice:
lessons from fisheries. Trends in Ecology and Evolution 18(12):617–622

Hastings WK (1970) Monte Carlo Sampling Methods Using Markov Chains
and Their Applications. Biometrika 51(1):97–109

Heath B, Hill R, Ciarallo F (2009) A survey of Agent-Based Modelling prac-
tices. Journal of Artificial Societies and Social Simulation 12(4):9

Heggland K, Frigessi A (2002) Estimating functions in indirect inference.
Journal of Royal Statistical Society B 66:447–462

Hintze JL, Nelson RD (1998) Violin plots: a box plot-density trace syner-
gism. The American Statistician 52(2):181–184

Holden PB, Edwards NR, Oliver KIC, Lenton TM, Wilkinson RD (2010)
A probabilistic calibration of climate sensitivity and terrestrial carbon
change in GENIE-1. Climate Dynamics 35(5):785–806

166

Holland EP, Aegerter JN, Dytham C (2009) Comparing resource representa-
tions and choosing scale in heterogeneous landscapes. Landscape Ecology
24:213–227

Homma T, Saltelli A (1996) Importance measures in global sensitivity analy-
sis of nonlinear models. Reliability Engineering and System Safety 52:1–17

Horan S, Iman R (2008) A comparison of maximum/bounding and
Bayesian/Monte Carlo for fault tree analysis. Sandia National Labora-
tories report

Hovel KA, Regan HM (2008) Using an individual-based model to examine
the roles of habitat fragmentation and behaviour on predator-prey rela-
tionships in seagrass landscapes. Landscape Ecology 23:75–89

Iooss B, Lemâıtre P (2015) A review on global sensitivity analysis
methods. In: Meloni C, Dellino G (eds) Uncertainty management in
Simulation-Optimization of Complex Systems: Algorithms and Applica-
tions, Springer

Iooss B, Ribatet M (2009) Global sensitivity analysis of computer mod-
els with functional inputs. Reliability Engineering and System Safety
94(7):1194–1204

Iooss B, Dorpe FV, Devictor N (2006) Response surfaces and sensitivity
analysis for an environmental model of dose calculations. Reliability En-
gineering and System Safety 91:1241–1251

J Liu FL, Wong WH (2000) The Multiple-Try Method and Local Optimiza-
tion in Metropolis Sampling. Journal of the American Statistical Associ-
ation 95:121–134

Jacques J, Lavergne C, Devictor N (2006) Sensitivity analy-
sis in presence of model uncertainty and correlated inputs.
Reliability Engineering and System Safety 91(10–11):1126 –
1134, DOI http://dx.doi.org/10.1016/j.ress.2005.11.047, URL
http://www.sciencedirect.com/science/article/pii/S0951832005002231,
the Fourth International Conference on Sensitivity Analysis of Model
Output (SAMO 2004) {SAMO} 2004 The Fourth International Confer-
ence on Sensitivity Analysis of Model Output (SAMO 2004)

Jennings S, Blanchard JL (2004) Fish abundance with no fishing: predictions
based on macroecology theory. Journal of Animal Ecology 73:632–642

Joanes DN, Gill CA (1998) Comparing measures of sample skewness and
kurtosis. The Statistician 47:183–189

167

Johnson LR, Briggs CJ (2011) Parameter inference for an individual based
model of chytridiomycosis in frogs. Journal of Theoretical Biology 277:90–
98

Jovani R, Grimm V (2008) Breeding sychrony in colonial birds: From local
stress to global harmony. Proceedings of the Royal Society of London B:
Biological Sciences 275:1557–1563

Joyce P, Marjoram P (2008) Approximately Sufficient Statistics and
Bayesian Computation. Statistical Applications in Genetics and Molec-
ular Biology 7:26

Jul-Larsen E, Kolding J, Over̊aR, Nielsen JR, van Zwieten PAM (2003)
Management, Co-Management or No Management? Tech. rep., Food and
Agricilture Organization of the United Nation

Kaiser H (1979) The dynamics of populations as result of the properties of
individual animals. Fortschritte der Zoologie 25:109–136

Kalman RE (1960) A New Approach to Linear Filtering and Prediction
Problems. Journal of Basic Engineering 82(1):35

Katz RW (2002) Techniques for estimating uncertainty in climate change
scenarios and impact studies. Climate Research 20:167–185

Kennedy MC, O’Hagan A (2001) Bayesian calibration of computer models.
Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy) 63(3):425–464

Kitchell JF, Stewart DJ (1977) Applications of Bioenergetics Model to Yel-
low Perch (Perca flavescens) and Walleye (Stizostedion vitreum vitreum).
Journal of the Fisheries Research Board of Canada 34:1922–1935

Kleijnen JPC (2007) DASE: Design and Anaysis of Simulation Experiments.
Springer Science + Business Media

Kloprogge P, van der Sluijs JP, Petersen AC (2011) A method for the anal-
ysis of assumptions in model-based environmental assessments. Environ-
mental Modelling & Software 36:289–301

Krzykacz B (1990) Samos: a computer program for the derivation of empir-
ical sensitivity measures of results from large computer models. Technical
report GRS-A-1700F

Kucherenko S, Feil R, Shah N, Mauntz W (2011) The identification of model
effective dimensions using global sensitivity analysis. Reliability Engineer-
ing and System Safety 96:440–449

168

Kucherenko S, Tarantola S, Annoni P (2012) Estimation of global sensitivity
indices for models with dependent variables. Computer Physics Commu-
nications 183:937–946

Law R, Plank MJ, James M, Blanchard JL (2009) Size-spectra dynamics
from stochastic predation and growth of individuals. Ecology 90:802–811

Lee A, Latuszyński K (2014) Variance bounding and geometric ergodicity of
Markov chain Monte Carlo kernels for approximate Bayesian computation.
Biometrika 101(3):655–671

Lee A, Andrieu C, Doucet A (2012) Discussion of Constructing summary
statistics for approximate Bayesian Computation: semi-automatic Ap-
proximate Bayesian computation. Journal of Royal Statistical Society B
74:449–450

Lee JE, McVinish R, Mengersen K (2011) Population Monte Carlo algorithm
in high dimensions. Methodology and Computing in Applied Probability
13(2):369–389

Lee PM (2004) Bayesian Statistics an introduction, 3rd edn. Oxford Uni-
versity Press

Li H, Wu J (2006) Uncertainty analysis in ecological studies. In: Wu J, Jones
KB, Li H, Loucks OL (eds) Scaling and Uncertainty Analysis in Ecology:
Methods and Applicationa, 43-64, Springer, pp 43–64

Liu R, Owen AB (2006) Estimating mean dimensionality of analysis of
variance decompositions. Journal of the American Statistical Association
101:712–721

Macal CM, North MJ (2010) Tutorial on Agent-based modeling simulation.
Journal of Simulation 4:151–162

Maclean M (2010) Individual-Based Simulation Models in Ecology. Master’s
thesis, The University of Sheffield

Maes J, Limburg KE, van de Putte A, Ollevier F (2005) A spatially explicit,
individual-based model to assess the role of estuarine nurseries in the early
life history of North sea herring, Clupea harengus. Fisheries Oceanography
14(1):17–31

Mara TA (2010) Extension of the RBD-FAST method to the computation
of global sensitivity indices. Reliability Engineering and System Safety
95(4):354–360

Marin JM, Pudlo P, Robert CP, Ryder RJ (2012) Approximate Bayesian
Computational methods. Statistics and Computing 22(6):1167–1180

169

Marjoram P, Molitor J, Plagnol V, Tavaré S (2003) Markov chain Monte
Carlo without likelihoods. PNAS 100:15,324–15,328

Marrel A, Iooss B, Veiga SD, Ribatet M (2012) Global sensitivity analy-
sis of stochastic computer models with joint metamodels. Statistics and
Computing 22(3):833–847

Mart́ınez I, Wiegand T, Camarero JJ, Batllori E, Gutiérrez E (2011) Disen-
tangling the formation of contrasting tree-line physiognomies combining
model selection and Bayesian parameterization for simulation models. The
American Naturalist 117:136–152

McKay MD (1996) Variance-based methods for assessing uncertainty im-
portance in nureg-1150 analysis. Tech. Rep. LA-UR-96-2695, Los Alamos
Laboratories

McKay MD, Beckman RJ, Conover WJ (1979) A Comparison of Three
Methods for Selecting Values of Input Variables in the Analysis of Output
from a Computer Code. Technometrics 21(2):239–245

Metropolis NC, Ulam SM (1949) The Monte Carlo Method. Journal of the
American Statistical Association 44(247):335–341

Metropolis NC, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953)
Equation of State Calculations by Fast Computing Machines. Journal of
Chemical Physics 21:1087–1092

Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F, Chang CC, Lin
CC (2013) e1071. R package

Moran PAP (1950) Notes on Continuous Stochastic Phenomena. Biometrika
37(1/2):17–23

Morris DJ, Spires DC, Cameron AI, Heath MR (2014) Global sensitivity
analysis of an end-to-end marine ecosystem model of the North Sea:
Factors affecting the biomass of fish and benthos. Ecological Modelling
273:251–263

Morris MD (1991) Factorial Sampling Plans for Preliminary Computational
Experiments. Technometrics 33(2):161–174

Neal P (2012) Efficient likelihood-free Bayesian Computation for household
epidemics. Statistics and Computing 22:1239–1256

Neal P, Huang CLT (2014) Forward simulation MCMC with applications
to stochastic epidemic models. Scandinavian Journal of Statistics doi:
10.1111/sjos.12111

170

Neal P, Roberts GO (2006) Optimal scaling for partially updating MCMC
algorithms. The Annals of Applied Probability 16(2):475–515

Nelder JA, Mead R (1965) A simplex algorithm for function minimization.
Computer Journal 7:308–313

van Nes EH, Lammens EHRR, Scheffer M (2002) PISCATOR, an individual-
based model to analyze the dynamics of lake fish communities. Ecological
Modelling 152:261–278

Neuert C, du Plessis M, Grimm V, Wessel C (1995) Welche ökologischen fak-
toren bestimmen die gruppengröbe bei phoeniculus purpureus (gemeiner
baumhopf) in südafrika? ein individuenbasiertes modell. Verhandlungen
der Gesellschaft fur Okologie 24:145–149

Nielsen A, Berg CW (2014) Estimation of time-varying selectivity in stock
assessments using state-space models. Fisheries Research 158:96–101

Oakley JE, O’Hagan A (2002) Bayesian inference for the uncertainty distri-
bution of computer model outputs. Biometrika 89(4):769–784

Oakley JE, O’Hagan A (2004) Probabilistic Sensitivity Analysis of complex
models: a Bayesian approach. Journal of the Royal Statistical Society:
Series B 66(3):751–769

O’Hagan A (2006) Bayesian analysis of computer code: A tutorial. Reliabil-
ity Engineering and System Safety 91:1290–1300

O’Hagan A, Buck CE, Daneshkhah A, Eiser JR, Garthwaite PH, Jenkinson
DJ, Oakley JE, Rakow T (2006) Uncertain judgements: eliciting experts’
probabilities. John Wiley and Sons

Owen AB (2013a) Better Estimation of Small Sobol’ Sensitivity Indicies.
ACM Transactions Modeling Computer Simulations 23:11:1–11:17

Owen AB (2013b) Monte Carlo theory, methods and examples.
http://statweb.stanford.edu/ owen/mc/

Owen AB (2013c) Variance Components and Generalized Sobol’ indicies.
Uncertainty quantification 1:19–41

Pauly D, Christensen V, Walters C (2000) Ecopath, Ecosim, and Ecospace
as tools for evaluating ecosystem impact of fisheries. ICES Journal of
Marine Science 57:697–706

Petchey OL, Belgrano A (2010) Body-size distributions and size-spectra:
universal indicators of ecological status? Biology Letters 6:434–437

171

Pimm SL, Rice JC (1987) The dynamics of multispecies, multi-life-stage
models of aquatic food webs. Theoretical Population Biology 32:303–325

Pinnegar J (2014) Atlantis. MSCC/MASTS modelling workshop

Piou C, Berger U, Grimm V (2009) Proposing an information critation
for individual-based models developed in a pattern-orientated modelling
framework. Ecological Modelling 220:1957–1967

Plagányi ÉE, Punt AE, Hillary R, Morello EB, Thébaud O, Hut-
ton T, Pillans RD, Thorson JT, Fulton EA, Smith ADM, Smith
F, Bayliss P, Haywood M, Lyne V, Rothlisberg PC (2014) Mul-
tispecies fisheries management and conservation: tactical ap-
plications using models of intermediate complexity. Fish and
Fisheries 15(1):1–22, DOI 10.1111/j.1467-2979.2012.00488.x, URL
http://dx.doi.org/10.1111/j.1467-2979.2012.00488.x

du Plessis M (1992) Obligate cavity-roosting as a Constraint on Dispersal of
Green (Red-Billed) Woodhoopoes: Consequences for Philopatry and the
Likelihood of Inbreeding. Oecologia 90:205–211

Polovina JJ (1984) Model of a coral reef ecosystem. I: the ECOPATH model
and its application to French Frigate Scholars. Coral Reefs 3:1–11

Pope JG, Rice J, Daan N, Jennings S, Gislason H (2006) Modelling an ex-
ploited marine fish community with 15 parameters - results from a simple
size-based model. Journal of Marine Science 63:1029–1044

Pritchard JK, Seielstad MT, Perez-Lezaun A, Feldman MW (1999) Popu-
lation growth of human y chromosomes: a study of y chromosome mi-
crosatellites. Molecular Biology and Evolution 16:1791–1798

Railsback SF, Grimm V (2012) Agent-based and individual-based modeling
a practical introduction. Princeton University Press

Railsback SF, Cunningham PC, Lamberson RH (2006) A stratergy for pa-
rameter sensitivity and uncertainty analysis of Individual-based models.
Ecological Modelling 111:207–222

Reckhow KH (1994) Water quality simulation modeling and uncertainty
analysis for risk assessment and decision making. Ecological Modelling
72:1–20

Reuman DC, Mulder C, Raffaelli D, Cohen JE (2008) Three allometric re-
lations of population density to body mass: theoretical integration and
empirical tests in 149 food webs. Ecology Letters 11:1216–1228

Reynolds C (1997) Individual-based models. http://www.red3d.
com/cwr/ibm.html.

172

Rice J, Gislason H (1996) Patterns of change in the size spectra of numbers
and diversity of the North Sea fish assemblage, as reflected in surveys and
models. Journal of Marine Science 53:1214–1225

Ricker WE (1954) Stock and recruitment. Journal of the Fisheries Research
Board of Canada 11(5):559–623

Roberts GO, Rosenthal JS (2001) Optimal Scaling for Various Metropolis-
Hastings Algorithms. Statistical Science 16(4):351–367

Roberts GO, Tweedie RL (1996) Exponential Convergence of Langevin Dis-
tributions and Their Discrete Approximations. Bernoulli 2(4):341–363

Rose K (1989) Sensitivity analysis in ecological simulation models. In: Singh,
M. (Ed.), Systems and Control Encyclopedia, Pergamon Press, pp 4230–
4234

Rossberg AG, Houle JE, Hyder K (2013) Stock-recruitment relations con-
trolled by feeding interactions alone. Canadian Journal of Fisheries and
Aquatic Sciences 70(10):1447–1455

Rubin DB (1984) Bayesianly justifiable and relevant frequency calculations
for applied statisticians. Annals of Statistics 12:1151–1172

Saltelli A (2002) Making best use of model evaluations to compute sensitivity
indices. Computer Physics Communications 145:280–297

Saltelli A, Tarantola S, Chan KPS (1999) A quantitative model independent
method for global sensitivity of coupled reaction symptoms to certainties.
Technometrics 41:39–56

Saltelli A, Chan KPS, Scott EM (2000) Sensitivity Analysis. Wiley

Saltelli A, Tarantola S, Campolongo F, Ratto M (2004) Sensitivity Analysis
in Practise: A Guide to Assessing Scientific Models. Wiley

Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, Salsana
M, Tarantola S (2008) Global sensitivity analysis - The primer. Wiley

Santner TJ, Williams BJ, Notz WI (2003) The design and analysis of com-
puter experiments. Springer

Satterwaite FE (1959) Random Balance Experimentation. Technometrics
1(2):111–137

Savage VM, Gillooly JF, Brown JH, West GB, Charnov EL (2004) Effects
of body size and temperature on population growth. The American Nat-
uralist 163:429–441

173

Scott F, Blanchard JL, Andersen KH (2014) mizer: an R package for mul-
tispecies, trait-based and community size spectrum ecological modelling.
Methods in Ecology and Evolution 5(10):1121–1125, DOI 10.1111/2041-
210X.12256, URL http://dx.doi.org/10.1111/2041-210X.12256

Sheldon RW, Kerr SR (1972) The population of monsters in Loch Ness.
Limnology and Oceanography 17:796–798

Sheldon RW, Parsons T (1966) A Continuous Size Spectrum for Particulate
Matter in the Sea. Journal of the Fisheries Research Board of Canada
24(5):909–915

Silverman BW (1984) Discussion of Monte Carlo Methods of Inference
for Implicit Statistical Models. Journal of Royal Statistical Society B
46(2):212–213

Silverman BW (1986) Density estimation for statistics and data analysis.
Chapman and Hall

Sisson SA, Fan Y, Tanaka MM (2007) Sequential Monte Carlo without like-
lihoods. PNAS 104:1760–1765

Sobol’ IM (1967) Distribution of points in a cube and approximate evalu-
ation of integrals. USSR Computational Mathematics and Mathematical
Physics 7(4):86–112

Sobol’ IM (1993) Sensitivity estimates for nonlinear mathematical models.
Mathematical Modeling and Computational Experiment 1:407–414

Sobol’ IM (2001) Sensitivity estimates for nonlinear mathematical models
and their Monte Carlo estimates. Mathematics and Computers in Simu-
lation 55:271–280

Sobol’ IM, Kucherenko S (2009) Derivative based global sensitivity measures
and their link with global sensitivity indices. Mathematics and Computers
in Simulation 79(3009-3017)

Sobol’ IM, Kucherenko S (2010) A new derivative based importance criterion
for groups of variables and its link with the global sensitivity indices.
Computer Physics Communications 181:1212–1217

Sottoriva A, Tavaré S (2010) Integrating Approximate Bayesian Computa-
tion with Complex Agent-Based Models for Cancer research. In COMP-
STAT 2010 Proceedings in Computational Statistics pp 55–66

Sousa VC, Fritz M, Beaumont MA, Chikhi L (2009) Approximate Bayesian
Computation without summary statistics: the case of admixture. Genetics
181:1507–1519

174

Spiegelhalter DJ, Best NG, Carlin BP (1998) Bayesian deviance, the effective
number of parameters and the comparison of arbitrary complex models.
Tech. rep.

Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2002) Bayesian
measures of model complexity and fit. Journal of the Royal Statistical
Society: Series B Series B Statistical Methodology 64:583–639

Storlie CB, Helton JC (2008) Multiple predictor smoothing methods for
sensitivity analysis: Description of techniques. Reliability Engineering and
System Safety 93:28–54

Stott PA, Kettleborough JA (2002) Origins and estimates of uncertainty in
predictions of twenty first century temperature rise. Nature 416:723–726

Strong M (2011) Managing structural uncertainty in health economic deci-
sion models. PhD thesis, University of Sheffield

Strong M, Oakley JE (2013) An Efficient Method for Computing Single-
Parameter Partial Expected Value of Perfect Information. Medical Deci-
sion Making 33(6):755–766

Strong M, Oakley JE, Chilcott J (2011) Managing structual uncertainty in
health economic decision models: a discrepancy approach. Journal of the
Royal Statistical Society: Series B 61(1):25–45

Strong M, Oakley JE, Brennan A (2014) Estimating multi-parameter partial
Expected Value of Perfect Information from a probabilistic sensitivity
analysis: a non-parametric regression approach. Medical Decision Making
34(3):311–326

Swendsen RH, Wang JS (1986) Replica Monte Carlo Simulation of Spin-
Glasses. Physical Review Letters 57(21):2607–2609

Tarantola S, Giglioli N, Jesinghaus N, Saltelli A (2002) Can global sensitivity
analysis steer the implementation of models for environmental assesments
and decision making? Stochastic Environmental Research and Risk Ass-
esment 16:63–76

Tarantola S, Gatelli D, Mara TA (2006a) Random balanced designs for es-
timation of first-order global sensitivity indices. Reliability Engineering
and System Safety 91:717–727

Tarantola S, Nardon M, Salsana M, Gatelli D (2006b) A new estimator
for sensitivity analysis of model output: an application to the e-business
composite indicator. Reliability Engineering and System Safety 91:1135–
1141

175

Tavaré S, Balding DJ, Griffiths RC, Donnelly P (1997) Inferring Coalescence
Times from DNA Sequence Data. Genetics 145(2):505–518

Thorpe RB, Le Quesne WJF, Luxford F, Collie JS, Jennings S (2015) Evalu-
ation and management implications of uncertainty in a multi-species size-
structured model of population and community responses to fishing. Meth-
ods in Ecology and Evolution 6(1):49–58, DOI 10.1111/2041-210X.12292,
URL http://dx.doi.org/10.1111/2041-210X.12292

Tian T, Xu S, Gao J, Burrage K (2007) Simulated maximum likelihood
method for estimating kinetic rates in gene expression. Bioinformatics
23:84–91

Tissot JY, Prieur C (2012) Bias correction for estimation of sensitivity in-
dices based on random balance designs. Reliability Engineering and Sys-
tem Safety 107:205–213

Verlet L (1967) Computer “Experiments” on Classical Fluids. I. Thermody-
namical Properties of Lennard-Jones Molecules. Physical Review 159:98–
103

Vernon I, Goldstein M, Bower RG (2010) Galaxy Formation: a Bayesian
Uncertainty Analysis. Bayesian Analysis 5(4):619–670

Vihola M (2012) Robust adaptive Metropolis algorithm with coerced accep-
tance rate. Statistics and Computing 22:997–1008

Vrugt JA, ter Braak CJF, Diks CGH, Robinson BA, Hyman JM, Higdon D
(2009) Accelerating Markov Chain Monte Carlo Simulation by Differential
Evolution with Self-Adaptive Randomized Subspace Sampling. Journal of
Nonlinear Sciences & Numerical Simulation 10(3):271–288

Wainwright HM, Finsterle S, Jung Y, Zhou Q, Birkholzer JT (2014) Making
sense of global sensitivity analyses. Computers & Geosciences 65:84–94

Walters C, Christensen V, Pauly D (1997) Structuring dynamic models of
exploited ecosystems from tropic mass-balance assessments. Reviews in
Fish Biology and Fisheries 7(2):138–172

Ware DM (1978) Bioenergetics of Pelagic Fish: Theoretical Change in Swim-
ming Speed and Ration with Body Size. Journal of the Fisheries Research
Board of Canada 35(2):220–228

Wegmann D, Leuenberger C, Excoffier L (2009) Efficient Approximate
Bayesian Computation Coupled With Markov Chain Monte Carlo With-
out Likelihood. Genetics Society of America 182:1207–1218

Weisberg M (2006) Robustness analysis. Philosophy of Science 73:730–742

176

Werner EE, Gilliam JF (1984) The ontogenetic niche and species interactions
in size-structured populations. Annual Review of Ecology, Evolution, and
Systematics 15:393–425

White EP, Ernest SKM, Kerkhoff AJ, Enquist BJ (2007) Relationships be-
tween body size and abundance in ecology. Trends in Ecology and Evolu-
tion 22(6):323–330

Wiegand T, Jeltsch F, Hanski I, Grimm V (2003) Using pattern-oriented
modeling for revealing hidden information: A key for recording ecological
theory and application. Oikos 100:209–222

Wiegand T, Revilla E, Knauer F (2004) Dealing with uncertainty in spatially
explicit population models. Biodiversity and Conversation 13:53–78

Wilkinson DJ (2010a) Parameter inference for stochastic kinetic models of
bacterial gene regulation: a Bayesian approach to systems biology. In:
Bernardo JM, Bayarri MJ, Berger JO, Dawid AP, Heckerman D, Smith
AFM, West M (eds) Bayesian Statistics 9, Oxford University Press

Wilkinson RD (2010b) Bayesian calibration of expensive computer models.
In: Biegler L, Biros G, Ghattas O, Heinkenschloss M, Keyes D, Mallick
B, Tenorio L, van Bloemen Waanders B, Willcox K (eds) Large scale
inverse problems and quantification of Uncertainty, John Wiley and Sons,
pp 195–216

Wilkinson RD (2013) Approximate Bayesian Computation (ABC) gives ex-
act results under the assumption of model error. Statistical Applications
in Genetics and Molecular Biology 12(2):129–141

Wilkinson RD (2014) Accelerating ABC methods using Gaussian processes.
arXiv:14011436

Wood SN (2010) Statistical inference for noisy nonlinear ecological dynamic
systems. Nature 466:1102–1104

177

